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Editorial on the Research Topic

Processing Symbolic Numerical Information and Its Implications for Mathematics Learning

INTRODUCTION

Among the first demands of enculturation on children’s emerging numerical abilities is learning
to transcode their initial representations of quantity into symbolic notations. It usually takes
years of (formal) education before children master symbolic numerical representations including
number words and digital-Arabic numerals as well as their place-value structuring and apply this
successfully to perform arithmetic.

Understanding how symbolic and non-symbolic numerical representations relate to each
other as well as predict numerical development may help to elucidate how children acquire
numerical skills including arithmetic. In particular, as there is evidence suggesting that mastery
of symbolic numerical representations—more so than non-symbolic ones—are building blocks for
later arithmetic / mathematics performance.

The present Research Topic aimed at providing latest research results on processing of symbolic
numerical information but also the trajectories in which processing of both symbolic and non-
symbolic numerical information impacts numerical development. We collated 14 empirical studies
focusing on (i) the semantic processing of symbolic numbers, (ii) the processing of symbolic
numbers as a predictor of arithmetic / mathematics performance, and (iii) the understanding of
the place-value structuring of symbolic numbers. These will be discussed in turn in the following.

SEMANTIC PROCESSING OF SYMBOLIC NUMBERS

One major question when it comes to the processing of number symbols is how they become
associated with and under what circumstances they activate semantic magnitude information. The
latter was investigated by Malykh et al. who observed that accuracy and speed of processing non-
symbolic magnitudes developed differently from 1st to 9th grade, which might suggest different
dependent variables reflect different underlying processes.

Finke et al. investigated cross-format activation of Arabic digits and number words in two ERP
experiments with adult participants. They observed that number pairs seemed to be processed
in two stages. At an early stage, number pairs presented in the same notation are integrated

5
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automatically without necessary access to semantic magnitude
information. However, the latter is involved in a later second
stage supporting cross-format integration of numbers.

In a further ERP study, van Hoogmoed et al. investigated
the integration of numerical information presented in symbolic
(Arabic digits) and non-symbolic (dot patterns) presentation
formats. In line with the results of Finke et al.—but in contrast
to ideas of an approximate number system underlying human
numerical cognition—their results did not support the idea that
children automatically activate semantic magnitude information
when processing symbolic numbers.

When learning to understand symbolic numbers, a main
challenge faced by children is to grasp the concept of the number
zero and how to use this number in different numerical tasks
and notations. In this context, Krajcsi et al. demonstrated that
children understand verbal labels reflecting zero (e.g., nothing)
and deal with empty sets even before they regard zero as
a number.

Furthermore, Schmidt et al. investigated how early
neuromotor experiences influence spatial associations for
symbolic numbers. The authors considered two neuromuscular
diseases characterized by progressive loss of motor abilities:
spinal muscular atrophy (SMA, preventing any experiences
of independent motoric exploration) and Duchenne muscular
dystrophy (DMD, which compromises acquired experiences
later in development). Results indicated that children with
DMD exhibited typical spatial associations when processing
symbolic numbers, while children with SMA exhibited no
such or even reversed associations. These results corroborate
the relevance of early sensorimotor experiences for children’s
numerical development.

When looking at numerical development in particular, it
often is of specific interest if, and if so, which basic numerical
skills—including the processing of symbolic numbers—predict
later arithmetic / mathematics performance in what way.
This question was addressed in another set of studies of our
Research Topic.

PROCESSING SYMBOLIC NUMBERS AS A

PREDICTOR OF ARITHMETIC /

MATHEMATICS PERFORMANCE

It has been argued that mathematics achievement builds
on more basic numerical skills with inconsistent findings
regarding the relevance of processing non-symbolic vs. symbolic
numerical information. In this context, Gloor et al. provided
evidence that both Spontaneous Focusing on Numerosity
as well as symbolic number skills longitudinally predicted
mathematics achievement at the end of 1st grade. However, the
contribution of symbolic numerical skills was observed to be
more pronounced.

Furthermore, Chen et al. studied a sample of adolescents
with congenital and acquired deafness to investigate associations
between symbolic and non-symbolic magnitude processing and
arithmetic performance. They observed significant associations
between symbolic and non-symbolic processing and arithmetic

performance even after controlling for demographic variables.
Interestingly, however, number magnitude processing did not
predict arithmetic performance in the group with congenital
deafness indicating an influence of (hearing) language on
numerical development.

Additionally, Räsänen et al. report on a cross-sectional large-
scale study investigating the development of basic number
processing skills (i.e., single-digit symbolic number comparison,
digit-dot matching) and arithmetic fluency in children aged 9–
15 years using data from the development of a screening tool
for mathematics learning disabilities. They observed that girls
performed better in tasks on basic number processing whereas
boys performed better in tasks related to arithmetic fluency.
This implies that gender should be considered when assessing
mathematical learning disabilities.

Moreover, Abreu-Mendoza et al. evaluated the effectiveness of
an intervention fostering non-symbolic proportional reasoning
by means of Cuisenaire rods for improving symbolic fraction
knowledge. Results indicated that the intervention significantly
improved processing of non-symbolic continuous proportions,
but did not significantly improve processing of discretized
proportions such as symbolic fractions.

Furthermore, Vogel et al. investigated the association of
mathematical abilities and the reversed numerical distance effect
typically observed in order judgments of number sequences [i.e.,
faster RTs for sequences with small (2 3 4) compared to large
distances (2 4 6)]. In an adult sample, they observed that not
all individuals presented a significant reversed distance effect
and that the association of order judgements with mathematical
abilities was more pronounced for individuals who exhibited a
significant reversed distance effect.

Finally, Loenneker et al. investigated the association of visuo-
spatial and symbolic arithmetical skills in a sample of patients
with Parkinson’s Disease (PD) in different stages of the disease.
Results indicated that the occurrence of arithmetic difficulties
was predicted by attentional and visuo-spatial/constructional
deficits even after controlling for clinical and sociodemographic
confounds. Interestingly, patients’ difficulties were mostly related
to place value processing in calculation tasks, which highlights
the relevance of evaluating this basic numerical skill in
neuropsychological patients.

Importantly, place-value processing—reflecting knowledge of
the structuring principle of symbolic numbers—is critical to
numerical development. This was addressed in a final set of
studies included in the Research Topic.

PLACE-VALUE UNDERSTANDING

Current research indicates that understanding the place-value
structure of the Arabic number system is a challenge for children
during the 1st years of primary school (e.g., Moura et al., 2015).
At the same time, it is crucial for later mathematics achievement
(e.g., Moeller et al., 2011). However, research into the theoretical
underpinnings and developmental trajectories of place-value
understanding as well as effective interventional approaches is
currently limited.
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Addressing these gaps, Herzog and Fritz-Stratmann link
their recently proposed hierarchical model of place-value
learning (Herzog et al., 2019) to number transcoding (i.e.,
writing numbers to dictation or reading digital-Arabic numbers
aloud)—a commonly employed task used to index place-value
understanding. The authors found that transcoding may indeed
be a valid index for place-value understanding because 2nd and
3rd graders demonstrating more advanced levels of place-value
understanding also performed better in writing Arabic numbers
to dictation, especially for syntactically more complex numbers
(e.g., including zeros).

Friedmann et al. further contribute to our theoretical
knowledge of place-value understanding by presenting a single
case study on the performance of a deaf participant who also
presented specific deficits in transcoding multi-digit numbers.
While word reading seemed to be preserved, reading and
comprehension of multi-digit Arabic numbers was impaired with
error patterns reflecting characteristics of the sign language used
by the participant. The authors interpreted this as evidence for
dissociated mechanisms for processing visual properties and the
decimal structure of Arabic numbers.

Providing further insights regarding interventional
approaches to foster place-value understanding, Yuan et al.
evaluated in three studies whether and if so how children
aged 4–6 years that had not yet entered school benefited from
different approaches specifically designed to foster conceptual

understanding of place-value in general and transcoding (i.e.,
reading multi-digit Arabic numbers) in particular. Based on
their findings the authors argue that rather than traditional
mathematical manipulatives (e.g., base-10-blocks, Abacus),
shapes with a simple but easily graspable structure, or even
exposure to pairs of multidigit Arabic numbers and their
names, may be more effective for the acquisition of initial
place-value understanding.

CONCLUDING REMARKS

As indicated by the wide range of topics addressed in
this Research Topic, the relevance of symbolic processing
for numerical cognition and its development is undeniable.
However, even though it seems a very basic numerical skill, it
nevertheless poses considerable challenges on learners especially
with respect to acquiring understanding of the organizing
place-value structuring principle of symbolic Arabic numbers.
Taken together, this Research Topic indicates that understanding
symbolic numbers (including their place-value structuring)
seems key to successful numerical development.
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Developmental Changes in ANS
Precision Across Grades 1–9:
Different Patterns of Accuracy and
Reaction Time
Sergey Malykh1,2* , Yulia Kuzmina2 and Tatiana Tikhomirova1,2

1 Department of Psychology, Lomonosov Moscow State University, Moscow, Russia, 2 Psychological Institute of Russian
Academy of Education, Moscow, Russia

The main aim of this study was to analyze the patterns of changes in Approximate
Number Sense (ANS) precision from grade 1 (mean age: 7.84 years) to grade 9 (mean
age: 15.82 years) in a sample of Russian schoolchildren. To fulfill this aim, the data from
a longitudinal study of two cohorts of children were used. The first cohort was assessed
at grades 1–5 (elementary school education plus the first year of secondary education),
and the second cohort was assessed at grades 5–9 (secondary school education).
ANS precision was assessed by accuracy and reaction time (RT) in a non-symbolic
comparison test (“blue-yellow dots” test). The patterns of change were estimated via
mixed-effect growth models. The results revealed that in the first cohort, the average
accuracy increased from grade 1 to grade 5 following a non-linear pattern and that the
rate of growth slowed after grade 3 (7–9 years old). The non-linear pattern of changes
in the second cohort indicated that accuracy started to increase from grade 7 to grade
9 (13–15 years old), while there were no changes from grade 5 to grade 7. However,
the RT in the non-symbolic comparison test decreased evenly from grade 1 to grade 7
(7–13 years old), and the rate of processing non-symbolic information tended to stabilize
from grade 7 to grade 9. Moreover, the changes in the rate of processing non-symbolic
information were not explained by the changes in general processing speed. The results
also demonstrated that accuracy and RT were positively correlated across all grades.
These results indicate that accuracy and the rate of non-symbolic processing reflect
two different processes, namely, the maturation and development of a non-symbolic
representation system.

Keywords: approximate number sense, non-symbolic comparison, speed-accuracy trade-off, general processing
speed, numerical ratio effect

INTRODUCTION

Humans and other species are equipped with the ability to perceive and process numerical
information without counting and using symbols (e.g., Cantlon and Brannon, 2007; Agrillo et al.,
2009; Nieder and Dehaene, 2009). Particularly, people can rapidly estimate and compare sets of
objects based on their numerosities to determine the largest one or detect changes in numerosity.
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This ability can be supported by several systems of non-symbolic
numerosity representations depending on the number of objects
that should be perceived and the objects’ separation.

The first system is subitizing, which is the ability to precisely
estimate numerosity in cases in which the number of objects
is less than 4 (e.g., Revkin et al., 2008). Subitizing is based on
an object tracking system and requires attentional and working
memory resources (Olivers and Watson, 2008; Vetter et al., 2008;
Burr et al., 2010). If the number of objects is larger than 3–4
and the boundaries of the objects are distinct, the Approximate
Number System (ANS) is activated to estimate numerosity (Burr
and Ross, 2008; Viswanathan and Nieder, 2013). Numerous
studies have also demonstrated that when the number of objects
increases and they have high density, objects are likely to be
perceived as an inseparable texture, and the third system –
texture-density discrimination – is activated (e.g., Anobile et al.,
2016; Pomè et al., 2019).

Among the three systems of non-symbolic numerosity
estimation, the ANS is more often discussed regarding its
relations with symbolic math skills and developmental changes
across the preschool and school years (e.g., Halberda et al.,
2008, 2012; Halberda and Feigenson, 2008). Various studies
have identified the following two main features of the ANS:
its imprecision and its rapidity. ANS imprecision manifests
as the proportion of errors (PE) and the existence of the
Numerical Distance Effect (NDE) or Numerical Ratio Effect
(NRE). The NRE or NDE indicate that the PE in a non-symbolic
comparison test increases when the sets are closer to each other
in numerosity (Sasanguie et al., 2011; Lyons et al., 2015). The
size effect manifests as growing imprecision in non-symbolic
comparison and estimation when the numerosity of sets of
objects increases, while the ratio between the two sets remains
the same (Dehaene, 2001).

ANS Accuracy
To measure ANS, various tests are used. Among the most popular
types of tests, in the numerosity comparison test, individuals
compare two sets of objects (e.g., dots) and select the set that
contains more objects (e.g., Gebuis and Reynvoet, 2012; Halberda
et al., 2012; Norris and Castronovo, 2016). Different measures are
used as indicators of ANS precision in non-symbolic comparison
tests. In particular, accuracy (the proportion of correct answers)
and the Weber fraction are the measures used in most studies
(e.g., Halberda et al., 2012; Tosto et al., 2017). The Weber fraction
reflects the smallest ratio between two sets of objects that can be
reliably identified (Dietrich et al., 2015, 2016). In some cases, the
NDE and NRE for accuracy can be calculated and are used as
measures of ANS precision (e.g., Soltész et al., 2010; Lonnemann
et al., 2011). Evidence suggests that accuracy-based measures
are reliable and highly correlated with each other; thus, these
measures can be used interchangeably (Inglis and Gilmore, 2014;
Dietrich et al., 2016; Tosto et al., 2017). However, it has been
shown that accuracy (proportion of correct answers) had the
highest test-retest reliability among four possible measures of
ANS precision (Inglis and Gilmore, 2014).

Usually, it is necessary to compare arrays of objects in a
very short period. However, in different studies, the duration of

the demonstration of the sets that must be compared varies. In
particular, in the study by Halberda et al. (2008), the duration
was 200 ms, whereas in the study by Smets et al. (2016), the
duration was 1500 ms. Dietrich et al. (2016) manipulated the
duration of the stimulus presentations (from 50 to 2400 ms)
and demonstrated that ANS accuracy varied depending on the
duration. It has been shown that the variance explained by the
ratio between the two sets was higher under long reaction time
(RT) conditions. As the authors noted, these results indicate
that accuracy is more informative of the underlying numerosity
representation under conditions with long presentation times.

Speed of Non-symbolic Processing
To consider the speed of processing non-symbolic information,
the mean (or median) RT (in all tasks or correct answers) is
used. Particularly, it has been postulated that individuals who are
able to estimate numerosity faster have a more precise ANS (e.g.,
Mussolin et al., 2010; Halberda et al., 2012; De Smedt et al., 2013).
Several studies used other measures based on the RT. Particularly,
in the study by Vanbinst et al. (2012), the NDE was calculated
based on the RT. It was assumed that the RT-based NDE indicated
the effect of distance on the children’s RT and that this effect
was negative; hence, individuals who have higher ANS precision
should demonstrate a lower NDE regarding RT.

However, RT-based measures are used less often than
accuracy-based measures (Dietrich et al., 2016). Evidence
suggests that RT-based measures (particularly the mean RT, NDE
and NRE of RT) are not all correlated. In addition, accuracy-
based measures are more informative regarding the underlying
ANS acuity than RT-based measures (Dietrich et al., 2016).
Particularly, it has been shown that there were no significant
differences in RT between children with dyscalculia and children
without such problems, whereas the differences in accuracy were
significant (Piazza et al., 2010).

In addition to the low reliability of the measures based
on RT, other methodological issues hinder the use of RT in
ANS analyses. In particular, RT data usually violate the normal
distribution assumption and demonstrate positive skewness. In
addition, in some cases, in empirical data, influential values may
distort the model fit (e.g., Baayen and Milin, 2010). As a normal
distribution is an assumption of general linear models, some
authors recommend applying different transformations to RT
data to normalize the distribution (Whelan, 2008). However,
other researchers do not recommend transforming RT data
and demonstrate that transformation may not be beneficial or
may distort the interpretation of the results (e.g., Ratcliff, 1993;
Schramm and Rouder, 2019).

There are two different types of relationships between
accuracy and RT and two different approaches to the
interpretation of individual differences in RT (e.g., Dodonova
and Dodonov, 2013). In the information-processing approach
(Jensen, 2006), it is assumed that tasks are very simple and
that errors are random. Hence, accuracy scores or PE do
not significantly vary among individuals and cannot reflect
individual differences in the ability to process non-symbolic
information. In these cases, the RT is used to assess individuals’
ability. It has been postulated that the RT is negatively correlated
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with ability and that individuals with higher ability (e.g., a
more precise ANS) can perform tasks faster. Considering this
assumption, it is expected that accuracy and RT should be
negatively correlated in a non-symbolic comparison test.

In the education testing approach, the tasks might vary in their
difficulties; thus, accuracy or PE can reflect individuals’ ability.
In such tests, the RT can also be used to measure individuals’
ability, but the relationship between accuracy and RT might be
more complex than that in the information-processing approach.
When the RT and accuracy reflect the same construct, it is
expected that the RT and accuracy could be negatively correlated.
However, in some cases, individuals may prefer accuracy over
speed and demonstrate a speed-accuracy trade-off (Ratcliff et al.,
2015). In this situation, the RT and accuracy are positively
correlated, complicating the interpretation of the results of tests
based on RT measures only.

The association between RT and accuracy in complex tests
might vary depending on the task difficulty and individuals’
ability. Evidence suggests that in easy tasks, the RT and
accuracy are negatively correlated, whereas in more difficult
tasks, the RT and accuracy are positively correlated (e.g.,
Neubauer, 1990; Dodonova and Dodonov, 2013). Particularly,
it was demonstrated that in the Raven test, there was a
difference in RT, but not in accuracy, in response to easy items
between high-ability and low-ability individuals. Concurrently,
high-ability individuals differed from low-ability individuals in
terms of the rate of change in accuracy in response to more
difficult items, but no differences in RT changes were observed
(Dodonova and Dodonov, 2013).

Regarding the ANS, evidence suggests that the RT and
accuracy are positively correlated; accordingly, a speed-accuracy
trade-off has been found (e.g., Dietrich et al., 2016). Dietrich et al.
(2016) noted that if participants showed a speed-accuracy trade-
off, the accuracy and RT provided controversial information
regarding the ability to process numerosity information in a non-
symbolic format. However, in some studies, a negative correlation
was found between ANS accuracy and the RT (e.g., Soltész et al.,
2010; Libertus et al., 2013). Hence, the relationships between
accuracy and RT in a non-symbolic comparison test might
change depending on the sample or test difficulty.

Although it has been shown that accuracy is more informative
regarding ANS precision than RT, the RT can reflect an
important aspect of non-symbolic representation. Particularly,
the RT was found to explain 5–8% of the variance in
math performance in addition to the variance explained by
ANS accuracy (Libertus et al., 2011). Moreover, it has been
shown that the speed of different tests of non-symbolic
comparison formed a separate latent factor distinct from
accuracy (Soltész et al., 2010). Some authors claimed that
it is necessary to consider both accuracy and the RT in
assessing the characteristics of cognitive processes (e.g., Ratcliff
et al., 2015). In summary, previous findings revealed that
accuracy and RT might reflect different processes and cannot
be used interchangeably as measures of ANS precision (Dietrich
et al., 2016). Hence, investigations of developmental changes
in ANS precision require an estimation of changes in both
accuracy and RT.

Developmental Changes in ANS
Accuracy and RT
Some evidence suggests that ANS precision increases throughout
development. Most studies investigating developmental changes
in the ANS have been performed based on changes in accuracy
(e.g., Odic, 2018; Tikhomirova et al., 2019; Kuzmina et al., 2020)
or Weber fraction (Halberda and Feigenson, 2008; Halberda et al.,
2012). Weber fraction was found to decrease (e.g., Odic et al.,
2013), whereas accuracy was found to increase across ages (e.g.,
Tikhomirova et al., 2019).

Although the hypothesis that ANS precision in adults is
higher than that in children has been confirmed in various
cross-sectional studies, longitudinal studies have cast doubt
regarding the growth in ANS precision as a general phenomenon.
Particularly, it has been demonstrated that growth in ANS
precision slows by the end of elementary school (Tikhomirova
et al., 2019). Latent growth models revealed that a significant
proportion of pupils did not demonstrate growth in ANS
accuracy (Tikhomirova et al., 2019). In addition, the increases
in accuracy in non-symbolic comparison were found to be
significant only among pupils with a high level of fluid
intelligence or processing speed (PS) (Kuzmina et al., 2020).

Evidence suggests that the RT in non-symbolic comparison
tests also changes across development. It has been demonstrated
that adults have lower RTs in non-symbolic comparison tests
than children (Halberda et al., 2012). In particular, Halberda and
colleagues revealed that the RT rapidly decreased from the ages
of 11 to 16 years, and then, the rate of change slowed, while
accuracy continued to improve from the ages of 16 to 30 years
(Halberda et al., 2012).

It has also been postulated that the development of non-
symbolic representation precision is related to decreasing
NDE or NRE (for a discussion, see Lyons et al., 2015).
Particularly, adults demonstrated a lower distance effect
than children (Halberda and Feigenson, 2008; Holloway and
Ansari, 2008). Neurophysiological evidence further suggests
that differences exist in the distance effect between adults
and children. The amount of activation in the intraparietal
sulcus (IPS) has been found to decrease as the numerical
distance increases (Pinel et al., 2001). Ansari and Dhital
(2006) demonstrated that adult participants exhibited greater
effects of numerical distance in the left IPS than children.
The authors suggested that these differences were related to
developmental shifts from more controlled to more automatic
processing of the numerical magnitude (Ansari and Dhital,
2006). It is possible that the development of ANS precision
might involve changes in both accuracy and RT, reflecting
improvement in general PS.

Development of General PS
A large body of evidence suggests that general PS increases across
development (e.g., Kail, 2000; Kail and Ferrer, 2007; Nettelbeck
and Burns, 2010; Coyle et al., 2011). It has been demonstrated
that exponential and quadratic models of changes in general PS
fit the data better than other models (e.g., linear, hyperbolic,
and inverse regression models). It has been hypothesized that
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the patterns of changes in PS (linear increase with non-linear
decrease) are consistent with the patterns of quadratic changes in
physical growth in childhood and adolescence (Kail and Ferrer,
2007). Improvement in general PS is associated with the process
of myelination and white matter integrity across childhood
(Mabbott et al., 2006; Scantlebury et al., 2014; Chevalier et al.,
2015; Chopra et al., 2018).

Alternative theories regarding the developmental trends in PS
and its relationships with the development of other cognitive
functions have been developed. The global trend hypothesis
posits that all cognitive, motor and perceptual processes develop
at the same rate (e.g., Hale, 1990; Kail, 1991). Kail (2000)
suggested that general mechanisms limit the speed of processing
information regardless of the task specificity. Particularly, it has
been shown that PS in tasks, such as mental addition, mental
rotation and simple motor skills, improved across development at
a common rate according to an exponential function (Kail, 1991).

The alternative local trend hypothesis posits that all
components of information processing develop at different
rates (Bisanz et al., 1979). It has also been hypothesized that
the rate of change in the speed of cognitive processes might be
domain-specific, whereas within one domain, all components
develop at a common rate (Kail and Miller, 2006). For example,
it has been shown that children aged between 9 and 14 years have
a faster PS in language tasks than non-language tasks. However,
the rate of change in the PS of non-language tasks was faster than
that in language tasks (Kail and Miller, 2006).

Improvement in general PS affects further improvement in
other cognitive functions, such as working memory, intelligence,
inhibition, math skills and reasoning ability (e.g., Fry and Hale,
1996; Kail et al., 2016). In particular, the following development
cascade has been demonstrated: the general PS affects further
improvement in working memory and intelligence, which, in
turn, might affect improvement in general PS (Fry and Hale,
1996; Nettelbeck and Burns, 2010). It has also been shown that
improvement in general PS partially explains the changes in
general intelligence and accuracy of non-symbolic representation
(Pezzuti et al., 2019; Kuzmina et al., 2020). However, the extent
to which the changes in non-symbolic PS are explained by the
development of general PS is unknown. From the perspective of
the global trend hypothesis, age-related changes in an individual’s
speed in a non-symbolic comparison test should be explained
by age-related changes in general PS. The local trend hypothesis
implies that the patterns and rates of change in general and
non-symbolic PS might differ.

Current Study
Considering the complex relationships among accuracy, RT and
ability level, we hypothesized that developmental changes in
the ANS should be analyzed while considering developmental
changes in both accuracy and RT. Moreover, in previous studies, a
speed-accuracy trade-off was found in non-symbolic comparison
tests, but the developmental changes in the relationship
between accuracy and RT in non-symbolic comparison tests
are unknown. As the NRE is a core feature of non-symbolic
representation, it is crucial to estimate developmental changes by
considering the NRE.

In summary, our research aims are as follows:

(1) To assess developmental changes in accuracy and RT in
non-symbolic representation across the school years,

(2) To assess the extent to which developmental changes in
accuracy and RT vary depending on the ratio between
compared arrays,

(3) To estimate the developmental relationships between
accuracy and RT in a non-symbolic comparison test, and

(4) To estimate the extent to which the changes in general
PS may explain the changes in accuracy and RT in a
non-symbolic comparison test.

MATERIALS AND METHODS

Sample
This study was conducted using data collected for an ongoing
longitudinal project named the “Cross-cultural Longitudinal
Analysis of Student Success” (CLASS) project. For the aim of this
study, two cohorts of schoolchildren studying in one school in the
Moscow region were tested. This school was a state school with
no selection of pupils.

The first cohort was tested from grade 1 to grade 5. In
total, 313 pupils were tested, but some pupils participated less
than three times due to illness and absence from school on the
date of testing. As at least three time points are necessary to
carefully estimate developmental trajectories and development
relationships (e.g., Duncan and Duncan, 2009; Curran et al.,
2010), the data of the schoolchildren who participated once or
twice were removed from the analysis. The patterns of missing
data in the sample were tested, and the missing completely at
random (MCAR) assumption was confirmed by Little’s MCAR
test (1988) (Little, 1988). This test was non-significant (chi-square
distance = 69.49, df = 64, p = 0.30), indicating that the MCAR
assumption held. Since the MCAR assumption held and the
sample size was sufficient, list-wise deletion can be applied to
obtain adequate parameter estimates (Coertjens et al., 2017). The
remaining sample consisted of 260 pupils (49% were girls, the
mean age in grade 1 was 7.84, range 6.81–8.86), 17% of the
pupils participated three times, 44% of the pupils participated
four times, and 39% of the pupils participated five times.

The second cohort was tested from grade 5 to grade 9. The
initial sample consisted of 246 pupils. Meanwhile, some pupils
participated in the survey less than three times. To assess the
growth trajectories more precisely, we analyzed the data of
the pupils who participated at least three times. The patterns
of missing data in the sample were tested, and the MCAR
assumption was confirmed by Little’s MCAR test (1988) (Little,
1988). This test was non-significant (chi-square distance= 57.77,
df = 59, p = 0.52), indicating that the MCAR assumption held.
The final sample consisted of 210 pupils (52% were girls, the mean
age in grade 5 was 11.82 years, range 10.54–12.57), 11% of the
pupils participated three times, 38% of the pupils participated
four times, and 51% of the pupils participated five times.

This study received approval from the Ethics Committee of
the Psychological Institute of the Russian Academy of Education.
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Parental informed and written consent was obtained prior to the
data collection. Consent was obtained from the children orally.

Procedures and Instruments
The pupils were assessed at the end of the academic year (April–
May). All participants were tested in quiet settings within their
school facilities by trained experimenters. All experimenters
strictly used the same protocol and instructions for the test
administration across all measurements. The pupils completed
non-symbolic comparison and general PS tests in the computer
form. The experiment was performed in a computer classroom in
groups of 14–15 pupils. Each pupil sat in front of an individual
monitor screen approximately 60 cm from the screen and
performed the experiment independently. Each computer had
a 17” LCD display with a resolution of 1440–900 pixels and a
refresh rate of 60 Hz.

ANS
A non-symbolic comparison test was used to estimate ANS
precision at each time point. The participants were presented
arrays of yellow and blue dots in an intermixed format and
varying in size and number. The task required the participants
to judge whether the array contained more yellow or blue dots
by pressing the corresponding keys on the keyboard (for the
yellow dots, the participants pressed the “ ” key, corresponding
to the “:” key on a QWERTY keyboard; for the blue dots, the
participants pressed the “c” key, corresponding to the “c” key on a
QWERTY keyboard). The following instructions were provided:
“In this test, a number of circles will flash on the screen for less
than half a second. The circles differ in size, and each circle is
either yellow or blue. Your job is to judge whether you see more
yellow or more blue circles flashing on the screen. If you think
that there are more YELLOW circles, press “Y” on your keyboard.
If you think that there are more BLUE circles, press “B” on your
keyboard. Your decision must be based on the number of circles
and not the sizes of the circles. In some trials, it may be difficult
to judge. Don’t worry! Let your “number sense” guide you and
go with your instinct. This test should take less than 10 min. You
should try to complete the test in one session. However, if you
prefer, you will be able to take a break at certain places in the test
where you will see a “come back later” button. Remember, we are
measuring speed and accuracy, so please respond as quickly as
you can. Press the SPACE BAR to start.”

The stimuli included 150 static pictures, with the arrays of
yellow and blue dots varying between 5 and 21 dots of each color
and the ratios of the arrays of the two colors falling between 0.30
and 0.87. All trials can be divided into the following five ratio bins:
0.30–0.60 (23 trials), 0.61–0.75 (33 trials), 0.76–0.80 (29 trials),
0.81–0.84 (35 trials), and 0.85–0.87 (30 trials).

The presentation order was the same for all participants. Each
stimulus flashed on the screen for 400 ms, and the maximum
response time was 8 s. If no answer was given during this time,
the answer was recorded as incorrect, and a message appeared
on the screen to encourage the participant to press the space bar
to continue to the next trial. The message disappeared after 20 s,
and the next trial was displayed only after pressing the space bar.

The task included a practice trial with two items and an option to
repeat the practice trial.

In each trial, the cumulative area of the set containing more
dots was larger than the cumulative area of the other set. The ratio
of the cumulative areas of the two sets (the smallest area divided
by the largest area) ranged between 0.30 and 0.87. In all trials,
the average size of the yellow dots was equal to the average size
of the blue dots.

To assess ANS precision, the following two measures were
calculated: accuracy (proportion of correct answers) and RT
(mean RT of the correct responses).

General PS
Processing speed was measured via modification of an RT test
(Deary et al., 2001). In this version, the numbers 1, 2, 3, and
4 appeared 10 times each in a randomized order at random
intervals between 1 and 3 s. The interval of 1 s was repeated 14
times, and intervals of 2 and 3 s between the presentations were
repeated 13 times each. The task consisted of pressing the key
corresponding to the number appearing on the screen as fast and
accurately as possible. One series of numbers was used for all
participants. The task started with instructions and a practice trial
consisting of 6 items. The following instructions were provided:
“This test should take only 2 or 3 min. You will need to complete
the test in one go as there is no “come back later” option. We
want to measure your speed, so please respond as quickly and
as accurately as you can. You are going to see the numbers 1,
2, 3, and 4 flashing in the middle of the screen one at a time.
Each time a number appears, press the matching key at the top
of your keyboard as quickly as you can. To respond rapidly,
you should position your left fingers on the keys “1” and “2”
and your right fingers on the keys “3” and “4” as shown in
the picture. Remember to only use the number keys at the top
of the keyboard.” The practice trial could have been repeated.
The time out for responses was 8 s. If no response was given
during this time, the next trial followed. The mean RT of the
correct responses was calculated as an indicator of PS. Lower RTs
corresponded to higher general PS.

Statistical Approach
First, we examined the accuracy and RT of the correct answers
in each cohort and grade. To account for the non-symbolic
comparison ratio dependence, we inspected the accuracy and RT
in the following five ratio bins: 0.30–0.60 (23 trials), 0.61–0.75
(33 trials), 0.76–0.80 (29 trials), 0.81–0.84 (35 trials), and 0.85–
0.87 (30 trials). The ratio was calculated as the smallest number
divided by the largest number; thus, a larger ratio was associated
with a decreasing distance between two numerosities that need to
be compared. Next, the correlations between the accuracy and RT
of the correct answers were estimated in each grade. To estimate
the significance of the differences between the smallest and largest
ratio bins in accuracy and RT, a paired-samples t-test was used.

To estimate the average and individual growth trajectories of
non-symbolic representation, we used the mixed-effect growth
approach (ME approach). The ME approach considers repeated
measures that change over time “nested” in individuals. This
approach allows researchers to estimate the average trajectory
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of the entire sample and individual-specific deviations from the
average trajectory of each person. According to this framework,
the intercept and the slope may vary across individuals,
and this heterogeneity is described by the variance in the
intercept and the slope.

We tested several models and used the likelihood ratio test
(LR test) to choose the best-fitting model of the accuracy and
mean RT of the correct answers as outcomes. For each cohort
and outcome, several models were tested. The analysis started
with testing the intercept-only model. This model estimates
the intercept and between- and within-individual variance. The
proportion of between-individual variance to the total variance
(ICC) obtained from this model reflects the stability of outcomes
across time. Higher ICC values correspond to greater between-
individual variability and smaller within-individual variability (or
greater time stability).

In several subsequent models, different patterns of changes
were tested (linear changes and quadratic changes). We also
tested random slope models and compared these models with a

fixed slope model. A random slope model implies that the slope
of the time variable varies across individuals. Hence, there were
significant differences between individuals in the rate of change
in ANS precision across the grades. In this model, the variance
in the slope of the time variable and the covariance between
the individual deviation of the slope and the intercept were
estimated. To investigate the relationships between the changes
in accuracy and RT, for each individual, the predicted growth in
accuracy and RT were calculated, and the correlations between
these measures were estimated.

Next, to estimate the extent to which the changes in general
PS explain the changes in RT and accuracy in the non-symbolic
comparison, the general PS was added to the model as a predictor
of ANS, and RT and accuracy were the outcomes. If general PS
explains the changes in ANS RT and accuracy, the coefficients
of the “time” variable decrease or become insignificant. Finally,
to compare the developmental patterns of general and non-
symbolic PS, we estimated and compared the growth trajectories
of general PS and non-symbolic PS.

TABLE 1 | Descriptive statistics for accuracy and RT for all trials and for five ratio bins.

Grade Accuracy (proportion of correct answers)

All Bin1 0.30–0.60 Bin2 0.61–0.75 Bin3 0.76–0.80 Bin4 0.81–0.84 Bin5 0.85–0.87

M SD M SD M SD M SD M SD M SD

Cohort 1

1 0.63 0.09 0.75 0.17 0.66 0.12 0.60 0.11 0.58 0.11 0.58 0.10

2 0.65 0.08 0.79 0.15 0.68 0.12 0.63 0.12 0.60 0.10 0.61 0.10

3 0.68 0.08 0.82 0.12 0.71 0.11 0.65 0.11 0.62 0.10 0.62 0.10

4 0.69 0.08 0.85 0.13 0.73 0.12 0.67 0.11 0.63 0.10 0.62 0.11

5 0.69 0.08 0.85 0.12 0.72 0.11 0.67 0.10 0.63 0.09 0.63 0.11

Cohort 2

5 0.67 0.09 0.83 0.14 0.70 0.12 0.65 0.12 0.62 0.11 0.61 0.11

6 0.69 0.09 0.84 0.15 0.72 0.13 0.66 0.12 0.63 0.09 0.64 0.10

7 0.69 0.09 0.84 0.14 0.73 0.13 0.66 0.11 0.65 0.10 0.63 0.10

8 0.73 0.08 0.89 0.12 0.76 0.12 0.70 0.10 0.66 0.10 0.67 0.10

9 0.75 0.07 0.92 0.09 0.80 0.11 0.72 0.09 0.68 0.09 0.67 0.10

Grade RT for correct answers (sec.)

All Bin1 0.30–0.60 Bin2 0.61–0.75 Bin3 0.76–0.80 Bin4 0.81–0.84 Bin5 0.85–0.87

M SD M SD M SD M SD M SD M SD

Cohort 1

1 1.51 0.51 1.51 0.46 1.49 0.53 1.51 0.56 1.54 0.58 1.51 0.59

2 1.37 0.39 1.38 0.39 1.35 0.44 1.37 0.43 1.37 0.44 1.40 0.46

3 1.23 0.30 1.20 0.28 1.22 0.35 1.23 0.33 1.25 0.36 1.25 0.36

4 1.10 0.27 1.07 0.25 1.10 0.30 1.09 0.30 1.13 0.31 1.13 0.32

5 1.01 0.26 0.96 0.21 1.01 0.28 1.01 0.28 1.02 0.29 1.03 0.28

Cohort 2

5 1.04 0.25 1.03 0.26 1.04 0.28 1.02 0.28 1.06 0.30 1.06 0.30

6 0.93 0.23 0.90 0.22 0.92 0.25 0.94 0.25 0.95 0.27 0.95 0.26

7 0.85 0.22 0.82 0.19 0.85 0.26 0.85 0.23 0.88 0.26 0.87 0.27

8 0.88 0.19 0.81 0.16 0.90 0.23 0.92 0.24 0.94 0.25 0.92 0.24

9 0.89 0.17 0.81 0.14 0.89 0.20 0.90 0.20 0.93 0.21 0.93 0.21
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TABLE 2 | Correlations between accuracy and mean RT for correct answers.

Grade Correlation between accuracy and RT for correct answers

Cohort 1

Grade 1 0.53***

Grade 2 0.45***

Grade 3 0.32***

Grade 4 0.52***

Grade 5 0.42***

Cohort 2

Grade 5 0.50***

Grade 6 0.47***

Grade 7 0.68***

Grade 8 0.55***

Grade 9 0.39***

***p < 0.001.

RESULTS

Descriptive Statistics
The descriptive statistics of the accuracy and RT in the non-
symbolic comparison test in the whole test and five ratio bins are
presented in Table 1. The results revealed that across all grades,

the highest accuracy was obtained with the smallest proportion
(for ratio 0.30–0.60).

Significant positive correlations were observed between the RT
of the correct answers and accuracy in grades 1–5 in Cohort 1
and grades 5–9 in Cohort 2 (Table 2). Hence, a speed-accuracy
trade-off was found in each grade, although the values of the
correlations varied across the grades.

The descriptive statistics of general PS are presented in
Supplementary Material Table 3.

Estimation of the Ratio Dependence in
the ANS Accuracy and RT
A paired-samples t-test was conducted to estimate the
significance of the differences in accuracy between the smallest
ratio bin (0.30–0.60) and the largest ratio bin (0.85–0.87). The
analysis revealed that the difference in accuracy between the
smallest and largest ratio bins was significant in both cohorts
across all time points (Table 3). The analysis also demonstrated
that in both cohorts, the effect size of the difference between the
two ratio bins increased across time.

The analysis of the difference in the ANS RT between the
ratio bins revealed that the difference was insignificant in grades
1–2 in Cohort 1 and grade 5 in Cohort 2 (Table 3). These
results revealed that ANS precision varied depending on the ratio

TABLE 3 | Results of paired-sample t-test for differences in ANS accuracy and RT between the smallest and the largest ratio bins.

Grade Bin1 (ratio 0.30–0.60) Bin5 (ratio 0.85–0.87) Mean difference (95% CI) t df Effect size (Cohen’s d)

M SD M SD

Accuracy (Cohort 1)

1 0.75 0.17 0.58 0.10 0.17 (0.15; 0.19) 15.61*** 179 1.23

2 0.79 0.15 0.61 0.10 0.18 (0.16; 0.20) 18.24*** 218 1.43

3 0.82 0.12 0.62 0.10 0.21 (0.19; 0.22) 25.99*** 227 1.87

4 0.85 0.13 0.62 0.11 0.22 (0.21; 0.23) 26.61*** 238 1.86

5 0.85 0.12 0.63 0.11 0.22 (0.21; 0.24) 29.72*** 232 1.95

Accuracy (Cohort 2)

5 0.83 0.14 0.61 0.11 0.21 (0.19; 0.23) 24.16*** 186 1.68

6 0.84 0.15 0.64 0.10 0.20 (0.18; 0.20) 18.00*** 166 1.60

7 0.84 0.14 0.63 0.10 0.20 (0.18; 0.22) 20.48*** 182 1.63

8 0.89 0.12 0.67 0.10 0.22 (0.21; 0.24) 27.90*** 198 2.05

9 0.92 0.09 0.67 0.10 0.25 (0.23; 0.26) 29.59*** 189 2.52

RT (sec.) (Cohort 1)

1 1.51 0.46 1.51 0.59 −0.00 (−0.05; 0.05) −0.03 179 −0.002

2 1.38 0.39 1.40 0.46 −0.01 (−0.05; 0.03) −0.47 218 −0.02

3 1.20 0.28 1.25 0.36 −0.05 (−0.08; −0.02) −3.02** 227 −0.16

4 1.07 0.25 1.13 0.32 −0.06 (−0.09; −0.03) −4.60*** 238 −0.21

5 0.96 0.21 1.03 0.28 −0.07 (−0.09; −0.04) −5.36*** 232 −0.27

RT (sec.) (Cohort 2)

5 1.03 0.26 1.06 0.30 −0.02 (−0.06; 0.01) −1.27 186 −0.08

6 0.90 0.22 0.95 0.26 −0.05 (−0.08; −0.02) −3.16** 166 −0.19

7 0.82 0.19 0.87 0.27 −0.04 (−0.07; −0.02) −3.28** 182 −0.19

8 0.81 0.16 0.92 0.24 −0.08 (−0.10; −0.06) −7.40*** 198 −0.41

9 0.81 0.14 0.93 0.21 −0.12 (−0.14; −0.09) −10.56*** 189 −0.65

***p < 0.001, **p < 0.01.

Frontiers in Psychology | www.frontiersin.org 7 March 2021 | Volume 12 | Article 58930514

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-589305 March 18, 2021 Time: 12:13 # 8

Malykh et al. Developmental Changes in ANS Precision

between the two compared arrays, although these differences
mostly manifested in accuracy rather than RT.

Developmental Changes in ANS
Accuracy
The growth trajectories of ANS accuracy measured by the non-
symbolic comparison test were estimated in Cohort 1 (grades 1–
5) and Cohort 2 (grades 5–9) separately. The results of Cohort 1
are presented in Table 4.

The results of the ME growth model of Cohort 1 revealed
that the model with non-linear changes and a random slope
fit the data better than the models with linear changes or a
fixed slope. The values of the coefficients of the variables “time”
and “time2” demonstrated that ANS accuracy increased from
grade 1 to grade 5, but growth slowed after grade 3. The
results of post-estimation revealed that there was no difference in
average predicted accuracy between grades 3 – 5 (Supplementary
Table 1). The covariance between the intercept and slope at the
individual level was significant and negative, indicating that the
pupils who had a higher level of accuracy at grade 1 demonstrated
less growth (Supplementary Figure 1).

The results of the changes in accuracy in Cohort 2 (grades 5–9)
are presented in Table 5. The results of the pupils in grades 5–9
revealed that the model with non-linear changes and a random
slope fit the data better than the model with linear changes and

TABLE 4 | Cohort 1: results of ME growth models for changes in ANS accuracy
from grade 1 to grade 5.

Variables Baseline Model 1 Model 2 Model 3

Intercept-
only

Linear
growth

Non-linear
growth

Model with
random slope

B (s.e.) B (s.e.) B (s.e.) B (s.e.)

Fixed effect

Constant 0.67***
(0.004)

0.63***
(0.005)

0.62***
(0.006)

0.62***
(0.006)

Time 0.02***
(0.001)

0.036***
(0.005)

0.037***
(0.004)

Time2
−0.005***

(0.001)
−0.005***

(0.001)

Random
effect

Intercept
variance

0.003 0.003 0.003 0.004

Residuals 0.005 0.004 0.004 0.004

Slope variance
(time)

0.0002

Covariance
between
intercept and
slope

−0.0004

Log-likelihood 11191.9 1255.53 1262.74 1270.79

LR test (1 df) 127.27*** (1) 14.42*** (1) 16.11*** (2)

ICC 0.36

***p < 0.001.

TABLE 5 | Cohort 2: results of ME growth model for changes in ANS accuracy
from grade 5 to grade 9.

Variables Baseline Model 1 Model 2 Model 3

Intercept-
only

Linear
growth

Non-linear
growth

Model with
random slope

B (s.e.) B (s.e.) B (s.e.) B (s.e.)

Fixed effect

Constant 0.71***
(0.004)

0.67***
(0.005)

0.68***
(0.006)

0.68***
(0.006)

Time 0.018***
(0.001)

0.005
(0.005)

0.005
(0.006)

Time2 0.003**
(0.001)

0.003**
(0.001)

Random effect

Intercept
variance

0.005 0.004 0.004 0.005

Residuals 0.003 0.003 0.003 0.003

Slope variance
(time)

0.0002

Covariance
between
intercept and
slope

−0.0006

Log-likelihood 1005.68 1075.70 1079.42 1088.91

LR test (1 df) 140.03*** (1) 7.44** (1) 20.31*** (2)

ICC 0.39

***p < 0.001, ** p < 0.01.

a fixed slope (Supplementary Figure 2). The results of post-
estimation indicated that predicted average accuracy did not
increase from grade 5 to grade 7 but increased later (grades 8–9)
(Supplementary Table 2).

The comparison of the average accuracy in grade 5 in
both cohorts revealed that there is no difference in accuracy
in grade 5 between the two cohorts. The analysis of the
average growth trajectories in grades 1–5 and 5–9 indicated
that accuracy was relatively stable from grade 3 to grade 7
(Figure 1).

Changes in the Speed of Non-symbolic
Processing
Furthermore, we estimated the patterns of the changes in the
speed of non-symbolic processing as measured by the RT in
the non-symbolic comparison task. The results of the ME
growth model of the RT of the correct answers in Cohort 1 are
demonstrated in Table 6.

The analysis revealed that the RT of the correct answers
decreased from grade 1 to grade 5 according to a linear pattern
as the model with non-linear changes did not fit the data better
than the model with linear changes. The model with a random
slope fit the data better than the model with a fixed slope.
The covariance between the individual intercept and slope was
negative, indicating that individuals with a larger RT in grade 1
had greater changes in RT (Supplementary Figure 3).
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FIGURE 1 | Average predicted trajectories of changes in ANS accuracy for two cohorts (with 95% CI).

The results of the ME growth models of the RT in the non-
symbolic comparison test in Cohort 2 (grade 5–grade 9) are
presented in Table 7.

The analysis results revealed that the model with non-linear
changes and a random slope for the variables “time” and “time2”
fit the data better than the other models. The RT decreased from
grade 5 to grade 7 and then decreased more slowly thereafter. The
post-estimation results revealed that there was no difference in
RT between grades 7–9 (Supplementary Table 2). The covariance
between the individual intercept and the slope of the variable
“time” was negative, while the covariance between the intercept
and slope of “time2” was positive. This finding indicated that the
individuals who had a larger RT in grade 5 demonstrated a larger
decrease in RT from grade 5 to grade 6 and a larger deceleration
later (Supplementary Figure 4).

The comparison of the average predicted trajectories of the
RT in the non-symbolic comparison test and post-estimation
revealed that the changes in RT across grades 5–9 were less
prominent than those across grades 1–5 (Figure 2).

Notably, no significant differences in RT in the non-
symbolic comparison test in grade 5 were observed between
the two cohorts.

Changes in Accuracy and RT in Small
and Large Ratio Bins
Considering the difference in accuracy between the small and
large ratio bins, we inspected the growth trajectories in the easiest
ratio (0.30–0.60) and hardest ratio (0.85–0.87). The results of

Cohort 1 are presented in Table 8. The results revealed that in
both ratio bins, accuracy increased according to a non-linear
pattern. In the easiest ratio, the model with a random slope fit the
data better than the model with a fixed slope. Hence, there was
significant between-individual variability in the rate of change in
accuracy. In the large ratio bin, the model with a random slope
did not fit the data better than the model with a fixed slope.
Therefore, the individual differences in the rate of change were
not significant.

Although the pattern of the changes was the same in
the two ratio bins, the coefficient of the variable “time” was
higher in the easiest ratio, indicating a larger growth in
accuracy in the easiest ratio. However, the absolute value of the
negative regression coefficient of the “time squared” variable was
smaller in the hardest ratio, indicating less slowing in growth
(Supplementary Figure 5).

The results of the analysis of the changes in accuracy in Cohort
2 (grades 5–9) in two ratio bins separately are presented in
Table 9. The analysis revealed that in the easiest ratio, accuracy
increased according to a non-linear pattern. In particular, post-
estimation revealed that accuracy did not increase from grade
5 to grade 7, but the difference between grade 7 and 8 became
significant. The analysis also revealed that in the hardest ratio,
accuracy increased according to a linear pattern. Hence, in the
second cohort, the patterns of accuracy changes differed between
the easiest and hardest ratio bins (Supplementary Figure 6).

The results of the analysis of the RT changes in the two
ratio bins in Cohort 1 (grades 1–5) are presented in Table 10.
The results of the analysis of the pattern of RT changes in
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TABLE 6 | Cohort 1: results of ME growth models for changes in ANS RT (in sec.)
from grade 1 to grade 5.

Variables Baseline Model 1 Model 2 Model 3

Intercept-
only

Linear
growth

Non-linear
growth

Model with
random slope

B (s.e.) B (s.e.) B (s.e.) B (s.e.)

Fixed effect

Constant 1.22*** (0.02) 1.49*** (0.02) 1.52*** (0.02) 1.49*** (0.03)

Time −0.13***
(0.01)

−0.17***
(0.02)

−0.13*** (0.01)

Time2 0.01 (0.01)

Random effect

Intercept
variance

0.04 0.05 0.05 0.15

Residuals 0.11 0.08 0.08 0.06

Slope variance
(time)

0.01

Covariance
between
intercept and
slope (time)

−0.03

Log-likelihood −469.16 −300.47 −298.65 −245.37

LR test (1 df) 337.38*** (1) 3.65 (1) 112.46*** (2)

ICC 0.26

***p < 0.001.

the easiest ratio revealed that from grade 1 to grade 5, the
RT decreased according to a linear pattern. The model with
a random slope fit the data better; thus, there was significant
between-individual variability in the rate of change in the RT

in the easiest ratio. The analysis also demonstrated that the
RT significantly decreased in the hardest ratio bin according
to a linear pattern. In general, the patterns of change did not
significantly differ between the easiest and hardest ratio bins in
Cohort 1 (grades 1–5) (Supplementary Figure 7).

The results of the analysis of the changes in the RT of the
correct answers in the two ratio bins in Cohort 2 (grades 5–9)
are presented in Table 11. The results indicated that the RT in
the easiest ratio decreased from grade 5 to grade 9 according
to a non-linear pattern as follows: from grade 5 to grade 7, the
RT significantly decreased, but these changes slowed thereafter.
This pattern was also identified in the hardest ratio bin. In
general, in Cohort 2, the patterns of changes in the RT did
not significantly vary between the easiest and hardest ratio bins
(Supplementary Figure 8). However, there was a tendency of
increasing differences in RT between the two ratio bins.

How Do the Changes in ANS Accuracy
and RT Relate to Each Other?
Next, we estimated the correlations between individual changes
in ANS accuracy and RT. For each individual, the deviations
from the average value of the time changes in accuracy and RT
were calculated. Positive individual deviation values for accuracy
indicated that the individual had a larger growth in ANS accuracy
than the sample mean. Positive individual deviation values for
ANS RT indicated that the individual had a slower decrease in
ANS RT than the sample mean.

In Cohort 1 (grades 1–5), the correlation between the
individual deviation in accuracy and RT was negative (r=−0.18,
p < 0.001). This finding indicated that the individuals
who demonstrated a faster decrease in RT had a greater

TABLE 7 | Cohort 2: results of ME growth models for changes in ANS RT (in sec.) from grade 5 to grade 9.

Variables Baseline Model 1 Model 2 Model 3 Model 3a

Intercept-only Linear growth Non-linear growth Model with
random slope1

Model with
random slope2

B (s.e.) B (s.e.) B (s.e.) B (s.e.) B (s.e.)

Fixed effect

Constant 0.92*** (0.01) 1.00*** (0.01) 1.05*** (0.01) 1.05*** (0.02) 1.04*** (0.02)

Time −0.04*** (0.004) −0.14*** (0.01) −0.14*** (0.02) −0.14*** (0.02)

Time2 0.02*** (0.003) 0.03*** (0.003) 0.02*** (0.003)

Random effect

Intercept variance 0.02 0.02 0.02 0.04 0.04

Residuals 0.03 0.03 0.03 0.02 0.02

Slope variance (time) 0.002 0.02

Slope variance (time2) 0.001

Covariance between intercept and slope (time) −0.007 −0.02

Covariance between intercept and slope (time2) 0.002

Covariance between slope (time) and slope (time2) −0.004

Log-likelihood 131.94 172.40 198.99 219.75 234.05

LR test (1 df) 80.92*** (1) 53.19*** (1) 41.51*** (2) 28.59*** (3)

ICC 0.31

***p < 0.001.
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FIGURE 2 | Average predicted trajectories of changes in ANS RT for two cohorts (with 95% CI).

increase in accuracy, although the correlation was weak
(Supplementary Figure 9).

In Cohort 2 (grades 5–9), there were significant individual
differences in the slopes of the variables “time” and time2” using
the RT as the outcome; thus, two correlation coefficients were
estimated. The individual deviations in the slope of the variable
“time” in accuracy and RT were positively correlated (r = 0.44,
p < 0.001), whereas the correlation between the individual slope
of “time” in accuracy and the slope of “time 2” in RT was negative
(r=−0.34, p < 0.001). This finding indicated that the individuals
who demonstrated a greater growth in accuracy had a smaller
decrease in RT, but they exhibited less deceleration in the RT
changes (Supplementary Figure 10).

Notably, the correlation between the changes in accuracy and
RT in Cohort 1 (grades 1–5) was weaker than that in Cohort
2 (grades 5–9).

How Do the Changes in General PS
Correlate With the Changes in ANS
Accuracy and RT?
To estimate the extent to which the changes in general PS
explain the changes in ANS accuracy and RT, we added general
PS as a predictor of ANS accuracy and RT. The results are
presented in Table 12. The analysis revealed that in Cohort
1, the changes in RT and accuracy were partially explained
by the changes in general PS, although the changes in both
accuracy and RT remained significant. A faster general PS was
positively associated with higher accuracy and smaller RT in

the non-symbolic comparison test. In Cohort 2, general PS
was not correlated with RT in the ANS test and did not
explain the changes in RT but was significantly correlated with
accuracy.

Next, we estimated the developmental changes in general
PS in Cohort 1 (Supplementary Table 4) and Cohort 2
(Supplementary Table 5). The analysis revealed that general
PS increased from grade 1 to grade 5 according to a non-
linear pattern and that there was significant between-individual
variability in the rate of change. The results of Cohort 2 revealed
that general PS improved from grade 5 to grade 9 according to
a linear pattern.

Next, we compared the patterns of changes in non-symbolic
and general PS (Figure 3). The analysis revealed that general
PS changed in a non-linear pattern from grade 1 to grade
5, whereas non-symbolic PS changed in a linear pattern. In
contrast, in Cohort 2, general PS changed linearly, whereas
non-symbolic PS changed non-linearly. Notably, there was a
significant difference in RT in the general PS test in grade 5
between Cohort 1 and Cohort 2.

DISCUSSION

This study aimed to estimate developmental changes in ANS
precision from grade 1 to grade 5 and from grade 5 to
grade 9 using longitudinal data from two cohorts of Russian
children. Previously, investigations of the development of
ANS precision were mostly based on evaluations of accuracy
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TABLE 8 | Cohort 1: results of ME growth models for changes in ANS accuracy for
the easiest (0.30–0.60) and hardest (0.85–0.87) ratio bins from grade 1 to grade 5.

Variables Bin 1: 0.30–0.60 Bin 5: 0.85–0.87

Baseline Model 3 Baseline Model 2

Intercept-
only

Non-linear
growth with

random slope

Intercept-
only

Non-linear
growth with
fixed slope

B (s.e.) B (s.e.) B (s.e.) B (s.e.)

Fixed effect

Constant 0.82*** (0.01) 0.74*** (0.01) 0.61***
(0.004)

0.58*** (0.01)

Time 0.05*** (0.01) 0.03*** (0.007)

Time2
−0.007**
(0.002)

−0.004*
(0.002)

Random effect

Intercept variance 0.0053 0.012 0.0015 0.0016

Residuals 0.0147 0.011 0.009 0.009

Slope variance
(time)

0.00058

Covariance
between
intercept and
slope

−0.00197

Log-likelihood 637.07 700.82 921.67 937.94

LR test (1 df) 19.11*** (2) vs.
model with
fixed slope

3.86* (1) vs.
model with

linear growth

ICC 0.27 0.14

***p < 0.001, **p < 0.01, *p < 0.05.

(e.g., Tikhomirova et al., 2019) or the Weber fraction, which is
an indicator of ANS precision that is highly correlated with
accuracy (e.g., Halberda et al., 2012; Inglis and Gilmore, 2014;
Tosto et al., 2017). Less often, studies have used measures based
on RT to estimate age-related differences in the ANS (Halberda
et al., 2012). However, following the findings of previous studies
using different measures of ANS precision (e.g., Dietrich et al.,
2015, 2016), we assumed that an inspection of the developmental
patterns of both accuracy and RT in non-symbolic comparison
tests might provide important insight ANS development. Hence,
we inspected the developmental patterns of ANS precision using
two measures, i.e., the proportion of correct answers and mean
RT of correct answers. To account for one of the main features
of non-symbolic representations, i.e., ratio dependence, we also
estimated the mean RT and accuracy in five ratio bins separately.
We aimed to compare the developmental patterns of accuracy
and RT between the smallest (easiest) ratio and the largest
(hardest) ratio.

The analysis revealed that accuracy decreased as the ratio
between the two compared sets increased, and in the largest
ratio, accuracy was significantly lower than that in the smallest
ratio. Furthermore, the difference in RT between the ratio bins
was less impressive than that in accuracy. This finding indicated
that the sensitivity to increasing ratios between the compared

arrays manifested in decreasing accuracy, but the RT changed to
a lesser extent.

The estimation of the developmental changes in accuracy in
the two cohorts revealed that accuracy increased from grade 1
to grade 3 and from grade 7 to grade 9 but did not significantly
change from grade 3 to grade 7. In both cohorts, the model with
the quadratic patterns of changes fit the data better than the
model with linear changes. The pattern of quadratic changes in
Cohort 1 (grades 1–5) indicated faster growth in ANS accuracy
and then slower changes. In Cohort 2 (grades 5–9), the opposite
pattern was found as follows: the insignificant growth from
grade 5 to grade 7 was replaced by growth in accuracy from
grade 7 to grade 9. The analysis also revealed significant inter-
individual changes in the rate of change in accuracy in both
cohorts. Notably, the obtained quadratic pattern of changes fit
better than the linear pattern in a restricted period only. The
generalization of these patterns of changes to a wider period
should be performed with caution. Quadratic models imply
U-shaped trajectories in development, but this trajectory can
manifest later in development. In this study, the quadratic pattern
revealed that growth slowed (Cohort 1) or accelerated (Cohort 2).

The RT significantly decreased from grade 1 to grade 5 in a
linear pattern. In the second cohort (grades 5–9), the changes

TABLE 9 | Cohort 2: results of ME growth models for changes in ANS accuracy for
the easiest (0.30–0.60) and hardest (0.85–0.87) ratio bins from grade 5 to grade 9.

Variables Bin 1: 0.30–0.60 Bin 5: 0.85–0.87

Baseline Model 3 Baseline Model 3

Intercept-
only

Non-linear
growth with

random slope

Intercept-
only

Linear growth
with random

slope

B (s.e.) B (s.e.) B (s.e.) B (s.e.)

Fixed effect

Constant 0.86*** (0.01) 0.82*** (0.01) 0.65***
(0.004)

0.61*** (0.01)

Time 0.0015 (0.01) 0.015*** (0.002)

Time2 0.006** (0.002)

Random effect

Intercept variance 0.005 0.010 0.002 0.005

Residuals 0.012 0.010 0.0085 0.0072

Slope variance
(time)

0.0003 0.0002

Covariance
between
intercept and
slope

−0.001 −0.0008

Log-likelihood 604.55 664.52 797.17 827.42

LR test (1 df) 16.56*** (2) vs.
model with
non-linear

growth and
fixed slope

9.23** (2) vs.
model with

linear growth
and fixed slope

ICC 0.31 0.22

***p < 0.001, **p < 0.01.
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TABLE 10 | Cohort 1: results of ME growth models for changes in ANS RT (in
sec.) for the easiest (0.30–0.60) and hardest (0.85–0.87) ratio bins from
grade 1 to grade 5.

Variables Bin 1: 0.30–0.60 Bin 5: 0.85–0.87

Baseline Model 3 Baseline Model 3

Intercept-
only

Linear growth
with random

slope

Intercept-
only

Linear growth
with random

slope

B (s.e.) B (s.e.) B (s.e.) B (s.e.)

Fixed effect

Constant 1.21*** (0.01) 1.50*** (0.02) 1.25*** (0.02) 1.51*** (0.03)

Time −0.14*** (0.01) −0.12*** (0.01)

Time2

Random effect

Intercept variance 0.027 0.12 0.05 0.19

Residuals 0.12 0.06 0.14 0.08

Slope variance
(time)

0.005 0.01

Covariance
between
intercept and
slope

−0.02 −0.04

Log-likelihood −468.83 −200.31 −605.33 −434.36

LR test (1 df) 102.08*** (2)
vs. model with
linear growth

and fixed slope

102.94*** (2)
vs. model with
linear growth

and fixed slope

ICC 0.19 0.27

***p < 0.001.

in RT followed a non-linear pattern as follows: these changes
occurred more rapidly from grade 5 to grade 7 and then slowed.
Our study confirmed that ANS accuracy increased and RT
decreased across development; thus, at the end of secondary
school, the pupils demonstrated higher accuracy and shorter RT
than the first-graders. These results are consistent with several
studies demonstrating that adults have lower RTs and higher
accuracy in ANS tests (e.g., Halberda et al., 2012). Furthermore,
the period during which accuracy and RT change in one direction
(increase in accuracy and decrease in RT) take turns with periods
during which changes in RT may continue, while accuracy is
stabilized, and vice versa.

The combination of changes in ANS accuracy and RT allows
us to identify three stages of developmental changes in ANS
precision across 9 years of formal schooling. The first stage (grade
1–grade 3, age from 7 to 9 years) was characterized by faster
increases in accuracy and speed of non-symbolic comparison.
During the second stage (grade 3–grade 7, age from 9–13),
accuracy stabilized, while the speed of non-symbolic comparisons
continued to increase. During the third stage (grade 7–grade 9,
13–15 years), ANS accuracy started to increase again, while ANS
RT did not significantly change.

These findings indicate that at different developmental stages,
changes in the precision of ANS manifest in different ANS
measures, which should be considered. It is possible that at the

TABLE 11 | Cohort 2: results of ME growth models for changes in ANS RT (in
sec.) for the easiest (0.30–0.60) and hardest (0.85–0.87) ratio bins from
grade 5 to grade 9.

Variables Bin 1: 0.30–0.60 Bin 5: 0.85–0.87

Baseline Model 3 Baseline Model 3

Intercept-
only

Non-linear
growth with

random slope

Intercept-
only

Non-linear
growth with

random slope

B (s.e.) B (s.e.) B (s.e.) B (s.e.)

Fixed effect

Constant 0.87*** (0.01) 1.03*** (0.02) 0.94*** (0.01) 1.07*** (0.02)

Time −0.15*** (0.01) −0.15*** (0.02)

Time2 0.023*** (0.003) 0.03*** (0.004)

Random effect

Intercept variance 0.01 0.035 0.02 0.05

Residuals 0.036 0.021 0.05 0.03

Slope variance
(time)

0.002 0.003

Covariance
between
intercept and
slope

−0.007 −0.009

Log-likelihood 136.51 277.65 −26.88 34.16

LR test (1 df) 63.31*** (2) vs.
model with
non-linear

growth and
fixed slope

37.89*** (2) vs.
model with
non-linear

growth and
fixed slope

ICC 0.22 0.30

***p < 0.001.

beginning of formal education, changes in the precision of ANS
manifest in both accuracy and RT, but later, growing precision
mostly manifests in decreased RT but not increased accuracy.
At the end of secondary school (grades 7–9, age range 13–
15 years), in turn, changes in RT might not reflect changes in ANS
precision, whereas growth in accuracy might indicate growth in
ANS precision during this stage of development.

Although we did not directly estimate the NRE and its
changes, we can compare the developmental trajectories between
the easiest and hardest ratio bins. The inspection of the changes
in accuracy in the two ratio bins revealed that from grade 1 to
grade 5, the changes in the easiest ratio bin were larger than those
in the hardest ratio bin, although in both ratio bins, non-linear
patterns of changes were identified. In Cohort 2 (grades 5–9),
the patterns of the change in accuracy differed between the two
ratio bins. The easiest ratio changes followed a non-linear pattern
with acceleration of growth, while accuracy in the hardest ratio
bin changed linearly. Notably, in both cohorts, the changes in
accuracy were more prominent in the easiest ratio. This finding
might indicate that the increased accuracy in the non-symbolic
comparison test was driven by an increase in accuracy in easier
tasks. These results are likely to indicate a slight increase in the
NRE as this increase occurs on account of growth in accuracy in
trials with the easy ratio.
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TABLE 12 | Results of ME growth models for changes in ANS accuracy and RT
with general PS (in sec.) as a predictor.

Variables Cohort 1 (grades 1–5) Cohort 2 (grades 5–9)

Accuracy RT Accuracy RT

B (s.e.) B (s.e.) B (s.e.) B (s.e.)

Fixed effect

Constant 0.63*** (0.01) 1.48*** (0.03) 0.68*** (0.01) 1.07*** (0.02)

Time 0.03***
(0.005)

−0.12***
(0.01)

−0.001
(0.005)

−0.14*** (0.02)

Time2
−0.004**
(0.001)

0.004***
(0.001)

0.02*** (0.003)

General PS (in
Z-scores)

−0.007*
(0.003)

0.025* (0.01) −0.02***
(0.003)

−0.02 (0.05)

Random effect

Intercept variance 0.004 0.15 0.005 0.04

Residuals 0.004 0.06 0.003 0.02

Slope variance
(time)

0.0002 0.01 0.0002 0.02

Slope variance
(time2)

0.001

Covariance
between intercept
and slope (time)

−0.0005 −0.03 −0.0006 −0.02

Covariance
between intercept
and slope (time2)

0.002

Covariance
between slope
(time) and slope
(time2)

−0.004

Log-likelihood 1273.99 −242.72 1111.80 234.17

LR test (1 df) 6.38* (1) (vs.
Model 3)

5.31* (1) (vs.
Model 3)

45.80*** (1)
(vs. Model 3)

0.24 (1) (vs.
Model 3a)

***p < 0.001, **p < 0.01, *p < 0.05.

There are controversial findings regarding the development
of the NRE. Some studies have demonstrated that the NRE is
reduced across age (Holloway and Ansari, 2009), while other
studies have demonstrated increases in the NRE (Lyons et al.,
2015). Several studies also found that the NRE or NDE were
stable across time (Reynvoet et al., 2009; Defever et al., 2011). The
differences in the obtained findings might be related to different
formats of magnitude (symbolic or non-symbolic), different
types of tasks (priming vs. comparison) or different formats of
stimulus presentation (paired vs. intermixed format) in the non-
symbolic comparison task. Particularly, it has been demonstrated
that the NRE under paired conditions was stronger than that
under intermixed conditions (Price et al., 2012). It has also been
demonstrated that the distance effect in priming tasks was stable
across age (Defever et al., 2011), while the distance effect in
comparison tasks decreased (Holloway and Ansari, 2008). In
general, it might be concluded that the NRE is sensitive to the
format of tasks and cannot be considered a reliable measure of
ANS precision and its development.

In addition, the results of the current study indicated
that accuracy and RT had different levels of inter-individual

variability. The ICC value of accuracy was higher than that of RT
in both cohorts (for accuracy, the ICC value was 0.36 and 0.39
in Cohort 1 and Cohort 2, respectively, whereas for RT, the ICC
value was 0.26 and 0.31). This finding indicates that individuals
exhibited variations in accuracy in the ANS test to a greater extent
than they exhibited variations in RT and that RT was a less stable
measure of ANS precision than accuracy.

The different roles of accuracy and RT were considered within
the diffusion model (Ratcliff, 2002; Park and Starns, 2015; Ratcliff
et al., 2016). The diffusion model considers each task a decision
process that can be performed based on the noisy accumulation
of information. Several components of decision processes were
identified, including the drift rate (the rate of the accumulation
of information available for use in a decision), boundary settings
(boundary of correct or incorrect responses) and non-decision
processes. Ratcliff et al. (2015) demonstrated that in numerical
tasks, accuracy is largely determined by the drift rate, whereas
the RT is determined by boundary settings. It was also shown
that the slower RT of children than that of young adults could
be explained by wider boundary separation and non-decision
processes. For example, the reduction in the RT of older children
compared to that of first-graders might be related to a decrease
in the amount of time devoted to non-decision processes, such as
stimulus encoding and response execution (Ratcliff et al., 2012).

It is possible to assume that the changes in accuracy and RT
can be explained by different factors. The faster growth in ANS
accuracy at the start of formal schooling might be associated
with the acquisition of symbolic math skills and math knowledge,
which may facilitate ANS development. Evidence suggests that
education has a significant effect on ANS precision and that
symbolic representation predicts the precision of non-symbolic
representation (e.g., Piazza et al., 2013; Mussolin et al., 2014;
Shusterman et al., 2016). In addition, pupils start to receive
regular feedback from their teachers and parents during grades
1–2. Previous studies have demonstrated that feedback may
improve ANS precision (e.g., DeWind and Brannon, 2012). Thus,
children have the opportunity to adjust the system of non-
symbolic representation at the start of formal schooling during
the acquisition of symbolic math skills, and receiving feedback
contributes to improvements in ANS precision.

The improvement in non-symbolic comparison might reflect
the progressive automatization of access to non-symbolic
representation. Ample evidence highlights the involvement of
the IPS in the processing of numerosity in both symbolic and
non-symbolic formats (e.g., Hubbard et al., 2008; Holloway and
Ansari, 2010). It has been demonstrated that the involvement
of the IPS in processing symbolic and non-symbolic numerosity
increases across age (Ansari et al., 2005; Ansari and Dhital,
2006; Hubbard et al., 2008), while the activation of frontal
areas decreases (e.g., Gullick and Wolford, 2013). Many studies
have demonstrated a frontoparietal shift in numerical cognition,
which likely reflects less recruitment of frontal areas associated
with attention, working memory, and executive functions
(Ansari et al., 2005; Rivera et al., 2005). Evidence indicates
that slower individuals may require more prefrontal executive
control than faster individuals to perform successfully (Rypma
et al., 2006). Therefore, an increase in non-symbolic PS might
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FIGURE 3 | Developmental changes in RT for the ANS test and for the general PS test (in second) with 95% CI.

reflect a reduced involvement of frontal areas during non-
symbolic comparisons.

The difference in the mechanisms supporting changes in
accuracy and RT was demonstrated in several studies of non-
numerical processing. In particular, Santee and Egeth (1982)
postulated that accuracy and RT reflect different perceptual
processes in letter recognition tasks. Accuracy is more sensitive
to the early perceptual stage of processing, whereas the RT is
more sensitive to later perceptual processing. This difference
was also confirmed in studies involving other perceptual and
attentional tasks. For example, in somatosensory discrimination
tasks, attentional cues have been found to affect accuracy and
RT via different cognitive and neural processing methods (van
Ede et al., 2012). The cueing effect on accuracy was explained by
a preparatory process (increasing activity in the somatosensory
cortex) only, whereas the effect of RT was additionally explained
by a post-target process. Perri et al. (2014) conducted an EEG
study involving an execution go/no-go task and demonstrated
that speed and accuracy are processed by two interacting
but separate neurocognitive systems. The authors identified
groups of individuals according to their tendency to prefer
speed or accuracy and considered event-related potential (ERP)
components after a stimulus to highlight the different levels
of perceptual processing-supported speed or accuracy tendency.
It was demonstrated that baseline activity (before the stimulus
appearance) in the supplementary motor area differentiates
“speedy” and “slow” individuals, whereas activation of the
right prefrontal cortex differentiates “accurate” and “inaccurate”

groups. The analysis of post-stimulus activity revealed a
difference in the P1 ERP component between the faster and slow
groups and a difference in the N1 ERP component between the
accurate and inaccurate groups. Considering the aforementioned
studies, it is possible that differences in developmental changes in
accuracy and RT in non-symbolic comparisons to some extent
reflect differences in the maturation and development of two
distinct neurocognitive systems. This suggestion can be verified
in future longitudinal and neurophysiological studies.

In general, our findings confirm the results of previous
studies demonstrating that RT-based measures do not reflect
ANS precision in the same way as accuracy-based measures
(Dietrich et al., 2016). Although the RT decreased over time, the
interpretation of a faster RT as an indicator of a more precise
ANS needs to be clarified. The present analysis revealed that
in Cohort 1, the improvements in accuracy and speed were
positively correlated; thus, the pupils who demonstrated higher
growth in accuracy also demonstrated a higher rate of change in
the RT. In the second cohort, the opposite pattern was revealed.
The pupils who had a greater increase in accuracy demonstrated
a lower rate of change in the RT. This finding might indicate that
although a lower RT corresponded to older participants from a
developmental perspective, it does not always reflect increased
accuracy in non-symbolic representation.

This study also revealed that general PS and speed in
non-symbolic comparison tasks increased across age. The
improvement in both general and non-symbolic PS might be
explained by the processes of neuronal axon myelination and
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synaptic pruning (the process of synapse elimination) (Travis,
1998; Chechik et al., 1999). The myelination of neurons results
in more rapid neural computation through faster propagation of
action potentials (Mabbott et al., 2006; Fields, 2008; Chevalier
et al., 2015). It has also been shown that individual differences
in general PS might be associated with regional connectivity,
implying a central role of axonal structures in inter-individual
activation differences (Rypma et al., 2006). Synaptic pruning
leads to a reduction in unused pathways and the strengthening of
used pathways (e.g., Chechik et al., 1998). It has been postulated
that the process of pruning is driven by individual experience and
allows an individual to respond faster to the unique environment
in which s/he grows (e.g., Tierney and Nelson, 2009).

However, general PS and non-symbolic PS develop at different
rates in different patterns. In Cohort 1, linear changes in
non-symbolic RT and non-linear changes in general PS were
identified. In Cohort 2, the opposite patterns were observed as
follows: general PS developed linearly, while the RT in the non-
symbolic comparison changed non-linearly. Moreover, in both
cohorts, the changes in general PS did not eliminate the time
changes in non-symbolic comparison RT. In addition, general PS
was not associated with RT in the non-symbolic comparison in
the pupils in grade 5 to grade 9. These findings might confirm the
local trend hypothesis of PS development.

It is possible that the development of general PS forms the
basis for the development of non-symbolic PS. For example,
it has been shown that training in PS led to improvements
in other cognitive functions (Takeuchi and Kawashima, 2012).
The patterns of change in non-symbolic PS repeated the
developmental patterns of general PS at a previous age. However,
the opposite relationships might also exist, i.e., the development
of general PS might combine the development of specific
processes. To verify this suggestion, it is necessary to include
more time points in longitudinal data and additional different
tasks for the estimation of PS in different processes.

Notably, in this study, general PS was more correlated with
accuracy than RT in the non-symbolic comparison test. On
the one hand, these results might reflect the close relationships
between general PS and other cognitive constructs measured by
accuracy. For example, many studies have demonstrated that
general PS is associated with intelligence and working memory
(Fry and Hale, 1996; Sheppard and Vernon, 2008). Moreover, it
has been shown that general PS is substantially correlated with
untimed tests (Wilhelm and Schulze, 2002). It is possible that the
association between accuracy in the non-symbolic comparison
test and general PS is not explained by time restriction during
the execution of a non-symbolic comparison test.

On the other hand, the association between accuracy in a
non-symbolic comparison test and general PS can be explained
by the specificity of the general PS test, which was considered
in the current study. In the test used in the present study, the
children were asked to press a key corresponding to a digit (1,
2, 3, or 4) appearing on the screen as fast and accurately as
possible. The mean RT of the correct answers was used as an
indicator of general PS. Therefore, symbolic math skills were
utilized to some extent to execute this test. The link between
the results of the RT test and the accuracy of the non-symbolic

comparison test might be partially explained by their association
with symbolic math skills.

The current study had some limitations regarding the test used
for the estimation of ANS. Some authors suggest that in tasks
involving non-symbolic comparison, individuals are affected by
the visual properties of the arrays. Arrays of objects can be
compared based on comparisons of visual properties, such as
cumulative area or convex hull (Gebuis and Reynvoet, 2012;
Gebuis et al., 2016). To confirm the effect of visual properties
on accuracy in comparisons of two sets of dots, researchers have
manipulated different visual properties and identified two types
of trials. The first type was congruent trials in which the visual
properties were positively correlated with the magnitude. The
second type was incongruent trials in which the magnitude was
negatively correlated with the visual properties (e.g., Gebuis and
Reynvoet, 2012; Clayton et al., 2015; Gilmore et al., 2016). It
was demonstrated that accuracy in such comparisons was higher
and the RT was faster in congruent trials than incongruent
trials (congruency effect) (e.g., Gebuis and Reynvoet, 2012; Szucs
et al., 2013). The congruency effect was used to confirm that
numerosity judgments are based on the estimation of the visual
properties of stimuli (Gebuis and Reynvoet, 2012).

In the current version of the ANS test, all trials in the test
were congruent, and the array that contained more dots had
a larger cumulative area. Hence, this version of the ANS test
can measure accuracy in both non-symbolic representation and
estimation of visual cues. It has been shown that activation
of brain areas involved in numerical processing does not
significantly differ between congruent and incongruent trials
(Wilkey et al., 2017). This finding might indicate that even in
congruent trials, individual can estimate numerosity in parallel
with visual cues. Moreover, we used a “blue-yellow dots” test
with an intermixed format, and it has been demonstrated that
the reliability of this test in the intermixed format is higher
than that in the paired or sequential formats (Price et al., 2012).
Based on previous findings, we propose that the obtained results
reflect the developmental trends in non-symbolic comparisons
to a large extent.

We also used the same version of the test each year. This
approach has some advantages, such as the ability to directly
compare accuracy and RT across years. The period between
testing was relatively long (nearly 1 year), and feedback was not
provided; thus, we can avoid the effect of memory or training on
the results of the test.

CONCLUSION

This study is the first to estimate the longitudinal development
of ANS precision based on an inspection of changes in both
accuracy and RT. Our findings revealed that the developmental
patterns of changes in ANS accuracy and RT were not
synchronous, but an inspection of both measures might provide
new insight into ANS development.

In general, three stages of ANS development were identified.
During stage 1 (grade 1–grade 3, age 7–9 years), development was
characterized by faster growth in accuracy and non-symbolic PS.
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Stage 2 (grade 3–grade 7, age 9–13 years) was characterized by
stability in accuracy and continuing increases in non-symbolic
PS. During stage 3 (grade 7–grade 9, age 13–15), the opposite
trend was revealed, i.e., accuracy started to increase, while PS
stabilized. A speed-accuracy trade-off was identified at all time
points. In general, the results of this study suggest that for a more
informative investigation of ANS development, an inspection of
both accuracy and RT is needed.
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Although most deaf individuals could use sign language or sign/spoken language

mix, hearing loss would still affect their language acquisition. Compensatory plasticity

holds that the lack of auditory stimulation experienced by deaf individuals, such as

congenital deafness, can be met by enhancements in visual cognition. And the studies of

hearing individuals have showed that visual form perception is the cognitive mechanism

that could explain the association between numerical magnitude processing and

arithmetic computation. Therefore, we examined numerical magnitude processing and

its contribution to arithmetical ability in deaf adolescents, and explored the differences

between the congenital and acquired deafness. 112 deaf adolescents (58 congenital

deafness) and 58 hearing adolescents performed a series of cognitive and mathematical

tests, and it was found there was no significant differences between the congenital

group and the hearing group, but congenital group outperformed acquired group in

numerical magnitude processing (reaction time) and arithmetic computation. It was also

found there was a close association between numerical magnitude processing and

arithmetic computation in all deaf adolescents, and after controlling for the demographic

variables (age, gender, onset of hearing loss) and general cognitive abilities (non-verbal

IQ, processing speed, reading comprehension), numerical magnitude processing could

predict arithmetic computation in all deaf adolescents but not in congenital group. The

role of numerical magnitude processing (symbolic and non-symbolic) in deaf adolescents’

mathematical performance should be paid attention in the training of arithmetical ability.

Keywords: numerical magnitude representation, arithmetic computation, congenital deafness, acquired deafness,

mathematical cognition

INTRODUCTION

Mathematical knowledge and ability play an important role in the successes of our
social life (Ritchie and Bates, 2013), but most deaf individuals have some difficulty in
acquisition of arithmetical skills even if they have the approximately same level of non-
verbal intelligence as hearing peers (Braden, 1994; Moreno, 2000). Many studies have shown
the close association between numerical magnitude processing and mathematical ability
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(LeFevre et al., 2010; De Smedt et al., 2013; Sasanguie et al.,
2013; Fazio et al., 2014; Linsen et al., 2015), although few studies
on the arithmetical abilities of deaf individuals (Masataka, 2006;
Andin et al., 2014, 2020). It has been found in many studies that
the poorer performance of deaf individuals in mathematics has
generally been associated with their reduced language abilities
(Kelly and Gaustad, 2007; Wu et al., 2013; Huber et al., 2014;
Vitova et al., 2014).

Although most deaf individuals could use sign language
or sign/spoken language mix, hearing loss would still
affect their language acquisition (Kennedy et al., 2006;
Elizabeth et al., 2016). Individuals who lose the hearing
before acquiring speech and language, such as those with
congenital deafness, are at a much greater disadvantage
than those with acquired deafness in the interdependent
language processes such as: thought development, concepts in
number, measurement, operations, problem solving, and so on
(Pagliaro and Kritzer, 2013; Pénicaud et al., 2013).

According to the Triple Code Model (TCM; Dehaene,
1992), a model of numerical processing proposes that
numbers are represented in three codes: analog magnitude
representation, auditory verbal representation, and visual Arabic
representation. Dehaene and Cohen (1995, 1997) proposed two
major transcoding paths between the three representational
codes: a direct a semantic route that transcodes written numerals
to auditory verbal to guide retrieval of rote knowledge of
arithmetic facts without semantic mediation, and an indirect
semantic route specialized for quantitative processing that
manipulates analog magnitude representations by manipulating
visual Arabic representations. Neuropsychological studies found
some patients demonstrated impairment in tasks involving
verbal representations of number, but could perform tasks
involving non-verbal representations of number (Cipolotti and
Butterworth, 1995; Cohen et al., 2000).

Although the time of onset of hearing loss is known to be
an important factor influencing the academic performance of
deaf individuals (Moores, 1985; Paul and Quigley, 1990; Liu,
2013), little research has focused on the arithmetical abilities
of individuals with congenital or acquired deafness. Moreover,
many studies focused on gender differences and mathematical
performance in hearing population found male advantage in
mathematics (Burton and Lewis, 1996; Gallagher et al., 2000;
Perie et al., 2005; Liu and Wilson, 2009), while some showed that
girls outperformed boys in numerical magnitude processing (Wei
et al., 2012) and arithmetic computation (Linn and Hyde, 1989;
Willingham and Cole, 1997; Wei et al., 2012), others revealed
no gender differences in children’s mathematical ability (Kersey
et al., 2018; Zhang et al., 2020).

Therefore, the first aim of the present study is to investigate
the presence of differences among the performance of hearing
adolescents, adolescents with congenital and acquired deafness
in the tasks of numerical magnitude comparison and arithmetic
computation; a second aim is to explore the gender differences in
numerical magnitude processing and arithmetic computation of
deaf adolescents. And the third aim is to examine the predictive
role of numerical magnitude processing on arithmetical abilities
of deaf adolescents.

Numerical Magnitude Processing and
Mathematical Ability
Numerical magnitude processing, as the mental manipulation
of quantitative information of either symbolic numbers (e.g.,
Arabic digits) or non-symbolic quantities (e.g., dot arrays)
(Turconi et al., 2004; Tudusciuc and Nieder, 2007) has been
found important for successful mathematical development (e.g.,
Butterworth et al., 2011, for a review) and positively associated
with mathematical performance of the hearing individuals
(Sasanguie et al., 2013; Fazio et al., 2014; Schneider et al.,
2017). Further research by Zhang et al. (2016) found that
numerical magnitude processing was the independent predictor
of arithmetical computation but not mathematical reasoning for
hearing children. Butterworth (2005) claimed that numerical
magnitude processing was one of the reasons for dyscalculic
difficulties in arithmetic.

For deaf individuals, it has also been found that ANS
(approximate number system) acuity (non-symbolic magnitude
processing) is significantly associated with mathematical
performance, and less acuity in the ANS, compared to hearing
peers, may be the reason for their delays in mathematics
achievement (Bull et al., 2006, 2018). Some studies showed
significant differences between deaf and hearing individuals in
response times for numerical magnitude comparison (Epstein
et al., 1995; Marschark et al., 2003). However, other researchers
found no significant differences between deaf and hearing
individuals in their number representation processes (Zarfaty
et al., 2004; Arfé et al., 2011; Barbosa, 2013). Whether numerical
magnitude processing (symbolic, non-symbolic) is a predictor of
the arithmetical ability of the deaf population or not still needs
to be verified.

Numerical Magnitude Processing in
Hearing-Impaired and Deaf Individuals
Numerical magnitude processing, or numerical magnitude
representation process, in hearing-impaired and deaf individuals
has been analyzed in both children and adults. Zarfaty et al.
(2004) compared 3- and 4-year-old deaf and hearing children’s
performance in number representation tasks and found out
the better performance of deaf children in the spatial task
and no difference from hearing counterparts in the temporal
tasks. Barbosa (2013) conducted a similar study with Brazilian
deaf children aged 5–6 years, and found out the young deaf
children’s number representation ability was as good as that
of hearing children, which supported the previous research
findings by Zarfaty et al. (2004). Arfé et al. (2011) investigated
number representation ability of deaf primary school children
with cochlear implants in a digit comparison task and an analogic
comparison task, and also found out the better performance of
deaf children in the analogic task and no difference from hearing
children in the digit comparison task. All of these studies, on
symbolic magnitude processing, confirmed that deaf children
present the same abilities in number representation as their
hearing peers.

Bull et al. (2005) investigated deaf adults’ performance on a
magnitude comparison task, and found that deaf participants

Frontiers in Psychology | www.frontiersin.org 2 March 2021 | Volume 12 | Article 58418328

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Chen et al. Mathematical Cognition of Congenital Deafness

performed more slowly than hearing participants in making
comparative judgments. However, there was no substantial
difference in the basic numerical magnitude processing capacity
between the deaf and age-matched hearing peers. Rodríguez-
Santos et al. (2014) explored deaf and hard-of-hearing children’s
numerical magnitude representation process by means of
symbolic (Arabic digits) and non-symbolic (dot constellations)
magnitude comparison tasks, and found out slower reaction
times of deaf participants in the symbolic but not non-symbolic
task, which was believed to the delay that deaf individuals
experienced in accessing representations from symbolic codes.
Bull et al. (2018) also found that children with hearing loss
had poorer numerical discrimination skills and less acuity in
the ANS (non-symbolic magnitude processing) compared to
hearing peers. As we can see, previous studies have rarely
examined both the symbolic and non-symbolic magnitude
processing of deaf individuals at the same time, except for
Rodríguez-Santos et al. (2014), and diverged in whether they
have the similar numerical magnitude representation to their
hearing peers.

The Present Study
As language abilities can support mathematical performance in
deaf individuals (Kelly and Gaustad, 2007; Andin et al., 2014;
Huber et al., 2014; Vitova et al., 2014) and some studies have
showed a link between sign language skills and reading ability
in deaf individuals (Mayberry et al., 2011; Rudner et al., 2012),
reading comprehension has been used as a task to evaluate the
linguistic performance for deaf adolescents, and as a control
variable in this study. And according to previous studies, the
general cognitive abilities (i.e., non-verbal IQ, processing speed)
of deaf students affect their mathematical performance (Chen
et al., 2019; Chen andWang, 2020), so we also take the non-verbal
IQ and processing speed as the control variables.

The aim of the present study was to examine numerical
magnitude processing and its contribution to arithmetical ability
in deaf adolescents. Firstly, according to the TCM, indirect
semantic route supports the non-verbal numerical magnitude
processing that manipulates analog magnitude representations
by manipulating visual Arabic representations. Compared to
the acquired deafness, individuals with congenital deafness may
be more dependent on this non-verbal numerical magnitude
processing due to auditory deprivation. Therefore, we want to
explore whether there are differences across groups of congenital
and acquired deafness in numerical magnitude processing and
arithmetical ability.

Secondly, the researches on whether there are gender
differences in mathematical performance of hearing individuals
are still controversial, so we want to explore the gender
differences in numerical magnitude processing and arithmetic
computation of deaf adolescents. Thirdly, in view of the
importance of mathematical ability and the lag of deaf children
in arithmetic (Traxler, 2000; Swanwick et al., 2005; Gottardis
et al., 2011), against the background of the found associations
between numerical magnitude processing and arithmetical ability
of hearing individuals (Fazio et al., 2014; Zhang et al., 2016;
Schneider et al., 2017) and no significant differences between

deaf and hearing individuals in their number representation
processes (Zarfaty et al., 2004; Arfé et al., 2011; Barbosa, 2013), we
also aimed to examine whether numerical magnitude processing
(symbolic, non-symbolic) is a predictor of the arithmetical ability
of the deaf adolescents.

METHODS

Participants
The study included 58 congenital deaf adolescents
[Mage = 184.36 (107–227) ± 28.12 months; 29 girls;
Munaided PTA loss in better ear = 98.54 ± 16.45 dB, 60–120 dB;
Note PTA means Pure Tone Average; In amplification: 21 use of
hearing aids, 10 use of cochlear implants, 31 no use of hearing
aids and cochlear implants; Mode of family communication:
35 in Mandarin sign/spoken language mix, 16 in spoken
Mandarin, seven in Mandarin sign language], 54 acquired deaf
adolescents[Mage = 188.44 (99–231) ± 26.48 months; 27 girls;
Munaided PTA loss in better ear = 99.29 ± 12.72 dB, 75–110 dB;
In amplification: 26 use of hearing aids, eight use of cochlear
implants, 22 no use of hearing aids and cochlear implants; Mode
of family communication: 47 in Mandarin sign/spoken language
mix, six in spoken Mandarin, one in Mandarin sign language],
and 58 hearing adolescents [Mage = 166.34 (98–187) ± 21.75]
months; 27 girls. Deaf participants were recruited from the
special education schools in the Haikou municipality of Hainan
Province in China with moderate to severe hearing impairment
(60–120 dB). All participants had normal or corrected-to-normal
vision. Adolescents with congenital deafness, who were born
with deafness, were assigned to the congenital group, adolescents
with acquired deafness, whose hearing impairment was not
present at birth but developed sometimes during life, were
assigned to the acquired group. The congenital and acquired
groups matched in age, gender, hearing loss, and intelligence; all
the groups (including hearing group) matched in intelligence.
The university’s institutional review board approved the study.
Participants’ and their parents’ consents were obtained prior to
classroom-based testing.

Measures
Non-verbal IQ
The non-verbal matrices task, which was adapted from Raven’s
Progressive Matrices (Raven, 2000), was used to assess non-
verbal IQ. It is a simplified version of Raven’s Progressive
Matrices that only had two candidate answers for each question,
instead of 4–6 choices in the original version. Due to time
constraints, the task was shortened to 80 items, 44 of which
came from Standard Progressive Matrices (12 from the first
set and eight from each of the other four sets) and 36 from
Advanced Progressive Matrices. In the test, a large figure with
a missing segment appeared in the center of the computer
screen, and there were two options below. Participants were
asked to identify the missing segment according to the rules
underlying the figure, and pressed the “Q” key when the missing
segment was on the left or the “P” key when it was on
the right.
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Processing Speed
A simple reaction time task was used to measure the processing
speed [cf., Butterworth’s (2003) “Dyscalculia Screener,” which
included a reaction time task]. Each trial presented a fixation
“+” in the center of the black computer screen, and a white dot
appeared at the 30 degree angle randomly on the left or right side
of the fixation “+.” Participants were asked to press the “Q” key
when the white dot appeared on the left or the “P” key when the
white dot appeared on the right. There were 30 trials in the test,
of which 15 were white dots on the left and 15 were white dots
on the right side of the fixation “+.” The dots were randomly
presented, and the interval between responses and stimuli was
varied randomly between 1000 and 2000 ms.

Reading Comprehension
The sentence completion task, which was adapted from Siegel
and Ryan (1988), was used to measure reading comprehension
(Elbeheri et al., 2011; Träff et al., 2018; Cui et al., 2019). Materials
for the task were selected from the test materials used in primary
and middle schools in China (from first to ninth grade). On
the test, a sentence was presented in the center of the computer
screen with a word missing and there were two options below.
Participants were asked to choose a word from the options to
complete the sentence and press the “Q” key if the correct answer
was on the left, or press the “P” key if the correct answer was on
the right. There were 120 problems on the test, ordered from easy
to difficult, and the time interval for each problem was 1000 ms.

Numerical Magnitude Comparison

Symbolic Magnitude Comparison
A classic numerical magnitude comparison task, which was
adapted from Zhou et al. (2007), used a Stroop-like paradigm to
measure the ability to compare numerical values of numbers that
varied in physical size (1:2 size ratio). In this task, participants
had to indicate the numerically larger of two simultaneously
presented Arabic digits (ranging from 2 to 9), one displayed on
the left and the other on the right side of the computer screen
in random orders, ignoring the differences in physical size. The
position of the largest number was counterbalanced. There were
84 trials, and the stimulus interval was 1000 ms.

Non-symbolic Magnitude Comparison
The non-symbolic magnitude comparison task, which was used
to assess approximate number sense (ANS) (e.g., Wei et al., 2012;
Zhou et al., 2015), was divided into three sessions, with 40 trials
in each session, and participants were required to complete all
120 trials. In this task, participants had to indicate the larger of
two simultaneously presented dot arrays with different sizes and
numbers, one displayed on the left and the other on the right
side of the computer screen, ignoring all visual properties, such
as total surface area, envelope area, diameter, and circumference.
The dot arrays were created following a common procedure
to control for continuous quantities in non-symbolic numerical
discrimination (e.g., Halberda et al., 2008; Agrillo et al., 2013).
The number of dots in each dot array varied from 5 to 32.
The position of the largest numerosity was counterbalanced. The

presentation time of each trial was 200ms, and the interval time
was 840 ms.

Arithmetic Computation

Simple Subtraction
The simple subtraction task, which consisted of 92 problems, was
the reversed operation to single-digit addition. For each trial, a
subtraction problem (e.g., 17–9) of <20 was presented at the
top of the computer screen, and two candidate answers were
presented on the bottom. The largest minuend of the problem
was 18, and the smallest one was 2. The differences between two
operands were always single-digit numbers, so the answer ranged
from 2 to 9. The false candidate answer deviated from the true
answer by plus or minus 1 to 3 (i.e.,±1, ±2, or ±3). Participants
were asked to press the “Q” key if the true answer was on the left
or press the “P” key if it was on the right. This was a time-limited
(2min) task, and the interval time of each trial (problem) was
1000 ms.

Complex Subtraction
The complex subtraction task, which consisted of 95 problems,
included double-digit numbers for both operands. For each trial,
a subtraction problem (e.g., 82–37) of <100 was presented at
the top of the computer screen, and two candidate answers
were presented on the bottom. Borrowing was required for most
problems. The differences between the false answers and the true
answers were 1 or 10. The task was limited to 2min, and the
interval time of each problem was 1000 ms.

Procedure
All participants were tested at their own school during regular
school hours and all tasks were computerized using the E-
prime 2.0 software and were all administered using a 15 inch
laptop individually in a quiet room. The experimenters, the
teachers of the participants in the Department of Deaf, who
were proficient in sign language and familiar with the specific
situation of the participants, explained the instructions with
slides and sign language and participants were instructed to
perform both accurately and quickly by pressing the “Q” or “P”
keys on a computer keyboard. Before the formal testing started,
there was a practice session and feedback: When the item was
correctly answered, the computer screen read “Correct! Can you
go faster?” When participants answered incorrectly, the screen
read “It is wrong. Try again.” Each trial started with a 200ms
fixation cross in the center of the computer screen. After 1000ms
the stimuli appeared and remained visible until response, except
for the non-symbolic magnitude comparison task where the
stimuli disappeared after 840ms, in order to avoid counting.
Accuracy (ACC) and RT (in milliseconds) were recorded for
processing speed and numerical magnitude comparison tasks.
Answers and reaction times were recorded by the laptop.

In order to control for the effect of guessing, the adjusted
score was used in the tests such as non-verbal IQ, reading
comprehension and arithmetic computation (simple and
complex subtraction). It was calculated by subtracting the
number of incorrect responses from the number of correct
responses following the Guilford correction formula “S = R –
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W/(n – 1)” (S: the adjusted number of items that the participants
can actually perform without the aid of chance. R: the number
of right responses, W: the number of wrong responses. n: the
number of alternative responses to each item) (Guilford, 1936).
This correction procedure has been utilized recently in studies
of mathematical cognition (Cirino, 2011; Zhou et al., 2015; Cui
et al., 2019).

Statistical Analyses
The statistical analyses were conducted using the Statistical
Package for the Social Sciences (SPSS, version 25.0). Descriptive
statistics were computed for demographic data and all study
variables. One-way analyses of variance (ANOVAs) and
LSD post-hoc comparisons were carried out to compare the
differences in all the measures on the study groups. The
repeated measurement analyses of variance (ANOVAs), with the
group (congenital deaf adolescents, acquired deaf adolescents,
hearing adolescents) and gender as between-subject factors and
mathematical tasks as within-subject factors, were conducted
to analyze group differences for accuracy and reaction times in
the two numerical magnitude comparison tasks and the scores
in arithmetic computation tasks. In order to control the effect
of general cognitive abilities (e.g., reading comprehension)
on mathematical tests, we used non-verbal IQ, processing
speed and reading comprehension as covariates for ANOVAs.
Pearson’s correlation coefficients were calculated between
the scores of all cognitive and mathematical tests. A series
of linear hierarchical regression analyses were conducted to
test the role of numerical magnitude processing (symbolic
and non-symbolic numerical magnitude comparison) to
arithmetic computation (simple and complex subtraction) of
deaf adolescents, while controlling for demographic variables
(i.e., age, gender; entering stage 1) and general cognitive
abilities (i.e., non-verbal IQ, processing speed and reading
comprehension; entering stage 2).

RESULTS

Descriptive Statistics
The means and standard deviations and one-way analyses of
variance of the scores for all seven tasks on the study groups
are displayed in Table 1. We found a significant group effect
on reading comprehension, arithmetic computation (simple
and complex subtraction), symbolic magnitude comparison
(accuracy and reaction time), and the accuracy of non-symbolic
magnitude comparison but not on the reaction time of non-
symbolic magnitude comparison. Hearing group outperformed
congenital group, and congenital group outperformed acquired
group in arithmetic computation and symbolic magnitude
comparison (reaction time).

Numerical Magnitude Comparison
A 2 × 2 ×3 mixed model, repeated measures ANOVA was
conducted to examine whether the accuracy of numerical
magnitude processing (symbolic, non-symbolic) varied by
gender and group (see Figure 1). There was one within-
subjects factor (numerical magnitude comparison: symbolic vs.

non-symbolic) and two between-subjects factors: (gender: boys
vs. girls) and (group: congenital, acquired, hearing). In order
to control the effect of general cognitive abilities (e.g., reading
comprehension) on numerical magnitude comparison, we used
non-verbal IQ, processing speed and reading comprehension as
covariates for ANOVA.

The main effect of gender, F(1,160) = 5.26, η2 = 0.03, p <

0.05, was significant, indicating that the numerical magnitude
processing of boys (81.00 ± 1.00%) was more accurate than
that of girls (77.71 ± 1.02%). There was no a main effect
of numerical magnitude comparison, F(1,160) = 0.20, η2 =

0.001, p > 0.05, and there was no a main effect of group,
F(2,160) = 0.92, η2 = 0.011, p > 0.05; but the group × gender
interaction was significant, F(2,160) = 5.05, η2 = 0.06, p <

0.01. The simple effect test showed that for boys, there were
no significant differences among the three groups (p > 0.05);
for girls, there was no significant difference between congenital
group and hearing group (p > 0.05), but the scores of acquired
group were lower than those of hearing group significantly
(p < 0.01) and congenital group marginally significantly
(p= 0.056).

There were no significant two-way numerical magnitude
comparison × group interaction, F(2,160) = 0.56, η2 = 0.007,
p = 0.57, and numerical magnitude comparison × gender
interaction, F(1,160) = 0.01, η2 = 0.000, p = 0.92. And there
was no significant three-way numerical magnitude comparison×
group× gender interaction, F(2,160) = 0.17, η2 = 0.002, p= 0.84.

