
NEUROMORPHIC ENGINEERING
SYSTEMS AND APPLICATIONS

Topic Editors
André van Schaik, Tobi Delbruck and
Jennifer Hasler

NEUROSCIENCE

NEUROMORPHIC ENGINEERING
SYSTEMS AND APPLICATIONS

Topic Editors
André van Schaik, Tobi Delbruck and
Jennifer Hasler

NEUROMORPHIC ENGINEERING
SYSTEMS AND APPLICATIONS

Topic Editors
André van Schaik, Tobi Delbruck and
Jennifer Hasler

NEUROMORPHIC ENGINEERING
SYSTEMS AND APPLICATIONS

Topic Editors
André van Schaik, Tobi Delbruck and
Jennifer Hasler

NEUROSCIENCE

http://journal.frontiersin.org/ResearchTopic/1394
http://journal.frontiersin.org/ResearchTopic/1394
http://journal.frontiersin.org/ResearchTopic/1394
http://journal.frontiersin.org/ResearchTopic/1394
http://www.frontiersin.org/neuroscience

Frontiers in Neuroscience March 2015 | Neuromorphic Engineering Systems and Applications | 1

ABOUT FRONTIERS
Frontiers is more than just an open-access publisher of scholarly articles: it is a pioneering
approach to the world of academia, radically improving the way scholarly research is managed.
The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share
and generate knowledge. Frontiers provides immediate and permanent online open access to all
its publications, but this alone is not enough to realize our grand goals.

FRONTIERS JOURNAL SERIES
The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, online
journals, promising a paradigm shift from the current review, selection and dissemination
processes in academic publishing.
All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service
to the scholarly community. At the same time, the Frontiers Journal Series operates on a revo-
lutionary invention, the tiered publishing system, initially addressing specific communities of
scholars, and gradually climbing up to broader public understanding, thus serving the interests
of the lay society, too.

DEDICATION TO QUALITY
Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative interac-
tions between authors and review editors, who include some of the world’s best academicians.
Research must be certified by peers before entering a stream of knowledge that may eventually
reach the public - and shape society; therefore, Frontiers only applies the most rigorous and
unbiased reviews.
Frontiers revolutionizes research publishing by freely delivering the most outstanding research,
evaluated with no bias from both the academic and social point of view.
By applying the most advanced information technologies, Frontiers is catapulting scholarly
publishing into a new generation.

WHAT ARE FRONTIERS RESEARCH TOPICS?
Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are
collections of at least ten articles, all centered on a particular subject. With their unique mix
of varied contributions from Original Research to Review Articles, Frontiers Research Topics
unify the most influential researchers, the latest key findings and historical advances in a hot
research area!
Find out more on how to host your own Frontiers Research Topic or contribute to one as an
author by contacting the Frontiers Editorial Office: researchtopics@frontiersin.org

FRONTIERS COPYRIGHT
STATEMENT
© Copyright 2007-2015
Frontiers Media SA.
All rights reserved.

All content included on this site, such as
text, graphics, logos, button icons, images,
video/audio clips, downloads, data
compilations and software, is the property
of or is licensed to Frontiers Media SA
(“Frontiers”) or its licensees and/or
subcontractors. The copyright in the text
of individual articles is the property of their
respective authors, subject to a license
granted to Frontiers.

The compilation of articles constituting
this e-book, wherever published, as well
as the compilation of all other content on
this site, is the exclusive property of
Frontiers. For the conditions for
downloading and copying of e-books from
Frontiers’ website, please see the Terms
for Website Use. If purchasing Frontiers
e-books from other websites or sources,
the conditions of the website concerned
apply.

Images and graphics not forming part of
user-contributed materials may not be
downloaded or copied without
permission.

Individual articles may be downloaded
and reproduced in accordance with the
principles of the CC-BY licence subject to
any copyright or other notices. They may
not be re-sold as an e-book.

As author or other contributor you grant a
CC-BY licence to others to reproduce
your articles, including any graphics and
third-party materials supplied by you, in
accordance with the Conditions for
Website Use and subject to any copyright
notices which you include in connection
with your articles and materials.

All copyright, and all rights therein, are
protected by national and international
copyright laws.

The above represents a summary only.
For the full conditions see the Conditions
for Authors and the Conditions for
Website Use.

ISSN 1664-8714
ISBN 978-2-88919-454-4
DOI 10.3389/978-2-88919-454-4

http://www.frontiersin.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/neuroscience
http://journal.frontiersin.org/ResearchTopic/1394

Frontiers in Neuroscience March 2015 | Neuromorphic Engineering Systems and Applications | 2

Neuromorphic engineering has just reached
its 25th year as a discipline. In the first two
decades neuromorphic engineers focused
on building models of sensors, such as
silicon cochleas and retinas, and building
blocks such as silicon neurons and synapses.
These designs have honed our skills in
implementing sensors and neural networks
in VLSI using analog and mixed mode
circuits.

Over the last decade the address event
representation has been used to interface
devices and computers from different
designers and even different groups. This
facility has been essential for our ability to

combine sensors, neural networks, and actuators into neuromorphic systems. More recently,
several big projects have emerged to build very large scale neuromorphic systems.

The Telluride Neuromorphic Engineering Workshop (since 1994) and the CapoCaccia
Cognitive Neuromorphic Engineering Workshop (since 2009) have been instrumental not
only in creating a strongly connected research community, but also in introducing different
groups to each other’s hardware. Many neuromorphic systems are first created at one of these
workshops. With this special research topic, we showcase the state-of-the-art in neuromorphic
systems.

NEUROMORPHIC ENGINEERING
SYSTEMS AND APPLICATIONS

Malcolm Slaney (Google) leads the
Neuromorphs team down the July 4th parade
route in Telluride Colorado in 2012. Copyright
owner is S.C. Liu.

Topic Editors:
André van Schaik, University of Western Sydney, Australia
Tobi Delbruck, University of Zurich and ETH Zurich, Switzerland
Jennifer Hasler, Georgia Institute of Technology, USA

http://journal.frontiersin.org/ResearchTopic/1394
http://www.frontiersin.org/neuroscience

Frontiers in Neuroscience March 2015 | Neuromorphic Engineering Systems and Applications | 3

Table of Contents

05 Research Topic: Neuromorphic Engineering Systems and Applications a
Snapshot of Neuromorphic Systems Engineering
André van Schaik, Tobi Delbruck and Jennifer Hasler

07 Adaptive Pulsed Laser Line Extraction for Terrain Reconstruction Using a
Dynamic Vision Sensor
Christian Brandli, Thomas A. Mantel, Marco Hutter, Markus A. Höpflinger,
Raphael Berner, Roland Siegwart and Tobi Delbruck

16 Robotic Goalie with 3ms Reaction Time at 4% CPU Load using Event-Based
Dynamic Vision Sensor
Tobi Delbruck and Manuel Lang

23 Event-Driven Visual Attention for the Humanoid Robot Icub
Francesco Rea, Giorgio Metta and Chiara Bartolozzi

34 On the use of Orientation Filters for 3D Reconstruction in Event-Driven Stereo
Vision
Luis A. Camunas-Mesa, Teresa Serrano-Gotarredona, Sio H. Ieng, Ryad B. Benosman
and Bernabe Linares-Barranco

51 Asynchronous Visual Event-Based Time-to-Contact
Xavier Clady, Charles Clercq, Sio-Hoi Ieng, Fouzhan Houseini, Marco Randazzo,
Lorenzo Natale, Chiara Bartolozzi and Ryad Benosman

61 Real-Time Classification and Sensor Fusion with a Spiking Deep Belief Network
Peter O’Connor, Daniel Neil, Shih-Chii Liu, Tobi Delbruck and Michael Pfeiffer

74 Event-Driven Contrastive Divergence for Spiking Neuromorphic Systems
Emre Neftci, Srinjoy Das, Bruno Pedroni, Kenneth Kreutz-Delgado and Gert
Cauwenberghs

88 Compiling Probabilistic, Bio-Inspired Circuits on a Field Programmable Analog
Array
Bo Marr and Jennifer Hasler

97 An Adaptable Neuromorphic Model of Orientation Selectivity Based on Floating
Gate Dynamics
Priti Gupta and C.M. Markan

118 A Mixed-Signal Implementation of a Polychronous Spiking Neural Network
with Delay Adaptation
Runchun M. Wang, Tara J. Hamilton, Jonathan C. Tapson and André van Schaik

134 Real-Time Biomimetic Central Pattern Generators in an FPGA for Hybrid
Experimentsf
Matthieu Ambroise, Timothée Levi, Sébastien Joucla, Blaise Yvert and Sylvain Saïghi

http://journal.frontiersin.org/ResearchTopic/1394
http://www.frontiersin.org/neuroscience

Frontiers in Neuroscience March 2015 | Neuromorphic Engineering Systems and Applications | 4

145 Dynamic Neural Fields as a Step Toward Cognitive Neuromorphic Architectures
Yulia Sandamirskaya

158 A Robust Sound Perception Model Suitable for Neuromorphic Implementation
Martin Coath, Sadique Sheik, Elisabetta Chicca, Giacomo Indiveri, Susan L. Denham
and Thomas Wennekers

168 An Efficient Automated Parameter Tuning Framework for Spiking Neural
Networks
Kristofor D. Carlson, Jayram Moorkanikara Nageswaran, Nikil Dutt and
Jeffrey L. Krichmar

http://journal.frontiersin.org/ResearchTopic/1394
http://www.frontiersin.org/neuroscience

EDITORIAL
published: 19 December 2014
doi: 10.3389/fnins.2014.00424

Research topic: neuromorphic engineering systems and
applications. A snapshot of neuromorphic systems
engineering
Tobi Delbruck1, André van Schaik2* and Jennifer Hasler3

1 Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
2 Bioelectronics and Neuroscience, The MARCS Institute, University of Western Sydney, Sydney, NSW, Australia
3 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
*Correspondence: a.vanschaik@uws.edu.au

Edited and reviewed by:

Giacomo Indiveri, University of Zurich and ETH Zurich, Switzerland

Keywords: neuromorphic engineering, neural networks, event-based, spiking neural networks, dynamic vision sensor, floating gate, neural simulation,

synaptic plasticity

The 14 papers in this research topic were solicited primarily from
attendees to the two most important hands-on workshops in
neuromorphic engineering: the Telluride Neuromorphic Cognition
Engineering Workshop (www.ine-web.org) and the Capo Caccia
Cognitive Neuromorphic Engineering Workshop (capocaccia.ethz.
ch). The papers show the results of feasibility studies of new
concepts, as well as neuromorphic systems that have been con-
structed from more established neuromorphic technologies. Five
papers exploit neuromorphic dynamic vision sensor (DVS) events
that mimic the asynchronous and sparse spikes on biology’s optic
nerve fiber (Delbruck and Lang, 2013; O’Connor et al., 2013; Rea
et al., 2013; Brandli et al., 2014; Camunas-Mesa et al., 2014; Clady
et al., 2014). Two papers are on the hot topic (based on largest
number of views) of event-driven computation in deep belief net-
works (DBNs) (O’Connor et al., 2013; Neftci et al., 2014). Two
papers use floating gate technology for neuromorphic analog cir-
cuits (Gupta and Markan, 2014; Marr and Hasler, 2014). The
collection is rounded out by papers on central pattern generators
(Ambroise et al., 2013), neural fields for cognitive architectures
(Sandamirskaya, 2014), sound perception (Coath et al., 2014),
polychronous spiking networks (Wang et al., 2014), and auto-
matic parameter tuning for large network simulations (Carlson
et al., 2014).

REGARDING THE EVENT-BASED VISION PAPERS
Brandli et al. (2014) report on a novel method for rapidly and
cheaply tracking a flashing laser line using a DVS, which is aimed
at building a fast obstacle detector for small ground-based robots,
such as vacuum cleaners or toy cars. Particular novelties in this
paper are the adaptive temporal filter and the efficient algorithmic
update of the laser line position.

Delbruck and Lang (2013) report on the detailed implemen-
tation of a fun robotic goalie, which uses a DVS to help track the
balls and robot arm. The paper includes measurements of USB
latency. The novelty in this paper is the self-calibration of the
goalie arm so that it can be rapidly placed in a particular place in
visual space. Both of the preceding two papers include YouTube
citations to videos and both have open-source implementations.

Rea et al. (2013) report on the integration of a stereo pair
of DVS sensors with the iCub robot, and how they are used for
quick, low power saliency detection for the iCub. In particular,

the Koch-Ittie visual saliency model was adapted to event-driven
sensors and many experiments were done to characterize its
effectiveness and efficiency.

Camunas-Mesa et al. (2014) reports on a stereo vision system
that uses a pair of their DVS cameras together with an FPGA that
computes low level oriented features. This paper has a wealth of
characterization results.

Clady et al. (2014) report the first results of computing the
old problem of time to contact (TTC) for a moving entity from
DVS events. They take a geometrical approach in order to extract
low level motion features from the DVS events to obtain the TTC
information. This paper includes robotic experiments.

REGARDING EVENT-DRIVEN DEEP NETWORKS
O’Connor et al. (2013) present the first of the papers to focus
on event-based learning and networks. Their system also uses a
DVS, as well as an AEREAR2 binaural silicon cochlea, to build
a spike-based DBN for recognizing MNIST digits presented in
conjunction with pure tones. They demonstrate that a DBN con-
structed from stacks of restricted Boltzmann machines (RBMs)
is valuable for learning and computing sensor fusion. They also
show that a DBN’s recurrent persistent activity is useful partic-
ularly with sparse event-driven sensor input. This network was
trained off-line, and then the weights were transferred onto the
spiking network.

Neftci et al. (2014) report on the same target application of
MNIST digit recognition, but their paper takes a further step by
proposing how a network of integrate and fire neurons can imple-
ment a RBM, and can be trained with an event-driven version
of the well-known contrastive divergence training algorithm for
RBMs.

REGARDING FLOATING GATE TECHNOLOGY
Two papers show the versatility of floating-gate (FG) circuit
approaches. Marr and Hasler (2014) describe a collaborative
project started and effectively completed during the Telluride
2008 workshop as a representative of the possible opportu-
nity at any of these workshops. In this case, the opportunity
was enabled through the use of large-scale field programmable
analog arrays (FPAA) as a mixed mode processor for which
functions can be compiled enabling a range of circuit, system,

www.frontiersin.org December 2014 | Volume 8 | Article 424 | 5

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00424/full
http://community.frontiersin.org/people/u/2614
http://community.frontiersin.org/people/u/12768
http://community.frontiersin.org/people/u/12767
mailto:a.vanschaik@uws.edu.au
http://www.ine-web.org
capocaccia.ethz.ch
capocaccia.ethz.ch
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Delbruck et al. Neuromorphic engineering systems and applications

and application design. The focus was on stochastic compu-
tations that are dynamically controllable via voltage-controlled
amplifiers and comparator thresholds. From Bernoulli vari-
ables it is shown that exponentially distributed random vari-
ables, and random variables of an arbitrary distribution can
be computed. The trajectory of a biological system com-
puted stochastically with this probabilistic hardware results
in a 127X performance improvement over current software
approaches.

Gupta and Markan (2014), report on a FG adaptive system for
investigating self-organization of image patterns. They describe
adaptive feature selectivity as a mechanism by which nature opti-
mizes resources so as to have greater acuity for more abundant
features. The authors look to exploit hardware dynamics to build
adaptive systems utilizing time-staggered winner-take-all circuits,
exploiting the adaptation dynamics of FG transistors, to model an
adaptive cortical cell.

REGARDING OTHER TOPICS IN NETWORK ARCHITECTURES
Wang et al. (2014) report results from a polychronous multi-
neuron chip. Polychronization is the process in which spikes
travel down axons with specific delays to arrive at a common
target neuron simultaneously and cause it to fire, despite the
source neurons firing asynchronously. This paper shows digi-
tal and analog tradeoffs and offers advice for scaling to future
technologies.

Ambroise et al. (2013) describe a neuromorphic implementa-
tion of a network of 240 Central Pattern Generator modules mod-
eling the leech heartbeat neural network on a field programmable
gate array. It uses the Izhikevich neuron model, implemented as
a single computational core, time multiplexed to update all the
neurons in the network. In order to fit the digital implementation
to the data from the biological system without implementing all
the detailed synaptic dynamics, which would take up too many
resources, they propose a new synaptic adaptation model: an
activity-dependent depression synapse.

Sandamirskaya (2014) leverages the relationship between
dynamic field theory networks and neuromorphic circuits using
soft winner take all circuits (WTA) to formally describe the equiv-
alence between the two and establish a common ground. It sets
a possible roadmap for the development of cognitive neuromor-
phic systems using WTA implementations.

Coath et al. (2014) describes a pattern recognition network
implemented using a column of three neurons in which the
columns are connected via axons with delays that explicitly
depend on the distance between the columns. The networked is
trained using spike-timing dependent plasticity and it is shown
that the performance of the network is robust to natural varia-
tions in the input stimuli.

Carlson et al. (2014) address the significant problem of finding
solutions in the enormous parameter space found in implemen-
tations of spiking neural networks by proposing an automated
tuning framework. Their approach uses evolutionary algorithms
implemented on graphics processing units for speed. They use
an objective function based on the Efficient Coding Hypothesis
to tune these networks. In their example, they demonstrate the
evolution of V1 simple cell responses. Using GPU parallelization,
they report 65x speedups over CPU implementations.

SUMMARY
Amidst the promises offered by projects with major chunks of
funding in neuromorphic engineering like HBP, BrainScaleS,
SpiNNaker, and TrueNorth, this research topic offers a refresh-
ing glimpse into some of the current actual accomplishments in
neuromorphic systems engineering and applications.

REFERENCES
Ambroise, M., Levi, T., Joucla, S., Yvert, B., and Saïghi, S. (2013). Real-time

biomimetic central pattern generators in an FPGA for hybrid experiments.
Front. Neurosci. 7:215. doi: 10.3389/fnins.2013.00215

Brandli, C., Mantel, T. A., Hutter, M., and Delbruck, T. (2014). Adaptive pulsed
laser line extraction for terrain reconstruction using a dynamic vision sensor.
Front. Neurosci. 7:275. doi: 10.3389/fnins.2013.00275

Camunas-Mesa, L. A., Serrano-Gotarredona, T., Ieng, S. H., Benosman, R.
B., and Linares-Barranco, B. (2014). On the use of orientation filters for
3D reconstruction in event-driven stereo vision. Front. Neurosci. 8:48. doi:
10.3389/fnins.2014.00048

Carlson, K. D., Nageswaran, J. M., Dutt, N., and Krichmar, J. L. (2014). An efficient
automated parameter tuning framework for spiking neural networks. Front.
Neurosci. 8:10. doi: 10.3389/fnins.2014.00010

Clady, X., Clercq, C., Ieng, S.-H., Houseini, F., Randazzo, M., Natale, L., et al.
(2014). Asynchronous visual event-based time-to-contact. Front. Neurosci. 8:9.
doi: 10.3389/fnins.2014.00009

Coath, M., Sheik, S., Chicca, E., Indiveri, G., Denham, S., and Wennekers, T. (2014).
A robust sound perception model suitable for neuromorphic implementation.
Front. Neurosci. 7:278. doi: 10.3389/fnins.2013.00278

Delbruck, T., and Lang, M. (2013). Robotic goalie with 3ms reaction time at 4%
CPU load using event-based dynamic vision sensor. Front. Neurosci. 7:223. doi:
10.3389/fnins.2013.00223

Gupta, P., and Markan, C. M. (2014). An adaptable neuromorphic model of ori-
entation selectivity based on floating gate dynamics. Front. Neurosci. 8:54. doi:
10.3389/fnins.2014.00054

Marr, B., and Hasler, J. (2014). Compiling probabilistic, bio-inspired cir-
cuits on a field programmable analog array. Front. Neurosci. 8:86. doi:
10.3389/fnins.2014.00086

Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., and Cauwenberghs, G. (2014).
Event-driven contrastive divergence for spiking neuromorphic systems. Front.
Neurosci. 7:272. doi: 10.3389/fnins.2013.00272

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-
time classification and sensor fusion with a spiking deep belief network. Front.
Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

Rea, F., Metta, G., and Bartolozzi, C. (2013). Event-driven visual attention for the
humanoid robot iCub. Front. Neurosci. 7:234. doi: 10.3389/fnins.2013.00234

Sandamirskaya, Y. (2014). Dynamic neural fields as a step toward cognitive neuro-
morphic architectures. Front. Neurosci. 7:276. doi: 10.3389/fnins.2013.00276

Wang, R. M., Hamilton, T. J., Tapson, J., and van Schaik, A. (2014). A mixed-signal
implementation of a polychronous spiking neural network with delay adapta-
tion. Front. Neurosci. 8:51. doi: 10.3389/fnins.2014.00051

Conflict of Interest Statement: The Associate Editor Giacomo Indiveri declares
that, despite being affiliated to the same institution as author Tobi Delbruck,
the review process was handled objectively and no conflict of interest exists. The
authors declare that the research was conducted in the absence of any commercial
or financial relationships that could be construed as a potential conflict of interest.

Received: 24 November 2014; accepted: 03 December 2014; published online: 19
December 2014.
Citation: Delbruck T, van Schaik A and Hasler J (2014) Research topic: neuro-
morphic engineering systems and applications. A snapshot of neuromorphic systems
engineering. Front. Neurosci. 8:424. doi: 10.3389/fnins.2014.00424
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2014 Delbruck, van Schaik and Hasler. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | Neuromorphic Engineering December 2014 | Volume 8 | Article 424 | 6

http://dx.doi.org/10.3389/fnins.2014.00424
http://dx.doi.org/10.3389/fnins.2014.00424
http://dx.doi.org/10.3389/fnins.2014.00424
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

ORIGINAL RESEARCH ARTICLE
published: 17 January 2014

doi: 10.3389/fnins.2013.00275

Adaptive pulsed laser line extraction for terrain
reconstruction using a dynamic vision sensor
Christian Brandli1*, Thomas A. Mantel2, Marco Hutter2, Markus A. Höpflinger2, Raphael Berner1,

Roland Siegwart2 and Tobi Delbruck1

1 Department of Information Technology and Electrical Engineering, Institute of Neuroinformatics, ETH Zurich and University of Zurich, Zurich, Switzerland
2 Autonomous Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland

Edited by:

André Van Schaik, The University of
Western Sydney, Australia

Reviewed by:

Christoph Posch, Universite Pierre
et Marie Curie, France
Viktor Gruev, Washington University
in St. Louis, USA
Garrick Orchard, National University
of Singapore, Singapore

*Correspondence:

Christian Brandli, Department of
Information Technology and
Electrical Engineering, Universität
Zürich, Winterthurerstr. 190, 8057,
Zurich, Switzerland
e-mail: braendch@ethz.ch

Mobile robots need to know the terrain in which they are moving for path planning
and obstacle avoidance. This paper proposes the combination of a bio-inspired,
redundancy-suppressing dynamic vision sensor (DVS) with a pulsed line laser to allow
fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the
sensor’s ability to capture the temporal dynamics in a scene. An adaptive temporal filter
for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe
extractions up to pulsing frequencies of 500 Hz were achieved using a line laser of 3 mW
at a distance of 45 cm using an event-based algorithm that exploits the sparseness of the
sensor output. As a proof of concept, unstructured rapid prototype terrain samples have
been successfully reconstructed with an accuracy of 2 mm.

Keywords: neuromorphic, robotics, event-based, address-event representation (AER), dynamic vision sensor

(DVS), silicon retina

INTRODUCTION
Motion planning in mobile robots requires knowledge of the ter-
rain structure in front of and underneath the robot; possible
obstacles have to be detected and their size has to be evaluated.
Especially legged robots need to know the terrain on which they
are moving so that they can plan their steps accordingly. A vari-
ety of 3D scanners such as the Microsoft Kinect© (Palaniappa
et al., 2011) or LIDAR (Yoshitaka et al., 2006; Raibert et al.,
2008) devices can be used for this task but these sensors and their
computational overhead typically consume on the order of sev-
eral watts of power while having a sample rate limited to tens of
Hertz. Passive vision systems partially overcome these limitations
but they exhibit a limited spatial resolution because their terrain
reconstruction is restricted to a small set of feature points (Weiss
et al., 2010).

Many of the drawbacks in existing sensor setups (active as well
as passive) arise from the fact that investigating visual scenes as
a stroboscopic series of (depth) frames leads to redundant data
that occupies communication and processing bandwidth and lim-
its sample rates to the frame rate. If the redundant information
is already suppressed at the sensor level and the sensor asyn-
chronously reports its output, the output can be evaluated faster
and at a lower computational cost. In this paper such a vision sen-
sor, the so called dynamic vision sensor (DVS; Lichtsteiner et al.,
2008) is combined with a pulsed line laser, forming an active sen-
sor to reconstruct the terrain in front of the system while it is
moved. This terrain reconstruction is based on a series of surface
profiles based on the line laser pulses. The proposed algorithm
allows extracting the laser stripe from the asynchronous temporal
contrast events generated by the DVS using only the event timing
so that the laser can be pulsed at arbitrary frequencies from below

1 Hz up to 500 Hz. The flexibility in choosing the pulsing frequen-
cies allows fast and detailed surface reconstructions for fast robot
motions as well as saving laser power for slow motions.

THE DYNAMIC VISION SENSOR (DVS)
The DVS used in this setup is inspired by the functionality of the
retina and senses only changes in brightness (Lichtsteiner et al.,
2008). Each pixel reports a change in log-illuminance larger than
a given threshold by sending out an asynchronous address-event:
if it becomes brighter it generates a so called “ON event,” and
if darker, it generates an “OFF event.” The asynchronously gen-
erated address-events are communicated to a synchronous pro-
cessing device by a complex programmable logic device (CPLD)
which also transmits the time in microseconds at which the event
occurred. Each event contains the pixel horizontal and vertical
address (u,v), its polarity (ON/OFF) and the timestamp. After
the event is registered, it is written into a FIFO buffer which is
transferred through a high-speed USB 2.0 interface to the process-
ing platform. Real-time computations on the processing platform
operate on the basis of so called event packets which can contain
a variable number of events but are delivered at a minimum fre-
quency of 1 kHz. This approach of sensing a visual scene has the
following advantages:

1. The absence of a global exposure time lets each pixel settle
to its own operating point which leads to a dynamic range of
more than 120 dB.

2. Because the pixels only respond to brightness changes, the out-
put of the sensor is non-redundant. This leads to a decrease
in processor load and therefore to a reduction in power con-
sumption of the system.

www.frontiersin.org January 2014 | Volume 7 | Article 275 | 7

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2013.00275/abstract
http://www.frontiersin.org/people/u/106074
http://www.frontiersin.org/people/u/114746
http://www.frontiersin.org/people/u/122592
http://www.frontiersin.org/people/u/2614
mailto:braendch@ethz.ch
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Brandli et al. Pulsed laser line-DVS for terrain reconstruction

FIGURE 1 | Wheel spinning at 3000 rpm. (A) Still image. (B) Events generated in 30 ms: ON events rendered white, OFF events in black. (C) Events
generated in 200 us.

3. The asynchronous readout allows a low latency of as little as
15 us. This latency allows to close control loops very quickly as
demonstrated in Delbruck and Lichtsteiner (2007); Conradt
et al. (2009); Ni et al. (2012). Figure 1 shows the speed of the
DVS, which is capable of resolving fast movements such as a
wheel spinning at 3000 rpm.

4. Since the events are timestamped as they occur (with a tempo-
ral resolution of 1 us), the output allows a detailed analysis of
the dynamics in a scene or to process its output using temporal
filters.

In the following, the output of the DVS is described as a set of
events and each event Ev carries its u- and v-address, a timestamp
and its polarity as a value of +1 if it is an ON event and a −1 for
OFF events [with notation adapted from Ni et al. (2012)].

Ev(u, v, t) =
{+1, if � ln(Iu,v) > �ON

−1, if � ln(Iu,v) < �OFF
(1)

where � ln(Iu,v) denotes the change in illumination at the pixel
with coordinates u,v since the last event. �ON and �OFF denote
the event thresholds that must be crossed to trigger an event.
These thresholds can be set independently which allows balancing
the number of ON and OFF events.

In addition to these visually triggered events, the DVS allows
the injection of special, timestamped trigger events to the output
stream by applying a pulse to a pin on the back of the sensor.
These Et events are numbered in software so that they carry a
pulse number and a timestamp:

Etn = t. (2)

MATERIALS AND METHODS
HARDWARE SETUP
As reviewed in Forest and Salvi (2002), there are several variations
of combining a line laser and a camera to build a 3D scanner. Since
it is intended to apply this scanner setup on a mobile robot that
already has a motion model for the purpose of navigation, a mir-
ror free, fixed geometry setup was chosen. As shown in Figure 2,
a red line laser (Laser Components GmbH LC-LML-635) with a
wavelength of 635 nm and an optical power of about 3 mW was
mounted at a fixed distance above the DVS. (The laser power con-
sumption was 135 mW.) The relative angle of the laser plane and

FIGURE 2 | Setup of the DVS together with the line laser. (A) Schematic
view of the setup. (B) Photo of the DVS128 camera with line laser: the rigid
laser mount allows a constant distance and inclination angle of the laser
with respect to the camera. The optical filter is mounted on the lens.

the DVS was fixed. To run the terrain reconstruction, the system is
moved over the terrain while the laser is pulsed at a frequency fp.
Each pulse of the laser initiated the acquisition of a set of events
for further analysis and laser stripe extraction. The background
illumination level was a brightly-lit laboratory at approximately
500 lx.

For the measurements described in the results section, the sys-
tem was fixed and the terrain to scan was moved on an actuated
sled on rails underneath it. This led to a straight-forward cam-
era motion model controlled by the speed of the DC motor that
pulled the sled toward the sensor system. The sled was fixed to
rails which locked the system in one dimension and led to highly
repeatable measurements. The DVS was equipped with a lens hav-
ing a focal length of 10 mm and it was aimed at the terrain from

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 275 | 8

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Brandli et al. Pulsed laser line-DVS for terrain reconstruction

a distance of 0.45 m. The laser module was placed at a distance
of 55 mm from the sensor at an inclination angle αL of 8◦ with
respect to the principal axis of the DVS. The system observed the
scene at an inclination angle αC of 39◦.

To enhance the signal to noise ratio, i.e., the percentage of
events originating from the pulsed laser line, the sensor was
equipped with an optical band pass filter (Edmund Optics NT65-
167) centered at 636 nm. The filter has full width at half maxi-
mum (FWHM) of 10 nm and a transmittance of 85% in the pass
band and less than 0.01% in the stop band (optical density 4.0).

To mark the laser pulses within the event stream, the event trig-
ger pin on the back of the DVS was connected to the function
generator triggering the laser.

CALIBRATION
To extract the laser stripe, i.e., the pixels whose events originate
from the laser line, the sensor is calibrated based on the approach
described in Siegwart (2011). The model was simplified by the
following assumptions:

1. For the intrinsic camera model, rectangular pixels with
orthogonal coordinates u,v are assumed. This leads to the
following transformation from pixel coordinates to camera
coordinates xC , yC , zC :

u = kfl
zC

xC + u0 (3)

v = kfl
zC

yC + v0 (4)

where k denotes the inverse of the pixel size, fl the focal length
in pixels, and u0, v0 the center pixel coordinates.

2. For the extrinsic camera model it was assumed that the rail
restricts the origin of the camera xC0, yC0, zC0 to a planar
translation (by ty and tz) within a plane spanned by the y- and
z-axis of the world reference frame xR, yR, and zR as depicted
in Figure 3. In the setup used for the measurement, the rota-
tional degrees of freedom of the system were constrained so
that the that the camera could only rotate (by αC) around its
x-axis which leads to following transformation from camera to
world coordinates:

⎛
⎝ xR

yR

zR

⎞
⎠=

⎛
⎝ 1 0 0

0 cos(αC + π
2) sin(αC + π

2)

0 − sin(αC + π
2) cos(αC + π

2)

⎞
⎠
⎛
⎝ xC

yC

zC

⎞
⎠+

⎛
⎝ 0

ty

tz

⎞
⎠

(5)

The fact that the DVS does not produce any output for
static scenes makes it difficult to find and align correspon-
dences and therefore the typical checkerboard pattern could
not be used for calibration. As an alternative, the laser was
pulsed onto two striped blocks of different heights as depicted
in Figure 4. The black stripes on the blocks absorb suffi-
cient laser light to not excite any events in the DVS. This
setup allows finding sufficient correspondence points between
the real world coordinates and the pixel coordinates to solve

the set of calibration equations (Equations 3–5). This proce-
dure is done manually in Matlab but needs only to be done
once.

LASER STRIPE EXTRACTION
The stripe extraction method is summarized in Figure 5. Most
laser stripe extraction algorithms perform a simple column-
wise maximum computation to find the peak in light intensity
e.g., Robinson et al. (2003); Orghidan et al. (2006). Accordingly
for the DVS the simplest approach to extract the laser stripe
would be to accumulate all events after a laser pulse and find
the column-wise maximum in activity. This approach performs
poorly due to background activity: Even with the optical fil-
ter in place, contrast edges that move relative to the sensor also
induce events which corrupt the signal to noise ratio. For a more
robust laser strip extraction, spatial constraints could be intro-
duced but this would restrict the generality of the approach
(Usamentiaga et al., 2010). Instead the proposed approach
exploits the highly resolved temporal information of the output of
the DVS.

FIGURE 3 | The coordinate systems used along the scanning

direction. yR , zR are the real world coordinates, yC , zC the ones of
the camera. xL is the distance of the laser line plane perpendicular to
nL from the camera origin. αC is the inclination angle of the sensor
with respect to the horizontal plane and αL the laser inclination angle
with respect to the camera.

FIGURE 4 | The calibration setup. The pulsed laser shines onto two
striped blocks of different height. (A) Schematic view. (B) Schematic of the
DVS output: the laser is absorbed by the black stripes and only the white
stripes generate events.

www.frontiersin.org January 2014 | Volume 7 | Article 275 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Brandli et al. Pulsed laser line-DVS for terrain reconstruction

With the help of the laser trigger events Etn, the event stream
can be sliced into a set of time windows Wn each containing a
set of events Sn where n denotes the n’th trigger event. ON and
OFF events are placed into separate sets (for simplicity only the
formulas for the ON events are shown):

Wn = {t : t > Etn ∧ t < Etn+1} (6)

SON
n = {Ev(u, v, t) : t ∈ Wn ∧ Ev > 0} (7)

The timing of the events is jittered by the asynchronous com-
munication and is also dependent on the sensor’s bias settings
and light conditions. Our preliminary experiments showed that
it is not sufficient to only accumulate the events in a fixed time
window after the pulse. Instead a stable laser stripe extraction
algorithm must adaptively collect relevant events. This adapta-
tion is achieved by using of a temporal scoring function P which
is continually updated as illustrated in Figure 6.

The scoring function is used as follows: Each event obtains
a score s = P(Ev) depending only on its time relative to the last
trigger. From these s a score map Mn (Figure 5) is established
where each pixel (u,v) of Mn contains the sum of the scores of all
the events with address (u,v) within the set Sn [these subsets of Sn

are denoted as Cn(u, v)]. In other words, Mn is a 2D histogram of

event scores. This score map tells us for each pixel how well-timed
the events were with respect to the n’th trigger event, and it is
computed by Equations 8–9:

CON
n (u, v) = {Ev(u′, v′, t) : Ev ∈ SON

n ∧ u′ = u ∧ v′ = v} (8)

Mn(u, v) =
∑

CON(u,v)

PON
n (Ev)+

∑
COFF(u,v)

POFF
n (Ev) (9)

The scoring function P that assigns each event a score indicat-
ing how probable it is that it was caused by the laser pulse Etn is
obtained by using another histogram-based approach. The ratio-
nale behind this approach is the following: All events that are
caused by the laser pulse should be temporally correlated with it
while noise events should show a uniform temporal distribution.
In a histogram with binned relative times the events triggered by
the laser pulse should form peaks. In the proposed algorithm,
the histogram Hn consists of k bins Bn of width fk. For stabil-
ity, Hn is an average over m laser pulses. Hn is constructed by
Equations 10–12:

DON
n (l) =

{
Ev(u, v, t) : Ev ∈ SON

n ∧ t

− Etn ≥ l

fk
∧ t − Etn <

l+ 1

fk

}
(10)

FIGURE 5 | Schematic overview of the laser stripe extraction filter. At the
arrival of each laser pulse the temporal histograms are used to adapt the
scoring function P, and each event’s score is calculated and mapped on the

score maps. The maps are averaged and the laser stripe is extracted by
selecting the maximum scoring pixel for each column, if it is above the
threshold θpeak.

FIGURE 6 | Scoring function: examples of event histograms of the laser pulsed at 1 kHz at the relief used for the reconstruction. (A) Measured histograms
of ON and OFF events following laser pulse ON and OFF edges. (B) Resulting OFF and ON scoring functions after normalization and mean subtraction.

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 275 |10

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Brandli et al. Pulsed laser line-DVS for terrain reconstruction

BON
n (l) =

n− 1∑
i= n−m

∑
DON

i (l)

‖Ev‖ (11)

HON
n = {BON

n (l) : l ∈ [0, k− 1]
}

(12)

where f is the laser frequency, l is the bin index, k is the number
of bins, Dn(l) is a temporal bin of the set Sn, Bn(l) is a bin of the
averaged histogram over the m and the histogram Hn is the set of
all bins Bn. It is illustrated in Figure 6A.

To obtain the scoring function P, the HON
n and HOFF

n his-
tograms are normalized by the total number T of events in them.
To penalize bins that have a count below the average i.e., bins that
are dominated by the uniformly distributed noise, the average bin
count T/k is subtracted from each bin. An event can have a neg-
ative score. This is the case if it is more probable that it is noise
than signal. Tn is computed from Equation 13:

TON
n =

∑{
BON

n : BON
n ∈ HON

n

}
(13)

The n’th scoring function Pn (illustrated in Figure 6B) is com-
puted from Equation 14:

PON
n (Ev) =

∑{
BON

n : Ev ∈ BON
n

}− (TON
n
k

)
TON

n
(14)

To extract the laser stripe, the last o score maps are averaged and
the maximum score s(u,v) and its y value are determined for each
column. If the maximum value is above a threshold ϑpeak it is con-
sidered to be a laser stripe pixel. If the neighboring pixels are also
above the threshold, a weighted average is applied among them
to determine the center of the laser stripe. The positions of the
laser stripe are then transformed into real world coordinates using
Equations 3–5 and thus mapped as surface points.

The pseudo-code shown in Algorithm 1 illustrates how the
algorithm is executed: Only on the arrival of a new laser trigger
event, the histograms are averaged, the score maps are averaged to
an average score map and the laser stripe is extracted. Otherwise,
for each DVS event only its contribution to the current score map
is computed, using the current scoring function. The laser stripe
extraction and computation of the scoring function operate on
different time scales. While the length o of the moving average for
the scoring function is chosen as small as possible to ensure a low
latency, the number of histograms m to be averaged is chosen as
large as possible to obtain higher stability and dampen the effect
of variable background activity.

Algorithm optimization
To reduce the memory consumption and the computational
cost of this “frame-based” algorithm, the computations of the
scoring function, the accumulation of evidence into a score map,
and the search for the laser line columns were optimized to be
event-based.

The average histogram changes only on a long time scale
(depending on lighting conditions and sensor biasing) and this
fact is exploited by only updating the averaged histogram every
m’th pulse. The m histograms do not have to be memorized and

Algorithm 1 | Pseudo code for the laser stripe extraction.

//iterate over all events in a packet

for event:packet

//the laser stripe extraction is only done at

//the arrival of a new pulse

if(event.isTrigger)

lastTrigger = event.timestamp

histogramAverage.removeOldest()

histogramAverage.add(histogram)

histogram.clear()

//update done according to Equation (14)

scoreFunction.update(histogramAverage)

averageMap.removeOldest()

averageMap.add(scoreMap)

laserLine = averageMap.findColumPeaks()

else

//update of histogram

deltaT = lastTrigger-event.timestamp

binIndex = deltaT*k/period

histogram.bin[binIndex]++
//update of score map

score = scoreFunction.get(binIndex)

scoreMap[event.u][event.v]+ =score
end if

each event only increases the bin count. The new score function
is computed from the accumulated histogram by normalizing it
only after the m’th pulse.

The score map computation is optimized by accumulating
event scores for o laser pulses. Each event requires a lookup of
its score and a sum into the score map. After each sum, if the new
score value is higher than the previous maximum score for that
column, then the new maximum score value and its location are
stored for that column. This accumulation increases the latency
by a factor of o, but is necessary in any case when the DVS events
are not reliably generated by each pulse edge.

After the o laser pulses are accumulated, the search of the col-
umn wise maxima laser line pixels is based on the maximum
values and their locations stored during accumulation. For each
column, the weighted mean location of the peak is computed
starting at the stored peak value and iterating over pixels up and
down from the peak location until the score drops below the
threshold value. This way, only a few pixels of the score map are
inspected for each column.

The final step is to reset the accumulated score map and
peak values to zero. This low-level memory reset is done by
microprocessor logic hardware and is very fast.

Results of these optimizations are reported in Results.

PARAMETER SETTINGS
Because the DVS does analog computation at the pixel level, the
behavior of the sensor depends on the sensor bias settings. These
settings can be used to control parameters such as the tempo-
ral contrast cutoff frequency and the threshold levels. For the
experiments described in the following, the bias settings were
optimized to report small as well as fast changes. These settings

www.frontiersin.org January 2014 | Volume 7 | Article 275 |11

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Brandli et al. Pulsed laser line-DVS for terrain reconstruction

lead to an increase in noise events which does not affect the
performance because they are filtered out successfully with the
algorithm described previously. Furthermore, the biases are set to
produce a clear peak in the temporal histogram of the OFF events
(Figure 6). The variation in the peak form for ON and OFF events
is caused by the different detection circuits for the two polari-
ties in the pixel (Lichtsteiner et al., 2008) and different starting
illumination conditions before the pulse edges.

The parameters for the algorithm are chosen heuristically: The
bin size is fixed to 50 us, the scoring function average is taken over
a sliding window size m = 1000 histograms, the stripe detection
is set to average o = 3 probability maps, and the peak threshold
for the line detection is chosen to be �peak = 1.5.

Firstly, the performance of the stripe extraction algorithm was
measured. Because the performance of the system is limited by
the strength of the laser used, the capabilities of the DVS using
a stronger laser were characterized to investigate the limits of the
approach. Finally, a complex 3D terrain was used to assess the
performance under more realistic conditions.

RESULTS
The laser stripe extraction results presented in the following were
run in real-time as the open-source jAER-filter FilterLaserLine
(jAER, 2007) on an Intel Core i7 975 @ 3.33 GHz Windows
7× 64 platform using Java 1.7u45. The 3D reconstruction was
run off-line in Matlab on the same platform.

Comparing the computational cost to process an event (mea-
sured in CPU time) between the frame-based and the event-based
algorithm with o = 10 pulses showed an 1800% improvement
from 900 to 50 ns per event. This improvement is a direct result of
the sparse sensor output: For each laser line point update, only a
few active pixels around the peak value in the score map column
are considered, rather than the entire column. At the typical event
rate of 500 keps observed in the terrain reconstruction example,
using a laser pulse frequency of 500 Hz, a single core of this (pow-
erful) PC is occupied 2.5% of its available processor time using
the event-based algorithm. Turning off the scoring function his-
togram update further decreases compute time to an average of
30 ns/event, only 25 ns more than processing event packets with a
“no operation” jAER filter that iterates over packets of DVS events
without doing anything else.

EXTRACTION PERFORMANCE
To assess the line-detection performance of the stripe extraction
algorithm, a ground truth was manually established for a scenario
in which a plain block of uniform height was passed under the
setup. The block was moved at about 2 cm/s to investigate the
performance of the laser stripe extraction algorithm at different
frequencies. In Table 1, the results of these measurements are dis-
played: “False positives” designates the ratio of events wrongly
associated to the line over the total number of events. The per-
formance of the algorithm drops at a frequency of 500 Hz and
because the DVS should be capable of detecting temporal con-
trasts in the kHz regime, this was further investigated. For optimal
algorithm performance, each pulse should at least excite one event
per column. This is not the case for the line laser pulsed at
500 Hz because the pixel bandwidth at the laser intensity used is

Table 1 | Performance of the line extraction algorithm.

Frequency (Hz) False positives (%)

50 0.14

100 <0.01

200 0.03

500 5.75

The line laser is not strong enough to perform well at frequencies above 200 Hz.

FIGURE 7 | Number of events at a pixel per laser pulse of a 4.75 mW

point laser. Although the event count drop with higher frequencies, the
average does not drop below 1 event per cycle even at 2 kHz.

limited to about this frequency. Therefore, not every pulse results
in a DVS event, and so the laser stripe can only be found in a
few columns which leads to a degradation of the reconstruction
quality.

To explore how fast the system could go, another laser setup
was used: A stronger point laser (4.75 mW, Class C) was pulsed
using a mechanical shutter to avoid artifacts from the rise and fall
time of the electronic driver. This point was recorded with the
DVS to investigate whether it can elicit more at least one event
per polarity and pulse at high frequencies. The measurements
in Figure 7 show that even at frequencies exceeding 2 kHz suffi-
cient events are triggered by the pulse. The mechanical shutter did
not allow pulsing the laser faster than 2.1 kHz so the DVS might
even go faster. The increase of events per pulse above 1.8 kHz is
probably caused by resonances in the DVS photoreceptor circuits
which facilitate the event generation. These findings indicate that
a system using a sufficiently strong line laser should be capable of
running at up to 2 kHz.

TERRAIN RECONSTRUCTION
As a proof of concept and as well for studying possible applica-
tions and shortcomings of the approach, an artificial terrain was
designed with a CAD program and it was fabricated on a 3D
printer (Figure 8). The sensor setup of Figure 2 was used together
with the sled to capture data at a speed of 1.94 cm/s over this ter-
rain using a laser pulse frequency of 200 Hz, translating in the
ty direction (Equation 5). (This slow speed was a limitation of

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 275 | 12

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Brandli et al. Pulsed laser line-DVS for terrain reconstruction

FIGURE 8 | Artificial 3D rapid prototype terrain used for proof of

concept reconstruction. Blue: area depicted in Figure 9, Red: laser line,
Black: scan direction.

the DC motor driving the sled.) Figure 9 shows results of these
measurements: Figure 9A shows the CAD model and Figure 9B
shows the raw extracted line data after transformation through
Equation 5 using the calibration parameters and the measured
sled speed. The blind spots where the laser did not reach the sur-
face and the higher sampling density on front surfaces are evident.
These blind spots were filled by applying the MATLAB© function
TriScatteredInterp on the sample points as shown in Figure 9C.
Finally, Figure 9D shows the error between the reconstruction
and model as explained in the next paragraph.

To quantify the error, the data was compared to the ground
truth of the CAD model. However, the model and data lack align-
ment marks and therefore they were first aligned by hand using
a global translation. Next, the alignment was refined using the
iterative closest point algorithm (ICP; Besl and McKay, 1992),
which slightly adjusted the global translation and rotation to min-
imize the summed absolute distance errors. Thirdly the closest
3D point of the model was determined for each point of the
non-interpolated Figure 9B raw data and fourthly the distance
to this model point was measured. The resulting accuracy i.e.,
the mean 3D distance between these two points in the 3D data
is 1.7 ± 1.1 mm, i.e., the mean absolute distance between the
sample and data points is 1.7 mm but the errors vary with a stan-
dard deviation of 1.1 mm. This accuracy represents ±0.25 pixel
precision of measurement of the laser line given the geometry
of the measurement setup. In the resampled, linearly interpo-
lated data shown in Figure 9D, most of the error originates from
the parts of the surface where the line laser is occluded by the
surface, which are interpolated as flat surfaces, and in partic-
ular the bottoms of the valleys show the worst error, as could
be expected.

An online movie showing the stripe extraction for the terrain
reconstruction using a higher laser pulse frequency of 500 Hz is
available (Adaptive filtering of DVS pulsed laser line response

for terrain surface reconstruction, 2013). This video also shows
various stages of the sensor output and laser line extraction.

This recording is done at a sled speed of about 1 m/s using a
free-falling sled on an incline, which was not limited by the DC
motor speed. In this movie it is also clear that some parts of the
terrain where the laser hits the surface at a glancing angle do not
generate line data. The movie also shows that background DVS
activity caused by image contrast is also effectively filtered out by
the algorithm although at this high frequency many pixels do not
generate events on each laser pulse.

DISCUSSION
In this paper the first application of a DVS as a sensing device
for terrain reconstruction was demonstrated. An adaptive event-
based filtering algorithm for efficiently extracting the laser line
position was proposed. The proposed application of DVSs in
active sensor setups such as 3D scanners allows terrain recon-
struction with high temporal resolution without the necessity
of using a power-consuming high-speed camera and subsequent
high frame rate processing or any moving parts. The event-based
output of DVSs has the potential to reduce the computational
load and thereby decreasing the latency and power consump-
tion of such systems. The system benefits from the high dynamic
range and the sparse output of the sensor as well as the highly
resolved time information on the dynamics in a scene. With the
proposed algorithm, temporal correlations between the pulsed
stimulus and the recorded signal can be extracted as well as used
as filtering criterion for the stripe extraction.

Further improvements to the system are necessary to realize
the targeted integration to mobile robots. The Java and jAER
overhead would have to be removed and the algorithm would
have to be implemented on a lower level programming language
(such as C) using the optimized event-based algorithm. A camera
motion model and surface reconstruction would have to be inte-
grated into the software and for portability of the system it would
need to be embedded in a camera such as the eDVS (Conradt
et al., 2009). Motion models could be obtained from 3D sur-
face SLAM algorithms (Newcombe et al., 2011) and/or inertial
measurement units (IMUs). The use of DVSs with a higher sensi-
tivity (Serrano-Gotarredona and Linares-Barranco, 2013) would
allow using weaker lasers to save power. Higher resolution sen-
sors that include a static readout (Posch et al., 2011; Berner et al.,
2013) would facilitate the calibration and increase the resolution.
The use of a brighter line laser would allow higher laser puls-
ing frequencies, a wider sensing range as well as possible outdoor
applications.

But despite its immature state, the proposed approach com-
pares well to existing commercial depth sensing systems like the
Microsoft Kinect© and a LIDAR optimized for mobile robots
such as the SOKUIKI (comparison shown in Table 2). The system
has a higher maximal sampling rate than the other sensors, a
much lower average latency of 5 ms at a 200 Hz pulse rate, and
it is more accurate at short distances. These features are cru-
cial for motion planning and obstacle avoidance in fast moving
robots. The latency of the proposed approach is, however, depen-
dent on the reliability of the DVS pixel responses, so there is a
tradeoff between latency and noise that has not yet been fully

www.frontiersin.org January 2014 | Volume 7 | Article 275 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Brandli et al. Pulsed laser line-DVS for terrain reconstruction

FIGURE 9 | The reconstructed surface. (A) CAD model of the surface. (B)

Measured data points. (C) Interpolated reconstruction of the surface using
Matlab’s TriScatteredInterp function. (D) Distance between closest
reconstruction point and model aligned using ICP (Besl and McKay, 1992).

This section of the reconstruction was chosen for display because in the
surrounding area border effects were observed caused by the Gaussian
profile of the laser line that reduced the DVS event rate to be too low to
result in acceptable reconstruction.

Table 2 | Performance comparison of the proposed approach with existing depth sensors.

This work Microsoft Kinect for Xbox 360 LIDAR (SOKUIKI)

Spatial resolution (pixels) 128 ∼320× 240b 680e

Field of view (degree) 28◦ 58◦ × 44◦b 240◦e

Output data Surface profile Depth map Range profile

Accuracy 2 mm @ 0.45 m (0.45%) ∼1.5 cm @ 3 mc (0.5%) 3 cm @ 1 me (3%)

Power consumption USB camera + laser: ∼535 mWa 2.25–4.7 W (active)b 2.5 We

Max sample rate (Hz) 500 30d 10e

Average latency (ms) 5f 45g–120h 100e

aDVS:400 mW + Laser: 135 mW.
b Nominally 640× 480 (Viager, 2011) but spatial pattern used reduces to ∼ ±1 pixel in each direction (Andersen et al., 2012).
c Khoshelham and Elberink, 2012.
d Kinect for Windows Sensor Components and Specifications.
e URG-04LX-UG01.
f 200 Hz laser pulse rate.
g VGA depth map output with Core2 E6600 CPU @ 2.4 GHz (Specs about OpenNI compliant 3D sensor Carmine 1.08 | OpenNI, 2012).
h Skeleton model w/1 skeleton tracked (Livingston et al., 2012).

studied, and this tradeoff will also depend on other conditions
such as background lighting and surface reflectance. On the
downside, the system’s spatial resolution is limited by the use of
the first-generation DVS128 camera and the field of view for the
proposed system is narrow. But these drawbacks are not funda-
mental and they can easily be improved (e.g., by using newer
sensors, shorter lenses and stronger lasers). The limitation that
the system does not deliver depth maps but surface profiles could
be overcome by projecting sparse 2D light patterns instead of
a laser line. The power consumption of 500 mW for the USB

camera and laser does not include the power to process the events
nor to reconstruct the surface but because the sensor system
power consumption is comparably lower, the data processing will
probably fit into the power budget of the other two approaches
when embedded into a 32-bit ARM-based microcontroller, e.g.,
as in Conradt et al. (2009). In summary, this paper demonstrates
the applicability of DVSs combined with pulsed line lasers to
provide surface profile measurement with low latency and low
computational cost, but integration onto mobile platforms will
require further work.

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 275 | 14

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Brandli et al. Pulsed laser line-DVS for terrain reconstruction

ACKNOWLEDGMENTS
This research was supported by the European Union funded
project SeeBetter (FP7-ICT-2009-6), the Swiss National Science
Foundation through the NCCR Robotics, ETH Zurich, and the
University of Zurich. The authors thank the reviewers for their
helpful critique which had a big impact on the final form of this
paper.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnins.
2013.00275/abstract

REFERENCES
Adaptive filtering of DVS pulsed laser line response for terrain surface reconstruc-

tion. (2013). Available online at: http://youtu.be/20OGD5Wwe9Q. (Accessed:
December 23, 2013).

Andersen, M. R., Jensen, T., Lisouski, P., Mortensen, A. K., Hansen, M. K.,
Gregersen, T., et al. (2012). Kinect Depth Sensor Evaluation for Computer
Vision Applications. Aarhus: Aarhus University, Department of Engineering.
Available online at: http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske
rapporter/TechnicalReportECE-TR-6-samlet.pdf. (Accessed: December 11,
2013).

Berner, R., Brandli, C., Yang, M., Liu, S.-C., and Delbruck, T. (2013).
“A 240× 180 10 mW 12 us latency sparse-output vision sensor
for mobile applications,” in Symposium on VLSI Circuits (Kyoto),
C186–C187.

Besl, P. J., and McKay, N. D. (1992). A Method for Registration of 3-D
shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256. doi: 10.1109/34.
121791

Conradt, J., Cook, M., Berner, R., Lichtsteiner, P., Douglas, R., and Delbruck,
T. (2009). “A pencil balancing robot using a pair of AER dynamic vision
sensors,” in IEEE International Symposium on Circuits and Systems (ISCAS)
2009 (Taipei), 781–784. Available online at: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5117867. (Accessed: August 13, 2013). doi:
10.1109/ISCAS.2009.5117867

Delbruck, T., and Lichtsteiner, P. (2007). “Fast sensory motor control based
on event-based hybrid neuromorphic-procedural system,” in International
Symposium on Circuits and Systems (ISCAS) 2007 (New Orleans, LA),
845–848. Available online at: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4252767. (Accessed: August 13, 2013). doi:
10.1109/ISCAS.2007.378038

Forest, J., and Salvi, J. (2002). “A review of laser scanning three-dimensional digi-
tisers,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (Lausanne: IEEE), 73–78. Available online at: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1041365. (Accessed: August 13, 2013).

jAER. (2007). JAER Open Source Proj. Available online at: http://jaerproject.net.
(Accessed: September 17, 2013).

Khoshelham, K., and Elberink, S. O. (2012). Accuracy and resolution of kinect
depth data for indoor mapping applications. Sensors 12, 1437–1454. doi:
10.3390/s120201437

Kinect for Windows Sensor Components and Specifications. Available online
at: http://msdn.microsoft.com/en-us/library/jj131033.aspx. (Accessed: October
23, 2013).

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128× 128 120 dB 15 μs
latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State
Circuits 43, 566–576. doi: 10.1109/JSSC.2007.914337

Livingston, M. A., Sebastian, J., Ai, Z., and Decker, J. W. (2012). “Performance
measurements for the Microsoft Kinect skeleton,” in 2012 IEEE Virtual
Reality Short Papers and Posters (VRW) (Costa Mesa, CA), 119–120. doi:
10.1109/VR.2012.6180911

Newcombe, R. A., Davison, A. J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., et al.
(2011). “KinectFusion: real-time dense surface mapping and tracking,” in 2011
10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR)
(Basel), 127–136.

Ni, Z., Pacoret, C., Benosman, R., Ieng, S.-H., and Régnier, S. (2012). Asynchronous
event-based high speed vision for microparticle tracking. J. Microsc. 245,
236–244. doi: 10.1111/j.1365-2818.2011.03565.x

Orghidan, R., Salvi, J., and Mouaddib, E. M. (2006). Modelling and accuracy esti-
mation of a new omnidirectional depth computation sensor. Pattern Recognit.
Lett. 27, 843–853. doi: 10.1016/j.patrec.2005.12.015

Palaniappa, R., Mirowski, P., Ho, T. K., Steck, H., Whiting, P.,
and MacDonald, M. (2011). Autonomous RF Surveying Robot for
Indoor Localization and Tracking. Gumaraes. Available online at:
http://ipin2011.dsi.uminho.pt/PDFs/Shortpaper/49_Short_Paper.pdf

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB dynamic
range frame-free PWM image sensor with lossless pixel-level video compres-
sion and time-domain CDS. IEEE J. Solid-State Circuits 46, 259–275. doi:
10.1109/JSSC.2010.2085952

Raibert, M., Blankespoor, K., Nelson, G., Playter, R., and Big Dog Team.
(2008). BigDog, the Rough-Terrain Quadruped Robot. Seoul. Available online at:
http://web.unair.ac.id/admin/file/f_7773_bigdog.pdf

Robinson, A., Alboul, L., and Rodrigues, M. (2003). “Methods for
indexing stripes in uncoded structured light scanning systems,” in
International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (Plzen; Bory). Available online at:
http://wscg.zcu.cz/WSCG2004/Papers_2004_Full/I11.pdf

Serrano-Gotarredona, T., and Linares-Barranco, B. (2013). A 128× 128 1.5% con-
trast sensitivity 0.9% FPN 3 μs latency 4 mW asynchronous frame-free dynamic
vision sensor using transimpedance preamplifiers. IEEE J. Solid-State Circuits
48, 827–838. doi: 10.1109/JSSC.2012.2230553

Siegwart, R. (2011). Introduction to Autonomous Mobile Robots. 2nd Edn.
Cambridge, MA: MIT Press.

Specs about OpenNI compliant 3D sensor Carmine 1.08 |OpenNI. (2012).
Available online at: http://www.openni.org/rd1-08-specifications/. (Accessed:
November 12, 2013).

URG-04LX-UG01. Scanning Range Finder URG-04LX-UG01. Available online
at: http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx_ug01.html.
(Accessed: October 24, 2013).

Usamentiaga, R., Molleda, J., and García, D. F. (2010). Fast and robust laser stripe
extraction for 3D reconstruction in industrial environments. Mach. Vis. Appl.
23, 179–196. doi: 10.1007/s00138-010-0288-6

Viager, M. (2011). Analysis of Kinect for Mobile Robots. Lyngby: Technical University
of Denmark.

Weiss, S., Achtelik, M., Kneip, L., Scaramuzza, D., and Siegwart, R. (2010). Intuitive
3D maps for MAV terrain exploration and obstacle avoidance. J. Intell. Robot.
Syst. 61, 473–493. doi: 10.1007/s10846-010-9491-y

Yoshitaka, H., Hirohiko, K., Akihisa, O., and Shin’ichi, Y. (2006). “Mobile robot
localization and mapping by scan matching using laser reflection intensity
of the SOKUIKI sensor,” in IECON 2006 - 32nd Annual Conference on IEEE
Industrial Electronics (Paris), 3018–3023.

Conflict of Interest Statement: One of the Authors (Tobi Delbruck) is one of
the research topic editors. One of the Authors (Tobi Delbruck) has a financial
participation in iniLabs, the start-up which commercially distributes the DVS
camera prototypes. The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Received: 23 August 2013; accepted: 23 December 2013; published online: 17 January
2014.
Citation: Brandli C, Mantel TA, Hutter M, Höpflinger MA, Berner R, Siegwart R
and Delbruck T (2014) Adaptive pulsed laser line extraction for terrain reconstruction
using a dynamic vision sensor. Front. Neurosci. 7:275. doi: 10.3389/fnins.2013.00275
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2014 Brandli, Mantel, Hutter, Höpflinger, Berner, Siegwart and
Delbruck. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) or licensor are credited and that
the original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.

www.frontiersin.org January 2014 | Volume 7 | Article 275 | 15

http://www.frontiersin.org/journal/10.3389/fnins.2013.00275/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2013.00275/abstract
http://youtu.be/20OGD5Wwe9Q.
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TR-6-samlet.pdf.
http://eng.au.dk/fileadmin/DJF/ENG/PDF-filer/Tekniske_rapporter/Technical_Report_ECE-TR-6-samlet.pdf.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5117867.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5117867.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4252767.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4252767.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1041365.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1041365.
http://jaerproject.net
http://msdn.microsoft.com/en-us/library/jj131033.aspx
http://wscg.zcu.cz/WSCG2004/Papers_2004_Full/I11.pdf
http://www.openni.org/rd1-08-specifications/
http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx_ug01.html
http://dx.doi.org/10.3389/fnins.2013.00275
http://dx.doi.org/10.3389/fnins.2013.00275
http://dx.doi.org/10.3389/fnins.2013.00275
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

ORIGINAL RESEARCH ARTICLE
published: 21 November 2013
doi: 10.3389/fnins.2013.00223

Robotic goalie with 3 ms reaction time at 4% CPU load
using event-based dynamic vision sensor
Tobi Delbruck* and Manuel Lang

Department of Information Technology and Electrical Engineering, Institute of Neuroinformatics, UNI-ETH Zurich, Zurich, Switzerland

Edited by:

André van Schaik, The University of
Western Sydney, Australia

Reviewed by:

Jorg Conradt, Technische Universität
München, Germany
Gregory K. Cohen, Bioelectronics
and Neuroscience Research Group
at the MARCS Institute, Australia

*Correspondence:

Tobi Delbruck, Department of
Information Technology and
Electrical Engineering, Institute of
Neuroinformatics, Winterhurerstr.
190, UNI-ETH Zurich, CH-8057
Zurich, Switzerland
e-mail: tobi@ini.phys.ethz.ch

Conventional vision-based robotic systems that must operate quickly require high video
frame rates and consequently high computational costs. Visual response latencies are
lower-bound by the frame period, e.g., 20 ms for 50 Hz frame rate. This paper shows how
an asynchronous neuromorphic dynamic vision sensor (DVS) silicon retina is used to build
a fast self-calibrating robotic goalie, which offers high update rates and low latency at
low CPU load. Independent and asynchronous per pixel illumination change events from
the DVS signify moving objects and are used in software to track multiple balls. Motor
actions to block the most “threatening” ball are based on measured ball positions and
velocities. The goalie also sees its single-axis goalie arm and calibrates the motor output
map during idle periods so that it can plan open-loop arm movements to desired visual
locations. Blocking capability is about 80% for balls shot from 1 m from the goal even with
the fastest-shots, and approaches 100% accuracy when the ball does not beat the limits of
the servo motor to move the arm to the necessary position in time. Running with standard
USB buses under a standard preemptive multitasking operating system (Windows), the
goalie robot achieves median update rates of 550 Hz, with latencies of 2.2± 2 ms from ball
movement to motor command at a peak CPU load of less than 4%. Practical observations
and measurements of USB device latency are provided1.

Keywords: asynchronous vision sensor, address-event representation, AER, high-speed visually guided robotics,

high frame rate, neuromorphic system, soccer

INTRODUCTION
The notion of a “frame” of video data is embedded in machine
vision. High speed frame-based vision is expensive because it is
based on a series of pictures taken at a constant rate. The pix-
els are sampled repetitively even if their values are unchanged.
Short-latency vision problems require high frame rate and pro-
duce massive amount of input data. At high frame rate, few CPU
instructions are available for processing each pixel. For example,
a VGA 640× 480 pixel image sensor at 1 kHz frame rate deliv-
ers data at a rate of 307 M pixels/s, or a pixel every 3.3 ns. At
usable instruction rates of 1 GHz a computer would only be able
to dedicate 3 instructions per pixel to processing this informa-
tion. This high data rate, besides requiring specialized computer
interfaces and cabling (Wilson, 2007), makes it expensive in terms
of power to deal with the data, especially in real time or embed-
ded devices. Specialized high-frame-rate machine vision cameras
with region of interest (ROI) or binning (sub-sampling) capabil-
ities can reduce the amount of data significantly, but the ROI and
binning must be controlled by software and the ROI is limited
to a single region, reducing its usefulness for tracking multiple
objects. Tracking a single object requires steering the ROI to fol-
low the object. The latency of this ROI control must be kept
short to avoid losing the object and ROI control can become quite
complex to implement. Ref. (Graetzel et al., 2006), for example,

1During this work the authors were with the Inst. of Neuroinformatics,
Winterhurerstr. 190, UNI-ETH Zurich, CH-8057 Zurich, Switzerland., e-mail:
tobi@ini.uzh.ch, phone:+41(44) 635-3038.

describes a fruit-fly wing-beat analyzer that uses Kalman filtering
to move the ROI in anticipation of where it should be accord-
ing to the Kalman filter parameters, and even to time-multiplex
the ROI between different parts of the scene. The computer must
process all the pixels for each ROI or binned frame of data and
ROI control latencies must be kept short if the object motion is
not predictable.

By contrast, in the camera used for this paper, data are gen-
erated and transmitted asynchronously only from pixels with
changing brightness. In a situation where the camera is fixed
and the illumination is not varying only moving objects gener-
ate events. This situation reduces the delay compared to waiting
for and processing an entire frame. Also, processor power con-
sumption is related to the scene activity and can be reduced
by shorter processing time and longer processor sleep phases
between processing cycles.

This paper describes the results of experiments in low-latency
visual robotics using an asynchronous dynamic vision sensor
(DVS) (Lichtsteiner et al., 2006, 2007) as the input sensor, a stan-
dard PC as the processor, standard USB interfaces, and a standard
hobby servo motor as the output.

Specifically, this paper demonstrates that independent pixel
event data of a DVS are well-suited for object tracking and real-
time visual feedback control. The simple but highly efficient
object-tracking algorithm is implemented on a general purpose
CPU. The experiments show that such a robot, although based
on traditional, cheap, ubiquitous PC components like USB and
a standard preemptive operating system (Windows) a simple

www.frontiersin.org November 2013 | Volume 7 | Article 223 | 16

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2013.00223/abstract
http://www.frontiersin.org/people/u/2614
mailto:tobi@ini.phys.ethz.ch
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Delbruck and Lang Robo goalie

programmable Java control application achieves reaction times
on par with high speed conventional machine vision hardware
running on dedicated real-time operating systems consuming the
resources of an entire computer.

This paper expands on a brief conference report (Delbruck
and Lichtsteiner, 2007) by including the new feature of self-
calibration, more detailed descriptions of the algorithms, and
new measurements of performance and latency particularly relat-
ing to USB interfaces. Other related work that has integrated
an event-based neuromorphic vision sensor in a robot includes
CAVIAR, a completely spike-hardware based visual tracking sys-
tem (Serrano-Gotarredona et al., 2009), a pencil balancing robot
using a pair of embedded-processor DVS cameras (Conradt et al.,
2009a), which was first prototyped using two DVS cameras
interfaced by USB (Conradt et al., 2009b), a demonstration of
real-time stereo distance estimation computed on an FPGA with
2 DVS cameras (Domínguez-Morales et al., 2012), an embed-
ded FPGA-based visual feedback system using a DVS (Linares-
Barranco et al., 2007), and a micro gripper haptic feedback system
(Ni et al., 2013) which uses a DVS as one of the two input sensors.

MATERIALS AND METHODS: GOALIE ARCHITECTURE
The application presented here is a self-calibrating soccer goalie
robot (Figure 1). The robotic goalie blocks balls shot at a goal
using a single-axis arm with only a single degree of freedom.
Figure 1 shows our goalie robot hardware architecture. Players
attempt to score by shooting balls at the goal (either by rolling or
flicking with their fingernails) and the goalie robot tries to block
all balls from entering the goal. Only balls that roll or slide along
or near the table surface can be blocked and this limitation is what
enables the solution to the blocking problem without stereo vision
or some other means of determining the height of the ball over
the table. The fact that the balls move along the surface of the
table means that their 3D position can (implicitly in this applica-
tion) be determined from the ball’s 2D image position. The goalie
is self-calibrating i.e., by visual observation it learns the motor
control to arm position relationship. When turned on the goalie
is one of 4 distinct states. In the active state, the goalie has deter-
mined that a ball is approaching the goal that can be blocked and
tries to block it. Between balls, the goalie is relaxed to the middle
position. When no definite balls have been seen for a few sec-
onds, the goalie enters sleeping state where it does not respond to
every movement in the scene. This state reduces apparently spas-
tic movements in response to people walking by, hands, etc. After
several minutes in sleeping state the goalie enters the learning in
which it recalibrates itself. The goalie wakes up from sleeping to
become active when it again sees a definite ball.

The rest of this section will describe the individual compo-
nents of the system.

DYNAMIC VISION SENSOR
Conventional image sensors see the world as a sequence of frames,
each consisting of many pixels. In contrast, the DVS is an example
of a sensor that outputs digital address events (spikes) in response
of temporal contrast at the moments that pixels see changing
intensity (Lichtsteiner et al., 2006, 2007; Delbruck et al., 2010)
(Figure 2). Like an abstraction of some classes of retinal ganglion

FIGURE 1 | Goalie robot illustration and a photo of the setup, showing

the placement of vision sensor, goalie arm, and goal. The white or
orange balls have a diameter of 3 or 4 cm and are viewed against the light
brown wood table. The reflectance ratio between balls and table is about
1.3. The retina view extends out to 1 m from the goal line. The goalie hand
is 5 cm wide and the goal is 45 cm wide.

cell spikes seen in biology, each event that is output from the
DVS indicates that the log intensity at a pixel has changed by an
amount T since the last event. T is a global event threshold which
is typically set to about 15% contrast in this goalie robot applica-
tion. In contrast to biology, the serial data path used requires the
events to carry address information of what pixels number has
changed. The address encodes the positive or negative brightness
changes (ON or OFF) with one bit and the rest of the bits encode
the row and column addresses of the triggering pixel. This repre-
sentation of “change in log intensity” encodes scene reflectance
change, as long as the illumination is constant over time, but
not necessarily over space. Because this computation is based on
a compressive logarithmic transformation in each pixel, it also
allows for wide dynamic range operation (120 dB, compared with
e.g., 60 dB for a high quality traditional image sensor).