In order to examine whether the reaction time of numerical
magnitude processing (symbolic, non-symbolic) varied by
gender and group, a 2 × 2 × 3 mixed model, repeated measures
ANOVA was again conducted with numerical magnitude
comparison (symbolic vs. non-symbolic) as within-subject factor,
gender (boys vs. girls), and group (congenital, acquired, hearing)
as between-subject factors, and general cognitive abilities (non-
verbal IQ, processing speed and reading comprehension) as
covariates (see Figure 2).

The main effect of group, F(2,160) = 3.42, η2 = 0.04, p < 0.05,
was significant; LSD post-hoc comparisons showed that there
was no significant difference in the reaction times between the
congenital group and the hearing group (p > 0.05), but the
reaction times of the acquired group were significantly longer
than those of the congenital group and the hearing group (p
< 0.05). There was no a main effect of numerical magnitude
comparison, F(1,160) = 0.57, η2 = 0.004, p > 0.05, and there
was no a main effect of gender, F(1,160) = 0.02, η2 = 0.000,
p > 0.05; but the numerical magnitude comparison × gender
interaction was significant, F(1,160) = 7.29, η2 = 0.04, p < 0.01.
The simple effect test showed that for boys and girls, the reaction
time in symbolic magnitude comparison task was significantly
longer than that in non-symbolic magnitude comparison task
(p < 0.001).

There were no significant two-way numerical magnitude
comparison × group interaction, F(2,160) = 0.51, η2 = 0.006, p
= 0.60, and group × gender interaction, F(2,160) = 0.01, η2 =

0.000, p= 0.99. And there was no significant three-way numerical
magnitude comparison × group × gender interaction, F(2,160) =
1.32, η2 = 0.016, p= 0.27.
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TABLE 1 | All the measures on the study groups (M ± SD).

Index A. Congenital group B. Acquired group C. Hearing group Minimum Maximum Statistical difference

(n = 58) (n = 54) (n = 58) F(2, 167) LSD

Age (months) 184.36 ± 28.12 188.44 ± 26.48 166.34 ± 21.75 98 231 12.03*** B, A > C

Non-verbal IQ Adj. No. of correct response 12.36 ± 10.01 12.39 ± 10.71 12.79 ± 10.31 −12 30 0.03 —

PS. (ACC) Accuracy (%) 93.55 ± 13.22 93.39 ± 13.38 95.73 ± 8.92 46 100 0.68 —

PS. (RT) Reaction time (Millisecond) 483.56 ± 137.56 511.79 ± 135.35 411.49 ± 159.48 230.75 1232.50 7.23** B, A > C

Reading Com. Adj. No. of correct response 8.00 ± 10.83 4.46 ± 9.02 30.78 ± 8.48 −23 47 128.60*** B, A < C

Symbolic (ACC) Accuracy (%) 87.41 ± 13.79 85.07 ± 16.82 93.72 ± 6.13 48 100 6.77** B, A < C

Symbolic (RT) Reaction time (Millisecond) 658.61 ± 145.92 719.95 ± 170.82 582.73 ± 120.24 393.00 1159.00 12.35*** B > A > C

Non-symbolic (ACC) Accuracy (%) 68.00 ± 13.77 67.20 ± 15.30 74.38 ± 13.10 42 93 4.47* B, A < C

Non-symbolic (RT) Reaction time (Millisecond) 484.19 ± 133.38 533.10 ± 193.14 515.94 ± 136.16 232.00 1058.00 1.43 —

Simple subtraction Adj. No. of correct response 27.97 ± 15.48 21.07 ± 14.52 41.94 ± 8.31 −5 59 37.06*** B < A < C

Complex subtraction Adj. No. of correct response 10.67 ± 9.34 6.50 ± 9.78 19.31 ± 9.00 −19 33 27.46*** B < A < C

Adj., adjusted; No., number; PS., Processing speed; Reading Com., Reading comprehension; ACC, accuracy; RT, reaction time.

*p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 1 | Mean accuracy (%) on the numerical magnitude comparison task (symbolic and non-symbolic) across groups.

FIGURE 2 | Mean reaction time (ms) on the numerical magnitude comparison task (symbolic and non-symbolic) across groups.
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FIGURE 3 | Mean adjusted scores on the arithmetic computation tasks (simple and complex subtraction) across groups.

Arithmetic Computation
To examine whether the performance of arithmetic computation
(simple and complex subtraction) varied by gender and
group, a 2 × 2 × 3 mixed model, repeated measures
ANOVA was again conducted with arithmetic type (simple
vs. complex) as within-subject factor, gender (boys vs.
girls) and group (congenital, acquired, hearing) as between-
subject factors, and general cognitive abilities (non-verbal IQ,
processing speed, and reading comprehension) as covariates
(see Figure 3).

The main effect of group, F(2,160) = 3.32, η2 = 0.04, p <

0.05, was significant; LSD post-hoc comparisons showed that
there were no significant differences in the scores between the
congenital group and the hearing group (p> 0.05), but the scores
of the acquired group were significantly lower than those of the
congenital group and the hearing group (p < 0.05). There was no
a main effect of arithmetic type, F(1,160) = 0.06, η2 = 0.000, p >

0.05, and there was no a main effect of gender, F(1,160) = 2.11, η2

= 0.013, p > 0.05.
And there were no significant two-way arithmetic type ×

group interaction, F(2,160) = 0.47, η2 = 0.006, p> 0.05; arithmetic
type× gender interaction, F(1,160) = 1.61, η2 = 0.01, p> 0.05, and
group× gender interaction, F(2,160) = 0.40, η2 = 0.005, p > 0.05.
And there was no significant three-way arithmetic type × group
× gender interaction, F(2,160) = 0.99, η2 = 0.012, p > 0.05.

Numerical Magnitude Comparison and
Arithmetic Computation
In order to explore the numerical magnitude processing in
deaf adolescents and its contribution to arithmetical ability,
we first analyze how numerical magnitude comparison
and arithmetic computation may differ across groups and
then consider the contribution of numerical magnitude
processing to arithmetical ability within each group and in all
deaf adolescents.

Analysis of Each Group of Deaf Adolescents
The partial correlations were separately calculated for each
group between arithmetic computation (simple and complex
subtraction), general cognitive abilities (i.e., non-verbal IQ,
processing speed, and reading comprehension), and numerical
magnitude processing (symbolic and non-symbolic) in deaf
adolescents. A Bonferroni correction was used to maintain
the p-value < 0.05 across the 45 correlations in Tables 2, 3.
Thus, a conservative p-value of <0.00111 (=0.05/45) was

considered statistically significant. As shown in Tables 2, 3,

there was only a significant correlation between reading

comprehension and simple subtraction in congenital group;
However, there was a significant correlation between the accuracy
of numerical magnitude processing (symbolic and non-symbolic)
and simple subtraction and a significant correlation between
the accuracy of non-symbolic numerical magnitude processing
and complex subtraction, except for the significant correlation
between reading comprehension and simple subtraction, in
acquired group.

A series of linear hierarchical regression analyses were
conducted separately for each group to determine the
contribution of numerical magnitude processing to the
arithmetic ability (simple and complex subtraction) of deaf
adolescents within each group. We also performed Bonferroni
correction on the 2 regression analyses. Thus, a conservative
p-value of <0.025 (=0.05/2) was considered statistically
significant. According to Table 4, except that general cognitive
abilities could account for 27.3% of the variation in simple
subtraction [Fchange (4,51) = 5.28, p = 0.001] and demographic
variables could account for 14.1% of the variation in complex
subtraction [Fchange (2,55) = 4.51, p = 0.015], others did not
have a contribution to the arithmetic ability of deaf adolescents
in congenital group. However, general cognitive abilities
[Fchange (4,47) = 4.95, p = 0.002] could account for 27.9%
and symbolic magnitude processing [Fchange (2,45) = 8.98, p
= 0.001] could account for 18.9% of the variation in simple
subtraction; and general cognitive abilities [Fchange (4,47) =
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TABLE 2 | Partial correlations after controlling for age and gender differences among all the test scores in congenital group.

1 2 3 4 5 6 7 8 9 10

1 Non-verbal IQ —

2 PS. (ACC) 0.11 —

3 PS. (RT) −0.11 −0.29 —

4 Reading Com. 0.35 0.07 −0.37 —

5 Symbolic (ACC) 0.34 0.42* −0.25 0.14 —

6 Symbolic (RT) −0.11 −0.13 0.33 −0.16 −0.08 —

7 Non-symbolic (ACC) 0.15 0.11 −0.10 0.31 0.28 −0.37 —

8 Non-symbolic (RT) 0.09 −0.09 −0.08 0.16 0.30 −0.08 0.73* —

9 Simple subtraction 0.29 0.26 −0.34 0.46* 0.30 −0.32 0.32 0.11 —

10 Complex subtraction 0.21 0.24 −0.22 0.27 0.24 −0.31 0.30 0.12 0.66* —

*p < 0.05, Bonferroni-corrected. PS., Processing speed; Reading Com., Reading comprehension; ACC, accuracy; RT, reaction time.

TABLE 3 | Partial correlations after controlling for age and gender differences among all the test scores in acquired group.

1 2 3 4 5 6 7 8 9 10

1 Non-verbal IQ —

2 PS. (ACC) 0.37 —

3 PS. (RT) −0.22 −0.17 —

4 Reading Com. 0.39 0.20 −0.35 —

5 Symbolic (ACC) 0.35 0.26 −0.18 0.24 —

6 Symbolic (RT) −0.06 −0.15 0.44* −0.20 −0.02 —

7 Non-symbolic (ACC) 0.31 0.18 −0.39 0.31 0.31 −0.29 —

8 Non-symbolic (RT) 0.21 0.21 0.00 0.15 0.10 0.33 0.53* —

9 Simple subtraction 0.30 0.17 −0.34 0.51* 0.51* −0.37 0.48* 0.11 —

10 Complex subtraction 0.25 −0.10 −0.27 0.34 0.25 −0.25 0.55* 0.31 0.56* —

*p < 0.05, Bonferroni-corrected. PS., Processing speed; Reading Com., Reading comprehension; ACC, accuracy; RT, reaction time.

3.05, p = 0.026] could account for 19.6% and non-symbolic
magnitude processing [Fchange (2,43) = 7.12, p = 0.002] could
account for 17.3% of the variation in complex subtraction in
acquired group.

Analysis of All Deaf Adolescents
To examine the association between numerical magnitude
processing and arithmetic ability in all deaf adolescents,
partial correlations were computed and a Bonferroni correction
was also used to maintain the p-value < 0.05 across the
45 correlations in Table 5. Thus, a conservative p-value of
<0.00111 (=0.05/45) was considered statistically significant. As
shown in Table 5, there was a significant correlation between
deaf adolescents’ reaction time on the symbolic magnitude
comparison task and their performance on the arithmetic
computation tasks (simple and complex subtraction), and there
was also a significant correlation between deaf adolescents’
accuracy on the non-symbolic magnitude comparison task and
their performance on the arithmetic computation tasks (simple
and complex subtraction).

In order to determine the contribution of numerical
magnitude processing to the arithmetic ability of all deaf
adolescents, a series of linear hierarchical regression analyses

were conducted.We also performed Bonferroni correction on the
two regression analyses. Thus, a conservative p-value of <0.025
(=0.05/2) was considered statistically significant. According to
Table 6, general cognitive abilities could account for 27.3% of
the variation in simple subtraction [Fchange (4,104) = 10.86, p <

0.001]. After controlling for scores of general cognitive ability
and demographic variables, symbolic magnitude processing
could account for 9.8% of the variation in simple subtraction
[Fchange (2,102) = 8.95, p < 0.001]. However, demographic

variables [R2 = 0.072, Fchange (3,108) = 2.81, p = 0.043, p >

0.025] and non-symbolic magnitude processing [R2 = 0.021,
Fchange (2,100) = 1.94, p = 0.149] did not have an additional
contribution to simple subtraction.

Demographic variables (age, gender, onset of hearing loss)
could account for 12.1% of the variation [Fchange (3,108) =

4.97, p < 0.01], and general cognitive abilities could account
for 11.0% of the variation [Fchange (4,104) = 3.71, p <

0.01] in complex subtraction. After controlling for scores of
general cognitive abilities and demographic variables, symbolic
magnitude processing could account for 5.3% of the variation
[Fchange (2,102) = 3.81, p < 0.025] and non-symbolic magnitude
processing could account for 5.4% of the variation [Fchange (2,100)
= 4.11, p < 0.025] in complex subtraction.
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TABLE 4 | Hierarchical regression models predicting arithmetic ability (simple and complex subtraction) from age, gender, general cognitive ability, symbolic, and

non-symbolic magnitude processing in congenital and acquired group.

Simple subtraction β Complex subtraction β

Step 1 Step2 Step3 Step4 Step 1 Step2 Step3 Step4

Congenital group

Age (months) 0.252 0.184 0.132 0.066 0.348* 0.297 0.234 0.173

Gender −0.064 −0.096 −0.068 −0.093 −0.138 −0.154 −0.128 −0.141

Non-verbal IQ — 0.136 0.079 0.081 — 0.117 0.070 0.077

Ps. (ACC) — 0.176 0.120 0.084 — 0.173 0.130 0.115

Ps. (RT) — −0.147 −0.066 −0.105 — −0.089 −0.003 −0.037

Reading Com. — 0.333* 0.334* 0.292 — 0.164 0.164 0.118

Symbolic (ACC) — — 0.142 0.147 — — 0.101 0.080

Symbolic (RT) — — −0.210 −0.139 — — −0.247 −0.181

Non-symbolic (ACC) — — — 0.229 — — — 0.197

Non-symbolic (RT) — — — −0.157 — — — −0.073

R2 = 0.068 R2 = 0.341* R2 = 0.388 R2 = 0.401 R2 = 0.141* R2 = 0.259 R2 = 0.312 R2 = 0.325

(1R2 = 0.273*)(1R2 = 0.047)(1R2 = 0.013) (1R2 = 0.118)(1R2 = 0.053)(1R2 = 0.012)

Acquired group

Age (months) −0.117 −0.103 −0.216 −0.198 0.219 0.176 0.103 0.141

Gender −0.198 −0.167 0.016 0.071 −0.077 −0.025 0.078 0.218

Non-verbal IQ — 0.101 0.027 −0.005 — 0.207 0.178 0.111

Ps. (ACC) — 0.028 −0.059 −0.062 — −0.256 −0.303 −0.356*

Ps. (RT) — −0.170 −0.020 0.026 — −0.177 −0.077 0.005

Reading Com. — 0.389* 0.330* 0.310* — 0.238 0.205 0.147

Symbolic (ACC) — — 0.428* 0.390* — — 0.201 0.157

Symbolic (RT) — — −0.307* −0.283 — — −0.218 −0.298

Non-symbolic (ACC) — — — 0.209 — — — 0.277

Non-symbolic (RT) — — — 0.022 — — — 0.279

R2 = 0.058 R2 = 0.337* R2 = 0.526* R2 = 0.558 R2 = 0.050 R2 = 0.246* R2 = 0.304 R2 = 0.477*

(1R2 = 0.279*)(1R2 = 0.189*)(1R2 = 0.032) (1R2 = 0.196*)(1R2 = 0.058)(1R2 = 0.173*)

*p < 0.05, Bonferroni-corrected. Ps., Processing speed; Reading Com., Reading comprehension; ACC, accuracy; RT, reaction time.

DISCUSSION

The current study aimed to examine numerical magnitude

processing and its contribution to arithmetical ability in deaf
adolescents. The main results are summarized as follows:

First, repeated measures ANOVA showed that the numerical
magnitude processing of boys was more accurate than that of

girls. For boys, there were no significant differences among

the three groups (congenital, acquired, and hearing) in the
accuracy of numerical magnitude processing; for girls, there was

no significant difference between congenital group and hearing
group, but the accuracy in acquired group was lower than

that in hearing and congenital group significantly. Second, one-
way ANOVA showed hearing adolescents outperformed deaf

adolescents in arithmetic computation (simple and complex
subtraction), symbolic magnitude processing (accuracy and

reaction time), and the accuracy, but not the reaction time
of non-symbolic magnitude processing. Third, the hierarchical
regression analyses of each group of deaf adolescents showed
that numerical magnitude processing did not have a contribution
to arithmetic computation in congenital group, but symbolic
magnitude processing could contribute to simple subtraction and

non-symbolic magnitude processing could contribute to complex
subtraction in acquired group.

Numerical Magnitude Processing and
Arithmetic Ability in Deaf Adolescents
The results of one-way ANOVA showed that deaf adolescents lag
behind hearing adolescents in arithmetic computation (simple
and complex subtraction), symbolic magnitude processing
(accuracy and reaction time), and the accuracy, but not the
reaction time of non-symbolic magnitude processing. It is
basically consistent with the previous results (e.g., Rodríguez-
Santos et al., 2014; Masataka, 2006) that deaf individuals were
found worse performance on symbolic but not non-symbolic
magnitude processing, indicating the delay of deaf individuals in
symbolic but not non-symbolic encoding. According to “access
deficit hypothesis” (Rouselle and Noël, 2007), deficits in the
representation of numerical information in long-term memory
are not general, but are linked to the numerical representation
codes used for its acquisition (Arabic numerals, number words).
Deaf individuals’ poor performance on an Arabic number
comparison task, but not on a dot collection comparison task,
could be explained by difficulties in accessing the semantic
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TABLE 5 | Partial correlations after controlling for age and gender differences among all the test scores.

1 2 3 4 5 6 7 8 9 10

1 Non-verbal IQ —

2 PS. (ACC) 0.26 —

3 PS. (RT) −0.17 −0.23 —

4 Reading Com. 0.36* 0.12 −0.37* —

5 Symbolic (ACC) 0.34* 0.34* −0.24 0.20 —

6 Symbolic (RT) −0.08 −0.13 0.42* −0.21 −0.08 —

7 Non-symbolic (ACC) 0.27 0.17 −0.29 0.30* 0.31* −0.34* —

8 Non-symbolic (RT) 0.18 0.10 −0.02 0.12 0.17 0.19 0.60* —

9 Simple subtraction 0.31* 0.23 −0.36* 0.49* 0.41* −0.37* 0.42* 0.10 —

10 Complex subtraction 0.23 0.07 −0.26 0.32* 0.25 −0.31* 0.42* 0.19 0.63* —

*p < 0.05, Bonferroni-corrected. PS., Processing speed; Reading Com., Reading comprehension; ACC, accuracy; RT, reaction time.

TABLE 6 | Hierarchical regression models predicting arithmetic ability (simple and complex subtraction) from age, gender, group, general cognitive ability, symbolic, and

non-symbolic magnitude processing.

Simple subtraction Complex subtraction

Step 1 Step2 Step3 Step4 Step 1 Step2 Step3 Step4

β β β β β β β β

Age (months) 0.069 0.044 −0.025 −0.044 0.258* 0.219* 0.158 0.145

Gender −0.133 −0.129 −0.040 −0.026 −0.105 −0.090 −0.025 0.014

Group(congenital/acquired) −0.231* −0.151 −0.093 −0.097 −0.234* −0.186* −0.138 −0.163

Non-verbal IQ — 0.137 0.068 0.054 — 0.146 0.106 0.075

Ps. (ACC) — 0.112 0.034 0.039 — −0.029 −0.078 −0.079

Ps. (RT) — −0.174 −0.052 −0.043 — −0.151 −0.051 −0.037

Reading Com. — 0.335* 0.322* 0.297* — 0.174 0.164 0.123

Symbolic (ACC) — — 0.280* 0.241* — — 0.165 0.110

Symbolic (RT) — — −0.246* −0.166 — — −0.223* −0.175

Non-symbolic (ACC) — — — 0.222 — — — 0.223

Non-symbolic (RT) — — — −0.076 — — — 0.068

R2 = 0.072 R2 = 0.346* R2 = 0.443* R2 = 0.464 R2 = 0.121* R2 = 0.231* R2 = 0.284* R2 = 0.339*

(1R2 = 0.273*)(1R2 = 0.098*)(1R2 = 0.021) (1R2 = 0.110*)(1R2 = 0.053*)(1R2 = 0.054*)

*p < 0.05, Bonferroni-corrected. Ps., Processing speed; Reading Com., Reading comprehension; ACC, accuracy; RT, reaction time.

information of numbers by means of symbols, due to their
low-level language and their limited experience with numbers
(Gregory, 1998; Nunes, 2004; Kritzer, 2009; Bull et al., 2011).

It was also found that boys outperformed girls in the
accuracy of numerical magnitude processing in the study. The
result was similar to the previous study of Krinzinger et al.
(2012), but scare previous researches on gender differences in
numerical magnitude processing in deaf individuals. Krinzinger
et al. (2012) applied structural equation modeling to a
longitudinal dataset of 140 primary school children and found
superiority for primary school boys in numerical magnitude
processing. One explanation of Krinzinger et al.’s results
is that general visual-spatial abilities (but not visual-spatial
working memory), which has been found to favor males
(Goldstein et al., 1990; Vederhus and Krekling, 1996).

And hierarchical regression analyses of all deaf adolescents
showed that numerical magnitude processing had an
independent contribution to arithmetic computation after

controlling for general cognitive ability. Previous studies have
shown that the understanding of numerical magnitudes is helpful
to the solution of arithmetic problems (De Smedt et al., 2009;
Tavakoli, 2016). Neuroimaging studies have also revealed that
numerical magnitude processing is related to arithmetic problem
solving (Bugden et al., 2012; Price et al., 2013). It was also found
the close relationship between the approximate number system
acuity (non-symbolic numerical magnitude processing) and
math achievement in children with hearing loss in the research
of Bull et al. (2018), which is basically consistent with the results
of this study.

Onset of Hearing Loss (Congenital vs.
Acquired) and Mathematical Cognition of
Deaf Adolescents
Acquired deafness, as the type of deafness occurring after the
acquisition of speech (Hindley and Kitson, 2000), is the loss of
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hearing that occurs after birth and develops sometimes during
a person’s life. Congenital deafness, in which auditory system
has not been programmed for language and communication,
is the loss of hearing that was present at birth. Although the
difference between congenital deafness and acquired deafness is
obvious, there are few studies on the difference between them
in academic achievement such as mathematics performance.
DeLeon et al. (1979) explored the reading and math skills of
two groups of adults either congenital or acquired deafness
matched in intelligence, education level and degree of loss,
and found no significant differences on reading level between
the two groups, but a significantly higher math level in the
congenital group than the acquired. But in the research of
Ogundiran and Olaosun (2013), no significant differences were
found in the academic achievement including mathematics and
English Language performance between students with congenital
deafness and those with acquired deafness. And the results
of our study that there was no significant difference between
the congenital group and the hearing group, but congenital
group outperformed acquired group in numerical magnitude
processing (RT) and arithmetic computation, suggesting that the
mathematical cognitive abilities of the congenital deaf are better
than those of the acquired deaf, which is basically consistent with
the results of DeLeon et al. (1979).

Compensatory plasticity holds that the lack of auditory
stimulation experienced by deaf individuals, such as congenital
deafness, can be met by enhancements in visual cognition
(Neville, 1990; Bavelier et al., 2006). Previous studies have
shown that auditory deprivation, such as congenital deafness, can
lead to enhanced peripheral visual processing, which should be
contributed by the neuroplasticity in multiple systems including
primary auditory cortex, supramodal, and multisensory regions
(Bavelier and Neville, 2002; Scott et al., 2014). According
to the connectome model, congenital sensory loss, such as
congenital deafness, is thought to be a connectome disease.
It is an abnormal bias in the individual wiring and coupling
pattern of the brain, which might result in stronger coupling
to the remaining sensory systems and reorganization within
the affected sensory system. This process accounts for the
abnormal visual dominance in perception after congenital
deafness (Kral et al., 2016).

Although some studies have found that the processing of sign
language in the brain network of congenitally deaf individuals
who acquired sign language from birth from their deaf parents
is similar to that for spoken words in hearing individuals. The
activity in their language network is due to a kind of semantic
encoding rather than visual processing (Leonard et al., 2012).
The electrophysiological study of congenitally deaf adolescents
revealed that better visual processing could be explained by the
early latency in N1 component in visual related brain responses
associated with more efficient neural processing due to auditory
deprivation (Güdücü et al., 2019). And the studies of hearing
individuals also showed that visual form perception had unique
contributions to lower level math categories, such as numerosity
comparison, digit comparison, and exact computation (Cui
et al., 2017); and it was the cognitive mechanism that could
explain the association between numerical magnitude processing

(e.g., approximate number system) and arithmetic computation
(Zhang et al., 2019).

Therefore, it may be due to the advantages of visual
processing, congenitally deaf individuals outperformed acquired
deafness in mathematics. And according to the TCM and related
neuropsychological researches, patients (with impaired auditory
speech representation) could perform non-verbal numerical
magnitude processing that manipulates analog magnitude
representations by manipulating visual Arabic representations
(Cipolotti and Butterworth, 1995; Cohen et al., 2000). Compared
to the acquired deafness, individuals with congenital deafness
may be more dependent on this non-verbal, visual representation
due to auditory deprivation. It is also possible because that
there is only visual processing (representation) in congenital
deafness, but the conversion of auditory speech and visual
representation/coding is needed in acquired deafness, which may
lead to the hindrance of processing.

Practical Implications
The current study offers several important insights and practical
implications. First, since we found deaf adolescents lag behind
hearing peers in symbolic but not non-symbolic magnitude
processing, and symbolic magnitude processing accounted for
unique variance in children’s mathematical achievement (De
Smedt et al., 2009; Bugden and Ansari, 2011), this suggests
that educators should place great emphasis on helping their
deaf students to understand the meaning of numerical symbols,
thereby enhancing their ability to map number symbols
unto non-symbolic quantities. Learning to accurately map
symbolic magnitudes onto non-symbolic magnitudes is a crucial
step toward performing more complex mathematics such as
arithmetic operations (Siegler and Booth, 2004; Booth and
Siegler, 2008; Geary et al., 2008). Second, we found general
cognitive abilities (i.e., non-verbal IQ, processing speed and
reading comprehension) could account for unique variance in
deaf adolescents’ arithmetic computation (simple and complex
subtraction), which shows that the general cognitive abilities
are the important influencing factors for the arithmetical ability
in deaf adolescents. According to the developmental model
of numerical cognition (von Aster and Shalev, 2007), the
development of mathematical abilities in children is based on
general cognitive abilities. Therefore, parents and teachers should
promote the development of general cognitive abilities, such as
intelligence, processing speed, and reading comprehension, in
deaf children through activities and training as soon as possible,
so as to improve their mathematics performance.

Limitations and Prospects
There are some limitations to our work. First, the sample size was
limited, only 112 deaf adolescents but not young deaf children
were included in this study. Second, the test of arithmetic
ability only examined by simple and complex subtraction,
other tests such as simple and complex addition were not
included. Third, reading comprehension was only regarded as a
control variable, and other language abilities were not evaluated
in the present study. The neural mechanism of congenital
deafness in mathematical ability should be further investigated
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across the groups of congenital and acquired deafness and
hearing counterparts.

CONCLUSIONS

Consistent with the previous results, the study shows the worse
performance on symbolic but not non-symbolic magnitude
processing in deaf adolescents, which indicates that the lag
of mathematics in deaf individuals may be due to the delay
of symbolic but not non-symbolic encoding. It was found
that boys outperformed girls in the accuracy of numerical
magnitude processing in the study. Based on previous studies,
it may be that the superiority of male visual-spatial ability
improves their numerical magnitude processing. There was no
significant difference between the congenital group and the
hearing group, but congenital group outperformed acquired
group in numerical magnitude processing (RT) and arithmetic
computation. Similarly, it may be due to the advantage of
visual processing that congenitally deaf individuals outperformed
acquired deafness in mathematics. It was also found a
close association between numerical magnitude processing and
arithmetic computation of deaf adolescents, and after controlling
for the demographic variables (age, gender, onset of hearing
loss) and general cognitive ability (non-verbal IQ, processing
speed, reading comprehension), numerical magnitude processing
could predict arithmetic computation in all deaf adolescents
but not in congenital group. The role of numerical magnitude
processing (symbolic and non-symbolic) in deaf adolescents’
mathematical performance should be paid attention in the
training of arithmetical ability.
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Research on dyscalculia in neurodegenerative diseases is still scarce, despite high
impact on patients’ independence and activities of daily living function. Most studies
address Alzheimer’s Disease; however, patients with Parkinson’s Disease (PD) also
have a higher risk for cognitive impairment while the relation to arithmetic deficits in
financial contexts has rarely been studied. Therefore, the current exploratory study
investigates deficits in two simple arithmetic tasks in financial contexts administered
within the Clinical Dementia Rating in a sample of 100 PD patients. Patients were
classified as cognitively normal (PD-NC) or mildly impaired (PD-MCI) according to
Level I consensus criteria, and assessed using a comprehensive neuropsychological
test battery, neurological motor examination, and sociodemographic and clinical
questionnaires. In total, 18% showed arithmetic deficits: they were predominately
female, had longer disease duration, more impaired global cognition, but minor signs
of depression compared to PD patients without arithmetic deficits. When correcting
for clinical and sociodemographic confounders, greater impairments in attention and
visuo-spatial/constructional domains predicted occurrence of arithmetic deficits. The
type of deficit did not seem to be arbitrary but seemed to involve impaired place × value
processing frequently. Our results argue for the importance of further systematic
investigations of arithmetic deficits in PD with sensitive tests to confirm the results
of our exploratory study that a specific subgroup of PD patients present themselves
with dyscalculia.

Keywords: dyscalculia, financial management, neurodegeneration, MCI, elderly, gender differences, attention,
visuo-spatial function

INTRODUCTION

Arithmetic function deteriorates with age (Stemmler et al., 2013) and underlies elderly independent
living skills (i.e., financial management; Finke et al., 2017). Despite this importance for activities
of daily living (ADL), research on arithmetic deficits in elderly is scarce and primarily conducted
in children (Kaufmann et al., 2013; Knops et al., 2017). Within the elderly population,
neurodegeneration increases susceptibility to arithmetic deficits (e.g., Kalbe, 1999; Halpern et al.,
2003; Arcara et al., 2019). While most research has been conducted in Alzheimer’s Disease (AD),
there are first hints that patients with other dementias, such as Parkinson’s Disease (PD) dementia
(PDD), also present with dyscalculia (Kalbe, 1999). Even though one might expect arithmetic
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deficits to have been assessed thoroughly given the extensive
profiling of cognitive impairment in PD, research is scarce
(e.g., Kalbe, 1999; Tamura et al., 2003). Unsystematic clinical
observations show arithmetic errors in both advanced PDD
(Kalbe, 1999) and non-demented PD patients (Tamura et al.,
2003; Zamarian et al., 2006; Scarpina et al., 2017).

Previous research in PD operationalized arithmetic uniformly.
However, developmental studies show dyscalculia resulting
from distinct impairments in both specific numerical and
domain-general cognitive functions (Jordan and Montani, 1997;
Kaufmann et al., 2013). Domain-general cognitive functions
required for arithmetic arise from different neuropsychological
domains such as attention, working memory, language, executive
or visuo-spatial function (Knops et al., 2017). Specific numerical
prerequisites for arithmetic are heterogeneous, with magnitude
being a core representation (e.g., Dehaene and Cohen, 1995).
Furthermore, the application of calculation procedures is
essential and impaired in AD (Mantovan et al., 1999). Another
basis of multi-digit arithmetic is place-value integration (i.e.,
identification, activation, manipulation of digits within and
between Arabic numbers; Nuerk et al., 2015). Analyzing specific
errors then allows to infer underlying mechanisms (Nuerk et al.,
2015): Erroneous magnitude processing shows as rounding errors
within the correct decade (i.e., 3 × 6 = 16 not 18). Impaired
calculation procedures can arise as operand (i.e., 3 × 6 = 12)
or operation errors (i.e., 3 × 6 solved as 3+6). Errors regarding
decade value (i.e., 3 × 6 = 28), place (3 × 6 = 180) or both
(3× 6 = 280) stress an impaired place-value integration.

Financial capabilities are distinct and multidimensional skills
(Marson, 2001, 2013), with arithmetic abilities such as number
comprehension, principles, mental and written calculation being
crucial prerequisites. Other cognitively mediated skills such as
global cognitive function, short-term and working memory,
(verbal) memory and learning, executive function, visuo-motor
skills, decision making, financial conceptual knowledge, or
instrumental ADL are associated with financial capabilities
(Sherod et al., 2009; Lichtenberg et al., 2016; Arcara et al.,
2019). Due to their complexity as higher order cognitive
functions, financial capacities are prone to processes of aging
and neurodegeneration (Willis, 1996; Marson et al., 2000). As
arithmetic functioning is crucial, the current study explores PD-
immanent arithmetic errors in financial contexts.

Arithmetic–specific cognitive deficits have not been well
studied in PD yet possibly due to focusing on motor symptoms.
Nowadays, PD is defined as a multisystem disorder affecting
motor, autonomous, psychiatric and cognitive function (Postuma
et al., 2015), with cognitive impairments often being confounded
with motor symptoms (Das et al., 2016). PD-specific cognitive
classifications continuously range from normal cognition (PD-
NC) over mild cognitive impairment (PD-MCI) to PDD
(Aarsland, 2016). These cognitive profiles are heterogeneous; old
age, male gender, cortical cerebrospinal fluid (CSF) amyloid-
beta 1–42 (Aβ42) pathology, depression and, most importantly
presence of PD-MCI indicate susceptibility for PDD conversion
(Irwin et al., 2012; Marras and Chaudhuri, 2016; Aarsland et al.,
2017; Lin et al., 2018). Several factors, such as education, gender
or work experience, have been shown to affect (numerical)

healthy aging (Delazer et al., 2013; Lövdén et al., 2020) and
might influence PD patients’ arithmetic ability. However, the
relationship between these specific profiles and arithmetic deficits
has not been studied in PD, indicating the need to characterize
patients making arithmetic errors to diagnose them timely for
early interventions (Tucker-Drob, 2019).

Furthermore drawing inferences how arithmetic deficits affect
PD patients from previous research focusing on AD is difficult, as
similarity in clinical profiles is limited despite neuropathological
overlaps (e.g., cholinergic impairments; Bohnen et al., 2003).
Arithmetic deficits in AD (Rosselli et al., 1998) and early
impairment of complex financial capacity in prodromal AD
or MCI (Triebel et al., 2009; Marson, 2013, 2015) suggest a
possible diagnostic value of arithmetic function for cognitive
deterioration in PD, requiring clarification. Both the cognitive
stage where arithmetic deficits first occur and the quality of
impairments remain unknown. Arithmetic function in financial
contexts is important for the autonomy and legal responsibilities
of PD patients (Sherod et al., 2009; Marson, 2013; Arcara et al.,
2019). Therefore, alteration in number cognition might also be
arise in a prodromal stage of PDD, being investigated in this
study. Therefore, it is crucial to phenotype arithmetic deficits
by defining cognitive profiles of affected patients which can be
achieved by addressing associations to other cognitive functions
as suggested by different PD stages showing distinct cognitive
profiles (Lopes et al., 2017).

The aim of the current study is (H1) to identify the
frequency of arithmetic errors in financial contexts in PD-NC
and PD-MCI patients and (H2) to profile characteristic patients
committing these errors regarding sociodemographic, clinical,
and cognitive measurements as compared to arithmetically
unaffected patients. The last hypothesis addresses (H3) whether
errors PD patients make can be attributed to specific categories
of numerical processing to infer affected cognitive mechanisms.
These hypotheses were investigated with data available from
a longitudinal study focusing on the predictive value of CSF
Aβ42 pathology in PD at the University Hospital in Tübingen.
It includes sociodemographic and clinical assessments, as well
as a neuropsychological test battery. Two arithmetic tasks in
financial contexts administered within the Clinical Dementia
Rating (Morris, 1993) were used to identify whether financial-
arithmetic capabilities are a question relevant for PD research.

MATERIALS AND METHODS

Participants
Present data come from the longitudinal “Non-demented
patients with Parkinson’s disease with and without low Amyloid-
beta 1–42 in cerebrospinal fluid” (ABC-PD longitudinal) study,
focusing on the predictive value of Aβ42 pathology for cognitive
worsening. The study was approved by the local ethics committee
(686/2013BO1). Participants were recruited via the outpatient PD
clinic or the ward at Tübingen University Hospital’s neurology
department. Patients received monetary compensation for travel
expenses, and were assessed in the “on-state” with regular
dopaminergic medication.
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100 non-demented PD patients were selected by pre-
screening neurological function confirming PD diagnosis
following United Kingdom Brain-Bank criteria (Hughes et al.,
1992). All patients received a lumbar puncture at least six weeks
before the baseline visit and were between 50 and 85 years old.
Patients were able to communicate well with the investigator,
understand study requirements and give written informed
consent. Diagnosis of PDD according to the Movement Disorder
Society (MDS) Task Force criteria (Emre et al., 2007), other
concomitant neurodegenerative diseases as well as substance
abuse (except nicotine) led to participant exclusion.

Patients’ CSF Aβ42 status was determined using commercially
available ELISA kits (INNOTEST; Fujirebio Germany GmbH,
Hannover, Germany, RRID: AB_2797385). Patients were divided
into two equal sized (n = 50) groups: Aβ42+ (<600 pg/mL)
and Aβ42– (≥600 pg/mL). Groups were matched according to
age, gender and educational status. For the present analysis, PD-
MCI was diagnosed according to the Level I MDS Task Force
criteria (Litvan et al., 2012). All 100 patients were included
in the analyses.

Material
Sociodemographic and Clinical Information
Demographics (age, gender, education years, disease duration,
and age at PD onset) were acquired in an interview.

Arithmetic Function in Financial Contexts
Two standardized financial arithmetic tasks from the
Clinical Dementia Rating interview (CDR; Morris, 1993;
RRID:SCR_003678) were presented orally: “How many 5 cent
coins make up 1€?” and “How many 50 cent coins make up
15.50€?” Answers in a verbal open response format were
assessed based on correctness and errors where possible. Errors
were ascribed to distinct categories (see Table 1 for details
and examples): Place-value integration errors (i.e., wrong

TABLE 1 | Description of error categories with examples of patient answers.

Patient answers

Error Description How many How many 50 cent
category 5 cent coins coins make up

make up 15.50€? = 31
1€? = 20

Place-value Wrong decade value
Wrong place
Wrong place and decade value

10
2 or 200

100

11

Magnitude Rounding within correct decade 30 or 32

Procedural Operand error (solution in
multiplication table)
Wrong operation (division not
multiplication)
Wrong operation and
place−value integration

15

7.75

76 (≈15.50 ÷ 2 ×10)

Others Arbitrary
Repetition of operand

4 4 or 8 or 23 or 25 or 26
15

NA No information on exact error
given

decade value, wrong place, both), magnitude related errors (i.e.,
rounding in correct decade), procedural errors (i.e., operand
error, wrong operation), or other errors (i.e., arbitrary errors,
operands’ repetition). Errors lacking information on participants’
exact answers were categorized as NA.

Cognitive Function
The Montreal Cognitive Assessment (MoCA; Nasreddine et al.,
2005) screened for global cognitive impairment (max. sum score
30 = normal cognitive performance). A MoCA score ≤ 26
indicated impaired global cognitive performance and assigned
patients to the PD-MCI group. Cognitive function was
additionally assessed with the German version of the Repeatable
Battery for the Assessment of Neuropsychological Status (RBANS;
Randolph et al., 1998). Scores on the twelve subtests were
categorized into the domains attention, immediate and delayed
memory, language, and visuo-spatial/constructional function
(see Supplementary Material B for mapping of subtests to
domains). Raw scores converted to age-group corrected z-scores,
and composite domain and total scale scores according to
the manual. The current analysis comprised RBANS domain
and total scores.

Clinical Measurements
Parkinson’s Disease motor symptoms were evaluated using the
sum score of the MDS Unified Parkinson’s Disease Rating
Scale Part III (UPDRS III; Goetz et al., 2008) and Hoehn and
Yahr staging (Hoehn and Yahr, 1967). The UPDRS-III rated
motor symptoms on a scale ranging from 0 = normal to
4 = severe, with a maximum score of 132. The Hoehn and Yahr
score ranging from one to four (1 = unilateral involvement;
4 = severe disability) additionally measured PD severity. Motor
type was calculated from the UPDRS-III and item 12 from the
former UPDRS-II version (Fahn et al., 1987) by means of the
mean tremor score (postural, kinetic, or rest tremor) and the
mean postural instability and gait disorder score (PIGD; falls,
postural instability, freezing of gait). Patients were categorized
as tremor-dominant in case of a ratio mean tremor score /
mean PIGD score of 1.50 or higher or as PIGD dominant for
ratios of 1.00 or lower, or as mixed for the remaining cases
(Jankovic and Kapadia, 2001).

Anti-parkinsonian drug intake was expressed as levodopa
equivalent daily dose (LEDD; Tomlinson et al., 2010). Patients’
depressive symptoms during the last two weeks were rated with
the Beck Depression Inventory (BDI-II; Hautzinger et al., 2006).
Health-related quality of life was assessed with the single index
score of the 39-item Parkinson’s Disease Questionnaire (PDQ-39;
Jenkinson et al., 1997). Items scored on a scale from 0 = never to
3 = often, with a successive transformation into weighted sum
scores. The Functional Activities Questionnaire (FAQ; Pfeffer
et al., 1982) was used to measure activities of daily living
function. Patients rated their level of performance (0 = normal
to 3 = dependent) on 10 ADLs subsumed as sum score.

Procedure
Testing took place in Tübingen University Hospital. Patients
gave written informed consent and were assessed for eligibility
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based on the in- and exclusion criteria. Additionally to study
assessments, most patients had appointments in the Parkinson’s
disease outpatient clinic before or after the study visit. Therefore,
the order of clinical assessment varied between patients.

Data Analysis
Assessments were analyzed manually and data was managed
using REDCap electronic data capture tools (Harris et al., 2009;
RRID: SCR_003445). Statistical analyses were conducted with
R version 4.0.3 (R Core Team, 2014; RRID: SCR_001905) and
JASP version 0.13.1 (JASP Team, 2018; RRID: SCR_015823).
Due to the small patient samples, Gaussian distribution of data
was not assumed resulting in analyses using median, range,
Mann-Whitney U tests, χ2-tests, Brunner-Munzel tests (non-
parametric trend test with p̂′′ = test statistic of stochastic equality;
Brunner and Munzel, 2000), and binary logistic regressions.
Confounders for the logistic regressions were chosen based on
significantly differing variables between groups with and without
arithmetic errors in financial contexts. Multicollinearity between
predictors of the regression models was assessed based on a
variance inflation factor (VIF) criterion above 10, not met by any
predictor. For inferential statistics, an α-level of 0.05 was applied.

Analyses were conducted with the entire sample. Due to the
over-representation of Aβ42+ patients, analyses were repeated
with a subsample (N = 63) including all Aβ42- patients (n = 50)
and a proportion of 20% Aβ42+ patients (n = 13). This reflects
the estimated empirical distribution with a prevalence of AD
pathology (Aβ42+, Tau, phosphorylated Tau) in approximately
30 to 40% of predominantly demented PD patients with
non-demented PD patients falling considerably below this
rate (Boller et al., 1980; Blennow and Hampel, 2003; Braak
et al., 2005; Siderowf et al., 2010; Irwin et al., 2012). Unless
indicated otherwise, outcomes did not differ between overall and
representative sample (see Supplementary Material).

RESULTS

Frequency of Arithmetic Errors in
Financial Contexts in PD (H1)
The total sample included 42% PD-MCI patients. Overall, 18% of
PD patients (PD-NC and PD-MCI) showed arithmetic errors in
at least one of the two financial items. PD-MCI patients showed
1 or 2 errors more frequently (26.2%) than PD-NC patients
(12.1%), however, this difference did not reach significance,
p̂′′ = 1.74, p = 0.09. For the Aβ42 groups, 16.0% of positive and
20.0% of negative patients showed arithmetic errors; this was not
statistically significant χ2(1) = 0.27, p = 0.60.

The amount of errors differed marginally significantly
between PD-NC (0 errors: 87.9%, 1 error: 8.6%, 2 errors: 3.4%)
and PD-MCI (0 errors: 73.8%, 1 error: 4.8%, 2 errors: 21.4%),
p̂′′ = −1.92, p = 0.059. The binary logistic regression correcting
for the influence of gender, disease duration, and depression
[χ2(94) = 11.92, p = 0.018, R2

McFadden = 0.088, Area under the
curve (AUC) = 0.695] revealed the amount of errors was the only
significant predictor of cognitive status, with PD-MCI displaying
more errors than PD-NC (p = 0.004). This model did not

reach significance with the reduced representative sample (see
Supplementary Material A). For analyses of RBANS subtests see
Supplementary Material B (gender, depression, story memory
predict arithmetic errors; differences between arithmetic groups:
digit span, list learning, list recognition, picture naming, semantic
fluency, line orientation).

Phenotyping Arithmetic Errors in PD (H2)
Patients with arithmetic errors differed from those without
regarding gender (more females), disease duration (longer),
depression (lower BDI-II scores), and global cognition (lower
MoCA total and RBANS total scale scores, see Table 2). On
average, females (0 error: 63.6%, 1 error: 12.1%, 2 errors:
24.2%) committed more errors than males (0 error: 91%, 1
error: 4.5%, 2 errors: 4.5%), p̂′′ = 3.01, p = 0.004. Effects were
the same in the representative sample, except for groups not
differing statistically regarding disease duration and depression
(Supplementary Material, Table A1).

Results of the binary logistic regression indicated a significant
association of gender, disease duration, depression, and all
RBANS domain scores with the presence of arithmetic errors,
χ2(90) = 51.12, p < 0.001, R2

McFadden = 0.545, AUC = 0.941.
Female gender, long disease duration, low depression scores,
impaired attention and visuo-spatial/constructional deficits
significantly predicted arithmetic errors (see Table 3). In the
representative sample, only attention was a significant predictor
for study group (see Supplementary Material, Table A2). In a
second binary logistic regression model, confounding variables
(gender, disease duration, depression) influenced presence of
arithmetic errors χ2(94) = 22.00, p < 0.001, R2

McFadden = 0.234,
AUC = 0.822, while the FAQ score did not (see Table 3).
This model was not stable in the representative sample (see
Supplementary Material A).

Categorization of Errors (H3)
Arithmetic tasks differed regarding error categories in the entire
patient sample. For the 5 cent task, place-value integration errors
were most frequent (54.5%), followed by procedural (9.1%) and
other errors (9.1%). In the 50 cent task, most errors could not be
categorized (33.3%) or were magnitude-related (33.3%), followed
by procedural (11.1%) and place-value integration errors (5.6%).
Importantly, 27.3% (5 cent) and 16.7% (50 cent) of cases were
NAs. The proportion of error categories did not differ between
cognitive groups or by gender, but descriptively, more place-value
integration errors occurred in the 5 cent task compared to the 50
cent task (see Table 4).

DISCUSSION

The current study aimed to identify the frequency of financial-
arithmetic impairments in PD subgroups, as well as in relation
to sociodemographic, clinical, and cognitive factors. Results
demonstrate clinically relevant arithmetic errors in financial
contexts. Identified risk factors were female gender, longer
disease duration, greater severity of depressive symptoms,
and more cognitive impairment. Place-value integration- and
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TABLE 2 | Sociodemographic and clinical characterization of study patients.

Total sample
N = 100

Min. 1 arithmetic error
n = 18

No arithmetic error
n = 82

p

Age 65.49 (50.52–80.36) 66.80 (54.21–79.58) 64.60 (50.52–80.36) 0.15

Male n (%) 67.00 (67.00%) 6.00 (33.30%) 61.00 (74.40%) <0.001*

Education years 13.00 (8.00–21.00) 12.00 (9.00–18.00) 13.00 (8.00–21.00) 0.16

Disease duration 4.17 (0.81–14.57) 6.51 (1.34–14.57) 3.98 (0.81–13.10) 0.02*

Age at onset 59.50 (38.94–77.53) 59.30 (39.79–74.78) 59.80 (38.94–77.53) 0.71

Aβ42+ status n (%) 50.00 (50.00%) 8.00 (44.40%) 42.00 (51.90%) 0.60

Motor type n (%) 0.87

PIGD 46.00 (46.00%) 9.00 (50.00%) 37.00 (45.10%)

Mixed 10.00 (10.00%) 2.00 (11.10%) 8.00 (9.80%)

Tremor dominant 44.00 (44.00%) 7.00 (38.90%) 37.00 (45.10%)

UPDRS-III 25.00 (5.00–56.00) 23.00 (10.00–54.00) 25.00 (5.00–56.00) 0.89

Hoehn and Yahr score n (%) 0.25

1 3.00 (3.00%) 1.00 (5.60%) 2.00 (2.40%)

2 79.00 (79.00%) 12.00 (66.70%) 67.00 (81.70%)

3 18.00 (18.00%) 5.00 (27.80%) 13.00 (15.90%)

LEDD 560 (100–2077.25) 627.50 (250–1353) 546.00 (100–2077.25) 0.42

BDI-II 6.00 (0–28.00) 3.50 (0–12.00) 6.00 (0–28.00) 0.03*

PDQ-39 summary index 2.15 (0.08–17.92) 2.76 (0.08–10.74) 2.13 (0.10–17.92) 0.66

FAQ 0 (0–20.00) 0 (0–15.00) 0 (0–20.00) 1.00

MoCA total score 26.00 (14.00–30.00) 24.50 (14.00–29.00) 26.00 (17.00–30.00) 0.02*

RBANS total scale score 90.00 (54.00–127.00) 82.00 (54.00–106.00) 92.50 (54.00–127.00) 0.002*

Group comparisons were conducted with Mann-Whitney U tests or χ2 where appropriate; median (range) or frequencies are given as measures of central tendency.
*p < 0.05. Arithmetic errors are defined as: one or both arithmetic tasks not solved correctly. UPDRS-III = Unified Parkinson’s Disease Rating Scale Part 3;
LEDD = Levodopa equivalent daily dose; BDI = Beck Depression Inventory; PDQ-39 = Parkinson’s Disease Questionnaire 39; MoCA = Montreal Cognitive Assessment;
RBANS = Repeatable Battery for the Assessment of Neuropsychological Status. Due to missing values, the overall sample was reduced to N = 99 for BDI-II,
PDQ-39, and FAQ.

TABLE 3 | Results of the binary logistic regressions predicting arithmetic errors in financial contexts.

Wald Test 95%-CI

B SE β OR z Wald statistic df p Lower bound Upper bound VIF

1) Model including RBANS cognitive domain scores and covariates

Intercept 16.58 6.23 −3.81 15860000 2.66 7.08 1 0.008* 4.37 26.79

Gender −3.29 1.11 −1.56 0.04 −2.97 8.79 1 0.003* −5.47 −1.12 1.90

Disease duration 0.36 0.14 1.31 1.44 2.54 6.44 1 0.011* 0.08 0.64 1.51

BDI-II −0.37 0.12 −2.31 0.69 −2.98 8.87 1 0.003* −0.61 −0.13 1.92

Attention −0.10 0.05 −1.72 0.91 −2.09 4.36 1 0.037* −0.19 −0.01 3.12

Immediate memory 0.03 0.04 0.56 1.03 0.83 0.68 1 0.410 −0.04 0.10 2.88

Delayed memory 0.002 0.03 0.03 1.00 0.07 0.01 1 0.945 −0.06 0.07 1.99

Language −0.034 0.05 −0.35 0.97 −0.63 0.40 1 0.529 −0.14 0.07 2.17

Visuo-spatial/constructional −0.10 0.04 −1.35 0.91 −2.31 5.33 1 0.021* −0.18 −0.01 1.94

2) Model including ADL function and covariates

Intercept −0.94 0.68 −2.07 0.39 −1.38 1.91 1 0.167 −2.26 0.39

Gender −1.72 0.63 −0.82 0.18 −2.76 7.59 1 0.006* −2.95 −0.50 1.07

Disease duration 0.19 0.08 0.69 1.21 2.28 5.20 1 0.023* 0.03 0.36 1.14

BDI-II −0.15 0.07 −0.96 0.86 −2.32 5.36 1 0.021* −0.28 −0.02 1.23

FAQ 0.07 0.08 0.29 1.08 0.93 0.87 1 0.350 −0.08 0.28 1.31

*p < 0.05. B = estimated regression coefficient; SE = Standard error; β = standardized regression coefficient; OR = Odds Ratio; df = degrees of freedom; CI = confidence
interval of the estimate; BDI = Beck Depression Inventory; FAQ = Functional activity questionnaire. Arithmetic errors level ’1’ was coded as class “min. 1 error” and gender
level ’1’ was coded as “male.”
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TABLE 4 | Proportion of error categories in relation to total errors as percentages per cognitive status and gender.

Error category How many 5 cent coins make up 1€? How many 50 cent coins make up 15.50€?

Cognitive status p Gender p Cognitive status p Gender p

PD-MCI PD-NC Male Female PD-MCI PD-NC Male Female

Place-value 55.6% 50.0% 1.00 66.7% 50.0% 1.00 9.1% 0% 1.00 16.7% 0% 0.25

Magnitude 0% 0% 0% 0% 27.3% 42.9% 16.7% 41.7%

Procedural 11.1% 0% 0% 12.5% 9.1% 14.3% 0% 16.7%

Others 11.1% 0% 33.3% 0% 45.5% 14.3% 50.0% 25.0%

NA 22.2% 50.0% 0% 37.5% 9.1% 28.6% 16.7% 16.7%

Group comparisons were conducted with χ2 tests and frequencies are given as measures of central tendency. Both NAs (wrong answers without specification of the
error committed) and the category others were excluded from the χ2 tests.

magnitude-related errors were most frequent. Cognitive groups
differed regarding the amount of errors in some analyses.
Note the limitation that arithmetic errors increased for longer
and cognitively more severe PD, but patients were not
compared with controls.

Frequency of Arithmetic Errors in
Financial Contexts in PD (H1)
The overall frequency of arithmetic errors of 18% in two simple
tasks supports the need for further systematic investigation.
When correcting for clinical confounders, the amount of errors
was able to correctly predict cognitive status where higher
errors were indicative of PD-MCI. However, some PD-NC
patients also showed arithmetic errors, similar to previous
AD studies finding dyscalculia in early stages (Parlato et al.,
1992; Martin et al., 2003). Therefore, PD patients showing
heterogeneous arithmetic impairments even in early stages
and its association to specific cognitive profiles demands
further examination. The model using the representative sample
did not reach significance, which needs to be interpreted
with care due to: a smaller sample (63 instead of 100
patients), an associated decrease in arithmetic errors, a
greater tendency to ceiling effects, and a smaller amount
of explained variance. Based on the current findings, it is
impossible to infer on global financial capacities, as these
are defined multidimensionally and exceed arithmetic function
alone. However, showing a difference in arithmetic errors
between PD-NC and PD-MCI indicates an association of PD
disease severity and the likelihood of arithmetic errors in
financial contexts.

Phenotyping Arithmetic Errors in
Financial Contexts in PD (H2)
Profiles of PD patients with arithmetic errors were female, longer
disease duration, less depression, and more cognitively impaired.
Total MoCA and RBANS scale scores differed significantly
between arithmetic groups, suggesting an association between
arithmetic errors and cognition in PD. As PD-MCI and longer
disease duration predict PDD (Aarsland et al., 2017), our
data suggest that arithmetic errors occur within the frame of
heterogeneous progressive cognitive deterioration.

When analyzing the proportion of errors (0,1,2), a systematic
effect of gender (women made more errors) and cognitive status
(PD-MCI patients made more errors) was observed, even after
correcting for confounders. However, when error frequency was
aggregated (1 or 2 errors in one category), when confounders
were not considered, or when a smaller sample was used with
a proportion of Aβ42+, differences between PD-NC and PD-
MCI were only trends. We attribute this lack of significance
when error categories are grouped to a statistical power issue
due to sample sizes, tendency toward ceiling effects in the more
representative sample, or decreased explained variance. While
these results suggest more severe arithmetic errors in more
cognitively impaired PD patients, they also advise for a future
more systematic assessment.

The binary logistic regressions showed attention, visuo-
spatial/constructional function, and story memory predicted
arithmetic errors, suggesting degeneration in these domains
at least partly causing arithmetic deficits. Current research
in PD also discusses the importance of attention and visuo-
spatial function for cognitive status und progression to PDD,
introducing these domains as candidates for early biomarkers
(Lopes et al., 2017; Becker et al., 2020). Associations between
visuo-spatial/constructional functions and numerosity in healthy
adults are in line with finding visuo-spatial/constructional
functions to predict arithmetic errors in the current study
(Lammertyn et al., 2002; Thompson et al., 2013). Furthermore,
retrieving arithmetic facts requires an intact verbal memory
(Dehaene and Cohen, 1997). Interestingly, females showed worse
arithmetic performance than males. The gender differences
in favor of men are in line with findings by Delazer et al.
(2013) and Arcara et al. (2019). They explain advantages
of elderly men in arithmetic and financial capabilities with
employment in mathematics-related fields, higher level of
education (paralleling generational effects) and mathematical
interests. The arithmetic advantage for men is remarkable as
gender effects usually dissociate from men showing stronger
global cognitive decline but indicate differentiated visuo-spatial
and verbal memory deficits in female PD patients (Fengler et al.,
2016; Bakeberg et al., 2021). Therefore, the current association
of visuo-spatial/constructional functions and story memory with
arithmetic deficits is in line with finding more arithmetic deficits
in female patients.
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We also found that patients with arithmetic errors were,
on average, less depressed than those without. This contradicts
research on numeracy skills negatively affecting mental health
in elderly (Fastame et al., 2019), and depression impairing
cognitive performance in PD (Alzahrani and Venneri, 2015).
As the difference in arithmetic does not seem to be PD-
specific or directly related to cognition, the association with
gender and education should be addressed to differentiate a
coincidental finding from a systematic effect of depression on
arithmetic in PD.

The binary logistic regression including ADL explained no
more than a small amount of variance in arithmetic errors. The
insignificant effect might be explained by patients in the current
study being less heavily impacted on ADL, with ADL impairment
occurring later in the process of transition from PD-MCI to PDD
(Becker et al., 2020).

Presence of PD-Specific Error
Categories (H3)
Most observed errors were place-value integration errors,
followed by magnitude-related or procedural errors. Therefore,
our data provide first evidence that not all numerical
representations are impaired alike in PD. Future research
should examine the validity of these results in a systematic
methodological setup, with multi-digit and complex arithmetic
tasks, enough items for a broader investigation of errors, and
enough statistical power to identify PD-specific error categories
and differences between cognitive statuses.

Limitations and Future Studies
The current exploratory study indicates the presence of particular
arithmetic error types in financial contexts in PD, which – in
some analyses – seem to associate with cognitive decline. These
findings are novel in a hitherto neglected research field. However,
this study has a couple of limitations, requiring consideration in
follow-up studies.

First, the comparison with a healthy elderly group is missing to
estimate the extent of impairments. However, finding arithmetic
errors in both groups of PD-NC and PD-MCI with arithmetic
errors to increase alongside progression of cognitive status
indicates differing arithmetic impairments in discrete PD stages.
Future studies should include healthy controls for comparisons
between PD and the general population as well as more
cognitively nuanced PD groups. Second, the methodological
approach is not sufficient to provide generalizable inferences
on arithmetic errors in financial contexts in PD with a
rate of 18%. Yet, these errors are not negligible, but are
absent in the diagnostic criteria for cognitive deficits in PD.
Third, there were only two items and one type of arithmetic
problem. Future studies should employ more systematic
and broader assessments (e.g., different operations, different
magnitudes, different place-value processing procedures, verbal
and non-verbal tasks, symbolic and non-symbolic tasks) to
obtain a more comprehensive overview on which errors
are PD-specific and how pronounced they are for different
numerical representations and processes. Fourth, this study is

cross-sectional; however, longitudinal studies, informative for
characterizing neurodegenerative processes when appropriately
correcting for practice effects and selective attrition (Moody
et al., 2017; Tucker-Drob, 2019), are missing. These designs
can identify person-to-person heterogeneity in trajectories of
lifespan cognitive developments being specific for the respective
cognitive ability and interdependent for individuals (see Tucker-
Drob, 2019). Heterogeneous arithmetic deficits found in AD
(Girelli and Delazer, 2001) stress the need for differential
investigations in PD.

Conclusion
In conclusion, while the current study reports first interesting
data about arithmetic errors in financial contexts in PD, it
is a mere starting point and inspiration to investigate such
errors more systematically in the future. The current study
suggests: (1) PD patients show arithmetic errors in financial
contexts which seem to be more pronounced with cognitive
impairment, (2) error type does not seem to be arbitrary
but hints at a predominantly impaired place-value processing,
and (3) apart from PD-MCI status there is heterogeneity
within the groups and distinct attributes such as attention,
visuo-spatial/constructional function, gender, or disease duration
influence the likelihood of arithmetic errors, (4) The male
advantage in arithmetic processing in PD contrasts men’s larger
global cognitive decline but follows female visuo-spatial and story
memory disadvantages. In sum, we believe that these results
suggest arithmetic performance in financial contexts to be a
problem in PD-MCI, deserving future attention.
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From Non-symbolic to Symbolic
Proportions and Back: A Cuisenaire
Rod Proportional Reasoning
Intervention Enhances Continuous
Proportional Reasoning Skills
Roberto A. Abreu-Mendoza1* , Linsah Coulanges1†, Kendell Ali2, Arthur B. Powell3 and
Miriam Rosenberg-Lee1,4

1 Department of Psychology, Rutgers University, Newark, NJ, United States, 2 Graduate School of Education, Rutgers,
The State University of New Jersey, New Brunswick, NJ, United States, 3 Department of Urban Education, Rutgers
University, Newark, NJ, United States, 4 Center for Molecular and Behavioral Neuroscience, Rutgers, The State University
of New Jersey, Newark, NJ, United States

The persistent educational challenges that fractions pose call for developing novel
instructional methods to better prepare students for fraction learning. Here, we
examined the effects of a 24-session, Cuisenaire rod intervention on a building block
for symbolic fraction knowledge, continuous and discrete non-symbolic proportional
reasoning, in children who have yet to receive fraction instruction. Participants were
34 second-graders who attended the intervention (intervention group) and 15 children
who did not participate in any sessions (control group). As attendance at the intervention
sessions was irregular (median = 15.6 sessions, range = 1–24), we specifically examined
the effect of the number of sessions completed on their non-symbolic proportional
reasoning. Our results showed that children who attended a larger number of sessions
increased their ability to compare non-symbolic continuous proportions. However,
contrary to our expectations, they also decreased their ability to compare misleading
discretized proportions. In contrast, children in the Control group did not show any
change in their performance. These results provide further evidence on the malleability
of non-symbolic continuous proportional reasoning and highlight the rigidity of counting
knowledge interference on discrete proportional reasoning.

Keywords: proportional reasoning, intervention, non-symbolic processing, symbolic processing, inhibitory
control

INTRODUCTION

Learning fractions is an arduous and protracted process for students. In the United States,
fraction instruction typically starts in third grade with fraction expressions; then, in fourth grade,
children are first introduced to arithmetic operations with fractions (Common Core State Standards
Initiative, 2020b). However, even after four years of instruction, less than a third of eighth-graders
(∼30%) show an understanding of fraction addition (Carpenter et al., 1980; Lortie-Forgues et al.,
2015). Regrettably, fraction arithmetic is just one example of students’ persistent difficulties with
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fractions (Siegler and Lortie-Forgues, 2017; van Hoof et al.,
2018). Recent efforts from researchers and educators to develop
novel methods involving non-symbolic representations to teach
fractions are beginning to bear fruit. In the current study, we
examined the effects of an intervention using Cuisenaire rods to
improve non-symbolic proportional reasoning, a building block
for symbolic fraction knowledge.

Part-Whole and Alternative Models of
Fractions
Traditionally, fractions are represented using part-whole models
(e.g., pie charts). However, these representations might impede
understanding of fundamental fraction properties, such as
ratio, by promoting whole-number strategies, like counting
(Plummer et al., 2017). In contrast, interventions that use non-
symbolic continuous models, like number lines, provide a shared
representation for whole and rational numbers, take advantage
of spatial-numeric associations and capture the continuous
property of fractions (Hamdan and Gunderson, 2017). These
interventions also leverage children’s early proficiency at
comparing and matching continuous proportional information
(Boyer et al., 2008; Boyer and Levine, 2015; Hurst and
Cordes, 2018). Indeed, one of the most promising methods to
improve fraction skills is intensive training involving mapping
non-symbolic continuous representations of proportions with
fractions (Fazio et al., 2016; Braithwaite and Siegler, 2020; Soni
and Okamoto, 2020; Wortha et al., 2020).

Emerging evidence from individual difference studies and
experimental research also supports the link between non-
symbolic continuous representations of proportions and fraction
skills (Matthews et al., 2016; Bhatia et al., 2020; Kalra et al.,
2020). For instance, college students who are more precise in their
judgments of non-symbolic ratios are also better at comparing
symbolic fractions (Matthews et al., 2016). Moreover, matching
non-symbolic continuous representations of proportions to
symbolic fractions is modulated by the distance effect (e.g.,
lower performance in comparing smaller ratios than larger
ratios), suggesting that both formats activate the same mental
proportional magnitude representations (Bhatia et al., 2020).
Overall, these findings indicate that students might use their
non-symbolic continuous proportional reasoning skills as a
scaffold for symbolic fraction knowledge. Yet, little is known
about the malleability of non-symbolic proportional reasoning
through training.

Training Non-symbolic Proportional
Reasoning
Continuous Non-symbolic Proportions
To date, only two studies have reported changes in non-symbolic
continuous proportional reasoning following training. These
studies employed individual, computerized interventions with
carefully matched control conditions (Gouet et al., 2020; Wortha
et al., 2020). In Gouet et al. (2020), nine-year-old children
went through one of two non-symbolic continuous proportional
interventions or an absolute magnitude control condition. In
both non-symbolic interventions, children used a number line to

estimate proportional continuous quantities, either the red area
of a two-color rectangle or the size of a yellow circle relative
to a blue circle. After the five-day intervention, children from
both interventions improved their non-symbolic proportional
skills, while children in the control group, who only practiced
absolute magnitude comparison skills, did not. Crucially, the
intervention also had a positive effect on children’s symbolic
fraction arithmetic and comparison skills.

In the second study, Wortha et al. (2020) examined the
effects of fraction intervention on adults’ reaction times and
brain activation while performing three tasks: a cross-format
proportional matching task, a number line comparison task,
and a fraction comparison task. Their results showed that after
estimating fraction magnitudes using number lines for five days,
participants became more precise in matching number lines to
fractions and comparing number lines after the intervention.
However, they showed no gains in their symbolic fraction
comparison skills. The brain imaging results showed the opposite
pattern: there were no changes in the activation during the
matching and number line comparison tasks, but during the
symbolic fraction comparison task, activation increased in a
set of frontoparietal regions implicated in math cognition,
including the bilateral intra-parietal sulcus and the middle and
the inferior gyrus. Together, these studies suggest that non-
symbolic continuous proportional reasoning can be improved by
exclusively training non-symbolic skills or by matching symbolic
and non-symbolic proportions.

These studies employed strictly controlled computerized
interventions, which lack ecological validity, and their
implementation in traditional classrooms might be
technologically challenging. In contrast, for the current
study, we implemented a proportional reasoning intervention in
classrooms and with inexpensive physical manipulatives. Using
well-known educational materials, Cuisenaire rods, children
transitioned from comparing the relative lengths of pairs of rods
to expressing those comparisons symbolically (Figures 1A,B).
Thus, our first aim was to examine the possible positive transfer
effects of this intervention on the ability to compare proportions
presented in another non-symbolic format (i.e., annulus-shaped
figures, Figure 1C) in second-grade children who have yet to
receive formal fraction instruction.

Discrete Non-symbolic Proportions
The ease with which children can represent non-symbolic
continuous proportions contrasts with the great difficulty
they encounter when comparing discrete proportions (Jeong
et al., 2007; Boyer et al., 2008; Hurst and Cordes, 2018). For
instance, while even four-year-old children can successfully
compare non-symbolic continuous proportions, ten-year-old
children still struggle with discrete ones, particularly when
the discrete information contradicts proportional information
(Jeong et al., 2007). Children’s tendency to exert whole-number
strategies to proportional reasoning tasks is consistent with
similar phenomena seen in symbolic fraction comparison, an
effect termed whole number bias (Ni and Zhou, 2005). Given
the persistent developmental challenge entailed by discrete
proportional reasoning, an outstanding question is whether
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FIGURE 1 | Study design. (A) The study consisted of three stages: the time 1 assessment (late September 2018), 24 sessions of a group-based proportional
reasoning intervention, and (3) a time 2 assessment (March 2019), which repeated the time 1 assessment. The intervention was further divided into two phases:
Phase 1 (8 sessions), in which children became familiarized with the materials and manipulated absolute magnitudes, physically, orally and symbolically; Phase 2 (16
sessions), in which children represented and compared non-symbolic and symbolic proportions. (B) During both phases, children initially worked with the physical
rods and then they used letters to refer to the rods (w = white, r = red, g = green, p = purple, y = yellow, d = dark green, e = ebony, t = tan, b = blue, o = orange).
The time 1 and time 2 assessment comprised of (C) the spinners task, the main outcome task, which comprised continuous (left pairs spinners) and discrete (right
pairs of spinners) formats (D) the arithmetic fluency subtests from the Wechsler Individual Achievement Test (WIAT)-III, (E) the positive attitudes toward math
questionnaire, and (F) the hearts and flowers task. (G) The histogram shows the number of children who attended a given number of sessions, from zero sessions
(control group) to 24 sessions (complete intervention).

interventions that improve continuous proportional reasoning
influence discrete proportional reasoning skills. The second aim
of this study is to shed light on this question.

A small set of studies have investigated how non-symbolic
proportional comparison skills relate across formats (Mock et al.,
2018; Park et al., 2020). Recently, Park et al. (2020) examined non-
symbolic proportional comparison skills in preschoolers, second
graders, fifth graders, and adults across continuous (circles,
lines, and blob areas) and discrete (collections of circles) non-
symbolic formats. The authors also evaluated absolute magnitude
comparison skills across these four formats. They report that
proportional skills in one format were better predicted by
proportional skills in another format than absolute magnitude
comparison skills of the same format. For instance, comparing
the ratio between pairs of circles was better predicted by
comparing the ratio between pairs of lines than comparing
the absolute magnitude of circles. These results suggest that
individuals use the same proportional comparison capacity
regardless of the format in which proportions are presented.

Consistent with these results, Mock et al. (2018) found
in adults, overlapping brain regions for the processing of
proportions presented as non-symbolic continuous and discrete
representations, fractions, and decimals, as do other rational
numbers (Rosenberg-Lee, 2021). These regions were the superior
parietal lobule, the inferior, middle, and superior occipital gyri.
Together, these studies suggest that improvements in one format
should also be reflected in other formats due to proportional
magnitudes being processed in an amodal manner. However, this
conclusion is difficult to reconcile with the persistent decrements
in performance found in non-symbolic discrete formats (Jeong
et al., 2007; Begolli et al., 2020). An alternative line of research
(Boyer and Levine, 2015; Hurst and Cordes, 2018; Abreu-
Mendoza et al., 2020) suggests priming continuous proportional
reasoning immediately before discrete stimuli mitigates the
challenges of discrete proportional reasoning. The current study
aimed to examine whether an intervention focused on non-
symbolic continuous skills positively shapes children’s non-
symbolic discrete proportional reasoning skills.
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FIGURE 2 | Time 1 (T1) to time 2 (T2) changes in z-scores of the (A) WIAT-III Math Fluency composite scores, (B) Positive attitudes toward math scores, and
(C) Hearts and Flowers’ accuracy. Over the five months between time 1 and time 2 and regardless of the number of completed sessions of the intervention, children
improved their math skills above and beyond what was expected during this period (A). While children’s attitudes toward math remained stable from time 1 to time 2
(B), children also improved their performance in the incongruent block of Hearts and Flowers tasks (C). Rods represents the estimated marginal means across
different number of sessions of attendance from 0 sessions (control group) to 24 sessions (darkest blue).

Domain-Specific and Domain-General
Predictors of Intervention Effects
The current intervention design also allowed us to examine the
predictor effects of mathematical achievement and attitudes, as
well as cognitive skills that previous intervention studies have
shown play a critical role in fraction learning.

Math Abilities
Only a few studies have examined the moderating role of
student’s general math knowledge on fraction learning. In one
study, Fuchs et al. (2013) showed that children’s initial scores
in the National Assessment of Educational Progress assessment
did not influence children’s gains from a 12-week fraction
intervention. Conversely, Reinhold et al. (2020) found that prior
math achievement, measured by the type of school (high and low
achieving institutions), moderated the effects of different types
of fraction interventions. High-achieving children showed larger
gains from a new fraction curriculum than a traditional one,
regardless of whether it was presented as either a book or an

e-book. However, low-achieving children only benefited from the
new curriculum when it was offered as an e-book. Longitudinal
studies of fraction learning have shown that initial general math
performance is a predictor for later conceptual and procedural
fraction knowledge (Jordan et al., 2013). Together, these studies
suggest the potential for a positive relationship between general
math knowledge and fraction instruction; however, conclusive
evidence is still emerging.

Attitudes Toward Math
Holding more positive attitudes toward mathematics is positively
related to math performance (Chen et al., 2018; Dowker et al.,
2019). Yet, little is known about the specific relations of math
attitudes to non-symbolic and symbolic proportional reasoning.
Recently, Sidney et al. (2019) found that children and adults had
more negative attitudes toward fractions than whole numbers.
Further, while children’s attitudes toward whole-numbers and
fractions were equally related to general math performance,
adults’ attitudes toward whole-numbers were more strongly
associated with math than attitudes toward fractions. In the
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current study, we investigated whether positive attitudes toward
math, in general, are predictive of learning gains in non-symbolic
proportional reasoning.

Executive Functions and Inhibitory Control
Inhibitory control plays a critical role in acquiring information
that contradicts previously learned knowledge both in
science and math (Brookman-Byrne et al., 2018). Specific
to fraction learning, inhibitory control may help students
override automatic whole-number representations and hone in
proportional magnitudes (Vosniadou et al., 2018). Studies of
individual-differences finds that students with higher inhibition
capacity are better at comparing misleading non-symbolic
discrete proportions (Abreu-Mendoza et al., 2020), misleading
fractions (Gomez et al., 2015; Avgerinou and Tolmie, 2019), and
misleading decimals (Avgerinou and Tolmie, 2019; Coulanges
et al., 2021). Here, we aimed to extend these findings by
examining the predictive role of inhibitory control in learning
gains in non-symbolic proportional reasoning, specifically when
there is a need to disregard misleading discrete information.

Although these individual-difference studies suggest a positive
relationship between learning gains and inhibitory control, a
previous study of the moderator effect of working memory,
another canonical executive function (Diamond, 2013), on
fraction interventions alludes to a more nuanced relationship
(Fuchs et al., 2014). In their study, the contribution of working
memory varied depending on the type of intervention. While
participants with low working memory benefitted most from a
conceptually rich fraction intervention, participants with high
working memory levels showed the largest gains when the
intervention focused on fraction arithmetic fluency. Overall,
these findings indicate that inhibitory control may play a key role
in improving non-symbolic proportional reasoning, but its effects
could depend on the kind of instruction.

The Current Study
The aims of this study were threefold: (1) provide further
evidence on the malleability of non-symbolic continuous
proportional reasoning in the context of a classroom-based,
physical manipulatives intervention; (2) investigate whether
an intervention that targets continuous representations of
fractions leads to improvements in discrete proportional
reasoning; (3) examine possible academic, attitudinal, and
cognitive predictors of children’s improvement in non-symbolic
proportional reasoning. To achieve these study aims, second
graders participated in a 24-session intervention program that
introduced fractions as multiplicative comparisons between two
continuous quantities. Specifically, students measured the length
of rods of different sizes and learned to communicate in oral and
written forms the relationship between the rod lengths.

Consistent with previous findings, we predicted that children’s
non-symbolic continuous proportional reasoning would increase
following the intervention. We further hypothesized that
discrete comparison skills, particularly in contexts where discrete
information is misleading, would also improve. Based on the
finding that inhibitory control relates to misleading discrete
proportional reasoning, we tested the hypothesis that children

with high inhibition skills would show larger learning gains
in discrete misleading trials. These two hypotheses were pre-
registered on a pre-registration poster submission (Mathematical
Cognition and Learning Society, 2019). Finally, we predict that
children with strong initial math skills and more positive attitudes
toward math will show larger proportional reasoning gains than
those with low math skills and less favorable attitudes.

MATERIALS AND METHODS

Participants and Intervention Phases
Fifty-seven students from three second-grade classrooms at a
public school in Newark, NJ, were invited to participate in this
study. Of the 52 children whose parents consented for them
to participate in the study, 50 participants completed the two
assessment sessions. Out of these students, 35 children were
part of an after-school enrichment program that comprised
the original intervention group. Among these 35 children,
the final sample excluded one participant because they did
not have the minimum number of usable trials in the key
outcome measure (see Section “Proportional Reasoning”). Thus,
the final sample of the intervention group consisted of 34
children. However, as attendance at the intervention sessions was
irregular (median = 15.6 sessions, range = 1–24, Figure 1G),
we used the number of sessions completed as an independent
variable for all our analyses. Children who did not participate
in the after-school program (n = 15) comprised the original
control group, and they were coded as having 0 sessions in
any analyses which used attendance as a continuous variable.
All children’s parents gave written informed consent, and the
children gave oral assent for their participation. The Rutgers
University Institutional Review Board approved the research
protocol. The pre-training data from this sample is reported
elsewhere (Abreu-Mendoza et al., 2020).

We performed a sensitivity power analysis using the final
sample size (n = 49) as a reference for the planned correlations.
These analyses indicated that our sample size enables detecting
moderate to large correlations (Pearson’s r > 0.38) using an
alpha = 0.05 and power = 0.80. Using the same alpha and power
values, in the intervention group, we can detect medium to large
correlations (Pearson’s r > 0.44) while in the control group only
large effects (Pearson’s r > 0.62).

Study Overview
The study consisted of three stages: (1) a pre-intervention
assessment (time 1, late September 2018), which consisted
of four activities, administered in the following order: Math
fluency subtests (math achievement), Spinners task (proportional
reasoning), Hearts and Flowers (H&F, inhibitory control) task,
and Positive Attitudes toward Math questionnaire; (2) 24 sessions
of a group-based proportional reasoning intervention; and (3)
a post-intervention assessment (time 2, March 2019), in which
participants performed the same activities as the pre-intervention
assessment, in the same order (Figure 1). Children in the control
group only completed stages 1 and 3.
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The two computerized tasks, the Spinners and H&F
tasks, were presented using PsychoPy2 Experiment Builder
Version 1.90.3 (Pierce, 2007). Children were evaluated
individually by trained experimenters in quiet corners
of a large room at the children’s school (maximum of 4
children at a time). Experimenters were blind to the group
assignment of participants. Each assessment session lasted
approximately 25 min.

Academic, Cognitive, and Attitude
Assessments
Mathematical Achievement
As fractions are not typically taught in second grade in
the United States (Common Core State Standards Initiative,
2020b), to evaluate children’s mathematical achievement, we
concentrated on skills appropriate for children’s academic stage
(i.e., arithmetic skills). Thus, we used the Math Fluency–
Addition and Math Fluency–Subtraction subtests from the
Wechsler Individual Achievement Test–Third Edition (WIAT-
III; Wechsler, 2009). In each subtest, children answered as
many arithmetic (first addition, then subtraction) problems as
they could in 1 min. Combining the grade-normed scores of
each subtest provides an age-appropriate measure of children’s
mathematical achievement.

Attitudes Toward Mathematics
To evaluate children’s attitudes toward math, we adapted
the 5-point Likert-type Positive Attitude toward Math (PAM)
questionnaire (Chen et al., 2018). To make it appropriate for
children, we used emojis to help connote the response options.
This questionnaire was comprised of six items that evaluate
children’s attitudes toward math and six items that evaluate
their general attitude toward academics (e.g., science, reading,
computers, and technology). For this study, our variable of
interest was the average of the first six questions relating
to math attitudes.

Inhibitory Control
Children’s inhibitory control was assessed with the Hearts
and Flowers task (hereafter H&F task; Davidson et al., 2006;
Brocki and Tillman, 2014; Wright and Diamond, 2014). This
computerized task consisted of three blocks presented in the
following fixed order: congruent, incongruent, and mixed. The
experimenter read aloud the on-screen instructions to the
children. In the congruent block, children were instructed to
press the key on the same side as where the target (hearts)
appeared, using the keys “z” for the left side and “m” for the
right side. In the incongruent block, children were instructed
to press the key on the opposite side from where the target
(flowers) appeared. In the mixed block, children saw interspersed
hearts and flowers and were asked to respond according to
the previously learned rules. At the beginning of the congruent
and incongruent blocks, there were 2 example trials. The
corresponding figure (heart or flower) appeared first on the
right and then on the left. The target images remained on the
screen until the children pressed the correct key. The first two
blocks comprised 12 trials each, which randomly presented the

corresponding figure on each side six times. The third (mixed)
block contained 33 trials, and the first trial of this block was
always a heart presented on the right side. Subsequent trials
randomly presented each figure 16 times, eight times on each
side. We considered this last block as the measure of inhibitory
control because prior research found that performance in the
mixed block was strongly correlated with a latent variable of
inhibition (r = 0.71), whereas performance in the congruent
block and performance in the incongruent block were negative
(r =−0.03) and weakly associated (r = 0.17), respectively (Brocki
and Tillman, 2014).

Following Wright and Diamond (2014), when computing
accuracy, we excluded anticipatory responses (reaction times
[RT] shorter than 250 ms) and outlier responses (RTs at
least 3 standard deviations above the individual’s mean). After
applying these criteria, among the 49 children, we analyzed 4397
(96.61%) of 5586 trials.

Outcome Task
Proportional Reasoning
To measure children’s learning gains in proportional reasoning,
we used a computerized version of the Spinners task (Jeong et al.,
2007). In this task, children saw two spinners and had to indicate
which of them has a proportionally larger red area.

The 12 proportions used by Jeong et al. (2007) were presented
in three different format blocks for a total of 36 experimental
trials. In the continuous format, each spinner had only two
continuous sections, one red and one blue. In the discrete
adjacent format, the two continuous parts were segmented into
discrete but adjacent sections of red and blue sections. In
the discrete mixed format, the red and blue segments were
interspersed. In the discrete blocks, the number of segments was
manipulated so that in half of the trials, the spinner with the larger
number of red pieces was also the one with the proportionally
larger red area (counting consistent trials). In contrast, in the
other half, the spinner with the fewer red pieces was the one with
the proportionally larger red area (counting misleading trials).
Although “counting” information could not be meaningfully
assessed in the continuous format, trials that had the same
proportions as the counting consistent trials of the discrete
formats were considered continuous “counting consistent” trials
by convention. Similarly, continuous trials that showed the same
proportions as the counting misleading trials were considered
continuous “counting misleading” trials.

For all formats, we also manipulated the size of the individual
spinners to prevent children from relying exclusively on the red
area’s absolute size in making their selections. Thus, on half
of the trials of each format, the physically larger spinner also
had the proportionally larger red area (size congruent trials).
On the other half, the opposite pattern held, with the smaller
spinner being the one with the proportionally larger red area (size
incongruent trials). Spinners could be 6, 9, or 12 cm in diameter.
For size congruent trials, the proportionally larger spinner was
always the 12-cm spinner, and the other spinner could be 6 or
9 cm. In contrast, for size incongruent trials, the proportionally
larger spinner was the 6-cm spinner. The other spinner was 9
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or 12 cm. Proportion pairs (size congruent or size incongruent)
were counterbalanced across participants. For all participants, the
continuous condition was presented first, and the presentation
order of the two discrete blocks was counterbalanced across
participants. Importantly, children saw the same order in both
time 1 and time 2 sessions.

For all conditions, trials started with a blank screen presented
for 500 ms, followed by the pair of spinners. Spinners remained
on the screen until the children responded by pressing one of two
possible keys, “z” for the left spinner or “m” for the right one.
Within each block, half of the correct responses were presented
on the left and the other half on the right. More details about this
task can be found at Abreu-Mendoza et al. (2020).

For consistency with the inhibitory control measure, we
followed the same procedures for the H&F task when computing
accuracy, which involved removing anticipatory and outlier
responses. After applying these criteria, one participant who
completed the intervention sessions did not have at least one trial
from each type and was excluded from the final sample. Among
the 49 children of the final sample, we analyzed 3429 (97.19%)
of 3528 trials. For each participant, trial-level accuracy on this
task was initially averaged by size (2), counting (2), format (3),
and time (2), producing 24 data points per participant. However,
given the complexity of the design and our theoretical interest
in counting interference, representational format, and change
over time, we then averaged across size, reducing the number
of data points to 12 per participant. This approach provides
a better estimate of performance within each trial type (e.g.,
counting misleading discrete adjacent at time 1) when there
are unequal numbers of size congruent and incongruent trials
(Abreu-Mendoza et al., 2020).

Intervention Program
The group-based proportional reasoning intervention program
consisted of 24 one-hour sessions, which children attended twice
a week. Throughout the sessions, students transitioned from
representing proportions using manipulatives (i.e., Cuisenaire
rods) to writing fraction expressions symbolically.

The intervention was divided into two phases: In Phase
1, children were introduced to the Cuisenaire rods, agreed
on names for each different color rod, and a single letter to
represent each rod color (usually the initial letter of the color
name, see Figure 1B). This phase involved activities in which
children internalized the correspondence between the rods’
length and their colors and the relations of equality, inequality,
and transitivity among the rods’ lengths. For example, one activity
involved asking children to close their eyes while a peer placed
a rod in their hands and asked them to say aloud the color of
the rod they are holding. Children were also asked to compare
the different sizes of the rods relative to others (e.g., “the yellow
rod is larger than the green rod”) and place end-to-end, creating
trains of rods of different sizes to equal the length of a larger
rod. Then, children discussed the rods’ lengths without having
the rods present and verbally discussed relations among rod
lengths and trains of rods. Later, using the letters to refer to rods,
they wrote symbolic expressions such as “y is larger than g” or
“y g.” These tasks allowed children to move from non-symbolic

to symbolic representations of lengths and relations among rod
lengths. By the end of this phase, they could mentally evoke
images of absolute magnitudes among rods of different lengths
and symbolically represent those relations.

Phase 2 had four modules, which focused on the relative
magnitude of the rods: In the first module, children were taught
to use the rods as a tool to measure the length of other rods,
which led to fractional expressions (e.g., “a white rod equals a
third of a green rod”). Children described these relationships
verbally with and then without the rods. In the second module,
children used only symbols (i.e., operation and equality signs and
letters) to refer to the rods and to write fractional expressions;
for example, they might have written “w = 1/3 × g.” Children
were then taught how to compare the proportional quantities
of these expressions, which led to the final two modules. In
the third module, children replaced letters with expressions that
referred to the same magnitude; instead of writing w, they wrote
expressions like the following “1/3 × g.” In the final module,
children compared these symbolic fraction expressions (e.g.,
“1/3× g < 5/7× e”).

During the two phases of the intervention, there were
moment-by-moment formative assessments given by the
instructors; however, there were no traditional summative
assessments. Sessions were carried out by members of the
research team: a university professor and a doctoral student.
Further details of the program are reported in Powell (2019).

Statistical Analyses
Our first approach to examine training-related changes in the
performance of children who participated in the intervention,
was to contrast the performance of the control and the
intervention groups across the three formats of the Spinner
task, our outcome measure. Table 1 shows the means and
standard deviations for each group (control and intervention)
across formats (continuous, discrete adjacent, and discrete
mixed), counting conditions (consistent and misleading), and
time (T1 and T2). For these three ANOVAs, we included
time and counting as within-participant factors and group as

TABLE 1 | Mean (SD) performance across each format of the Spinners task
by group.

Continuous format

Intervention (n = 34) Control (n = 15)

T1 T2 T1 T2

Consistent 0.64 (0.25) 0.79 (0.18) 0.73 (0.23) 0.68 (0.21)

Misleading 0.64 (0.28) 0.69 (0.25) 0.71 (0.21) 0.74 (0.18)

Discrete adjacent format

Consistent 0.79 (0.21) 0.91 (0.14) 0.78 (0.26) 0.80 (0.25)

Misleading 0.58 (0.25) 0.50 (0.25) 0.50 (0.30) 0.51 (0.29)

Discrete mixed format

Consistent 0.85 (0.21) 0.86 (0.22) 0.77 (0.25) 0.88 (0.21)

Misleading 0.50 (0.29) 0.43 (0.26) 0.42 (0.34) 0.46 (0.33)
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a between-participant factor. However, with one exception (a
marginal three-way interaction between counting, time, and
group (p = 0.096) in the continuous format), there were no
time by group interaction to indicate greater learning in the
original intervention group. Noting the irregular attendance of
the intervention (1–24 sessions), we instead adopted a dose-
response framework and performed retrospective analyses (Voils
et al., 2014) on the effect of the number of sessions attended on
changes in children’s performance. Similar approaches have been
employed to analyze results of educational interventions with
incomplete attendance (Roberts et al., 2018), finding that when
attrition rates are high and attendance is irregular, intervention
effects might be better characterized by the mediator effects of
the number of completed sessions.

Specifically, we computed linear mixed effects models using
attendance as one of the between-participant fixed factors. To
facilitate interpretation of results for all measures, we first
standardized T1 and T2 scores relative to the T1 means and
standard deviations. Therefore, all average performance at T1
measures would be centered around 0, and increments or
decrements in the T2 session are reported in terms of standard
deviations. Therefore, using the same guidelines as Cohen’s d
the resulting beta values can be interpreted using the follow
criteria small 0.2 to < 0.5, medium 0.5 to < 0.8, and large 0.8
and above. Finally, to further characterize the main effects and
interaction, we obtained the marginalized means at four levels of
attendance (0, 8, 16, 24 sessions). We then performed pairwise
comparisons at each level to determine if fitted increments
or decrements differed significantly from zero. All statistical
analyses were conducted in R 3.5.3 (R Core Team, 2019), linear
mixed models were computed using the lme4 package (Bates
et al., 2015) and pairwise comparisons were performed using
the lsmeans package (Lenth and Lenth, 2018). To investigate the
effects of predictor variables, we first used Pearson’s correlations
between the learning gains in our outcome measure, the spinners
task, across its different formats with the time 1 scores in the
math, attitudinal, and inhibitory control measures. In cases where
there was a significant correlation in the intervention group but
not the control, we performed standard linear regressions with
learning gains in the spinner task as the dependent variable,
and examined interactions between number of sessions and the
significant predictors to determine if the relations were specific
to the training group. This approach also accounts for differences
in sample size between the intervention and control group and
hence the resulting power differences (Section “Participants and
Intervention Phases”).

RESULTS

Cognitive and Attitude Assessments
Pre-intervention Assessment
Table 2 shows the detailed descriptive statistics of the
mathematical achievement, mathematical attitudes, and
inhibitory control skills, before and after the intervention for
both children who attended the intervention and children in
the control group. Importantly, there were no differences in

TABLE 2 | Group demographic, academic, and cognitive characteristics.

Intervention
group (n = 34)

Control (n = 15) t(47) p-value

Gender 15F/19M 6F/9M

Pre-training

Age 7.60 (0.38) 7.50 (0.27) 0.89 0.38

WIAT Math 81.12 (9.64) 80.80 (11.35) 0.10 0.92

ATM 4.05 (0.84) 4.29 (0.59) 1.00 0.32

H&F congruent 0.87 (0.12) 0.88 (0.14) 0.35 0.73

H&F incongruent 0.67 (0.31) 0.63 (0.28) 0.37 0.71

H&F mixed 0.55 (0.14) 0.50 (0.12) 1.33 0.19

Post-training

Age 8.04 (0.37) 7.95 (0.26) 0.87 0.39

WIAT Math 88.18 (12.10) 88.00 (12.77) 0.05 0.96

ATM 4.24 (0.73) 4.15 (0.82) 0.38 0.70

H&F congruent 0.90 (0.12) 0.88 (0.13) 0.37 0.71

H&F incongruent 0.77 (0.26) 0.75 (0.24) 0.28 0.78

H&F mixed 0.59 (0.19) 0.54 (0.14) 1.05 0.30

H&F, Hearts and Flowers task; ATM, Attitudes Toward Math.

children’s age, mathematical achievement, attitudes toward
math, nor inhibitory control across the two groups before the
intervention. Further, using attendance as a continuous variable
there were no correlations of attendance with these demographic,
academic, attitudinal, and cognitive variables (absolute rs < 0.15,
ps > 0.32). Overall, these results suggest that any observed
relationships between attendance and changes in proportional
reasoning are not due to prior differences in math achievement
or attitudes, or cognitive differences.

Time 1 to Time 2 Intervention Changes in Predictor
Measures
To examine changes in the predictor measures over the
five months between time 1 and time 2 and to determine
whether attendance to the intervention program modulated these
changes, we performed three linear mixed repeated models,
which included time (T1 and T2) as a within-participant fixed
factor and attendance as a between-participant fixed factor, and
participants as a random factor with the standardized scores
of each assessment as the dependent measure (Figure 2). For
the H&F task, we also used block as a within-participant fixed
categorical factor (congruent, incongruent, and mixed).

Mathematics achievement. There was a main effect of time
(beta = 0.702, SE = 0.180, t(47) = 3.91, p < 0.001) for the
arithmetic fluency scores of the WIAT-III. As we used the fall
standard scores in time 1 and the spring standard scores for
time 2, these results indicate that children improved their math
skills above and beyond what was expected in a span of five
months (Figure 2A). There was no main effect of attendance
(beta = 0.015, SE = 0.017, t(61.81) = 0.90, p = 0.370) or interaction
with attendance (beta < 0.001, SE = 0.012, t(47) = 0.02,
p = 0.984), suggesting that these learning gains were independent
of participating in the intervention program. All told, children’s
average scores shifted from low average (M = 81.02, SD = 10.07)
to almost average (M = 88.12, SD = 12.17).
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Positive Attitude toward Math. There was no main effect
of time, nor attendance, nor interaction (p > 0.320), indicating
that children’s attitudes toward math remained stable from time
1 (M = 4.12, SD = 0.78) to time 2 (M = 4.22, SD = 0.75) regardless
of their participation in the intervention program (Figure 2B).

Inhibitory control. Analyses of accuracy in the H&F task
yielded a significant effect of incongruent block (beta = −0.864,
SE = 0.215, t(235) = 4.02, p < 0.001) and mixed block
(beta = −1.424, SE = 0.215, t(235) = 6.63, p < 0.001), indicating
that children’s performance was modulated by the block
difficulty, with congruent, the easiest, followed by incongruent
and then mixed (Figure 2C). There was also a marginal
interaction between time and incongruent block (beta = 0.567,
SE = 0.304, t(235) = 1.87, p = 0.063), suggesting that there
was a marginal moderate increase in children’s performance
in the incongruent block from time 1 to time 2. Notably,
these improvements were not modulated by attendance to the
intervention, with no main effect or interactions with attendance
(all ps > 0.35).

Intervention Results
In the following sections, to provide evidence on the specificity
of our results and rule-out test-re-test effects, we performed
three linear mixed models, one for each format. We included
the standardized accuracy scores (z-scores) as the dependent
variable and added time (T1 vs. T2), counting (consistent and
misleading) as within-participant fixed factors, and attendance
as a between-participants factor, as well as the interactions, with
participant as random intercept. Then, we calculated the marginal
means, which were estimated from the linear mixed model, of
the significant effects and interactions and performed pairwise
comparisons of these estimated means to determine T1 and T2
differences across different number of completed sessions.

Continuous Proportional Reasoning
While there were no improvements in the control group,
children in the intervention group improved in line with the
number or sessions attended (Figure 3). The linear mixed model
revealed a marginal interaction between time and attendance
(beta = 0.033, SE = 0.198, t(141) = 1.70, p = 0.091), confirming
that children’s improvements scaled with their attendance. To
further characterize this interaction, we looked at the T1 and
T2 marginalized mean differences at (0, 8, 16, and 24 sessions).
These T1 vs. T2 comparisons indicated that while children who
participated in zero sessions did not increase their performance
(mean difference = 0.02, SE = 0.20, 95% CI [−0.415, 0.372],
p = 0.913), children who received 8 (mean difference = 0.224,
SE = 0.138, 95% CI [−0.046, 0.494], p = 0.107) and 16
sessions (mean difference = 0.470, SE = 0.151, 95% CI [0.174,
0.766], p = 0.0023) showed small increases. Finally, according
to the model, children who completed the full intervention (24
sessions) had a large increment in their performance (mean
difference = 0.716, SE = 0.227, 95% [0.271, 1.161], p = 0.002).

Outcomes in Discrete Proportional Reasoning
Discrete adjacent format. Children in the intervention group
showed a decrease in their performance in the discrete adjacent

misleading trials the more they attended to the intervention
(Figure 4). This pattern of results was confirmed by the linear
mixed model. This analysis yielded a negative linear effect of
counting (beta = −0.963, SE = 0.251, t(141) = 3.84, p < 0.001),
which was qualified by a marginal three-way interaction between
counting, time, and attendance (beta = −0.047, SE = 0.025,
t(141) = 1.92, p = 0.057). We performed two follow-up linear
mixed models, one for each counting condition, with attendance
and time as fixed factors and participants as random slopes. While
the linear mixed model for the counting consistent condition did
not yield any significant effect or interaction (p > 0.21), there
was a marginal interaction between time and attendance in the
misleading condition (beta = −0.036, SE = 0.018, t(47) = 1.94,
p = 0.058). Unexpectedly, this interaction indicated that children
who attended more sessions decreased their performance in the
misleading trials. The posthoc pairwise comparisons indicated
that children who completed the full 24 sessions would be
expected to have a significant decrease (beta =−0.652, SE = 0.298,
95% CI [−1.236, −0.068], p = 0.034), but not for those attending
16 or fewer sessions. In summary, these results indicate that the
intervention might have increased the use of effective strategies
for comparing discrete consistent trials but impair performance
for cases in which there is a conflict between whole-number and
proportional information.

Discrete mixed format. There were no meaningful changes in
either of the two groups in the discrete mixed format (Figure 5).
Consistently, the linear mixed model yielded a negative linear
effect of counting (beta = −1.176, SE = 0.245, t(141) = 4.80,
p < 0.001), confirming the expected effect of lower performance
on counting misleading problems. There was neither effect
of time (p = 0.135) nor any two- nor three-way interactions
involving time and attendance (p > 0.20).

Exploratory Analyses: The Relationship
Between Academic, Attitudinal, and
Cognitive Measures and Changes in
Performance
To explore whether changes in proportional reasoning skills
of children in the intervention group related to children’s
initial academic, cognitive and motivational skills, we performed
Pearson correlations between the changes in the spinners task
(T2 – T1) in continuous (Figure 6) and discrete adjacent
(Figure 7) format and children’s initial arithmetic fluency
skills, attitudes toward math, and inhibitory control ability.
We also examined the relationship between the developmental
changes in proportional reasoning and academic, cognitive, and
motivational skills in the control group. Importantly, we looked
at these relationships separately as these predictor measures did
not relate to each other (absolute r-values < 0.15, ps > 0.32).
Finally, in cases where significant associations were found in
the intervention group but not the control group, we formally
tested for interactions using a linear regression analyses with
the learning gains in proportional reasoning as the dependent
variable, and the interaction between number of sessions and the
significant predictor (math performance, attitudes toward math,
or inhibitory control) as the moderator term.
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FIGURE 3 | Intervention outcomes in the non-symbolic continuous format of the Spinners task by the number of completed sessions. Children who attended all the
sessions of the Cuisenaire intervention showed a reliable increase in their ability to compare spinners presented in the continuous format while children were part of
the control group showed exhibited no improvement. Rods represents the estimated marginal means across different number of sessions of attendance from 0
sessions (control group) to 24 sessions (darkest blue).

Predictor Effects in Continuous Proportional
Reasoning
After correcting for multiple comparisons using false discovery
rate correction (Benjamini and Hochberg, 1995), there was
a marginal association between the learning gains in the
continuous format and T1 math scores (r(32) = 0.36,
pcorr = 0.057) of children in the intervention group; that is,
children with better math skills during the initial evaluation
showed larger learning gains. We also found a significant
positive relationship between attitudes toward math and
children’s learning gains (r(32) = 0.41, pcorr = 0.046), showing
that children who had more positive attitudes toward math
showed larger gains. Conversely, there was a marginal negative
relationship between the time 1 score in the mixed block
of the H&F task and the learning gains in non-symbolic
continuous proportional reasoning skills (r(32) = −0.29,
pcorr = 0.095). This pattern of results suggests that our
intervention program resulted in larger gains for children
with low-inhibitory control skills. In contrast, none of the
correlations with change scores in the control group (all
pcorr ’s > 0.83).

A linear regression, with math performance as a moderator
showed a significant interaction between math and attendance

(beta = 0.0007, SE = 0.0003, t = 2.08, p = 0.043), suggesting
that children who attended more sessions and had better
math performance showed larger gains. There was also a
marginal interaction between attendance and inhibitory control
(beta = −0.046, SE = 0.027, t = 1.69, p = 0.097), suggesting
that children with low inhibitory control but a higher number
of completed sessions benefitted the most from the intervention.
Finally, there was no interaction between attendance and attitude
toward math scores (p = 0.29).

Predictor Effects in Discrete Proportional Reasoning
There was a negative correlation for discrete proportional
reasoning for misleading trials. Children in the intervention
group with lower inhibitory control had larger gains in
misleading trials (r(32) = −0.41, pcorr = 0.045). There
were no significant correlations between individual
difference measures and changes in the discrete
adjacent misleading trials in the control group (all
pcorr ’s > 0.27).