This neuromorphic abstraction of the transient pathway seen
in biology turns out to be useful for a number of reasons. The
wide dynamic range means that the sensor can be used with
uncontrolled natural lighting, even when the scene illumination
is non-uniform and includes strong shadows, as long as they are
not moving. The asynchronous response property also means
that the events have the timing precision of the pixel response
rather than being quantized to the traditional frame rate. Thus,
the “effective frame rate” is typically several kHz and is set by
the available illumination which determines the pixel bandwidth.
The temporal redundancy reduction reduces the output data rate
for scenes in which most pixels are not changing. The design of
the pixel also allows for uniformity of response: the mismatch
between pixel contrast thresholds is 2.1% contrast and the event
threshold can be set down to 10% contrast, allowing the device

Frontiers in Neuroscience | Neuromorphic Engineering November 2013 | Volume 7 | Article 223 | 17

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Delbruck and Lang Robo goalie

FIGURE 2 | Characteristics of the dynamic vision sensor (Tmpdiff128).

(A) the dynamic vision sensor with its lens and USB2.0 interface. (B) A die
photograph. Pixels generate address-events, with the address formed from
the x, y, location and ON or OFF type (C) an abstracted schematic of the
pixel, which responds with events to fixed-size changes of log intensity. (D)

How the ON and OFF events are internally represented and output in
response to an input signal. Figure adapted from Lichtsteiner et al. (2006).

to sense real-world contrast signals rather than only artificial high
contrast stimuli. The vision sensor has integrated digitally con-
trolled biases that minimize chip-to-chip variation in parameters
and temperature sensitivity. Equipped with an USB2.0 high-speed
interface, the DVS camera delivers the time-stamped address-
event representation (AER) address-events to a host PC with
timestamp resolution of 1 us.

EVENT-DRIVEN TRACKING ALGORITHM
Events from the DVS are processed inside jAER, an open-source
Java software infrastructure for processing event-based sensor
outputs (2007). The goalie implementation consists of about 3 k
non-comment lines of code. The goalie software implementation
is open-sourced in jAER.

The ball and arm tracker is an event-driven cluster tracker
described briefly in (Lichtsteiner et al., 2006; Litzenberger
et al., 2006) (Figure 3) and further enhanced in this work.
This algorithm is inspired by the mean-shift approach used in

FIGURE 3 | Snapshot of action showing 128 events (all events within

2.9 ms) from the vision sensor. It shows 5 tracked objects (the middle 3
are real balls, the top one is the shooter’s hand, and the bottom object is the
goalie arm). The Attacking ball rolling toward the goal (and being blocked) is
marked with a circle; other balls are tracked but ignored. The thin squares
represent potential clusters that have not received sufficient support. The
velocity vectors of each ball are also shown as a slightly thicker line and
have been computed by least squares linear regression over the past 10
packets of events. The goalie arm is being moved to the left bar and the
presently tracked location of the arm is shown as a light bar inside the arm
cluster. The state of the goalie is indicated as “active” meaning a tracked
ball is being blocked. The balls generate average event rates of 3–30 keps
(kilo events per second). The mean event rate for this packet was 44 keps.

frame-based vision (Cheng, 1995; Comaniciu and Ramesh, 2000).
Each “cluster” models a moving object as a source of events.
Visible clusters are indicated by the boxes in Figure 3. Events
that fall within the cluster move the cluster position, and a clus-
ter is only considered supported (“visible”) when it has received
a threshold number of events. Clusters that lose support for a
threshold period are pruned. Overlapping clusters are merged
periodically at 1 ms intervals. Cluster positions are updated by
using a mixing factor that mixes the old position with the new
observations using fixed factors. Thus, the time constant gov-
erning cluster position is inversely proportional to the evidence
(event rate).

The advantages of the cluster tracker are:

(1) There is no frame correspondence problem because
the events continuously update the cluster locations during
the movement of the objects, and the faster the objects move,
the more events they generate.

(2) Only pixels that generate events need to be processed.
The cost of this processing is dominated by the search
for the nearest existing cluster, which is a cheap operation
because there are only a few clusters.

(3) Memory cost is low because there is no full frame memory,
only cluster memory, and each cluster requires only a few
hundred bytes of memory.

www.frontiersin.org November 2013 | Volume 7 | Article 223 | 18

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Delbruck and Lang Robo goalie

In the goalie application the objects have a known size and roll
on a flat surface so tracked clusters have an image space radius
determined by their perspective location in the scene.

The algorithm runs on each packet of combined events
received from USB transmission, typically 128 (or fewer):

(1) Pruning: Iterate over all existing clusters, pruning out those
clusters that have not received sufficient support. A cluster is
pruned if it has not received an event to support it within a
given time, typically 10 ms in this application.

(2) Merging: Iterate over all clusters to merge overlapping clus-
ters. This merging operation is necessary because new clus-
ters can be formed when an object grows larger as it
approaches the vision sensor. For each cluster rectangle that
overlaps the rectangle of another cluster, merge the two clus-
ters into a new cluster and discard the previous clusters. The
new cluster takes on the history of the older two clusters and
its position is the weighted average of the locations of the
source clusters. The averaging is weighted by the number of
events in each source cluster. This weighting reduces the jit-
ter in the cluster location caused by merging. This iteration
continues as long as there are overlapping clusters.

(3) Positioning: For each event, find the nearest cluster that con-
tains the event. The predicted location of each cluster that is
considered in this step is computed using its present cluster
location combined with the present cluster velocity estimate
and the time between this event and the last one that updated
the cluster. This way, an event can be in a cluster’s predicted
location even if it is not inside the last location of the cluster.

(a) If the event is within the cluster, add the event to the
cluster by pushing the cluster a bit toward the event and
updating the last event time of the cluster. The new clus-
ter location �xn+1 is given by mixing the predicted value of
the old location (�xn + �v�t), where �v is the cluster veloc-
ity and �t is the time between this event and the last one
that updated this cluster, with the event location �eusing
an adjustable mixing factor α ≈ 0.01:

�xn+ 1 = (1− α)(�xn + vn�t)+ α�e

This step implements a predictive tracker by giving
clusters a kind of momentum that helps keep clusters
attached to rapidly moving objects even if they emit few
events. If the present event appears at the predicted loca-
tion of the cluster, the clusters location is only modified
to the predicted location. Events from the leading edge of
the object pull the cluster forward and speed it up, while
events at the cluster’s trailing edge pull the cluster back
and slow it down.

(b) If the event is not in any cluster, seed a new cluster if there
are spare unused clusters to allocate. The goalie typically
uses 20 potential clusters.

A cluster is not marked as “visible” until it receives a certain
number of events (typically 10 in the goalie) and is moving at
a minimum speed (typically 20 pixels/s in the goalie).

The goalie robot determines the ball object as the cluster that
will next hit the goal line, based on the cluster positions and
velocities. The ball cluster’s location and velocity measurement
are used to position the servo to intercept the ball. If there is no
threatening ball, the goalie relaxes.

Accurate and rapid measurement of cluster velocity is impor-
tant in the goalie application because it allows forward prediction
of the proper position of the arm. A number of algorithms
for estimating cluster velocity were tried. Low-pass filtering the
instantaneous cluster velocity estimates that come from the clus-
ter movements caused by each event is cheap to compute, but was
not optimal because the lowpass filter takes too long to settle to an
accurate estimate. The method presently used is a “rolling” least
squares linear regression on the cluster locations at the ends of
the last N packets of events. This method is almost as cheap to
compute because it only updates least-squares summary statistics
by adding in the new location and removing the oldest location,
and it instantaneously settles to an “optimal” estimate. A value of
N = 10 computes velocity estimates over about the last 10–30 ms
of ball location.

GOALIE SELF-CALIBRATION
In an earlier version of the goalie (Delbruck and Lichtsteiner,
2007) the arm position was specified by adjustable “offset” and
“gain” parameters that mapped a motor command to a certain
arm position. It was difficult to calibrate this goalie accurately and
every time the aim of the vision sensor was adjusted or moved
accidentally (the goal bounces around quite a bit due to the arm
movements) laborious manual calibration had to be done again.
The goalie arm was also not visible to the goalie and so there was
no straightforward way for the goalie to calibrate itself. In the
present goalie, the orientation of the arm was changed so that it
swings on a horizontal plane rather than hanging like a pendu-
lum and used a wide angle lens (3.6 mm) that allows the vision
sensor to see both incoming balls and the goalie’s hand. The hori-
zontal arm orientation has the additional advantage that it allows
the goalie to block corner shots much better.

Goalie calibration occurs in the learning state. When active,
the arm position is tracked by using a motion tracker like the
ball tracker but with a single cluster sized to the size and aspect
ratio of the arm (Figure 3). The x position of the arm tracker is
the arm coordinate in image space. The motor is controlled in
coordinates chosen in software to span [0-1] units. The calibra-
tion algorithm has the following steps demonstrated by the data
shown in Figure 4:

(1) The present calibration is checked by randomly placing the
arm in 5 pixel positions (using the current calibration param-
eters to determine the mapping) and measuring the actual
arm position in pixel coordinates. If the average absolute
error is smaller than a threshold (typically 5 pixels) calibra-
tion is finished. In the situation shown in Figure 4A, the
calibration is initially very incorrect, and learning is initiated.

(2) If calibration is needed, the algorithm places the arm in ran-
domly chosen motor positions within a range specified in
a GUI interface to be in roughly in the center of the field
of view. (The GUI allows interactive determination of the

Frontiers in Neuroscience | Neuromorphic Engineering November 2013 | Volume 7 | Article 223 | 19

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Delbruck and Lang Robo goalie

FIGURE 4 | Goalie self-calibration. (A) Desired and actual arm position
before and after calibration (the desired positions are the inverse mapping
from motor commands in the allowed physical range to the pixel space). (B)

Example measured arm positions vs. servo command used for least
squares linear regression calibration.

servo motor limits). For each placement position, the actual
pixel position is measured from the arm tracker. Typically
20 points are collected. A least-squares linear regression then
determines the linear mapping from desired pixel position
to motor position (Figure 4B). The algorithm then goes
back to step 1. In Figure 4A, the calibration is checked after
fitting and is satisfactory, so the calibration algorithms is
terminated.

Calibration typically achieves accuracy within 2–5 pixels over the
entire range. The linear approximation sin(x) = xnear x = 0 was
sufficiently accurate that it was not necessary to account for the
sinusoidal relation between servo command and location of the
arm across the goal.

USB INTERFACES AND SERVO CONTROL
Both the vision sensor and the servo controller use the Java
interface provided by the Thesycon Windows USB driver develop-
ment kit for Windows (www.thesycon.de). The servo commands
are sent to the microcontroller in a separate writer thread that
takes commands placed in a queue by the retina event process-
ing thread. This decoupling allows for full speed USB 2.0 event
processing although servo controller commands are transmit-
ted using USB full-speed protocol at 12 Mbps (Axelson, 2001).
The servo motor control command rate is 500 Hz, because each
command requires 2 polls from the host controller and the min-
imal possible USB2.0 full-speed polling interval of 1 ms. The
command queue length is set to one to minimize latency. New
commands replace old ones if they have not yet been transmitted.
Likewise, the incoming DVS events are transmitted in 128-event
(or smaller) blocks and processed in a high priority thread that
runs independently from the GUI or rendering threads. The DVS
uses a USB2.0 high-speed interface with a data rate of 480 Mbps
and a polling interval of 128 us. The USB interface threads were
set to high priority, with highest priority given to the servo writ-
ing thread. Java’s maximum priority is equivalent to Windows
TIME_CRITICAL priority (Oaks and Wong, 2004).

A HiTec HS-6965 MG digital servo moves the goalie arm. This
$120 hobby digital servo accepts pulse-width modulation (PWM)
input up to at least the183 Hz frequency that we used and is rated

to rotate 60◦ with no load in 100 ms. It can move the 40 cm long
20 g mass arm across the goal in about 100 ms and is slightly
(∼10%) underdamped with the goalie arm as only load. Other
fast servos can be severely underdamped and actually oscillate
(e.g., the Futaba S9253). The remaining overshoot with the HiTec
servo is enough that the servo occasionally overshoots its intended
location enough that the ball is not blocked.

A custom board based on the Silicon Labs C8051F320 USB2.0
full-speed microcontroller (www.silabs.com) interfaces between
the PC and the servo motor. The microcontroller accepts com-
mands over a USB bulk endpoint (Axelson, 2001) that program
the PWM output width. The servo motor is powered directly
by the 5V USB VBUS and 0.5F of ultracapacitor on the con-
troller board helps to ballast the 5V USB VBUS voltage. The servo
controller design is open-sourced in jAER (2007).

The servo arm is constructed from a paint stirrer stick with a
balsa wood “hand” glued to its end. A goal of this project was to
make this hand as small as possible to demonstrate the precision
of tracking. The hand width used in this study was about 1.5 times
the ball width (Figure 1).

RESULTS
Ordinarily a good shooter can aim most of the shots within the
goal; thus a good shooter can potentially score on most shots. In
a trial with several experienced shooters who were told they could
take as much time as they needed to shoot, it required an aver-
age of 40 shots to score 10 goals. This means that each ball had to
be shot about 4 times to score once, representing a shot success
rate of 25%. A post experiment analysis of the data showed that
the shooters could potentially have scored on 75% of their shots,
with the rest of the shots representing misses wide of the goal
(the shooters were intentionally aiming at the corners of the goal).
Therefore, they had 30 shots on the goal and the goalie blocked 20
of these shots. The missed blocks consisted of a mixture of shots
were not blocked for three reasons, ranked from highest to lowest
occurrence: (1) they were so hard that they exceeded the ability
of the servo to move the arm to the correct position in time; (2)
tracking noise so that the arm position was not correctly com-
puted well-enough; (3) servo overshoot, where the servo tries to
move the arm to the correct position but because of the under-
damped dynamics, the arm momentarily overshoots the correct
position, allowing the ball to pass by.

The cluster tracker algorithm is effective for ignoring dis-
tracters In Figure 3 four balls are simultaneously tracked. The
topmost “ball” is probably the shooter’s hand. Two balls are
rolling away from the goal and are thus ignored. One is approach-
ing the goal and the arm is moving to block it, based on the
ball’s position and velocity. Ignoring the many distracters would
be impossible using a simpler method of ball tracking, such as
median event location. Figure 5 shows the dynamics of a single
blocking event for a ball that was shot quite fast, so that that it
covers the distance from the top of the scene to the goal in about
100 ms. During the ball’s 100 ms approach, about 50 packets of
events, and thus samples of the ball position (“ballx” and “bally”),
are captured by the tracker. The bounce off the arm is visible as
the inflection in bally. The “desired arm position” is shown also
as a function of time and is computed from ballx, bally, and the

www.frontiersin.org November 2013 | Volume 7 | Article 223 | 20

(www.thesycon.de)
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Delbruck and Lang Robo goalie

FIGURE 5 | Single shot dynamics. (A) 2D histogram of spike activity
caused by balls and goalie arm over 160 ms. (B) Time course of blocking
one ball.

ball x and y velocities (not shown). The ball velocities are esti-
mated by rolling linear regressions over the past 10 ball position
samples for ballx and bally vs. time. The “actual arm position”
is the position of the arm as measured by the arm tracker and
it can be seen that the arm requires about 80 ms to move to the
correct blocking position and also exhibits about 10% overshoot
which is due to slight under-damping in the servo’s controller.
The response latency is dominated by the arm movement and
the delay between knowing the desired arm position and the
initiation of arm movement.

Events are processed by the goalie software at a rate of 2 Meps
(million events per second) on a 2.1 GHz Pentium M laptop run-
ning Windows XP, Java JVM version 1.6. During typical goalie
operation, the average event rate is 20 keps, varying between
<1 keps when idle to a maximum of 100 keps during active
10 ms windows of time. For buffers of 128 events processing the
goalie code requires about 60 us. Figure 6B shows a histogram
of processing intervals as recorded on the host PC using Java’s
System.nanoTime(). The median interval is 1.8 ms (the peak in the
histogram at 10 ms is caused by forced transfers of data from the
vision sensor at 100 Hz rate even when the USB FIFOs have not
filled). During processing the computer’s CPU load never rises
over 4% (Figure 6D).

In this system sensor-to-computer latency is dominated by
the USB FIFO filling time. The vision sensor pixel latency is
inversely proportional to illumination (Lichtsteiner et al., 2007)
and is about 100 us at normal indoor office illumination levels
of 500 lux. A single ball that produces events at a peak rate of
100 keps causes a device-side 128-event USB packet about every
1 ms, although bursts of events can cause USB transfers that are
received as often as every 128 us, the minimum USB2.0 high-
speed polling interval. Increased retina activity (caused, say, by
the arm movement) actually reduces this latency, but only because
the USB device FIFO buffers are filled more rapidly. We used host
side USB packet sizes of 256 events to match the maximum 500 Hz
rate of writing commands to the servo motor, and the distribution
of packet sizes reflects this (Figure 6C).

To measure latency, an artificial stimulus consisting of a flash-
ing LED was set up so that it could be activated in bursts to
mimic an instantaneously appearing ball. The servo controller
was programmed to toggle an output pin when it received

FIGURE 6 | Statistics. (A) Latency measurements. Stimulus was flashing
LED turned on at time 0. (B) Host packet processing interval distribution
during normal operation while goalie is under attack. (C) Histogram of
number of events per packet during normal operation. (D) Processor load
during normal operation (2 balls/second attack).

a servo motor command. The start of PWM output from
the servo controller and the actual start of motor movement
were measured. (The motor movement was measured from the
power supply drop on the servo power supply). The measured
median latency of 2.2 ms between the beginning of the LED
flashing and the microcontroller output is the response latency
leaving out the latency of the random PWM phase and the
servo motor (Figure 6A). This latency was achieved by setting
the servo controller USB2.0 full speed interrupt polling inter-
val to 1 ms in the device’s USB descriptor (Axelson, 2001);
using the default polling interval of 10 ms resulted in sub-
stantially higher median latency of 5.5 ms that varied approx-
imately bi-modally between 3 and 10 ms. The total latency
for actuating the motor (5–15 ms) is dominated by the vari-
able delay of PWM phase. The 183 Hz servo pulse frequency
used in the robot has a period of 5.5 ms. A custom servo
which directly accepted USB commands could reduce servo
latency to about 1–2 ms, the delay to send a single USB1.1
command.

CONCLUSION
The main achievement of this work is the concrete demonstra-
tion of a spike-event driven hybrid of a neuromorphic-sensor
coupled to conventional procedural processing for low latency
object tracking, sensory motor processing, and self-calibration.
Secondary achievements are developments of robust and high
speed event-based object tracking and velocity estimation algo-
rithms. This paper also reports practical observations on the use
of USB interfaces for sensors and actuators.

The goalie robot can successfully block balls even when these
are low contrast white-on-gray objects and there are many back-
ground distracters. Running with standard USB buses for vision

Frontiers in Neuroscience | Neuromorphic Engineering November 2013 | Volume 7 | Article 223 | 21

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Delbruck and Lang Robo goalie

sensor input and servo-motor output under a standard preemp-
tive multitasking operating system, this system achieves median
update rates of 550 Hz, with latencies of 2.2 ± 2 ms from ball
movement to motor command at a peak CPU load of less
than 4%.

A comparable system based on using a standard image sen-
sor would require a frame rate of at least 500 Hz. At the same
spatial resolution (16 k pixels), a computer would need to con-
tinuously process 16 MBps of raw pixel information (with an
8-bit sensor output) to extract the basic visual information about
changing pixels. Although this computation is certainly possi-
ble, the scaling to higher resolution is very unfavorable to the
frame-based approach. Increasing the resolution to VGA resolu-
tion (640× 480) at 1 kHz, for instance, would require processing
307 MBps, about 3 times the effective capacity of a high speed
USB 2.0 interface and would allow only 3.3 ns per pixel of process-
ing time. A VGA-sized DVS would generate about 18 times more
data than the 128× 128 sensor used for this paper if the objects
filled a proportionally larger number of pixels, but even then
the processing of the estimated 400 keps from the sensor would
barely load a present-day’s microprocessor CPU load and would
be within the capabilities of modestly-powered embedded proces-
sors. As demonstrated by this work and other implementations
(Linares-Barranco et al., 2007; Conradt et al., 2009a; Domínguez-
Morales et al., 2012; Ni et al., 2013), the use of event-driven
sensors can enable faster and lower-power robots of the future.

ACKNOWLEDGMENTS
This work was supported by the University of Zurich and
ETH Zurich, the Swiss NCCR Robotics, and the EU project
SEEBETTER. The authors gratefully acknowledge the opportu-
nity to prototype this system at the Telluride Neuromorphic
Engineering Workshop.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/
fnins.2013.00223/abstract

REFERENCES
(2007). jAER Open Source Project: Real Time Sensory-Motor Processing for Event-

Based Sensors and Systems. Available online at: http://www.jaerproject.org
Axelson, J. (2001). USB Complete. Madison, WI: Lakeview Research.
Cheng, Y. (1995). Mean shift, mode seeking, and clustering. IEEE Trans. Pattern

Analysis Mach. Intell. 17, 790–799. doi: 10.1109/34.400568
Comaniciu, D., and Ramesh, V. (2000). “Mean shift and optimal prediction for

efficient object tracking,” in IEEE International Conference on Image Processing
(ICIP) (Vancouver, BC), 70–73.

Conradt, J., Berner, R., Cook, M., Delbruck, T. (2009a). “An embedded AER
dynamic vision sensor for low-latency pole balancing,” in 5th IEEE Workshop
on Embedded Computer Vision (in Conjunction with ICCV 2009) (Kyoto), 1–6.

Conradt, J., Cook, M., Berner, R., Lichtsteiner, P., Douglas, R. J., and Delbruck,
T. (2009b). “Live demonstration: a pencil balancing robot using a pair of AER
dynamic vision sensors,” in ISCAS 2009, (Taipei), 781–785.

Delbruck, T., and Lichtsteiner, P. (2007). “Fast sensory motor control based on
event-based hybrid neuromorphic-procedural system,” in ISCAS 2007 (New
Orleans, LA), 845–848.

Delbruck, T., Linares-Barranco, B., Culurciello, E., and Posch, C. (2010). “Activity-
driven, event-based vision sensors,” Presented at the IEEE International
Symposium on Circuits and Systems (Paris), 2426–2429.

Domínguez-Morales, M., Jimenez-Fernandez, A., Paz-Vicente, R., Jimenez, G.,
and Linares-Barranco, A. (2012). “Live demonstration: on the distance
estimation of moving targets with a stereo-vision AER system,” in IEEE
International Symposium on Circuits and Systems (ISCAS) 2012, (Seoul),
721–725.

Graetzel, C. G., Fry, S. N., and Nelson, B. J. (2006). A 6000 Hz computer vision
system for real-time wing beat analysis of Drosophila. Biorob 2006, 278–284.
doi: 10.1109/BIOROB.2006.1639099

Lichtsteiner, P., Posch, C., and Delbruck, T. (2006). “A 128×128 120dB 30mW asyn-
chronous vision sensor that responds to relative intensity change,” in Visuals
Supplement to ISSCC Digest of Technical Papers (San Francisco, CA), 508–509
(27.9).

Lichtsteiner, P., Posch, C., and Delbruck, T. (2007). A 128×128 120dB 15us latency
asynchronous temporal contrast vision sensor. IEEE J. Solid State Circuits 43,
566–576. doi: 10.1109/JSSC.2007.914337

Linares-Barranco, A., Gómez-Rodríguez, F., Jiménez, A., Delbruck, T., and
Lichtsteiner, P. (2007). “Using FPGA for visuo-motor control with a sil-
icon retina and a humanoid robot,” in ISCAS 2007, (New Orleans, LA),
1192–1195.

Litzenberger, M., Posch, C., Bauer, D., Schön, P., Kohn, B., Garn, H., et al. (2006).
“Embedded vision system for real-time object tracking using an asynchronous
transient vision sensor,” in IEEE Digital Signal Processing Workshop 2006 (Grand
Teton, WY), 173–178.

Ni, Z., Bolopion, A., Agnus, J., Benosman, R., and Regnier, S. (2013). Asynchronous
event-based visual shape tracking for stable haptic feedback in microrobotics.
IEEE Transactions on Robotics 28, 1081–1089. doi: 10.1109/TRO.2012.2198930

Oaks, S., and Wong, H. (2004). Java Threads. O’Reilly.
Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-

Vicente, R. Gomez-Rodriguez, F., et al. (2009). CAVIAR: A 45k Neuron,
5M Synapse, 12G Connects/s AER hardware sensory–processing– learning–
actuating system for high-speed visual object recognition and track-
ing. IEEE Trans. Neural Netw. 20, 1417–1438. doi: 10.1109/TNN.2009.
2023653

Wilson, A. (2007). Beyond camera link: looking forward to a new cam-
era/frame grabber interface standard. Vis. Syst. Design. 12, 79–83. Available
online at: http://www.vision-systems.com/articles/print/volume-12/issue-
10/features/product-focus/beyond-camera-link.html

Conflict of Interest Statement: The spinoff inilabs GmbH of the Inst. of
Neuroinformatics is actively marketing dynamic vision sensor technology, selling
vision sensor prototypes, and supporting users of the technology. The authors
declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Received: 07 October 2013; paper pending published: 02 November 2013; accepted: 05
November 2013; published online: 21 November 2013.
Citation: Delbruck T and Lang M (2013) Robotic goalie with 3 ms reaction time at
4% CPU load using event-based dynamic vision sensor. Front. Neurosci. 7:223. doi:
10.3389/fnins.2013.00223
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2013 Delbruck and Lang. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) or licen-
sor are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

www.frontiersin.org November 2013 | Volume 7 | Article 223 | 22

http://www.frontiersin.org/journal/10.3389/fnins.2013.00223/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2013.00223/abstract
http://dx.doi.org/10.3389/fnins.2013.00223
http://dx.doi.org/10.3389/fnins.2013.00223
http://dx.doi.org/10.3389/fnins.2013.00223
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

ORIGINAL RESEARCH ARTICLE
published: 13 December 2013
doi: 10.3389/fnins.2013.00234

Event-driven visual attention for the humanoid robot iCub
Francesco Rea1*, Giorgio Metta2 and Chiara Bartolozzi2

1 Robotics, Brain and Cognitive Science, Istituto Italiano di Tecnologia, Genova, Italy
2 iCub Facility, Istituto Italiano di Tecnologia, Genova, Italy

Edited by:

Tobi Delbruck, University of Zurich
and ETH Zurich, Switzerland

Reviewed by:

Theodore Yu, Texas Instruments
Inc., USA
Nabil Imam, Cornell University, USA

*Correspondence:

Francesco Rea, Robotics, Brain and
Cognitive Science, Istituto Italiano di
Tecnologia, via Morego 30, 16163
Genova, Italy
e-mail: francesco.rea@iit.it

Fast reaction to sudden and potentially interesting stimuli is a crucial feature for safe and
reliable interaction with the environment. Here we present a biologically inspired attention
system developed for the humanoid robot iCub. It is based on input from unconventional
event-driven vision sensors and an efficient computational method. The resulting system
shows low-latency and fast determination of the location of the focus of attention. The
performance is benchmarked against an instance of the state of the art in robotics artificial
attention system used in robotics. Results show that the proposed system is two orders
of magnitude faster that the benchmark in selecting a new stimulus to attend.

Keywords: visual attention, neuromorphic, humanoid robotics, event-driven, saliency map

1. INTRODUCTION
For successfully interacting with the environment in daily tasks,
it is crucial to quickly react to ubiquitous dynamic stimuli.
However, reaction time of state-of-the-art robotic platforms is
limited by the low temporal resolution of sensory data acqui-
sition and by the time required to process the corresponding
sensory data.

In conventional robotic systems, sensory information is avail-
able in a sequence of “snapshots” taken at regular intervals. Highly
redundant data are received at fixed frame-rate. High dynamics
can be sensed only by increasing the sampling rate, at the cost
of increasing the quantity of data that needs to be transmitted,
stored and processed.

Additionally, the available bandwidth limits the amount of
information that can be transmitted, and the available comput-
ing platforms limit the speed at which data can be processed,
forcing a compromise between resolution and speed. As a result,
current robotic systems are less efficient in reacting appropriately
to unexpected, dynamic events (Delbruck, 2008). For example,
in robotic soccer competitions (e.g., Robocup, 2011), the perfor-
mance strongly depends on the latencies in the perception loop,
where the robot has to detect, track and predict the trajectory
of the ball, to plan where and when it should be catched. For
the same reason, in manipulation tasks, unexpected failures of the
grasping are difficult to correct online, resulting in the fall of the
object to be grasped. On the contrary, robotic systems equipped
with vision neuromorphic chips show remarkable performance in
tracking (Serrano-Gotarredona et al., 2009), ball goalkeeping and
pencil balancing (Conradt et al., 2009).

Differently from main-stream state-of-the art vision systems
that repeatedly sample the visual input, event-driven vision
(Camunas-Mesa et al., 2012; Wiesmann et al., 2012) samples
changes in the visual input, being driven by the stimuli, rather
than by an external clock. As such, event-driven systems are inher-
ently more efficient because they acquire, transmit and perform
computation only when and where a change in the input has
been detected, removing redundancies at the lowest possible level.

Selective attention is a key component of artificial sensory sys-
tems; in robotics, it is the basis for object segmentation (Qiaorong
et al., 2009), recognition (Miau et al., 2001; Walther et al., 2005)
and tracking (Ouerhani et al., 2005), for scene understanding
and action selection for visual tracking and object manipulation.
It is also used in navigation, for self-localization and simulta-
neous localization and mapping (SLAM) (Frintrop and Jensfelt,
2008). Moreover, the implementation of biologically inspired
models of attention is helpful in robots that interact with human
beings. Engaging attention on similar objects can be the basis for
a common understanding of the environment, of shared goals
and hence of successful cooperation. State-of-the art artificial
attention systems, based on traditional video acquisition, suffer
from the high computational load needed to process each frame.
Extreme computational demand limits the speed of the selection
of new salient stimuli and therefore the dynamics of the attention
scan path. Specific implementations of such models have been
explicitly developed for real-time applications, exploiting either
parallelization on several CPUs (Itti, 2002; Siagian et al., 2011)
or dedicated hardware (Ouerhani and Hügli, 2003), or the opti-
mization and simplification of the algorithms (Itti et al., 1998;
Frintrop et al., 2007) for the extraction of features from images,
or combination of them (Bumhwi et al., 2011).

An alternative approach is the implementation of simplified
models of attention systems based on frame-less event-driven
neuromorphic vision sensors, so far realized with the design of
ad hoc dedicated hardware devices (Bartolozzi and Indiveri, 2009;
Sonnleithner and Indiveri, 2012).

Along this line of research, we developed an event-driven,
attention system capable of selecting interesting regions of the
visual input with a very short latency. The proposed system
exploits low latency, high temporal resolution and data compres-
sion given by event-driven dynamic vision sensors, as well as an
efficient strategy for the computation of the attention model that
directly uses the output spikes from the sensors. The proposed
implementation is therefore fully “event-driven”, exploiting the
advantages offered by neuromorphic sensors at its maximum.

www.frontiersin.org December 2013 | Volume 7 | Article 234 | 23

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2013.00234/abstract
http://www.frontiersin.org/people/u/105752
http://www.frontiersin.org/people/u/79905
http://www.frontiersin.org/people/u/21102
mailto:francesco.rea@iit.it
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Rea et al. Event-driven attention

Intermediate hybrid approaches can be implemented by recon-
structing frames from the events and applying the vast collection
of available standard machine vision algorithms. However, this
approach would suffer from errors in the frame reconstruction
due to drifts in the gray level calculation, it would increase the
latency of the response and loose the temporal resolution gained
by the use of event-driven sensors, hindering the full exploitation
of the neuromorphic approach advantages.

The output of the Event-Driven Visual Attention (EVA) system
has been implemented for the humanoid robot iCub which will
therefore be able to quickly orient its gaze, scrutinize and act on
the selected region and react to unexpected, dynamical events.
Additionally, it can be of generic interest for robotics systems with
fast actuation.

In the following, we will describe EVA, show the improved
latency in the selection of salient stimulus and compare its
performance with the well-known state-of-the art frame-based
selective attention system from the iLab Neuromorphic Vision
C++ Toolkit (iNVT), 1 developed at the University of Southern
California.

2. METHODS
The selective attention system described in this work has been
developed on the iCub humanoid robot (www.icub.org) and is
entirely based on the input from non-standard sensors. Such
sensors use a new way of encoding information based on a
custom asynchronous communication protocol Address Event
Representation (AER). In the following we shortly describe the
custom hardware and software modules developed for the atten-
tion system implementation.

2.1. HARDWARE
The robot is equipped with two asynchronous bio-inspired
Dynamic Vision Sensors (DVS) (Lichtsteiner et al., 2008). It fea-
tures three degrees of freedom in the eyes to realize the tilt,
vergence and version movements required for the implementa-
tion of active vision. As opposed to the traditional “frame-based”
approach, in the DVS each pixel responds to local variations
of contrast. It emits an asynchronous digital pulse (“spike” or
“event”) when the change of the logarithm of light intensity
exceeds a pre-defined threshold. This bio-inspired sensory trans-
duction method is inherently efficient, as it discards redundancies
at the lowest level, reducing the data acquisition, transfer, storage
and processing needs. This technique preserves the high dynamic
content of the visual scene with a temporal granularity of few
hundreds of nanoseconds.

The visual system is entirely based on the AER protocol (Deiss
et al., 1998). The sensors asynchronously send digital spikes or
“events” that signal a relative contrast change in the pixel. The
address transmitted with the event corresponds to the identity of
the active pixel. Information is self encoded in the timings of the
spikes.

A dedicated printed circuit board located in the head of
the robot hosts a Field Programmable Gate Array (FPGA) and
an embedded processor specialized for asynchronous data, the

1http://ilab.usc.edu/toolkit/home.shtml

General Address Event Processor (GAEP) (Hofstaetter et al.,
2010). The FPGA merges the data streams from left and right
camera sensors and interfaces them with the GAEP. The GAEP
provides effective data processing, protocol verification and accu-
rate time-stamping of the events, with a temporal resolution of
160 ns. Processed events are connected to the rest of the sys-
tem thanks to an USB connection to a PC104 embedded CPU.
The PC104 gathers the data and passes them to the processing
infrastructure of the iCub (Metta et al., 2006).

2.2. SOFTWARE
An application running on the embedded PC104 configures the
sensors in the preferred operating state. The same software mod-
ule reads the data through the USB port, checking for protocol
errors and formatting the stream of asynchronous events. Each
address event (AE) is composed of the emitting pixel address and
the corresponding time-stamp. The application sends the received
collection of events on the gigabit network where distributed pro-
cessing takes advantage from middleware YARP 2 library. From
this point, any process connected to the network can acquire data
and perform computation. There is no limit in the number of
nodes that can be recruited for processing events.

Finally, specific classes are used to efficiently transmit and
(un)mask the AER stream into a dedicated format. The AE format
consists in: address event, polarity, timestamp and type. The struc-
ture transparently manages events from the DVS sensor, as well as
generic events such as complex objects deriving from clustering
and feature extraction (Wiesmann et al., 2012).

Buffers of asynchronous data are handled with a two-threads
method. N-buffering is used to guarantee concurrent access to
data in process, thus avoiding conflicts and allowing each mod-
ule to run at the desired rate irrespective of the incoming flow of
event. Examples of developed modules are used to: display DVS
activity, generate feature maps, perform weighted combination of
multiple feature maps.

2.3. EVENT DRIVEN VISUAL ATTENTION—EVA
EVA is an event-driven reduced implementation of the saliency-
map based attention model proposed by Koch and Ullman (1985)
and Itti and Koch (2001). In this foundational work, the authors
propose a biophysically plausible model of bottom–up attention
where multiple feature maps concur to form a unique saliency
map used to compute the location of the focus of attention. Each
feature map encodes for a characteristic of the visual input such as
color opponency, orientation, contrast, flicker, motion, etc. com-
puted at different spatial scales. These maps are then normalized
and summed together to form the final saliency map. The saliency
map topologically encodes for local scene conspicuity, irrespec-
tive of the feature dimension that has contributed to its salience.
That is, an active location in the saliency map encodes the fact
that this location is salient, no matter whether it corresponds to a
45◦ oriented object in a field of prevalent orientation of 90◦, or to
a stimulus moving in a static background. Eventually, a winner-
take-all (WTA) network selects regions in the map in order of
decreasing saliency, and guides the deployment of the focus of

2Yet Another Robotic platform.

Frontiers in Neuroscience | Neuromorphic Engineering December 2013 | Volume 7 | Article 234 | 24

http://ilab.usc.edu/toolkit/home.shtml
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Rea et al. Event-driven attention

attention and gaze. In EVA, events from the visual sensor con-
cur to generate a number of feature maps. Figure 1 shows the
model and the distribution of the diverse computing modules
on the hardware platform described in paragraph 2.1. Once col-
lected by the dedicated hardware, the sensor’s events are sent to
software modules that extract diverse visual features. The corre-
sponding feature maps are then normalized and summed. The
resulting saliency map is then transmitted to a WTA network that
generates the attentional shifts.

2.3.1. Feature extraction
In EVA a number of features are extracted from the DVS output
to populate diverse feature maps. As the DVS does not convey
information about color or absolute intensity, we implemented
a subset of feature maps from Itti and Koch (2001): contrast,
orientation (0◦, 45◦, 90◦, −45◦) and flicker map. Specifically,
the flicker map encodes for the scene temporal changes and
in EVA it is implemented by directly using the sensor’s
output. Contrast and orientation feature maps are generated by
the output of filters inspired by receptive fields of center-surround
retinal ganglion cells and simple cells of primary visual cor-
tex (Hubel and Wiesel, 1962; Movshon et al., 1978; De Valois
et al., 1982; Kandel et al., 2000), respectively. Receptive field
activation is usually obtained by convolving the image with

DOG (Difference of Gaussians) and Gabor filters, respectively.
On the contrary, EVA uses a much simpler and efficient imple-
mentation: the mapping. In the mapping, a RF is defined as a
look-up table. The level of activation of the RF increases when
it receives ON-spikes from the DVS pixel located in the ON-
region of the RF and OFF-spikes in the OFF-region. If the neuron
does not receive any spike over time, the activation decreases.
When the neuron activation crosses a threshold, it generates a
new event in the corresponding location of the feature map.
Figures 2A,B show two center-surround RFs. Each RF has a
defined location in the visual space and a specific size. The algo-
rithms below explain the procedure that generates the response
of the RF.

The visual field is covered with RFs following a multiscale
approach. In the current implementation, we use two different
scales with 4× 4 and 8× 8 pixels receptive fields. Figures 2C,D
show the RFs of oriented cells with different sizes. Sub-regions
contribute to facilitation for aligned RFs: spikes from the visual
field contributing to the activation of the RF at the border of the
elongated central region (in green) contribute to the activation of
neighboring RFs aligned along the same orientation. This feature
enhances the representation of long oriented edges (Ferster and
Koch, 1987) by reinforcing the activity of RFs responding to the
same oriented edge.

FIGURE 1 | Structure of EVA and its implementation on the diverse HW

modules: the DVS cameras send asynchronous events, the FPGA

merges left and right DVS events, the GAEP assigns a timestamp to

each event. The resulting list of addresses and timestamps is sent to the
PC104 that makes them available to the YARP network through the

AexGrabber module. From then on, any SW module can acquire the events
buffer and perform a specific computation (feature extraction, normalization,
linear weighted sum, and WTA selection). A dedicated connection between
the feature extracting modules and the Event-Selective-Attention module
avoids interferences between feature maps and other trains of events.

www.frontiersin.org December 2013 | Volume 7 | Article 234 | 25

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Rea et al. Event-driven attention

FIGURE 2 | Receptive fields of cells used for the mapping

procedure: center-surround cells. (A) Four 4× 4 cells, (B) one
8× 8 cell. Simple oriented cells: (C) two 4× 4 cells, (D) one

8× 8 cell. ON- and OFF-regions in orange and white, respectively.
In green, the pixels that contribute to the activity of neighboring
cells.

Data: bRE: buffer of retina events, featMap: mapping related
to the feature map

Result: bFE: buffer of feature-maps events
c = constant;
foreach event ∈ bRE do

mapEvent = map(event, featMap);
RF = belong(mapEvent);
updateActivation(RF);
if affectNeighbor(mapEvent) then

RFNeighbor = lateralConnection(mapEvent);
updateActivation(RFNeighbor);
if RFNeighbor.activation > positiveThreshold then

featureEvent =
generateFeatureEvent(RFNeighbor);
featureEvent.polarity = positive;

end
if RF.activation < negativeThreshold then

featureEvent = generateFeatureEvent(RF);
featureEvent.polarity = negative;

end
end
if RF.activation > positiveThreshold then

featureEvent = generateFeatureEvent(RF);
featureEvent.polarity = positive;

end
if RF.activation < negativeThreshold then

featureEvent = generateFeatureEvent(RF);
featureEvent.polarity = negative;

end

end

Data: RF: receptive field; r : event
Result: update of the activation of RF
if RF.type == ON then

if r.polarity == ON then
if r ∈ RF.center then

RF.response := RF.response+ c;
end
else

RF.response := RF.response− c;
end

end
else

if r ∈ RF.center then
RF.response := RF.response− c;

end
else

RF.response := RF.response+ c;
end

end
end
else

if r.polarity == ON then
if r ∈ RF.center then

RF.response := RF.response+ c;
end
else

RF.response := RF.response− c;
end

end
else

if r ∈ RF.center then
RF.response := RF.response− c;

end
else

RF.response := RF.response+ c;
end

end
end

Frontiers in Neuroscience | Neuromorphic Engineering December 2013 | Volume 7 | Article 234 | 26

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Rea et al. Event-driven attention

The mapping is less computationally demanding than a tra-
ditional convolution operation. Additionally, with this approach,
the feature maps are only updated at the arrival of a new spike,
without calculation of the RF activation for the complete image
at each time step. To further reduce the computational load,
we implemented non-overlapping receptive fields, at the cost of
reducing the output resolution. However, in EVA the final goal
is to obtain short latency in relation to saliency map resolution
that guarantees reliable gaze shift. As a result the selected region
is focused in the sensor’s fovea for detailed inspection.

2.3.2. Saliency map and attention selection
The final saliency map is obtained through weighted linear com-
bination of the computed contrast (I), orientation (O) feature
maps and flicker feature map (F):

S = Norm (kI · I + kO · O+ kF · F) (1)

The weights kI , kO, and kF can be changed in real-time to
bias saliency computation toward behaviorally relevant features,
implementing a task-dependent bias (Itti and Koch, 2001).
Finally, a WTA module selects the most conspicuous location of
the saliency map, defining the current focus of attention. Feature
extraction can be performed in parallel by multiple modules,
however, the normalization and sum of feature maps into the
saliency map is sequential and requires time. The data-driven sys-
tem further improves the speed of computation, as the saliency
map is updated only with the last train of events, avoiding a
complete generation of the entire map.

In iNVT, as well as in most of saliency map based selective
attention models, the currently selected location is deselected
thanks to a self-inhibition mechanism, known as Inhibition of
Return (IOR). This mechanism prevents the system from imme-
diately re-select the current winner, and allows for a scan of many
points of the saliency map in order of decreasing conspicuity.
However, in our setup neither EVA nor iNVT implement IOR,
rather, the shifts of the focus of attention are determined by
intrinsic noise in the system.

2.3.3. Ocular movements
A dedicated module implements saccades or gaze shifts toward
salient regions selected by EVA. Tremor and microsaccades are
used to generate motion of static visual stimuli on the DVS sen-
sor focal plane, to elicit activity of the pixels that only respond to
stimulus changes. This approach is similar to the mammals visual
system, where small eye movements counteract photoreceptors
bleaching adaptation (Kowler, 2011). Tremor is implemented as
an omnidirectional movement of 0.45◦ amplitude with frequency
of 500 Hz and random direction, superimposed on microsaccades
of amplitude 0.75◦ and frequency 2.5 Hz in exclusively horizontal
direction.

3. PERFORMANCE AND BENCHMARK
The absolute novelty of EVA is in the short latency of the atten-
tional shifts that guarantees fast reaction times. The proposed
processing of the attention system generates short latency that
hardly compares with the performance of frame-based attention
systems. The selected attended location can be communicated

to the oculomotor controllers to direct the robot’s gaze toward
salient regions with a saccade command. It continuously updates
the saliency map and the resulting focus of attention location,
allowing for fast reaction to unexpected, dynamic events and for
a more natural interaction of robots with the environment.

The improvement in computation latency is obtained thanks
to many factors, among which the asynchronous low-latency and
low-redundancy input, efficient sensory encoding, and efficient
computing strategy (the mapping).

To assess its performances and validate our results, we tested
EVA in three different experimental setups. Unfortunately, a
direct quantitative comparison of the performance of EVA with
literature state-of-the art artificial bottom–up attention systems
cannot be performed as each has its own characteristics in terms
of feature maps, methods for feature map calculation, hardware,
software implementation, and stimuli (Borji and Itti, 2012). For
this reason, we rather preferred to benchmark our implemen-
tation against the state-of-the art main-stream system based on
the Itti and Koch (2001) model: the iLab Neuromorphic Vision
Toolkit (iNVT) (Itti et al., 1998, 2003; Navalpakkam and Itti,
2005) sharing the same number and type of feature maps, hard-
ware platform and stimuli. The iNVT algorithm is based on
traditional frame-based cameras and convolution operation for
the calculation of the feature maps.

The two systems are at the two opposite extremes, one is fully
event-driven, the other fully frame-based. Other intermediate
solutions might be implemented, where the output of the DVS
is first translated into frames by integrating spikes over time, then
iNVT is used on the resulting sensory output. However, the nec-
essary transition from event-driven to frame-based information
coding spoils some of the advantages of event-driven acquisition,
such as temporal resolution and low latency and brings addi-
tional costs and relevant overhead in the computation. It is worth
to further detail at which extent the performance improvement
inherits from the use of DVS sensor as compared to the use of
event-based algorithm implementation. As shown in the sum-
mary table 2, the latency of EVA amounts to 23 us, of which 15us
can be attributed to the characteristic latency of the DVS sensor
(Lichtsteiner et al., 2008) and the remaining 8 μs as result of the
event-based algorithm. On the contrary, in frame-based scenario,
the latency is affected by both the acquisition time (for 30 fps
acquisition the acquisition time interval is 33 ms) and the frame-
based algorithm for the image processing which we measured in
23 ms. The performance of such systems would be in terms of
qualitative performance and computational cost in between the
two extremes that are analyzed in the following.

The two systems are implemented on the iCub robot using
respectively the DVS and the standard robot’s Dragonfly cam-
eras. They simultaneously run on two identical machines3; both of
them distribute the processing over the four available CPU cores.
To correctly compare the two systems, we implemented the same
type and number of feature maps in both, restricting the numer-
ous feature maps of iNVT to intensity, orientation and flicker4. In

3Intel Core 2 Quad Cpu Q9950 @2.83GHz
4ezvision –in=raster:*.ppm –display=display -T -j 4 –input-frames=@30Hz –
textlog=iNVTLog.log –vc-chans=IOF –ior-type=None –use-random.

www.frontiersin.org December 2013 | Volume 7 | Article 234 | 27

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Rea et al. Event-driven attention

order to remove any overhead to the computation time, the iNVT
program processes a batch of camera images.

The stimulus is placed at a distance d in front of the robot and
centered in the fovea of both the Dragonfly and DVS cameras,
such that it is completely visible and the quantity of received light
is comparable for both sensors. The sensors have been configured
with typical parameters (see Table 1) and have not been specif-
ically tuned for the experiments, in order to assess the system’s
performance in typical use cases.

For each experiment we report the diffuse scene light measure5

since the performance of both sensors and, consequently, of the
two attention systems depend on the illumination level.

For all of the validation setups we report the focus of
attention’s scan path generated by the two systems, giving an
immediate qualitative evaluation of the computation time. For
a quantitative assessment the benchmark comprises a set of
predefined measurements:

• Number of shifts of the focus of attention over time FEVA and
FiNVT and the correspondent time interval between consecu-
tive shifts �tEVA and �tiNVT

• CPU utilization UEVA and UiNVT
6

• Data rate DEVA and DiNVT

• Latency time interval LEVA and LiNVT

The time interval between two consecutive shifts in the selec-
tive attention is a good measure of the frequency of attentional
redeployments. The latency measure gives an estimate of the
minimum reaction time to the new stimuli.

We measure the latency in both systems as the time interval
from the instant a novel stimulus is presented to a complete pro-
cessing of the visual input. In EVA, the latency interval comprises
the time interval for feature extraction and WTA selection. The
former represents the time necessary to generate a new flow of

Table 1 | Setup parameters of DVS and Dragonfly sensors.

Parameter dragonfly Value Bias DVS Value (μA)

Width 320 (pixel) cas 0.094

Height 640 (pixel) injg 0.0182

Shutter 0.913 reqPd 3.0

Gain 0.312 pux 1.4401

White balance A 0.506 diffoff 2.378e−5

White balance B 0.494 req 0.0287

Sharpness 0.5 refr 1.688e−4

Hue 0.48 puy 3.0

Gamma 0.4 diffon 0.1143

Saturation 0.271 diff 0.0054

Framerate 30 (fps) foll 3.576e−6

pr 1.431e−6

5Measured by portable hand-held exposure meter Gossen Lunasix F.
6Measurements performed with SAR, a program that directly measures the
computational load on the processor over a user-defined time interval.

events associated to feature maps from the moment a new stim-
ulus arrives. The latter represents the time interval to process the
generated trains of events and determine attentional shift. In both
measures, a sequence of events is needed to alter the output of the
module. The frequency of redeployment of the focus of attention
depends on the time needed to acquire enough visual data and
the time required to extract features, compute saliency and per-
form the winner-take-all selection. On the contrary, for iNVT we
present a single frame and we measure the time interval necessary
for the system to process the camera image.

CPU utilization and data rate give an accurate measure of
the computation demand of both implementations. To obtain
an unbiased measure, we normalized by the number of atten-
tional shifts and report the computational load per shift. The
benchmark comprises three test experiments. The first uses typi-
cal stimuli for visual experiments, such as oriented gratings, and
is run under two different illumination conditions. The second
shows the performance of the EVA system with a fast unpre-
dictable stimulus such as a chaotic pendulum. The third indicates
how performance changes with the increase of the information to
process.

3.1. FIRST EXPERIMENT, GRATINGS WITH DIFFERENT ORIENTATIONS
Figure 3A shows the stimulus used in the first characterization
setup: two horizontal and two vertical gratings of 4× 4 cm with
a gaussian profile, each positioned at the distance d = 20 cm
from the camera. In this scenario the stimuli are static and the
DVS output is generated with the use of microsaccades (see
section 2.3.3).

3.1.1. Case A, bright illumination
The focus of attention locations selected by EVA and iNVT and
their hit frequency are shown in Figures 3C,B, respectively. Both
systems select conspicuous locations corresponding to the ori-
ented gratings, with slightly different patterns. As we disabled
inhibition of return, the specific focus of attention scan-path
depends on the computed saliency and on the noise present in the
system. Small differences in stimulus illumination and noise pat-
tern can contribute to slightly different computed saliency for the
same grating placed in different regions; the missing inhibition
of selected areas over a long period of time leads to the selection
of fewer stimuli with very similar salience, as shown in Figure 3B.
Two of the oriented gratings are not selected by iNVT, despite they
should have had exactly the same salience. In this scenario, EVA
is capable of selecting more stimuli, reducing the latency, prob-
ably thanks to the different pattern of noise, that is intrinsically
generated by the hardware.

In EVA, the data rate depends on the lighting condition and
on the stimulus, under these conditions it is about 7 kAE/s.
Conversely, the data rate produced by a traditional color cam-
era only depends on intrinsic parameters of the systems such as
number of pixels, color resolution and frame rate, being indepen-
dent from the stimulus; for the Dragonfly used on the iCub this
amounts to 530 Mbits/s. The lower amount of data corresponds
to lower processing demand and, hence, in a faster computation
of the focus of attention location. Consequently this results in
higher shifts frequency generated by EVA with respect to iNVT,

Frontiers in Neuroscience | Neuromorphic Engineering December 2013 | Volume 7 | Article 234 | 28

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Rea et al. Event-driven attention

FIGURE 3 | First scenario. Case A: comparison of the shifts
generated by iNVT (B) and EVA (C) in response to four oriented
gratings (A) under bright background illumination (∼55.6 LUX—indoor
illumination of a diffuse bright natural light). Case B: comparison of
the shifts generated by iNVT (E) and EVA (F) under dim background
illumination (∼2.7 LUX—dim illumination that typically would require

the use of artificial light). The (x,y) coordinates of the two attention
systems correspond to the image coordinates of the sensors
(240× 320 for the Dragonfly and 128× 128 for the DVS). (D) Mean
and standard deviation of CPU system percentage of utilization
(green), temporal distance between consecutive shifts (blue) over 10
repetitions of 10 trials in both illumination conditions.

Table 2 | Quantitative benchmark: f : frequency of attentional shifts [shifts/s], L : Latency time interval [s], U : normalized cpu utilization [%] ,

D : data rate of input [Kbit/s], δ : duration of the acquisition[s].

Experiment 1 Experiment 2

Bright (∼55.6 LUX) Dim (∼2.7 LUX) ∼27.2 LUX

iNVT EVA iNVT EVA EVA

hor. top 60.85% 33.53% 100% 0% .

hor. bot 0% 33.19% 0% 0% .

ver. top 39.15% 15.06% 0% 0% .

ver. bot 0% 18.21% 0% 100% .

f (shifts/s) 1.89 158.2 18.08 3.72 1708.80

L (s) (5.60± 0.3)e−2 (23.2± 3)e−4 (5.56± 0.3)e−2 (23.1± 3)e−4 (3.72± 1)e−3

U (%) 6.79 0.2 8.4 1.3 0.2

D (Kbit/s) 530e3 226.72± 0.078 530e3 20.32± 1.2 2.1e3

δt (s) 100 100 100 100 2.68

First experiment: number of hits clustered on the horizontally (top and bottom) and vertically (top and bottom) oriented grating stimuli under bright and dim

illumination. Second experiment: performance of the EVA in details.

and higher number of attention relocation, as shown in Table 2.
EVA, because of the temporal resolution of the visual signal and
the low computational demand, can generate a shift of attention
approximately every 1.5 ms, on the contrary, iNVT is limited by

the frame acquisition frequency (30 ms) and the time between
two attentional shifts amounts to 50 ms. The latencies of the
two systems differ of two orders of magnitude, showing the high
responsiveness of EVA to sudden and potentially relevant stimuli.

www.frontiersin.org December 2013 | Volume 7 | Article 234 | 29

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Rea et al. Event-driven attention

Figure 3 shows that the computation demand of EVA is lower
than iNVT of at least one order of magnitude, as expected from
the lower Data Rate and the different computational load of the
mapping procedure. This different performance is also reflected
in the shift latency that amounts to about 300 ns for EVA and
0.4 ms for iNVT.

3.1.2. Case B, dim illumination
One of the advantages of using the logarithmic encoding in
the DVS is the wider dynamic range with respect to traditional
sensors. Thus, we tested the attention systems in the scenario
described above, but with reduced ambient light. The result-
ing focus of attention scan path is shown in Figures 3E,F. The
selection of the top horizontally oriented grating in the iNVT sys-
tem and the selection of the bottom vertical oriented grating in
EVA are the results of a strong decrease of the response strength.
The lower illumination affects both systems by drastically reduc-
ing the number of shifts. A way to improve this behavior in
EVA would be the implementation of adaptive firing threshold,
that can be dynamically set according to the level of background
illumination (Delbruck and Oberhof, 2004).

Figure 3 shows the aggregated performance measures for
case A and B for both EVA and iNVT; Despite the latency
of both systems remains largely unchanged, EVA outperforms
iNVT, while the normalized computational load increases, with
different slopes. In case B (low illumination), iNVT abso-
lute CPU usage remains unchanged but it is normalized for
a lower number of shifts; in EVA both the number of shifts
and the CPU utilization decrease, as a result of a lower
input data rate, as shown in Table 2. The resulting nor-
malized computation load increases less than what observed
for iNVT.

3.2. SECOND EXPERIMENT: CHAOTIC PENDULUM
We used a chaotic pendulum to test EVA with fast unpredictable
stimuli. The chaotic pendulum shown in Figure 4A is composed
of two black bars (22 and 18 cm) connected by a low friction
joint and attached to a fixed support via a second low friction
joint. In this configuration, the first bar can freely rotate with
respect to the support and its movement is influenced by the sec-
ond bar that revolves independently around the first joint. The
pendulum is mounted over a white background and we used an

FIGURE 4 | Second scenario. (A) The chaotic pendulum is located 50
cm far from the robot to keep the whole stimulus in the camera’s field
of view. In the setup, DVS sensors are embedded in the iCub’s eyes
to exploit ocular movements, while the Dragonfly cameras are mounted

on the head with fixed supports. (B) Raster representation of the
activation of pixels in the DVS and relative location of the WTA
selected by EVA. (C) Events generated by the chaotic pendulum, (D)

focus of attention scan-path generated by EVA.

Frontiers in Neuroscience | Neuromorphic Engineering December 2013 | Volume 7 | Article 234 |30

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Rea et al. Event-driven attention

average lighting condition of 27.6LUX—corresponding to diffuse
illumination where artificial light is not required.

The stimulus is so fast that neither the Dragonfly, nor the
human eye, can successfully perceive its full motion. In this
scenario, iNVT hardly relocates the focus of interest on the pen-
dulum without introducing an evident delay. In iNVT, such shift
is clearly shown in the video provided in Technical Materials. 7

Conversely, we accurately assess the performance of EVA as a
viable to technological solution for fast dynamic stimuli in a wide
range of operating conditions.

The fast movement of the pendulum generates a higher data
rate with respect to the previous scenario. The resulting perfor-
mance parameters are listed in Table 2.

To estimate the quality of the attention system, in Figure 4
we compare the trajectory generated by the pendulum with the
location of the attention shifts over time. To achieve this, we syn-
chronized the generation of attention shifts with the batch data
of the generated events, using the temporal information stored in
the timestamp.

3.3. THIRD EXPERIMENT: PERFORMANCE SCALING WITH QUANTITY
OF INFORMATION

In this scenario, we assess how the performance of EVA scales
with increasing number of events. In EVA, the number of events
can increase for cluttered scenes and for higher resolution sen-
sors, increasing the computational demand of the system. This
happens also for iNVT, when higher resolution sensors are used.
We estimate how the computation demand expressed in CPU uti-
lization scales with the processed information (number of bits).
In order to perform such analysis we determined how the com-
putation demand of the two systems change when the quantity
of information scales. For EVA, we control the number of gener-
ated events (and then quantity of information) by increasing the
number of black edges printed on a white disk rotating at con-
stant speed. We use five different configurations, where the edge
is repeated every 360◦, 180◦, 90◦, 45◦, and 22.5◦. Figure 5 shows
the normalized CPU utilization measured in this experiment (red
dots in the inset); we do a linear fit of the normalized CPU uti-
lization in relation with the increasing quantity of information
processed. We use this function as reference to estimate the com-
putation demand of EVA at arbitrary number of generated events.
Similarly, for iNVT, we provide different sets of images. The sets
differ only for the dimension of the images, the stimulus is the
same of Figure 4A. The computation demand increases with the
quantity of processed information (green dots in Figure 5) and
we fit a first order curve that best describes the distribution.

Figure 5 shows that the required level of processing for EVA
(in red) never exceeds the required level of processing of iNVT
(in green) as it increases with a more gradual slope. Figure 5
shows that the required level of processing for EVA (in red) never
exceeds the required level of processing of iNVT (in green) as it
increases with a more gradual slope. This observed divergence
indicates the increasingly better performance of EVA, as more
processing is required. Key points (arrows in figure) help identi-
fying the estimated computation demand for both the systems in

7http://youtu.be/Nqd3uRbjXHE

FIGURE 5 | Expected evolution of the normalized computation

demand for increasing the sensor’s output by increasing the sensor’s

size, in green iNVT and in red EVA. In the inset the measured data for
EVA, for increasing number of events, generated by increasing number of
black rotating edges repeated, respectively, at 360◦, 180◦, 90◦, 45◦, and
22.5◦, in red the fit from which we extrapolate the computational demand
for bigger sensors.

correspondence of quantity of information generated by different
fixed size sensors (128× 128, 320× 240, 640× 480).

To estimate these numbers, we select speed of rotating bar that
covers typical use (4.2284 rad/s). Even though in normal scene
operation the DVS activation is about 30%, in this test, we con-
sider the worst case scenario where all the pixels in the sensor
show the maximum level of activation (27 events per pixel).

Thus, we estimate the maximum computation load associ-
ated to sensors that have dimension 128× 128, like the DVS,
320× 240, like the Dragonfly used for iNVT and 640× 480. As
the processing required by EVA sets well below iNVT, we con-
clude that for any possible situation, the required processing of
EVA results less impacting on the performance than iNVT.

This confirms the assumption that relevant saving in compu-
tation demand is associated to the design of the processing in EVA
and it is not limited to the hardware of the system.

4. DISCUSSION
In this manuscript we described EVA, a real-time implemen-
tation of selective attention based on the bio-inspired model
proposed in the foundational work of Itti and Koch (2001), that
uses a frame-less asynchronous vision sensor as input. The goal
of the implementation was to offer a flexible and light com-
putational paradigm for the computation of the feature maps,
exploiting the mapping mechanism. The overall performance of
the developed system takes advantage of the efficient informa-
tion encoding operated of the sensor, its high dynamic range,
low response latency and high temporal resolution. The use of
non-conventional sensors coupled with an efficient processing
results in a unprecedented fast attentional selection. We report the
behavior of the system in three different experiments that high-
light performance in detail. The three experiments give insights

www.frontiersin.org December 2013 | Volume 7 | Article 234 | 31

http://youtu.be/Nqd3uRbjXHE
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Rea et al. Event-driven attention

on the three major benefits of EVA: low computation demand,
high responsiveness to high frequency stimuli and favorable
scalability. The attention system EVA requires lower computation
utilization up to one order of magnitude with respect to iNVT
when stimulated by identical stimulus. This positive characteris-
tic does not degrade the quality of the generated attention shifts.
The characteristic of low response latency and high temporal res-
olution resulting from the efficient design of the attention system
EVA allow remarkable performance in highly dynamic scenarios.
The attention system accurately and swiftly redeploys the atten-
tional foci on the most salient regions in the visual field even in
situations where frame-based algorithms of visual attention fail
in obtaining clear interpretation of the stimulus. The second sce-
nario shows that the high temporal resolution allows the attention
system to track very fast stimuli, expanding the application range
of the system from humanoid robotics to even more demanding
use cases. We presented a solution that, by sensing via efficient
event-driven hardware sensor, provides outperforming selective
attention mechanism with low latency and high dynamic range.
In addition, for increasing the information load, e.g., for higher
resolution sensors, EVA’s CPU utilization increases with lower rate
than iNVT’s. The design of efficient processing in EVA guaran-
tees, when compared with iNVT, relative superior performance of
growing effectiveness with the amount of processed information.
Finally, the last benchmark shows that the computational advan-
tage of EVA is not restricted to the specific stimuli and sensor
dimension used in this experimental setup, rather is more general.

Most attention systems designed for real-time applications
report the computational cost in terms of time needed to pro-
cess a frame. The relative saliency map is often obtained in about
50–60 ms, slower than typical image frame-rate (30 frames per
second) (Frintrop et al., 2007). This time scale is appropriate
to reproduce typical attentional scan-paths, nevertheless, 50 ms
(plus 30 ms for frame acquisition) is the lower bound for reacting
to the onset of a new potentially interesting or threatening stimu-
lus. With EVA, this limit is estimated to be as small as about 1 ms
[plus 15 μs of sensor latency (Lichtsteiner et al., 2008)], thanks to
the low-latency event-driven front-end data acquisition and the
low computational cost of the attention system. This property is
crucial in robotics systems, as it allows the robot to plan actions
for reacting to unforeseen situations and sudden stimuli.

EVA has been developed to equip the iCub with a fast and low
weight attention system, exploiting the event-driven vision sys-
tem of the iCub (Bartolozzi et al., 2011). The mapping procedure
for events filtering and feature maps generation derives from AER
implementations (Bartolozzi and Indiveri, 2009; Sonnleithner
and Indiveri, 2012), where a simple mapping is realized to use
the sensor output as feature map. The resulting saliency map
is sent to a dedicated hardware platform that implements the
winner-takes-all selection enriched with dedicated inhibition of
return mechanism (the Selective Attention Chip, SAC). The
modules developed in this work and EVA can easily be inte-
grated with such a system and further optimized. For example,
maximization of the performance can be achieved by imple-
menting the mapping procedure and the relative feature maps
on an embedded FPGA (Bartolozzi et al., 2011; Fasnacht and
Indiveri, 2011) or implementing fast convolution on ConvNet

chips (Serrano-Gotarredona et al., 2008) and using the SAC (or
higher resolution implementations) for WTA and IOR. Both
implementations would probably be faster than the software
mapping procedure described in this manuscript, for example,
the ConvNet chip can start providing the output of oriented filters
with a 1 μs latency and is shown to perform pseudo-simultaneous
object recognition. This system, with the appropriate miniatur-
ization and integration with top–down modules implemented on
the robot, will be able to give a fast estimate of the focus of atten-
tion, leaving the computational units of the iCub free for other
more complex tasks.

ACKNOWLEDGMENTS
This work has been inspired by fruitful discussions at the
Capocaccia Cognitive Neuromorphic Engineering Workshop.
The present work benefited form the great support of Giacomo
Indiveri who provided valuable comments and ideas. The authors
would like to thank iLab and Prof. L. Itti for making the iNVT
toolkit freely available.

FUNDING
This work has been supported by the EU grant eMorph (ICT-
FET-231467).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fnins.2013.

00234/abstract

REFERENCES
Bartolozzi, C., and Indiveri, G. (2009). Selective attention in multi-chip address-

event systems. Sensors 9, 5076–5098. doi: 10.3390/s90705076
Bartolozzi, C., Rea, F., Clercq, C., Hofstätter, M., Fasnacht, D., Indiveri,

G., et al. (2011). “Embedded neuromorphic vision for humanoid robots,”
in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW) (Colorado Springs, CO), 129–135. doi:
10.1109/CVPRW.2011.5981834

Borji, A., and Itti, L. (2012). State-of-the-art in visual attention modeling. IEEE
Trans. Pattern Anal. Mach. Intell. 35, 185–207. doi: 10.1109/TPAMI.2012.89

Bumhwi, K., Hirotsugu, O., Tetsuya, Y., and Minho, L. (2011). “Implementation
of visual attention system using artificial retina chip and bottom-up saliency
map model,” in Neural Information Processing. Volume 7064 of Lecture Notes
in Computer Science, eds B.-L. Lu, L. Zhang, and J. Kwok (Berlin; Heidelberg:
Springer), 416–423. doi: 10.1007/978-3-642-24965-5_47

Camunas-Mesa, L., Zamarreno-Ramos, C., Linares-Barranco, A., Acosta-Jimenez,
A., Serrano-Gotarredona, T., and Linares-Barranco, B. (2012). An event-driven
multi-kernel convolution processor module for event-driven vision sensors.
IEEE J. Solid State Circ. 47, 504–517. doi: 10.1109/JSSC.2011.2167409

Conradt, J., Cook, M., Berner, R., Lichtsteiner, P., Douglas, R., and Delbruck, T.
(2009). “A pencil balancing robot using a pair of AER dynamic vision sensors,”
in International Symposium on Circuits and Systems, (ISCAS), 2009 (Taipei:
IEEE), 781–784. doi: 10.1109/ISCAS.2009.5117867

De Valois, R. L., Albrecht, D. G., and Thorell, L. G. (1982). Spatial frequency selec-
tivity of cells in macaque visual cortex. Vis. Res. 22, 545–559. doi: 10.1016/0042-
6989(82)90112-2

Deiss, S., Douglas, R., and Whatley, A. (1998). “A pulse-coded communications
infrastructure for neuromorphic systems,” in Pulsed Neural Networks, chapter 6,
eds W. Maass and C. Bishop (Cambridge, MA: MIT Press), 157–178.

Delbruck, T. (2008). “Frame-free dynamic digital vision,” in Proceedings of the
International Symposium on Secure-Life Electronics, Advanced Electronics for
Quality Life and Society (Tokyo, Japan), 21–26. doi: 10.5167/uzh-17620

Delbruck, T., and Oberhof, D. (2004). Self biased low power adaptive photorecep-
tor. Intl. Symp. Circ. Syst. 4, 844–847. doi: 10.1109/ISCAS.2004.1329136

Frontiers in Neuroscience | Neuromorphic Engineering December 2013 | Volume 7 | Article 234 | 32

http://www.frontiersin.org/journal/10.3389/fnins.2013.00234/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2013.00234/abstract
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Rea et al. Event-driven attention

Fasnacht, D., and Indiveri, G. (2011). “A PCI based high-fanout AER mapper
with 2 GiB RAM look-up table, 0.8 μs latency and 66 mhz output event-rate,”
in Conference on Information Sciences and Systems, CISS 2011 (Johns Hopkins
University), 1–6. doi: 10.1109/CISS.2011.5766102

Ferster, D., and Koch, C. (1987). Neuronal connections underlying orientation
selectivity in cat visual cortex. Trends Neurosci. 10, 487–492. doi: 10.1016/0166-
2236(87)90126-3

Frintrop, S., and Jensfelt, P. (2008). “Active gaze control for attentional visual
slam,” in IEEE International Conference on Robotics and Automation, ICRA 2008
(Pasadena, CA), 3690–3697. doi: 10.1109/ROBOT.2008.4543777

Frintrop, S., Klodt, M., and Rome, E. (2007). “A real-time visual attention system
using integral images,” in In Proceedings of the 5th International Conference on
Computer Vision Systems (ICVS) (Bielefeld). doi: 10.2390/biecoll-icvs2007-66

Hofstaetter, M., Schoen, P., and Posch, C. (2010). “A SPARC-compatible general
purpose address-event processor with 20-bit 10ns-resolution asynchronous sen-
sor data interface in 0.18 μm CMOS,” in International Symposium on Circuits
and Systems, ISCAS (Paris), 4229–4232. doi: 10.1109/ISCAS.2010.5537575

Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154.

Itti, L. (2002). “Real-time high-performance attention focusing in outdoors color
video streams,” in Proceedings of the SPIE 4662, Human Vision and Electronic
Imaging VII (San Jose, CA), 235. doi: 10.1117/12.469519

Itti, L., Dhavale, N., and Pighin, F. (2003). “Realistic avatar eye and head animation
using a neurobiological model of visual attention,” in Proceedings of the SPIE
48th Annual International Symposium on Optical Science and Technology. Vol.
5200, eds B. Bosacchi, D. B. Fogel, and J. C. Bezdek (Bellingham, WA: SPIE
Press), 64–78. doi: 10.1117/12.512618

Itti, L., and Koch, C. (2001). Computational modelling of visual attention. Nat. Rev.
Neurosci. 2, 194–203. doi: 10.1038/35058500

Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual attention
for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259.
doi: 10.1109/34.730558

Kandel, E., Schwartz, J. H., and Jessell, T. M. (2000). Principles of Neural Science.
4th Edn. New York, NY: McGraw-Hill Medical. doi: 10.1036/0838577016

Koch, C., and Ullman, S. (1985). Shifts in selective visual-attention – towards the
underlying neural circuitry. Hum. Neurobiol. 4, 219–227.

Kowler, E. (2011). Eye movements: the past 25 years. Vis. Res. 51, 1457–1483. doi:
10.1016/j.visres.2010.12.014

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). An 128× 128 120dB 15 μs-
latency temporal contrast visi on sensor. IEEE J. Solid State Circ. 43, 566–576.
doi: 10.1109/JSSC.2007.914337

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet another robot platform.
Intl. J. Adv. Robot. Syst. 3, 43–48. doi: 10.5772/5761

Miau, F., Papageorgiou, C., and Itti, L. (2001). Neuromorphic algorithms for
computer vision and attention. Proc. SPIE 46, 12–23. doi: 10.1117/12.448343

Movshon, J., Thompson, I., and Tolhurst, D. (1978). Spatial summation in the
receptive fields of simple cells in the cat’s striate cortex. J. Physiol. 283, 53–77.

Navalpakkam, V., and Itti, L. (2005). Modeling the influence of task on attention.
Vis. Res. 45, 205–231. doi: 10.1016/j.visres.2004.07.042

Ouerhani, N., Bur, A., and Hügli, H. (2005). “Robot self-localization using visual
attention,” in Proceedings of the CIRA 2005, (Ancona, Italy), 309–314. doi:
10.1109/CIRA.2005.1554295

Ouerhani, N., and Hügli, H. (2003). Real-time visual attention on a massively
parallel simd architecture. Real Time Imag. 9, 189–196. doi: 10.1016/S1077-
2014(03)00036-6

Qiaorong, Z., Guochang, G., and Huimin, X. (2009). Image segmentation
based on visual attention mechanism. J. Multimedia 4, 363–370. doi:
10.4304/jmm.4.6.363-370

Robocup, T. (2011). RoboCup official site. URL: http://www.robocup.org/
Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-

Vicente, R., Gómez-Rodriguez, F., et al. (2009). CAVIAR: a 45k neuron, 5M
synapse, 12G connects/s aer hardware sensory–processing– learning–actuating
system for high-speed visual object recognition and tracking. IEEE Trans. Neural
Netw. 20, 1417–1438. doi: 10.1109/TNN.2009.2023653

Serrano-Gotarredona, R., Serrano-Gotarredona, T., Acosta-Jimenez, A., Serrano-
Gotarredona, C., Perez-Carrasco, J., Linares-Barranco, A., et al. (2008).
On real-time aer 2d convolutions hardware for neuromorphic spike
based cortical processing. IEEE Trans. Neural Netw. 19, 1196–1219. doi:
10.1109/TNN.2008.2000163

Siagian, C., Chang, C., Voorhies, R., and Itti, L. (2011). Beobot
2.0: cluster architecture for mobile robotics. J. Field Robot. 28,
278–302. doi: 10.1002/rob.20379

Sonnleithner, D., and Indiveri, G. (2012). “A real-time event-based selective atten-
tion system for active vision,” in Advances in Autonomous Mini Robots, eds U.
Ruckert, S. Joaquin, and W. Felix (Berlin; Heidelberg: Springer), 205–219. doi:
10.1007/978-3-642-27482-4_21

Walther, D., Rutishauser, U., Koch, C., and Perona, P. (2005). Selective visual atten-
tion enables learning and recognition of multiple objects in cluttered scenes.
Comput. Vis. Image Underst. 100, 41–63. doi: 10.1016/j.cviu.2004.09.004

Wiesmann, G., Schraml, S., Litzenberger, M., Belbachir, A., Hofstatter, M.,
and Bartolozzi, C. (2012). “Event-driven embodied system for feature
extraction and object recognition in robotic applications,” in 2012 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW) (Providence, RI), 76–82. doi: 10.1109/CVPRW.2012.
6238898

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 13 August 2013; paper pending published: 08 September 2013; accepted: 20
November 2013; published online: 13 December 2013.
Citation: Rea F, Metta G and Bartolozzi C (2013) Event-driven visual attention for
the humanoid robot iCub. Front. Neurosci. 7:234. doi: 10.3389/fnins.2013.00234
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2013 Rea, Metta and Bartolozzi. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these
terms.

www.frontiersin.org December 2013 | Volume 7 | Article 234 | 33

http://dx.doi.org/10.3389/fnins.2013.00234
http://dx.doi.org/10.3389/fnins.2013.00234
http://dx.doi.org/10.3389/fnins.2013.00234
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

ORIGINAL RESEARCH ARTICLE
published: 31 March 2014

doi: 10.3389/fnins.2014.00048

On the use of orientation filters for 3D reconstruction in
event-driven stereo vision
Luis A. Camuñas-Mesa1*, Teresa Serrano-Gotarredona1, Sio H. Ieng2, Ryad B. Benosman2 and

Bernabe Linares-Barranco1

1 Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC y Universidad de Sevilla, Sevilla, Spain
2 UMR_S968 Inserm/UPMC/CNRS 7210, Institut de la Vision, Université de Pierre et Marie Curie, Paris, France

Edited by:

Tobi Delbruck, INI Institute of
Neuroinformatics, Switzerland

Reviewed by:

Theodore Yu, Texas Instruments
Inc., USA
Jun Haeng Lee, Samsung
Electronics, South Korea

*Correspondence:

Luis A. Camuñas-Mesa, Instituto de
Microelectrónica de Sevilla
(IMSE-CNM), CSIC y Universidad de
Sevilla, Av. Américo Vespucio, s/n,
41092 Sevilla, Spain
e-mail: camunas@imse-cnm.csic.es

The recently developed Dynamic Vision Sensors (DVS) sense visual information
asynchronously and code it into trains of events with sub-micro second temporal
resolution. This high temporal precision makes the output of these sensors especially
suited for dynamic 3D visual reconstruction, by matching corresponding events generated
by two different sensors in a stereo setup. This paper explores the use of Gabor
filters to extract information about the orientation of the object edges that produce the
events, therefore increasing the number of constraints applied to the matching algorithm.
This strategy provides more reliably matched pairs of events, improving the final 3D
reconstruction.

Keywords: stereovision, neuromorphic vision, Address Event Representation (AER), event-driven processing,

convolutions, gabor filters

INTRODUCTION
Biological vision systems are known to outperform any mod-
ern artificial vision technology. Traditional frame-based systems
are based on capturing and processing sequences of still frames.
This yields a very high redundant data throughput, imposing
high computational demands. This limitation is overcome in bio-
inspired event-based vision systems, where visual information is
coded and transmitted as events (spikes). This way, much less
redundant information is generated and processed, allowing for
faster and more energy efficient systems.

Address Event Representation (AER) is a widely used bio-
inspired event-driven technology for coding and transmitting
(sensory) information (Sivilotti, 1991; Mahowald, 1992; Lazzaro
et al., 1993). In AER sensors, each time a pixel senses relevant
information (like a change in the relative light) it asynchronously
sends an event out, which can be processed by event-based pro-
cessors (Venier et al., 1997; Choi et al., 2005; Silver et al., 2007;
Khan et al., 2008; Camuñas-Mesa et al., 2011, 2012; Zamarreño-
Ramos et al., 2013). This way, the most important features pass
through all the processing levels very fast, as the only delay is
caused by the propagation and computation of events along the
processing network. Also, only pixels with relevant information
send out events, reducing power and bandwidth consumption.
These properties (high speed and low energy) are making AER
sensors very popular, and different sensing chips have been
reported for vision (Lichtsteiner et al., 2008; Leñero-Bardallo
et al., 2010, 2011; Posch et al., 2011; Serrano-Gotarredona and
Linares-Barranco, 2013) or auditory systems (Lazzaro et al., 1993;
Cauwenberghs et al., 1998; Chan et al., 2007).

The development of Dynamic Vision Sensors (DVS) was very
important for high speed applications. These devices can track
extremely fast objects with standard lighting conditions, providing

an equivalent sampling rate higher than 100 KFrames/s. Exploiting
this fine time resolution provides a new mean for achieving stereo
vision with fast and efficient algorithms (Rogister et al., 2012).

Stereovision processing is a very complex problem for conven-
tional frame-based strategies, due to the lack of precise timing
information as used by the brain to solve such tasks (Meister and
Berry II, 1999). Frame-based methods usually process sequen-
tially sets of images independently, searching for several features
like orientation (Granlund and Knutsson, 1995), optical flow
(Gong, 2006) or descriptors of local luminance (Lowe, 2004).
However, event-based systems can compute stereo information
much faster using the precise timing information to match pixels
between different sensors. Several studies have applied events tim-
ing together with additional constraints to compute depth from
stereo visual information (Marr and Poggio, 1976; Mahowald
and Delbrück, 1989; Tsang and Shi, 2004; Kogler et al., 2009;
Domínguez-Morales et al., 2012; Carneiro et al., 2013; Serrano-
Gotarredona et al., 2013).

In this paper, we explore different ways to improve 3D object
reconstruction using Gabor filters to extract orientation informa-
tion from the retinas events. For that, we use two DVS sensors
with high contrast sensitivity (Serrano-Gotarredona and Linares-
Barranco, 2013), whose output is connected to a convolutional
network hardware (Zamarreño-Ramos et al., 2013). Different
Gabor filter architectures are implemented to reconstruct the 3D
shape of objects. In section Neuromorphic Silicon Retina, we
describe briefly the DVS sensor used. Section Stereo Calibration
describes the calibration method used in this work. In section
Event Matching, we detail the matching algorithm applied, while
section 3D Reconstruction shows the method for reconstructing
the 3D coordinates. Finally, section Results provides experimental
results.

www.frontiersin.org March 2014 | Volume 8 | Article 48 | 34

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00048/abstract
http://community.frontiersin.org/people/u/22425
http://community.frontiersin.org/people/u/14450
http://community.frontiersin.org/people/u/32893
http://community.frontiersin.org/people/u/94237
http://community.frontiersin.org/people/u/12772
mailto:camunas@imse-cnm.csic.es
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

FIGURE 1 | Data driven asynchronous event generation for two

equivalent pixels in Retina 1 and Retina 2. Because of intra-die pixel
mismatch and inter-die sensor mismatch, both response curves differ.

NEUROMORPHIC SILICON RETINA
The DVS used in this work is an AER silicon retina with 128×
128 pixels and increased contrast sensitivity, allowing the retina
to detect contrast as low as 1.5% (Serrano-Gotarredona and
Linares-Barranco, 2013). The output of the retina consists of
asynchronous AER events that represent a change in the sensed
relative light. Each pixel independently detects changes in log
intensity larger than a threshold since the last emitted event θev =∣∣I (t)− I(tlast−spike)

∣∣/I(t).
The most important property of these sensors is that pixel

information is obtained not synchronously at fixed frame rate
δt, but asynchronously driven by data at fixed relative light
increments θev, as shown in Figure 1. This figure represents the
photocurrent transduced by two pixels in two different retinas in
a stereo setup, configured so that both pixels are sensing an equiv-
alent activity. Even though if both are sensing exactly the same
light, the transduced currents are different, given the change in
initial conditions (I1

0 and I2
0) and mismatch between retina pixels

that produce a different response to the same stimulus. As a con-
sequence, the trains of events generated by these two pixels are
not identical, as represented in Figure 1.

The events generated by the pixels can have either positive
or negative polarity, depending on whether the light intensity
increased or decreased. These events are transmitted off-chip,
timestamped and sent to a computer using a standard USB
connection.

STEREO CALIBRATION
Before using a pair of retinas for sensing and matching pairs
of corresponding events and reconstruct each event in 3D, both
retinas relative positions and orientations need to be calibrated.

Let us use lower case to denote a 2D point in the retina
sensing plane as m = [x y]T , and capital letter to denote the cor-
responding 3D point in real space as M = [X Y Z]T . Augmented
vectors are built by adding 1 as the last element: m̃ = [x y 1]T and
M̃ = [X Y Z 1]T . Under the assumptions of the pinhole camera
model, the relationship between m̃ and M̃ is given by Hartley and
Zisserman (2003):

m̃ = Pi · M̃ (1)

where Pi is the projection matrix for camera i. In order to obtain
the projection matrices of a system, many different techniques
have been proposed, and they can be classified into the following
two categories (Zhang, 2000):

• Photogrammetric calibration: using a calibration object with
known geometry in 3D space. This calibration object usu-
ally consists of two or three planes orthogonal to each other
(Faugeras, 1993).
• Self-calibration: the calibration is implemented by moving the

cameras in a static scene obtaining several views, without using
any calibration object (Maybank and Faugeras, 1992).

In this work, we have implemented a calibration technique based
on a known 3D object, consisting of 36 points distributed in two
orthogonal planes. Using this fixed pattern, we calibrate two DVS.
A blinking LED was placed in each one of these 36 points. LEDs
blinked sequentially one at a time, producing trains of spikes
in several pixels at both sensors. From these trains of spikes,

we needed to extract the 2D calibration coordinates m̃
j
i, where

i = 1, 2 represents each silicon retina and j = 1, . . . 36 repre-
sents the calibration points (see Figure 2). There are two different
approaches to obtain these coordinates: with pixel or sub-pixel
resolution. In the first one, we decided that the corresponding 2D
coordinate for a single LED was represented by the pixel which
responded with a higher firing rate. In the second one, we selected
a small cluster of pixels which responded to that LED with a fir-
ing rate above a certain threshold, and we calculated the average
coordinate, obtaining sub-pixel accuracy.

After calculating m̃
j
1 and m̃

j
2 (j = 1, . . . 36) and knowing M̃j,

we can apply any algorithm that was developed for traditional
frame-based computer vision (Longuet-Higgins, 1981) to extract
P1 and P2 (Hartley and Zisserman, 2003). More details can be
found in Calculation of Projection Matrix P in Supplementary
Material.

The fundamental matrix F relates the corresponding points
obtained from two cameras, and is defined by the equation:

m̃T
1 Fm̃2 = 0 (2)

where m̃1 and m̃2 are a pair of correspondent 2D points in both
cameras (Luong, 1992). This system can be solved using the 36
pairs of points mentioned before (Benosman et al., 2011).

EVENT MATCHING
In stereo vision systems, a 3D point in space M is projected onto
the focal planes of both cameras in pixels m1 and m2, therefore

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 48 | 35

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

FIGURE 2 | Photograph of the calibration structure, with 36 LEDs

distributed in two orthogonal planes. The size of the object is shown in
the figure.

generating events e(mi
1, t) and e(mi

2, t). Reconstructing the orig-
inal 3D point requires matching each pair of events produced by
point M at time t (Carneiro et al., 2013). For that, we imple-
mented two different matching algorithms (A and B) based on
a list of restrictions applied to each event in order to find its
matching pair. These algorithms are described in the following
subsections.

RETINAS EVENTS MATCHING ALGORITHM (A)
This first algorithm (Carneiro et al., 2013) consists of applying the
following restrictions (1–4) to the events generated by the silicon
retinas. Therefore, for each event generated by retina 1 we have
to find out how many events from retina 2 satisfy the 4 restric-
tions. If the answer is only one single event, it can be considered
its matching pair. Otherwise, it is not possible to determine the
corresponding event, and it will be discarded.

Restriction 1: temporal match
One of the most useful advantages of event-driven DVS based
vision sensing and processing is the high temporal resolution
down to fractions of micro seconds (Lichtsteiner et al., 2008;
Posch et al., 2011; Serrano-Gotarredona and Linares-Barranco,
2013). Thus, in theory, two identical DVS cameras observing the
same scene should produce corresponding events simultaneously
(Rogister et al., 2012). However, in practice, there are many non-
ideal effects that end up introducing appreciable time differences
(up to many milli seconds) between corresponding events:

(a) inter-pixel and inter-sensor variability in the light-dependent
latency since a luminance change is sensed by the photodiode
until it is amplified, processed and communicated out of the
chip;

(b) presence of noise at various stages of the circuitry;
(c) variability in inter-pixel and inter-sensor contrast sensitivity;

and
(d) randomness of pixel initial conditions when a change of light

happens.

FIGURE 3 | Temporal match. Two events can be considered as candidates
to match if they are generated within a certain time interval δt .

Nonetheless, corresponding events occur within a milli second
range time window, depending on ambient light (the lower
light, the wider the time window). As a consequence, this first
restriction implies that for an event e(mi

1, t1), only those events
e(mi

2, t2) with |t1 − t2| < δt/2 can be candidates to match, as
shown in Figure 3. In our experimental setup we used a value
of δt = 4 ms, which gave the best possible result under standard
interior lighting conditions.

Restriction 2: epipolar restriction
As is described in detail in (Hartley and Zisserman, 2003), when a
3D point in space M is projected onto pixel m1 in retina 1, the cor-
responding pixel m2 lies on an epipolar line in retina 2 (Carneiro
et al., 2013). Using this property, a second restriction is added to
the matching algorithm using the fundamental matrix F to cal-
culate the epipolar line Ep2 in retina 2 corresponding to event
m1 in retina 1 (Ep2 (m1) = FTm̃1). Therefore, only those events
e(mi

2, t2) whose distance to Ep2 is less than a given limit δEpi
can

be candidates to match. In our experiments we used a value of
δEpi
= 1 pixel.

Restriction 3: ordering constraint
For a practical stereo configuration of retinas where the angle
between their orientations is small enough, a certain geometrical
constraint can be applied to each pair of corresponding events.
In general, the horizontal coordinate of the events generated by
a retina is always larger than the horizontal coordinate of the
corresponding events generated by the other retina.

Restriction 4: polarity
The silicon retinas used in our experimental setup generate out-
put events when they detect a change in luminance in a pixel,
indicating in the polarity of the event if that change means
increasing or decreasing luminance (Lichtsteiner et al., 2008;
Posch et al., 2011; Serrano-Gotarredona and Linares-Barranco,
2013). Using the polarity of events, we can impose the condition
that two corresponding events in both retinas must have the same
polarity.

www.frontiersin.org March 2014 | Volume 8 | Article 48 | 36

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

GABOR FILTER EVENTS MATCHING ALGORITHM (B)
We propose a new algorithm where we use the orientation of the
object edges to improve the matching, increasing the number of
correctly matched events.

If the focal planes of two retinas in a stereo vision system are
roughly vertically aligned and have a small horizontal vergence,
the orientation of observed edges will be approximately equal
provided that the object is not too close to the retinas. A static
DVS produces events when observing moving objects, or more
precisely, when observing the edges of moving objects. Therefore,
correspondent events in the two retinas are produced by the same
moving edges, and consequently the observed orientation of the
edge should be similar in both retinas. An edge would appear
with a different angle in both retinas only when it is relatively
close to them, and in practice this does not happen because of
two reasons1 :

(1) Since both cameras have small horizontal vergence, the object
would be out of the overlapping field of view of the 2 retinas
far before being so close. In that case, we do not have stereo
vision anymore.

(2) The minimal focusing distance of the cameras’ lenses limits
the maximal vergence.

Considering that, we can assume that the orientation of an edge
will be approximately the same in both retinas under our working
conditions. Under different conditions, an epipolar rectification
should be applied to the stereo system to ensure the orientations
of the edges to be identical in the two cameras. This operation
consists in estimating the homographies mapping and scaling
the events of each retina into two focal planes parallel to the
stereo baseline (Loop and Zhang, 1999). Lines in the rectified
focal planes are precisely the epipolar lines of the stereo system.
This rectification should be carried out at the same time than the
retinas calibration.

The application of banks of Gabor filters to the events gener-
ated by both retinas provides information about the orientation
of the object edges that produce the events as shown in Figure 4.
This way, by using Gabor filters with different angles we can apply
the previously described matching algorithm to pairs of Gabor
filters with the same orientation. Thus, the new matching algo-
rithm is as follows. The events coming out of retinas R1 and R2

are processed by Gabor filters G1x and G2x, respectively (with
x = 1, 2, . . . N, being N the number of orientation filters for
each retina). Then, for each pair of Gabor filters G1x and G2x,
conditions 1–4 are applied to obtain matched events for each
orientation. Therefore, the final list of matched events will be
obtained as the union of all the lists of matched events obtained
for each orientation.

3D RECONSTRUCTION
The result provided by the previously described matching algo-
rithm is a train of pairs of corresponding events. Each pair

1There is, however, a “pathological” exception: a very thin and long object,
perfectly centred between the two retinas, having its long dimensión perpen-
dicular to the retina planes, may produce different angles at both retinas.

FIGURE 4 | Illustration of the use of 3 Gabor filters with different

orientations to the output of both retinas. The events generated by the
filters carry additional information, as they represent the orientation of the
edges.

consists of two events with coordinates m1 = (x1, y1)
T and m2 =

(x2, y2)
T . The relationship between m̃ and M̃ for both retinas is

given by:

m̃1 × P1M̃ = 0 (3)

m̃2 × P2M̃ = 0

where P1 and P2 represent the projection matrices calculated dur-
ing calibration, and M̃ is the augmented vector corresponding to

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 48 | 37

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

the 3D coordinate that must be obtained. These equations can
be solved as a linear least squares minimization problem (Hartley
and Zisserman, 2003), giving the final 3D coordinates M =
[X Y Z]T as a solution. More details can be found in Calculation
of Reconstructed 3D Coordinates in Supplementary Material.

RESULTS
In this Section, we describe briefly the hardware setup used for the
experiments, then we show a comparison between the different
calibration methods, after that we characterize the 3D reconstruc-
tion method, and finally we present results on the reconstruction
of 3D objects.

HARDWARE SETUP
The event-based stereo vision processing has been tested using
two DVS sensor chips (Serrano-Gotarredona and Linares-
Barranco, 2013) whose outputs are connected to a merger board
(Serrano-Gotarredona et al., 2009) which sends the events to a
2D grid array of event-based convolution modules implemented
within a Spartan6 FPGA. This scheme has been adapted from a
previous one that used a Virtex6 (Zamarreño-Ramos et al., 2013).
The Spartan6 was programmed to perform real-time edge extrac-
tion on the visual flow from the retinas. Finally, a USBAERmini2
board (Serrano-Gotarredona et al., 2009) was used to timestamp
all the events coming out of the Spartan6 board and send them to
a computer through a high-speed USB2.0 port (see Figure 5).

The implementation of each convolution module in the FPGA
is represented in Figure 6. It consists of two memory blocks (one
to store the pixel values, and the other to store the kernel), a con-
trol block that performs the operations, a configuration block
that receives all the programmable parameters, and an output
block that sends out the events. When an input event arrives, it is
received by the control block, which implements the handshaking
and calculates which memory positions must be affected by the
operation. In particular, it must add the kernel values to the pixels
belonging to the appropriate neighborhood around the address
of the input event, as done in previous event-driven convolution
processors (Serrano-Gotarredona et al., 1999, 2006, 2008, 2009;
Camuñas-Mesa et al., 2011, 2012). At the same time, it checks

FIGURE 5 | Experimental stereo setup.

if any of the updated pixels has reached its positive or negative
threshold, in that case resetting the pixel and sending a signed
event to the output block. A programmable forgetting process
decreases linearly the value of all the pixels periodically, making
the pixels behave like leaky integrate-and-fire neurons.

Several convolutional modules can be arranged in a 2D mesh,
each one communicating bidirectionally with all four neighbors,
as illustrated in Figure 7 (Zamarreño-Ramos et al., 2013). Each
module is characterized by its module coordinate within the
array. Address events are augmented by adding either the source
or destination module coordinate. Each module includes an AER
router which decides how to route the events (Zamarreño-Ramos
et al., 2013). This way, any network architecture can be imple-
mented, like the one shown in Figure 4 with any number of Gabor
filters. Each convolutional module is programmed to extract a
specific orientation by writing the appropriate kernel. In our
experiments, the resolution of the convolutional blocks is 128×
128 pixels.

In order to compensate the mismatch between the two DVS
chips, an initial procedure must be implemented. This procedure
consists of setting the values of the bias signals which control the
sensitivity of the photosensors to obtain approximately the same
number of events in response to a fixed stimulus in both retinas.

CALIBRATION RESULTS
In order to calibrate the setup with both DVS retinas (with a base-
line distance of 14 cm, being the retinas approximately aligned

FIGURE 6 | Block diagram for the convolutional block implemented on

FPGA.

www.frontiersin.org March 2014 | Volume 8 | Article 48 |38

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

and the focal length of the lenses 8 mm), we built a structure of
36 blinking LEDs distributed in two orthogonal planes, each with
an array of 6× 3 LEDs with known 3D coordinates in each plane
(see Figure 2). The horizontal distance between LEDs is 5 cm,

FIGURE 7 | Block diagram for a sample network with 3 × 3

convolutional blocks implemented on FPGA.

while the vertical separation is 3.5 cm. This structure was placed
in front of the DVS stereo setup at approximately 1 m distance,
and the events generated by the retinas were recorded by the com-
puter. The LEDs would blink sequentially, so that when one LED
produces events no other LED is blinking. This way, during a

FIGURE 9 | Measurement of the disparity (distance) between a pixel in

Retina 1 and its corresponding epipolar line in Retina 2. The minimum
disparity point separates Region A and B.

FIGURE 8 | 3D reconstruction of the coordinates of the calibration

LEDs. (A) With pixel resolution and (B) with sub-pixel resolution. Blue
circles represent the real location of the LEDs, while red crosses indicate

the reconstructed coordinate. (C,D) Show the measured errors absolute
value in cm for approaches 1 and 2, respectively. Red lines represent the
mean error.

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 48 | 39

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

FIGURE 10 | Characterization of the 3D reconstruction of the epipolar

lines for different pixels in Retina 1. Each color represents a different
pixel. (A) Distance between the reconstructed points and the retinas for
different disparity values. The dashed lines represent the upper and lower
limits associated to the allowed deviation around the epipolar line.
(B) Reconstruction error for 3D points closer to the retinas, Region A.
(C) Reconstruction error for points farther from the retinas, Region B.

simultaneous event burst in both cameras, there is only one LED
in 3D space blinking, resulting in a unique spatial correspondence
between the events produced in both retinas and the original 3D
position. This recording was processed offline to obtain the 2D
coordinates of the LEDs projected in both retinas following two
different approaches:

(1) We represent a 2D image coding the number of spikes gener-
ated by each pixel. This way for each LED we obtain a cluster
of pixels with large values. The coordinate of the pixel with
the largest value in each cluster is considered to be the 2D
projection of the LED. The accuracy of this measurement is
one pixel.

(2) Using the same 2D image, the following method is applied.
First, all those pixels with a number of spikes below a cer-
tain threshold are set to zero, while all those pixels above

FIGURE 11 | Kernels used for the 4-orientation configuration. Each row
represents a different scale (from smaller to larger kernels). The maximum
kernel value is 15 and the minimum is −7. Kernel size is 11× 11 pixels.

FIGURE 12 | Photograph of the three objects used to test the 3D

reconstruction algorithm: a pen, a ring, and a cube.

the threshold are set to one, obtaining a binarization of the
image. Figure S1 in Calculation of Projection Matrix P in
Supplementary Material shows an example of a 2D binarized
image obtained for one DVS, where the 36 clusters represent
the responses to the blinking LEDs. Then, for each cluster
of pixels we calculate the mean coordinate, obtaining the 2D
projection of the LEDs with sub-pixel resolution.

In both cases, these 2D coordinates together with the known 3D
positions of the LEDs in space are used to calculate the projec-
tion matrices P1 and P2, and the fundamental matrix F following
the methods described in section Stereo Calibration. To vali-
date the calibration, P1 and P2 were used to reconstruct the 3D
calibration pattern following the method described in section 3D

www.frontiersin.org March 2014 | Volume 8 | Article 48 | 40

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

Table 1 | Comparison of the 3D reconstruction results for the pen.

Scale 1 Scale 2

Orientations 0 2 3 4 5 6 7 8 2 3 4 5 6 7 8

Nev 100 71 65 78 77 87 100 105 73 78 85 98 121 128 146

Nm 28 15 14 15 14 16 17 18 15 15 16 18 22 24 27

Matching rate 28 21 21 19 19 18 17 17 21 20 19 18 18 19 19

Isolated events 2.9 5.6 6.4 5.4 5.8 5.1 4.5 4.1 5.1 4.9 4.7 4.1 3.0 2.6 2.1

Merr 8.0 4.1 3.9 4.2 3.9 4.1 3.9 4.1 3.6 3.6 3.7 3.6 3.6 3.6 3.6

Nm−correct 24.9 14 13 14 13 15 16 17 14 14 15 17 21 23 25

Scale 3 Scale 4

Orientations 2 3 4 5 6 7 8 2 3 4 5 6 7 8

Nev 74 80 87 106 131 154 169 77 79 85 99 129 145 170

Nm 16 17 17 21 26 31 34 19 19 19 22 30 34 39

Matching rate 22 21 20 19 20 20 20 24 24 23 23 23 23 23

Isolated events 5.0 4.7 4.5 3.3 2.4 1.8 1.5 3.3 3.3 3.2 2.6 1.6 1.4 1.0

Merr 5.2 5.2 5.2 5.1 4.9 4.9 5.0 8.3 8.3 8.3 8.3 8.2 8.1 7.8

Nm−correct 14 15 15 19 24 29 32 17 17 17 20 27 31 36

The first column (0 orientations) presents the results obtained applying the matching algorithm to the retinas events (algorithm A, section Event Matching), while

the rest of the columns are related to the pair-wise application of the matching algorithm to the outputs of the Gabor filters (algorithm B, section Event Matching),

from Scale 1 (smaller kernels) to Scale 4 (larger kernels). For each scale, different numbers of orientations are considered (from 2 to 8), as indicated in the first

row (Orientations). Second row (Nev) shows the number of events processed (in Kevents) by the matching algorithm in each case (i.e., the total number of events

generated by all the filters). Third row (Nm) presents the number of matched events (in Kevents) produced by the algorithm, while fourth row (Matching Rate) shows

the ratio of matched events over the total number of events generated by the Gabor filters (Matching Rate = 100 · Nm/Nev , in %). Fifth row (Isolated events) shows

the ratio of isolated events over the total number of matched events (in %). Sixth row (Merr) presents the ratio of wrongly matched events over the total number

of matched events (in %). The last row (Nm−correct) encapsulates the number of matched events with the ratio of isolated and wrongly matched events, presenting

the number of correctly matched events (Nm−correct = Nm −
(

Isolated events
100 · Nm

)
−
(

Merr
100 · Nm

)
, in Kevents).

Reconstruction, obtaining the results shown in Figures 8A,B. The
reconstruction error is measured as the distance between each
original 3D point and its corresponding reconstructed position,
giving the results shown in Figures 8C,D. As can be seen in the
figure, the mean reconstruction error for approach 1 is 7.3 mm
with a standard deviation of 4.1 mm, while for approach 2 it
is only 2 mm with a standard deviation of 1 mm. This error is
comparable to the size of each LED (1 mm).

PRECISION CHARACTERIZATION
Using the calibration results obtained in the previous subsection,
we performed the following evaluation of the 3D reconstruction
method. For a fixed pixel m1

1 in Retina 1, we used the fundamen-
tal matrix F to calculate the corresponding epipolar line in Retina
2 Ep1

2, as represented in Figure 9. Although a perfect alignment
between the two retinas would produce an epipolar line parallel
to the x-axis and crossing the pixel position [minimum disparity
point coincident with

(
x1, y1

)
], we represent a more general case,

where the alignment is performed manually and is not perfect.
This case is illustrated in Figure S1 (see Calculation of Projection
Matrix P in Supplementary Material), where we show the 2D
images representing the activity recorded by both retinas during
calibration. The orientations of the epipolar lines indicate that
the alignment is not perfect. The mean disparity for the LEDs
coordinates is 24.55 pixels. Considering that we admit a devia-
tion around the epipolar line of δEpi

= 1 pixel in the matching

algorithm, we calculated two more lines, an upper and a lower
limit, given by the distance of ±1 pixel to the epipolar line. Using
projection matrices P1 and P2, we reconstructed the 3D coor-
dinates for all the points in these three lines. We repeated the
procedure for a total of four different pixels in Retina 1 mi

1 (i =
1, 2, 3, 4) distributed around the visual space, obtaining four
sets of 3-dimensional lines. In Figure 10A, we represent the dis-
tance between these 3D points and the retinas for each disparity
value [the disparity measures the 2D euclidean distance between
the projections of a 3D point in both retinas

(
x1, y1

)
and

(
x2, y2

)
],

where each color corresponds to a different pixel mi
1 in Retina 1,

and the dashed lines represent the upper and lower limits given
by the tolerance of 1 pixel around the epipolar lines. As can be
seen in the figure, each disparity has two different values of dis-
tance associated, which represent the two possible points in Epi

2

which are at the same distance from mi
1. This effect results in two

different zones in each trace (regions A and B in Figure 9), which
correspond to two different regions in the 3D space, where the
performance of the reconstruction changes drastically. Therefore,
we consider both areas separately in order to estimate the recon-
struction error. Using the range of distances given by Figure 10A
between each pair of dashed lines, we calculate the reconstruction
error for each disparity value as (dmax − dmin)/μd, where dmax

and dmin represent the limits of the range of distance at that point,
and μd is the mean value. Figure 10B shows the obtained error for
the 3D points located in the closer region (A), while Figure 10C

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 48 | 41

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

FIGURE 13 | Illustration of enhancing edges and noise reduction by a

Gabor filter. (A) Input events representing a discontinuous edge with
noise. (B) Output events generated by the Gabor filter, with the
reconstructed edge without noise. (C) Gabor kernel. All axes represent
pixels, being the visual space in (A,B) 128× 128 and the size of the kernel
in (C) 11× 11.

corresponds to the points farther from the retinas (Region B). In
both figures, each line represents a different pixel mi

1 in Retina 1.
As shown in Figure 10B, the reconstruction error in the area of
interest (around 1m distance from the retinas) is less than 1.5%.

Note that the minimum disparity value is around 20 pixels (while
a perfect alignment would give 0), showing the robustness of the
method for manual approximate alignment.

3D RECONSTRUCTION
For the experimental evaluation of the 3D reconstruction, we ana-
lyzed the effect of several configurations of Gabor filters on the
event matching algorithm B in order to compare them to algo-
rithm A. For each configuration, we tested different numbers of
orientation Gabor filters (from 2 to 8). All filters had always the
same spatial scale, and we tested 4 different scales. Identical fil-
ters were applied to both retina outputs. Each row in Figure 11
shows an example of the kernels used in a configuration of 4 ori-
entations (90, 45, 0, −45◦), each configuration for a given spatial
scale. In general, the different angles implemented in each case
are uniformly distributed between 90 and−90◦. This strategy was
used to reconstruct in 3D the three objects shown in Figure 12: a
14 cm pen, a 22 cm diameter ring, and a 15 cm side metal wire
cube structure.

Pen
A swinging pen of 14 cm length was moved in front of the two
retinas for half a minute, with a number of approximately 100
Kevents generated by each retina. Table 1 summarizes the results
of the 3D reconstruction, in terms of events. The column labeled
“Orientations 0” corresponds to applying the matching algorithm
directly to the retina pair outputs (algorithm A). When using
Gabor filters (algorithm B), experiments with four different scales
were conducted. For each scale, a different number of simultane-
ous filter orientations were tested, ranging from 2 to 8. In order
to compare the performance of the stereo matching algorithm
applied directly to the retinas (algorithm A, see section Event
Matching) and applied to the outputs of the Gabor filters (algo-
rithm B, see section Event Matching), the second row in Table 1
(Nev) shows the number of events processed by the algorithm in
both cases. We show only the number of events coming origi-
nally from Retina 1, as they both have been configured to generate
approximately the same number of events for a given stimulus.

When the algorithm is applied directly to the output of the reti-
nas, the number of matched pairs of events obtained is around
28 Kevents (28% of success rate). The third row in Table 1
(Nm) shows the number of matched events for the different
configurations of Gabors. If we calculate the percentage of suc-
cess obtained by the algorithm for each configuration of filters
in order to compare it with the 28% provided by the retinas
alone, we obtain the values shown in the fourth row of Table 1
(Matching Rate).

Although these results show that the matching rate of the algo-
rithm is smaller when we use Gabor filters to extract information
about the orientation of the edges that generated the events, we
should consider that the performance of 3D reconstruction is
determined by the total number of matched events, not the rel-
ative proportion. Note that the Gabor filters are capable of edge
filling when detecting somewhat sparse or incomplete edges from
the retina, thus enhancing edges and providing more events for
these edges. Figure 13 shows an example where a weak edge (in
Figure 13A) produced by a retina together with noise events is

www.frontiersin.org March 2014 | Volume 8 | Article 48 | 42

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

filled by a Gabor filter (with the kernel shown in Figure 13C)
producing the enhanced noise-less edge in Figure 13B, and
increasing the number of edge events from 24 to 70 while remov-
ing all retina-noise events. The more matched events, the better
3D reconstruction. For that reason, we consider that a bank of
8 Gabor filters with kernels of scale 4 gives the best result, with
more than 39 Kevents that can be used to reconstruct the 3D
sequence, using 100 Kevents generated by the retinas. This appli-
cation of Gabor filters for edges filling was first demonstrated in

FIGURE 14 | Illustration of matching errors.

(Lindenbaum et al., 1994), and has also been used for fingerprint
image enhancement (Hong et al., 1998; Greenberg et al., 2002).

Another parameter that can be used to measure the quality of
the 3D reconstruction is the proportion of “isolated” events in the
matched sequence. We define an isolated event as an event which
is not correlated to any other event in a certain spatio-temporal
window, meaning that no other event has been generated in its
neighbor region within a limited time range. A non-isolated event
(an event generated by an edge of the object) will be correlated

FIGURE 16 | Sequence of disparity maps. They were reconstructed with
Tframe = 50 ms and they correspond to the movement of the swinging pen
(from A–I). The disparity scale goes from dark blue to red to encode events
from far to near.

FIGURE 15 | Graphical representation of Table 1. Each subplot corresponds to a different row of the table, showing the obtained values for each number of
orientations and scale. The black horizontal lines indicate the values obtained using algorithm A (0 orientations).

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 48 | 43

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

FIGURE 17 | Result of the 3D reconstruction of the swinging pen recording. Each plot (from A–I) corresponds to a 50 ms-frame representation of the 3D
coordinates of the matched events.

to some other events generated by the same edge, which will be
close in space and time. Note that these isolated matched events
correspond to false matches. These false matches can be produced
when an event in one retina is matched by mistake with a noise
event in the other retina, or when two or more events that hap-
pen very simultaneously in 3D space are cross-matched by the
matching algorithm. With this definition of isolated events, the
28 Kevents that were matched for the retinas without any filter-
ing were used to reconstruct the 3D coordinates of these events,
resulting in only 2.93% of isolated events. After the application
of the same methodology to all the Gabor filters configurations,
the results in the fifth row in Table 1 (Isolated events) are obtained.
These results show that several configurations of Gabor filters give
a smaller proportion of isolated events.

In order to remove the retina-noise events, it is also pos-
sible to insert a noise removal block directly at the output of
the retina (jAER, 2007). However, this introduces a small extra
latency before the events can be processed, thus limiting event-
driven stereo vision for very high speed applications (although
it can be a good solution when timing restrictions are not too
critical). The effect of Gabor filters on noise events is also illus-
trated in Figure 13, where all the events that were not part of an
edge with the appropriate orientation are removed by the filter.

However, it is possible that some noise events add their contribu-
tions together producing noise events at the output of the Gabor
filters. Two different things can happen with these events: (1) the
stereo matching algorithm does not find a corresponding event
in the other retina; (2) there is a single event which satisfies all
restrictions, so a 3D point will be reconstructed from a noise
event, producing a wrongly matched event, as is described in the
next paragraph.

Although the object used in this first example is very sim-
ple, we must consider the possibility that the algorithm matches
wrongly some events. In particular, if we think about a wide object
we can have events generated simultaneously by two far edges: the
left and the right one. Therefore, it can happen that an event cor-
responding to the left edge in Retina 1 does not have a proper
partner in Retina 2, but another event generated by the right edge
in Retina 2 might satisfy all the restrictions imposed by the match-
ing algorithm. Figure 14 illustrates the mechanism that produces
this error. Let us assume that the 3D object has its left and right
edges located at positions A and B in 3D space. Locations A
and B produce events at xA

1 and xB
1 in Retina 1, and at xA

2 and
xB

2 in Retina 2. These events are the projections onto the focal

points R1 and R2 of both retinas, activating pixels
(

x
j
i, y

j
i

)
, with

i = 1, 2 and j = A, B. Therefore, an event generated in Retina

www.frontiersin.org March 2014 | Volume 8 | Article 48 | 44

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

Table 2 | Comparison of the 3D reconstruction results for the ring.

Scale 1 Scale 2

Orientations 0 2 3 4 5 6 7 8 2 3 4 5 6 7 8

Nev 115 78 75 100 109 131 151 168 78 95 119 143 177 197 229

Nm 17 8 8 9 10 12 14 16 8 10 12 15 19 21 25

Matching rate 15 10 11 9 10 10 9 9 10 11 10 10 11 11 11

Isolated events 5.9 7.8 7.1 6.5 5.4 4.9 4.1 3.9 7.6 6.2 5.0 3.9 3.0 2.6 1.9

Merr 12.0 9.9 9.5 9.3 8.7 8.5 8.7 8.9 9.3 9.0 8.4 8.1 8.2 8.0 7.8

Nm−correct 14 7 7 8 9 10 12 14 7 8 10 13 17 19 23

Scale 3 Scale 4

Orientations 2 3 4 5 6 7 8 2 3 4 5 6 7 8

Nev 82 103 122 157 185 217 245 83 107 131 161 201 229 266

Nm 8 10 12 16 19 22 25 6 9 11 14 17 20 23

Matching rate 9 10 10 10 10 10 10 8 8 8 9 9 9 9

Isolated events 7.5 6.3 4.8 3.5 2.9 2.3 2.0 7.7 6.3 5.1 3.9 3.0 2.5 2.0

Merr 8.9 7.7 7.3 6.8 6.5 6.6 6.4 8.4 6.5 6.2 5.7 5.9 5.8 5.6

Nm−correct 7 9 11 14 17 20 23 5 8 10 13 15 18 21

The meaning of the columns and rows is as in Table 1.

FIGURE 18 | Graphical representation of Table 2. Each subplot corresponds to a different row of the table, showing the obtained values for each number of
orientations and scale. The black horizontal lines indicate the values obtained using algorithm A (0 orientations).

1 with coordinates
(
xA

1 , yA
1

)
should match another event gener-

ated in Retina 2 with coordinates
(
xA

2 , yA
2

)
. However, note that

in Figure 13, an edge at position D is captured by Retina 1 at
the same pixel that an edge at A, and in Retina 2 they would
be on the same epipolar lines. The same happens for edges at
positions B and C. Consequently, it can happen that no event is
produced in Retina 2 at coordinate

(
xA

2 , yA
2

)
at the same time,

but another event with coordinates
(
xB

2 , yB
2

)
is generated within

a short time range by the opposite simultaneously moving edge,
being those coordinates in the same epipolar line. In that case,
the algorithm might match

(
xA

1 , yA
1

)
with

(
xB

2 , yB
2

)
, reconstruct-

ing a wrong 3D point in coordinate D. The opposite combination
would produce a wrong 3D event in point C. This effect could
produce false edges in the 3D reconstruction, especially when

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 48 | 45

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

FIGURE 19 | Results obtained for the rotating ring. (A) Disparity map
reconstructed with Tframe = 50 ms corresponding to the rotation of the ring.
(B) Result of the 3D reconstruction of the same frame of the ring recording.

processing more complex objects. However, the introduction of
the Gabor filters to extract the orientation of the edges will reduce
the possibility of matching wrong pairs of events. In order to mea-
sure the proportion of wrongly matched events, we consider that
all the good pairs of events will follow certain patterns of dis-
parity, so all the events which are close in time will be included
within a certain range of disparity values. Calculating contin-
uously the mean and standard deviation of the distribution of
disparities, we define the range of acceptable values, and we iden-
tify as wrongly matched all those events whose disparity is outside
that range. Using this method, we calculate the proportion of
wrongly matched events and present it (in %) in the sixth row
of Table 1 (Merr). Finally, the last row presents the number of cor-
rectly matched events, subtracting both the isolated and wrongly
matched events from the total number of matched events:
Nm−correct = Nm −

(
Isolated events

100 · Nm

)
−
(

Merr
100 · Nm

)
. All these

results are presented graphically in Figure 15, where the colored
vertical bars represent the results obtained applying algorithm B
with different number of orientations and scales, while the black
horizontal lines indicate the values obtained using algorithm A
(no Gabor filters). From this figure, we decide that the best case

is 8 orientations and Scale 4, as it provides the largest number of
correctly matched events. However, it could also be argued that
8 orientations and Scale 3 gives a smaller number of wrongly
matched events, but in that case the number of correctly matched
events is also smaller.

Using the sequence of matched events provided by the algo-
rithm in the best case (8 orientations, Scale 4), we computed
the disparity map. The underlying reasons why this configura-
tion provides the best result are: (a) Scale 4 matches better the
scale of the object edges in this particular case, and (b) given
the object geometry and its tilting in time, a relatively fine ori-
entation angle detection was required. If we compare this case
with the results obtained applying algorithm A without Gabor fil-
ters (first column in Table 1), we observe an increase of 39% in
the number of matched events, while the proportions of isolated
events and wrongly matched pairs have decreased by 65 and 2.5%,
respectively. Moreover, the number of correctly matched events
has increased by 44%. In order to compute the disparity map,
we calculated the euclidean distance between both pixels in each
pair of events (from Retina 1 and Retina 2). This measurement
is inversely proportional to the distance between the represented
object and the retinas, as further objects produce a small dispar-
ity and closer objects produce a large disparity value. Figure 16
shows 9 consecutive frames of the obtained disparity sequence,
with a frame time of 50 ms. The disparity scale goes from dark
blue to red to encode events from far to close.

Applying the method described in section 3D Reconstruction,
the 3 dimensional coordinates of the matched events are calcu-
lated. Figure 17 shows 9 consecutive frames of the resultant 3D
reconstruction, with a frame time of 50 ms. The shape of the
pen is clearly represented as it moves around 3D space. Using
this sequence, we measured manually the approximate length of
the pen by calculating the distance between the 3D coordinates
of pairs of events located in the upper and lower limits of the
pen, respectively. This gave an average length of 14.85 cm, being
the real length 14 cm, which means an error of 0.85 cm. For an
approximate distance to the retinas of 1 m, the maximum error
predicted in Figure 10 would be below 1.5%, resulting in 1.5 cm.
Therefore, we can see that the 0.85 cm error is smaller than the
maximum predicted by Figure 10.

Ring
A ring with a diameter of 22 cm was rotating slowly in front
of the two retinas for half a minute, with a number of approxi-
mately 115 Kevents generated by each retina. As in the previous
example, the matching algorithm was applied both to the events
generated by the retinas (see section Event Matching, algorithm
A) and to the events generated by the Gabor filters (see section
Event Matching, algorithm B), in order to compare both methods.
Table 2 shows all the results for all the configurations of Gabor
filters (from 2 to 8 orientations, with scales 1–4). All these results
are presented graphically in Figure 18, where the colored verti-
cal bars represent the results obtained applying algorithm B with
different number of orientations and scales, while the black hor-
izontal lines indicate the values obtained using algorithm A (no
Gabor filters). We can see in the table how the largest number
of matched events (25 K) is obtained for 8 orientations and both

www.frontiersin.org March 2014 | Volume 8 | Article 48 | 46

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

Table 3 | Comparison of the 3D reconstruction results for the cube.

Scale 1 Scale 2

Orientations 0 2 3 4 5 6 7 8 2 3 4 5 6 7 8

Nev 118 54 68 100 112 132 153 178 50 93 125 152 183 205 243

Nm 11 6 10 13 15 18 21 24 6 11 14 17 21 24 28

Matching rate 9 12 14 13 14 14 14 14 11 12 11 11 11 11 12

Isolated events 14.0 5.2 5.0 4.5 4.3 3.8 3.7 3.3 5.0 5.0 4.1 4.1 3.9 3.4 3.1

Merr 20.3 17.0 15.5 15.1 15.0 15.1 15.8 14.1 17.9 14.2 11.9 11.1 13.3 12.0 10.3

Nm−correct 6 5 8 10 12 15 17 20 5 9 12 14 17 20 24

Scale 3 Scale 4

Orientations 2 3 4 5 6 7 8 2 3 4 5 6 7 8

Nev 54 130 170 219 256 300 346 51 145 190 235 285 329 386

Nm 5 12 14 20 23 27 31 3 10 12 16 19 21 25

Matching rate 9 9 8 9 9 9 9 6 7 6 7 7 7 7

Isolated events 5.2 4.2 4.1 3.6 3.1 3.2 3.0 4.8 3.7 3.2 3.1 2.9 2.7 2.8

Merr 19.0 15.1 12.7 11.3 11.9 11.2 10.9 27.4 15.0 12.9 11.4 13.7 12.2 10.7

Nm−correct 4 10 12 17 20 23 27 2 8 10 14 16 18 22

The meaning of the columns and rows is as in Table 1.

FIGURE 20 | Graphical representation of Table 3. Each subplot corresponds to a different row of the table, showing the obtained values for each number of
orientations and scale. The black horizontal lines indicate the values obtained using algorithm A (0 orientations).

scales 2 and 3. Although the ratio of noise events is very similar for
both of them (1.9% for Scale 2 and 2.0% for Scale 3), Scale 3 pro-
vides a smaller ratio of wrongly matched events (7.8% for Scale 2
and 6.4% for Scale 3). Therefore, we conclude that the best per-
formance is found with 8 orientations and Scale 3, as it is more
appropriate to the geometry of the object. If we compare this case
with the results obtained applying algorithm A without Gabor fil-
ters (first column in Table 2), we observe an increase of 47% in
the number of matched events, while the proportions of isolated

events and wrongly matched pairs have decreased by 66 and 46%,
respectively. Therefore, the number of correctly matched events
has increased by 64%. A frame reconstruction of the disparity
map and the 3D sequence are shown in Figure 19.

The diameter of the reconstructed ring was measured manu-
ally by selecting pairs of events with the largest possible separa-
tion. This gave an average diameter of 21.40 cm, which implies a
reconstruction error of 0.6 cm. This error is also smaller than the
maximum predicted in Figure 10.

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 48 | 47

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

Cube
Finally, a cube with an edge length of 15 cm was rotating in
front of the retinas, with a number of approximately 118 Kevents
generated by each retina in approximately 20 s. The same proce-
dure performed in previous examples was repeated, obtaining the
results shown in Table 3. All these results are presented graphi-
cally in Figure 20, where the colored vertical bars represent the
results obtained applying algorithm B with different number of
orientations and scales, while the black horizontal lines indicate
the values obtained using algorithm A (no Gabor filters). In this
case, the largest number of matched events (31 K) is given by 8
orientations and Scale 3, while both the ratio of isolated events
and the ratio of wrongly matched events are very similar for
the four different scales with 8 orientations (around 3% noise
and 10.9% wrong matches). Therefore, the best performance is
given by 8 orientations and Scale 3. If we compare this case with
the results obtained applying algorithm A without Gabor fil-
ters (first column in Table 3), we observe an increase of 181%
in the number of matched events, while the proportions of iso-
lated events and wrongly matched pairs have decreased by 78 and
46%, respectively. The number of correctly matched events has
increased by 350%.

A reconstruction of the disparity map and the 3D sequence
is shown in Figure 21. The ratio of wrongly matched events is
much larger than on the ring example (about twice as much).
That is because this object has many parallel edges, increasing
the number of events in the same epipolar line which are can-
didates to be matched and which the orientation filters do not
discriminate. While Figure 14 shows a situation where 2 different
positions in 3D space (A and B) can generate events that could
be wrongly matched, in this case we could find at least 4 different
positions in 3D space (as we have 4 parallel edges) with the same
properties.

The edge length of the reconstructed 3D cube was measured
manually on the reconstructed events, giving an average length of
16.48 cm, which implies a reconstruction error of 1.48 cm. This
error is smaller than the maximum predicted in Figure 10.

CONCLUSION
This paper analyzes different strategies to improve 3D stereo
reconstruction in event-based vision systems. First of all, a com-
parison between stereo calibration methods showed that by using
a calibration object with LEDs placed in known locations and
measuring their corresponding 2D projections with sub-pixel res-
olution, we can extract the geometric parameters of the stereo
setup. This method was tested by reconstructing the known coor-
dinates of the calibration object, giving a mean error comparable
to the size of each LED.

Event matching algorithms have been proposed for stereo
reconstruction, taking advantage of the precise timing informa-
tion provided by DVS sensors. In this work, we have explored
the benefits of using Gabor filters to extract the orientation
of the object edges and match events from pair wise fil-
ters directly. This imposes the restriction that the distance
from the stereo cameras to the objects must be much larger
than the focal length of the lenses, so that edge orientations
appear similar in both cameras. By analyzing different numbers

FIGURE 21 | Results obtained for the cube. (A) Disparity map
reconstructed with Tframe = 50 ms corresponding to the rotation of the
cube. (B) Result of the 3D reconstruction of the same frame of the cube
recording.

of filters with several spatial scales, we have shown that we
can increase the number of reconstructed events for a given
sequence, reducing the number of both noise events and wrong
matches at the same time. This improvement has been vali-
dated by reconstructing in 3D three different objects. The size
of these objects was estimated from the 3D reconstruction, with
an error smaller than theoretically predicted by the method
(1.5%).

ACKNOWLEDGMENTS
This work has been funded by ERANET grant PRI-PIMCHI-
2011-0768 (PNEUMA) funded by the Spanish Ministerio de
Economía y Competitividad, Spanish research grants (with
support from the European Regional Development Fund)
TEC2009-10639-C04-01 (VULCANO) and TEC2012-37868-
C04-01 (BIOSENSE), Andalusian research grant TIC-6091
(NANONEURO) and by the French national Labex pro-
gram “Life-senses”. The authors also benefited from both the
CapoCaccia Cognitive Neuromorphic Engineering Workshop,
Sardinia, Italy, and the Telluride Neuromorphic Cognition
Engineering Workshop, Telluride, Colorado.

www.frontiersin.org March 2014 | Volume 8 | Article 48 | 48

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnins.
2014.00048/abstract

REFERENCES
Benosman, R., Ieng, S., Rogister, P., and Posch, C. (2011). Asynchronous event-

based Hebbian epipolar geometry. IEEE Trans. Neural Netw. 22, 1723–1734. doi:
10.1109/TNN.2011.2167239

Camuñas-Mesa, L., Acosta-Jiménez, A., Zamarreño-Ramos, C., Serrano-
Gotarredona, T., and Linares-Barranco, B. (2011). A 32x32 pixel convolution
processor chip for address event vision sensors with 155ns event latency
and 20Meps throughput. IEEE Trans. Circuits Syst. I 58, 777–790. doi:
10.1109/TCSI.2010.2078851

Camuñas-Mesa, L., Zamarreño-Ramos, C., Linares-Barranco, A., Acosta-Jiménez,
A., Serrano-Gotarredona, T., and Linares-Barranco, B. (2012). An event-
driven multi-kernel convolution processor module for event-driven visión
sensors. IEEE J. Solid State Circuits 47, 504–517. doi: 10.1109/JSSC.2011.
2167409

Carneiro, J., Ieng, S., Posch, C., and Benosman, R. (2013). Asynchronous event-
based 3D reconstruction from neuromorphic retinas. Neural Netw. 45, 27–38.
doi: 10.1016/j.neunet.2013.03.006

Cauwenberghs, G., Kumar, N., Himmelbauer, W., and Andreou, A. G. (1998). An
analog VLSI chip with asynchronous interface for auditory feature extraction.
IEEE Trans. Circuits Syst. II 45, 600–606. doi: 10.1109/82.673642

Chan, V., Liu, S. C., and van Schaik, A. (2007). AER EAR: a matched silicon cochlea
pair with address event representation interface. IEEE Trans. Circuits Syst. I 54,
48—59. doi: 10.1109/TCSI.2006.887979

Choi, T. Y. W., Merolla, P., Arthur, J., Boahen, K., and Shi, B. E. (2005).
Neuromorphic implementation of orientation hypercolumns. IEEE Trans.
Circuits Syst. I 52, 1049–1060. doi: 10.1109/TCSI.2005.849136

Domínguez-Morales, M. J., Jiménez-Fernández, A. F., Paz-Vicente, R. Jiménez-
Moreno, G., and Linares-Barranco, A. (2012). Live demonstration: on the
distance estimation of moving targets with a stereo-vision AER system. Int.
Symp. Circuits Syst. 2012, 721–725. doi: 10.1109/ISCAS.2012.6272137

Faugeras, O. (1993). Three-Dimensional Computer Vision: a Geometric Viewpoint.
Cambridge, MA: MIT Press.

Gong, M. (2006). Enforcing temporal consistency in real-time stereo estimation.
ECCV 2006, Part III, 564–577. doi: 10.1007/11744078_44

Granlund, G. H., and Knutsson, H. (1995). Signal Processing for Computer Vision.
Dordrecht: Kluwer. doi: 10.1007/978-1-4757-2377-9

Greenberg, S., Aladjem, M., and Kogan, D. (2002). Fingerprint image enhance-
ment using filtering techniques. Real Time Imaging 8, 227–236. doi:
10.1006/rtim.2001.0283

Hartley, R., and Zisserman, A. (2003). Multiple View Geometry in Computer Vision.
(New York, NY: Cambridge University Press). doi: 10.1017/CBO9780511811685

Hong, L., Wan, Y., and Jain, A. (1998). Fingerprint image enhancement: algo-
rithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20,
777–789. doi: 10.1109/34.709565

jAER Open Source Project. (2007). Available online at: http://jaer.wiki.
sourcefourge.net

Khan, M. M., Lester, D. R., Plana, L. A., Rast, A. D., Jin, X., Painkras, E.,
et al. (2008). “SpiNNaker: mapping neural networks onto a massively-parallel
chip multiprocessor,” in Proceedings International Joint Conference on Neural
Networks, IJCNN 2008 (Hong Kong), 2849–2856. doi: 10.1109/IJCNN.2008.46
34199

Kogler, J., Sulzbachner, C., and Kubinger, W. (2009). “Bio-inspired stereo vision
system with silicon retina imagers,” in 7th ICVS International Conference on
Computer Vision Systems, Vol. 5815, (Liege), 174–183. doi: 10.1007/978-3-642-
04667-4_18

Lazzaro, J., Wawrzynek, J., Mahowald, M., Sivilotti, M., and Gillespie, D. (1993).
Silicon auditory processors as computer peripherals. IEEE Trans. Neural Netw.
4, 523–528. doi: 10.1109/72.217193

Leñero-Bardallo, J. A., Serrano-Gotarredona, T., and Linares-Barranco, B.
(2010). A five-decade dynamic-range ambient-light-independent calibrated
signed-spatial-contrast AER Retina with 0.1-ms latency and optional time-
to-first-spike mode. IEEE Trans. Circuits Syst. I 57, 2632–2643. doi:
10.1109/TCSI.2010.2046971

Leñero-Bardallo, J. A., Serrano-Gotarredona, T., and Linares-Barranco, B.
(2011). A 3.6s latency asynchronous frame-free event-driven dynamic-vision-
sensor. IEEE J. Solid State Circuits 46, 1443–1455. doi: 10.1109/JSSC.2011.
2118490

Lichtsteiner, P., Posch, C., and Delbrück, T. (2008). A 128x128 120dB 15 μs latency
asynchronous temporal contrast vision sensor. IEEE J. Solid State Circuits 43,
566–576. doi: 10.1109/JSSC.2007.914337

Longuet-Higgins, H. (1981). A computer algorithm for reconstructing a scene from
two projections. Nature 293, 133–135. doi: 10.1038/293133a0

Loop, C., and Zhang, Z. (1999). Computing rectifying homographies for
stereo vision. IEEE Conf. Comp. Vis. Pattern Recognit. 1, 125–131. doi:
10.1109/CVPR.1999.786928

Lowe, D. G. (2004). Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vis. 60, 91–110. doi: 10.1023/B:VISI.0000029664.
99615.94

Luong, Q. T. (1992). Matrice Fondamentale et Auto-Calibration en Vision Par
Ordinateur. Ph.D. Thesis, Universite de Paris-Sud, Centre d’Orsay.

Mahowald, M. (1992). VLSI Analogs of Neural Visual Processing: a Synthesis
of form and Function. Ph.D. dissertation, California Institute of Technology,
Pasadena, CA.

Mahowald, M., and Delbrück, T. (1989). “Cooperative stereo matching using
static and dynamic image features,” in Analog VLSI Implementation of Neural
Systems, eds C. Mead and M. Ismail (Boston, MA: Kluwer Academic Publishers),
213–238. doi: 10.1007/978-1-4613-1639-8_9

Marr, D., and Poggio, T. (1976). Cooperative computation of stereo disparity.
Science 194, 283–287. doi: 10.1126/science.968482

Maybank, S. J., and Faugeras, O. (1992). A theory of self-calibration of a moving
camera. Int. J. Comp. Vis. 8, 123–152. doi: 10.1007/BF00127171

Meister, M., and Berry II, M. J. (1999). The neural code of the retina. Neuron 22,
435–450. doi: 10.1016/S0896-6273(00)80700-X

Lindenbaum, M., Fischer, M., and Bruckstein, A. M. (1994). On Gabor’s contri-
bution to image enhancement. Pattern Recognit. 27, 1–8. doi: 10.1016/0031-
3203(94)90013-2

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB dynamic
range frame-free PWM image sensor with lossless pixel-level video compres-
sion and time-domain CDS. IEEE J. Solid State Circuits 46, 259–275. doi:
10.1109/JSSC.2010.2085952

Rogister, P., Benosman, R., Ieng, S., Lichsteiner, P., and Delbruck, T. (2012).
Asynchronous event-based binocular stereo matching. IEEE Trans. Neural Netw.
23, 347–353. doi: 10.1109/TNNLS.2011.2180025

Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-
Vicente, R., Gómez-Rodríguez, F., et al. (2009). CAVIAR: a 45k-Neuron,
5M-Synapse, 12G-connects/sec AER hardware sensory-processing-learning-
actuating system for high speed visual object recognition and tracking. IEEE
Trans. Neural Netw. 20, 1417–1438. doi: 10.1109/TNN.2009.2023653

Serrano-Gotarredona, R., Serrano-Gotarredona, T., Acosta-Jimenez, A., and
Linares-Barranco, B. (2006). A neuromorphic cortical-layer microchip for
spike-based event processing vision systems. IEEE Trans. Circuits and Systems
I 53, 2548–2556. doi: 10.1109/TCSI.2006.883843

Serrano-Gotarredona, R., Serrano-Gotarredona, T., Acosta-Jimenez, A., Serrano-
Gotarredona, C., Perez-Carrasco, J. A., Linares-Barranco, A., et al. (2008).
On real-time AER 2D convolutions hardware for neuromorphic spike
based cortical processing. IEEE Trans. Neural Netw. 19, 1196–1219. doi:
10.1109/TNN.2008.2000163

Serrano-Gotarredona, T., Andreou, A. G., and Linares-Barranco, B. (1999). AER
image filtering architecture for vision processing systems. IEEE Trans. Circuits
Syst. I 46, 1064–1071. doi: 10.1109/81.788808

Serrano-Gotarredona, T., and Linares-Barranco, B. (2013). A 128x128 1.5% con-
trast sensitivity 0.9% FPN 3μs latency 4mW asynchronous frame-free dynamic
vision sensor using transimpedance amplifiers. IEEE J. Solid State Circuits 48,
827–838. doi: 10.1109/JSSC.2012.2230553

Serrano-Gotarredona, T., Park, J., Linares-Barranco, A., Jiménez, A., Benosman,
R., and Linares-Barranco, B. (2013). Improved contrast sensitivity DVS and its
application to event-driven stereo vision. IEEE Int. Symp. Circuits Syst. 2013,
2420–2423. doi: 10.1109/ISCAS.2013.6572367

Silver, R., Boahen, K., Grillner, S., Kopell, N., and Olsen, K. L. (2007).
Neurotech for neuroscience: unifying concepts, organizing principles, and
emerging tools. J. Neurosci. 27, 11807–11819. doi: 10.1523/JNEUROSCI.3575-
07.2007

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 48 | 49

http://www.frontiersin.org/journal/10.3389/fnins.2014.00048/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2014.00048/abstract
http://jaer.wiki.sourcefourge.net
http://jaer.wiki.sourcefourge.net
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Camuñas-Mesa et al. Orientation filters for 3D reconstruction

Sivilotti, M. (1991). Wiring Considerations in Analog VLSI Systems With Application
to Field-Programmable Networks. Ph.D. dissertation, California Institute of
Technology, Pasadena, CA.

Tsang, E. K. C., and Shi, B. E. (2004). “A neuromorphic multi-chip model of a
disparity selective complex cell,” in Advances in Neural Information Processing
Systems, Vol. 16, eds S. Thrun, L. K. Saul, and B. Schölkopf (Vancouver, BC:
MIT Press), 1051–1058.

Venier, P., Mortara, A., Arreguit, X., and Vittoz, E. A. (1997). An integrated cortical
layer for orientation enhancement. IEEE J. Solid State Circuits 32, 177–186. doi:
10.1109/4.551909

Zamarreño-Ramos, C., Linares-Barranco, A., Serrano-Gotarredona, T., and
Linares-Barranco, B. (2013). Multi-casting mesh AER: a scalable assem-
bly approach for reconfigurable neuromorphic structured AER systems.
Application to ConvNets. IEEE Trans. Biomed. Circuits Syst. 7, 82–102. doi:
10.1109/TBCAS.2012.2195725

Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE
Trans. Pattern Anal. Mach. Intell. 22, 1330–1334. doi: 10.1109/34.
888718

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 25 September 2013; accepted: 23 February 2014; published online: 31 March
2014.
Citation: Camuñas-Mesa LA, Serrano-Gotarredona T, Ieng SH, Benosman RB and
Linares-Barranco B (2014) On the use of orientation filters for 3D reconstruction in
event-driven stereo vision. Front. Neurosci. 8:48. doi: 10.3389/fnins.2014.00048
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2014 Camuñas-Mesa, Serrano-Gotarredona, Ieng, Benosman and
Linares-Barranco. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or reproduction
in other forums is permitted, provided the original author(s) or licensor are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

www.frontiersin.org March 2014 | Volume 8 | Article 48 | 50

http://dx.doi.org/10.3389/fnins.2014.00048
http://dx.doi.org/10.3389/fnins.2014.00048
http://dx.doi.org/10.3389/fnins.2014.00048
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

ORIGINAL RESEARCH ARTICLE
published: 07 February 2014

doi: 10.3389/fnins.2014.00009

Asynchronous visual event-based time-to-contact
Xavier Clady1*, Charles Clercq1,2, Sio-Hoi Ieng1, Fouzhan Houseini2, Marco Randazzo2,

Lorenzo Natale2, Chiara Bartolozzi2 and Ryad Benosman1,2

1 Vision Institute, Université Pierre et Marie Curie, UMR S968 Inserm, UPMC, CNRS UMR 7210, CHNO des Quinze-Vingts, Paris, France
2 iCub Facility, Istituto Italiano di Tecnologia, Genova, Italia

Edited by:

Jennifer Hasler, Georgia Insitute of
Technology, USA

Reviewed by:

Ueli Rutishauser, California Institute
of Technology, USA
Leslie S. Smith, University of
Stirling, UK
Scott M. Koziol, Baylor University,
USA

*Correspondence:

Xavier Clady, Vision Institute,
Université Pierre et Marie Curie,
UMR S968 Inserm, UPMC, CNRS
UMR 7210, CHNO des
Quinze-Vingts, 17 rue Moreau,
75012 Paris, France
e-mail: xavier.clady@upmc.fr

Reliable and fast sensing of the environment is a fundamental requirement for
autonomous mobile robotic platforms. Unfortunately, the frame-based acquisition
paradigm at the basis of main stream artificial perceptive systems is limited by low
temporal dynamics and redundant data flow, leading to high computational costs. Hence,
conventional sensing and relative computation are obviously incompatible with the design
of high speed sensor-based reactive control for mobile applications, that pose strict limits
on energy consumption and computational load. This paper introduces a fast obstacle
avoidance method based on the output of an asynchronous event-based time encoded
imaging sensor. The proposed method relies on an event-based Time To Contact (TTC)
computation based on visual event-based motion flows. The approach is event-based in
the sense that every incoming event adds to the computation process thus allowing fast
avoidance responses. The method is validated indoor on a mobile robot, comparing the
event-based TTC with a laser range finder TTC, showing that event-based sensing offers
new perspectives for mobile robotics sensing.

Keywords: neuromophic vision, event-based computation, time to contact, robotics, computer vision

1. INTRODUCTION
A fundamental navigation task for autonomous mobile robots is
to detect and avoid obstacles in their path. This paper introduces
a full methodology for the event-based computation of Time To
Contact (TTC) for obstacle avoidance, using an asynchronous
event-based sensor.

Sensors such as ultrasonic sensors, laser range finders or
infrared sensors are often mounted on-board of robotic platforms
in order to provide distance to obstacles. Such active devices are
used to measure signals transmitted by the sensor and reflected
by the obstacle(s). Their performance is essentially dependent on
how the transmitted energy (ultrasonic waves, light,...) interacts
with the environment Everett (1995); Ge (2010).

These sensors have limitations. In the case of ultrasonic sen-
sors, corners and oblique surfaces, or even temperature variations
can provide artifacts in the measurements. Infrared-based sensors
(including recently emerged Time-Of-Light or RGB-D cameras)
are sensitive to sunlight and can fail if the obstacle absorbs the sig-
nal. Laser range finder readings may also be erroneous because of
specular reflections; additionally, the potential problems of eye-
safety limit the use of many laser sensors to environments where
humans are not present. In addition, most of the sensors have
restrictions in terms of field-of-view and/or spatial resolution,
requiring a mechanical scanning system or a network of several
sensors. This leads to severe restrictions in terms of temporal
responsiveness and computational load.

Vision can potentially overcome many of these restrictions;
visual sensors often provide better resolution, wider range at
faster rates than active scanning sensors. Their capacity to detect
the natural light reflected by the objects or the surrounding areas
paves the way to biological-inspired approaches.

Several navigation strategies using vision have been proposed,
the most common consist of extracting depth information from
visual information. Stereo-vision techniques can also produce
accurate depth maps if the stability of the calibration parame-
ters and a relative sufficient inter-camera distance can be ensured.
However, these are strong requirements for high-speed and small
robots. Another class of algorithms (Lorigo et al., 1997; Ulrich
and Nourbakhsh, 2000), is based on color or texture segmenta-
tion of the ground plane. Even if this approach works on a single
image, it requires the assumption that the robot is operating on
a flat and uni-colored/textured surface and all objects have their
bases on the ground.

Another extensively studied strategy is based on the evalu-
ation of the TTC, noted τ. This measure, introduced by Lee
(1976), corresponds to the time that would elapse before the robot
reaches an obstacle if the current relative motion between the
robot and the obstacle itself were to continue without change.
As the robot can navigate through the environment following a
trajectory decomposed into straight lines (which is a classic and
efficient strategy for autonomous robots in most environments),
a general definition of TTC can be expressed as follows:

τ = − Z
dZ
dt

(1)

where Z is the distance between the camera and the obstacle, and
dZ
dt corresponds to the relative speed.

The Time-to-contact can be computed considering only visual
information, without extracting relative depth information and
speed, as demonstrated by Camus (1995) (see Section 3.2). Its
computation has the advantage to work with a single camera,

www.frontiersin.org February 2014 | Volume 8 | Article 9 | 51

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00009/abstract
http://community.frontiersin.org/people/u/114467
http://community.frontiersin.org/people/u/115233
http://community.frontiersin.org/people/u/32893
http://community.frontiersin.org/people/u/134406
http://community.frontiersin.org/people/u/36032
http://community.frontiersin.org/people/u/21102
http://community.frontiersin.org/people/u/94237
mailto:xavier.clady@upmc.fr
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Clady et al. Asynchronous visual event-based time-to-contact

without camera calibration or binding assumptions about the
environment. Several techniques for the measure of TTC have
been proposed. In Negre et al. (2006); Alyena et al. (2009), it is
approximated measuring the local scale change of the obstacle,
under the assumption that the obstacle is planar and parallel to
the image plane. This approach requires either to precisely seg-
ment the obstacle in the image or to compute complex features in
multi-scales representation of the image. Most studied methods
of TTC rely on the estimation of optical flow. Optical flow conveys
all necessary information from the environment Gibson (1978),
but its estimation on natural scenes is well-known to be a difficult
problem. Existing techniques are computationally expensive and
are mostly used off line (Negahdaripour and Ganesan, 1992; Horn
et al., 2007). Real-time implementations, using gradient-based,
feature matching-based (Tomasi and Shi, 1994) or differential
ones, do not deal with large displacements. Multi-scale process,
as proposed by Weber and Malik (1995), can manage with this
limitation, at the cost of computing time and hardware memory
to store and process frames at different scales and timings.