The linear regression to predict learning gains in the discrete
adjacent misleading condition with attendance and inhibitory
control as independent variables did not yield a significant
interaction between these two factors (p = 0.34).
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FIGURE 4 | Intervention outcomes in the non-symbolic discrete adjacent format of the Spinners task across groups. Unexpectedly, although improvements in the
ability to compare pairs of spinners whose number of segments matched the proportional information varied across did not vary by the number of completed
session, children’s ability to compare spinners when the number of segments was misleading was negatively related to the number of sessions. That is, children who
completed 24 session (darkest blue line) showed the largest losses. Rods represents the estimated marginal means across different number of sessions of
attendance from 0 sessions (control group) to 24 sessions (darkest blue).

FIGURE 5 | Intervention outcomes in the non-symbolic discrete mixed format of the Spinners task across groups. Changes in the discrete mixed format from time 1
to time 2 did not vary by attendance to the intervention. Rods represents the estimated marginal means across different number of sessions of attendance from 0
sessions (control group) to 24 sessions (darkest blue).
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FIGURE 6 | Associations between changes in performance in the continuous
format of the Spinners task and (A) math achievement, as measured by the
fluency subtests from the Wechsler Individual Achievement Test (WIAT)-III,
(B) attitudes toward math (ATM), and (C) inhibitory control, as measured by
the mixed block of the Hearts and Flowers (H&F) task. Children in the
intervention group with better math skills and more positive attitudes toward
math showed marginally larger learning gains. In contrast, children with lower
inhibitory control skills in this group showed marginal larger gains. Notably,
none of the correlations with change scores in the control group reached
significance. *pcorr < 0.05, †pcorr < 0.10.

DISCUSSION

Training studies have the potential of uncovering the
mechanisms that underpin effective learning programs
(Rosenberg-Lee, 2018). Emerging research has pointed
to non-symbolic proportional reasoning as a building
block for later fraction understanding (Siegler et al., 2011;
Matthews et al., 2016). In the current study, we examined
the malleability of this skill by looking at the effects of a
24-session proportional reasoning intervention (Powell,
2019), using Cuisenaire rods, on second-grade students’

FIGURE 7 | Associations between changes in performance in discrete
adjacent misleading trials of the Spinners task and (A) math achievement, as
measured by the fluency subtests from the Wechsler Individual Achievement
Test (WIAT)-III, (B) attitudes toward math (ATM), and (C) inhibitory control, as
measured by the Hearts and Flowers (H&F) task. There were no significant
correlations between individual difference measures and changes in the
discrete adjacent misleading trials, except for a negative association between
the initial inhibitory control of the intervention group and learning gains.
*pcorr < 0.05.

ability to compare non-symbolic continuous and discrete
ratios. We found that children who went through essentially
the complete intervention showed a large increase in their
ability to compare non-symbolic continuous proportions
in a different representational format, annulus-shaped
figures. However, we observed a decline in their ability
to compare discretized proportions, specifically, when the
absolute number of pieces contradicted the proportional
information. In contrast, while children who did not attend
any sessions did not show any improvement or decline
in their proportional reasoning skills, even after the five
months, children who received at least 16 sessions showed
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a small but consistent increment in their continuous
proportional skills. Finally, we found a positive predictor
role of children’s aptitudes and attitudes in mathematics on the
continuous learning outcomes, but a negative role for children’s
inhibitory control skills.

Cuisenaire Rod Intervention Improves
Non-symbolic Continuous Proportional
Reasoning
Children who completed the 24 sessions of our intervention
showed an increase in their non-symbolic continuous
proportional reasoning. These results are consistent with
previous findings showing that non-symbolic proportional
reasoning is malleable through training non-symbolic estimation
skills (Gouet et al., 2020) and mapping between non-symbolic
and symbolic formats (Wortha et al., 2020). Importantly, in
contrast to previous interventions implemented in highly
structured, individual, computerized environments, the current
intervention took place in an ecologically valid context (small
group instruction in the children’s classroom) and used
inexpensive materials (Cuisenaire rods). Further, our approach
was implemented slowly over five months compared to only a
few days in prior work (e.g., Gouet et al., 2020). These features
contribute to the ecological validity of our intervention,
which could facilitate its implementation by teachers.
Conversely, these features may complicate implementing
this approach in a large scale, randomized control trial needed to
establish efficacy.

Our study also expands these previous findings by showing
that children can transfer their gains in proportional
reasoning to a different non-symbolic representation
after an intervention focused explicitly on conceptual
thinking. In the current study, children extended their
recently acquired understanding of proportional reasoning
with one model (lines) to one in which they did not
receive any practice (annulus-shaped figures). Significantly,
these results cannot be attributed to test-retest effects
as children who did not attend any session did not show
any improvement.

During the intervention, children viewed proportions
represented in both non-symbolic and symbolic formats.
Working with these two formats might have facilitated
transferring proportional reasoning skills from one modality
(rods) to another (annulus-shaped figures). Children compared
the relative lengths of rods and used verbal and written
symbolic expressions to represent them. Thus, children
might have developed representations of proportions
that were not constrained by the perceptual properties
of the stimuli they were manipulating. Consistent with
this interpretation, previous fraction interventions have
shown that using different non-symbolic representations of
proportions (e.g., circles and tiles) helps children transfer
gains in fraction comparison ability to fraction magnitude
estimation skills in children with low working memory (Fuchs
et al., 2014). Future studies should examine whether the
non-symbolic or the symbolic features of the intervention or

the combination of both, drove children’s improvements in
proportional reasoning.

Discrete Proportional Reasoning Is
Hindered by the Intervention
In contrast to the relative ease of processing continuous
proportions, discrete quantities pose a significant challenge to
non-symbolic proportional reasoning. Students not only have to
manipulate the proportional quantities but also have to override
the whole-number information (Jeong et al., 2007; Boyer et al.,
2008; Abreu-Mendoza et al., 2020). Two lines of research suggest
that changes in continuous proportional reasoning should also
lead to improvements in discrete reasoning. First, there is an
emergent body of research suggesting that priming non-symbolic
continuous proportions leads to short-term improvements in
processing discrete quantities (Boyer and Levine, 2015; Hurst
and Cordes, 2018; Abreu-Mendoza et al., 2020). Second, a
recent proposal has suggested a cognitive system devoted to
processing proportional quantities regardless of format and
modality (Matthews et al., 2016). Therefore, we hypothesized
that by training proportional reasoning with a particular focus
on a continuous magnitude (the relative lengths of Cuisenaire
rods), children would not only improve their ability to compare
continuous proportions but also discrete ones. However, contrary
to this hypothesis, children who completed the 24 sessions of
the intervention showed a decline in their ability to compare
discrete quantities, specifically in contexts where whole-number
information interfered with the proportional one. These results
beg the question if proportions are processed in a modality-
independent manner (Matthews et al., 2016; Park et al.,
2020), why do gains in continuous proportional reasoning
not transfer to discrete quantities? We offer two potential
explanations: one related to our intervention’s instructional
structure and the other to the developmental trajectory of discrete
proportional reasoning.

One feature of our intervention that may have hindered
children’s discrete reasoning skills is the nature of the Phase 1
activities. Some of these activities involved combining two or
more rods and contrasting them with rods of larger lengths.
Although these activities focused on a continuous magnitude,
length, children still might have focused on discrete elements
(rods). Moreover, comparing proportions in the context of
whole-number interference was not an explicit topic of the
intervention. This omission may have been compounded by
features of the intervention aimed at increasing student agency:
participants proposed the proportion problems they would
work on during the sessions; thus, students may have never
encountered counting misleading problems (Rosenberg-Lee,
2021). These two features of the intervention combined with
the on-going instruction of whole-number operations and units
that children received during the second grade (Common Core
State Standards Initiative, 2020a) might have led children to focus
on the absolute number of pieces instead of the proportional
information in our discrete outcome task.

The protracted development of discrete proportional
reasoning might have also played a part in children’s decrease
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in this ability. For instance, a recent study found that even
fifth-graders with low-fraction knowledge performed at chance
level in a match-to-sample task that involved discrete-adjacent
stimuli (Begolli et al., 2020). Only children with at least a
moderate level of fraction knowledge could manipulate discrete
quantities, suggesting that symbolic proportional skills might be
required to overcome the misleading discrete information while
manipulating non-symbolic proportional quantities (Begolli
et al., 2020). The authors suggest that children might need
more symbolic proportional experience to disregard discrete
information successfully.

In summary, consistent with these previous studies, our
current findings suggest that to help children in the protracted
development of discrete proportional reasoning (Jeong et al.,
2007), children may require direct instruction that brings
to conscious attention the interference of whole-number
knowledge to proportional reasoning (Rosenberg-Lee, 2021),
explicitly linking continuous and discrete proportional
reasoning and a more extensive period of symbolic
proportional instruction.

Math Achievement and Inhibitory Control
Moderate Learning Outcomes
The third goal of this study was to examine the predictive
relations of measures of math aptitude, math attitude, and
inhibitory control abilities with changes in performance in non-
symbolic continuous and discrete proportional reasoning skills.
Despite our small sample size, but consistent with longitudinal
studies of fractions (Jordan et al., 2013) and general math
growth (Dowker et al., 2019), both initial math performance
and attitudes toward math showed a positive relationship
with children’s learning outcomes in the intervention group.
Notably, only math performance had a positive interaction
with attendance when predicting learning gains in continuous
proportional reasoning, suggesting that children with higher
math skills and that attended more of the intervention showed
the greatest gains in their ability to compare proportions of
continuous quantities.

Conversely, children’s initial inhibitory control skills in the
intervention group were negatively related to their learning
gains in continuous proportional reasoning and losses in
discrete proportional reasoning. Further, inhibitory control had
a negative interaction with attendance in predicting gains in the
continuous format. That is, children with low inhibitory control
but with high attendance benefit the most from the intervention.
This pattern of results might appear counterintuitive at first
sight, especially in light of previous studies reporting a positive
relationship between inhibitory control and non-symbolic
(Abreu-Mendoza et al., 2020) and symbolic proportional
processing (Gomez et al., 2015; Avgerinou and Tolmie, 2019;
Coulanges et al., 2021). However, a parsimonious interpretation
of these results is that the current intervention is beneficial to
remediate the proportional reasoning skills of those students with
low inhibitory control skills. Indeed, a previous study examining
aptitude-treatment interactions in the context of fraction learning
reported a similar result: a conceptually rich program was more

effective to improve fraction knowledge of children with low
working memory, than a fraction fluency intervention (Fuchs
et al., 2014). However, the current study leaves unanswered
whether this effect is specific to the assessed executive function
(i.e., inhibitory control). Future studies contrasting different non-
symbolic proportional reasoning programs that include a more
comprehensive cognitive assessment would provide insights on
these questions. Further, it raises the possibility that exposing
children with poor inhibitory control to proportional stimuli
may help them to build up non-symbolic representation that
could be helpful for fraction processing (Matthews et al., 2016;
Kalra et al., 2020). Relating changes in proportional reasoning
to improvements in symbolic fraction understanding, especially
among learners with inhibitory control deficits, is vital in
understanding the mechanisms supporting this remediation
approach (Rosenberg-Lee, 2018).

Considerations and Future Directions
While recent interventions on non-symbolic and symbolic
fraction knowledge have involved individual repetition of
computerized tasks (Fazio et al., 2016; Gouet et al., 2020),
the current intervention program comprised tasks that
involved children working in small groups, using well-known
educational materials, Cuisenaire rods. This ecologically
valid implementation allowed children to build a conceptual
understanding of proportions by first working with whole
non-symbolic and symbolic magnitudes (first phase) and slowly
transition to non-symbolic and symbolic proportions (second
phase). However, the intervention’s cumulative nature, which
required students to attend all sessions, make children’s irregular
and unsystematic attendance a significant limitation of the study.
For example, while some children completed the eight sessions of
the first phase but did not attend any of the second phase session,
others attended 15 out of the 16 sessions of the second phase
but none of the first one, making it difficult to disentangle the
effects of the number of sessions from to content of the session.
Our results indicated that children who attended the complete
intervention showed the largest changes in their performance;
however, only six out of the 34 children of the intervention
group attended the complete intervention (24 sessions), and
only 14 children attended 80% or more sessions. This low rate
in completing the intervention might have contributed to the
marginal significance of some of the results. Larger samples are
needed to verify pattern of results especially gains in continuous
but losses in discrete misleading. While short-term computerized
instruction can produce gains (Fazio et al., 2016; Gouet et al.,
2020), conceptual instruction has been shown to have long-
standing positive impacts (Misquitta, 2011). Future research
should contrast the cost-benefits of long-term, group-based,
conceptual instruction and short-term, individual interventions
on children’s proportional reasoning.

CONCLUSION

The current study examined the effects of a proportional
reasoning intervention, in which children transition from
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non-symbolic to symbolic fraction comparisons and expressions,
on children’s ability to compare ratios of continuous and discrete
quantities. Our results showed that children who completed the
intervention increased their ability to compare non-symbolic
continuous proportions. However, contrary to our expectations,
children decreased their ability to compare misleading discretized
proportions. These results provide further evidence on the
malleability of non-symbolic continuous proportional reasoning
and speak to the persistence of difficulties with discrete
proportional skills.
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We report on the first in-depth analysis of a specific type of dysnumeria, number-reading

deficit, in sign language. The participant, Nomi, is a 45-year-old signer of Israeli Sign

Language (ISL). In reading multidigit numbers (reading-then-signing written numbers,

the counterpart of reading aloud in spoken language), Nomi made mainly decimal,

number-structure errors– reading the correct digits in an incorrect (smaller) decimal class,

mainly in longer numbers of 5–6-digits. A unique property of ISL allowed us to rule

out the numeric-visual analysis as the source of Nomi’s dysnumeria: In ISL, when the

multidigit number signifies the number of objects, it is signed with a decimal structure,

which is marked morphologically (e.g., 84 → Eight-Tens Four); but a parallel system

exists (e.g., for height, age, bus numbers), in which multidigit numbers are signed

non-decimally, as a sequence of number-signs (e.g., 84 → Eight, Four). When Nomi

read and signed the exact same numbers, but this time non-decimally, she performed

significantly better. Additional tests supported the conclusion that her early numeric-visual

abilities are intact: she showed flawless detection of differences in length, digit-order, or

identity in same-different tasks. Her decimal errors did not result from a number-structure

deficit in the phonological-sign output either (no decimal errors in repeating the same

numbers, nor in signing multidigit numbers written as Hebrew words). Nomi had similar

errors of conversion to the decimal structure in number comprehension (number-size

comparison tasks), suggesting that her deficit is in a component shared by reading

and comprehension. We also compared Nomi’s number reading to her reading and

signing of 406 Hebrew words. Nomi’s word reading was in the high range of the normal

performance of hearing controls and of deaf signers and significantly better than her

multidigit number reading, demonstrating a dissociation between number reading, which

was impaired, and word reading, which was spared. These results point to a specific

type of dysnumeria in the number-frame generation for written multidigit numbers,

whereby the conversion from written multidigit numbers to the abstract decimal structure

is impaired, affecting both reading and comprehension. The results support abstract,

non-verbal decimal structure generation that is shared by reading and comprehension,

and also suggest the existence of a non-decimal number-reading route.

Keywords: number impairment, sign language, number reading, dyscalculia, deaf, number readingmodel, reading,

dysnumeria
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1. INTRODUCTION

Number reading, just like word reading, is a complex, multi-
staged process (McCloskey et al., 1985, 1986, 1990; Cohen et al.,
1997; Dehaene et al., 2003; Dotan and Friedmann, 2018), which is
essential in our everyday life (Nuerk et al., 2015). A deficit in each
of the components of this number-reading process gives rise to
a different type of dysnumeria, which manifests itself in different
types of errors and in different patterns of performance in various
number tasks (McCloskey et al., 1985, 1986, 1990; Temple, 1989;
Noel and Seron, 1993; Cipolotti and Butterworth, 1995; Cipolotti
et al., 1995; Cohen et al., 1997; Basso and Beschin, 2000; Deloche
and Willmes, 2000; Delazer and Bartha, 2001; Dehaene et al.,
2003; Cappelletti et al., 2005; Friedmann et al., 2010; Starrfelt
et al., 2010; Starrfelt and Behrmann, 2011; Moura et al., 2013;
Dotan and Friedmann, 2015, 2018). Until now, dysnumerias
have been reported for spoken languages. In this paper we
report on the first in-depth analysis of a specific dysnumeria
in sign language, in Nomi, a 45-year-old signer of Israeli Sign
Language (ISL).

Previous studies reported that compared to hearing
individuals, deaf individuals have difficulties with numbers,
mostly in arithmetic and mathematics (Wollman, 1964;
Austin, 1975; Wood et al., 1984; Titus, 1995; Frostad, 1996;
Nunes and Moreno, 1998; Traxler, 2000; Davis and Kelly,
2003; Bull et al., 2011; Gottardis et al., 2011). However, these
studies referred to the deaf population as a whole, without
examining signers specifically, and they referred to perfomance
in general mathematics tests, without assessing number-reading.
Additionally, these reports are mainly obtained from general
math tests administered in English, and these have been
associated with difficulties in the spoken language (cf. Kelly
and Gaustad, 2007, where the performance in mathematics
tests was found to correlate with the performance in reading
and morphology in English). Other studies have focused on
specific properties of sign languages and their effects on number
processing, e.g., how the sub-base 5 of the numeral system in the
German sign language, Deutsche Gebärdensprache (DGS) affects
parity retrieval (Iversen et al., 2006), and how DGS properties
affect the response times on parity judgmenets with the left or
right hand (MARC effect, Iversen et al., 2004), but have not
related to specific difficulties in number processing. The studies
that did assess number-reading difficulties in deaf individuals
have not tested signing of multidigit numbers (Genovese et al.,
2005; Korvorst et al., 2007; Domahs et al., 2010, 2012; Palma
et al., 2010). As a consequence, no study has analyzed the pattern
of errors made by deaf signers in reading multidigit numbers,
and there have been no reports of selective impairments in
number-reading in sign language. However, as we show below,
testing dysnumeria in sign language offers interesting insights to
dysnumeria and to the number-reading model.

1.1. The Number Reading Process
Dotan and Friedmann (2018) proposed an intergrated model
for reading aloud of numbers (depicted in Figure 1), which
combines elements from the triple-code model (Dehaene,
1992; Dehaene and Cohen, 1995; Dehaene et al., 2003), and

the number-reading models by McCloskey and colleagues
(McCloskey et al., 1986; McCloskey, 1992) and Cohen and
Dehaene (1991), and refines them based on findings from
neuropsychological case studies of specific number impairments.

According to themodel (Figure 1), multidigit number reading
begins with numeric-visual analysis of the written number, which
includes separate mechanisms for encoding of digit-identity,
digit-order, and the extraction of decimal structure. The process
of decimal structure extraction includes separate mechanisms
for encoding of the number-length, detection of zeros and their
positions within the number, and parsing of triplets.

The information about digit-identity and digit-order is then
held in a dedicated numeric buffer as ordered digits, and the
information on the decimal structure is sent to components
responsible for creation of the number-word frame—the verbal
form of the number. First, a syntactic tree is built, which is a
hierarchical representation of the number (for example, 3-digit
numbers are represented by a node for tens, a node for ones,
and a higher node that merges the two, and by a hundreds
node which merges with this smaller tree by an even higher
node). The structure of the syntactic tree is determined by the
way a language organizes verbal numbers into groups—e.g., in
English and Hebrew numbers are organized into triplets. The
tree is not influenced by language-specific order of number-
words or irregularities unique to the specific language, which
are taken into account at later verbal stages. Importantly, in
Dotan and Friedmann’s (2018) view, the syntactic tree is a part
of the verbal representation of the number, rather than a general,
abstract representation.

For reading aloud of the number, the constructed hierarchical
tree is then linearized to the number-word frame by a set of
language-specific conversion rules. In this stage, the properties of
the specific language and the verbal form of multidigit numbers
in it are taken into account—such as the order of number-
words and the special rules concerning structure-modifying
digits (e.g., 1 in the tens’ position), which have an effect on
the word frame.

Up to this stage—the number-word frame specifies slots
for decimal words (such as the word “thousand” in 42,037)
and function words (such as “and”), but still does not
specify the number-words themselves (such as “two,” “seven”),
only their lexical decimal classes. The abstract identity of
the number-words is bound into the number-word frame in
the next stage, which merges the ordered digits from the
numeric buffer into the number-word frame produced in the
linearization process. The result of this binding stage is a fully
specified, yet abstract (not yet phonologically specified) sequence
of words.

In the following stage, the phonological forms of the number-
words, the decimal words, and the function words are retrieved
from the dedicated phonological storage of number-words (in
the phonological output buffer, Dotan and Friedmann, 2015.
This buffer is a short-term component that holds ministores
of phonemes, morphological affixes, and number-words). This
sequence of words undergoes morpho-phonological assembly
(the buffer is also responsible for assembling these units), which
is then sent to articulation.
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FIGURE 1 | The number reading model from Dotan and Friedmann (2018).

Deficits in each of the components of this multi-staged
process, or in the connections between them, lead to various types
of dysnumeria (McCloskey et al., 1985, 1986, 1990; Temple, 1989;

Noel and Seron, 1993; Cipolotti and Butterworth, 1995; Cipolotti
et al., 1995; Cohen et al., 1997; Basso and Beschin, 2000; Deloche
and Willmes, 2000; Delazer and Bartha, 2001; Dehaene et al.,
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2003; Cappelletti et al., 2005; Friedmann et al., 2010; Starrfelt
et al., 2010; Starrfelt and Behrmann, 2011; Moura et al., 2013;
Dotan and Friedmann, 2015). Next, we will describe various
types of dysnumeria that result from impairments to different
components and their properties.

1.2. The Dysnumerias: Selective Deficits in
Reading Numbers
Dysnumerias in the early stage of numeric-visual analysis—
in the extraction of digit-identity, digit-order, or in the
extraction of the written number’s decimal structure were
reported for several individuals, with developmental or
acquired impairments.

Digit-order dysnumeria is a deficit in the numeric-visual
analysis component that encodes the relative order of digits in
a multidigit number. People with this dysnumeria make digit-
order errors in reading multidigit numbers, both in tasks that
require verbal output and in tasks involving only silent reading,
but not in phonological output tasks that do not involve written
numbers (e.g., repetition of numbers). Dotan and Friedmann
(2018; see also Friedmann et al., 2010) reported on two such
women, EY and HZ, who made many digit-order errors in
reading aloud and in silent reading but not in tasks that
involved number production without numeric-visual input. YS,
reported in Friedmann et al. (2010), may also have had this kind
of dysnumeria.

Numeric input buffer dysnumeria affects the numeric
input buffer without affecting the earlier stages that
encode the digits and their order. Such deficit causes digit
errors (substitutions, omissions), as well as digit-position
errors, and may be susceptible to number-length effect.
UN, reported in Dotan and Friedmann (2018) displayed
such impairment (in addition to a deficit in number-word
frame generation).

A specific deficit may also exist in the connection between

the numeric input buffer and the later binding stage, which
may cause digit-identity errors in reading Arabic numbers aloud.
This may be the deficit of YM, reported by Cohen and Dehaene
(1991), and of BAL, reported by Cipolotti et al. (1995). BALmade
“lexical” (digit-identity) errors in tasks that required reading
Arabic numbers and producing them as spoken number-words.
In contrast, his comprehension of Arabic numbers was intact,
and he made no errors in the production of numbers written
as number-words—suggesting that his deficit was neither in
numeric-visual stages nor in phonological output stages. It seems,
therefore, that BAL’s deficit was in the connection of the written
Arabic number to the number-word.

Going back to the early numeric-visual analysis stage, now to
deficits in the decimal structure extraction components,Number-

length dysnumeria is a deficit in numeric-visual analysis,
selectively affecting the function of encoding the length of
the number. Individuals with this impairment make first-digit
decimal shifts in multidigit numbers (e.g., reading the number
4320 as 43200). The deficit affects reading aloud as well as
silent reading tasks that require processing of number-length
(e.g., same-different decision task with numbers differing in

length), but does not affect tasks that involve number output
with no written input (such as multidigit number repetition).
Such patients were reported by Dotan and Friedmann (2018):
MA, who had a selective deficit in number length and did not
make any other numeric-visual analyzer errors, and HZ (who
had zero detection dysnumeria, in addition to her number length
dysnumeria). An interesting manipulation used by Dotan and
Friedmann, which we used in the current study as well, was the
introduction of comma separators to multidigit numbers: when
individuals with number-length dysnumeria read numbers with
a comma separator, their decimal error rate decreases.

Zero-detection dysnumeria is a deficit in the zero-detector
in the numeric-visual analysis stage of exctrating the decimal
structure. This dysnumeria causes errors of zero omissions and
additions (manifesting as decimal shifts) as well as transpositions
of zero with meaningful digits. If this dysnumeria is selective, no
decimal shifts are expected in numbers without zero. A patient
who has this dynumeria is HZ (Dotan and Friedmann, 2018),
whomade digit-order errors in numbers including zero (and also,
to a lesser degree, in numbers without zero, as she also had a
deficit in digit-order).

Decimal shifts may also stem from a deficit in a stage that
follows number-length encoding, which uses the number-length
information for the creation of the decimal structure of the
number. Individuals with a deficit in the generation of the

decimal structure of written multidigit numbers may perform
well on tasks that require number-length encoding but still have a
selective deficit in parsing the correctly-perceived number-length
into triplets, for example, and may fail in the construction of
the correct decimal structure of the number. This dysnumeria
affects tasks of reading aloud but does not affect tasks that
involve phonological output without written-number input such
as number repetition. A participant who showed this dysnumeria
was ED (Dotan and Friedmann, 2018, 2019). She made many
first-digit decimal shifts in number-reading, performed well
on visual-analyzer tasks that require processing of length, and
benefited from reading the numbers with a comma separator,
which did the job of parsing into triplets for her. When she
was requested to look at a number without a comma and read
it triplet-by-triplet (reading 654321 as “654 and 321”), she still
made a similar rate of errors as when she read the number as a
whole number, suggesting that she also had a difficulty in parsing
into triplets, which might be a part of the decimal structure
building. Dotan and Friedmann (2018) ascribed her deficit to
a triplet-parsing component in the visual-analysis stage. In the
revised model we suggest below, it can be described as a deficit
in the conversion of the decimal information from the numeric-
visual analyzer to the stage of decimal number frame generation,
which may also include information about the division of the
number frame into triplets. ED’s sister, NL (also reported in
Dotan and Friedmann, 2018, 2019), also showed a deficit in this
stage (as well as in a later verbal production stage).

Stages of creating the number-word frame may also be
susceptible to specific kinds of dysnumeria. The stages that follow
the decimal structure extraction in the numeric-visual analysis
are the generation of a number frame and the linearization
of this number frame onto a verbal sequence. Due to this
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architecture, people with deficits in these stages show difficulties
in reading aloud written numbers, but do not show difficulties
in tasks involving the numeric-visual analyzer alone. Dotan
and Friedmann (2018) report on several patients who were
impaired in these stages: OZ and UN made decimal shifts in
tasks involving number production, but not in tasks involving the
numeric-visual analyzer alone. They made decimal-shifts both
in reading aloud of multidigit numbers, and in tasks requiring
production without visual-analysis (e.g., verbal responses to
multipliciation and division problems, and UN also made such
errors in repetition of multidigit numbers). Such deficit could
have resulted from a deficit in the stage of number frame
generation and linearization, or in later phonological stages.
These shifts occurred mostly in the first digit, rather than in
all positions, which excludes the possibility that they resulted
from a deficit in phonological retrieval. Dotan and Friedmann
(2018) concluded that OZ and UN’s deficit is in the generation
of the verbal syntactic tree or in the stage of linearization into a

verbal sequence.
A somewhat similar type of deficit was the one of ZN, an

aphasic patient reported in (Dotan et al., 2014). ZN’s deficit
manifested itself in reading aloud of two-digit numbers. Dotan
and Friedmann (2018) ascribed his deficit, like the deficit of UN
and OZ, to either tree generation or linearization.

For our discussion below it is important to remark that
Dotan and Friedmann’s (2018) model takes both these stages—
tree generation and linearization—to be verbal. Because ZN’s
comprehension of written two-digit numbers was spared—Dotan
et al. (2014) and Dotan and Friedmann (2018) concluded that
the comprehension of numbers does not require conversion
of the multidigit number to its verbal representation, and
that comprehension relies on a separate route of building the
decimal representation.

However, there might be another approach to these results
(suggested by the performance of the case study we report below).
It might be that the generation of the number tree (or at least of
the decimal number frame) is non-verbal, creating an abstract
representation of the decimal structure of the number. Such
abstract representation may be part not only of reading aloud
but also of number comprehension. In this case, ZN’s spared
comprehension could be explained by placing his deficit in the
verbal linearization stage, rather than in the abstract number
frame generation stage.

A different locus, then, can be ascribed to the deficit of NR,
reported by Noel and Seron (1993). NR had decimal shifts, most
prominently in reading 3-digit numbers, with much fewer errors
when only numeric-visual analysis was required (same-different
length judgement, and the detection of the number of digits in
a number, which can be performed in the visual stage, without
comprehension). However, in contrast to ZN, NR’s deficit also
affected her comprehension of written numbers: she read and
understood 3-digit numbers as if they were 4-digit numbers (e.g.,
458-> 4508). NR’s deficit can be attributed to the abstract number
frame generation stage we have just proposed, which is shared by
reading and comprehension, or to the connection between the
numeric-visual analysis and the number frame generation.

Patient AT, reported by Blanken et al. (1997), made digit-order
errors between the tens and the units digits in reading numbers
aloud, whenever the German inversion rule (in which units are
pronounced before tens) had to apply, but performed flawlessly
in comprehending these numbers. It seems, therefore, that he had
digit-binding dysnumeria—a deficit at the stage of binding the
digits with the decimal frame.

Impairments in later stages of the phonological production of

number-words cause number identity errors and decimal errors
(substitution of numbers of different decimal classes) whenever
verbal production of numbers is involved, but not in tasks of
silent reading that only involve the numeric-visual analysis and
possibly also number comprehension. Such cases were reported
in Cohen et al. (1997), and for HY and JG in McCloskey et al.
(1986). Dotan and Friedmann (2015) also reported on patients
who had deficits in number-word production that resulted from
a deficit in phonological output stages—a selective deficit in
the phonological output buffer alone (SZ, GE) or also in the
phonological output lexicon (YL, ZH, RB, and ZC). Impaired
production of multidigit numbers due to phonological output
deficits were also reported for GS (Girelli and Delazer, 1999;
Delazer and Bartha, 2001) and for FA and RA (Marangolo et al.,
2004, 2005).

Beyond the phonological output of numbers, some studies
also reported selective impairments in writing of number-words.
For example, patient BO (Deloche and Willmes, 2000) showed a
selective impairment in number-word writing. When presented
with written multidigit Arabic numbers, she was able to read
them aloud but failed to write them as number-words.

1.3. Why Test Dysnumeria in Sign
Language?
These reported cases of specific dysnumerias show that specific
stages of the number-reading process may be selectively impaired
and cause different patterns of errors. In the current study
we examine how a selective dysnumeria manifests itself in a
different modality: in sign language. In addition to revealing
how different types of dysnumeria may manifest themselves in
a different modality, testing number-reading in sign languages
has some unique advantages. First, it allows for a minimal
comparison between reading of the same multidigit numbers
with and without decimal structure: In ISL, multidigit numbers
denoting quantity, such as number of objects, are signed with
a decimal structure. However, a parallel system of non-decimal
numbers exists which is used for signing numbers such as
height, age, or bus numbers, and these numbers are signed as
a sequence of digits, with no decimal structure (similar to the
digital strategy used in some rural sign languages, as reported
in Zeshan et al., 2013, and in Lingua dei Segni Italiana [LIS,
the Italian sign language] for numbers 21–99, as reported in
Mantovan et al., 2019, and as mentioned in Semushina and
Mayberry, 2019, for ASL). Such non-decimal numbers (as do
decimal numbers) are often signed in ISL in such a way that
the digits are signed slightly moving from left to right locations
(in right-handed signers), just like the direction in reading and
writing written numbers.
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Given a deficit in the creation of the decimal structure of
multidigit numbers, as we claim our participant has, the existence
of the non-decimal system allows for a direct comparison of the
participant’s signing of the same written multidigit number, once
with a decimal structure and once without. Such comparison
can provide an important view on the process of multidigit
number reading.

Moreover, since sign languages do not have an orthographic
system (Mayer, 2017), signers usually learn to read the
orthography of the surrounding spoken language. Numbers
written as number-words in the surrounding language provide
the signer with a number frame, but in a different language
and, in fact, a different modality –without providing clues about
the verbal number frame in the sign language. This enables
testing whether providing a number frame without clues about
the required sign-phonology helps in reading numbers aloud.
These two unique properties of sign languages can help to
disentangle impairments specific to the construction of the
number frame from impairments in other stages of the number-
reading process.

As we will show below, the case of dysnumeria in sign
language on which we report in this study will help in further
developing the model suggested by Dotan and Friedmann
(2018)—and in expanding it to also include stages required
for the comprehension of multidigit numbers and to digit-by-
digit reading.

1.4. Signing Numbers in ISL
ISL has a set of handshapes representing digits, as shown on
Figure 2. Inmultidigit numbers in ISL, the decimal class of all but
the unit digits is morphologically marked: the digit handshape
is incorporated with the movement representing the decimal
class, which together create the number-sign for this class. For
example, as presented in Figure 3—in the ISL sign TWENTY,
the handshape representing the digit 2 is incorporated with the
movement representing tens, and in the sign TWO-HUNDRED,

the handshape representing the digit 2 is incorporated with the
movement representing hundreds.

As in many other languages, such as English and Hebrew,
multidigit numbers in ISL are organized into triplets—for
example, the number 985672 is signed as NINE-HUNDRED

EIGHTY FIVE THOUSAND, SIX-HUNDRED SEVENTY TWO.
An example of a multidigit number in ISL can be seen
in Figure 4.

ISL also has a unique structure for teens, but unlike many
other languages (e.g., English, Hebrew), the part denoting teens
is signed prior to the part denoting the specific units digit (i.e.,
TEEN-FOUR), so the tens and the units are still signed in the order
in which they are written in the Arabic number (see Figure 4).

As can be seen on Figure 2, some pairs of digit signs in
ISL (i.e., 8–3, 9–4) differ only in the use of the non-dominant
hand. ISL users sometimes omit the non-dominant hand during
signing, and use mouthing (moving the lips according to the
parallel Hebrew word) to disambiguate the sign (e.g., 8 can
either be signed with two hands- the dominant hand signing
THREE, the non-dominant hand held with fingers spread, palm
to the interlocutor, or it can be signed only with the dominant
hand signing THREE, and the lips articulating “shmone,” the
Hebrew word for eight). This phenomenon of non-dominant
hand omission was probably boosted by the use of cellphones
which are held in one hand, leaving only one hand for signing
(during video calls, but also simply when the hand is occupied
with holding the phone). There are also cases of hand addition,
where 3 is signed like 8, which mainly occurs in the context
of a neighboring two-handed number sign in which the non-
dominant hand is kept in the “5” shape.

2. THE PARTICIPANT

Nomi is a 45-year-old woman, who is congenitally deaf and
uses sign language as her main means of communication. As a
daughter of hearing parents, she did not use sign language from

FIGURE 2 | Numbers 1–9 in ISL illustrating phonological similarities between number-signs (e.g., the similarity between 3-8 and 4-9. See Appendix for variants of

some of the number-signs).
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FIGURE 3 | Decimal number-signs in ISL. Top: TWENTY, middle: TWO-HUNDRED, bottom: TWO-THOUSAND. (To see the videos, click the arrows).

birth, but was occasionally exposed to ISL from her deaf signing
grandparents. She started to sign consistently only at a later age,
and since she was 16, ISL is her main means of communication.
Nomi had been using hearing devices since she was 1;6-year-
old until the implementation of her cochlear implant around
the age of 30 years, which she is using consistently when she
communicates with hearing people since then.

Nomi told us that she always felt difficulty with numbers—and
at school she was diagnosed as having a “learning disability,” with
no further specification of her exact deficit.

We assessed Nomi’s conceptual abilities using an odd-one-out
task, in which she was presented with 30 sets of 4 pictures and was

requested to select the one that is not related to the other pictures
(e.g., three wild animals and a dog; three fruit and a vegetable,
MILO test, Friedmann, 2017). Nomi performed perfectly (100%
correct) on this task—indicating that her conceptual abilities
are intact.

We also assessed her lexical knowledge in ISL, as well
as her lexical retrieval components: the semantic lexicon, the
phonological output lexicon, the phonological output buffer,
and the connections between them, using a picture-naming task
(SEMESH, Biran and Friedmann, 2004). In the picture naming
task she was presented with 91 pictures and was requested to
sign their names. Here again, Nomi performed flawlessly, with
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FIGURE 4 | The multidigit number 14752 in ISL (To see the videos, click the pictures).

100% correct responses– indicating intact lexical retrieval in
ISL, including intact phonological output components, and rich
lexical knowledge.

She also performed not differently from other ISL signers
on a serial recall task of ISL digits (adapted from the FriGvi
test battery, Friedmann and Gvion, 2002; Gvion and Friedmann,
2008), and even in the higher range of the control performance
in serial recall of ISL signs (long sign span test from the SIMBA
test battery, Haluts and Friedmann, 2019). Her digit span was 4
(performance of controls—signers without WM deficit: n = 10,
mean= 5.15, SD= 0.85) and her long sign span was 4.5 (controls:
n= 17, mean= 4.4, SD= 0.6).

Her performance in the serial recall task indicated that
her phonological working memory abilities, including the
phonological input and output buffers, are intact, and the long-
sign span also confirmed that her lexical knowledge of ISL
is comparable to other ISL signers, as also indicated by her
performance in the naming task and her word-reading-then
signing task reported below.

3. GENERAL METHOD

We administered the tests detailed below to Nomi in six video
(Zoom) sessions, each session was 1–2 h long. The sessions
were video-recorded and analyzed and scored by all three
authors separately. Nomi signed an informed consent prior to

participation and was paid 50 ILS per hour. She was informed
that she can stop her participation at any time and could take
as many breaks as she wanted during the sessions. The research
was approved by the Tel Aviv University Ethics Committee.
All comparisons between Nomi’s performance and the control
groups were performed using Crawford and Howell (1998) t-test
for the comparison of an individual with a control group, and the
comparisons between Nomi’s performance on the different tasks
were done using McNemar exact or Chi-squared tests.

3.1. Control Group
Nomi’s performance on the tests was compared to a control
group of 10 deaf adults who use ISL as their main means
of communication. They were tested in the same settings and
procedure as Nomi did, in virtual Zoom sessions. Like Nomi, all
of them have hearing parents and therefore did not acquire ISL
from birth, but rather at a later age. They were 6 women and 4
men, aged 25–48 (mean = 32, SD = 6); nine of them were deaf
from birth, and one gradually lost her hearing from birth until age
3. In the word-reading tests we also compared Nomi to control
groups of typically-hearing native Hebrew speakers.

3.2. Error Analysis
Error analysis was conducted in the following way:

Substitutions of one digit with another (e.g., 589→ 579) were
coded as identity errors; transpositions of digits that appeared
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in the number but were signed in an incorrect order (e.g., 3527
→ 3257) and any production of a digit that appeared elsewhere
in the number (985674 was signed as 96. . . ) were coded as
order errors;

Varieties that are used sometimes by ISL signers (and appeared
also in our control group’s signing), were not counted as
errors. Therefore, additions and omissions of the non-dominant
hand held in the “5” shape in signing a number were coded
as acceptable. Phonological errors were other errors (not digit
identity or number of hands errors) that involved the location,
movement, or handshape of the digit (in effect, these errors were
extremely rare, with a total of 3 for Nomi and for the control
group together).

Errors in the decimal structure of the number (often regarded
as “syntactic errors”) were coded as decimal errors. For example,
had a participant started reading the number 45638 as 4563. . . , or
made a decimal error resulting in an ungrammatical production
(e.g., ‘forty fifty thousand. . . ’, in which the decimal-class error
was in the middle of the number), the error was coded as a
decimal error. When the error resulted in shifting the decimal
position of one or more digit, resulting in a decimal frame of
an incorrect size, it was coded as a specific type of decimal
error—a decimal shift (e.g., 80001→ 8001. Errors were coded as
decimal shifts also when they were self-corrected at some point
during the reading of the number 86952 → eight thousand, six
hundred. . . X)1. We classified the decimal shifts according to the
shift direction (whether it resulted in a smaller or a larger decimal
class). Another type of error that was coded as decimal (and
was much less frequent than shifts) was “thousand” omission—
omitting the word/sign “thousand” between the triplets, which
may suggest production of two separate triplets (with two smaller
decimal frames) instead of the full number.

Finally, numbers for which the participant refused to sign and
asked to move to another item were coded as “didn’t sign” errors.

4. A DEFICIT IN MULTIDIGIT NUMBER
READING AND ITS SOURCE

4.1. The Deficit: Reading Written Multidigit
Numbers “Aloud”- Reading and Then
Signing
Method
Nomi was presented with 60 multidigit numbers written one
above the other (MAYIM battery, Dotan and Friedmann, 2014).
Of these, 30 were shorter numbers (10 three-digit numbers and
20 four-digit numbers), and 30 were longer numbers (25 five-
digit numbers and 5 six-digit numbers). The numbers of the
various lengths were randomly ordered; 33 of the numbers did
not include zero, and 27 included a single zero-digit. The task
was similar to “reading aloud” task in spoken language: Nomi
was asked to read each number and then sign it in ISL. We will
henceforth relate to this test as “the baseline”.

1Zero-position errors, e.g., 8030 → 8003, which occurred 4 times in the control’s

reading (and never in Nomi’s reading) were coded separately from decimal shifts.

Results
Nomi made errors on 18 of the numbers she read in this
task (28%), and her performance was significantly lower than
the controls’ (mean correct = 91%, SD = 6%, Crawford and
Howell’s t(9) = 3.34 p = 0.004). Nomi’s most pronounced
error type was decimal errors, which occurred only in 5–
6 digit numbers: she made 11 decimal errors (37% of the
5-and 6-digit numbers)—significantly more than the controls
(mean = 6%, SD = 4%, Crawford and Howell’s t(9) = 2.77,
p = 0.01). For instance, when reading the number 89712
she signed “EIGHT-THOUSAND. . .NINE. . .NINE. . .NINE. . . ,” and
then corrected herself; When reading the number 985723 she
signed “NINETY-EIGHT THOUSAND. . . , FIVE THOUSAND SEVEN

HUNDRED TWENTY-EIGHT,” making a decimal as well as a digit-
identity error. Most of Nomi’s decimal errors were in the first,
leftmost, digits, and the direction was always toward a smaller
decimal position (89712 → ‘eight thousand. . . ’ but not ‘eight-
hundred ninety-seven thousand. . . ’). She could not read correctly
any of the 6-digit numbers, on which she either made a decimal
error (on 3 of the 5 numbers in this length) or said that she
cannot sign the number and asked to move on to the next one (2
numbers). She also made 3 non-decimal errors– 2 digit identity
errors and 1 phonological error (which she immediately self-
corrected). During the test Nomi reported that reading the long
numbers is very difficult for her, and that she doesn’t know how
to sign them.

The next step was to try and find the origin of her deficit
in reading multidigit numbers. Decimal errors in reading can
arise from a deficit in the numeric-visual analysis of the written-
number input, from a deficit in the conversion of written input-
to the phonological (signed) output, or from a deficit in the
phonological output processes.

4.2. Better Reading of the Same Multidigit
Numbers as Non-decimal Numbers
To examine the source of Nomi’s deficit in reading multidigit
numbers, and specifically, to examine her numeric-visual
analysis, we used a special property of ISL: some multidigit
numbers that represent quantity (such as 61 seashells, or 123
new students) are signed as decimal numbers, with decimal
morphology and structure, similar to numbers in spoken
languages (e.g., 123 [students] is signed ONE-HUNDRED TWO-
TENS THREE [the sign for 1 with hundred-morphology, the sign
for 2 with tens-morphology, and the sign for 3]). However,
a parallel system of multidigit numbers exists, which is used
mainly for numbers that do not symbolize quantity (e.g., social-
security numbers, bus numbers) and for certain measurement
units (e.g., height, weight, age), in which the numbers are signed
as a sequence of digits without a decimal structure, and without
decimal morphology. For instance, when signing the (old) age
of 123, the number will be signed “ONE TWO THREE,” with no
decimal structure.

This allowed us to isolate the conversion to a decimal structure
from the other components of multidigit number reading: visual-
analysis of the sequence of digits and phonological production
of the sequence of number-signs, and compare Nomi’s signing
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of the exact same multidigit numbers with and without the
conversion to a decimal template.

Method
Nomi was presented with 60 numbers, same numbers as in the
baseline task (section 4.1), presented in the same way. The only
difference was the instruction: now she was told it is a list of
passwords, and she was again asked to read and sign.

Results
Once she was requested to sign the numbers without their
decimal structure, Nomi was far more accurate. She commented
that signing numbers this way was much easier for her than
signing them as quantity numbers. She signed with confidence,
and, like the control group- from left to right. She made only
2 digit-order errors (transpositions of adjacent digits), so her
performance was significantly better than her reading of the exact
same numbers with a decimal structure (97% correct), McNemar
test p= 0.0001 (one-tailed).

Nomi’s performance in this test was comparable to that
of the controls’ (mean = 98%, SD = 2%, Crawford and
Howell’s t(9)= 0.80, p= 0.22).

Her far-better performance on reading the same numbers
when she did not need to convert them to decimal structures
indicates that her visual-input processes themselves are intact
and cannot be the source of her deficit. Had she had a deficit
in the perception of number-length or in the position of zeros,
we would have expected similar errors in reading digit-by-
digit—errors of omission or doubling of digits, or errors in the
position of zero, which she did not show. This finding, suggesting
preserved visual analysis of number-length, together with the
decimal errors she made in reading the same numbers decimally,
hint at a deficit related to the decimal structure, in a stage later
than the numeric-visual stage.

4.3. Presentation of 6-Digit Numbers With
an Instruction to Read Each Triplet
Separately
If Nomi’s impairment is indeed in converting number-length
of long numbers into number frames, another manipulation
expected to help her in reading long numbers is reading the
number triplet-by-triplet, breaking the long number into two
shorter 3-digit decimal numbers (see Dotan and Friedmann,
2019, for this manipulation in dysnumeria).

Method
Nomi was presented with 20 6-digit numbers (all with 6 unique
digits) and was requested to split the numbers in two triplets
such that she read the first 3 digits as one decimal triplet, and
the last 3 digits as another decimal triplet (e.g., when presented
with 123456, she was expected to sign ONE-HUNDRED TWENTY-
THREE; FOUR-HUNDRED FIFTY-SIX). Here we provided her both
with the length of the number (as there were 6 digits in all
numbers presented in this task), and exempted her from the need
to sign numbers >999, namely, she did not need to construct a
tree higher than hundreds and did not need to produce thousand,
10-thousand, or 100-thousand number-signs.

Results
Nomi did not make any errors in this test and signed correctly
all of the triplets (100%). She also used mouthing of the
Hebrew decimal number correctly in all of her productions.
This suggests, again, that when she does not need to create a
number frame higher than 3-digits, Nomi shows no difficulties.
Her performance in this task thus further supports the idea that
her deficit arises when she needs to create a decimal number
frame for numbers longer than 3-digits.

4.4. Additional Evidence for Intact
Numeric-Visual Input Processes: Three
Same-Different Tasks and a Sequence
Decision Task
Nomi’s decimal errors in reading multidigit numbers could have
arisen from a deficit in the input stage of numeric-visual analysis,
in processing number-length or digit position; alternatively, it
could stem from a deficit in creating a number frame that
would match the written number. Her good performance in
the digit-by-digit and the triplet-by-triplet reading of multidigit
numbers, described above in sections 4.2 and 4.3, indicates that
she did not have a digit-order deficit in the numeric-visual
input stage (nor did she have a deficit in digit-identity, but this
component anyway is not a candidate for decimal errors). It is a
bit trickier to guess how a number-length deficit would manifest
itself in digit-by-digit reading: it could cause digit-omission, zero
insertion or omission, and perhaps digit-duplication. Nomi did
not make such errors in the digit-by-digit task and the triplet-
by-triplet task. To further examine Nomi’s visual input processes
of number-reading, and to examine directly her numeric-visual
encoding of number length and order, we tested her in four
tasks that involve the numeric-visual analysis of written numbers,
without requiring production.

4.4.1. Same-Different Tasks
Since same-different decision tasks of written Arabic numbers
involve only numeric-visual input, and do not require any verbal
output, nor do they require the creation of a number frame,
they allow for a direct and specific examination of the numeric-
visual analyzer. In the same-different tasks we examined the
encoding of number-length, digit-identity, and digit-order, by
way of manipulating the differences between the two numbers—
they could either differ in length, identity, or order.

To manipulate number-length without the concomitant
manipulation of identity and order, we used the duplication of
digits (e.g., deciding whether 9939 and 99399 are the same).
This allowed for the specific and direct examination of length
extraction in the numeric-visual analyzer, since the numbers
differing in length do not also involve a change in digit-identity
(they contain the same unique digits), neither do they involve a
change in relative digit-order (the digits are written in the same
order, with an additional duplicate in one of the number’s ends).
This allowed us to examine whether Nomi’s decimal errors result
from a deficit in length extraction in the numeric-visual analyzer.
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4.4.1.1. Same-Different Decision: Pairs of Numbers Presented

Together
Nomi’s ability to detect differences between written numbers
was first tested in a same-different task in which the pairs of
numbers were presented on a screen together, one above the
other, without time limitation. Nomi was requested to judge,
for each pair, whether the numbers were identical or different.
The task included a total of 118 number-pairs, all including a
repeating digit and another digit, presented in two sessions: 27
pairs of 3–6-digit numbers that differed in length (created by the
addition of another instance of the repeating digit, e.g., 99399
and 9939), 20 pairs that differed in order (e.g., 99899 and 98999),
16 pairs that differed in number-identity (e.g., 97999 and 95999),
and 55 identical pairs.

4.4.1.2. Same-Different Decision: Numbers Presented

Sequentially
To rule out the possibility that Nomi succeeded in the first
same-different task because the comparison of simultaneously
presented pairs was too easy, we also administered a similar
task with delayed comparison, where the numbers of each pair
were presented on a computer screen one after the other (using
Testable). The first number of the pair was presented for 1200ms,
followed by a 500ms masking period, and then the second
number appeared for 1200ms. Then a question mark appeared
on the screen and the participant decided whether the numbers
in the pair were the same (by pressing the “l” key) or different
(by pressing “a”). This task included a total of 40 pairs: 10 pairs of
3–6 digits numbers that differed in length (7 of which were pairs
of 4–5- and 5–6-digit numbers), 8 pairs that differed in number
identity, and 22 identical pairs.

4.4.1.3. Number Matching (99499)
Another way in which we examined Nomi’s number-reading
when no verbal production is required was a matching task.
Nomi was presented with a page on the screen, on top of this page
appeared a reference target multidigit number and 36 numbers
printed underneath. She was requested to circle all numbers
that were identical with the reference number, as accurately and
quickly as possible.

The reference number was 99499, and the 36 numbers beneath
it included 5 items that differed from the reference in digit-order
(by transposing 9 and 4), 25 that differed from it in length (by
adding or subtracting instances of the digit 9), and 6 items that
were identical to it.

4.4.1.4. Same-Different Tasks Results
Nomi showed very high performance on all three same-different
tasks, as summarized in Table 1. When presented with the pairs
written one above the other (4.4.1.1), she made no number-
length, digit-order, or digit-identity errors at all, and had only
2 misses of identical pairs that she did not mark (4% of the
identical pairs).

In the sequentially-presented numbers task (4.4.1.2), shemade
no number-length or digit-identity errors and had only one
miss (pressing “different” for a same pair, 98% correct). This

performance is not different from that of the control group (mean
= 95%, SD= 9%, Crawford and Howell’s t(9)= 0.33, p= 0.38).

In the number matching task (4.4.1.3), Nomi made no
length or order errors– she never marked a number that was
different from the reference number. She did miss 2 of the 6
identical numbers.

In all same-different tasks, thus, she never made any errors of
mistakenly marking a different pair as similar, and importantly—
she never mistook a pair of numbers differing in length as a
similar pair.

In addition, Nomi explicitly reported that these same-different
tasks were easy for her, she even used the sign for “fun.”

4.4.2. Additional Evidence for Intact Numeric-Visual

Input Processes: Sequence Decision

Method
Nomi was presented with 118 4-digit numbers (sequence
decision task, MAYIM battery, Dotan and Friedmann, 2014),
60 of which were strictly monotonic increasing sequences of
consecutive digits (e.g., 1234), 33 included a transposition
between two adjacent digits, such that the serial sequence was
violated (e.g., 1243), 25 included a substitution of one of the digits
such that it did not create a monotonic increasing sequence (e.g.,
1274). Nomi was asked to mark all the numbers in which the
digits created a consecutive monotonic increasing sequence.

Results
In the sequence decision task, Nomi made only 2 errors (<2%)—
both on the same sequence (5687) which shemarked even though
it was a transposed sequence. This indicated that her digit-order
encoding is intact.

4.4.3. Interim Summary: Assessment of Nomi’s

Numeric-Visual Analysis
Nomi’s far better reading of multidigit numbers when she did
not need to convert them onto decimal structures larger than a
triplet, as well as her good performance on the same-different
and sequence decision tasks all point together to the same
conclusion: her numeric-visual input processes are intact and
cannot be the source of her deficit. She did not have a deficit in
number-length perception, nor in digit-order or in zero-position,
which could be the basis for her decimal errors in reading-
then-signing multidigit numbers. Her flawless performance in
reading the same multidigit numbers digit-by digit indicates
that her numeric-visual analysis of digit identity and order is
intact. The locus of her deficit, then, has to be a later stage
in the number processing model: either in the conversion of
the written number into its decimal frame, in constructing the
decimal structure of the number frame, or in later phonological
output stages.

4.5. The Decimal Errors Do Not Stem From
a Phonological Output Deficit
4.5.1. Multidigit Numbers Written in Number Words
Had Nomi’s deficit been in the number production stages in
the phonological output buffer, responsible for retrieval and
assembly of number-words, we would expect her to make errors
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TABLE 1 | The number tests and Nomi’s performance in them.

Test (Section) Description # items % correct Decimal errors Other errors

Reading and signing (RS) multidigits-the

baseline task (4.1)

Read-then-sign multidigit numbers written

as Arabic numerals

60 70% 11 decimal errors in 5–6 digit

numbers, 2 “don’t know”

errors in 6-digits.

2 identity errors and 1 phonological

error (which was immediately

self-corrected)

RS multidigits as non-decimal numbers (4.2) Read-then-sign same numbers as in the

baseline task, but this time digit-by-digit

59 90% – 2 serial order errors with immediate

corrections

RS Multidigits—Triplet-By-Triplet (4.3) 6-digit numbers written as Arabic numerals

triplet-by-triplet

19 100% No decimal errors No errors

Same-different multidigits: simultaneous

(length, order, identity) (4.4.1.1)

Pairs of multidigit Arabic numerals

presented simultaneously, asked to judge

same/different

118 pairs 98% – 2 misses of identical pairs

Same-different multidigits: sequential (length,

identity) (4.4.1.2)

Pairs of multidigit numbers presented one

after the other with masking between them,

asked to judge same/different

40 pairs 98% – 1 miss of an identical pair

Same-different multidigit matching (Length,

order) (4.4.1.3)

Target multidigit number and 36 numbers

below it, asked to mark numbers similar to

target

36 94% – 2 misses of matching numbers

Sequence decision in multidigits (4.4.2) 4-digit numbers written as Arabic numerals,

mark the ones that contain a sequence of

monotonic increasing consecutive digits

118 98% – 2 order errors

RS multidigits written as number words (4.5.1) Read-then-sign multidigit numbers written

in Hebrew words

18 94% No decimal errors 1 whole-unit error

Repetition of multidigits (4.5.2) Repetition of multidigit numbers presented

as ISL signs

45 42% 2 decimal errors Many identity and order errors

Repetition of multidigits with fewer

number-words (multiple zeroes) (4.5.3)

Same task as (4.5.2), with numbers

requiring fewer number-signs

37 84% No decimal errors 6 errors−4 identity errors, 1 order

error, and 1 morphological error

RS multidigits with fewer significant digits

(multiple zeroes) (4.5.4)

Read-then-sign same numbers as (4.5.3)

written as Arabic numerals

40 60% 9 decimal errors (23%), and 6

“don’t know” responses

1 digit identity error (immediate

self-correction)

>5500—written input no comma (4.6.1) Decide whether multidigit Arabic numerals

are >5500

20 80% 4 errors: all 5-digit numbers in

which the first digit <5

-

>5500—signed input (4.6.2) Decide whether signed multidigit numbers

are >5500

30 97% 1 error –first item -

Multidigit number-comparison (4.6.3) Decide which of a pair of multidigit numbers

written as Arabic numerals is greater

68 pairs 97% 3 Errors in longer numbers.

Much longer RTs than controls

in same-length 6-digit pairs,

and in different-length pairs

with incompatible first digit.

-

RS multidigits with a comma separator (4.7.1) Read-then-sign same numbers as in the

baseline task (4.1), but with a comma

separator

60 97% 2 decimal errors –

>5500—written input with comma (4.7.2) Same task as in written > 5500 (4.6.1), but

with a comma separator

30 100% – No errors

Numeral incorporation (NI) (4.5.5) Read-then-sign (translate to ISL) written

Hebrew sentences containing NI phrases

42 100% on relevant

structures

No errors in the NI structures

Dark gray, significantly more decimal errors than the controls; Light gray, significantly more than the controls but much fewer than in the reading and signing baseline task.
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not only when she reads multidigit numbers, but also when she
produces them without reading. To test Nomi’s production of
multidigit numbers without reading of Arabic numerals, and
in a way that provides her with the decimal structure of the
numbers, we took advantage of her being Hebrew-ISL bilingual,
and provided her with the decimal structure of the numbers in
a separate system- a written spoken language, which does not
provide her with the needed number-signs in ISL. We presented
her with multidigit numbers written in Hebrew number-words
(e.g., five hundred twenty-four; Word-To-Number test, MAYIM
battery, Dotan and Friedmann, 2014). Notably, number signs do
not show one-to-one correspondence to written number words
(for example, “four hundred” is written as two Hebrew words
but corresponds to a single number-sign). This allowed us to
test Nomi’s production of multidigit numbers once the decimal
structure is provided, and thus tease apart the conversion of the
written number to a decimal structure, and the production of the
decimal structure of multidigit numbers.

Method
The test included 18 multidigit numbers written in Hebrew
number-words. The target signed numbers were composed of 2,
3, 4, 5, and 6 number-signs (4, 5, 3, 5, and 1 items, respectively).
Nomi was requested to read the Hebrew written words and,
when she finished reading the whole number, sign the number
in ISL.

Results
Nomi made no decimal errors at all in this test. She only
made one whole-unit error (in response to the Hebrew number-
words “three thousand and-nine teen” she signed “3900” (parallel
to “three thousand and-nine hundreds”), and then corrected
herself. This performance indicates that her deficit in the decimal
structure of multidigit numbers does not stem from impaired
retrieval of the correct number signs in the correct decimal
morphology at the stage of the phonological output buffer, nor
from a deficit in holding these signs and assembling them in this
buffer, but rather from a component that converts the written
Arabic numbers into the number frame.

4.5.2. Repetition of Multidigit Signed Numbers
Another way to examine Nomi’s production of multidigit
numbers without involving written input of Arabic numerals
was to ask her to repeat a list of numbers. These were the same
numbers she had read on the baseline reading task (4.1), list on
which she made many decimal errors.

Method
The task included 45 of the multidigit numbers from the baseline
number reading task. The signed numbers included 3-, 4-, 5-,
and 6-digits/ number signs (9, 12, 20, and 4 items per length,
respectively). A native signer signed each multidigit number
and Nomi was requested to repeat it immediately, as accurately
as possible.

Results
It seems that the 4–6-digit numbers exceeded Nomi’s signed
digit span (which was 4, see Participant description) so she

omitted and substituted digits in 75% of the 5–6 digit numbers
she tried to repeat and in 50% of the 4-digit numbers, with
a general percentage correct of 42%. However, crucially, her
pattern of errors was completely different from the one she
displayed in number-reading: she made only 2 decimal shifts in
her repetition, both with correct Hebrew mouthing despite the
manual error, significantly fewer decimal shifts than in reading
the same numbers (McNemar test p = 0.02). She also had
repetition-errors on shorter numbers than in reading: in 4- and
even 3-digit numbers.

4.5.3. Repetition of Signed Multidigit Numbers With

Fewer Unique Digits and Fewer Number-Signs

Method
Nomi’s high rate of non-decimal errors in repetition of multidigit
numbers in the previous task might stem from exceeding her
working memory capacity. We therefore tested her repetition
of multidigit numbers in a task that was less taxing for her
phonological working memory, which used multidigit numbers
(3–6 digits) with fewer (3–4) significant digits and fewer number-
signs (2–3). For example, 403000 is a 6-digit number, the same
length as the longest numbers in the baseline list (4.1) section
and Its Source, but it requires only 3 number-signs in production
(four-hundred, three, thousand). This test included 7 three-digits
numbers, 9 four-digit numbers, 18 five-digit numbers, and 6
six-digit numbers.

Results
In repetition of these numbers Nomi made no decimal errors at
all. She did make 4 number-identity errors (e.g., substitutions
of one number-sign with another), one order error (i.e., she
repeated 736 as 763) and one error of number morphology (in
repetition of the number 3021, she signed separate signs for
“three” and “thousand” instead of the ISL single sign “three-
thousand”). She reported at the end of the test that she was not
focused, so this may be the cause of these errors. Importantly,
here again the errors were not unique to longer numbers—half of
them happened with 3–4-digit numbers, and, crucially, were not
decimal errors.

4.5.4. Reading and Signing Long Multidigit Numbers

With Multiple Zeros
The last three experiments demonstrated that Nomi has no
decimal structure problems in producing multidigit numbers
once no written Arabic numerals are involved. In the next task we
took an additional view as to the question of whether her decimal
errors in number-reading (in the baseline task) stemmed from
a phonological overload of number-signs. To examine this, we
tested her reading of multidigit numbers of the same length as in
the baseline task, but this time with fewer number-signs.

Method
We asked Nomi to read 40 multidigit numbers with fewer
significant digits (3–4) and fewer number-words (2–3). The
numbers included multiple zeroes instead, and were the same
numbers used in the task reported in the previous section (4.5.3).
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FIGURE 5 | Numeral incorporation in ISL. Top: TWICE, middle: TWO-MONTHS, bottom: TWO-HOURS (To see the videos, click the arrow in each of the picture pairs).

Results
Even though these numbers required far fewer number-words
than did the numbers in the baseline list, Nomi still made
many errors in this task (43%) and showed a similar error rate
(χ2 =1.65, p = 0.20) to the one she showed in reading-then-
signing numbers without multiple zeros (in the baseline task).
This result indicates that her errors did not result from an

overload of number-signs in the phonological output buffer, but
rather have a different origin.

Her error pattern in this test was also similar to the one she
showed in the baseline task: She made 9 decimal errors (23%),
and refused to sign 6 numbers, remarking these were too long
for her. Like in the baseline, the majority of her errors occurred
in the longer numbers: she could not sign any of the 6-digit
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numbers (one decimal error and 5 refusals), and could sign only
56% of the 5-digit numbers (7 decimal errors and one refusal).
She made only one decimal error in a 4-digit number, and no
errors in the 3-digit numbers. Here again, as in the baseline task,
the direction of decimal shifts was almost exclusively toward the
smaller decimal position.

Nomi’s performance in this test was significantly worse than
her performance in the parallel repetition task (in the previous
section), in which she was required to repeat exactly the same 40
numbers (McNemar test p= 0.01).

Just like when reading and signing the numbers without
multiple zeros (in the baseline task), Nomi struggled in this test.
She said that it was very difficult for her, and that she found the
long numbers especially hard.

4.5.5. Numeral Incorporation
Nomi’s decimal errors were mostly decimal shifts, in which she
produced an incorrect decimal class for the correct digit. In ISL,
the decimal classes are marked morphologically on the number.
Therefore, we wanted to rule out the possibility that the decimal
errors originated in a deficit in morphological incorporation of
numbers. ISL allows for a direct assessment of this question.
As in other sign languages (Liddell and Johnson, 1989; Taub,
2001; Fuentes and Tolchinsky, 2004; Meir and Sandler, 2007;
Fischer et al., 2011; Semushina and Mayberry, 2019), ISL uses
morphologically complex structures in which a number-sign is
incorporated into a base morpheme, usually denoting a time
expression or a pronoun—to create a single morphologically-
complex sign (e.g., EIGHT-YEARS is a single ISL sign made
from the handshape of the number 8 and the movement and
location of the sign YEARS, and THREE-OF-US is a sign made
from the handshape of the number 3 and the movement and
location of the sign US, see Figure 5 for some examples). If
the decimal errors emerged from a morphological difficulty in
numbers incorporated in morphologically-complex structures,
these non-decimal morphological structures should be affected
as well. Additionally, morphological incorporation takes place in
the phonological output buffer (Haluts and Friedmann, 2020),
so these constructions could also serve as another assessment of
Nomi’s phonological output buffer.

Method
To test Nomi’s production of structures with numeral
incorporation, we presented her with 42 written Hebrew
sentences containing numbers−19 of which contained structures
signed as numeral incorporation in ISL, and asked her to
translate them into ISL.

Results
Nomi made no errors at all in the structures involving numeral
incorporation. Her good performance on these structures, then,
rules out a deficit in the complex morphology of numbers as the
basis of her decimal errors, and points to a difficulty that is unique
to multidigit numbers.

Additionally, Haluts and Friedmann (2020) showed that
signers with impairments to the phonological output buffer make
whole-unit errors in these morphologically-complex structures.

The finding that Nomi performed well on these structures,
as well as her consistent direction of errors - always toward
a number which is smaller in one decimal-position, provides
another support for the conclusion that her phonological output
buffer is intact.

4.5.6. Interim Summary: Assessment of Nomi’s

Phonological Output
The above tasks indicated that Nomi’s decimal errors did
not result from a deficit in phonological output processes
of selecting the correct number signs including their correct
decimal morphology, holding them, and assembling them into
a whole multidigit number. She did not make any decimal
errors in signing multidigit numbers written as Hebrew words,
even though this task requires the same stages of phonological
selection, holding, and assembly of complex number-signs. In
repetition of multidigit numbers she made almost no decimal
errors. When reading long multidigit numbers that require
fewer number-signs in production (which reduces the load
on the phonological output buffer) she still made the same
rate of decimal errors. Finally, she showed normal production
of numeral-incorporation structures, which shows that she
can produce morphologically complex numerical structures. As
we will show below, the addition of a comma-separator, a
visual manipulation that does not affect phonological output,
significantly reduced her decimal errors. Together with her intact
numeric-visual analysis, these results point to a deficit in a
decimal structure stage that follows visual input and precedes
phonological output.

4.6. Same Impairment in the
Comprehension of Written Multidigit
Numbers
In the previous sections we have seen that Nomi makes decimal
errors in reading and then signing multidigit numbers, and
that this deficit cannot stem from her numeric-visual analysis
or from the phonological output stages, which were intact.
We suggested that the deficit is related to the creation of the
decimal number frame for written multidigit numbers. The
question now is whether the deficit only affects decimal structure
required for phonological production, or whether the deficit also
affects tasks that do not require phonological output, such as
comprehension tasks.

4.6.1. Impaired Comprehension of Written Numbers:

> 5500

Method
To test Nomi’s comprehension of multidigit numbers (in a test
that does not involve production), we presented her with 20
multidigit numbers printed on one page, and asked her to mark
all numbers that are greater than 5500. The reference number
(5500) was given to her in signing. The multidigit numbers
included numbers of different lengths (3–5 digits, 5 of them with
5 digits) without a comma separator, randomly scattered on the
page. Importantly, the five 5-digit numbers, which, obviously,
were all greater than 5500, included four numbers for which the
first, leftmost digit was smaller than 5. If her deficit in decimal
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structure affects comprehension of written numbers in the same
way it affects reading-then-signing, we would expect that she
might apply to these numbers a 4-digit-number structure instead,
and then may understand them as smaller than 5500.

Results
Of the five 5-digit numbers, Nomi marked only the one in which
the first digit was >5 (93061), but missed all other four (80%
errors), in which the first digit was smaller than 5 (e.g., 30901,
20302)—indicating that she did not comprehend the decimal
structure of these longer numbers, and therefore estimated the
size of the number only on the basis of the identity of the leftmost
digit (e.g., when she read 30901, she may have created a 4-digit
decimal frame for it, starting with three-thousand, and hence
judged it as smaller than 5500).

Nomi had no errors with the 3- and 4-digit numbers.
She made significantly more errors on this test than the
controls (who made only 3% errors, SD = 7%, Crawford and
Howell’s t(9)= 2.40, p= 0.02).

4.6.2. Intact Comprehension of

Signed Numbers: >5500
We used the same task as in 4.6.1, but this time the numbers were
signed to Nomi rather than presented in writing.

Method
The task included the same numbers as in the previous section
(4.6.1), and additional 10 numbers of different lengths—a total
of 30 numbers (13 of them were 5-digit numbers, and in eight of
these the leftmost digit was smaller than 5). Nomi was presented
with a signed multidigit number and was requested to decide, for
each number, whether it was greater or smaller than 5,500.

Results
Nomi made only one error in this task, on the first number
presented in the task (5601). She responded correctly to all other
numbers, including for the eight 5-digit numbers in which the
first digit was smaller than 5—the type of numbers that she
missed in the written version of the test.

These two >5500 tasks together indicate that Nomi has a
similar deficit in comprehension to the one she has in reading-
then-signing when the numbers are written, but she does not
have a deficit in understanding these numbers when they are
signed rather than written to her. This suggests that it is not the
comprehension processes themselves that are impaired but rather
getting to these processes from written Arabic number input.

4.6.3. Impaired Performance in a Number

Comparison Task
We further assessed Nomi’s comprehension of numbers using a
number comparison task, in which she was requested to decide
which of two multidigit numbers is greater.

Method
The task included 68 number pairs, in 40 of which the numbers
differed in length, and in 28 the numbers were in the same length.
Of the different-length pairs, 32 were such that the first digit of
the longer number was smaller than the first digit of the shorter

number (e.g., 6493 and 52879, henceforth: the “incompatible
condition”). The incompatible condition included 16 pairs of a 4-
and a 5-digit number, and 16 pairs of a 5- and a 6-digit number.
Eight other pairs were of the ‘compatible’ condition, in which the
first digit of the longer number was also greater than the first digit
of the shorter number.

Of the same-length pairs, 20 (8 pairs of 4-digit numbers, 8 of
5-digit numbers, and 4 of 6-digit numbers) differed already in
the first, leftmost, digit, and 8 (3 pairs of 4-digit numbers, 3 of
5-digit numbers, and 2 of 6-digit numbers) differed only starting
the second or third digit.

The numbers in each pair were presented to Nomi written one
next to the other with 5 spaces between them. She was requested
to decide, for each pair, whether the right or the left number
was greater by pressing either the right or the left arrow on the
keyboard. The pair remained in front of her until she pressed a
key, without time limit. The test began with four practice items.

Results
We did not press Nomi for response times in this task, and her
RTs were generally longer than those of the control participants,
though not significantly (Nomi: M = 3003ms, SD = 1,490;
control M = 2188ms, SD = 703; RT for error responses and
outliers of >3SD from the participant’s mean and RTs for errors
were excluded). This probably resulted in her not making many
errors (she made 3 errors, all of them in the longer numbers:
one in a pair of 5- and 6-digit numbers of the “incompatible”
condition, and two in pairs of 6-digit numbers with a different
first-digit. The number of errors she made was significantly larger
than that of the controls (M = 1.30, SD = 0.82, Crawford and
Howell’s t(9)= 1.98, p= 0.04), but still relatively low.

Very interesting findings, however, emerged from her pattern
of response times in the various conditions. The controls
had similar RTs for both types of different-length pairs (the
compatible and incompatible conditions), and in fact, 4 of the
10 control participants even had lower average RTs for the
incompatible condition, resulting in a relatively small difference
between them2 (Mean difference= 99ms, SD= 277). In marked
contrast, Nomi had much longer RTs on the incompatible
condition, and the difference between her average RTs in the
incompatible and compatible conditions was significantly larger
than that of the controls (Nomi’s mean difference = 643ms,
Crawford and Howell’s t(9)= 1.87, p= 0.047, Figure 6).

This suggests that whereas typical readers can perform
number comparisons on the basis of decimal structure, and
therefore are less affected by the first digit when there is a
difference in decimal structure, Nomi found it more difficult to
rely on the decimal structure of the longer numbers (of 5- and 6-
digit numbers) and was therefore more affected by the first-digit
in these numbers (possibly because she was relying on the identity
of the digits, and specifically on that of the leftmost ones). This
type of stimuli was exactly the type that was difficult for her in

2This compatibility effect may be in line with other compatibility effects of

irrelevant digits (e.g., Nuerk and Willmes, 2005), and with other effects of

irrelevant properties on RTs (e.g., Domahs et al., 2010, 2012) in size judgment tasks.
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FIGURE 6 | Number-comparison task: Mean RTs of Nomi and the control group. (A) RTs in the different-length pairs in the compatible condition (in which the longer

number also had a larger first-digit) and in the incompatible condition (in which the longer number had a smaller first-digit). (B) RTs in the same-length pairs with similar

first-digit, of 4-, 5-, and 6-digit numbers.

the >5500 task (Section 4.6.1) as well (numbers longer than 5500
but with a first-digit smaller than 5).

In addition, Nomi’s RTs were significantly longer than the
controls’ in the same-length conditions in pairs of 6-digit
numbers, which was most prominent with 6-digit numbers that
had the same first-digit and differed only in the second- or
third-digit (controls: M = 3,403ms, SD = 1,004ms; Nomi: M
= 6,667ms, SD = 726, Crawford and Howell’s t(9) = 3.10, p =

0.006). As depicted in Figure 6, her RTs in the same-length 4- and
5- digit numbers (same first-digit) were similar to the controls’
and far shorter than her RTs for the 6-digit numbers.

This forms another indication of her difficulty in processing
of long numbers of 6-digits, when building the decimal frame
is necessary, and yet another indication that impairment of
decimal-frame-construction for longer numbers affected not only
her reading, but also her comprehension.

4.7. The Deficit Is in Creating a Number
Frame From Written Numbers: Intact
Number Production and Comprehension
When the Decimal Positions Are Provided
4.7.1. Reading the Same Multidigit Numbers

Presented With a Comma Separator
If Nomi’s decimal shifts and decimal structure errors in reading-
then-signing originate in a deficit in parsing the number into a
number frame, adding a comma separator should help her parse
the number into triplets, which would help her in creating the
appropriate number frame, so she is expected to make fewer

decimal shifts than in reading numbers without a comma (see
Dotan and Friedmann, 2019, for similar rationale).

Method
Nomi read aloud the same 60 numbers that she had read in
the baseline task, but here the numbers were presented with a
comma separator between the thousands and hundreds digits
(e.g., 12,592, whereas in the experiment in the baseline task it
was 12592) (multidigit number reading with comma separator
A, MAYIM battery, Dotan and Friedmann, 2014). Just like in the
baseline task, the numbers were written one above the other, and
Nomi was asked to read each number and then sign it in ISL.

Results
Nomi made only 2 decimal errors in reading the numbers with
a comma separator—one with a 4-digit number, and the other
with a 6-digit number—and she immediately self-corrected both
of these errors. In contrast to her performance when reading
these numbers without a comma separator (in the baseline
task), here she was able to read all numbers without giving
up and declaring she could not sign them, even in the longest
numbers. Her reading of the same 5–6 digit numbers with a
comma separator was significantly better than her reading of
these numbers without a comma (McNemar test p = 0.0001).
In addition, Nomi reported that reading the long numbers with
a comma separator was much easier for her than reading them
without it.

This result supports the conclusion that her deficit was related
to the conversion of the number and parsing it into the decimal
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frame, and it also lends further support for the conclusion that
she had no phonological output deficit.

4.7.2. Intact Comprehension of Written Numbers With

a Comma Separator: > 5500

Method
Nomi was presented with the same multidigit numbers as in the
test in the written >5500 test (Section 4.6.2). The numbers were
printed scattered on a sheet, however, this time they appeared
with a comma separator between the thousands and the hundreds
digits. Nomi was asked to mark all numbers that were greater
than 5500.

Results
Nomi marked correctly all the numbers >5500, including the
5-digit numbers with the first-digit smaller than 5, which she
missed in the version written without the comma separator.

These two tests indicate that when an indication as to the
decimal structure is given in the written number, reading and
comprehension improve considerably and the decimal errors
almost disappear. Another result we reported above in section
4.5.1 supports the same point: when Nomi read multidigit
numbers presented as Hebrew number-words rather than as
written Arabic numerals, she signed themwithout decimal errors.
Notice that the Hebrew number-words provide the abstract
decimal structure of the number but not the decimal word-
frame of the verbal-signed number in ISL. Nevertheless, once the
decimal structure was provided to her (in a separate system- a
written spoken language), she did not make decimal errors. A
summary of Nomi’s performance in all multidigit number tasks
is given in Table 1.

4.8. Dissociation Between Number
Reading and Word Reading
We have established that Nomi has a deficit in the conversion
of the written number to its decimal frame. It is interesting to
examine whether her deficit is selective to number-reading or
whether she also has a deficit in reading words and converting
them to their verbal representation.

Dotan and Friedmann (2019) reported double dissociations
between dysnumeria in various loci in the number-reading
model and dyslexia in reading words in parallel word-reading
components. Here we examine whether such a dissociation can
also be found between reading-then-signing written numbers
and reading-then-signing written words.

4.8.1. Reading and Signing Written Hebrew Words

Method
Nomi was asked to read-then-sign a total of 406 written Hebrew
words, presented in 5 tests (adapted from the TILTAN battery,
Friedmann and Gvion, 2003). All these tests included lists of
single words, presented one above the other. Nomi was requested
to read each word and sign it in ISL. Below we describe each
of the five tests. Nomi’s reading performance was compared to
control groups of hearing adults (see the number of participants
in each control group and their average performance on each test
in Table 2); In two of the reading tests, her performance was also T
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compared to a group of 7 deaf native ISL signers (4 women and 3
men, aged 18-44). The five tests were:

1) Tiltan Siman screening: 92 words sensitive to different types
of dyslexia (including migratable words, irregular words,
long words, morphologically-complex words, function words,
abstract words, words with many orthographic neighbors,
words with double letters and more).

2) Migratable word list: 160 migratable words, in which a
transposition of two letters creates another existing word (e.g.,
stakes, which can be read with a transposition as “skates,”
Friedmann and Gvion, 2001; Friedmann et al., 2010).

3) Surface list: 86 potentiophonic and homophonic Hebrew
words. Potentiophones are words that if read via the sub-
lexical route can potentially be read as other existing Hebrew
words, which sound differently (e.g., none, which may
be read via grapheme-to-phoneme conversion as “known,”
Friedmann and Lukov, 2008; homophones are words that
sound the same but have different meaning and spelling, so
they translate to different signs).

4) “Artichoke”- long and morphologically complex words:
36 long and morphologically complex Hebrew words of
5–11 letters.

5) “Duvshaniyot”- morphologically complex words with
derivational morphology: 32 short and long words with
Hebrew derivational morphology, in which the same
Hebrew root put in a different morphological pattern leads
to a change in meaning (e.g., paired and impair). This
type of words should elicit errors in translation to signs
if the morphological template is incorrectly identified. If
the structural process that creates a multidigit number
frame is similar to the process creating the morphological
structure of a word, then a dissociation in this task would be
especially telling.

Results
Nomi’s word-reading was excellent, even compared with hearing
Hebrew readers, and very different from her number-reading.
Nomi’s performance in the five word-reading tasks as well as
the analysis of the (few) errors she made in each of the tests
are summarized in Table 2. In total, in reading 406 words with
various kinds of complexity, Nomi made only 10 errors (98%
correct), a rate that is well within the range of typically-hearing
control adults. For each of the tasks, her performance was similar
to that of hearing controls, and to that of the deaf signers,
in both groups her performance puts her in the higher range
of performance (p > 0.05 for all comparisons between her
performance and the control groups using Crawford and Howell,
1998, t-test).

Three types of errors in word-reading may be parallel to
the errors Nomi made in reading numbers: morphological
errors, letter transpositions, and length errors, manifesting in
letter omissions or additions. As summarized in Table 2, she
did not make any of these errors in a rate higher than
the controls:

1) she made only 2 morphological errors in all 406 words she
read, and no morphological errors in the Artichoke and the

Duvshaniyot tests, which were created to examine the reading
of morphologically complex words. This indicates that she
does not have a general problem with reading structurally
complex items, but rather a deficit that is limited to the
structure of (long) multidigit numbers.

2) In the migratable words test, which was created to elicit letter
migrations within words, as all the 160 words in the test were
“migratable,” she made only 2 letter migrations, again, better
than the average performance of hearing readers.

3) In the long-word test she made no reading errors at all,
and she did not make more letter omissions or additions
than the typically hearing controls, indicating that her length
perception of words was unimpaired too.

So not only the general percentage correct performance but
also the analysis of her error types indicates a clear difference
between her word reading and her number-reading.

Additionally, in the Artichoke and the Duvshaniyot tests, Nomi
made no errors at all, not even in the longest words. Comparing
her reading of 5–6 letter words to 5–6-digit numbers (a total
of 5 errors out of 190 words, compared to 26 errors out of 54
numbers), her word reading was significantly better, χ2(1) =

74.50, p << 0.0001) when taking into account all words of 5
letters or longer yielding a total of 6 errors out of 217 5–11
letter words, this difference is even greater, χ2(1) = 81.22, p <<

0.0001). This indicates a clear dissociation between her reading
of long multidigit numbers and her reading of long words, and
shows that these two processes are separate.

4.8.2. Same-Different Decision: Pairs of Written

Words Presented Together

Method
To assess Nomi’s orthographic-visual analyzer and to further
compare her word- and number-reading, we administered a
same-different task with pairs of written words. Nomi was
presented with 60 pairs of Hebrew words printed one next to the
other in a list, and was asked to mark the pairs in which the two
words were identical. The test included 10 words that differed
in length (length difference created by doubling a letter in one
word that created the other word, similar to driver-diver or diner-
dinner), 10 that differed in one letter identity, 20 that differed
in the order of two adjacent letters (e.g., flies-files, skates-stakes),
and 20 identical pairs.

Results
Nomi did not miss any difference between words (she did not
mark any pairs that were not identical), and she only missed 2
pairs of identical words (3% of the total number of words, which
falls well within the results of hearing controls (n = 24, mean
errors = 3%, SD = 3%, Lorber, 2020). This supports that she
has very good reading, and she does not make errors of letter-
identity, migrations of letters within the words, or omissions of
double letters which would indicate number length deficit.

4.8.3. Interim Summary: Words vs. Numbers
To summarize, Nomi’s word-reading was very good. It was
similar to that of the higher range of hearing controls and of
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deaf native signer controls. Her general performance in the word-
reading tasks, then, points to a clear dissociation between her
good word-reading and her poor number-reading.We also found
that the component that was impaired in her number-reading
did not cause a parallel impairment in word-reading: if processes
related to the decimal structure of numbers are parallel to word
structure –morphology, she did not make morphological errors
in reading words, indicating that the structural component is not
shared by numbers and words.

Deficits in the conversion of number-length could be
envisaged also as parallel to deficits in word-length, which should
have led to errors of letter addition or omission, which may
be similar to number-length errors, and errors of letter-position
which may be similar to decimal shifts in reading numbers. Here,
too, Nomi did not make such errors more than the controls.

Therefore, in each of these subprocesses she showed intact
performance in word-reading: she made nomorphological errors
in the two tests with morphologically complex words, she made
only two letter omissions of the 406 words she read, she made
fewer letter transpositions than the hearing control average in the
migratable word test, and she did notmiss any difference in letter-
order or in word-length in the same-different task, indicating that
there was no shared component that was impaired, and that her
impairment was selective to number-reading.

5. DISCUSSION

We brought here the first report of a specific type of
dysnumeria—an impairment in number-processing, in a deaf
signer, Nomi. Nomi’s dysnumeria manifested itself in a difficulty
to read and comprehend the decimal structure of long multidigit
Arabic numbers.

Her most prominent error type in multidigit number reading
was decimal errors—she had difficulty in processing the decimal
structure of the number, most notably in longer numbers of
5–6 digits.

5.1. Nomi’s Functional Locus of Deficit in
the Number Reading Model
We suggest that Nomi’s impairment lies in the conversion of
written multidigit numbers into the abstract decimal frame,
namely in the connection between the (intact) numeric-visual
analysis stage of extraction of decimal structure and the decimal
structure component. This deficit is marked (2) in Figure 7,
which already uses a modified model that will be motivated
and explained below. As we discuss below, we assume that
the construction of the non-verbal decimal frame of the
number serves both reading aloud and comprehension of
written numbers, and therefore a deficit in the connection from
visual input to this process affects both reading aloud and
comprehension from written input.

Nomi showed difficulties in reading multidigit numbers,
mainly in longer numbers of 5–6 digits. Her errors were mostly
decimal shifts of the leftmost digit (e.g., reading Arabic numbers
such as 34567 as three thousand. . . ), resulting in saying the first
digits in an incorrect (and smaller) decimal position.

As depicted in Figure 7, decimal shift errors could,
theoretically, result from three general stages in the number-
reading process: the numeric-visual input processes of extracting
number-length ①, the conversion of a written number to its
abstract decimal frame ②, or the verbal-output processes ③–⑥:
in linearization of the abstract frame into a verbal number
frame ③, in misalignment of the ordered digits into the number
frame during the binding process ④, in the retrieval of number-
words/signs (retrieving/producing a word with incorrect class)
⑤, or in holding too many number-words/signs at the same
time ⑥.

We will now use the results of the tests reported above to
show how we reached the conclusion that Nomi’s deficit is in
the conversion of written numbers to the decimal frame and why
the other theoretically possible loci are excluded for her deficit.
Figure 7 summarizes all the test results upon which we base our
conclusions about spared and impaired components, which we
describe and discuss in detail below (blue for good performance,
orange and crimson for impaired performance).

The early numeric-visual analysis stage is ruled out as the
source of Nomi’s deficit on the basis of her good performance
in tasks that involve the numeric-visual analysis without the
later conversion and phonological output stages. She performed
very well in the three same-different tasks, and specifically in
detecting pairs that differed in number-length or in digit-order,
suggesting she did not have deficits in extracting number-length
and digit-order from written numbers. She also performed well
in digit-sequence decision. Her good performance in reading
the same numbers when signing them non-decimally, digit-by-
digit or triplet-by-triplet, provides further strong evidence that
her numeric-visual analysis was intact. Her deficit emerged only
when she had to use this information to read the number “aloud”
as a multi-digit number, namely, when she had to create the
decimal number frame for the written number (for production,
and, as we will show below, also for comprehension). A deficit in
the numerical input buffer is also excluded in view of the absence
of order- and identity-errors in all input tasks.

The verbal output processes are also ruled out as the source
of Nomi’s decimal errors: when she produced long multidigit
numbers in tasks that did not involve written Arabic numerals
(in reading numbers written as Hebrew number words and
in repeating multidigit numbers), she made no decimal errors.
She could sign without any decimal errors long multidigit
numbers written in Hebrew words (of the same length as she
failed to sign in reading). Multidigit number repetition was
not easy for her, but still, she made almost no decimal errors
in two tasks of multidigit number repetition. These results
demonstrate that Nomi can produce multidigit numbers with
their correct decimal structure when no Arabic numeral reading
is involved.

Several additional findings support the conclusion that her
production is intact. When she read the samemultidigit numbers
with a comma separator, she made significantly fewer decimal
errors. Reading numbers with comma requires the same output
processes as reading numbers without comma, so her difficulty in
numbers without comma could not have resulted from a deficit
in the output processes.
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FIGURE 7 | The number reading model with Nomi’s performance related to each of the components. In blue: performance that is within the control range;

orange: impaired performance, lower than the control group. Circled numbers indicate theoretically possible sources of decimal errors in multidigit number reading.

Crimson X indicates the locus of Nomi’s deficit in view of her performance in the various tasks.

Another indication of her intact phonological output buffer
is her good reading-then-signing of structures involving number
incorporation (like “twice”), as number incorporation takes place
in the phonological output buffer (Haluts and Friedmann, 2020).

Her good production of number incorporation, which are
morphologically-complex structures involving numbers, also
demonstrates that her decimal errors did not stem from a deficit
in the processing of morphologically complex structures that
involve numbers. This conclusion is also supported by her good
production of the morphologically complex decimal numbers in
repetition and reading-then-signing of Hebrew number words.

Finally, in reading multidigit numbers with fewer number-
words (e.g., 400300), she still made many decimal errors, in
a rate similar to the error rate she had in reading multidigit
numbers with many different digits. These numbers include the
same number of written digits but require far fewer number-signs
in production, so these numbers should have made a difference
only for the phonological output stages, and should have been
easier had the deficit been in the phonological output stages. The
finding that Nomi still made many decimal errors in reading
these numbers suggests that the source of her decimal errors was
not the need to hold and assemble many number-signs together.

The pattern of Nomi’s errors can be taken as additional
evidence that Nomi’s decimal errors did not result from a

phonological output deficit: had her deficit been in the retrieval
of number-signs in the correct class, we would not expect errors
only on 5–6-digit numbers, and we would not expect errors
mainly in the leftmost digit, and toward a smaller decimal
position. Additionally, had she had a deficit in lexical retrieval,
we would expect other phonological substitutions, such as other
number-identity errors (signing THREE instead of FIVE), which
almost never occurred.

We therefore conclude that Nomi’s deficit in number-reading
(reading-then-signing) lies in the creation of the decimal number
frame from written number input. That is, in the conversion
of the decimal information extracted in the (intact) numeric-
visual analyzer into a number frame. The findings that: (a) Nomi
made errors only in numbers of 5-digits and up, and had almost
no decimal errors in 4-digit numbers and no errors in 3-digit
numbers, and (b) her decimal errors were always in the direction
of using a number frame that is smaller than the written number
(in one decimal position) suggest that her deficit was a result
of a limitation in the size of the number frame into which she
could place the written numbers. She is able to build a smaller
tree/number frame from written input, so the frame for shorter
numbers (of 4 digit or less) is created correctly. However, for
5- and 6-digit numbers she cannot create a frame that would be
suitable for the written input. She typically created a 4-digit frame
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for the 5-digit numbers, and never succeeded to create decimal
structures for 6-digit numbers, mainly saying “I can’t,” starting
and failing to create a 5-digit tree, or breaking the number into
two triplets. This treelet deficit might be similar to Power and
Dal Martello (1997) study that showed, for 7-year-olds, decimal
errors that result from their inability to create larger trees. Nomi’s
impairment pattern is possibly similar also to that of ED (Dotan
and Friedmann, 2018, 2019), who also had decimal errors, and
mainly on the longer numbers, but ED made 26% errors in
reading 4-digit numbers, so she might have had difficulty with
even smaller decimal frames compared to Nomi.

This deficit can be conceptualized either as a deficit in the
conversion from the numeric-visual analysis stage to the number
frame, or as a deficit in a component of number frame building
for written numbers3. At this point we do not see a way to
distinguish between decimal-frame construction that is input-
specific (written numbers, phonologically presented numbers),
and a single decimal-frame construction component that has
separate connections from the different inputs.

5.2. Nomi’s Multidigit Number
Comprehension and Its Implication for the
Model
Multidigit number comprehension, as measured by number-
comparison tasks, was impaired along the same lines as Nomi’s
reading “aloud”: just like her decimal errors in reading 5–6-digit
numbers, she also had difficulty in comprehending the decimal
structure of numbers of this length. Whereas her comprehension
of short, 3–4-digit numbers was intact, she failed to detect that 5-
digit numbers were larger than 4-digit numbers when their first
digit was not larger than the first digit of the 4-digit numbers
(23675>5500) in two different tasks. This difficulty manifested
itself both in errors (in the >5500 task) and in response time
patterns. This suggests that her deficit in processing the decimal
structure of the written numbers also affected her comprehension
of number-size.

What is the source of this deficit in comprehension? The data
showed that her early numeric-visual stage of number-length
encoding (as well as digit-identity and order) was intact. So just
as the deficit in reading “aloud” could not have emerged from the
numeric-visual stage, neither could the comprehension deficit.
Her comprehension of the same numbers from signing was also
intact, indicating that the deficit was not in the comprehension
itself but was limited to written numbers.

3It is also possible to conceptualize the locus of this deficit as a deficit in

number length analysis of the numeric-visual analysis system in a process that

only applies to reading aloud and comprehension of multidigit numbers with

their decimal structure (but not to same-different decision tasks). We find such

conceptualization inferior to a deficit in the connection between the analyzer and

the decimal frame building, because it requires assuming that the number length

analysis stage functions differently in different tasks and “knows” already what

the task is and whether it requires multidigit numbers as phonological output (or

size comprehension) or not. It also requires that the early length detection stage

in the numeric-visual analysis includes a function that serves late stages such as

reading aloud and comprehension but not same-different decision. Assuming that

the deficit resides in the connection of the length detection component to the frame

building component does not require such less-probable assumptions.

It therefore seems that the source of the deficit in number
comprehension was impaired conversion of the written number
into its decimal frame, just like in number-reading. This suggests
the possibility that the deficits in reading and in comprehension
are in fact a single deficit, at a component that is shared by
the two processes. Conversely, it might be that there are two
independent identical impairments of converting the numeric-
visual information of multidigit numbers into their decimal
form—one in conversion for reading, the other in conversion
for comprehension, and both manifest themselves in numbers
of the same lengths and in similar errors. Whereas this two-
deficit option is possible, Ockham’s razor drives us to prefer
the option of a deficit in a component shared by reading and
comprehension. We therefore suggest that Nomi’s deficit lies
in the conversion of information from the numeric-visual stage
into the shared decimal number frame construction stage, thus
affecting both reading “aloud” and comprehension.

5.3. Implications for the Number Reading
Model
Nomi’s pattern of impairment thus offers new insights to
the number-reading model. The first insight relates to the
number-frame-building component shared by reading aloud
and comprehension, described in the previous section. In
Figure 8 we provide a possibility for the architecture of
such shared component: the creation of the number frame
is abstract and non-verbal and is shared by reading and
comprehension. This abstract, non-verbal, number frame
creation component provides the information of the decimal
structure of the number both for later verbal stages (in signs
or spoken-words) and for comprehension (in our case, number
comparison), so it is connected to the linearization component,
which is verbal and language-dependent, and to the further
comprehension components.

The idea of a shared abstract decimal-structure component

for comprehension and production is in line with McCloskey’s
(1985, 1986, 1992) idea that reading aloud of multidigit
numbers passes through an abstract stage that is shared
with comprehension. Differently from McCloskey, and in
line with Cohen and Dehaene (1991) and Dehaene and
Cohen (1995), we do not assume that this shared component
is a semantic representation that follows, and requires,
“number comprehension,” but rather a stage that immediately
follows numeric-visual analysis, preceding both production and
comprehension of written multidigit numbers. We suggest that
this stage involves the construction of an abstract, non-verbal,
decimal number frame.

Once we assume such an abstract number frame component,
we can assume it is responsible both for the decimal structure
and for the parsing into triplets. We currently do not see
the need to assume a separate triplet-parsing component at
the numeric-visual analysis stage, and patients like ED (Dotan
and Friedmann, 2018, 2019), who showed impaired triplet-
parsing, may be impaired in the general process converting
the information from the numeric-visual analysis onto the
number frame (at the moment we remain agnostic as
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FIGURE 8 | A revised number reading model. Three modifications to Dotan and Friedmann’s (2018) model: (1) The decimal structure building component is

non-verbal, and it is shared with comprehension processes, (2) an addition of a non-decimal number reading route, (3) triplet parsing is no longer part of the

numeric-visual analysis stage.

to whether there is a separate triplet-parsing component,
whether it resides in the numeric-visual input or in the
phonological output components or both, and whether it
depends on the way the target language divides numbers
into groups).

A second insight from this study is the existence of a non-

decimal route, which allows a digit-by-digit reading of multidigit
numbers, without forming a decimal representation (somewhat
similar to the non-lexical route in word-reading, Coltheart et al.,

2001). Nomi had a deficit in reading multidigit numbers with
decimal structure, but had no problem reading the same numbers
digit-by-digit. A similar pattern was reported for the patients in
Cohen and Dehaene (1995), but for digit-identity errors rather
than decimal errors. We suggest that this digit-by-digit reading
is performed in the non-decimal route, portrayed in Figure 8

with an arc connecting the numeric buffer of ordered digits with
the phonological output component, which bypasses the decimal
structure construction.
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5.4. Dissociation With Reading Words
In marked contrast to her impaired multidigit number reading,
Nomi’s word reading was intact. Her performance in reading
406 words did not differ from that of typically-hearing Hebrew
speaking adults, nor did it differ from the reading of deaf
signers. This already shows a clear dissociation between her poor
multidigit number reading and her very good word-reading.

Additionally, when one examines the pattern of errors that
would have been expected had she had a deficit in word reading
that is parallel to her deficit in number-reading, it is clear that
she does not make similar error types: she made only two letter
omissions, two letter transpositions, and two morphological
errors (1.5% together) which could be counted as parallel to
decimal errors in numbers, compared to 20 out of 100 (20%)
decimal errors in her number-reading.

Additionally, her deficit in number-reading was most
pronounced in the longer, 5–6-digit numbers. Conversely, her
word reading of 5- and 6-letter words (and even longer words)
was unimpaired and significantly better than her reading of
numbers of similar lengths.

These results, thus, support the conclusion that number-
reading is implemented, at least in part, by mechanisms that
are different and separate from the ones that are used in word-
reading (Friedmann et al., 2010; Shum et al., 2013; Abboud et al.,
2015; Hannagan et al., 2015; Güven and Friedmann, 2019; for a
review, see Dotan and Friedmann, 2019).

5.5. A Specific Impairment in Number
Reading in a Deaf Signer
Nomi, a deaf user of a sign language, showed a specific
impairment in number-reading. As discussed above, Nomi’s
impairment resulted from a very specific stage in the number-
reading model. Her impairment seems similar to that of NR,
reported by Noel and Seron (1993) and discussed above in
the introduction, and to that of ED, reported by Dotan and
Friedmann (2018, 2019). The fact that very similar number-
reading impairments can be found in spoken language users
and in sign language users suggests that the mechanisms that
process number reading are shared by all speakers of human
languages and do not depend on the modality in which the
language is transmitted.

5.6. Conclusion
We reported here of the first in-depth investigation of a selective
dysnumeria in a user of a sign language. Her pattern of errors
and performance in various tasks indicated a decimal-structure
conversion dysnumeria, a deficit in the construction of decimal
number frame from written numbers of 5-digits or longer.
Her deficit was shared by reading aloud (reading-then-signing)
and comprehension processes. Nomi made no errors in tasks
that did not require the construction of decimal frames from
written numbers: she performed well in tasks involving only
the numeric-visual analysis, and made virtually no decimal

errors in tasks involving the production of multidigit numbers
without written input. When she read the same long multidigit
numbers with cues as to the decimal structure, she made fewer
decimal errors, and when she read the exact same numbers
in a non-decimal system in ISL, which only involves digit-by-
digit signing, she made no such errors. These results indicate
that prior to the construction of the verbal number frame, a
non-verbal abstract frame is constructed, which is shared by
reading and comprehension. Additionally, these results provide
evidence for a parallel, non-decimal reading route for reading
multidigit numbers. The assessment of dysnumeria in sign
language, thus, opened a new window to insights regarding the
number-reading process.
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TABLE A1 | Variants of digit-signs in ISL.

Variant 1 Variant 2 Variant 3

0

1

2

3

4

5

6

7

8

9
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Non-Symbolic Numerosity and
Symbolic Numbers are not Processed
Intuitively in Children: Evidence From
an Event-Related Potential Study
Anne H. van Hoogmoed1,2,3*, Marije D. E. Huijsmans3 and Evelyn H. Kroesbergen1,3

1Department of Educational and Learning Sciences, Utrecht University, Utrecht, Netherlands, 2Nieuwenhuis Institute, Faculty of
Behavioural and Social Sciences, University of Groningen, Groningen, Netherlands, 3Behavioural Science Institute, Radboud
University, Nijmegen, Netherlands

The approximate number system (ANS) theory and the ANS mapping account have been
the most prominent theories on non-symbolic numerosity processing and symbolic number
processing respectively, over the last 20 years. Recently, there is a growing debate about
these theories, mainly based on research in adults. However, whether the ANS theory and
ANS mapping account explain the processing of non-symbolic numerosity and symbolic
number in childhood has received little attention. In the current ERP study, we first examined
whether non-symbolic numerosity processing in 9-to-12-year-old children (N � 34) is
intuitive, as proposed by the ANS theory. Second, we examined whether symbolic
number processing is rooted in non-symbolic numerosity processing, as proposed the
ANS mapping account. ERPs were measured during four same-different match-to-sample
tasks with non-symbolic numerosities, symbolic numbers, and combinations of both. We
found no evidence for intuitive processing of non-symbolic numerosity. Instead, children
processed the visual features of non-symbolic stimuli more automatically than the numerosity
itself. Moreover, children do not seem to automatically activate non-symbolic numerosity
when processing symbolic numbers. These results challenge the ANS theory and ANS
mapping account in 9-to-12-year-old children.