Rind and Simmons (1999) proposed a bio-inspired neural net-
work modeling the lobula giant movement detector (LGMD), a
visual part of the optic lobe of the locust that responds most
strongly to approaching objects. In order to process the frames
provided by a conventional camera, existing implementations
proposed by Blanchard et al. (2000) and Yue and Rind (2006)
required a distributed computing environment (three PCs con-
nected via ethernet). Another promising approach consists in
VLSI architecture implementing functional models of similar
neural networks, but it will require huge investments to go beyond
the single proof of concept, such as the 1-D architecture of 25
pixels proposed by Indiveri (1998) modeling locust descending
contralateral movement detector (DCMD) neurons. The hard-
ware systems constructed in Manchester and Heidelberg, and
described respectively by Bruderle et al. (2011) and Furber et al.
(2012), could be an answer to this issue.

Globally, most of these approaches suffer from the limita-
tions imposed by frame-based acquisition of visual information
in the conventional cameras, that output large and redundant
data flow, at a relative low temporal frequency. Most of the cal-
culations are operated on uninformative parts of the images, or
are dedicated to compensate for the lack of temporal precision.
Existing implementations are often a trade off between accuracy
and efficiency and are restricted to mobile robots moving rela-
tively slowly. For example, Low and Wyeth (2005) and Guzel and
Bicker (2010) present experiments on the navigation of a wheeled
mobile robotic platform using optical flow based TTC compu-
tation applied with an embedded conventional camera. Their
softwares run at approximatively 5 Hz and the maximal speed of
the mobile robot is limited to 0.2 m/s.

In this perspective, free-frame acquisition of the neuromor-
phic cameras (Guo et al., 2007; Lichtsteiner et al., 2008; Lenero-
Bardallo et al., 2011; Posch et al., 2011), can introduce significant
improvements in robotic applications. The operation of such sen-
sors is based on independent pixels that asynchronously collect
and send their own data, when the processed signal exceeds a
tunable threshold. The resulting compressed stream of events
includes the spatial location of active pixels and an accurate

time stamping at which a given signal change occurs. Events
can be processed locally while encoding the additional temporal
dynamics of the scene.

This article presents an event-based methodology to measure
the TTC from the events stream provided by a neuromorphic
vision sensor mounted on a wheeled robotic platform. The TTC
is computed and then updated for each incoming event, mini-
mizing the computational load of the robot. The performance
of the developed event-based TTC is compared with a laser
range finder, showing that event-driven sensing and computation,
with their sub-microsecond temporal resolution and the inherent
redundancy suppression, are a promising solution to vision-based
technology for high-speed robots.

In the following we briefly introduce the used neuromorphic
vision sensor (Section 2), describe the event-based approach pro-
posed to compute the TTC (Section 3) and present experimental
results validating the accuracy and the robustness of the proposed
technique on a mobile robots moving in an indoor environment
(Section 4).

2. TIME ENCODED IMAGING
Biomimetic, event-based cameras are a novel type of vision
devices that—like their biological counterparts—are driven by
“events” happening within the scene, and not by artificially
created timing and control signals (i.e., frame clock of con-
ventional image sensors) that have no relation whatsoever
with the source of the visual information. Over the past
few years, a variety of these event-based devices, reviewed
in Delbruck et al. (2010), have been implemented, including
temporal contrast vision sensors that are sensitive to relative
light intensity change, gradient-based sensors sensitive to static
edges, edge-orientation sensitive devices and optical-flow sen-
sors. Most of these vision sensors encode visual information
about the scene in the form of asynchronous address events
(AER) Boahen (2000)using time rather than voltage, charge or
current.

The ATIS (“Asynchronous Time-based Image Sensor”) used in
this work is a time-domain encoding image sensor with QVGA
resolution Posch et al. (2011). It contains an array of fully
autonomous pixels that combine an illuminance change detector
circuit and a conditional exposure measurement block.

As shown in the functional diagram of the ATIS pixel in
Figure 1, the change detector individually and asynchronously
initiates the measurement of an exposure/gray scale value only if
a brightness change of a certain magnitude has been detected in
the field-of-view of the respective pixel. The exposure measure-
ment circuit encodes the absolute instantaneous pixel illuminance
into the timing of asynchronous event pulses, more precisely into
inter-event intervals.

Since the ATIS is not clocked, the timing of events can be
conveyed with a very accurate temporal resolution in the order
of microseconds. The time-domain encoding of the intensity
information automatically optimizes the exposure time sepa-
rately for each pixel instead of imposing a fixed integration time
for the entire array, resulting in an exceptionally high dynamic
range and an improved signal to noise ratio. The pixel-individual
change detector driven operation yields almost ideal temporal

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 9 | 52

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Clady et al. Asynchronous visual event-based time-to-contact

redundancy suppression, resulting in a sparse encoding of the
image data.

Figure 2 shows the general principle of asynchronous imag-
ing in a spatio-temporal representation. Frames are absent from
this acquisition process. They can however be reconstructed,
when needed, at frequencies limited only by the temporal res-
olution of the pixel circuits (up to hundreds of kiloframes per
second) (Figure 2 top). Static objects and background informa-
tion, if required, can be recorded as a snapshot at the start of
an acquisition. And henceforward moving objects in the visual
scene describe a spatio-temporal surface at very high temporal
resolution (Figure 2 bottom).

3. EVENT-BASED TTC COMPUTATION
3.1. EVENT-BASED VISUAL MOTION FLOW
The stream of events from the silicon retina can be mathemat-
ically defined as follows: let e(p, t) = (p, t)T a triplet giving the
position p = (x, y)T and the time t of an event. We can then
define locally the function �e that maps to each p, the time t:

�e : N2 → R

p �→ �e(p) = t
(2)

Time being an increasing function, �e is a monotonically increas-
ing surface in the direction of the motion.

FIGURE 1 | Functional diagram of an ATIS pixel Posch (2010). Two types of asynchronous events, encoding change and brightness information, are
generated and transmitted individually by each pixel in the imaging array.

FIGURE 2 | Lower part The spatio-temporal space of imaging events:

static objects and scene background are acquired first. Then, dynamic
objects trigger pixel-individual, asynchronous gray-level events after each

change. Frames are absent from this acquisition process. Samples of
generated images from the presented spatio-temporal space are shown in
the upper part of the figure.

www.frontiersin.org February 2014 | Volume 8 | Article 9 | 53

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Clady et al. Asynchronous visual event-based time-to-contact

We then set the first partial derivatives with respect to the
parameters as: �ex = ∂�e

∂x and �ey = ∂�e
∂y (see Figure 3). We can

then write �e as:

�e(p+�p) = �e(p)+ ∇�T
e �p+ o(||�p||) (3)

with ∇�e =
(

∂�e
∂x , ∂�e

∂y

)T
.

The partial functions of �e are functions of a single variable,
whether x or y. Time being a strictly increasing function, �e is
a nonzero derivatives surface at any point. It is then possible
to use the inverse function theorem to write around a location
p = (x, y)T :

(
∂�e

∂x
(x, y0),

∂�e

∂y
(x0, y)

)T

=
(

d�e|y= y0

dx
(x),

d�e|x= x0

dy
(y)

)T

=
(

1

vnx(x, y0)
,

1

vny(x0, y)

)T

(4)

�e|x= x0 , �e|y= y0 being �e restricted respectively to x = x0 and
y = y0, and vn(x, y) = (vnx, vny)

T represents the normal compo-
nent of the visual motion flow; it is perpendicular to the object
boundary (describing the local surface �e).

The gradient of �e or ∇�e, is then:

∇�e(p, t) =
(

1

vnx(x, y0)
,

1

vny(x0, y)

)T

(5)

The vector ∇�e measures the rate and the direction of change
of time with respect to the space, its components are also the
inverse of the components of the velocity vector estimated at p.

The flow definition given by Equation 5 is sensitive to noise
since it consists in estimating the partial derivatives of �e at each
individual event. One way to make the flow estimation robust
against noise is to add a regularization process to the estima-
tion. To achieve this, we assume a local velocity constancy. This
hypothesis is satisfied in practice for small clusters of events. It is
then equivalent to assume �e being locally planar since its par-
tial spatial derivatives are the inverse of the speed, hence constant
velocities produce constant spatial rate of change in �e. Finally,
the slope of the fitted plane with respect to the time axis is directly
proportional to the motion velocity. The regularization also com-
pensates for absent events in the neighborhood of active events
where motion is being computed. The plane fitting provides an
approximation of the timing of still non active spatial locations
due the non idealities and the asynchronous nature of the sensor.
The reader interested in the computation of motion flow can refer
to Benosman et al. (2014) for more details. A full characterization
of its computational cost is proposed; it shows that the event-
based calculation required much less computation time than the
frame-based one.

3.2. TIME-TO-CONTACT
Assuming parts of the environment are static, while the camera is
moving forward, the motion flow diverges around a point called

FIGURE 3 | General principle of visual flow computation, the surface of

active events �e is derived to provide an estimation of orientation and

amplitude of motion.

the focus of expansion (FOE). The visual motion flow field and
the corresponding focus of expansion can be used to determine
the time-to-contact (TTC) or time-to-collision. If the camera
is embedded on an autonomous robot moving with a constant
velocity, the TTC can be determined without any knowledge of
the distance to be traveled or the velocity the robot is moving.

We assume the obstacle is at P = (Xc, Yc, Zc)
T in the cam-

era coordinate frame and p = (x, y)T is its projection into the
camera’s focal plane coordinate frame (see Figure 4). The velocity
vector V is also projected into the focal plane as v = (ẋ, ẏ)T .

By deriving the pinhole model’s equations, Camus (1995)
demonstrates that, if the coordinates pf = (xf , yf)

T of the FOE
are known, the following relation is satisfied:

τ = −Zc

Żc
= y − yf

ẏ
= x − xf

ẋ
, where

Żc = dZc

dt
, ẋ = dx

dt
, ẏ = dy

dt
. (6)

With our notation, this is equivalent to:

τ(p, t)v(p, t) = p− pf (7)

The TTC is then obtained at pixel p according to the relation:

τ(p, t) = vT(p, t)(p− pf)

||v(p, t)||2 (8)

The TTC as defined is a signed real value because of the scalar
product. Its sign refers to the direction of the motion: when τ

is positive, the robot is going toward the obstacle and, vicev-
ersa, for negative τ it is getting away. This equality shows also
that τ can be determined only if the velocity v at p is known or
can be estimated for any p at anytime t. There is unfortunately
no general technique for estimating densely the velocity v from
the visual information. However, optical flow techniques allow
to compute densely the vector field of velocities normal to the

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 9 | 54

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Clady et al. Asynchronous visual event-based time-to-contact

FIGURE 4 | 3D obstacle velocity V projected into the camera focal plane as v. The dotted letters refer to temporal derivatives of each component.

edges, noted as vn. The visual flow technique presented in subsec-
tion 3.2 is the ideal technique to compute τ, not only because of
its event-based formulation, but it is also showing that the nor-
mal to the edge component of v is sufficient for τ determination.
From Equation 7, we apply the scalar product of both end sides
with ∇�e:

τ(p, t)v(p, t)T∇�e(p, t) = (p− pf)
T∇�e(p, t) (9)

Because v can be decomposed as the sum of a tangential vector vt ,
and a normal vector vn, the left end side of Equation 9 simplifies
into:

τvT(p, t)∇�e(p, t) = τ
(
vt(p, t)+ vn(p, t)

)T ∇�e(p, t)

= τvT
n (p, t)∇�e(p, t) = 2τ (10)

vT
t ∇�e = 0 since the tangential component is orthogonal to
∇�e. Therefore τ is given by:

τ(p, t) = 1

2
(p− pf)

T∇�e(p, t) (11)

3.3. FOCUS OF EXPANSION
The FOE is the projection of the observer’s direction of transla-
tion (or heading) on the sensor’s image plane. The radial pattern
of flows depends only on the observer’s heading and is indepen-
dent of 3D structure, while the magnitude of flow depends on
both heading and depth. Thus, in principle, the FOE could be
obtained by triangulation of two vectors in a radial flow pattern.
However, such a method would be vulnerable to noise. To cal-
culate the FOE, we used the redundancy in the flow pattern to
reduce errors.

The principle of the approach is described in Algorithm 1. We
consider a probability map of the visual field, where each point
represents the likelihood of the FOE to be located on the corre-
sponding point in the field. Every flow provides an estimation of
the location of the FOE in the visual field; indeed, because the
visual flow is diverging from the FOE, it belongs to the negative
semi-plane defined by the normal motion flow vector. So, for each
incoming event, all the corresponding potential locations of the
FOE are also computed (step 3 in Algorithm 1) and their likeli-
hood is increased (step 4). Finding the location of the probability
map with maximum value, the FOE is shifted toward this location
(step 5)). This principe is illustrated in Figure 5A. The area with
the maximum of probability is highlighted as the intersection of
the negative semi-planes defined by the normal motion flow vec-
tors. Finally, an exponential decreasing function is applied on the
probability map; it allows updating the location of the FOE, giv-
ing more importance to the contributions provided by the most
recent events and their associated flow.

Figures 5B,C show real results obtained viewing a densely tex-
tured pattern (the same as used in Experiment 1, see Figure 7).
Figure 5B shows the probability map defined as an accumulative
table and the resulting FOE. The corresponding motion flow is
given in Figure 5C; the normal motion vectors (with an ampli-
tude superior than a threshold) computed in a time interval
�t = 10 ms are represented as yellow arrows. Globally, the esti-
mated FOE is consistent with the motion flow. However, some
small groups of vectors (an example is surrounded by a white
dotted ellipse) that seems converging, instead of diverging, to the
FOE. Such flow events do not occur at the same time as the others;
they are most probably generated by a temporary micro-motion
(vibration, unexpected roll-, pitch- or yaw-motion). The cumula-
tive process allows to filter such noise motions and to keep a FOE
stable.

www.frontiersin.org February 2014 | Volume 8 | Article 9 | 55

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Clady et al. Asynchronous visual event-based time-to-contact

For an incoming event e(p, t) with a velocity vector vn, we can
define the following algorithm to estimate the FOE:

Algorithm 1 | Computation of the Focus Of Expansion.

Require Mprob ∈ R
m × R

n and Mtime ∈ R
m × R

n (Mprob is the probability

map and holds the likelihood for each spatial location and Mtime the

last time when its likelihood has been increased).

1: Initiate the matrices Mprob and Mtime to 0

2: for every incoming e(p, t) at velocity vn do

3: Determine all spatial locations pi such as (p− pi)
T .vn > 0

4: for all pi : Mprob(pi) =Mprob(pi)+ 1 and Mtime(pi) = ti
5: ∀ pi ∈ R

m × R
n, update the probability map Mprob(pi)=Mprob(pi)

e−
ti −Mtime (pi)

�t

6: Find pf = (xf , yf)
T the spatial location of the maximum value of

Mprob corresponding to the FOE location

7: end for

4. EXPERIMENTAL RESULTS
The method proposed in the previous sections is validated
in the experimental setup illustrated in Figure 6. The neuro-
morphic camera is mounted on a Pioneer 2 robotic platform,
equipped with a Hokuyo laser range finder (LRF) providing

the actual distance between the platform and the obstacles. In
experimental environment free of specular or transparent objects
(as in the first proposed experiment), the TTC based on the
LRF can be estimated using the Equation 1 and is used as
ground truth measure against which the event-based TTC is
benchmarked.

FIGURE 6 | Experimental setup: (A) the Pioneer 2, (B) the asynchronous

event-based ATIS camera, (C) the Hokuyo laser range finder (LRF).

A B

C

FIGURE 5 | Computation of the focus of expansion: (A) the focus of

expansion lies under the normal flow, we can then vote for an area of

the focal plane shown in (B) the FOE is the max of this area (C) Motion

flow vectors obtained during a time period of �t = 10 ms and

superimposed over a corresponding snapshot (realized using the PWM

grayscale events; the viewed pattern is the same as used in Experiment

1, cf. Figure 7). Note that only the vectors with high amplitude are
represented in order to enhance the readability of the Figure. Most of the
motion flow vectors are diverging from the estimated FOE. The white ellipse
in the up left corner shows a group of inconsistent motion flow vectors: they
are probably due to a temporary noise micro-motion (vibration, unexpected
roll-, pitch-, or yaw-motion).

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 9 | 56

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Clady et al. Asynchronous visual event-based time-to-contact

In the first experiment, the robot is moving forward and back-
ward in the direction of a textured obstacle as shown in Figure 7,
the corresponding TTC estimated by both sensors (LRF and
ATIS) is shown in Figure 8A. The TTC is expressed in the coordi-
nate system of the obstacle: the vertical axis corresponds to time
and the horizontal axis to the size of the obstacle. The extremes
(and the white parts of the plots) correspond to the changes of
direction of the robot: when its speed tends to 0, the LRF based
TTC tends to infinity and the vision based TTC cannot be com-
puted because too few events are generated. In order to show
comparable results, only the TTC obtained with a robot speed
superior to 0.1 m/s are shown; under this value, the robot motion
is relatively unstable, the robot tilting during the acceleration
periods.

Figure 8B shows the relative error of the event-based TTC with
respect of the ground truth calculated with the LRF TTC. The
error is large during the phases of positive and negative accel-
erations of the robot. There are two potential explanations. The

estimation of the speed of the robot based on the LRF is rela-
tively inaccurate during the change of velocity. In addition, brutal
changes of velocity could generate fast pitch motions which pro-
duce unstable FOE. Globally, more than the 60% of the relative
errors are inferior to 20% showing that that the event-based
approach is robust and accurate when the motion of the robot
is stable.

In the second experiment, the robot moves along a corri-
dor. In this conditions, multiple objects reflect the light from
the LRF, that fails to detect obstacles, on the contrary the event-
based algorithm succeeds in estimating the TTC relative to the
obstacles. Figure 8 shows the robot’s trajectory: during the first
stage the robot navigates toward an obstacle (portion A-B of
the trajectory). An avoidance maneuver is performed during
portion B-C that leads the robot to continue its trajectory to
enter the warehouse (portion C-D). The estimated TTC to the
closest obstacle, is shown as red plots in Figure 9 and com-
pared to the ground truth given by the odometer’s data (in

A B

FIGURE 7 | First experiment: (A) setup and location of the coordinate

system (XO, YO, ZO) related to the obstacle; (B) distance between the

robot and the obstacle, velocity of the robot and the relative estimated

TTC over time are computed based on the odometer of the robot. Only
the TTC computed while the velocity of the robot is superior to 0.1 m/s is
given, because it tends to infinity when velocity tends to 0.

FIGURE 8 | Comparison of the results obtained while the robot is

moving forward and backward in the direction of an obstacle. Results
are expressed related to time and the coordinates system of the obstacle.

(A) TTC computed using the LRF (right) and the ATIS (left). (B) Relative errors
between bothTTC estimations. illustrated using a color map, blue to red for
increasing TTC.

www.frontiersin.org February 2014 | Volume 8 | Article 9 | 57

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Clady et al. Asynchronous visual event-based time-to-contact

FIGURE 9 | Results of second experiment: the top Figure represents

the trajectory followed by the the robot, on a schematic view of the

warehouse, both middle Figures represents data collected from the

odometer (the trajectory and the speed of the robot) and finally, the

bottom Figures represent the time-to-contact estimated during the

two time intervals during which the TTC is estimated; the red curves

correspond to the TTC estimated from the neuromorphic camera’s

data, compared to an estimation of the ttc (blue curves) using the

odometer’s data and the knowledge of the obstacles’ locations in

the map.

blue). It corresponds to the TTC collected in a region of inter-
est of 60× 60 pixels, matching with the closest obstacle. The
image plane is segmented into four regions of interest (ROI) of
60× 60 pixels (4 squares represented in the Figure 10) around
the x-coordinate of the FOE. Only the normal flow vectors into

the lower ROI, in which the activity, expressed as the num-
ber of events per second, is superior to a threshold (>5000
events/s), are considered, assuming that the closest obstacle is
on the ground and so viewed in the bottom part of the vision
field.

Frontiers in Neuroscience | Neuromorphic Engineering
February 2014 | Volume 8 | Article 9 | 58

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Clady et al. Asynchronous visual event-based time-to-contact

FIGURE 10 | TTC computation: the yellow arrows represent the motion

flow vectors obtained during a time period of 1 ms. These flow vectors
are superimposed over a corresponding image of the scene (realized using
the PWM grayscale events). In order to enhance the readability of the
Figure, only 10% vectors with high strengths and orientations close to
±π/2 have been draw. The red square corresponds to the ROI where the
measure of TTC is estimated.

The low shift between them can be explained by the drift
in odometer’s data (especially after the avoidance maneuver)
Everett (1995); Ge (2010); a difference of 0.5 m. has been observed
between the real position of the robot and the odometer-based
estimate of the ending location. This is an expected effect, as
odometer always drifts in the same measured proportions Ivanjko
et al. (2007). In addition, the estimations are slightly less precise
once the robot is in the warehouse, where the poor environment
with white walls without texture or objects produces less events
and the computation degrades. This shows the robustness of the
technique even in poorly textured.

All programs have been written in C++ under linux and
run in real time. We estimated the average time per event spent
to compute the Time-to-Contact: it is approximately 20 μs per
event on the computer used in the experiments (Intel Core i7 at
2.40 GHz). When the robot is at its maximum speed, data stream
acquired during 1 s is processed in 0.33 s . The estimation of the
visual flow is the most computationally expensive task (>99% of
the total computational cost), but could be easily run in parallel
to further accelerate it.

The most significant result of this work is that the TTC can be
processed at an unprecedented rate and with a low computational
cost. The output frequency of our method reaches over 16 kHz,
which is largely superior to the ones which can be expected from
any other conventional cameras, limited by their frame-based
acquisitions and processing load needed to process data.

5. CONCLUSIONS AND PERSPECTIVES
The use of vision based navigation using conventional frame-
based cameras is impractical for the limited available resources
usually embedded on autonomous robots. The corresponding
large amount of data to process is not compatible with fast
and reactive navigation commands, especially when parts of
the processing are allocated to extract the useful information.

Such computational requirements are out of the reach of most
small robots. Additionally, the temporal resolution of frame-
based cameras trades off with the quantity of data that need to
be processed, posing limits on the robot’s speed and computa-
tional demand. In this paper, we gave an example of a simple
collision avoidance technique based on the estimation of the TTC
by combining the use of an event-based vision sensor and a recent
previously developed event-based optical flow. We showed that
event-based techniques can solve vision tasks in a more efficient
way than traditional approaches that are used to do, by means of
complex and hungry algorithms.

One remarkable highlight of this work is how well the event-
based optical flow presented in Benosman et al. (2014) helped
in estimating the TTC. This is because we have ensured the
preservation of the high temporal dynamics of the signal from
its acquisition to its processing. The precise timing conveyed by
the neuromorphic camera allows to process locally around each
event for a low computational cost, whilst ensuring a precise com-
putation of the visual motion flow and thus, of the TTC. The
experiments carried out on a wheeled robotic platform support
this statement, as the results are as reliable as the ones obtained
with a laser range finder, at a much higher frequency. With
event-based vision, the motion behavior of a robot could be con-
trolled with a time delay far below the one that is inherent to the
frame-based acquisition in conventional cameras.

The method described in this work stands on the constant
velocity hypothesis since Equation 1 is a result derived from that
assumption. for this reason, the normal to the edges velocity is
sufficient for the TTC estimation. For more general motion, the
proposed method should be modified by for example assuming
the velocity to be constant only locally.

This work supports the observation that event-driven (bio-
inspired) asynchronous sensing and computing are opening
promising perspectives for autonomous robotic applications. The
event-based approaches would allow small robots to avoid obsta-
cles in natural environment with high speed that has never been
achieved until now. Extending our approach to more complex
scenarios than those exposed in this paper, and proposing a
complete navigation system able to deal with motion or uncon-
trolled environment, requires to combine the visual information
with other provided from top-down process and proprioceptive
sensing, as for humans or animals.

ACKNOWLEDGMENTS
This work benefitted from the fruitful discussions and collab-
orations fostered by the CapoCaccia Cognitive Neuromorphic
Engineering Workshop and the NSF Telluride Neuromorphic
Cognition workshops.

FUNDING
This work has been supported by the EU grant eMorph (ICT-
FET-231467). The authors are also grateful to the Lifesense Labex.

REFERENCES
Alyena, G., Negre, A., and Crowley, J. L. (2009). “Time to contact for obstacle

avoidance,” in European Conference on Mobile Robotics (Dubrovnik).
Benosman, R., Clercq, C., Lagorce, X., Ieng, S.-H., and Bartolozzi, C. (2014).

Event-based visual flow. IEEE Trans. Neural Netw. Learn. Syst. 25, 407–417. doi:
10.1109/TNNLS.2013.2273537

www.frontiersin.org February 2014 | Volume 8 | Article 9 | 59

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Clady et al. Asynchronous visual event-based time-to-contact

Blanchard, M., Rind, F., and Verschure, P. F. (2000). Collision avoidance using
a model of the locust LGMD neuron. Robot. Auton. Syst. 30, 17–38. doi:
10.1016/S0921-8890(99)00063-9

Boahen, K. A. (2000). Point-to-point connectivity between neuromorphic chips
using address-events. Circuits and Sys. II: Analog and Digit. Signal Process. IEEE
Trans. 47, 416–434. doi: 10.1109/82.842110

Bruderle, D., Petrovici, M. A., Vogginger, B., Ehrlich, M., Pfeil, T., Millner, S., et al.
(2011). A comprehensive workflow for general-purpose neural modeling with
highly configurable neuromorphic hardware systems. Biol. Cybern. 104, 263–
296. doi: 10.1007/s00422-011-0435-9

Camus, T. (1995). Calculating time-to-contact using real-time quantized optical
flow. National Institute of Standards and Technology NISTIR 5609.

Delbruck, T., Linares-Barranco, B., Culurciello, E., and Posch, C. (2010). “Activity-
driven, event-based vision sensors,” in IEEE International Symposium on Circuits
and Systems (Paris), 2426–2429. doi: 10.1109/ISCAS.2010.5537149

Everett, H. (1995). Sensors for Mobile Robots: Theory and Applications. Natick, MA:
A K Peters/CRC Press.

Furber, S., Lester, D., Plana, L., Garside, J., Painkras, E., Temple, S., et al.
(2012). Overview of the spinnaker system architecture. IEEE Trans. Comput. 62,
2454–2467. doi: 10.1109/TC.2012.142

Ge, S. (2010). Autonomous Mobile Robots: Sensing, Control, Decision Making and
Applications. Automation and Control Engineering. Boca Raton, FL: Taylor and
Francis.

Gibson, J. J. (1978). The ecological approach to the visual perception of pictures.
Leonardo 11, 227–235. doi: 10.2307/1574154

Guo, X., Qi, X., and Harris, J. (2007). A time-to-first-spike cmos image sensor. Sens.
Jo. IEEE 7, 1165–1175. doi: 10.1109/JSEN.2007.900937

Guzel, M., and Bicker, R. (2010). “Optical flow based system design for mobile
robots,” in Robotics Automation and Mechatronics (RAM), 2010 IEEE Conference
on (Singapour), 545–550. doi: 10.1109/RAMECH.2010.5513134

Horn, B., Fang, Y., and Masaki, I. (2007). “Time to contact relative to a planar
surface,” in Intelligent Vehicles Symposium, 2007 IEEE (Istanbul), 68–74. doi:
10.1109/IVS.2007.4290093

Indiveri, G. (1998) Analog vlsi model of locust dcmd neuron response for
computation of object approach. Prog. Neural Process. 10, 47–60. doi:
10.1142/9789812816535_0005

Ivanjko, E., Komsic, I., and Petrovic, I. (2007). “Simple off-line odometry calibra-
tion of differential drive mobile robots,” in Proceedings of 16th Int. Workshop on
Robotics in Alpe-Adria-Danube Region-RAAD. (Ljubljana).

Lee, D. N. (1976). A theory of visual control of braking based on information about
time-to-collision. Perception 5, 437–459. doi: 10.1068/p050437

Lenero-Bardallo, J., Serrano-Gotarredona, T., and Linares-Barranco, B. (2011). A
3.6 μs latency asynchronous frame-free event-driven dynamic-vision-sensor. J.
Solid-State Circ. 46, 1443–1455. doi: 10.1109/JSSC.2011.2118490

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128×128 120 db 15μs latency
asynchronous temporal contrast vision sensor. J. Solid-State Circ. 43, 566–576.
doi: 10.1109/JSSC.2007.914337

Lorigo, L., Brooks, R., and W. Grimsou, W. (1997). “Visually-guided obstacle avoid-
ance in unstructured environments,” in Proceedings of the IEEE International
Conference on Intelligent Robots and Systems Vol. 1 (Grenoble), 373–379. doi:
10.1109/IROS.1997.649086

Low, T., and Wyeth, G. (2005). “Obstacle detection using optical flow,” in
Proceedings of Australasian Conference on Robotics and Automation (Sydney,
NSW). doi: 10.1109/IVS.1992.252254

Negahdaripour, S., and Ganesan, V. (1992). “Simple direct computation of the
FOE with confidence measures,” in Computer Vision and Pattern Recognition
(Champaign, IL), 228–235. doi: 10.1109/CVPR.1992.22327

Negre, A., Braillon, C., Crowley, J. L., and Laugier, C. (2006). “Real-time time-
to-collision from variation of intrinsic scale,” in International Symposium
of Experimental Robotics (Rio de Janeiro), 75–84. doi: 10.1007/978-3-540-
77457-0_8

Posch, C. (2010). “High-dr frame-free pwm imaging with asynchronous aer inten-
sity encoding and focal-plane temporal redundancy suppression,” in Circuits
and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on
Circuits and Systems (Paris). doi: 10.1109/ISCAS.2010.5537150

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A qvga 143 db dynamic
range frame-free pwm image sensor with lossless pixel-level video com-
pression and time-domain cds. J. Solid-State Circ. 46, 259–275. doi:
10.1109/JSSC.2010.2085952

Rind, F. C., and Simmons, P. J. (1999). Seeing what is coming: building
collision-sensitive neurones. Trends Neurosci. 22. 215–220. doi: 10.1016/S0166-
2236(98)01332-0

Tomasi, C., and Shi, J. (1994). “Good features to track,” in Proceedings CVPR ’94.,
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
1994, (Seattle, WA), 593–600. doi: 10.1109/CVPR.1994.323794

Ulrich, I., and Nourbakhsh, I. R. (2000). “Appearance-based obstacle detection
with monocular color vision,” in Proceedings of the International Conference on
AAAI/IAAI (Austin, TX), 866–871.

Weber, J., and Malik, J. (1995). Robust computation of optical flow in a multi-scale
differential framework. Int. J. Comput. Vis. 14, 67–81. doi: 10.1007/BF01421489

Yue, S., and Rind, F. C. (2006). Collision detection in complex dynamic scenes
using an lgmd-based visual neural network with feature enhancement. Neural
Netw. IEEE Trans. 17, 705–716. doi: 10.1109/TNN.2006.873286

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 30 September 2013; accepted: 16 January 2014; published online: 07
February 2014.
Citation: Clady X, Clercq C, Ieng S-H, Houseini F, Randazzo M, Natale L, Bartolozzi
C and Benosman R (2014) Asynchronous visual event-based time-to-contact. Front.
Neurosci. 8:9. doi: 10.3389/fnins.2014.00009
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2014 Clady, Clercq, Ieng, Houseini, Randazzo, Natale, Bartolozzi and
Benosman. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) or licensor are credited and that
the original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 9 | 60

http://dx.doi.org/10.3389/fnins.2014.00009
http://dx.doi.org/10.3389/fnins.2014.00009
http://dx.doi.org/10.3389/fnins.2014.00009
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

ORIGINAL RESEARCH ARTICLE
published: 08 October 2013

doi: 10.3389/fnins.2013.00178

Real-time classification and sensor fusion with a spiking
deep belief network
Peter O’Connor , Daniel Neil , Shih-Chii Liu , Tobi Delbruck and Michael Pfeiffer*

Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland

Edited by:

André Van Schaik, The University of
Western Sydney, Australia

Reviewed by:

Bernabe Linares-Barranco, Instituto
de Microelectrónica de Sevilla, Spain
Eugenio Culurciello, Purdue
University, USA

*Correspondence:

Michael Pfeiffer, Institute of
Neuroinformatics, University of
Zurich and ETH Zurich,
Winterthurerstrasse 190, CH-8057,
Zurich, Switzerland
e-mail: pfeiffer@ini.phys.ethz.ch

Deep Belief Networks (DBNs) have recently shown impressive performance on a broad
range of classification problems. Their generative properties allow better understanding of
the performance, and provide a simpler solution for sensor fusion tasks. However, because
of their inherent need for feedback and parallel update of large numbers of units, DBNs are
expensive to implement on serial computers. This paper proposes a method based on the
Siegert approximation for Integrate-and-Fire neurons to map an offline-trained DBN onto
an efficient event-driven spiking neural network suitable for hardware implementation.
The method is demonstrated in simulation and by a real-time implementation of a 3-layer
network with 2694 neurons used for visual classification of MNIST handwritten digits
with input from a 128 × 128 Dynamic Vision Sensor (DVS) silicon retina, and sensory-
fusion using additional input from a 64-channel AER-EAR silicon cochlea. The system
is implemented through the open-source software in the jAER project and runs in real-
time on a laptop computer. It is demonstrated that the system can recognize digits in the
presence of distractions, noise, scaling, translation and rotation, and that the degradation
of recognition performance by using an event-based approach is less than 1%. Recognition
is achieved in an average of 5.8 ms after the onset of the presentation of a digit. By cue
integration from both silicon retina and cochlea outputs we show that the system can be
biased to select the correct digit from otherwise ambiguous input.

Keywords: deep belief networks, spiking neural network, silicon retina, sensory fusion, silicon cochlea, deep

learning, generative model

1. INTRODUCTION
Deep Learning architectures, which subsume convolutional net-
works (LeCun et al., 1998), deep autoencoders (Hinton and
Salakhutdinov, 2006), and in particular DBNs (Bengio et al.,
2006; Hinton et al., 2006; Hinton and Salakhutdinov, 2006) have
excelled among machine learning approaches in pushing the
state-of-the-art in virtually all relevant benchmark tasks to new
levels. In this article we focus on DBNs, which are constructed as
hierarchies of recurrently connected simpler probabilistic graph-
ical models, so called Restricted Boltzmann Machines (RBMs).
Every RBM consists of two layers of neurons, a hidden and a vis-
ible layer, which are fully and symmetrically connected between
layers, but not connected within layers (see Figure 1). Using
unsupervised learning, each RBM is trained to encode in its
weight matrix a probability distribution that predicts the activ-
ity of the visible layer from the activity of the hidden layer. By
stacking such models, and letting each layer predict the activ-
ity of the layer below, higher RBMs learn increasingly abstract
representations of sensory inputs, which matches well with rep-
resentations learned by neurons in higher brain regions e.g., of
the visual cortical hierarchy (Gross et al., 1972; Desimone et al.,
1984). The success of Deep Learning rests on the unsupervised
layer-by-layer pre-training with the Contrastive Divergence (CD)
algorithm (Hinton et al., 2006; Hinton and Salakhutdinov, 2006),
on which supervised learning and inference can be efficiently
performed (Bengio et al., 2006; Erhan et al., 2010). This avoids
typical problems of training large neural networks with error

backpropagation, where overfitting and premature convergence
pose problems (Hochreiter et al., 2001; Bengio et al., 2006). The
data required for pre-training does not have to be labeled, and can
thus make use of giant databases of images, text, sounds, videos,
etc. that are now available as collections from the Internet. An
additional attractive feature is that the performance of deep net-
works typically improves with network size, and there is new hope
of achieving brain-like artificial intelligence simply by scaling up
the computational resources.

With the steady increase in computing power, DBNs are
becoming increasingly important for an increasing number of
commercial big data applications. Using gigantic computational
resources industry leaders like Google or Microsoft have started
to invest heavily in this technology, which has thus been recently
named one of the Breakthrough Technologies of 2013 (MIT
Technology Review, 2013), and has led to what has been called
the “second reNNaissance of neural networks” (Ciresan et al.,
2010). This is the result of the success stories of Deep Learning
approaches for computer vision (Larochelle et al., 2007; Lee et al.,
2009; Ciresan et al., 2010; Le et al., 2012), voice recognition
(Dahl et al., 2012; Hinton et al., 2012; Mohamed et al., 2012),
or machine transcription and translation (Seide et al., 2011; MIT
Technology Review, 2013). Despite this potential, the sheer num-
ber of neurons and connections in deep neural networks requires
massive computing power, time, and energy, and thus makes
their use in real-time applications e.g., on mobile devices or
autonomous robots infeasible. Instead of speculating on Moore’s

www.frontiersin.org October 2013 | Volume 7 | Article 178 | 61

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2013.00178/abstract
http://community.frontiersin.org/people/PeterO_Connor/112921
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DanielNeil&UID=33599
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=Shih_ChiiLiu&UID=14463
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=TobiDelbruck&UID=2614
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MichaelPfeiffer&UID=21160
mailto:pfeiffer@ini.phys.ethz.ch
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

O’Connor et al. Spiking deep belief networks

FIGURE 1 | Boltzmann and Restricted Boltzmann Machines. A
Boltzmann machine is fully connected within and between layers, whereas
in a RBM, the lateral connections in the visible and hidden layers are
removed. As a result, the random variables encoded by hidden units are
conditionally independent given the states of the visible units, and vice
versa.

law to achieve progress through faster and cheaper computing
resources in the future, we argue that fast and energy efficient
inference in DBNs is already possible now, and is an ideal use case
for neuromorphic circuits (Indiveri et al., 2011), which emulate
neural circuits and event-based, asynchronous communication
architectures in silicon. This is motivated by the fact that in the
brain, having many neurons and connections is not a factor that
constrains the processing time, since all units operate in paral-
lel, and only the arrival of spike events triggers processing, so
the neural circuits can adapt the processing speed to the rate at
which input spikes occur. This scheme would allow the system
to remain silent, consuming little power, in potentially long silent
periods, and still allow fast recognition when bursts of input activ-
ity arrive, a scenario that is realistic for natural organisms. These
advantages have been recently realized for event-based convolu-
tional networks using convolution chips (Camuñas Mesa et al.,
2010; Farabet et al., 2012), but a principled way of building DBNs
models out of spiking neurons, in which both feed-forward and
feed-back processing are implemented has been lacking.

This paper presents the first proof-of-concept of how to trans-
form a DBN model trained offline into the event-based domain.
This allows exploiting the aforementioned advantages in terms
of processing efficiency, and provides a novel and computation-
ally powerful model for performing recognition, sampling from
the model distribution, and fusion of different sensory modali-
ties. Although our current implementation is in software, and not
on neuromorphic VLSI, inference with small DBNs runs in real
time on a standard laptop, and thus provides the first necessary
step toward the goal of building neuromorphic hardware systems
that efficiently implement deep, self-configuring architectures. In
particular, the novel framework allows us to apply state-of-the-art
computer vision and machine learning techniques directly to data
coming from neuromorphic sensors that naturally produce event
outputs, like silicon retinas (Lichtsteiner et al., 2008) and cochleas
(Liu et al., 2010).

Our main contribution is a novel method for adapting conven-
tional CD training algorithms for DBNs with spiking neurons,
using an approximation of the firing rate of a Leaky Integrate-
and-Fire (LIF) spiking neuron (Siegert, 1951; Jug et al., 2012).
After training with a time-stepped model, the learned parameters

are transferred to a functionally equivalent spiking neural net-
work, in which event-driven real-time inference is performed. In
this article we explicitly perform learning of the network offline,
rather than with spike-based learning rules, but note that there is
a high potential for future event-driven DBNs that could exploit
spike-timing based learning for recognizing dynamical inputs.
We evaluate the spiking DBNs by demonstrating that networks
constructed in this way are able to robustly and efficiently clas-
sify handwritten digits from the MNIST benchmark task (LeCun
et al., 1998), given either simulated spike-train inputs encoding
static images of digits, or live inputs from neuromorphic vision
sensors. In addition we present an event-based DBN architec-
ture that can associate visual and auditory inputs, and combine
multiple uncertain cues from different sensory modalities in a
near-optimal way. The same architecture that is used for inference
of classes can also be used in a generative mode, in which samples
from the learned probability distribution are generated through
feed-back connections.

The aspect of combining feed-back and feed-forward streams
of information is an important deviation from traditional purely
feed-forward hierarchical models of information processing in
the brain (Van Essen and Maunsell, 1983; Riesenhuber and
Poggio, 1999), and DBNs provide a first step toward linking
state-of-the-art machine learning techniques and modern mod-
els of Bayesian inference and predictive coding in the brain (Rao
and Ballard, 1999; Hochstein and Ahissar, 2002; Friston, 2010;
Markov and Kennedy, 2013). The importance of recurrent local
and feed-back connections in the cortex seems obvious from the
anatomy (da Costa and Martin, 2009; Douglas and Martin, 2011;
Markov et al., 2012), and in vivo experiments (Lamme et al., 1998;
Kosslyn et al., 1999; Bullier, 2001; Murray et al., 2002), but the
precise role of feed-back processing is still debated (Lamme et al.,
1998; Bullier, 2001; Kersten and Yuille, 2003). One hypothesized
role is in multisensory integration, and as generative Bayesian
models, DBNs are very well suited to perform such tasks, e.g.,
by combining visual and auditory cues for improved recognition
(Hinton et al., 2006). We will thus discuss the potential impact of
DBNs as abstract functional models for cortical computation and
learning.

The structure of this article is as follows: The mathematical
framework and the algorithms used for training and converting
conventional DBNs into spiking neural networks are presented in
Section 2. Section 3 shows the application of the framework to
simulated spike train inputs and real visual and auditory inputs
from neuromorphic sensors. Implications of this new framework
are discussed in Section 4.

2. MATERIALS AND METHODS
2.1. DEEP BELIEF NETWORKS
A DBN (Bengio et al., 2006; Hinton et al., 2006) is a multi-
layered probabilistic generative model. The individual layers con-
sist of simpler undirected graphical models, so called Restricted
Boltzmann Machines (RBMs), typically with stochastic binary
units. A RBM has a bottom layer of “visible” units, and a top
layer of “hidden” units, which are fully and bidirectionally con-
nected with symmetric weights. The difference between standard
Boltzmann machines and RBMs is that in the restricted model

Frontiers in Neuroscience | Neuromorphic Engineering October 2013 | Volume 7 | Article 178 | 62

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

O’Connor et al. Spiking deep belief networks

units within the same layer are not connected (see Figure 1),
which makes inference and learning within this graphical model
tractable. The visible layers of RBMs at the bottom of a DBN are
clamped to the actual inputs when data is presented. When RBMs
are stacked to form a DBN, the hidden layer of the lower RBM
becomes the visible layer of the next higher RBM. Through this
process, higher level RBMs can be trained to encode more and
more abstract features of the input distribution.

In a binary RBM the units stochastically take on states 0 or
1, depending on their inputs from the other layer. Denoting the
states of visible units with vi, the states of hidden units with hj, the
weights connecting these units with wij, and the biases of visible

and hidden units with b(v)
i and b(h)

j respectively, a RBM encodes

a joint probability distribution p(v, h|θ), defined via the energy
function

E(v, h; θ) = −
∑

i

∑
j

wijvihj −
∑

i

b(v)
i vi −

∑
j

b(h)
j hj, (1)

where θ = (w, b(v), b(h)). The encoded joint probability can then
be written as

p(v, h|θ) = exp(−E(v, h; θ))∑
v′
∑

h′ exp(−E(v′, h′; θ)) . (2)

From equations (1) and (2) the following stochastic update rules
for the states of units were derived (Hinton and Sejnowski, 1986),
such that on average every update results in a lower energy state,
and ultimately settles into an equilibrium:

p(vi = 1|h, θ) = σ

⎛
⎝∑

j

wijhj + b(v)
i

⎞
⎠ (3)

p(hj = 1|v, θ) = σ

(∑
i

wijvi + b(h)
j

)
, (4)

where σ(x) = 1/
(
1+ exp(−x)

)
is the sigmoid function, and the

units will switch to state 0 otherwise. When left to run freely,
the network will generate samples over all possible states (v, h)

according to the joint probability distribution in (2). This holds
for any arbitrary initial state of the network, given that the net-
work has enough time to become approximately independent of
the initial conditions.

2.1.1. Training a RBM
During learning, the visible units are clamped to the actual inputs,
which are seen as samples from the “data distribution.” The task
for learning is to adapt the parameters θ such that the marginal
distribution p(v|θ) =∑h p(v, h|θ) becomes maximally similar to
the true observed data distribution p∗(v), i.e., the log-likelihood
of generating the observed data needs to be maximized. Hinton
et al. (2006) have shown that this gradient ascent on the log-
likelihood w.r.t. the weights wij can be efficiently approximated by
a Gibbs-sampling procedure, which alternates between stochasti-
cally updating the hidden and visible units respectively. For the

RBM this leads to the learning rule

�wij = η
(〈

vihj
〉
data −

〈
vihj

〉
model

)
, (5)

where 〈.〉data denotes an average over samples with visible units
clamped to actual inputs, 〈.〉model denotes an average over samples
when the network is allowed to sample all units freely, and η is the
learning rate.

Using a sampling approximation normally requires creating
enough samples such that the network can settle into an equi-
librium. However, for a RBM the CD algorithm (Hinton et al.,
2006) has been developed, which uses only a single sample for
the data and model distribution, and performs very well in prac-
tice. CD first samples new values for all hidden units in parallel,
conditioned on the current input, which gives a complete sample
(vdata, hdata) for the data distribution. It then generates a sample
for the visible layer, conditioned on the hidden states hdata sam-
pled in the first step, and then samples the hidden layer again,
conditioned on this new activity in the visible layer. This gener-
ates a sample (vmodel, hmodel) from the model distribution. The
weight update can then be computed as

�wij = η
(
vi,datahj,data − vi,modelhj,model

)
. (6)

2.1.2. Persistent CD and transient weights
Since the form of sampling induced by CD strongly biases
the samples from the model distribution toward the most
recently seen data, one can alternatively use so-called Persistent
Contrastive Divergence (Tieleman, 2008). In this approach, the
model distribution is initialized arbitrarily, and at every iteration
of the training process further samples are created by sampling
conditioned on the most recently sampled hidden states, which
are maintained between data points.

There is a delicate balance between sampling and learning in
Persistent CD: Although fast learning is generally desirable, too
fast learning can result in too fast changes of the encoded joint
probability distribution, which can cause the equilibrium distri-
bution to change too fast for the Markov chain of model states
to ever settle in. Nevertheless, high learning rates have turned
out to be beneficial in practice, since they increase the mixing
rates of the persistent Markov chains (Tieleman and Hinton,
2009). Following the suggestions in Tieleman and Hinton (2009)
we used so called “fast weights,” which are added to the regular
weights of the network, and decay exponentially with each train-
ing step. When sampling from the model distribution, the fast
weights are updated with the rule:

�wfast
ij = −α

〈
vihj

〉
model . (7)

We will later show that such transient weight changes can be
interpreted as short-term plasticity in a spiking neural network
implementation.

2.1.3. Constructing DBNs by stacking RBMs
As discussed previously, DBNs can be constructed by stacking
RBMs and interpreting the hidden layer of the lower RBM as
the visible layer of the next layer. It has been shown that adding

www.frontiersin.org October 2013 | Volume 7 | Article 178 | 63

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

O’Connor et al. Spiking deep belief networks

hidden layers and applying the previously discussed unsuper-
vised learning methods for RBMs is guaranteed to increase the
lower bound on the log-likelihood of the training data (Hinton
et al., 2006). Higher layers will tend to encode more abstract fea-
tures, which are typically very informative for classification tasks.
The top-layer of the DBN can then be trained with supervised
learning methods, and the whole multi-layer network can be opti-
mized for the task through error backpropagation (Hinton and
Salakhutdinov, 2006; Hinton et al., 2006).

DBNs can also be used for associating different sets of inputs,
e.g., from different sensory modalities. In this case one can build
pre-processing hierarchies for both inputs independently, and
then treat the top layers of these hierarchies as a common visi-
ble layer for a new association layer on top of them (Hinton et al.,
2006). DBNs are therefore not necessarily single hierarchies, but
can also exhibit tree-like architectures.

2.2. DISCRETE-TIME AND EVENT-DRIVEN NEURON MODELS
Traditional RBMs are, like most machine-learning models, sim-
ulated in time-stepped mode, where every neuron in a layer gets
updated at every time step, and the size of this time step �t is
fixed throughout the simulation. While training is typically eas-
ier to achieve with continuous and time-stepped neuron models,
the event-driven model has the potential to run faster and more
precisely. This is because the states of LIF neurons in the event-
based network are only updated upon the arrival of input spikes,
and only at these times the neurons decide whether to fire or not.
Temporal precision is limited only by the numerical representa-
tion of time in the system (as opposed to the duration of the
time-step parameter). A drawback is that not all neuron models,
e.g., smooth conductance-based models, can be easily converted
into event-driven models.

In the standard formulation (Hinton et al., 2006), units within
RBMs are binary, and states are sampled according to the sig-
moidal activation probabilities from Equations (3) and (4). We
call such neuron models sigmoid-binary units. In Nair and
Hinton (2010) it was shown that an equivalent threshold-linear
model can be formulated, in which zero-mean Gaussian noise
N (0, σ2

n) with variance σ2
n is added to the activation functions:

hj = max

(
0,
∑

i

wijvi + bh
j +N (0, σ2

n)

)
, (8)

and similarly for the sampling of visible units.
A threshold-linear function can also be used to approximate

the expected firing rates of simplified spiking neurons under
constant current stimulation, such as the LIF neuron (Gerstner
and Kistler, 2002), which is one of the simplest, yet biolog-
ically relatively plausible models for spiking neurons. In this
model each incoming event adds to the membrane potential Vm

according to the strength wij of the synapse along which the
event occurred. Incoming spikes within an absolute refractory
period tref after an output spike are ignored. Spikes are gener-
ated deterministically whenever the membrane potential crosses
the firing threshold Vth, otherwise the membrane potential decays
exponentially with time constant τ. Simple versions of LIF neu-
rons can be simulated in an event-based way, since membrane

potentials only need to be updated upon the arrival of input
spikes, and spikes can only be created at the times of such input
events. For a LIF neuron representing hj, which receives a con-
stant input current sj =∑i wijvi corresponding to the weighted
sum of inputs from connected visible units, the expected firing
rate ρj(sj) is:

ρj(sj) =
{(

tref − τ log
(

1− Vth
sj

))−1
if sj ≥ Vth

0 otherwise
(9)

The above equation holds when the neuron is injected with a
constant input, but under realistic conditions the neuron receives
a continuous stream of input spike trains, each arriving to first
approximation as samples from a Poisson process with some
underlying firing rate. For this case, a more accurate prediction
of the average firing rate can be obtained using Siegert neurons
(Siegert, 1951; Jug et al., 2012). Siegert neurons have transfer
functions that are mathematically equivalent to the input-rate
output-rate transfer functions of LIF neurons with Poisson-
process inputs. In order to compute the Siegert transformation
for a neuron receiving excitatory and inhibitory inputs with rates
(�ρe, �ρi) and weights (�we, �wi) respectively, we first have to compute
the auxiliary variables

μQ = τ
∑

(�we �ρe + �wi �ρi) σ2
Q = τ

2

∑
(�w2

e �ρe + �w2
i �ρi)

ϒ = Vrest + μQ � = σQ

k = √τsyn/τ γ = |ζ(1/2)|

where τsyn is the synaptic time constant (for our purposes con-
sidered to be zero), and ζ is the Riemann zeta function. Then the
average firing rate ρout of the neuron with resting potential Vrest

and reset potential Vreset can be computed as (Jug et al., 2012):

ρout =
(

tref + τ

�

√
π

2
· (10)

∫ Vth + kγ�

Vreset + kγ�

exp

[
(u− ϒ)2

2�2

]
·
[

1+ erf

(
u−ϒ

�
√

2

)]
du

)−1

.

A RBM trained using Siegert units can thus be easily converted
into an equivalent network of spiking LIF neurons: By normaliz-
ing the firing rate in Equation (10) relative to the maximum firing
rate 1/tref , ρout can be converted into activation probabilities as
required to sample RBM units in Equations (3, 4) during standard
CD learning with continuous units. After learning, the parame-
ters and weights are retained, but instead of sampling every time
step, the units generate Poisson spike trains with rates computed
by the Siegert formula Equation (10).

2.3. TRAINING THE NETWORK
2.3.1. Task
The network was trained on a visual classification task on the
MNIST benchmark dataset for machine learning (LeCun et al.,
1998). This set consists of a collection of 28 × 28 gray-scale
images of handwritten digits, of which 60,000 form a training set,

Frontiers in Neuroscience | Neuromorphic Engineering October 2013 | Volume 7 | Article 178 | 64

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

O’Connor et al. Spiking deep belief networks

and 10,000 an independent test set. In order to make the network
more robust, we modified the training set by adding small ran-
dom translations (±15%), rotations (±3◦) and scalings (±10%).
The modified training set contains 120,000 images.

2.3.2. Network Architecture
For the visual classification task we trained a DBN with one input
layer of 784 visual input units (corresponding to the pixels of
28 × 28 input images), a 500-unit “Visual Abstraction Layer,” a
500-unit “Association Layer,” and a 10-unit “Label Layer,” with
units corresponding to the 10 digit-classes. The architecture of
the network is shown in Figure 2. Since our goal in this arti-
cle is to demonstrate a proof-of-concept for spiking DBNs, the
785-500-500-10 network we used is substantially smaller than the
784-500-500-2000-10 network used previously for the MNIST
task (Hinton et al., 2006), or the state-of-the-art network in
Ciresan et al. (2010).

2.3.3. Training
Each RBM in Figure 2 was first trained in a time-stepped mode
with Siegert neurons as individual units, for which we fixed the
parameters for resting and reset potential, membrane time con-
stants, and refractory period. Since the output rates of Siegert
neurons are not constrained to the interval [0, 1] like in Sigmoid-
Binary units, the outputs were normalized, such that the maxi-
mum possible firing rate (given by 1/tref) had a value of 1. As
training algorithm for RBMs we applied persistent Contrastive
Divergence learning (Hinton et al., 2006) and the fast weights
heuristics described in Section 2.1.2. We also applied a modi-
fication to the training process proposed by Goh et al. (2010)
to encourage sparse and selective receptive fields in the hidden
layer.

Learning proceeded in a bottom-up fashion, starting by
training the weights between the Visual Input and the Visual
Abstraction Layers. Next, the weights of the Associative Layer
were trained, using input from the previously trained Visual
Abstraction Layer and the supervised information in the Label
Layer as the joint visible layer of the RBM. For each layer we
trained for 50 iterations over the complete training set.

FIGURE 2 | Architecture of the DBN for handwritten digit recognition.

The connections between layers represent the weights of a RBM.

2.4. SIMULATION OF AN EVENT-DRIVEN DBN
We created simulators for arbitrary event-driven DBNs in Matlab
and Java. The simulation can be either run in Recognition mode,
where input is applied at the bottom layer, and the label has to be
inferred through bottom-up processing, or in Generation mode,
where the activity of the label layer is fixed, and the network
samples activity in the Visual Input Layer through top-down con-
nections, according to the learned generative model. Bottom-up
and top-down processing can also be activated simultaneously.

In Recognition mode, the DBN is shown a number of test
images, which are transformed into spike trains that activate
the Visual Input Layer. A Poisson spike train is created for each
pixel with a rate proportional to the pixel intensity, and all fir-
ing rates are scaled such that the total input rate summed over all
28× 28 pixels is constant (between 300 and 3000 spikes per sec-
ond). The goal is to compute the correct classification in the Label
Layer. For every input image, the input activations are sampled as
Poisson spike trains with rates proportional to the pixel intensi-
ties. Classification can be done in one of two ways: first, we can
turn on only bottom-up connections from the Visual Input Layer
toward the Label Layer, and observe which of the neurons in the
Label Layer spikes the most within a fixed time interval. The sec-
ond variant is to use only bottom-up connections between Visual
Input and Visual Abstraction Layer, but activate all recurrent con-
nections in the other RBMs. Information about previous inputs
is stored both within the membrane potentials and the recurrent
spiking activity within the network. Recognition is thus achieved
through a modulation of the persistent network activity by input
spike trains. In the absence of input, the network will continue to
be active and drift randomly through the space of possible states
according to the encoded generative model.

This principle is exploited in the Generation mode, where units
within the Label Layer are stimulated, and activation propagates
recurrently through the top-level RBM, and top-down to the
Visual Input Layer. Thus, analyzing these samples from the gen-
erative model provides a way to visualize what the network has
learned so far. If the DBN is activated in this way, it might settle
into a particular state, but could become stuck there, if this state
corresponds to a local minimum of the Energy landscape accord-
ing to (1). This can be avoided by using a short-term depressing
STDP kernel in Generation mode, which temporarily reduces
the weights of synapses where pre- and post-synaptic neurons
are active within the same short time window (see Figure 3).
These short-term modifications vanish over time, and the weights
return to their original values. This modification is inspired by
the idea of using auxiliary “fast-weights” for learning (Tieleman
and Hinton, 2009), which transiently raise the energy of any state
that the network is currently in, thereby slightly pushing it out
of that state. The effect is that the network, instead of settling
into an energy well and remaining there, constantly explores the
whole space of low-energy states. This is a useful feature for search
and associative memory tasks, where the network represents a
cost function through the encoded energy landscape, and the task
is to converge to a maximally likely state starting from an arbi-
trary initial state, e.g., an incomplete or ambiguous input. We
demonstrate this in Section 3.4 in the context of multi-sensory
integration.

www.frontiersin.org October 2013 | Volume 7 | Article 178 | 65

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

O’Connor et al. Spiking deep belief networks

FIGURE 3 | Short-term plasticity kernel for Generation mode. The
“fast-weight” STDP kernel temporarily depresses all synapses in which the
pre- and post-synaptic neurons were active shortly after each other,
depending on the spike timing difference tpre − tpost . As a result, the
network is constantly being pushed out of its present state.

2.5. REAL-TIME IMPLEMENTATION
2.5.1. Neuromorphic visual input
We developed a real-time variant of the event-driven DBN which
receives inputs from neuromorphic sensors. Visual input was
obtained from the DVS (Lichtsteiner et al., 2008), an event-
generating image sensor consisting of 128 × 128 pixels, which
asynchronously outputs streams of address events in response to
local relative light-intensity changes. The events are tagged with
the address of the creating pixel, a time-stamp, and an ON or
OFF polarity tag, which indicates whether the event was created
in response to an increase or decrease of light intensity over that
pixel. Events are transmitted via a USB port to a computer, and
processed in the open-source jAER software framework written in
Java (Delbruck, 2013). The networks were first trained in Matlab,
and then transferred into the jAER software, where they could run
in real-time in response to event stream inputs. We did not use
the polarity information for our purposes, and down-sampled the
128 × 128 pixels to a resolution of 28 × 28, which matched the
resolution of the images in the MNIST training set. These events
were fed into the Visual Input Layer (see Figure 2) while the DVS
was moved by hand across several hand-drawn images.

2.5.2. Multi-sensory fusion
We also created a task in which visual stimuli from a silicon retina
and auditory stimuli from a silicon cochlea (see Section 2.5.3)
were associated with each other in real-time. During training the
presentation of a pure tone was always paired with the presenta-
tion of an image of a handwritten digit. Table 1 shows the tones
and frequencies that were used, and the visual-auditory pairing
scheme. The network thus had to learn to associate the two sen-
sory domains, e.g., by resolving ambiguity in one sensory stream
through information from the other stream.

The DBN architecture for sensory fusion is described in detail
in Section 3.4 and shown in Figure 8.

2.5.3. Neuromorphic Auditory Input
Auditory input was received from the AER-EAR2 (Liu et al.,
2010) neuromorphic auditory sensor, which was built to mimic
the biological cochlea. The device transforms input sounds into
streams of spikes in 64 channels responsive to different frequency
ranges. We found that since spikes of the silicon cochlea tend

Table 1 | Paired tones and digits in multi-sensory fusion task.

Tone A4 B4 C5 D5 E5 F5 G5# A5 B5 C6

Freq.(Hz) 440.0 493.9 523.3 587.3 659.3 698.5 830.6 880.0 987.8 1046.5

Digit 0 1 2 3 4 5 6 7 8 9

During training pure tones with given frequencies (upper rows) were paired with

an associated digit (bottom row).

to be phase-locked to the sound waveform to which they are
responding, the distribution of Inter-spike Intervals (ISIs) was
a more precise indicator of the frequency of pure input tones
than the distributions of channels from which the spikes origi-
nated. We preprocessed the auditory spikes with an event-based
ISI histogramming method wherein 100 ISI bins were distributed
logarithmically between 0.833 and 2.85 ms (350–1200 Hz), and
for each bin an input LIF unit was assigned which was stimu-
lated every time an ISI occurred on any channel that was within
the unit’s designated frequency-range. The output events of these
units were then routed to the Auditory Input Layer (see Section
3.4 and Figure 8).

As stimuli we chose the pure tones from Table 1 from the
A-minor harmonic scale, ranging from A4 (440 Hz) to C6
(1046.5 Hz), which were played for 1 s each into the silicon
cochlea. We recorded the spike response of neurons in the
Auditory Input Layer, which fired whenever enough input events
from AER-EAR2 in their ISI range were received. For training in
the time-stepped domain we constructed data vectors for audi-
tory data by computing the average firing rates of Auditory Input
Layer neurons over time bins of 100 ms, evaluated every 30 ms.

3. RESULTS
This section presents the classification performance, shows the
generative mode of operation, and presents sensor fusion exper-
iments. For the results in sections 3.1 and 3.2 we use simulated
spike-train input (see Section 2.4). Inputs from neuromorphic
sensors (Section 2.5) are directly used in the results of sections
3.3 and 3.4.

3.1. CLASSIFICATION PERFORMANCE
Three variants of DBNs were trained, using the architecture
shown in Figure 2 for the MNIST visual classification task: the
first two variants are time-stepped models using sigmoid-binary
or Siegert neurons respectively (see Section 2.2), the third is an
event-driven DBN using LIF neurons that were converted from
Siegert neurons used during training. The networks were all
trained in time-stepped mode for 50 iterations over the modified
120,000 example MNIST dataset using a variant of Contrastive
Divergence learning (see Section 2.3). Figure 4 shows the features
learned by a subset of the neurons in the RBM for the Visual
Abstraction Layer. One can see that this first layer has learned
through unsupervised learning to extract useful features for the
discrimination of handwritten digits, in this case parts of digits.
The classification performance shown in Table 2 was evaluated
on images from the MNIST test set, using simulated Poisson
spike trains with a total rate of 300 spikes per second for the
whole image as input for event-based models. The size of our

Frontiers in Neuroscience | Neuromorphic Engineering October 2013 | Volume 7 | Article 178 | 66

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

O’Connor et al. Spiking deep belief networks

FIGURE 4 | Analysis of weights learned in the DBN. Visualization of the
weights learned by a subset of neurons in the Visual Abstraction Layer for
28 × 28 images in the MNIST task. Each image shows the vector of
weights feeding into one neuron.

Table 2 | Classification performance on the MNIST test set for two

time-stepped and one event-based LIF neuron model.

Neuron model Domain % correct

Sigmoid-Binary time-step 97.48

Siegert time-step 95.2

LIF event-based 94.09

Inputs for the event-based model were simulated Poisson spike trains (see

Section 2.4).

DBN is substantially smaller than in current state-of-the-art deep
network approaches for MNIST, e.g., (Ciresan et al., 2010), but
Table 2 shows that the performance is in a very good range (above
94%). More importantly for this proof-of-concept study, the per-
formance loss when switching to spiking neuron models is small
(on the order of 1%), and can possibly be further improved when
going to larger network sizes.

3.2. GENERATION MODE
In Generation mode the network does not receive external input
at the bottom layers. Instead one of the top layers (in our case
the Label Layer in Figure 2) is stimulated, and activity spreads
in top-down direction through the network. This provides a way
to visualize what has been learned in the probabilistic generative
model encoded in the bi-directional weights.

Since the network is event-driven, and neurons fire only upon
the arrival of input spikes, an initial stimulus in at least one of the
layers is needed to push the network from a silent state into one
of self-sustaining activity, provided that the neuron parameters
and recurrent connectivity allow this. We performed empirical
exhaustive parameter search over firing thresholds Vth and mem-
brane time constants τ in a fully trained network of LIF neurons
and measured the mean firing rate within the network after 1 s of
100 Hz stimulation of one Label Layer unit, and 5 s without exter-
nal stimulation. This allowed us to identify parameter regimes
that allow self-sustained activity of about 20 Hz average activity
in Generation mode (τ = 800 ms, Vreset = 0, Vth = 0.005).

To visualize the activity of the DBN in Generation mode we
modified the architecture in Figure 2 that was used for training

FIGURE 5 | DBN architecture for recognition and generation. The Visual
Input Layer was split into a bottom-up and a top-down part, used for
projecting inputs in Recognition mode, or visualizing top-down activity in
Generation mode.

on the MNIST dataset. In the new architecture shown in Figure 5
the lowest layer is split up after training into two Visual Input
Layers, one projecting only bottom-up from inputs to the Visual
Abstraction Layer, and another copy that is purely driven by
top-down connections. The weight matrices for bottom-up and
top-down connections are identical. Thus, the top layers of the
network form the recurrent model that encodes the data distri-
bution, whereas the bottom part either projects inputs through
bottom-up connections in Recognition mode, or visualizes the
activity of the top layers through top-down connections in
Generation mode. If both bottom-up and top-down connections
are activated at the same time, the top-down Visual Input Layer
visualizes a processed image of what the network ‘believes’ it is
seeing in the bottom-up Visual Input Layer. This process per-
forms probabilistic inference by which evidence from the current
input is combined with the prior distribution over likely MNIST
images encoded in the DBN weights, and a posterior estimate of
the most likely input is generated.

Figure 6A illustrates the generation of samples from the
encoded probabilistic model after activating a unit in the
Label Layer. This induces spiking activity in the intermediate
Associative and Visual Abstraction Layer, and ultimately stim-
ulates units in the top-down Visual Input Layer, which can be
visualized. Figure 6A shows the response of the network when the
label unit corresponding to the class “4” is stimulated. The snap-
shot shows the induced activity in the lower layers, and one can
clearly see that the response in the Visual Input Layer resembles
closely the handwritten digits in the MNIST set that were used
for training. By using short-term depressing synapses as described
in Section 2.1.2 and in Figure 3 the network not just samples
one single example of a “4,” but iterates through different vari-
ations that are compatible with the variance over inputs in the
learned generative model. This can be best seen in Video 1 of the
supplementary material.

Figure 6B shows the spiking activity in the different layers of
the network in generation mode, both during a forced stimula-
tion, and in a free self-sustained mode. The network is initially
stimulated for 2 s by forcing firing of neurons in the Label Layer

www.frontiersin.org October 2013 | Volume 7 | Article 178 | 67

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

O’Connor et al. Spiking deep belief networks

FIGURE 6 | Generation mode of the event-driven DBN. (A) Screen
capture of the network while generating samples of input activations
corresponding to class “4.” The neuron corresponding to label “4” was
stimulated in the Label Layer (left), and activity propagated through the
whole network. The snapshot shows a single example of activity in the
Visual Input Layer (right) that is sampled from the generative model
encoded in the weights of the DBN. Through short-term depressing

synapses (see Figure 3) the network starts to drift through the space of
all potential compatible input activations. (B) Raster plot of the DBN in
Generation mode. The Label Layer (bottom) is initially stimulated for 2 s
(shaded region) to fire in sequence for digits 1, 2, and 3. Afterwards, the
network freely samples from the encoded generative model. Although
activity in the Label Layer jumps between digits, activity in the Visual Input
Layer transitions smoothly.

corresponding to digit classes “1,” “2,” and “3” (shaded region).
One can see that through the recurrent connectivity activity
spreads throughout the layers of the network. After 2 s the input to
the Label Layer is turned off, and the network is allowed to freely
generate samples from the encoded probability distribution. We
can see that in the Label Layer the network jumps between
different digits, whereas in the other layers, more smooth tran-
sitions are found. Switches between visually similar digits (e.g.,
4 and 9) occurred more often on average than between very
different digits (e.g., 0 and 1).

3.3. REAL-TIME VISUAL RECOGNITION
For this task the event-driven DBN was connected to a neuro-
morphic vision sensor, the 128 × 128 pixel DVS (Lichtsteiner
et al., 2008). Events indicating local light intensity changes are
used as inputs in the bottom-up Visual Input Layer. The whole
system works in real-time, i.e., while the DVS is recording visual
input, the DBN simultaneously computes the most likely inter-
pretation of the input. By splitting up the connections between
Visual Input and Visual Abstraction Layer into a bottom-up and
a top-down pathway as in Figure 5 we can simultaneously clas-
sify the input in real-time, and also visualize in the top-down
Visual Input Layer the interpretation of the input after recurrent
processing in the DBN.

The real-time system runs as a filter in the jAER software pack-
age (Delbruck, 2013) on a standard laptop, after training the
weights of the DBN offline in Matlab on the MNIST database.
Figure 7 shows snapshots of the activity within the different lay-
ers of the network during operation on various stimuli recorded
in real-time with the DVS. In Figure 7A the DVS was moved over
a hand-drawing of the digit “5” which was not included in the
training set. The left panel shows the input into the Visual Input
Layer. The digit was correctly classified as a “5” in the Label Layer.
On the right we can see the reconstruction of the image, which
closely resembles the actual input. In Figure 7B an ambiguous

FIGURE 7 | Screen captures of the real-time spiking DBN in operation

during visual handwritten digit recognition. Each row displays a
snapshot of the activity in the different layers of the network (see Figure 5)
for a different visual input recorded with the DVS (left column). Neurons in
the Label Layer (column 5) are arranged such that the first column
represent classes 0–4 (top to bottom), and the second column classes 5–9.
The rightmost column shows the top-down reconstruction of the Visual
Input Layer. (A) The network recognizes the digit 5. (B) For an ambiguous
input, the network alternates between the two possible interpretations “3”
and “5.” The top-down reconstruction shows the current interpretation. (C)

For an unfamiliar input (letter “A”), the network classifies it as the closest
resembling digit class “9,” and reconstructs a mixture between the actual
input and the generative model for class “9.” (D) For an input containing a
distractor, the network still classifies it as the most likely input, and
reconstructs an image without the distractor.

input was presented, which can either be interpreted as a “3” or
a “5.” The network iterated between both interpretations, in this
snapshot the reconstruction on the right shows that the network
currently interprets the input as a “3,” adding the missing parts
of the input to match the actual shape of a digit. In Figure 7C
the network is shown an input from an unknown input class,
namely the letter “A.” Since the generative model learned in the

Frontiers in Neuroscience | Neuromorphic Engineering October 2013 | Volume 7 | Article 178 | 68

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

O’Connor et al. Spiking deep belief networks

network knows only digits, it classifies the input as the most sim-
ilar digit, in this case “9,” and reconstructs the input as a mixture
between the actual DVS input and the entrained model of the
digit. In Figure 7D a digit “4” with a distracting stimulus on top
was shown. It was correctly classified and reconstructed in the
top-down Visual Input Layer without the distracting stimulus.

In general, the network recognized reliably all tested classes
of handwritten digits in real-time, even in the presence of strong
distractors, with slightly rotated images, or variations in scale or
translation of the image. It can also do so very quickly: at a typical
low-rate input firing rate of 3000 input spikes per second over the
whole image, the DBN submits its first correct guess of the output
label within an average of 5.8 ms after the onset of the simulated
Poisson spike train input. Firing rates in the intermediate layers
are higher, resulting in 58800 spikes/s in the 500 neuron Visual
Abstraction Layer (see Figure 2), 147600 spikes/s in the 500 neu-
ron Association Layer, and 1800 spikes/s in the 10 neuron Label
Layer.

3.4. REAL-TIME SENSORY FUSION
We trained a DBN to associate visual stimuli from a silicon retina,
and auditory stimuli from a silicon cochlea, in order to clas-
sify them in real-time by integrating both input streams. Table 1
shows the respective association of digit images recorded with the
DVS (Lichtsteiner et al., 2008), and tones of different frequencies
recorded with the AER-EAR2 silicon cochlea (Liu et al., 2010).
We used the DBN architecture shown in Figure 8, in which a
bidirectional connection between the top-level Association Layer
and the Auditory Input Layer is added.

During training a network of Siegert neurons were presented
with input images from the MNIST database and pre-recorded
activations of Auditory Input Layer neurons in response to the
tones in Table 1 (see Section 2.5.3). After the training phase,
the DBN was converted into an event-driven DBN as described
previously, which was run in real-time in the jAER software
package.

One key aspect of sensory fusion is the ability to integrate
multiple, possibly noisy or ambiguous cues from different sen-
sory domains to decide on the actual state of the world. We
tested this by providing simultaneous visual and auditory stimuli

FIGURE 8 | DBN architecture of the multi-sensory fusion network. In
addition to the architecture for visual recognition in Figure 5 the Auditory
Input Layer is bidirectionally connected to the top-level Association Layer.
Thus, associations between visual inputs, auditory inputs, and classification
results in the Label Layer can be learned during training, and classification
can be achieved in real-time.

to the DBN, such that the combination of both stimuli would
provide more conclusive evidence of the true label than the sin-
gle modalities. The auditory stimulus was a mixture of A4 and
F5 tones corresponding to “0” and “5” digits, with four times
as many input spikes corresponding to class “0” as to class “5”.
Thus, if given only the audio input, the DBN should identify
a “0”. Conversely, the visual input shows an ambiguous input
that is consistent with either a “3” or a “5,” but very unlikely
for a “0”. Figure 9 demonstrates the audio-visual fusion using an
ambiguous visual input and the auditory input favoring class “0.”
However, while each input stream favors an incorrect interpreta-
tion of either “3” or “0,” class “5” is correctly chosen as the most
consistent representation for the combined visual-auditory input
stream.

In Figure 10 we analyzed how this depends on the relative
strength of visual and auditory input streams and the ambigu-
ity of the visual input by (1) changing the relative proportion of
input spikes coming from the audio stream, and (2) interpolating
the visual input between an image showing “3” and another one
showing “5.” We varied the mixture of firing rates of input neu-
rons such that 80% (Figure 10A), 20% (Figure 10B), and 10%
(Figure 10C) of all input spikes came from the auditory stream,
and measured the proportion of output spikes for the three classes
“0,” “3,” and “5”. In panels A and C the classes that are inconsistent
with the dominating auditory respectively visual input are almost
completely suppressed, and class “5” is favored. One can also see
from the difference between Figures 10A,B that an increase of a
few spikes favoring an alternative interpretation can dramatically
adjust the output choice: In this case 10% more of spikes favoring
the interpretation “5” are enough to bias the classification toward
the interpretation consistent with both visual and auditory input
over a wide range of visual ambiguity.

4. DISCUSSION
The great potential of DBNs is widely recognized in the machine
learning community and industry (MIT Technology Review,
2013). However, due to the high computational costs, and the
capability to integrate large amounts of unlabeled data that is

FIGURE 9 | Cue integration with a multi-sensory spiking DBN. (A)

When presenting only an ambiguous visual input to the DVS, the network
in the absence of auditory input will alternate between recognizing a “3” or
a “5” (see also Figure 7). (B) When presenting only an ambiguous auditory
input to the cochlea, the network in the absence of visual input will
alternate between recognizing a “0” or a “5.” (C) By combining the two
inputs (mixing at 50%), the network reliably classifies the two ambiguous
patterns as class “5,” which is the only consistent interpretation.

www.frontiersin.org October 2013 | Volume 7 | Article 178 | 69

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

O’Connor et al. Spiking deep belief networks

FIGURE 10 | Proportion of output spikes for 3 different mixture ratios

of auditory and visual input in a multi-sensory spiking DBN. Red,
green, and blue encode the ratio of 0, 3, and 5 choices (spikes) relative to
the total number of spikes emitted from the Label Layer (averaged over 10
trials). The horizontal axis sweeps the probability that visual input spikes are
chosen from either a “3” digit or an aligned “5” digit. Auditory input
consists of a mixture of “0” and “5” inputs, with four times more spikes
indicating a “0”. Over a wide range of mixture values, the network correctly
infers the only consistent interpretation of the multi-modal input, which is
class “5”. Inputs that are inconsistent with the dominating sensory domain
(“3” in A, “0” in B,C) are mostly suppressed.

freely available on the web, applications so far have strongly con-
centrated on big data problems (Le et al., 2012). Surprisingly little
effort has gone into making this technology available for real-time
applications, although the scenarios in which DBNs excel, e.g.,
visual object recognition, speech recognition, or multi-sensory
fusion, are extremely important tasks in fields like robotics or
mobile computing. An exception is the work of (Hadsell et al.,
2009), who use small and mostly feed-forward deep networks
for long-range vision in an autonomous robot driving off road.
In general, previous attempts to reduce the running time have
mostly attempted to restrict the connectivity of networks (Lee
et al., 2008; Le et al., 2012), e.g., by introducing weight-sharing,
pooling, and restricted receptive fields. In speech processing on
mobile phones, data is first communicated to a central server
where it is processed by a large DBN before the result is sent back
to the mobile device (Acero et al., 2008). Online and on-board
processing would be very important for mobile applications
where such communication infrastructure is not available, e.g.,
for exploration robots in remote areas, underwater, or other plan-
ets, but this requires fast and efficient processing architectures,
that conventional DBNs currently cannot provide.

We think that this presents a big opportunity for neuromor-
phic engineering, which has always pursued the goal of provid-
ing fast and energy efficient alternatives to conventional digital
computing architectures for real-time brain-inspired cognitive

systems (Indiveri et al., 2011). Here we have presented a novel
method how to convert a fully trained DBN into a network of
spiking LIF neurons. Even though we have only shown a proof-
of-concept in software, this provides the necessary theoretical
framework for an architecture that can in the future be imple-
mented on neuromorphic VLSI chips, and first experiments in
this direction are promising. The event-driven approach can be
energy efficient, in particular since the required processing power
depends dynamically on the data content, rather than on the con-
stant dimensionality of the processed data. Furthermore, as we
have shown, spiking DBNs can process data with very low latency,
without having to wait for a full frame of data, which can be
further improved if individual units of the DBN compute in par-
allel, rather than updating each unit in sequence. This advantage
has been recognized for many years for feed-forward convolu-
tional networks, in which almost all operations can be efficiently
parallelized, and has led to the development of custom digital
hardware solutions and spike-based convolution chips (Camuñas
Mesa et al., 2010; Farabet et al., 2012), which through the use
of the Address Event Representation (AER) protocol, can also
directly process events coming from event-based dynamic vision
sensors (Lichtsteiner et al., 2008). For such architectures (P’erez-
Carrasco et al., 2013) have recently developed a similar mapping
methodology between frame-based and event-driven networks
that translates the weights and other parameters of a fully trained
frame-based feed-forward network into the event-based domain,
and then optimizes them with simulated annealing. In compari-
son, this offers increased flexibility to change neuronal parameters
after training, whereas our method uses the accurate Siegert-
approximation of spike rates already during the training of a
bi-directional network, and does not require an additional opti-
mization phase. The advantages of spike-based versus digital
frame-based visual processing in terms of processing speed and
scalability have been compared in Farabet et al. (2012), where it
was also suggested that spike-based systems are more suitable for
systems that employ both feed-forward and feed-back processing.

Although our model is event-based, the Siegert model (Siegert,
1951) does not make use of the precise timing of spikes. The
basic theoretical framework of DBNs is not suitable for inputs
that vary in time, and thus requires modifications to the net-
work architecture (Taylor et al., 2007), or a transformation of
inherently time-dependent inputs (Dahl et al., 2012). Learning
with STDP-like rules in spiking DBNs provides an intriguing
future possibility for a direct handling of dynamic inputs. In
our current network, the short-time memory of previously seen
inputs carried in the membrane potential of LIF neurons allows
us to process inputs from asynchronous neuromorphic sensors,
in which complete frames are never available (Lichtsteiner et al.,
2008; Liu et al., 2010). We can therefore for the first time apply
the state-of-the-art machine learning technique of DBNs directly
to inputs from event-based sensors, without any need to convert
input signals, and can classify the input while also completing the
input signals using feed-back connections.

Feed-back connections are rarely used in models of biolog-
ically inspired vision, e.g., HMAX (Riesenhuber and Poggio,
1999), but as we show e.g., in Figure 7, feed-back and recurrency
are essential for implementing general probabilistic inference,

Frontiers in Neuroscience | Neuromorphic Engineering October 2013 | Volume 7 | Article 178 | 70

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

O’Connor et al. Spiking deep belief networks

e.g., to infer missing, ambiguous, or noisy values in the input.
Only in recent years have models become available that directly
link spiking activity in recurrent neural networks to inference and
learning in probabilistic graphical models. Nessler et al. (2013)
have shown that learning via STDP in cortical microcircuits can
lead to the emergence of Bayesian computation for the detec-
tion of hidden causes of inputs. They interpret spikes as samples
from a posterior distribution over hidden variables, which is
also the essential idea for neural sampling approaches (Büsing
et al., 2011), in which spiking neurons implement inference in
a Boltzmann machine via Markov Chain Monte Carlo sampling.
Using clock-like waves of inhibition, Merolla et al. (2010) showed
an alternative implementation of single Boltzmann machines
with spiking neurons.

In biology, the precise role of feed-back processing is still
debated, but the deficiencies of purely feed-forward architectures
for processing the kind of clutter, occlusions, and noise inher-
ent to natural scenes point at least to a role in modulation by
attention signals, and in the integration of multiple cues, possi-
bly from different modalities as well as memory and high-level
cognitive areas (Lamme et al., 1998; Bullier, 2001; Kersten and
Yuille, 2003). A proposal from Hochstein and Ahissar (2002) even
suggests a reverse hierarchy for conscious vision, whereby fast
feed-forward perception is used for a quick estimate of the gist
of the scene, and for activating top-down signals that focus atten-
tion on low-level features necessary to resolve the details of the
task. Such a model can explain the fast pop-out effect of image
parts that violate model expectations, and also provides a model
for fast learning without changes in the early sensory process-
ing stages. This is consistent with a variety of theories that the
brain encodes Bayesian generative models of its natural environ-
ment (Kersten and Yuille, 2003; Knill and Pouget, 2004). The
hierarchical organization of sensory cortices would then natu-
rally correspond to a hierarchy of prior distributions from higher
to lower areas that can be optimally adapted to statistics of the
real world in order to minimize surprise (Friston, 2010). Rao
and Ballard (1999) suggested that inference in such hierarchical
generative models could be efficiently performed through pre-
dictive coding. In this framework, feed-back connections would
signal a prediction from higher to lower layers, whereas feed-
forward connections would encode the error between prediction
and actual input. In Rao and Ballard (1999) it was shown that
such a model can account for several phenomena concerning
the non-linear interaction of center and surround of receptive
fields, and fMRI data support the theory by reporting reduced V1
activity when recognition-related activity in higher areas increases
(Murray et al., 2002).

The framework of Bayesian generative models also provides a
principled way of associating and integrating potentially uncer-
tain cues from different sources, e.g., across sensory modalities
(Knill and Pouget, 2004). It is well known that humans use
all available cues for solving tasks, e.g., by using visual cues to
improve their understanding of speech (Kayser and Logothetis,
2007; Stein and Stanford, 2008). Although traditional mod-
els have assumed that multi-sensory integration occurs only at
higher association areas like superior colliculus (Felleman and
Van Essen, 1991), feed-back connections from higher to lower

areas or between sensory streams are likely to be involved in sen-
sory fusion tasks. Recent studies have revealed the existence of
anatomical connections that would enable cross-modal interac-
tions also at lower levels (Falchier et al., 2002; Markov et al., 2012),
and functional studies have provided some (but not conclusive)
evidence of co-activations of early sensory areas by stimulation
of different modalities [see (Kayser and Logothetis, 2007) for a
review]. Integration might also be required within the same sen-
sory modality, since e.g., the visual pathway splits up into at least
two separate major ventral and dorsal streams.

All these arguments indicate that the traditional concept
of sensory processing in the cortex as a feed-forward hierar-
chy of feature detectors with increasing levels of abstraction
in higher layers (Gross et al., 1972; Van Essen and Maunsell,
1983; Desimone et al., 1984) needs to be reassessed (Markov
and Kennedy, 2013). A closer look at the anatomy of intra- and
inter-areal cortical connectivity reveals an abundance of feed-
back and recurrent connections. Every brain area receives inputs
from a large number of cortical and subcortical sources (Douglas
and Martin, 2011; Markov et al., 2012), and feed-forward con-
nections actually make up only a relatively small fraction of
inputs to neurons along the hypothesized pathways (da Costa and
Martin, 2009). Many studies have demonstrated feed-back effects,
in which the activation or deactivation of a higher area alters
activity in lower sensory areas (Lamme et al., 1998; Bullier, 2001;
Murray et al., 2002), e.g., activation of V1 through a high-level
cognitive process like visual imagery (Kosslyn et al., 1999).

DBN models can play an important role in capturing many
of those effects, and the event-based framework presented in
this article provides a model in which the dynamics and short-
term memory properties of spiking neurons can be exploited for
dealing with realistic input sequences, in our case coming from
bio-inspired sensors. There are still plenty of open research ques-
tions, in particular concerning the integration of spike-timing
based learning in the DBN framework, and the exploitation of
spike-timing for dealing with sequences of inputs. This will likely
require an adaptation of the simple RBM model used as the
building block of DBNs, and will have to include recurrent lat-
eral connections. Similar mechanisms for the processing of input
sequences have been proposed in the framework of Hierarchical
Temporal Memory (Hawkins and Blakeslee, 2004), which opens
up new directions for combining machine learning approaches
with cortical modeling.

ACKNOWLEDGMENTS
This project was partially supported by the FP7 SeeBetter
(FP7-ICT-2009-6), Swiss National Foundation EARS
(200021_126844), and the Samsung Advanced Institute
of Technology. Michael Pfeiffer has been supported by a
Forschungskredit grant of the University of Zurich. The funders
had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnins.
2013.00178/abstract

www.frontiersin.org October 2013 | Volume 7 | Article 178 | 71

http://www.frontiersin.org/journal/10.3389/fnins.2013.00178/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2013.00178/abstract
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

O’Connor et al. Spiking deep belief networks

REFERENCES
Acero, A., Bernstein, N., Chambers, R.,

Ju, Y.-C., Li, X., Odell, J., et al.
(2008). “Live search for mobile: web
services by voice on the cellphone,”
in IEEE International Conference
on Acoustics, Speech and Signal
Processing (ICASSP), (IEEE), (Las
Vegas, NV), 5256–5259.

Bengio, Y., Lamblin, P., Popovici,
D., and Larochelle, H. (2006).
“Greedy layer-wise training of deep
networks,” in Advances in Neural
Information Processing Systems 19.
Vancouver: MIT Press.

Bullier, J. (2001). Integrated model of
visual processing. Brain Res. Rev.
36, 96–107. doi: 10.1016/S0165-
0173(01)00085-6

Büsing, L., Bill, J., Nessler, B., and
Maass, W. (2011). Neural dynamics
as sampling: a model for stochastic
computation in recurrent networks
of spiking neurons. PLoS Comput.
Biol. 7:e1002211. doi: 10.1371/
journal.pcbi.1002211

Camuñas Mesa, L., Pérez-Carrasco,
J., Zamarreño Ramos, C.,
Serrano-Gotarredona, T., and
Linares-Barranco, B. (2010). “On
scalable spiking ConvNet hard-
ware for cortex-like visual sensory
processing systems,” in Processing
of IEEE International Symposium
on Circuits and Systems (ISCAS),
(Paris), 249–252.

Ciresan, D. C., Meier, U., Gambardella,
L. M., and Schmidhuber, J. (2010).
Deep, big, simple neural nets for
handwritten digit recognition.
Neural Comput. 22, 3207–3220. doi:
10.1162/NECO_a_00052

da Costa, N. M., and Martin, K. A. C.
(2009). The proportion of synapses
formed by the axons of the lateral
geniculate nucleus in layer 4 of area
17 of the cat. J. Comp. Neurol. 516,
264–276. doi: 10.1002/cne.22133

Dahl, G. E., Yu, D., Deng, L., and Acero,
A. (2012). Context-dependent pre-
trained deep neural networks for
large-vocabulary speech recogni-
tion. IEEE Trans. Audio Speech Lang.
Process. 20, 30–42. doi: 10.1109/
TASL.2011.2134090

Delbruck, T. (2013). jAER Open Source
Project. Available online at: http://
sourceforge.net/apps/trac/jaer/wiki.

Desimone, R., Albright, T. D., Gross,
C. G., and Bruce, C. (1984).
Stimulus-selective properties of
inferior temporal neurons in the
macaque. J. Neurosci. 4, 2051–2062.
doi: 10.1007/s12021-011-9106-1

Douglas, R. J., and Martin, K.
A. C. (2011). What’s black and
white about the grey matter?
Neuroinformatics 9, 167–179. doi:
10.1007/s12021-011-9106-1

Erhan, D., Bengio, Y., Courville, A.,
Manzagol, P., Vincent, P., and
Bengio, S. (2010). Why does unsu-
pervised pre-training help deep
learning? J. Mach. Learn. Res. 11,
625–660.

Falchier, A., Clavagnier, S., Barone,
P., and Kennedy, H. (2002).
Anatomical evidence of multimodal
integration in primate striate cortex.
J. Neurosci. 22, 5749–5759.

Farabet, C., Paz, R., Pérez-Carrasco, J.,
Zamarreño, C., Linares-Barranco,
A., LeCun, Y., et al. (2012).
Comparison between frame-
constrained fix-pixel-value and
frame-free spiking-dynamic-pixel
ConvNets for visual processing.
Front. Neurosci. 6:32. doi: 10.3389/
fnins.2012.00032

Felleman, D. J., and Van Essen, D. C.
(1991). Distributed hierarchical
processing in the primate cerebral
cortex. Cereb. Cortex 1, 1–47. doi:
10.1093/cercor/1.1.1

Friston, K. (2010). The free-energy
principle: a unified brain theory?
Nat. Rev. Neurosci. 11, 127–138. doi:
10.1038/nrn2787

Gerstner, W., and Kistler, W.
(2002). Spiking Neuron Models.
Single Neurons, Populations,
Plasticity. Cambridge: Cambridge
University Press. doi: 10.1017/
CBO9780511815706

Goh, H., Thome, N., and Cord,
M. (2010). “Biasing restricted
Boltzmann machines to manipulate
latent selectivity and sparsity,” in
NIPS workshop on deep learning
and unsupervised feature learning,
(Whistler, BC).

Gross, C. G., Roche-Miranda, G. E.,
and Bender, D. B. (1972). Visual
properties of neurons in the infer-
otemporal cortex of the macaque. J.
Neurophysiol. 35, 96–111.

Hadsell, R., Sermanet, P., Ben, J., Erkan,
A., Scoffier, M., Kavukcuoglu, K.,
et al. (2009). Learning long-range
vision for autonomous off-road
driving. J. Field Robot. 26, 120–144.
doi: 10.1002/rob.20276

Hawkins, J., and Blakeslee, S. (2004).
On intelligence. New York, NY:
Times Books.

Hinton, G., Deng, L., Yu, D., Dahl,
G. E., Mohamed, A., Jaitly, N., et al.
(2012). Deep neural networks for
acoustic modeling in speech recog-
nition: the shared views of four
research groups. IEEE Signal Process.
Mag. 29, 82–97. doi: 10.1109/MSP.
2012.2205597

Hinton, G., Osindero, S., and Teh, Y. W.
(2006). A fast learning algorithm for
deep belief nets. Neural Comput. 18,
1527–1554. doi: 10.1162/neco.2006.
18.7.1527

Hinton, G. E., and Salakhutdinov,
R. R. (2006). Reducing the
dimensionality of data with neural
networks. Science 313, 504–507.
doi: 10.1126/science.1127647

Hinton, G. E., and Sejnowski, T. J.
(1986). Learning and Relearning in
Boltzmann Machines. Cambridge,
MA: MIT Press 1, 282–317.

Hochreiter, S., Bengio, Y., Frasconi, P.,
Schmidhuber, J., and Elvezia, C.
(2001). “Gradient flow in recur-
rent nets: the difficulty of learn-
ing long-term dependencies,” in A
Field Guide to Dynamical Recurrent
Neural Networks. eds S. C. Kremer
and J. F. Kolen (New York, NY: IEEE
Press), 237–244.

Hochstein, S., and Ahissar, M. (2002).
View from the top: hierarchies and
reverse hierarchies review. Neuron
36, 791–804. doi: 10.1016/S0896-
6273(02)01091-7

Indiveri, G., Linares-Barranco, B.,
Hamilton, T., van Schaik, A.,
Etienne-Cummings, R., Delbruck,
T., et al. (2011). Neuromorphic sili-
con neuron circuits. Front. Neurosci.
5:73. doi: 10.3389/fnins.2011.00073

Jug, F., Cook, M., and Steger, A.
(2012). “Recurrent competitive net-
works can learn locally excita-
tory topologies,” in International
Joint Conference on Neural Networks
(IJCNN), (Brisbane), 1–8.

Kayser, C., and Logothetis, N. K.
(2007). Do early sensory cortices
integrate cross-modal information?
Brain Struct. Funct. 212, 121–132.
doi: 10.1007/s00429-007-0154-0

Kersten, D., and Yuille, A. (2003).
Bayesian models of object percep-
tion. Curr. Opin. Neurobiol. 13,
150–158. doi: 10.1016/S0959-4388
(03)00042-4

Knill, D. C., and Pouget, A. (2004). The
Bayesian brain: the role of uncer-
tainty in neural coding and compu-
tation. Trends Neurosci. 27, 712–719.
doi: 10.1016/j.tins.2004.10.007

Kosslyn, S. M., Pascual-Leone, A.,
Felician, O., Camposano, S.,
Keenan, J. P., Thompson, W. L.,
et al. (1999). The role of Area 17
in visual imagery: Convergent evi-
dence from PET and rTMS. Science
284, 167–170. doi: 10.1126/science.
284.5411.167

Lamme, V. A. F., Supér, H., and
Spekreijse, H. (1998). Feedforward,
horizontal, and feedback process-
ing in the visual cortex. Curr. Opin.
Neurobiol. 8, 529–535. doi: 10.1016/
S0959-4388(98)80042-1

Larochelle, H., Erhan, D., Courville,
A., Bergstra, J., and Bengio, Y.
(2007). “An empirical evaluation
of deep architectures on problems
with many factors of variation,”

in Proceedings of ICML, 473–480.
ACM.

Le, Q. V., Ranzato, M. A., Monga, R.,
Devin, M., Chen, K., Corrado, G.,
et al. (2012). “Building high-level
features using large scale unsuper-
vised learning,” in Proceedings of
ICML, (Edinburgh).

LeCun, Y. L., Bottou, L., Bengio, Y.,
and Haffner, P. (1998). Gradient-
based learning applied to docu-
ment recognition. Proc. IEEE 86,
2278–2324. doi: 10.1109/5.726791

Lee, H., Ekanadham, C., and Ng,
A. (2008). “Sparse deep belief
net model for visual area V2,” in
Advances in Neural Information
Processing Systems, Vol 20,
(Vancouver), 873–880.

Lee, H., Grosse, R., Ranganath, R., and
Ng, A. Y. (2009). “Convolutional
deep belief networks for scalable
unsupervised learning of hierarchi-
cal representations,” in Proceedings
of ICML, (Montreal), 609–616. doi:
10.1145/1553374.1553453

Lichtsteiner, P., Posch, C., and
Delbruck, T. (2008). A 128×
128 120 db 15 μs latency asyn-
chronous temporal contrast vision
sensor. IEEE J. Solid-State Circ. 43,
566–576. doi: 10.1109/JSSC.2007.
914337

Liu, S., Van Schaik, A., Minch, B.,
and Delbruck, T. (2010). “Event-
based 64-channel binaural silicon
cochlea with Q enhancement mech-
anisms,” in Proceedings of IEEE
International Symposium on Circuits
and Systems (ISCAS), (Paris),
2027–2030.

Markov, N., and Kennedy, H. (2013).
The importance of being hierar-
chical. Curr. Opin. Neurobiol. 23,
187–194. doi: 10.1016/j.conb.2012.
12.008

Markov, N. T., Ercsey-Ravasz, M. M.,
Ribeiro Gomes, A. R., Lamy, C.,
Magrou, L., Vezoli, J., et al. (2012).
A weighted and directed interareal
connectivity matrix for macaque
cerebral cortex. Cereb. Cortex 1–20.
doi: 10.1093/cercor/bhs270

Merolla, P., Ursell, T., and Arthur,
J. (2010). The Thermodynamic
Temperature of a Rhythmic
Spiking Network. Arxiv preprint
arXiv:1009.5473.

MIT Technology Review (2013). 10
breakthrough technologies 2013:
Deep learning. Available online at:
http://www.technologyreview.com/
featuredstory/513696/deep-learning/

Mohamed, A.-R., Dahl, G. E., and
Hinton, G. (2012). Acoustic model-
ing using deep belief networks. IEEE
Trans. Audio Speech Lang. Process.
20, 14–22. doi: 10.1109/TASL.2011.
2109382

Frontiers in Neuroscience | Neuromorphic Engineering October 2013 | Volume 7 | Article 178 | 72

http://sourceforge.net/apps/trac/jaer/wiki
http://sourceforge.net/apps/trac/jaer/wiki
http://www.technologyreview.com/featuredstory/513696/deep-learning/
http://www.technologyreview.com/featuredstory/513696/deep-learning/
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

O’Connor et al. Spiking deep belief networks

Murray, S. O., Kersten, D., Olshausen,
B. A., Schrater, P., and Woods, D. L.
(2002). Shape perception reduces
activity in human primary visual
cortex. Proc. Natl. Acad. Sci. U.S.A.
99, 15164–15169. doi: 10.1073/pnas.
192579399

Nair, V., and Hinton, G. (2010).
“Rectified linear units improve
Restricted Boltzmann Machines,”
in Proceedings of ICML, (Haifa),
807–814.

Nessler, B., Pfeiffer, M., Buesing,
L., and Maass, W. (2013).
Bayesian computation emerges
in generic cortical microcircuits
through spike-timing-dependent
plasticity. PLoS Comput. Biol.
9:e1003037. doi: 10.1371/journal.
pcbi.1003037

Pérez-Carrasco, J., Zhao, B., Serrano,
C., Acha, B., Serrano-Gotarredona,
T., Chen, S., et al. (2013). Mapping
from frame-driven to frame-free
event-driven vision systems by
low-rate rate-coding and coin-
cidence processing. application
to feed forward ConvNets. IEEE

Trans. Pattern Anal. Mach. Intell. 35,
2706–2719. doi: 10.1109/TPAMI.
2013.71

Rao, R. P. N., and Ballard, D. H. (1999).
Predictive coding in the visual
cortex: a functional interpretation
of some extra-classical receptive-
field effects. Nat. Neurosci. 2,
79–87. doi: 10.1038/4580

Riesenhuber, M., and Poggio, T. (1999).
Hierarchical models of object recog-
nition in cortex. Nat. Neurosci. 2,
1019–1025. doi: 10.1038/14819

Seide, F., Li, G., and Yu, D. (2011).
“Conversational speech transcrip-
tion using context-dependent deep
neural networks,” in Proceedings
of Interspeech, (Florence),
437–440.

Siegert, A. J. F. (1951). On the first pas-
sage time probability problem. Phys.
Rev. 81:617. doi: 10.1103/PhysRev.
81.617

Stein, B. E., and Stanford, T. R. (2008).
Multisensory integration: current
issues from the perspective of the
single neuron. Nat. Rev. Neurosci. 9,
255–266. doi: 10.1038/nrn2331

Taylor, G., Hinton, G., and Roweis, S.
(2007). “Modeling human motion
using binary latent variables,” in
Advances in Neural Information
Processing Systems, (Vancouver),
1345–1352.

Tieleman, T. (2008). “Training
restricted Boltzmann machines
using approximations to the like-
lihood gradient,” in Proceedings
of ICML, (Helsinki: ACM),
1064–1071.

Tieleman, T., and Hinton, G. (2009).
“Using fast weights to improve per-
sistent contrastive divergence,” in
Proceedings of ICML, (Montreal:
ACM), 1033–1040.

Van Essen, D. C., and Maunsell, J. H. R.
(1983). Hierarchical organization
and functional streams in the
visual cortex. Trends Neurosci. 6,
370–375. doi: 10.1016/0166-2236
(83)90167-4

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships

that could be construed as a potential
conflict of interest.

Received: 12 June 2013; accepted: 17
September 2013; published online: 08
October 2013.
Citation: O’Connor P, Neil D, Liu SC,
Delbruck T and Pfeiffer M (2013) Real-
time classification and sensor fusion
with a spiking deep belief network.
Front. Neurosci. 7:178. doi: 10.3389/
fnins.2013.00178
This article was submitted to
Neuromorphic Engineering, a section of
the journal Frontiers in Neuroscience.
Copyright © 2013 O’Connor, Neil, Liu,
Delbruck and Pfeiffer. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permit-
ted, provided the original author(s) or
licensor are credited and that the origi-
nal publication in this journal is cited, in
accordance with accepted academic prac-
tice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

www.frontiersin.org October 2013 | Volume 7 | Article 178 | 73

http://dx.doi.org/10.3389/fnins.2013.00178
http://dx.doi.org/10.3389/fnins.2013.00178
http://dx.doi.org/10.3389/fnins.2013.00178
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

ORIGINAL RESEARCH ARTICLE
published: 30 January 2014

doi: 10.3389/fnins.2013.00272

Event-driven contrastive divergence for spiking
neuromorphic systems
Emre Neftci1*, Srinjoy Das1,2, Bruno Pedroni3, Kenneth Kreutz-Delgado1,2 and Gert Cauwenberghs1,3

1 Institute for Neural Computation, University of California, San Diego, La Jolla, CA, USA
2 Electrical and Computer Engineering Department, University of California, San Diego, La Jolla, CA, USA
3 Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA

Edited by:

André Van Schaik, The University of
Western Sydney, Australia

Reviewed by:

Michael Schmuker, Freie Universität
Berlin, Germany
Philip De Chazal, University of
Western Sydney, Australia

*Correspondence:

Emre Neftci, Institute for Neural
Computation, University of
California, San Diego, 9500 Gilman
Drive - 0523, La Jolla, CA-92093,
USA
e-mail: nemre@ucsd.edu

Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been
demonstrated to perform efficiently in a variety of applications, such as dimensionality
reduction, feature learning, and classification. Their implementation on neuromorphic
hardware platforms emulating large-scale networks of spiking neurons can have significant
advantages from the perspectives of scalability, power dissipation and real-time interfacing
with the environment. However, the traditional RBM architecture and the commonly used
training algorithm known as Contrastive Divergence (CD) are based on discrete updates
and exact arithmetics which do not directly map onto a dynamical neural substrate. Here,
we present an event-driven variation of CD to train a RBM constructed with Integrate
& Fire (I&F) neurons, that is constrained by the limitations of existing and near future
neuromorphic hardware platforms. Our strategy is based on neural sampling, which
allows us to synthesize a spiking neural network that samples from a target Boltzmann
distribution. The recurrent activity of the network replaces the discrete steps of the CD
algorithm, while Spike Time Dependent Plasticity (STDP) carries out the weight updates
in an online, asynchronous fashion. We demonstrate our approach by training an RBM
composed of leaky I&F neurons with STDP synapses to learn a generative model of
the MNIST hand-written digit dataset, and by testing it in recognition, generation and
cue integration tasks. Our results contribute to a machine learning-driven approach for
synthesizing networks of spiking neurons capable of carrying out practical, high-level
functionality.

Keywords: synaptic plasticity, neuromorphic cognition, Markov chain monte carlo, recurrent neural network,

generative model

1. INTRODUCTION
Machine learning algorithms based on stochastic neural network
models such as RBMs and deep networks are currently the state-
of-the-art in several practical tasks (Hinton and Salakhutdinov,
2006; Bengio, 2009). The training of these models requires sig-
nificant computational resources, and is often carried out using
power-hungry hardware such as large clusters (Le et al., 2011)
or graphics processing units (Bergstra et al., 2010). Their imple-
mentation in dedicated hardware platforms can therefore be very
appealing from the perspectives of power dissipation and of
scalability.

Neuromorphic Very Large Scale Integration (VLSI) systems
exploit the physics of the device to emulate very densely the
performance of biological neurons in a real-time fashion, while
dissipating very low power (Mead, 1989; Indiveri et al., 2011).
The distributed structure of RBMs suggests that neuromorphic
VLSI circuits and systems can become ideal candidates for such a
platform. Furthermore, the communication between neuromor-
phic components is often mediated using asynchronous address-
events (Deiss et al., 1998) enabling them to be interfaced with
event-based sensors (Liu and Delbruck, 2010; Neftci et al., 2013;
O’Connor et al., 2013) for embedded applications, and to be
implemented in a very scalable fashion (Silver et al., 2007; Joshi
et al., 2010; Schemmel et al., 2010).

Currently, RBMs and the algorithms used to train them are
designed to operate efficiently on digital processors, using batch,
discrete-time, iterative updates based on exact arithmetic calcula-
tions. However, unlike digital processors, neuromorphic systems
compute through the continuous-time dynamics of their compo-
nents, which are typically Integrate & Fire (I&F) neurons (Indiveri
et al., 2011), rendering the transfer of such algorithms on such
platforms a non-trivial task. We propose here a method to con-
struct RBMs using I&F neuron models and to train them using
an online, event-driven adaptation of the Contrastive Divergence
(CD) algorithm.

We take inspiration from computational neuroscience to
identify an efficient neural mechanism for sampling from the
underlying probability distribution of the RBM. Neuroscientists
argue that brains deal with uncertainty in their environments
by encoding and combining probabilities optimally (Doya et al.,
2006), and that such computations are at the core of cogni-
tive function (Griffiths et al., 2010). While many mechanistic
theories of how the brain might achieve this exist, a recent neu-
ral sampling theory postulates that the spiking activity of the
neurons encodes samples of an underlying probability distribu-
tion (Fiser et al., 2010). The advantage for a neural substrate
in using such a strategy over the alternative one, in which
neurons encode probabilities, is that it requires exponentially

www.frontiersin.org January 2014 | Volume 7 | Article 272 | 74

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2013.00272/abstract
http://www.frontiersin.org/people/u/3753
http://www.frontiersin.org/people/u/123108
http://community.frontiersin.org/people/BrunoPedroni/129879
http://community.frontiersin.org/people/KenKreutz-Delgado/14433
http://www.frontiersin.org/people/u/12771
mailto:nemre@ucsd.edu
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Neftci et al. Event-Driven Contrastive Divergence

fewer neurons. Furthermore, abstract model neurons consis-
tent with the behavior of biological neurons can implement
Markov Chain Monte Carlo (MCMC) sampling (Buesing et al.,
2011), and RBMs sampled in this way can be efficiently trained
using CD, with almost no loss in performance (Pedroni et al.,
2013). We identify the conditions under which a dynamical
system consisting of I&F neurons performs neural sampling.
These conditions are compatible with neuromorphic imple-
mentations of I&F neurons (Indiveri et al., 2011), suggest-
ing that they can achieve similar performance. The calibra-
tion procedure necessary for configuring the parameters of the
spiking neural network is based on firing rate measurements,
and so is easy to realize in software and in hardware plat-
forms.

In standard CD, weight updates are computed on the basis
of alternating, feed-forward propagation of activities (Hinton,
2002). In a neuromorphic implementation, this translates to
reprogramming the network connections and resetting its
state variables at every step of the training. As a consequence,
it requires two distinct dynamical systems: one for normal
operation (i.e., testing), the other for training, which is highly
impractical. To overcome this problem, we train the neural RBMs
using an online adaptation of CD. We exploit the recurrent
structure of the network to mimic the discrete “construction”
and “reconstruction” steps of CD in a spike-driven fashion, and
Spike Time Dependent Plasticity (STDP) to carry out the weight
updates. Each sample (spike) of each random variable (neuron)
causes synaptic weights to be updated. We show that, over longer
periods, these microscopic updates behave like a macroscopic
CD weight update. Compared to standard CD, no additional
connectivity programming overhead is required during the
training steps, and both testing and training take place in the
same dynamical system.

Because RBMs are generative models, they can act simulta-
neously as classifiers, content-addressable memories, and carry
out probabilistic inference. We demonstrate these features in a
MNIST hand-written digit task (LeCun et al., 1998), using an
RBM network consisting of one layer of 824 “visible” neurons
and one layer of 500 “hidden” neurons. The spiking neural net-
work was able to learn a generative model capable of recognition
performances with accuracies up to 91.9%, which is close to the
performance obtained using standard CD and Gibbs sampling,
93.6%.

2. MATERIALS AND METHODS
2.1. NEURAL SAMPLING WITH NOISY I&F NEURONS
We describe here conditions under which a dynamical system
composed of I&F neurons can perform neural sampling. It has
been proven that abstract neuron models consistent with the
behavior of biological spiking neurons can perform MCMC sam-
pling of a Boltzmann distribution (Buesing et al., 2011). Two
conditions are sufficient for this. First, the instantaneous firing
rate of the neuron verifies:

ρ(u(t), t − t′) =
{

0 if t − t′ < τr

r(u(t)) t − t′ ≥ τr

, (1)

with r(u(t)) proportional to exp(u(t)), where u(t) is the
membrane potential and τr is an absolute refractory period dur-
ing which the neuron cannot fire. ρ(u(t), t − t′) describes the
neuron’s instantaneous firing rate as a function of u(t) at time
t, given that the last spike occurred at t′. It can be shown that the
average firing rate of this neuron model for stationary u(t) is the
sigmoid function:

ρ(u) = (τr + exp(−u))−1. (2)

Second, the membrane potential of neuron i is equal to the linear
sum of its inputs:

ui(t) = bi +
N∑

j= 1

wijzj(t),∀i = 1, . . . , N, (3)

where bi is a constant bias, and zj(t) represents the pre-synaptic
spike train produced by neuron j defined as being equal to 1 when
the pre-synaptic neuron spikes for a duration τr , and equal to zero
otherwise. The terms wijzj(t) are identified with the time course
of the Post–Synaptic Potential (PSP), i.e., the response of the
membrane potential to a pre-synaptic spike. The two conditions
above define a neuron model, to which we refer as the “abstract
neuron model.” Assuming the network states are binary vectors
[z1, . . . , zk], it can be shown that, after an initial transient, the
sequence of network states can be interpreted as MCMC samples
of the Boltzmann distribution:

p(z1, . . . , zk) = 1

Z
exp

(− E(z1, . . . , zk)
)
, with

E(z1, . . . , zk) =− 1

2

∑
ij

Wijzizj −
∑

i

bizi,
(4)

where Z =∑z1,...,zk
exp

(− E(z1, . . . , zk)
)

is a constant such that
p sums up to unity, and E(z1, . . . , zk) can be interpreted as an
energy function (Haykin, 1998).

An important fact of the abstract neuron model is that, accord-
ing to the dynamics of zj(t), the PSPs are “rectangular” and
non-additive since no two presynaptic spikes can occur faster than
the refractive period. The implementation of synapses producing
such PSPs on a large scale is very difficult to realize in hardware,
when compared to first-order linear filters that result in “alpha”-
shaped PSPs (Destexhe et al., 1998; Bartolozzi and Indiveri, 2007).
This is because, in the latter model, the synaptic dynamics are lin-
ear, such that a single hardware synapse can be used to generate
the same current that would be generated by an arbitrary num-
ber of synapses (see also next section). As a consequence, we will
use alpha-shaped PSPs instead of rectangular PSPs in our mod-
els. The use of the alpha PSP over the rectangular PSP is the major
source of degradation in sampling performance, as we will discuss
in section 2.2.

2.1.1. Stochastic I&F neurons
A neuron whose instantaneous firing rate is consistent with
Equation (1) can perform neural sampling. Equation (1) is a gen-
eralization of the Poisson process to the case when the firing prob-
ability depends on the time of the last spike (i.e., it is a renewal

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 272 | 75

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Neftci et al. Event-Driven Contrastive Divergence

process), and so can be verified only if the neuron fires stochasti-
cally (Cox, 1962). Stochasticity in I&F neurons can be obtained
through several mechanisms, such as a noisy reset potential,
noisy firing threshold, or noise injection (Plesser and Gerstner,
2000). The first two mechanisms necessitate stochasticity in the
neuron’s parameters, and therefore may require specialized cir-
cuitry. But noise injection in the form of background Poisson
spike trains requires only synapse circuits, which are present in
many neuromorphic VLSI implementation of spiking neurons
(Bartolozzi and Indiveri, 2007; Indiveri et al., 2011). Furthermore,
Poisson spike trains can be generated self-consistently in balanced
excitatory-inhibitory networks (van Vreeswijk and Sompolinsky,
1996), or using finite-size effects and neural mismatch (Amit and
Brunel, 1997).

We show that the abstract neuron model in Equation (1) can
be realized in a simple dynamical system consisting of leaky I&F
neurons with noisy currents. The neuron’s membrane potential
below firing threshold θ is governed by the following differential
equation:

C
d

dt
ui = −gLui + Ii(t)+ σξ(t), ui(t) ∈ (−∞, θ), (5)

where C is a membrane capacitance, ui is the membrane potential
of neuron i, gL is a leak conductance, σξ(t) is a white noise term of
amplitude σ (which can for example be generated by background
activity), Ii(t) its synaptic current and θ is the neuron’s firing
threshold. When the membrane potential reaches θ, an action
potential is elicited. After a spike is generated, the membrane
potential is clamped to the reset potential urst for a refractory
period τr .

In the case of the neural RBM, the currents Ii(t) depend on the
layer the neuron is situated in. For a neuron i in layer υ

Ii(t) = Id
i (t)+ Iυ

i (t),

τsyn
d

dt
Iυ
i = −Iυ

i +
Nh∑

j= 1

qhji hj(t)+ qbi bυi(t),
(6)

where Id
i (t) is a current representing the data (i.e., the external

input), Iυ is the feedback from the hidden layer activity and the
bias, and the q’s are the respective synaptic weights, and bυ(t) is
a Poisson spike train implementing the bias. Spike trains are rep-
resented by a sum of Dirac delta pulses centered on the respective
spike times:

bυi(t) =
∑

k∈ Spi

δ(t − tk), hj(t) =
∑

k∈ Spj

δ(t − tk) (7)

where Spi and Spj are the set of the spike times of the bias neuron
bυi and the hidden neuron hj, respectively, and δ(t) = 1 if t = 0
and 0 otherwise.

For a neuron j in layer h,

Ij(t) = Ih
j (t),

τsyn
d

dt
Ih
j = −Ih

j +
Nυ∑

i= 1

qυijυi(t)+ qbj bhj(t),
(8)

where Ih is the feedback from the visible layer, and υ(t) and bh(t)
are Poisson spike trains of the visible neurons and the bias neu-
rons, defined similarly as in Equation (7). The dynamics of Ih and
Iυ correspond to a first-order linear filter, so each incoming spike
results in PSPs that rise and decay exponentially (i.e., alpha-PSP)
(Gerstner and Kistler, 2002).

Can this neuron verify the conditions required for neural sam-
pling? The membrane potential is already assumed to be equal to
the sum of the PSPs as required by neural sampling. So to answer
the above question we only need to verify whether Equation (1)
holds. Equation (5) is a Langevin equation which can be analyzed
using the Fokker–Planck equation (Gardiner, 2012). The solution
to this equation provides the neuron’s input/output response, i.e.,
its transfer curve (for a review, see Renart et al., 2003):

ρ(u0) =
(

τr + τm
√

π

∫ θ−u0
σV

urst−u0
σV

dx exp(x2)(1+ erf(x))

)−1

, (9)

where erf is the error function (the integral of the normal dis-
tribution), u0 = I

gL
is the stationary value of the membrane

potential when injected with a constant current I, τm = C
gL

is the

membrane time constant, urst is the reset voltage, and σ2
V (u) =

σ2/(gLC).
According to Equation (2), the condition for neural sampling

requires that the average firing rate of the neuron to be the sig-
moid function. Although the transfer curve of the noisy I&F
neuron Equation (9) is not identical to the sigmoid function, it
was previously shown that with an appropriate choice of param-
eters, the shape of this curve can be very similar to it (Merolla
et al., 2010). We observe that, for a given refractory period τr ,
the smaller the ratio θ− urst

σV
in Equation (5), the better the trans-

fer curve resembles a sigmoid function (Figure 1). With a small
θ− urst

σV
, the transfer function of a neuron can be fitted to

ν(I) = 1

τr

(
1+ exp(−Iβ)

γτr

)−1

, (10)

where β and γ are the parameters to be fitted. The choice of
the neuron model described in Equation (5) is not critical for
neural sampling: A relationship that is qualitatively similar to
Equation (9) holds for neurons with a rigid (reflective) lower
boundary (Fusi and Mattia, 1999) which is common in VLSI
neurons, and for I&F neurons with conductance-based synapses
(Petrovici et al., 2013).

This result also shows that synaptic weights qυi , qhj , which have
the units of charge are related to the RBM weights Wij by a factor
β−1. To relate the neural activity to the Boltzmann distribution,
Equation (4), each neuron is associated to a binary random vari-
able which is assumed to take the value 1 for a duration τr after the

www.frontiersin.org January 2014 | Volume 7 | Article 272 | 76

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Neftci et al. Event-Driven Contrastive Divergence

FIGURE 1 | Transfer curve of a leaky I&F neuron for three different

parameter sets where u0 = I
gL

, and 1
τr

= 250 [Hz] (dashed gray). In this

plot, σV is varied to produce different ratios θ− urst
σV

. The three plots above
shows that the fit with the sigmoid function (solid black) improves as the
ratio decreases.

neuron has spiked, and zero otherwise, similarly to Buesing et al.
(2011). With this encoding, the network state is characterized by
a binary vector having the same number of entries as the number
of neurons in the network. The relationship between this ran-
dom vector and the I&F neurons’ spiking activity is illustrated in
Figure 3. The membrane potential of the neuron (black) evolves
in a random fashion until it spikes, after which it is clamped to
urst for a duration τr (gray). While the neuron is in the refrac-
tory period, the random variable associated to it is assumed to
takes the value 1. This way, the state of the network can always
be associated with a binary vector. According to the theory, the
dynamics in the network guarantees that the binary vectors are
samples drawn from a Boltzmann distribution.

2.1.2. Calibration protocol
In order to transfer the parameters from the probability distribu-
tion Equation (4) to those of the I&F neurons, the parameters
γ, β in Equation (10) need to be fitted. An estimate of a neu-
ron’s transfer function can be obtained by computing its spike
rate when injected with different values of constant inputs I. The
refractory period τr is the inverse of the maximum firing rate
of the neuron, so it can be easily measured by measuring the
spike rate for very high input current I. Once τr is known, the
parameter estimation can be cast into a simple linear regression
problem by fitting log(ρ(i)−1 − τr) with βI + log(γ). Figure 2
shows the transfer curve when τr = 0 ms, which is approximately
exponential in agreement with Equation (1).

The shape of the transfer curse is strongly dependent on the
noise amplitude. In the absence of noise, the transfer curve is a
sharp threshold function, which softens as the amplitude of the
noise is increased (Figure 1). As a result, both parameters γ and
β are dependent on the variance of the input currents from other
neurons I(t). Since βq = w, the effect of the fluctuations on the
network is similar to scaling the synaptic weights and the biases

FIGURE 2 | Transfer function of I&F neurons driven by background

white noise Equation (5). We measure the firing rate of the neuron as a
function of a constant current injection to estimate ρ(u0), where for
constant Iinj, u0 = Iinj/gL. (Top) The transfer function of noisy I&F neurons
in the absence of refractory period [ρ(u) = r(u), circles]. We observe that ρ

is approximately exponential over a wide range of inputs, and therefore
compatible with neural sampling. Crosses show the transfer curve of
neurons implementing the abstract neuron Equation (1), exactly. (Bottom)
With an absolute refractory period the transfer function approximates the
sigmoid function. The firing rate saturates at [250]Hz due to the refractory
period chosen for the neuron.

which can be problematic. However, by selecting a large enough
noise amplitude σ and a slow enough input synapse time con-
stant, the fluctuations due to the background input are much
larger than the fluctuations due to the inputs. In this case, β and
γ remain approximately constant during the sampling.

Neural mismatch can cause β and γ to differ from neuron to
neuron. From Equation (10) and the linearity of the postsynaptic
currents I(t) in the weights, it is clear that this type of mismatch
can be compensated by scaling the synaptic weights and biases
accordingly. The calibration of the parameters γ and β quan-
titatively relate the spiking neural network’s parameters to the
RBM. In practice, this calibration step is only necessary for map-
ping pre-trained parameters of the RBM onto the spiking neural
network.

Although we estimated the parameters of software simulated
I&F neurons, parameter estimation based on firing rate measure-
ments were shown to be an accurate and reliable method for VLSI
I&F neurons as well (Neftci et al., 2012).

2.2. VALIDATION OF NEURAL SAMPLING USING I&F NEURONS
The I&F neuron verifies Equation (1) only approximately, and the
PSP model is different from the one of Equation (3). Therefore,

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 272 | 77

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Neftci et al. Event-Driven Contrastive Divergence

the following two important questions naturally arise: how accu-
rately does the I&F neuron-based sampler outlined above sample
from a target Boltzmann distribution? How well does it perform
in comparison to an exact sampler, such as the Gibbs sampler? To
answer these questions we sample from several neural RBM con-
sisting of five visible and five hidden units for randomly drawn
weight and bias parameters. At these small dimensions, the proba-
bilities associated to all possible values of the random vector z can
be computed exactly. These probabilities are then compared to

FIGURE 3 | Neural Sampling in an RBM consisting of 10 stochastic I&F

neurons, with five neurons in each layer. Each neuron is associated to a
binary random variable which take values 1 during a refractory period τr

after the neuron has spiked (gray shadings). The variables are sampled at
1 kHz to produce binary vectors that correspond to samples of the joint
distribution p(z). In this figure, only the membrane potential and the
samples produced by the first five neurons are shown. The vectors inside
the brackets are example samples of the marginalized distribution
p(z1, z2, z3, z4, z5) produced at the time indicated by the vertical lines. In
the RBM, there are no recurrent connections within a layer.

those obtained through the histogram constructed with the sam-
pled events. To construct this histogram, each spike was extended
to form a box of length τr (as illustrated in Figure 3), the spiking
activity was sampled at 1 kHz, and the occurrences of all the pos-
sible 210 states of the random vector z were counted. We added 1
to the number of occurrences of each state to avoid zero probabil-
ities. The histogram obtained from a representative run is shown
in Figure 4 (left).

A common measure of similarity between two distributions p
and q is the KL divergence:

D(p||q) =
∑

i

pi log
pi

qi
.

If the distributions p and q are identical then D(p||q) = 0, other-
wise D(p||q) > 0. The right panel of Figure 4 shows D(p||Pexact)

as a function of sampling duration, for distributions p obtained
from three different samplers: the abstract neuron based sam-
pler with alpha PSPs (PNS,Abstract), the I&F neuron-based sampler
(PNS), and the Gibbs sampler (PGibbs).

In the case of the I&F neuron-based sampler, the average KL
divergence for 48 randomly drawn distributions after 1000 s of
sampling time was 0.059± 0.049. This result is not significantly
different if the abstract neuron model Equation (1) with alpha
PSPs is used (average KL divergence 0.10± 0.049), and in both
cases the KL divergence did not tend to zero as the number
of samples increased. The only difference in the latter neuron
model compared to the abstract neuron model of Buesing et al.
(2011), which tends to zero when sampling time tends to infin-
ity, is the PSP model. This indicates that the discrepancy is largely
due to the use of alpha-PSPs, rather than the approximation of
Equation (1) with I&F neurons.

FIGURE 4 | (Left) Example probability distribution obtained by neural
sampling of the RBM of Figure 3. The bars are marginal probabilities
computed by counting the events [00000], [00001], . . . , [11110], [11111],
respectively. PNS is the distribution obtained by neural sampling and P is the
exact probability distribution computed with Equation (4). (Right) The degree
to which the sampled distribution resembles the target distribution is
quantified by the KL divergence measured across 48 different distributions,
and the shadings correspond to its standard deviation. This plot also shows
the KL divergence of the target distribution sampled by Gibbs Sampling

(PGibbs), which is the common choice for RBMs. For comparison with the
neural sampler, we identified the duration of one Gibbs sampling iteration
with one refractory period τr = 4 ms. The plot shows that up to 104ms, the
two methods are comparable. After this, the KL divergence of the neural
sampler tends to a plateau due to the fact that neural sampling with our I&F
neural network is approximate. In both figures, PNS, Abstract refers to the
marginal probability distribution obtained by using the abstract neuron model
Equation (1). In this case, the KL divergence is not significantly different from
the one obtained with the I&F neuron model-based sampler.

www.frontiersin.org January 2014 | Volume 7 | Article 272 | 78

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Neftci et al. Event-Driven Contrastive Divergence

The standard sampling procedure used in RBMs is Gibbs
Sampling: the neurons in the visible layer are sampled simultane-
ously given the activities of the hidden neurons, then the hidden
neurons are sampled given the activities of the visible neurons.
This procedure is iterated a number of times. For comparison
with the neural sampler, the duration of one Gibbs sampling iter-
ation is identified with one refractory period τr = 4 ms. At this
scale, we observe that the speed of convergence of the neural sam-
pler is similar to that of the Gibbs sampler up to 104ms, after
which the neural sampler plateaus above the D(p||q) = 10−2 line.
Despite the approximations in the neuron model and the synapse
model, these results show that in RBMs of this size, the neural
sampler consisting of I&F neurons sample from a distribution
that has the same KL divergence as the distribution obtained after
104 iterations of Gibbs sampling, which is more than the typical
number of iterations used for MNIST hand-written digit tasks in
the literature (Hinton et al., 2006).

2.3. NEURAL ARCHITECTURE FOR LEARNING A MODEL OF MNIST
HAND-WRITTEN DIGITS

We test the performance of the neural RBM in a digit recognition
task. We use the MNIST database, whose data samples consist
of centered, gray-scale, 28× 28-pixel images of hand-written
digits 0–9 (LeCun et al., 1998). The neural RBM’s network
architecture consisted of two layers, as illustrated in Figure 5.
The visible layer was partitioned into 784 sensory neurons (vd)
and 40 class label neurons (vc) for supervised learning. The
pixel values of the digits were discretized to two values, with
low intensity pixel values (p ≤ 0.5) mapped to 10−5 and high
intensity values (p > 0.5) mapped to 0.98. A neuron i in d
stimulated each neuron i in layer v, with synaptic currents fi such
that P(υi = 1) = ν(fi)τr = pi, where 0 ≤ pi ≤ 1 is the value of
pixel i. The value fi is calculated by inverting the transfer function

of the neuron: fi = ν−1(s) = log
(

s
γ− sγτr

)
β−1. Using this RBM,

classification is performed by choosing the most likely label given
the input, under the learned model. This equals to choosing the

FIGURE 5 | The RBM network consists of a visible and a hidden layer.

The visible layer is partitioned into 784 sensory neurons (vd) and 40 class
label neurons (vc) for supervised learning. During data presentation, the
activities in the visible layer are driven by a data layer d, consisting of a digit
and its label (1 neuron per label). In the RBM, the weight matrix between
the visible layer and the hidden layer is symmetric.

population of class neurons associated to the same label that has
the highest population firing rate.

To reconstruct a digit from a class label, the class neurons
belonging to a given digit are clamped to a high firing rate. For
testing the discrimination performance of an energy-based model
such as the RBM, it is common to compute the free-energy F(vc)

of the class units (Haykin, 1998), defined as:

exp(−F(vc)) =
∑
vd,h

exp(−E(vd, vc, h)), (11)

Table 1 | List of parameters used in the software simulations.a

νbias Mean firing rate of
bias Poisson spike
train

All figures 1000 Hz

σ Noise amplitude All figures, except Figure 1 3 · 10−11 A/s0.5

Figure 1 (left) 2 · 10−11 A/s0.5

Figure 1 (right) 3 · 10−10 A/s0.5

Figure 1 (bottom) 1 · 10−9 A/s0.5

β Exponential factor
(fit)

All figures 2.044 · 109 A−1

γ Baseline firing rate
(fit)

All figures 8808 Hz

τr Refractory period All figures 4 ms

τsyn Time constant of
recurrent, and bias
synapses

All figures 4 ms

τbr “Burn-in” time of the
neural sampling

All figures 10 ms

gL Leak conductance All figures 1 nS

urst Reset potential All figures 0 V

C Membrane
capacitance

All figures 10−12 F

θ Firing threshold All figures 100 mV

W RBM weight matrix
(∈ R

Nυ×Nh)
Figure 4 N(−0.75, 1.5)

bυ , bh RBM bias for layer υ

and h
Figure 4 N(−1.5, 0.5)

Nυ , Nh Number of visible
and hidden units

Figure 4 5, 5

in the RBM Figures 7, 8, 7 824, 500

Nc Number of class
label units

Figures 7, 8, 7 40

2T Epoch duration Figures 4, 7, 8 100 ms

Figure 9 300 ms

Tsim Simulation time Figure 2 5 s

Figure 4 1000 s

Figure 7 0.2 s

Figure 9 0.85 s

Figure 8 (testing) 1.0 s

Figure 8 (learning) 2000 s

τSTDP Learning time
window

Figure 7 4 ms

η Learning rate Standard CD 0.1 · 10−2

Event-driven CD 3.2 · 10−2

aSoftware simulation scripts are available online (https://github.com/

eneftci/eCD).

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 272 | 79

https://github.com/eneftci/eCD
https://github.com/eneftci/eCD
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Neftci et al. Event-Driven Contrastive Divergence

and selecting vc such that the free-energy is minimized. The
spiking neural network is simulated using the BRIAN simula-
tor (Goodman and Brette, 2008). All the parameters used in the
simulations are provided in Table 1.

3. RESULTS
3.1. EVENT-DRIVEN CONTRASTIVE DIVERGENCE
A Restricted Boltzmann Machine (RBM) is a stochastic neural
network consisting of two symmetrically interconnected layers
composed of neuron-like units—a set of visible units v and a set
of hidden units h, but has no connections within a layer.

The training of RBMs commonly proceeds in two phases. At
first the states of the visible units are clamped to a given vec-
tor from the training set, then the states of the hidden units
are sampled. In a second “reconstruction” phase, the network is
allowed to run freely. Using the statistics collected during sam-
pling, the weights are updated in a way that they maximize
the likelihood of the data (Hinton, 2002). Collecting equilib-
rium statistics over the data distribution in the reconstruction
phase is often computationally prohibitive. The CD algorithm
has been proposed to mitigate this (Hinton, 2002; Hinton and
Salakhutdinov, 2006): the reconstruction of the visible units’
activity is achieved by sampling them conditioned on the values
of the hidden units (Figure 6). This procedure can be repeated
k times (the rule is then called CDk), but relatively good con-
vergence is obtained for the equilibrium distribution even for
one iteration. The CD learning rule is summarized as follows:

�wij = ε(〈υihj〉data − 〈υihj〉recon), (12)

where υi and hj are the activities in the visible and hidden lay-
ers, respectively. This rule can be interpreted as a difference
of Hebbian and anti-Hebbian learning rules between the visi-
ble and hidden neurons sampled in the data and reconstruc-
tion phases. In practice, when the data set is very large, weight
updates are calculated using a subset of data samples, or “mini-
batches.” The above rule can then be interpreted as a stochas-
tic gradient descent (Robbins and Monro, 1951). Although
the convergence properties of the CD rule are the subject of
continuing investigation, extensive software simulations show
that the rule often converges to very good solutions (Hinton,
2002).

The main result of this paper is an online variation of the CD
rule for implementation in neuromorphic hardware. By virtue
of neural sampling the spikes generated from the visible and
hidden units can be used to compute the statistics of the prob-
ability distributions online (further details on neural sampling
in the Materials and Methods section 2.1). Therefore a possi-
ble neural mechanism for implementing CD is to use synapses
whose weights are governed by synaptic plasticity. Because the
spikes cause the weight to update in an online, and asynchronous
fashion, we refer to this rule as event-driven CD.

The weight update in event-driven CD is a modulated, pair-
based STDP rule:

d

dt
qij = g(t) STDPij(υi(t), hj(t)) (13)

where g(t) ∈ R is a zero-mean global gating signal controlling
the data vs. reconstruction phase, qij is the weight of the synapse
and υi(t) and hj(t) refer to the spike trains of neurons υi and hj,
defined as in Equation (7).

As opposed to the standard CD rule, weights are updated after
every occurrence of a pre-synaptic and post-synaptic event. While
this online approach slightly differentiates it from standard CD, it
is integral to a spiking neuromorphic framework where the data
samples and weight updates cannot be stored. The weight update
is governed by a symmetric STDP rule with a symmetric temporal
window K(t) = K(−t),∀t:

STDPij(υi(t), hj(t)) = υi(t)Ahj(t)+ hj(t)Aυi(t),

Ahj(t) = A

∫ t

−∞
dsK(t − s)hj(s),

Aυi(t) = A

∫ t

−∞
dsK(s− t)υi(s),

(14)

with A > 0 defining the magnitude of the weight updates. In
our implementation, updates are additive and weights can change
polarity.

3.1.1. Pairwise STDP with a global modulatory signal
approximates CD

The modulatory signal g(t) switches the behavior of the synapse
from LTP to LTD (i.e., Hebbian to Anti-Hebbian). The temporal
average of g(t) must vanish to balance LTP and LTD, and must

FIGURE 6 | The standard Contrastive Divergence (CD)k procedure,

comparedtoevent-drivenCD. (A) InstandardCD, learningproceeds iteratively
by sampling in “construction” and “reconstruction” phases (Hinton, 2002),
which is impractical in a continuous-time dynamical system. (B) We propose a
spiking neural sampling architecture that folds these updates on a continuous
time dimension through the recurrent activity of the network. The synaptic

weight update follows a STDP rule modulated by a zero mean signal g(t). This
signal switches the behavior of the synapse from Long-Term Potentiation (LTP)
to Long-Term Depression (LTD), and partitions the training into two phases
analogous to those of the original CD rule. The spikes cause microscopic
weight modifications, which on average behave as the macroscopic CD weight
update. For this reason, the learning rule is referred to as event-driven CD.

www.frontiersin.org January 2014 | Volume 7 | Article 272 | 80

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Neftci et al. Event-Driven Contrastive Divergence

vary on much slower time scales than the typical times scale of
the network dynamics, denoted τbr, so that the network samples
from its stationary distribution when the weights are updated.
The time constant τbr corresponds to a “burn-in” time of MCMC
sampling and depends on the overall network dynamics and can-
not be computed in the general case. However, it is reasonable
to assume τbr to be in the order of a few refractory periods of the
neurons (Buesing et al., 2011). In this work, we used the following
modulation function g(t):

g(t) =

⎧⎪⎨
⎪⎩

1 if mod(t, 2T) ∈ (τbr, T)

−1 if mod(t, 2T) ∈ (T + τbr, 2T)

0 otherwise

, (15)

where mod is the modulo function and T is a time interval.
The data is presented during the time intervals (2iT, (2i+ 1)T),
where i is a positive integer. With the g(t) defined above, no
weight update is undertaken during a fixed period τbr. This allows
us to neglect the transients after the stimulus is turned on and
off (respectively in the beginning of the data and reconstruction
phases). In this case and under further assumptions discussed
below, the event-driven CD rule can be directly compared with
standard CD as we now demonstrate. The average weight update
during (0, 2T) is:

〈
d

dt
qij

〉
(0,2T)

= Cij + Rij,

Cij = T − τbr

2T
(〈υi(t)Ahj(t)〉td + 〈hj(t)Aυi(t)〉td)

Rij = −T − τbr

2T
(〈υi(t)Ahj(t)〉tr + 〈hj(t)Aυi(t)〉tr),

(16)

where td = (τbr, T) and tr = (T + τbr, 2T) denote the intervals
during the positive and negative phases of g(t), and 〈·〉(a,b) =

1
b− a

∫ b
a dt·.

We write the first average in Cij as follows:

〈υi(t)Ahj(t)〉td = A
1

T − τbr

∫ T

τbr

dt

∫ t

−∞
dsK(t − s)υi(t)hj(s),

= A
1

T − τbr

∫ T

τbr

dt

∫ ∞
0

d�K(�)υi(t)hj(t −�),

= A

∫ ∞
0

d�K(�)〈υi(t)hj(t −�)〉td .

(17)

If the spike times are uncorrelated the temporal averages become
a product of the average firing rates of a pair of visible and hidden
neurons (Gerstner and Kistler, 2002):

〈υi(t)hj(t −�)〉td = 〈υi(t)〉td 〈hj(t −�)〉td =: ῡ+i h̄+j .

If we choose a temporal window that is much smaller than T, and
assume the network activity is stationary in the interval (τbr, T),

we can write (up to a negligible error Kempter et al., 2001)

〈υi(t)Ahj(t)〉td = Aῡ+i h̄+j
∫ ∞

0
d�K(�). (18)

In the uncorrelated case, the second term in Cij contributes the
same amount, leading to:

Cij = ηῡ+i h̄+j .

with η := 2A T− τbr
2T

∫∞
0 d�K(�). Similar arguments apply to the

averages in the time interval tr :

Rij = 2A

∫ ∞
0

d�K(�)〈υi(t)hj(t −�)〉tr = ηῡ−i h̄−j .

with ῡ−i h̄−j := 〈υi(t)〉tr 〈hj(t −�)〉tr . The average update in
(0, 2T) then becomes:

〈
d

dt
qij

〉
(0,2T)

= η
(
ῡ+i h̄+j − ῡ−i h̄−j

)
. (19)

According to Equation (18), any symmetric temporal win-
dow that is much shorter than T can be used. For sim-
plicity, we choose an exponential temporal window K(�) =
exp(−|�/τSTDP|) with decay rate τSTDP � T (Figure 6B). In this

case, η = 2A T−τbr
2T τSTDP.

The modulatory function g(t) partitions the training into
epochs of duration 2T. Each epoch consists of a LTP phase during
which the data is presented (construction), followed by a free-
running LTD phase (reconstruction). The weights are updated
asynchronously during the time interval in which the neural
sampling proceeds, and Equation (19) tells us that its average
resembles Equation (12). However, it is different in two ways:
the averages are taken over one data and reconstruction phase
rather than a mini-batch of data samples and their reconstruc-
tions; and more importantly, the synaptic weights are updated
during the data and the reconstruction phase, whereas in the CD
rule, updates are carried out at the end of the reconstruction
phase. In the derivation above the effect of the weight change on
the network during an epoch 2T was neglected for mathematical
simplicity. In the following, we verify that despite this approxima-
tion, the event-driven CD performs nearly as well as standard CD
in the context of a common benchmark task.

3.2. LEARNING A GENERATIVE MODEL OF HAND-WRITTEN DIGITS
We train the RBM to learn a generative model of the MNIST
handwritten digits using event-driven CD (see section 2.3 for
details). For training, 20,000 digits selected randomly (with
repetition) from a training set consisting of 10,000 digits were
presented in sequence, with an equal number of samples for each
digit.

The raster plots in Figure 7 show the spiking activity of each
layer before and after learning for epochs of duration 100 ms. The
top panel shows the population-averaged weight. After training,
the sum of the upwards and downward excursions of the average

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 272 | 81

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Neftci et al. Event-Driven Contrastive Divergence

FIGURE 7 | The spiking neural network learns a generative model of the

MNIST dataset using the event-driven CD procedure. (A) Learning curve,
shown here up to 10, 000 samples. (B) Details of the training procedure,
before and after training (20,000 samples). During the first half of each 0.1 s
epoch, the visible layer v is driven by the sensory layer, and the gating
variable g is 1, meaning that the synapses undergo LTP. During the second
half of each epoch, the sensory stimulus is removed, and g is set to −1, so
the synapses undergo LTD. The top panels of both figures show the mean of
the entries of the weight matrix. The second panel shows the values of the
modulatory signal g(t). The third panel shows the synaptic currents of a
visible neuron, where Ih is caused by the feedback from the hidden and the

bias, and Id is the data. The timing of the clamping (Id) and g differ due to an
interval τbr where no weight update is undertaken to avoid the transients
(see section 2). Before learning and during the reconstruction phase, the
activity of the visible layer is random. But as learning progresses, the activity
in the visible layer reflects the presented data in the reconstruction phase.
This is very well visible in the layer class label neurons vc , whose activity
persists after the sensory stimulus is removed. Although the firing rates of
the hidden layer neurons before training is high (average 113 Hz), this is only a
reflection of the initial conditions for the recurrent couplings W . In fact, at the
end of the training, the firing rates in both layers becomes much sparser
(average 9.31 Hz).

weight is much smaller than before training, because the learn-
ing is near convergence. The second panel shows the value of the
modulatory signal g(t). The third panel shows the input current
(Id) and the current caused by the recurrent couplings (Ih).

Two methods can be used to estimate the overall recognition
accuracy of the neural RBM. The first is to sample: the visible
layer is clamped to the digit only (i.e., υd), and the network is
run for 1s. The known label is then compared with the posi-
tion of the group of class neurons that fired at the highest rate.
The second method is to minimize free-energy: the neural RBMs
parameters are extracted, and for each data sample, the class label
with the lowest free-energy (see section 2) is compared with the
known label. In both cases, recognition was tested for 1000 data
samples that were not used during the training. The results are
summarized in Figure 8.

As a reference we provide the best performance achieved using
the standard CD and one unit per class label (Nc = 10) (Figure 8,
table row 1), 93.6%. By mapping the these parameters to the
neural sampler, the recognition accuracy reached 92.6%. The dis-
crepancy is expected since the neural sampler does not exactly
sample from the target Boltzmann distribution (see section 2.2).

When training a neural RBM of I&F neurons using event-
driven CD, the recognition result was 91.9% (Figure 8, table
row 2). The performance of this RBM obtained by minimizing its
free-energy was 90.8%. The learned parameters performed well
for classification using the free-energy calculation which suggests

that the network learned a model that is consistent with the
mathematical description of the RBM.