Keywords: ANS mapping account, ANS theory, children, non-symbolic numerosity processing, symbolic number
processing, ERP

HIGHLIGHTS

• Children’s non-symbolic (NS) numerosity and symbolic number processing was assessed
• ERPs show that NS numerosity and symbolic number processing is not intuitive
• Instead, children process visual features of NS stimuli automatically
• The data do not support automatic activation of numerosity during number processing
• Thus, the results challenge the ANS theory and ANS mapping account in children

INTRODUCTION

Numerical processing is an important early marker of mathematical performance (e.g., Schneider
et al., 2017). Numerical processing can be subdivided into non-symbolic numerosity processing (e.g.,
comparison between two sets of dots) and symbolic number processing (e.g., comparison between
two Arabic numerals or number words). A prominent theory on non-symbolic numerosity
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processing is the ANS (approximate number system) theory. This
theory states that approximate numerosity, i.e., the number of
objects in a set, is intuitively extracted when one is confronted
with a set of objects, such as a dot pattern (Dehaene, 1997). This
means that the visual properties of a set of objects are removed or
normalized, such that the numerosity of the set can easily be
established, and that this process goes without much effort. The
ANS mapping account concerns symbolic number processing,
and theorizes that symbolic number processing in adults is rooted
in non-symbolic numerosity processing. Approximate non-
symbolic numerosity is thought to be activated automatically
when processing symbolic numbers (Dehaene, 1997). There is
currently a hot debate about whether the ANS theory and ANS
mapping account hold or whether alternative theories are more
likely to explain non-symbolic numerosity processing and
symbolic number processing (see for example Leibovich et al.,
2017, including commentaries on this paper). The aim of the
present study was to examine whether the ANS theory and ANS
mapping account do underlie non-symbolic numerosity
processing and symbolic number processing in children. An
event-related potential (ERP)-paradigm was employed to gain
insight into the processing of non-symbolic numerosity and
symbolic number.

ERP-research on the validity of the ANS theory and ANS
mapping account in children is limited. ERP-research in adults
shows both evidence confirming the ANS theory (Temple and
Posner, 1998; Paulsen and Neville, 2008; Hyde and Spelke, 2009;
Hyde and Spelke, 2012; Park et al., 2017; Van Rinsveld et al.,
2020) and ANS mapping account (Dehaene, 1996; Temple and
Posner, 1998; Pinel et al., 2001; Libertus et al., 2007), as well as
more recent evidence against the ANS theory (Gebuis and
Reynvoet, 2012; Soltész and Sz}ucs, 2014; Van Hoogmoed and
Kroesbergen, 2018) and ANS mapping account (Van
Hoogmoed and Kroesbergen, 2018). Children’s numerical
processing mechanisms may either be the same or different
from those in adults. Research has shown that even infants seem
to have a rudimentary understanding of non-symbolic
numerosity (e.g., Xu and Spelke, 2000; Xu et al., 2005; Xu
and Arriaga, 2007). However, it is not yet completely clear
whether this is purely based on numerosity, or whether it is
based on the visual features of a set of objects (Gebuis et al.,
2016). Moreover, the development of symbolic number
processing only starts at a later age.

From a developmental perspective, the early acquisition of
symbolic number in young children may be intertwined with
non-symbolic numerosity processing, as children usually start
grasping numerical information by counting small amounts of
non-symbolic objects (e.g., toys, pieces of fruit, or various body
parts; Gelman, and Gallistel, 1978). Based on the ANS mapping
account, this symbolic information will remain to activate their
non-symbolic counterparts, even into adulthood. However, Carey
(2004), Carey (2009), Carey (2011) claims that only small
numbers are acquired based on non-symbolic numerosities,
not based on the ANS, but on parallel individuation. The
acquisition of numbers larger than four would be dependent
on verbal counting routines and the notion that the next number
in the routine represents N + 1 instead of direct mapping onto

non-symbolic numerosities. However, other possible
mechanisms that help children acquire number symbols have
been proposed in several commentaries on Carey’s paper (2011).
For example, children’s understanding of number is argued to
occur prior to learning verbal principles such as counting, and
this knowledge of number might foster development of numerical
representations (Gelman, 2011; Gentner and Simms, 2011; Landy
et al., 2011; Spelke, 2011).

In older children in kindergarten, symbolic number
processing has been shown to be related to children’s mapping
skills (i.e., linking symbolic numbers and non-symbolic
numerosities; Kolkman et al., 2013). It might thus be the case
that symbolic number and non-symbolic numerosity processing
in (young) children—in contrast to adults—(partly) rely on a
common mechanism. However, this does not necessarily mean
that children automatically activate numerosity when confronted
with numbers as proposed by the ANS mapping account,
especially not when they are older and more proficient in
dealing with symbolic numbers. There is indeed evidence that
processing of symbolic (large) numbers predicts processing of
non-symbolic numerosity in kindergartners instead of vice versa,
which suggests that symbolic processing does not necessarily
build on the ANS (Lyons et al., 2018). Instead, there may be a
bidirectional relationship between the development of symbolic
and non-symbolic processing (Goffin and Ansari, 2019).
Together, this implies that the processing of non-symbolic
numerosity might not be as intuitive in children as assumed
by the ANS theory and that the ANS may not be automatically
activated when processing symbolic number, as proposed by the
ANS mapping account.

The present study had two aims. The first aim was to
investigate whether non-symbolic numerosity processing in
children between 9 and 12 years of age is intuitive, in line with
the ANS theory, or whether numerosities are processed based on
the processing of visual features instead, as is proposed by
alternative theories such as the sensory-integration theory
(Gebuis et al., 2016) and sense of magnitude theory (Leibovich
et al., 2017). Second, we examined whether children’s processing
of symbolic number can be explained by the ANS mapping
account, or whether this processing is independent of
numerosity, based on symbol-symbol associations (e.g.,
Reynvoet and Sasanguie, 2016).

Non-Symbolic Numerosity Processing
The ANS theory states that non-symbolic numerosity processing
relies on an innate approximate number system (Dehaene, 1997).
Non-symbolic stimuli are thought to be processed by an intuitive
estimation of numerosity (i.e., the number of objects in a set),
independently of physical features of the stimuli, such as the size
of the objects. Proof of concept for this theory is mainly based on
behavioral ratio effects within comparison tasks: Comparing two
non-symbolic numerosities is more difficult (i.e., lower accuracy
and slower reaction times) when these numerosities are closer in
magnitude, and thus have a ratio closer to 1 (see Guillaume and
Van Rinsveld, 2018 for a meta-analysis). This ratio effect is
assumed to result from a mental number line wherein
numerosities that are spatially located together are
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automatically co-activated, suggesting that non-symbolic
numerosities are processed intuitively. Results from ERP
research mirror the behavioral results by showing early ratio-
dependent ERP amplitudes around 200 ms after stimulus
presentation, suggesting that numerosity processing is fast
(Temple and Posner, 1998; Libertus et al., 2007; Paulsen and
Neville, 2008; Hyde and Spelke, 2009; Hyde and Spelke, 2011;
Hyde and Spelke, 2012).

Although the ANS theory suggests that stimuli are processed
independent of physical properties, physical features are
inherently related to numerosity in real life. For instance, if
one child has two pieces of candy and another child has four
pieces of candy, then the second child’s candy will occupy more of
the visual space (i.e., total area and surface of the candy).
According to the ANS theory, these visual features would be
removed in a very early stage of numerical processing (e.g.,
Dehaene, 1997), after which numerosities are estimated or
compared. However, instead of estimating numerosity after
removal of visual features, one might better use visual
properties of the objects to determine which child has the
most candy.

To prevent the use of visual properties to estimate or
compare numerosities, most research on non-symbolic
numerosity processing therefore aims to control for visual
properties of the stimuli. Even when using this kind of
control, some studies still find early effects of numerosity,
independent of visual features (Park et al., 2016; Fornaciai
et al., 2017), which could be interpreted as evidence for the
ANS theory. However, there are also studies that show that with
proper control over visual features, effects of numerosity are
absent or only starting around 650 ms (Gebuis and Reynvoet,
2012; Soltész and Sz}ucs, 2014; VanHoogmoed and Kroesbergen,
2018). These results do not align with the ANS theory, since
intuitive processing is unlikely to take such a long time, because
it should take little effort. Hence, these results are better
explained by alternative theories, such as the sensory-
integration theory which posits that the integration of visual
features is at the basis of an approximation of numerosity
(Gebuis et al., 2016).

In children, it has become evident that the processing of non-
symbolic stimuli relies more and more on actual non-symbolic
numerosity with age and education, whereas physical properties
of the stimuli become less relevant (Park, 2018; Piazza et al.,
2018). This may reflect the increasing precision of the ANS
(Halberda and Feigenson, 2008). Alternatively, it may reflect a
growth in inhibition, withdrawing the child from intuitively
responding to visual features and basing their decisions on the
number of elements instead (Fuhs and McNeil, 2013; Gilmore
et al., 2013). The argument of increasing precision of the ANS
would result in early effects of numerosity (more specifically
ratio) in the ERP with smaller and relatively short-lasting effects
for visual properties. However, growth in inhibition would result
in late effects of numerosity in the ERP in combination with early
and possibly longer-lasting effects of visual properties. Our first
aim was thus to examine whether non-symbolic numerosity
processing is indeed intuitive, as proposed by the ANS theory
(Dehaene, 1997), resulting in early effects of numerosity.

Alternatively, children could process visual features more
automatically than numerosity, which would be more in line
with the sensory-integration theory (Gebuis et al., 2016), resulting
in early effects of visual features in combination with later or no
effects of numerosity.

Event-Related Potential Correlates of
Non-symbolic Numerosity Processing in
Children
Previous ERP research shows similarities in ERPs of non-
symbolic numerosity processing between 5- and 8-year-old
children and young adults (Temple and Posner, 1998; Heine
et al., 2013; Soltész and Sz}ucs, 2014). Children and adults show
similar neural activation over the parietal cortices when
processing non-symbolic numerosity. For instance, similar
ratio effects were displayed in the early ERP components N1
and P2p for children and adults (Temple and Posner, 1998).
However, visual properties of the stimuli were not controlled in
this study and only small numerosities were included (1–9).
Other research controlling visual properties showed systematic
numerosity distance effects in typically developing children in
second and third grade in the parietal regions between 280 and
600 ms (Heine et al., 2013). Effects were found for subitizing,
counting and estimation. The fact that effects for non-symbolic
numerosity processing in children are more compelling for later
ERPs (when controlling for visual properties of the stimuli),
seems to indicate that this is not an automatic, but a more
conscious process. In the current study, early effects of ratio
would support the ANS theory, whereas either late ERP
components related to numerosity, or no components related
to numerosity at all, in combination with early and longer-lasting
effects of visual features, may align better with the sensory-
integration theory (also depending on the processing of the
visual features of the stimuli).

Symbolic Number Processing
The ANS mapping account theorizes that symbolic number
processing is rooted in the processing of the corresponding
non-symbolic numerosity (Dehaene, 1997). As such, when
encountering a number, the corresponding numerosity is
assumed to be automatically activated in adults. Evidence for
this account is mainly based on similar ratio effects for symbolic
numbers and non-symbolic numerosities, which was assumed to
be due to similar overlapping representations of numerosities and
numbers (Dehaene et al., 1990; Verguts and Van Opstal, 2005;
Holloway and Ansari, 2008; Sasanguie et al., 2012; Sasanguie
et al., 2013). The timing of these non-symbolic ratio effects and
symbolic distance effects is also similar, as has been shown by
ERP research (Dehaene, 1996; Temple and Posner, 1998; Libertus
et al., 2007). Arguments for the ANS mapping account thus seem
convincing.

However, recent research has challenged the ANS mapping
account, by raising several theoretical concerns about important
assumptions (e.g., is it an evolutionary system; Reynvoet and
Sasanguie, 2016) and caveats (e.g., inconsistent findings; Gevers
et al., 2016) in those theories. For example, ratio and distance
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effects have also been found in non-numerical comparison tasks
such as ordering letters of the alphabet, which do not have
overlapping representations (Van Opstal et al., 2008). This
implies that the effects are likely task-related instead of
numerosity-related. Based on these results one cannot
conclude that numerosity and number share the same
numerical representation. Recently, symbolic numbers have
been suggested to be processed independently of numerosity
(Lyons et al., 2012; Sasanguie et al., 2017). Moreover, we
showed that adults do not automatically activate numerosities
when processing symbolic numbers (Van Hoogmoed and
Kroesbergen, 2018). Measuring EEG (ERPs) during four
different match-to-sample tasks (i.e., including non-symbolic
numerosities, symbolic numbers, and combinations of both),
we demonstrated that processing a non-symbolic target is
different when the target is preceded by a non-symbolic prime
compared to being preceded by a symbolic prime. If one would
assume that a symbolic prime automatically activates the
corresponding non-symbolic numerosity, one would expect
that the processing of the non-symbolic target would not
differ based on whether it is preceded by a symbolic or non-
symbolic prime. As such, these results suggest that even when a
task requires mapping (e.g., comparison between a symbolic
number and a non-symbolic numerosity), symbolic stimuli are
not automatically mapped onto their corresponding non-
symbolic numerosities in adults.

From a developmental perspective, it seems that symbolic
number processing is intertwined with non-symbolic
numerosity processing in (young) children. When children
learn numbers, they learn them by mapping these onto
numerosities. For example, many children start learning
numbers by counting their (and others) body parts (e.g., how
many eyes, how many arms, how many fingers do you have?).
However, symbolic skills appear to take a more prominent place
than non-symbolic skills in the development of mapping skills in
four-to six-year-old children (Kolkman et al., 2013). Whereas
non-symbolic skills are related to symbolic skills and mapping
skills in the first year of kindergarten, the relation between non-
symbolic and symbolic skills becomes insignificant in the second
year. Moreover, research shows that symbolic processing
predicts non-symbolic skills as soon as children have initial
number understanding, instead of the other way around
(Lyons et al., 2018). This suggests that if these skills are still
related in older children, non-symbolic (i.e., numerosity)
processing may not be the primary format as proposed by the
ANS mapping account. Instead, (larger) symbolic numbers may
be acquired by the successor function (i.e., the next number in
the counting row is exactly one more than the previous number),
and may be embedded in a semantic network of numbers instead
of grounded in the ANS (Krajcsi et al., 2016; Krajcsi et al., 2018;
Reynvoet and Sasanguie, 2016). This may explain why the
relation between non-symbolic and symbolic number weakens
with age (e.g., Kolkman et al., 2013).

In purely symbolic tasks, children from kindergarten to third
grade, as well as children in sixth grade have been found to use
digits’ physical properties to determine their magnitude, rather
than their numerical value in a same-different task. No distance

effect was found for numerical value (Defever et al., 2012). In a
mixed notation task–in which digits needed to be compared to
non-symbolic numerosities–a distance effect was found, showing
no development with age until the end of primary school (Defever
et al., 2012). In contrast, other research on symbolic digit
comparison and comparison of non-symbolic numerosities
(controlled for physical properties) found that the sizes of the
symbolic and non-symbolic distance effects both decreased
between six and eight years of age. The researchers concluded
that children’s magnitude representations become more precise
as they grow older (Holloway and Ansari, 2009). Whether the
distance effect becomes more fine-tuned with age or not, it seems
evident that an effect is present in children, even when controlling
for visual properties of the non-symbolic stimuli. Therefore, it
could be that in children symbolic number processing is rooted in
non-symbolic numerosity processing, in line with the ANS
mapping account and findings in younger children. This may
especially be the case when numbers need to be related to
numerosities, which may involve either activation of the non-
symbolic numerosity based on the processing of the symbolic
number, or the activation of notation-independent code that is
also activated by non-symbolic numerosities (Piazza et al., 2007).
However, based on adult literature, it may also be that older
children do not activate the corresponding numerosity in a purely
symbolic task (e.g., Marinova et al., 2018; Marinova et al., 2021).
In mapping tasks, they may map numerosities onto numbers,
thus in the opposite direction as predicted based on the ANS
mapping account (e.g., Van Hoogmoed and Kroesbergen, 2018).

Event-Related Potential Correlates of
Symbolic Number Processing
Previous research shows several differences in ERP correlates
of symbolic number processing between adults and children
or adolescents (Temple and Posner, 1998; Soltész, Sz}ucs et al.,
2007). While amplitude and direction of the P2p effect for
ratio in a number comparison task in five-year-old children
was similar to the effect of adults, the effect was delayed in
children (Temple and Posner, 1998). Regarding the ratio
effect, differences between adolescents (with math
problems, and matched controls) and adults (without
math problems) were found as well (Soltész et al., 2007).
Slope and topography of the (late) ratio effects were different,
being more mature in adults. These findings seem to indicate
that symbolic processing changes over development, as
differences in ERP components or scalp locations were
found respectively. Soltész et al. (2007) proposed that
differences in the late ERP components reflect differences
in complex symbolic number processing between adolescents
and adults. Note that similar differences in symbolic number
processing between children and adults have been found in
fMRI research (Ansari et al., 2005). These studies seem to
suggest that numerical processing mechanisms in children
and adolescents differ from adult mechanisms. This may
indicate that symbolic number processing relates to non-
symbolic numerosity processing in a different way in adults
and children.
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The Current Study
In the current study, we examined the electrophysiological
correlates of the processing of non-symbolic numerosity and
symbolic number in children between 9 and 12 years of age.
Electro-encephalograms (EEGs) were administered during four
match-to-sample tasks with two ratios, measuring the ratio
effect in processing of non-symbolic stimuli, symbolic
stimuli, or a combination between non-symbolic primes and
symbolic targets and vice versa. The non-symbolic stimuli were
controlled for visual features using the script of Gebuis and
Reynvoet (2011). In this setup, ratio effects for non-symbolic
processing, symbolic processing, and mapping of non-symbolic
numerosities and symbolic numbers could be measured.
Moreover, effects of task format and of visual properties
(i.e., surface, area, and diameter) of the stimuli could be
examined.

Based on the intuitive processing of non-symbolic numerosity
as proposed by the ANS theory, one would expect early effects of
ratio in the non-symbolic task. Moreover, one would expect no
later or long-lasting effects of visual properties, since these would
be removed/normalized in an initial step based on the ANS
theory. However, based on the alternative sensory-integration
theory, one would expect more long-lasting effects of visual
properties, and only later or no ratio effects for numerosity.
With regards to symbolic processing, based on the ANS mapping
account, one would expect to find similar (possibly slightly
delayed) ratio effects as compared to the non-symbolic
condition, since numerosity would be automatically extracted
from the symbolic stimuli, and then processed similarly to the
non-symbolic stimuli (i.e., either in a non-symbolic or notation-
independent format). An additional way to examine whether
non-symbolic numerosity and symbolic number are mapped
onto each other (based on the ANS theory), is a comparison
between tasks with the same primes or targets. If symbolic
numbers and non-symbolic numerosities are mapped onto
each other, one would expect that the processing of non-
symbolic primes is the same, regardless of whether these are
followed by non-symbolic or symbolic targets. Similarly, the
processing of non-symbolic targets would be the same
regardless of whether these are proceeded by non-symbolic or
symbolic primes. Thus, differences in processing of non-symbolic
stimuli depending on task, would provide evidence against the
ANS mapping account.

METHOD

Participants
Participants were 50 children from grade 3 to 6 in primary school.
Seven children were excluded due to recording problems (partly
due to a broken Ground-electrode), and nine children were
excluded due to noisy data (see below). The final sample
consisted of 34 children (16 boys and 18 girls) in grade 3 to 6,
with a mean age of 10.71 years (SD � 0.78). All participants had
normal or corrected-to-normal vision.

Procedure
Participants were recruited via a letter they received from their
schools. The major part of the participants (24 participants) were
tested individually in a separate room within their schools. The
procedure was explained to them verbally with supporting
pictures. The other part of the participants (10 participants)
was tested in the lab. The children were informed that they
could choose to stop participating at every moment. Informed
consent was signed by their parents.

After applying the EEG, the participants were seated behind
the computer. The task instruction was read from the screen
together with the child. Participants were told that there would be
a break after each task. The administrator of the task stayed with
the child during the experiment to answer any questions, and if
necessary, to encourage the child to pursue. The ERP tasks were
presented in a random order. After the four tasks, the EEG cap
was removed from the participant. All tasks including application
and removal of the EEG-cap lasted about 45–60 min. The parents
of all the participants gave written informed consent in
accordance with the Declaration of Helsinki. The research was
approved by the ethics review board of the faculty of Social and
Behavioral Sciences of Utrecht University.

Tasks
Non-Symbolic (Ns-Ns)
In the non-symbolic task, trials consisted of a prime picture with
dot patterns and a target picture with dot patterns, see Figure 1.
The dot patterns were generated in Matlab with the script
described in Gebuis and Reynvoet, 2011. This script allows for
controlling the relation between the number distance and visual
properties, as well as the congruency in area subtended, density,
total surface of the dots, average diameter, and total
circumference. The visual properties of the stimuli were
documented, enabling division of the data based on visual
properties as well (Gebuis and Reynvoet, 2011). The number
of dots for the primes ranged between 20 and 40, with both
smaller and larger targets at ratio 0.5, and 0.7. As such, all
numbers ranged between 10 and 80. A trials started with the
presentation of a prime for 750 ms, then a blank screen jittered
between 400 and 600 ms, and a target presented for 750 ms. The
inter trial interval was jittered between 1,000 and 1,500 ms. In
total, 88 trials were presented to the children. Twenty trials were
presented for each distance x size (target larger vs. target smaller
than prime). In addition to that, we included eight trials in which
the numerosity of the prime and the target were the same.
Participants were instructed to passively watch the stimuli and
only respond by pressing the space bar if they thought the prime
and target stimuli displayed the same quantity as soon as possible
during stimulus presentation or during the following blank
screen (ITI).

Non-Symbolic–Symbolic (Ns-S)
The Ns-S task was identical to the Ns-Ns task with the exception
that the targets were presented as digits instead of dot patterns.
Moreover, both the prime and target were presented for 1,000 ms.

Frontiers in Education | www.frontiersin.org June 2021 | Volume 6 | Article 6290535

van Hoogmoed et al. Children’s Numerosity and Number Processing

98

https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Symbolic–Non-symbolic (S-Ns)
The S-Ns task was identical to the Ns-S task with the
exception that the primes were presented as digits instead
of dot patterns and targets were presented as dot patterns
instead of digits.

Symbolic (S-S)
The S-S task was identical to the Ns-S task with the exception that
the primes were presented as number words, instead of dot
patterns.

Analyses
Behavioral
Participants were instructed to only respond to trials in which the
prime and target depicted the same numerosity. As such, a non-
response to the trials in which the prime and target did not match
was taken as correct response. Mean accuracy per ratio, per task
was calculated in SPSS, version 23. To examine whether
performance was above chance in each task, one-sample t-tests
were carried out against a test-value of 0.5. Bivariate correlations
between performance and age were carried out separately for
each task.

Event-Related Potential
Recording and Preprocessing
For the 24 participants tested at schools, data were recorded with
a 32 electrode active cap (Biosemi, Amsterdam, Netherlands)
with a sampling rate of 2048 Hz. Additional electrodes were
placed on both mastoids, and below and next to the eyes. The
system records data without reference. The electrode offset was
kept below 50 µV. For the ten participants that were tested in the
lab, data were recorded with a 32-electrode ActiCAP (Brain
Products GmbH) and were recorded online with a sampling
rate of 500 Hz. Measured activity was filtered online using a

125 Hz lowpass filter, and a time constant of 10 s. Impedance was
kept below 50 µV.

After recording, all data were imported into Matlab 2017a
(The MathWorks Inc., 2017) and analyzed using the Fieldtrip
toolbox (Oostenveld et al., 2011). Data of all participants were
downsampled to 500 Hz, rereferenced to the linked mastoids, and
low-pass filtered at 40 Hz. ICA was used to identify and delete eye
blinks and horizontal eye movements. After that, data were
manually inspected for bad channels. Bad channels were
removed and replaced with a weighted sum of the
surrounding channels. Deleted channels were never adjacent to
each other. Data (primes and targets) were segmented from
200 ms before to 1,000 ms after stimulus onset and baseline
corrected. After artifact rejection, the data were averaged per
ratio per task for the targets (MNtrials � 34.2, range 24–40). Data
from target larger than prime and target smaller than prime were
collapsed because of the limited number of trials included (Van
Hoogmoed and Kroesbergen, 2018). To examine the effects of
visual properties, averages were generated for small and large
diameter, small and large area, and small and large surface based
on all non-symbolic primes and targets (mean Ntrials � 31.7,
range Ntrials 19–40). The 40 trials with the largest and 40 trials
with the smallest surface/area/diameter were selected to generate
averages with similar amounts of trials as compared to the
number of trials per ratio. Averages for primes and targets
within each task were also computed (MNtrials � 71.9, range
53–88).

Analyses
Grand averages were computed over the 28 common electrodes in
both recording systems. Since the time course of the differences
between conditions was unknown because of the mixed findings
in previous research, cluster based permutation tests were carried
out (Oostenveld et al., 2011). For the Ratio effects in the tasks,

FIGURE 1 | Overview of the stimuli-formats in the different tasks with the upper line presenting the primes for each task, and the lower line presenting the targets.
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four separate permutation tests were carried out, one for each
task. Similar permutation tests were performed for the physical
parameters on small vs. large (mean) diameter, area (within the
convex hull), and surface (of the dots). To test for differences in
the processing of non-symbolic and symbolic stimuli depending
on task, three cluster based permutation tests were carried out:
one to compare the processing of non-symbolic primes in the
NsNs-task vs. the NsS-task, one to compare the processing of
the non-symbolic targets in the NsNs-task vs. the SNs-task, and
one to compare the processing of the symbolic targets in the
NsS-task and the SS-task.

A dependent-samples t-test on amplitude for each channel x
sample between 0 and 1,000 ms served as input for the cluster
based permutation test. Spatio-temporal clusters were defined
based on these t-statistics (α � 0.05). These clusters were entered
into the cluster-based permutation test (500 permutations or
1,000 permutations if the obtained |p-α| < 0.002). Since cluster-
based statistics (clusterstats) are calculated for positive and
negative slopes separately, the p-values were compared to α
� 0.025 (0.05/2) for all analyses (Fieldtrip, n. d.; for an example
see Van Hoogmoed and Kroesbergen, 2018). Note that by using
cluster-based permutation tests, the whole cluster is tested as
one test-statistic. As such, the latency and exact location of a
cluster are only descriptive (Sassenhagen and Draschkow,
2019).

RESULTS

Behavioral
Accuracy for each task is reported in Table 1 for matching pairs
and non-matching pairs separately. For matching pairs, a correct
response was a button press, whereas for non-matching pairs, a
correct response consisted of refraining from a button press.
Performance was above chance on task level in all tasks; for the
NsNs task (M � 0.69, SD � 0.12), t (33) � 9.74, p < 0.001, d � 1.67,
for the NsS task (M � 0.67, SD � 0.12), t (33) � 8.67, p < 0.001,
and d � 1.49, for the SNs task (M � 0.63, SD � 0.11), t (33) � 6.74,
p < 0.001, d � 1.16, and for the SS task (M � 0.97, SD � 0.03), t �
86.13, p < 0.001, and d � 14.77. However, participants had
difficulty identifying matching trials, with the proportion of
correctly answered trials ranging from 0.34 to 0.80. Age of
the participants did not significantly relate to performance in
any of the tasks (0.038 ≤ r ≤ 0.255). Exploratory analyses revealed
a small difference between the performance on the NsS-task and
the SNs-task, t (33) � 2,12, p � 0.041, d � 0.36.

Event-Related Potential
Distance Effects for Ratio per Task
ERPs for the different Ratios are depicted in Figure 2 for each task
separately. A permutation test on the difference between ratio 0.5
and ratio 0.7 in the NsNs-task resulted in a significant negative
cluster for Ratio, largest negative clusterstat � −1836.8, p � 0.022,
reflecting a parietal distance effect between 650 and 950 ms (see
Figure 3). No significant positive cluster was found, largest
positive clusterstat � 148.3, p � 0.329. For the NsS-task, no
positive clusters were found. Moreover, no significant negative
cluster was found, largest negative clusterstat � −352.2, p � 0.216,
which reflects no significant ratio effect for the NsS-task. For the
SNs-task, no significant positive or negative clusters were found,
largest positive clusterstat � 161.1, p � 0.371, largest negative
clusterstat � −100.8, p � 0.485, which reflects no significant ratio
effect for the SNs-task. For the SS-task, two significant effects of
distance were found. The first cluster, positive clusterstat �
2121.9, p � 0.012, reflects a very early effect, around
50–300 ms over the centro-parietal scalp regions. The second
cluster, positive clusterstat � 2089.2, p � 0.012, reflects a broadly
distributed effect between 700 and 800 ms (See Figure 4). No
negative clusters were found.

Distance Effects for Visuals
ERPs for the different visual features are depicted in Figure 5. For
the visual feature area, the permutation test (1,000 permutations)
resulted in no significant positive or negative clusters, largest
positive clusterstat � 223.7, p � 0.241, largest negative clusterstat
� −1217.3, p � 0.035. For the visual feature surface (1,000
permutations), the results showed no significant positive
cluster, largest clusterstat � 333.7, p � 0.208, but a significant
negative cluster, clusterstat � -2499.0, p � 0.013. This cluster
reflects a relatively early difference from around 200 ms to around
300 ms over the parieto-occipital scalp regions (see Figure 6). For
the visual feature diameter, the results showed no significant
positive cluster, largest clusterstat � 275.8, p � 0.275, but a
significant negative cluster, clusterstat � −2005.3, p � 0.009,
reflecting a occipital difference between small and large
diameter from around 200–300 ms (see Figure 7).

Differences Between Tasks
To assess whether processing of stimuli is related to task format,
we investigated differences in processing non-symbolic primes in
the NsNs-task and NsS-task, non-symbolic targets in the NsNs-
task and SNs-task, and symbolic targets in the NsS-task and SS-
task (see Figure 8).

TABLE 1 | Mean proportion correct and standard deviations for matching and non-matching trials per task.

Matching M (SD) Matching RT (SD) Non-matching
ratio 0.5 M (SD)

Non-matching
ratio 0.7 M (SD)

NsNs 0.36 (0.22) 598.7 (86.9) 0.76 (0.15) 0.69 (015)
NsS 0.51 (0.19) 700 (99.7) 0.76 (0.15) 0.62 (0.14)
SNs 0.34 (0.21) 834.3 (247.3) 0.68 (0.14) 0.64 (0.14)
SS 0.80 (0.21) 599.0 (85.5) 0.99 (0.05) 0.99 (0.02)

NsNs � task with non-symbolic primes and non-symbolic targets, NsS � task with non-symbolic primes and symbolic targets, SNs � task with symbolic primes and non-symbolic targets,
and SS � task with symbolic primes and symbolic targets.
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Symbolic primes were not compared between tasks, since the
primes in the SNs-task consisted of digits, whereas the primes in
the SS-task consisted of written number words. For the non-
symbolic primes, no significant differences were found between
the NsNs-task and the NsS-task, largest positive clusterstat �
218.1, p � 0.307, largest negative clusterstat � −1148.2, p � 0.054,
showing no evidence for differences in the processing of non-
symbolic primes based on whether it is followed by a symbolic
target or by a non-symbolic target. For the non-symbolic targets,
no significant positive clusters were found, largest positive
clusterstat � 392.2, p � 0.152, but a significant negative cluster
was found, clusterstat � −6507.1, p � 0.012. This cluster reflects a
widespread (fronto)central difference moving toward the parietal
scalp regions between 100 ms 350 ms (see Figure 9) reflecting a
difference between the processing of non-symbolic targets in the
NsNs-task and the NsS-task. For the symbolic targets, a
significant positive cluster was found, clusterstat � 3724.4, p �

0.012, reflecting a long lasting occipital difference (200–700 ms)
between the processing of symbolic targets in the NsS-task and
the SS-task (see Figure 10). No significant negative clusters were
found, largest clusterstat � −2141.2, p � 0.040.

DISCUSSION

The first aim of the present study was to examine whether non-
symbolic numerosity processing in 9-to-12-year-old children is
intuitive and thus relatively fast, in line with the ANS theory
(Dehaene, 1997), or whether visual properties of stimuli play a
role in processing the numerosity, in line with the sensory-
integration theory (Gebuis et al., 2016; Gevers et al., 2016).
The second aim was to examine whether children process
symbolic numbers by automatically mapping them onto non-
symbolic numerosities, in line with the ANS mapping account

FIGURE 2 | Distance effects per task on electrodes Fz, Cz, and Pz (electrodes chosen for illustration purposes only) with ratio 0.5 in blue and ratio 0.7 in red.

FIGURE 3 | Topoplots of the differences between the ratio’s in the NsNs-task per time window with asterisks representing the significant differences between the
ratios based on α � 0.05.
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(Dehaene, 1997). Alternatively, children may process numbers
without automatically activating the corresponding numerosity,
for example based on symbol-symbol associations (Krajcsi et al.,
2016; Reynvoet and Sasanguie, 2016).

Non-Symbolic Numerosity Processing
The behavioral data in the non-symbolic task show performance
above chance level. However, accuracy on the matching trials was
relatively low, which indicates that the children had difficulty
determining whether two numerosities were the same. The
accuracy on ratio 0.5 was higher than on ratio 0.7, which is in
line with the expectations based on previous research (e.g.,
Guillaume and Van Rinsveld, 2018). The ERP data showed
only a late parietal effect for ratio in the completely non-
symbolic task, starting at 650 ms after the presentation of the
target, in line with previous research (Soltész and Sz}ucs, 2014).
However, earlier effects for the visual feature surface and diameter
were found over the occipital scalp regions, starting around
200 ms, suggesting that these are processed automatically, even
though the task focused on numerosity. Children thus seem to
process visual features more automatically than numerosity of
non-symbolic stimuli. Based on the ANS theory, one would have
expected an earlier distance effect for ratio of numerosity. As
such, our findings do not convincingly support the ANS theory
(Dehaene, 1997).

In earlier research in adults, we argued that the presence of a
long-lasting effect of visual properties starting early was not in
line with the ANS theory (Van Hoogmoed and Kroesbergen,

2018). Instead, we argued that these findings were in line with
two recent theories that have been proposed as alternatives for
the ANS theory: The sensory-integration theory and sense of
magnitude theory (Gebuis et al., 2016; Leibovich et al., 2017),
both suggesting that visual features are not removed before
processing numerosity, but are at the basis of this process.
However, the results in adults differed from those in
children. The duration of the effect of the visual features was
shorter and a late ratio effect was present in children, but not in
adults. As such, the results found in this study do not support
the sensory-integration theory either. Another possible
hypothesis may be that children do not use visual features as
the basis for the processing of numerosity, but first process the
visual features, and inhibit their response based on these visual
features (Fuhs and McNeil, 2013; Gilmore et al., 2013). After
that, they may still consciously process the numerosity, causing
the late effects of ratio. However, this possibility requires
additional research.

Another difference between the effects of visual properties in
previous research with adults (Van Hoogmoed and Kroesbergen,
2018) and the current study in children was that the visual
features showing a distance effect in the non-symbolic task in
children were surface and diameter as opposed to area in adults.
This difference, however, complements a developmental study on
the effects of visual features in children and adults (Gilmore et al.,
2016). That study revealed that adults indeed rely more on the
convex hull (or area) of non-symbolic stimuli, whereas in primary
school children the dot size (or surface) was most important. This

FIGURE 4 | Topoplots of the differences between the ratio’s in the SS-task per time window with asterisks representing the significant differences between the
ratios based on α � 0.05.
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is in line with the current results. Additionally, it has been
suggested that the contribution of any visual feature to non-
symbolic numerosity processing is dependent on the type of
stimuli, the setting, and the context of a task (Leibovich and
Henik, 2014). As such, the specific visual feature that shows the
result is deemed less important than the finding of effects for
visual features itself.

Our results differ from the recent results on automatic
processing of numerosity, even as early as the visual cortex
(Park et al., 2016; Fornaciai et al., 2017; Starr et al., 2017;

Park, 2018; DeWind et al., 2019). In these studies, a fixed
number of five numerosities was used instead of the ratios of
numerosities that were used in the present study. Moreover,
control over visual properties was carried out in a different
manner in which visual properties seem to correlate more
with the presented numerosity compared to the current study.
In such passive paradigms without focus on numerosity, it is
likely that participants automatically process the most salient
features of the stimuli (either numerosity or a visual property; see
Leibovich et al., 2017). In our paradigm, the focus of the

FIGURE 5 | ERPs for the different visual features with small area (A), diameter (B), and surface (C) in blue, and large area, diameter, and surface in red.

FIGURE 6 | Topoplots of the differences between small and large surface per time window with asterisks representing the significant differences between the small
and large surface based on α � 0.05.
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participants was specifically on numerosity, since we instructed
them to press a button in case of matching numerosities. Even
then, there was more evidence for early processing of visual
features as compared to processing of the numerosity, which
suggests that this was more intuitive.

To conclude, we argued that our results do not align with the
ANS theory, but neither with the sensory integration theory. This
argument was based mainly on the late effects of ratio, which are
in contrast with earlier ERP-studies showing P2p-effects in
comparison tasks (e.g., Temple and Posner; Heine et al.,

2013). The current task differs from the comparison task in
that it may first be necessary to estimate the numerosity (after
removal/normalization of visual features), and then compare it
to the numerosity that is kept in memory. The normalization
of visual features may be reflected in the effects of visual
features around 200–300 ms. The late parietal effect for
ratio starting around 650 ms may reflect the next step,
i.e., the comparison itself. As such, the process could be
similar to what would be expected based on the ANS
theory. However, the timing of the effects suggest that the

FIGURE 7 | Topoplots of the differences between small and large diameter per time window with asterisks representing the significant differences between the
small and large diameter based on α � 0.05.

FIGURE 8 | ERPs of the non-symbolic primes in the NsNs-task and the NsS-task (A), the non-symbolic targets in the NsNs-task and the SNs-task (B), and the
symbolic targets in the NsS-task and the SS-task (C).
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processing of the numerosity is not intuitive, but requires
effort.

Symbolic Number Processing
For the completely symbolic task, we found a very early effect of ratio
between 50 and 300ms over the central scalp, and a late effect for
ratio over the central scalp between around 700 and 800ms. A ratio
effect in a symbolic task may reflect overlapping representations of
non-symbolic numerosity and symbolic number (Van Opstal and
Verguts, 2011), which would support the ANS mapping account.
However, this would mean that the symbolic numbers activate the
non-symbolic representation and show a distance effect based on
these non-symbolic representations. In that case, one would expect a
similar ratio effect in the non-symbolic task as well, something that
was not supported by our results. The early effect was not present in
the non-symbolic task. Moreover, the late effect was spread over the
(left)-fronto-central scalp in the symbolic task and more parietal in

the non-symbolic task. The results thus suggest that non-symbolic
numerosity processing and symbolic number processing rely on
different mechanisms. This idea is supported by recent work
showing only weak relations between the processing of non-
symbolic numerosity and symbolic number in adults and
children (see Leibovich and Ansari, 2016 and Reynvoet and
Sasanguie, 2016 for reviews).

The ratio effect found in the symbolic task may be better
explained by alternative accounts, such as the discrete semantic
system (DSS; Krajcsi et al., 2016) or a symbol-symbol association
account (Reynvoet and Sasanguie, 2016). Both accounts suggest
that relations between symbolic numbers are at the basis of
symbolic number processing instead of relations between a
symbolic number and the corresponding numerosity.
According the DSS theory, numbers are stored in nodes in a
network, similar to the mental lexicon or other conceptual
networks. The strength of the connections between the nodes

FIGURE 9 | Topoplots of the differences between the non-symbolic targets in the NsNs-task and the SNs-task with asterisks representing significant differences
based on α � 0.05.

FIGURE 10 | Topoplots of the differences between the symbolic targets in the NsS-task and the SS-task with asterisks representing significant differences based
on α � 0.05.
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is proportional to the strength of the semantic relations (Krajcsi
et al., 2016). Related to this theory, Reynvoet and Sasanguie argue
initially small numbers gain meaning through coupling to the
OTS, but larger numbers gain meaning through the ordinal
relation between numbers. The strength of connections
between the nodes (stronger connection for numbers closer to
each other) or the ordinal relation between numbers may explain
the ratio effects found in symbolic tasks, including the symbolic
task in the current study. With regards to the mapping tasks,
based on the ANS mapping account, one would expect that
humans automatically activate numerosity when they are
processing symbolic numbers, especially when these need to
be mapped onto non-symbolic numerosities. In this study, this
would have resulted in similar ratio effects in all tasks, including
the mapping tasks (although maybe different in exact timing).
However, no significant effects of numerosity were found in the
mapping tasks. Moreover, if numerosity would be activated
automatically, this activation should be independent of task
format. Thus, based on the ANS mapping account, non-
symbolic numerosity processing should not differ between
completely non-symbolic tasks and mapping tasks. The ERP
data showed no evidence for differences in processing non-
symbolic primes within different task formats, but do show
significant differences in the processing of non-symbolic
targets between task formats. This implies that the activation
of non-symbolic numerosity is not automatic, and thus not in line
with the ANS mapping account.

The differences in non-symbolic processing based on task
format contradict fMRI studies showing that, under passive
viewing conditions, non-symbolic and symbolic stimuli both
activate the hIPS (Dehaene et al., 2003; Piazza et al., 2007). The
authors interpreted these results as evidence for the integration
between symbolic numbers and non-symbolic numerosities. Their
findings thus seem to be in line with the ANS mapping account.
However, the fact that the hIPS is involved in symbolic and non-
symbolic processing does not necessarily mean that both formats
are processed in the same manner. Moreover, more recent, fine-
grained fMRI research shows different regions involved in symbolic
vs. non-symbolic processing (e.g., Bulthé et al., 2014; Bulthé et al.,
2015; Holloway, Price, and Ansari, 2010; see Sokolowski et al., 2017
for a meta-analysis), indicating that both formats may be processed
in different ways. The effect in our study indeed reflected larger ERP
amplitudes for non-symbolic targets following symbolic primes
compared to non-symbolic primes. This may indicate that more
resources are allocated to non-symbolic numerosity processing
during mapping than during the comparison of similar formats
(Kadosh, Lammertyn, and Izard, 2008; Landgraf et al., 2010). Thus,
our results substantiate other research showing differences in non-
symbolic processing based on task format.

These results raise the question based on which format
mapping tasks are solved. In our previous study in adults
(Van Hoogmoed and Kroesbergen, 2018), we argued that tasks
with mixed stimuli might be solved by attaching a symbolic
number to the numerosity of a dot pattern and comparing this
symbolic number to the presented digit. As such, it was suggested
that symbolic number processing was the primary format in
mapping tasks. The exploratory analysis on the differences in

behavior between the SNs-task and the NsS-task in the current
study could be seen as support for this argument. These results
show that it was easier for the children to compare a symbolic
target to a non-symbolic prime than to compare a non-symbolic
target to a symbolic prime. However, whereas these results are
provide some evidence against the notation-independent code,
they do not necessarily inform us about the primary format of
processing. The results could imply that the non-symbolic prime
already activated the symbolic number, after which the symbolic
target was matched to this symbolic number, meaning that
symbolic processing was the primary format. However, it
could also mean that the format of processing is dependent on
the format of the prime, and that activation of the non-symbolic
format based on a symbolic target (in the NsS-task) was easier
than activation of the symbolic format based on a non-symbolic
target (in the SNs-task). Moreover, the ERP results showed
differences in the processing of the symbolic targets based on
task format as well. If number would be the primary format of
processing, one would not expect a dependency on task. This may
suggest that non-symbolic numerosity processing is not rooted in
symbolic number processing either, but processing formatmay be
based on specific task demands.

Additional insights would have been possible based on a
comparison between symbolic primes in the different task
formats. However, we could not compare the symbolic primes
to subsequent non-symbolic targets and symbolic targets, because
the symbolic primes we used had a different format in both tasks.
The symbolic primes consisted of digits (e.g., “10”) in the mapping
task, whereas the symbolic primes consisted of number words (e.g.,
“ten”) in the symbolic task. The reason for this is that we prioritized
the analyses of the (symbolic) targets: In the completely symbolic
task, the prime and target had to be physically different in order to
prevent children to compare visual properties of the number
instead of its magnitude. Still, the notion that children do not
anticipate the format of the target seems to hold, as there was no
difference between the non-symbolic primes. This appears to
suggest that children remember the (non-symbolic) prime in
the original format, and only start processing the prime when
the target is presented. This may explain the difference between the
ERPs to symbolic targets in the mapping task vs. the symbolic task,
but does not inform us about the format of processing. The
behavioral data suggest that the mapping task was more
difficult for children, which probably resulted in the differences
in ERPs. This delayed processing of the prime in children may well
be different from the way adults approach the task, irrespective of
differences in the processing of numerosities and numbers itself.

Limitations
Several limitations of the present study should be acknowledged.
First, the absence of responses to the non-matching trials in the
experiment might have confounded the results, because non-
response trials (in this case 91% of the trials) might be due to
irrelevant functions (e.g., distraction, boredom, uncertainty in
decision-making) instead of correct task performance and may
have made the task more difficult compared to an active
comparison task. This difficulty can be inferred from the low
accuracy on the matching trials. However, we explicitly aimed for
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a match-to-sample task with mainly non-response, because
previous research on non-symbolic numerosity and symbolic
number has suggested that active same-different tasks and
active comparison tasks may tap into different cognitive
processes (Van Opstal et al., 2008; Van Opstal and Verguts,
2011). Whereas the ratio effect in comparison tasks may be
caused by a general decision process, in the same-different
task, it is thought to be due to co-activation based on neural
overlap between numbers. While acknowledging the limitations
of the more passive task, the behavioral results show that there is a
ratio effect in all tasks included non-symbolic stimuli. This
suggests that children were actively engaged in the task,
although their engagement may have been lower than in a
traditional comparison task which requires a response to
each trial.

A second limitation is the quite large age range of the
participants. Previous research showed that susceptibility to
perceptual cues is affected by the age of the participating
children (Defever et al., 2013). However, the age range of
participating children was much larger in that study.
Moreover, our behavioral results did not show significant
relations between performance and age. Therefore, we did not
include age as a factor in our analyses. Future research with a
larger sample and a larger age range could shed light on possible
differences between different age groups.

A third limitation is that we did not directly examine the effect
of visual properties on the processing of numerosity. Instead, we
examined the effects of numerosity and visual features separately,
and qualitatively compared them. Moreover, we chose to create
stimuli such that the overlap between numerosity and visual features
was as limited as possible (based on Gebuis and Reynvoet, 2011).
This has led to a larger differences in visual features as compared to
ratio differences. Previous research has shown that the variation in
visual features impacts the judgment of numerosity (e.g., Nys and
Content, 2012; Clayton et al., 2015; Gilmore et al., 2016). Future
research should include a full comparison of the different methods
of constructing visual stimuli (including more difficult ratios), and
directly compare the impact of these different ways of constructing
stimuli on numerosity processing. Such an endeavor would help to
gain a comprehensive understanding of numerosity processing
under different circumstances.

CONCLUSION

To conclude, our results show very late numerosity-related ratio
effects, in combination with early effects related to the visual
features of non-symbolic stimuli. As such, these results seem to
contradict the ANS theory, and suggest that processing of non-
symbolic numerosity is unlikely to be automatic. Moreover, we
found that non-symbolic numerosity is not automatically
activated when processing symbolic numbers, which contrasts
the ANS mapping account (Dehaene, 1997). Although children
can relate numbers and numerosities, given their behavioral ratio
effect in the mapping tasks, this process does not seem to be
automatic. In adults, it has been suggested that symbolic number
could be the primary format of processing, and non-symbolic

numerosity processing would possibly occur by estimating the
number of dots, and then compare the numbers in a symbolic
format (Van Hoogmoed and Kroesbergen, 2018). However, this
hypothesis does not seem to hold either, since we found that the
processing of symbolic targets is also dependent on task format in
children. This may however be due to the fact that children,
contrary to adults, do not anticipate on the upcoming target. The
difference between the symbolic targets in the mapping task and
the purely symbolic task might be explained by the notion that
children still need to process the prime once the target it
presented. Future research including both a blocked design
and a mixed design (i.e., manipulating expectancy of a certain
format) would be suitable to examine this idea. Moreover, future
research including younger children could shed light on
differences in the dependence or independence of symbolic
number processing on non-symbolic numerosity processing
over development. This may substantiate the current evidence
against the ANS theory and ANS mapping account.
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Effects of Gender on Basic Numerical
and Arithmetic Skills: Pilot Data From
Third to Ninth Grade for a Large-Scale
Online Dyscalculia Screener
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5Department of Applied Educational Science, Umeå University, Umeå, Sweden, 6Faculty of Education and Welfare Studies, Åbo
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In this study, we analyzed the development and effects of gender on basic number skills
from third to ninth grade in Finland. Because the international comparison studies have
shown slightly different developmental trends in mathematical attainment for different
language groups in Finland, we added the language of education as a variable in our
analysis. Participants were 4,265 students from third to ninth grade in Finland,
representing students in two national languages (Finnish, n � 2,833, and Swedish,
n � 1,432). Confirmatory factor analyses showed that the subtasks in the dyscalculia
screener formed two separate factors, namely, number-processing skills and arithmetic
fluency. We found a linear development trend across age cohorts in both the factors.
Reliability and validity evidence of the measures supported the use of these tasks in the whole
age group from 9 to15 years. In this sample, there was an increasing gender difference in
favor of girls and Swedish-speaking students by grade levels in number-processing skills. At
the same time, boys showed a better performance and a larger variance in tasks measuring
arithmetic fluency. The results indicate that the gender ratio within the group with
mathematical learning disabilities depends directly on tasks used to measure their basic
number skills.

Keywords: learning disabilities, number sense, arithmetic fluency, language, gender differences, mathematics,
variance ratio, basic number skills

INTRODUCTION

The easy access to the internet and computer technology is changing the way we assess mathematical
learning disabilities (MLD). There is a long history of using computerized tasks to assess numerical
skills in research. In addition, many international and national assessments, such as OECD PISA
studies, are nowadays conducted online. However, a transformation of this research into practical
diagnostic tools for clinical educational psychology is still in its infancy (Conole and Warburton,
2005; Räsänen et al., 2015; Molnár andCsapó, 2019; Räsänen et al., 2019).

It has been shown repeatedly that basic number skills form the foundations for learning more
complex mathematical skills (Butterworth, 2005; Jordan et al., 2009; Li et al., 2018), and early
numerical skills predict later achievement in mathematics (Zhang et al., 2017; Blume et al., 2021).

Edited by:
Korbinian Moeller,

Loughborough University,
United Kingdom

Reviewed by:
Alberto Crescentini,

University of Applied Sciences and Arts
of Southern Switzerland (SUPSI),

Switzerland
Anies Al-Hroub,

American University of Beirut,
Lebanon

*Correspondence:
Pekka Räsänen

pjrasa@utu.fi

Specialty section:
This article was submitted to

Educational Psychology,
a section of the journal
Frontiers in Education

Received: 21 March 2021
Accepted: 28 May 2021
Published: 19 July 2021

Citation:
Räsänen P, Aunio P, Laine A,

Hakkarainen A, Väisänen E, Finell J,
Rajala T, Laakso M-J and Korhonen J

(2021) Effects of Gender on Basic
Numerical and Arithmetic Skills: Pilot
Data From Third to Ninth Grade for a

Large-Scale Online
Dyscalculia Screener.

Front. Educ. 6:683672.
doi: 10.3389/feduc.2021.683672

Frontiers in Education | www.frontiersin.org July 2021 | Volume 6 | Article 6836721

ORIGINAL RESEARCH
published: 19 July 2021

doi: 10.3389/feduc.2021.683672

110

http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2021.683672&domain=pdf&date_stamp=2021-07-19
https://www.frontiersin.org/articles/10.3389/feduc.2021.683672/full
https://www.frontiersin.org/articles/10.3389/feduc.2021.683672/full
https://www.frontiersin.org/articles/10.3389/feduc.2021.683672/full
https://www.frontiersin.org/articles/10.3389/feduc.2021.683672/full
http://creativecommons.org/licenses/by/4.0/
mailto:pjrasa@utu.fi
https://doi.org/10.3389/feduc.2021.683672
https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2021.683672


Furthermore, research has shown that weak basic numerical skills
form the core deficit in MLD in groups of younger and older
students (De Smedt et al., 2013; Zhang et al., 2017). Therefore,
assessment of basic numerical skills should be part of every
clinical evaluation of MLD.

However, there is not much information on how the basic
number skills develop during the school years. Halberda et al.
(2012) showed that the fastest development phase in ANS
(approximate number system) is between 11 to 16 years of
age, not at a younger age range, as expected from such a
fundamental skill. ANS, which is typically measured with
nonsymbolic number comparison tasks, has a small but
significant correlation with mathematical skills in all age
groups. However, this skill does not seem to be a reliable task
to differentiate children with and without MLD in groups under
ten years of age (De Smedt et al., 2013). Brankaer et al. (2017)
found that students’ symbolic number comparison skills
improved during the whole primary school (grades 1–6) and
were consistently related to students’ math performance in all
grades.

There are no commonly agreed models of how the basic
number skills should be defined or categorized and what tasks
should be implemented into a clinical test battery. Aunio and
Räsänen (2016) suggested that the core set of skills that should be
measured could be clustered into four groups: number sense,
counting skills, arithmetic, and understanding mathematical
relations. This division did get some support from a factor
analytic study with one test battery (Hellstrand et al., 2020).
However, this model has not been replicated with other test
batteries. Reigosa-Crespo et al. (2012), who screened MLD from
over eleven thousand children from second to ninth grade with a
computerized test battery, divided their tasks into two groups,
namely, basic numerical skills (enumeration and number
comparison) and arithmetic fluency. However, the division of
tasks into these categories was not based on data analysis. What is
clear is that even the basic numerical processing is made up of
many different components with different developmental
trajectories and relationships to arithmetic achievement (Lyons
et al., 2014).

Gender
The international comparison studies on mathematical
attainment have shown significant differences in mathematical
performances between countries, educational cultures, types of
schools, socioeconomic groups, and genders (e.g., OECD, 2019;
Mullis et al., 2020). To look at the gender differences in
mathematical skills, Reilly et al. (2017) analyzed the results of
45 countries from the 2011 Trends in Mathematics and Science
Study (TIMSS). They found small- to medium-sized gender
differences for most individual nations with a substantial
variation (d �−0.60 to +0.31). The direction varies, and there
seem to be no global gender differences, but gender differences
seem to be immutable. These international comparison studies of
attainment focus on a variety of mathematical skills, mainly
concentrating on curriculum-based contents of more complex
mathematics and its different applications learned following the
curricular plans of the local school systems. Therefore, it is not

surprising that there are significant differences between
educational cultures, socioeconomic groups, and genders in
mathematical skills. However, the differences in more complex
skills do not directly tell us if there are differences in basic
numerical skills. Surprisingly, only a few studies on the effects
of cultural factors, such as language, and only slightly more about
gender effects on basic numerical skills have been published.

Stereotypes that girls lack mathematical ability persist and are
widely held by parents and teachers (Hyde et al., 2008). Many
studies aim to find explanations for this “male advantage.”
Typically, in addition to gender stereotypes, explanations for
early-grade gender differences have been searched from domain-
general and domain-specific cognitive variables. For example, van
Tetering et al. (2019) showed that boys outperformed girls in
mathematics in most grade levels within children from 7 to
12 years old. At the same time, boys also showed a better
performance in spatial mental rotation skills. The authors
concluded that their results “suggest that interventions that
stimulate the development of spatial skills may facilitate
mathematical achievements, especially of young girls” (see also
Rosselli et al., 2009). Similarly, Royer et al. (1999) showed in a
series of analyses that arithmetic, favoring boys, could explain the
gender differences in more complex math performance.

If, for example, boys would outperform girls also in basic
number skills, this would lend support to the stereotype that
boys have an early cognitive advantage (such as spatial skills or
arithmetic fluency) that would explain the differences in more
complex mathematical skills later on. However, if there would not
be differences between girls and boys on basic number skills, it
would suggest that both genders are equally equipped to acquire
more complex math skills (Bakker et al., 2019; Hutchison et al.,
2019). The reversed results favoring girls might reflect a cognitive
advantage supporting girls. For example, Wei et al. (2012) found in
a study with 8- to 11-year-old Chinese children that verbal fluency
explained the girls’ better arithmetic skills. The gender differences
might also mean that the fundamental number skills are strongly
malleable to cultural effects. The relationship between basic
number skills and more complex mathematical skills may be
more reciprocal than expected. The gender differences in basic
number skills could also reflect how mathematical skills develop in
general within each educational culture.

There is an extensive number of studies on gender differences in
school-related mathematical skills. Anastasi (1958) showed that boys
outperform girls in mathematics during the elementary school years
with some exceptions. For example, girls excelled in computational
fluency, while boys performed better onmore cognitively demanding
tasks such as problem-solving. The early research reviews reported
consistent gender differences in mathematical achievement
(Fennema, 1974; Halpern, 1986). In the 1990s, Hyde et al., 1990
showed in their extensivemeta-analysis of 100 studies (over 3million
subjects) that the gender gap in mathematical achievement had
diminished over time, and the recent studies have shown that in
developed countries, the genders show an equal aptitude for
mathematics (Hyde et al., 2008; Lindberg et al., 2010).

Recently in some OECD countries, there has been a trend that
females have started to outperform males at most levels of
education and are better represented in universities (OECD,
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2015). In some countries, such as Finland, where we conducted
this study, girls have also started to outperform boys in school
mathematics at the upper grades. However, the gender gaps
favoring males have persisted, for example, in average income,
employment in prestigious occupations, and leadership roles
(CEDA, 2013; Goldin, 2014). Likewise, even though the gender
gap in educational achievements would have narrowed or even
reversed, the differences, in favor of men, have remained in self-
concept and self-promotion (Parker et al., 2018). These last-
mentioned noncognitive factors may affect the career choices to
STEM disciplines (O’Dea et al., 2018).

Cross-cultural studies have shown that even though there
would be differences in school mathematics, there would be no
systematic gender differences in basic numerical or calculation
skills in younger age groups (Geary et al., 1996; Aunio et al.,
2006). Geary, with his colleagues, tested children from
kindergarten through third grade from China and the
United States using single-digit addition and found no
gender effects on the accuracy of performance in either
country. Shen et al. (2016) compared arithmetic skills of
7 year-olds in three countries finding that the gender
differences varied from one country to another. In simple
arithmetic tasks, the gender differences were visible in the
strategies but not in the accuracy. In more complex tasks, the
gender effect varied by country, reflecting that the educational
context may play a role in gender differences in mathematics
(Shen et al., 2016).

Hutchison et al. (2019) were the first to publish a systematic
large-scale study on gender differences at school-age in tasks
measuring basic number skills. They studied 6- to 13-year-old
children (grades 1–6) with a large battery of tasks in seven
different primary schools in Netherlands. The tasks to
measure the basic number skills were similar to those typically
used in studies aiming to grasp the fundamental features of MLD
(Bartelet et al., 2014; Lyons et al., 2014). They summarized their
results to “provide strong evidence of gender similarities on the
majority of basic numerical tasks measured, suggesting that a
male advantage in foundational numerical skills is the exception
rather than the rule.”Moreover, they concluded that this is strong
support for the idea that boys and girls are equally equipped with
basic numerical competencies and should be equally capable of
acquiring complex mathematical skills. Kersey et al. (2018) came
to the same conclusion in their large-scale analysis of gender
differences. They used different datasets of basic numerical skills
collected in different studies of children from 6 months to 8 year-
olds.

The older studies that reported gender differences in tasks
measuring basic number skills had very mixed results. Krinzinger
et al. (2012) studied children at primary school and found that
there was a gender difference favoring boys on single- and
especially on multi-digit number comparison, while another
study (Wei et al., 2012) found an opposite result with a
similar task and an eight times larger sample (N � 1,156).
Rosselli et al. (2009) did not find any gender differences in
their analysis on a number comparison, reading numbers,
writing numbers, and ordering numbers in a sample of
526 7–16 year-olds.

Like mentioned earlier, the male advantage in mathematical
skills has often been connected to spatial skills (van Tetering et al.,
2019). There is strong evidence of male advantage in some aspects
of spatial cognition (Halpern et al., 2007; Levine et al., 2016).
Spatial skills have been shown to explain mathematical skills
(Resnick et al., 2019), as well as the development of mathematical
skills (Zhang et al., 2017). Therefore, it is not a surprise to find
male advantage in numerical tasks that are based on spatial
representations of numbers, such as the SNARC effect (Spatial
Numerical Association of Response Codes) and number line
estimation tasks. Boys seem to show a larger SNARC effect
(Bull et al., 2013), and their estimations are more accurate in a
number line estimation task (Thompson and Opfer, 2008;
Gunderson et al., 2012; Bull et al., 2013; Reinert et al., 2016).
When moving away from spatial numerical tasks to symbolic
tasks, the picture of gender differences or similarities becomes
blurry. Bull, Cleland, and Mitchell (2013) studied an adult
sample. They found that males were faster in discriminating
between two numbers and that only females displayed a
numerical distance effect (logarithmic vs. linear
representation). They suggested that males would have a more
accurate representation of number/magnitude, which helps them
discriminate between numbers closer to each other. However,
studies with children have not replicated this finding with similar
types of number comparison tasks (Wei et al., 2012; Krinzinger
et al., 2012; Lyons et al., 2015). One factor that may explain the
differences between studies is the large variety in the tasks used to
assess the gender differences. Another confounding factor is the
difference in the age groups of the studies. The studies that
showed conflicting results focused mainly on children between
the ages of 6–10 years.

Hutchison et al. (2019) analyzed gender differences in a study
with children from first to sixth grade (7–13 year-olds,N � 1,463).
Their test battery consisted of two numerical comparison tasks
(symbolic and nonsymbolic), two matching tasks (visual and
auditory), number line estimation, numerical ordering, counting,
and two arithmetic tasks (addition/subtraction, multiplication/
division). The only systematic gender effect found was in a
number line estimation task, where the effect was strong at the
early grades but disappeared at the sixth grade. The gender
similarity was a systematic finding in their study.

Thus far, Reigosa-Crespo et al. (2012) had the most extensive
sample to measure basic numerical and arithmetic skills. They
screened over eleven thousand children from second to ninth
grade. Unfortunately, they did not report the gender differences
directly, but only the ratios within the low- and high-performing
groups in the whole sample. They divided their tasks into two
subskills: basic numerical skills (enumeration and number
comparison) and arithmetic fluency. They found a higher
prevalence of boys than girls at the lower end of efficiency in
the basic numerical skills. Boys were two times more likely to have
a deficit in basic numerical skills compared to girls. In addition,
there were four times more boys than girls in the group, which
had a deficit both in basic numerical skills and arithmetical
fluency. They did not find differences between genders at the
higher end of efficiency in enumeration or number comparison
tasks but failed to report the results on their arithmetic tasks.
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Variance Ratio
While most of the studies on basic number skills find only small
or nonexisting differences in means between the genders, in the
context of assessing MLD, the differences in variance may be
more critical because the differences in variance affect the ends of
the skill distribution. There is a long history of analyzing gender
differences in variance of cognitive and academic skills (Maccoby
andJacklin, 1974; Feingold, 1992). Feingold (1992) summarized
that males were more variable than females in quantitative ability
and spatial visualization, while there were no differences in
variance in verbal tests, short-term memory, abstract
reasoning, and perceptual speed. Nowell and Hedges (1998),
in their extensive analysis on the datasets of mathematical
attainment in the US national assessment, showed that the
variance ratio (VR, male variance/female variance) had not
changed in mathematics from 1978 to 1994, constantly
showing a larger variance for males (1.05–1.42 in mathematics
in their report). While the gender gap in means seems to be
closing, the variance ratio has been more stable. In the latest
studies, while the gender difference in means is no longer
significant, the larger male variance in mathematical skills is
still found. However, the difference is not so extent that it could
alone explain the overrepresentation of males in the STEM field
(O’Dea et al., 2018). Interestingly, Penner and Paret (2008)
showed that differences in the variance exist already at
preschool age.

Therefore, even though the gender similarity hypothesis in
basic numerical skills (Bakker et al., 2019; Hutchison et al., 2019)
would be systematically replicated and confirmed, the differences
in variance could still produce significant gender differences
within the extremes. However, until now, also these results
have been very mixed at the lower end of the distribution.
While Reigosa-Crespo et al. (2012) reported up to four times
more boys having MLD than girls, only some studies have agreed
on this (Badian, 1983; Ramaa andGowramma, 2002; Barbaresi
et al., 2005). Some studies have shown an equal number of
genders in the group of MLD (Lewis et al., 1994; Mazzocco
and Myers, 2003; Koumoula et al., 2004; Devine et al., 2013),
while some studies have shown the reverse gender difference,
i.e., a larger number of girls than boys with MLD (Shalev et al.,
2000; Dirks et al., 2008). There is a need to look at this question at
a task level whether the differences in variances are systematically
similar from one task to another.

Culture and Language
Our dataset was collected in Finland. The closest comparison to
our dataset where similar measures were used is Hutchison’s
(2019) study conducted in Netherlands. Finland and Netherlands
have both been high-performing countries in international
mathematical comparison studies. There have not been
significant differences in how girls and boys perform in school
mathematics in these countries. For example, in the latest TIMSS
study of 14–15 year-olds, in Netherlands, boys were a
nonsignificant +12 points better than girls. At the same time,
in Finland, there were no significant gender differences in
mathematics at this age, but girls’ average was slightly above
those of the boys.

Finland has two official languages, Finnish and Swedish. The
Finnish-speaking schools used to perform slightly better than the
Swedish-speaking schools (Kupari et al., 2012). Even though in
Finland, there are no significant socioeconomic or educational
differences between the schools in the system of free public
education (Kupiainen et al., 2009). All children in Finland
participate in the same public education offered by similarly
university-trained teachers, and they all follow exactly the same
national curriculum framework.

There has been a shift in mathematical attainment between the
genders and between the two language groups in Finland during
the last 2 decades. Today, girls perform better than boys, and the
Swedish-speaking minority performs better than the Finnish-
speaking majority. In the latest TIMSS 2018 study, in the fourth-
grade sample, there were no differences in mathematics between
the language groups nor genders (Vettenranta et al., 2020a).
However, in the eighth grade, the Swedish-speaking sample
was slightly better in mathematics, especially the Swedish-
speaking girls (Vettenranta et al., 2020b). The trends of
improvement of girls’ performance levels compared to that of
boys’ and the improvement of the Swedish-speaking minority
compared to the Finnish-speaking majority are also visible in the
PISA data (Figure 1). In PISA data, the main effect producing
these trends in Finland has been that Swedish-speaking girls are
the only group that has not shown a similar constant decline in
their math performance as the other groups (OECD 2015; OECD
2019).

Summary
In this study, we analyzed the effects of gender in basic number
skills from third to ninth grade to add one educational culture,
Finland, to the small number of studies looking at the gender
differences in basic numerical skills. Because the international
comparison studies have shown slightly different developmental
trends in mathematical attainment for different language groups
in Finland, we added the education language in the school as a
variable into our analysis. There are two main reasons, one
theoretical and one practical, why we are interested in the
gender differences and the effects of the language group when
we assess the basic number skills. First, the previous studies have
shown very mixed results indicating no systematic differences
between the genders. The most systematic study until now
indicates that gender similarity is the rule and the differences
an exception (Hutchison et al., 2019). However, another possible
explanation for the mixed results is that there could be a
reciprocal relationship between basic number skills and school
mathematics. The gender differences and gender similarities in
basic number skills may reflect the results of the curriculum-
based assessments. Therefore, we would find increasing gender
differences favoring Swedish-speaking girls in the older age
groups, as has been the trend in the international and national
achievement studies.

Second, a practical reason for this analysis is that our data
collecting was part of a process to develop an online test battery
for clinical use. This study is our first pilot to test both the online
technology in practice and investigate the suitability of the tasks
for the test battery for screening mathematical learning
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difficulties. Systematic and significant differences due to gender
or language would mean that we should take these differences
into account in the forthcoming standardization process of our
test. Any differences in means or variation would affect the
gender ratio of those diagnosed as having MLD. Substantial
differences in some tasks would require us to consider
providing different norms for different subgroups. From the
clinical perspective, the gender differences in the extremes are
even more important than the differences in means. Therefore,
we also report here the gender ratios in the extreme values. The
previous studies on MLD have shown all three possibilities in the
gender ratios. More information is needed to see how the
different tasks affect the ratio of males vs. females in the
extremes. Therefore, our results will also function as
information for others who aim to develop standardized test
batteries for screening MLD.

To reliably compare different groups in basic numerical skills,
we first need to ensure that our measure 1) shows adequate
reliability, 2) structural validity, and 3) measurement invariance
across groups (Finnish vs. Swedish; boys vs. girls). Hence, the
analyses start with establishing reliability and validity evidence of
our test battery. Second, we will look at the trends of the gender
differences at different grade levels controlling for the language of
instruction. Last, we will look at the variance and the gender ratio
in the low- and high-performing extremes.

MATERIALS AND METHODS

This study is part of a larger FUNA (Functional Numeracy
Assessment) project to develop a test battery to assess basic
numerical and mathematical skills (see http://oppimisanalytiikka.
fi/funa). These data are from a subproject to develop a screening test
battery for mathematical learning disabilities (dyscalculia). When

ready, the FUNA dyscalculia battery (FUNA-DB) will consist of
seven tasksmeasuring basic number processing and arithmetic skills.
The test battery runs on an online educational platform offered to
schools in Finland by the Center of Learning Analytics at the
University of Turku. The system can offer the contents on an
internet browser and collect all user interactions and their
timings for further analysis. The system works on all operating
systems and machines (computers, tablets, and mobile devices)
(more information about the platform in English, see http://
eduten.com).

Participants
We collected the data for this pilot study with the help of
voluntary teachers and schools. Three methods were used to
find volunteers: First, we held three two-day teacher training on
dyscalculia, one in North, one in Central, and one in South
Finland. The aim of the teacher training offered was to encourage
teachers to participate in the data collecting. The teacher training
consisted of two days of lectures about dyscalculia
(neuropsychology and intervention methods, instructions on
how to conduct the assessment and how to interpret the test
results), and an assessment of classes of pupils at the schools of
the participating teachers using FUNA-DB. Second, we searched
for additional voluntary teachers via an advertisement in a
newsletter that reaches almost all schools in Finland. Third,
we took direct contacts to schools to add the number of
schools to the Swedish-speaking sample.

The pupils participated in the study anonymously. The teacher
informed the number of girls and boys, their grade levels, and the
language of the school to our research assistant. The assistant
generated an equal number of random logins/passwords that
contained a hidden code for gender, grade, and language. The
teacher gave these codes to the children based on their gender and
grade levels. These three variables were the only pieces of

FIGURE 1 | The average mathematics attainment in PISA studies of the Finnish and Swedish-speaking samples in Finland in 2003 and 2018 (Source: OECD).

Frontiers in Education | www.frontiersin.org July 2021 | Volume 6 | Article 6836725

Räsänen et al. Gender Differences in Basic Number Skills

114

http://oppimisanalytiikka.fi/funa
http://oppimisanalytiikka.fi/funa
http://eduten.com
http://eduten.com
https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


information that were obtained from the children. Each teacher
received feedback from the performance of each of their pupil
who participated in the study. The teacher received the stanine
scores based on the results of the total sample at each grade level.
No other feedback or rewards were given.

The study was conducted as a collaboration with schools from
tens of municipalities. Research permission and ethical approval
were applied from the local educational research committee of
each municipality separately. A research permit was obtained,
and the participating pupils’ parents were informed about the
study following the instructions and policy of each municipal
school authority.

The total sample size was 4,265 pupils from third to ninth
grade in two national languages (Finnish, n � 2,833, and Swedish,
n � 1,432) in Finland. In Table 1, there is a summary of the
number of pupils broken by grade, gender, and language.

The Tasks and the Assessments
In this pilot study, data were collected using seven tasks.
However, due to an experimenter error, only six of those tasks
are used in this analysis, namely, Number comparison, Digit dot
matching, Number series, Single-digit addition, Single-digit
subtraction, and Multi-digit calculations (addition/subtraction).
In the Number series and Multi-digit Calculation tasks, there
were five different parallel versions of the task, which were
randomly allocated to the subjects. It means that in the same
classrooms, the subjects did slightly different versions of the test
batteries.

The teachers were given word-by-word instructions on how to
conduct the assessments. After login the pupils were able to
proceed in their own speed with the tasks without further
instructions from the teacher or other interruptions. Each task
started with instructions and had a practice task with 4–5 practice
items before that actual task.

The median reaction times and accuracy by grade, gender, and
language are presented in the supplementary materials.

Number Comparison
Two single-digit two Arabic numbers were presented on the
screen, and the subject was asked to press as soon as possible the
button (or key if using a computer) on the same side where the
larger of the two numbers was. Each subject was shown a total of
52 items, of which ten were removed from the score calculation
(items containing either 1 or 9). The remaining 42 items consisted

of pairs of numbers from two to eight. The presentation order of
the number pairs for each subject was fully randomized. The
score used in the analysis was an efficiency score (the median
reaction time of the correct responses divided by the percentage
of correct responses). Split-half reliability of the task was
Spearman-Brown � 0.924, Guttman split-half � 0.845.

Digit Dot Matching Task
In this equivalence task, the subjects were asked to press as fast as
they could one of the two buttons (“same” or “different” or one of
the two keys if using a computer) based on the equivalence of the
quantities presented in the stimuli. There was an Arabic number
on the left side and a randomly organized dot pattern on the right
side. The matching pairs (all numbers from 1 to 9) were presented
twice, and the remaining nonmatching items were divided into
small-difference (e.g., 3 vs. 4) and large-difference items (e.g., 3 vs.
8). A total of 42 items were presented. The score used in the
analysis was an efficiency score (the median reaction time of the
correct responses divided by the percentage of correct responses).
Split-half reliability of the task was Spearman-Brown � 0.756,
Guttman split-half � 0.756.

Number Series
A total of 20 series of numbers were presented in order of
difficulty. In each item, there were four numbers, and the
subject was asked to continue the series based on the rule that
the four numbers formed. There were five parallel versions of the
series, each containing five same anchor items. The maximum
time to solve the problems was 5 min. The score used in the
analysis was an efficiency score (the median reaction time of the
correct responses divided by the percentage of correct responses).
Split-half reliability of the task was Spearman-Brown � 0.803,
Guttman split-half � 0.707.

Single-Digit Addition
All 81 single-digit number combinations from 1 to 9 were
presented to the subject as an addition (e.g., 3 + 4 � _) in a
quasi-random order. There was a digital number pad on the screen
which the subject could use to type in the answer (also, the number
keys on a computer keyboard could be used). The subjects were
instructed to answer as many items as they could during the 2 min
time limit. During the last 15 s of the task, there appeared a warning
about the ending of the response time. The score was the number of
correct items in 2 min. Split-half reliability of the task was
Spearman-Brown � 0.995, Guttman split-half � 0.995.

Single-Digit Subtraction
The reverse of the single-digit addition task was presented as
subtractions (e.g., 7–3 � _; the answer of the addition task as the
minuend). All 81 number combinations were presented in a
quasi-random order to the subject. There was a digital number
pad on the screen which the subject could use to type in the
answer (also, the number keys on a computer keyboard could be
used). The subjects were instructed to answer as many items as
they could during the 2 min time limit. During the last 15 s of the
task, there appeared a warning about the ending of the response
time. The score was the number of correct items in 2 min. Split-

TABLE 1 | The sample sizes in different cells of grade, gender, and language.

Grade Finnish Swedish Total

Boys Girls Boys Girls Boys Girls Total

3 198 191 129 148 327 339 666
4 137 154 163 185 300 339 639
5 178 184 117 91 295 275 570
6 191 189 134 129 325 318 643
7 282 240 93 87 375 327 702
8 273 269 53 58 326 327 653
9 183 164 19 26 202 190 392
Total 1,442 1,391 708 724 2,150 2,115 4,265
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half reliability of the task was Spearman-Brown � 0.993, Guttman
split-half � 0.993.

Multi-Digit Addition and Subtraction
Five different series of addition and subtraction tasks were created
from two-to four-digit numbers (e.g., 20 + 50 � _, 320–80 � _) in
order of difficulty (i.e., the number of steps required to calculate
the answer). Each item in the parallel versions was created to have
a matching pair in the other series. Twenty out of the 80 items
were anchor items across the series. The subjects were instructed
to answer as fast as possible. The score was the number of correct
items in 3 min. During the last 15 s of the task, there appeared a
warning about the ending of the response time. Split-half
reliability of the task was Spearman-Brown � 0.993, Guttman
split-half � 0.992.

Statistical Analysis
The analyses were conducted with the SPSS (version 26) and
Mplus (version 8.4) statistical software. The factor structure of the
FUNA-DB was explored utilizing confirmatory factor analysis
(CFA). More specifically, a one-factor model that assumes that all
tasks load on an overall basic numerical skills factor was
compared to a two-factor model consisting of a number
processing factor (number comparison, digit-dot matching)
and an arithmetic fluency factor (Number Series, Single-digit
Addition, Single-digit Subtraction, Multi-digit Calculations).
Measurement invariance was tested with multigroup CFA. In
multigroup CFA, a series of nested models are fitted to the data
where the endpoints are the least restrictive model with no
invariance constraints and the most restrictive model where all
parameters are forced to equality across groups (Bollen, 1989). In
all analyses, we used the Full information maximum likelihood
(FIML) that uses all available data as the estimator. We used chi-
square (X2), the Comparative Fit Index (CFI), the Tucker-Lewis
Index (TLI), and the Root Mean Square Error of Approximation
(RMSEA) as model-fit indicators. The CFI and TLI vary along a
0-to-1 continuum, and values greater than 0.90 and 0.95 typically
reflect acceptable and excellent fit to the data, respectively.
RMSEA values of less than 0.05 and 0.08 reflect a close fit and
a reasonable fit to the data, respectively (Marsh, Hau, and Wen,
2004). To compare nested models, we looked at the change in CFI
and RMSEA (Chen, 2007). According to Chen (2007), support for
the more parsimonious model requires a change in CFI (ΔCFI) of
less than 0.01 or a change in RMSEA (ΔRMSEA) of less than
0.015. We used CFA with covariates to investigate the combined
effect of sex, language, and grade levels on basic number skills.

To calculate the variance ratios, we used the standard scores by
grade levels and then summed up the results over the grade levels.
The variance ratio was calculated by dividing the male standard
deviation with the female standard deviation. A larger value
indicates a larger male variance.

To estimate the ratio of males and females at the ends of
the distribution, low and high performers, we transformed the
standard scores into Stanines (standard nine). We used the lowest
and highest stanine values (1, 9) as low- and high-performance
criteria. This procedure leads to groups of approximately four
percentiles at both ends of the distribution.

RESULTS

Outliers and Reliability
In the tasks where the item reaction time was used to calculate
the score (Number Comparison, Digit Dot Matching, Number
Series), we used three steps to clean the data. First, based on
eyeballing the data, extremely long response times were
deleted manually as they would have had a large impact on
the mean and standard deviation of the items (e.g., there were
few cases where for an unknown reason the subject had
stopped answering and the response to an item was over a
minute). After this, values above three standard deviations of
the mean were excluded. Similarly, values under 350 ms were
considered unrealistic response times and were excluded from
the analyses.

The second step was to clean the cases based on accuracy. In
Number Comparison and Digit Dot Matching tasks, cases with
the number of correct answers within the binomial probability of
guessing (p<0.05; less than 65% correct) were removed from the
analysis.

The Number Series task and the three calculation tasks had an
open answer field; therefore, a different procedure to remove
cases was used. Cases with less than two correct answers were
removed from further analysis because we could not confirm that
the subject would have tried to answer the items. The reliability of
the tasks was investigated with the Spearman-Brown and
Guttman split-half coefficients (split-half reliability), where a
value over 0.7 indicates adequate internal consistency. The
descriptives are presented in Table 2. More detailed
information about the performances by gender and language
groups is presented in Supplementary Material.

FUNA-DB Factor Structure
The analyses started with an investigation of the factor structure
of the FUNA-DB measure. First, a one-factor model where all
subtasks were set to load on a basic numerical skills factor was
fitted to the data, χ29) � 1,638.174, p<0.001; CFI � 0.875; TLI �
0.791; RMSEA � 0.206. This model did not fit the data very well,
and modification indices indicated that the Number
Comparison and Digit Dot Matching might form a separate
number-processing factor while Number Series, Single-digit
Addition, Single-digit Subtraction, and Multi-digit
Calculations would load on a separate factor. Hence, a two-
factor model with a number-processing factor and an arithmetic
fluency factor was fitted to the data. This model showed good
model fit and was superior compared to the one-factor model,
Δχ2(1) � 1,409.114, p<0.001; ΔCFI � 0.11; ΔRMSEA � 0.13;
χ2(8) � 229.060, p<0.001; CFI � 0.983; TLI � 0.968; RMSEA
� 0.081.

Measurement Invariance Across Test
Version, Gender, Language Group, and
Grade Level
After finding the optimal factor structure, our analyses continued
with multigroup CFAs to test for measurement invariance across
test versions, gender, language group, and grade.
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The configural model, which assumes the same factor
structure but allows the factor loadings and indicator
intercepts to vary across groups, was set as the baseline model
in the multigroup CFAs. This model was then compared to a
metric invariance (equal factor loadings) and a scalar invariance
(equal factor loadings and intercepts) model. Scalar invariance
was supported for test version, gender, and language group,
ΔCFI<0.01; ΔRMSEA<0.015 (Table 3). Concerning the grade
level, the metric model showed a worse model fit than the
configural model in terms of ΔCFI � 0.017 but not according
to ΔRMSEA<0.015. The scalar model also showed a worse model
fit than the metric model in terms of ΔCFI � 0.027 but not
according to ΔRMSEA<0.015. Likewise, the scalar model also
showed an adequate model fit (Table 3). Therefore these results
indicated that FUNA-DB factor scores could be compared across
grades. When looking at the factor means and variances, there
was a clear association with the grade level. The factor means
increased with the grade level for both the number-processing
factor and arithmetic fluency factor, indicating that older students
had both higher number processing skills and arithmetic fluency.
The variance in number-processing skills decreased when the
grade level increased. The opposite pattern emerged in arithmetic
fluency. It indicates that individual differences were smaller in

number-processing skills and larger in arithmetic fluency in older
students compared to younger students.

Relating FUNA-DB Factor Scores to
Gender, Language Group, and Grade Level
Next, having established measurement invariance, the FUNA-DB
number-processing factor and arithmetic fluency factor were
regressed on the gender, language group, and grade level, χ2(20)
� 476.077, p<0.001; CFI � 0.970; TLI � 0.950; RMSEA � 0.073. This
model explained 37.1% of the variance in the number-processing
factor and 25.9% of the variance in the arithmetic fluency factor. Girls
had better number-processing skills (β � 0.06) while boys had higher
arithmetic fluency (β �-0.09). Likewise, the Swedish-speaking
students had better number-processing skills (β � 0.11) and
arithmetic fluency (β � 0.08). As expected, the grade level had the
strongest relations to the number-processing factor (β � 0.63) and
arithmetic fluency factor (β � 0.51), indicating that older students
had higher scores in number-processing and arithmetic fluency tasks.

To probe for possible interaction effects between the gender,
language group, and grade level, a model including interaction terms
was fitted to the data, χ2(32) � 498.873, p<0.001; CFI � 0.969; TLI �
0.951; RMSEA � 0.059 (Figure 2). This model explained 37.7% of

TABLE 2 | Means and standard deviations of and correlations among the basic numerical skills tasks.

Task Girls Boys Total

M(SD) M(SD) M(SD) F1.1 F1.2 F2.1 F3.1 F3.2 F3.3

F1.1 Number comparison 1,283(410) 1,246(360) 1,264(380) 1
F1.2 Digit-dot matching 2,540(910) 2,673(900) 2,606(910) 0.721 1
F2.1 Number series 15,977(10,640) 14,834(13,020) 15,411(11,890) 0.541 0.587 1
F3.1 Single-digit addition 37(12.8) 39(14.7) 38(13.8) −0.532 −0.591 −0.731 1
F3.2 Single-digit subtraction 34(11.9) 36(13.8) 35(12.9) −0.493 −0.555 −0.724 0.854 1
F3.3 Multi-digit calculations 15(6.4) 16(6.9) 16(6.7) −0.426 −0.506 −0.664 0.685 0.761 1

Note: All correlations were significant at p<0.001.

TABLE 3 | Summary of goodness of fit for all models used in establishing measurement invariance across test version, gender, language group, and grade level for the
dyscalculia screener (FUNA-DB).

Model χ² Df p CFI TLI RMSEA ΔCFI ΔRMSEA

Test version
Configural invariance 284.936 40 0.0000 0.981 0.965 0.085
Metric invariance 310.155 56 0.0000 0.980 0.974 0.074 0.001 0.011
Scalar invariance 328.474 72 0.0000 0.980 0.979 0.065 0.000 0.009

Gender
Configural invariance 254.580 16 0.0000 0.982 0.966 0.084
Metric invariance 268.682 20 0.0000 0.981 0.972 0.076 0.001 0.008
Scalar invariance 380.712 24 0.0000 0.973 0.966 0.084 0.008 0.008

Language group
Configural invariance 256.378 16 0.0000 0.982 0.965 0.084
Metric invariance 268.709 20 0.0000 0.981 0.971 0.076 0.001 0.008
Scalar invariance 287.749 24 0.0000 0.980 0.975 0.072 0.001 0.004

Grade level
Configural invariance 247.594 56 0.0000 0.981 0.965 0.075
Metric invariance 449.467 80 0.0000 0.964 0.953 0.087 0.017 0.012
Scalar invariance 749.418 104 0.0000 0.937 0.936 0.101 0.027 0.014
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the variance in the number-processing factor and 26.0% of the
variance in the arithmetic fluency factor. Gender and language
groups were no longer significant predictors of number
processing, but the interaction gender x grade level (β � 0.15)
and language group x grade level (β � 0.20) were significant. As
shown in Figure 3A, the gender difference in favor of girls increased
by the grade level. Likewise, the difference between language groups
in favor of Swedish-speaking students increased by the grade level
(Figure 3B). Concerning arithmetic fluency, the gender and grade
level were the only significant predictors, not the interaction effects.

Variance Ratio and Gender Differences in
the Groups With Extreme Values
We calculated standard scores for each grade level separately to
analyze the means, variance, and variance ratio. The standardized
means and variances are presented in Table 4.

There were systematic differences in arithmetic fluency tasks
between the genders. First, boys performed better than girls (all
p< 0.001), even though the effect size of this difference was small.
Second, boys had a larger variance than girls, indicated by the
variance ratios above VR>1.10 in all arithmetic fluency tasks
(variance ratios for each task at each grade level are presented in
the Supplementary Material).

The number-processing tasks behaved differently. In both the
number comparison task and the digit-dot equivalence matching
task, there was no systematic gender difference in the variance
ratio. In the number comparison task, there was a small difference
in average performance favoring boys (p. � 005), but the effect
size of this difference was extremely small. The digit-dot
equivalence matching task was the only task where girls
performed better than boys (p< 0.001) (Table 4).

Last we looked at the gender ratios in the extreme groups. The
groups were formed using the extreme Stanine groups 1 and 9,

FIGURE 2 | Predicting number processing and arithmetic skills with gender, language group, and grade level. Note. ns � number processing; ar � arithmetic skills;
sex � gender; grade � grade level; lang � language group; sxg � sex x grade level; sxl � sex x language group; lxg � language group x grade level; zf11b � number
comparison; zf12b � dot enumeration; f31 � single-digit addition; f32 � single-digit subtraction; f33 �multi-digt addition and subtraction; zf21b � arithmetic reasoning.
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each compromising about 4 percent from the end of the distribution.
In all tasks measuring Arithmetic fluency, we can find more boys
than girls in the groups or very low performing as well as very high-
performing pupils (Table 5), replicating the “male variance
hypothesis” (all Chi-squared <0.05). However, the number-

processing tasks behaved differently. In the Number Comparison
task, we find more girls than boys in the group of low performers,
and in the digit-dot matching task, there are more girls in the upper
end of the skill distribution (all Chi-squared<0.05). Adding language
into the subgrouping did not affect the results.

FIGURE 3 | (A) The two-way interaction between gender and grade level on number processing. lang � language group, (B) The two-way interaction between
language group and grade level on number processing. Note. lang � language group; Fin � Finnish-speaking students; Swe � Swedish-speaking students.
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DISCUSSION

The present study is the first to investigate both gender and language
differences at the same time in basic number skills in a large sample
and with a large age range of school-aged children. Our results
showed a linear development trend in basic number skills from third
to ninth grade (9–15 years old in Finland). The tasks we had selected
into the test battery FUNA-DB displayed good reliability and validity
evidence across grade levels. A two-factor model built from number-
processing skills and arithmetic fluency was found to be invariant
across test versions, gender, language groups, and grade levels, and
all subtasks displayed good split-half reliability.

A two-factor model suited the data better than a one-factor of
numerical skills. The subtasks Number Comparison and Digit-dot
Matching loaded on a number-processing factor, and the arithmetic
subtasks including a numerical reasoning task (Number series)
loaded on an arithmetic fluency factor. This finding is in line
with existing developmental models of mathematical skills (e.g.,
Krajewski and Schneider, 2009; Aunio andRäsänen, 2016; Braeuning
et al., 2020) that differentiates between arithmetic skills and more
basic number-processing skills.

Furthermore, these basic skills are critical indicators for
mathematical learning difficulties in both younger and older
children (De Smedt et al., 2013; Zhang et al., 2017). The fact
that our measure was found invariant across grade levels (grades
3–9) lends support to the view that students withMLD, regardless
of the grade level, have problems with these basic numerical skills.
Moreover, this finding and the reliability evidence indicate that
the tasks selected for the assessment can be used to evaluate basic
number skills across grade levels from 3 to 9.

We found that both these basic number skills showed a linear
developmental trend across cohorts from grade 3 to grade 9.
Concerning arithmetic fluency, this is expected as students use and
train these skills during regular math classes. The age-related
improvements in number-processing skills from grade 3 to grade 9
extend the finding of Brankaer et al. (2017). They observed similar
changes in their numerical magnitude comparison measure from
grade 1 to grade 6. It could imply two things. First, it might mean that
the precision of the neurocognitive system for numerical
representations matures at least till the late teenage years. Similar
results have been reported in the same age range concerning the
development of nonsymbolic magnitude comparison (Halberda et al.,
2012). Second, it could indicate that the relationship between number
processing and more advanced mathematics content might be more
reciprocal than previously expected. The relationship would not be
unidirectional where more advanced mathematical skills are built on
basic number skills, but that practice on curriculum-based
mathematics would also affect your fluency in very basic number
processing leading to linear development in basic skills fromearly years
at least to the upper primary grades.

The observed increase in variance with the grade level has also
been shown in previous studies (Aunio et al., 2004; Zhang et al.,
2017). An increase in variance from one grade level to another
means that the difference between low- and high-performing
students increases from one year to another. This kind of
“Matthew effect” has been often discussed in mathematics.
However, our results showed that this effect is at least partly
task-dependent phenomena. We did not find a similar increase in
number processing as was found in arithmetic fluency.

The second focus of our study was on looking at the gender
effects on the developmental trends in basic number skills using large
cross-sectional data. In our results, gender was differentially related
to number-processing skills and arithmetic fluency. In number-
processing skills, there was an increasing difference between genders
favoring girls and Swedish-speaking pupils. Therefore, our results
with tasks measuring number processing were more in accordance
with the results of the mathematical achievement studies (Figure 1).

A systematic, but weak language-effect has been found in dual-
digit comparison tasks (Nuerk et al., 2005). Moeller et al. (2015)
showed that in dual-digit Arabic number comparison task, there is a
systematic effect how the verbal structure of naming the numbers
affects processing them. Finnish and Swedish share the same decade-
unit structure in their verbal number system. Likewise, Pletzer et al.
(2013) have shown a small gender difference in dual-digit

TABLE4 | The standardized means, standard deviations, and variance ratios (VR) in all tasks.

Task M Sd VR

Boy Girl F Eta squared Boy Girl

Number comparison 0.04 −0.04 6.29* 0.002 0.97 1.03 0.94
Digit-dot matching −0.11 0.11 35.57*** 0.013 0.99 1.00 0.99
Number series 0.17 −0.17 95.62*** 0.03 1.08 0.89 1.22
Single-digit addition 0.12 −0.12 41.08*** 0.014 1.08 0.90 1.20
Single-digit subtraction 0.12 −0.12 36.29*** 0.014 1.08 0.90 1.19
Multi-digit calculations 0.11 −0.10 23.90*** 0.011 1.04 0.95 1.10

Notes. VR � Variance ratio.
*p<0.05. **p<0.01. ***p<0.001.

TABLE5 | Percentages of subjects by gender in the low- and high-performing
groups.

Tasks Low performers High performers

Boys Girls Boys Girls

% % % %

Number comparison 40.1 59.9 57.3 42.7
Digit-dot matching 59.5 40.5 41.6 58.4
Number series 52.1 47.9 74.1 25.9
Single-digit addition 63.4 36.6 69.6 30.4
Single-digit subtraction 55.0 45.0 73.3 26.7
Multi-digit calculations 53.3 46.7 63.8 36.2
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comparison tasks, based on gender differences in global/local
strategies. Adding a dual-digit comparison task into our battery
would make it stronger to identify these effects in studies with
multiple languages, and especially between languages with different
structures of verbal number systems (e.g. Finnish vs. German).
However, our number-processing tasks used only one-digit
numbers. The Swedish number words are slightly shorter than
Finnish words, but if that would have produced an effect, then
there should have been a systematic difference from the early grades.
We found a systematically increasing difference between the
language groups in basic number processing, supporting our
speculation that the language differences here reflect more
cultural than cognitive effects.

However, the arithmetic fluency factor showed a different trend.
Irrespective of grade and language, boys performed systematically
better irrespective of the task measuring arithmetic fluency. We
could not replicate Hutchison et al. (2019) results that gender
similarity would be the dominating feature of the basic number
skills.We conclude that both task-dependent and culture-dependent
factors are affecting the gender similarities and differences.

The question of the reciprocal relationship between different
basic number skills is interesting. A recent longitudinal study
from first to sixth grade by Vanbinst et al. (2019) found that
arithmetic skills predicted symbolic numerical magnitude
processing longitudinally. Despite relatively high
intercorrelation, these two types of factors showed different
developmental trends in our cross-sectional study. A
longitudinal approach is needed to confirm that the gender
and language-dependent trends found in our study are not
only a reflection of this specific moment of measurement. We
must remember that in studies on curriculum-based
mathematics, the results on gender differences have changed
dramatically from 1 decade to another.

The previous studies with smaller sets of numerical tasks, smaller
range of age groups, and smaller samples have shown mixed results
concerning the gender differences or gender similarities. The recent
studies of Bakker et al. (2019) and Hutchison et al. (2019) claimed
that there would be no gender differences in basic number skills. Our
questionwas if we can replicate their results in a different educational
culture and with a wider age range, or if their and our results would
reflectmore the results typically found in the curriculum-basedmath
achievement studies. Their study was conducted in the Netherlands,
where there are no significant gender differences in mathematical
skills at school age. Our study was conducted in Finland, where there
has been a recent trend toward girls and especially Swedish-speaking
girls performing better in mathematics than the other groups.
Interestingly, only the number-processing factor seemed to follow
similar trends as the more curriculum-based mathematical
assessments. More direct studies are needed to assess the extent
of reciprocity between the development of basic number skills and
mathematical skills.

Like the developmental trends, the boy/girl variance ratios and
ratios of girls vs. boys at the end of the distributions differed in the two
factors. The tasks in the Arithmetic fluency factor followed the typical
“male variance hypothesis,” showing larger variance for boys than for
girls. These values are very close to those presented by Nowell and
Hedges (1998) in their analysis of gender variance from the dataset

extending fifty years back. Our study is in line with the findings that
even though the differences inmeans between the genders havemostly
vanished during the last decades, the differences in variances have not.
However, we found that this is also task-dependent because we did not
find gender differences in variance in basic number-processing tasks
(Number Comparison and Digit-dot Matching task).

Last we looked at gender differences in extremes via analyzing the
gender ratios in the groups of low and high performers.We defined a
pupil as a high or low performer if they belonged to the lowest or
highest Stanine (standard nine) group. That means approximately
four percent from both ends of the distribution. Reigosa-Crespo et al.
(2012), in their large sample with similar skill factors (number
processing and arithmetic), found a different ratio of boys and
girls in low-performing pupils in tasks measuring number-
processing skills (Number Comparison and Digit-dot Matching
tasks in our study). In their study, there was twice the number of
low-performing boys as girls, but they did not find any gender
differences in the group of high performers. Our results did not fully
replicate those results. In five out of six tasks, we found a significant
overrepresentation of boys in the group of high performers (stanine
class 9). Only in the Digit-dotMatching equivalence tasks, more girls
showed high performance than boys. Similarly to Reigosa-Crespo’s
study, there were significantly more boys at the lower end of the
distribution (stanine class 1) in four of the six tasks in our sample.
However, in our study, the gender difference in the low-performing
group was not as marked as among the high performers. As an
exception, there were more girls than boys in the group of low
performers in the number comparison task.

Boys were overrepresented at both ends of the distribution in
most of our tasks. It was especially clear in arithmetic tasks.
Depending on the arithmetic task, there were 1.09–1.73 times
more boys than girls in low performers and 1.75–2.86 times more
boys in the high-performing group. These numbers are close to
those Nowell and Hedges (1998) reported from NAEP and other
sizeable national level samples from the United States.

Limitations and Implications for Research
and Practice
Although our measure displayed reliability and validity evidence,
several limitations need to be considered when interpreting the
results. First, our findings are based on cross-sectional data, and
therefore we could not investigate the test–retest reliability of our
measure. One important criterion for MLD is persistent low
performance in mathematics (Mazzocco and Räsänen, 2013).
With a longitudinal design, we could investigate the stability of
MLD status with our measure. Second, we did not include other
measures of mathematical skills to establish convergent validity. It
would also have allowed us to see if the same children would be
identified as at-risk forMLDwith differentmathmeasures. Evenwhen
considering these shortcomings, our study adds to the literature by
showing that it is possible to measure basic numerical skills with the
same tasks across a broad age span. There seems to be a linear
developmental trend in basic numerical skills from grade 3 to grade 9.
Future longitudinal studies are needed to see if our results on
increasing gender differences in number processing can be
replicated in our and other educational cultures and if the
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relationships within and between basic number skills and curriculum-
based math skills are reciprocal, as our data indicate.

We can only speculate on why we found an increase in girl
advantage in number-processing skills by grade levels as our
cross-sectional data did not allow for predictions over the
grade level. One possible explanation could be that because
15-year-old girls in Finland outperform boys in curriculum-
based mathematics (TIMMS 2018), this advantage would
positively affect number processing (see Vanbinst et al.,
2019 for a similar mechanism concerning arithmetic and
basic number processing). This explanation would also fit
the increasing advantage for Swedish-speaking pupils in
number processing compared to Finnish-speaking
students (TIMMS, 2018). However, our results with tasks
measuring arithmetic fluency did not support the reciprocal
development hypothesis. The results of the arithmetic
fluency tasks were more in accordance with the theories
of “male advantage” and “male variance hypothesis.”
Additional studies are needed to analyze if domain-
general cognitive factors (spatial skills, verbal fluency)
could partly explain the differences in results from one
task to another.

There are several practical implications from our study. The
validity information and the linear developmental trend indicate
that it would be possible to use the same measure as a screener
across several grade levels. This is important if we want to
measure the development of the pupils objectively from one
grade level to another. This kind of measure makes it easier
for educators to conduct systematic screening for students at-risk
for MLD and follow their development. The measure might also
be suitable to assess the effects of interventions for students with
special needs in mathematics education. Future studies will show
how well these tasks suit repeated measurements in the context of
intervention effectiveness studies.

Several findings in our study were task-dependent: the
trends of development, gender differences, and the gender
ratios among the low and high performers. Even though this
kind of findings makes it difficult to build one theoretically
meaningful interpretation of the results, it informs the
researchers of numerical cognition about a crucial detail:
individual and group differences may be hidden if we use
summary scores of multiple variables. Developmental and
cognitive factors and effects from educational practices and
cultural factors may differently affect different numerical
tasks. More studies analyzing the development of skills in
basic number processing with different types of tasks are
needed.

Finally, our study showed that even within a very homogenous
and equality-nurturing culture such as Finland, we can find
effects from gender and language. The language effect is
fascinating because the tasks used only Arabic numbers,
mathematical symbols, and dot patterns as stimuli. Luckily,

the online format of the test battery allows us to build
collaboration for cross-cultural studies between different
countries and educational cultures easily.