In an energy-based model like the RBM the free-energy min-
imization should give the upper bound on the discrimination
performance (Haykin, 1998). For this reason, the fact that the
recognition accuracy is higher when sampling as opposed to using
the free-energy method may appear puzzling. However, this is
possible because the neural RBM does not exactly sample from
the Boltzmann distribution, as explained in section 2.2. This
suggests that event-driven CD compensates for the discrepancy
between the distribution sampled by the neural RBM and the
Boltzmann distribution, by learning a model that is tailored to
the spiking neural network.

Excessively long training durations can be impractical for
real-time neuromorphic systems. Fortunately, the learning using
event-driven CD is fast: Compared to the off-line RBM train-
ing (250, 000 presentations, in mini-batches of 100 samples) the
event-driven CD training succeeded with a smaller number of
data presentations (20, 000), which corresponded to 2000 s of
simulated time. This suggests that the training durations are
achievable for real-time neuromorphic systems.

3.2.1. The choice of the number of class neurons Nc

Event-driven CD underperformed in the case of 1 neuron per
class label (Nc = 10), which is the common choice for standard
CD and Gibbs sampling. This is because a single neuron firing

www.frontiersin.org January 2014 | Volume 7 | Article 272 | 82

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Neftci et al. Event-Driven Contrastive Divergence

FIGURE 8 | To test recognition accuracy, the trained RBMs are sampled

using the I&F neuron-based sampler for up to 1 s. The classification is
read out by identifying the group of class label neurons that had the highest
activity. This experiment is run for RBM parameter sets obtained by standard
CD (black, CD) and event-driven CD (green, eCD). To test for robustness to
finite precision weights, the RBM was run with parameters obtained by

event-driven CD discretized to 8 and 5 bits. In all scenarios, the accuracy after
50 ms of sampling was above 80% and after 1 s the accuracies typically
reached their peak at around 92%. The dashed horizontal lines show the
recognition accuracy obtained by minimizing the free-energy (see text). The
fact that the eCD curve (solid green) surpasses its free-energy line suggests
that a model that is tailored to the I&F spiking neural network was learned.

at its maximum rate of 250 Hz cannot efficiently drive the rest of
the network without tending to induce spike-to-spike correlations
(e.g., synchrony), which is incompatible with the assumptions
made for sampling with I&F neurons and event-driven CD. As
a consequence, the generative properties of the neural RBM
degrade. This problem is avoided by using several neurons per
class label (in our case four neurons per class label) because the
synaptic weight can be much lower to achieve the same effect,
resulting in smaller spike-to-spike correlations.

3.2.2. Neural parameters with finite precision
In hardware systems, the parameters related to the weights and
biases cannot be set with floating-point precision, as can be done
in a digital computer. In current neuromorphic implementations
the synaptic weights can be configured at precisions of about
8 bits (Yu et al., 2012). We characterize the impact of finite-
precision synaptic weights on performance by discretizing the
weight and bias parameters to 8 bits and 5 bits. The set of possi-
ble weights were spaced uniformly in the interval (μ− 4.5σ,μ+
4.5σ), where μ, σ are the mean and the standard deviation of
the parameters across the network, respectively. The classifica-
tion performance of MNIST digits degraded gracefully. In the 8
bit case, it degrades only slightly to 91.6%, but in the case of 5

bits, it degrades more substantially to 89.4%. In both cases, the
RBM still retains its discriminative power, which is encouraging
for implementation in hardware neuromorphic systems.

3.3. GENERATIVE PROPERTIES OF THE RBM
We test the neural RBM as a generative model of the MNIST
dataset of handwritten digits, using parameters obtained by run-
ning the event-driven CD. The RBM’s generative property enables
it to classify and generate digits, as well as to infer digits by com-
bining partial evidence. These features are clearly illustrated in
the following experiment (Figure 9). First the digit 3 is presented
(i.e., layer υd is driven by layer d) and the correct class label in
vc activated. Second, the neurons associated to class label 5 are
clamped, and the network generated its learned version of the
digit. Third, the right-half part of a digit 8 is presented, and the
class neurons are stimulated such that only 3 or 6 are able to acti-
vate (the other class neurons are inhibited, indicated by the gray
shading). Because the stimulus is inconsistent with 6, the network
settled to 3 and reconstructed the left part of the digit.

The latter part of the experiment illustrates the integration of
information between several partially specified cues, which is of
interest for solving sensorimotor transformation or multi-modal
sensory cue integration problems (Deneve et al., 2001; Doya

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 272 | 83

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Neftci et al. Event-Driven Contrastive Divergence

FIGURE 9 | The recurrent structure of the network allows it to classify,

reconstruct and infer from partial evidence. (A) Raster plot of an
experiment illustrating these features. Before time 0s, the neural RBM runs
freely, with no input. Due to the stochasticity in the network, the activity
wanders from attractor to attractor. At time 0s, the digit 3 is presented (i.e.,
layer υd is driven by d), activating the correct class label in υc ; At time
t = 0.3 s, the class neurons associated to 5 are clamped to high activity and
the rest of the class label neurons are strongly inhibited, driving the network
to reconstruct its version of the digit in layer υd ; At time t = 0.6 s, the

right-half part of a digit 8 is presented, and the class neurons are stimulated
such that only 3 or 6 can activate (all others are strongly inhibited as indicated
by the gray shading). Because the stimulus is inconsistent with 6, the
network settles to a 3 and attempts to reconstruct it. The top figures show
the digits reconstructed in layer υd . (B) Digits 0–9, reconstructed in the same
manner. The columns correspond to clamping digits 0–9, and each is
different, independent run. (C) Population firing rate of the experiment
presented in (A). The network activity is typically at equilibrium after about
10τr = 40 ms (black bar).

et al., 2006; Corneil et al., 2012). This feature has been used for
auditory-visual sensory fusion in a spiking Deep Belief Network
(DBN) model (O’Connor et al., 2013). There, the authors trained
a DBN with visual and auditory data, which learned to asso-
ciate the two sensory modalities, very similarly to how class
labels and visual data are associated in our architecture. Their
network was able to resolve a similar ambiguity as in our exper-
iment in Figure 9, but using auditory inputs instead of a class
label.

During digit generation, the trained network had a tendency
to be globally bistable, whereby the layer υd completely deacti-
vated layer h. Since all the interactions between υd and υc take
place through the hidden layer, υc could not reconstruct the
digit. To avoid this, we added populations of I&F neurons that
were wired to layers υ and h, respectively. The parameters of
these neurons and their couplings were tuned such that each
layer was strongly excited when it’s average firing rate fell below
5 Hz.

4. DISCUSSION
Neuromorphic systems are promising alternatives for large-
scale implementations of RBMs and deep networks, but the
common procedure used to train such networks, Contrastive
Divergence (CD), involves iterative, discrete-time updates that do
not straightforwardly map on a neural substrate. We solve this
problem in the context of the RBM with a spiking neural network
model that uses the recurrent network dynamics to compute these
updates in a continuous-time fashion. We argue that the recurrent
activity coupled with STDP dynamics implements an event-
driven variant of CD. Event-driven CD enables the system to learn

on-line, while being able to carry out functionally relevant tasks
such as recognition, data generation and cue integration.

The CD algorithm can be used to learn the parameters of
probability distributions other than the Boltzmann distribution
(even those without any symmetry assumptions). Our choice for
the RBM, whose underlying probability distribution is a special
case of the Boltzmann distribution, is motivated by the following
facts: They are universal approximators of discrete distributions
(Le Roux and Bengio, 2008); the conditions under which a spik-
ing neural circuit can naturally perform MCMC sampling of a
Boltzmann distribution were previously studied (Merolla et al.,
2010; Buesing et al., 2011); and RBMs form the building blocks of
many deep learning models such as DBNs, which achieve state-
of-the-art performance in many machine learning tasks (Bengio,
2009). The ability to implement RBMs with spiking neurons and
train then using event-based CD paves the way toward on-line
training of DBNs of spiking neurons (Hinton et al., 2006).

We chose the MNIST handwritten digit task as a benchmark
for testing our model. When the RBM was trained with standard
CD, it could recognize up to 926 out of 1000 of out-of-training
samples. The MNIST handwritten digit recognition task was pre-
viously shown in a digital neuromorphic chip (Arthur et al.,
2012), which performed at 89% accuracy, and in a software sim-
ulated visual cortex model (Eliasmith et al., 2012). However,
both implementations were configured using weights trained off-
line. A recent article showed the mapping of off-line trained
DBNs onto spiking neural network (O’Connor et al., 2013). Their
results demonstrated hand-written digit recognition using neu-
romorphic event-based sensors as a source of input spikes. Their
performance reached up to 94.1% using leaky I&F neurons. The

www.frontiersin.org January 2014 | Volume 7 | Article 272 | 84

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Neftci et al. Event-Driven Contrastive Divergence

use of an additional layer explains to a large extent their bet-
ter performance compared to ours (91.9%). Our work extends
(O’Connor et al., 2013) with on-line training that is based on
synaptic plasticity, testing its robustness to finite weight preci-
sion, and providing an interpretation of spiking activity in terms
of neural sampling.

To achieve the computations necessary for sampling from the
RBM, we have used a neural sampling framework (Fiser et al.,
2010), where each spike is interpreted as a sample of an under-
lying probability distribution. Buesing et al. proved that abstract
neuron models consistent with the behavior of biological spik-
ing neurons can perform MCMC, and have applied it to a basic
learning task in a fully visible Boltzmann Machine. We extended
the neural sampling framework in three ways: First, we identified
the conditions under which a dynamical system consisting of I&F
neurons can perform neural sampling; Second, we verified that
the sampling of RBMs was robust to finite-precision parameters;
Third, we demonstrated learning in a Boltzmann Machine with
hidden units using STDP synapses.

In neural sampling, neurons behave stochastically. This behav-
ior can be achieved in I&F neurons using noisy input currents,
created by a Poisson spike train. Spike trains with Poisson-like
statistics can be generated with no additional source of noise, for
example by the following mechanisms: balanced excitatory and
inhibitory connections (van Vreeswijk and Sompolinsky, 1996),
finite-size effects in a large network, and neural mismatch (Amit
and Brunel, 1997). The latter mechanism is particularly appeal-
ing, because it benefits from fabrication mismatch and operating
noise inherent to neuromorphic implementations (Chicca and
Fusi, 2001).

Other groups have also proposed to use I&F neuron mod-
els for computing the Boltzmann distribution. (Merolla et al.,
2010) have shown that noisy I&F neurons’ activation function is
approximately a sigmoid as required by the Boltzmann machine,
and have devised a scheme whereby a global inhibitory rhythm
drives the network to generate samples of the Boltzmann distri-
bution. O’Connor et al. (2013) have demonstrated a deep belief
network of I&F neurons that was trained off-line, using standard
CD and tested it using the MNIST database. Independently and
simultaneously to this work, Petrovici et al. (2013) demonstrated
that conductance-based I&F neurons in a noisy environment are
compatible with neural sampling as described in Buesing et al.
(2011). Similarly, Petrovici et al. find that the choice of non-
rectangular PSPs and the approximations made by the I&F neu-
rons are not critical to the performance of the neural sampler. Our
work extends all of those above by providing an online, STDP-
based learning rule to train RBMs sampled using I&F neurons.

4.1. APPLICABILITY TO NEUROMORPHIC HARDWARE
Neuromorphic systems are sensible to fabrication mismatch
and operating noise. Fortunately, the mismatch in the synaptic
weights and the activation function parameters γ and β are not
an issue if the biases and the weights are learned, and the func-
tionality of the RBM is robust to small variations in the weights
caused by discretization. These two findings are encouraging for
neuromorphic implementations of RBMs. However, at least two
conceptual problems of the presented RBM architecture must be
solved in order to implement such systems on a larger scale. First,

the symmetry condition required by the RBM does not necessar-
ily hold. In a neuromorphic device, the symmetry condition is
impossible to guarantee if the synapse weights are stored locally
at each neuron. Sharing one synapse circuit per pair of neurons
can solve this problem. This may be impractical due to the very
large number of synapse circuits in the network, but may be
less problematic when using Resistive Random-Access Memorys
(RRAMs) (also called memristors) crossbar arrays to emulate
synapses (Kuzum et al., 2011; Cruz-Albrecht et al., 2013; Serrano-
Gotarredona et al., 2013).RRAM are a new class of nanoscale
devices whose current-voltage relationship depends on the his-
tory of other electrical quantities (Strukov et al., 2008), and so
act like programmable resistors. Because they can conduct cur-
rents in both directions, one RRAM circuit can be shared between
a pair of neurons. A second problem is the number of recur-
rent connections. Even our RBM of modest dimensions involved
almost two million synapses, which is impractical in terms of
bandwidth and weight storage. Even if a very high number of
weights are zero, the connections between each pair of neurons
must exist in order for a synapse to learn such weights. One pos-
sible solution is to impose sparse connectivity between the layers
(Murray and Kreutz-Delgado, 2007; Tang and Eliasmith, 2010)
and implement synaptic connectivity in a scalable hierarchical
address-event routing architecture (Joshi et al., 2010; Park et al.,
2012).

4.2. OUTLOOK: A CUSTOM LEARNING RULE
Our method combines I&F neurons that perform neural sam-
pling and the CD rule. Although we showed that this leads to a
functional model, we do not know whether event-driven CD is
optimal in any sense. This is partly due to the fact that CDk is an
approximate rule (Hinton, 2002), and it is still not entirely under-
stood why it performs so well, despite extensive work in studying
its convergence properties (Carreira-Perpinan and Hinton, 2005).
Furthermore, the distribution sampled by the I&F neuron does
not exactly correspond to the Boltzmann distribution, and the
average weight updates in event-driven CD differ from those of
standard CD, because in the latter they are carried out at the end
of the reconstruction step.

A very attractive alternative is to derive a custom synap-
tic plasticity rule that minimizes some functionally relevant
quantity (such as Kullback-Leibler divergence or Contrastive
Divergence), given the encoding of the information in the I&F
neuron (Deneve, 2008; Brea et al., 2013). A similar idea was
recently pursued in Brea et al. (2013), where the authors derived
a triplet-based synaptic learning rule that minimizes an upper
bound of the Kullback–Leibler divergence between the model
and the data distributions. Interestingly, their rule had a similar
global signal that modulates the learning rule, as in event-driven
CD, although the nature of this resemblance remains to be
explored. Such custom learning rules can be very beneficial in
guiding the design of on-chip plasticity in neuromorphic VLSI
and RRAM nanotechnologies, and will be the focus of future
research.

ACKNOWLEDGMENTS
This work was partially funded by the National Science
Foundation (NSF EFRI-1137279, CCF-1317560), the Office of

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 272 | 85

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Neftci et al. Event-Driven Contrastive Divergence

Naval Research (ONR MURI 14-13-1-0205), and the Swiss
National Science Foundation (PA00P2_142058).

REFERENCES
Amit, D., and Brunel, N. (1997). Model of global spontaneous activity and local

structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7,
237–252. doi: 10.1093/cercor/7.3.237

Arthur, J., Merolla, P., Akopyan, F., Alvarez, R., Cassidy, A., Chandra, S.,
et al. (2012). “Building block of a programmable neuromorphic sub-
strate: a digital neurosynaptic core,” in The 2012 International Joint
Conference on Neural Networks (IJCNN) (Brisbane, QLD: IEEE), 1–8. doi:
10.1109/IJCNN.2012.6252637

Bartolozzi, C., and Indiveri, G. (2007). Synaptic dynamics in analog VLSI. Neural
Comput. 19, 2581–2603. doi: 10.1162/neco.2007.19.10.2581

Bengio, Y. (2009). Learning deep architectures for ai. Found. Trends Mach. Learn. 2,
1–127. doi: 10.1561/2200000006

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., et al.
(2010). “Theano: a CPU and GPU math expression compiler,” in Proceedings
of the Python for Scientific Computing Conference (SciPy). Vol. 4 (Austin, TX).
Available online at: http://deeplearning.net/software/theano/

Brea, J., Senn, W., and Pfister, J.-P. (2013). Matching recall and storage in
sequence learning with spiking neural networks. J. Neurosci. 33, 9565–9575. doi:
10.1523/JNEUROSCI.4098-12.2013

Buesing, L., Bill, J., Nessler, B., and Maass, W. (2011). Neural dynamics as sampling:
a model for stochastic computation in recurrent networks of spiking neurons.
PLoS Comput. Biol. 7:e1002211. doi: 10.1371/journal.pcbi.1002211

Carreira-Perpinan, M. A., and Hinton, G. E. (2005). On contrastive
divergence learning. Artif. Intell. Stat. 2005, 17. Available online at:
http://www.gatsby.ucl.ac.uk/aistats/AIabst.htm

Chicca, E. and Fusi, S. (2001). “Stochastic synaptic plasticity in deterministic
aVLSI networks of spiking neurons,” in Proceedings of the World Congress on
Neuroinformatics, ARGESIM Reports, ed. F. Rattay (Vienna: ARGESIM/ASIM
Verlag), 468–477.

Corneil, D., Sonnleithner, D., Neftci, E., Chicca, E., Cook, M., Indiveri, G.,
et al. (2012). “Function approximation with uncertainty propagation in a
VLSI spiking neural network,” in International Joint Conference on Neural
Networks, IJCNN (Brisbane: IEEE), 2990–2996. doi: 10.1109/IJCNN.2012.
6252780

Cox, D. (1962). Renewal Theory. Vol. 1. London: Methuen.
Cruz-Albrecht, J. M., Derosier, T., and Srinivasa, N. (2013). A scalable neural chip

with synaptic electronics using cmos integrated memristors. Nanotechnology 24,
384011. doi: 10.1088/0957-4484/24/38/384011

Deiss, S., Douglas, R., and Whatley, A. (1998). “A pulse-coded communications
infrastructure for neuromorphic systems, chapter 6,” in Pulsed Neural Networks,
eds W. Maass and C. Bishop (Cambridge, MA: MIT Press), 157–178.

Deneve, S. (2008). Bayesian spiking neurons I: inference. Neural Comput. 20,
91–117. doi: 10.1162/neco.2008.20.1.91

Deneve, S., Latham, P., and Pouget, A. (2001). Efficient computation and cue
integration with noisy population codes. Nature Neurosci. 4, 826–831. doi:
10.1038/90541

Destexhe, A., Mainen, Z., and Sejnowski, T. (1998). “Kinetic models of synaptic
transmission ,” in Methods in Neuronal Modelling, from Ions to Networks, eds C.
Koch and I. Segev (Cambridge, MA: MIT Press), 1–25.

Doya, K., Ishii, S., Pouget, A., and Rao, R. (2006). Bayesian Brain Probabilistic
Approaches to Neural Coding. Cambridge, MA: MIT Press. doi: 10.7551/
mitpress/9780262042383.001.0001

Eliasmith, C., Stewart, T., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al. (2012).
A large-scale model of the functioning brain. Science 338, 1202–1205. doi:
10.1126/science.1225266

Fiser, J., Berkes, P., Orbán, G., and Lengyel, M. (2010). Statistically optimal per-
ception and learning: from behavior to neural representations: perceptual
learning, motor learning, and automaticity. Trends Cogn. Sci. 14, 119. doi:
10.1016/j.tics.2010.01.003

Fusi, S., and Mattia, M. (1999). Collective behavior of networks with lin-
ear (VLSI) integrate and fire neurons. Neural Comput. 11, 633–652. doi:
10.1162/089976699300016601

Gardiner, C. W. (2012). Handbook of Stochastic Methods. Berlin: Springer. doi:
10.1007/978-3-662-02377-8

Gerstner, W., and Kistler, W. (2002). Spiking Neuron Models. Single Neurons,
Populations, Plasticity. Cambridge: Cambridge University Press. doi: 10.1017/
CBO9780511815706

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks
in Python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008

Griffiths, T., Chater, N., Kemp, C., Perfors, A., and Tenenbaum, J. B. (2010).
Probabilistic models of cognition: exploring representations and inductive
biases. Trends Cogn. Sci. 14, 357–364. doi: 10.1016/j.tics.2010.05.004

Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. 2nd Edn.
Prentice Hall. Available online at: http://www.amazon.com/exec/obidos/
redirect?tag=citeulike07-20&path=ASIN/0132733501

Hinton, G., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep
belief nets. Neural Comput. 18, 1527–1554. doi: 10.1162/neco.2006.18.7.1527

Hinton, G., and Salakhutdinov, R. (2006). Reducing the dimensionality of data with
neural networks. Science 313, 504–507. doi: 10.1126/science.1127647

Hinton, G. E. (2002). Training products of experts by minimizing contrastive
divergence. Neural Comput. 14, 1771–1800. doi: 10.1162/089976602760128018

Indiveri, G., Linares-Barranco, B., Hamilton, T., van Schaik, A., Etienne-
Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron
circuits. Front. Neurosci. 5, 1–23. doi: 10.3389/fnins.2011.00073

Joshi, S., Deiss, S., Arnold, M., Park, J., Yu, T., and Cauwenberghs, G.
(2010). “Scalable event routing in hierarchical neural array architecture with
global synaptic connectivity,” in 12th International Workshop on Cellular
Nanoscale Networks and Their Applications (Berkeley, CA: IEEE), 1–6. doi:
10.1109/CNNA.2010.5430296

Kempter, R., Gerstner, W., and Van Hemmen, J. (2001). Intrinsic stabilization of
output rates by spike-based hebbian learning. Neural Comput. 13, 2709–2741.
doi: 10.1162/089976601317098501

Kuzum, D., Jeyasingh, R. G., Lee, B., and Wong, H.-S. P. (2011). Nanoelectronic
programmable synapses based on phase change materials for brain-inspired
computing. Nano Lett. 12, 2179–2186. doi: 10.1021/nl201040y

Le, Q. V., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G. S., et al.
(2011). Building high-level features using large scale unsupervised learning.
arXiv preprint: arXiv:1112.6209.

Le Roux, N., and Bengio, Y. (2008). Representational power of restricted boltz-
mann machines and deep belief networks. Neural Comput. 20, 1631–1649. doi:
10.1162/neco.2008.04-07-510

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proc. IEEE 86, 2278–2324. doi:
10.1109/5.726791

Liu, S.-C., and Delbruck, T. (2010). Neuromorphic sensory systems. Curr. Opin.
Neurobiol. 20, 288–295. doi: 10.1016/j.conb.2010.03.007

Mead, C. (1989). Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley.
doi: 10.1007/978-1-4613-1639-8

Merolla, P., Ursell, T., and Arthur, J. (2010). The thermodynamic temperature of
a rhythmic spiking network. CoRR. abs/1009.5473, ArXiv e-prints. Available
online at: http://arxiv.org/abs/1009.5473

Murray, J. F., and Kreutz-Delgado, K. (2007). Visual recognition and inference
using dynamic over complete sparse learning. Neural Comput. 19, 2301–2352.
doi: 10.1162/neco.2007.19.9.2301

Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G., and Douglas, R. J.
(2013). Synthesizing cognition in neuromorphic electronic systems. Proc. Natl.
Acad. Sci. U.S.A. 110, E3468–E3476. doi: 10.1073/pnas.1212083110

Neftci, E., Toth, B., Indiveri, G., and Abarbanel, H. (2012). Dynamic state and
parameter estimation applied to neuromorphic systems. Neural Comput. 24,
1669–1694. doi: 10.1162/NECO_a_00293

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-
time classification and sensor fusion with a spiking deep belief network. Front.
Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

Park, J., Yu, T., Maier, C., Joshi, S., and Cauwenberghs, G. (2012). “Live
demonstration: Hierarchical address-event routing architecture for
reconfigurable large scale neuromorphic systems,” in Circuits and
Systems (ISCAS), 2012 IEEE International Symposium on, (Seoul), 707,
711, 20–23. doi: 10.1109/ISCAS.2012.6272133. Available online at:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6272133

Pedroni, B., Das, S., Neftci, E., Kreutz-Delgado, K., and Cauwenberghs, G. (2013).
“Neuromorphic adaptations of restricted boltzmann machines and deep belief
networks,” in International Joint Conference on Neural Networks, IJCNN. (Dallas,
TX).

www.frontiersin.org January 2014 | Volume 7 | Article 272 | 86

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0132733501
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0132733501
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6272133
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Neftci et al. Event-Driven Contrastive Divergence

Petrovici, M. A., Bill, J., Bytschok, I., Schemmel, J., and Meier, K. (2013). Stochastic
inference with deterministic spiking neurons. arXiv preprint: arXiv:1311.
3211.

Plesser, H. E., and Gerstner, W. (2000). Noise in integrate-and-fire neurons:
from stochastic input to escape rates. Neural Comput. 12, 367–384. doi:
10.1162/089976600300015835

Renart, A., Song, P., and Wang, X.-J. (2003). Robust spatial working mem-
ory through homeostatic synaptic scaling in heterogeneous cortical networks.
Neuron 38, 473–485. doi: 10.1016/S0896-6273(03)00255-1

Robbins, H., and Monro, S. (1951). A stochastic approximation method. Ann.
Math. Stat. 22, 400–407. doi: 10.1214/aoms/1177729586

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S. (2010).
“A wafer-scale neuromorphic hardware system for large-scale neural model-
ing,” in International Symposium on Circuits and Systems, ISCAS (Paris: IEEE),
1947–1950. doi: 10.1109/ISCAS.2010.5536970

Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G., and Linares-
Barranco, B. (2013). Stdp and stdp variations with memristors for spiking neu-
romorphic learning systems. Front. Neurosci. 7:2. doi: 10.3389/fnins.2013.00002

Silver, R., Boahen, K., Grillner, S., Kopell, N., and Olsen, K. (2007). Neurotech for
neuroscience: unifying concepts, organizing principles, and emerging tools. J.
Neurosci. 27, 11807. doi: 10.1523/JNEUROSCI.3575-07.2007

Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams, R. S. (2008). The missing
memristor found. Nature 453, 80–83. doi: 10.1038/nature06932

Tang, Y. and Eliasmith, C. (2010). “Deep networks for robust visual
recognition,” in Proceedings of the 27th International Conference on
Machine Learning (ICML-10) (Haifa), 1055–1062. Available online at:
http://www.icml2010.org/papers/370.pdf

van Vreeswijk, C., and Sompolinsky, H. (1996). Chaos in neuronal networks
with balanced excitatory and inhibitory activity. Science 274, 1724–1726. doi:
10.1126/science.274.5293.1724

Yu, T., Park, J., Joshi, S., Maier, C., and Cauwenberghs, G. (2012) “65k-neuron
integrate-and-fire array transceiver with address-event reconfigurable synaptic
routing,” in Biomedical Circuits and Systems Conference (BioCAS), IEEE,
(Hsinch), 21, 24. 28–30. doi: 10.1109/BioCAS.2012.6418479. Available online
at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6418479

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 07 October 2013; accepted: 22 December 2013; published online: 30 January
2014.
Citation: Neftci E, Das S, Pedroni B, Kreutz-Delgado K and Cauwenberghs G
(2014) Event-driven contrastive divergence for spiking neuromorphic systems. Front.
Neurosci. 7:272. doi: 10.3389/fnins.2013.00272
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2014 Neftci, Das, Pedroni, Kreutz-Delgado and Cauwenberghs. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) or licensor are credited and that the orig-
inal publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 272 | 87

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6418479
http://dx.doi.org/10.3389/fnins.2013.00272
http://dx.doi.org/10.3389/fnins.2013.00272
http://dx.doi.org/10.3389/fnins.2013.00272
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

ORIGINAL RESEARCH ARTICLE
published: 07 May 2014

doi: 10.3389/fnins.2014.00086

Compiling probabilistic, bio-inspired circuits on a field
programmable analog array
Bo Marr1* and Jennifer Hasler 2

1 Raytheon, Space and Airborne Systems, Manhattan Beach, CA, USA
2 Georgia Institute of Technology, Atlanta, GA, USA

Edited by:

Tobi Delbruck, University of Zurich
and ETH Zurich, Switzerland

Reviewed by:

Emre O. Neftci, ETH Zurich,
Switzerland
Davide Badoni, University Tor
Vergata, Italy

*Correspondence:

Bo Marr, Raytheon, Space and
Airborne Systems, Manhattan
Beach, 2000 E. El Segundo Blvd, El
Segundo, CA 90245 USA
e-mail: harry.b.marr@raytheon.com

A field programmable analog array (FPAA) is presented as an energy and computational
efficiency engine: a mixed mode processor for which functions can be compiled at
significantly less energy costs using probabilistic computing circuits. More specifically,
it will be shown that the core computation of any dynamical system can be computed
on the FPAA at significantly less energy per operation than a digital implementation.
A stochastic system that is dynamically controllable via voltage controlled amplifier and
comparator thresholds is implemented, which computes Bernoulli random variables. From
Bernoulli variables it is shown exponentially distributed random variables, and random
variables of an arbitrary distribution can be computed. The Gillespie algorithm is simulated
to show the utility of this system by calculating the trajectory of a biological system
computed stochastically with this probabilistic hardware where over a 127X performance
improvement over current software approaches is shown. The relevance of this approach
is extended to any dynamical system. The initial circuits and ideas for this work were
generated at the 2008 Telluride Neuromorphic Workshop.

Keywords: FPAA, probabilistic hardware, reconfigurable analog, dymamical system, bio-inspired, Hardware

accelerator, biological computational model, probability theory

1. INTRODUCTION
Due to the large computational efficiency gap that is theorized
between classic digital computing and neuromorphic style com-
puting, particularly in biological systems, this work seeks to
explore the potential efficiency gains of a neuromorphic approach
using stochastic circuits to solve dynamical systems.

There is wide demand for a technology to compute dynam-
ical systems much more efficiently with some recent examples
being to calculate quantum equations to aid in the devel-
opment of quantum computers or in the search for new
meta-materials and pharmaceuticals using high computational
throughput search methods for new meta-compounds. Standard
digital computers—even super computers—have proven to be
inefficient at these tasks limiting our ability to innovate here.

Stochastic functions can be computed in a more efficient way
if these stochastic operations are done natively in probabilistic
hardware. Neural connections in the cortex of the brain is just
such an example and occur on a stochastic basis (Douglas, 2008).
The neurotransmitter release is probabilistic in regards to synapse
firings (Goldberg et al., 2001) in neural communication. Most
germaine to this work, many chemical and biological reactions
occur on a stochastic basis and are modeled here via probabilistic
circuits compiled on a reconfigurable field programmable analog
array (Gillespie, 1976).

Gillespie effectively showed that molecular reactions occur
probabilistically and gave a method for translating a system of N
chemical equations, normally specified by deterministic differen-
tial equations, into a system of probabilistic, Markov processes.
This will be the dynamic system described and computed herein.
It has been shown that in a system with a sufficiently small

number of molecules, the stochastic method is more accurate than
its deterministic counterpart. It was further proven that in the
thermodynamic limit (large number of molecules) of such a sys-
tem, the deterministic and stochastic forms are mathematically
equivalent (Oppenheim et al., 1969; Kurtz, 1972).

Mathematical results will be extended from Gillespie’s algo-
rithm to show that any dynamical system can be computed using
a system of stochastic equations. The efficiency in computing
such a system is greatly increased by a direct, probabilistic hard-
ware implementation that can be done in the analog co-processor
we present. However, how to express a general dynamical system
stochastically will not be discussed, only that a formulation exists
that is more efficient when computed with natively probabilistic
hardware.

Several encryption algorithms and other on-chip solutions for
a uniformly random number generator in hardware have been
shown for microprocessors (Ohba et al., 2006). Generating static
Bernoulli trials, where a 1 is generated with fixed probability p
and 0 is generated with fixed probability 1− p, were proposed
using amplified thermal noise across digital gates and is also not a
novel concept, but the work in which this concept was described
was not fabricated, measured, or applied in hardware, and only
existed in theory (Chakrapani et al., 2006). Static probabilities,
or those with a fixed p-value, will not allow the performance
gains that are possible in many stochastic systems because without
dynamic p-values stochastic processes cannot be fully realizable in
hardware.

There has been a hardware solution proposed for dynamic
Bernoulli trial generators, where the probability p can be
dynamically reconfigured via reprogramming a floating gate

www.frontiersin.org May 2014 | Volume 8 | Article 86 | 88

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00086/abstract
http://community.frontiersin.org/people/u/28463
http://community.frontiersin.org/people/u/12767
mailto:harry.b.marr@raytheon.com
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Bo Marr and Hasler bioFPAA

transistor (Xu et al., 1972). While this latter work illustrates a
note-worthy solution and is a unique implementation to pro-
vide dynamic probability adjustment, there is an overhead cost
in terms of time to readjust the probability p due to the nature of
floating gate programming, which were not designed in that work
for the continuous updates that are required for the applications
presented here.

The topic of generating stochastic variables with hardware
circuits has also been addressed previously in Genov and
Cauwenberghs (2001), but not in this manner. We make a con-
tribution to the literature by showing that not only can we
produce stochastic variables, but we can tune the probability of
these stochastic variables in real time through a software control-
lable input to the Bernoulli trial generator circuit via the FPAA.
Further, we show how an array of these can be compiled on hard-
ware and where outputs are input to a priority encoder to create
an exponentially random variable for the first time known to the
authors. Finally, this paper shows how the FPAA, with tunable
stochastic variables which can be dynamically tuned in real time,
results in significant performance gains of 127X for computing
dynamical systems.

In short, this paper will present several novel contributions
including

• A novel circuit for fast dynamic Bernoulli random number
generation.
• A compiled chaos circuit to generate environment independent

probabilistic variables.
• A novel circuit for fast dynamic exponentially distributed ran-

dom number generation.
• Analysis of the performance gains provided by the latter cir-

cuits over current methods for Gillespie’s algorithm that apply
to many biological applications and stochastic applications in
general.
• Extension of the latter methods for applicability to any dynam-

ical system and the result that all dynamic systems calculated
stochastically require exponentially distributed random num-
bers.
• A method for going from concept to circuit measurements in

2 weeks using a novel reconfigurable chipset developed in part
by the authors.

Section 2 introduces the technology behind building probabilistic
function generators in hardware using thermal noise characteris-
tics. Section 3 reviews implementation of dynamical systems in
general and specifically Gillespie’s Algorithm to give a context for
why these circuits are important. Section 4 will review the chipset
that was built in part by the authors and how it can used for
faster stochastic computation. Section 5 will discuss the hardware
results and experimental measurements. Section 6 will conclude
the paper and discuss future directions.

2. EXTREMELY EFFICIENT STOCHASTIC CIRCUITS
Stochastic computation has shown to be a powerful tool to com-
pute solutions to systems that would otherwise require complex
continuous-time differential equations. However, the efficacy of
stochastic methods are lost if complex computations are needed
to produce the digital representation of these stochastic results.

We present several circuits to solve these issues that can
uniquely be compiled in analog technology, and thus our FPAA
co-processor.

2.1. A PROGRAMMABLE THERMAL NOISE CIRCUIT
Thermal noise is a well-defined, well-behaved phenomenon that
we show can be used as a computational resource within the FPAA
fabric. This work will show that it can be used not only as a
resource for random number generation, but for the generation
of arbitrarily complex probabilistic functions.

The current through a transistor, and hence the voltage at the
drain or source node of a transistor, shows the probabilistic ther-
mal noise effect as shown in Figure 1, and can be used as the basic
building block of any probabilistic function generator.

Thermal noise present in integrated circuits, also known as
Johnson Noise, is generated by the natural thermal excitation of
the electrons in a circuit. When modeled on a capacitive load, the
root-mean-square voltage level of the thermal noise is given by

UT =
√

kT
C where k is Boltzmann’s constant, T is temperature,

and C is the capacitance of the load. The likelihood of the voltage
level of thermal noise is modeled as a Gaussian probability func-
tion and has an equivalent magnitude throughout its frequency
spectrum and is thus known as white Gaussian noise (Kish, 2002).

To take advantage of the well-defined properties of ther-
mal noise trapped on a capacitor, the circuit in Figure 2A was
developed. This circuit can be broken down into the circuit
components seen in Figure 2B.

Thermal noise voltage on a 0.35 μm process, which is the pro-
cess size used for testing in this paper, with capacitor values in the
range of C = 500 fF has RMS noise level of roughly 100 μV. Even
with a 100 mV supply, the thermal noise voltage that would cause
a probabilistic digital bit flip is 1000σ down from supply, giv-
ing the probabilistic function designer limited options. Hence, in
these experiments the thermal voltage signal was routed through
two operational transconductance amplifiers (OTA) with gain Ai.
These circuits are shown in Figure 3.

By routing the amplified thermal noise signal through a com-
parator, and then comparing this signal to a user selectable voltage
signal, a Bernoulli trial is created where the comparator outputs

FIGURE 1 | (A) The noise characteristics generated by a single transistor
can be used as well-defined noise source. The current through and thus the
voltage at the drain or source node of the transistor produces noise due to
the thermal agitation of charge carriers. (B) Voltage measured from a
transistor on 0.35 µm test chip.

Frontiers in Neuroscience | Neuromorphic Engineering May 2014 | Volume 8 | Article 86 | 89

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Bo Marr and Hasler bioFPAA

a digital “1” if the amplified thermal voltage signal is greater than
the probability select and a “0” is output otherwise. A probability
p can be set for the Bernoulli trial by setting the input voltage to
the comparator such that it is less or more likely for a randomly
varying thermal voltage to surpass this value, “Probability Select.”
The integral from the input voltage to Vdd of the thermal noise
function is the probability of a digital 1, and the probability of
a digital 0 is the integral from ground to the input voltage. This
concept is illustrated in Figure 4.

Note that the reconfigurable FPAA used to program this circuit
has floating-gate controllable current biases such that they can be
used to offset temperature effects.

A Bernoulli random variable is generated with a probability p
dynamically selectable by the user using these techniques. A useful
property of Bernoulli trials is that an arbitrary probability distri-
bution can be created when used in large numbers (as the number
of Bernoulli trials N →∞) they can be used to create an arbi-
trary probability distribution. This phenomenon is illustrated in
Figure 5.

An exponential random variable is generated from a Bernoulli
variable in the following way. X is defined here as the number
of Bernoulli trials needed to produce a success, and this variable
X is exponentially distributed. For example, to require six coin
flips to produce a heads is exponentially less likely than to require
two flips to get a head, since this is nothing more than a standard
geometric sequence. The shape of this exponential distribution is
controlled by the probability p of the Bernoulli trials.

Pr(X = k) = (1− p)k−1p (1)

FIGURE 2 | Circuit used to take advantage of the well-defined thermal

noise properties on a capacitor where the root-mean-square (RMS)

voltage of the noise on a capacitor is Vn =
√

kT
C

. The thermal noise on
this capacitor is used as the gate voltage for PMOS and NMOS transistors
where a current with the same spectrum as the thermal noise is generated.
This ultimately produces a voltage controlled current through the
diode-connected transistor.

Figure 6 shows how these Bernoulli random variables are used
to create an exponentially distributed number by being placed as
inputs to a priority encoder. Recall that a priority encoder works
by encoding the output to represent in binary which input was the
first in priority order (from top to bottom for example) to be a 1.
Also recall from Equation (1) that the number of Bernoulli trials
needed to get a 1 is exponentially distributed. !The top Bernoulli
trial in the figure is considered our first trial, the second from the
top, our second trial etc. So the priority encoder in Figure 6 is
encoding for us how many trials are needed to get a success (1),
exactly our exponential distribution.

Using these methods, an exponentially distributed random
number can be generated in two clock cycles, a vast improvement

FIGURE 3 | Circuits for generating a Bernoulli random variable (1 with

probability p and 0 with probability 1-p). (A) Dynamic Bernoulli
Probability Circuit. Thermal noise is trapped on the capacitor, amplified
twice through two operational transconductance amplifiers (OTA) with gain
of Ai then put through a comparator with a probability select input. Note
that these three OTA’s are the same basic circuit programmed to different
functionality. (B) Nine-transistor OTA used in (A) for amplifier and
comparator circuits.

FIGURE 4 | The probability distribution function of thermal noise and

the probability of generating a P(1) or P(0) in the Bernoulli variable

generating circuit. The probability of a 1 is the integral under the
probability distribution function of the thermal noise from the comparator
voltage to the supply voltage of the circuit, Vdd .

www.frontiersin.org May 2014 | Volume 8 | Article 86 | 90

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Bo Marr and Hasler bioFPAA

FIGURE 5 | A Bernoulli probability trial can be used to generate an arbitrary probability distribution with the correct transfer function. This result will
be taken advantage of to greatly increase the performance of dynamical systems in this paper.

FIGURE 6 | Illustration of how to transform N Bernoulli trials into an

exponential distribution. Bernoulli trials put through a priority encoder as
inputs results in an exponentially distributed probability function, where the
shape of the exponential function can be tuned through the threshold
inputs to the Bernoulli trials.

over software and other current methods, which will be explained
in the next section.

2.2. PROGRAMMING BERNOULLI TRIALS AT TELLURIDE WORKSHOP
All of the above circuits from the previous section were con-
ceived of, designed, built, measured, and compiled in about in
the 2 weeks of the 2008 Telluride Neuromorphic workshop. This
accomplishment is both a testament to the productivity that the
Telluride Neuromorphic workshop allows as well as a testament
to the quick prototyping capability of the FPAA.

The Telluride Neuromorphic workshop is unique in that some
of the most brilliant minds in the country get together for an
extended several week session dedicated to teaching, working with
real hardware, and producing results such that students are com-
pletely immersed in a world class engineering environment, day
and night, for 2–3 weeks.

The FPAA is analogous to the FPGA for logic circuits in that
circuits can be conceived of, programmed onto the chip, and mea-
sured in the same day. The FPAA has a mature toolset where
an analog designer can conceive of a circuit, such as during a
Telluride lecture session on analog design, and can simply cre-
ate a netlist. The FPAA tools automatically take this netlist and
optimally compile it to the fabric using a bitstream to program
the on-board floating gate devices to set switches allowing net-
works of active and passive devices, set current sources, bias
currents, amplifier characteristics, and calibrate out device mis-
match. A standard multi-meter is connected to the FPAA test
board via built-for-test pinned out circuit leads. The multi-meter

in this instance was connected back to the computer via GPIB
that was producing the netlist to allow a full hardware in the
loop programmable environment. Current toolsets are even more
advanced allowing Simulink and other Simulink-like tools to
build the circuit netlists.

2.3. TEMPERATURE INVARIANT BERNOULLI TRIALS
The thermal noise circuits used to create Bernoulli trials shown
in the previous section have the well known side effect that
their accuracy is highly dependent on temperature. And although
methods such as adjusting bias currents with temperature are
available on the FPAA, we present a temperature invariant
method here to address this potential variability in the Bernoulli
trials presented previously. These chaos circuits were built as
follow-up work to the Telluride workshop.

Chaos circuits were chosen to exemplify a more temperature
invariant method. The model and explanation for the low-power
chaos circuit used in this paper is first presented in Dudek and
Juncu (2005).

A chaos circuit works by introducing a seed value to a non-
linear “chaos map” circuit which is itself chaotic. The sample and
hold circuit then captures a continuous voltage value for con-
sumption by a stochastic algorithm. The chaos map from Dudek
and Juncu (2005) was chosen because of its proven results, but
also because it only requires nine transistors and is extremely
energy efficient.

The resulting chaos map with a tunable control voltage to
dictate the probability characteristics is shown in Figure 7.

While further reading may be needed to understand the chaos
circuit map shown in Figure 7, this map is very close to the results
expected as shown in the literature. The general idea is that a
given output voltage will result in a random assignment to the
chaos map, allowing us to generate random variables in a tem-
perature invariant way. The idea is that this chaos map could be
used in place of the thermal noise circuits should the designer be
concerned about temperature.

These circuits all have something in common: they can be used
to directly compute a stochastic function, cannot be compiled on
a digital chip, and compute more efficiently than a digital system.

Next we show how the usefulness of these circuits in a
dynamical system.

3. GILLESPIE’S ALGORITHM FOR STOCHASTIC
COMPUTATION

The previous findings are used to generate the results of a chem-
ical and biological system using Gillespie’s algorithm in this

Frontiers in Neuroscience | Neuromorphic Engineering May 2014 | Volume 8 | Article 86 | 91

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Bo Marr and Hasler bioFPAA

FIGURE 7 | Measured y(x) voltage vs. Vc for the chaos map circuit

compiled on the FPAA.

section. This section will also review the expense to calculate
the trajectory of stochastic systems in software as a compari-
son. Gillespie’s algorithm is a natively probabilistic algorithm that
takes advantage of the naturally stochastic trajectories of molecu-
lar reactions (Gillespie, 1976), this algorithm is described below.

3.1. GILLESPIE’S ALGORITHM
1. Initialize. Set the initial number of each type of molecule in the

system and time, t = 0.
2. For each reaction i, calculate the propensity function to obtain

parameter value, ai.
3. For each i, generate a reaction time τi according to an expo-

nential distribution with parameter ai.
4. Let μ be the reaction time whose time is least, τμ.
5. Change the number of molecules to reflect execution of reac-

tion μ. Set t = t + τμ.
6. If initialized time or reaction constraints met, finished. If not,

go to step 2.

We use complexity analysis, or big-Oh, analysis to analyze the
algorithms here where O(x) gives an expression, x, that represents
the worst case running time of the algorithm. , Only algorith-
mic improvements in software have been made to computing
Gillespie’s algorithm, until this work, such as Gibson et al. who
have improved the running time of the algorithm from O(Er) to
O(r + Elogr) where E is the number of reaction events in the tra-
jectory and r is the number of different reaction types (Gibson
and Bruck, 1998). Several orders of magnitude improvement in
energy efficiency and performance can be realized by comput-
ing the exponentially distributed random variable τi in hardware.
Note that the big-Oh function does not change, just the way we
implement this algorithm is much improved.

The generation of the exponentially distributed random num-
ber is the bottleneck of the algorithm, and the computational
complexity of each step is calculated to show this. The metric used
to judge computational cost is the number of clock cycles it takes

to do a given calculation on a modern general purpose CPU as
described in Patterson and Hennessy (2004).

A load instruction is used to initialize a variable in Step 1.
With the best case with a multiple data fetch scheme such as in
the cell processor, this requires a single computational step. The
propensity function ai in Step 2 is calculated by a floating point
multiplication (FPMUL), which takes five computational steps in
a modern processor per reaction (Gillespie, 1976; Patterson and
Hennessy, 2004). All r reactions assuming δ FPMUL units are
available takes 5r

δ
total computational steps. In Step 4, the mini-

mum reaction time τμ takes r − 1 compare operations. Assuming
δ ALU (compare) units are available, Step 4 takes r−1

δ
compu-

tational steps. Step 5 involves r − 1 integer addition/subtraction
operations taking again r−1

δ
computational steps. Step 6 is an

update in the program counter resulting in a single step. Step 3
is a key step where each τi according to an exponential distribu-
tion. Generating an exponentially distributed random number is
complex and deserves a bit more treatment.

This is believed to be the first method to generate an exponen-
tially distributed random number in hardware, and the random
numbesr generated by other current methods is only pseudo-
random. The Park–Miller algorithm on a modern advanced
processor is the best known software method where a uni-
formly pseudo-random number is generated in 88 computational
steps (Park and Miller, 1998; Patterson and Hennessy, 2004). The
equation to transform a uniformly distributed random variable
U to one with an exponential distribution E with parameter λ is
shown in Equation (2).

E = − ln U

λ
(2)

The natural logarithm function, ln is extremely expensive, and
even in the best case of computing this on a modern digital signal
processor (DSP) takes 136 computational steps by itself accord-
ing to Yang et al. (2002). Thus counting the FP multiply and the
FP divide taking 5 steps and 32 steps, respectively (Patterson and
Hennessy, 2004), it takes a total of 261 computational steps to
generate a single exponentially distributed pseudo-random vari-
able in software. Thus Step 3 alone takes 261r computational steps
to generate τi for all i reactions. To review the number of compu-
tational steps for each part of the algorithm is shown below.

3.2. COMPUTATIONAL STEPS IN GILLESPIE’S ALGORITHM
Algorithmic step Computational steps
(1)Initialize. 1
(2)Multiply to find each ai.

5r
δ

(3)Generate each τi. 261r
(4)Find τμ. r−1

δ

(5)Update. r−1
δ

(6)Go to step 2 1

Thus for a conservative value of δ = 2, generating each expo-
nentially distributed τi in Step 3 takes approximately 98% of the
computational steps for a single iteration of Gillespie’s algorithm.
Seen in this light, the problem of improving exponential random
variable generation becomes quite an important one.

www.frontiersin.org May 2014 | Volume 8 | Article 86 | 92

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Bo Marr and Hasler bioFPAA

3.3. EXPANSION TO ANY DYNAMICAL SYSTEM
It has been shown in Gillespie (1976) and Kurtz (1972) that the
trajectory of a chemical system consisting of N different reactant
concentrations can be expressed as both a system of determinis-
tic differential equations and a system of stochastic processes. For
deeper understanding of Equations (3–5) that follows, the reader
is encouraged to read these aforementioned references. This con-
cept can be generalized to any dynamical system where the time
evolution of a system of N state variables that has been described
in a classical, state-based deterministic model as

dx1
dt = f1(x1, x2, x3, ...)

dx2
dt = f2(x1, x2, x3, ...)

. . .

and in general as:
Ẋ = F(X) (3)

This system can also be expressed as a stochastic, Markov process.
For the stochastic system, the probability that state variable xμ

is updated during the next time interval τ is assigned, P(τ, μ)dτ .
More formally, this is the joint probability density function at
time t expressing the probability that the next state update will
occur in the differential time interval (t + τ, t + τ + dτ) and that
this update will occur to state variable xμ for μ = 1 . . . N and
0 ≤ τ <∞.

Given probability P0(τ), the probability that no state-space
update occurs in the interval (t, t + τ), and the probability, αμ

that an update to state xμ will occur in the differential time inter-
val (t + τ, t + τ + dτ) we have the general form for the joint
probability function:

P(τ, μ)dτ = P0(τ) · αμdτ (4)

Note that αμ is based on the state of the system X. Also note that
determining αμ is the critical factor in determining the Markov
process representation and no general method for this is given
here. In the chemical system example, αμ is the probability that
reaction Rμ is going to occur in the differential time interval and is
a function of the number of each type of molecule currently in the
system. The probability that more than one state update will occur
during the differential time interval is shown to be small and thus
ignored (Kurtz, 1972; Gillespie, 1976). Finally some function gμ

must be given describing the update to state variable xμ once
an update occurs. We then have the stochastic, Markov process
defined for the system:

Pr[X(t+ τ + dτ) = G(X(t)) | X(t)] = P(τ, μ) (5)

Note that this formulation does not make the assumption that
infinitesimal dτ need be approximated by a finite time step �τ ,
which is a source of error in many Monte Carlo formulations.

To solve this system using computational methods, random
numbers are generated according to the probability distributions
described by Equation (5). No matter what dynamical system is
involved, exponentially distributed random numbers will always

be needed. To calculate P0(τ) from Equation (4), we break the
interval (t, t + τ) into K subintervals of equal length ε = τ/K,
and calculate the probability that no state update occurs in the
first ε subinterval (t, t + ε) which is:

N∏
i= 1

[1− αiε + o(ε)] = 1−
N∑

i= 1

αiε + o(ε) (6)

This probability is equal for every subinterval (t, t + 2ε), (t, t +
3ε), and so on. Thus the probability P0(τ) for all K subintervals
is:

P0(τ) = lim
K→∞

[
1−

N∑
i= 1

αiε + o(ε)

]K

(7)

= lim
K→∞

[
1−

N∑
i= 1

αiτ/K + o(τ/K)

]K

(8)

Where o(ε) is the probability that more than one event occurs in
the time interval ε. Following the analysis in Gillespie (1976), we
assume as our incremental time interval goes to zero our func-
tion o(ε)→ 0 as well. With o(τ/K)→ 0 we are left with the
probabilistic, exponential function in Equation (9).

P0(τ) = exp

[
−

N∑
i= 1

αiτ

]
(9)

Thus we prove how this work can be extended to any dynamical
system.

4. RECONFIGURABLE ANALOG HARDWARE FOR
STOCHASTIC COMPUTATION

These complex probability functions are generated on a recon-
figurable platform, reviewed in this section. More specifically, a
dynamic Bernoulli Trial generator is illustrated on chip. This novel
method involves using the reconfigurable analog signal proces-
sor (RASP) chip that was recently introduced (Basu et al., 2008).
This device allows one to go from concept to full functionality
for analog circuits in a matter of weeks or even days instead of
months or years for large-scale, integrated circuits. The design
presented went from concept to measured hardware in a matter of
2 weeks. The other useful feature is that many FPGA type archi-
tectures allow a designer to build a subset of the possible circuits
available with the RASP. Circuits such probabilistic function gen-
erators could not be produced on strictly digital reconfigurable
architectures although digital designs can be built on the RASP.
The RASP chip is shown in Figure 8.

4.1. STOCHASTIC CIRCUIT ARCHITECTURE
The macroarchitecture and details of the algorithmic implemen-
tation via Bernoulli trials and how this is built on the RASP chip
is explored here. The RASP has 32 reconfigurable, computational
analog blocks (CABs). The elements of a CAB and the elements
that are used in this design are shown in Figure 9.

Frontiers in Neuroscience | Neuromorphic Engineering May 2014 | Volume 8 | Article 86 | 93

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Bo Marr and Hasler bioFPAA

FIGURE 8 | Micrograph of the Reconfigurable Analog Signal Processor

(RASP), also referred to the Field Programmable Analog Array (FPAA).

The circuits were compiled onto this device. Computational Analog Blocks
(CAB) populate the chip where both the computational elements and the
routing is configured via floating gates. Buffers, capacitors, transmission
gates, NMOS, PMOS, floating gates, current biases, adaptive amplifiers,
and analog multiply arrays are all available and fully programmable on the
chip. Development is shared by many in the CADSP group at Georgia Tech.

An array of up to 32 Bernoulli trials can be calculated simul-
taneously on a single RASP device. New versions of the RASP
have been fabricated in 350, 130, and 45 nm; an entire family
of RASP 2.9 chip variants exist for different applications spaces,
which allow as much as 10X this number of Bernoulli trials, and
this scales with Moore’s law. The RASP chipset and accompa-
nying tools also have the ability to be linked together easily for
a multi-core RASP chipset should more Bernoulli generators be
needed. The RASP chipset is useful for a proof of concept here.
Since each Bernoulli generator only takes 30 transistors, many
thousands of these circuits could be built in custom hardware if
needed.

5. CHIP MEASUREMENTS AND EXPERIMENTAL RESULTS
To gather data, the Probability Select line described in Figure 3A
and the output producing the random numbers were routed
to the primary inputs/outputs of the chip. A 40-channel, 14-
bit digital-to-analog-converter (DAC) chip was interfaced with
the RASP chip on a printed circuit board, which we used as
our testing apparatus, so that any arbitrary voltage could be
input to the Probability Select line. This chip is 40 channel in
the sense that there are 40 independent outputs of the DAC.
The outputs of the RASP chip were connected to oscilloscope
probes so that the noise spectrum and random numbers could be
captured.

FIGURE 9 | The typical routing structure and available analog

computational elements in one of the 32 computational analog blocks

(CABs) present on the RASP chip. The elements used in the present
design are highlighted in red. Alternating CABs have NMOS transistors and
PMOS as the bottom CAB element, and although only three of the
MOSFETs are used in our circuit from Figure 3, instead of the four that are
circled, this is meant to show several different combinations of these four
transistors can be used to make the three transistor circuit. The top triangle
elements are an OTAs showing the two inputs and output being routed
back into the fabric which is a mesh of lines with switches able to connect
any two lines that cross in the mesh. The element below the OTAs is a
capacitor and the bottom elements circled are NMOS and PMOS available
to be routed.

The distribution of the Bernoulli trial circuits were measured
in the following way: 2500 random numbers were captured at
each Probability Select voltage. The number of successes was
divided by the total number of samples captured at each voltage
to calculate the probability of a Bernoulli success (probability of
randomly generating a 1). The results are shown in Figure 10.

An example of a voltage signal from the Dynamic Bernoulli
Probability Circuit producing a digital “1” with probability p =
0.90 is shown in Figure 11. The voltage signal was recorded via
on-chip measurement circuits and transmitted to a PC through a
USB connection to the chipset.

The array of Bernoulli trials was encoded and the exponential
distribution of reaction times, τi, was generated. The result-
ing distribution is what one would expect and matches a true,
exponential distribution as shown in Figure 12.

www.frontiersin.org May 2014 | Volume 8 | Article 86 |94

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Bo Marr and Hasler bioFPAA

FIGURE 10 | Measurements from the output of the Dynamic Bernoulli

Probability Circuit shown in Figure 3 were taken. The “Probability
Select” voltage was adjusted from 0.1 volts up to 1.4 volts and the resulting
probability of a digital “1” being produced was recorded with a 95%
confidence interval. Measurements were only taken down to p = 0.5 since
a Bernoulli trial is symmetric about this value.

5.1. VALIDATION OF RANDOMNESS
A probabilistic output and a random output are differing con-
cepts, and the ability to control this difference is the strength
of the proposed circuits. They are linked together and defined
through Shannon’s entropy (Shannon, 1949). Formally, entropy
and thus the randomness of a function are defined by H in
Equations (10, 11).

Let

Hn = − 1

n

∑
i,j,...,s

p(i, j, ..., s) log2 p(i, j, ..., s) (10)

Then entropy is
H = lim

n→∞Hn (11)

where p(i, j, ..., s) is the probability of the sequence of symbols
i, j, ..., s, and the sum is over all sequences of n symbols.

By the same definition, a function exhibits the most random-
ness if H is maximized, which occurs when all output sequences
are equally likely, or equivalently, if all possible outputs have
an equal probability of occurring (Shannon, 1949). From this
work, a function is defined as random if all outputs have a uni-
form probability of occurring. Conversely, we define a function
as probabilistic if the function has an entropy 0 < H < log2 n.

There exist statistical measures of randomness, developed by
the National Institute of Standards and Technology (NIST), in
the form of a suite consisting of 16 independent tests to mea-
sure how random a sequence of numbers truly is Random Number
Generation and Testing (2014). However, these tests only measure
the performance of random functions and not probabilistic ones
such as the circuits presented in this work, although random
number generation (when p = 0.5) is a subset function of these
circuits.

FIGURE 11 | Voltage output from Dynamic Bernoulli Probability Circuit

also called a random number generator (RNG) circuit as labeled in the

graph, corresponding to the output out of the third (final) OTA circuit

from Figure 3. A 1 volt offset was arbitrarily chosen for the comparator, but
other voltage offset values than this were anecdotally observed to have
undesired noise effects resulting in spurious switching at the output of the
comparator. The noise amplifiers, and thus comparators, were observed to
switch at approximately 208 ps as a maximum rate, thus independent
Bernoulli variables could be produced at most at this time period in this
particular device. A digital “1” is produced with probability p = 0.90 and
“0” with 1− p = 0.10. When the voltage is above the threshold
Vout >

Vdd−Vss
2 it is considered a digital “1” and otherwise a “0,” where the

threshold happens to be 0 volts in this case. The samples in this circuit
change much faster than can be consumed, and thus random samples are
taken from the output of this circuit at a slower rate than the rate at which it
changes state, but preserving randomness.

Each of the tests are measured on a scale from 0 to 1, where
a “passing” mark is considered >0.93 and higher marks indi-
cate a higher quality sequence. For a random output p = 0.5
these circuits with thermal noise as the source of randomness
passed all but the “Overlapping Template Matching Test” and
the “Lempel-Ziv Complexity Test” and even these two tests
received high marks >0.80. They also perform consistently better
than the software generated, Park–Miller psuedo-random num-
bers used by most algorithms, which failed half the tests in
the suite with some failing badly <0.10 (Chakrapani et al.,
2006).

6. CONCLUSIONS AND FUTURE DIRECTIONS
It was shown in section 3 that to generate an exponentially dis-
tributed random variable in software takes a minimum of 261
computational steps with the Park Miller algorithm. And with
hardware random number generators shown in previous micro-
processor works, only uniformly random numbers were available.
Bernoulli trials are generated here in hardware with a single com-
putational step, and an exponentially distributed random number
is generated with two computational steps.

Because of the high gain of our amplifiers, the thermal noise
distribution used to generate probabilistic distributions with our
hardware is extremely sensitive to perturbations such as ambi-
ent electrostatic interactions, device variations, and changes in

Frontiers in Neuroscience | Neuromorphic Engineering May 2014 | Volume 8 | Article 86 | 95

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Bo Marr and Hasler bioFPAA

FIGURE 12 | The histogram (and thus a scaled probability distribution

function) of the exponentially distributed Gillespie reaction times, τi ’s,

generated.

ambient temperature. Environment invariant chaos circuis were
compiled and measured to mitigate these concerns. Because the
Bernoulli trial circuits presented here can be controlled via a
programmable input signal, software calibration can be done to
mitigate these concerns as well.

An estimated performance increase of approximately 130X is
realized based on measured results to generate exponentially dis-
tributed random numbers. With the assumption used in section 3
that generating exponential random variables takes up 98% of the
computation time of a single iteration through Gillespie’s algo-
rithm, our system could potentially speed up the calculation of
the trajectory of this algorithm by approximately 127X.

Further is was shown that these performance increases via
hardware generated probabilistic distributions can be applied to
any dynamical system and possibly have a much wider impact than
the field of biological computations.

Such a method to increase computational efficiency by two
orders of magnitude is believed to be widely useful in calculat-
ing biological, statistical, or quantum mechanical systems. The
search for meta-materials new medicines, or any other host of
applications could benefit. Future directions for this specific work
include attempting to hardware accelerate quantum algorithms
and venturing into the world of software defined analog radios.

ACKNOWLEDGMENTS
This project was funded in part by the National Science
Foundation, NSF award ID 0726969 and the Defense Advanced
Research Project Agency. The authors would also like to thank the
organizers and participants of the 2008 Telluride Neuromorphic
Workshop and the Institute for Neuromorphic Engineering. Dr.
Marr is currently at Raytheon company and Dr. Hasler is a profes-
sor at Georgia Tech where Dr. Marr performed the work. Finally
the authors would like to thank Raytheon for providing funding
to continue and publish the research.

REFERENCES
Basu, A., Twigg, C. M., Brink, S., Hasler, P., Petre, C., Ramakrishnan, S., et al.

(2008). “Rasp 2.8: a new generation of floating-gate based field programmable
analog array,” in Proceedings, Custom Integrated Circuits Conference CICC (San
Jose, CA).

Chakrapani, L., Akgul, B. E. S., Cheemalavagu, S., Korkmaz, P., Palem, K., and
Seshasayee, B. (2006). “Ultra-efficient (embedded) SOC architectures based on
probabilistic cmos (PCMOS) technology,” in Proceedings of Design Automation
and Test in Europe (DATE) (Munich).

Douglas, R. (2008). Modeling Development of the Cortex in 3d: From Precursors to
Circuits. Available online at: https://neuromorphs.net/ws2008/

Dudek, P., and Juncu, V. (2005). “An area and power efficient discrete-time chaos
generator circuit,” in Proceedings of the 2005 European Conference on Circuit
Theory and Design, 2005, IEEE 2, II–87.

Genov, R., and Cauwenberghs, G. (2001). “Stochastic mixed-signal vlsi architec-
ture for high-dimensional kernel machines,” in Advances in Neural Information
Processing Systems (Vancouver, British Columbia), 1099–1105.

Gibson, M., and Bruck, J. (1998). An Efficient Algorithm for Generating Trajectories
of Stochastic Gene Regulation Reactions. Technical Report, California Institute of
Technology.

Gillespie, D. T. (1976). A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.

Goldberg, D. H., Cauwenberghs, G., and Andreou, A. G. (2001). “Analog
vlsi spiking neural network with address domain probabilistic synapses,” in
International Symposium on Circuits and Systems (Sydney).

Kish, L. B. (2002). End of Moore’s law: thermal (noise) death of integration in
micro and nano electronics. Phys. Lett. A 305, 144–149. doi: 10.1016/S0375-
9601(02)01365-8

Kurtz, T. G. (1972). The relationship between stochastic and deterministic models
for chemical reactions. J. Chem. Phys. 57, 2976–2978. doi: 10.1063/1.1678692

Ohba, R., Matsushita, D., Muraoka, K., Yasuda, S., Tanamoto, T., Uchida, K., et al.
(2006). “Si nanocrystal mosfet with silicon nitride tunnel insulator for high-rate
random number generator,” in Emerging VLSI Technologies and Architectures
(Karlsruhe).

Oppenheim, I., Shuler, K. E., and Weiss, G. H. (1969). Stochastic and determin-
istic formulation of chemical rate equations. J. Chem. Phys. 50, 460–466. doi:
10.1063/1.1670820

Park, S., and Miller, K. (1998). Random number generators: good ones are hard to
find. Commun. ACM 31, 10.

Patterson, D., and Hennessy, J. (2004). Computer Organization and Design, 3rd Edn.
Boston: Morgan Kauffman.

Random Number Generation and Testing. (2014). Available online at:
http://csrc.nist.gov/rng/

Shannon, C. (1949). “Communication is the presence of noise,” in Proceedings of
the I.R.E. (New York, NY), 10–21.

Xu, P., Horiuchi, T. K., and Abshire, P. A. (1972). Compact floating-
gate true random number generator. Electron. Lett. 42, 23. doi:
10.1109/JRPROC.1949.232969

Yang, M., Wang, Y., Wang, J., and Zheng, S. Q. (2002). “Optimized scheduling and
mapping of logarithm and arctangent functions on ti tms320c67x processor,”
in IEEE International Conference on Aucoustics, Speech, and Signal Processing
(Orlando, FL). doi: 10.1109/ICASSP.2002.5745319

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 01 October 2013; accepted: 04 April 2014; published online: 07 May 2014.
Citation: Marr B and Hasler J (2014) Compiling probabilistic, bio-inspired circuits
on a field programmable analog array. Front. Neurosci. 8:86. doi: 10.3389/fnins.
2014.00086
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2014 Marr and Hasler. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribu-
tion or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

www.frontiersin.org May 2014 | Volume 8 | Article 86 | 96

http://dx.doi.org/10.3389/fnins.2014.00086
http://dx.doi.org/10.3389/fnins.2014.00086
http://dx.doi.org/10.3389/fnins.2014.00086
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

ORIGINAL RESEARCH ARTICLE
published: 02 April 2014

doi: 10.3389/fnins.2014.00054

An adaptable neuromorphic model of orientation
selectivity based on floating gate dynamics
Priti Gupta* and C. M. Markan

VLSI Design Technology Lab, Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, Uttar Pradesh, India

Edited by:

Jennifer Hasler, Georgia Insitute of
Technology, USA

Reviewed by:

Shantanu Chakrabartty, Michigan
State University, USA
Milutin Stanacevic, Stony Brook
University, USA
Bradley A. Minch, Franklin W. Olin
College of Engineering, USA

*Correspondence:

Priti Gupta, VLSI Design Technology
Lab, Department of Physics and
Computer Science, Faculty of
Science, Dayalbagh Educational
Institute, Agra-282005,
Uttar Pradesh, India
e-mail: gupta.priti.84@gmail.com

The biggest challenge that the neuromorphic community faces today is to build systems
that can be considered truly cognitive. Adaptation and self-organization are the two
basic principles that underlie any cognitive function that the brain performs. If we can
replicate this behavior in hardware, we move a step closer to our goal of having cognitive
neuromorphic systems. Adaptive feature selectivity is a mechanism by which nature
optimizes resources so as to have greater acuity for more abundant features. Developing
neuromorphic feature maps can help design generic machines that can emulate this
adaptive behavior. Most neuromorphic models that have attempted to build self-organizing
systems, follow the approach of modeling abstract theoretical frameworks in hardware.
While this is good from a modeling and analysis perspective, it may not lead to the most
efficient hardware. On the other hand, exploiting hardware dynamics to build adaptive
systems rather than forcing the hardware to behave like mathematical equations, seems
to be a more robust methodology when it comes to developing actual hardware for
real world applications. In this paper we use a novel time-staggered Winner Take All
circuit, that exploits the adaptation dynamics of floating gate transistors, to model an
adaptive cortical cell that demonstrates Orientation Selectivity, a well-known biological
phenomenon observed in the visual cortex. The cell performs competitive learning,
refining its weights in response to input patterns resembling different oriented bars,
becoming selective to a particular oriented pattern. Different analysis performed on the cell
such as orientation tuning, application of abnormal inputs, response to spatial frequency
and periodic patterns reveal close similarity between our cell and its biological counterpart.
Embedded in a RC grid, these cells interact diffusively exhibiting cluster formation, making
way for adaptively building orientation selective maps in silicon.

Keywords: feature maps, orientation selectivity, time-staggered WTA, floating gate synapses

1. INTRODUCTION
The past decade has been a landmark decade in the progress of
Neuromorphic Engineering. Technological advances have paved
the way for large scale neural chips having millions of neurons
and synapses (Indiveri et al., 2006; Bartolozzi and Indiveri, 2007;
Wijekoon and Dudek, 2008). We now have silicon cochleas and
retinas (Chan et al., 2007; Lichtsteiner et al., 2008). A num-
ber of groups around the world have built large scale multichip
neuromorphic systems for real time sensory processing with pro-
grammable network topologies and reusable AER infrastructure
(Serrano-Gotarredona et al., 2005; Chicca et al., 2007; Merolla
et al., 2007; Schemmel et al., 2008). All these approaches can be
broadly classified into analog, digital or hybrid approaches. The
analog approach interfaces well with the real world, emulates bio-
inspired behavior more closely and is most suited for modeling
local neural computations. Digital systems on the other hand
efficiently exploit addressing mechanisms to emulate long dis-
tance communication in the brain. Therefore, an amalgamation
of the digital and analog approaches i.e., the hybrid approach, is
most appropriate for implementing large scale neuromorphic sys-
tems. The challenge that now lies ahead is to develop truly brain
like cognitive systems. Systems that can adapt, self-organize and

learn according to cues in their environment (Indiveri et al., 2009;
Indiveri and Horiuchi, 2011).

A major step toward building such systems would be to under-
stand the underlying principles that the brain uses to accomplish
adaptation. It is well accepted now that very early in develop-
ment the brain has a generic cortical structure that adapts to
the environment by forming neural connections during the crit-
ical learning period (Sur and Leamey, 2001; Horng and Sur,
2006). This kind of adaptation leads to the formation of fea-
ture maps or interconnectivity patterns between hierarchically
organized layers of the cortices. The lower layers extract basic fea-
tures from the input space so that higher layers can extract more
complex features, using the information from the lower layers.
Both Nature (genetic biases) and Nurture (environmental fac-
tors) play a crucial role in the formation of these feature maps.
Different hardware and software approaches have been explored
to model self-organization. Each approach has a set of mecha-
nisms that exploit the available techniques. While models built
in software prefer to use mathematical equations, attempting to
do the same in hardware can turn out to be extremely cumber-
some (Kohonen, 1993, 2006; Martn-del-Bro and Blasco-Alberto,
1995; Hikawa et al., 2007). On the other hand, understanding

www.frontiersin.org April 2014 | Volume 8 | Article 54 | 97

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00054/abstract
http://community.frontiersin.org/people/u/50333
mailto:gupta.priti.84@gmail.com
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

the hardware dynamics and then building adaptive algorithms
around it seems to be a more robust approach for building real
world applications.