The validity and reliability data of the pilot study indicate that
we have good grounds to continue the development of the online
FUNA-DB battery to be used as a tool to detect individual
differences in basic number skills in the age group from 9 to
15 years. Future studies will show how well the battery suits
differentiating low performance from specific learning disabilities
(Mazzocco andRäsänen, 2013) and whether our tasks are
sensitive enough to detect intervention effectiveness. The pilot
study results encourage us to continue to construct assessment
tools that can build a bridge between empirical research and
educational practice.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Municipal research committees. Written
informed consent from the participants’ legal guardian/next of
kin was not required to participate in this study in accordance
with the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

PR and JK contributed equally to the task development, designing
the tasks and the data collecting, data analysis and writing of the
manuscript, PA, AL, AH, and EV participated in project work
and writing the manuscript, JF participated in the data analysis,
TR and M-JL participated in the task design, building the online
assessments and building the datasets.

FUNDING

This research was supported by a grant from the Swedish Cultural
Foundation in Finland (140884) to the research project.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/feduc.2021.683672/
full#supplementary-material

Frontiers in Education | www.frontiersin.org July 2021 | Volume 6 | Article 68367213

Räsänen et al. Gender Differences in Basic Number Skills

122

https://www.frontiersin.org/articles/10.3389/feduc.2021.683672/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feduc.2021.683672/full#supplementary-material
https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


REFERENCES

Anastasi, A. (1958). Differential Psychology. 3rd ed. New York, NY: Macmillan.
Aunio, P., Ee, J., Lim, S. E. A., Hautamäki, J., Luit, V., and Johannes, E. H. (2004).

Young Children’s Number Sense in Finland, Hong Kong and Singapore. Int. J.
Early Years Educ. 12, 196–216. doi:10.1080/0966976042000268681

Aunio, P., Niemivirta, M., Hautamäki, J., Van Luit, J. E., Shi, J., and Zhang, M.
(2006). Young Children’s Number Sense in China and Finland. Scand. J. Educ.
Res. 50 (5), 483–502. doi:10.1080/00313830600953576

Aunio, P., and Räsänen, P. (2016). Core Numerical Skills for LearningMathematics
in Children Aged Five to Eight Years – a Working Model for Educators.
Eur. Early Child. Educ. Res. J. 24 (5), 684–704. doi:10.1080/
1350293X.2014.996424

Badian, N. A. (1983). Dyscalculia and Nonverbal Disorders of Learning. Prog.
Learn. disabilities 5, 235–264.

Bakker, M., Torbeyns, J., Wijns, N., Verschaffel, L., and De Smedt, B. (2019).
Gender equality in 4-to 5-year-old Preschoolers’Early Numerical
Competencies. Develop. Sci. 22 (1), e12718. doi:10.1111/desc.12718

Barbaresi, W. J., Katusic, S. K., Colligan, R. C., Weaver, A. L., and Jacobsen, S. J.
(2005). Math Learning Disorder: Incidence in a Population-Based Birth Cohort,
1976–82, Rochester, Minn. Ambul. Pediatr. 5 (5), 281–289. doi:10.1367/A04-
209R.1

Bartelet, D., Ansari, D., Vaessen, A., and Blomert, L. (2014). Cognitive Subtypes of
Mathematics Learning Difficulties in Primary Education. Res. Develop.
Disabilities 35, 657–670. doi:10.1016/j.ridd.2013.12.010

Blume, F., Dresler, T., Gawrilow, C., Ehlis, A. C., Goellner, R., and Moeller, K.
(2021). Examining the Relevance of Basic Numerical Skills for Mathematical
Achievement in Secondary School Using aWithin-Task Assessment Approach.
Acta Psychologica 215, 103289. doi:10.1016/j.actpsy.2021.103289

Bollen, K. A. (1989). Structural Equations with Latent Variables. New York: Wiley.
Braeuning, D., Ribner, A., Moeller, K., and Blair, C. (2020). The Multifactorial

Nature of Early Numeracy and its Stability. Front. Psychol. 11, 518981.
doi:10.3389/fpsyg.2020.518981

Brankaer, C., Ghesquiére, P., and De Smedt, B. (2017). Symbolic Magnitude
Processing in Elementary School Children: A Group-Administered Paper-
And-Pencil Measure (SYMPTest). Behav. Res. Methods 49, 1361–1373.
doi:10.3758/s13428-016-0792-3

Bull, R., Cleland, A. A., and Mitchell, T. (2013). Gender Differences in the Spatial
Representation of Number. J. Exp. Psychol. Gen. 142, 181–192. doi:10.1037/
a0028387

Butterworth, B. (2005). The Development of Arithmetical Abilities. J.Child
Psychol.Psychiatry 46 (1), 3–18. doi:10.1111/j.1469-7610.2004.00374.x

Committee for Economic Development of Australia [CEDA] (2013). Women in
Leadership: Understanding the Gender gap. CEDA, Available at: .http://adminpanel.
ceda.com.au/folders/Service/Files/Documents/15355∼cedawiljune%202013final.pdf

Conole, G., and Warburton, B. (2005). A Review of Computer-Assisted
Assessment. ALT-J 13 (1), 17–31. doi:10.1080/0968776042000339772

De Smedt, B., Noël, M. P., Gilmore, C., and Ansari, D. (2013). How Do Symbolic
and Non-symbolic Numerical Magnitude Processing Skills Relate to Individual
Differences in Children’s Mathematical Skills? AReview of Evidence from Brain
and Behavior. Trends Neurosci. Educ. 2 (2), 48–55. doi:10.1016/
j.tine.2013.06.001

Devine, A., Soltész, F., Nobes, A., Goswami, U., and Sz}ucs, D. (2013). Gender
Differences in Developmental Dyscalculia Depend on Diagnostic Criteria.
Learn. Instruction 27, 31–39. doi:10.1016/j.learninstruc.2013.02.004

Dirks, E., Spyer, G., van Lieshout, E. C., and de Sonneville, L. (2008).Prevalence of
Combined reading and Arithmetic Disabilities. J.Learn. Disabilities 41 (5),
460–473. doi:10.1177/0022219408321128

Feingold, A. (1992). Sex Differences in Variability in Intellectual Abilities: A New
Look at an Old Controversy. Rev. Educ. Res. 62 (1), 61–84. doi:10.3102/
00346543062001061

Fennema, E. (1974). Mathematics Learning and the Genders. J. Res. Maths. Educ. 5,
126–129. doi:10.2307/748949

Geary, D. C., Bow-Thomas, C. C., Liu, F., and Siegler, R. S. (1996). Development of
Arithmetical Competencies in Chinese and American Children: Influence of
Age, Language, and Schooling. Child. Develop. 67 (5), 2022–2044. doi:10.1111/
j.1467-8624.1996.tb01841.x

Goldin, C. (2014). A Grand Gender Convergence: Its Last Chapter. Am. Econ. Rev.
104 (4), 1091–1119. doi:10.1257/aer.104.4.1091

Gunderson, E. A., Ramirez, G., Beilock, S. L., and Levine, S. C. (2012). The Relation
between Spatial Skill and Early Number Knowledge: The Role of the Linear
Number-Line. Develop. Psychol. 48, 1229. doi:10.1037/a0027433

Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., and Germine, L. (2012). Number
Sense across the Lifespan as Revealed by aMassive Internet-Based Sample. Proc.
Natl. Acad. Sci. 109 (28), 11116–11120. doi:10.1073/pnas.1200196109

Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S., and
Gernsbacher, M. A. (2007). The Science of Gender Differences in Science
and Mathematics. Psychol. Sci. Public Interest 8, 1–51. doi:10.1111/j.1529-
1006.2007.00032.x

Halpern, D. F. (1986). Gender Differences in Cognitive Abilities. Hillsdale, NJ:
Erlbaum.

Hellstrand, H., Korhonen, J., Räsänen, P., Linnanmäki, K., and Aunio, P. (2020).
Reliability and Validity Evidence of the Early Numeracy Test for Identifying
Children at Risk for Mathematical Learning Difficulties. Int. J. Educ. Res. 102,
101580. doi:10.1016/j.ijer.2020.101580

Hutchison, J. E., Lyons, I. M., and Ansari, D. (2019). More Similar ThanDifferent:
Gender Differences in Children’s Basic Numerical Skills Are the Exception Not
the Rule. Child. Develop. 90 (1), e66–e79. doi:10.1111/cdev.13044

Hyde, J. S., Fennema, E., and Lamon, S. J. (1990). Gender differences in
mathematics performance: a meta-analysis. Psychol. Bull. 107 (2), 139–155.
doi:10.1037/0033-2909.107.2.139

Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B., and Williams, C. C. (2008).
Gender Similarities Characterize Math Performance. Science 321, 494–495.
doi:10.1126/science.1160364

Jordan, N. C., Kaplan, D., Ramineni, C., and Locuniak, M. N. (2009). Early Math
Matters: Kindergarten Number Competence and LaterMathematics Outcomes.
Develop. Psychol. 45 (3), 850–867. doi:10.1037/a0014939

Kersey, A. J., Braham, E. J., Csumitta, K. D., Libertus, M. E., and Cantlon, J. F.
(2018). No Intrinsic Gender Differences in Children’s Earliest Numerical
Abilities. npj Sci. Learn. 3 (1), 1–10. doi:10.1038/s41539-018-0028-7

Koumoula, A., Tsironi, V., Stamouli, V., Bardani, I., Siapati, S., Graham, A., et al.
(2004). An Epidemiological Study of Number Processing and Mental
Calculation in Greek School children. J. Learn. Disabilities 37 (5), 377–388.
doi:10.1177/00222194040370050201

Krajewski, K., and Schneider, W. (2009). Early Development of Quantity to
Number-word Linkage as a Precursor of Mathematical School Achievement
and Mathematical Difficulties: Findings from a Four-Year Longitudinal Study.
Learn. Instruction 19, 513–526. doi:10.1016/j.learninstruc.2008.10.002

Krinzinger, H.,Wood, G., andWillmes, K. (2012).What Accounts for Individual and
Gender Differences in the Multi-Digit Number Processing of Primary School
Children? Z. für Psychol. 220 (2), 78–89. doi:10.1027/2151-2604/a000099

Kupari, P., Vettenranta, J., and Nissinen, K. (2012). Oppijala ̈hto ̈ista ̈
PedagogiikkaaEtsimaän̈. KahdeksannenLuokanOppilaidenMatematiikan
JaLuonnontieteidenOsaaminen. Koulutuksentutkimuslaitos: Jyväskylänyliopistopaino.
Available at: https://ktl.jyu.fi/vanhat/julkaisut/julkaisuluettelo/julkaisut/2012/d106.

Kupiainen, S., Hautamäki, J., and Karjalainen, T. (2009). The Finnish Education
System and PISA. Helsinki, Finland: Ministry of Education. Available at: https://
julkaisut.valtioneuvosto.fi/bitstream/handle/10024/75640/opm46.pdf.

Levine, S. C., Foley, A., Lourenco, S., Ehrlich, S., and Ratliff, K. (2016). Gender
Differences in Spatial Cognition: Advancing the Conversation. Wiley
Interdiscip. Rev. Cogn. Sci. 7, 127–155. doi:10.1002/wcs.1380

Lewis, C., Hitch, G. J., andWalker, P. (1994). The Prevalence of Specific Arithmetic
Difficulties and Specific reading Difficulties in 9-to 10-year-old Boys and Girls.
J.Child Psychol. Psychiatry 35 (2), 283–292. doi:10.1111/j.1469-
7610.1994.tb01162.x

Li, Y., Zhang, M., Chen, Y., Deng, Z., Zhu, X., and Yan, S. (2018). Children’s Non-
symbolic and Symbolic Numerical Representations and Their Associations with
Mathematical Ability. Front. Psychol. 9, 1035. doi:10.3389/fpsyg.2018.01035

Lindberg, S. M., Hyde, J. S., Petersen, J. L., and Linn, M. C. (2010). New Trends in
Gender and Mathematics Performance: AMeta-Analysis. Psychol. Bull. 136,
1123–1135. doi:10.1037/a0021276

Lyons, I. M., Nuerk, H., and Ansari, D. (2015). Rethinking the Implications of
Numerical Ratio Effects for Understanding the Development of
Representational Precision and Numerical Processing across Formats. J. Exp.
Psychol. Gen. 144, 1021–1035. doi:10.1037/xge0000094

Frontiers in Education | www.frontiersin.org July 2021 | Volume 6 | Article 68367214

Räsänen et al. Gender Differences in Basic Number Skills

123

https://doi.org/10.1080/0966976042000268681
https://doi.org/10.1080/00313830600953576
https://doi.org/10.1080/1350293X.2014.996424
https://doi.org/10.1080/1350293X.2014.996424
https://doi.org/10.1111/desc.12718
https://doi.org/10.1367/A04-209R.1
https://doi.org/10.1367/A04-209R.1
https://doi.org/10.1016/j.ridd.2013.12.010
https://doi.org/10.1016/j.actpsy.2021.103289
https://doi.org/10.3389/fpsyg.2020.518981
https://doi.org/10.3758/s13428-016-0792-3
https://doi.org/10.1037/a0028387
https://doi.org/10.1037/a0028387
https://doi.org/10.1111/j.1469-7610.2004.00374.x
http://adminpanel.ceda.com.au/folders/Service/Files/Documents/15355%7Ecedawiljune%202013final.pdf
http://adminpanel.ceda.com.au/folders/Service/Files/Documents/15355%7Ecedawiljune%202013final.pdf
http://adminpanel.ceda.com.au/folders/Service/Files/Documents/15355%7Ecedawiljune%202013final.pdf
https://doi.org/10.1080/0968776042000339772
https://doi.org/10.1016/j.tine.2013.06.001
https://doi.org/10.1016/j.tine.2013.06.001
https://doi.org/10.1016/j.learninstruc.2013.02.004
https://doi.org/10.1177/0022219408321128
https://doi.org/10.3102/00346543062001061
https://doi.org/10.3102/00346543062001061
https://doi.org/10.2307/748949
https://doi.org/10.1111/j.1467-8624.1996.tb01841.x
https://doi.org/10.1111/j.1467-8624.1996.tb01841.x
https://doi.org/10.1257/aer.104.4.1091
https://doi.org/10.1037/a0027433
https://doi.org/10.1073/pnas.1200196109
https://doi.org/10.1111/j.1529-1006.2007.00032.x
https://doi.org/10.1111/j.1529-1006.2007.00032.x
https://doi.org/10.1016/j.ijer.2020.101580
https://doi.org/10.1111/cdev.13044
https://doi.org/10.1037/0033-2909.107.2.139
https://doi.org/10.1126/science.1160364
https://doi.org/10.1037/a0014939
https://doi.org/10.1038/s41539-018-0028-7
https://doi.org/10.1177/00222194040370050201
https://doi.org/10.1016/j.learninstruc.2008.10.002
https://doi.org/10.1027/2151-2604/a000099
https://ktl.jyu.fi/vanhat/julkaisut/julkaisuluettelo/julkaisut/2012/d106
https://julkaisut.valtioneuvosto.fi/bitstream/handle/10024/75640/opm46.pdf
https://julkaisut.valtioneuvosto.fi/bitstream/handle/10024/75640/opm46.pdf
https://doi.org/10.1002/wcs.1380
https://doi.org/10.1111/j.1469-7610.1994.tb01162.x
https://doi.org/10.1111/j.1469-7610.1994.tb01162.x
https://doi.org/10.3389/fpsyg.2018.01035
https://doi.org/10.1037/a0021276
https://doi.org/10.1037/xge0000094
https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., and Ansari, D. (2014).
Numerical Predictors of Arithmetic success in Grades 1–6. Develop. Sci. 17,
714–726. doi:10.1111/desc.12152

Maccoby, E. E., and Jacklin, C. N. (1974). The Psychology of Sex Differences.
Stanford: Stanford University Press.

Mazzocco, M. M., and Myers, G. F. (2003). Complexities in Identifying and
Defining Mathematics Learning Disability in the Primary School-AgeYears.
Ann.dyslexia 53 (1), 218–253.

Mazzocco, M.M., and Räsänen, P. (2013). Contributions of Longitudinal Studies to
Evolving Definitions and Knowledge of Developmental Dyscalculia.Trends
Neuroscience Education 2 (2), 65–73. doi:10.1016/j.tine.2013.05.001

Moeller, K., Shaki, S., Göbel, S. M., and Nuerk, H. C. (2015). Language Influences
Number Processing–AQuadrilingualStudy. Cognition 136, 150–155.
doi:10.1016/j.cognition.2014.11.003

Molnár, G., and Csapó, B. (2019). “Technology-based Diagnostic Assessments for
Identifying Early Mathematical Learning Difficulties,” in In International
Handbook of Mathematical Learning Difficulties. Editors A-M. Fritz,
V. Haase, and P. Räsänen (Cham: Springer), 683–707.

Mullis, I. V. S., Martin, M. O., Foy, P., Kelly, D. L., and Fishbein, B. (2020). TIMSS
2019 International Results in Mathematics and Science. Retrieved from Boston
College, TIMSS & PIRLS International Study Center. Available at: https://
timssandpirls.bc.edu/timss2019/international-results/

Nowell, A., and Hedges, L. V. (1998). Trends in Gender Differences in Academic
Achievement from 1960 to 1994: An Analysis of Differences in Mean, Variance,
and Extreme Scores. Sex roles 39 (1), 21–43. doi:10.1023/A:1018873615316

Nuerk, H. C., Weger, U., and Willmes, K. (2005). Language Effects in Magnitude
Comparison: Small, but NotIrrelevant. Brain Lang. 92 (3), 262–277.
doi:10.1016/j.bandl.2004.06.107

O’Dea, R. E., Lagisz, M., Jennions, M. D., and Nakagawa, S. (2018). Gender
Differences in Individual Variation in Academic Grades Fail to Fit Expected
Patterns for STEM. Nat. Commun. 9 (1), 1–8. doi:10.1038/s41467-018-06292-0

OECD (2019). PISA 2018 Results (Volume I): What Students Know and Can Do.
Paris: PISA, OECD Publishing. doi:10.1787/5f07c754-en

OECD (2015). PISA the ABC of Gender equality in Education Aptitude, Behaviour,
Confidence: Aptitude, Behaviour, Confidence. Paris: OECD Publishing.
doi:10.1787/9789264229945-en

Parker, P. D., Van Zanden, B., and Parker, R. B. (2018). Girls GetSmart, Boys Get
Smug: Historical Changes in Gender Differences in Math, Literacy, and
Academic Social Comparison and Achievement. Learn. Instruction 54,
125–137. doi:10.1016/j.learninstruc.2017.09.002

Penner, A. M., and Paret, M. (2008). Gender Differences in Mathematics
Achievement: Exploring the Early Grades and the Extremes. Soc. Sci. Res. 37
(1), 239–253. doi:10.1016/j.ssresearch.2007.06.012

Pletzer, B., Kronbichler, M., Nuerk, H. C., and Kerschbaum, H. (2013).Sex
Differences in the Processing of Global vs. Local Stimulus Aspects in a
Two-Digit Number Comparison Task–An fMRI Study. PloS one 8 (1),
e53824. doi:10.1371/journal.pone.0053824

Ramaa, S., and Gowramma, I. P. (2002). A Systematic Procedure for Identifying
and Classifying Children with Dyscalculia Among Primary School Children in
India. Dyslexia 8 (2), 67–85. doi:10.1002/dys.214

Räsänen, P. (2015). “Computer-assisted interventions on basic number skills,” in
The Oxford Handbook of Mathematical Cognition. Editors R. Cohen Kadosh
and A. Dowker (Oxford University Press), 745–766.

Räsänen, P., Laurillard, D., Käser, T., and von Aster, M. (2019). “Perspectives to
Technology- Enhanced Learning and Teaching in Mathematical Learning
Difficulties,” in International Handbook of Mathematical Learning
Difficulties: From lab to classroom. Editors A. Fritz, V. Haase, and
P. Räsänen (Cham: Springer International Publishing), 733–754.

Reigosa-Crespo, V., Valdés-Sosa, M., Butterworth, B., Estévez, N., Rodríguez, M.,
Santos, E., et al. (2012). Basic Numerical Capacities and Prevalence of
Developmental Dyscalculia: the Havana Survey. Develop. Psychol. 48 (1),
123. doi:10.1037/a0025356

Reilly, D., Neumann, D. L., and Andrews, G. (2017). Investigating Gender
Differences in Mathematics and Science: Results from the 2011 Trends in

Mathematics and Science Survey. Res. Sci. Educ. 49 (1), 25–50. doi:10.1007/
s11165-017-9630-6

Reinert, R. M., Huber, S., Nuerk, H. C., and Moeller, K. (2016). Gender Differences
in Number-Line Estimation: The Role of Numerical Estimation. Br. J. Psychol.
108 (2), 334–350. doi:10.1111/bjop.12203

Resnick, I., Newcombe, N. S., and Jordan, N. C. (2019). “The Relation between
Spatial Reasoning and Mathematical Achievement in Children with
Mathematical Learning Difficulties,” in International Handbook of
Mathematical Learning Difficulties.Editors A-M. Fritz, V. Haase, and
P. Räsänen (Cham: Springer), 423–435.

Rosselli, M., Ardila, A., Matute, E., and Inozemtseva, O. (2009).Gender Differences
and Cognitive Correlates of Mathematical Skills in School-AgedChildren.
Child. Neuropsychol. 15, 216–231. doi:10.1080/09297040802195205

Royer, J. M., Tronsky, L. N., Chan, Y., Jackson, S. J., and Marchant, H., III (1999).
Math-fact Retrieval as the Cognitive Mechanism Underlying Gender
Differences in Math TestPerformance. Contemp. Educ. Psychol. 24 (3),
181–266. doi:10.1006/ceps.1999.1004

Shalev, R. S., Auerbach, J., Manor, O. H. A. D., and Gross-Tsur, V. (2000).
Developmental Dyscalculia: Prevalence and Prognosis. Eur. Child Adolesc.
Psychiatry 9 (2), S58–S64. doi:10.1007/s007870070009

Shen, C., Vasilyeva, M., and Laski, E. V. (2016). Here, but NotThere: Cross-
National Variability of Gender Effects in Arithmetic. J. Exp. Child Psychol. 146,
50–65. doi:10.1016/j.jecp.2016.01.016

Thompson, C. A., and Opfer, J. E. (2008). Costs and Benefits of Representational
Change: Effects of Context on Age and Gender Differences in Symbolic
Magnitude Estimation. J. Exp. Child Psychol., 101, 20–51.doi:10.1016/
j.jecp.2008.02.003

van Tetering, M., van der Donk, M., De Groot, R. H. M., and Jolles, J. (2019). Sex
Differences in the Performance of 7–12 Year Olds on aMental Rotation Task
and the Relation with Arithmetic Performance. Front. Psychol. 10,
107.doi:10.3389/fpsyg.2019.00107

Vanbinst, K., Ghesquière, P., and De Smedt, B. (2019). Is the Long-Term Association
between Symbolic Numerical Magnitude Processing and Arithmetic Bi-
directional? J. Numer. Cogn. 5 (3), 358–370. doi:10.5964/jnc.v5i3.202

Vettenranta, J., Hiltunen, J., Kotila, J., Lehtola, P., Nissinen, K., Puhakka, E., et al.
(2020a). PerustaidoistaVauhtiaKoulutielle: NeljännenLuokanOppilaiden
MatematiikanJaLuonnontieteidenOsaaminen: KansainvälinenTIMSS 2019-
tutkimusSuomessa. Jyväskylä: Koulutuksentutkimuslaitos. Available at: https://jyx.
jyu.fi/bitstream/handle/123456789/73016/1/4-TIMSS-2019%20JULKAISU.pdf.

Vettenranta, J., Hiltunen, J., Kotila, J., Lehtola, P., Nissinen, K., Puhakka, E., et al.
(2020b). TulevaisuudenAvaintaidotPuntarissa: KahdeksannenLuokanOppilaiden
MatematiikanJaLuonnontieteidenOsaaminen: KansainvälinenTIMSS 2019-
tutkimusSuomessa. Jyväskylä: Koulutuksentutkimuslaitos. Available at: https://
jyx.jyu.fi/bitstream/handle/123456789/73019/2/8-TIMSS-2019%20JULKAISU_eidt.pdf.

Wei, W., Lu, H., Zhao, H., Chen, C., Dong, Q., and Zhou, X. (2012). Gender
Differences in Children’s Arithmetic Performance Are Accounted for by
Gender Differences in Language Abilities. Psychol. Sci. 23, 320–330.
doi:10.1177/0956797611427168

Zhang, X., Räsänen, P., Koponen, T., Aunola, K., Lerkkanen, M. K., and Nurmi,
J. E. (2017). Knowing, Applying, and Reasoning about Arithmetic: Roles of
Domain-General and Numerical Skills in Multiple Domains of Arithmetic
Learning. Develop. Psychol. 53 (12), 2304–2318. doi:10.1037/dev0000432

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Räsänen, Aunio, Laine, Hakkarainen, Väisänen, Finell, Rajala,
Laakso and Korhonen. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Education | www.frontiersin.org July 2021 | Volume 6 | Article 68367215

Räsänen et al. Gender Differences in Basic Number Skills

124

https://doi.org/10.1111/desc.12152
https://doi.org/10.1016/j.tine.2013.05.001
https://doi.org/10.1016/j.cognition.2014.11.003
https://timssandpirls.bc.edu/timss2019/international-results/
https://timssandpirls.bc.edu/timss2019/international-results/
https://doi.org/10.1023/A:1018873615316
https://doi.org/10.1016/j.bandl.2004.06.107
https://doi.org/10.1038/s41467-018-06292-0
https://doi.org/10.1787/5f07c754-en
https://doi.org/10.1787/9789264229945-en
https://doi.org/10.1016/j.learninstruc.2017.09.002
https://doi.org/10.1016/j.ssresearch.2007.06.012
https://doi.org/10.1371/journal.pone.0053824
https://doi.org/10.1002/dys.214
https://doi.org/10.1037/a0025356
https://doi.org/10.1007/s11165-017-9630-6
https://doi.org/10.1007/s11165-017-9630-6
https://doi.org/10.1111/bjop.12203
https://doi.org/10.1080/09297040802195205
https://doi.org/10.1006/ceps.1999.1004
https://doi.org/10.1007/s007870070009
https://doi.org/10.1016/j.jecp.2016.01.016
https://doi.org/10.1016/j.jecp.2008.02.003
https://doi.org/10.1016/j.jecp.2008.02.003
https://doi.org/10.3389/fpsyg.2019.00107
https://doi.org/10.5964/jnc.v5i3.202
https://jyx.jyu.fi/bitstream/handle/123456789/73016/1/4-TIMSS-2019%20JULKAISU.pdf
https://jyx.jyu.fi/bitstream/handle/123456789/73016/1/4-TIMSS-2019%20JULKAISU.pdf
https://jyx.jyu.fi/bitstream/handle/123456789/73019/2/8-TIMSS-2019%20JULKAISU_eidt.pdf
https://jyx.jyu.fi/bitstream/handle/123456789/73019/2/8-TIMSS-2019%20JULKAISU_eidt.pdf
https://doi.org/10.1177/0956797611427168
https://doi.org/10.1037/dev0000432
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Quantitative and Qualitative
Differences in the Canonical and the
Reverse Distance Effect and Their
Selective Association With Arithmetic
and Mathematical Competencies
Stephan E. Vogel1*, Thomas J. Faulkenberry2 and Roland H. Grabner1

1Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria, 2Department of Psychological Sciences,
Tarleton State University, Stephenville, TX, United States

Understanding the relationship between symbolic numerical abilities and individual differences in
mathematical competencies has become a central research endeavor in the last years. Evidence
on this foundational relationship is often based on two behavioral signatures of numerical
magnitude and numerical order processing: the canonical and the reverse distance effect. The
former indicates faster reaction times for the comparison of numerals that are far in distance (e.g.,
2 8) compared to numerals that are close in distance (e.g., 2 3). The latter indicates faster reaction
times for the ordinal judgment of numerals (i.e., are numerals in ascending/descending order)
that are close in distance (e.g., 2 3 4) compared to numerals that are far in distance (e.g., 2 4 6).
While a substantial body of literature has reported consistent associations between the canonical
distance effect and arithmetic abilities, rather inconsistent findings have been found for the
reverse distance effect. Here, we tested the hypothesis that estimates of the reverse distance
effect show qualitative differences (i.e., not all participants show a reverse distance effect in the
expected direction) rather than quantitative differences (i.e., all individuals show a reverse
distance effect, but to a different degree), and that inconsistent findings might be a
consequence of this variation. We analyzed data from 397 adults who performed a
computerized numerical comparison task, a computerized numerical order verification task
(i.e., are three numerals presented in order or not), a paper pencil test of arithmetic fluency, as
well as a standardized test to assess more complex forms of mathematical competencies. We
found discriminatory evidence for the two distance effects. While estimates of the canonical
distance effect showed quantitative differences, estimates of the reverse distance effect showed
qualitative differences. Comparisons between individuals who demonstrated an effect and
individuals who demonstrated no reverse distance effect confirmed a significant moderation on
the correlationwithmathematical abilities. Significantly larger effectswere found in the groupwho
showedan effect. These findings confirm that estimates of the reverse distance effect are subject
to qualitative differences and that we need to better characterize the underlying mechanisms/
strategies that might lead to these qualitative differences.

Keywords: individual differences, canonical distance effect, reverse distance effect, arithmetic abilities,
mathematical competencies
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INTRODUCTION

In the past years, there has been an increase in interest to better
understand the cognitive foundation of symbolic numerical abilities
and its relationship to arithmetic and mathematical competencies.
This upsurge has emerged from the observation that arithmetic
abilities are equally important for life success as literacy (Parsons and
Bynner, 2005) and that deficits in this domain can have detrimental
effects on individuals wellbeing aswell as on nation’s economy (Gross
et al., 2009). Results of this research have provided evidence that
measures of two symbolic concepts are associated with arithmetic
abilities: numerical magnitude (i.e., knowledge about which numeral
is larger or smaller) and numerical order (i.e., knowledge about the
relative rank or position of a numeral with a sequence).

The existing evidence on the relationship of these basic numerical
abilities with arithmetic abilities is largely based on two behavioral
signatures: The canonical distance effect and the reverse distance effect.
The canonical distance effect emerges when participants decide as fast
as possible, withoutmakingmistakes, which of two numerals is larger/
smaller (e.g., 2 6). Reaction timemeasures of this comparison task have
been shown to be inversely related to the numerical distance of the
numerals (Moyer and Landauer, 1967). In other words, participants
are faster when the distance between the numerals is larger (e.g., 8 2)
compared to when it is smaller (e.g., 2 3). The canonical distance effect
is a well replicated finding (e.g., De Smedt et al., 2009; Holloway and
Ansari, 2009; Lonnemann et al., 2011; Sasanguie et al., 2012; Vogel
et al., 2015; Goffin and Ansari, 2016) and, although still debated, it is
assumed to reflect the internal representation of numerical quantities
(Moyer and Landauer, 1967; for alternative explanations see; Van
Opstal et al., 2008; Zorzi and Butterworth, 1999).

Individual differences of the canonical distance effect show a
consistent negative correlation with arithmetic performance
(i.e., the smaller the canonical distance effect, the better arithmetic
performance) in children (e.g., De Smedt et al., 2009; Holloway and
Ansari, 2009; Lonnemann et al., 2011; Sasanguie et al., 2012; Vogel
et al., 2015) as well as in adults (e.g., Goffin and Ansari, 2016;
Maloney et al., 2010). In other words, individuals who perform better
in arithmetic demonstrate a smaller canonical distance effect
compared to individuals who perform worse, possibly due to a
more precise representation of symbolic numerical quantities
(Holloway and Ansari, 2009). Significant differences in the size of
the canonical distance effect have also been reported for individuals
with learning difficulties (i.e., developmental dyscalculia; e.g.,
Ashkenazi et al., 2008; Delazer et al., 2006; Price et al., 2007;
Rousselle and Noël, 2007). Together, these findings indicate a
significant correlative association with arithmetic and
mathematical abilities, which a meta-analysis quantified with a
small effect size of r � 0.1351 (Schneider et al., 2017; for a review
see; De Smedt et al., 2013).

The reverse distance effect relates to the numerical order verification
task (Franklin et al., 2009; Lyons and Beilock, 2011). In this task
participants verify as fast as possible, without making mistakes,
whether the order of three numerals is correct (e.g., 2 3 4) or
incorrect (e.g., 3 4 2). Several studies have shown that ordinal
judgment tends to be faster for adjacent numbers (e.g., 2 3 4)
compared to distant numbers (e.g., 2 4 6) in the correct order
condition (i.e., numbers that are in correct ascending or
descending order). Because of its opposite direction, i.e., faster
reaction times for small distances, the effect has been labeled as the
reversal of the canonical distance effect (Turconi et al., 2006; Franklin
et al., 2009; Lyons and Beilock, 2011; Lyons and Beilock, 2013). Several
studies have confirmed the existence of a reverse distance effect in
children (Lyons and Ansari, 2015; Vogel et al., 2015) as well as in
adults (Franklin et al., 2009; Lyons and Beilock, 2011; Lyons and
Beilock, 2013;Vogel et al., 2017;Vogel et al., 2019;Vos et al., 2017; Sella
et al., 2020). And although the nature of the reverse distance effect is not
well understood, some research indicates that it is associated with an
effective retrieval mechanism of learned ordinal sequences from long-
term memory (Lyons et al., 2016; Sasanguie and Vos, 2018; Vogel
et al., 2019; Sella et al., 2020; Sommerauer et al., 2020). While items
with larger distances might be solved via a sequential and procedural
comparison process (e.g., 2 4 6 � 2 > 4 and 4 > 6), small distances
(especially consecutive items)might be retrieved as sequence-lists (e.g.,
chunks, Dehaene et al., 2015) from long-term memory.

In contrast to the canonical distance effect, inconsistent
findings have been reported in the few studies that have
investigated the correlative association between the reverse
distance effect and arithmetic abilities. Some studies have
found a negative (i.e., the smaller the reverse distance effect,
the better arithmetic performance; Goffin and Ansari, 2016),
while other studies have found a positive (i.e., the larger the
reverse distance effect, the better arithmetic performance; Vogel
et al., 2019) or no relationship at all (Orrantia et al., 2019; Vogel
et al., 2015; Vogel et al., 2017; Vos et al., 2017). These findings are
in contrast to the consistently positive correlations reported for
the canonical distance effect.

One possible explanation for the inconsistent findings is that
the reverse distance effect is not a quantitative (i.e., all individuals
show a reverse distance effect, but to a different degree), but
rather a qualitative measure of individual differences (i.e., not all
participants show a reverse distance effect in the expected
direction; see also Faulkenberry and Bowman, 2020; Haaf and
Rouder, 2019). More specifically, the involvement of two (or even
more) strategies in the numerical order verification task could
introduce combinatorial variations that lead to qualitative
differences in how the task is performed. As discussed above,
the processing of ordinal information has been associated with at
least two different strategies: an effective retrieval of learned and
automatized sequences (mainly used with small distances; e.g., 1 2
3) and a less effective sequential magnitude comparison process
(mainly used with larger distances; e.g., 2 4 6). Individual
variations of these strategies could result in qualitative
differences (e.g., some might use magnitude comparison
mechanisms more often than others) that might have
obscured the correlation of the reverse distance effect with
arithmetic and mathematical abilities in previous studies.

1Please note that the calculated effect size did not differentiate between the
canonical distance effect derived from symbolic (i.e., using Arabic numerals)
and non-symbolic (i.e., dot arrays) comparison tasks. Since larger correlations
with mathematical abilities are typically observed with symbolic measurements
(De Smedt et al., 2013; Schneider et al., 2017), a larger effect size might be expected
for the symbolic canonical distance effect.
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Evidence to answer this question is extremely sparse, since
existing studies have assumed a quantitative structure for the
reverse distance effect (e.g., Goffin and Ansari, 2016; Vogel et al.,
2017; Vogel et al., 2019). The possibility of a qualitative structure
has, to the best of our knowledge, not been systematically
investigated or described. Nevertheless, important information
can be gained from studies that have investigated both distance
effects within the same individuals. For instance, (Goffin and
Ansari, 2016) collected data from a sample of 68 adults. The
participants performed a computerized numerical comparison
task to measure the canonical distance effect, a numerical ordinal
verification task to measure the reverse distance effect and a test of
arithmetic performance (i.e., Woodcock Johnson III Tests of
Achievement; Woodcock et al., 2001). The results of the
reaction time analyses showed that the distance effect
measures were uncorrelated with one another (r � 0.17, p �
n.s.) and that both effects explained unique variance in their
relationship with arithmetic performance (canonical distance
effect: r � −0.310, p < 0.05; reverse distance effect: r � −0.422,
p < 0.01). However, the authors did not assess the structure of
individual differences for the reverse and the canonical distance
effect in detail. Figure 2 of that study (p.73; Goffin and Ansari,
2016) indicates that some individuals did not show the expected
reverse distance effect in the ordinal verification task but the
opposite: a canonical distance effect. This finding contrasts the
numerical comparison task in which almost all individuals
showed the expected canonical distance effect. Thus, the result
pattern indicates that estimates of the reverse distance effectmight
be subject to qualitative differences, while estimates of the
canonical distance effect might be of quantitative nature.

In the present work we tested this hypothesis and explored
whether a qualitative individual differences structure for the
estimates of the reverse distance effect moderate the association
with arithmetic and more complex forms of mathematical
abilities. We used the approach of Haaf and Rouder (2017)
and Haaf and Rouder (2019) to investigate the structure of
individual differences for the estimates of the reverse and the
canonical distance effects. Their Bayesian approach instantiates
different models which place varying levels of constraint on
individual differences. Key among these are two models which
reflect qualitative and quantitative individual differences: an
unconstrained model and a positive-effects model. The
unconstrained model allows individual differences to vary
among all possible values (positive or negative), and thus
reflects qualitative differences. The positive-effects model
assumes that all effects are positive. This model reflects
quantitative differences—since all individuals show an effect in
the expected direction (positive values) the only variation is in the
magnitude of the effect. The common-effect model places even
more constraint on individual variation by assuming that
everyone’s distance effect is the same value (i.e., there is an
effect in the expected direction, and the size of the effect is
equal across individuals). The null model is the most constrained
and it specifies that the effect is zero (i.e., there is no effect across
all individuals). The best model fit is then tested using a Bayes
factor model comparison. This novel approach has been
successfully implemented to test the structure of individual

differences in numerical priming effects (Haaf and Rouder,
2019), location and color Stroop effects (Haaf and Rouder,
2019), numerical size congruity effects (Faulkenberry and
Bowman, 2020), and the truth effect (Schnuerch et al., 2020).

As an alternative, clustering methods (e.g., latent profile
analysis) could be used to model individual differences in the
various distance effects. Such methods work by collapsing the
high dimensional space of response variables into configural
profiles (or clusters), allowing the analyst to classify
individuals based on cluster membership. One limitation of
such methods is that they do not clearly account for the
qualitative distinctions between positive and negative effects.
As Haaf and Rouder (2019) point out, a cluster analysis would
likely place two individuals with true distance effects of −20 and
20 ms into the same cluster, whereas two individuals with true
effects of 20 and 200 ms would not be placed together. We believe
that the distinction between positive and negative distance effects
is important, as each points to a different theoretical mechanisms
of number processing. Thus, instead of using a single model (e.g.,
a clustering model), we compared several different models, each
of which specified a different level of constraint on the true
distance effects that could be present among individuals.

Using data from a group of adults who performed a
computerized numerical comparison task, a numerical order
verification task, a paper-pencil test of arithmetic fluency, as
well as a standardized measure assessing mathematical abilities,
we tested the following hypotheses: 1) Is there a canonical and a
reverse distance effect on the group level? Based on a large body of
evidence we expected to replicate a) significant faster reaction
times for large distances compared to small distances in the
numerical comparison task, and b) significant faster reaction
times for small distances compared to large distances in the
correct order condition of the numerical order verification task.
2) Are individual differences in the distance effects quantitative or
qualitative? Based on our hypothesis described above, we
expected that the best Bayesian model fit for the estimates of
the reversed distance effect would be an unconstrained model
(i.e., not all participants show a distance effect in the expected
direction), while the best fit for the estimates of the canonical
distance effectwould be a positive-effect model (i.e., all individuals
show a canonical distance effect, but to a different degree). 3) Do
the model estimates of the reverse distance effect moderate the
association with arithmetic and mathematical abilities? Based on
our hypothesis, we expected that if the estimates of the reverse
distance effect are subject to qualitative differences, the correlative
association with arithmetic and mathematical abilities should be
significantly larger in a selected group of individuals who truly
show a reverse distance effect, in comparison to a group of
individuals who show no evidence for a reverse distance effect.

METHODS

Participants
We collected behavioral data from 450 adult participants (273
females; Mage � 22.32; SD � 4.66, range � 17–50). From this data
set, we removed individuals with missing data (n � 18) and
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individuals who reported neurological disorders and/or learning
disabilities (n � 35). Thus, the final sample comprised 397 healthy
participants (258 females; 354 right-handed, 29 left-handed, 14
ambidextrous) with a Mage of 22.32 (SD � 4.74; range � 17–50)
years. All subsequent analyses are based on this final sample.
Approximately 43% of the participants were students and
reported to be enrolled in psychology, 19% in science, 18% in
humanities, 11% in engineering, 5% in law or economics, and 3%
without categorization. All participants gave written informed
consent prior to participation and received feedback regarding
their intellectual abilities after testing as incentive for taking part
in the study. The local ethics board of the University of Graz
approved the study.

Materials
RawData, analyses scripts and supplementalmaterials can be accessed
via the open science framework (OSF) using the following link: https://
osf.io/jvmc2/?view_only�64abdcbd0cac4ca0b8154ebbcc4437a2.

Numerical Comparison Task
Two single-digit numerals were horizontally presented on a
computer screen (e.g., 2 8), and participants had to indicate as
accurately and as fast as possible which of the two numbers is
numerically larger (see Figure 1A; see also supplemental
materials for a detailed list of the stimuli). The reason for
including only single-digit numbers is that the comparison (or
the ordinal verification) of two-digit numbers introduces
additional reaction time effects that are not the focus of the
present work (e.g., compatibility effect, decade crossing; Franklin
et al., 2009; Nuerk et al., 2001). Therefore, the stimuli consisted of
the Hindu-Arabic numerals 1 to 9. In half of the trials, the larger
numeral was presented on the left side. In the other half, the larger
numeral was presented on the right side. The numerical distance
between the numerals (i.e., inter-item distance) was

systematically manipulated to measure the canonical distance
effect. We categorized trials (80 in total) into small (40 trials with a
numerical distance of one and two: e.g., 2 3; 5 3) and large inter-
item distance trials (40 trials with a numerical distance of five and
six: e.g., 2 7; 8 2).

The presentation of the stimuli started with a fixation
(500 ms), then the two numerals were simultaneously
presented until a key response was given (maximum
presentation time of the two numerals 1500 ms), followed by a
blank screen with a variable jitter (calculated as the difference
between 1500 ms and the response time of the trial). Reaction
time data were recorded to estimate individual’s canonical
distance effect for correct trials.

Numerical Order Verification Task
This task was adapted from Vogel et al. (2017) and Vogel et al.
(2019). Three single-digit Arabic numerals were horizontally
presented on a computer screen (see Figure 1B; see also
Supplementary Material for a detailed list of the stimuli) and
participants had to evaluate, as accurately and as fast as possible,
whether the three numbers represent a correct (e.g., 2 3 4) or
incorrect numerical order (e.g., 2 4 3). Again, only single-digit
numbers were used to avoid additional reaction time effects. The
stimuli consisted of the Hindu-Arabic numerals 1 to 9. In half of
the trials, the numerals were arranged in a correct ascending/
descending order (e.g., 2 3 4; 6 5 4). In the other half, the numerals
were arranged in an incorrect mixed order (e.g., 2 4 3; 4 2 3).
Again, the inter-item distance was manipulated in order to
measure the reverse distance effect. We categorized items into
small (30 trials with a numerical distance of one: e.g., 2 3 4) and
large distance trials (30 trials with a numerical distance of two or
three: e.g., 2 4 6, 2 5 8).

Stimuli presentation started with a fixation cross (500 ms),
then the three numerals were simultaneously presented on the
screen until a key response was given (maximum presentation
time of 2000 ms). A blank screen with a variable jitter (calculated
as the difference between 2000 ms–response time) was presented
at the end of each trial. We recorded reaction time data to
estimate the reverse distance effect for the correct order condition.

Arithmetic Fluency
We assessed arithmetic performance with a paper-pencil task
designed in our laboratory (Schillinger et al., 2018; Vogel et al.,
2017; Vogel et al., 2019; the assessment with all items can be
found on OSF) based on the French kit test (French et al., 1963).
The task measures the ease with which individuals can solve small
and large multiplications, additions, and subtractions problems.

Small problems include 64 single-digit multiplications (e.g.,
5 × 7), 128 single-digit additions (e.g., 4 + 7), and 128 subtractions
with a minuend between 4 and 20 and a single-digit subtrahend
(e.g., 16–8). Research has shown that adults solve such simple
arithmetic problems, especially multiplications and additions, by
retrieving the respective solution from long-term memory
(Ashcraft, 1992; Campbell and Xue, 2001; Grabner and De
Smedt, 2011).

Large problems included 60 problems for each operation.
Multiplications were composed of a double-digit number

FIGURE 1 | Timing of a trial in (A) the numerical comparison and (B) the
numerical order verification task. After showing a fixation cross, the numbers
were presented on the screen. Participants responded via a button press.
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(smaller than 100) and a single-digit number (e.g., 39 × 5),
additions required to sum up three double-digit numbers (e.g.,
30 + 98 + 59), and subtractions consisted of two double-digit
numbers (e.g., 82–31). Research has shown that such complex
arithmetic problems usually require the application of an
arithmetic procedure to be solved (Ashcraft, 1992; Campbell
and Xue, 2001; Grabner and De Smedt, 2011).

In the test session, participants solved as many problems as
possible on each sheet (the operations were printed on separate
sheets) within a limited time (90 s for small and 120 s for large
problems). Instead of a composite score, we calculated scores
(number of correctly solved items) for each operation and
problem sizes (i.e., small subtraction, large subtraction, small
additions, large additions, small multiplications, and large
multiplications).

Mathematics Test (M-PA)
We used the short version of the German mathematics test for
selection of personnel (Mathematiktest für die Personalauswahl,
M-PA; Jasper and Wagener, 2011) to asses individual differences
in higher-order mathematics. The M-PA was developed to assess
mathematical competencies of individuals with at least lower
secondary education between the ages of 16 and 40. The short
version consists of 31 mathematical problems with a multiple-
choice (MC) or open answer (OA) format. Problems cover a wide
range of mathematical topics including fractions (3 OA),
conversion of units (3 OA), exponentiation (7 OA), division
with decimals (2 OA), algebra (1 MC), geometry (1 MC), roots (7
OA), and logarithms (7 OA). Following instructions, participants
had a total of 15 min to solve the problems. The short version of
the M-PA has been reported to have good internal consistency
(Cronbach alpha � 0.89) and to be highly correlated with the long
version of the M-PA (r � 0.93), which contains a total of 77 items
(Jasper and Wagener, 2011). We calculated the total number of
correctly solved items for our statistical analysis.

Procedure
Data collection took place between 2015 and 2019 in a group
testing room at the Institute of Psychology, University of Graz, as
part of a larger and ongoing investigation. We tested participants
in small groups (the size of each group varied from four to twelve
individuals). Upon arriving, participants were seated in front of a
computer screen and a test booklet. Participants worked through
the test booklet and took a pause whenever they reached a page
with a red stop sign. For all speeded tests (e.g., M-PA: 15 min and
arithmetic fluency test: 10.5 min), our experimenters took the
time and informed participants when they had to stop working on
the respective test. Please note that in addition to the above-
described tasks, the test booklet contained several additional
assessments (e.g., tests assessing creativity and personality as
well as questionnaires on math anxiety and general anxiety)
that are not within the scope of the present study. At the end,
participants were asked to answer demographic questions
regarding sex, age, field of study, and final high school grade
in mathematics.

Next, we collected the data from the computerized tasks. The
computerized tasks (i.e., numerical comparison task and the

numerical order verification task) were presented on a Dell
computer (Windows 10 64-bit operating, Intel i5-4590
processor @ 3,3 gigahertz and 8 gigabyte ram) with the stimuli
presentation software Psychopy (version 1.85.3; Peirce, 2008).
Stimuli were visualized with a Samsung S24C450 monitor (24
inch) using a sampling rate of 60 Hz. Before each task,
participants solved 6 practice trials in which they received a
feedback on whether their response was correct or incorrect. The
entire testing took about 2h and 30 min.

MODELING AND ANALYSIS

We used frequentist and Bayesian analyses to answer the
questions of this project. All statistical analyses, including
Bayesian modeling of individual differences, were calculated in
R (R Core Team, 2020). Descriptive statistics provide cumulative
information about all variables and their distributional
properties, whereas inferential statistics are based on reaction
time data (see also Goffin and Ansari, 2016).

Testing Distance Effects on the Group Level
First, we calculated two analysis of variance (ANOVA) for
repeated measurements, including inter-item distance
(distances 1, 2, 5, 6 in the numerical comparison task, and
distances 1, 2, 3 in the numerical ordinal verification task) as
the main factor. Greenhouse Geisser corrected estimates
(Greenhouse and Geisser, 1959) are reported as the data
violated the assumption of equal variance differences across
the conditions (Mauchly’s test of sphericity are all p < 0.05;
Field et al., 2012). We used pairwise t-tests, corrected for multiple
comparisons (false discovery rate (FDR) method; Benjamini and
Hochberg, 1995), to test for significant differences between the
single inter-item distance conditions. Partial-eta (ƞp2) and
Cohen’s d are reported as effect sizes for the ANOVA and t-tests.

Testing the Model Fit of the Distributional
Properties of the Distance Effects
In a second step, we tested the hypothesis of a qualitative model of
the estimates of the reverse distance effect (i.e., not all participants
show the expected reverse distance effect) and the hypothesis of a
quantitative model of the estimates of the canonical distance effect
(i.e., all individuals show the expected canonical distance effect, but
to a different degree). To investigate the structure of individual
differences, we used the approach of Haaf and Rouder (2017) see
also Faulkenberry and Bowman (2020) to develop and to test a set
of four hierarchical Bayesian models. Thus, each of these models
reflects a different underlying distributional structure of the
distance effects θi (see Supplemental Material for a more
detailed description of model specification):

1) The unconstrained model places no constraints on the
individual distance effects. In this model, we allow subjects’
distance effects to vary among all possible values (positive or
negative), so we use this model to capture qualitative
individual differences.
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Mu : θi ∼ Normal(ν, η2) (1)

Here ν and η2 represent the mean and variance, respectively, of
the distribution of individual distance effects θi. The values of ν
and η2 are estimated from the observed data.

2) The positive-effects model places constraints on the
distribution of the distance effects by assuming that all
distance effects are positive. Thus, we use this model to
capture quantitative differences.

M+ : θi ∼ Normal+(ν, η2) (2)

3) The common-effect model places even more constraint on the
distribution of the distance effects by assuming that everyone’s
distance effect is the same value.

M1 : θi � ν (3)

We note that if the common-effect model is the best predictor of our
observed data, then such results would call into question the efficiency
of our experimental design as a test to elicit individual differences.

4) The null model is the most constrained of the four, and it
specifies that each participant’s distance effect is zero:

M0 : θi � 0 (4)

In this model, any observed variation in response times would be
due to sampling noise.

We then used Bayes factors (Jeffreys, 1968; Kass and Raftery,
1995) to test which of the four competing models is the best
predictor of our observed data. Bayes factors index the relative
predictive adequacy of two models by comparing the marginal
likelihood of observed data under one model compared to another
(Faulkenberry et al., 2020). For example, a Bayes factor of 5
indicates that the observed data are five times more likely under
onemodel compared to another (see also SupplementaryMaterial
for a more detailed description of the procedure). To find out how
much these results depended on our choice of prior specification,
we also conducted a sensitivity analysis (see also Supplementary
Material for prior specification). For this we adjusted the prior
scales on the size of our expected reverse and canonical distance
effects, relative to overall variability as well as on the by-subject
variability of the effect, relative to overall variability.

In the case that the model comparisons reveal evidence for an
unconstrained model (i.e., qualitative individual differences), we
further classified individuals according to the type of distance effect
individuals exhibited; that is, either positive, negative, or
undecided. If at least 75% of the posterior samples for a specific
θi were positive [i.e., p(θi > 0 |data)> 0.75], we classified subject i’s
distance effect as “positive”. On the other hand, if at least 75% of
the posterior samples were negative [i.e., p(θi < 0 |data)> 0.75], we
classified subject i’s distance effect as “negative”. In cases where less
than 75% of the samples were positive or negative, we classified
subject i’s distance effect as “undecided”. Based on this
classification we calculated the percentage of individuals who
showed a “positive”, a “negative” or no (undecided) distance
effect. The benchmark for choosing a positive/negative

classification was based on a similar classification by Schnuerch
et al. (2020). Please note that a posterior probability of 0.75 equates
to an odds ratio of 3-to-1, which is considered a minimum
threshold of evidence in Bayesian model comparison.

Testing the Associations of the Reverse
Distance Effect With Arithmetic and
Mathematical Performance
Based on the above model specification, we estimated individual
distance effects θi for each subject and distance effect. This was
done by obtaining 10,000 posterior samples from the unconstrained
model for the parameters θi. Then, the estimate θ̂i of each subject’s
distance effect θi was defined as the mean of these posterior samples.

We then used these individual estimates to explore the impact of
a possible qualitative distribution on the association with arithmetic
and mathematical performance measures. More specifically, we
analyzed whether the size of the correlation coefficients differs as a
factor of whether we include all individuals (as has been done in
previous research) or a selection of individuals (individuals with
evidence for a reverse distance effect) into the analysis. In the first
analysis, we used the entire sample (regardless of whether
individuals showed a distance effect or not) to calculate zero-
order and partial correlations (controlling for age and the other
distance effect) between the distance effects and our measures of
arithmetic fluency (i.e., small and large subtractions, additions and
multiplications) and mathematical competencies (M-PA).

We then repeated the above described correlation analyses
with two selected groups: one group in which all individuals
showed a “positive” reverse distance effect, and another group in
which individuals showed “no-positive effect”.

Finally, we tested whether the size of the observed correlation
coefficients differed across these groups. In other words, we tested
whether correlation coefficients (e.g., the correlation between reverse
distance effect and small subtraction problems) in the “positive
effect” group are significant larger compared to the “no-positive
effect” group. We used r.test from the psych package (Revelle, 2020)
to test for the significance of correlation differences between two
different sample sizes. For this a z-score is calculated that finds the
difference between the z transformed correlations divided by the
standard error of the difference of two z-scores (Cohen et al., 2013).

z � z1 − z2���������
1

(n1−3)+(n2−3)
√ (5)

Obtained p-values from all analyses were FDR corrected for
multiple comparisons. This procedure enabled us to test whether
the association between the reverse distance effect and arithmetic/
mathematical abilities is moderated by group composition.

RESULTS

Descriptive Statistics
Tables 1, 2 depict descriptive statistics of the computerized tasks
(i.e., numerical comparison and numerical order verification), the
arithmetic fluency measures and the M-PA.
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Shapiro-Wilk tests indicated that all measures of the
arithmetic fluency test and the scores from the M-PA differed
significantly from a normal distribution. The distributions of the
small problems showed the following characteristics: The
subtraction scale was right-skewed with a leptokurtic
distribution, the addition scale was right-skewed with a
leptokurtic distribution, the multiplication scale was not
skewed but showed a platykurtic distribution. The
distributions of the large problems showed the following
characteristics: The subtraction scale was right-skewed with a
leptokurtic distribution, the addition scale was right-skewed with
a leptokurtic distribution, and the multiplication scale was right-
skewed with a leptokurtic distribution. The M-PA scale was left-
skewed with a platykurtic distribution.

Inferential Statistics
Distance Effects on the Group Level
We calculated two ANOVAs to test the presence of distance
effects on the group-level. As expected, the results of these
analyses showed significant distance effects for both conditions.
The ANOVA performed on the data in the numerical
comparison task showed a significant effect of inter-item
distance, F(2.02, 801.39) � 967.235, p < 0.001, ƞp2 � 0.71.
T-test comparisons revealed significant differences across all
distances (all comparisons pFDR-adjusted < 0.001; effect sizes
ranged from small, distance 5 ∼ distance 6, d � 0.420, to

large, distance 1 ∼ distance 6, d � 1.819). This pattern is
consistent with the canonical distance effect typically
observed in the numerical comparison task (Moyer and
Landauer, 1967).

The ANOVA performed on the in-order condition of the
numerical order verification task showed a significant effect of
inter-item distance, F(1.86, 738.46) � 22.381, p < 0.001, ƞp2 �
0.053. T-tests revealed that distance 1 trials were significantly
faster than distance 2 trials, t(396) � −5.67, pFDR-adj < 0.001, d �
−0.285 and significantly faster than distance 3 trials, t(396) �
-5.28, pFDR-adj < 0.001, d � −0.265. No significant difference was
found between distance 2 and distance 3 trials, t(396) � -0.04, n.s.,
d � 0.002 (see also Table 1). This pattern is consistent with the
reverse distance effect, i.e., fast reaction times for distance 1 trials
compared to distance 2 and 3 trials (Goffin and Ansari, 2016;
Vogel et al., 2017). The effect sizes of the reverse distance effect are,
however, small.

Individual Difference Structure for the Reverse and
Canonical Distance Effects
To investigate the structure of individual differences associated
with the distance effects, we assessed whether the two effects are
best described by the unconstrained or the positive effects model.
Figure 2 shows the results of the modeling for both distance
effects, Table 3 depicts the results of the Bayes factor comparisons
between the four models.

TABLE 1 | Descriptive statistics of mean reaction time and accuracy measures of the computerized tasks.

Numerical comparison distance 1 distance 2 distance 5 distance 6

RT in ms 489(69) 470(60) 429(50) 422(47)
AC in % correct 93.12(7.19) 95.13(6.00) 99.33(3.28) 99.48(3.16)

Ordinal verification In-order condition Mixed-order condition

distance 1 distance 2 distance 3 distance 1 distance 2 distance 3

RT in ms 745(119) 760(129) 760(127) 851(137) 813(129) 780(134)
AC in % correct 92.88(6.43) 92.69(7.19) 93.54(6.90) 82.06(15.10) 85.68(16.82) 91.14(15.44)

Note: Standard deviations in parenthesis.

TABLE 2 | Descriptive statistics of the arithmetic measures and the M-PA.

Min 1st Qu Median Mean 3rd Qu Max Skew Kurtosis W

Small problems
Subtraction 8 37 47 49 58 106(128) 0.832 0.870 0.987c

Addition 10 52 63 63.68 74 116(128) 0.353 0.456 0.987c

Multiplication 13 29 41 41.12 52 64(64) 0.053 −1.100 0.956b

Large problems
Subtraction 2 17 21 22.92 28 60(60) 0.849 1.258 0.960c

Addition 0 10 13 12.98 16 31(60) 0.592 1.055 0.975c

Multiplication 0 5 9 10.15 13 46(60) 1.497 3.216 0.960c

M-PA 6 17 22 21.16 26 31 −0.484 −0.491 0.963c

ap < 0.05.
bp < 0.01.
cp < 0.001.
Min, minimum value; 1st Qu, first quartile; 3rd Qu, third quartile; Max, maximum value (maximum possible value in parenthesis); Skew, skewness;W, critical values of the Shapiro-Wilk test.
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For the estimates of the canonical distance effect, the
unconstrained model and null model received almost no
support from the data (see Table 3A). Different prior
specifications did not change the overall picture. The positive-
effects model remained the preferred model across all prior
settings (by a factor of approximately 5.6 over the
unconstrained model each time), with little support for either
the common-effect or null model. Thus, our observed data are
evidential for the positive-effects model, indicating quantitative
differences in the canonical distance effect.

The picture for the estimates of the reverse distance effect is
quite different, as the unconstrained model was the preferred
model. The Bayes factor model comparison (see Table 3B)
showed that across the three different sets of prior
specifications, the unconstrained model was the preferred
model by a large factor. The data lend virtually no support for
the positive-effects model, common-effect model, nor the
null model.

These analyses confirmed that whereas individual differences
in the estimates of the canonical distance effect appear to be
quantitative (i.e., everyone exhibits a positive canonical distance
effect of some varying magnitude), individual differences in the

estimates of the reverse distance effect are qualitative (i.e., some
exhibit a positive effect, but others show a negative effect). As
such we further classified the type of the qualitative distribution of
this distance effect. This analysis revealed that 172 (43%)
participants exhibited a “positive” expected reverse distance
effect, 18 (5%) individuals showed evidence for a “negative”
reverse distance effect (i.e., a canonical distance effect), and the
remaining 207 (52%) were classified as “undecided”.

Associations of the Distance Effects With Arithmetic
and Mathematical Performance
Our next step was to elucidate the impact of qualitative individual
differences of the estimates of the reverse distance effect on the
association with arithmetic and math performance. We first
calculated zero-order and partial correlations for the entire sample
(see Supplementary Material for the full correlations matrix). While
the results revealed significant associations between the estimates of
the canonical distance effect and all measures of mathematical
competence (correlation coefficients range from −0.14 to −0.33;
see Table 4A), only two significant correlations were found for the
estimates of the reverse distance effect with small subtractions, r �
−0.11, pFDR-adj < 0.05, and small additions, r � −12, pFDR-adj < 0.05.

FIGURE 2 |Observed and estimated individual differences in (A) the canonical and (B) the reverse distance effect (in ms), ordered by observed effect size. Model-
estimated effects (in blue) are derived from the positive-effect model (positive values) for the canonical distance effect and from the unconstrained model (positive and
negative values) for the reverse distance effect. The red dashed line represents the point estimate for the canonical and reverse distance effect respectively. The gray line
represents observed canonical and reverse distance effects. The gray shaded area denotes the 95% credible interval for the model-estimated effects.

TABLE 3 | Bayes Factor Model Comparisons for (A) the canonical distance effect and (B) the reverse distance effect.

a) Canonical Distance effect

Prior specification Unconstrained Positive-effects Common-effect Null

r] � 1/6, rθ � 1/10 0.19 * 10–51 ≈ 0
r] � 1/12, rθ � 1/20 0.18 * 10–51 ≈ 0
r] � 1/3, rθ � 1/5 0.18 * 10–52 ≈ 0

b) Reverse Distance effect

Prior specification Unconstrained Positive-effects Common-effect Null

r] � 1/6, rθ � 1/10 * ≈ 0 10–13 10–24

r] � 1/12, rθ � 1/20 * ≈ 0 10–8 10–19

r] � 1/3, rθ � 1/5 * ≈ 0 10–9 10–19

Note: The preferred model for each analysis is denoted by an asterisk (*). The remaining cells show the Bayes factor for the indicated model over the preferred model.
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Correlation coefficients ranged from −0.2 to −0.12. These two
associations were non-significant when the estimates of the
canonical distance effect and age were included as control variables.
In contrast, all correlations of the estimates of the canonical distance
effects remained significant when considering the estimates of the
reversed distance effect and age (see also Table 4A).

We now investigated these associations in the group of
individuals (n � 172) who showed evidence for a “positive”
reverse distance effect (i.e., individuals who showed a reverse
distance effect) and those who showed no positive effect (“no-
positive effect” group; i.e., undecided and “negative” distance
effect; n � 225). Results of the correlation analysis (see Table 4B)
revealed significant associations between the reverse distance
effect and small subtractions, small additions, large subtraction,
small multiplication, and the M-PA in the “positive” group.
Correlation coefficients ranged from −0.09 to −0.28. The
above reported correlations remained significant when
considering the estimates of the canonical distance effect and
age in the partial correlation (r values ranged from −0.07 to
−0.26). In contrast, the zero order and partial correlation analyses
(see Table 4C) in the “no-positive effect” group revealed no
significant associations with arithmetic operations and theM-PA.
Correlation coefficients ranged from 0.01 to 0.12 in the zero-
order and from 0.01 to 0.13 in the partial correlation analysis. The
performed z-test showed that correlation coefficients in the
“positive effect” group compared to the “no-positive effect”
group were significantly larger for small subtractions, z �
3.788, p FDR-adj < 0.05, small additions, z � 3.210, p FDR-adj <
0.05, small multiplications, z � 2.186, p FDR-adj < 0.01, large
subtraction, z � 3.075, p FDR-adj < 0.01, and the M-PA, z � 2.779, p
FDR-adj < 0.01. No differences were found for large additions,

z � 1.472, p FDR-adj < n.s., and large multiplications, z � 1.379,
p FDR-adj < n.s.

DISCUSSION

Numerical order processing has been proposed as a significant
predictor of arithmetic abilities (for a review see Lyons et al.,
2016). However, research on the relationship between the reverse
distance effect (i.e., as an index of numerical order processing) and
arithmetic abilities has demonstrated mixed findings: some
studies have found negative (Goffin and Ansari, 2016),
positive (Vogel et al., 2019) or no relationship (Vogel et al.,
2015; Vogel et al., 2017; Vos et al., 2017; Orrantia et al., 2019). In
the present work, we provided evidence that the estimates of the
reverse distance effect are subject to qualitative individual
differences (i.e., not all participants show a reverse distance
effect) and that these individual differences can obscure the
relationship with arithmetic abilities.

We first demonstrated the presence of the reverse and the
canonical distance effect in an ordinal verification and a numerical
comparison task. While overall reaction times of the ordinal
verification task were faster for small distances (e.g., 2 3 4)
compared to large distances (e.g., 2 4 6), reaction times of the
numerical comparison task were slower for small distances (e.g.,
2 3) compared to large distances (e.g., 8 2). This finding replicates
the well-documented behavioral signatures of the reverse and
canonical distance effects in a group of 397 adults. The observed
reaction time differences—i.e., fast reaction times for small
distances in the ordinal verification task, and slower reaction
times for small distances in the numerical comparison task—have

TABLE 4 | Bivariate and partial correlations among the distance effects and measures of mathematical competence across (A) the entire sample, (B) the “positive effect”
sample and (C) the “no-effect” sample.

1 2 3 4 5 6 7 8

a) Total sample (n = 397)

reverse distance effect −0.11a −0.12a −0.09 −0.08 −0.02 −0.08 −0.06 −0.03
(partial correlations) (−0.07) (−0.09) (−0.06) (−0.05) (0.01) (−0.06) (−0.05) -

canonical distance effect −0.33c −0.25c −0.21c −0.24c −0.14b −0.17c −0.18c 0.05
(partial correlations) (−0.32c) (−0.25c) (−0.21c) (−0.24c) (−0.15b) (−0.17b) (−0.17b) -

b) “positive effect” sample (n = 172)

reverse distance effect −0.26c −0.28c −0.21b −0.22b −0.09 −0.13 −0.22b −0.09
(partial correlations) (−0.23b) (−0.26c) (−0.19a) (−0.20b) (−0.07) (−0.12) (−0.22b) -

canonical distance effect −0.29c −0.23c −0.16 −0.16 −0.12 −0.15 −0.21b 0.16
(partial correlations) (−0.27b) (−0.22a) (−0.16) (−0.14) (−0.11) (−0.13) (−0.16) -

c) “no-positive effect” sample (n = 225)

reverse distance effect 0.12 0.04 0.02 0.09 0.06 0.01 0.04 −0.01
(partial correlations) (0.13) (0.04) (0.02) (0.09) (0.06) (0.01) (0.04) -

canonical distance effect −0.34c −0.26c −0.24c −0.29c −0.15a −0.17a −0.14a −0.05
(partial correlations) (−0.34c) (−0.25c) (−0.24b) (−0.28c) (−0.14) (−0.16a) (−0.16a) -

apFDR-adj < 0.05.
bpFDR-adj < 0.01.
cpFDR-adj < 0.001.
Note: 1, small subtractions; 2, small additions; 3, small multiplications; 4, large subtractions; 5, large additions; 6, large multiplications; 7, M-PA; 8, age; Partial correlations are shown in
parenthesis.
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been interpreted as evidence for the involvement of different
cognitive processing mechanisms (Turconi et al., 2006; Vogel
et al., 2015; Lyons et al., 2016). While the reverse distance effect
has been related to multiple strategies such as long-term memory
retrieval and sequential-procedural comparisons (Lyons et al.,
2016; Sasanguie and Vos, 2018; Vogel et al., 2019; Sella et al., 2020;
Sommerauer et al., 2020), the canonical distance effect has been
associated to the mental representation of numerical quantities
(Moyer and Landauer, 1967). Independent of the cognitive
mechanisms that generate the reverse and the canonical
distance effects, the present data support the view that both
distance effects are unrelated with one another as we only
found a small positive effect size correlation (see full
correlation table in Supplementary Material) between the two
indices (rpositive-effect sample � 0.11).

The comparison of four hierarchical Bayesian models further
showed that individual differences of the estimates of the reverse
distance effect were best explained by an unconstrained model.
Since the unconstrained model allows variation among all
possible values (positive or negative), the above results indicate
a qualitative structure of the estimates of the reverse distance
effect: not all individuals show the expected reverse distance effect
(Haaf and Rouder, 2017; Haaf and Rouder, 2019). Our
estimations revealed that 42% of the individuals demonstrated
a reverse distance effect, 5% of the individuals showed evidence for
an opposite effect (i.e., a canonical distance effect), and 52% of the
individuals showed no evidence for either direction (i.e., no
distance effect). This finding is consistent with the notion that
individuals may employ different qualitative processing strategies
during the ordinal verification task. Some individuals might use
strategies that lead to the reverse distance effect (e.g., memory
retrieval for small distances in combination with sequential-
procedural comparisons for larger distances), while others
might use strategies that lead to an opposite effect (e.g., a
canonical distance effect that arises because sequential-
procedural comparisons are used across all distances). An
interesting finding is that a large proportion of individuals
(52%) showed no evidence for a positive or negative distance
effect in the ordinal verification task. In other words, the model
was not able to capture whether a distance effect existed in these
individuals (i.e., reverse or a canonical distance effect). We think
that there are several possible explanations for this finding. First,
it could be the case that our experimental design was not able to
detect existing, albeit subtle effects due to a lack of power.
However, this is unlikely, as we explicitly tested this possibility
with the common-effect and null models. If either of these models
had admitted better predictive adequacy, it would call into
question our ability to detect individual variations (or any
effect at all). Neither model received any support from the
data, so we are confident that the issue does not lie within the
experimental design. Second, it could be that those individuals
showed no distance effect because there is no distance effect to be
detected: that is, they have a true effect of zero. Such a scenario
could be tested by implementing a mixture modeling approach
(e.g., a spike-and-slab model, see also Haaf and Rouder, 2019).
Uncovering the reasons of such an absence would be of great
interest, since it indicates that these individuals might use a

combination of strategies that level each other out (e.g.,
memory retrieval and sequential comparison that produce
opposite effects and zero each other out) or strategies that do
not fit with the current models of numerical order processing. For
instance, individuals might recognize that the ordinal verification
of those triplets, which contain one odd/even and two even/odd
numbers (e.g., 2 3 4; 3 6 9), is determined by the position of these
numbers in the triplet (e.g., if the odd number is in the middle, it
is correct: 2 3 4, 3 6 9; if it is at the beginning or at end, it is
incorrect; 4 2 3, 3 4 2, 3 9 6, 6 3 9). Such strategies would be based
on non-semantic evaluations and, therefore, shortcut distance
related measures. However, the present data are agnostic as to
which processing strategies might have been employed. It also
leaves unanswered to which extent the observed patterns
generalize to other ordinal verification tasks (e.g., with two-
digit numbers). These open questions need to be addressed in
the future.

In contrast to the ordinal verification task, individual
differences of the estimates of canonical distance effect were
best explained by a positive-effects model. Since the positive-
effects model limits individual variations to positive values, the
above results indicate quantitative individual differences: all
individuals show the expected canonical distance effect, but to
a different degree. This finding is consistent with neurocognitive
models that suggest a continuous/approximate representation of
numerical quantities (Moyer and Landauer, 1967). Individual
differences may arise as a factor of how much the mental
representations of numerical quantities overlap (for a review
see Brannon, 2006)—individuals with small representational
overlap show less susceptibility and, therefore, a small
individual canonical distance effect.

We then demonstrated that the association of the reverse
distance effect with arithmetic abilities is moderated by the
observed qualitative individual differences. While neglectable
to small correlation coefficients were observed in the no-
positive effect sample (i.e., individuals who showed no
evidence for a reverse distance effect), significant and larger
correlations were observed in the positive-effect group
(i.e., individuals who showed the expected reversed distance
effect). This pattern is line with our hypothesis that qualitative
differences obscure the relationship between the reverse distance
effect and arithmetic abilities. Different sample compositions
across different studies could, therefore, explain the mixed
results that have been reported in previous studies (Goffin and
Ansari, 2016; Vogel et al., 2017; Vogel et al., 2019; Vos et al., 2017;
Orrantia et al., 2019). This finding highlights the need to pay close
attention to the sample composition and to ensure that the
dimension of interest (e.g., the reverse distance effect) is not
confounded by qualitative processing differences. When
controlling for this confound, we observed significant negative
associations between both the reverse distance effects and
arithmetic abilities as well as between the canonical distance
effect and arithmetic abilities. Thus, the results of this analysis
are in line with the findings reported by Goffin and Ansari (2016)
who reported negative correlations with arithmetic fluency
measures of the Woodcock-Johnson III Test of Achievement
(Woodcock et al., 2001) for both distance effects (r � −0.422 for
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the reverse distance effect and r � −0.310 for the canonical distance
effect). Together, these findings indicate that individuals with
smaller distance effects (individuals who are less susceptible to the
influence of numerical distances) show better arithmetic
performances. The question of which cognitive mechanisms
give rise to these associations needs to be further explored in
future studies.

Previous studies that have investigated the association
between the reverse distance effect and arithmetic have
predominantly used composite scores (i.e., a combination of
different arithmetic performance measures) to index arithmetic
abilities. This approach neglects that arithmetic consists of
different operations (e.g., subtractions, additions,
multiplications, divisions) and that different strategies are
used to solve them (see Ashcraft, 1992; Campbell and Xue,
2001). For instance, there is good neurocognitive evidence that
individuals use different strategies and procedures (such as fact-
retrieval or calculation) to find the correct answer to arithmetic
problems (e.g., Grabner et al., 2009). The results of our study
indicated significant associations of the reverse distance effect
with all small problems (i.e., subtraction, addition and
multiplication) and large subtraction problems. No
significant associations were found for large additions and
large multiplications. For the canonical distance effect,
significant associations with small subtraction and additions
were found. All other arithmetic operations did not significantly
correlate with the canonical distance effect.

From a theoretical standpoint, one might have expected
stronger relationships for the canonical distance effect with
arithmetic operations that require the manipulation of
numerical quantities, i.e., large problems instead of small
problems, which are often solved via fact retrieval (LeFevre
et al., 1996; Campbell and Xue, 2001). The present results
contradict this in as much only small subtraction and small
additions were found to correlate with the canonical distance
effect. However, some findings suggest that small additions and
small subtractions can be solved via fast and automatic
procedures of numerical processing (for a discussion on
small addition see Baroody, 2018). This is in contrast to
small multiplications, which have been argued to be the
prime example of fact-retrieval (Ashcraft, 1992; Campbell
and Epp, 2005). As such it is possible that the present results
capture that difference within the small problem range. It is also
possible that the larger problems in our paper-pencil task, which
were quite complex and in which individuals might have used
different strategies and other cognitive processing mechanisms
to find the solution (e.g., in the large problem task individuals
had to carry over the results), did not capture the manipulation
of numerical quantities. For the reverse distance effect, one
might have expected less specific and rather broad
association as the reverse distance effect is argued to arise
from a combination of different strategies. One could,
however, argue that the fast-retrieval of ordinal relationships
drives the reverse distance effect (Vogel et al., 2019; Sella et al.,
2020), and that associations with arithmetic problems that
afford the fast access to stored knowledge (i.e., small
problems) are to be expected. To some extent that could

explain the stronger relationship of the reverse distance effect
to all small problems. Taken together, although these
explanations are speculative, the data suggest distinctive
associations of the two distance effects with different facets
of arithmetic operations.

We also found a significant relationship between the reverse
distance effect and more complex forms of mathematics (i.e., the
M-PA). The association between numerical order processing and
complex forms of mathematics has, to the best of our knowledge,
only been investigated in two other studies. Morsanyi et al. (2018)
collected data from 87 undergraduate students who performed a
numerical order task, a number-line task, a test of arithmetic
abilities (i.e., the math fluency subset of the Woodcock-Johnson
III Test of Achievement, Woodcock et al., 2001) and a
questionnaire that assesses individual differences in cognitive
thinking styles (i.e., preference for object-spatial imagery or
verbal cognitive style). The authors found a significant
association of numerical order processing with the number
line task as well as the self-reported object-spatial thinking
style. However, the findings of this study were not based on
the reverse distance effect as a measure of numerical order
processing. The authors rather used less specific composite
scores of overall reaction time measures and accuracy rates.
Orrantia et al. (2019) investigated the relationship between
numerical order processing, arithmetic abilities, and general
mathematical achievement (i.e., the Spanish adaption of the
SRA Test of Educational Ability) in a group of 27 male
university students. The results of this study did not find a
significant association between these measures. Despite the
small sample size for a correlational investigation, the authors
did also not use the reverse distance effect to investigate a possible
association of these measures. Thus, the findings of the present
work extend these studies by suggesting a specific association
between the reverse distance effect and more complex forms of
mathematical reasoning.

We conclude that the present work provided evidence for
qualitative individual differences of the reverse distance effect
(i.e., not all participants show this expected effect) and that this
individual variation can obscure the relationship with arithmetic
abilities and other mathematical competencies (e.g., depending
on the sample composition and the individuals that show an
effect). When controlling for these individual differences, we
found a significant relationship between variations of the
reverse distance effect and different measures of arithmetic and
mathematical performance. The reasons for the observed
qualitative differences in the numerical order verification task
remain, however, unclear and need to be further investigated. To
achieve this, future work needs to ensure that dimensions of
interest (i.e., here the reverse distance effect) are not confounded
by qualitative differences.
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While knowledge on the development of understanding positive integers is rapidly
growing, the development of understanding zero remains not well-understood. Here, we
test several components of preschoolers’ understanding of zero: Whether they can use
empty sets in numerical tasks (as measured with comparison, addition, and subtraction
tasks); whether they can use empty sets soon after they understand the cardinality
principle (cardinality-principle knowledge is measured with the give-N task); whether
they know what the word “zero” refers to (tested in all tasks in this study); and whether
they categorize zero as a number (as measured with the smallest-number and is-it-a-
number tasks). The results show that preschoolers can handle empty sets in numerical
tasks as soon as they can handle positive numbers and as soon as, or even earlier
than, they understand the cardinality principle. Some also know that these sets are
labeled as “zero.” However, preschoolers are unsure whether zero is a number. These
results identify three components of knowledge about zero: operational knowledge,
linguistic knowledge, and meta-knowledge. To account for these results, we propose
that preschoolers may understand numbers as the properties of items or objects in a
set. In this view, zero is not regarded as a number because an empty set does not
include any items, and missing items cannot have any properties, therefore, they cannot
have the number property either. This model can explain why zero is handled correctly
in numerical tasks even though it is not regarded as a number.

Keywords: numerical cognition, zero, number status of zero, items based number representation, cardinality
principle

HIGHLIGHTS

- Preschoolers can handle zero as soon as they can handle positive integers.
- Preschoolers are unsure whether zero is a number.
- Children may start to understand numbers as the properties of items in a set.

INTRODUCTION

Children start to understand the use of symbolic exact numbers at around the age of three (Wynn,
1990, 1992). Although many details on the development of understanding natural numbers are
already known, the development of understanding zero remains mostly unknown, and it is not
integrated into any numerical cognition models. It is still largely unknown how zero is handled
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and understood in tasks in which symbolic natural numbers
are already used successfully by preschoolers. The main aim of
the present study is to describe more fully the development of
understanding zero and to consider its theoretical implications.

Lack of Developmental Models for
Understanding Zero
Models concerning the development of numerical cognition
mostly cannot specify how understanding zero is integrated
into more general numerical knowledge. As a starting point,
in the infant literature, there is agreement that non-symbolic
numerical information (such as arrays of dots, and series of
sounds or events) is probably processed by two representations
(Feigenson et al., 2004; Piazza, 2010). Dominant models propose
that, in infants, numerical information is handled by either the
imprecise Approximate Number System (Feigenson et al., 2004;
Piazza, 2010) or the visual attention related Object Tracking
System (Feigenson et al., 2004). However, it is not straightforward
whether either of these systems can handle zero (see more details
on how these models may or may not account for zero processing
in Supplementary Material).

The next important step in the development of number
understanding is for preschoolers to acquire an understanding
of exact large symbolic numbers. Symbolic numbers are values
that are denoted by symbols (in the case of preschoolers, such
symbols are usually number words), as opposed to non-symbolic
quantities, such as arrays of visual objects or series of auditory
events. According to the consensus in the literature, at around
the age of three or four, children start to understand the
conceptual principles of number use, which is referred to as
understanding the cardinality principle (Wynn, 1990; Lipton and
Spelke, 2006; Sarnecka and Carey, 2008). With this principle, they
are able to handle exact symbolic numbers. Number knowledge
in preschoolers is usually measured with the “give a number” (or
give-N) task, in which children are asked to give a specific number
of objects from a pile of objects (Wynn, 1990, 1992). With this
task, one can determine what phase of number understanding
a child is in. The first phase is the pre-numeric phase; in this
phase, although preschoolers know the counting list (i.e., the
series of number words starting with “one-two-three”), they do
not know the meaning of these words and fail in the task. These
children are termed pre-knowers. The second phase is when
children become subset-knowers; they can give 1, 2, 3, or 4 items,
but not when asked for more, even when they know how the
counting list continues. The final phase is when preschoolers
become cardinality-principle-knowers (CP-knowers); they can
give any amount of items that is in their known counting list.
This phase is believed to show their real understanding of exact
symbolic numbers (Wynn, 1990, 1992; Lipton and Spelke, 2006;
Sarnecka and Carey, 2008). (Although see some limitations of this
description, for example, in Le Corre and Carey, 2007; Davidson
et al., 2012; Le Corre, 2014; Sella and Lucangeli, 2020).

There is no consensus on what representational changes occur
for a preschooler to understand the cardinality principle. Most
models suppose that, in some way, the systems available in
infancy may play a role in the first steps (Carey, 2004, 2009;

Piazza, 2010), although it is not known entirely how these or
other systems contribute to their understanding of symbolic
exact numbers. Relatedly, it is not known whether preschoolers
understand symbolic zero when they understand the cardinality
principle. Importantly, the few works that have investigated
preschoolers’ symbolic understanding of zero (see the following
subsection) cannot be integrated into this framework because
those works did not investigate whether or not the preschoolers
understood the cardinality principle.

Contradictory Results on Preschoolers’
Understanding of Zero
To our knowledge, there are only two studies on preschoolers
investigating quantitatively the zero concept when it is denoted
symbolically (Wellman and Miller, 1986; Bialystok and Codd,
2000). Note again that the present work focuses on the processing
of symbolic stimuli because (a) investigating non-symbolic zero
involves many unresolved methodological issues, (b) in recent
years, several works have revealed essential differences between
symbolic and non-symbolic number processing (e.g., Noël and
Rousselle, 2011; Bulthé et al., 2015; Krajcsi et al., 2016, 2020;
Schneider et al., 2017), and such differences put into question
whether symbolic stimuli are processed by an evolutionarily
old, imprecise number representation, and (c) CP-knowledge
points beyond approximate number handling (Carey and Barner,
2019)1. As mentioned above, neither of these two studies is
related to the current developmental models. Importantly, the

1There are a few other related former works that are not relevant from the
viewpoint of the present work. First, some of the works cited in the main text
also investigate children in their first school years. Still, we mostly focus on
the preschool years, as our study investigates knowledge of zero in preschoolers
around the time when the cardinality principle is acquired. Second, while several
former works investigated the understanding of zero in preschoolers, they study
other aspects of this understanding not in line with the aims of the present
study, and their results are not conclusive for the present aims. While Merritt and
Brannon (2013) collect preschooler data about processing zero, the comparison
task is not symbolic. Also, while Davidson (1992) uses numerical tasks with zero
in preschoolers, those tasks alternate training tasks and questions, so it is not clear
what is the effect of the training in the session. Finally, while Baroody et al. (2009)
partly investigate symbolic arithmetical operations with zero, they do not report
the results of positive number-only tasks; therefore, it is impossible to tell whether
the children had more difficulty with zero than with positive numbers, and they
measure the number knowledge of the children with the Is it N task, which is
considered to be an invalid measure of the number knowledge by the literature
(Wynn, 1990, 1992).
Another seemingly related topic is the handling of zero in transcoding tasks.
In transcoding tasks, one has to translate a number from a notation to another
notation, e.g., read aloud an Indo-Arabic number, where Indo-Arabic notation
is transcoded into number word notation. It has been demonstrated that zero
digits are often transcoded erroneously, e.g., “two hundred and two” is transcoded
into 2002 (Grana et al., 2003; Zuber et al., 2009; Moeller et al., 2015). While this
phenomena is related to the present topic in the sense that it is related to zero,
there are at least three critical differences. First, while the present work discusses
the zero number (i.e., the value between 1 and −1), transcoding considers the
zero digit (i.e., the symbol that is used to denote a missing power in multi-power
notation; e.g., the number 10 is a number between 9 and 11, and the zero digit is
used only to denote that in a decimal system that a number does not include ones).
Second, place-value notational systems, such as the Indo-Arabic number system,
are relatively difficult to understand both for adults and children (Krajcsi and
Szabó, 2012), and transcoding tasks require not only an understanding of zero, but
also an understanding of place-value and other multi-power notational systems.
Consequently, it is not straightforward how strongly transcoding issues are rooted
in zero digits handling or in multi-power notation processing. Third, syntactic
processes behind transcoding are only relevant in multi-power (e.g., multi-digit
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conclusions of these two works contradict each other on whether
or not handling zero is more difficult for preschoolers compared
to handling positive integers. In this subsection, we briefly
summarize the two studies, and then discuss the potential causes
of their differing conclusions.

Wellman and Miller (1986) presented children between 3
and 7 years old with the following tasks: (a) count items in
sets (including empty sets), (b) name the smallest number they
know, (c) name Indo-Arabic symbols, and (d) compare numbers
between 0 and 5 in Indo-Arabic notation. Their main finding
was that the children’s understanding and use of zero were
delayed compared to their use of positive numbers. In their
detailed analysis, the authors concluded that there are three
typical behavioral patterns or, in their terminology, phases. In the
first phase, children can name the 0 symbol, although they do
not understand its meaning. In the second phase, children can
count backward to zero, with the understanding that zero means
nothing. Finally, in the third phase, children know that zero is
the smallest number, and they can compare numbers even if one
of the numbers is zero. In this description, the progress of their
development is slow: 4-year-old children are not yet at the first
phase, and only 6-year-old children are at the final phase.

However, a later study found evidence that understanding
zero may be as uncomplicated as positive numbers for
preschoolers. Bialystok and Codd (2000) investigated
preschoolers’ understanding and spontaneous notation
of positive integers, zero, and fractions. They found that,
for preschoolers, understanding zero is not harder than
understanding positive integers; this conclusion is not in line
with the previously described study by Wellman and Miller
(1986). In this work, children between 3 and 7 years old were
asked to give different amounts of cookies to puppets and to
make written notes about these amounts. The children had to
recall the amounts 20 min later; and again 2 weeks later. In
both instances, the children were allowed to use the notes they
had made. According to the results, the children were able to
solve the give-zero task. However, it is important to note that
the instruction was not formed in the usual mathematical way,
e.g., the children were not told to “give Big Bird zero cookies”;
instead they were instructed to “give Big Bird no cookies for
lunch.” The children were able to make a note of the number
zero as efficiently as making a note of positive integers. Similarly,
they could recall the correct number after 20 min, be it zero
or a positive integer. However, 2 weeks later, unlike 5-year-old
children, 3- and 4-year-old children were unable to recall the
number zero as successfully as recalling positive integers. (The
same result was found by Hughes, 1986, who found that children
can use notes for denoting zero, however, the quantitative results
of that study were not published).

The contradiction between the conclusions of these two
studies (i.e., Wellman and Miller, 1986; Bialystok and Codd,
2000) may originate from methodological differences and
from interpretational issues. Obviously, the two studies used
completely different tasks, and it is possible that zero can be

Indo-Arabic) numbers that are typically not understood by preschoolers, but only
by older children (Zuber et al., 2009; Moeller et al., 2015).

handled more easily in some tasks than in others. Yet, there
are some less trivial sources of differences. First, while Wellman
and Miller (1986) suggest three phases of development for
understanding zero, their data actually seem to reveal four
phases. (Even though the authors mentioned that the data
may include some inconsistencies, they nonetheless insisted on
an interpretation with three phases.) The additional phase is
between the second and third phases: After successfully counting
back to zero, the preschoolers could compare numbers with zero,
even though they did not know that zero is the smallest number
(see Table 1 in Wellman and Miller, 1986). In fact, this phase is
paradoxical: While children know that zero is smaller than one,
they think that one is the smallest number. What causes this
dissociation in their zero-knowledge? As a possible explanation,
we hypothesize that children do not think that zero is a number.
This possible misconception is even observable in adults: In a
study, 15% of preservice elementary school teachers responded
that zero is not a number (Wheeler and Feghali, 1983). Another
possible explanation is that zero is not part of the counting list
(which usually starts with “one”), and this is why children handle
zero differently (Merritt and Brannon, 2013). Both explanations
suggest that their meta-knowledge of the number status of
zero may be independent of handling the zero value correctly.
Consequently, one may assume that children can understand zero
sufficiently when they compare zero correctly, but they do not
yet understand that zero should be categorized as a number.
If this is the case, children may understand zero earlier than
what was proposed by Wellman and Miller. We return to this
problem and to a more detailed list of possible explanations in
the discussion section.

A second methodological problem that could be the cause
of the two studies’ different conclusions is that the linguistic
formulation of the tasks including zero could have influenced
performance. While the mathematical viewpoint suggests that
zero is a number just like any other integer and that zero
should therefore be used linguistically in the same way as other
numbers, natural language mostly uses different linguistic forms
for statements about zero. For example, we usually do not say
“The car is traveling with zero kilometers per hour”; instead, we
say “The car has stopped (or is stationary).” Similarly, we do not
say “Give zero cookies to Peppa Pig”; instead, we say “Do not give
any cookies to Peppa Pig” or “Give no cookies to Peppa Pig.”
Thus, it is possible that using mathematical language is harder
for children than using natural language because the former
is less familiar to them. This can be hypothetically confirmed
by the data from the two studies: The Wellman and Miller
(1986) used mathematical language and found that children
experienced difficulties in understanding zero, while Bialystok
and Codd (2000) used natural language and found that children
experienced no difficulties in handling zero. However, based
only on these data, one cannot be sure whether language form
significantly influenced performance, because of the many other
differences between the two studies.

Aims of the Study
To create appropriate models, it is essential to first have reliable
data. Considering that the two previously discussed studies
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came to contradictory conclusions on whether processing the
zero value compared to processing positive values is harder
for preschoolers (Wellman and Miller, 1986; Bialystok and
Codd, 2000), and that we cannot confirm the causes of the
contradictions relying on the two studies’ data, the present study
aims to provide additional more systematically collected data
on preschoolers’ symbolic understanding of zero. Note that this
means that our aims do not build upon any theoretical models,
such as the Approximate Number System, or the Object Tracking
System (presented in the first part of the Introduction), rather,
this study seeks to clarify the main phenomena and describe the
development more precisely and extensively than previous works
have (presented in the second part of the Introduction).

(Aim 1) Specifically, to use a more comprehensive range of
tasks (i.e., giving a set, comparison, addition and subtraction)
in order to investigate whether children can handle zero in
numerical tasks as efficiently as they can handle positive integers
(Aim 2). To test the potential effect of language form (contrasting
mathematical vs. natural language and investigating whether the
number word “zero” is understood) on performance in the tasks
(Aim 3). To put these findings into the context of current models
for understanding the cardinality principle, the present study
investigates whether subset-knowers and cardinality-principle-
knowers (as measured with the give-N task) have a different level
of understanding of zero (if understanding zero is available at
such an early age) (Aim 4). To investigate whether the additional
phase we emphasized in the data from Wellman and Miller (1986)
is reliably observable, i.e., whether at some point children can
compare zero correctly, even though they still think that zero
is not a number.

MATERIALS AND METHODS

Participants
Forty 3- and 4-year-old Hungarian preschoolers participated
in this study. Because of the methodological limitation of the
applied give-N task, the number knowledge of two of these
children (i.e., whether they were one-knowers or pre-knowers)
could not be specified; consequently, their data were excluded
from the study (find more details in the tasks and results
sections). The data of 19 boys and 19 girls were analyzed, with
a mean age of 4 years and 1 months, ranging between 3 years
2 months and 5 years 1 month. Two preschools were involved in
the data collection; one of them in the capital and the other one
in a country town (18 preschoolers from the capital, 7 girls in the
capital and 12 girls in the country town). The children in both
preschools were mostly from middle-class families. None of the
preschoolers had previously received formal training on handling
zero in preschools. No further data were collected on their
sociodemographic characteristics or former numerical training.

Tasks
The tasks used in this study covered three main areas (Table 1).
Note that the present tasks mainly investigate the handling of
symbolic numbers. (1) The give-N task categorized children in

TABLE 1 | Summary of the tasks.

Name of the task Short description

Measuring number knowledge

Give-N (positive numbers) Give N balls to an agent.

Operations with zero

Give-N (nothing and zero) Give N balls to an agent.

Comparison Choose the larger set.

Addition Add two values.

Subtraction Subtract one value from another.

Meta-knowledge of zero

Smallest number Name the smallest number.

Is it a number? Say whether something is a number or not.

terms of whether they were cardinality-principle-knowers (CP-
knowers) or subset-knowers. (2) This task was also used with
“zero” and “nothing” to determine whether the preschoolers
can apply the zero value in the task. Additionally, comparison,
addition, and subtraction tasks were used to measure whether
the preschoolers could use zero in operations as efficiently as
they could use positive integers. These tasks were also used to
measure the effect of various linguistic versions of the same tasks.
(3) The preschoolers’ meta-knowledge of numbers was measured
to investigate whether they understood that zero is a number.

Tasks Related to the Aims
Because the present study includes four independent aims
(independent in the sense that any of the aims would be
meaningful without the others), and because many of the tasks
contribute to several of the aims at the same time, we give explicit
guidance throughout the text on what aspects of the tasks or task-
combinations contribute to which aims. Here, we review the aims
and what aspects of the tasks investigate those aims. Aim 1 (is zero
more difficult to handle than positive integers for preschoolers)
is measured with the operations tasks. The relevant contrast is
whether zero-related operations compared to positive number-
related operations show worse performance. Aim 2 (the role of
the linguistic form in understanding zero) is measured across all
tasks: The give-N task measures the preschoolers’ interpretation
of the “zero” and “nothing” labels in that task; the operations tasks
measure the effect of the mathematical and natural linguistic
forms; and the meta-knowledge tasks investigate again the “zero”
and “nothing” labels in those contexts. The relevant contrast is
whether different linguistic versions induce different levels of
performance. Aim 3 (the role of number knowledge in terms
of subset-knowers and CP-knowers) is measured in both the
operations and meta-knowledge tasks by contrasting the two
number-knowledge groups. Finally, Aim 4 (do preschoolers
lack meta-knowledge about zero when they can handle zero in
operations) is investigated in the meta-knowledge tasks, whose
results are contrasted with the results of the operations tasks (See
also the analysis plan below).

Give-N Task
In this task a pile of balls was in view of the children, and they had
to give a specific number of balls to a toy bird. The task measures
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(a) whether the child understands the cardinality principle, and
(b) whether the child understands what the words “nothing”
and/or “zero” refer to.

Note that while the performance with positive numbers has
been investigated and validated extensively (for example see
the seminal works of Wynn, 1990, 1992), to our knowledge,
performance with zero in this task has not been studied yet.
Also, to our knowledge, understanding zero and understanding
positive numbers has not been measured together in the give-
N task, and theoretically, it is possible that they are independent
(i.e., knowledge on positive numbers in itself cannot predict zero-
knowledge). Importantly, in the present study, zero-knowledge
is measured with the same task and with the same criteria as
positive integer-knowledge; thus, this method could serve as an
appropriate starting point to categorize the children in terms of
whether they know what “zero” refers to. The give-N task used
in this study is similar to the give-a-number task as described
by Wynn (1990) and Bialystok and Codd (2000), which is the
consensually accepted tool to measure preschoolers’ cardinality
principle- and number-knowledge. At the end of the trial, the
experimenter explicitly asked the child whether they were done
with the task. This is essential in tasks including zero-trials since
the child does not have to give any items.

When measuring their understanding of zero with the task,
two versions of zero were applied. For the “natural” version of
zero, we utilized the form that is used in everyday language: “Do
not give any balls to the bird.” For the “mathematical” version,
we used the form that reflects the mathematical viewpoint: “Give
zero balls to the bird.” In Hungarian, nouns after a number
word are always singular, e.g., “give zero ball” or “give two
ball,” therefore, plural vs. singular form did not influence how
the children solved the task (See the questions in all tasks in
Hungarian and in their English translations in Table A1).

Overall, the following six numbers were tested in the given
order: 2, 0 (natural), 5, 3, 0 (mathematical), 4. The present order
of the numbers was used to prevent the children from relying
on an order of increasing number words in the task. The whole
number series was repeated twice, resulting in 12 trials.

It has been argued that children solving tasks with numbers
4 or larger are exhibiting an understanding of the cardinality
principle (Wynn, 1990, 1992; Condry and Spelke, 2008; Sarnecka
and Carey, 2008). In this study, a child was categorized as
knowing a number if both trials of that number were solved
correctly and if known numbers were not given as a response
to higher unknown numbers2. Following these results, children

2Number knowledge as measured with the give-N task can be calculated with
several methods. Here, we consider two alternative evaluation methods, and report
that these methods gave the same results as the method we reported in the main
text. (1) In most published works, a number is judged to be known if the correct
response rate is not lower than 66%; here, we used the 100% threshold value.
Because we asked all numbers twice, the correct response could be only 100, 50,
or 0%. The 100% criterion would underestimate the child’s number knowledge
compared to the usual 66% criterion, while the 50% criterion would overestimate
it. Because the correct response rate changes rapidly around the limit of the child’s
knowledge, the 100 and 50% percent criteria give similar results. Given our analysis
and exclusions, in most of our analysis the 50% criterion categorizes only two
children as CP-knowers who were subset-knowers with the 100% criterion. We
reran all analyses with both criteria, and they gave the same pattern of significant
and non-significant results. For the sake of simplicity, we only present the results

were categorized as CP-knowers if they could give the numbers
4 and 5 in both trials; otherwise, they were categorized as subset-
knowers. Categorization based on this task was performed right
after the child completed the task; this was done because the
comparison, addition, and subtraction task stimuli (see below)
depended on the children’s number knowledge.

Independently of the previous categorization, children were
categorized as “nothing-givers” if they correctly did not give
anything in the natural-zero task in both trials and as
“zero-givers” if they correctly did not give anything in the
mathematical-zero tasks in both trials. (Note that, because
the performance of the give-N task with positive numbers is
well-known in the literature, children who successfully give
a specific value are termed “knowers,” such as one-knowers,
subset-knowers, or CP-knowers. However, such knowledge in
the literature is not available for zero; therefore, to highlight the
fact that it is not clear whether children solving this task with
zero really understand some key features of zero, we term such
children as nothing-”givers” or zero-”givers,” instead of using the
term “knowers,” i.e., we are referring to the performance in the
task instead of the supposed knowledge of the child).

Comparison
The aim of this task was to test whether the children knew
the position of zero among other numbers, therefore, whether
they are able to handle zero as efficiently as positive numbers
(Aim 1) and to investigate whether the form of the task
(natural verbal vs. mathematical verbal vs. non-verbal) influences
their performance (Aim 2). Additionally, the number-knowledge
groups, as identified by the give-N task, are compared in the task
(Aim 3), and comparison operation performance is contrasted
with the meta-knowledge tasks (Aim 4). In the task, the children
either saw two sets of objects or heard two numbers, and had to
choose the larger one.

To test whether the children understood the verbal description
of the task, we used both verbal and a non-verbal object versions.
In the object version, two sets of balls were placed on opposite
sides of a table, and the question was, “On which side can you
see more?” The number of the objects in a set was not named
by the experimenter. In the case of the zero value, the appropriate
side of the table remained empty. In the verbal version, no objects
were used, and the question was, “Which one is more, the x or the
y?” (The Hungarian translation of “which one” does not include
the word “one,” thus, this part of the question would not have
confused the children.) In the verbal condition, the number zero
was labeled as either “zero” (mathematical version) or “nothing”
(natural version).

If the children understood the cardinality principle as
measured by the give-N task, the following 12 number pairs were
tested in the given order: 3–2, 4–1, 2–4, 3–zero, 2-nothing, 1–
5, zero–4, 1–3, 2-zero, nothing-4, 2–1, and zero–1 (4 pairs with

with the 100% criterion analysis here. (2) We also used an alternative Bayesian
calculation method to specify whether someone is a subset-knower or a CP-knower
(Negen et al., 2011), although, to our knowledge, the validity of this method has not
been tested so far. It gave us a categorization result that was between the results of
the previous 100 and 50% methods, thus, the results of this categorization are not
presented here either.
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“zero,” 2 pairs with “nothing,” and 6 pairs with only positive
values). Otherwise, the following 10 number pairs were tested
in the given order: 3–2, 2–1, 1–2, 1–zero, 2–nothing, 1–3, zero–
2, 1–2, 2–zero, and nothing-1 (3 pairs with “zero,” 2 pairs with
“nothing,” and 5 pairs with only positive values). The use of the
two series for the two groups ensures that (a) the children see
tasks only with a number range corresponding to their capability,
while (b) it is possible to measure a relatively wide number
range in the CP-knower group. Note that the two series do
not prevent us from investigating the main questions: whether
zero is processed as correctly as positive numbers and whether
linguistic forms have an effect on performance, because no direct
comparison of the two groups in terms of positive number
performance is required, and only tasks or conditions within the
groups are compared. Because, in the object condition, the “zero”
and “nothing” versions mean the same stimulus (i.e., missing
objects), only trials with “zero” were tested.

In the analyses, the percentage of correct responses in the
“zero,” “nothing,” and positive trials was used as the task’s
performance index.

Addition and Subtraction
As in the comparison task, the aim for the addition and
subtraction tasks was to test whether children can handle zero
as efficiently as positive numbers in arithmetic operations (Aim
1), whether the form of the task (natural verbal vs. mathematical
verbal vs. non-verbal) influences their performance (Aim 2),
whether the number-knowledge groups as identified by the give-
N task perform differently in the arithmetic tasks (Aim 3),
and whether zero handling in arithmetic task performance is
better than meta-knowledge task performance (Aim 4). In the
arithmetic tasks, the children had to add or subtract two numbers
and say the result.

To test whether the children understood the verbal description
of the task, the tasks were either in verbal form or shown with
objects. In the verbal form, either the “natural” or “mathematical”
form of zero was used. In the object version, while the task was
also explained in verbal form (in the case of zero, both in the
“natural” and “mathematical” forms), the operands of the task
were shown with arrays of balls: one operand on one side and the
other operand on the other side of the table. In the case of zero,
the appropriate side of the table remained empty.

If the child understood the cardinality principle as measured
by the give-N task, the following 15 operations were tested in
the given order: 1 + 1, 3 + 1, 2 + 0, 1 + 2, 0 + 3, 2 + nothing,
nothing + 3; 2–1, 4–2, 3–0, 3–1, 2–0, 2–2, 3–nothing, and 2-
nothing (4 tasks with “nothing,” 4 tasks with 0, and 7 tasks with
only positive values). Otherwise, the following 13 operations were
tested in the given order:1 + 1, 2 + 1, 2 + 0, 1 + 2, 0 + 1,
2 + nothing, nothing + 1; 2–1, 2–0, 1–0, 1–1, 2–nothing, and 1-
nothing (4 tasks with “nothing,” 4 tasks with 0, and 5 tasks with
only positive values only). The motivation for using the two series
was the same as in the comparison task.

The task was embedded in a small story. In the addition task,
the following story was told to the children: “The bird had x balls.
The dog had y balls. How many balls do they have altogether
when they play together?” In the subtraction task, the story was

as follows: “The bird had x balls. Then, the bird gave y balls to
the dog as a present. How many balls is the bird left with?” In the
“natural” linguistic version, we applied forms that are commonly
used in everyday speech, e.g., “The dog didn’t have any balls.”
(In Hungarian, it is not possible to use a version that is close to
the English “give no balls,” because, in Hungarian, the predicate
is negated, and the results are similar to “Do not give none balls
to the dog.”) In the “mathematical” linguistic version we used a
form that reflects the mathematical viewpoint, e.g., “The dog had
zero balls.”

One may ask whether the “natural” versions of these tasks
really measure numerical abilities or, instead, measure some other
abilities. For example, it is possible that the children used a
non-numerical concept of nothing to solve the tasks instead
of the numerical concept of zero. However, it is important to
understand that, for a preschooler, both the concept of nothing
and the concept of zero are appropriate to solve numerical
tasks with zero. At their age, preschoolers can solve only a few
numerical tasks: comparison, addition, and subtraction (Levine
et al., 1992); in all of these tasks, both the concept of nothing
and the concept of zero give the same correct result. Therefore,
a correct or erroneous numerical task cannot differentiate in a
simple way whether the concept of nothing or the concept of
zero was used; consequently, the question of whether any of
these concepts promote different strategies is not testable with the
current methods.

In the analyses, the percentage of correct responses in the
“zero,” “nothing,” and positive trials was used as the task’s
performance index.

Smallest Number
The children were asked what the smallest number is. The
aim of this task was to find out whether children regard zero
as the smallest number and whether their performance on
this task strongly correlates with the operations tasks (Aim
4). The task is similar to the task utilized in Wellman and
Miller (1986). In the analysis, the given number was used
directly. The task was applied as the first task of the session
so that the children’s responses could not be influenced by
other tasks, which might have taught them about the number
zero (See further details in the order of the tasks part below).
Furthermore, because several of the other tasks could affect this
knowledge, we repeated this task at the end of the session to
determine whether the children’ zero-knowledge had changed
as a result of new knowledge they had acquired during the
testing process.

Is It a Number?
The children had to categorize whether numbers as well as other
things are numbers. The children were verbally asked, “Is the
. . . a number?” The aim of this task was to study explicitly
whether children regard zero as a number and whether their
performance on this task strongly correlates with the operations
tasks (Aim 4). To determine whether the children understood
this categorization task, additional numerical and non-numerical
words were used to validate the task. The following six words
were tested in the given order: three, two, nothing, kitten, pop
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(sound), and zero. In the analysis, the given responses for the
six trials were used directly. Similar to the smallest-number task,
this task was presented at the beginning of the session, and it was
repeated at the end of the session.

Order of the Tasks
Because some of the tasks could provide information about the
meaning and use of the number zero to the children, we set
the order of the tasks based on their potential to modify the
responses of the children in later tasks. Therefore, the tasks
concerning the status of zero were tested first. Additionally, since
tasks including both verbal and object versions at the same time
could teach the children the meaning of zero, we placed them at
the end of the session. Finally, because the presented stimuli in
the comparison, addition, and subtraction tasks depended on the
number knowledge of the children, the give-N task preceded the
comparison, addition, and subtraction tasks. Thus, the following
order for the tasks was applied: smallest number, is-it-a-number,
give-N task, comparison, verbal addition and subtraction, object
addition and subtraction, smallest number (repeated), and is-it-
a-number (repeated).

Procedure
After receiving the written consent of the parents and verbal
consent from the children themselves, the measurement took
place in a separate room in a building at their preschool. Data
collection for a single child took approximately 30 min, and
required a single session (See the order of the tasks above at the
end of the tasks section).

Analysis Plan
To introduce the main contrasts and tests as they pertain to
the tasks and aims, here, we provide a summary of the main
analyses applied in the results section. Based on the give-N
task, 2 × 2 categories are formed based on whether a child
is a “zero”-giver or “zero”-non-giver and whether a child is a
subset-knower or a CP-knower. In the comparison, addition,
and subtraction tasks, (a) to see whether zero is more difficult
to handle than positive numbers, correct response percentages
are compared between tasks including zero and tasks including
only positive numbers, (b) to investigate the effect of language,
correct response percentages are contrasted in the verbal vs. non-
verbal conditions and in the natural linguistic version vs. the
mathematical linguistic version, and (c) to investigate the effect
of number knowledge measured with the give-N task, correct
response percentages are compared between subset-knowers
and CP-knowers. In the smallest-number task, the distribution
of the given responses are analyzed, and the frequencies of
responses are compared between the different groups of number
knowledge (i.e., subset-knowers vs. CP-knowers, and zero-
givers vs. zero-non-givers). In the is-it-a-number task, correct
response percentages are compared between non-numbers,
positive numbers, and zero conditions, and this performance
is compared between the groups of number knowledge (See
more details on the specific analyses in the relevant results sub-
sections).

RESULTS AND DISCUSSION

To make the results, their interpretation, and their connection
to the specific aims easier to follow, this section groups the
results by tasks and not by aims. Still, for all tasks, specific
sets of their analyses are labeled by specific aims. In most task
sections, the main results are described first; this is followed
by relevant inferential statistics; and the section closes with the
discussion of the results.

Groups Based on Number Knowledge
Giving Positive Numbers
First, with the give-N task, we specified the number knowledge
level of the children (subset-knowers vs. CP-knowers). This
categorization was used in the following tasks to contrast the
children based on their number knowledge. Twenty children
understood the cardinality principle (i.e., they could solve the
give-N tasks perfectly for the numbers between 2 and 5), while
20 children had not reached yet this phase, i.e., they were subset-
knowers. Two children from the latter group could not solve the
give-2-balls task, and because the number one was not measured
in the task, they could either be one-knowers or pre-knowers.
As we could not specify whether these two children were subset-
knowers or pre-knowers, we excluded them from further analysis.
Among the remaining 18 subset-knowers there were seven two-
knowers, ten three-knowers and one four-knower.

Giving “Nothing” and “Zero”
Second, independent of the previous number-knowledge
categorization, we specified whether the children could solve the
tasks involving the natural version of zero (nothing-givers) and
the mathematical version of zero (zero-givers). Practically all
children (96%) understood the natural version of the give zero
task (“do not give any balls”), while the mathematical version
(“give zero balls”) proved to be more difficult (only 45% of
the children could give “zero”). None of the nothing-givers or
the zero-givers solved the task by adding zero accidentally for
unknown numbers because zero was never given when a positive
number was asked by the experimenter.

This difficulty with the mathematical version of zero could be
rooted either in not knowing the word “zero,” or in the unusual
and unnatural form of the task (i.e., giving something which is
nothing). As for the former explanation, notes by the children
show that at least some of them did not know what the word
“zero” refers to; examples include, “What does zero mean?,” “I
cannot count up to zero,” “That would be too much for me,” and
“Zero is hundred.”

Relation of Giving Positive Numbers and Zero
Computationally, giving positive numbers and giving “nothing”
or “zero” could be independent. The following analysis
investigates whether empirical data support independence. The
present data show that most children could solve the natural-
zero task, independent of whether they were subset-knowers or
CP-knowers (92% of subset-knowers and 100% of CP-knowers),
meaning that giving “nothing” is independent of whether a child
is a subset-knower or CP-knower. Additionally, while giving
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“zero” depends on their positive number knowledge (63% of
CP-knowers and 25% of subset-knowers gave zero successfully)
giving zero is not strictly connected to such knowledge: Not all
CP-knowers could give zero, while some of the subset-knowers
could. Note that this result is unlikely to be random noise. For
example, in our sample, the CP-knowers could give all positive
numbers (i.e., between 2 and 5) successfully on two occasions,
but they were unable to do so successfully with “zero.” It is also
noteworthy that even some of the subset-knowers understood the
word “zero.” All of the subset-knowers solving the mathematical
version of the give-zero task were “three”-knowers.

The previously described effects were analyzed with a 2
(subset-knower group vs. CP-knower group as a between-
subjects factor) × 2 (“natural” vs. “mathematical” versions of the
zero task as a within-subjects factor) ANOVA on the proportion
of correct responses: A main effect of number knowledge [F(1,
36) = 7.59, p = 0.009, ηp

2 = 0.174, better performance in the
CP-knower group], and a main effect of linguistic version [F(1,
36) = 46.62, p < 0.001, ηp

2 = 0.564, better performance with
the “nothing” version] were found to be significant; a tendency
in the interaction [F(1, 36) = 3.66, p = 0.064, ηp

2 = 0.092,
CP-knowers were more successful in giving “zero” than the
subset-knowers] was also found.

Groupings for the Following Analyses
Positive number knowledge (whether a child is a subset-knower
or a CP-knower) is used throughout the following tasks to
investigate whether this knowledge influences understanding
zero (Aim 3). Because giving “zero” is independent of their
positive number knowledge and because giving “zero” may reflect
their ability to understand the label “zero,” the children were
also categorized by this ability. A child was categorized as zero-
giver, if the mathematical version (“zero”) of the task was solved
correctly in both trials. We could not rely on the natural version
(“nothing”) of the task because this task seemed to be trivial for
preschoolers, resulting in a ceiling effect.

These two orthogonal dimensions created four groups of
children that were used in the subsequent analyses (Figure 1): 4
subset-knower and zero-giver (4.08 years mean age 0.26 SD), 14
subset-knower and zero-non-giver (3.8 years mean age, 0.4 SD),
12 CP-knower and zero-giver (4.33 years mean age, 0.55 SD), and
8 CP-knower and zero-non-giver (4.06 year mean age, 0.37 SD).
A child is categorized as a zero-giver if they can correctly solve
the mathematical versions of the give-zero task.

Note that, in the operations tasks, because of some missing
data the subset-knower—zero-giver group is excluded, therefore,
only 3 groups are compared. However, for the meta-knowledge
tasks all 4 groups are analyzed. Also note that, because there may
be an interaction effect in their positive number knowledge and
giving zero, in the upcoming analyses, the 4 (or 3) groups will be
handled as 4 (or 3) independent groups and not as 2 × 2 factors.

Operations With Zero: Comparison,
Addition, and Subtraction
These tasks investigated (1) whether the value of zero is more
difficult to handle than positive integers, (2) the effect of
language (a) contrasting verbal and non-verbal versions, which

could reveal whether the children have either linguistic or
conceptual problems with the zero value, and (b) contrasting the
natural linguistic version (e.g., “add nothing to three”), and the
mathematical linguistic version (e.g., “add zero to three”), and (3)
the differences between CP-knowers and subset-knowers.

Because of a data collection problem, the data of 2 out of 4
subset-knower and zero-giver children’s data were not available
in these tasks. Since the data of the 2 remaining children may
be misleading due to the extremely small sample size, this whole
group was excluded from the analysis.

The results are presented as population estimations of the
mean correct response proportions (Figure 2) and hypothesis
tests of those values (Table 2). Different analyses were run for
the three tasks (comparison, addition and subtraction—see rows
in Table 2) and for the object and verbal versions of the tasks
(see columns in Table 2). Within these analyses, the number-
knowledge groups (x axes on Figure 2; subset-knower and zero-
non-giver, CP-knower and zero-giver, CP-knower and zero-non-
giver) and number types (columns in Figure 2; positive values,
zero, and nothing, except in the comparison object version, where
distinguishing nothing and zero would not make sense) were
used. Mixed ANOVAs applied number knowledge as a between-
subject factor and number types as a within-subject factor.

Object Version
First, in the object versions of the tasks, overall, zero was not
more difficult to handle than positive values (left in Figure 2;
Aim 1): In the appropriate ANOVAs, the main effect of the
number or operand type was not significant in the comparison
and addition tasks, and the interaction was not significant in
either of the tasks (left in Table 2).3 The only positive exception
is that subtracting “nothing” was easier than subtracting positive
numbers (a significant main effect of operand type in the object
subtraction task; see Table 2), which is reasonable, since, in a
relatively difficult subtraction task, it is easier to do nothing
than to subtract a positive value. Thus, these results show that
handling zero is not harder than other numbers for preschoolers
in the object version of the tasks. This means that preschoolers
understood the value of zero conceptually. This shows that
comparison, addition and subtraction operations with zero are
available as soon as one understands positive integers.

Note that the verbal variations of “nothing” and “zero” did not
cause any significant effects (no main effect of number or operand
type in comparison and addition tasks and no significant post hoc
difference between those values in the subtraction task; see
Table 2), which is understandable in these tasks where the verbal
form could be complementary to the object based presentation
(Aim 2). An early ability to handle zero as efficiently as positive
numbers in these operations is true for both CP-knowers and

3In the figures and in the appropriate ANOVAs the critical information is the main
effect of number type (positive numbers vs. zero vs. nothing), reflecting an overall
effect of zero, or the interaction between number type and number-knowledge
groups, reflecting a group specific effect of zero. However, the main effect of groups
is not relevant because (a) differences between the groups only show whether some
groups perform better in general and not the relative difference between zero and
positive integer-related performance, and (b) the CP-knower and subset-knower
groups received different tasks (see section “Materials and Methods”).
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FIGURE 1 | Number of the children who understood the mathematical (“giving zero”) version of the zero task.

subset-knowers as reflected in the same pattern in both groups
(no interaction in any of the tasks; see Table 2; Aim 3).

Verbal Version
Second, in the purely verbal versions of the tasks, the zero value
with the natural linguistic version (“nothing”) was not more
difficult to handle than the positive values (right in Figure 2): No
main effect of number or operand type in comparison or addition
tasks that is caused by the difference of “nothing” and positive
number performance (right in Table 2; note that the significant
difference of the mathematical version (“zero”) is not a relevant
contrast here). As in the case of the object version of the task,
subtraction with “nothing” shows a positive exception, as it is
easier than subtraction with positive numbers (significant main
effect of operand type in the subtraction task; see Table 2). Again,
these results show that understanding zero is available as soon as
one understands positive integers (Aim 1).

However, handling zero values with the mathematical
linguistic version (“zero”) revealed difficulties (significant main
effect of number or operand type in all tasks; see Table 2; Aim 2).
Importantly, this difficulty was seen mainly in the zero-non-giver
groups, but not in the zero-giver groups (significant interaction in
the comparison task, see Table 2; and see similar patterns in the
population estimations in all of the three tasks, see Figure 2). This
pattern means that in a trivial way, children who do not know
what the word “zero” refers to cannot solve the tasks including
that unknown word. This interpretation is confirmed by the fact
that these tasks can be solved when the task is also supported by
object demonstrations.

Finally, the relative difficulty of handling zero and the
linguistic form did not differ between subset-knowers and CP-
knowers, as reflected in the similar relative patterns across the
number-knowledge groups (see the similar patterns in parameter
estimations between the subset-knowers and zero-non-givers and
the CP-knowers and zero-non-givers, Figure 2; Aim 3).

To summarize, the verbal version of the operations tasks
also confirms that preschoolers can handle zero as efficiently
as positive numbers, with the trivial exception of children who

do not know what the word “zero” refers to. Since the same
tasks were solved efficiently in the object task, it confirms that
the difficulty was linguistic in nature and not conceptual. Again,
no difference between subset-knowers and CP-knowers could be
found in these contrasts.

Alternative Interpretations
Some alternative interpretations of these data could be
considered. One may raise that, when solving addition or
subtraction tasks with zero, children cannot solve the task
and, instead, simply repeat the last operand, which would
sometimes result in the correct solution, e.g., in the task 0 + 3,
repeating the last operand is the correct result. However, our
results are not in line with this possibility. First, if the children
did not know zero and only used this mechanically incorrect
solution, they should have given incorrect responses in the
comparison task as well, which was not the case. One may
think that the children could have used the appropriate solution
in comparison, and it is only addition and subtraction where
they used the incorrect method. Nonetheless, this account
cannot explain that if the children know how addition and
subtraction work (as seen in the positive operand tasks) and
if they know how zero can be ordered relative to other values
(as seen in the correct zero-comparison task), why they do not
use these pieces of knowledge in a zero-arithmetic task. Second,
in these tasks, this last-operand repeating strategy would give
the correct result only in half of the present additions, e.g.,
for 0 + 3, the correct result can be given, while for 2 + 0, an
incorrect result would be given, and none of the subtraction
tasks can be solved, e.g., for 2–0 an incorrect result could be
given (see the specific stimuli in the Tasks section). However,
in the addition task, the addition performance is higher than
the 50% performance that could be expected by this alternative
interpretation. Still, one may think, that in those tasks, children
do not use the last operand, but they use the known operand.
However, in other tasks (e.g., the comparison tasks) the same
children handled zero appropriately, so it is less likely that they
do not know zero.

Frontiers in Psychology | www.frontiersin.org 9 July 2021 | Volume 12 | Article 583734146

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-583734 July 21, 2021 Time: 17:27 # 10

Krajcsi et al. Development of Preschoolers’ Understanding of Zero

A

Subset-knowers – Zero-
not-givers

Cardinality-principle-
knowers – Zero-not-

givers

Cardinliaty-principle-
knowers – Zero-givers

0%

20%

40%

60%

80%

100%

Comparison - Object version

Positives
Zero

Pr
op

or
tio

n 
of

 c
or

re
ct

 re
sp

on
se

s

Subset-knowers – Zero-
not-givers

Cardinality-principle-
knowers – Zero-not-

givers

Cardinliaty-principle-
knowers – Zero-givers

0%

20%

40%

60%

80%

100%

Comparison - Verbal version

Positives
Zero
Nothing

Pr
op

or
tio

n 
of

 c
or

re
ct

 re
sp

on
se

s

B

Subset-knowers – Zero-
not-givers

Cardinality-principle-
knowers – Zero-not-

givers

Cardinliaty-principle-
knowers – Zero-givers

0%

20%

40%

60%

80%

100%

Addition - Object version

Positives
Zero
Nothing

Pr
op

or
tio

n 
of

 c
or

re
ct

 re
sp

on
se

s

Subset-knowers – Zero-
not-givers

Cardinality-principle-
knowers – Zero-not-

givers

Cardinliaty-principle-
knowers – Zero-givers

0%

20%

40%

60%

80%

100%

Addition - Verbal version

Positives
Zero
Nothing

Pr
op

or
tio

n 
of

 c
or

re
ct

 re
sp

on
se

s

C

Subset-knowers – Zero-
not-givers

Cardinality-principle-
knowers – Zero-not-

givers

Cardinliaty-principle-
knowers – Zero-givers

0%

20%

40%

60%

80%

100%

Subtraction - Object version

Positives
Zero
Nothing

Pr
op

or
tio

n 
of

 c
or

re
ct

 re
sp

on
se

s

Subset-knowers – Zero-
not-givers

Cardinality-principle-
knowers – Zero-not-

givers

Cardinliaty-principle-
knowers – Zero-givers

0%

20%

40%

60%

80%

100%

Subtraction - Verbal version

Positives
Zero
Nothing

Pr
op

or
tio

n 
of

 c
or

re
ct

 re
sp

on
se

s

FIGURE 2 | Proportion of correct responses in the comparison (A), addition (B), and subtraction (C) tasks in the non-verbal (left) and verbal (right) versions with
positive integers, zero, and nothing (columns) within the different number-knowledge groups (categories on x axes). Error bars show 95% confidence interval.
Horizontal line at 50% in the comparison task shows the random choice level.

Another potential incorrect heuristics is that the children
could compare the numbers instead of adding or subtracting
them, which is a strategy that could result in correct responses in
the tasks that include zero. However, this strategy would result
in incorrect responses in the tasks that include only positive
numbers, and such incorrect responses were not observed; thus,
most preschoolers did not use this strategy either. Overall, if
all tasks and results are considered together, one can conclude
that the children handle zero on the same level as they handle
positive numbers.

Meta-Knowledge of Zero
Smallest Number
Most children thought that the smallest number was “one”
(Table 3). Although some zero-givers proposed “zero” as the
smallest number, even most of the zero-givers thought that the

smallest number was “one.” None of the children proposed a
negative number as an answer, although this happened once in
one of our pilot studies.

These statements are supported by a chi-squared test on
the proportion of responses (0; 1; other numbers; nothing;
does not know), which showed a significant effect [χ2(4,
N = 38) = 26.47, p < 0.001], reflecting a high proportion of
“one” responses. A chi-squared test on the responses between the
four number-knowledge groups revealed a significant difference
[χ2(12, N = 38) = 23.5, p = 0.024], which most probably reflects
the heterogeneous responses in the subset-knower and zero-
non-giver group and the relatively uniform “one” responses in
the other groups.

At the end of the session (i.e., after solving all other tasks), the
smallest-number task was repeated, with the answers basically the
same pattern as at the beginning of the session.
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TABLE 2 | ANOVA results of the operations tasks.

Object version Verbal version

Comparison Number type main
effect: ns
Group main effect: F (2,
31) = 4.13, p = 0.026,
ηp

2 = 0.211; the
subset-knowers show
worse performance
compared to the other two
groups, ps < 0.037
Interaction: ns

Number type main effect: F (2,
62) = 14.13, p < 0.001, ηp

2 = 0.313;
the performance for “zero” was worse
than for “nothing” or positives, both
ps < 0.001
Group main effect: F (2,31) = 18.95,
p < 0.001, ηp

2 = 0.55; all groups
differed from each other, all ps < 0.017
Interaction: F (4, 62) = 2.45,
p = 0.056, ηp

2 = 0.136

Addition Operand type main
effect: ns
Group main effect: ns
Interaction: ns

Operand type main effect: F (2,
62) = 5.91, p = 0.004, ηp

2 = 0.016;
tasks with “zero” were harder to solve
than the two other task types, both
ps < 0.02, LSD-test.
Group main effect: F (2, 31) = 5.14,
p = 0.012, ηp

2 = 0.249; CP-knower
and zero-giver group shows better
performance compared to the other
two groups, both ps < 0.018.
Interaction: ns

Subtraction Operand type main
effect: F (2, 62) = 7.84,
p = 0.001, ηp

2 = 0.202; the
tasks with “nothing” were
easier to solve than the two
other task types, both
ps < 0.003
Group main effect: ns
Interaction: ns

Operand type main effect: F (2,
62) = 3.13, p = 0.05, ηp

2 = 0.092; the
tasks with “nothing” were easier to
solve than the tasks with positives, or
“zero,” both ps < 0.05
Group main effect: F (2, 31) = 5.92,
p = 0.007, ηp

2 = 0.276; the CP-knower
and zero-giver group shows a better
performance compared to the other
two groups, both ps < 0.007
Interaction: ns

All analyses were run on the correct response ratios. The following designs were
applied: in the object comparison version, 2 (number types: pairs with positive
numbers vs. pairs with zero as a within-subjects factor) × 3 (number-knowledge
groups as a between-subjects factor); in the verbal comparison version, 3 (number
types: pairs with positive numbers vs. pairs with “zero” vs. pairs with “nothing” as
a within-subjects factor) × 3 (number-knowledge groups as a between-subjects
factor); in the addition and subtraction tasks, 3 (operand types: positive operands
vs. zero vs. nothing as a within-subjects factor) × 3 (number-knowledge groups
as a between-subjects factor). Post hoc tests are LSD tests. Note that, from the
viewpoint of the current tests, the main effect of number or operand types and the
interactions are relevant, but not the main effect of groups.

When evaluating the possible dissociation of zero knowledge
in the former comparison task and in the present smallest-
number task (Aim 4), we should consider zero-givers (because
zero-non-givers typically could not name zero) and CP-knowers
(because, in the comparison task, we had no subset-knowers
within the zero-givers). The smallest-number task is in clear
contradiction with the comparison task: While in the comparison
task, zero-giver CP-knower children knew that zero was smaller
than one (83% correct response performance in the verbal version
and 100% in the object version), they believed that one was the
smallest number (only 25% of them believed that zero is the
smallest number). This result repeats the pattern that can be seen
in the data of Wellman and Miller (1986). One could argue that
the children may have misunderstood the task. However, it is hard
to imagine that they misunderstood the smallest-number task,
since CP-knower children can understand conceptual properties

TABLE 3 | Proportion of different replies to “what is the smallest number?” in the
four groups of number knowledge at the beginning of the session.

Subset-knowers Cardinality-principle-knowers

Zero-non-
giver

(N = 14)

Zero-giver
(N = 4)

Zero-non-
giver

(N = 8)

Zero-giver
(N = 12)

Zero 1 (7%) 1 (25%) 3 (25%)

One 2 (14%) 3 (75%) 6 (75%) 9 (75%)

Two 2 (14%) 1 (13%)

Three 1 (7%)

Five 1 (7%)

Nothing 2 (14%)

Does not know 5 (36%) 1 (13%)

of numbers, such as that number words for large numbers with an
unknown position in the counting list are numbers (Lipton and
Spelke, 2006), and they can understand how set size change runs
parallel with the counting list steps (Sarnecka and Carey, 2008).
A possible resolution for this result is that preschoolers believed
that zero was not a number. The subsequent task more explicitly
tested whether or not children regard zero as a number.

Contrasting the subset-knowers and the CP-knowers in this
task (Aim 3), on the one hand, neither of these groups considered
zero to be the smallest number. On the other hand, the subset-
knowers gave more heterogeneous responses, which is in line
with the fact that they experienced difficulties in solving the
verbal comparison task (Figure 2). Overall, while the subset-
knowers show a qualitatively different response in the smallest-
number task compared to the CP-knowers, this difference is most
probably related to their capability in comparison and not to
their zero-knowledge.

Is It a Number?
Most groups thought that “two” and “three” were numbers, while
“pop” (sound) and “kitten” were not numbers, although the
subset-knower—zero-non-giver group showed an approximately
random performance (Figure 3). This means that, except for the
latter group, the preschoolers understood the task.

Critically, while the word “nothing” was not evaluated as a
number, the status of “zero” is uncertain. This result is in line with
the finding that even some of the adults question whether zero is
a number (Wheeler and Feghali, 1983) and could be in line with
our interpretation of the results from the smallest-number task,
as described above.

Supporting these statements, a 4 (number-knowledge groups
as a between-subjects factor) × 6 (words to evaluate as a
within-subjects factor) ANOVA on the proportion of correct
responses (not on the proportion of “yes” responses as displayed
in Figure 3) revealed a main effect of groups [F(3, 34) = 3.008,
p = 0.044, ηp

2 = 0.21], with the subset-knower and zero-non-
giver group showing poorer performance compared to the other
three groups (all ps < 0.037), and an interaction between the
two factors [F(15, 170) = 2.12, p = 0.011, ηp

2 = 0.158]. To
find the source of this interaction, a similar ANOVA was run,
excluding the subset-knower and zero-non-giver group. The 3
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FIGURE 3 | Proportion of “yes” responses in the is-it-a-number task at the beginning of the session. Horizontal line at 50% shows the random choice level.

(groups) × 6 (words) ANOVA revealed only a main effect of
words [F(5, 105) = 3.34, p = 0.008, ηp

2 = 0.137]. Post hoc LSD-tests
showed that the error rate for “zero” was higher than for “pop,”
“kitten,” and “nothing.” Thus, in the three groups, evaluating
“zero” was ambiguous, while the excluded subset-knower and
zero-non-giver group showed random responses, reflecting that
they did not understand the task.

Similar to the case of the smallest-number task, at the end of
the session (after solving all other tasks), the is-it-a-number task
was asked again, and the pattern of the responses did not change.

The results here show that, while the positive numbers are
considered as numbers by the preschoolers, they do not think
that the word “nothing” is a number, and they are ambiguous
about the numerosity of the word “zero.” (Note that here we
ignore the results of the subset-knower—zero-non-giver group
because, according to the data, this group did not understand the
task.) The ambiguity of the word “zero” is partly understandable
in the zero-non-giver—CP-knower group, since they can only
guess. However, the result is more informative in the zero-
giver groups since they could use the zero value correctly in
numerical tasks even when the number was labeled as “zero.”
How can these differences be interpreted? There could be
different factors that may influence children’s decisions about
numberness. First, all these words could be and were used by
the preschoolers appropriately in the numerical tasks (at least
in the CP-knower and zero-giver group), thus, the difference
between the number status of the words cannot be caused by the
children’s numerical knowledge. Second, the word “nothing” can
be used more generally in non-numerical cases and, additionally,
unlike other number words, “nothing” cannot be used before
nouns. These conceptual and linguistic differences may explain,
why the word “nothing” is considered to be less numeric
than the positive numbers and “zero.” Importantly, none of
these numerical, conceptual and linguistic considerations could
explain why the word “zero” is considered to be less numeric than
the positive numbers. Thus, we argue that the results reflect that
preschoolers do not regard “zero” as a typical number. (Although

the word “nothing” is also considered to be less numeric than the
positive numbers, one cannot tell how strongly the mentioned
conceptual and linguistic viewpoints influenced this decision and,
consequently, how strongly the real perceived number status of
“nothing” influenced the decision.) This could mean that either
(a) at least some of the children do not regard “zero” as a number,
or (b) judging the numberness of a value on a continuous scale
(e.g., prototypicality of the value as a number) “zero” is not
considered as a typical number, or (c) most children are confused
about the number status of zero, and simply guessed in this task.
To summarize, this result is consistent with the idea that children
do not think that zero is a typical number.

Regarding the connection between operational knowledge and
meta-knowledge (Aim 4), the same difference can be observed
here as in the smallest-number task: While these children (and
especially in the zero-giver–CP-knower group that may be our
main interest) can handle zero in numerical operations, they
are uncertain whether zero is a number. This finding is again
in line with the additional phase we emphasized in the data
from Wellman and Miller (1986): At a specific point in their
development, preschoolers can handle numerical operations with
zero, although they do not regard zero as a typical number.

When contrasting the subset-knower and CP-knower groups,
the only difference is that the subset-knowers seem to be unsure
about the meaning of the task, and seemingly subset-knower–
zero-non-giver children gave responses around the 50% random
level for all categories.

Reliability of the Data
Forty preschoolers participated in this study, who were
categorized into four groups in the analyses, which resulted
in rather small groups. Consequently, one may question how
reliable our results can be. (1) Obviously, hypothesis tests control
for small sample sizes: If the present results are significant, they
are significant despite the small sample size. In other words,
smaller samples need larger effect sizes to reach a significant
result. This means that some of the current effects of interest
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are so large that even a relatively small sample is sufficient
for a significant test or an appropriate power. (2) Moreover,
a similar study was run before the present study. The present
study is an improved version of our first measurement. The main
differences between our previous and current measurements are
that (a) the order of the tasks was modified, since, in the present
version, all tasks that could potentially train the children were
at the end of the session, (b) a few simple control tasks were
removed, (c) there were minor improvements in the stimuli and
instructions to have better control over the stimulus properties
and the verbal conditions, and (d) the children were older,
instead of 3- and 4-year-old children, 4- and 5-year old children
participated. Importantly, the pattern of results was the same
between the two studies: In the comparison and arithmetical
tasks, zero was handled at the same level as positive numbers
in both the subset-knower and CP-knower groups, even though
the children were unsure about the number status of zero. Two
notable differences that we found could readily be explained by
the fact that the participants of the first measurement were older
than the participants of the main measurement: The performance
of the first measurement on the number status of zero was
somewhat better than the performance of the sample in the
present main study, and, in the pilot study, no zero-giver subset-
knowers were found while there were only 6 subset-knowers
out of the 36 participants. Overall, while single measurements
could be unreliable (Open Science and Collaboration, 2015)
and replications can be vital in obtaining reliable results, the
present replication confirms that our findings are reliable. (3)
Additionally, the smallest-number and is-it-a-number tasks were
repeated within the session; as reported above, the results showed
the same pattern, confirming again that the present results are
reliable. (4) Moreover, the small size of the subset-knower, zero-
giver group (4 children) cannot distort our results because their
data in the operation tasks was not used at all, and almost all
of our results rely on the data of the other three groups. (5)
Finally, the results cannot be seen as a set of type-I and type-
II errors or random noise because (a) similar and coherent
patterns can be seen across independent tasks, (b) the results
are coherent with many former reports, and (c) the results
form a meaningful and coherent picture of the development of
preschoolers’ understanding of zero. With such a large number
of tasks and statistical analyses, it is highly improbable that
a small sample and related random variation could form a
coherent picture as observed here. Overall, these considerations
strongly suggest that the present results are reliable and reveal real
developmental patterns.

GENERAL DISCUSSION

Our results shed light on several important aspects of
preschoolers’ understanding of zero. First of all, our data
demonstrate that preschoolers understand the handling of
empty sets in a numerical context and can appropriately
apply it in various numerical tasks, such as giving a set
with zero items, comparison, addition, and subtraction (Aim
1). Importantly, even subset-knowers can process empty

sets appropriately: Their performance with empty sets was
comparable with positive values if neither the mostly unfamiliar
word “zero” nor the mathematical linguistic form was used
(part of Aim 3). This result is in contrast with the results
of Wellman and Miller (1986), who suggested that handling
zero is difficult for preschoolers; this contradiction partly arises
from the fact that, in that study, the children potentially
could not understand the word “zero” and the mathematical
linguistic form (see also the discussion of Aim 2 below).
Additionally, while Wellman and Miller (1986) propose that
children understand zero only when they know that zero is
the smallest number, we argue that handling zero in numerical
tasks is a sufficient criterion, while knowing that zero is the
smallest number is knowledge that is irrelevant for evaluating
preschoolers’ operational capabilities (see also the discussion
of Aim 4 below).

Second, while preschoolers can handle empty sets, they have
difficulties with mathematical language (Aim 2). One component
of this linguistic difficulty is the knowledge about the meaning
of the word “zero.” The children who did not know the word
“zero” could not solve the tasks in which the number zero was
denoted purely by this label, while they could solve the same
task with different wording, suggesting that the difference is
whether they know that the “zero” label refers to a concept that
they can otherwise use. Relatedly, some children explicitly noted
that they do not know the meaning of the word “zero.” As a
second linguistic component, the children had difficulty with the
“mathematical” formulation of the tasks (e.g., “give zero balls to
the bird”). Importantly, they could solve the task if (a) zero was
denoted non-verbally or (b) the natural linguistic form of the
zero-related statements (e.g., “do not give any balls to the bird”)
was used. This means that again, the difficulties described here
are linguistic, not conceptual, in nature. It is not surprising that
the children had problems with the mathematical formulations
since this form is mostly used for mathematical and formal
purposes, and they had probably rarely heard it before. Our
results also showed that these language-related difficulties could
be observed independent of whether a child is a subset-knower or
a CP-knower (part of Aim 3).

Third, the children had problems with the number status of
zero (Aim 4). First, they were unsure whether zero is a number.
Second, they exhibited a contradiction: They thought that 0 is
smaller than 1, but they thought that 1 is the smallest number (the
same contradiction was apparent in the study of Wellman and
Miller, 1986). This contradiction can be seen as another reflection
of being unsure whether zero is a number: While 0 is smaller
than 1 (nothing is less than something), 1 is the smallest number
because 0 is not a number. Again, this pattern was independent
of whether a child is a subset-knower or a CP-knower, although
the subset-knowers had some difficulty in understanding the
meta-knowledge tasks.

Note that, while the present study did not measure detailed
sociodemographic characteristics, former numerical training, or
other related properties that may qualify the present results, when
comparable, our results are in line with the results of previous
studies. These correspondences suggest that the present findings
are at least robust.

Frontiers in Psychology | www.frontiersin.org 13 July 2021 | Volume 12 | Article 583734150

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-583734 July 21, 2021 Time: 17:27 # 14

Krajcsi et al. Development of Preschoolers’ Understanding of Zero

Overall, these results identify several more or less independent
components of the zero-knowledge. The first component is
operational knowledge, i.e., whether children can use zero in
tasks, such as giving a set of objects, comparing values, or adding
and subtracting numbers. The second component is linguistic
knowledge, including whether children know that the label “zero”
is used to denote an empty set and whether they know the specific
(and somewhat contradictory) mathematical formulation (e.g.,
“add zero balls to the rabbit”). The third component is meta-
knowledge: Whether children know that zero is a number. The
present results demonstrated that these three components do not
necessarily appear at the same time. Our data also demonstrate
that these pieces of knowledge do not depend strictly on whether
a child is a subset-knower or a CP-knower.

Theoretical Account of the Development
of Zero-Knowledge
What representations or accounts can explain this more detailed
picture of the development of preschoolers’ understanding of
zero? First of all, the linguistic effect is not surprising in the
sense that linguistic knowledge of zero has an effect on how zero
is handled in verbal tasks. From a theoretical viewpoint, what
is more interesting is the different development of operational
and meta-knowledge of zero. How is that children who do not
think that zero is a typical number still can solve numerical
tasks with zero correctly? Several explanations offer a solution
to this problem.

A group of explanations may suggest that linguistic or cultural
factors cause the difference between zero and positive integers
in some tasks and, relatedly, they explain why operational and
meta-knowledge of zero dissociate. However, we argue that these
explanations cannot account for the present results. (1) An
explanation posits that the special status of zero is due to its
infrequent use in everyday language (Dehaene and Mehler, 1992).
However, after understanding the cardinality principle children
understand some common properties of numbers, even if that
number is beyond the limit of their counting list (Lipton and
Spelke, 2006). Critically, the frequencies of such numbers are
comparable to the frequency of zero. Consequently, the relatively
low frequency of the word “zero” cannot explain why children
do not regard zero as a number, because, while a rare number
(i.e., zero) is not regarded as number, other rare numbers (e.g.,
20 and 40) are regarded as numbers. (2) Another example of a
linguistic explanation posits that zero is categorized incorrectly
because empty sets are handled linguistically in a different way
than positive numbers: The word “nothing” is commonly used
instead of “zero” and “natural” sentences are used instead of
the “mathematical” versions. However, zero-givers (those who
are familiar with these linguistic forms) are as unsure of the
number status of zero as zero-non-givers; therefore, even if these
rare linguistic forms are known, zero still can be thought as a
non-number. Additionally, in a similar case of the number one,
although children learn the distinction between one and many
(i.e., other positive numbers) grammatically, which helps them
to learn the meaning of “one” (Carey, 2009), they still think that
one is a number. Thus, in the case of this linguistic difference,

the relevant value (i.e., one) is not categorized differently than
larger natural numbers. (3) A final possible linguistic-cultural
explanation proposes that a counting list usually starts with one,
which seemingly excludes zero from the set of numbers (Merritt
and Brannon, 2013). However, at least in some cases, this issue
is not rooted in the counting list. For example, some adults also
think that zero is not a number, and their justifications are not
related to the counting list: They say that zero is not a number
because “a number is the abstract value of the quantity of a
set” or because “it has no value” (Wheeler and Feghali, 1983).
Additionally, it is unclear why this linguistic phenomenon would
have an effect on categorization if the previous and potentially
stronger linguistic effects (i.e., the first and second points of
this paragraph) do not play a role in the categorization of zero.
Importantly, none of these linguistic-cultural explanations can
account for the fact that zero is handled differently only in
some tasks, while it is handled similarly to positive integers in
other tasks. To conclude, although we cannot entirely exclude all
linguistic or cultural influences, these explanations cannot fully
account for the dual nature of zero.

A second group of explanations supposes that there are
representational causes why zero is not regarded as a typical
number. (1) One can imagine that the representation supporting
positive values cannot store the value of zero; hence, zero must
be stored in a different system. The most frequently referred-
to model suggests that semantic numerical processing is driven
by the Approximate Number System (ANS) which represents
numbers in an imprecise way (Moyer and Landauer, 1967;
Feigenson et al., 2004; Merritt and Brannon, 2013). This system
may include zero, although its ability to do so is debated (Dehaene
et al., 1993; Dakin et al., 2011; Merritt and Brannon, 2013;
Ramirez-Cardenas et al., 2016) (See more details on this system in
Supplementary Material). Some part of the results could readily
be explained by this model: In the operation tasks, even if the
stimuli were presented symbolically, the imprecise representation
may be handling the relatively small values used in the present
experiment. However, it is not trivial to consider how the model
accounts for the dual nature of zero. In the ANS framework,
one may assume that while the positive numbers and, in some
cases, zero value could be handled by this system (as in the
comparison task), in some other cases, the zero value should
be handled by another system (as in the number-status-of-zero
task). However, it is not clear what this alternative system could
be, and why the ANS sometimes could not handle zero. In other
words, these suppositions are arbitrary, and the additional details
were only created to account for these new results, while they
are not supported by any other phenomena. Overall, it is hard
to provide a coherent explanation of how the ANS could account
for the special status of zero. (2) Another possible explanation
suggests that understanding numbers relies on a conceptual
understanding of the items (e.g., objects) in a set. For example,
Carey (2004, 2009) proposes that children induce a conceptual
understanding of how counting can specify the size of a set, which
relies on set-templates in long-term memory; such templates are
based on the activation of visual indexes. (It is important to note
that it is not simply the visual index or Object Tracking System
that supports the cardinality principle, because the visual index in
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itself is only a set of spatial indexes, which computationally is not
capable of supporting conceptual understanding. Instead, some
additional mechanisms, such as set-templates in the long-term
memory, and other unspecified mechanisms are necessary to
support a conceptual understanding of the cardinality principle.)
Another model for explaining why sign-value notation numbers
(e.g., Roman notation) are easier to understand than place-value
numbers (e.g., Indo-Arabic notation) proposes that sign-value
notations are more similar to a hypothesized item-based number
representation in which the powers (e.g., ones, tens, hundreds,
etc. in a 10-based system) are denoted by objects or groups
(Krajcsi and Szabó, 2012). In both of these latter models, numbers
could be considered as the properties of items or objects in a set;
since there are no items or objects in an empty set, it would not
make sense to talk about the property of the non-existing items,
and, accordingly, zero could not be a number in this framework.
The case of a property for a missing item is similar to the paradox
introduced by Lewis Carroll: In his story, a smiling cat disappears,
though the smile of the cat remains visible. In a similar way, the
property (in this case, the numerosity) of the non-existent items
is not meaningful, and the lack of items cannot be described in a
similar way to a set of items. This model is also in line with the
justifications provided by adults for why they do not regard zero
as a number, i.e., they often state that numbers describe the items
in a set (Wheeler and Feghali, 1983). Importantly, this view can
explain why zero has a dual nature: Even though empty sets can
be handled in numerical tasks that involve manipulating objects
or items, the status of zero is special since it cannot represent
the property of items that are not present, but it represents the
lack of those items. Therefore, we conclude that a conceptual
understanding of numbers as items or objects can explain why
zero is handled in a special way.

Implications for Practice
The present study has some educational consequences. Teaching
and understanding the properties of zero is difficult (Lichtenberg,
1972; Frobisher, 1999). Understanding some simple properties,
such as the parity of zero and the number status of zero, can
be problematic, even for mathematics teachers (Wheeler and
Feghali, 1983; Hill et al., 2008).

Based on our results, it is possible to offer some educational
recommendations for schools and even preschools. At the
same time, the efficiency of these recommendations may
also validate and test our description of the zero-knowledge
development. Our recommendations are based on the fact that
several independent components of zero-knowledge can be
identified (namely, operational knowledge, linguistic knowledge
and meta-knowledge) and that such components develop at
different paces. (1) Based on the present results for operational
knowledge, children could handle empty sets as soon as they
can handle positive numbers in basic numerical operations;
thus, no further effort is needed to introduce this concept
to them. (2) However, they are likely unfamiliar with the
mathematical linguistic formulations of the problem; thus,
one can teach them these linguistic forms. (a) One linguistic
component to teach is that the word “zero” means “nothing”
or “doing nothing” in mathematical problem-solving. (b)

Another linguistic component to teach is the mathematical
form of sentences; thus, one can recite both the “natural”
and “mathematical” versions of the task, stressing that the two
versions refer to the same thing, e.g., “do not give any balls to
Suzy Sheep; you can also say, give zero balls to Suzy Sheep.” (3)
Additionally, children do not understand the number status of
zero, and they are unsure whether zero is a number. According
to one possibility, one can explain to children that zero is
also a number because we can use it in counting and other
mathematical tasks. However, this solution raises a problem. If
our explanation for the present results is correct, then children
are not sure whether zero is a number because they consider that
a number is a property of items, and zero describes the lack of
items, which is a quantitatively different state. This “no items”
state can handle empty sets in numerical tasks correctly, although
it is not regarded as a number. Importantly, before school (and,
in most educational systems, also in the first years of school),
children have no experience that could demonstrate to them that
the “no items” state is actually a number. For example, most
adults know that zero is a number because it is simply another
step on the number line between positive and negative integers
or because, in written multi-digit calculations, zero is handled
in a similar way as other digits. However, preschoolers do not
have any experience that could reveal the numerical nature of
the “no items” state because, for example, they do not know
negative integers, or they cannot make multi-digit calculations.
Thus, although one can explain that zero is a number because
we use it in numerical tasks, this information still cannot be
justified based on their experiences. Consequently, it seems more
reasonable that it is unnecessary to provide any education on
this issue before school, and it may be better to teach children
about the number status of zero only when this information can
be justified and can be built up in a reasonable way. To sum
up, (1) preschoolers already know how to handle empty sets in
basic numerical operations, although (2) mathematical language
of referring to empty sets can be taught, while (3) teaching the
number status of zero is probably unnecessary at this stage of
their development.

CONCLUSION

In conclusion, preschoolers can handle zero on the same level
as they can handle positive integers. Although the linguistic
form can cause difficulties for them, this is independent of their
conceptual understanding. However, preschoolers are unsure
whether zero is a number. This may be caused by the set-based
representation of numbers: Numbers can be the properties of
items in a set, and, since an empty set does not include any items,
zero cannot be a number in this view.
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APPENDIX

TABLE A1 | The questions in all tasks, in Hungarian and in their English translations.

Hungarian version English translation English translation reflecting the
Hungarian structure more strictly

Give-N task

Non-zero version: Adj a madárnak . . . golyót. Give . . . balls to the bird. Give to the bird . . . ball (singular).

Natural zero version: A madárnak semennyi golyót se adj. Do not give any balls to the bird. To the bird none ball (singular) do not give.

Mathematical zero version: Adj a madárnak nulla golyót. Give zero balls to the bird. Give to the bird zero ball (singular).

Comparison

Object version: Melyik oldalon van több? On which side is there more? On which side is there more?

Verbal version: Melyik a több, a . . . vagy a . . .? Which one is more, the . . . or the . . .? Which is the more, the . . . or the . . .?

Addition and subtraction

Addition: Mennyi golyójuk van összesen, ha együtt játszanak? How many balls do they have
altogether when they play together?

How many ball (singular) they have altogether, if
together they play?

Subtraction: Mennyi golyó marad a madárnak? How many balls was the bird left with? How many ball (singular) has left for the bird?

Smallest number

Melyik a legkisebb szám, mi a legkevesebb? What is the smallest number, what is
the fewest one?

Which is the smallest number, what is the
fewest?

Is it a number?

A . . . az szám? Is the . . . a number? The . . ., is it a number?
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Spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD) both are rare

genetic neuromuscular diseases with progressive loss of motor ability. The neuromotor

developmental course of those diseases is well documented. In contrast, there is only

little evidence about characteristics of general and specific cognitive development.

In both conditions the final motor outcome is characterized by an inability to move

autonomously: children with SMA never accomplish independent motoric exploration

of their environment, while children with DMD do but later lose this ability again. These

profound differences in developmental pathways might affect cognitive development

of SMA vs. DMD children, as cognition is shaped by individual motor experiences.

DMD patients show impaired executive functions, working memory, and verbal IQ,

whereas only motor ability seems to be impaired in SMA. Advanced cognitive capacity

in SMA may serve as a compensatory mechanism for achieving in education, career

progression, and social satisfaction. This study aimed to relate differences in basic

numerical concepts and arithmetic achievement in SMA and DMD patients to differences

in their motor development and resulting sensorimotor and environmental experiences.

Horizontal and vertical spatial-numerical associations were explored in SMA/DMD

children ranging between 6 and 12 years through the random number generation

task. Furthermore, arithmetic skills as well as general cognitive ability were assessed.

Groups differed in spatial number processing as well as in arithmetic and domain-general

cognitive functions. Children with SMA showed no horizontal and even reversed vertical

spatial-numerical associations. Children with DMD on the other hand revealed patterns

in spatial numerical associations comparable to healthy developing children. From the

embodied Cognition perspective, early sensorimotor experience does play a role in

development of mental number representations. However, it remains open whether

and how this becomes relevant for the acquisition of higher order cognitive and

arithmetic skills.

Keywords: spatial-numerical associations, numerical processing, mathematics, child development, embodied

cognition, neuromuscular disease, spinal muscular atrophy, Duchenne muscular dystrophy
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INTRODUCTION

Children born with neuromuscular degeneration are rare.
Depending on the exact disease type, incidence rates between 1
and 5 out of 10,000 children have been reported in prevalence
studies (for a review, see Deenen et al., 2015). Affected
children tend to be looked at only deficit-oriented on their
motor capacity. Both individual cognitive/psychosocial deficits
and strengths might be neglected or not even detected in
the first place. In particular, children and adolescents affected
by spinal muscular atrophy (SMA) or Duchenne muscular
dystrophy (DMD) suffer from loss of muscle strength and
progressive motor impairments, with implications for daily
physical, cognitive and social functioning (e.g., Billard et al.,
1992). So far, cognitive consequences of inherited motor deficits
have been explored through intelligence scales, such as Wechsler
Intelligence Scales, Kaufman Assessment Battery, Standard and
Progressive Matrices. These instruments cover verbal and non-
verbal cognitive abilities and have revealed that the impact of
the motor impairment on cognitive parameters depends on the
genetic background and the specific neuromuscular disease, as
described below.

In the present study, we will focus on one of these higher-
level cognitive abilities, namely numerical cognition. Numeracy,
the ability to comprehend and mentally manipulate quantitative
non-symbolic and symbolic relations, is a key predictor for a
healthy and successful life (Parsons and Bynner, 1997; Woloshin
et al., 2001; Butterworth, 2018). In light of differences in
arithmetic performances with respect to the two disease groups
(Billard et al., 1992; von Gontard et al., 2002), we aim to
answer the question of how numerical concepts are represented
and processed in children with SMA and DMD. We begin
with a brief summary of typical and atypical development of
numerical cognition, followed by a description of these specific
rare neuromuscular diseases, drawing attention to differences
between the two medical conditions. Then we motivate the
present study of numerical abilities in SMA and DMD from an
embodied cognition perspective.

Typical and Atypical Development of
Numerical Cognition
Number processing, calculation and math reasoning constitute
a complex cognitive domain that developmentally relies on
certain core abilities to discriminate concrete non-symbolic
magnitudes, that are available quite early in life. The achievement
of further domain-specific cognitive representations and abilities
in the numerical domain, like symbolic number processing
(linguistic, Arabic), the spatially oriented mental number line,
arithmetic procedures and mathematical reasoning abilities,
is dependent on and accompanied by the development of
domain-general abilities, like sensorimotor and visuospatial
integration, working memory, language, attentional and affective

Abbreviations: SMA, spinal muscular atrophy; DMD, Duchenne muscular

dystrophy; SMAs, children with SMA; DMDs, children with DMD; SNAs,

spatial numerical associations; RNG, random number generation; FODs, first

order differences.

regulation. Therefore, reasons, symptoms and course of atypical
development of numerical cognition are manifold and diverse
(Bachot et al., 2005; von Aster and Shalev, 2007; von Aster
et al., 2021). As DMD and SMA are diseases with similar motor
but quite different cognitive and social-emotional outcomes, it
will be of interest how children of both groups differ according
to their embodied cognitive numerical representations and
developmental patterns of domain-specific and domain-general
intellectual functioning.

Spinal Muscular Atrophy
SMA is an autosomal recessive inherited disease. It is caused
by mutations in the survival motor neuron1-gene (SMN1-
gene) on chromosome 5. They result in less or total absence
of the survival motor neuron-protein (SMN-protein) and only
affect the anterior motor horn cell in the spinal cord. SMN-
protein is essential for life, being necessary for information
processing from the spinal cord to the muscles (Lefebvre et al.,
1995). As a consequence, absence of the SMN1-gene results
in general weakness with proximal muscles more affected than
distal ones. Three types are distinguished in children and
adolescents depending in the onset of the symptoms. Severity of
disease depends on the amount of SMN-protein present and is
negatively correlated with symptom onset (Calucho et al., 2018).
If symptoms occur before adulthood, three types of SMA are
distinguished: Children with SMA type 1 show symptoms within
6 months after birth; they will never be able to sit autonomously
and their life expectancy without treatment is up to 2 years. In
SMA type 2 symptoms occur after 6 months of age, allowing
children to sit but never to stand or walk. Scoliosis is frequent
and some patients need non-invasive ventilation. SMA type 3 is
defined by sufficient muscle strength for walking without support
and proximal weakness within the first two decades. People
affected by SMA show normal sensory, cognitive, emotional and
social functioning (Kolb and Kissel, 2015). Since 2017 and 2020
molecularly based medication has an essential impact on the
course of the disease.

Duchenne Muscular Dystrophy
DMD is an X-chromosomal recessive disorder caused by
mutations on the short arm of the X-chromosome and therefore
is exclusively affected in males. It results in the reduction of
dystrophin protein. Isoforms of dystrophin are expressed in
various forms in different organs, e.g., skeletal muscles, cardiac
muscle and the brain. Even if DMD patients achieve expected
milestones of motor development, they experience progressive
loss of muscular strength. First symptoms of muscle weakness
are normally appearing from 18 months to 3 years. Muscle
weakness is proximal announced and slowly progressive. Loss of
gate without therapeutic support in 9–12 years of age followed
by scoliosis, involvement of cardiac muscles. Affection of the
respiratory system has a life-limiting effect (Spuler and von
Moers, 2004). Between age 12 and 18, this progressive muscular
weakening extends to the heart and respiratory system, to the
point of provoking premature death (Schaaf and Zschocke, 2018).

Dystrophin is not only present in muscle cells but also
plays an important role in brain development (see below).
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Indeed, deficient production of dystrophin isoforms has severe
consequences in different areas of cognitive ability (Taylor et al.,
2010), for example in short-term memory capacity (D’Angelo
and Bresolin, 2006). Today there is no complete cure for
DMD: Indeed, only motor aspects and not cognitive and social
functioning can be improved by optimal medical care (e.g.,
through physiotherapy).

Important Similarities and Differences
Between SMA and DMD
In the above sections we described the genetic conditions for
motor impairment in SMA and DMD. Indeed, both children
with SMA and DMD (hereafter SMAs and DMDs, respectively)
suffer from progressive weakness in the proximal muscles,
resulting in the inability to explore the environment without
assistive equipment, e.g., wheelchairs or help from caregivers.
Additionally, in both disease groups different medical treatments
and therapies might impact cognitive functions.

Although DMD and SMA patients both have severe motor
impairments, their cognitive and psychosocial functioning
differs. Consider first DMDs, where the lack of dystrophin in
the hippocampus and the cerebellum (connected with the frontal
brain regions) is linked to impaired memory, automatisation,
language (for comparison of verbal IQ in SMAs and DMDs,
see Billard et al., 1998) and executive functions (Donders
and Taneja, 2009; for general cognitive ability, see Cotton
et al., 2001; Banihani et al., 2015; Latimer et al., 2017). This
particular genetic pattern is aggravated by negative responses
from their environment: DMDs accomplish themotormilestones
of the first years of life before gradually experiencing the
loss of abilities with increasing feelings of helplessness. The
combination of genetic factors that impair motor development
and executive cognitive functioning as well as experience-
dependent psychological factors result in socio-emotional and
behavioral problems (Banihani et al., 2015). Comorbid anxiety,
obsessive compulsive disorders as well as Attention Deficit
Hyperactivity Disorder and even autism spectrum disorders
have been reported. ADHD has been found in about 30% of
DMDs, leading to severe learning difficulties and problems in
social interaction (Pane et al., 2012). In addition, DMDs often
suffer from learning disabilities, such as dyslexia and dyscalculia
(Hendriksen and Vles, 2006; for an overview, consult Hendriksen
et al., 2011).

Consider now SMAs, where cognitive research supports
the conclusion that only their motor ability is selectively
compromised. Despite severe impairments in motor
development, not even their spatial cognition is affected:
Indeed, in a three-location-search-task young SMAs (30 months)
made fewer mistakes than healthy and age-matched controls
(Rivière and Lécuyer, 2002). SMAs outperformed their healthy
peers also in language acquisition (Sieratzki and Woll, 2002;
Rivière et al., 2009). von Gontard et al. (2002) investigated
cognitive abilities in SMA patients between 6 and 18 years by
using different test batteries, excluding subtests with motor
components. In contrast to DMDs, they do not experience the
loss of their motor capacity. Performance above average in older

SMAs (over the age of 11) has been interpreted as a strategy to
compensate impaired motor ability through advanced creativity
and knowledge that is developing over childhood (von Gontard
et al., 2002). SMAs use their high social, emotional and cognitive
skills to coordinate care givers towards their individual needs.

Embodied Cognition: The Role of
Body-Environment Interactions in
Cognition
We now turn to the theoretical motivation for our specific
research hypotheses. The recently influential embodied
perspective on human cognition rejects the traditional view
of the human mind, according to which all our knowledge is
mentally represented by amodal symbols contained in semantic
memory. On the contrary, it gives the body a crucial role
by arguing that cognition uses multi-modal sensory-motor
representations originating from the interaction of the organism
with its surrounding environment (Barsalou, 1999; Matheson
and Barsalou, 2018; for recent reviews, see Fischer and Coello,
2016; Newen et al., 2018). According to embodied cognition,
the individual, through action, perception and introspection,
acquires concepts which, in turn, are stored in multi-modal
memories. These memories are re-activated by simulating
selective parts of the acquisition process. As a consequence, even
higher-level cognitive processes, such as abstract reasoning or
mental arithmetic, rely on involvement of lower-level processes,
such as perception and action (e.g., Fischer and Shaki, 2018;
Witt, 2018). For example, finger counting is a near-universal
mode of acquisition of number concepts that shapes even adult
numerical cognition (e.g., Sixtus et al., 2017, 2018).

Following the influential mental number line account (Restle,
1970; Dehaene and Cohen, 1995), numbers are represented in the
mind as a quantity, based on a spatialized magnitude code. This
representation is usually described as continuous, analog, format-
independent, and oriented from left to right (inWestern cultures;
Shaki et al., 2009). Studies on numerical cognition support the
hypothesis of a mental number line, revealing the presence of
spatial-numerical associations (SNAs) and suggesting that spatial
processing is crucially involved in numerical cognition. Studies
on healthy participants have shown a systematic association
between small numbers and left-sided response and between
large numbers and right-sided response (Dehaene et al., 1993).
Across cultures people represent numbers both on horizontal and
vertical mental number lines (Winter et al., 2015).

Embracing the principles of embodied cognition, Fischer
(2012) suggests that the spatialization tendency underlying SNAs
is not entirely automatic and universal but can be influenced by
interactions between the individual and the environment during
development. Applying a hierarchical interpretation to SNAs,
Fischer (2012) classified them depending on their grounded
aspects (derived from physical properties present in the real world
and universally shared), embodied aspects (developed from early
experiences of individual-environment interaction and linked
to sensory and motor constraints imposed by the body) and
situated aspects (determined by current contextual constraints).
According to this hierarchical view, grounded factors such as
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the gravity law and the fact that different objects cannot occupy
the same space at the same time, explain vertical associations
of magnitude, such as MORE IS UP and LESS IS DOWN.
Embodied factors such as the habitual use of fingers during
counting explain horizontal associations of magnitude with LESS
IS LEFT and MORE IS RIGHT, also depending on peculiarities
of body-context interactions and culture. Finally, situated factors,
such as our body postures or temporary characteristics of the
surrounding environment, account for the flexibility of the
association between space and magnitude (Fischer and Shaki,
2018).

The Current Study
From the embodied cognition perspective, the fact that children
affected by severe motor impairment experience different body-
context interactions throughout their lives, should result in
different cognitive profiles compared to healthy children. Here,
we aim to document such impact of limited sensorimotor
experiences on cognitive abilities in the specific context of
numerical cognition. Numbers exemplify a domain of knowledge
that is highly relevant for everyday life, well defined, easy to
activate and involving high-level cognitive processes. Consistent
with an embodied approach to cognition, sensory and motor
associations systematically emerge during the activation of
number concepts (Lindemann et al., 2007; Cohen Kadosh et al.,
2008; Fabbri et al., 2012). Therefore, lack of motor activity
should result in specific cognitive signatures when thinking
about numbers.

This prediction led us to examine whether and how sensory
and motor constraints present at an early age might influence
numerical cognition. To do so, we used the Random Number
Generation (RNG) task, a cognitive task first developed to
assess executive functions (see, Brugger, 1997 for a review and
methodological considerations) and more recently become a
benchmark test for the investigation of SNAs (Loetscher et al.,
2008; Winter and Matlock, 2013; Göbel et al., 2015; Sosson et al.,
2018).

Among the first to use RNG in the field of numerical cognition
were Loetscher and Brugger (2007). Specifically, they asked
healthy adults to randomly generate numbers between 1 and 6
by imagining to throw a die. Several signatures of numerical
cognition emerged: First is a small number bias, defined by the
tendency to over-generate the first half, i.e. the smaller numbers
of the specified range; whereas a large number bias is defined by
the over-generation of the second half, i.e. larger numbers of the
specified range. The authors found a significant small number
bias, defined as the tendency to generate more numbers in the
range between 1 and 3 rather than in the range between 4 and 6.
Later, Towse et al. (2014) explored number processing in children
of different age groups with a larger numerical range (from 1
to 10). In contrast to adults, children reported a large number
bias, defined as the tendency to generate more numbers in the
range between 6 and 10 rather than in the range between 1 and
5. Moreover, differences between age groups indicate that the
processing of numbers changes in the course of development.
As a second signature of numerical cognition, Towse et al.
(2014) formulated a first number bias when analyzing number

generation data of very young children. This bias is defined
as the tendency to over-generate the very first numbers of the
specified range. In association with the large number bias, very
young children showed an over-generation of numbers 1, 2 and
3, explained by over-representation of these numbers at an early
age (Towse et al., 2014).

Loetscher et al. (2008) assessed the influence of body postures
by introducing horizontal head movements into the RNG task.
Adult participants were asked to randomly produce numbers
from 1 to 30 while continuously moving the head along the
horizontal axis (from left to right and from right to left). Winter
and Matlock (2013) further enriched the paradigm by adding
head movements along the vertical axis. The results revealed
the presence of numerical biases along both axes: Participants
produced larger numbers after moving their head right (up) than
after moving their head left (down). Interestingly, this pattern
was stronger in the vertical condition, indicative of a more robust
vertical mental number line and in line with the hypothesis of a
congruent relation between the situated postural influence and
the influence of grounded or physical properties of the world on
cognition (Fischer, 2012).

More recently, researchers started using the same paradigm to
assess SNAs and their developmental changes in healthy children.
In light of different SNAs reported in adults depending on
culture (Shaki et al., 2009; see Göbel et al., 2011, for a review),
Göbel et al. (2015) compared the influence of reading habits of
British and Arabic participants on SNAs in adults and children:
participants were invited to randomly produce numbers from
1 to 50, while resting either on their right or on their left
side. In general, adult participants generated on average larger
numbers than children, which is contrary to the established small
number bias in adults. The researchers explained this opposite
pattern in light of the different numerical range used in the
study: indeed, with numbers from 1 to 50, the small number bias
is computed on the range from 1 to 25; these numbers might
be more strongly represented in children than higher numbers.
Importantly, regardless of age group, body position had an effect
on the mean of the generated numbers and this effect depended
on the participants’ habitual reading direction.

While the above studies investigated SNAs in paradigms
where numbers were produced while orienting towards a
particular side of space, Sosson et al. (2018) compared average of
random number generated by adults and children whenever their
head reached the central position during horizontally alternating
movements. The results revealed significant biases only in adults,
highlighting that the amount of sensorimotor experience, or
the ability to predict movement outcomes, might influence the
strength of SNAs.

To date, SNAs have never been explored in children with
neuromuscular diseases. In this study, by using the RNG task
we aim to fill this gap in the literature. Moreover, we assess
SNAs along both the horizontal and vertical axis in order to
explore the role of grounded and embodied factors in number
representation of young children with early motor impairment.
Young children with DMD reach milestones of early motor
development like walking independently (Connolly et al., 2013).
Therefore, self-exploration of the environment is equal to
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healthy children. Following the embodied perspective those early
self-exploring experiences are crucial for the development of
mental representations (Rakison and Woodward, 2008).

Hypotheses
Inspired by the embodied cognition perspective and the
hierarchical interpretation of SNAs (Fischer, 2012) we
formulated the following hypotheses on RNG performance
and different SNAs in the two groups:

H1: We assume stronger SNAs in DMDs compared to SMAs
because of their ability to explore the environment in early
childhood and, respectively, weaker SNAs in SMAs compared
to DMDs because of their more limited exploration.
H2: Finally, RNG is a suitable task also for assessment of
executive functions and their maturation. Given that executive
functions are impaired in children affected by DMD (Donders
and Taneja, 2009), we expected less random number sequences
in children with DMD compared to children with SMA at a
given age.

MATERIALS AND METHODS

Participants
Children from 6 to 12 years diagnosed with either SMA (type 1
or type 2) or with DMD were included into the study. In total 16
children participated in the experiment: eight SMA (three type
1 and five type 2; three females and five males) and eight DMD
children (all males). Mean age of SMA children was 7.62 years
(SD 1.4) and mean age of children with DMD was 9.37 years (SD
1.7), t(14) = 2.190; p = 0.046. Participants were recruited from
the department of pediatrics of the German Red Cross Hospitals
Berlin. Diagnosis of SMA and DMD was based on molecular
genetic analysis of each participant, provided by the hospital or
patients’ families. Only children with SMA type 1 and 2 were
included because, as mentioned in the Introduction, children
with SMA type 3 do not differ from healthy children inmilestones
of motor development.

The current study was approved by the Ethics Committee of
the University of Potsdam (ref. nr. 78/2020).

Tasks and Tests
Wechsler Intelligence Scale for Children (WISC-V)
To assess general cognitive performance, three subtests of the
WISC-V (German Version, Petermann, 2017) were selected,
based on what we wanted to measure (verbal ability, non-verbal
cognitive performance and working memory) and the suitability
of tests to the population with neuromuscular diseases (indeed,
only tests not including motor components were included).
Cognitive performance was measured by providing different
items in ascending levels of difficulty. To assess verbal ability,
the subtest Similarities was used. Two terms were given and the
participant had to tell in what regard they were alike (e.g., the
words red and green, where the correct answer is that both are
colours). For measuring non-verbal cognitive performance, the
subtest Matrix Reasoning was taken from the battery. Children
had to choose from a range of abstract pictures the one that

completes a given matrix. Finally, the subtest Letter-Number-
Sequencing was considered to assess working memory. The
participant repeated a given span of mixed numbers and letters
by arranging them in ascending and alphabetical order. Age-
related items as well as norms were used to assess the individual
T-value with normal (age-appropriate) values between T =

40 and T = 60.
In all participants general cognitive ability wasmeasured using

two subtests from theWISC-V, one for verbal ability (Similarities
subtest) and one for performance IQ (Matrix Reasoning subtest).
Independent sample t-tests revealed no differences between
groups, either in the Similarities subtest [t(14) =1.479; p =

0.161] or in the Matrix Reasoning subtest [t(14) = 1.805; p =

0.093]. The test scores (T) of all SMAs in the similarities subtest
were in the normal range (43.3 > T < 60.0) except for one
participant who performed above average (T = 73.3). Instead,
DMDs’ performance ranged from T = 33.3 to T = 60.0, including
two children below average.

Working memory was assessed through the subtest Letter
Number Sequencing of the WISC-V. SMAs performed
significantly better than DMDs [t(12) = 6.847; p < 0.001].
Two participants were excluded from the analysis.

Adaptive Intelligence Diagnosticum 3rd Edition

(AID 3)
The subtest Applied Computation from the AID 3 (Kubinger and
Holocher-Ertl, 2014) was administered for measuring arithmetic
skills. Using a branched testing approach, each participant
was presented with arithmetic problems that were adapted to
their individual level. This ensured high motivation throughout
the whole testing. Arithmetic problems included a variety of
operations (e.g., additions, subtractions, percentage calculations)
in text problem format. An example is: “Petra runs over a
10m long meadow. Once there and once back. Kurt runs
twice as far. How many meters has Kurt covered?” (German:
“Petra läuft über eine 10m lange Wiese. Einmal hin und einmal
zurück. Kurt läuft doppelt so weit. Wie viele Meter hat Kurt
zurückgelegt?”). Age-related norms were used to assess the
individual T-value.

The independent sample t-test comparing both disease
groups’ arithmetic performance of the Applied Computation
subtest of the AID-3 showed that children with SMA performed
significantly better (mean T = 55.25) than children with DMD
(mean T= 42.75) [t(14) = 2.426; p < 0.05].

Neuropsychologische Testbatterie für

Zahlenverarbeitung und Rechnen bei

Kindern—Revidierte Fassung (ZAREKI-R)
In the subtest Number Line from the ZAREKI-R (von Aster et al.,
2014), 12 trials allowed assessment of spatial representation of
numbers along a vertical number line from 1 to 100. The task
consists of two parts: In the first part additional markers partition
the visual lines into specific portions while in the second part
no markers are provided. Participants marked the position of
each called-out number on the vertical number line. Age-related
norms were used to assess the individual test value.
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TABLE 1 | Descriptives of R scores in the baseline condition and general

cognitive data.

DMD SMA p (t-tests)

R Score (baseline) 8.35% 8.47% n.s. (p = 0.9)

WISC-V

Similarities (verbal IQ)a 45.41 (8.90) 52.49 (10.19) n.s. (p = 0.1)

Matrix reasoning

(performance IQ)a
42.50 (9.36) 52.50 (12.57) n.s. (p = 0.09)

Letter number

sequencing (working

memory)a

30.44 (8.25) 60.57 (8.00) p < 0.001

AID-3

Applied computationa 42.75 (7.40) 55.25 (12.56) p < 0.05

ZAREKI-R

Number line (part 1)b 89.00 (29.10) 87.29 (28.70) n.s. (p = 0.9)

Number line (part 2)b 65.57 (43.41) 73.29 (31.79) n.s. (p = 0.7)

aresults presented as t-value with standard deviation.
bresults presented as percentile rank with standard deviation.

Bold values are indicating significant effects.

The independent sample t-test revealed no significant
differences between the two groups in both parts of the subtest
[part 1: t(12) = 0.111; p= 0.913; part 2: t(12) =−0.379; p= 0.711].
Two participants were excluded from the analysis.

Descriptive data of general cognitive abilities are presented in
Table 1.

Random Number Generation (RNG) Task
Participants generated random numbers between 1 and 10 while
moving their head along either the horizontal axis (alternating
left-to-right, horizontal condition) or vertical axis (alternating
down-to-up, vertical condition) or by keeping the head straight
(baseline condition). We considered the following parameters:
mean of generated numbers and differences between every
generated number and its immediately preceding one, i.e., first
order differences (FODs). The sign of FODs provides information
about direction of movement on the mental number line
(positive/negative FODs correspond to ascending/descending
tendency), instead, the absolute value of FODs indicates the
size of movements on the mental number line. Additionally, a
redundancy (R) score was computed as an index of randomness
(the higher the R score, the lower the randomness).

Dot Counting Direction Task (DCD)
During the DCD (Shaki et al., 2012; Fischer and Shaki, 2017),
participants sequentially count aloud four dots displayed on a
DIN A4 sheet horizontally (left-right) or vertically (up-down) in
front of them, by pointing on each dot with their finger. This task
is useful to assess directional counting habits. The instructions
were: “Please count the number of these dots, by pointing at each
of them with your finger” (in German: “Bitte zähle die Punkte
nacheinander laut, indemDumit Deinem Finger auf jeden Punkt
zeigst”). We recorded the order of pointing.

Procedure
Due to COVID-19 restrictions, all participants were tested via
the online video platform ZOOM. After receiving informed
consents from the parents via mail the ZOOM link was sent
via mail. To avoid any numerical and lateral cues during the
test session, participants were asked to cover the keyboard
in front of them and to remove all numerical stimuli (e.g.,
clocks or pictures) from their surroundings. The experiment
was conducted in German language. All participants’ parents
gave permission to video-record the testing session for further
offline evaluations.

Firstly, all participants completed the RNG task. We used
a mixed design with Head position (left vs. right vs. up vs.
down vs. straight) as within-subjects factor and Disease (SMA
vs. DMD) as between-subject factor. For each participant, there
were four experimental conditions (left vs. right (horizontal)
vs. up vs. down (vertical) as starting position of the head)
and one baseline condition (straight). The axes (horizontal vs.
vertical vs. straight) were presented in a blocked order while
the head positions alternated continuously within each block,
along either the horizontal or vertical axis. The experimental
conditions (horizontal and vertical) were counterbalanced
across participants while the baseline condition was always
administered at the end.

Participants were asked to generate numbers between 1 and 10
as randomly as possible while moving their head from left to right
(experimental condition horizontal) or up to down (experimental
condition vertical). Importantly, the instructions clarified that
numbers were only to be stated once the participant’s head
was in the most extreme (yet still comfortable) position, not
before. To facilitate understanding of randomness a ten-sided
die was used. A stencil of such a die was sent to the families
together with informed consents and the instruction to build it
before testing. In our experience, providing participants with this
manipulable object facilitates the understanding of the RNG task.
The following instruction was used: “Imagine you were a 10-
sided-die rolling from one side to another. While rolling please
say the sentence “The die is showing number. . . and then please
call out a number between 1 and 10.” (In German: “Der Würfel
zeigt die Nummer...”). Participants were instructed to keep their
eyes closed during the complete task. Due to differences in the
degree of motor impairment, participants determined their own
speed of responding.

After the horizontal and vertical block of the RNG task, the
horizontal and vertical version of the DCD was administered.
The ZAREKI-R number line subtest followed afterwards.
Depending on the fatigue of each participant, assessment of
general cognitive abilities was conducted either immediately
following or in a separate second session that took place up to
7 days later.

Data Preparation
First of all, omissions, errors (all not numerical oral responses,
e.g., letters) and numbers out of the instructed range were
detected for each condition and group. Both SMA and DMD
groups performed only one omission in the right-side head
starting condition and one error in the baseline (head straight)
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condition. In the SMA group there were four numbers out of the
range each in the up and in the down condition, respectively. The
DMDgroup generated numbers out of the range in all conditions:
one in the down, three in the up, four in the left, two in the right
and three in the baseline condition.

No participant was excluded from the analysis. One
participant did not follow the instruction completely and
changed the sentence preceding the RNG responses (“The die is
showing number. . . ”) to “aloha”. Nevertheless, he did not vary
this sentence during the trials and his performance did not
deviate from that of the others. For these reasons, that participant
was also included.

Errors, omissions and numbers out of the range were removed
together with their preceding and succeeding numbers (see
Sosson et al., 2018, for methodological considerations).

Data Analyses
Firstly, we compared the means of the generated numbers and
FODs for each participant individually in all five head positions
to detect descriptive group differences followed by statistical
analysis using multilevel modelling with the generated number
and FODs in each head position as a function of group (DMD
vs. SMA). We decided to take that approach to enrich the
information gained from the data by emphasizing individual
differences. Because of the more fine-grained depiction of the
data on the level of head position (left, right, up, down, straight)
we can increase power compared to averaging the data as would
be done in parametric statistics.

In addition, R scores were computed using the software
developed by Towse and Neil (1998). To explore differences
between the patient groups and normally developing children,
baseline R scores of DMDs and SMAs were compared to the
results reported by Towse and McIachlan (1999) and R scores
in the horizontal condition were compared to the more recent
data by Sosson et al. (2018). Finally, for the two groups, indices
for general cognitive ability and arithmetic skills were compared
via t-tests.

RESULTS

Spatial Numerical Association
(Hypothesis 1)
We will start the analysis by taking a closer look at the mean
differences between head positions within and between the two
groups. Next, we set up multi-level models (random intercepts
with responses nested in persons) to test the corresponding
hypotheses. In these models we predicted the generated number
by head position (model for horizontal positions: left vs. right;
model for vertical positions: up vs. down), group (SMA vs.
DMD), and the interaction head position × group (see equation
1). Head position and group were dummy coded with left (model
1) and down (model 2) as the reference category for head position
and DMD the reference category for group. All estimators were
optimized for minimizing the restricted maximum likelihood.

Estimation weights are reported non-standardized.

Generatednumberij = β0j + β1headpositionij

+ β2headpositionij×groupj+ ǫij.

β0j = γ 00+ γ 01group1j + u0j

i : = trial

j : = person (1)

The analyses were conducted with the R package lme4 (Bates
et al., 2015).

Additionally, FODs were taken instead of the magnitude
of the generated number as the dependent variable, we also
conducted all analyses and models with FODs. The results are
nearly identical and will be reported in the Tables 5, 6 in
Supplementary Material of this paper to avoid redundancy.

Description of the Means
Following Sosson et al. (2018), we start by reporting the mean
of generated numbers and FODs, separate for all head positions
(left, right, down, up, straight) and groups (SMA, DMD), present
in Table 2.

In the horizontal condition the mean of generated numbers
is higher in children with SMA than DMD. Additionally, in
children with DMD the mean of generated numbers is higher
in the right-head (M = 5.99; SD = 2.79) than in the left-head
position (M = 5.80; SD = 2.94), whereas in children with SMA
it is similar in the left (M = 5.53; SD = 2.98)- and right-head
position (M= 5.54; SD= 3.04). In the vertical condition children
with SMA produced fewer small numbers when turning the head
down (M = 6.1; SD = 2.83) compared to up (M = 5.54; SD =

3.07), whereas children with DMD reported the reversed pattern.
They produced more small numbers in the down (M = 5.28; SD
= 2.83)- and larger numbers in the up-head position (M = 5.57;
SD= 3.04).

The following pattern was found in FODs: In the horizontal
condition, children with SMA produced more ascending
sequences when turning their head left (M = 0.21; SD = 4.41)
than right (M = −0.10; SD = 3.49), while the opposite pattern
was observed in DMD children with more ascending sequences
generated during right (M = 0.08; SD =3.86) rather than left
(M = −0.07; SD = 3.49) head position. In the vertical condition
children with SMA tended to generate more ascending sequences
(represented by positive FODs) when turning the head down (M
= 0.69; SD = 3.82) rather than up (M = −0.75; SD = 4.36). A
reversed pattern was observed in DMD children, who performed
more ascending steps when turning the head down (M = −0.33;
SD = 3.80) rather than up (M = 0.27; SD = 3.72). The FODs
measures corroborated tendencies revealed by the previously
considered mean of generated numbers.

Hypothesis Testing
Table 3 shows the estimations for the multi-level model of the
horizontal condition. Firstly, we included head position as a
predictor (model 1) and then the group and head position× group
(model 2). Neither head position (B = 011, p = 0.616), group (B
=−0.26, p= 0.450) nor the interaction head position× group (B
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TABLE 2 | Descriptive information for all head positions in both groups.

Group Head position Mean number (sd) Mean FOD (sd) Total of omissions Total of errors Total n out

DMD Left 5.80 (2.94) −0.07 (3.49) 0 0 4

Right 5.99 (2.79) 0.08 (3.86) 1 0 2

Down 5.28 (2.83) −0.33 (3.80) 0 0 1

Up 5.57 (3.04) 0.27 (3.72) 0 0 3

Straight 5.49 (2.87) 0.05 (3.62) 0 1 3

SMA Left 5.53 (2.98) 0.21 (4.14) 0 0 0

Right 5.54 (3.04) −0.10 (4.19) 1 0 0

Down 6.10 (2.83) 0.69 (3.82) 0 0 4

Up 5.42 (3.07) −0.75 (4.36) 0 0 4

Straight 5.61 (3.02) 0.09 (4.32) 0 1 0

TABLE 3 | Multilevel model for mean of generated numbers in left-right head movements (horizontal).

Model 1 Model 2

Predictors B se t p B se t p

(Intercept) 5.66 0.18 31.94 <0.001 5.80 0.25 23.02 <0.001

Head position (right) 0.11 0.23 0.50 0.616 0.20 0.33 0.60 0.545

Group (SMA) −0.26 0.35 −0.76 0.450

Head position (right) × Group (SMA) −0.19 0.46 −0.40 0.686

Random effects

σ 2 8.56 8.57

τ00 0.07 ID 0.05 ID

ICC 0.01 0.01

N 16 ID 16 ID

Observations 657 657

Marginal R2/Conditional R2 0.000/0.008 0.004/0.010

Bold values are indicating significant effects.

= −0.19, p = 0.686) significantly impacted the magnitude of the
generated numbers.

In the vertical condition (up-down head movements, Table 4)
we, again, did not find a significant effect of head position (B
= −0.18, p = 0.435). That is, head position had no impact on
the generated number for the DMD group. But the generated
numbers were significantly higher for the SMA group (B =

0.83, p < 0.05) and the SMA group also had a significantly
stronger effect of the head position compared to the DMD
group (B=−0.97, p < 0.05).

Randomness Performance (Hypothesis 2)
The redundancy scores (R) in both groups were computed
separately for both head positions along the vertical and
horizontal axis and the baseline (straight head position) by
using the software from Towse and Neil (1998). R scores
can range between 0 and 100% where 0% means complete
randomness in number generation and 100% results from
a completely predictable sequence. The observed average R
scores were 8.47% (range 1.14–16.66%) for SMA children and
8.35% (range 1.78–17.47%) for DMD children. A two-tailed
independent t-test limited to the straight head condition showed

no significant difference between SMAs andDMD’s R scores [t(14)
=−0.042; p= 0.967, Table 1].

Next, we compared the performance of our sample against
that of healthy children by referring to published R values in
comparable conditions. Towse and McIachlan (1999) assessed
the RNG task with children of different age groups by keeping the
head straight. Two-tailed single sample t-tests for each group in
the straight head condition were computed against the reference
value. We compared the R values of the SMA group against
R = 2.29%, a value that has been reported for a sample of
approximately 8 years olds. We obtained a significant deviation
from those reference values of healthy children in SMAs [t(7) =
3.082; p = 0.018; R = 8.47%]. The score of R = 8.35 % for our
DMDs was compared against the reference value of R= 4.18 % of
the older subsample (average age 10 years). No significant group
difference was revealed [t(7) = 1.899; p = 0.099; R = 8.35%].
Sosson et al. (2018) introduced left/right head movements to
the RNG task. We compared performance of our two groups
in the horizontal condition with their R score of 10.64% for
healthy children (age range 7.8–11.9 years). A two-tailed single
sample t-test for each group in the horizontal condition was
computed. t-tests revealed significant deviations from reference
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TABLE 4 | Multilevel model for the generated numbers in up-down head movements (vertical).

Model 1 Model 2

Predictors B se t p B se t P

(Intercept) 5.67 0.18 31.99 <0.001 5.28 0.24 21.66 <0.001

Head position (up) −0.18 0.23 −0.78 0.435 0.29 0.33 0.89 0.374

Group (SMA) 0.83 0.35 2.36 0.018

Head position (up) × Group (SMA) −0.97 0.47 −2.08 0.037

Random effects

σ
2 8.65 8.60

τ00 0.07 ID 0.06 ID

ICC 0.01 0.01

N 16 ID 16 ID

Observations 636 636

Marginal R2/Conditional R2 0.001/0.009 0.011/0.018

Bold values are indicating significant effects.

values of healthy children in SMAs [t(7) = −7.128; p<0.001;
R = 3.65%] as well as in DMDs [t(7) = −5.650; p < 0.005;
R= 4.49%].

Exploratory Analysis: Dot Counting Task
All participants counted the four dots successively from one side
to the other. All SMAs counted from left to right except for one
participant who counted from right to left. Interestingly, this
child also generated on average larger random numbers with left-
turned head (RNGM= 6.27) than with right-turned head (RNG
M = 5.67). Three of eight DMD participants counted from right
to left (left-turned head: RNGM= 5.50; right-turned head: RNG
M = 5.59).

On the vertical axis counting habits were the following: For
SMAs again only one participant counted from down (RNGM=

6.00) to up (RNGM= 5.60). Among DMDs two of eight children
counted from down to up (down-turned head: RNG M = 5.31;
up-turned head: RNG R= 6.55).

DISCUSSION

Inspired by an embodied approach to cognition, the current
study aims to investigate number processing and higher
order cognitive abilities in children with rare neuromuscular
diseases. We tested eight SMA and eight DMD children
between 6 and 12 years in a Random Number Generation
task. Since it is a suitable task for numerical cognition
as well as for executive functions, we derived two distinct
predictions. Below, we discuss the findings following our
hypotheses: Hypothesis 1 is related to spatial numerical
associations, hypothesis 2 is related to randomness, indicative of
inhibitory control.

Spatial-Numerical Associations
(Hypothesis 1)
For the first time, spatial-numerical associations (SNAs) were
assessed in children with motor impairments, examining their
SNAs along both the horizontal and the vertical axis. We

hypothesized, that SNAs would differ between children with SMA
and DMD due to differences in the extent of self-exploration
in early childhood. Although patterns of SNAs in children with
SMA were atypical, they performed above average in general
cognitive and arithmetic tasks. Participants with DMD, on the
other hand, revealed SNAs comparable to those expected of
healthy children but showed weaker performance in arithmetic
and in general cognitive ability and executive functioning.

Even though no systematic difference in the counting
direction was found in the DCD between DMDs and SMAs,
participants with DMD had a tendency to generate larger/smaller
numbers after turning their head rightward/leftward, but the
ones with SMA did not present a preference in the left-right
direction. This may perhaps be related to the severe and early
handicap in changing their postural positions including an
inability to take an upright body posture as well as to a less
mature development of functional laterality in the significantly
younger SMAs.

Individual differences within as well as between the two
groups were observed for horizontal SNAs and can be interpreted
following the hierarchical view on embodied cognition (Fischer,
2012). The differences between the groups can be explained by
distinct motor experiences in the course of the two diseases, i.e.,
on the embodied level. Additionally, in both groups for some
participants, testing was only possible with a caregiver next to
them. The lateral presence of another person might anchor the
participant and therefore has an impact on number generation,
i.e., on the situational level. Three out of seven participants
with a caregiver sitting next to them did show reversed or no
horizontal SNAs.

Concerning next the vertical dimension, DMDs showed
patterns comparable to healthy developing children
by performing more descending/ascending steps in the
downward/upward head orientation, respectively. In contrast,
SMAs revealed a reversed tendency. How to explain this opposite
trend? From an embodied point of view, early sensorimotor
experience is crucial for developing mental representations.
First, disease onset in DMD is around age 6–7 which indicates
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that several milestones of motor development are reached before
outbreak of the disease and loss of muscle strength. In contrast,
SMA children do not typically acquire motor skills such as sitting
or standing autonomously. Therefore, compared to SMAs,
experiences of DMDs do not differ that much from healthy
developing children in those first and important years of life.
Their results in this task of embodied number processing can
therefore be equal to the ones of healthy children.

An additional interpretation of the unique pattern of RNG
performance in children with SMA along the vertical axis
pertains to a different internalization of universal concepts
related to physical properties of the world. Indeed, due to their
inability to reach low or high points in space, SMAs could be
more sensitive to an object’s weight. From an early age, they
start experiencing the weight of their limbs and as they grow
and become taller, their body gets heavier without gaining more
muscle strength like healthy children. Associations might be built
between more weight (i.e., heavy) and downward space and less
weight (i.e., light) and upward space, respectively. The vertical
spatial representation of weight is a rarely studied but upcoming
topic. Across domains “more” is associated with “up” and “less”
is associated with “down”. According to the hierarchical view
on embodied cognition, weight could play a distinct role on
the situated level: A recent study by Vicovaro and Dalmaso
(2020) found a reversed SNARC-like effect when participants
were directly instructed towards the weight of objects. They
responded faster with a downward button for higher weights and
with an upward button for lower weights. This effect was only
found when weight was task relevant. This finding could support
our interpretation: The weight of an object is of specific valence
for children with SMA.

RNG and Randomness (Hypothesis 2)
We measured the randomness of our participants with SMA and
DMD by computing the redundancy score R. Low redundancy
equals high randomness in number generation. Impairments in
executive functions are linked to the inability to inhibit certain
tendencies in number production (see Brugger, 1997; Peters
et al., 2007). Research with DMD children revealed impairment
in executive functions (Donders and Taneja, 2009). Therefore,
we hypothesized that performance of children with DMD
would have been less random than performance of participants
with SMA. However, both groups’ redundancy did not differ
significantly in the current study. Developmental improvements
in performance were established in studies on random generation
with children without motor impairment (Towse andMcIachlan,
1999). Additionally, R scores of both groups differed significantly
from R scores of healthy children on the horizontal axis (Sosson
et al., 2018) but only for SMAs when excluding the spatial
component from the task (Towse and McIachlan, 1999). It is
worth noticing that, since in Sosson et al. (2018) the numerical
range was larger than the one used in our and in the Towse
and McIachlan (1999) study and since increase of numerical
range reduces the randomness (Towse and McIachlan, 1999),
the comparison with the index computed by Sosson et al. (2018)
should be considered with precautions. Nevertheless, higher age
in DMDs contributes to them performingmore similar to healthy

controls as executive functions as well as motor experience evolve
with age.

Cognitive Profile
Since SMA and DMD are associated with several differences
in general cognitive abilities, we assessed the cognitive profile
of the two groups by administering subtests from established
test batteries (WISC-V and AID-3). Verbal and non-verbal
performance was assessed by two subtests from the WISC-V. It
was expected that children with SMAwould outperform children
with DMD in verbal IQ whereas performance related assessment
would not show any differences. The current study did not find
significant distinctions in verbal ability between the two groups,
even though tendentially SMA children did outperform DMD
boys. The lack of a significant difference in the predicted direction
might also reflect the reliable age advantage of DMD children in
our study.

Limitations and Outlook
The current study fell right into the COVID19-crisis. Testing
participants in conditions affecting the respiratory system made
avoidance of any infection risk even more important. We
decided to test the participants online via the platform ZOOM.
Despite the advantage of being more flexible in scheduling the
appointments and incurring less effort for the families, some
limitations had to be accepted.

In light of contextual influences on number processing
(Fischer et al., 2010), RNG performance may be sensitive to task-
irrelevant numerical cues in participants’ visual field. In our on-
line study, it was not possible to sufficiently control for such visual
cues, as well as for auditory noise coming from other persons or
even construction work. Setting up and monitoring the technical
equipment required care givers being close to the participants.
Exploring the influence of lateralized cues on RNG performed by
SMAs andDMDswould identify the weights of contextual factors
(Fischer, 2012).

One potential limitation of the current study is the missing
age matched control group of healthy children. Here, we
compared performance of children with rare neuromuscular
diseases to reported results in former studies with healthy and
normally developing children by Towse and McIachlan (1999)
and Sosson et al. (2018). Future research should provide a direct
comparison of children with SMA and DMD with age matched
healthy controls.

Finally, the rarity of SMA and DMD led to rather small
samples and contributed to the significant age difference between
the two groups. Bigger sample sizes in future research should
compare groups with different degrees of motor impairment and
finger dexterity (Guedin et al., 2018).

CONCLUSION

To summarize, DMDs, unlike SMAs, seem to have both a
horizontal and a vertical mental number line, similar to healthy
children. In other words, DMDs’ performance supports the
hypothesis that, due to equal sensorimotor experience, themental
representation of numbers of DMDs is comparable to that of
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healthy developing children. The observed discrepancy between
typically developing SNAs and atypically (weak) developingmath
abilities in DMDs is likely due to deficits in the development
of supportive domain general cognitive functions, like executive
and attentional regulation, as well as due to psychological
coping difficulties with gradual loss of motor ability. For SMAs
it seems unlikely that the observed atypical SNAs are at all
disadvantageous for the development of their high math abilities.
They seem to be able to spatially mentalize numbers albeit their
SNAs develop atypically in spatial direction and strength.

In general, this supports the view that typical as well as
atypical development of numerical cognition cannot be predicted
by single factor models (i.e., core ability / deficit) but rather
by multiple factor models that cover a wide range of biological
as well as environmental individual differences (Kaufmann
et al., 2013). Moreover, our results support and further develop
the hierarchical view by Fischer (2012), demonstrating how
the properties of the body inhabiting the brain and the
development of compensatory skills are determinant in the use
of different spatial information (derived from physical properties
or acquired through daily activities) for number representation
and processing.
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Very few questions have cast such an enduring effect in cognitive science as the question
of “symbol-grounding”: Do human-invented symbol systems have to be grounded to
physical objects to gain meanings? This question has strongly influenced research and
practice in education involving the use of physical models andmanipulatives. However, the
evidence on the effectiveness of physical models is mixed. We suggest that rethinking
physical models in terms of analogies, rather than groundings, offers useful insights. Three
experiments with 4- to 6-year-old children showed that they can learn about how written
multi-digit numbers are named and how they are used to represent relative magnitudes
based on exposure to either a few pairs of written multi-digit numbers and their
corresponding names, or exposure to multi-digit number names and their
corresponding physical models made up by simple shapes (e.g., big-medium-small
discs); but they failed to learn with traditional mathematical manipulatives (i.e., base-10
blocks, abacus) that provide a more complete grounding of the base-10 principles. These
findings have implications for place value instruction in schools and for the determination of
principles to guide the use of physical models.

Keywords: symbol-grounding, relational mapping, place value, number, analogy, symbol systems

INTRODUCTION

Do symbols need to be grounded to their physical referents to have meanings? Thirty years ago,
Harnad (1990) posed this question motivating empirical studies and theoretical debates across many
subfields of cognitive science (Taddeo and Floridi, 2005; Steels, 2008; De Vega et al., 2008; Dove,
2016). The issues are still theoretically (Socher et al., 2013;Wang et al., 2019) and practically relevant,
especially within the field of education (Alibali and Nathan, 2012; Pouw et al., 2014; Stolz, 2015).
How do symbols—the letters of the alphabet, the digits of Arabic numbers—become able to convey
meaning? A grounded symbol is one that gains meaning directly through the perception of that
meaning, as the symbol “7” may gain meaning through the direct perception of seven discrete
entities. In mathematics education, theoretical ideas about symbol grounding influenced and
encouraged the use of physical models and manipulatives as a way to make abstract concepts
directly perceivable (Sowell, 1989; Sarama and Clements, 2009; Carbonneau et al., 2013). Efficacy
studies, however, yielded mixed results (Son et al., 2008; McNeil et al., 2009; Carbonneau et al., 2013;
Mix et al., 2014; Mix et al., 2017) and no clear principles as to when physical models are helpful. Here,
we propose a rethinking of physical models in education—not as a path to grounding, but as
analogies that help learners discover inherently abstract relations. We consider these ideas with
respect to children’s early learning about multi-digit notation.
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Multi-digit Arabic numbers represent magnitudes through a
base-10 system: 232 is named as “two hundred thirty-two”, and is
composed of 2 sets of 100 s, 3 sets of 10 s, and 2 sets of 1 s. 232 is
less than 322, because the former indicates 2 rather than 3 sets of
hundreds—even though these two numbers are composed of the
exact same set of individual digits. Understanding this
hierarchical structure and the algebraic relations within multi-
digit numbers is the goal of formal place value instruction and the
foundation for developing advanced calculation skills. Both
research and educational practice (Montessori, 1917; Bruner,
1966; Fuson, 1986; Fuson and Briars, 1990; Geary, 2007; Bussi,
2011) have focused on how to ground base-10 relations (e.g., 100
is 10 sets of 10, and 10 is 10 sets of 1) in physical models,
sometimes also known as mathematical manipulatives. For
example, base-10 blocks ground the meanings of the counts of
each place, the multiplicative relations among the places, and the
exact represented discrete quantities using blocks composed of
small cubes such that each cube represents one, bars (called
“longs” in math education) contain 10 ones, and large blocks
(called “flats” in math education) contain 100 ones. These blocks
are then used to physically instantiate specific amounts such that
“232” is represented as 2 big blocks, 3 bars, and 2 cubes. Despite
widespread use, early learners can have difficulties in
understanding just what this is all about: some when shown a
display such as that for “232” count the total number of blocks
(seven blocks), some try to count all the cubes (Chan et al., 2014),
and some studies show little benefit of the addition of these
physical models (Ball, 1992). We believe that the problem may be
that these blocks try to provide a full grounding of the unit size of
places, their counts, and the exact quantity, and in doing so, base-
10 blocks—just like the base-10 system itself—are too much for a
naïve learner to grasp all at once. A complete grounding of the
base-10 hierarchy may benefit later learning, but it may not be the
best way to introduce the multi-digit number system.

Recent studies suggest that children’s learning about place
value starts early and proceeds incrementally (Byrge et al., 2014;
Mix et al., 2014; Mix et al., Under review; Yuan et al., 2019).
Children first learn about the place relations that structure multi-
digit numbers before formal school instruction on place value.
This early understanding does not include precise knowledge of
the different quantities represented by the places nor their
multiplicative relations to each other (Byrge et al., 2014; Mix
et al., 2014; Yuan et al., 2019; Yuan et al., 2020). Instead, it is an
“approximate” understanding that multi-digit numbers are made
up of places that represent different relative magnitudes ordered
from left to right. Critically, this early approximate knowledge
strongly predicts later success in learning and using base-10
principles (Mix et al., Under review), suggesting that
approximate understanding is a useful step to more explicit
correct understanding. Current evidence suggests further that
young children acquire this approximate understanding through
experience with the correspondences between spoken and written
number names, e.g., learning that the “hundred” and the “-ty” in
“two hundred thirty two” mark the places in the string “232” as
signifying different amounts (Mix et al., Under review; Yuan
et al., 2020). Multiple experiments (Byrge et al., 2014; Mix et al.,
2014; Mix et al., 2017; Yuan et al., 2019) have shown that this

partial knowledge enables preschool and kindergarten children to
map unfamiliar number names to written forms for 3- and 4-digit
numbers, to judge the relative magnitudes of 3- and 4-digit
numbers, and to write multi-digit numbers given the spoken
name (albeit sometimes with meaningful and interesting errors)
(Mix et al., 2014). The three experiments reported here focus on
this first step in learning about place value: that there are different
places that signify different amounts. We ask whether and how
physical models might benefit this learning.