To emulate activity dependent adaptation of synaptic connec-
tions in electronic devices, we look towards the developing brain
for inspiration. In the developing brain, different axons connect-
ing to a post synaptic cell, compete for the maintenance of their
synapses. This competition results in synapse refinement leading
to the loss of some synapses or synapse elimination (Lichtman,
2009; Misgeld, 2011; Turney and Lichtman, 2012; Carrillo et al.,
2013). Temporarily correlated activity prevents this competition
whereas uncorrelated activity seems to enhance it (Wyatt and
Balice-Gordon, 2003; Personius et al., 2007). Moreover, precise
spike timing plays a key role in this process e.g., when activity at
two synapses is separated by 20 ms or less, the activity is perceived
as synchronous and the elimination is prevented (Favero et al.,
2012). Apart from the biological relevance, synapse elimination as
a means of honing neural connections is also suitable for imple-
mentation in large scale VLSI networks because in analog hard-
ware it is difficult to create new connections but it is possible to
stop using some connections. Although some digital approaches
work around this by using virtual connections using the Address
Event Representation, however, in purely analog designs for ease
of management of large scale connections, synapse elimination is
best suited. In order to implement synapse pruning we need to
have non-volatile adaptable synapses which are best represented
by floating gate synapse or memresistors (Zamarreño-Ramos
et al., 2011). While memresistor technology is still in develop-
ment floating gate transistors have gained widespread acceptance
due to their capacity to retain charge for very long periods and
the ease and accuracy with which they can be programmed dur-
ing operation (Srinivasan et al., 2005). Floating gate memories
are being used for various applications like pattern classification
(Chakrabartty and Cauwenberghs, 2007), sensor data logging
(Chenling and Chakrabartty, 2012), reducing mismatch (Shuo
and Basu, 2011) etc. They have also found extensive application
in neuromorphic systems (Diorio et al., 1996; Hsu et al., 2002;
Markan et al., 2013). We therefore extend the study of adaptive
behavior of floating gate pFETs and demonstrate how this adap-
tive, competitive and cooperative behavior can be used to design
neuromorphic hardware that exhibits orientation selectivity, a
widely studied phenomenon observed in the visual cortex.

Prior efforts toward hardware realization of orientation selec-
tivity can be classified into two categories, (1) Ice Cube models,
(2) Plastic models. Ice cube models e.g., the model by Choi
et al. (2005) assumes prewired feed-forward and lateral connec-
tions. Another similar model by Shi et al. (2006) uses DSP and
FPGA chips to build a multichip modular architecture. They use
Gabor filters to implement orientation selectivity. This approach
provides an excellent platform for experimentation with fea-
ture maps, however, it falls short when it comes to compactness
and power efficiency. Moreover, these models do not capture
the developmental aspects of orientation selectivity. Some plastic
models that try to capture the developmental aspects include the
model by Chicca et al. (2007) that uses a mixed software/hardware
approach to simulate a biologically realistic algorithm on a PC
that is interfaced with a neuromorphic vision sensor. Another

model by Boahen et al. (Taba and Boahen, 2002; Lam et al.,
2005) uses activity dependent axon remodeling by using the con-
cept of axonal growth cones and implements virtual connections
by re-routing address events. Their design is biologically realistic
but hardware intensive since they use an additional latency cir-
cuit to decide the wining growth cone. Therefore, what is needed
is an approach that is more autonomous in terms of deciding
the winner in the competition. Through our approach, that is
based on the biologically inspired synapse elimination process,
we have attempted to build an analog design that can be used by
both analog and hybrid systems. The design has minimum hard-
ware requirements and is capable of self-organized clustering.
Our effort in designing a minimal competitive circuit, the time-
staggered Winner Take All (ts-WTA) (Figures 1A–D) that exploits
the adaptation dynamics of floating gate pFETs (Markan et al.,
2013) and then using a collective network of these ts-WTA cells to
exhibit orientation selectivity (Markan et al., 2007) is a small yet
significant effort toward bridging the gap between biological phe-
nomenon and its neuromorphic equivalent. The simulations were
performed using Tanner T-Spice v13.0 and Cadence Specter v7.1
with BSIM3 level 49 spice models for 0.35 μm CMOS process.

Section 2 attempts to highlight the salient features of the
ts-WTA circuit and discusses the motivation behind its design.
Section 3 describes the development of a framework for multi-
dimensional feature selectivity which is then extended to create an
orientation selective cortical cell model that learns and eventually
recognizes patterns resembling bars of different orientations. In
sections 3 and 4, experiments performed on the orientation selec-
tive cortical cell, that highlight how close the cortical cell is to its
biological counterpart, are discussed. Section 5 describes a frame-
work for diffusive interaction and cluster formation between
many orientation selective cells that has implications in orienta-
tion selective map formation. Section 6 includes the results and
discussion.

2. TIME-STAGGERED WINNER TAKE ALL
A novel CMOS time-staggered Winner Take All (ts-WTA) circuit
has been described in Markan et al. (2013). The ts-WTA is built
with two arms each representing a weighted connection, imple-
mented by means of floating gate pFET “synapses” (Figure 1A)
(Rahimi et al., 2002). These arms connect at a common source
node, Vs. Current through a bias pFET, also connected at Vs,
drives the two arms of the ts-WTA and ensures resource limi-
tation. A buffer device (D) separating Vs from Vi is introduced
to ensure that Vs is not influenced directly by the neighboring
cells. However, the voltages at Vs and Vi are nearly the same. A
feedback mechanism modifies the floating gate voltages of the
two floating gate pFET synapses as a function of the activation
node voltage Vi. The Tunnel (T) and Injection (I) devices, that
are a part of the feedback network (Figure 2), transform the Vi to
appropriate ranges that make tunnel and injection feasible. The
initial floating gate voltages of the two synapses are chosen ran-
domly with a small voltage difference δVfg . Inputs to the cell are
applied in the form of pulses of high (6v) and low (−1v) volt-
age represented by 1 and 0, respectively. A {0,0} input means both
the synapses are stimulated with −1v which is equivalent to say-
ing they are both off . An input {1,1} means that both synapses

Frontiers in Neuroscience | Neuromorphic Engineering April 2014 | Volume 8 | Article 54 | 98

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

x1 x2

w1 w2

A =Swjxj

x1 x2

I

T

D

(Vfg)i2(Vfg)i1

Vb

VDD

Vs

Ib

Isi2
Isi1

ViA C

B D

0 1 2 3 4 5

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

Vfg1

Vfg2

Time (sec)

Fl
oa

tin
g G

at
e V

ol
ta

ge
s (

vo
lts

)

ts-WTA

T

FIGURE 1 | (A) Actual circuit of the ts-WTA learning cell and (B) its abstract
model. In (A) (Vfg)i1, (Vfg)i2, and in (B) W1, W2 show the floating gate based
weighted connections. x1, x2 are inputs and node voltage Vi is activation of
the cell which is equivalent to A in (B). (C) Shows ts-WTA evolution of

floating gate voltages. (D) Starting with nearly equal weak connections (left),
the cell strengthens stronger of the two connections at the cost of the other
(right, shows both possibilities). Here ◦ => connection representing one
feature • => connection representing other feature.

are stimulated with a 6v pulse at the same time, which is how
conventional WTA circuits receive inputs. The inputs {1,0} and
{0,1} mean that the synapses are stimulated alternately or in an
uncorrelated manner. The ts-WTA is designed to work on this
uncorrelated scheme of inputs. When inputs from the sets {0,1}
and {1, 0} are applied at x1 and x2 in a random-inside-epoch order
(i.e., within an epoch both the synapses are equally stimulated but
the order in which they are stimulated is randomized for every
epoch) competition between the two arms starts taking place. The
below equation expresses the adaptation dynamics of the floating
gate voltage (Vfg) of any branch (synapse) as a function of Vfg of
the stimulated branch

d
(
Vfg
)

ij

dt
= FT

[
T{Vi},

(
Vfg
)

ij

]
− FI

[
I{Vi},

(
Vfg
)

ij

]
× xj (1)

The first part of the equation represents tunneling and the second
part represents injection feedback. The second part has an addi-
tional term xj, which is 1 when the pFET is ON and 0 when it
is OFF, taking into consideration that injection works only when
the floating gate transistor is ON whereas, tunneling works at
all times irrespective of the state of the floating gate transistor.
In the first and second parts, Vi is equivalent to

∑
j

f (Vfg)ij × xj

(which means we can express Vi in terms of floating gate volt-
ages of individual branches under the condition that only one
xj is 1 the other is 0 at any given time). In the first part T{Vi}
leads to a tunnel voltage Vtun which along with the floating gate
voltage (Vfg) determines the tunneling current (Itunnel) and in the
second part I{Vi} leads to an injection voltage Vinj which along
with Vfg determines the injection current (Iinjection) (please refer
to Markan et al., 2013 and Rahimi et al., 2002 for detailed equa-
tions). Injection works by lowering the floating gate voltage, Vfg ,
thus making the transistor more and more ON whereas tunnel-
ing causes the Vfg to increase gradually causing the pFET to slowly
drift toward the OFF state. On stimulation by uncorrelated inputs
over a period of time, injection amplifies the voltage difference
between the two floating gates. Tunnel on the other hand helps
in setting an upper limit on strength of the active connection,
and pruning the strength of the inactive connection. According
to Grossberg (1976), Winner Take All action requires that self-
excitation of a neuron must be accompanied by global lateral
inhibition. This occurs in ts-WTA with self-excitation in the form
of injection and global lateral inhibition in the form of tunnel-
ing. If over many epochs, the synapse strengthens more than it
weakens (there is more injection than tunneling), the floating
gate pFET turns more and more ON, but if the synapse weak-
ens more than it strengthens (tunneling is more than injection)

www.frontiersin.org April 2014 | Volume 8 | Article 54 | 99

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

FIGURE 2 | Shows the circuit level description of the Injection (I),

Tunnel (T) and Buffer (D) devices that are a part of the ts-WTA circuit

shown in Figure 1A. The Injection (I) and Tunnel (T) devices modify the
voltage at Vi to appropriate ranges that enable injection and tunneling to
occur in the floating gate pFETs. The buffer device (D) shields the common
source node (Vs) from the loading effect of neighboring cells. The graphs
show how the tunnel (Vtun) and injection (Vinj) voltages vary with the
common source voltage. Here Vinj(min) is set to −0.65 V, Vtun(max) is set to
13.6 V and VDD is 6 v.

then after several epochs it reaches a stage of no recovery where
the floating gate pFET completely switches OFF. The synapse that
strengthens more emerges as the Winner. However, ts-WTA has
an additional interesting dimension according to which, if the
weaker connection is stimulated more, then that emerges as the
winner. Interestingly, this ts-WTA competition can be extended
to any two contrasting input synapses (e.g., Left/Right eye in
Ocular Dominance, ON/OFF cells in Orientation Selectivity and
Lagged/Non-Lagged cells in Direction Selectivity) to perform fea-
ture selectivity. It can also be extended to other modalities like
auditory, somatosensory etc. Thus the ts-WTA is a very generic
cell and can be an essential core around which different feature
selectivity models can be built. This is necessary for eventual inte-
gration of different feature maps into one universal framework.
The ts-WTA has been studied under various stimulation schemes
and has been tested for stability under device parameter variations
(Markan et al., 2013) and is thus a robust circuit which closely
emulates brain like competition and learning and is therefore
suitable to build brain like feature maps.

Amongst the various CMOS WTA circuits that have been
designed, Lazzaro’s WTA(L-WTA) (Lazzaro et al., 1989) has
gained widespread acceptance (Figure 3). It is an elegant circuit
that performs instantaneous comparison between two or more
input values and brings about suppression of the outputs asso-
ciated with lower input values as compared to the highest value
giving rise to Winner Take All action. Our ts-WTA is inspired by
L-WTA, however, there are significant differences. In both the cir-
cuits, a current source restricts the amount of current that can
flow in the two competing branches. As a result, the branch that
draws more current forces the transistor of the other branch to
switch off, thus emerging as a winner. When both inputs are

y1 y2

Vb

VDD

Vs

Ib

Isi2
Isi1

FIGURE 3 | Shows the Lazzaro’s WTA (L-WTA) circuit. This can be
compared with the ts-WTA of Figure 1A. In both the circuits, a bias
transistor in saturation acts like a current source with constant current Ib.
This current ensures resource limitation forcing only one of the input arms
or “synapse” to survive in the competition. In ts-WTA the inputs x1 and x2

represent voltage pulses of +6 v and −1 v (1 and 0) applied alternately
(time-staggered inputs) to both the arms. The inputs y1 and y2 are voltages
(equivalent to x1w1 and x2w2, respectively) that are applied to the two
arms of L-WTA both at the same time. Here w1 and w2 represent the
weights of the two floating gate pFET synapses in the ts-WTA. L-WTA
performs instantaneous comparison between the two inputs and does not
have any memory element. The ts-WTA has floating gate pFET based
memory and Tunnel and Injection feedback devices that modify the floating
gate voltages as a function of response voltage (Vi). This allows it to
perform competition based on memory of prior activity unlike the L-WTA
that can only perform instantaneous comparison between two inputs that
are simultaneously applied.

applied at the same time, both ts-WTA and L-WTA behave in
much the same way. However, ts-WTA brings in an interesting
innovation in the form of long term memory retention using
floating gate dynamics. So, in fact, the ts-WTA is a learning WTA
cell that is capable of computing a winner based on which input is
statistically more significant over many epochs unlike the L-WTA
which only computes the winner based on an instantaneous com-
parison. Another interesting WTA circuit (inspired by L-WTA)
that incorporates a sense of time by using floating gate transis-
tors has been developed by Kruger et al. (1997). Their motivation
to introduce adaptation is to add a fatigue or refraction time to
each cell that wins. Their application is to form saliency maps
where there is a need to ensure that the saliency of all inputs
is considered and the WTA operation chooses different winners
at different times instead of just locking on to the most signif-
icant input. Another interesting variant of L-WTA is the one
introduced in Indiveri (2001, 2008). In this circuit by using local
excitatory feedback and a lateral excitatory coupling mechanism
the authors realize distributed hysteresis using which the network
is able to lock onto an input with the strongest amplitude and
track it as it shifts. They have shown an interesting application of
this in adaptive visual tracking sensors (Indiveri et al., 2002). Both
these circuits work on the conventional {1,1} or simultaneously
applied inputs. They are both ingenious circuits, however, their
motivation and design vary significantly from ours.

The true strength of the ts-WTA lies in the way it works
on uncorrelated inputs or inputs applied staggered over time.

Frontiers in Neuroscience | Neuromorphic Engineering April 2014 | Volume 8 | Article 54 | 100

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

The inspiration for using time-staggered or uncorrelated inputs
comes from the way the brain is designed. In the brain, many
pre-synaptic neurons connect to a single post-synaptic neuron
through many afferent connections. It is only through correlated
or uncorrelated activity between the many pre-synaptic cell affer-
ents that the post-synaptic cell can tell to which pre-synaptic
cell the afferents belong. The activity, from all the afferents of
one pre-synaptic neuron is perfectly correlated whereas between
two different pre-synaptic neurons the activities are uncorre-
lated and this is the basis on which synapse elimination happens
(Stent, 1973). Hence, uncorrelated activity between different pre-
synaptic neuron helps the post-synaptic neuron to decide, which
connection is relevant and which is not. This selection pro-
cess happens over a period of time and not instantaneously and
therefore L-WTA is not suitable for such selection that involves
retaining some information of prior neural activity. One of the
most important aspect of neural information processing is feature
extraction and formation of feature maps. Formation of feature
maps requires that cells with similar feature selectivity cluster
together. For this to happen each cell should be able to uniquely
convey its feature preference at its output node which requires
that each cell has to be identically stimulated by a selected pat-
tern. Then on the basis of the responses of different cells for
that pattern, cells that are selective to that pattern can be iden-
tified. Similarly, by applying other patterns cells can be marked
for feature selectivity toward those patterns. Therefore, learn-
ing has to be deferred over an epoch so that all patterns are
stimulated once and cells with similar feature preference can clus-
ter together. In an L-WTA this is not possible for two reasons.
Firstly, because in L-WTA inputs are applied simultaneously or
in the {1,1} manner. This is analogous to applying all patterns
at the same time and hence cells cannot be uniquely identified
for their feature preference. Secondly, because the L-WTA lacks
a mechanism for long term retention of modified weights which
is needed for forming clusters. The ts-WTA on the other hand is
perfectly suited as a learning cell for developing feature maps in
silicon.

It may be apt to mention here that over and above facilitat-
ing synapse elimination, time-staggered or uncorrelated inputs
play a major role in the formation of feature maps and this
has been brought out in many seminal papers in neuroscience.
For example Weliky and Katz (1997) reported that by artifi-
cially inducing correlated activity in both the eyes of the ferret,
they found that the number of cells in the primary visual cor-
tex with clear orientation and direction selectivity was markedly
reduced when compared to un-stimulated controls. In a simi-
lar experiment on kittens, Stryker and Strickland (1984) found
that segregation in ocular dominance columns was promoted
when neural activity is synchronized in each eye but not corre-
lated between the eyes. In other similar experiments on cortical
feature map development in visual (Elliott and Shadbolt, 1998;
Jegelka et al., 2006) as well as auditory cortex (Zhang et al.,
2002) it has been reported time and again that spatiotemporal
relation between the inputs to both eyes/ears are the key to for-
mation of feature maps. Hence, it comes as a deduction from
the above evidences that uncorrelated or “time-staggered” activ-
ity is an underlying biological mechanism for the formation of

feature maps in the cortex. Therefore, using this inspiration to
build artificial feature maps in silicon would help us bridge the
gap between actual neural phenomenon and its neuromorphic
equivalent.

The use of ts-WTA to build Ocular Dominance (OD) Maps
has been described in Markan et al. (2013). In order to build a
generic framework for cortical feature map formation in neuro-
morphic hardware, our ultimate goal, we wanted to extend our
model to a larger input space. Orientation Selectivity (OR), a
property exhibited by neurons in the visual cortex, is a natural
extension to OD. OD is the selective preference cortical neurons
show toward inputs from either the left eye or the right eye. The
input space in OD is only two dimensional. OR on the other hand,
is the selective preference cortical neurons show toward light or
dark bars or edges of different orientations. Since orientations can
vary anywhere from 0◦ to 180◦, the input space is truly multi-
dimensional. The following sections describe how from the basic
building block of ts-WTA, we build an adaptable framework for
multi-dimensional input features and how we extend it to build
an adaptable circuit that is able to learn and eventually respond to
different orientations.

3. ORIENTATION SELECTIVITY
Cells in the primary visual cortex are known to respond to dark
and bright oriented bars. This property of the cortical cells,
known as Orientation Selectivity, was first discovered by Hubel
and Wiesel (1959). Hubel and Wiesel identified the receptive
fields of Simple Cells in the Primary Visual Cortex and then
showed bars of different orientations to the eye. Interestingly they
observed that a single cell gave maximum response to a bar of
only one particular orientation. They also observed that if the
bar was in the center of the receptive field, it gave the highest
response. In earlier experiments on retinal ganglion cells and lat-
eral geniculate nucleus cells (Kuffler, 1953) it was observed that
the receptive fields of these cells are divided into 2 parts (cen-
ter/surround), one of which is excitatory or “ON,” the other
inhibitory or “OFF.” For an ON/OFF center/surround cell, a spot
of light shown on the inside (center) of the receptive field elicits
spikes, while light falling on the outside ring (surround) sup-
presses firing below the baseline rate. Results are opposite for
an OFF/ON cell. Hubel and Wiesel were proponents of the the-
ory that receptive fields of cells at one level of the visual system
are formed by inputs from cells at a lower level of the visual
system, emphasizing that there is a hierarchical arrangement in
the cortex, where in the higher layers extract statistically rele-
vant information from the lower layers. Hence, they advanced
the theory that small, simple receptive fields could be combined
to form large, complex receptive fields. Later theorists also elab-
orated this simple, hierarchical arrangement by allowing cells
at one level of the visual system to be influenced by feedback
from higher levels. In their theory of orientation selectivity, Hubel
and Wiesel proposed that Simple cells have receptive fields com-
posed of elongated ON and OFF sub-regions (Hubel and Wiesel,
1959, 1962), which seem to originate from single synaptic input
from ON and OFF centered lateral geniculate cells. The circu-
larly symmetric receptive fields of neurons in LGN, that excite a
cortical cell, are arranged in a row creating elongated receptive

www.frontiersin.org April 2014 | Volume 8 | Article 54 | 101

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

fields see Figures 4B,C. These elongated sub-fields are sufficient
for generating a weakly tuned orientation response, which is
then amplified by local intra-cortical connections. Unlike Ocular
Dominance, that seems to develop only after eye opening, ori-
entation selective responses have been observed to be present
in primates, cats and ferrets as early as the first recordings can
be made (Chapman et al., 1996). However, how the genicu-
late afferents organize themselves into segregated ON and OFF
sub-regions during the prenatal period, in the absence of visual
input, is still not clear. Some researchers attribute this develop-
ment to spontaneous waves of activity that flow in the retina
and LGN affecting cortical development (Mooney et al., 1996),
and some attribute it to intra-cortical long range connections
that exist before birth, forming a scaffold for orientation maps
that later mature with visual inputs (Shouval et al., 2000). In
order to gauge to what extent, visual experience influences the
development of orientation maps, visual cortex of kittens reared
in a single striped environment was studied using optical imag-
ing techniques. It was found that even though kittens reared in
a striped environment responded to all orientations, however,
twice the area of the cortex was devoted to the experienced ori-
entation as compared to the orthogonal one (Sengpiel et al.,
1999). This effect is due to an instructive role of visual experi-
ence whereby some neurons shift their orientation preferences
toward the experienced orientation. Thus, it is now generally
accepted that although orientation maps are fairly stable at the
time of birth, abnormal visual experience can alter the neu-
ronal responses of a large percentage of cells to the exposed
oriented contours. Under normal conditions, the prenatal tun-
ing properties of neurons are retained and get refined with visual
stimulus.

A number of models suggesting possible formation of orien-
tation selective cells in cortex have been proposed. These have
two main shortcomings. First, they employ a Mexican hat cor-
relation function in the cortex (some use it in the LGN as well
Miller, 1994). In the developing cortex, it is highly unlikely that
this structure exists (Buzás et al., 2001; Yousef et al., 2001; Roerig
and Chen, 2002). Second, competition in these models is brought
in through synaptic normalization (multiplicative or subtractive).
Normalization has its own associated problems, for linear synap-
tic weight update multiplicative normalization does not permit
positively correlated afferent to segregate, while under subtractive
normalization, a synapse either reaches the maximum allowed
value or decays to zero (Miller and MacKay, 1994). These short-
comings have brought in the necessity of introducing models
that are biologically more plausible (Miller, 1996; Elliott and
Shadbolt, 1998). It has been observed that although the hori-
zontal intra-cortical connections are still clustered at birth, the
thalamo-cortical connections are well defined (Sur and Leamey,
2001). This indicates that the Orientation selectivity observed
at birth could be manifesting out of the relatively well devel-
oped thalamo-cortical connections or the receptive fields of the
cortical cell. These findings suggest the existence of some com-
mon biological mechanisms that could be responsible for the
emergence of receptive field structure and thus orientation selec-
tivity in the visual cortex. It has been shown that competition
for neurotropic factors and neighborhood cooperation through

diffusion of leaking chemicals (that lower the threshold of the
neighboring cells and make them fire more readily on receiv-
ing same stimulus) are biological phenomenon acting in the
brain both before birth and after (Cellerino and Maffei, 1996;
Elliott and Shadbolt, 1998; McAllister et al., 1999). Models based
on this competitive and cooperative behavior have been able
to explain aspects of feature map formation of both orienta-
tion selectivity and ocular dominance (Markan, 1996; Bhaumik
and Markan, 2000; Bhaumik and Mathur, 2003). Our model
is inspired by the three layered model proposed by Bhaumik
and Mathur (2003) (see Figure 4A for the abstract sketch of
the model). However, there are some differences. While their
model aims to describe the formation of oriented receptive
fields prior to eye opening, our model also takes into account
the influence of visual experience or cortical plasticity observed
after eye opening. They use competition based on both pre
and post synaptic resource limitation and diffusion between
ON/ON center and OFF/OFF center cells, requiring precise ini-
tial connections between cells. Our resource limitation is only
post synaptic and is enforced by limiting current in the bias
transistor representing the cortical cell. The diffusion in our
model happens between all neighboring cells irrespective of their
type.

To build a hardware model of a cortical cell that exhibits
orientation selectivity, from the building block of a single ts-
WTA circuit, systematic scaling up was required. The next section
describes how this scaling up was done and how diffusive interac-
tion between ts-WTA cells was introduced.

3.1. BUILDING A FRAMEWORK FOR MULTIDIMENSIONAL FEATURE
SELECTIVITY

Any attempt at building self-organizing feature maps in hard-
ware, requires neighborhood interaction to happen in such a way
that local clusters are formed autonomously. We showed previ-
ously that this can be achieved by means of diffusive coupling
between neighboring cells by means of an RC network (Markan
et al., 2013). Biologically this happens through leaking chemicals
from active neurons and as more recently shown through gap
junction coupling (Li et al., 2012; Mrsic-Flogel and Bonhoeffer,
2012). In order to extend our design for feature selectivity over
multi-dimensional input space, we took four ts-WTA cells and
connected them in a row, with their outputs tied together in
a feed-forward manner through MOSFETs (see Figure 5). This
can be understood as a three-layered model where the first layer
is the retina, the second layer is the Lateral Geniculate Nucleus
(LGN) and the third layer is the visual cortex. While there is
one-to-one mapping between cells in layer 1 and layer 2, there
is many-to-one mapping from layer 2 to layer 3 cells, we call
these layer 2 cells the receptive field of that layer 3 cortical cell.
Therefore, now we have a cortical cell with a 1× 4 receptive field.
Individual ts-WTAs are connected to their neighbors with a 10k
diffusive resistor (RD). The output of the cortical cell is fed back
to the individual ts-WTA cells, through a resistive feedback net-
work (RF), also of 10 k, as can be seen in Figure 5. The purpose
of these resistances (RF) is to reinforce the initial bias so that the
responses of the cells become fine-tuned ensuring that the pat-
tern learnt is one of the applied patterns. The diffusion capacitor

Frontiers in Neuroscience | Neuromorphic Engineering April 2014 | Volume 8 | Article 54 | 102

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

Cortex

LGN

on-cell
off-cell Receptive field (RF)

Retina

on-cell
off-cell

LGN

Cortex

Elongated ON center OFF surround Receptive Field

LGN

Cortex

Elongated OFF center ON surround Receptive Field

A B

C

FIGURE 4 | (A) Shows the three layer abstract feed-forward model of
Orientation Selectivity. The first layer, retina, is the layer that receives inputs.
The second layer is the LGN. There is one-to-one mapping between retina
and LGN cells. The third layer is the cortex. Many LGN ON/OFF center cells

innervate at a single cortical cell forming its receptive field. (B) Shows the
elongated ON-Centered, OFF-Surround receptive field of a cortical cell
(Inspired by Hubel and Wiesel’s model of Orientation Selectivity). (C) Shows
the elongated OFF-Centered, ON-Surround receptive field of a cortical cell.

ON-Centered synapse OFF-Centered synapse

Layer 1
(Retina)

Diffusion node (dno)

OR Cell Output (out) Layer 3
(Cortex)

Layer 2
(LGN)

RF RF RF RF

RD RD RD

CD

Ro

mo
Vbias

5v

VDD

ON-Centered synapse OFF-Centered synapse

FIGURE 5 | Shows 4 ts-WTA cells connected in a row by means of diffusive

resistors (RD). The output of each cell (Vs) is connected in a feed forward
manner using mosfets with their drains connected together at node out which
is the feed forward path conveying the self activation or response of the cell.

The activation node of each cell (Vi) is connected at the diffusion node, dno,
with feedback resistances (RF). This forms the feedback network of the cell. A
small resistance Ro connects out and dno to keep both these voltages nearly
the same. The bias transistor mo represents the cortical cell. Here VDD is 6 v.

(CD) connected at node dno, is of 10 pF. To achieve cluster forma-
tion on a larger scale, it is important to achieve cluster formation
locally. To ensure formation of local clusters within the set of four
ts-WTA cells, the first and fourth ts-WTA of the cortical cell are

connected diffusively in a ring fashion (not shown in the figure).
This ensures that the receptive field develops into only one of the
four patterns (0011), (1100), (0110), (1001), in which 11 and 00
are always clustered. We took 2 such cortical cells with a 1× 4

www.frontiersin.org April 2014 | Volume 8 | Article 54 | 103

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

(ts-WTAs) receptive field. The development of the receptive fields
was analyzed in two situations. First, when the cortical cells are in
isolation and second, when they are diffusively coupled with each
other (Figures 6.1A,B).

Both the cortical cells are stimulated with the same random-
inside-epoch order of input patterns, however, their initial biases
(initial floating gate voltages of LGN cells/layer 2) are different.
The initial biases are randomly generated floating gate volt-
ages varying between 5.15 and 5.16 v. We assume that the left
branch of each ts-WTA represents an ON-Centered synapse
and the right branch represents an OFF-Centered synapse.
The inputs patterns are from the set (1100/0011), (1001/0110),
(0110/1001), (0011/1100), (1010/0101), (0101/1010). The nota-
tion (1100/0011) means that when the ON-Centered synapses
(left branches) of the four ts-WTAs of a cortical cell are stimulated
by 1100 the OFF-Centered synapses (right branches) are stimu-
lated by 0011 (as described in section 2, 1 here represents a high
voltage (+6 v), and 0 represents a low voltage (−1 v) applied for
0.02 s). This is to emulate time-staggered or uncorrelated inputs.
Please note that the patterns 0001 and 1000 are omitted from the
set because they have unequal number of 0 s and 1 s and thus
do not stimulate both the branches equally). When the input
patterns are applied in a random-inside-epoch fashion, competi-
tion between the two arms of each ts-WTA cell begins. Depending

on whether a branch is favored by the initial conditions more
or is stimulated more or both, either the ON-Centered or the
OFF-Centered branch wins. The resultant receptive field (i.e., the
floating gate voltage profile of each branch of the four ts-TWAs)
looks like one of the input patterns applied. Figure 6.2A repre-
sents the 1× 4 receptive field of cortical cell 1 and Figure 6.2B
represents the 1× 4 receptive field of cortical cell 2 when they
develop in isolation. When the two cortical cells are isolated, their
receptive fields evolve into different patterns. Here cell 1’ s recep-
tive field has evolved into 1100 whereas cell 2’ s receptive field
has evolved into 0011. However, in the second case, when the
two cells are diffusively coupled, their receptive fields evolve into
similar patterns (1100) (Figures 6.3A,B). This happens because
the diffusive node (dno) voltage, of the two cells becomes cou-
pled. When the input patterns are applied, if one of the cells has a
stronger bias for a particular input pattern the voltage at its node
dno becomes high. Since both the cells receive the same random-
inside-epoch order of inputs, the other cell also experiences this
raised voltage at its node dno for the same pattern. The feedback
resistors convey this high response back to the tunnel (T) and
injection (I) devices (Figure 1A) which modify the floating gate
voltages of all the ts-WTA cells reinforcing this pattern on them.
Over many epochs, the difference between the ON-Centered and
OFF-Centered branches of each ts-WTA cell gets amplified and

VDD

RF RF RF RF

RD RD RD

CD

Vbias

5v
RF RF RF RF

RD RD RD

CD

Vbias

5v

VDD

VDD

RF RF RF RF

RD RD RD

CD

Vbias

5v
RF RF RF RF

RD RD RD

CD

Vbias

5v

VDD

Diffusion node (dno)
Cell 1 Cell 2

A

B

Cell 1 Cell 2
RDIFF

FIGURE 6.1 | Shows 2 cortical cells Cell 1 and Cell 2 with a 1 × 4

(ts-WTA) receptive field. In (A) the two cells develop independently. In
(B) the two cells are connected at the diffusion node (dno) by means of

a resistance RDIFF for diffusive interaction. Figures 6.2, 6.3 show how
the receptive fields (floating gate voltages) evolve for the two cells in
both the situations.

Frontiers in Neuroscience | Neuromorphic Engineering April 2014 | Volume 8 | Article 54 |104

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

B

A

Time (0-20s)

Time (0-20s)

Fl
oa

tin
g G

at
e V

ol
ta

ge
s

(V
)

Cell 1

Cell 2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

FIGURE 6.2 | Shows the development of floating gate voltages of

the two cortical cells of Figure 6.1A. Here blue represents the
floating gate voltage of the ON-Centered synapse and green
represents the floating gate voltage of the OFF-Centered synapse. The

cells develop differently according to individual initial biases and inputs.
(A) Shows the four ts-WTAs of Cell 1. The pattern of receptive field
is 1100 and (B) Shows the four ts-WTAs of Cell 2. The receptive
field has evolved into 0011.

the floating gate voltages get developed for the pattern that evoked
the highest response at node dno during the initial few epochs.
Towards which pattern the competition tilts occurs depends on
the initial biases and the patterns applied and can be changed by
changing either. Hence, promising results in the form of coopera-
tion between neighboring cells are visible when two cortical cells
are diffusively coupled.

To see neighborhood cooperation and cluster formation on
a larger scale we then diffusively connected 10 cortical cells,
each with a 1× 4 receptive field, with the tenth cortical cell
connected to the first in a ring fashion. By giving all the cells
different initial biases but subjecting them to the same sequence
of random-inside-epoch patterns, interesting cluster formation
was observed (see Figure 7). Figure 7A shows the develop-
ment of the 10 cortical cells in isolation whereas Figure 7B
shows their development under diffusive interaction. In the lat-
ter, two clusters of different patterns (or feature preference)
are clearly visible. Between two opposite feature preferences
(0011 and 1100), there is gradual variation between the fea-
ture preferences (1001) [see Figure 7B cells 2, 3, and 4 (rows
2, 3, and 4 from the top)]. With this idea of extendibility
to multi-dimensional inputs and a framework for neighbor-
hood interaction and clustering in place, we now build the
circuit of a cortical cell that is capable of adapting and self-
organizing, to become selective to patterns resembling different
orientations.

3.2. ORIENTATION SELECTIVE CELL MODEL AND SIMULATION
The previous section described the architecture of a cortical cell
with a receptive field of 1× 4 (ts-WTA) LGN cells. These cells
when connected on an RC grid show diffusive interaction and
cluster formation. The Orientation Cell model has a similar three
layer topology, with retinal, LGN and cortical cells except that
instead of a 1× 4 receptive field, the orientation selective corti-
cal cell has a two dimensional, 9× 9 (ts-WTA), receptive field.
However, with some differences in component values to balance
out the effect of a larger neighborhood. The values of the diffu-
sion, (RD), and feedback resistances, (RF), are now of 1k ohm
each. A 3× 3 simplified subsection of the circuit representing
the receptive field of the cortical cell is shown in Figure 8. The
capacitance connected at the node dno is 10 pF. The feed-forward
MOSFETs connecting the common source nodes of the individual
ts-WTA cells to the cortical cell (bias transistor mo) ensure that the
self-activation of each cell is conveyed appropriately at the OR cell
output, however, since there cannot be any current in the reverse
direction, the OR cell’s output will not affect the common source
voltage at each ts-WTA. The purpose of the diffusive and feedback
resistances remains the same i.e., to ensure proper neighborhood
interaction and to fine tune the cell’s response, respectively.

A set of input patterns resembling ON-Centered and OFF-
Centered oriented bars of angles 0◦, 45◦, 90◦, and 135◦ were
created (Figure 9A). Each pattern comprises of 9× 9 blocks in
which a bright block means stimulation with a +6 v pulse given

www.frontiersin.org April 2014 | Volume 8 | Article 54 | 105

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

B

A

Time (0-20s)

Time (0-20s)

Fl
oa

tin
g G

at
e V

ol
ta

ge
s

(V
)

Cell 1

Cell 2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

0.0 6.7 13.3 20.0
4.8

5.0

5.2

FIGURE 6.3 | Shows the development of floating gate voltages of the

diffusively coupled cortical cells in Figure 6.1B. Cell 1 which seems to
have a stronger bias influences the development of Cell 2 which modifies its

original response to become similar to cell 1. (A) Shows the unchanged
response of cell 1 (1100) and (B) shows the response of cell 2 under strong
influence of neighborhood (1100).

for 0.02 s and dark block means stimulation by a−1 v pulse given
for the same duration. To ensure that the learning is not biased
towards the order in which patterns are applied, these bars were
applied in a random-inside-epoch manner, however, with two
constraints. (1) within each epoch when the left synapses of the
9× 9 ts-WTA receptive field are stimulated with an ON-Centered
oriented bar input, the right synapses are stimulated with the
same orientation but with an OFF-Centered oriented bar. This is
analogous to applying uncorrelated inputs to each ts-WTA branch
and (2) just after that, this order is reversed, meaning, the left
synapses are now stimulated with the OFF-Centered oriented bar
and the right branches with the ON-Centered oriented bar of the
same orientation angle. This is analogous to applying an orienta-
tion grating like input pattern that is necessary for orientation
map formation. Gratings ensure that all the cells in the 9× 9
receptive field are stimulated with the same oriented bar. This is
necessary for cluster formation since clusters are formed when
the cells group together according to similar feature preferences
and whether two cells have the same feature preference or not can
be known only when they receive the same inputs. Interestingly,
the prenatal brain, when external inputs are absent, retinal waves
have been identified to play the role of grating like input pat-
terns that help in building a scaffold for orientation selectivity
even before birth (Wong, 1999; Akerman et al., 2002). On the
onset of simulation, the receptive field of the orientation selective
cell i.e., 9× 9 LGN cells are given random initial biases within
5.15–5.16 v. By applying the eight different input patterns in a

random-inside-epoch manner, transient analysis on the circuit is
performed for 80 epochs. As the simulation progresses, the synap-
tic connections from the ON-Centered and OFF-Centered LGN
cells to the cortical cell compete and only one of the connections
survives, the other gets eliminated (ts-WTA action). The local
interaction between LGN cells is both competitive and cooper-
ative. Competitive because of resource limitation in each ts-WTA
cell, where only one of the connections (either ON-Centered or
OFF-Centered) survives and cooperative by means of diffusive
interaction between the neighboring ts-WTA cells, implemented
by means of diffusive resistive coupling (RD) of the 9× 9 ts-WTA
cells, in a way similar to the Ocular Dominance model implemen-
tation. Details on the feedback mechanism acting on the floating
gate pFETs in the individual ts-WTA cells and Ocular Dominance
Map formation can be found in Markan et al. (2013). The ori-
entation input pattern for which the voltage at node dno is the
highest or a pattern that is statistically more significant gets rein-
forced through the feedback resistors (RF) and the injection and
tunnel feedback mechanisms of each ts-WTA cell (as discussed
in the case for a 1× 4 receptive field) and we say that the cell is
selective to that particular orientation. Multiple simulations per-
formed with different random initial biases of LGN cells (floating
gate voltages) and different random-inside-epoch order of input
patterns result into the cell learning different oriented patterns
with equal likelihood of learning any one of the applied eight pat-
terns. A statistical analysis over 100 simulations is presented in
Tables 1A, 1B. The results show that each of the eight patterns

Frontiers in Neuroscience | Neuromorphic Engineering April 2014 | Volume 8 | Article 54 | 106

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

Time (0-40s) Time (0-40s)

Fl
oa

tin
g

ga
te

 vo
lta

ge
s (

4.5
 -

5.5
v)

Fl
oa

tin
g

ga
te

 vo
lta

ge
s (

4.5
 -

5.5
v)

1

2

3

4

5

6

7

8

9

10 10

9

8

7

6

5

4

3

2

1

0-40s0-40s

4.5
 -5

.5v

4.5
 -5

.5v

A B

FIGURE 7 | (A) Shows the development of floating gate voltages of 10 (1× 4)
ts-WTA cells in isolation. Here Cell 1 is top row, Cell 2 is 2nd row and so on.
The black, white and gray squares represent the feature preference of the
ts-WTAs. Black represents an OFF-Centered cell, white represents an
ON-Centered cell and gray represents an unbiased cell. The cells develop

differently according to individual initial biases and inputs. (B) Shows the
same 10 cells when they interact diffusively. Near neighbor cells begin to
cluster developing similar feature preference. Between two opposite patterns
(e.g., 1100 and 0011) , there is a gradual variation (1001), see responses of
Cells 2, 3, and 4.

is learnt at least 10% of the times. A video of how the receptive
field of the orientation cell evolves, starting from initial random
biases of LGN cells to an oriented bar pattern, can be found in the
supplementary material.

3.3. ORIENTATION TUNING AND PERFORMANCE UNDER ABNORMAL
STIMULATION

Experiments done on many mammals demonstrate that during
the early postnatal periods, the recording over a cortical neuron
shows nearly equal response to many orientations or only slight
bias toward a particular orientation. If the response of the cell
is plotted against different orientation angles, it is a flat curve
showing faint selectivity to many different orientations. As the
orientation selectivity of the cell develops, as a result of stim-
ulus dependent activity, the tuning curve becomes sharper at a
particular orientation (Somers et al., 1995; Dragoi et al., 2000;
Seriès et al., 2004). Similar orientation tuning is exhibited by
our orientation selective cell. Once the cell has learnt a partic-
ular orientation i.e., the floating gate voltages of the cell have
matured, the injection and tunnel voltages can be modified in
a way that stops further learning, see learning rate parameter
in Markan et al. (2013). The cell’s response to any orientation
can then be obtained by observing the output node voltage (OR
cell output node) on the application of that oriented pattern as
input. Figure 9B shows the orientation tuning curve of our cell at

different stages of receptive field development. The development
of orientation tuning is clearly visible from the shape of the curve.
Initially the cell responds equally to all orientations, depicted by
the nearly flat curve, gradually becoming selective to only one,
represented by the rising peak at one of the orientations. The Half
Width at Half Height (HWHH) was computed for each receptive
field for the 100 simulations mentioned in the previous subsec-
tion. For the receptive fields that were not very finely tuned or they
seemed to be close to more than 1 input patterns e.g., receptive
field (5,5) in Table 1A, the HWHH was computed for each case
and the receptive fields were categorized (see Table 1B) accord-
ing to the lower HWHH value. The best HWHH, i.e., the HWHH
for a highly tuned receptive field e.g., (1,4) in Table 1A is 30◦ and
worst HWHH is 40◦ for a receptive field similar to (5,5).

Some experimental results also suggest that if on the onset
of vision, animals are reared in an abnormal environment such
as one with only single stripes, the orientation tuning of a large
number of cells, that were initially tuned to different orientations,
adjust their tuning to respond to the orientation of the striped
environment in which they are reared (Sengpiel et al., 1999;
Yoshida et al., 2012) and the cortical space that was initially shared
equally by all orientations now becomes exceedingly large for the
orientation shown. In other words the orientations shown take up
the cortical space of the orientations that were never shown. To
test if similar behavior is shown by our orientation selective cell,

www.frontiersin.org April 2014 | Volume 8 | Article 54 | 107

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

6v

5v

Vbias RD = 1kΩ

RF = 1kΩ

OR Cell output
(out)

Diffusion Node
(dno)

mo

Ro = 1Ω

B D

C

A

dno out

FIGURE 8 | Simplified and distributed layout of a 3 × 3 portion of the

9 × 9 receptive field of our orientation selective cell. (A) Shows the
symbolic representation of a ts-WTA cell. In subsequent figures, the gray
square represents a ts-WTA. (B) Is the feed-forward MOSFET network that
takes the output of the individual ts-WTAs and feeds them to the OR Cell
output. This is a read out node from where self-activation of the cell can be

recorded. (C) Shows the diffusive resistance network consisting of RD, which
connects the ts-WTA cells to all their neighbors. (D) Shows the feedback
resistive network consisting of RF that feeds the output of the cell from dno
back to the individual ts-WTAs. Out and dno are connected by Ro which can
be replaced by a buffer device discussed in section 5.2. (see Figure 5 for the
lateral view, this is a top view).

De
ve

lo
pm

en
t o

f
Or

ien
te

d
Re

ce
pt

ive
 F

iel
d

Applied input patternsA B

-100 -50 0 50 100
5.15

5.2

5.25

5.3

5.35

5.4

Angles (degrees)

Re
sp

on
se

 Vo
lta

ge
 ()

vo
lts

)

HWHH

HWHH

= 40o

= 30o

-40 -30

FIGURE 9 | (A) Shows the input patterns that are applied to the orientation
cell. (B) Shows the orientation tuning curve. Initially the response of the cell
is low and similar for all input patterns. As the receptive field develops (see
on the right, bottom to top), there is increased response toward that specific

pattern as can be seen from the sharpening of the tuning curve. The half
width at half height (HWHH) parameter for the best and the worst receptive
field has been marked. The sharper the tuning, the lower is the value of
HWHH.

two sets of experiments were performed. In the first experiment,
for 20 different initial conditions, 8 different orientation patterns
were applied. It was found that for 20 simulations, the receptive
fields developed into one of the eight patterns, with nearly equal

probability. Now, for the same set of initial conditions, we applied
only six patterns (two horizontal patterns, 1 ON-Centered and
one OFF-Centered were omitted). The results are summarized
in Tables 2, 3. It was observed that for 20 simulations, the cell

Frontiers in Neuroscience | Neuromorphic Engineering April 2014 | Volume 8 | Article 54 | 108

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

Table 1A | Results of 100 simulations of the orientation selective cell performed with different random initial biases and different

random-inside-epoch inputs.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

now developed according to the 6 patterns applied with nearly
equal probability. Therefore the space that was earlier occupied by
eight patterns was now equally distributed amongst six patterns.
The cell demonstrated adaptive cortical plasticity by developing
receptive fields according to the applied patterns. However, if the
initial biases very strongly favor one of the missing patterns, like in
Table 3, 2nd row 4th column, the receptive field develops accord-
ing to the initial bias rather than the applied patterns. This kind

of adaptive plasticity to accommodate abnormal inputs may not
be possible in the model by Bhaumik and Mathur (2003) since
their model does not take into account the effect of external
stimulation.

3.4. ANALYZING THE EFFECT OF NATURE Vs NURTURE
It is known that both Nature (genetic biases) and Nurture
(environmental factors) play an important role in feature map

www.frontiersin.org April 2014 | Volume 8 | Article 54 | 109

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

Table 1B | Analysis of 100 simulations.

Orientation Receptive Field

Appearance
(no. of times)

in 100 simulations
10 19 12 11 1 3 12 1 3 9

*The evolved receptive field sometimes resembles two different orientations. In such cases the response towards both the orientations was noted and HWHH was

computed in each case. The categorization was done on the basis of the lower HWHH.

Table 2 | Summary of 20 simulations of orientation selective cell with all 8 oriented patterns applied as inputs.

Table 3 | Summary of 20 simulations of orientation selective cell with horizontal patterns missing.

Table 4A | Summary of 20 simulations of orientation selective cell with same initial conditions but different random-inside-epoch order of

input patterns.

formation. To understand how our orientation selective cell
responds to nature (initial biases) vs nurture (pattern stimu-
lation) and to gauge how close it is to biology, two sets of
experiments were performed. In the first experiment, repeated
simulations were performed by keeping the initial biases over the
9× 9 LGN cells the same, but changing the random-inside-epoch
order of input patterns over all the epochs. Statistical analysis
over 20 simulations showed that 80% of the times the cell learnt

a different oriented pattern, highlighting that stimulus driven
activity can override the orientation bent due to the initial float-
ing gate voltages in most of the cells. In the second experiment,
the random-inside-epoch order in which inputs are applied was
kept constant (creating preference for one of the patterns) over
all the simulations but the initial biases were changed every time.
It was observed that although 70% of the times the cell devel-
oped the same oriented receptive field, but 30% of the times it

Frontiers in Neuroscience | Neuromorphic Engineering April 2014 | Volume 8 | Article 54 | 110

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

Table 4B | Summary of 20 simulations of orientation selective cell with different initial conditions but same random-inside-epoch order of

input patterns.

A

B

C

D

Input patterns in the form of gratings of different orientations

OR Cell

Response to periodic patterns

OR Cell

Response to spatial frequency
Input patterns with different spatial frequencies

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

FIGURE 10 | Shows the response of the Orientation Cell to patterns of

different spatial frequencies and periodic patterns of different

orientations. (A) Shows patterns of different spatial frequencies that are
applied as inputs to the OR Cell. (B) Shows the patterns that the cell learns.

Each simulation results in the circuit learning one of the input patterns with
equal probability. (C) Shows periodic patterns of different orientations that are
applied as inputs to the OR cell. (D) Shows the periodic patterns that the cell
learns.

did learn other patterns. This experiment brings out that it is
not just the input patterns applied, but the unique combination
of the inputs and the initial biases that decides which oriented
pattern the cell would learn or become selective to, bearing close
analogy to experimental findings. The results are summarized in
Tables 4A, 4B.

4. RESPONSE TO SPATIAL FREQUENCY AND PERIODIC
PATTERNS

Cells in the primary visual cortex are also known to respond to the
spatial frequency of visual inputs (Maffei and Fiorentini, 1973;
Tootell et al., 1981; De Valois et al., 1982; Everson et al., 1998).
Some cells respond to low spatial frequencies, some to high spatial
frequencies, essentially forming spatial low pass, band pass and
high pass filters that act on the visual inputs. To test if our cell
could also be selective to the spatial frequency of applied inputs,
we presented the circuit with patterns of different spatial frequen-
cies (Figure 10A). The simulations were performed in the same

way as described in section 3.2 except for the new input patterns
that have orientations of different spatial frequencies. We took
only two spatial frequencies (low and high). Repeated simulations
resulted in the cell learning orientations of different spatial fre-
quencies (Figure 10B). However, it was observed that the learning
time of the cell increased as compared to when all inputs are of the
same spatial frequency.

Certain cells in the visual cortex are also known to be selec-
tive to periodic patterns (Von der Heydt et al., 1992). These
cells respond vigorously to gratings but not so much to bars
or edges. Since these cells are not sensitive to the spatial fre-
quencies of the gratings but are only specialized for detection
of periodic patterns, they seem to have a role in the perception
of texture. In order to test if our circuit could have a similar
response to periodic patterns, we presented our circuit with input
patterns that resembled gratings of different orientations (see
Figure 10C). After several epochs of it was observed that the cell’s
receptive field developed according to one of the grating patterns

www.frontiersin.org April 2014 | Volume 8 | Article 54 | 111

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

A B

C

FIGURE 11 | In order to isolate the OR cell output (out) which conveys

the self-activation of the cell, from the diffusion node (dno) at which

other orientation cells connect and to prevent loading of node out, a

buffer device is created. (A) Shows the characteristic response of the

buffer device. The device is linear, and has a double inverting effect on the
voltage at node out. The VDD is 6 v. (B) Shows a typical design of the
buffer device. (C) Shows an abstract symbol for orientation selective cell
along with the buffer device.

(Figure 10D). Repeated simulations with different initial biases
and different random-inside-epoch order of inputs resulted in the
cell’s receptive field evolving into one of the eight grating pat-
terns with equal probability. These experiments show that the
cell developed is generic and is extendable to recognizing many
different patterns.

5. DIFFUSIVE INTERACTION OF CELLS
Feature map formation is based on three important tenets: conti-
nuity, diversity and global order. Continuity requires that nearby
cells share the same feature preference. Diversity means that there
is equal representation of all possible feature preferences and
global order implies that there is a periodic organization of differ-
ent features over the entire cortical surface. Literature sites several
mechanisms that coordinate the development of feature selectiv-
ity of single cells under neighborhood influence (Grossberg and
Olson, 1994). The essence of these mechanisms is that if cells have
overlapping receptive fields and they receive similar inputs, then
if they can be forced to have similar responses, Hebbian Learning
mechanism will ensure that the individual cells’ receptive fields
develop to form clusters. As discussed earlier, this poses certain
requirements on the behavior of the learning cell and the neigh-
borhood function. Firstly, it demands that the learning cell should
allow modulation of its feature selectivity under neighborhood
influence. Secondly, it demands for a neighborhood function that

is capable of generating an appropriate signal that can modulate
the development of feature selectivity of a cell in concordance
with other cells in the cluster.

Diffusive-Hebbian learning based on the biological phe-
nomenon of reaction-diffusion has been shown to be effective
in forming clusters of cells with similar feature preference and
has also been used to model Ocular Dominance and Orientation
Selectivity Map Formation (Markan, 1996; Krekelberg, 1997;
Markan and Bhaumik, 1999; Bhaumik and Markan, 2000;
Bhaumik and Mathur, 2003). Biologically, this happens by means
of leaking chemicals coming out of an active cell, that lower
the threshold of the neighboring cells. Reaction-diffusion can be
easily implemented by an RC network as shown in Shi (2009)
and Markan et al. (2013). The development of individual cells
and cells under diffusive interaction varies significantly. If the
cells have different initial biases then in the absence of diffu-
sive coupling they develop into cells with different orientation
preferences. On the other hand, the presence of diffusive cou-
pling causes nearby cells to have a similar voltage (at node
dno) and hence the injection and tunnel feedback that they
receive is also the same. Therefore, if the two cells receive sim-
ilar inputs, they develop to have similar feature preference. The
stronger cell (the cell that generates a higher voltage at node
dno) tends to influence the development of the weaker cells
around it.

Frontiers in Neuroscience | Neuromorphic Engineering April 2014 | Volume 8 | Article 54 | 112

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

5.1. MODIFICATION OF ORIENTATION TUNING UNDER
NEIGHBORHOOD INFLUENCE

As discussed earlier, for any map formation, diffusive interaction
between cells should happen in such a way that it leads to
formation of clusters of cells having similar feature selectivity.
This is possible if some of the cells change their feature preference
when they are surrounded by strongly biased cells, forming clus-
ters showing gradual variation in orientation selectivity between
clusters. This means that some kind of mechanism needs to be
present that helps the cell in overcoming its initial orientation bias
to develop an orientation preference according to the neighbor-
hood influence. In our orientation cell this is achieved by ensuring
two things. (1). Keeping the time constant of the diffusive RC
network (τDiffusion) much smaller than the time constant of the
orientation cell (τReaction) and (2). Limiting the amount of learn-
ing in each iteration by applying input patterns for a very short
duration (0.02 ms). The first condition ensures that diffusion has
precedence over reaction and the strong neighborhood influence
is able to modify the individual bias of an orientation cell and the
second condition makes sure that the learning in the orientation
cell is at a pace that is suitable for diffusion to influence its devel-
opment i.e., the floating gate voltages are allowed to change by
only a small amount in every iteration. This is required because

once the difference between the floating gate voltages of the two
arms of the ts-WTA becomes large, it cannot be reversed.

It may be noted that the diffusion node (dno) voltage varies
between 5.1 and 5.4 volts as the receptive field develops. After
development, the response of a developed cell to the pattern that it
favors, measured at the diffusion node (dno) is around 5.4 volts.
Interestingly, if we apply 5.4 volts to node dno externally, for a
pattern of our choice, and do this repeatedly, the circuit begins
to develop preference for that orientation instead of its natural
bias. Therefore, the receptive field development of the orientation
selective cell can be modulated externally by applying appropri-
ate voltage at the dno node of the cell for a particular pattern.
This way we force a high response for a pattern of our choice,
which causes the feedback mechanism to reinforce the desired
pattern on to the individual ts-WTA cells in the 9× 9 receptive
field. It was observed that as the floating gate voltages become
more developed (developed floating gate voltages mean that the
difference between the floating gate voltages of the two synapses
of the individual ts-WTA cells has become large) it becomes diffi-
cult to modulate the orientation preference of the cell. For fully
developed floating gate voltages, i.e., strong orientation prefer-
ence, modulation does not happen at all, and the cells preserve
their original response as expected. Details of how the floating

A

C

B

D

FIGURE 12 | (A) Shows the independent development of receptive fields of
three orientation selective cells with different initial biases and same random
inside epoch order of inputs. (B) Shows the development of the same three
cells with the initial conditions and order of inputs same as (A), but with
diffusive interaction between neighbors. All the cells develop similar feature

preference. (C) Two more example of cells developing independently under
the same random inside epoch order of inputs but different initial biases.
(D) Shows the development of the same cells as (C) under diffusive coupling.
Diffusion causes the cells to develop the same feature preference in each
case.

www.frontiersin.org April 2014 | Volume 8 | Article 54 | 113

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

gate voltages vary during unlearning and the influence of injec-
tion and tunnel voltages are examined critically in Markan et al.
(2013).

5.2. BUFFER DEVICE FOR DIFFUSIVE COUPLING
When more than one orientation cells are connected with each
other diffusively using resistances at the diffusion node (dno), the
increased current at the node dno tends to undesirably load the
output node or OR cell output (out) (Figures 5, 8). Since the OR
cell output (out) node conveys the self-activation of each cell, this
value should not get altered. In order to avoid this loading effect,
we designed a buffer device (B) that shields the orientation cell
output (activation) from the excessive current coming to the node
dno of each orientation cell from other diffusively coupled cells.
This device ensures that the self-activation (feedforward network)
of the orientation cell driving the voltage at node out can influ-
ence the voltage at node dno, that drives the feedback network,
but node dno cannot influence the voltage at node out directly.
This buffer device is essentially a linear device that inverts the
voltage at the OR cell output (out) twice and feeds it to the dno
node (see Figures 8, 11). This way current only flows in one direc-
tion, i.e., out of OR cell output node and not into it. A typical
design of the buffer device is shown in Figure 11B, however, any
other device performing the same function can be used as well.

5.3. SIMULATION OF DIFFUSIVE INTERACTION BETWEEN CELLS
In order to test if our orientation cell fulfills the premise laid down
for diffusive interaction between cells, we performed multiple
simulations with orientation cells having different initial biases
but similar random inside epoch order of inputs, and we let them

FIGURE 13 | Shows the variation of current in the resistance, Rdiff,

connecting two orientation selective cells. The top boxes show the
evolution of receptive field of orientation cell 1 and the bottom boxes show
the evolution of receptive field of orientation cell 2. The current is high
(∼150 µA) during the learning phase. Once the orientation has been learnt,
or the floating gate voltages have matured, the current reduces and
remains constant thereafter.

develop under two conditions, (1) independently, i.e., without
any diffusive interaction and, (2) with diffusive interaction. As
discussed previously, the voltage at node dno affects the feedback
that regulates the response of the cell. If we connect two orien-
tation cells at the diffusive node (dno) by means of a resistance,
then on receiving similar inputs, the cell with the higher voltage
at node dno, starts to influence the response of the other cell by
making the injection and tunnel feedback mechanisms of both
the cells similar, thus enforcing the same pattern on each of the
cells. By changing the value of the diffusion resistance (by increas-
ing the resistance we reduce diffusion constant and by reducing
its value we increase the diffusion) we can modify the extent of
interaction we want between the cells. Several experiments were
performed with different diffusion constants, different biases and
different inputs. Each time for moderate(300> Rdiff >100 Ohms)
and high values of diffusion constant(100 > Rdiff >0 Ohms), it
was found that the response of the two cells became similar.
To which side the orientation preference tilts is dependent on
which cell has a stronger bias. The simulations were done for two
and three cells connected in a row. Figure 12 shows some of the
interesting results. Irrespective of the way the cells develop inde-
pendently, whether one is ON-Centered and other OFF-Centered,
whether their orientation preferences are totally opposite of each
other i.e., 135◦ and 45◦, with diffusion, they become selective to
the same orientation. It is important to note that the lateral diffu-
sive network and the feedback network are only important as long
as the learning is taking place and the receptive field of the cells
are developing. Once the receptive fields have evolved, the lat-
eral connectivity i.e., RC diffusive network and the cell’s feedback
network become ineffective and the cell work’s in a feed forward
mode where in on applying a set of inputs, the cell responds
according to its developed orientation preference. The power dis-
sipation also varies according to the learning profile of the cell e.g.,
between two orientation cells connected by a 100 ohm resistance,
the current through the diffusive resistor is maximum (∼150 µA)
during learning but reduces drastically (∼10 µA) once the learn-
ing is over (Figure 13). The power can be reduced by shifting the
whole resistance regime of the cell to larger values but keeping the
necessary ratio between (τDiffusion) and (τReaction) intact.

6. RESULTS AND DISCUSSION
Time-staggered or uncorrelated inputs have been shown to be
essential for feature map formation (Stryker and Strickland, 1984;
Weliky and Katz, 1997; Buffeli et al., 2002; Zhang et al., 2002).
The time-staggered Winner Takes All algorithm, based on un-
correlated inputs, has previously been shown to be biologically
more realistic and a mechanism underlying formation of Ocular
Dominance Maps (Markan et al., 2013). This paper introduces
the design of a cortical cell that is built using ts-WTA cells
comprising of ON/OFF Centered synapses forming a three lay-
ered structure similar to the visual sensory system in the brain.
On application of patterns resembling different orientations, the
floating gate dynamics, the diffusive interaction and the feedback
regime act in a way that the cell is able develop orientation selec-
tivity. Repeated simulations show that the orientation selectivity
develops according to two major factors, initial biases(nature) and
the inputs applied(nurture) and that there is an equal likelihood

Frontiers in Neuroscience | Neuromorphic Engineering April 2014 | Volume 8 | Article 54 | 114

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

of the circuit becoming selective to any of the eight patterns
applied. Embedded in a RC grid, these orientation selective cells
are able to modify their feature preference under strong neigh-
borhood influence to form clusters of cells with similar feature
preference. The cell also responds to periodic patterns and spa-
tial frequency just like experimentally observed cells of the visual
cortex. This is a significant step toward developing neuromorphic
equivalents of biological phenomenon that could have diverse
applications in artificial vision systems.

Diffusive hebbian learning based on reaction-diffusion and
competition for neurotropic factors (Markan, 1996; Markan and
Bhaumik, 1999; Bhaumik and Mathur, 2003), has strong biologi-
cal support as basis to explain local computation and organization
in the brain. It is now well known that the developing cortex
is a generic neural structure that gets compartmentalized for
processing different sensory inputs through an adaptive learn-
ing process. It therefore becomes important to explore the basic
learning paradigms that are active in the brain, which are able to
extract statistically relevant information from the sensory input
space and map it onto the cortex, so that such principles can be
applied in artificial systems. In this sense, the model developed
is very generic and can be applied to inputs from any sensory
modality such as olfaction, gustatory, somatosensory and audi-
tory. Some preliminary work also demonstrates the applicability
of the model to abstract pattern recognition. In the brain no
sensory system works in isolation. Rather, it is a combination
of sensory inputs to different sensory modalities that the brain
responds best to. Eventual integration of features maps, corre-
sponding to different sensory systems, onto a common platform
could act as a database for higher cognitive algorithms to work
on. The work presented in this paper is a small yet significant
step toward the goal of building truly cognitive neuromorphic
systems because it presents a novel approach towards incorpo-
rating adaptability and learning in artificial systems by modeling
the developmental aspects of feature selectivity and feature map
formation in the brain. While reaction diffusion has been able
to address local range, non-axonal interactions in the brain and
explain how cortical feature maps evolve to a large extent, more
recent research has highlighted the role of gap junctions in lateral
information processing in the brain (Hameroff, 2010; Ebner and
Hameroff, 2011; Gupta and Markan, 2013). Experiments have
revealed that sibling neurons connected by gap junctions develop
to have the same feature preference (Li et al., 2012; Mrsic-Flogel
and Bonhoeffer, 2012). Since gap junctions can form networks of
neurons spanning large areas of the cortex, understanding how
they function, could give us new insights into multi-modal infor-
mation processing in the brain. It seems interesting to explore
gap junctions and see how similar behavior can be emulated in
hardware.

ACKNOWLEDGMENTS
This work was funded by research grants to C. M.
Markan, (III.6(74)/99-ST(PRU)) under SERC Robotics
and Manufacturing PAC, and (SR/CSI/22/2008-12) under
Cognitive Science Research Initiative, Department of Science and
Technology, Govt. of India. The authors wish to acknowledge the
funding sources and the Department of Physics and Computer

Science, Dayalbagh Educational Institute, Agra, India for the
support.

SUPPLEMENTARY MATERIAL
A video showing the development of oriention receptive field has
been made available as a part of the online supplementary data. A
document on the Monte-Carlo Analysis of the cell under device
parameter variations has also been provided in the supplementary
section. The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnins.
2014.00054/abstract

REFERENCES
Akerman, C. J., Smyth, D., and Thompson, I. D. (2002). Visual experience before

eye-opening and the development of the retinogeniculate pathway. Neuron 36,
869–879. doi: 10.1016/S0896-6273(02)01010-3

Bartolozzi, C., and Indiveri, G. (2007). Synaptic dynamics in analog VLSI. Neural
Comput. 19, 2581–2603. doi: 10.1162/neco.2007.19.10.2581

Bhaumik, B., and Markan, C. M. (2000). “Orientation map: a reaction diffusion
based model,” in Proceedings of IJCNN ’2000 (Como, Italy).

Bhaumik, B., and Mathur, M. (2003). A cooperation and competition based sim-
ple cell receptive field model and study of feed-forward linear and nonlinear
contributions to orientation selectivity. J. Comput. Neurosci. 14, 211–227. doi:
10.1023/A:1021911019241

Buffeli, M., Busetto, G., Cangiano, L., and Cangiano, A. (2002). Perinatal
switch from synchronous to asynchronous activity of motoneurons: link
with synapse elimination. Proc. Natl. Acad. Sci. U.S.A. 99, 13200–13205. doi:
10.1073/pnas.202471199

Buzás, P., Eysel, U. T., Adorján, P., and Kisvárday, Z. F. (2001). Axonal topography of
cortical basket cells in relation to orientation, direction, and ocular dominance
maps. J. Comp. Neurol. 437, 259–285. doi: 10.1002/cne.1282

Carrillo, J., Nishiyama, N., and Nishiyama, H. (2013). Dendritic translocation
establishes the winner in cerebellar climbing fiber synapse elimination. J.
Neurosci. 33, 7641–7653. doi: 10.1523/JNEUROSCI.4561-12.2013

Cellerino, A., and Maffei, L. (1996). The action of neurotrophins in the devel-
opment and plasticity of the visual cortex. Prog. Neurobiol. 49, 53–71. doi:
10.1016/S0301-0082(96)00008-1

Chakrabartty, S., and Cauwenberghs, G. (2007). Sub-microwatt analog VLSI
trainable pattern classifier. IEEE J. Solid State Circ. 42, 1169–1179. doi:
10.1109/JSSC.2007.894803

Chan, V., Liu, S. C., and van Schaik, A. (2007). AER EAR: a matched silicon cochlea
pair with address event representation interface. IEEE Trans. Circ. Syst. I Reg.
Pap. 54, 48–59. doi: 10.1109/TCSI.2006.887979

Chapman, B., Stryker, M. P., and Bonhoeffer, T. (1996). Development of orientation
preference maps in ferret primary visual cortex. J. Neurosci. 16, 6443–6453.

Chenling, H., and Chakrabartty, S. (2012). An asynchronous analog self-powered
CMOS sensor-data-logger with a 13.56 MHz RF programming interface. IEEE
J. Solid-State Circ. 47, 1–14. doi: 10.1109/JSSC.2011.2172159

Chicca, E., Whatley, A. M., Lichtsteiner, P., Dante, V., Delbruck, T., Del Giudice,
P., et al. (2007). A multichip pulse-based neuromorphic infrastructure and its
application to a model of orientation selectivity. IEEE Trans. Circ. Syst. I Reg.
Pap. 54, 981–993. doi: 10.1109/TCSI.2007.893509

Choi, T. Y. W., Merolla, P. A., Arthur, J. V., Boahen, K. W., and Shi, B. E. (2005).
Neuromorphic implementation of orientation hypercolumns. IEEE Trans. Circ.
Syst. I, 52, 1049–1060. doi: 10.1109/TCSI.2005.849136

De Valois, R. L., Albrecht, D. G., and Thorell, L. G. (1982). Spatial frequency selec-
tivity of cells in macaque visual cortex. Vis. Res. 22, 545–559. doi: 10.1016/0042-
6989(82)90112-2

Diorio, C., Hasler, P., Minch, B., and Mead, C. (1996). A single transistor silicon
synapse. IEEE Trans. Electron Devices 43, 1972–1980. doi: 10.1109/16.543035

Dragoi, V., Sharma, J., and Sur, M. (2000). Adaptation-induced plasticity of orien-
tation tuning in adult visual cortex. Neuron 28, 287–298. doi: 10.1016/S0896-
6273(00)00103-3

Ebner, M., and Hameroff, S. (2011). Lateral information processing by spiking
neurons: a theoretical model of the neural correlate of consciousness. Comput.
Intell. Neurosci. 2011:11. doi: 10.1155/2011/xya247879

www.frontiersin.org April 2014 | Volume 8 | Article 54 | 115

http://www.frontiersin.org/journal/10.3389/fnins.2014.00054/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2014.00054/abstract
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

Elliott, T., and Shadbolt, N. R. (1998). Competition for neurotrophic factors: ocular
dominance columns. J. Neurosci. 18, 5850–5858.

Everson, R. M., Prashanth, A. K., Gabbay, M., Knight, B. W., Sirovich, L.,
and Kaplan, E. (1998). Representation of spatial frequency and orienta-
tion in the visual cortex. Proc. Natl. Acad. Sci. U.S.A. 95, 8334–8338. doi:
10.1073/pnas.95.14.8334

Favero, M., Busetto, G., and Cangiano, A. (2012). Spike timing plays a key role in
synapse elimination at the neuromuscular junction. Proc. Natl. Acad. Sci. U.S.A.
109, E1667–E1675. doi: 10.1073/pnas.1201147109

Grossberg, S. (1976). Adaptive pattern classification and universal recoding: I.
Parallel development and coding of neural feature detectors. Biol. Cybern. 23,
121–134. doi: 10.1007/BF00344744

Grossberg, S., and Olson, S. J. (1994). Rules for the cortical map of ocular domi-
nance and orientation columns. Neural Netw. 7, 883–894. doi: 10.1016/S0893-
6080(05)80150-9

Gupta, P., and Markan, C. M. (2013). Exploring a quantum-Hebbian approach
towards learning and cognition. NeuroQuantology 11, 416–425. doi:
10.14704/nq.2013.11.3.669

Hameroff, S. (2010). The conscious pilot-dendritic synchrony moves through the
brain to mediate consciousness. J. Biol. Phys. 36, 71–93. doi: 10.1007/s10867-
009-9148-x

Hikawa, H., Harada, K., and Hirabayashi, T. (2007). Hardware feedback self-
organizing map and its application to mobile robot location identification.
JACIII 11, 937–945.

Horng, S. H., and Sur, M. (2006). Visual activity and cortical rewiring: activity-
dependent plasticity of cortical networks. Prog. Brain Res. 157, 3–381. doi:
10.1016/S0079-6123(06)57001-3

Hsu, D., Figueroa, M., and Diorio, C. (2002). Competitive learning with
floating-gate circuits. IEEE Trans. Neural Netw. 13, 732–744. doi:
10.1109/TNN.2002.1000139

Hubel, D. H., and Wiesel, T. N. (1959). Receptive fields of single neurones in the
cat’s striate cortex. J. Physiol. 148, 574–591.

Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. J. Physiol. 160, 106.