In science, physical models are often used not to ground
meaning but as analogies to distill the skeleton of an idea: for
example, an atom is like the Solar System in that each has smaller
elements rotating around a larger one (Gentner, 1983). These
simple analogies are helpful to initialize learning and can support
higher conceptual inferences, but they are not fully correct
(Gentner and Stevens, 1983; Mix, 2010; Mix et al., 2019;
Richland et al., 2017; Richland and Simms, 2015). Gentner’s
Structure Mapping theory (Gentner, 1983; Gentner, 2010)
proposes that analogies work because they support the
alignment of two relational systems that enable the
relations—independent of the elements in those relations—to
be extracted. The key to extracting the common relational
structure is the alignment and mapping of corresponding
elements—e.g., the nucleus to the Sun, the planets to electrons.
Experiments with many kinds of materials and different aged
participants show that relational structures can be discovered and
broadly generalized in very few trials if the learner properly aligns
the elements across examples (Loewenstein and Gentner, 2001;
Namy and Gentner, 2002; Rattermann and Gentner, 1998; Yuan
et al., 2017). Figure 1 provides an illustration of the relevant
findings. Given an array such as that in Figure 1A, 4-year-olds do
not immediately see the big-medium-small structure and have
considerable difficulty at picking out another configuration that
exemplifies the same relational structure (Kotovsky and Gentner,
1996). But adding another configuration as shown in Figure 1B
and inviting children to compare the two significantly increases
the likelihood that they can find the relational pattern and apply it
to a new configuration. The dotted lines in Figure 1B denote the
one-to-one alignment between elements in the two examples;
through these alignments, children may start to “see”, for
example, that although the biggest square of the left
configuration is perceptually different from the biggest circle
in the right configuration, they both stand in the same relation
to the other members of the array. Perceptual properties or added
components that disrupt the alignment of elements disrupt the
discovery and generalization of the relational pattern (Kaminski
and Sloutsky, 2013; McNeil et al., 2009; Paik and Mix, 2008; Uttal
et al., 2008; Rattermann and Gentner, 1998; Son et al., 2012a;
Yuan et al., 2017). For example, as shown in Figure 1C, the
medium square of the left configuration can be mapped either to
the largest square of the right configuration (because they are
perceptually identical: Object match) or to the medium square of
the right configuration (because they are both the medium one
within each triplet: Relational match). Likewise, finding the
common relational structure is also more difficult when the
component elements are heavily detailed and perceptually rich.
As shown in Figure 1D, the perceptual richness of the Mickey
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mouses and the keys with all of their vivid color and interesting
shapes can make the individual categories so salient that children
represent the left configuration as “They are Mickeys!” rather
than “These Mickeys are ordered from largest to smallest”.
Consistent with this view, past research (McNeil et al., 2009)
showed that teaching children calculation with mathematical
manipulatives that resembled real money with many details
was significantly less effective than using white paper money
with only written numbers on them without other extraneous
perceptual features.

From the perspective of the Structure Mapping Theory and as
illustrated in Figure 2, base-10 blocks present a web of mappings
at multiple levels all at once, an approach that is contrary to the
existing evidence that too many mappings may obscure the
discovery of relational structure. The demand of multiple
levels of mappings in visual illustrations—meant to clarify
text—has been shown to be unhelpful even for college
students’ learning (Wills et al., 2008; Okeefe et al., 2014; Rau,
2017). This problem of “coordinating multiple representations” is

well recognized in the learning science literature on teaching and
learning in higher education (Rau, 2017), but it is rarely discussed
for children’s early learning. This problem is also
compounded—for example, in the case of base-10
blocks—when there are features that draw learners’ attention
to the properties of individual elements at the expense of
highlighting the relations among the elements. For example,
marking the individual 100 small cube units in a large block
(or the “flats”) focuses too much on faithfully grounding the
“hundred” unit to 100 discrete entities rather than highlighting
the relation that the “hundred” place is larger than the “decade”
place (which is further larger than the “unit” place). Past research
has shown that perceptual properties that contain too many
details about individuals often result in learners’ failures in
recognizing and learning about the relations among
individuals and that subtle changes in the direction of
presenting the “skeleton” of the relational structure can benefit
learning (Rattermann and Gentner, 1998; Paik and Mix, 2008;
Kaminski and Sloutsky, 2013; Yuan et al., 2017).

FIGURE 1 | The challenges and ways to extract relational structures: (A) Extracting relational patterns from a single exemplar is difficult for young children. (B)
Aligning and comparing two analogs that share the same relational pattern can help. (C) Alignment based on relational match is difficult to establish with the presence of
object match. (D) Richly detailed components often draw learners’ attention to object identities rather than relational patterns.
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From the perspective of the Structure Mapping Theory,
relations are found through aligning arrays with the same
relational structure and do not necessarily require that the
aligned arrays include physical models. Thus, the alignment of
number names (one symbolic form) to written forms (another
symbolic form)—with no physical model—could be sufficient for
an early learner (Mix et al., 2019; Yuan et al., 2020). Multi-digit
number names and the written forms have distinct surface forms,
but the same underlying relational structure as shown in Figure 2.
Thus, mapping multi-digit number names to their written forms
could yield the discovery of the relational structure—that there
are places ordered by relative magnitudes from left to right. This
could work because multi-digit number names likely have
intuitive meanings that young children partially know—e.g.,
that “hundred” means “a whole lot” and “-ty” signals a pretty
big number as well. These intuitive meanings do not have to be

exact to help children find the relational structures. For example,
given the big-medium-small relational pattern in Figure 1A,
children are helped in finding and generalizing that pattern
when the elements are aligned with the words “daddy-
mommy-baby” (Kotovsky and Gentner, 1996), which only
roughly imply size. These arguments, however, do not mean
that physical analogies cannot help, they should if they help
children align the elements in spoken and written number names.

RATIONALE FOR THE THREE
EXPERIMENTS

The three experiments examine the role of relational mapping
and physical models in children’s discovery of place value
through the alignment of multi-digit number names, written

FIGURE 2 | Systems of relational mappings among a written multi-digit number, its corresponding number name, and the base-10 blocks representation of its
numerical quantity. The solid lines highlight the structure within each representation, while the dotted lines denote themyriad relational mappings between corresponding
components.
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notation, or physical models. Across all three experiments, there
are pretests and posttests, as well as mapping experiences in
between those tests. The mapping experiences merely coach the
alignment of elements across examples (spoken number names,
written numbers, and physical models) with the same relational
structures. Because alignment has been shown to support the
extraction of the relational structure in a few trials (Son et al.,
2012a; Son et al., 2012b), there were not many mapping trials. In
addition, explanations are minimal—typical in relational learning
experiences—since aligning elements is the hypothesized key
factor to discovering relations. The participants were 4- to 6-
year-olds, who were in preschool or kindergarten classes and who
had not been formally introduced to the place value system in
school.

Experiment 1
Experiment 1 was designed to test whether the discovery of the
common relational structure of multi-digit number names, their
written forms, and their magnitudes is better achieved—through
the use of physical models (base-10 blocks and abacus) which
provide groundings of the base-10 hierarchies (e.g., 100 is 10 sets
of 10), or merely bymapping the two symbolic forms (written and
spoken) of multi-digit numbers. In the experiment, the Symbols-
to-Symbols condition involves only number names and their
corresponding digits with the mapping goal consisting of a
direct alignment between corresponding elements of the two
symbol systems. Next in complexity is the Symbols-to-Abacus
condition; in addition to number names and written forms, the
columns of the abacus align spatially with the places and the
numbers of discs at each column align with the digit in each place,
providing the common meaning that links the written symbols
and their spoken names. The Symbols-to-Blocks condition is the
most complex; the symbols align with the number of whole
blocks, the cells within the blocks align with the actual
amount represented, and the spatial arrangement of the blocks
aligns with different places. If the number of correlated
features supports finding the aligned relation, one might
expect the Symbols-to-Blocks condition to best support the
relational structure underlying number names, their written
forms, and their relative magnitudes. If simplicity and
alignment of common elements is the key, then the Symbols-
to-Symbols condition may lead to better discovery of places and
their relative magnitudes.

In all conditions, we used a coached imitation task to foster
alignment of heard number names, written digits, and physical
models (in the physical model conditions). The experimenter said
the number name, created the written number with digit cards, and
then in themodel conditions, made amodel of the numberwith the
manipulatives, repeating the number name, and aligning themodel
and the written number in space. The child was then asked to copy
these constructions with the experimenter’s model and digit cards
in view, and if the child made a mistake, he or she was coached to
make the correct constructions by the experimenter. We measured
and used the number of errors in the mapping task as an indicator
of the perceptual transparency of the alignments to the children.
We also measured children’s pre- and post-test performance using
numbers that were not trained during mapping. There were two

pre- and posttest tasks: mapping number names to written digits
and magnitude comparison of written numbers.

Participants
Seventy-five children (37 females and 38 males, age range:
4.03–6.88 years) participated in the study. As noted above, the
participating children in this and all following studies were
enrolled in preschool or kindergarten; none had entered first
grade. The age of the sample was sensibly and positively skewed
(median: 5.33 years, mean: 5.44 years), reflecting a range of 4 to early
6 years, with very few older 6-year-olds who had not yet started first
grade at the time of the study due to various reasons (e.g., their
birthday fell after the school district’s fall cut-off for 6-year-olds to
enter first grade). This age range was appropriate, given that we were
broadly interested in children’s early learning of multi-digit numbers
before formal education. Participants were recruited through
community organizations (e.g., farmers’ markets, child outreach
events, boys’ and girls’ clubs) and local preschool and daycare
centers. The sample of children was broadly representative of the
local population (84% European American, 5% African American,
5% Asian American, 2% Latino, 4% Others) and consisted of
predominantly working- and middle-class families. The study was
approved by the Human Subjects and Institutional Review Boards at
Indiana University. In this and all following studies, informed
consents were obtained from the legal guardian and assents were
obtained from the children prior to the experiment. Children were
randomly assigned to one of three conditions: Symbols-to-Symbols
mapping (n � 27), Symbols-to-Abacus mapping (n � 23), and
Symbols-to-Blocks mapping (n � 25).

Materials and Procedure
This experiment had three phases: pretest, relational mapping
trials, and posttest.

Pre- and Posttest
The pre- and posttests consisted of two established tasks: the
which-N and which-More tasks (Mix et al., 2014; Yuan et al.,
2019). On each trial, children were presented with a pair of written
multi-digit numbers. In the Which-N task, children were told a
spoken number name and then asked to select the written form
that matched the name; in the which-More task, they were asked to
select the one that was more. There were 16 trials for each of the
tasks with a total of 32 trials (Table 1). Accordingly, 32 cards were
made with two multi-digit numbers (roughly 17.78 cm wide and
12.7 cm tall) printed at the center of the card. The particular
numbers used in the tasks were randomly sampled from 1- to 4-
digit numbers. The pair of target and foil numbers were chosen
from a variety of different types to avoid the possibility that
knowing any single strategy or heuristic would allow the
participant to solve all (or majority) of the trials. For example,
simply knowing that numbers withmore digits signify larger values
is not enough to successfully choose the larger value between 223 v
220. Similarly, knowing that “three hundred and five” should start
with “3” alone is not enough to choose the correct written form of
“three hundred and five” given 350 v 305. These different types
have been used in previous research (Yuan et al., 2019) and include
single digits numbers (e.g., 2 v 8), numbers with different numbers
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of places (e.g., 36 v 306), transpositions (e.g., 350 v 305), numbers
that differed in only one digit (e.g., 105 v 125), and numbers with
no digit overlapping (e.g., 11 v 24). Items in the which-More task
were sampled using the samemethod as those used in the which-N
task, but the two tasks involved different numbers to avoid the
possibility that exposure to items in one task would influence
participants’ responses to the same items in the other task. Because
during the which-More task children were expected to always
choose the numerically larger number, consistent with established
procedures and to counterbalance the response demand across the
two tasks, the experimenter always asked the numerically smaller
number of the two in the which-N task.

For each of the test tasks, the same items were used at both
pretest and posttest, which allowed us to measure the effectiveness
of relational mapping on children’s discovery of the relational
structure. Two versions were created that counterbalanced the
order of the individual items. If a child received versionA at pretest,
she/he would receive version B at posttest; we did this to minimize
the test-retest effect. No feedback was given at pretest or posttest.

Mapping
As shown in Figure 3 top, during the mapping trials, participants
imitated the experimenter to make multi-digit numbers using three
different sets of materials (i.e., number cards only, number cards
with abacus, number cards with base-10 blocks). The base-10 blocks
included three types that each represents one place value unit. The
small squares were 1.016 cmwide and 1.016 cm tall and were used to
represent the unit of one. The bars were composed of ten small
squares attached together to form a bar shape (1.016 cm wide and
10.16 cm long), and they represented the unit of ten. The big squares
were composed of ten bars attached together to form a big square
(10.16 cm by 10.16 cm), and they represented the unit of hundred.
The abacus was 28 cm wide and 25 cm tall, composed of two
horizontal bars at the top and bottom and three vertical bars for
holding the discs at each place value unit (e.g., left bar: the hundred
place, middle bar: the decade place, right bar: the unit place). Nine

discs were attached to each of the vertical bars and different colors
were used to help participants differentiate the places: discs in the
hundred place were blue, those in the decade place were yellow, and
those in the unit place were red. All of the discs were of the same size
(with a diameter of 3 cm). The number cards (4 cmwide and 7¼ cm
tall) were composed of individual cards with single digits (i.e., 0–9)
printed at the center of each card in Times font. There were 15
mapping trials during which children from all three conditions were
first presented with a target card (12 cm wide and 7 ¼ cm tall) with
the target multi-digit number printed at the center in Times font.
The 15 target numbers were: 14, 163, 187, 65, 4, 23, 451, 52, 6, 673,
72, 8, 901, 838, 94. The multi-digit numbers that participants
received during mapping and those used for pre- and post-tests
were different. In other words, if participants’ performances in the
testing tasks have improved from pre- to post-test, then it would
suggest that they have learned from the mapping experience and
generalized that learning to different items used in the testing tasks.

For all three conditions, 10 piles of individual digits cards from
“0” to “9” were laid out in sequence on the left side of a table.
During the mapping trials, both the experimenter and the child
took individual cards from these piles to make multi-digit
numbers. In each condition, there were 15 mapping trials; this
small number is consistent with prior work which has shown that
a relatively few such mapping experiences can yield generalizable
discovery of relations in preschoolers (Rattermann and Gentner,
1998; Son et al., 2012a; Yuan et al., 2017).

Symbols-to-Symbols mapping. The experimenter first
introduced the individual number cards to the participant, “We
have some number cards here.” She then pointed to each pile from
“0” to “9” and named the digit for the child from “zero” to “nine”. She
told the child that theywere going tomake some numbers using these
cards. She gave one example by picking up a card with “1” and a card
with “3”, laying them down on the table side-by-side while saying, “I
havemade thirteen. Can youmake thirteen using these cards?”There
were 15 such mapping trials. Children only had to copy the same
actions as the experimenter, so potentially performance could be

TABLE 1 | All tasks and items used in the three experiments.

Pre- and Post-tests Items

Exp 1 The Which-N task (16 trials) 2 v 8, 11 v 24, 12 v 22, 15 v 5, 36 v 306, 64 v 604, 85 v 850, 105 v 125, 201 v 21, 206 v 260, 350 v 305, 402 v 42, 670 v 67,
807 v 78, 1000 v 100, 1002 v 1020

The Which-More task (16 trials) 3 v 7, 6 v 8, 11 v 19, 14 v 41, 16 v 62, 26 v 73, 30 v 60, 72 v 27, 82 v 081a, 100 v 10, 101 v 99,123 v 321, 223 v 220, 585 v
525, 670 v 270, 4620 v 4520

Exp 2 The Which-N task (20 trials) Easy items (10 trials): 2 v 8, 12 v 22, 14 v 41, 15 v 5, 24 v 11, 64 v 604, 67 v 670, 125 v 105, 350 v 305, 900 v 99
Hard items (10 trials): 189 v 198, 362 v 326, 485 v 4085, 677 v 766, 1900 v 1009, 2060 v 2006, 3070 v 307, 5109 v 5910,
7014 v 7804, 8503 v 8350

The Which-More task (20 trials) Easy items (10 trials): 3 v 7, 16 v 62, 26 v 73, 30 v 60, 72 v 27, 100 v 10, 123 v 321, 223 v 220, 585 v 525, 670 v 270
Hard items (10 trials): 536 v 5362, 690 v 609, 751 v 571, 899 v 988, 1010 v 101, 2395 v 2315, 4208 v 4820, 6040 v 6400,
5035 v 5605, 7300 v 7003

Exp 3 The Which-N task (16 trials) 2 v 8, 11 v 24, 12 v 22, 15 v 5, 36 v 306, 64 v 604, 85 v 850, 101 v 100, 102 v 120, 105 v 125, 201 v 21, 206 v 260, 350 v 305,
402 v 42, 670 v 67, 807 v 78

The Make-a-model task (6 trials) 5, 8, 50, 73, 429, 601

The Choose-a-model task (16 trials) 3 v 7, 6 v 8, 11 v 19, 14 v 41, 16 v 62, 26 v 73, 30 v 60, 72 v 27, 82 v 81, 100 v 10, 101 v 99, 123 v 321, 223 v 220, 462 v 452,
585 v 525, 670 v 270

This item was originally added as a catch on for the strategy of just counting the number of digits. Many children indeed utilized this strategy. Since this trial contained a non-existing
number, it was not included in the reported analysis. Additional analysis including this trial did not change the pattern of results.
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errorless. The ability to make correct copies—trial by trial—provides
a measure of the obviousness of the alignment between different
components (e.g., number names to written forms). In all conditions,
initial copy attempts by the child were scored as correct or incorrect
(e.g., if the to be copied itemwas “13” and the child took a 7 instead of
a 1, or made 31 instead of 13, it would be scored as incorrect). On all
incorrect trials, the experimenter coached the child into making a
final correct copy and repeated the name (e.g., “See you made 13”) to
the correct version of the written form.

Symbols-to-Abacus mapping. The experimenter introduced and
named the digits cards from “0” to “9” similar to the Symbols-to-
Symbols condition. She then familiarized the participant to the
abacus, telling the children the name of the abacus and showing
them how the discs could be moved and allowing them to do so. The
experimenter then gave an example by laying down the cards “1” and
“3” while saying “Here is thirteen. Now watch, I am going to make
thirteen using the abacus.” She then put the correct abacus

configuration down underneath the cards while saying, “I’m
making thirteen,” or “Here is thirteen.” She then asked the child,
“Can you make thirteen using your cards and then with the abacus?”
The participant then made the corresponding number first with their
own cards and then with the abacus and the experimenter repeated
the spoken name when the written number was correctly formed and
when the abacus model was correctly formed. On all incorrect trials,
the experimenter coached the child intomaking the final correct copy
and repeated the correct number name.

Symbols-to-Blocks mapping. The experimenter first
introduced and named the digits cards from “0” to “9” in the
same way as the Symbols-to-Symbols condition and introduced
the different sized blocks. During the mapping trials, the
experimenter first picked out individual cards and laid them
down on the table to make a target number. For example, she
might pick out cards “1” and “3”, laying them down side-by-side
on the table while telling the participant that “I have made

FIGURE 3 | (A): Illustrations for the three mapping conditions in Experiment 1. (B): Density graphs of participants’ accuracy in Experiment 1 by condition, test time
(pre- and post-test), and pre-test familiarity with multi-digit number symbols. In (B) top row: children who scored less than or equal to 75% at pre-test. In (B) bottom
row: children who scored above 75% at pre-test. Pink indicates pre-test performance and turquoise indicates post-test performance.
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thirteen using our cards. Next, I am going to make thirteen using
our blocks.” She then put the correct number of blocks down
underneath the cards (a tens block under the card “1” and three
ones blocks under the card “3”) while saying, “I’m making
thirteen,” or “Here is thirteen.” She then asked the child, “Can
you make thirteen using your cards and blocks?” The participant
then made the corresponding number first with their own cards
and then with their own blocks. The experimenter repeated the
number name when the written form was correctly formed and
also when the block model was correctly formed. On all incorrect
trials, the experimenter coached the child into making the final
correct copy and repeated the correct number name.

Results
To determine the possibility of pre-existing group differences, we
compared children’s performance at pre-test across the three
conditions. In this and all following analyses, logistic mixed effect
models were used to evaluate children’s performance under different
training conditions. Such models allowed us to utilize item-level data
from each participant (rather than computing a summary score—e.g.,
mean, median—for each participant) and to take into consideration
the multi-level hierarchical structure of experimental studies, in
which multiple trials are nested within corresponding participants
and multiple participants are nested within corresponding
experimental conditions (Singmann and Kellen, 2019). A logistic
mixed effect model was conducted in the R environment (R Core
Team, 2020) using the Afex package (Singmann et al., 2015).
Condition was entered as a fixed variable, participant and test
item were entered as random variables; the dependent variable
was the accuracy of the individual trials (i.e., 0 or 1) in the
which-N and which-More tasks at pre-test. There was no
significant main effect of condition, χ2 (2) � 0.71, p � 0.70,
suggesting that children assigned to the three mapping conditions
started out at comparable levels of competencies. As evident in
Figure 3, there were, however, considerable individual differences
with some children performing at levels above 75% at pretest but
other children performing much more poorly. These individual
differences in early informal knowledge have been reported
previously (Byrge et al., 2014; Yuan et al., 2019). Although
continuous age (in month) was correlated with individual children’s
performance at pretest (r2� 0.42, p< 0.001) andpost-test (r2� 0.38, p<
0.001), there was no evidence that age was related to how much
children had improved after the training (overall: r2 � 0.0005, p � 0.85;
Symbols-to-Symbols condition: r2 � 0.04, p � 0.29; Symbols-to-Blocks
condition: r2� 0.02, p� 0.54; Symbols-to-Abacus condition: r2� 0.007,
p � 0.69). As stated above, none of the participants had yet attended
first grade at the time of the study. Given that we were broadly
interested in how children can learn from symbolic and physical
representations of multi-digit numbers before receiving formal place
value instructions at schools and the large individual differences in early
knowledge beyond the factor of age, we collapsed children across the
different age groups in all following analyses.

Children’s ability to copy the experimenter’s models (and the
need of direct coaching) during the mapping trials provides a
measure of the obviousness of the alignment of elements across
arrays. Children were reasonably successful in the copying task
across the three conditions but were better able to correctly copy

the arrays in the Symbols-to-Symbols conditions than in the two
physical models conditions. A logistic mixed effect model, in
which condition was entered as the fixed variable, participant and
test item were entered as random variables, revealed a significant
main effect of condition, χ2 (2) � 33.46, p < 0.001. Children were
significantly more accurate during mapping trials in the Symbols-
to-Symbols condition (Mean � 0.98, SE � 0.008) than in the
Symbols-to-Blocks condition (Mean � 0.78, SE � 0.039), t (26) �
4.77, p < 0.001, and the Symbols-to-Abacus condition (Mean �
0.87, SE � 0.036), t (24) � 3.16, p � 0.004. There was no significant
difference between the Symbols-to-Blocks and Symbols-to-
Abacus conditions, t (46) � 1.38, p � 0.17.

The key test of the discovery of the relational pattern is whether
children can apply the pattern to arrays that were not experienced
during training (measured in the Which-N task) and whether they
canmake inferences from the relational patterns as to the indicated
magnitude (measured in the Which-More task). Children’s
performances relative to pretest increased in the Symbols-to-
Symbols condition but not in the Symbols-to-Blocks or the
Symbols-to-Abacus conditions. Logistic mixed effect models on
the pre- and post-test performances were conducted for each
condition with test time (pre-test vs. post-test) and test task
(which-N vs. which-More) entered as fixed variables and
participant and test item entered as random variables, and
accuracy on individual items as the dependent variable. For the
Symbols-to-Symbols condition, there was a significant main effect
of test time, χ2 (1) � 4.24, p � 0.039, with performance improving
from pre-test (Mean � 0.80, SE � 0.04) to post-test (Mean � 0.84,
SE � 0.03). There was no reliable main effect of test task, χ2 (1) �
1.72, p � 0.19, nor interaction between the two fixed effects, χ2 (1) �
0.13, p � 0.72. For both the Symbols-to-Blocks condition and the
Symbols-to-Abacus condition, the models failed to detect any
significant main effect of test time (ps > 0.43), task (ps > 0.14),
nor an interaction between them (ps > 0.71).

Figure 3 bottom shows density plots of children’s
performance at pre-test and post-test for the three conditions
and separated by children with high and low prior knowledge
(defined by 75%1 accuracy in the composite score of the which-N
and which-More task at pre-test). In the Symbols-to-Symbols
condition, the performance distributions for both children with
high and low prior knowledge have shifted to the right from pre-
to post-test. Interestingly, for both the Symbols-to-Abacus
condition and the Symbols-to-Blocks condition, the
distribution of children with low prior knowledge widened
after the mapping experience, suggesting that the use of
physical models helped some children but hurt others. Past
work has shown that relational structures become easier to
perceive with expertise and exposure to the content domain
(Chi, 1978; Chi et al., 1981). Thus, one possible explanation
for the ineffectiveness of traditional manipulatives in the current
experiment is that most children were not ready for and could not
yet utilize the information in these more complex (albeit more
accurate) models of the notational system. We return to these
issues in Experiment 3 and in the General Discussion.

1Using median-split as a grouping method does not change the pattern of results
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Discussion
Experiment 1 shows that 1) the alignment of number names and
written forms is sufficient for children to discover the relational
patterns that map number names to written forms and to judge
the relative magnitudes of multidigit numbers, and 2) it illustrates
how adding additional information—even though relevant and
even though redundant—can make the initial discovery of the
relational patterns through structure mapping less likely.

Experiment 2
The finding that a few Symbols-to-Symbols mapping experiences
supported the discovery and generalization of the relational pattern
underlying number names and their written forms is surprising in
the context of a body of literature that has generally concluded that
the mapping between number names and written forms is hard to
learn (Baroody, 1990; Fuson, 1990). Accordingly, the explicit goal of
Experiment 2 was to replicate with a larger sample the finding that
relatively few mapping trials enabled learners to find and generalize
the pattern. To this end, we realized the mapping trials in two
different ways: using the approach of Experiment 1 and also a slightly
different approach that has been commonly used in Montessori
schools. In the Digits mapping condition as in Experiment 1,
children created multi-digit numbers by using individual digit
cards (e.g., “2”, “3”, “2”) mapped to their spoken name “two
hundred”, “thirty”, “two”). In the Expanded mapping condition,
they mapped expanded cards (e.g., “200”, “30”, “2”—“two hundred”,
“thirty”, “two”) to the name by stacking them on top of each other to
form a visual array showing the place value notation (“232”).

Participants
Ninety-three children (50 females) recruited from the same general
population as Experiment 1 participated in this study (age range
4.03–6.82 years, median: 5.26, mean: 5.39). Children were randomly
assigned to the Digits mapping condition (n � 42) or the Expanded
mapping condition (n � 51). The study was approved by theHuman
Subjects and Institutional Review Boards at Indiana University.
Informed consents were obtained from the guardian and assents
were obtained from the children prior to the study.

Materials and Procedures
The which-N and which-More tasks were used as Pre- and Post-
tests like Experiment 1. There were 20 trials for each of the tasks
(shown inTable 1) with 10 easier trials that involved mostly 2- and
3-digits numbers and 10 harder trials that involved 3- and 4-digit
numbers. Children were first given the 10 easy trials; if they got 7
out of 10 of those trials correct, we proceeded onto the next set of
10 trials. We used this approach to maintain the participation of
children who found the tasks (particularly at pre-test) too difficult
to continue through all 20 trials. Two orders were created that
counterbalanced the order of the individual items across pre- and
post-tests. No feedback was given at pre- and post-tests.

Mapping
There were 20 mapping trials and correspondingly 20 cards with
the numbers 163, 51, 846, 47, 271, 94, 18, 36, 328, 451, 62, 65, 719,
653, 594, 587, 23, 89, 72, 972. The mapping experiences
immediately followed the pre-test for all participants. In both

conditions, the procedures were structured similarly as in
Experiment 1 except for two differences. First, we followed a
“progressive alignment” approach (Thompson and Opfer, 2010;
Gentner et al., 2011) often used in relational mapping studies that
began with 10 mapping trials involving two-digit numbers and
followed by 10 mapping trials with three-digit numbers. Second,
because the Expanded mapping condition involved all possible
numbers from single to three-digit numbers (i.e., 1–900), laying
out all of these components (as in Experiment 1) in front of the
child was not feasible. Instead, on each mapping trial, the
experimenter had a set of individual cards needed for
assembling the target number. She also gave the child an
identical set of cards. For example, as shown in Figure 4, if
the target mapping number was 135 and the child was in the
Expanded mapping condition, both the experimenter and child
would have cards 135, 100, 30, and 5. The 3-digit number cards
were 12 cm wide and 7 ¼ cm tall; the 2-digit number cards were
8 cm wide and 7 ¼ cm tall; the 1-digt number cards were 4 cm
wide and 7 ¼ cm tall. If the child was in the Digits mapping
condition, they would both have the cards 135, 1, 3, and 5. Since
all of the cards were single digit in this condition, they all have the
dimension of 4 cmwide and 7¼ cm tall. The experimenter always
handed the child his or her set of cards at the beginning of each
trial. She then demonstrated how to make the number, had the
child copy her action after each step, and scaffolded if needed.

Results
Pre-test performance in the Digits and Expanded mapping
conditions did not differ as indicated by a logistic mixed effect
model—in which condition was entered as a fixed variable,
participant and test item were entered as random variables, and
the dependent variable was the accuracy of the individual trials (i.e., 0
or 1), χ2 (1) � 0.12, p � 0.73. Again, as shown in Figure 4, there were
considerable individual differences in pre-test performance as some
children performed very well and others quite poorly at pre-test.
During the mapping task when children were asked to imitate the
experimenter inmaking the written forms in response to hearing the
name, children readily imitated the experimenter with very few
errors (overall 99% correct in both conditions), thus readily
discovering the relations between number names and written
digits. Children in both conditions also performed better at post-
test than pre-test on untrained digits indicating generalization of the
learning. To ask whether the advantage of one mapping condition
was higher than the other, we entered both conditions in one logistic
mixed effect model. Condition and test time were entered as fixed
variables, participant and test itemwere entered as random variables.
The model detected a significant main effect of test time,
performance improved from pre-test to post-test, χ2 (1) � 11.27,
p < 0.001, while there was no significant main effect of condition,
χ2 (1) � 0.06, p � 0.81, nor condition and test time interaction, χ2 (1)
� 0.08, p � 0.77. Both of the Expanded mapping condition (pre-test
Mean � 0.76, SE � 0.02, post-test Mean � 0.79, SE � 0.02) and the
Digits mapping condition (pre-test Mean � 0.75, SE � 0.02, post-test
Mean � 0.78, SE � 0.03) improved from pre- to post-test. As shown
in Figure 4, children improved from pre- (Mean � 0.75, SE � 0.005)
to post-test (Mean � 0.78, SE � 0.004) after the mapping experience,
regardless of their conditions.
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Because of the large individual differences and strong
performance of some children at pre-test, we also repeated the
analyses using only the data from children (N � 50) who were
correct less than or equal to 75% of the trials on the combined
which-N and which-More tasks at pre-test. Condition and test
time were entered as fixed variables, participant and test item
were entered as random variables. The model detected a
significant main effect of test time, performance improved
from pre-test to post-test, χ2 (1) � 5.69, p � 0.017, while there
was no significant main effect of condition, χ2 (1) � 0.39, p � 0.53,
nor condition and test time interaction, χ2 (1) � 0.01, p � 0.92.

Discussion
The post-test required children both to generalize the relational
structure to new number names and written forms and generalize
their learning about the relational mappings to judgements of
magnitude—a task on which they were given no experience
during the relational mapping experiences and so children had to
use the discovered relational structure in a newway. The effects of the
brief mapping experience were small and were not proposed as a
sufficient training procedure in and of themselves. However, they
indicated the potential value of reconceptualizing the initial learning
problem as one of discovering relational patterns, and the results
showed that relational mapping from Symbols (heard names)-to-
Symbols (written forms) is useful in this domain just as in other
cognitive domains (McNeil et al., 2009; Kaminski and Sloutsky, 2013).

Experiment 3
Although the results from Experiment 1 did not seem to support
the idea that early knowledge about multi-digit number symbols
can be learned via grounding to physical objects, it is important to
further determine why and how before making a sweeping

generalization. If analogical mapping is the core mechanism
that drives the positive results of the Symbols-to-Symbols
mapping in Experiment 1 and 2, then mapping symbols to
physical models should be helpful if they direct the learners’
attention to the relevant relations (Gentner and Toupin, 1986;
Goldstone, 1998; Jee et al., 2010; Jee et al., 2013). The two physical
model conditions in Experiment 1 may have failed to do so. For
instance, as shown in Figure 2, the number of mappings between
base-10 blocks and number symbols may be too much, too
distracting, and not focused on the critical early
knowledge—e.g., there are different places representing
different relative magnitudes—that children need to know
when first learning the multi-digit system.

To test the above hypothesis, in Experiment 3, we chose to
focus on the abacus as a physical model. We chose the abacus
because the relational structure of the abacus is analogy-like in
that it does not represent the exact magnitudes (as in Base-10
Blocks) but instead represents the system as the counts of units
(the discs) in the different places. To directly test the role of
physical models and to reduce the complexity of the alignments (a
potential problem for the physical models conditions in
Experiment 1), the mapping experiences were from the spoken
names to the physical models. The written forms were not used in
the mapping experiences but were included in the pre- and post-
tests. Success at post-test thus required generalization of
experienced mapping (heard name to physical model) to a
new mapping between spoken number names to the written
forms (the which-N task used in Experiments 1 and 2).

We constructed three “abacus” conditions as shown in
Figure 5: 1) Standard abacus: the original abacus as in
Experiment 1, 2) Sized abacus: the original abacus to which
we added a redundant place cue in which the discs varied in

FIGURE 4 | (A): Illustrations for the two mapping conditions in Experiment 2. (B): Density graphs of participants’ accuracy in Experiment 2 by condition and test
time (Pre- and Post-test). Pink indicates pre-test performance and turquoise indicates post-test performance.
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size so that the relative magnitude (not exact) was modeled by the
relative sizes of the counters; and 3) Discs only: a deconstructed
“abacus” that used only discs varying in size and set on the table in
separate groups.

The Sized abacus condition is just as complex as the Standard
abacus condition, but the different sizes may make the relative
magnitudes of the places more mappable by highlighting that
property. The Discs only condition takes this potentially greater
mappability—bigger discs indicate places that stand for bigger
quantity—and simplifies the context of the presentation. The
Discs only condition is like the Symbols-to-Symbols conditions of
Experiments 1 and 2 in that heard number named were mapped
to visual patterns; only here the visual patterns are not written
multi-digit numbers but discs that vary in size—representing the
relative magnitudes of the quantities represented in each place.

The Discs only condition was also motivated by prior findings
on children’s proportional reasoning Boyer et al. (2008) As shown
in Figure 6, one study presented 4- to 6- year-old children with an
exemplar (showing a particular proportion) together with two
choices and asked the children to find the one that showed the
same proportion as the exemplar. Children were more successful

with continuous length than with discrete length (Figure 6A) in
which each individual unit was clearly and perceptually defined.
Given discrete representations, the children attended to the
individual units, prompting strategies such as counting units,
rather than attending to the part-and-whole relation that defines
the concept of proportion. Likewise, early “approximate” learning
about base-10 concept may benefit more from seeing different
sized discs that mark only the main idea—relative magnitudes of
different places—compared to base-10 blocks that convey not
only the relative magnitudes but also the precise place value
principles (e.g., 100 is 100 sets of 1s). As illustrated in Figure 6B),
the presence of the individual units on a base-10 block may
prompt children to count, rather than attending to the relative
magnitude of the places (hundred > decade > unit) and the
mapping between places to their number names. In contrast, as
shown in Figure 6C), the use of three simple discs allows for more
efficient mapping because the only difference among the discs is
their relative size—there is no other feature that would allow an
alternative mapping.

In sum, the mapping experiences in Experiment 3 were between
multi-digit number names (with place value terms) to a physical

FIGURE 5 | (A): Illustrations for the three mapping conditions in Experiment 3. (B): Density graphs of participants’ accuracy in Experiment 3 by condition, test time
(pre- and post-test), and pre-test familiarity with multi-digit number symbols. In (B) top row: children who scored less than or equal 75% at pre-test. In (B) bottom row:
children who scored above 75% at pre-test. Pink indicates pre-test performance and turquoise indicates post-test performance.
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representation of the numerical magnitude: the Discs only
condition used relative size (big, medium, small) and the
number of discs to represent quantity; the Standard abacus uses
spatial arrangement (left, middle, right) and the number of discs;
the Sized abacus uses both size and spatial arrangement of discs to
represent quantity. The abacus—both standard and sized—also
have other details that could be distracting (the top and bottom, the
metal poles, etc.). Given the result from Experiment 1, we expect
that the Standard abacus condition will not lead to significant
learning. The interesting question here is whether the Discs only
condition and/or the Sized abacus condition would be more
helpful. On the one hand, the redundant cues (size and spatial
arrangement) presented in the Sized abacus condition might be
beneficial, because it allows for multiple strategies (if one way fails,
there is a backup). In contrast, a “less is more” principle to
relational discovery suggests that only having one cue—one way
to establish the mapping—might be better because it will draw the
learner’s attention directly to the to-be-discovered relation.

Participants
Fifty-nine children (29 females and 30 males, age range:
4.00–7.04 years, median: 5.39, mean: 5.50) from the same
general population as Experiments 1 and 2 participated

in this study. They were randomly assigned to three
conditions: Standard abacus (n � 19), Sized abacus (n � 19),
and Discs only (n � 21). The study was approved by the Human
Subjects and Institutional Review Boards at Indiana
University. Informed consents were obtained from the legal
guardian and assents were obtained from the children prior to
the experiment.

Materials and Procedure
The experiment has 4 phases: 1) A pre-test that consisted solely of
the which-N task with the choices being written digits (as in
Experiments 1 and 2), 2) mapping trials in which children
imitated the experimenters in making of the number in one of
the three “abacus” conditions, 3) a post-test using physical models
as described below, and 4) a which-N post-test using the written
symbols.

Which-N Pre- and Post-test
These tests are similar to those used in Experiments 1 and 2.
There were 16 trials (Table 1) that sampled from one to three
digit numbers to form a variety of different comparisons (e.g.,
transpositions, 2- vs. 3-digit numbers). All other aspects were
identical to experiments 1 and 2.

FIGURE 6 | How discrete presentation draws attention to individual units rather than relational patterns and how to better highlight the relational structure of place
value. (A) Left: the continuous presentation format, Right: the discrete presentation format used in a proportional reasoning task (Boyer et al., 2008). (B) How base-10
blocks represent the relational structure of place value. (C) How simple shapes (e.g., big, medium, and small discs) represent the relational structure of place value.
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Models Post-tests
TheModels post-tests consisted of two tasks. TheMake-a-model task
presented children with a spoken number name and asked them to
make that number using the corresponding models that they were
trained with during the mapping task. In other words, this was the
same task as the mapping task; only the experimenter did not make a
representation of the number using the model for children to copy.
There were 6 trials using numbers not used in the mapping task
(Table 1). The second task, Choose-a-model, was structured just like
the Which-N task—in which children were given a spoken number
name and asked to choose the named number between two written
numbers—only in the Choose-a-model task, they chose between two
already constructed models of the number. That is, children chose
between two photographs (28 cm by 30 cm) of already constructed
abacus or loose discs (corresponding to the model that they used
during the mapping experience) on the table—one correct and one
incorrect. This task included 16 trials using numbers not used in the
mapping task (Table 1).

Mapping Tasks
The Standard abacus condition (same-sized discs) was the same
as the one used in Experiment 1; the diameter of the discs was
3 cm. The Sized Abacus condition with different-sized discs had
the same overall dimension as the typical abacus, except that the
discs were of different sizes: the hundred place discs had a
diameter of 4 cm, the decade place discs had a diameter of
3 cm, and the unit place discs had a diameter of 2 cm. For the
Discs only condition, discs were the same as the Sized Abacus
condition but were presented loose. The set of mapping numbers
for the 15 mapping trials were: 15, 186, 2, 24, 309, 38, 4, 7, 74, 851,
9, 6, 662, 50, 941. There were two orders of the mapping number
sequence to which the different conditions were counterbalanced.

The procedure with the Standard abacus was the same as in
Experiment 1 with two exceptions: First, there were no written
numbers displayed during the mapping trials. Instead, the child was
presented with the heard name, the experimenter made a model and
repeated the name, and the child was encouraged tomake themodel.
Second, in the traditional use of the abacus, discs are pushed from
the bottom to the top to represent a number. Some children in
Experiment 1 wanted to push the discs down not up. So, in this
experiment, the represented counts were made by pushing the discs
down. The discs for each count were counted by the experimenter
and named as they were moved. The procedure for the Sized abacus
condition was identical to the Standard abacus condition. The Discs
only condition was also the same except that the number of different
discs were counted and laid on the table from left to right for the
hundreds, tens, and ones. As shown in Figure 5, within each count
unit, individual discs were laid out separately (as opposed to being
piled on top of each other) but spatially organized within its unit
group. This spatial layout was—by design—different from how discs
are organized on an abacus and was hypothesized to be more
intuitive for children (e.g., without the remaining, potentially
distracting discs on the vertical frame of an abacus).

Results
Children in all three conditions were successful in copying the
experimenter’s physical model of a spoken number, performing

at 94% overall (SE � 0.9%) with no significant difference among
conditions. A logistic mixed effect model, in which condition was
entered as a fixed effect, participants and test items were entered
as random effects, failed to detect a significant main effect of
condition, χ2 (2) � 0.64, p � 0.73. Children in the three mapping
conditions also did not differ in pre-test performance on the
which-N task as revealed by a logistic mixed effect model in which
condition was entered as a fixed variable, participant and test item
were entered as random variables, χ2 (2) � 0.45, p � 0.80
(Standard abacus: Mean � 79%, SE � 5%, Sized abacus: Mean
� 83%, SE � 5%, Discs only: Mean � 86%, SE � 4%). Again, as
shown in Figure 5, there were considerable individual differences
in children’s performances at pre-test with some children
performing quite poorly but others near perfectly. We will
return to this fact, evident, in all three experiments in the
General Discussion.

Model Post-tests
Did the mapping experience, making model representations of
the spoken numbers, enable children to make those
representations on their own with new numbers? In the Make-
a-model post-test, children were most successful in the Discs only
condition which involved choosing the right number of different
sized discs and laying them on the table. A logistic mixed effect
model, in which condition was entered as a fixed effect,
participants and items were entered as random effects,
detected a significant main effect of condition, χ2 (2) � 5.97,
p � 0.05. The mean proportion correct in the Standard abacus
condition was 0.42 (SE � 0.08) and was significantly worse than
those in the Discs only condition (Mean � 0.67, SE � 0.07), t (36)
� 2.37, p � 0.02, or the Sized abacus condition (Mean � 0.65,
SE � 0.08) with a trending significant difference, t (36) � 2.05,
p � 0.047. This result suggests that one source of challenge in the
use of traditional abacus is that using places on the abacus to
indicate relative magnitudes (e.g., hundred, decade, unit) is not
intuitive for young children. Notice, according to the Structure
Mapping theory (Gentner, 1983; Gentner, 2010), there is little to
help children align the components of the heard number name to
the places on the traditional abacus. Using discs of different sizes
at the different positions may help children align the components
and thus discover the relational pattern.

The Choose-a-model post-test only required children to
recognize the correct model representation of named numbers
from the corresponding abacus or loose discs that children
received during mapping. A logistic mixed effect model was
performed in which condition was entered as a fixed effect,
participants and items were entered as random effects. The
model failed to detect any significant main effect of condition,
χ2 (2) � 0.79, p � 0.67 (Standard abacus: Mean � 0.68, SE � 0.05,
Sized abacus: Mean � 0.71, SE � 0.04, Discs only: Mean � 0.74,
SE � 0.04). In brief, children in each condition apparently learned
enough to recognize (above chance) the correct model
representation.

Which-N Task: Mapping Names to Written Symbols
In this study, children were never exposed to written multi-digit
numbers but instead mapped number names to physical models
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of those quantities. Does this experience bolster children’s
understanding of how spoken number names map to the
places of written notation? In all three logistic models, one for
each condition, test time (pre, post) was entered as the fixed
variable, participant and test item were entered as random
variables, while the dependent variable was the accuracy of the
individual test trials (i.e., 0 or 1). The Discs only condition, but
not the other two conditions, led to improved performance in
mapping heard number names to their written form. For the
Discs only condition, there was a significant main effect of test
time, χ2 (1) � 5.02, p � 0.025; children performed significantly
better at post-test (Mean � 0.89, SE � 0.03) compared to how they
performed at pre-test (Mean � 0.84, SE � 0.04), indicating that
mapping names to counts of different sized discs generalized to
mapping novel multidigit numbers names to their written forms.
For both the Standard abacus and Sized abacus, the models failed
to detect any significant main effect of time (ps > 0.21). Figure 5
shows the density plots of children’s performance from pre- to
post-test in the three conditions, separated by those with high and
low prior knowledge. As can be seen, only the Discs only
condition showed systematic improvement.

Discussion
These findings make two contributions: First, physical models for
discovering how number names map to the places of written
multi-digit notation do not work if the relations to be discovered
are not sufficiently obvious in the model. If the models are too
complex and intricate, their value as a revealing analogy—that
simplifies and brings to front a main idea—is lost. The complexity
of the Abacus models, and the non-obviousness of the relational
structure, was clearly evident in children’s difficulties in correctly
creating model representations in the Models Post-test measures.
Second, experiences in directly mapping number names to
written notation (symbols-to-symbols mapping) are not the
sole route to helping children find the relational structure;
mappings to a physical model can lead to generalization and
better insights about written notation if—as the Discs only
condition—the analogy foregrounds the single concept to be
discovered. All in all, the results of the three experiments
suggest an incremental approach that does not try to do too
much all at once. Within such an approach, physical models
might better be used as analogies that distill a complex idea into
an immediately understandable concept rather than a physical
grounding of the meaning. Physical models that are not readily
understandable in and of themselves cannot do that.

GENERAL DISCUSSION

Like many other domains of knowledge, place value principles of
multi-digit numbers are acquired incrementally. Studies of
children’s informal learning about multi-digit numbers before
school indicate a potentially key starting point: On their own,
many children start by learning that there are different places in
written multi-digit numbers and that these places signify different
relative magnitudes (Byrge et al., 2014; Mix et al., 2014; Mix et al.,
2017; Yuan et al., 2019). Although this entry learning does not

include the multiplicative hierarchy of base-10 system, it contains
the core idea of places that represent different magnitudes and
strongly predicts later learning of the precise algebraic relations of
multi-digit numbers (Mix et al., Under review). These previous
findings—as well as the large individual differences observed in
pre-test performance in the present study—indicate that children
differ substantially in whether they formed this entry knowledge
prior to formal schooling about place value. Given this predictive
relation between this early knowledge and later learning, the
implicated developmental pathway, and the individual
differences, we believe that the introduction to multi-digit
numbers and place value should be focused on building this
early knowledge. The present findings provide useable
information as to how this might be accomplished.

Our central hypothesis was that mathematical manipulatives
work by serving as analogical bases—much like metaphors and
analogies—to highlight the relational structure within a symbol
system (Mix, 2010; Mix et al., 2019). If this is correct, then the
effectiveness of symbolic or physical representations in teaching
symbols does not lie on whether it accurately grounds the
symbols to their complete perceivable meaning, but it is
determined by whether the perceptual features of the teaching
materials highlight the relational structure of the symbol system
that the learner needs to learn at that point in the developmental
pathway. Previous work on analogical mapping has repeatedly
shown that learning is often better achieved when the component
elements in the analogical base and to-be-learned system are
alignable and highlight the underlying relational structures, and
that aligning corresponding elements is disrupted by complicated
and overly-rich stimuli that distract learners’ attention away from
relational patterns and to object-level details (Kotovsky and
Gentner, 1996; Loewenstein and Gentner, 2001; Rattermann
and Gentner, 1998; Uttal et al., 2008; Yuan et al., 2017).
Under this “symbol-grounding as analogy” framework, the use
of base-10 blocks in the context of first-grade place value teaching
presents many challenges that may significantly limit how much
students can learn. These challenges—visualized in
Figure 2—include the large number of mappings among the
different representations of written numbers, spoken number
names, and base-10 blocks; the not-so-obvious perceptual
structure among units of base-10 blocks (e.g., big squares,
bars, small cues); and the inclusion of individual units (e.g.,
the 100 small squares within one big square) that may draw
learners’ attention to the counts of units rather than the initial
understanding of the relative magnitudes of different places (e.g.,
hundred > decade > unit). Consistent with these considerations,
neither of the two traditional mathematical manipulatives—base-
10 blocks or abacus—was very effective in initially introducing
students to the multi-digit number symbol system. In contrast,
and as predicted by the StructureMapping theory (Gentner, 1983;
Gentner, 2010), shapes with simple but easily understood
structure—big, medium, small discs—may be a more effective
analogical basis for students to acquire the initial learning about
places and their relative magnitudes. Base-10 blocks or abacuses
may be useful tools for later learning of the precise multiplicative
hierarchy of base-10 symbols—learning that goes beyond the
early multi-digit number knowledge examined and measured
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(with the which-N and which-More tasks) in the current
study—and may require substantial initial learning about the
physical representations in and of themselves (e.g., their physical
attributes, correspondences to symbols, and their meanings).

In contrast to the differential learning outcomes following
physical models in the current studies, experience based on
mapping the two symbolic forms—multi-digit number names
and their corresponding written forms—have consistently
produced significant improvement in children’s early familiarity
with multi-digit number names and their relative magnitudes.
Under the “symbol-grounding as analogy” framework, there is no
fundamental difference between physical models or symbolic
representations in teaching symbol systems: The format of
teaching materials may be different, but the key is still in
aligning the elements that are in the same relation to other
elements in the pattern. From a straight-up information
processing perspective, heard number names and written
symbols might even be better than physical representations,
because the former is often more perceptually sparse and
devoid of the many rich details that often characterize physical
representations—and thus more “relational-orientated”. It is also
likely that most children already learned names for digits from 1 to
9. Their knowledge of the relative magnitudes indicated by these
written symbols, their names and perhaps some knowledge of the
relative magnitudes of “thousand”, “hundred”, and names with
“-ty” (Lyons et al., 2018; Litkowski et al., 2020) enable them to align
the corresponding elements in number names and written forms.
This familiarity with number names may be a critical pre-requisite
to generalizable learning from mappings of number names to
written forms and another indicator of the importance of early
parents’ talks about numbers during the preschool years (Levine
et al., 2010).

In the present study, both forms of symbolic representations
used here—expanded cards (e.g., making 325 with 300, 20, and 5)
and digits cards (e.g., making 325 with 3, 2, 5)—turned out to be
effective. At first glance, mapping “three hundred” to “300” rather
than to “3” seems to be a more transparent mapping. But two
factors may explain the lack of difference between the two
presentation formats. First, in the case of the digits card
condition, one does not just map “three hundred” to “3”, but
to “3XX”; in other words, the spatial information—the location of
each place value unit—is already baked into the mapping, and the
ambiguity with respect to “where does the word hundred go with”
is greatly reduced. Second, even if a learner is initially unsure
about the mapping between “hundred” and “3”, such mappings
may become clear with repeated exposures via cross-situational
statistical learning (Yu and Smith, 2007; Lany and Saffran, 2013;
Rebuschat et al., 2021). For example, by encountering a series of
pairs, such as “325”—“three hundred twenty five”, “35”—“thirty
five”, “105”—“one hundred and five”, the learner may accumulate
enough co-occurrence information—e.g., “hundred” is often co-
occur with three-digit numbers, and in such cases often occur
right after the name of the leftmost digit—to arrive at the correct
mapping. Examining how relational mappings are established in
the midst of the ambiguity, that often characterize real-world
learning data, constitutes an open and exciting future direction
for building entry-level knowledge and skills about place value.

IMPLICATIONS FOR EDUCATION AND
TEACHING

The current finding has several implications for introducing
children to the symbolic number system and its place value
principles. Foremost, children’s later success in mastering
place value may benefit from exposure to multi-digit numbers
during the preschool and kindergarten years. Accumulating
evidence with large and nationally representative samples
(Byrge et al., 2014; Mix et al., 2014; Yuan et al., 2019; Yuan
et al., 2020) indicates that many young children, before formal
schooling, are building partial (not perfect but often correct)
knowledge about how relative magnitudes are represented by
place and the naming conventions for 3- and 4-digit numbers,
and that this early knowledge is a strong predictor to later school
learning of mathematics (Mix et al., Under review). The present
result further suggests that early familiarity with these structures
is learnable by preschool children with just a few trials—through
mapping number names to their written forms, and/or to simple
physical analogies about relative magnitudes—embedded in a
game-like context without explicit teaching of the precise base-10
principles (Yuan et al., 2020).

This result may seem surprising to many researchers and
educators given the well-documented difficulties that school-age
children have (Baroody, 1990; Fuson et al., 1997). But these
findings also make sense given what is known about young
children’s prodigious ability to extract, learn, and use
syntactical structures by engaging in mechanisms of relational
and statistical learning (Smith and Yu, 2008; Gentner, 2010).
There are existing curricula (e.g., Montessori, 1917; Parrish, 2014;
Mix et al., 2019) focused on teaching the relational structure of
the symbolic number system, but these usually focus on older
children (e.g., 5-year-old and beyond). As a result, children’s early
approximate knowledge about multi-digit numbers often remains
a hidden competency to parents and teachers. Those children
whose early experiences did not include exposure to multi-digit
numbers have a hidden deficit relative to what might be critical
entry knowledge. This fact—that early familiarity with written
and spoken multi-digit number symbols is not only learnable, but
individual differences in that understanding is highly correlated
with later math learning—strongly suggests the benefit of early
exposure for all children. The tasks used here—brief and easy
(coached imitation)—appear suitable for early exposure.

Many researchers and educators have suggested that multi-
digit number words are initial barriers to understanding because
of inconsistencies (e.g., the teens numbers in English or the not
initially obvious mappings of “twenty” to “two”) (Miura and
Okamoto, 1989; Fuson and Kwon, 1991). The present findings
suggest that multi-digit number words are useful tools for entry to
the symbolic number system despite the inconsistencies. The
relation between language and thought is a complex one with a
long history of back-and-forth debates among different theorists
(Gentner and Goldin-Meadow, 2003). In the context of multi-
digit number words and number learning, one often cited and
emphasized result is that different language systems have
different structures with some more consistent than others.
One notable example is the claim that Chinese children’s
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accelerated number learning ability—compared to English
speaking children—results from the transparency of the Chinese
multi-digit number words (e.g., twenty is named as two tens); in
comparison, the English number words filled with inconsistencies,
such as numbers in the teens range, can lead to many difficulties
and represent a barrier to English speaking children’s numerical
development (Fuson and Kwon, 1991; Miller et al., 2000).
Perhaps, because of this perception, multi-digit number
words are often not the focus of formal teaching. The current
study, together with a large literature from cognitive psychology
(Chang et al., 2006; Lupyan, 2012), suggests that the syntactic
structures of natural languages play a vital role in organizing
perceptual input—including written number symbols—yielding
deep latent knowledge about more abstract ideas despite the
exceptions and idiosyncrasies (Yuan et al., 2020). Without
experiences with number words and their inherent
regularities, a child may represent a written number such as
“123” as a compilation of three digits— “1”, “2”, and “3”. But by
mapping the corresponding number name “one hundred
twenty-three” to the written form “123”, the child may start
to learn about important structural regularities, such as number
words name written digits from left to right, that 3-digit
numbers all have the word “hundred” in them and often
appear early in the number word—regularities that are part
of the place value system. This symbols-to-symbols mapping
merits renewed interest by researchers as a potential critical
early pathway into place value notation.

The present findings also indicate that the use of traditional
manipulatives may sometimes be more of a problem than a benefit,
and this may be especially the case for entry-level learning. The
ultimate goal of education is for students to successfully interpret
and manipulate symbols (e.g., numbers, words, equations) on the
basis of their relations. In this sense, mathematical manipulatives
are training wheels for learning mathematical symbols and
concepts, and—like training wheels—need at some point to be
abandoned. While most current educational practices in
introducing students to the multi-digit number system and
place value focus on “grounding” symbols into mathematical
manipulatives such as base-10 blocks, studies have questioned
the effectiveness of math manipulatives due to extraneous
features—features that are not critical to the to-be-learned
relational structure—that may be distracting to learning
(McNeil et al., 2009; Kaminski and Sloutsky, 2013). But the 100
small cubes within a big base-10 block are not extraneous features;
they represent the critical multiplicative relation that 100 is 100 sets
of 1. Instead, manipulatives such as base-10 blocks may be
ineffective in first introducing children to the multi-digit
number system but might be useful later. Perhaps base-10
blocks should be simplified at first—that is, presented as
different sized but same shaped blocks with no markings to
indicate internal units—and then add the details relevant to the
multiplicative relations between places. Traditional manipulatives
have been shown useful for teaching of the precise base-10 relations
in older children (Carbonneau et al., 2013). Another approach
might be to incorporate both number symbol mappings and
manipulatives and introduce the mappings in a balanced way
(Mix et al., 2017). If learning the place value system is incremental,

then the use of physical analogies to highlight its learningmay need
to be incrementally organized as well.

IMPLICATIONS FOR THE
“SYMBOL-GROUNDING” PROBLEM

The idea of “symbol-grounding” has many different and nuanced
interpretations (see De Vega et al. (2008) for a comprehensive
review). Nonetheless, much of the theoretical discussion divides
into two broad camps: symbols alone are sufficient (Pylyshyn,
1980; Fodor, 1983; Landauer and Dumais, 1997), or that
perceptual and sensorimotor experiences support symbol
acquisition (Barsalou, 1999, Barsalou, 2008). This dichotomy is
likely to be too simple to be useful in education. At some points in
learning, physical models and manipulatives—if they fit the needs
of the specific task—can support learning. Physical
symbols—letters and numbers—can also be used as models
and with active engagement. The key question in education is
when, in what way, and for what specific incremental bit of
learning. Here we believe that the broad contributions of research
on analogy and Structure Mapping Theory (Gentner, 2010) may
help the field find useable principles.
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Research has established that Spontaneous Focusing on Numerosity (SFON) and
symbolic number skills (e.g., counting out loud, counting objects, linking small
magnitudes and numbers) are predictors of mathematical achievement in primary
school. However, little is known about the relationship between SFON and symbolic
number skills, or whether one of these factors is more influential on a child’s subsequent
mathematical achievement. This study investigated the effect of SFON and symbolic
number skills on mathematical achievement at the end of Grade 1 by controlling for first
language, gender, working memory and nonverbal IQ. Participants were N � 1,279 first
graders. SFON, symbolic number skills and control variables (first language, gender,
working memory, and nonverbal IQ) were measured at the beginning of Grade 1. SFON
was assessed with a verbally-based task. Data on mathematical achievement was
collected at the end of Grade 1. Descriptive statistics demonstrated that the children’s
SFON was relatively low at the beginning of Grade 1. Structural equation modeling was
used to examine the relationship between SFON, symbolic number skills andmathematical
achievement at the end of Grade 1. The results revealed a weakly significant correlation
between SFON and symbolic number skills. SFON and symbolic number skills were
significant predictors of mathematical achievement at the end of Grade 1. However, the
effect of symbolic number skills on mathematical achievement was greater than the effect
of SFON. It is therefore concluded that numerical skills are more important than SFON for
predicting mathematical achievement over the course of first grade.
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INTRODUCTION

Spontaneous Focusing on Numerosity (SFON) and symbolic
number skills have both been identified as important
predictors of mathematical achievement gain (e.g., Hannula-
Sormunen et al., 2015; Gallit et al., 2018). Hannula et al.
(2005) were the first to investigate SFON. SFON is defined as
a “process of spontaneously [. . .] focusing attention on the exact
number of a set of items or incidents” (Hannula et al., 2010, p.
395). Young children pay attention to quantitative aspects of their
environment: They count steps when climbing the stairs,
compare the number of cookies they would like to eat or the
number of objects in a storybook. The term “spontaneous”means
that the process of focusing on numbers is self-initiated and not
guided by others. “This attentional process is needed for
triggering exact number recognition processes and using the
recognized exact number in action because exact number
recognition is not a totally automatic process that would take
place every time a person faces something to enumerate”
(Hannula et al., 2010, p. 395). Hannula-Sormunen et al.
(2020) emphasize that this process of focusing attention on
the exact number of objects in their surroundings is a skill
that children have to learn. It enables them to efficiently
utilize the innate mechanisms of subitizing for active
quantification processes. A child’s SFON performance reflects
their tendency to focus on the numerical, so discussions of SFON
often refer to SFON tendencies, but in this paper we use the term
SFON on its own.

SFON seems to be important for later mathematical
achievement. Empirical findings reveal a relationship between
children’s SFON and their early mathematical skills (e.g.,
Hannula et al., 2005; Hannula and Lehtinen, 2005; Hannula
et al., 2007; Edens and Potter, 2013). There is also evidence
that a child’s SFON is related to their subsequent mathematical
achievement in primary school (e.g., Hannula et al., 2010;
Hannula-Sormunen et al., 2015; McMullen et al., 2015). But
some studies suggest number skills acquired before starting
school are also important predictors of mathematical
achievement in primary school (e.g., Jordan et al., 2007;
Krajewski and Schneider, 2009; Conoyer et al., 2016; Gallit
et al., 2018). These skills–variously termed “early numeracy”
(Conoyer et al., 2016), “number sense” [Jordan et al. (2007),
or “early quantity-number competencies” (Krajewski and
Schneider, 2009)–include the ability to count out loud,
compare numbers and magnitudes, link small magnitudes and
numbers, and do simple calculations. Number skills can be
divided into symbolic and non-symbolic categories. Symbolic
skills (e.g., linking numbers and magnitudes, reading numbers]
have been shown to be especially important for the development
of further mathematical skills (e.g., Kolkman et al., 2013; Göbel
et al., 2014). So both SFON and symbolic number skills are
important for mathematical learning although little is known
about the relationship between them, or whether one has a greater
effect on subsequent mathematical achievement than the other.
This study investigates how a child’s SFON and symbolic number
skills at the beginning of Grade 1 may relate to mathematical
achievement at the end of Grade 1.

Measuring SFON
There are a variety of tasks designed to measure SFON, and
studies show that the type of task can have an influence on
measured SFON (Batchelor et al., 2015; Rathé et al., 2016; Nanu
et al., 2020). According to Hannula (2005), the following criteria
are important when assessing SFON. In order to avoid
“numerical hints,” only tasks which are new to the children
and tasks without mathematical context should be used.
Furthermore, the use of mathematical vocabulary (e.g., count,
number word) should be avoided both before and during the test.
SFON tasks should include small numbers of objects that are easy
to enumerate. Finally, SFON tasks should not exceed the
children’s working memory capacity or visuo-motor or verbal
comprehension skills (ibid.).

Hannula et al. (e.g., Hannula et al., 2005; Hannula and
Lehtinen, 2005) developed different types of action-based
tasks: The imitation task, the model task, the finding task, and
the selection task. In the imitation task, children are instructed to
imitate the action of a test administrator (e.g., posting a certain
number of blue and red envelopes into a mailbox). In the model
task, the children have to carefully observe the activity of a test
administrator (e.g., depicting a dinosaur with stamps) and copy
the dinosaur as precisely as possible. In the finding task, the test
administrator hides a toy (e.g., a gold ingot) under one of three
objects (e.g., wooden hats). The children have to remember where
the toy was hidden and lift the correct cover. In the selection task,
the children are told to give a certain number of objects to a
creature (e.g., “This creature has a problem. The creature’s legs
feel terribly cold. Fortunately, there are boxes of socks under the
cloth. Give this creature its own box of socks.” Hannula et al.,
2005, p. 70). These tasks all have some limitations. The imitation
task and the model task could, possibly, be successfully completed
using imitation alone, without any numerical reasoning,
especially when conducted with small quantities of objects.
Also, the children have to focus on the specific activity
presented by the administrator and their attention has to be
drawn to this activity from the very beginning of the task.
Therefore, the result might be affected by the children’s
attention capacity and/or working memory. This is not the
case for the selection task, which requires numerical thinking
when comparing quantities.

A different type of SFON task is the picture task, which was
developed by Batchelor et al. (2015). In the picture task, the
children are shown a picture with different objects in varying
numbers (e.g., a river with three boats, four ducks and two trees).
The children are asked to describe what they see. Contrary to the
action-based task, here the focus can be on different dimensions.
Children may not only focus on the number of objects (e.g., “two
girls”) but also on the colors of the objects (e.g., “a red shirt”) or
other aspects like emotions (e.g., “the girls look happy”). In
addition, the picture task is quick and easy to handle, and no
specific material is required. Furthermore, the scoring is simple,
and no additional analyses are necessary (ibid.). The picture task,
however, also has limitations. It requires active language skills like
vocabulary and number words andmay be challenging for second
language learners or children with language impairment (ibid.).
In addition, a child’s answers might be affected by his or her
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interests. While some children are more interested in numbers,
others might focus on colors or shapes, or the vocabulary (e.g., “I
forgot what duck means in Spanish.”).

A Literature Review of SFON
Existing studies have examined SFON in different age groups.
The findings of longitudinal studies reported high stability of
children’s SFON across time (e.g., Hannula and Lehtinen, 2005;
Bojorque et al., 2017). In the study by Hannula and Lehtinen
(2005), SFON was measured at ages 4, 5 and 6 using different
action-based SFON tasks. In spite of the 2-years time period and
the different contexts of the tasks, there was reasonable stability in
the children’s SFON.

A cross-sectional study by Kucian et al. (2012) demonstrated
that children with mathematical learning disabilities aged 7–11
had significantly lower SFON, as measured by two action-based
tasks, than children without disabilities. These findings could not
be explained by IQ, age or gender. It remains unclear, however,
whether a lower SFON leads to low mathematical skills or
whether mathematical difficulties lead to a lower SFON. Gray
and Reeve (2016) identified preschoolers’ math ability profiles
and examined how number-specific markers like SFON
(measured using three action-based tasks) and dot
enumeration, as well as general markers (working memory,
response inhibition, attention, and vocabulary), were
associated with profiles. Results showed that the numerical
markers were significantly associated with the math ability
profiles, whereas the association between the other markers
was either not significant or only marginally so.

Findings of cross-sectional studies provide empirical evidence
that a child’s SFON, measured using action-based tasks, is
positively correlated with number sense and early
mathematical skills (e.g., Hannula and Lehtinen, 2005; Edens
and Potter, 2013). Hannula and Lehtinen (2005) investigated
SFON and early mathematical skills in preschoolers. Results
showed that the children’s SFON correlated with number
sequence elaboration, counting of objects, and basic arithmetic
skills such as addition and subtraction. These relationships
remained significant after controlling for nonverbal IQ and the
comprehension of verbal instructions. Edens and Potter (2013)
found that 4-year old children who spontaneously focused on
numerosity had better counting skills.

Longitudinal studies have also provided insight into SFON
and its relationship with mathematical skills. A study by Hannula
et al. (2007) investigated how SFON, measured using action-
based tasks, is related to subitizing-based enumeration and verbal
and object counting skills in four and five-year-old children.
Results showed that SFON was directly related to verbal counting
skills even when subitizing-based enumeration was entered in the
model. The association between SFON and object counting skills
was mediated by subitizing-based enumeration. Further,
empirical evidence shows that children’s SFON is also related
to subsequent mathematical achievement in primary school (e.g.,
Hannula et al., 2010; Hannula-Sormunen et al., 2015; McMullen
et al., 2015). Hannula et al. (2010) showed that children’s SFON
in kindergarten, measured using an action-based task, accounted
for a domain-specific and significant, but small, variance (2%) at

the end of Grade 2. Children’s SFONwas a significant predictor of
arithmetic skills at the end of Grade 2, but not of reading skills.
The domain specificity of SFON is also supported by the findings
of Nanu et al. (2018). In their study, SFON measured at age five
with action-based tasks predicted arithmetic fluency and number
line estimation in fifth grade, but not rational number knowledge
or mathematical achievement. Hannula-Sormunen et al. (2015)
analyzed the effect of children’s SFON, again measured with
action-based tasks, subitizing, and counting skills on their
mathematical achievement at age of 12. Subitizing-
enumeration skills were tested at age five. SFON and counting
skills were then assessed a year later, at age six. Their results
showed that children’s SFON and counting skills were both
predictors of mathematical achievement at age 12. However,
after controlling for nonverbal IQ, only SFON predicted
mathematical achievement. The association between subitizing
and mathematical achievement was mediated by SFON and
counting skills. McMullen et al. (2015) followed a sample
cohort to investigate how children’s SFON and counting skills
as measured at age six related to their rational number conceptual
knowledge 6 years later. These results suggest that SFON,
measured using action-based tasks, and counting skills predict
rational number conceptual knowledge, thus lending support to
the hypothesis that SFON is a predictor of a child’s future
mathematical achievement. But it should be noted that the
sample in that longitudinal study was very small (N � 36).

Chan and Mazzocco (2017) investigated children’s and adults’
attention to numbers, which is a concept related to SFON. The
aim of the study was “to address the ‘spontaneity’ and the
malleability of SFON [. . .] under varying conditions” (p. 77).
The attention to numbers was measured using a picture-
matching task, where the participants had to choose one of
four pictures that matched a target picture. Results
demonstrated that only 8–10% of children’s best matches were
number based, while 21% of adults’ were number based.
Children’s attention to number did not increase when
prompted to search for other matches. In addition, children’s
attention to number was affected by competing features (e.g.,
color, shape, position, or quantity).

Hannula et al. (2005) investigated the possibility of
increasing SFON with an intervention. The results
demonstrated that SFON, measured using action-based
tasks, can be enhanced with a guided intervention in
preschool that focused on numerical activities. However,
this was only the case for children with high SFON at the
first measurement point. Children with no or low SFON at the
beginning of the study did not respond to the intervention.
Another intervention study by Hannula-Sormunen et al.
(2020) tested the effects of two early numeracy intervention
programs on SFON and early numerical skills. The
intervention programs were integrated into daily day care
routines and included activities such as noticing numbers
and number recognition that were aimed at developing the
subitizing mechanism and paying attention to numerical
aspects of everyday activities. The results showed that the
intervention programs had a positive effect on children’s
SFON as measured by action-based tasks, from pretest to
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posttest and a long-term effect on cardinality-related skills
from posttest to delayed posttest.

Braham et al. (2018) investigated whether SFON measured
with action-based tasks could be enhanced through guided
parent-child interactions in a children’s museum. Children
whose parents had received the numerical intervention
program showed higher SFON scores than children whose
parents had not. These findings suggest that parents can foster
children’s SFON using numerical prompts in informal play
settings.

In conclusion, this research overview shows that SFON is
related to a variety of other mathematical skills, in both the short
and long term. Other research, presented below, emphasizes the
significance of the construct of number skills, especially symbolic
number skills, for mathematical achievement gain.

Symbolic Number Skills and Its Significance
for Mathematical Competence
Research also shows that early number skills such as number
knowledge, verbal counting, object counting, and non-symbolic
or numerical magnitude comparison are strong predictors for
later mathematical achievement in primary school (e.g., Jordan
et al., 2007; Krajewski and Schneider, 2009; Conoyer et al., 2016;
Toll et al., 2016; Gallit et al., 2018). The process of acquiring
number skills includes the innate ability to recognize a small
number of items without counting called “subitizing” (e.g.,
Wynn, 1995), as well as skills that must be acquired through
social mediation and education, like counting competence or
writing numbers (Dehaene, 2001; Dowker, 2005; Kolkman et al.,
2013; Hannula-Sormunen et al., 2020). Frydman (1995) and
Simon and Vaishnavi (1996) stress that the process of
subitizing contains non-numerical knowledge and therefore
differs from other mathematical learning processes like
counting. The mediation of numerical skills begins in early
childhood when children mimic number sequences used by
their parents or siblings (e.g., Fuson, 1988).

Krajewski (2003) found that early numerical skills, as
measured 6 months before the start of school, made the
greatest contribution to the prediction of arithmetic
performance in first grade. Results of this study revealed
that poor early numerical skills could predict mathematical
difficulties at the end of first and second grade much better
than measures of intelligence. Jordan et al. (2007) investigated
number sense and its development as predictors for formal
math achievement in first grade. They reported that number
sense performance in kindergarten and number sense growth
accounted for 66% of the variance in math achievement in first
grade. Dornheim (2008) found that the early numerical skills
in kindergarten were the main predictor of arithmetic
achievement in first and second grade. This was also
confirmed by the study of Gallit et al. (2018).

There is, however, empirical evidence that some aspects of
number skills might be more important than others. According to
Krajewski and Schneider (2009), the linkage of quantities and
numbers represents the most important concept for successful
mathematical learning in primary school. More recent research

provides evidence that the differentiation between non-symbolic
number skills (e.g. comparing magnitudes) and symbolic number
skills (e.g. numerical tasks like counting and Arabic symbols)
(e.g., Kolkman et al., 2013) seems to be crucial (e.g., Missall et al.,
2012; Kolkman et al., 2013; Göbel et al., 2014; Toll et al., 2016;
Caviola et al., 2020). Kolkman et al. (2013) investigated the role of
non-symbolic and symbolic skills in early numerical development
with children at age 4, 5 and 6. Their results provided evidence for
the predominant role of symbolic skills as compared to non-
symbolic skills in the development of mapping skills (linkage of
number symbols and their corresponding quantities). According
to Missall et al. (2012), symbolic skills (comparing numbers,
inserting a missing number in a number sequence) are the most
robust factors for predicting later math performance. They
examined predictive relationships from kindergarten through
third grade. Göbel et al. (2014) analysed the impact of
symbolic knowledge of the Arabic numeral system and
magnitude comparison on arithmetical skills 11 months later
in a sample of first graders. Path models revealed that
knowledge of the Arabic numeral system predicted an increase
in arithmetic skills, whereas magnitude comparison skills had no
impact. Caviola et al. (2020) reported similar results from a
sample of second graders. Non-symbolic magnitude
comparison had no association with mathematical
performance. Toll et al. (2016) found that symbolic number
skills (which they term number sense) measured at the end of
the first year of kindergarten (Mage � 4.96) are the strongest
predictors of mathematical performance (math facts and math
problems) in first grade. Non-symbolic number sense (dot
comparison) was only a predictor of problem solving ability.
The importance of symbolic number skills for later arithmetic
skills was confirmed in a review paper by Szkudlarek and
Brannon (2017). Symbolic numerical competence also plays an
important role in interventions aiming to improve SFON.
According to Hannula-Sormunen et al. (2020) and Braham
et al. (2018), symbolic numerical activities resulted in SFON
achievement gains.

Non-numerical Predictors of Mathematical
Competence
SFON and number skills, as well as mathematical achievement
gain, are influenced by first language, gender, working memory
and nonverbal IQ. Anders et al. (2012) found that the first
language of the parents had an impact on the number skills of
young children and their achievement gain. Also, studies by
Kuratli Geeler (2019) and Sale et al. (2018) revealed that
having language of classroom education as a first language had
a significant influence on the numerical competence of children
in kindergarten. In addition, controlling for first language is
crucial when a picture-based task is used to assess SFON. The
relationship between gender and numerical competence is still
unclear. Some studies found no differences in numerical
competence between boys and girls (e.g., Dornheim, 2008;
Niklas and Schneider, 2012; Sale et al., 2018), while the
research of Kuratli Geeler (2019) revealed higher numerical
competences for boys in kindergarten, especially in tasks
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which required symbolic representation. Anders et al. (2012), on
the other hand, showed that girls have a higher numerical
competence in preschool. For Grade 1, the picture is more
consistent, and several researchers reported higher
achievement levels for boys (Krajewski, 2003; Niklas and
Schneider, 2012; Sale et al., 2018; Kuratli Geeler, 2019). There
is also evidence that working memory is significantly related to
mathematical achievement (e.g., De Smedt et al., 2009) and
therefore important to control for. Batchelor et al. (2015)
found no significant correlation between SFON and working
memory. Furthermore, previous study results reveal that
nonverbal IQ has an impact on number skills and
mathematical achievement (e.g., Krajewski and Schneider,
2009; Kuratli Geeler, 2019), whereas there was no relationship
between nonverbal IQ and SFON measured with an imitation
task (Hannula et al., 2010).

A review of the literature reveals that existing studies highlight
the significance of SFON and identify SFON as a predictor of
subsequent mathematical performance. Nevertheless, there are
some research gaps. First, there is empirical evidence that
symbolic number skills are also important predictors of
mathematical achievement. Researchers have examined the
relationship between SFON and certain aspects of
mathematical competence, such as counting or subitizing, and
the effect of SFON and counting competence on later
mathematical achievement, but they have not yet looked at
whether or how SFON and a range of symbolic numerical
competences present at the beginning of school career can
affect later mathematical achievement gain. Second,
longitudinal studies analyzing the effect of SFON on
mathematical achievement have often been conducted using
small study samples. Third, the research overview shows that
most studies have investigated the effect of children’s SFON on
mathematical achievement using action-based tasks (e.g.,
Hannula and Lehtinen, 2005; Hannula et al., 2007; McMullen
et al., 2015; Nanu et al., 2018). The picture task has only been used
in a few instances (e.g., Batchelor et al., 2015; Rathé et al., 2019).
Finally, even if most studies on SFON included non-
mathematical predictors, studies that have a broad range of
control variables are rare. This study aims to close these
research gaps by investigating the effect of SFON and
symbolic number skills on mathematical achievement gain
using a verbally-based SFON task and a large sample of 1,279
first graders. First language, gender, nonverbal IQ, and working
memory are included as control variables.

The following research questions are addressed:

1) To what extent do children spontaneously focus on
numerosity at the beginning of Grade 1? Results from
previous studies (e.g. Hannula and Lehtinen, 2005;
Hannula et al., 2010) indicate that there will be a large
variance in children’s SFON.

2) Is there a relationship between SFON and symbolic number
skills? Research by Hannula and Lehtinen (2005), and Edens
and Potter (2013), suggest there will be a moderately
significant correlation.

3) Do SFON and symbolic number skills have an effect on
mathematical achievement at the end of Grade 1,
controlling for first language, gender, working memory and
nonverbal IQ? On the basis of previous research, it is
hypothesized that SFON and symbolic number skills both
have an effect on mathematical achievement at the end of
Grade 1.

4) Is SFON or symbolic number skills more important for
mathematical achievement at the end of Grade 1? It is
assumed that symbolic number skills have a greater effect
on mathematical achievement gain at the end of Grade 1 than
does SFON.

First language, gender, nonverbal IQ, and working memory
are included as control variables. SFON is assessed with a picture
task that is verbally-based. Therefore, it is likely that first language
might influence a child’s SFON. Results from the studies
presented in the literature review suggest that gender–boys
performing better, on average–and nonverbal IQ explain
variance in SFON, number skills and mathematical
achievement at the end of Grade 1. It is expected that first
language and working memory will also influence symbolic
number skills and mathematical achievement at the end of
Grade 1.

MATERIALS AND METHODS

Participants and Context of the Study
In the Swiss education system, 1 year of kindergarten is
compulsory and kindergarten is free of charge. Therefore, all
children attend at least 1 year in kindergarten. Numerical
instruction following a compulsory curriculum begins in
kindergarten (Deutschschweizer Erziehungsdirektoren-
Konferenz (D-EDK), 2016). This numerical instruction focuses
on oral counting up to 20, counting backwards and forwards from
every possible number up to 10, object counting, comparing
numbers, and using number words like “bigger”, “smaller”,
“more” or “less” (ibid.).

Participants were 1,279 first graders (49.1% girls, Mage � 6.82,
SD � 0.38) from 77 primary schools in German-speaking
Switzerland (Table 1). Invitation letters were sent to several
schools via the school authorities. Teachers decided voluntarily
whether they wished to participate. All parents gave written

TABLE 1 | Descriptive characteristics of the sample.

n (%)

Pupils 1,279
Gender
Male 651 (50.9)
Female 628 (49.1)

First language
German 570 (44.6)
German and other 316 (24.7)
Other 244 (19.1)
Missing 149 (11.6)
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consent for the participation of their children in the study. 578
children (46.2%) had German as a first language, 316 children
(25.3%) were bilingual and 232 children (18.5%) had another first
language (Missing n � 125; Table 1).

Data was collected over one school year. At the beginning of
Grade 1 (t1), SFON, working memory and nonverbal IQ were
assessed, with the children working individually with a test
administrator in a quiet room at the children’s school. The
symbolic number skills test was conducted with groups of
8–12 children at the beginning of Grade 1 (t1), after the
SFON test. The test to measure mathematical achievement in
Grade 1 (t2) was carried out with the whole class at the end of the
school year. The teachers completed a questionnaire on children’s
first language, gender, and age at the beginning of the school year.

Instruments
SFON
So that their SFON could be assessed, the children completed a
picture task. The picture task was used because compared to an
action-based task, it is quick and easy to handle, the scoring is
simple, and no additional analyses are necessary. The pictures
used in this study were variations of those used by Batchelor et al.
(2015). Three pictures (Figure 1) were presented one after the
other on a screen (13’’–15’’), in the same order for each child.

The test administrator introduced the SFON task as follows: “I
am going to show you different pictures. We are interested in
what children will tell us about these pictures. This is the first
picture. What do you see in this picture?” Each single statement
(e.g., yellow ducks, a pond, a pond with ducks, two girls, a T-Shirt
with a flower) was scored as numerical or non-numerical. For
efficiency, given the size of the sample, only the first four
statements per child were written down. Each numerical
answer (e.g., two ducks, three boys) was scored with 1,
regardless of whether the number was correct. Answers like
“some ducks” or “both girls” were scored 0. Because the
German word for “a” is the same as the word for one (“a
tree”), these answers were excluded. The children could
achieve a maximum score of 12. Confirmatory factor analysis
confirmed that the scale was unidimensional and Cronbach’s
alpha was 0.87.

Symbolic Number Skills
The symbolic number skills assessment involved 22 items that
covered the following topics: counting objects (7 apples, 11 dots,
23 dots) and linking the result with the correct number (3
items), comparing numbers up to 20 (5 items), writing selected
numbers of the number sequence up to 20 (11 items), and
writing the matching mathematical term for a picture (e.g., 2 + 3
to a picture with two red and three blue balloons; 3 items). Test
instructions were given by the test administrator. Some of the
tasks were explained with an example. In the number
comparison task, two numbers (e.g., 3 and 1) were each
written in a box in the booklet. The box with the bigger
number was checked. “Here are two numbers in a box, 1 and
3. 3 is more than 1, therefore, this box is checked. Here are two
other numbers, each in a box (numbers 6 and 2). You have to
check the box with the bigger number.” Cronbach’s alpha
was 0.88.

Mathematical Achievement at the End of Grade 1
Mathematical achievement was tested at the end of Grade 1
using an author developed test prepared for publication. The
test included 27 items. The following topics were assessed:
counting by steps (completing the number sequence 3, 5,
7 . . . 15 and 12, 14, 16, . . . 24; 2 items), number
decomposition (e.g., 20 � __ + __ + __; 3 items), doubling
the numbers 4, 7, 12 (3 items), halving the numbers 16, 18, 22 (3
items), addition (7 + __ � 13, 11 + __ � 19, 18 + __ � 23, 80 +__
� 100; 4 items), subtraction (9–3, 18–8, 17–12, 14–7; 4 items),
and word problems (picture of a toy with a price tag: picture
with a Swiss bill: you pay with the bill; how much change do you
get? 8 items). Most of the test instruction was given using tables
and pictures and the test administrator was allowed to read out
the short instructions. The counting by steps task was presented
in the following way: 3, 5, 7, __, __, __, 15. “Look at these
numbers: 3, 5, 7. The numbers continue in the same way. Which
numbers fit into the gaps? Write the correct number in the
gaps.” Rasch analyses were conducted to assess the quality of the
test. Weighted likelihood estimate (WLE) of reliability was 0.79.
The item fit was acceptable (0.89–1.27) (Wilson, 2005). The
variable was z-standardized.

FIGURE 1 | The pictures used in the verbally-based SFON task, drawn by Luisa Leliuc.
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Nonverbal IQ
Nonverbal IQ was measured using two subtests of CFT 1-R
(Weiß and Osterland, 2013): similarities (15 items) and
matrices (15 items). Cronbach’s alpha for 30 items was 0.85.

Working Memory
To measure children’s working memory, the corsi blocks (10
items) and number sequence backward (10 items) subtests of a
working memory test battery for children aged 5–12 (AGTB
5–12) (Hasselhorn et al., 2012) was used. Cronbach’s alpha for 20
items was 0.72.

First Language
First language was assessed with a teacher questionnaire.
Teachers were asked to indicate which language the children
speak at home on a 3-point Likert-scale (1 � only German, 2 �

bilingual; German and other language, 3 � other languages). Two
different variables were calculated: A dichotomous variable with
the groups German speaking only/bilingual and other language,
and a second variable with the groups German speaking only and
bilingual/other language. The analyses were carried out with both
variables, but no difference in the results was found. Therefore,
results for the groups German only and bilingual and other
language are reported.

Statistical Analyses
To test whether a child’s SFON and symbolic number skills have
an effect on mathematical achievement at the end of Grade 1, a
structural equation model was set up using the lavaan package
(Rosseel, 2012) on R software version 3.5.2. SFON and symbolic
number skills, as well as the non-specific variables, namely, first
language, gender, working memory and nonverbal IQ, were
included as predictors (Figure 2). Based on the results of
previous studies on the relationships between SFON, symbolic
number skills and mathematical achievement, it was assumed
that SFON and symbolic number skills both had a direct effect on
mathematical achievement at the end of Grade 1. Further, a
correlation between SFON and symbolic number skills was
assumed. In addition, the non-specific variables first language,
gender, working memory and IQ were expected to predict SFON,
symbolic number skills and mathematical achievement. As SFON
was measured using the picture task, a child’s SFONwould not be
affected by working memory. Finally, a correlation between
working memory and nonverbal IQ was assumed.

FIGURE 2 | Hypothesized Model. SFON and symbolic number skills will predict mathematical achievement at the end of Grade 1 when data are controlled for non-
specific predictors (first language, gender, working memory, nonverbal IQ). The oval symbols are latent variables that represent the variance shared by multiple
indicators. The square symbols represent manifest variables.

TABLE 2 | Descriptive Statistics for all measures.

n M SD Range

SFON picture 1 1,255 0.76 1.32 0–4
SFON picture 2 1,255 1.22 1.23 0–4
SFON picture 3 1,255 1.40 1.32 0–4
SFON total 1,255 3.38 3.42 0–12
Symbolic number skills 1,235 18.99 3.91 2–22
Mathematical achievement 1,130 18.56 6.42 0–27
Working memory 1,231 12.59 2.73 1–19
Nonverbal IQ 1,235 15.94 5.29 0–30
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In the hypothesized model, SFON and symbolic
number skills were included as latent variables and parcels
were built. Parcels help to reduce the complexity of models.
Additionally, structural equation models based on parceled
data lead to more stable estimates and fit the data better
(Matsunaga, 2008). Due to the unidimensionality of the
SFON construct, the parcels were allocated to the task.
Homogenous or heterogenous parceling strategies can be
used to build parcels of multidimensional constructs. In
homogenous parceling strategies, similar items are placed in
the same parcel, while “in heterogenous parceling strategies,
items that share a source of systematic variation are
distributed across different parcels either randomly or
systematically” (Marsh et al., 2013, p. 260). Because
homogenous parcels lead to bad factor loadings,
heterogenous parceling strategies were used for the
construct of symbolic number skills. The latent variables
were z-standardized.

It is assumed that SFON and symbolic number skills
measured at the beginning of Grade 1 is something that takes
place at the within level. The between level does not seem to be of
importance when answering the research questions because the
children came into each Grade 1 class frommultiple kindergarten
groups, reducing the influence of class at the first measurement
point. Therefore, a single-level model with cluster-robust
standard errors was estimated. In addition, a single-level
model was also used for empirical reasons such as a low
interclass correlation (ICC � 0.025–0.045) for the SFON
indicators. Model fit was evaluated using multiple fit indices.
CFI values >0.95, RMSEA values <0.06, SRMR values <0.08
(Weiber and Mühlhaus, 2014) and χ2/df < 3 (Homburg and
Giering, 1996) indicate a good model fit.

RESULTS

Descriptive Statistics and Correlations
Table 2 presents the descriptive statistics for all measures which
highlights the large variance between the children.

In Figure 3, the results demonstrate that SFON is heterogeneous.
26.4% of the children never gave a numerical answer. Only 1% of
the children achieved the maximum SFON score. Also, the mean of
3.38 (SD � 3.42) indicates that children seem to pay little attention
to the numerical aspects of the pictures at the beginning of Grade 1.
To test whether the children gave more numerical answers to any
one of the three SFON pictures, an ANOVA with repeated
measures was conducted. The result showed significant
differences in the mean values of the three SFON pictures
[F(1.91, 2,395.40) � 245.00, p < 0.001, ηp2 � 0.16]. A post-hoc
test showed significant differences between all items (p < 0.001),
with an increase of SFON-answers from picture 1 to picture 3.

Correlation analyses (Table 3) indicate a significant, but very
weak association (r < 0.2) between SFON tendency and symbolic
number skills (r � 0.18, p � 0.000), mathematical achievement at
the end of Grade 1 (r � 0.17, p � 0.000), workingmemory (r � 0.11,
p � 0.000), nonverbal IQ (r � 0.15, p � 0.000) and first language
(r � −0.07, p � 0.024). The strongest correlation was found
between symbolic number skills and the mathematical
achievement at the end of Grade 1 (r � 0.55, p � 0.000).
Symbolic number skills are moderately correlated with working
memory (r � 0.48, p � 0.000) and nonverbal IQ (r � 0.44, p �
0.000). Mathematical achievement at the end of Grade 1 was also
significantly correlated with working memory (r � 0.50, p � 0.000)
and nonverbal IQ (r � 0.48, p � 0.000). The correlation between
working memory and nonverbal IQ was moderate with r � 0.45
(p � 0.000) (Cohen, 1992). All other correlations were weak.

FIGURE 3 | Frequencies of children’s SFON.
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Structural Equation Model
The model with SFON and symbolic number skills as latent
variables fitted the data well, χ2(34) � 68.37, p < 0.05, CFI � 0.99,
RMSEA � 0.03, SRMR � 0.03. The estimated parameters are
presented in Figure 4. SFON and symbolic number skills were
significant predictors of mathematical achievement at the end of
Grade 1 when first language, gender, working memory and
nonverbal IQ were controlled for. The effect of symbolic
number skills (β � 0.32, p � 0.000) was higher than the effect
of SFON (β � 0.06, p � 0.020). The correlation between SFON and
symbolic number skills was weak (r � 0.11, p � 0.001). First
language (β � −0.06, p � 0.130) and gender (β � 0.04, p � 0.233)
did not predict SFON. But nonverbal IQ did have an effect on
SFON (β � 0.12, p � 0.000). Furthermore, gender did not predict
symbolic number skills. First language, working memory and
nonverbal IQ were significant predictors of symbolic number
skills. Children who had German as a first language had a
significantly higher score for symbolic number skills. In

addition, gender, working memory and nonverbal IQ
predicted mathematical achievement. Boys reached higher
mathematical achievement than girls at the end of Grade 1.
Working memory was correlated with nonverbal IQ (r � 0.41,
p � 0.000).

A comparative model was constructed to test whether the
effect of SFON on mathematical achievement at the end of Grade
1 differs significantly from that of symbolic number skills. In the
comparative model, the paths between SFON and mathematical
achievement, and symbolic number skills and mathematical
achievement, were constrained to be equal and compared with
the original model. In order to assess significant model
differences, the two chi-square values were compared. The
difference of Δχ2 � 27.67 (Δdf � 1, p � 0.000) (Urban and
Mayerl, 2014) suggests that the original model leads to an
improvement of the model fit. The effect of symbolic number
skills on mathematical achievement is therefore higher than the
effect of SFON.

TABLE 3 | Correlations between all variables.

1 2 3 4 5 6

1. SFON
2. Symbolic number skills 0.18***
3. Mathematical achievement 0.17*** 0.55***
4. Working memory 0.11*** 0.48*** 0.50***
5. Nonverbal IQ 0.15*** 0.44*** 0.48*** 0.45***
6. First language −0.07* −0.12*** −0.15*** −0.09** −0.07*
7. Gender 0.03 0.02 0.15*** −0.03 −0.01 0.03

Note. *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 4 | Structural equation model of the final model, containing all hypothesized paths and covariances. Solid arrows represent the hypothesized significant
paths. Dashed arrows depict paths that were not significant. Standardized estimates are provided with their levels of significance. *p < 0.05, **p < 0.01, ***p < 0.001.
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To test the stability of the model with SFON and symbolic
number skills as latent variables, an alternative model was run
with SFON and symbolic number skills as manifest variables. A
single-level model with cluster-robust standard errors was
evaluated. The modified model also fitted the data well, χ2(6)
� 15.35, p < 0.05, CFI � 0.99, RMSEA � 0.04, SRMR � 0.03. The
effects were identical to those of the original model.

DISCUSSION

This study investigated how a child’s SFON and symbolic number
skills, measured at the beginning of Grade 1, might predict their
mathematical achievement at the end of Grade 1, controlling for
nonverbal IQ, working memory, gender and first language. This
relationship between SFON and symbolic number skills is
interesting because while SFON focuses on the spontaneous
recognition of small numbers, symbolic numerical knowledge
(number words, exact numeration) can be improved through
education.

The study also examined the extent to which children
spontaneously focus on numerosity at the beginning of Grade 1.

Previous research had demonstrated that SFON is related to
early numerical skills and subsequent mathematical achievement
(e.g., Hannula and Lehtinen, 2005; Hannula-Sormunen et al.,
2015; Nanu et al., 2018). But symbolic number skills, including
skills such as counting, object counting, linking small magnitudes
and numbers, are also significant predictors of mathematical
achievement (e.g., Conoyer et al., 2016; Gallit et al., 2018).
Symbolic skills have been shown to be crucial for later
mathematical skills (e.g., Kolkman et al., 2013; Göbel et al., 2014).

In our study, we found that the SFON scores of the sample
were relatively low at the beginning of Grade 1. About a quarter of
the children did not focus spontaneously on the numerical
aspects of the pictures and only a few achieved the maximum
SFON score.

Correlation analyses indicated a significant, but weak
relationship between SFON and symbolic number skills (r �
0.18, p � 0.000). The correlation based on the structural equation
model was r � 0.11 (p � 0.001). These correlations are lower than
in other studies (e.g., Hannula and Lehtinen, 2005; Edens and
Potter, 2013). Hannula and Lehtinen (2005) identified a
significant correlation between children’s SFON and their
number sequence skills (r � 0.42, p < 0.01) and object
counting skills (r � 0.35, p < 0.01). Edens and Potter (2013),
found that the correlation between SFON and counting skills was
r � 0.71 (p < 0.01).

A couple of key reasons could account for the lower SFON
scores and poor correlations found by us compared to the results
reported by other SFON studies. In this study the assessment took
place at the beginning of Grade 1, while in most other studies
SFON was measured earlier, before school entry. Hannula and
Lehtinen (2005) showed that SFON is a stable construct, so
reasons other than age could account for the low SFON
scores. It is likely that structured numerical instruction, which
begins at age 4 in Switzerland with a compulsory kindergarten
curriculum, may have influenced the result. Children begin first

grade with a rather high level of symbolic skills so spontaneous
focusing on small sets of items might be less important. Also,
most of the studies that reported higher SFON scores used action-
based tasks (e.g., Hannula and Lehtinen, 2005; Hannula et al.,
2010; Nanu et al., 2018). Therefore, the outcome could have been
influenced by the selection of a verbally-based picture task and its
concomitant limitations. For future studies, it would be important
to use both action- and verbally-based tasks and examine whether
a different format of task results in different outcomes.

Results based on the structural equation model showed that
both SFON and symbolic number skills significantly predicted
mathematical achievement at the end of Grade 1. But the effect of
number skills on mathematical achievement at the end of Grade 1
was much higher (β � 0.32, p � 0.000) than the effect of SFON (β
� 0.06, p � 0.020). As in many other studies (e.g., Missall et al.,
2012; Kolkman et al., 2013; Göbel et al., 2014; Toll et al., 2016;
Caviola et al., 2020), the findings support the hypothesis that
symbolic number skills are a very important predictor for
subsequent mathematical achievement.

The finding of a small effect of SFON on mathematical
achievement at the end of Grade 1 agrees with the findings of
Hannula et al. (2010), but not with the findings of Hannula-
Sormunen et al. (2015). This difference might be because the later
study assessed fewer control variables. Other reasons that may
explain the differences between the results of the Hannula-
Sormunen et al. (2015) and the present study are: First,
different tasks were used to measure SFON (verbally-vs.
action-based). Second, in the Hannula-Sormunen et al. (2015)
study only counting skills and subitizing were assessed to
determine number skills, whereas in the present study,
symbolic number skills were assessed using multiple tasks (e.g.
counting objects and linking the result with the correct number,
comparing numbers up to 20, number sequences up to 20,
addition and subtraction). Third, the sample size in the
Hannula-Sormunen et al. (2015) study was very small (N �
36). And finally, working memory, which might be crucial
when carrying out an action-based SFON task, was not assessed.

The influence of the control variables on SFON and symbolic
number skills confirms findings reported by other researchers.
Nonverbal IQ and workingmemory affect symbolic number skills
and mathematical achievement at the end of Grade 1 (e.g., De
Smedt et al., 2009; Krajewski and Schneider, 2009). IQ also
predicts SFON. Boys outperformed girls in mathematical
achievement at the end of Grade 1, but not in SFON and
symbolic number skills measured at the beginning of Grade 1.
This corresponds with the findings of other studies (e.g., Niklas
and Schneider, 2012; Sale et al., 2018) that the relationship
between gender and mathematical performance in young
children remains unclear. In addition, the picture task requires
language competence therefore, first language was included as a
control variable. But no effect of the children’s first language on
SFON was found and it can be assumed that language
competence did not affect the result. However, it would be
important, to assess language competence with more
differentiated measures, such as vocabulary or the knowledge
of number words in future studies. The influence of first language
on other numerical and mathematical constructs is harder to
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unpick. Number skills were predicted by first language, and
bilingual children and children with German as a first
language had higher symbolic number skills scores. But this
was not the case for mathematical achievement at the end of
Grade 1. Language requirements were low in this test, and it may
be that the children with a first language other than German
improved their language skills during the first year of school.

The study had some limitations. First, SFON was measured
using the picture task, which is a verbally-based task. According
to Batchelor et al. (2015), SFON scores are affected by the type of
task used during assessments. Therefore, it is possible that an
action-based task, like a selection task, could have produced
different results. As Hannula and Lehtinen (2005) emphasize,
it is important to use varied SFON measures to get a reliable
indicator of children’s SFON. In addition, symbolic number skills
were measured with a battery of sub-tests with multiple items.
Therefore, to compare the effect of SFON on mathematical
achievement gain, it would have been useful to also measure
SFON with multiple items. Unfortunately, due to time and
funding constraints, this was not possible in this study.
Second, this type of SFON task requires language skills and a
knowledge of number words and other vocabulary, which could
influence the responses, especially those of second language
learners or children with a language impairment. To deal with
this problem, language competence was included in the model.
The study was unable to use a more sensitive measure of language
competence because of constraints. Third, the test instruction
“This is the first picture” includes numerical information, which
might have steered children to focus on the numerical aspects of
the picture. However, the rate of numerical answers provided to
the first item was very low, and it seems that the hint did not affect
the children’s answers. Fourth, the third picture shows a typical
numerical board game situation, which again might have caused
the children to focus on numbers. This picture did have the
highest number of numerical responses. There was, however, also
an increase in such statements between picture 1 and picture 2.
Therefore, the increase could simply be due to a habituation
effect. Nevertheless, the validity of the SFON measurement could
be improved. Further studies with more, revised, SFON tasks are
necessary. Fifth, SFON and symbolic number skills were
measured at the beginning of Grade 1, a later point than that
used by most other studies. It could be that this relationship
would be different at the beginning of kindergarten. Finally, on a
methodological level, homogenous parceling was not possible for
the symbolic number skills construct.

Given these limitations, taking into account that SFON also
requires symbolic numerical skills like exact numeration, more
research is needed to disentangle the complex relationship
between SFON and other mathematical skills and its impact
on the mathematical learning process.

IMPLICATIONS AND FURTHER RESEARCH

To the best of our knowledge, this is the first longitudinal study to
use a large sample of more than 1,000 first graders to investigate how
the relationship between SFON and a broad range of symbolic

number skills influencesmathematical achievement gains. The study
confirms previous research findings. Both SFON and symbolic
number skills predict mathematical achievement at the end of
Grade 1, although symbolic number skills have a much stronger
effect. These results have implications for mathematical education in
kindergarten. They highlight the importance of using measures to
foster symbolic number skills in general and the important role of
mathematical education programs. Structured programs (e.g.,
Krajewski et al., 2008; Ennemoser et al., 2015) and play-based
interventions (e.g., Hauser et al., 2014; Jörns et al., 2014) have
been proven to be successful. There is also evidence that
children’s SFON can be enhanced with guided interventions
during everyday situations in day care settings too (Hannula
et al., 2005; Braham et al., 2018; Hannula-Sormunen et al., 2020).

In future studies, it would also be interesting to examine if, and
if so, how, the pre-school context influences how SFON and
symbolic number effect mathematical achievement gain. For
example, research by Kuratli Geeler (2019) has shown that
children in Switzerland, which starts formal mathematical
education in kindergarten, developed more symbolic numerical
skills than children in kindergartens in Germany, where a child-
oriented approach to early education dominates (Gasteiger et al.,
2021). In addition, the present study has shown that more
research into how SFON should be measured is required.
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Converting visual-Arabic digits to auditory number words and vice versa is seemingly 
effortless for adults. However, it is still unclear whether this process takes place automatically 
and whether accessing the underlying magnitude representation is necessary during this 
process. In two event-related potential (ERP) experiments, adults were presented with 
identical (e.g., “one” and 1) or non-identical (e.g., “one” and 9) number pairs, either 
unimodally (two visual-Arabic digits) or cross-format (an auditory number word and a 
visual-Arabic digit). In Experiment 1 (N = 17), active task demands required numerical 
judgments, whereas this was not the case in Experiment 2 (N = 19). We found pronounced 
early ERP markers of numerical identity unimodally in both experiments. In the cross-
format conditions, however, we only observed late neural correlates of identity and only 
if the task required semantic number processing (Experiment 1). These findings suggest 
that unimodal pairs of digits are automatically integrated, whereas cross-format integration 
of numerical information occurs more slowly and involves semantic access.

Keywords: ERP, numerical cognition, cross-format integration, symbolic numbers, N1, N400

INTRODUCTION

Whether number words and visual-Arabic digits are automatically and involuntarily linked is 
an enduring open question in cognitive psychology. Every day, we navigate through our modern 
literate world by integrating numerical information from different sensory modalities: Following 
the station announcement that our train leaves from platform five, we search for the corresponding 
visual-Arabic digit 5. In adults, switching from one number format to another seems to happen 
effortlessly. While this daily experience suggests an automatic integration of number words 
and digits, empirical evidence is still critically lacking. Therefore, the current paper addresses 
the question whether the mental representation of a specific digit is automatically and involuntarily 
activated upon hearing the corresponding number word. Here, we  attempt to unravel the 
neurocognitive mechanisms underlying this integration process.

Already at a young age children acquire the skill to link verbal numbers to their written 
digit counterparts: Words for small magnitudes (e.g., “two dogs,” “three little pigs”) are among 
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the first words children learn (Durkin et  al., 1986), and there 
is evidence suggesting that some children understand the meaning 
of single visual-Arabic digits as early as 18 months (Mix, 2009). 
When children enter school, their production and comprehension 
of single visual-Arabic digits are already near perfect (Moura 
et  al., 2015). Following many years of repeated exposure to 
numbers and frequent experience translating between different 
number formats, it seems intuitive that visual and verbal 
representations become increasingly linked. Representations of 
number words and digits may overlap to such an extent that 
one representation automatically activates the other. The strength 
of this link between number words and digits might be  related 
to arithmetic performance in different age groups (children: 
Göbel et  al., 2014; Malone et  al., 2020; adults: Sasanguie and 
Reynvoet, 2014 but see Lyons et  al., 2014; Sasanguie et  al., 
2017; Lin and Göbel, 2019). It has even been put forward that 
the mapping between number words and Arabic numbers might 
act as a “gatekeeper (or barrier) in the development of formal 
mathematical knowledge” (Purpura et  al., 2013, p.  460).

The existence of a direct and automatic association of number 
words and digits was already proposed in the earliest version 
of the Triple Code Model (Dehaene and Cohen, 1995). According 
to this model, numbers are processed in three different numerical 
codes: The visual-Arabic number form processes numbers 
represented as digits, while spoken or written number words 
are represented in the verbal word frame. According to the 
model, both visual-Arabic digits and number words are symbols 
that do not per se contain any semantic information. Number 
semantics are only represented by the analogue magnitude 
representation, which is involved in all processes accessing the 
non-symbolic quantity of a given number. Bidirectional translational 
paths are postulated to directly link the different numerical codes. 
Crucially, the Triple Code Model includes an asemantic transcoding 
route between representations of visual-Arabic digits and number 
words that has been shown to rely on left hemispheric pathways 
(Dehaene and Cohen, 1995). In other words, there is evidence 
for a direct route between the symbolic numerical representations 
of number words and of visual-Arabic digits, without the use 
of an indirect route through the activation of the underlying 
magnitude representation. In contrast, semantic models propose 
that number words and digits are only indirectly linked via 
their underlying meaning in terms of numerical magnitude. 
Specifically, semantic models of transcoding (e.g., Power and 
Dal Martello, 1990; McCloskey, 1992) assume that the source 
number is first transformed into an abstract analogue magnitude, 
which in turn then is transformed into the target number.

However, we  frequently employ symbolic numbers in the 
absence of any actual numerical meaning. The magnitudes 
underlying certain combinations of digits, for example post 
codes, PIN codes, and telephone country codes do not necessarily 
carry relevant magnitude information.1 The view that number 
words and digits are linked directly without an intermediary 

1�While the first number of the country codes reflect continental information 
(e.g., Zone 1: North and Central America, Zones 3–4: Europe), the full country 
codes do not represent topographical organization. Some neighboring countries, 
like Sweden and Norway, do have neighboring codes, but others do not.

step of access to number semantics is supported by asemantic 
transcoding models (e.g., Power and Dal Martello, 1997; Barrouillet 
et  al., 2004; Dotan and Friedmann, 2018). For example, the 
ADAPT model (Barrouillet et  al., 2004) suggests that a verbal 
number word is parsed until a single word unit is identified. 
Each word unit or chunk either corresponds to lexicalized or 
non-lexicalized elements. Lexicalized elements can be  directly 
retrieved from long-term memory and consist of lexical primitives 
including single-digit numbers one to nine, as well as teens, 
decades, and separators, such as hundred and thousand. On 
the other hand, non-lexicalized elements (e.g., “238”) require 
complementary procedures. These can be  best described as an 
algorithmic transcoding strategy which serves as a back-up if 
direct memory retrieval fails. Critically though, neither lexicalized 
nor non-lexicalized elements require any access to the underlying 
number semantics during the entire process of linking number 
words and their corresponding visual-Arabic digits.

Researchers have argued for the existence of a direct link 
between number words and digits based on behavioral findings 
from number comparison and matching tasks (Lyons et  al., 
2012; Marinova et  al., 2018). Lyons et  al. (2012) instructed 
participants to indicate the larger of a pair of quantities, presented 
in a single format (visual-Arabic digits, written number words 
or dot arrays), in a mixed symbolic format (visual-Arabic digits 
and written number words), or in a mixed symbolic-non-symbolic 
format (visual-Arabic digits and dot arrays). Participants showed 
switch costs in terms of significantly longer response times for 
mixed non-symbolic-symbolic pairs compared to single-format 
pairs. However, no switch costs were observed when comparing 
mixed symbolic pairs with single-format symbolic pairs, suggesting 
that number words and digits are closely linked. Marinova 
et  al. (2018) were able to extend these findings using a task 
that did not require explicit magnitude judgments: They showed 
that also in a number matching task in which participants had 
to judge whether two quantities were numerically identical, 
participants were slower to compare mixed non-symbolic and 
symbolic pairs (tone sequences and digits) than their mixed 
symbolic counterparts (auditory number words and visual digits).

The fact that the co-activation of purely symbolic 
representations was faster than the co-activation of symbolic 
and non-symbolic representations points to a direct link between 
the visual-Arabic number form and the verbal word frame. 
However, task demands in number matching tasks may also 
elicit an activation of semantic content, that is, the numerical 
value of abstract number symbols. Therefore, findings from 
number matching tasks only provide indirect and incomplete 
evidence for the direct link between number words and digits.

Neuroscientific studies offer another window into investigating 
the association between number words and digits. More 
specifically, using event-related potential (ERP) methodology 
allows us to examine the time course of cross-format integration. 
Although ERP evidence about the direct link between number 
words and digits is still critically lacking, previous studies 
identified the importance of the N1 and N400 components 
in the processing of numerical stimuli.

The parietal N1 component was reported to be  sensitive 
to numerical distance (Temple and Posner, 1998) and numerical 
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identity (Liu et al., 2018). Specifically, small numerical distances 
elicited larger N1 amplitudes than larger numerical distances 
in number comparison tasks with dots and digits in both 
adults and children between 5 and 9 years (Temple and Posner, 
1998). However, the finding of an N1 amplitude modulation 
by numerical distance was not consistent across studies, as 
others could not replicate this finding, neither for non-symbolic 
nor symbolic numbers (Libertus et  al., 2007; Hyde and Spelke, 
2009). Generally, an N1 component can provide evidence for 
automatic and asemantic processing.

Semantic processing of numerical information is thought 
to be  reflected by the N400 ERP component (Niedeggen et  al., 
1999; Galfano et  al., 2004; Szücs and Csépe, 2005; Paulsen 
and Neville, 2008; Szücs and Soltész, 2010; Pinhas et al., 2014). 
The N400 is a central negative component peaking at around 
400 ms, generally known to be  sensitive to semantic mismatch 
or unexpectedness (Kutas and Federmeier, 2011). In the domain 
of numerical processing, the N400 was found to be  sensitive 
to numerical identity using non-symbolic paradigms (Paulsen 
and Neville, 2008)2 and also cross-format number pairs: In a 
passive paradigm not requiring numerical judgments, children 
showed more negative N400 components to mismatch between 
visually presented analogous magnitudes and auditorily presented 
number words already at the age of 3 to 5 years (Pinhas et  al., 
2014). Interestingly though, the authors reported that this effect 
of numerical identity was only observable for children who 
were already able to count. Overall, this suggests that once 
children have acquired basic counting knowledge, they 
automatically activate information about non-symbolic quantities 
and verbal number words via the underlying number semantic, 
even if they are not actively required to do so.

It is important to note that the numerical N400 effect can 
be dissociated from earlier N2b effects of perceptual non-match: 
Increased negative amplitudes have been reported at central 
electrode sites around 300–400 ms for incorrect versus correct 
calculations in arithmetic verification (Niedeggen et  al., 1999; 
Szücs and Soltész, 2010) as well as in implicit probe tasks 
(Galfano et  al., 2009). In terms of polarity and topography, 
this numerical N400 effect is highly similar to the classical 
N400 effect, often considered to reflect Lexico-semantic 
processing (Szücs et  al., 2007; Szücs and Soltész, 2010). In 
terms of timing, however, the peak of the numerical N400 
typically occurs around 100 ms earlier than for linguistic stimuli 
(Bassok et  al., 2009; Guthormsen et  al., 2017).

In the present study, these well-documented ERP components 
of numerical processing were used to investigate the temporal 
characteristics of unimodal and cross-format processing of 
symbolic number representations. In particular, we  set out to 
test whether visual-Arabic digits and auditory number words 
are directly linked without explicit magnitude judgments being 
required as proposed by the Triple Code Model (Dehaene and 
Cohen, 1995) and asemantic transcoding models (Power and 
Dal Martello, 1997; Barrouillet et al., 2004; Dotan and Friedmann, 
2018). We employed an ERP paradigm to investigate the possibly 

2�This was also qualified by numerical distance, but as described below, numerical 
distance cannot be  tested in our study.

automatic link between number words and digits, both with 
a unimodal visual and a cross-format auditory–visual condition. 
If a direct link between number words and digits exists, 
we  expect ERP effects of numerical identity to be  present in 
both unimodal and cross-format conditions. Considering the 
previous literature (e.g., Liu et  al., 2018), we  hypothesized to 
find a larger N1 component for numerically identical trials 
than for numerically non-identical trials at parietal electrode 
sites. We  conducted two experiments varying the access to 
the underlying number semantics: Experiment 1 involved 
numerical decisions and thus required participants to access 
the underlying number semantics in order to solve the active 
task. Experiment 2 did not involve any numerical judgments, 
and thus, no semantic access was needed. Due to the involvement 
of number semantics, we predicted an N400 effect of numerical 
identity with more negative deflections for non-identical than 
identical number pairs for Experiment 1. Observing a similar 
N400 effect also in Experiment 2 would suggest that pairs of 
numbers are linked semantically even when no access to the 
number semantic is required. In summary, we investigated ERP 
effects in response to the integration of auditory number words 
and visual-Arabic digits. We contrasted ERP effects of numerical 
identity robustly associated with automatic processing (N1 
component) and semantic processing (N400 component).

EXPERIMENT 1

Participants
The sample comprised 17 healthy volunteers recruited at the 
University of Graz, Austria (age: M = 22.6 years, SD = 2.4; 8 
males and 9 females). They were all native speakers of German 
and had normal or corrected-to-normal vision, as well as 
normal hearing status. Initially, three more participants took 
part but had to be  excluded from data analysis because of 
technical issues with EEG recording or because of noisy data. 
Psychology students received course credit for participation. 
The study was conducted in accordance with the Declaration 
of Helsinki, and ethical clearance was obtained from the ethics 
committee of the University of Graz. Participants provided 
written informed consent prior to participation.

We conducted a post hoc sensitivity analysis with the “pwr” 
package (Champely, 2020) in R (R Core Team, 2020). Note 
that there were no estimates of effect sizes available in the 
literature, as the present research question had not been 
investigated previously. Our sensitivity analysis revealed that 
we  would have been able to detect an effect of h p

2
0 15= .  at 

an α of 0.05 and power set at 0.80 with the present sample 
size. As shown in the results section, the effects of numerical 
identity we  observed for both components were even larger, 
which supports the adequacy of the current sample size.

Stimuli and Procedure
Participants were presented with pairs of numbers from 1 to  9 
representing either the same or different numerosities. They 
were asked to indicate via keypress whether the second number 
of a pair was larger or smaller than five. The paradigm consisted 
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of a unimodal and a cross-format block. In the unimodal 
block, the number pairs consisted of two visual-Arabic digits. 
In the cross-format block, the first number of a pair was a 
spoken number word, whereas the second number was a visual-
Arabic digit. Each block was preceded by four practice trials 
to ensure that participants understood the task.

In each of the two blocks, participants were exposed to 
240 number pairs appearing in a pseudorandom order. Number 
pairs contained digits and number words corresponding to 
the numerosities 1, 2, 4, 6, 8, and 9. As “seven” is a disyllabic 
number word in German, this numerosity was not included. 
To obtain an identical number of numerosities below and above 
five, we  also decided not to include the numerosity 3. Visual 
stimuli, that is, Arabic digits, were presented in white on a 
black background with a height of 3 degrees of visual angle. 
In 120 trials per block, the number pairs were numerically 
identical, meaning that both numbers of a pair corresponded 
to the same numerosity. In the other 120 trials of a block, 
the number pairs were numerically non-identical. The numerical 
distance between the non-identical number pairs was either 
small (numerical distance of 1–3) or large (numerical distance 
of 5–8). Each block contained 60 number pairs with small 
and large numerical distances, respectively. In order to avoid 
low-level perceptual adaptation effects, we  displayed visual-
Arabic digits in one of four different spatial locations at 1 
degree from the center of the display, using one of four different 
fonts (similar to an fMRI study by Vogel et  al. (2017): Arial, 
Calibri, Century, Times New Roman). We  ensured that in 
each trial, both constituents of a digit pair differed in terms 
of spatial locations and fonts. Number words were each presented 
by one of four speakers (two male and two female voices).

As shown in Figure 1, each trial began with a blank screen, 
displayed for 800 ms. Then, the first number was presented 
for 500 ms, before the second number appeared. This period 
was determined by the fact that this was the shortest possible 
period to present spoken number words comprehensively. 
Participants were asked to press the up arrow (right index 
finger) if the second number was larger than five or the down 
arrow (left index finger) if it was smaller than five. The next 
trial began as soon as a response was registered. If no response 
occurred within 2000 ms after stimulus onset, a question mark 
was displayed for another 3,000 ms. If participants did not 
respond within 5 s of stimulus onset, the next trial was presented.

ERP Recording and Data Analysis
Participants were seated in an acoustically and electrically 
shielded booth, 74 cm from the center of a 1920×1080 screen 
(refresh rate of 144 Hz). The paradigm was programmed with 
PsychoPy, version 1.90.1 (Peirce, 2009). Auditory stimuli were 
played by standard PC speakers. EEG was recorded from 19 
Brain Products™ actiCAP active electrodes, positioned to the 
international 10–20 system using a BrainVision actiCHamp 
Research Amplifier (Brain Products™) with a sampling rate 
of 1,000 Hz and a stretchable electrode cap, referenced to the 
nose, and re-referenced offline to a mathematically averaged 
ears reference (Hagemann, 2004). We  measured vertical and 
horizontal electrooculograms (EOGs) with two bipolar channels. 

Electrode impedances were below 30 kΩ for all electrodes. The 
continuous EEG was filtered (low cutoff: 0.1 Hz, time constant: 
15.91, 24 dB/Oct; high cutoff: 100 Hz, 24 dB/Oct; notch filter: 
50 Hz). EOG artifacts were removed by automatic ocular 
correction, using an ICA algorithm as implemented in 
BrainVision Analyzer 2.1 (slope mean, over the whole data, 
ICA with infomax algorithm, total squared correlations to 
delete: 30%; Gratton et al., 1983). Other artifacts were excluded 
automatically (gradient criteria: more than 50 μV difference 
between two successive data points or more than 200 μV 
difference in a 200 ms window; low activity criterion: less than 
0.5 μV activity in a 100 ms window). The data were segmented 
into epochs of 700 ms before onset of the second number of 
a pair to the end of the trial (1,000 ms after stimulus onset). 
Because the first number of a pair was presented 500 ms before 
the second number, the time window of −700 to −500 ms 
served as the basis for baseline correction. Only segments 
with a correct response in a time window from 200 to 2000 ms 
were considered. All participants had at least 98 valid segments 
in each of the four conditions. On average, 112.82 (SD = 4.22) 
numerically identical segments and 113.29 (SD = 4.84) 
non-identical segments were retained for the unimodal 
conditions. For the cross-format conditions, an average of 
114.94 (SD = 4.98) numerically identical and 113.53 (SD = 5.48) 
non-identical segments were included.

For the analysis of the N1 component, based on a previous 
ERP study of numerical identity (Liu et al., 2018), we averaged 
across a parietal electrode group including electrodes over left 
and right hemispheres (P3, P4, Pz, P7 and P8). The respective 
time window was identified as between 100 and 200 ms after 
stimulus onset. For the analysis of the N400 component, based 
on previous numerical processing ERP studies (Szücs and Csépe, 
2005; Avancini et  al., 2014), we  considered a central electrode 
cluster (C3, C4, Cz). For the N400 component, we  identified 
a time window from 250 to 400 ms after stimulus onset. For 
the N1 and N400 components, the peak was determined by 
detecting the most negative amplitude in the given time window 
for each electrode, and peak amplitude was defined as the 
average amplitude at peak and +/− 10 ms around the peak.

All statistical analyses were carried out with numerical 
identity (non-identical versus identical) and modality (unimodal 
versus cross-format) as within-subject variables. In all ANOVAs, 
we  conducted separate follow-up analyses for each modality 
condition, even in the absence of a significant interaction to 
confirm that the main effects were not driven by only one of 
the modality conditions, but were reliable in both.

In principle, numerical distance effects can be  used to test 
semantic access, more specifically by contrasting ERP effects 
for small and large numerical distances. However, this is not 
possible in the current design, because numerical distance was 
confounded with response selection: As the active task required 
participants to judge whether the second number of the pair 
was larger or smaller than five, number pairs with large numerical 
distance were always incongruent in terms of response selection. 
In other words, for number pairs with a large numerical 
distance, one number was always smaller than five, while the 
other was always larger than five. For number pairs with a 
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small numerical distance, both numbers of a pair were often 
congruent in terms of response selection (both numbers either 
smaller or larger than five) – although this was not true for 
all cases (e.g., number pair “4” and “6”). Due to these confounds, 
we  did not investigate numerical distance.

Results
The data collected for this study are publicly available on the 
Open Science Framework and can be  accessed at https://osf.
io/p7ksn/

Behavioral Measures: Accuracy and Reaction 
Times for the Numerical Decision Task
In a first step, we investigated participants’ behavioral performance 
on our novel experimental task. As expected for this simple 
task format, accuracy was above 94% for both the unimodal 
and cross-modal conditions of the numerical decision task 
and was not further analyzed. Only RTs for correct responses 
were considered for analyses. We  calculated median RTs for 
numerically identical as well as numerically non-identical number 
pairs separately for the unimodal and cross-format blocks for 
all participants. RTs by numerical identity and experimental 
block are provided in Figure  2.

We conducted a two-way repeated measures ANOVA with 
the within-subject factors identity (identical versus non-identical 
number pairs) and modality (unimodal versus cross-format). 
The ANOVA revealed a significant main effect of identity, 
F(1,16) = 35.95, p < 0.001, h p

2  = 0.69, with higher RTs for 
non-identical versus identical number pairs. Neither the main 
effect of modality nor the identity x modality interaction were 
significant (both ps > 0.341). As described above, we ran separate 
repeated measures ANOVAs for each modality with identity 
as within-subject variable. A significant effect of identity was 
confirmed for both the unimodal, F(1,17) = 14.06, p = 0.002, 
h p

2  = 0.47, and the cross-format condition, F(1,17) = 21.68, 
p < 0.001, h p

2  = 0.58.

N1
The averaged waveforms of the parietal electrode cluster by 
identity and modality are depicted in Figure  3. An identity 
x modality ANOVA revealed a significant main effect of identity, 
F(1,16) = 5.10, p = 0.038, h p

2  = 0.24, with more negative peak 

amplitudes for identical than non-identical number pairs. The 
interaction was also significant, F(1,16) = 4.58, p = 0.048, 
h p

2  = 0.22. The main effect of modality was not significant 
(F < 1).

To further analyze the identity x modality interaction, a 
separate repeated measures ANOVA was conducted for each 
modality with identity (identical vs. non-identical) as within-
subject variable. The ANOVAs revealed a significant effect for 
the unimodal block, F(1,16) = 8.62, p = 0.010, h p

2  = 0.35, with 
more negative peak amplitudes for identical than non-identical 
number pairs. For the cross-format block, however, the difference 
between identical and non-identical pairs was not significant, 
F(1,16) = 0.02, p = 0.879, h p

2  = 0.00.

N400
Figure  4 provides the averaged waveforms of the central 
electrode cluster by identity and modality. As can be  seen, 
the amplitudes of the waveforms were more negative for 
non-identical than identical number pairs in both unimodal 
and cross-format blocks. A 2 × 2 repeated measures ANOVA 
was conducted with identity (identical vs. non-identical) and 
modality (unimodal vs. cross-format) as within-subject factors. 
There was a significant main effect of identity, F(1,16) = 11.19, 
p = 0.004, h p

2  = 0.41, with more negative peak amplitudes for 
non-identical than identical number pairs. The main effect of 
modality was also significant, F(1,16) = 11.51, p = 0.004, h p

2  = 0.42. 
For the cross-format block, the peak amplitudes were more 
negative than for the unimodal block. The interaction identity 
x modality was not significant (F < 1).

To ensure that the identity-based effect was present in both 
modality conditions, we conducted two separate ANOVAs with 
identity (identical vs. non-identical) as within-subject variable. 
For the unimodal block, there were more negative peak amplitudes 
for non-identical than identical number pairs, F(1,16) = 7.11, 
p = 0.017, h p

2  = 0.31. Similarly, in the cross-format block, there 
were more negative peak amplitudes for non-identical than 
identical number pairs, F(1,16) = 7.75, p = 0.013, h p

2  = 0.33.

Discussion
The behavioral and electrophysiological results of Experiment 1 
support the view that number words and digits are linked via 
number semantics when explicit numerical decisions are required. 

A B

FIGURE 1  |  Schematic time course of (A) a unimodal trial with a numerically non-identical visually presented number pair and (B) a cross-format trial with a 
numerically identical auditory–visual number pair.
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Behaviorally, participants were faster to judge whether the 
second number of a pair was larger or smaller than 5 if the 
previous number was numerically identical, pointing to a 
priming effect. Critically, this facilitation effect was found for 
both unimodal and cross-format number pairs.

Electrophysiologically, both the unimodal and the cross-
format conditions elicited similar components. However, there 
were distinct effects of numerical identity in the unimodal 
and the cross-format conditions: Unimodal effects of numerical 
identity were found in the early time window between 100 
and 200 ms after stimulus onset, as well as in the later time 
window between 250 and 400 ms. This suggests that pairs of 
visual-Arabic digits are linked at two different stages: First, 
both digits are rapidly and automatically integrated (as indexed 
by the N1 component), and second, their numerical content 
is processed semantically (as indexed by the N400 component). 
In contrast, cross-format effects were only found in the later 
time window between 250 and 400 ms. This dissociation implies 
that while both conditions involved semantic processing of 
the number pairs, only the unimodal condition involved a 
rapid and automatic integration of both constituents of a number 
pair. In other words, our results show that cross-format integration 
of numerical content occurs less rapidly than within-format 
integration. Conversely, a previous study did report effects of 
numerical identity with pairs of non-symbolic quantities and 
visual-Arabic digits already in the N1 time window (Liu et  al., 
2018). Therefore, it could be  reasoned that the integration of 

different forms of symbolic number (digits, number words) 
takes longer than the integration of non-symbolic and symbolic 
quantities. However, there are certain methodological pitfalls 
to consider: In the study by Liu et  al. (2018), all participants 
performed a behavioral estimation task with hundreds of trials 
immediately before the passive ERP task. In this estimation 
task, they were asked to estimate the quantity of the non-symbolic 
stimuli and type in their answers as Arabic digits, thus possibly 
entailing subvocal rehearsal of the respective number words. 
As identical non-symbolic stimuli were utilized during the 
passive ERP task, this may have likely provoked the co-activation 
of the respective Arabic digits, as well as the verbalized number 
words during the task.

Our finding of a more pronounced N400 for numerically 
non-identical than identical number pairs is in line with previous 
numerical cognition studies investigating the ERP correlates 
of semantic incongruencies (e.g., Niedeggen et  al., 1999; Szücs 
et  al., 2007: Szücs and Soltész, 2010; Pinhas et  al., 2014). The 
finding of an N400 effect of numerical identity in the cross-
format condition supports the hypothesis that number words 
and digits are only indirectly linked via their underlying 
numerical meaning, as proposed by semantic models of 
transcoding (e.g., Power and Dal Martello, 1990; McCloskey, 
1992). Thus, the ERP results strongly suggest that the constituents 
of a number pair are processed semantically.

We set out to investigate the link between digits and number 
words. In this experiment, we  did not find any evidence for 

FIGURE 2  |  Median reaction times (RTs) by numerical identity and modality. Error bars indicate SEM. Asterisks indicate significant differences 
(p < 0.05).
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an early automatic cross-modal link. The presence of the later 
N400 effect of numerical identity for cross-format number 
pairs does suggest that representations of number words and 
digits were linked at a later time point. The N400 component 
is thought to reflect semantic processing; thus, our cross-format 
N400 effect suggests that number words and digits may be 
linked via number semantics. However, the task demands of 
Experiment 1 might have provoked an activation of semantic 
content, because participants were explicitly required to make 
numerical judgments. Arguably, participants may have actively 
and semantically processed the first number of a pair in order 

to facilitate the subsequent number judgment on the second 
number. This interpretation could also account for the behavioral 
priming effect we  observed. It is also important to point out 
that our numerical judgment task involved response selection 
processes. This makes it difficult to distinguish whether the 
observed effects are due to numerical processing or response 
selection (Göbel et  al., 2004).

In summary, we observed ERP effects of numerical identity 
for cross-format pairs of number words and visual-Arabic 
digits in Experiment 1. However, while unimodal pairs of 
visual-Arabic digits were associated with early N1 effects of 

FIGURE 3  |  N1 component on the pooled parietal electrode cluster for numerically identical and non-identical number pairs in unimodal visual and cross-format 
auditory–visual blocks. Solid lines represent ERPs for identical, and dashed lines for non-identical number pairs. ERPs are shown in black for unimodal items and in 
grey for cross-format items.

206

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Finke et al.	 Cross-Format Number Words and Digits

Frontiers in Psychology | www.frontiersin.org	 8	 November 2021 | Volume 12 | Article 765709

numerical identity (pointing to an automatic integration), 
cross-format numerical identity effects only emerged in the 
later N400 time window (pointing to semantic processing). 
In order to disentangle whether these cross-format N400 effects 
were due to the nature of the numerical judgment task, 
we  performed another experiment in which participants were 
not explicitly required to access the underlying 
magnitude representation.

In Experiment 1, we  had difficulties in finding the most 
suitable baseline correction. We had to settle on a period rather 
far away (−700 to −500 ms) from the onset of the target 
stimulus. As we  can still expect amplitude changes due to the 
presentation of the first number after around 500 ms, we decided 

to increase the stimulus onset asynchrony (SOA) by 500 ms 
in Experiment 2.

EXPERIMENT 2

Participants
The sample comprised 19 healthy volunteers recruited at the 
University of Graz, Austria (age: M = 25.2 years, SD = 3.1; 8 males 
and 11 females). One additional participant had to be excluded 
from the data analysis because of noisy data. All participants 
were native speakers of German and had normal or corrected-
to-normal vision, as well as normal hearing status. Participants 

FIGURE 4  |  N400 component on the pooled central electrode cluster for numerically identical and non-identical number pairs in unimodal visual and cross-format 
auditory–visual blocks. Solid lines represent ERPs for identical, and dashed lines for non-identical number pairs. ERPs are shown in black for unimodal items and in 
grey for cross-format items.
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received course credit or 10€ for participation. The study complied 
with the Declaration of Helsinki and approval was obtained 
from the ethics committee of University of Graz. Participants 
provided written informed consent prior to participation.

We conducted a power analysis to determine sample size 
“pwr” package (Champely, 2020) in R (R Core Team, 2020). 
We  set power to 0.80 and the probability of alpha error to 
0.05, corresponding to the convention by Cohen (1988). To 
obtain a conservative estimate, we  decided to consider the 
smallest effect size of numerical identity found in Experiment 1, 
h p

2  = 0.242. The power analysis revealed a minimum sample 
size of N = 10. Thus, sufficient power is guaranteed for our 
current sample of N = 19.

Stimuli and Procedure
Participants were presented with numbers and letters, some of 
which were moving, while others were stationary. Participants 
were instructed to indicate the movement direction for moving 
numbers, but not for moving letters via keypress. Unknown to 
the participants, stimuli were organized into 192 standard trials 
and 36 filler items per block. Standard trials consisted of a 
number pair, followed by a number moving horizontally across 
the screen. In half of the standard trials, the two numbers of 
a pair were identical (both numbers had the same numerosity, 
e.g., 1–1) or non-identical (the numbers were numerically different, 
e.g., 1–9). This sums up to a total of 96 identical and 96 
non-identical trials per block. Stimuli consisted of digits and 
number words corresponding to the numerosities 1, 4, 6 and 9.

Note that the overt task (response to moving numbers) did 
not require participants to actively access the magnitude of 
the numbers. Importantly, the EEG analysis (see below) focused 
on the second number of the number pair preceding the 
moving number and not on the moving number itself, which 
makes our task a passive paradigm with respect to analysis 
of numerical congruency. Moreover, this design ensured that 
processing of the number pairs was not contaminated by eye 
movement artifacts caused by the moving numbers.

Since participants only had to respond after every third 
item, we  wanted to make sure that they also had to actively 
attend to the first two items. Therefore, we  included 12 filler 
items in which moving numbers appeared at the very beginning 
or after the presentation of just one number. To make sure 
that participants not only react to the perception of movement 
they were only asked to respond to moving numbers and not 
letters. Thus, we  inserted 24 filler items with moving letters 
instead of numbers, which participants were instructed not to 
respond to. While the focus of Experiment 2 was to analyze 
numerical identity, additional factors were controlled to avoid 
predictive learning: Each first number was followed with the 
same probability by either the same or one specific different 
number (e.g., 1–1, 1–9). Also, number pairs did not predict 
the subsequent moving number: The moving number either 
had the same numerosity as the preceding number (25% of 
cases) or not (75% of cases). In half of the moving numbers, 
the movement direction and numerical size (a larger number, ≥6, 
moves to the right side of the screen or a smaller number, ≤4, 

moves to the left side of the screen) matched. In the other 
half, they did not (a larger number, ≥6, moves to the left 
side of the screen or a smaller number, ≤4, moves to the 
right side of the screen).

There were two experimental blocks: The unimodal block 
consisted only of visually presented digits, whereas in the 
cross-format block, the first number was always a spoken 
number word, while the second number and the moving number 
were visual-Arabic digits. At the beginning of the experiment, 
participants completed 12 practice trials with feedback. In the 
middle and at the end of each experimental block, participants 
had the opportunity to take a break. The order of the two 
blocks was counterbalanced.

Visual-Arabic stimuli were presented in white on black 
background with a height of 4 degrees of visual angle at the 
center of the display. Similar to Experiment 1, we  controlled 
for low-level perceptual adaptation effects. For that reason, 
visual-Arabic numbers were displayed in one of four slightly 
different spatial locations at one degree of visual angle from 
the center of the display. The location followed a pre-defined 
pseudorandom order, in which no two stimuli appeared at 
the same location. In each trial, visual-Arabic numbers 
immediately following each other were displayed in different 
spatial locations. Number words were presented by one of 
four speakers (two male and two female voices). All number 
words had a duration of 500 ms.

As illustrated in Figure  5, each standard trial proceeded 
in the following order: Blank screen (500 ms), first number 
(500 ms), blank screen (500 ms), second number (500 ms), 
and blank screen (jitter: 400–600 ms). We  analyzed ERPs in 
response to the second number. At the end of each trial, a 
digit moved horizontally to the left or the right side of the 
screen, until it stopped at a distance of four degrees of 
visual angle from the borders of the screen. The number 
moved at a constant speed of 1.67 pixels per frame. Participants 
were required to press the keyboard arrow corresponding 
to the direction of the movement either during the movement 
of the digit or after its arrival at the stationary position at 
the border of the screen. They were instructed to press  
the right arrow with their right index finger and the left 
arrow with their left index finger. If participants did not 
respond within 4 s of stimulus onset, the next trial 
was presented.

ERP Recording and Data Analysis
We employed the same ERP recording protocol as in 
Experiment 1, and the steps for preprocessing and data analysis 
were identical, except for baseline correction. The time window 
of −200 to 0 ms before onset of the second number of a pair 
served as the basis for baseline correction. Only segments 
with a correct response were considered. All participants had 
at least 74 valid segments in each of the four conditions; thus, 
all participants were included in the analyses. For the unimodal 
block, an average of 93.26 (SD = 3.87) identical and 92.32 
(SD = 3.84) non-identical segments were retained. For the cross-
format block, we  kept 92.63 identical (SD = 5.35) and 92.26 
non-identical (SD = 5.24) segments.
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Results
Behavioral Measures: Accuracy
To ensure that participants attended to the presented stimuli, 
they were required to respond to moving numbers, but not 
letters. On average, participants correctly reacted to 99.32% 
of the moving numbers (SD = 0.48%; range: 98.53–100.00%), 
while they incorrectly responded to only 9.58% of letters 
(SD = 6.63%, accuracy range: 65.96–97.87%). This high response 
accuracy suggests that participants were attentive toward the 
presented stimuli.

N1
As illustrated in Figure  6, the averaged waveforms of the 
parietal electrode cluster were more negative for non-identical 
than identical number pairs in the unimodal block, whereas 
this was not the case for the cross-format block. We performed 
an identity x modality ANOVA which showed that both 
main effects were not significant: modality, F(1,18) = 4.02, 
p = 0.060, h p

2  = 0.18 and identity, F(1,18) = 1.53, p = 0.231, 
h p

2  = 0.08. However, there was a significant interaction of 
modality x identity, F(1,18) = 4.89, p = 0.040, h p

2  = 0.21.
To follow up on the significant interaction, we  conducted 

two separate repeated measures ANOVAs with identity (identical 
vs. non-identical) as within-subject factor. These revealed a 
significant effect of identity for the unimodal block, F(1,18) = 5.42, 
p = 0.032, h p

2  = 0.23, with more negative peak amplitudes for 
identical than non-identical number pairs. For the cross-format 
block, there was no significant difference, F(1,18) = 0.03, p = 0.864, 
h p

2  = 0.00.

N400
The averaged waveforms of the central electrode clusters by 
numerical identity and experimental block are depicted in 
Figure  7. As illustrated in Figure  7, the averaged waveforms 
for non-identical number pairs were more negative than for 
identical number pairs, especially in the unimodal block. 
However, an identity x modality ANOVA showed no significant 
main effect of identity, F(1,18) = 0.78, p = 0.388, h p

2  = 0.04. There 
was a significant main effect of modality, F(1,18) = 9.95, p = 0.005, 
h p

2  = 0.36, with more negative peak amplitudes in the 

cross-format than in the unimodal block. The interaction identity 
x modality was not significant, F(1,18) = 0.443, p = 0.514, 
h p

2  = 0.024.
Because the sample size was relatively small, we also conducted 

a Bayes factor (BF) analysis to determine the relative strength 
of the alternative hypothesis compared to the null hypothesis 
for the N400 ERP peak amplitude data (Dienes, 2014; 
Wagenmakers et  al., 2018). We  used the JASP software version 
0.14.1.0 (JASP Team, 2020). As our repeated measures ANOVA 
contained several factors, we  calculated inclusion Bayes factors 
(BFInclusion), which can be  interpreted as evidence in the data 
for including a predictor (Wagenmakers et al., 2018). We found 
extreme evidence for the main effect of modality, 
BFInclusion = 153.41. For the main effect of identity, we  found 
evidence for the null hypothesis, BFInclusion = 0.30. For the 
interaction, we  found no evidence for the alternate hypothesis, 
BFInclusion = 0.36.

Discussion
The results of Experiment 2 support the notion that number 
pairs and digits are not automatically linked when no numerical 
judgments are involved. While presenting both a condition 
with unimodal pairs of visual-Arabic digits and cross-format 
pairs of number words and digits similar to Experiment 1, 
the present task was designed to be  passive and to not require 
semantic number activation.

Unimodally, we  found an early N1 effect of numerical 
identity and some traces of an N400 effect. Although the 
cross-format condition elicited similar components, these were 
not affected by numerical identity. The dissociation in the 
N1 component points again to an automatic integration of 
unimodal pairs of digits, but not of cross-format pairs of 
digits and number words. Unimodal integration of numerical 
stimuli therefore appears to happen automatically and 
involuntarily, even in a task not requiring any link between 
both constituents of a number pair. This supports the suggestion 
that processing of numerical identity is not limited to situations 
in which numerical information is explicitly processed (Liu 
et  al., 2018). However, this automatic integration does not 
appear to extend beyond the visual modality, as we  did not 
find any evidence for automatic integration of numerical 

A B

FIGURE 5  |  Examples of different trials of the ERP paradigm: (A) unimodal visual block, non-identical number pairs, (B) cross-format auditory–visual block, identical 
number pairs.
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information from different sensory modalities. This corroborates 
findings from a previous study on visual–auditory integration 
of number words and non-symbolic quantities in preschoolers, 
which also did not report any early signs of integration (Pinhas 
et  al., 2014).

The N400 effect which we  found in Experiment 1 was 
basically eliminated by employing a task in which semantic 
activation of the underlying magnitude was not provoked. This 
is in contrast to the study by Pinhas et  al. (2014), which 
reported higher N400 amplitudes for numerically non-identical 
than identical pairs of visually presented non-symbolic quantities 
and spoken number words. Arguably, the link between number 
words and their non-symbolic counterparts might be  tighter 
than between number words and digits, at least in children. 
Further studies are necessary before drawing the conclusion 

that there is no automatic link between number words and 
digits in the absence of semantic processing.

GENERAL DISCUSSION

We investigated the possibly automatic link between number 
words and digits and examined whether unimodal numerical 
identity is associated with different ERP effects compared to 
cross-format numerical identity. We  were interested in two 
ERP components: the early N1 component which is associated 
with automatic processing (Liu et al., 2018) and the later N400 
component which is associated with the semantic processing 
of numbers (Niedeggen et al., 1999; Galfano et al., 2004; Paulsen 
and Neville, 2008; Szücs and Soltész, 2010).

FIGURE 6  |  N1 component on the pooled parietal electrode cluster for numerically identical and non-identical number pairs in unimodal visual and cross-format 
auditory–visual blocks. Solid lines represent ERPs for identical, and dashed lines for non-identical number pairs. ERPs are shown in black for unimodal items and in 
grey for cross-format items.
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We found parietal N1 ERP effects of numerical identity 
in the early time window from 100 to 200  ms after stimulus 
onset. However, this was only found for unimodal, but not 
cross-format number pairs. On the one hand, this implies 
that visual-Arabic digits are rapidly and automatically linked, 
even if numerical processing is not actively required. On 
the other hand, automatic integration does not appear to 
extend to cross-format pairs of digits and number words. 
This suggests that cross-format integration of numerical 
information from different symbolic formats occurs less 
rapidly than within-format integration. This contrasts with 
previous research on the cross-format integration of visually 
presented non-symbolic and symbolic numerosities,  
which appear to be  automatically linked (Liu et  al., 2018). 
Therefore, symbolic numbers and their non-symbolic 
counterparts may have a tighter link than different 
symbolic representations.

Moreover, it is possible that our finding of an automatic 
integration of two visual-Arabic digits is partly due to perceptual 
visual similarity (c.f. Cohen, 2009) seeing that numerically 
identical number pairs showed a greater visual overlap than 
numerically non-identical ones. Evidence from an fMRI 
adaptation study with visual-Arabic and Chinese numerals 
suggests that brain responses to numerical stimuli are not 
only based on the numerical meaning but are also influenced 
by perceptual overlap (Holloway et  al., 2013). Nonetheless, 
we  did take measures to decrease this influence by varying 
the spatial locations and fonts of pairs of visual-Arabic digits. 
We found unimodal and cross-format N400 effects of numerical 
identity, but only when the active task required numerical 
decisions. As the N400 component is believed to reflect semantic 
processing (Kutas and Federmeier, 2011), it can be  deduced 
that a semantic link between two numbers is not established 
directly, but instead individuals actively have to access the 

FIGURE 7  |  N400 component on the pooled central electrode cluster for numerically identical and non-identical number pairs in unimodal visual and cross-format 
auditory–visual blocks. Solid lines represent ERPs for identical, and dashed lines for non-identical number pairs. ERPs are shown in black for unimodal items and in 
grey for cross-format items.
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underlying meaning. While we  did not find any evidence for 
an automatic link between cross-format number pairs as indexed 
by the N1 component, we did find an ERP effect of numerical 
identity for cross-format number pairs in the later N400 window.

Crucially, this was only true when an activation of semantic 
content was provoked by task demands (Experiment 1). When 
semantic activation was not provoked by the task (Experiment 2),  
we  could not observe any N400 effects, neither unimodally nor 
in the cross-format condition. This suggests that number words 
and digits are indirectly linked via their underlying numerical 
magnitude. However, it is important to note that the SOA between 
the constituents of a number pair varied between Experiment 
1 and Experiment 2: While the SOA was 500 ms in Experiment 
1, it was 1,000 ms in Experiment 2. Therefore, it is important 
to consider the possibility that this longer SOA caused semantic 
priming to fade away and dissipate (e.g., Xiao and Yamauchi, 
2017). First evidence suggests that this may indeed be  the case 
in the domain of numerical processing: Lin and Göbel (2019) 
conducted a behavioral study in which participants were asked 
to indicate whether cross-format pairs of visual-Arabic digits 
and auditory number words with varying SOAs (−500 ms to 
+500 ms) were identical or not. Lin and Göbel (2019) observed 
cross-format numerical distance effects (indicating semantic 
processing) across all SOAs, but these distance effects decreased 
with increasing SOAs. Therefore, it is possible that the lack of 
semantic priming we  observed in Experiment 2 (with an SOA 
of 1,000 ms) may have been related to using a long SOA. However, 
the precise effect of SOA length on semantic priming is still a 
matter of debate: Other studies suggest that semantic priming 
of lexical content is facilitated by longer SOAs (i.e., longer than 
500 ms, e.g., Chen and Spence, 2018; Roelke et  al., 2018). If this 
were also the case for cross-format number pairs, the lack of 
semantic priming we  observed in Experiment 2 may not have 
been observed because, but perhaps rather in spite of a long SOA.

As discussed above, the current study found no evidence 
for a direct link between visual-Arabic numbers and number 
words. These results can easily be  integrated with semantic 
models of transcoding, as they suggest accessing the other 
form through semantic activation. Asemantic models, however, 
are based on the assumption that transcoding takes place in 
the absence of semantic activation. Indeed, there is 
neuropsychological evidence supporting the view that semantic 
activation is not mandatory for transcoding: Dehaene and 
Cohen, 1995 described the case of a patient with Gerstmann’s 
syndrome who was selectively impaired in tasks requiring access 
to the number semantics but showed intact transcoding skills. 
Nonetheless, the precise cognitive mechanisms linking number 
words and digits remain as yet unclear. A crucial step in support 
of asemantic models would be  to demonstrate the existence 
of an automatic integration of number words and digits. The 
current study was, however, unable to do so in healthy adults.

An analogy for the absence of an automatic link between 
symbolic representations of number (i.e., number words and 
digits) can be  found in the neighboring domain of reading. As 
a cautionary note, it is important to mention that there are 
distinctive differences between reading and number processing: 
While numbers are inherently meaningful as they reflect 

non-symbolic quantities, letters often have to be  grouped to 
strings to form meaningful words. However, there are interesting 
parallels, as both letters and digits are culturally acquired symbols: 
While we  communicate about quantities with number words 
and digits, our script code consists of strings of letters or characters 
that are used to reflect speech sounds. Evidence from cross-
script priming suggests that there is indeed no automatic link 
between different scripts within the same language (Okano et al., 
2013). Specifically, cross-script priming can be  investigated in 
languages containing pairs of symbols that map onto the same 
phonological representation. For instance, Japanese has two 
syllabaries, Hiragana and Katakana, which both have characters 
directly corresponding to the same Japanese syllables (e.g., Hiragana 
さ and Katakana サ both represent/sa/). Similar to our behavioral 
findings on the cross-format priming of number words and 
digits, substantial behavioral priming effects for primes that are 
displayed in different scripts from their targets have been reported 
both in lexical decision (Pylkkänen and Okano, 2010) and 
semantic categorization tasks (Okano et  al., 2013). However, 
ERP-based findings suggested that cross-script prime-target pairs 
are not automatically linked, but rather via their underlying 
semantics as indexed by the N400 component (Okano et al., 2013).

Interestingly, similar to cross-script priming, there is a body 
of evidence supporting the notion of an automatic link between 
non-symbolic quantities and their symbolic counterparts (Galfano 
et  al., 2004; Paulsen and Neville, 2008; Pinhas et  al., 2014; 
Liu et  al., 2018). It would be  fruitful to disentangle possibly 
different mechanisms supporting the integration of non-symbolic 
visual quantities and number words, compared to symbolic 
Arabic digits and number words. A future challenge for numerical 
cognition research therefore is to investigate whether the 
automatic integration of non-symbolic quantities and their 
symbolic counterparts contributes to higher-order skills such 
as mental calculation.

It is important to acknowledge some limitations of the 
current study. One might argue that the observed absence of 
an automatic and asemantic integration of auditory number 
words and visual-Arabic digits may be  partially due to our 
experimental design. First, early ERP components such as the 
N1 effect are known to be modality-dependent (Donohue et al., 
2011), and second, the length of the SOAs between cross-
format number pairs may have impacted the automatic association 
(Lin and Göbel, 2019).

Concerning modality-dependence, it is possible that the 
observed N1 effects of numerical identity constitute a unique 
feature of unimodal processing of visually presented numbers. 
This may also explain why Liu et  al. (2018) observed early 
ERP effects for the integration of visually presented quantities 
and digits, while the present study could not find any early 
signs of cross-format integration between auditory number 
words and visual-Arabic digits. However, we  compared ERPs 
within and not across modalities. Indeed, for both unimodal 
and cross-format conditions, we compared the N1 effect evoked 
by the presentation of the second number of a pair, which 
was always presented visually (i.e., unimodal: two visual-Arabic 
digits; cross-format: one auditory number word followed by 
one visual-Arabic digit). Since no cross-format comparisons 
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were made, the observed similarities and differences should 
not stem from modality-specific effects.

A central parameter in early cross-modal integration is the 
temporal proximity of the stimuli (e.g., Donohue et  al., 2011). 
The shorter the SOA, the stronger the observed priming effect 
(Lin and Göbel, 2019). Short SOAs, however, do not enable 
the separate analysis of ERPs, as high amplitude components 
of the prime stimulus may still take place during the time 
window of the target stimulus. To keep the priming effect as 
large as possible while keeping the ERPs of the first and second 
stimuli as dissociated as possible, we employed a 500-ms delay 
in Experiment 1 and a 1,000-ms delay in Experiment 2. 
We  managed to observe unimodal identity effects with such 
a design and assume that if there were automatic markers of 
cross-modal integration, we  should have been able to detect 
those with our design. However, while we  used different SOAs 
in Experiments 1 and 2, our results cannot directly inform 
the question about the effect of manipulating SOAs because 
of additional design differences between the two experiments. 
Such effects should be  examined in future experiments only 
manipulating SOAs.

CONCLUSION

Our findings contribute to the debate on the nature of the 
integration of different symbolic number forms (visual-Arabic 
digits and auditory number words). In both experiments, 
unimodal pairs of visual-Arabic digits were consistently found 
to be  automatically integrated across both experiments, but 
we  did not find any evidence for an early and automatic  
cross-format integration. In our experiments, evidence of the 
cross-format association between visual-Arabic digits and verbal 
number words emerged late and involved semantic activation. 
The present study thus does not support the notion of an 
automatic and asemantic cross-format integration of number 
words and visual-Arabic digits in adults.
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Individual Differences in Writing
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But Goes Beyond
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Recent studies have shown that children’s proficiency in writing numbers as part of the so-
called transcoding correlates with math skills. Typically, children learn to write numbers up
to 10,000 between Grade 1 and 4. Transcoding errors can be categorized in lexical and
syntactical errors. Number writing is thus considered a central aspect of place value
understanding. Children’s place value understanding can be structured by a hierarchical
model that distinguishes five levels. The current study investigates to what extent a
profound understanding of the place value system can explain individual differences in
number writing. N � 266 s and third graders (126 girls) participated in the study. The
children wrote down 28 verbal given numbers up to 10,000 and completed a place value
test based on a hierarchical model to assess number writing skills and place value
understanding. Second graders made more number writing errors than third graders
and transcoding errors were mostly syntactical errors. In both grades, transcoding
performance and place value understanding correlated substantially. In particular
complex numbers were more often solved correctly by children with a more
elaborated place value understanding. The effect of place value understanding on error
rate was smaller regarding lexical errors than syntactical errors. This effect was also
comparably small regarding inversion-related errors. The results underpin that writing
numbers is an integral part of early place value understanding. Writing numbers can be
assumed to be mostly based on the identification of the place values. However, variance in
transcoding skills cannot totally be explained by place value understanding, because
children with an elaborated place value understanding differed in transcoding
performance, too. The differences between the grades indicate that children’s
development of writing numbers is also driven by instruction in school. Thus, writing
numbers and place value understanding overlap but exceed each other. We discuss how
an understanding of the place value relations can be integrated in existing frameworks of
place value processing. Since writing numbers is a basic skill in place value understanding,
it might serve as an efficient screening method for children, who struggle severely with
understanding the decimal place value system.

Keywords: place value understanding, transcoding, numerical development, numerical cognition, number writing

Edited by:
Ricardo Moura,

University of Brasilia, Brazil

Reviewed by:
Ren Liu,

University of California, Merced,
United States

Ricardo Garcia,
Federal University of Paraíba, Brazil

*Correspondence:
Moritz Herzog

mherzog@uni-wuppertal.de

Specialty section:
This article was submitted to

Educational Psychology,
a section of the journal
Frontiers in Education

Received: 15 December 2020
Accepted: 13 December 2021
Published: 18 January 2022

Citation:
Herzog M and Fritz A (2022) Place

Value Understanding Explains
Individual Differences in Writing

Numbers in Second and Third Graders
But Goes Beyond.

Front. Educ. 6:642153.
doi: 10.3389/feduc.2021.642153

Frontiers in Education | www.frontiersin.org January 2022 | Volume 6 | Article 6421531

ORIGINAL RESEARCH
published: 18 January 2022

doi: 10.3389/feduc.2021.642153

215

http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2021.642153&domain=pdf&date_stamp=2022-01-18
https://www.frontiersin.org/articles/10.3389/feduc.2021.642153/full
https://www.frontiersin.org/articles/10.3389/feduc.2021.642153/full
https://www.frontiersin.org/articles/10.3389/feduc.2021.642153/full
https://www.frontiersin.org/articles/10.3389/feduc.2021.642153/full
http://creativecommons.org/licenses/by/4.0/
mailto:mherzog@uni-wuppertal.de
https://doi.org/10.3389/feduc.2021.642153
https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2021.642153


INTRODUCTION

When someone tells us his or her phone number, when we write
down a friend’s new address, or when we make a note to take the
right bus line whose number a helpful stranger told us: Many
every-day contexts require to write a number from verbal
information. In research, the skill to write down numbers
given verbally is often referred to as transcoding (Barrouillet
et al., 2004; Gilmore et al., 2018). Transcoding, as the term
indicates interrelates several codes of numbers,
i.e., representations, in which numbers can appear.

Dehaene (1992) proposed three codes for number
representations in the frequently cited Triple Code Model. The
model consists of three codes of numbers that are interrelated: 1)
a verbal system, which mostly refers to number words, but also
verbally stored arithmetic facts in the log-term memory (e.g.,
multiplication table); 2) the visual system including Arabic
numerals; and 3) a quantity system covering nonverbal
number representations, such as sets of dots or positions on a
number line (Dehaene, 1992; Dehaene and Cohen, 1995). Thus, a
number can be represented in these three codes as well as
transcoded between them.

The importance of transcoding abilities for mathematical
learning is emphasized by its relation to mathematical
performance. Empirical studies have shown that transcoding
correlates with arithmetic performance (Geary et al., 1999;
Moeller et al., 2011a; Göbel et al., 2014b). Moreover, number
line estimation accuracy also correlates with transcoding
(Dietrich et al., 2016). In line with these results, persistent
transcoding difficulties are typical for children with
mathematical learning difficulties (Geary et al., 1999; Moura
et al., 2013; Moura et al., 2015). Especially numbers of higher
complexity challenge children with mathematical learning
difficulties even at the end of primary school, when their
typical developing peers have mastered transcoding (Mark and
Dowker, 2015; Moura et al., 2015; Houdement and Tempier,
2019).

Transcoding abilities usually develop during primary school.
While many children at the beginning of primary school show
difficulties with reading or writing numbers, most of themmaster
transcoding by end of Grade 4 (Byrge et al., 2014; Moura et al.,
2015). The difficulty of number reading and writing
depends–among others–on the complexity of the numbers.
Single-digit numbers are only slightly affected by transcoding
errors, which appear mostly in multi-digit numbers (Zuber et al.,
2009; Moura et al., 2015). Moura et al. (2015) have shown that
children’s transcoding proficiency regarding numbers of different
complexity develops parallelly during the course of primary
school: For example, first graders showed similar difficulties
with numbers of low difficulty (e.g., 190) as second graders
showed with numbers of moderate difficulty (e.g., 109).

The difficulty of number reading and writing is also affected by
the number word system of a language. Number words vary in
their transparency in different languages. For example, 35 (thirty-
five) is read “sān shí wǔ” (“three ten five”) in Chinese, which is
more transparent than English as the tens are given in a
decomposition (three ten) and not a new word (thirty). In

German, it is “fünfunddreissig” (“five and thirty”), which is
even less transparent than English due to the inversion of tens
and units (Zuber et al., 2009; Göbel et al., 2014a). Comparative
studies between different languages have shown that transcoding
is easier in terms of accuracy and reaction time in more
transparent languages (Miller et al., 1995; Pixner et al., 2011;
Dowker and Nuerk, 2016).

In particular the tens-units-inversion that is found for example
in German and Dutch is a major challenge in transcoding (Pixner
et al., 2011; Klein et al., 2013). In a comparison study regarding
the influence of different characteristics of numbers (e.g., number
size, pronunciation of number words, or difference between
digits) on transcoding, van der Ven et al., (2017) showed that
inversion was a significant predictor for transcoding difficulty.
Imbo et al. (2014) compared French (non-inverted) and Dutch
(inverted) speaking second-graders. Although overall
transcoding performance did not differ significantly between
the language groups, the Dutch speaking children had a nearly
six times higher inversion error rate than their French peers.

Empirical evidence suggests that working memory is involved
in transcoding difficulties in inverted languages (Camos, 2008;
Zuber et al., 2009; Pixner et al., 2011). Zuber et al. (2009) have
shown that transcoding correlates with visual-spatial working
memory and central executive, but not with phonological
working memory in first graders. However, the central
executive was only involved in inversion-related transcoding
errors (e.g., 53 for 35), which indicates that coordinating
number word parts for tens and units is a main difficulty
during transcoding in languages with tens-units inversion. In
line with that, Poncin et al., (2020) recently compared
transcoding performance in inverted (“five and thirty”) and
non-inverted (“thirty-five”) number words at the end of
primary school. The French-speaking children could solve the
transcoding task given in the non-inverted (usual in French)
condition in significant shorter time than the inverted (unusual in
French) condition. However, German speaking children were as
fast in transcoding when presented inverted number words (usual
in German) as when presented non-inverted number words
(unusual in German). Obviously, the tens-units-inversion leads
to increased reaction times in transcoding even in children who
are used to it. This result highlights the cognitive cost of inverted
number words. Lopes-Silva et al., (2014) investigated the role of
verbal skills beyond working memory regarding transcoding
processes in non-inverted number words. In their study,
phonemic awareness outran working memory capacities
regarding the prediction of transcoding performance.

Transcoding Processes
Transcoding numbers from verbal to Arabic code requires an
understanding of the decimal rules of number word structures
(Deloche and Seron, 1982; Pixner et al., 2011): The parts of the
number words (e.g., nine hundred fifty-one) have to be mapped
to corresponding numerals (900, 50, 1), which need to be
composed according to certain, language-specific rules (951).
Barrouillet et al. (2004) proposed an often adopted asemantic,
developmental, and procedural model for transcoding (ADAPT
model) to specify the processes involved in transcoding. The
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ADAPT model focuses on procedural rules on the one hand and
on the other hand on the construction of a “lexicon” for multi-
digit numbers. According to the ADAPTmodel, transcoding does
not involve eliciting details such as the meaning of the digits,
given that a corresponding entry in the numerical lexicon is
available. If there is no entry, procedural rules have to be
employed. In this process, the number word forms a digit
string that contains information about the digit value and the
positional value.

Within the ADAPT model, four types of procedural
transcoding rules are differentiated. Some numbers (e.g., 11)
or digits (e.g., 9 in 951) are derived from long-term memory
(P1 rules). When the digit strings have to be assembled, their
length has to be derived from the number words as indicated by
keywords such as “hundred” or “thousand” (P2 and P3 rules). P1
and P2/P3 rules are combined, when the digit value is derived
from long-termmemory and the position from the keyword, as in
“nine hundred” (“nine” � P1, “hundred” � P2). The structure of
many number words in triplets (e.g., three hundred thirty-nine
thousand two hundred eleven) facilitates transcoding up to one
million with just two of these rules (P2 for three-digit and P3 for
four-digit numbers) (Barrouillet et al., 2004; Van de Walle et al.,
2016). Finally, the written number has to be checked for
completeness. If there are gaps in the digit string, they have to
be filled up with zeros (P4 rules).

Two main error types in transcoding are distinguished: lexical
and syntactical errors. While errors in mapping the
corresponding number to a digit (e.g., 941 for 951) are
considered lexical errors, wrong compositions of the numerals
(e.g., 90,051 for 951) are called syntactical errors (Barrouillet
et al., 2004; Deloche and Seron, 1982). After comparing lexical
and syntactical transcoding errors in children with and without
mathematical learning difficulties in early and middle primary
school, Moura et al. (2013) reported three main effects: First,
syntactical error rates were higher than lexical error rates in all
children. Second, children at the beginning of primary school
made more transcoding errors than children in middle primary
school. And third, typical developing children showed lower
transcoding error rates than children with mathematical
learning difficulties. In particular, lexical error rates were very
low in typical developing children both in early and middle
primary school. However, first-graders with mathematical
learning difficulties showed considerably higher lexical error
rates. In contrast to lexical errors, syntactical errors were
generally found in both groups and both stages of primary
school, accounting for the three main effects. Syntactical errors
mostly affected three- and four-digit numbers, while single- and
two-digit numbers challenged only very few children (Moura
et al., 2013).

As proposed in the ADAPT model, employing transcoding
rules strongly draws on procedural knowledge such as identifying
place values. Procedural knowledge refers to how rules and
procedures (e.g., the rules of the ADAPT model) are carried
out. In contrast to procedural knowledge, conceptual knowledge
covers the understanding ofwhy these rules and procedures apply
and which structures underly them (Hiebert and Lefevre, 1986).
Procedural and conceptual knowledge can be applied regarding

place value understanding, too. While procedural place value
understanding refers to knowledge of the place values and how
they can be composed to multi-digit numbers, conceptual place
value understanding can be identified with the iterative relation of
the bundling units (i.e., hundreds, tens, units, etc.): ten units can
be unitized to one ten and so on (Houdement and Tempier, 2019;
Van de Walle et al., 2016). Rittle-Johnson and Schneider (2015)
emphasize that procedural and conceptual mathematical
knowledge are intertwined. The interrelation between
procedural and conceptual knowledge implies that procedural
skills may have a conceptual basis on which they are acquired and
employed. In the case of transcoding, there is little known about
its conceptual foundations.

Place Value Understanding
Against the background of the ADAPT model, transcoding
implies specific knowledge of place value understanding. For
the reliable employment of the procedural rules of the ADAPT
model, children need to recognize the decimal unit a digit
represents. According to Nuerk et al. (2014), place value
information is processed in three ways: First, place value
identification refers to the correct finding and naming of digit
positions in a multi-digit number. Therefore, this aspect can be
identified primarily with transcoding services. Second, place value
activation refers to the employment–consciously or
unconsciously–of the numerical information of a decimal unit,
for example in number comparison tasks. Third, place value
computation describes the integration of place value information
in arithmetic tasks. This taxonomy is particularly used in (neuro-)
psychological studies on number processing (Nuerk et al., 2014;
Bahnmueller et al., 2018).

Naturally, place value understanding has been addressed by
researchers from (mathematical) education, too. Based on the
notion that transcoding is mostly based on a conceptual
understanding of the place value system, procedural and
asemantic models such as the ADPAT models have been
criticized (e.g., Geary, 2004; Desoete and Grégoire, 2006).
However, a profound understanding of the decimal place value
system covers both procedural and conceptual aspects such as
writing and reading numbers and insight in the iterative relation
of the bundling units (Fuson et al., 1997a; Van de Walle et al.,
2016; Herzog et al., 2019; Houdement and Tempier, 2019).

To structure the development of place value understanding,
Herzog et al. (2019) proposed a developmental model of place
value understanding that distinguishes five levels. The levels build
up on each other hierarchically. That means that the level
hierarchy implies a relation of dependence and inclusion
between the levels: First, children need the knowledge of lower
levels to develop successive levels (dependence). Second, children
who have developed a certain level are supposed to have
developed the prior levels, too (inclusion) (Battista, 2011). The
levels of the model are not distinct classes of place value
understanding that suddenly change. Rather, higher levels are
elaborations and advancements of lower levels (Clements and
Sarama, 2004). By interacting with tasks and materials based on
the place value system (e.g., multi-digit arithmetic, base-ten
blocks, standard algorithms), children develop a more
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elaborated understanding of how numbers are composed of place
values and how decimal bundling units are related. As children’s
place value understanding does not change suddenly, but
gradually over time, the levels are interrelated in form of
overlapping waves (Siegler and Alibali, 2005; Clements and
Sarama, 2014). Each level can be described by typical ideas of
the place value system, strategies used to solve tasks, and errors
made by the children at the respective level. The gradual
development of children along the levels implies that a child
can be located at a certain level of which the child can solve most
items; however, this child might also be able to solve single items
of higher levels (e.g., by applying a specific strategy) and, vice
versa, make single errors on items of lower levels (e.g., due to
careless mistakes).

The model is theoretically based on a broad literature review
and content analysis. The most relevant literature for the
construction of the model are earlier models on place value
understanding (Cobb and Wheatley, 1988; Ross, 1989; Fuson,
et al., 1997b). The influence of the earlier models gets visible in the
description of the levels below. However, the earlier models cover
only two-digit numbers, in contrast to the model by Herzog et al.
(2019). The significance of the relation between bigger bundling
units such as hundreds and thousands is highlighted in the
literature (Scherer and Moser Opitz, 2010; Houdement and
Tempier, 2019). While the earlier models are based on
classroom observations, single cases and empirical studies,
there is little a posteriori evidence for their validity (Chan
et al., 2014). To the best of our knowledge there are no
longitudinal studies supporting the validity of the earlier
models for describing learning trajectories. Longitudinal
studies are especially necessary for developmental models that
describe children’s typical learning trajectories (Reiss and
Obersteiner, 2019). The content analysis of the place value
system during the construction of the model stressed the
relevance of both the identification of the place values (Nuerk
et al., 2015) and the relation of the bundling units (Houdement
and Tempier, 2019).

The model construction followed a four-step circle as
suggested by Battista (2011). The first step was the literature
review and content analysis described above. The second step was
the construction of a provisory model and designing items
corresponding to the levels of the provisory level. In a third
step, the model was tested empirically in several piloting studies.
Step four was the evaluation of the provisory model and the
empirical results. In the few cases where the provisory model and
the empirical findings of the piloting studies did not match, the
model was slightly revised and tested again. The adaptation
process of the model involved only few items that were
carefully adapted to the revised models.

The final model was validated in a cross-sectional and a
longitudinal study in Germany employing a one-dimensional
Rasch-Analysis with a new sample (Herzog and Fritz, 2019). In
the cross-sectional study, the item difficulties of the Rasch-
Analysis followed the predictions of the level hierarchy in two
ways: First, items operationalizing the same level showed similar
difficulties; second, items of lower levels were systematically
easier than items of higher levels. In the longitudinal study,

students from Grade 3 and 4 showed significant increase in
place value understanding as described by the model over the
course of 1 year. A cross-sectional study in a different cultural and
educational environment (South Africa) provides similar
empirical evidence in support of the model validity (Herzog
et al., 2017).

Pre-decadic Level: Initially, children perceive multi-digit
numbers as entities without any decimal structure (Cobb and
Wheatley, 1988; Ross, 1989; Fuson et al., 1997a). Children might
be able to decompose numbers in general (e.g., 24 into 12 and 12).
However, canonical decompositions into tens and units (e.g., 2
tens and 4 units) have no specific base-ten related quality to these
children. The canonical decomposition as fundamental
construction principle of numbers within the decimal place
value system is only one of many possible decompositions and
children are unlikely to recognize tens and units in this
decomposition at the Pre-decadic Level.

Place Values (Level I): At first, children understand that the
digits in numbers can be mapped to decimal bundling units such
as units, tens, etc. (Cobb and Wheatley, 1988; Ross, 1989; Fuson,
et al., 1997b). Based on this place value understanding, children at
this level can map digits to corresponding bundling units.
However, they do not yet understand, how the bundling units
are related. That means that children at Level I can handle
canonical decompositions (e.g., 2 tens and 4 units) based on
the place value understanding of this level, but struggle with so-
called non-canonical decompositions (e.g., 1 ten and 14 units).

Tens-Units Relation with Visual Support (Level II): At Level II,
children develop an understanding of the relation of tens and units
that is based on visual support (Cobb and Wheatley, 1988; Steffe,
1992). They can bundle and unbundle tens and units, but rely on
counting processes to verify the equivalence of ten units and one ten.
It takes decimally structured material such as base-ten blocks for
them to reliably employ these counting processes (Fuson, et al., 1997a;
Nührenbörger and Steinbring, 2008). Non-canonical representations
that are given abstractly cannot be handled based on this place value
understanding. Therefore, children might identify “ten” rather with
the corresponding visualization (e.g., a tens stick, Van deWalle et al.,
2016) than with a composition of ten units. Children at this level
understand the relation of the bundling units only for units and tens,
while bigger bundling units (e.g., hundreds) are not yet integrated
(Scherer and Moser Opitz, 2010).

Tens-Units Relations without Visual Support (Level III): Level III
is characterized by two developmental changes in place value
understanding. First, children detach from visual representations
for two-digit numbers which enables them to handle non-
canonical representations of tens and units. Based on an
interiorized understanding of the tens-units relation, they do not
necessarily need counting routines to verify that ten units make up
one ten. Second, children extend the representation-based
understanding of the relation between the bundling units onto
bigger units such as hundreds, thousands, etc. Like on Level II for
two-digit numbers, children need decimally structured material to
employ the iterative bundling principle for multi-digit numbers in
general. Scherer andMoser Opitz, (2010) emphasize the necessity
of bundling tens to hundreds to understand the iterative bundling
principle.

Frontiers in Education | www.frontiersin.org January 2022 | Volume 6 | Article 6421534

Herzog and Fritz Number Writing and Place Value

218

https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


General Bundling Units Relations (Level IV): At the fourth
and final level of the model, children have successfully established
an abstract concept of the relation between the bundling units.
Similar to the transition from Level II to Level III for the relation
between tens and units, children now detach from concrete
representations for multi-digit numbers. As children
established a profound understanding of the positional
principle as well as the iterative bundling principle with this
learning step, their place value understanding development is
considered completed.

The Current Study
According to the ADAPT model, the rules employed during
transcoding are asemantic, procedural, and developmental. The
asemantic characteristic means that transcoding processes are not
necessarily bound to the numerical meaning of the number
words. The procedural characteristic refers to the transcoding
rules. As children follow algorithms during transcoding
processes, they may not actually understand the structure
behind the processes. The developmental characteristic
highlights that children actively develop the numerical lexicon
for number words. With increasing experience, children gain
routine in employing the transcoding rules. Thus, their increasing
transcoding proficiency in primary school is an outcome of
learning processes (Barrouillet et al., 2004; Moura et al., 2015).

Research mostly focused on working memory and
phonological awareness as influencing factors on transcoding.
However, given the interrelation of procedural and conceptual
knowledge, the assumptions of the ADAPT model also rise
questions regarding the conceptual fundaments of transcoding
processes (Rittle-Johnson and Schneider, 2015). As the process of
transcoding itself is asemantic, the numerical meaning of a
number is not activated during transcoding. However, there
has to be some kind of meaning that numbers have to
children. It is unclear, to what extent children’s understanding
of numbers and decimal bundling units–although not activated
during transcoding–are related to their transcoding skills.
Transcoding is also procedural, which means that the
transcoding rules are employed by routine. Thus, the ADAPT
model makes no predictions on the influence of children’s
conceptual understanding on transcoding. As procedural and
conceptual knowledge are interrelated, we cannot exclude an
influence of conceptual place value understanding on
transcoding. Finally, the ADAPT model describes transcoding
as developmental. This implies that children gain knowledge that
is relevant for transcoding during primary school. What
knowledge is relevant for transcoding, and in particular the
role of conceptual knowledge in this regard, is not finally
investigated. To sum up, this study aims at investigating the
role of conceptual place value understanding for transcoding
skills to better understand the cognitive prerequisites of
transcoding processes.

To address these questions at least partially, we investigated
transcoding abilities in relation with place value understanding as
described by the Herzog et al. (2019) model in German second
and third graders. As place value understanding usually develops
in Grades 3 to 5 (Herzog et al., 2019; Houdement and Tempier,

2019), and transcoding abilities substantially improve during
Grades 1 to 3 (Moura et al., 2015), children in Grade 2 and 3
are of particular interest regarding this research question. The
model allows assessing and localizing children’s individual status
of place value understanding within the developmental level
sequence. This approach facilitates to investigate differences in
transcoding performance between children with more or less
elaborated place value understanding. As the model provides
qualitative descriptions of children’s place value understanding,
differences in transcoding abilities might not only be explained in
terms of task performance, but also in terms of children’s ideas of
the place value system. The qualitative description of children’s
place value understanding based on the model by Herzog et al.
(2019) in relation to transcoding abilities might give insights into
the conceptual underpinnings of transcoding.

Besides variance in error rates across children at different
levels of place value understanding, we expect variance in error
types to provide substantial information on conceptual
underpinnings of transcoding. At least two aspects are
highlighted in research. First, lexical and syntactical errors
might differ in the way they are related to place value
understanding. As lexical errors are mostly mapping errors
between digits and numbers, they might be less related to
place value understanding than syntactical errors (Zuber et al.,
2009; 215; Moura et al., 2013). Second, the German sample allows
investigating inversion related errors. Regarding the cognitive
foundation of inversion errors, two competing approaches can be
found in the literature. While mathematics education research
considers inversion related errors as an indicator for low place
value understanding (e.g., Schulz, 2014), (neuro-) psychological
studies stress the influence of working memory on inversion
related errors (Bahnmueller et al., 2015; Pixner et al., 2016). This
study aims at contributing to this debate by investigating the
influence of place value understanding and inversion related
errors.

Two main research questions (RQ) will structure the
investigation of cognitive underpinnings of transcoding of this
study. The qualitative level description of the model of place value
understanding allows making testable predictions regarding the
differences in transcoding performance between children at
different levels.

RQ1: To what extent does transcoding performance vary
between children at different levels of place value
understanding as described by the model by Herzog et al.
(2019)? We expect that children at higher levels of place value
do fewer transcoding errors in general. More specifically, the
concept described in Level I (identification of place values) is
supposed to support transcoding processes (Bahnmueller
et al., 2018; Herzog et al., 2019). Thus, especially children
at the Pre-decadic Level are expected to show lower
transcoding performance, while children at higher levels are
expected to differ only slightly regarding transcoding
performance.
RQ2: How are different transcoding error categories such as
lexical and syntactical as well as inversion related errors
interrelated with place value understanding? Based on the
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underlying processes in transcoding as described in the
ADAPT model, we hypothesize that syntactical errors are
negatively associated with place value understanding, while
lexical errors may not or only slightly be associated with place
value understanding. In particular children, who do not have a
conceptual basis for the identification of place values (Pre-
decadic Level) are expected to make syntactical errors. The
study design allows to investigate the effect of place value
understanding on inversion related errors, which might
contribute to the debate on the cognitive foundation of
inversion-related errors.

MATERIALS AND METHODS

Sample
In total 266 students participated in the study. Of the total sample,
135 students (69 female, Mage � 91.4 months, SDage � 5.7 months)
were in Grade 2 and 131 (57 female, Mage � 104.3 months, SDage �
6.4 months) were in Grade 3. In both grades, data was collected
during the first 3 months of the school year. Children were
acquired from three schools of which one was located in an
upper-class, one in a middle-class, and one in a lower-middle-
class suburb. Written consent to participate in the study was
acquired in advance from the parents. The study was approved by
the local ethics committee of the authors’ university.

The sample was selected based on the contents of the
mathematics curriculum. In Grade 1, mathematics classes
cover the number range up to 20, in Grade 2 up to 100, and
in Grade 3 up to 1,000. Thus, children, who just entered Grade 2
or Grade 3 are appropriate for the aims of this study. As no
inclusion criteria were applied, all second- and third-graders from

the selected schools participated in the study, if consent was
obtained.

Instruments
Transcoding
Transcoding performance was assessed by a writing-numbers-
test. Children were given 28 single-to four-digit numbers verbally.
The stimuli were identical with Moura et al. (2015) and can be
found in Figure 1. Transcoding errors were categorized similar to
Moura et al. (2015). Incorrect mappings of numbers and digits
(e.g., 961 for 951) were coded as lexical errors. Errors violating the
procedural rules (e.g., 90051 for 951) were coded as syntactical
errors. As a specific type of syntactical errors, inverted tens and
units (e.g., 915 for 951) were coded as inversion-related errors.
Based on the rules of the ADAPT model involved in the
transcoding process, the numbers were categorized in numbers
with null, low, medium, and high complexity (Moura et al., 2015).

Place value Understanding
Based on the model by Herzog et al. (2019), two item collections
were used to assess children’s place value understanding. Because
children in Grade 2 are not yet introduced to numbers bigger than
hundred and nearly no child had developed the concept of Level
IV in a piloting study, we omitted Level IV items in Grade 2. The
items for both Grades were based on the item collection which
had been used in another study to validate the model in Germany.
A one-dimensional Rasch analysis confirmed that the item
difficulties were coherent with the assumptions of the
theoretical model (Herzog and Fritz, 2019). Example items
from the place value understanding assessment are presented
in Figure 1. The full item collections are available by request to
the corresponding author.

FIGURE 1 | Example items from the place value understanding assessment for Levels (I–IV)(A–D).
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In Grade 2, 40 items aligned to the Levels I to III were
employed. 16 items were aligned to Level I, while 12 items
corresponded to the Levels II and III each. As items were
presented in random order, more items on the first level were
included in the assessment to prevent frustration and tiring in the
children. 20 items (Level I: 6, Level II: 8, Level III: 6) were original
items of the validation study and all additional items were
variations of these items. The internal consistency of the 40
items was good (Crombach’s α �0.934).

The item collection for Grade 3 contained 48 items. Of the 48
items, 16 were aligned to Level I, 12 items were aligned to Level II
and III, and 8 items were aligned to Level IV. Lower levels were
overrepresented for the same reasons as in Grade 2.30 items
(Level I: 7, Level II: 8, Level III: 7, Level IV: 8) were identical with

the version of the validation study. The additional items on Levels
I to III were identical to those included in the assessments for
Grade 2. Internal consistency for the Grade 3 item collection was
good (Crombach’s α �0.947).

Children’s individual level of place value development was
assessed based on percentage of correct answers per level. If
children solved at least 75% of the items of a level, they were
assigned to the corresponding level. The highest achieved level
was recorded as the current conceptual level of place value
understanding (for similar approaches see Lee and Sarnecka,
2009; Ricken et al., 2013; Fritz et al., 2017; Balt et al., 2020). To
address lucky guesses and mistakes, children did not have to solve
all items of a level to be considered having developed the concept
of the level. Determining individual level achievement by a

FIGURE 2 | Error rates for children at different levels of place value understanding in Grade 2 and Grade 3 for the stimuli of the transcoding tasks. Numbers ordered
by level of complexity (background shades).

Frontiers in Education | www.frontiersin.org January 2022 | Volume 6 | Article 6421537

Herzog and Fritz Number Writing and Place Value

221

https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


criterion of 75% also visualizes the assumption of the levels as
overlapping waves, as the development of place value
understanding is not considered disruptive (i.e., replacing prior
knowledge at once), but as a progressive elaboration (Siegler and
Alibali, 2005; Clements and Sarama, 2014). The internal
hierarchy of the levels showed in this analysis, too. In all
cases, children also fulfilled the 75% criterion for lower levels
than the achieved level. For example, a child that solved 75% of
the items at Level III also met this benchmark for Levels I and II.

Data Collection
The data collection was conducted in the classrooms during usual
lesson hours. Teachers were informed and received place value
training material as an incentive for participation. Two trained
undergraduate students helped with the data collection. Both
received an intensive training on data collection beforehand and
were supervised by the authors.

Besides the presented instruments, number line estimation
and early arithmetic concepts were also assessed (but not
included in this study). To minimize cognitive load, the tests
were split into two sections. The tests analyzed in this
study—transcoding and place value understanding—were in
the same section and thus assessed on the same day. In all
assessments, transcoding was assessed first, as children needed
to write down numbers synchronously. The item order in the
transcoding test was aligned to Moura et al. (2013; see also
Figure 2). Place value understanding was assessed
subsequently, because children could solve these tasks
individually and in their own speed. All children had enough
time to finish the place value assessment. The order of the items in
the place value test were randomized across the levels. Thus,
easier and more difficult items alternated. The items from the
place value assessment were arranged into two sets to avoid
position effects.

RESULTS

In Grade 2, half of the children were assessed at the Pre-decadic
Level. The other half of the second-graders and all third-graders
were nearly equally distributed across the levels of place value
understanding. One-factorial ANOVAs validated the differences
in place value performance between the children at different place

value levels in Grade 2 (F(3, 131) � 132.064, p<.001, η2 � 0.752)
and Grade 3 (F(4, 126) � 77.839, p<.001, η2 � 0.712). With two
exceptions—Level I vs. II in Grade 2 (p � 0.058) and Level III vs.
IV in Grade 3 (p�.112)—Bonferroni-corrected post-hoc tests
showed significant differences in place value understanding
between the level-subgroups in both grades. Thus, the
classification of the participating children appears appropriate.
The distribution of children to the levels and
the corresponding descriptive statistics are summarized in
Table 1.

As expected, transcoding performance was positively
associated with place value understanding in both grades
(RQ1). Raw scores of correct answers in transcoding tasks and
place value understanding tasks correlated substantially in Grade
2 (r � 0.638, p < 0.001) and Grade 3 (r�.585, p < 0.001). Table 2
shows mean correct answers in the transcoding test for children
at different levels. A one-way ANOVA confirmed that the group
differences were significant in Grade 2 (F(3, 130) � 25.223,
p<.001, η2 � 0.368) and Grade 3 (F(4, 125) � 12.476, p <
0.001, η2 � 0.285). Post-hoc tests (Bonferroni) revealed
consistent significant lower performance only in children at
the Pre-decadic Level (p < 0.019 for all comparisons).

An analysis of the performance regarding numbers of different
complexity provides deeper insights in the associations of
transcoding and place value understanding. Transcoding
complexity of stimuli was determined by the number of
procedural rules in terms of the ADAPT model that have to
be applied to the particular number as described by Moura et al.
(2015). Regarding the numbers with the lowest complexity (Null),
there were no significant differences between children at different
levels (I to III or IV) of place value understanding. We found
ceiling effects in all subgroups of place value understanding for
the least complex numbers. With increasing number complexity,
differences between the children with different place value
understanding got bigger in Grade 2. In Grade 3, transcoding
performance in children at the Pre-decadic Level dropped with
increasing complexity of numbers. However, ceiling effects were
found in children at Levels I to IV for numbers of null, low, and
medium complexity. Children at Levels III and IV showed ceiling
effects even for the most complex numbers. In summary, the
effect of place value understanding on transcoding applied
primarily for complex numbers and children at the Pre-
decadic Level.

TABLE 1 | Descriptive analysis of the place value understanding.

Level Grade 2 Grade 3

Level accomplishment PVU (max. 40) Level accomplishment PVU (max. 48)

n (%) M (SD) n (%) M (SD)

Pre-decadic 68 (50.4) 12.31a (5.52) 27 (20.6) 18.74a (5.16)
Level I 25 (18.5) 22.60b (4.99) 22 (16.8) 25.18b (5.47)
Level II 20 (14.8) 26.55b (5.16) 25 (19.1) 30.64c (5.08)
Level III 22 (16.3) 34.95c (2.68) 20 (15.3) 36.45d (3.00)
Level IV 37 (28.2) 40.14d (6.06)
Total 135 20.01 (9.95) 131 30.84 (9.58)

*Note. PVU, raw scores of the place value understanding tests; M, mean, SD, standard deviation. Means sharing the same subscript do not differ.

Frontiers in Education | www.frontiersin.org January 2022 | Volume 6 | Article 6421538

Herzog and Fritz Number Writing and Place Value

222

https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


In line withMoura et al. (2015), children in Grade 3 performed
better in the transcoding tasks than the second graders, even
when they were at the same level of place value understanding. As
for place value understanding, the effect of the Grade increases
with number complexity. Within the Grade-specific subgroups,
no significant correlation of chronological age and transcoding
performance was found (Grade 2: r � −0.071, p � 421; Grade 3: r �
−0.055, p � 0.533). We therefore conclude that, besides place
value understanding, transcoding is influenced by schooling, as
children in Grade 3 have been introduced to three-digit numbers.

A comparison of the error rates regarding the 28 numbers used
in the transcoding tasks across children at different levels of place
value understanding (Figure 2) with a comparable analysis
regarding children in different grades (Moura et al., 2015)
reveals similar patterns. Different Grade-levels and levels of
place value understanding have nearly identical effects on the
error rates. The similarities can even be found regarding the
individual stimuli used in the transcoding tasks.

In line with previous research, children made substantially
more syntactical errors than lexical errors (Moura et al., 2015).
An analysis of the error types revealed the same significant effects
of grade and place value understanding for all error types (RQ2).
As comprised in Table 3, individual error rates decreased with
increasing level of place value understanding, and children in

Grade 3 made less errors than second graders. However, these
effects did not apply to all error types to the same extent. The
individual rates of syntactical errors were stronger affected by
place value understanding and Grade level than lexical error rates.
Different sensitivity to place value understanding is visualized by
effect sizes of one-way ANOVAs, which were higher
for syntactical errors (Grade 2: η2 � 0.233, Grade 3: η2 �
0.198) than for lexical errors (Grade 2: η2 � 0.097, Grade 3: η2

� 0.137).
Inversion related errors are a specific subtype of syntactical

errors found in German. Pure inversion related errors only made
up a small percentage (Grade 2: 10.7%, Grade 3: 6.1%) of the
syntactical errors. Most syntactical errors were not inversion
related, but were related to incorrect integration of hundreds
(e.g., 90051) or thousands (e.g., 10002 for 1002). As for lexical
errors, the effect of place value understanding on inversion
related errors was rather low (Grade 2: η2 � 0.103, Grade 3: η2

� 0.073). This finding indicates that inversion related transcoding
errors are only partially dependent on missing place value
understanding. In contrast to place value understanding,
Grade level had a bigger effect on inversion related errors, as
the rate for inversion related errors in Grade 3 was only one sixth
of the rate in Grade 2 for the whole sample. Only in children at the
Pre-decadic Level there was no effect of the grade level.

TABLE 2 | Means and standard deviations of transcoding performance in children at different levels in Grade 2 and 3.

Level Grade 2 Grade 3

Total
(max.
28)

Task complexity Total
(max.
28)

Task complexity

Null
(max.
12)

Low (max.
5)

Medium
(max.
6)

High
(max.
5)

Null
(max.
12)

Low (max.
5)

Medium
(max.
6)

High
(max.
5)

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Pre-
decadic

14.65a
(3.49)

10.74a (1.74) 2.30a (1.17) 1.46a (1.48) 0.36a
(0.95)

20.59a (5.83) 11.07a
(1.71)

3.78a
(1.12)

3.73a (1.66) 2.37a (1.88)

Level I 17.72b
(4.69)

11.68b (0.75) 2.72a,b (1.54) 2.24a,b
(1.83)

1.08a
(1.66)

24.27b (3.76) 11.55a
(1.37)

4.73b
(0.63)

4.45a,b
(1.63)

3.50a,b (1.63)

Level II 18.55b
(5.11)

11.60a,b
(0.60)

3.10a,b,c
(1.41)

2.85b (2.21) 1.05a
(1.87)

24.76b,c
(4.94)

11.64a
(1.80)

4.56b
(1.04)

5.16b (1.28) 3.54a,b,c
(1.56)

Level III 23.86c
(5.46)

11.82b (0.40) 4.14b,c (1.39) 4.59c (1.99) 3.43b
(2.11)

26.65b,c
(2.85)

11.90a
(0.45)

4.80b
(0.62)

5.60b (1.19) 4.30b,c,d
(1.38)

Level IV 27.47c (1.75) 11.97a
(0.16)

4.89b
(0.39)

5.86b (0.54) 4.70d (0.91)

Note. M, mean; SD, standard deviation. Means sharing the same subscript do not differ.

TABLE 3 | Means and standard deviations of lexical, syntactical and inversion related errors in children at different levels in Grade 2 and 3.

Level Grade 2 Grade 3

Lexical Syntactical Inversion related Lexical Syntactical Inversion related

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Pre-decadic 2.06a (1.98) 9.10a (4.32) 1.13a (1.42) 1.96a (3.71) 4.19a (4.05) 0.30a (0.61)
Level I 1.40a,b (1.73) 7.00a,b (4.65) 0.32b (0.56) 0.55a,b (0.96) 2.82a,b (3.16) 0.18a (0.50)
Level II 1.20a,b (1.06) 6.00b,c (3.88) 0.60a,b (0.88) 0.36b (0.57) 1.92b,c (2.60) 0.00a (0.00)
Level III 0.59a (1.01) 2.64c (4.16) 0.32b (0.65) 0.05b (0.22) 1.40c (2.84) 0.15a (0.49)
Level IV 0.22b (0.53) 0.35c (1.36) 0.03a (0.16)

Note. M, mean, SD, standard deviation. Means sharing the same subscript do not differ.
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DISCUSSION

The results of this study show that transcoding abilities are
associated with place value understanding in general (RQ1).
This association was slightly stronger for second graders than
for third graders and for more complex numbers. However, the
differences between second- and third-graders were not
significant. Especially children who have not yet developed a
conceptual basis for identifying place values (Pre-decadic Level)
showed lower transcoding performance than children at higher
levels. The association between place value understanding and
transcoding did not apply to all types of errors in the same way
(RQ2). The biggest effect of place value understanding was found
regarding syntactical errors. In contrast to findings reported in
the literature, inversion related errors occurred only rarely (Zuber
et al., 2009; van der Ven et al., 2017). As well as inversion related
errors, lexical errors were only little affected by differences in
place value understanding. Children at the Pre-decadic Level
showed a smaller difference in error rates between Grade 2 and
Grade 3. At the same time, these children performed significantly
lower in the transcoding tasks than children at higher levels. We
suspect that this group might be most likely to develop persistent
difficulties with transcoding and even mathematical learning
difficulties.

Cognitive Foundations of Transcoding
Independently from the level of place value understanding,
children in Grade 3 showed higher transcoding proficiency
than children in Grade 2. Thus, place value understanding
may explain transcoding performance only partially.
Experience with writing numbers due to exposure and formal
instruction in school have to be considered another basis for
children’s development of transcoding abilities, too. As age did
not correlate with transcoding proficiency, transcoding abilities
appear not as a result of maturing, but rather a result of education.
These findings indicate that transcoding abilities are supported
by, but not completely bound to an elaborated place value
understanding.

Based on the data gained in this study, we can only
speculate which learning contents of formal schooling
promote transcoding during Grades 2 and 3. Informed by
the curriculum, decimal arithmetic strategies such as break-
down (27 + 15 � 20 + 10 + 7 + 5 � 30 + 12 � 42) or
decompositions (27 + 15 � 27 + 3+ 12 � 30 + 12 � 42)
seem reasonable contents that support children’s transcoding
abilities. It is also likely that children gain experience during
primary school when asked to write, read, and compare
numbers. The better transcoding performance regarding
more complex numbers in third graders supports this
suggestion, as they have been introduced to three-digit
numbers in school. More insight in schooling effects might
be obtained by targeted intervention studies in Grade 2 in
which the different contents can be taught separately. In
addition, longitudinal single case studies over a longer time
period can align the development of transcoding abilities to
the development of place value understanding on the one
hand and formal schooling contents on the other hand.

The findings of this study regarding the error types can be
brought in line with the ADAPT model. First, the association of
place value understanding and transcoding was dominantly
caused by syntactical errors. Syntactical errors occur when
children incorrectly apply the procedural rules of the ADAPT
model. Knowledge of these rules partially corresponds with place
value understanding as described by the Herzog et al. (2019)
model. For instance, the knowledge of the place values (Level I)
can be identified as conceptual underpinning of the P2/P3-rules.
Second, lexical errors were less associated with place value
understanding. Lexical errors are supposed to stem from
incorrect mappings of number words and Arabic symbol.
Mapping errors—may they be due to falsely learned number
words or mistakes when deriving from the long-term
memory—are based rather on access difficulties to the
numerical lexicon than on the procedural rules described in
the ADAPT model. Third, a possible reason for inversion
errors highlighted in research are working memory capacities
(Zuber et al., 2009): When presented an inverted two-digit
number word (e.g., five-and-twenty [25 in German]), children
have to keep the units part (five) in mind while waiting for and
writing down the tens part (twenty). Thus, the ten-unit-inversion
draws on the verbal working memory and the central executive
(storage of the unit), inhibition (not writing the unit) and visual-
spatial working memory (coordinating left and right when
writing down the digits). The small association of place value
understanding and inversion errors suggests that inversion errors
are mostly bound to working memory, but only slightly on place
value understanding (Bahnmueller et al., 2015; Pixner et al.,
2016). Further studies in which the influence of place value
understanding and working memory can be compared
directly, for example in a multiple regression model, are
needed in this regard.

In both grades and all levels of place value understanding,
more complex numbers had higher error rates. However, the
effect of number complexity did not apply to all numbers in the
same way. For instance, the numbers 200, 700, and 8000 (so-
called X00 and X000 numbers; Zuber et al., 2009) were not
affected by the number complexity effect. These number words
are directly composed by a single digit number word (e.g., seven)
and the decimal bundling unit word (e.g., hundred). Obviously,
children struggled less with X00 and X000 numbers than with
other numbers in the same number range and the same level of
complexity. This is especially interesting, as error rates rise very
fast for the first numbers of low complexity (150 and 190, so-
called XX0 numbers; Zuber et al., 2009). It seems as if X00 and
X000 number words are more intuitive to children. The
unexpected low error rate on these numbers even in children
at the Pre-decadic Level—who do not have any understanding of
the decimal place value system yet—underpins this explanation.
In terms of the ADAPT model, the different error rates for XX0
numbers and X00/X000 numbers partially contradict the
assumption that a number like 700 is transcoded by applying
the rules P1 (seven: fact retrieval), P2 (hundred: open three-digit
frame), and P4 (end of number word: fill in the empty slots with
zeros). Given the error rates in this study, X00/X000 number
words are likely to be retrieved from long-term memory just as
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one- and two-digit numbers in children in Grade 2 and 3.
Comparable findings from Moura et al. (2015) support this
hypothesis.

Transcoding is a Part of Place Value
Understanding
While children at the lower levels of place value understanding
performed lower in the transcoding tasks in general, 32.4% of the
third graders up to Level II solved all transcoding tasks correctly.
Although lacking a profound conceptual understanding of the
place value system, these children did not struggle even with the
most complex transcoding tasks. In Grade 3, children up to Level
II showed ceiling effects except for the most complex numbers.
Moura et al. (2015) reported that the vast majority of the children
at the end of Grade 4 can perform transcoding tasks even when
numbers are complex, while Herzog et al. (2019) showed that
about half of the children at this age have not yet developed the
concepts of Level III and IV. Obviously, a profound
understanding of the place value system includes transcoding
abilities. But against the background of the findings listed up
above, we suggest that place value understanding covers more
knowledge than transcoding alone. Especially an automatized
understanding of the relation of the bundling units (Level III and
IV) goes beyond transcoding.

Place value understanding can be differentiated into
procedural and conceptual aspects (Rittle-Johnson and
Schneider, 2015; Van de Walle et al., 2016; Herzog et al.,
2019): While procedural place value understanding refers to
the knowledge how the elements of the place value system
interact, conceptual place value understanding covers the
knowledge why they interact. Following the models of
transcoding and place value understanding that formed the
basis of this study, transcoding has to be considered a rather
procedural aspect of place value understanding. This notion of
transcoding is in line with the ADAPT model being a procedural
model. But procedural aspects usually have a conceptual
underpinning, too. Knowledge of the bundling units (Level I)
appears as a reasonable conceptual basis for transcoding by
theoretical considerations and the empirical results of this
study. This idea was also the hypothesis for both research
questions. The results of this study support this assumption
partially. Children at the Pre-decadic Level performed
significantly lower in the transcoding tasks than children at
higher levels. At the same time, transcoding performance
increased with higher level of place value understanding.
Comparable group differences were found in regard to the
error types. Thus, knowledge of Level I coincides with better
transcoding performance as hypothesized, but the association of
place value understanding with transcoding performance is not
limited to the knowledge of Level I.

Research has given examples, how children can solve tasks
procedurally without having a profound conceptual foundation
(Selter, 2001). This might explain that 18.5% of the third graders
at the Pre-decadic Level could solve all transcoding tasks in this
study. These results of the study underpin the notion of
transcoding as a rather procedural aspect of the model of

place value understanding. An analysis of procedural and
conceptual aspects of place value understanding supports the
claim that place value understanding covers skills and knowledge
beyond transcoding, while transcoding is an integral part but not
totally incremented in place value understanding (Herzog et al.,
2019).

As transcoding is a basal component of place value
understanding, difficulties with transcoding tasks may be an
easy to use screening tool to identify children who struggle
severely with developing a profound place value understanding
(Moura et al., 2015). Especially complex numbers can be helpful
to find children at-risk for difficulties with place value
understanding. Keeping in mind the effect of formal
schooling, transcoding seems to be most useful in early
primary school. Given the low prevalence of children who lack
transcoding abilities, transcoding tasks may only identify children
with severe difficulties within the range of mathematical learning
difficulties. However, transcoding appears not as a useful
screening for children with mild math difficulties which are
limited to distinct aspects of mathematics.

The Role of Place Value Relations in Place
Value Processing
The proposed notion of place value understanding and
transcoding as overlapping domains of knowledge that are
neither included nor disjunct has implications for the
taxonomy of place value processing (Nuerk et al., 2015). If, as
the results of this study suggest, transcoding conceptually relies
both on place value identification (Level I) and an understanding
of the relations between the bundling units (Levels II-IV), the
latter might be added to the Nuerk et al. (2015) taxonomy. Place
value relations could specify the conceptually grounded
knowledge, how decimal bundling units are related and how
they can be traded. This level of place value processing would
especially cover the handling of non-canonical number
representations with and without visualizations.

Place value relations can be distinguished from the three other
levels (place value identification, place value activation, and place
value computation). Place value identification can be identified
with Level I (Nuerk et al., 2015; Herzog et al., 2019). The
hierarchy of the developmental model of place value
understanding shows that place value relations exceed place
value identification (Herzog and Fritz, 2019). Place value
activation refers to the numerical value of the positions in
multi-digit numbers. The automatic activation of the
numerical information of place values gets visible for example
in number comparison (Nuerk et al., 2015). Nuerk et al., (2001)
have shown that numerical information is activated separately for
tens and units. The compatibility effect in number comparison,
which leads to higher reaction times in comparing incongruent
number pairs (e.g., 72 and 58) than congruent pairs (e.g., 72 and
61) visualizes this automatic information: The (unnecessary)
information regarding the units is activated automatically and
independently from the information of the tens. As place value
activation affects the decimal bundling units separately, it is
unlikely that this level of place value processing can be
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identifiedwith place value relations. Place value computation specifies
the processing of place value information when solving arithmetic
tasks. Studies have shown that tasks involving carries (e.g., 27 + 18)
are more difficult than tasks without carries (Imbo et al., 2007; Klein
et al., 2010; Moeller et al., 2011b). In particular children with
mathematical learning difficulties struggle with tasks involving
carries (Lambert and Moeller, 2019). As carry tasks require to
coordinate tens and units while computing, one might suspect
that place value computation could be identified with place value
relations. However, results from the validation studies in Germany
and South Africa of the Herzog et al. (2019) model show that solving
addition and subtraction tasks with carries does not necessarily imply
a profound and abstract understanding of the relation of the bundling
units (Herzog et al., 2017; Herzog and Fritz, 2019).

While place value relations as described here are not precisely
covered by the existing levels of place value identification, there
are possible interactions. As underpinned by the model hierarchy,
place value identification (Level I) is a basis for place value
relations. Place value computation correlates with general
mathematical skills which include place value relations
(Lambert and Moeller, 2019; Herzog and Fritz, 2020). These
findings rise the question, how place value relations can be
conceptualized within the framework of place value processing
(Nuerk et al., 2015). At least two conceptualizations seem
reasonable (see Figure 3): First, place value relations might be
an additional fourth level of number processing. In this case,
variance in place value relations would lead to different
proficiency for example when handling non-canonical number
representations, but not interact with effects associated with place
value identification, activation, or computation. Second, place
value relations could be a cross-sectional level that interacts with
place value identification, activation, and computation to some
extent. Such a conceptualization would imply that place value
relations cannot completely be disentangled from the other levels
of place value processing. Empirical research might provide
evidence to decide which conceptualization is more accurate.

Limitations and Future Perspectives
At least three limitations of this study have to be considered. Each
of them might inform future research on the association of place

value understanding and transcoding. First, this study included
no cognitive or mathematical control variables. Given the body of
research on the relation between transcoding and working
memory, the above made hypotheses on error types and their
varying foundation on place value understanding on the one
hand and working memory on the other hand deserve more
detailed investigation. While transcoding and place value
understanding individually predict later arithmetic
performance (Moeller et al., 2011a; Herzog and Fritz, 2020),
their interaction remains unclear. Based on the claim that place
value understanding covers and exceeds transcoding, one might
speculate that place value understanding mediates the influence
of transcoding on arithmetic performance to some extent.

Second, the ADAPTmodel and the Herzog et al. (2019) model
are supposed to be developmental. That means that children
show substantial progress over time in the skills described in these
models (e.g., Herzog and Fritz, 2019). The interaction of
developmental trajectories in place value understanding and
transcoding skills can only be evaluated validly in a
longitudinal study. Results from such a longitudinal study
could provide valuable insights in the development of
transcoding abilities. While the ADAPT model gives a clear
description on the cognitive processes in transcoding, the
trajectories children follow while learning how to apply these
processes remain vague. For example, the structure of the Herzog
et al. (2019) model suggests that P2 (two-digit numbers) and P3
(three-digit numbers) rules are learned successively. A
developmental progression of transcoding that could be
derived from a longitudinal study could answer this question.
Additionally, such a developmental progression would help to
structure transcoding instruction for children struggling with
writing numbers (Clements and Sarama, 2004).

Third, in this study transcoding was only operationalized in
form of writing numbers. Against the theoretical background of
the ADAPTmodel (reading numbers) and the Triple CodeModel
(magnitude representations), substantial transcoding paths have
not yet been investigated regarding their association with place
value understanding. For reading numbers, similar effects as
found in this study seem likely, as transcoding processes
specified in the ADAPT model hold for both directions.

FIGURE 3 | Possible conceptualizations of place value relations within the framework of levels of place value processing (Nuerk et al., 2015).
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Predictions on the conceptual basis of magnitude representations
such as number line estimation appear more difficult and require
further research.
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