Indiveri, G. (2001). A current-mode hysteretic winner-take-all network, with exci-
tatory and inhibitory coupling. Analog Integr. Circ. Signal Process. 28, 279–291.
doi: 10.1023/A:1011208127849

Indiveri, G. (2008). Neuromorphic VLSI models of selective attention: from sin-
gle chip vision sensors to multi-chip systems. Sensors 8, 5352–5375. doi:
10.3390/s8095352

Indiveri, G., Chicca, E., and Douglas, R. (2006). A VLSI array of low-power spik-
ing neurons and bistable synapses with spike-timing dependent plasticity. IEEE
Trans. Neural Netw. 17, 211–221. doi: 10.1109/TNN.2005.860850

Indiveri, G., Chicca, E., and Douglas, R. J. (2009). Artificial cognitive systems: from
VLSI networks of spiking neurons to neuromorphic cognition. Cogn. Comput.
1, 119–127. doi: 10.1007/s12559-008-9003-6

Indiveri, G., and Horiuchi, T. K. (2011). Frontiers in neuromorphic engineering.
Front. Neurosci. 5:118. doi: 10.3389/fnins.2011.00118

Indiveri, G., Oswald, P., and Kramer, J. (2002). An adaptive visual tracking sensor
with a hysteretic winner-take-all network. IEEE Int. Symp. Circ. Syst. 2, 324–327.
doi: 10.1109/ISCAS.2002.1010990

Jegelka, S., Bednar, J. A., and Miikkulainen, R. (2006). Prenatal development of
ocular dominance and orientation maps in a self-organizing model of V1.
Neurocomputing 69, 1291–1296. doi: 10.1016/j.neucom.2005.12.094

Kohonen, T. (1993). Physiological interpretation of the self organizing map algo-
rithm. Neural Netw. 6, 895–905. doi: 10.1016/S0893-6080(09)80001-4

Kohonen, T. (2006). Self-organizing neural projections. Neural Netw. 19, 723–733.
doi: 10.1016/j.neunet.2006.05.001

Krekelberg, B. (1997). Modelling cortical self-organization by volume learning.
London: Doctoral dissertation.

Kruger, W. F., Hasler, P., Minch, B. A., and Koch, C. (1997). An adaptive WTA using
floating gate technology. Adv. Neural Inform. Processing Syst. 720–726.

Kuffler, S. W. (1953). Discharge patterns and functional organization of mam-
malian retina. J. Neurophysiol. 16, 37–68.

Lam, S. Y. M., Shi, B. E., and Boahen, K. (2005). Self-organized cortical map
formation by guiding connections. IEEE Int. Symp. Circ. Syst. 5, 5230–5233.

Lazzaro, J., Ryckebusch, S., Mahowald, M. A., and Mead, C. A. (1989). Winner-
Take-All Networks of O (n) Complexity NIPS 1. San Mateo, CA: Morgan
Kaufman Publishers.

Li, Y., Lu, H., Cheng, P. L., Ge, S., Xu, H., Shi, S. H., et al. (2012). Clonally related
visual cortical neurons show similar stimulus feature selectivity. Nature 486,
118–121. doi: 10.1038/nature11110

Lichtman, J. W. (2009). It’s lonely at the top: winning climbing fibers ascend
dendrites solo. Neuron 63, 6–8. doi: 10.1016/j.neuron.2009.07.001

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128× 128 120 dB 15 μs
latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circ.
43, 566–576. doi: 10.1109/JSSC.2007.914337

Maffei, L., and Fiorentini, A. (1973). The visual cortex as a spatial frequency
analyser. Vis. Res. 13, 1255–1267. doi: 10.1016/0042-6989(73)90201-0

Markan, C. M. (1996). Sequential development of orientation and ocular domi-
nance maps: reaction diffusion approach. Ph.D. thesis, Department of Electrical
Engineering, (Delhi: IIT).

Markan, C. M., and Bhaumik, B. (1999). “A diffusive Hebbian model for cortical
orientation maps formation,” in Proceedings of IJCNN ’99 (Washington, DC).
doi: 10.1109/IJCNN.1999.831482

Markan, C. M., Gupta, P., and Bansal, M. (2007). “Neuromorphic building blocks
for adaptable cortical feature maps,” IFIP International Conference on VLSI,
15–17 Oct 2007 (Atlanta, GA).

Markan, C. M., Gupta, P., and Bansal, M. (2013). An adaptive neuromorphic
model of Ocular Dominance map using floating gate “synapse.” Neural Netw.
45, 117–133. doi: 10.1016/j.neunet.2013.04.004

Martn-del-Bro, B., and Blasco-Alberto, J. (1995). “Hardware-oriented models for
VLSI implementation of self-organizing maps,” in From Natural to Artificial
Neural Computation, eds J. Mira and F. Sandoval (Berlin: Springer), 712–719.
doi: 10.1007/3-540-59497-3_242

McAllister, A. K., Katz, L. C., and Lo, D. C. (1999). Neurotrophins
and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318. doi:
10.1146/annurev.neuro.22.1.295

Merolla, P. A., Arthur, J. V., Shi, B. E., and Boahen, K. A. (2007). Expandable net-
works for neuromorphic chips. IEEE Trans. Circ. Syst. I Reg. Pap. 54, 301–311.
doi: 10.1109/TCSI.2006.887474

Miller, K. D. (1994). A model for the development of simple cell receptive
fields and the ordered arrangement of orientation columns through activity-
dependent competition between ON and OFF-center inputs. J. Neurosci. 14,
409–409.

Miller, K. D. (1996). “Receptive fields and maps in the visual cortex: models of
ocular dominance and orientation columns,” in Models of neural networks III
(New York, NY: Springer), 55–78. doi: 10.1007/978-1-4612-0723-8_2

Miller, K. D., and MacKay, D. J. (1994). The role of constraints in Hebbian learning.
Neural Comput. 6, 100–126. doi: 10.1162/neco.1994.6.1.100

Misgeld, T. (2011). Lost in elimination: mechanisms of axonal loss. e-Neuroforum
2, 21–34. doi: 10.1007/s13295-011-0017-2

Mooney, R., Penn, A. A., Gallego, R., and Shatz, C. J. (1996). Thalamic relay
of spontaneous retinal activity prior to vision. Neuron 17, 863–874. doi:
10.1016/S0896-6273(00)80218-4

Mrsic-Flogel, T. D., and Bonhoeffer, T. (2012). Neuroscience: sibling neurons bond
to share sensations. Nature 486, 41–42. doi: 10.1038/486041a

Personius, K. E., Chang, Q., Mentis, G. Z., O’Donovan, M. J., and Balice-Gordon, R.
J. (2007). Reduced gap junctional coupling leads to uncorrelated motor neuron
firing and precocious neuromuscular synapse elimination. Proc. Natl. Acad. Sci.
U.S.A. 104, 11808–11813. doi: 10.1073/pnas.0703357104

Rahimi, K., Diorio, C., Hernandez, C., and Brockhausen, M. D. (2002). “A simula-
tion model for floating-gate MOS synapse transistors,” in IEEE International
Symposium on Circuits and Systems, 2002. ISCAS 2002, Vol. 2 (Phoenix-
Scottsdale, AZ: IEEE), II–532. doi: 10.1109/ISCAS.2002.1011042

Roerig, B., and Chen, B. (2002). Relationships of local inhibitory and excitatory
circuits to orientation preference maps in ferret visual cortex. Cereb. Cortex 12,
187–198. doi: 10.1093/cercor/12.2.187

Schemmel, J., Fieres, J., and Meier, K. (2008). “Wafer-scale integration of analog
neural networks,” in IEEE International Joint Conference on Neural Networks,
2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence) (Hong
Kong: IEEE), 431–438. doi: 10.1109/IJCNN.2008.4633828

Sengpiel, F., Stawinski, P., and Bonhoeffer, T. (1999). Influence of experience on
orientation maps in cat visual cortex. Nat. Neurosci. 2, 727–732. doi: 10.1038/
11192

Seriès, P., Latham, P. E., and Pouget, A. (2004). Tuning curve sharpening for orien-
tation selectivity: coding efficiency and the impact of correlations. Nat. Neurosci.
7, 1129–1135. doi: 10.1038/nn1321

Frontiers in Neuroscience | Neuromorphic Engineering April 2014 | Volume 8 | Article 54 | 116

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Gupta and Markan Neuromorphic orientation selectivity

Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco,
A., Paz-Vicente, R., Gomez-Rodriguez, F., et al. (2005). “AER build-
ing blocks for multi-layer multi-chip neuromorphic vision systems,”
in NIPS (Vancouver, BC: Vancouver).

Shi, B. E. (2009). The effect of mismatch in currentversus voltagemode resistive
grids. Int. J. Circ. Theor. Appl. 37, 53–65. doi: 10.1002/cta.494

Shi, B. E., Tsang, E. K. S., Lam, S. Y., and Meng, Y. (2006). “Expandable hardware
for computing cortical feature maps,” in Proceedings 2006 IEEE International
Symposium on Circuits and Systems, 2006. ISCAS 2006 (Island of Kos: IEEE).
doi: 10.1109/ISCAS.2006.1693407

Shouval, H. Z., Goldberg, D. H., Jones, J. P., Beckerman, M., and Cooper, L. N.
(2000). Structured long-range connections can provide a scaffold for orienta-
tion maps. J. Neurosci. 20, 1119–1128.

Shuo, S., and Basu, A. (2011). “Analysis and reduction of mismatch in silicon neu-
rons,” in Proceedings of IEEE Biomedical Circuits and Systems Conference (San
Diego, CA), 257–260.

Somers, D. C., Nelson, S. B., and Sur, M. (1995). An emergent model of
orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15,
5448–5465.

Srinivasan, V., Graham, D. W., and Hasler, P. (2005). “Floating-gates tran-
sistors for precision analog circuit design: an overview,” in 48th Midwest
Symposium on Circuits and Systems, 2005 (Covington, KY: IEEE), 71–74. doi:
10.1109/MWSCAS.2005.1594042

Stent, G. S. (1973). A physiological mechanism for Hebb’s postulate of learning.
Proc. Natl. Acad. Sci. U.S.A. 70, 997–1001. doi: 10.1073/pnas.70.4.997

Stryker, M. P., and Strickland, S. L. (1984). Physiological segregation of ocular
dominance columns depends on the pattern of afferent electrical activity. Invest.
Opthalmol. Vis. Sci. 25, 278.

Sur, M., and Leamey, C. A. (2001). Development and plasticity of cortical areas and
networks. Nat. Rev. Neurosci. 2, 251–262. doi: 10.1038/35067562

Taba, B., and Boahen, K. (2002). Topographic map formation by silicon growth
cones. Proc. NIPS 1139, 1146.

Tootell, R. B., Silverman, M. S., and De Valois, R. L. (1981). Spatial frequency
columns in primary visual cortex. Science 214, 813–815. doi: 10.1126/sci-
ence.7292014

Turney, S. G., and Lichtman, J. W. (2012). Reversing the outcome of synapse elim-
ination at developing neuromuscular junctions in vivo: evidence for synaptic
competition and its mechanism. PLoS Biol. 10:e1001352. doi: 10.1371/jour-
nal.pbio.1001352

Von der Heydt, R., Peterhans, E., and Dursteler, M. R. (1992). Periodic-pattern-
selective cells in monkey visual cortex. J. Neurosci. 12, 1416–1434.

Weliky, M., and Katz, L. (1997). Disruption of orientation tuning visual cor-
tex by artificially correlated neuronal activity. Nature 386, 680–685. doi:
10.1038/386680a0

Wijekoon, J., and Dudek, P. (2008). Compact silicon neuron circuit
with spiking and bursting behaviour. Neural Netw. 21, 524–534. doi:
10.1016/j.neunet.2007.12.037

Wong, R. O. (1999). Retinal waves and visual system development. Annu. Rev.
Neurosci. 22, 29–47. doi: 10.1146/annurev.neuro.22.1.29

Wyatt, R. M., and Balice-Gordon, R. J. (2003). Activity-dependent elim-
ination of neuromuscular synapses. J. Neurocytol. 32, 777–794. doi:
10.1023/B:NEUR.0000020623.62043.33

Yoshida, T., Ozawa, K., and Tanaka, S. (2012). Sensitivity profile for orientation
selectivity in the visual cortex of goggle-reared mice. PLoS ONE 7:e40630. doi:
10.1371/journal.pone.0040630

Yousef, T., Tóth, E., Rausch, M., Eysel, U. T., and Kisvárday, Z. F. (2001).
Topography of orientation centre connections in the primary visual cortex of
the cat. Neuroreport 12, 1693–1699. doi: 10.1097/00001756-200106130-00035

Zamarreño-Ramos, C., Camuñas-Mesa, L. A., Perez-Carrasco, J. A., Masquelier, T.,
Serrano-Gotarredona, T., and Linares-Barranco, B. (2011). On spike-timing-
dependent-plasticity, memristive devices, and building a self-Learning visual
cortex. Front. Neurosci. 5:26. doi: 10.3389/fnins.2011.00026

Zhang, L., Bao, S., and Merzenich, M. (2002). Disruption of primary auditory
cortex by synchronous auditory inputs during critical period. Proc. Natl. Acad.
Sci. U.S.A. 99, 2309–2314. doi: 10.1073/pnas.261707398

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 31 August 2013; accepted: 09 March 2014; published online: 02 April 2014.
Citation: Gupta P and Markan CM (2014) An adaptable neuromorphic model of
orientation selectivity based on floating gate dynamics. Front. Neurosci. 8:54. doi:
10.3389/fnins.2014.00054
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2014 Gupta and Markan. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

www.frontiersin.org April 2014 | Volume 8 | Article 54 | 117

http://dx.doi.org/10.3389/fnins.2014.00054
http://dx.doi.org/10.3389/fnins.2014.00054
http://dx.doi.org/10.3389/fnins.2014.00054
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

ORIGINAL RESEARCH ARTICLE
published: 18 March 2014

doi: 10.3389/fnins.2014.00051

A mixed-signal implementation of a polychronous spiking
neural network with delay adaptation
Runchun M. Wang*, Tara J. Hamilton , Jonathan C. Tapson and André van Schaik

Bioelectronics and Neuroscience, The MARCS Institute, University of Western Sydney, Sydney, NSW, Australia

Edited by:

Jennifer Hasler, Georgia Institute of
Technology, USA

Reviewed by:

Christian G. Mayr, Dresden
University of Technology, Germany
Arindam Basu, Nanyang
Technological University, Singapore

*Correspondence:

Runchun M. Wang, Bioelectronics
and Neuroscience, The MARCS
Institute, University of Western
Sydney, Locked Bag 1797, Penrith,
NSW 2751, Australia
e-mail: mark.wang@uws.edu.au

We present a mixed-signal implementation of a re-configurable polychronous spiking
neural network capable of storing and recalling spatio-temporal patterns. The proposed
neural network contains one neuron array and one axon array. Spike Timing Dependent
Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our
mixed-signal implementation, the neurons and axons have been implemented as both
analog and digital circuits. The system thus consists of one FPGA, containing the
digital neuron array and the digital axon array, and one analog IC containing the analog
neuron array and the analog axon array. The system can be easily configured to use
different combinations of each. We present and discuss the experimental results of all
combinations of the analog and digital axon arrays and the analog and digital neuron arrays.
The test results show that the proposed neural network is capable of successfully recalling
more than 85% of stored patterns using both analog and digital circuits.

Keywords: mixed-signal implementation, polychronous spiking neural network, analog implementation,

multiplexed neuron array, neuromorphic engineering

INTRODUCTION
Increasing evidence has been found that the mammalian neural
system uses spatio-temporal coding in at least some of its opera-
tions (Van Rullen and Thorpe, 2001; Masuda and Aihara, 2003),
largely due to this coding’s potential to reduce energy consump-
tion (Levy and Baxter, 1996). An artificial network that can learn
and recall spatial and temporally encoded spike information will
have significant benefits in terms of modeling these biological
systems.

A polychronous spiking neural network is a candidate
for implementing a memory for spatio-temporal patterns.
Polychronization is the process in which spikes travel down
axons with specific delays to arrive at a common target neuron
simultaneously and cause it to fire, despite the source neurons
firing asynchronously (Izhikevich, 2006). This time-locked rela-
tion between the firing of different neurons is the key feature of
spatio-temporal patterns. Neural networks based on this prin-
ciple are referred to as “polychronous” neural networks and are
capable of storing and recalling quite complicate spatio-temporal
patterns. Figure 1 shows an example of a spatio-temporal pattern
involving five neurons. The threshold voltage of each neuron is
set so that it will fire if two pre-synaptic spikes arrive simulta-
neously. Whenever a neuron fires, its spike is transmitted to all
connected neurons via its axonal connections, each of which has
its own independent delay. These spikes will then generate post-
synaptic currents at the connected neurons. The example pattern
starts when neuron 1 fires at time 0 and neuron 5 fires at time T1.
The spikes from both neurons will arrive at neuron 3 at time
T1+T2, and together they will induce neuron 3 to fire at time
T1+T2. In the same manner, the spikes from neuron 5 and neu-
ron 3 arrive at neuron 2 simultaneously at time T1+T2+T3 and
will cause neuron 2 to fire. This process will continue as long

as at least two spikes arrive simultaneously at a neuron in the
network.

Izhikevich (2006) calls these spatio-temporal patterns groups,
and concludes that “spiking networks with delays have more
groups than neurons” after presenting a network developed
based on this polychronous principle. The groups in Izhikevich’s
network emerge in a randomly connected network of spik-
ing neurons with axonal delays, following persistent stimulation
and Spike Timing Dependent Plasticity (STDP) (Gerstner et al.,
1996). However, one of the open problems of the theoretical
model is to find patterns (groups): “Our algorithm for finding
polychronous groups considers various triplets firing with vari-
ous spiking patterns and determines the groups that are initiated
by the patterns. Because of the combinatorial explosion, it is
extremely inefficient” (Izhikevich, 2006). The method used by
Izhikevich will take months of simulation time just to find these
spatio-temporal patterns. Moreover, the polychronous groups
emerge randomly and the same stimulus is not likely to result
in the same polychronous groups every time. This makes the
Izhikevich polychronous network unsuitable for practical appli-
cations such as pattern recognition. Finally this model is not
efficient for hardware implementations, which we will discuss in
detail in section Discussion.

To solve the problems presented above, we have proposed a
digital implementation of a reconfigurable polychronous spiking
neural network that can, in real time, learn specific patterns, and
retrieve them (Wang et al., 2013b). Furthermore, our proposed
polychronous neural network can use all the available hardware
resources to store patterns. Test results show that the proposed
neural network is capable of successfully recalling more than
95% of all spikes for 96% of the stored patterns. Unlike biolog-
ical neural networks, the digital implementation is totally free

www.frontiersin.org March 2014 | Volume 8 | Article 51 | 118

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00051/abstract
http://community.frontiersin.org/people/u/71414
http://community.frontiersin.org/people/u/21622
http://community.frontiersin.org/people/u/784
http://community.frontiersin.org/people/u/12768
mailto:mark.wang@uws.edu.au
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Wang et al. Mixed-signal polychronous spiking neural network

FIGURE 1 | Example of a spatio-temporal pattern. The neurons fire
asynchronously while their spikes arrive at the destination neurons
synchronously, after traveling along axons with appropriate delays. This
time-locked relation is the key feature of the spatio-temporal patterns.

of mismatch and noise. Therefore, we also designed an analog
implementation, which is naturally subject to process variation
and device mismatch, and which more closely emulates the analog
computation in biological neurons.

Mixed-signal implementations of spiking neural networks
benefit from many of the advantages of both analog and digital
implementations. Analog implementations can realize biological
behaviors of neurons in a very efficient manner, whereas digital
implementations can provide the re-configurability needed for
rapid prototyping of spiking neural networks. As a result, mixed-
signal implementations offer an attractive neural network and
many designs have been proposed for such systems (Goldberg
et al., 2001; Gao and Hammerstrom, 2007; Mirhassani et al., 2007;
Vogelstein et al., 2007; Harkin et al., 2008, 2009; Schemmel et al.,
2008; Saighi et al., 2010; Yu and Cauwenberghs, 2010; Zaveri and
Hammerstrom, 2011; Minkovich et al., 2012).

These proposed systems tend to employ programmable devices
such as FPGAs and ASICs to route the spikes between analog com-
putation modules. Some programmable platforms using floating
gates (Basu et al., 2010; Brink et al., 2013). Furthermore, most
of these systems use DACs to configure the analog modules to
emulate different biological behaviors. Implementations of spik-
ing neural networks with time-multiplexed analog circuits are
described in Mirhassani et al. (2007), Yu and Cauwenberghs
(2010), Minkovich et al. (2012) and a version that uses nanotech-
nology is described in Gao and Hammerstrom (2007), Zaveri and
Hammerstrom (2011).

Here, we report on a mixed-signal platform, which com-
bines both our analog and digital implementations and provides
test results. Section Proposed Polychronous Network gives an
overview of the proposed polychronous neural network. Section
Design Choice presents the design choices that have been made
for the neuromorphic implementation of the proposed poly-
chronous network. The analog building blocks of the poly-
chronous network (i.e., the neurons, axons, and other analog
components) are detailed in section Analogue Implementation.
Section Mixed-signal Implementation presents the proposed

mixed-signal implementation, which includes the multiplexed
analog neuron array and the interface between the asynchronous
communication of the analog array and the (synchronous) FPGA.
Measured results and a comparison to the fully digital imple-
mentation are given in section Results. In Section Discussion we
discuss the performance of the different implementations and the
key elements that influence the capacity and scaling of electronic
realizations of polychronous networks and we conclude in section
Conclusions.

MATERIALS AND METHODS
PROPOSED POLYCHRONOUS NETWORK
Training and recalling patterns
Two procedures are needed to use our proposed polychronous
network to memorize and recall spatio-temporal patterns. The
first is a training procedure in which the connection delay val-
ues of the axon paths between neurons are configured in order
to meet the required timing relations of a given pattern. The sec-
ond is a recall procedure, needed to retrieve a pattern that has
been stored in the neural network through training. A pattern
can be recalled by presenting the first few spikes of the pattern
to the network, after which the network will complete the pat-
tern if it is recognized. For example, to recall the example pattern
shown above, neuron 1 needs to fire at time 0 and neuron 5
needs to fire at time T1. Together they will cause neuron 3 to
fire and the remainder of the pattern will be induced by the net-
work. The network is also capable of recalling parts of patterns
that start somewhere in the middle, e.g., neuron 2 firing at time
T1+T2+T3 and neuron 4 firing at time T1+T2+T3+T4 will
retrieve the remainder of the example pattern.

The goal of the training procedure is to assign appropriate con-
nection delays to axons in the polychronous neural network so
that it is able to recall a specific pattern. We propose two mech-
anisms, which are delay programming and delay adaptation, to
implement this function. Delay programming relies on a connec-
tion storing the delay value between a spike from its input neuron
and a spike from its output neuron when both are induced to fire
by some external training signal. It is not a biologically plausi-
ble method, but it is efficient in training and reduces testing time
in scenarios where the result will not be affected by the training
method. We therefore commonly use it to initialize a network.

Inspired by STDP, we developed a delay adaptation method,
Spike Timing Dependent Delay Plasticity (STDDP), to fine-tune
the delays during the training phase. We decrease the delay value
of one axon by a small amount if the destination neuron fires
(generating the post-synaptic spike) before the pre-synaptic spike
arrives (at the synapse of the destination neuron), and we increase
the delay in the opposite case. This procedure is repeated until the
pre-synaptic spike arrives at the synapse simultaneously with the
post-synaptic spike being generated. In the training phase, delay
adaptation causes the connections to attain the desired delays
through repeated presentation of the desired spatio-temporal pat-
terns. The delay programming method can be regarded as a special
case of the delay adaptation method in which the delay adaption
is completed in just a single step and the delay is never altered
subsequently. With the delay adaptation method, every time a pat-
tern is recalled the delay values in the pattern will be updated,

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 51 | 119

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Wang et al. Mixed-signal polychronous spiking neural network

allowing the learned delays to be modified over time. Hardware
implementations of non-polychronous networks that also adapt
axonal delays can be found in (Hussain et al., 2012, in press).

Neural network structure
The structure of the proposed neural network is shown in
Figure 2. It contains two functional parts: a “neuron array”
and an “axon array.” The neurons and the axons communicate
with each other via Address-Event Representation (AER) buses
(Boahen, 2000). Each neuron in the neuron array is identical in
structure and has a unique AER address. The axon modules in
the axon array are also identical in structure, and have both a
unique physical address (their position in the array) and config-
urable input and output addresses, to place an axon between two
neurons. The axon modules generate pre-synaptic spikes, which
are received by the neurons. The neurons will then generate post-
synaptic spikes if more than a certain number of pre-synaptic
spikes arrive simultaneously. To decrease the likelihood of cross-
talk between patterns, i.e., that a coincidence detecting neuron
would be set off by a random coincidence, we used coincidence
detectors with four inputs and a threshold of three spikes (Wang
et al., 2013b).

The post-synaptic spikes are sent to the axon modules in the
axon array. The axon array propagates these post-synaptic spikes
with axonal-specific delay values and generates pre-synaptic
spikes at the end of the axons. In the proposed neural network,
the communication between any two neurons must be conducted
via the axon modules in order to implement the polychronous
network. This axon array, with reconfigurable input and output
addresses, is capable of achieving much higher resource utiliza-
tion than the method we have used previously (Wang et al.,
2011), which generated spatio-temporal patterns based on fixed
connectivity between neurons. That approach always resulted
in networks where some axons remained unused. Our current
approach is to generate delay paths de novo, so that only connec-
tions that actually appear in the training patterns will be created,
by configuring the appropriate input and output addresses for
each axon. Additionally we configured the system such that there

FIGURE 2 | Structure of the proposed polychronous neural network.

The neuron array generates post-synaptic spikes and then sends them to
the axon array, which propagates these post-synaptic spikes, with
programmable axonal delays, and generates the pre-synaptic spikes at the
end of the axons. These pre-synaptic spikes are sent to the neuron array to
cause the neurons to fire. The connectivity and delay of all the axons in the
axon array are configurable.

can be any number of axonal delay paths between any two neu-
rons in the network. In other words, several axons can have
identical input and output addresses, placing them between the
same two neurons. They would still be able to have different delay
values, so that a spike originating from the input neuron would
arrive at the output neuron multiple times after different delays,
emulating the case where a neuron makes multiple synapses with
another neuron.

The axon module (see Figure 3) has five address registers,
one ramp generator, and four identical axonal delay paths. The
address registers are used to store the input address and the four
output addresses for the axonal delay paths. To place one axon
module between neurons, we need to configure its address reg-
isters. At the beginning of the training, axon module[0] (see
Figure 2) is enabled and all the other axon modules are disabled.
When the first post-synaptic spike in a training pattern arrives,
axon module[0] will latch the address of this spike as its input
address and enable axon module[1]. The output addresses will
be configured after the input address is configured. As there are
four output addresses, one for each of the destination neurons, it
will take four iterations for one axon module to finish the con-
figuration of its output addresses (using the addresses of the next
four sequential post-synaptic spikes in the training pattern after
its input address is configured).

FIGURE 3 | Structure of the axon module. The axon module receives
post-synaptic spikes generated by the neuron in the neuron array via the
AER post-synaptic bus. The axon module propagates these spikes with
axonal-specific programmable delays and generates pre-synaptic spikes at
the end of the axons. The address registers are used to store the input
address and the four output addresses for the axonal delay paths.

www.frontiersin.org March 2014 | Volume 8 | Article 51 | 120

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Wang et al. Mixed-signal polychronous spiking neural network

Delay programming is carried out in the same way as the
address configuration. When the first post-synaptic spike arrives
at axon module[0], it will start a ramp generator, which will
send its value (ramp_out) to the four axonal delay paths. The
delay of each axonal delay path is programmed when the output
addresses are being configured (i.e., when the next four sequen-
tial post-synaptic spikes from the training pattern arrive). After
delay programming, when a post-synaptic spike arrives and its
address matches the input address of one axon module, it will
start the ramp generator again. The axonal delay path will com-
pare the output of the ramp generator with the programmed
delay. A pre-synaptic spike will be generated when the output
of the ramp generator exceeds the programmed delay with an
address as stored in the output address register. The delays can
also be configured using delay adaptation rather than delay pro-
gramming. In this case the axonal delay is increased or decreased
based on the delay between pre-synaptic spike and post-synaptic
spike by using one of the three strategies: exact correction of
the delay error in one step, correction of the error by a fixed
amount each time, or correction by an amount proportional to
the error. We have implemented all three strategies in the digital
axon module. The first method is identical to just using the delay
programming method. The second method, which uses a small
fixed step, is very slow and produces similar results to the third
method with a coefficient of 0.5. The digital axon presented here
uses the third strategy. Slightly differently, the delay of the ana-
log axon is programmed in an initial phase followed by a number
of iterations of delay adaptation with a fixed update step, which
was the simplest method to implement. An analog implementa-
tion that implements all three strategies would be too large for
practical implementation on silicon.

DESIGN CHOICE
Topology
Figure 4 shows the topology of the proposed mixed-signal plat-
form. It consists of one FPGA and one analog chip containing
an analog neuron array and an analog axon array. The FPGA
contains the digital axon array, the digital neuron array, a pat-
tern generator and checker module for training and testing, and a
router. The function of the router is to remap the addresses of the
spikes between the digital implementation and the analog imple-
mentation; but in practice the router also needs to synchronize the
spikes from the analog circuits before it can remap the addresses
for these spikes. This is due to the analog circuits operating asyn-
chronously and therefore without a clock, whereas the router is a
fully digital design, which does require a clock. The spikes from
the analog circuit therefore have to be synchronized to the clock
domain in which the router works. We will present the design
of an interface circuit for synchronization, followed by a circuit
to implement the address remapping in section Synchronization
Interface Circuit.

The system contains two types of implementations for the
axon array and two for the neuron array, resulting in four poten-
tial combinations, which are presented below:

1. A digital axon array and a digital neuron array: This is simply
the default FPGA implementation.

FIGURE 4 | Topology of the mixed-signal platform. The FPGA contains
the digital axon and neuron array, a router to control the destinations of
spikes on the bus, and a pattern generator and checker for testing
purposes. A separate IC contains the analog implementations of the axon
and neuron arrays.

2. Digital axon array and analog neuron array: In this configu-
ration, the router is required to re-map the addresses of the
spikes transmitted between the analog neuron array and the
digital axon array.

3. Analog axon array and digital neuron array: In this configura-
tion, the router is also required to re-map the addresses of the
spikes transmitted between the digital neuron array and the
analog neuron array.

4. Analog axon array and analog neuron array: Despite having
only analog implementations, the router is still required to
transmit spikes between the analog axon array and the analog
neuron array, as the addresses still require remapping. This is
done to multiplex the analog neurons, so that inactive neu-
rons in the network are not using hardware resources. This
increases the size of the analog neuron array significantly. We
will present the details of this approach in section Mixed-signal
Implementation.

The neurons in the neuron array work as coincidence detectors
that detect how many pre-synaptic spikes have arrived simulta-
neously. The FPGA implementation of these neurons uses four
timers and one comparator (see Wang et al., 2013b). The ana-
log version of these neurons is implemented using simple Leaky
Integrate and Fire (LIF) neurons, which will be described in detail
in section Analog Neuron Array. Since no complicated biological
behaviors, such as spike rate adaptation or bursting, are required
for the neurons in a polychronous network, we chose to imple-
ment LIF neurons, instead of more complex neuron models, e.g.,
the Izhikevich neuron model (Izhikevich, 2003) and the Mihalas-
Niebur neuron model (Mihala and Niebur, 2009), to keep the size
of the neuron circuit to a minimum.

For the axon module, the FPGA implementation uses a
counter to implement the ramp generator, and registers to store

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 51 | 121

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Wang et al. Mixed-signal polychronous spiking neural network

the delay values. In the analog implementation, the ramp gen-
erator is implemented with a circuit that starts charging a
MOS capacitor after receiving a spike on the AER bus. The
axonal delay is generated by comparing a programmable volt-
age, stored on a capacitor, with the output signal of the ramp
generator. The design and implementation of the ramp gen-
erator and the delay path can be found in (Wang et al.,
2013a).

AER bus
There are two different AER buses in the proposed neural net-
work: the AER post-synaptic bus and the AER pre-synaptic bus.
The first is used to transmit post-synaptic spikes generated by the
neurons to the axon modules. The second is used to transmit pre-
synaptic spikes generated by the axon modules to the neurons
(see Figure 3). The AER bus and protocol used in this system dif-
fers slightly from the standard AER bus and protocol (Boahen,
2000). We do not use handshaking, so we have omitted the request
and acknowledge signals. Instead we use “active” lines to tell the
receiver (neurons or axon modules) that a spike has been placed
on the bus. Each neuron receives input from four neurons via
four axons in our network. The pre-synaptic bus therefore uses
four active lines, one for each synapse of the neuron. A further
difference in our AER implementation is that there is no arbiter
to deal with collisions when two addresses are placed on the bus
simultaneously. We will address this issue in detail in section
Discussion.

In our digital implementation, a single minimum-width
binary address is used to reduce hardware costs, as the wiring
for the bus will entail more resources than the implementation of
the encoders/decoders in large scale FPGA designs (Harkin et al.,
2008). This structure, however, doesn’t satisfy our analog imple-
mentation, in which a full encoder/decoder will cost more area
than the analog neuron itself in a 0.6 μm technology (typically
each bit needs one XOR gate with 16 transistors in a full decoder).
The AER buses in the analog neuron array use active lines and
a 3/8-bit (three out of eight) address for which the encoding
and decoding can be efficiently implemented in aVLSI, as will be
shown in section Analog Neuron Array. The number of different
addresses, C, for this code are given by the binomial coefficient:

CN
M =

M!
N!(M − N)! (1)

where M is the width of the bus and N is the number of bits
that are HIGH in each address. In our implementation, M and
N are set to 8 and 3, respectively, so that 56 addresses exist, which
suffices for the size of our implementation. Both pre- and post-
synaptic buses use this 3/8 bit code. The post-synaptic bus uses
one active line in addition to the address to indicate an address
has been placed on the bus, while the pre-synaptic bus uses four
active lines—one for each of the four synapses an axon can target.

The addresses of the AER buses in the analog axon array
are encoded in a format of 4 out of 9 high bits, yielding 126
addresses—one for each neuron. Increasing the bus width would
allow more neurons at the cost of additional area for the bus and
the decoder. The choice of 4/9 for this bus is a trade-off between
performance and the cost of silicon.

ANALOG IMPLEMENTATION
Analog neuron array
The proposed LIF neuron comprises four identical charge-and-
discharge synapses, one for each active line on the pre-synaptic
bus. The structure of the synapse was first proposed by Arthur and
Boahen (2004). Figure 5A shows the schematic of the charge-and-
discharge synapse, which will generate a post-synaptic current for
every incoming pre-synaptic spike. This synapse comprises a reset
circuit (N1-N4), a MOS capacitor (Csyn, ∼100 fF), a voltage-to-
current conversion circuit (P1-P2) and a DC current source (Iexp,
set to 12 pA).

The 3/8 high bits of the pre-synaptic address are connected to
N1-N3. On arrival of a pre-synaptic spike with these three bits
HIGH and the appropriate active line high, N1-N4 will conduct
and pull Vsyn down to ground. After that, Vsyn will be pulled up to
Vdd by Iexp. The voltage-to-current conversion circuit will trans-
duce Vsyn into Isyn, the post-synaptic current, which will decay
exponentially, due to the linearly increasing Vsyn. To reduce power
consumption, P1, a diode connected pMOS transistor, is added
to limit the gate-source voltage of P2. Isyn will be injected into the
soma for integration. All four synapses of a LIF neuron are identi-
cal, using the same 3/8 bit address, but are connected to different
active lines.

FIGURE 5 | Circuit diagram of the analog synapse (A) and soma (B).

www.frontiersin.org March 2014 | Volume 8 | Article 51 | 122

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Wang et al. Mixed-signal polychronous spiking neural network

Figure 5B shows the schematic of the soma. The post-synaptic
currents from four synapses are sent to a current mirror (N1-N2)
for summing. The current mirror will convey Isyn, the sum of the
post-synaptic currents, to IP1, which is the input current of a first-
order low-pass filter. Furthermore, by changing the width/length
ratio of N1 or N2, the input current to the low pass filter can be
easily scaled or amplified.

The low-pass filter, which was first proposed in Python and
Enz (2001), is the basic building block of the soma. In our pre-
vious work (Wang et al., 2011), we have shown that its output
current Iout has the following equation:

τmem
dIout

dt
+ Iout = IP1 (2)

where the time constant of the implementation is given by:

τmem = nUTCmem

It
(3)

where UT is the thermal voltage, n is the weak inversion slope
factor, and It is a DC current source (set to 1 nA). More details
can be found in Wang et al. (2011).

To generate the post-synaptic spike, the output current of
this low-pass filter Iout is compared with a constant current Ithres

introduced by N7. The value of Ithres is set by Vthres to a value
such that three pre-synaptic spikes arriving within 1 ms will make
Iout strong enough to pull Vcmp up to Vdd. When Vcmp exceeds
the threshold of N8, N8 will conduct and pull Vpulse down to
ground. Vpulse is sent to an inverter to generate the post-synaptic
spike. It is HIGH when Vpulse is lower than the threshold of the
inverter.

The refractory period is implemented by a circuit composed of
N9, P7, a MOS capacitor (Crf , ∼100 fF) and a DC current source
(Irf , set to 12 pA). When the post-synaptic spike is HIGH, N9
will conduct and pull Vrf down to ground. After that, Vrf will
be pulled up to Vdd by Irf . P7 will conduct and pull Vmem up to
Vdd when Vrf is lower than the threshold of P7. The time when
Vmem is at Vdd is the refractory period, during which the low-
pass filter will not do any integration. Since this refractory time is
active when Vrf is lower than the threshold of P7, the refractory
time is thus controlled by the size of Crf , the capacitor, and Irf ,
the charging current.

When Vmem is pulled up to Vdd and Iout is reset to 0, Vcmp will
be pulled down to ground by Ithres. N8 will stop conducting when
Vcmp is low and Vpulse will then be pulled up to Vdd by a constant
current Ipw. The post-synaptic spike, which is the inverted signal
of Vpulse, will then be reset. A feedback circuit (P8) will pull Vpulse

up to Vdd quickly once Vpulse exceeds the threshold voltage of the
inverter, to reduce power consumption. The pulse width of the
post-synaptic spike, which is the time when Vpulse is lower than
the threshold of the inverter, is controlled by Ipw, which is used to
pull Vpulse up.

An address encoder (N10-N13, using four minimum-sized
nMOS transistors to drive the active line and 3/8-bit address
of the AER post-synaptic bus), will convert the voltage-mode
post-synaptic spike into a current-mode spike. The current-mode
spike will be sent to the AER post-synaptic bus. As the AER

post-synaptic bus needs to be driven in parallel by all the ana-
log LIF neurons, an implementation with voltage-mode spikes
would need a high fan-in OR gate or an arbiter, which would
take up a significant amount of area in the layout. Furthermore,
using voltage-mode spikes for on-chip routing will take up signif-
icant area as each spike needs one wire, whereas the current-mode
spikes can share one bus, e.g., one wire can be shared by the active
lines from all the 50 neurons.

As a trade-off between fabrication cost and the size of the neu-
ron array, we chose to implement 50 analog LIF neurons in the
analog neuron array, which led to the choice of the 3/8-bit address
format. The layout of the analog LIF neuron is as compact as pos-
sible and all signals are routed across the neuron. In this way, the
placement of the neurons in an array is quite straightforward; the
neurons are placed in one row.

All transistors are 2.4 μm wide and 3.6 μm long (P8, N3, N4,
and N8 is 0.6 μm long, N1 is 4.5 μm wide and P7 is 4.8 μm
wide and 0.6 μm long). The inverter I1 use transistors are 2.4 μm
wide and 0.6 μm long. The MOS capacitor values are: Cmem =
15× 24 μm (∼0.6 pF) and Crfc = 3.6× 2.4 μm (∼0.02 pF). In
the layout of the neuron array, for each neuron, we just need
to connect the three transistors that form the address decoder
(N1-N3) in the current synapse (see Figure 5A), to three bits
in the address of the AER pre-synaptic bus according to the
unique 3/8-bit address of that neuron. An active line on the
AER pre-synaptic bus is connected to N4 of a current synapse.
Each of the four current synapses will have its own active line
on the AER pre-synaptic bus. Similarly, for each neuron, we
just need to connect the four transistors, which compose the
address encoder (N10-N13) in Figure 5B, to the active line
and to the three high bits in the address on the current-mode
AER post-synaptic bus according to the unique 3/8-bit address
of that neuron. In this way, the layout of the neuron array
will remain compact as no extra routing of the AER buses is
needed.

Analog axon array
The structure of the analog axon module is shown in Figure 3. It
comprises three parts: a ramp generator, four axonal delay paths
and an AER interface circuit. The AER interface circuit carries out
the function of the address configuration, the address decoding
and the address encoding. The ramp generator will start when
receiving a spike on the AER bus. The details of the design and
implementation of the ramp generator and the delay path can be
found in Wang et al. (2013a).

The analog axon array contains 100 identical analog axon
modules connected serially. Due to the size of the axon module,
we cannot place these 100 axon modules physically in one row
(it would be 20 mm long) but instead the array is folded to cre-
ate a 10×10 2-D array, as shown in Figure 6. As in the layout of
the neuron module all the AER buses, control signals, and bias
currents are routed horizontally across the axon module so that
neighboring neurons in a row are simply connected by placing
them next to each other. The horizontal buses in each row are
connected to two vertical buses placed on both sides of the axon
array for interconnection. As for the neuron array, the spikes gen-
erated by the axon modules are all current-mode spikes within the

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 51 | 123

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Wang et al. Mixed-signal polychronous spiking neural network

chip and they are converted to voltage-mode spikes for off-chip
transmission.

MIXED-SIGNAL IMPLEMENTATION
Multiplexed analog neuron array
The motivation for developing a multiplexed analog neuron array
is to increase the size of the analog neuron array without increas-
ing the cost of the system significantly. A polychronous neural
network composed of a neuron array with 50 neurons will suf-
fer from severe cross-talk between patterns, which occurs when
a neuron belonging to one pattern fires accidently as a result of
pre-synaptic spikes from other patterns or another part of the
same pattern. The effect of cross-talk depends on the overlap
(correlation) of the patterns and can be regarded as noise. The
more overlap there is, the higher the possibility that a pattern
plus some noise spikes will also set off a different pattern. Also,
the more input connections a neuron has, i.e., the more patterns
this neuron is a member of, the more likely this neuron is to get
three simultaneous inputs as a result of noise. In severe cases of
cross-talk, all neurons in the network will fire continuously in
an uncontrolled manner. To mitigate this problem, we need to
increase the sparsity of the neural network, i.e., decrease the num-
ber of patterns to which each neuron is sensitive. This can be
achieved by increasing the size of the neuron array, as the patterns
generated by the pattern generator are evenly distributed over the
whole network. The conventional approach to increase the size of
the analog neuron array is to simply add more physical neurons.
As expected, hardware costs increase linearly in relation to the
size of the neuron array if all the neurons are to be implemented
physically.

Inspired by the multiplexed neuron array used in the digi-
tal implementation (Wang et al., 2013b), we propose a similar
approach to implement a multiplexed analog neuron array. We

FIGURE 6 | Layout of the axon array. Arrows show how the axons
modules are placed in a 1-D array.

can use the fact that in a typical polychronous network, only a
small percentage (less than 5%) of the neurons are active at any
given time, and only those active neurons need to be physically
implemented.

The structure of the multiplexed analog neuron array is shown
in Figure 7. It consists of two sub-blocks: a physical neuron
array and a controller. They communicate with each other via
two internal AER buses: the AER physical pre-synaptic bus and
the AER physical post-synaptic bus. The controller receives pre-
synaptic spikes from the axon array and assigns them to the
physical neurons for the generation of post-synaptic spikes, which
will be sent to the axon array. From the point of view of the axon
array, the multiplexed neuron array appears as a neuron array
with 4k neurons. The addresses of the spikes between the con-
troller (a single minimum-width binary address) and the analog
neuron array (the 3/8-bit address format) need to be remapped by
the router, which will also synchronize the spikes from the analog
circuits. For simplicity, in the following description, we assume
the controller is connected to the analog neuron array without
synchronization and address remapping.

The controller dynamically assigns analog neurons to each
incoming pre-synaptic spike. The analog neurons are used to
detect how many pre-synaptic spikes have arrived within 1 ms
of each other. When a spike arrives from the axon array and an
analog neuron has already been assigned for that spike’s address,
the spike will be sent to that neuron. The address of this incom-
ing spike will have been latched in a register linked to that analog
neuron. If no neuron has been assigned for the arriving address,
the spike will be sent to an unassigned neuron, which will then
be labeled as assigned by the controller, by latching the address
of the spike. The controller will also start a timer linked to that
analog neuron. Once the timer of that neuron has expired (after
1 ms), the neuron will be freed and labeled as unassigned by
the controller. When a post-synaptic spike is generated by an
analog neuron, the controller will send it to the axon array with

FIGURE 7 | Structure of the multiplexed analog neuron array. The
controller and router map virtual addresses from the AER busses to
physical addresses on the analog neuron array, so that only active neurons
in the network are using hardware resources.

www.frontiersin.org March 2014 | Volume 8 | Article 51 | 124

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Wang et al. Mixed-signal polychronous spiking neural network

the address that is stored in its register. More details about the
controller can be found in Wang et al. (2013b).

Based on this structure, a neuron array with 4k virtual ana-
log neurons can be achieved using only 50 physical neurons. This
multiplexed analog neuron array is thus 80 times more efficient
in silicon area on the analog side. It does, however, require a con-
troller implemented on an FPGA. This does not increase the cost
of the system significantly as the FPGA is needed anyway to carry
out other tasks such as pattern generation, address remapping and
other miscellaneous tasks. Furthermore, this mixed-signal imple-
mentation offers a much higher degree of extensibility as the LIF
neurons used in this implementation could easily be replaced with
other neuron models if desired.

Synchronization interface circuit
To use the asynchronous analog circuits with the FPGA, synchro-
nization with its clock domain is needed. In digital circuit design,
a general method used to do this is to use two (or more) serially
connected flip-flops to sample the input (Weste and Harris, 2005).
This scheme works well for 1-bit signals but it does not extend to
catering for parallel signals, such as the address bus and data bus,
due to potential timing skew on these buses that could cause each
bit in the bus to arrive at a slightly different time. This can lead to
race conditions and hazard problems, and can ultimately lead to
the wrong address being sampled (Weste and Harris, 2005).

In our design, this timing skew comes from two sources. The
first is the analog circuit that converts the current-mode spikes
to voltage-mode spikes. Due to process variation and parasitic
capacitors between the wires and transistors, the conversion for
each line of the bus will take a slightly different amount of time.
For the very same reasons, the pulse width of each active line and
each bit in the address will also be slightly different. The second
source of timing skew is caused by the propagation delay of the
signals along the tracks of the Printed Circuit Board on their way
to the FPGA.

Figure 8 illustrates a waveform of a post-synaptic spike from
an analog LIF neuron (the waveform from the analog axon is quite
similar). In the figure, the timing skew can clearly be seen as each
bit in the bus arrives at a slightly different time. Besides the timing
skew, there is also an additional problem in the form of glitches,
which are brief digital pulses, up to tens of nanoseconds long.

FIGURE 8 | Waveform of a spike from an analog neuron on the

post-synaptic AER bus showing timing skew and glitches.

They are caused by the coupling capacitance between the wires
and transistors. These glitches, in spite of their short period, are
still likely to be sampled by the digital circuit (running at 50 MHz)
and ultimately may lead to the wrong addresses being sampled.

One common method to minimize the timing skew caused by
transistor mismatch is to use clocked flip-flops (Weste and Harris,
2005) to generate these spikes. We have not used this method
because it would increase the design overhead of circuit and intro-
duce another problem, namely that of synchronizing the clock
signal of the chip and the FPGA. The timing skew caused by
propagation delays on the PCB is usually minimized by carefully
tuning the length of the tracks on the PCB. We have not used that
method either as it would significantly increase the effort and cost
of manufacturing the PCB.

In digital designs, the general way to sample an asynchronous
parallel bus is to use a handshake protocol to guarantee that the
receiver will only sample the data when the data is stable (Weste
and Harris, 2005). In other words, the sender needs to inform the
receiver when to sample the data. The drawback of this method
is that it requires extra logic circuits on both the sender and the
receiver. In cases where there is more than one sender on the bus
trying to send data, some form of arbitration is required, fur-
ther increasing the circuit complexity and the cost of hardware
resources.

Instead of the above methods, we chose to synchronize the
spikes from the analog implementations by using an interface
circuit to carry out the synchronization in three steps without
requiring a handshake protocol. For illustration, we will use the
AER bus of the analog neuron array in the following explanation.
The interface circuit handles the AER bus of the analog axon array
in the same way.

The first step is to synchronize each active line and each bit of
the address of the incoming spike in the conventional manner by
using a circuit composed of a serial connected flip-flop for each
of them (four in total). The output values of the flip-flops for the
address and active lines are referred to as the synchronized address
and the synchronized active line, respectively. The address of the
post-synaptic spike is encoded in the 3/8-bit format, which means
that any address that does not have exactly three out of eight bits
active is invalid.

The second step is then to latch the synchronized address and
active line only when a valid address is present, i.e., when exactly
three bits are HIGH, and store it in a register. We have imple-
mented this register as a 32×9 bit FIFO, using eight bits for the
address and one bit for the active line. We use a counter to deter-
mine how many bits are HIGH in the synchronized address and
we can distinguish two situations that need an action when a valid
address is detected:

1. The arrival of a spike with a valid address when the address
at the previous clock cycle was invalid. In this condition, the
value of the counter in current clock cycle is three, whilst the
value of the counter at previous clock cycle was not equal to
three. The address of the spike is latched in the FIFO

2. The arrival of a spike with a valid address that is different from
a valid address at the previous clock cycle. In this case, the
value of the counter in the current clock cycle and previous

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 51 | 125

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Wang et al. Mixed-signal polychronous spiking neural network

clock cycle are both equal to three, whereas the value of the
synchronized address in current clock cycle is not equal to the
value at the previous clock cycle. The new address is stored in
the FIFO.

In all other cases, including when a valid address is detected that
is the same as in the previous clock cycle, the data on the bus
is ignored. In this way, the asynchronous spikes from the ana-
log neuron array are synchronized and stored in the FIFO. The
third step is to generate spikes with a fixed pulse width (four clock
cycles) by reading the FIFO. If the FIFO is empty, all the synchro-
nized pre-synaptic spikes have been read out and no new spikes
will be generated.

The interface circuit for the spikes from the analog axon array
operates in the same way with the exception that a third condition
needs to be handled:

3. The arrival of a spike with a valid address that is the same as the
last one that arrived, but on a different synapse. In this case,
the value of the counter in current clock cycle and previous
clock cycle are both four (4/9-bit format) and the value of the
synchronized address in both cycles is the same, but the value
of the synchronized active lines is different. The new address
and active line are stored in a 32×13 bit FIFO (nine bits for
the address and four bits for the active lines).

The interface circuit effectively eliminate the problems of timing
skew and glitches on the bus. It is also capable of sampling the
asynchronous spikes from the analog circuits with a high tem-
poral accuracy, as shown by the results that will be presented in
section Performance of the Interface Circuit. For spikes that need
to be sent to the analog chip, we use the conventional means of
synchronizing them to the system clock by using flip-flops on the
FPGA to minimize the timing skew on the address lines (Weste
and Harris, 2005).

Address remapping
Address remapping is the second function of the router. The con-
troller can be configured for multiplexed analog neuron arrays
or multiplexed digital neuron arrays. When it is configured for a
multiplexed analog neuron array, the router needs to carry out
the remapping for the addresses of spikes traveling between the
controller and the analog neuron array. To use the analog axon
array, the router needs to carry out the address remapping for the
spikes traveling between the analog axon array and the controller
regardless of whether it is configured for multiplexed analog or
digital neuron array.

The router was implemented using four look-up tables, one
for each of the four address remapping possibilities. For spikes
from the analog axon/neuron array, the router synchronizes them
using the interface circuit first. These synchronized spikes are then
compared to the look-up tables in order to convert their addresses
to the corresponding binary-encoded addresses. These spikes are
then sent to the controller for processing. Spikes generated by the
controller are also compared against the look-up tables to convert
their addresses to either 3/8-bit or 4/9-bit addresses. After being
converted, these spikes are sent to the analog axon/neuron array.

RESULTS
The proposed polychronous neural network is designed to train
and recall patterns rather than to randomly react to some spatio-
temporal patterns (groups) that have emerged in the network,
as is the case in Izhikevich (2006). Performance in our net-
work is therefore measured as the rate of success in recalling the
trained patterns. The advantage of our approach is that the net-
work can be used as a memory that can learn spatio-temporal
patterns. Furthermore this approach optimizes the use of the
available hardware, so that in our approach all available neurons
and axons in the hardware arrays can be used, while in the origi-
nal polychronous network some neurons and many connections
are not part of any pattern and thus never used. The disadvan-
tage of our approach is that overlap between patterns (cross-talk)
has to be limited and it is not possible to store near identical
patterns.

There are four possible combinations of analog or digital
axons and neurons. The fully digital (FPGA) combination imple-
ments the proposed neural network faithfully with hardly any
effect of noise and process variations. The measurements form
this combination therefore present the optimal performance of
our polychronous neural network model. The results of all the
other three combinations will be compared with the results of the
fully digital implementation in the sections Digital Axon Array
and Analog Neuron Array to Analog Axon Array and Analog
Neuron Array. Section Performance of the Interface Circuit first
discusses the performance of the interface circuit described in
section Synchronization Interface Circuit.

PERFORMANCE OF THE INTERFACE CIRCUIT
Testing the interface circuit is the first step in testing the whole sys-
tem. To obtain a direct measurement of the ability of the interface
circuit to synchronize and latch addresses correctly, we use the
FPGA to send a pre-synaptic spike to an analog neuron to induce
it to fire. The interface circuit is then used to synchronize and
latch the spike from the analog neuron with the FPGA’s clock. We
then compare the address of this latched post-synaptic spike with
the expected address, as determined by which neuron the FPGA
induced to fire. If their addresses match, this means the interface
circuit works correctly.

Sometimes the interface circuit samples the same address
twice. This is caused by glitches that can cause a valid address to
become briefly invalid, when more than three address lines are
high, before returning to the valid address as the glitches subside.
This double sampling could be solved by adding an internal timer
to the interface circuit to guarantee that an address could only be
sampled once within a short period (say 1 μs). However, we have
not employed this method as the second spike sampled will only
cause a small offset (<1 μs) in the axonal delay, which starts on
the arrival of a post-synaptic spike. This offset will not affect the
performance of the proposed polychronous neural network at all.

Figure 9 shows the results of the tests. All 50 addresses (one
for each analog neuron) were tested 128 times (with an interval
time of 5 ms to guarantee there will be one post-synaptic spike
each time). This test was then repeated 10 times. In each of the 10
runs, for approximately 75% of the time the correct address was
sampled once while for the remainder of the cases, the correct

www.frontiersin.org March 2014 | Volume 8 | Article 51 | 126

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Wang et al. Mixed-signal polychronous spiking neural network

FIGURE 9 | Performance of the interface circuit. Dark gray: valid address
sampled once; Light gray: valid address sampled twice in succession.

address was sampled twice in succession. No wrong addresses
were sampled in these tests.

DIGITAL AXON ARRAY AND ANALOG NEURON ARRAY
Delay programming
In the setup for the delay programming tests, a single axon array
was used in the neural network, yielding 4k axon modules with
16k (16384) axonal delay paths (connections). Note that unlike
in Izhikevich (2006), no connections are shared between two
patterns, so that the number of available connections directly
determines the maximum number of inter-spike intervals that
can be programmed into our network. Each axon module con-
tains four axonal delay paths (see Figure 3), and for each spike
in the polychronous pattern, 4 delay paths are needed from the
four previous spikes in the pattern. Thus, the number of the inter-
spike intervals that our neural network can store is simply equal
to the number of axon modules. If, for instance, the patterns to be
stored each contain 50 inter-spike intervals, the maximum num-
ber of such patterns that can be stored in the neural network is 82
(4k/51).

The patterns are trained only once when using delay pro-
gramming. There is also only one recall test as there is no
adaptation, and the result of a recall will be the same each time.
For each configuration of the neural network, 10 test runs were
conducted. The pattern generator & checker module generates
spatio-temporal patterns for training and for testing whether the
patterns can be recalled successfully. We tested neuron array sizes
ranging from 128 to 4k neurons and test results are shown in
Figure 10A. For the configurations consisting of 128 and 256 neu-
rons (not shown in Figure 10A) and trained with 82 patterns
having 51 spikes each, the neural network enters an all firing
state in which all the neurons fire simultaneously, showing that
a network of this size using analog neurons cannot cope with
that number of patterns. In the digital implementation, this only
happens for configurations consisting of 128 neurons, while a net-
work with 256 neurons achieves an average success rate about
80%. To achieve a similar success rate when using analog LIF
neurons, the network needs at least 512 neurons. Furthermore,
the results for a network with 1k and 2k analog neurons are also
slightly worse than their digital counterparts. Only the result for

FIGURE 10 | Percentage of stored patterns successfully recalled for

different neuron array sizes. (A) delay programming and (B) delay
adaptation, respectively. The results for the fully digital implementation are
added for comparison purpose. Error bars are standard errors of the mean.

4k analog neurons matches the digital implementation. As an
aside, this proves that the proposed interface circuit is capable of
sampling the asynchronous spikes from the analog circuits cor-
rectly, because otherwise the performance would be much worse
than in the digital implementation.

The results indicate that the effects of cross-talk are more seri-
ous when using the multiplexed analog neuron array, so that a
network with analog neurons performs worse than one with dig-
ital neurons when the size of the network is small. Due to process
variation and device mismatch, the analog neurons cannot be per-
fectly tuned to all generate a post-synaptic spike only when at
least 3 out of 4 pre-synaptic spikes arrive within 1 ms. In other
words, the analog neuron is not as precise a coincidence detector
as the digital neuron. Moreover, due to the parasitic capacitances
on chip, the analog LIF neuron will sometimes generate spikes by
accident, e.g., the firing of one neuron will trigger its neighboring
neuron to fire, which increases cross-talk. Increasing the size of
the network increases the sparsity (i.e., decreases the number of
patterns to which a neuron belongs Wang et al., 2013b), and the
difference in the performance between the analog neurons and
the digital neurons will become negligible for larger networks.

Delay adaptation
In the tests for the delay-adaptation mode, each pattern was
trained five times and recalled one time. The strategy used

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 51 | 127

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Wang et al. Mixed-signal polychronous spiking neural network

adapted the delay by half the time difference between the pre- and
post-synaptic spikes each time a neuron fired. The same settings
used in the delay programming scenario were used for these tests,
but all delays were initialized with random values. We again tested
neuron array sizes from 128 to 4k neurons and the test results
are shown in Figure 10B. For the networks with a size smaller
than 2k neurons, only a few patterns can be recalled success-
fully and their results are therefore not included in Figure 10B.
The results in Figure 10 also show the performance drops more
in delay adaptation mode than in the delay programming mode
when compared with the digital implementation. This is again the
result of the larger sensitivity to cross-talk in the analog neuron
array.

Effect of noise
In this set of tests, random noise was injected into the network.
The Poisson rate of the noise, generated by a LFSR, was varied
from 2 to 128 spikes per second. This firing rate represents the
number of additional spikes, i.e., not belonging to any of the
trained patterns, presented to the network in a one second win-
dow. As each spike is generated by a randomly chosen neuron,
the spike rate measures the total noise input, not the firing rate of
individual neurons.

All other settings were kept the same as in the delay-
programming mode and the delay-adaptation mode with a neu-
ron array consisting of 4k neurons. In both modes, no noise was
added during the first training time. Figure 11 shows the result,
which proves that the system is fairly robust to noise when the
sparsity of the neural network is large.

Capacity for storing spatio-temporal patterns
To test the capacity for storing spatio-temporal patterns when
using the multiplexed analog neuron array, it was configured with
4k neurons and 80k axon modules. Delay programming and delay
adaptation were both used with a pattern length of 51 spikes.
For a pattern length of 51 spikes, we tested storing and recalling
1000 and 1200 patterns. Ten test runs were conducted. The system
works well for the 1000 pattern case. Figure 12 shows the results

FIGURE 11 | Recall percentage for various Poisson rates of the noise

generator. The firing rate represents the total number of additional random
spikes per second in the network. For comparison, the firing rate of a
stored pattern is about 100 spikes per second (50 events in about 500 ms).
Light gray: delay programming; Dark gray: delay adaptation. Error bars are
standard errors of the mean.

for 1000 patterns and the successful recall rate is about 95% on
average which is quite close to the result of the fully digital imple-
mentation (Wang et al., 2013b). With 1200 patterns the recall
no longer works as the effect of cross-talk becomes too severe,
indicating that once cross-talk reaches a critical level, it quickly
becomes catastrophic. Two reasons caused this performance drop.
The first reason is that the mixed-signal system suffers more noise
compared to the fully digital implementation, the successful rate
of which is 95% for 1200 patterns. The second reason is that the
theoretical maximum firing rate of the pre-synaptic spikes that
the multiplexed analog neuron array can handle is only 50/128 ≈
40% of the maximum firing rate that the digital one can handle, as
the number of the physical neurons is only 50, whereas the digital
implementation has 128 physical neurons.

ANALOG AXON ARRAY AND DIGITAL NEURON ARRAY
Unlike the results presented in section Digital axon array and
Analog Neuron Array, the testing scenarios for the combination
of analog axon array and digital neuron array will focus on the
percentage of spikes in a pattern that have been recalled success-
fully. This is because the capacity of the analog axon array is much
smaller than that of the digital axon array, which means that only
a few patterns can be stored in this network, so that the percentage
of patterns recalled is a much less accurate measure of perfor-
mance. Furthermore, the dynamics caused by process variation
and device mismatch causes variations in the number of spikes
that are correctly recalled in each pattern.

For this test, we only had access to one analog axon array with
100 analog axon modules, each with 4 axonal delay paths. The
maximum accessible address of the 4/9-bit bus on the analog axon
array is 126, which means the maximum size of the digital neuron
array that can be used is 126 neurons. As the experimental results
in Wang et al. (2013b) show, a neural network consisting of only
126 neurons will be affected seriously by cross-talk. To measure
the performance of the analog axon array without the effect of
this cross-talk, we used specially generated random patterns with
no overlap (correlation) for testing.

FIGURE 12 | Result for capacity testing with 1000 stored patterns of 51

spikes each. The network consists of 4k neurons and 80k axon modules.
Both methods of delay configuration resulted in approximately 95% of the
stored patterns being successfully recalled. Error bars are standard errors
of the mean.

www.frontiersin.org March 2014 | Volume 8 | Article 51 | 128

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Wang et al. Mixed-signal polychronous spiking neural network

Delay programming and delay adaptation were both used with
pattern lengths of 20, 25, 33, and 50 spikes. The patterns were
trained with a single presentation in the delay programming
mode and for 20 presentations in the delay adaptation mode.
As there are 400 axons in the analog axon array, for the pattern
length of 20, 25, 33, 50 spikes, the maximum number of such pat-
terns that can be stored in the neural network is five, four, three,
and two, respectively. For each pattern length, 127 test runs were
conducted.

Figure 13 shows, for each pattern stored in the neural network,
what percentage of spikes were recalled correctly. As discussed
in section Analog Axon Array, the delay of the analog axon is
programmed in an initial phase followed by a number of itera-
tions of delay adaptation with a fixed delay update step. This is to
reduce the errors in delay that result from the initial delay pro-
gramming step. Figure 13 shows that after 20 iterations of delay
adaptation, the percentage of the spikes in the patterns that have
been correctly recalled has been slightly increased for the patterns
with 50 spikes. For the other pattern lengths, the improvement is
negligible. The average percentage of spikes in each pattern cor-
rectly recorded across four pattern lengths (over 127 test runs)
using delay programming is 86.2% and using delay adaptation
is 87%.

Compared to the test results presented in Wang et al. (2013b),
which uses the fully digital implementations, the combination of
analog axon array and digital neuron array has an 8% drop in
performance, which is mainly because the analog axon cannot
be as precisely programmed and tuned as the digital axon. As
the experimental results of one axon module presented in (Wang
et al., 2013a) show, the offset between the actual programmed
and the desired value is about 10%, after delay programming.
When the ramp generator’s voltage is latched by the analog mem-
ory (for delay programming), there is always a slight deviation
(∼10 mV) between the programmed voltage and the desired volt-
age, as a combined result of charge injection (Liu et al., 2002)
and the inaccuracy of the ramp generator itself. The ramp gen-
erator will not charge at exactly the same speed each time due
to noise in the charging current. The analog axon will therefore
propagate each incoming pre-synaptic event with an offset com-
pared to the desired axonal delay. After delay adaptation, this
error can be reduced to less than 300 μs throughout the work-
ing range of a single axonal delay path (Wang et al., 2013a), but
due to process variation and device mismatch, it is impossible
to tune all axonal delay paths with such accuracy. This offset,
when large enough, will destroy the time-locked relations that are
the basis of polychronous spiking neural networks. We will dis-
cuss possible solutions for this issue in section Analog vs. Digital
Implementations. Another factor in the drop in performance is
the fact that the analog axon will sometimes generate spikes due
to on-chip parasitic coupling between axons, so that the firing of
one axonal delay path can trigger its neighboring paths to fire by
accident.

ANALOG AXON ARRAY AND ANALOG NEURON ARRAY
In this section, we will present the experimental results of the
combination with an analog axon array and an analog neuron

FIGURE 13 | Percentage of spikes in pattern correctly recalled for

different pattern lengths: (A) 50 spikes, (B) 33 spikes, (C) 25

spikes, and (D) 20 spikes. These results are from the
combination of analog axons and digital neurons. For most patterns
across all four pattern lengths, more than 85% of spikes are
recalled successfully.

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 51 | 129

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Wang et al. Mixed-signal polychronous spiking neural network

array. For the same reasons as presented in the previous section,
the testing scenarios will also focus on the percentage of spikes in
a pattern that have been recalled successfully, and the setup for
testing is the same as described in the previous section.

Figure 14 shows for each pattern stored in the analog axon
array how many spikes were recalled correctly. Figure 14 shows
that more than 70% of the spikes are correctly recalled for nearly
all the patterns across three pattern lengths (20, 25, and 33 spikes)
in both delay programming mode and delay adaptation mode.
For the longest patterns (50 spikes) the probability of correctly
recalling the full pattern is significantly lower, with only 57.4%
of the spikes successfully recalled on average, as mismatch and
noise are more likely to destroy the time-locked relations, result-
ing in the final part of the pattern not being recalled. Figure 14
also shows that for these longest patterns, 20 iterations of delay
adaptation improve the percentage of the spikes in the patterns
that have been correctly recalled to 64.7%. The average percent-
ages of spikes in pattern correctly recorded across four pattern
lengths (20, 25, 33, and 50 spikes) using delay programming
are 77.2, 78, 72.8, and 57.4%, respectively. After 20 iterations of
delay adaptation, these numbers have been improved to 78.1,
78.6, 73.9, 64.7%, respectively. Compared to the results pre-
sented in section Analog Axon Array and Digital Neuron array
for the analog axon array and digital neuron array, the fully
analog combination has an overall Performance drop of about
14%. Compared to the test results presented in section Digital
Axon Array and Analog Neuron Array for the digital axon array
and analog neuron array, the performance drop increases to
about 20%.

These drops are the results of two major factors. The first one
is that the analog axon and neuron arrays both generate spuri-
ous spikes due to on-chip parasitic coupling. The second factor
is that the analog axon fails to perfectly produce the time-locked
relations as the digital axon does. Both factors play a larger role
the longer the pattern is (in terms of number of spikes). Together,
these effects causes the combination of the analog axon and ana-
log neuron array to have the lowest performance of the four
combinations.

DISCUSSION
PERFORMANCE COMPARISON
Efficiency of the implementation
In Izhikevich (2006), the polychronous network is created with
random delays, and STDP is used to prune the connections.
Patterns are not stored or programmed into the network, but
rather, random patterns emerge. A single connection between
neurons could be active in a number of patterns, while other
connections will become totally inactive. In our implementation,
patterns can be directly programmed into the network and all
connections are used when the maximum number of patterns
has been programmed into the network. We aimed to avoid inac-
tive connections, since hardware would still be dedicated to these
inactive connections, but never used.

A drawback of a polychronous neural network is that a com-
mon sequence of four spikes in multiple patterns would initiate
all patterns that have this sequence when it occurred. To distin-
guish between two patterns with identical sub-sequences, it will
be necessary to set up the network so that continuous input is

FIGURE 14 | Percentage of spikes in each pattern correctly recalled for

different pattern lengths: (A) 50 spikes, (B) 33 spikes, (C) 25 spikes, and

(D) 20 spikes. These results are from the full analog system.

needed from the input pattern to keep the pattern going, for
example by setting the threshold to 5 simultaneous input spikes (4
from the previous neurons in the pattern and 1 from the input).
Such a system would then only follow a pattern if it had been

www.frontiersin.org March 2014 | Volume 8 | Article 51 | 130

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Wang et al. Mixed-signal polychronous spiking neural network

previously learned, and if it corresponded with the input pattern.
One of the two potential patterns (with identical starts) would die
out once the input signal identified which of the two patterns is
being presented.

The probability of overlap between patterns can be reduced
by setting a higher threshold at each neuron and connecting it
to more of the previous neurons in the pattern. The number of
patterns a network can store decreases linearly with the number
of neurons each neuron is connected to, so this would come at the
cost of a decreased storage capacity.

Analog vs. digital implementations
The experimental results show that, on average, the fully digital
implementation has the best performance. For comparison, the
combination of the digital axon array and the analog neuron array
achieves a similar performance when the network is sparse. The
combination of the analog axon array and digital neuron array
has a considerable performance drop, even when care has been
taken to remove all cross-talk from the spatio-temporal patterns.
Finally, the combination of the analog axon and neuron array
has the worst performance out of the four combinations. The
fully digital implementation has the strongest time-locked rela-
tion, whereas the fully analog implementation has the weakest,
due to the offset between the actual programmed and the desired
delay during programming; and the analog implementation is
further hampered by noise and spurious spikes. As a result, we
may conclude that the most important requirement of a hardware
implementation of a polychronous network is to provide a strong
time-locked relation.

For the analog axon, as presented in section Analogue Axon
Array and Digital Neuron Array, the error is introduced when
the ramp generator is writing its output voltage to the analog
memory (for delay programming) as a combined result of the
charge injection and the inaccuracy of the ramp generator. As the
results presented in Wang et al. (2013a) show, the offset will still
be about 300 μs even after adaptation. One possible solution is to
use analog-to-digital conversions and then store these digital val-
ues in digital memories (Horio et al., 1990; Cauwenberghs, 1996).
This method has a major advantage in that data can be stored in
non-volatile digital memory. The drawback is also quite obvious.
It requires at least one analog-to-digital converter (ADC) for stor-
age and usually one digital-to-analog converter (DAC) for read
out. This problem will become critical when massive storage is
required as each analog cell will either have its own ADC or share
one ADC, which will increase the complexity of the circuit. Other
factors, such as the accuracy and the bandwidth of the converters,
will lead to the requirement for a high precision ADC. The second
possible solution is to use floating-gate devices, which employ
programmable elements that that could be used to store the ana-
log values in a non-volatile memory (Basu et al., 2010; Brink et al.,
2013; Hasler and Marr, 2013). This feature is a promising alterna-
tive for the implementation of our polychronous spiking neural
network. On the other hand, the time-multiplexed digital axon
achieves an excellent balance between hardware cost and perfor-
mance and therefore is the preferred choice when using FPGAs.
As for a custom design, this design choice needs to be carefully
investigated because the cost will be highly process dependent.

While it is common cause in neuromorphic engineering that
analog circuits provide superior simulation of biological neurons
as a result of their continuous and noisy representation of signals,
these results show that in this application the analog implemen-
tation is consistently poorer in performance and scalability than
the digital implementation, which emphasizes that practitioners
should recognize that the use of analog circuits comes at a signifi-
cant cost and should not necessarily be an automatic choice in all
applications.

Comparison with other solutions
For the analog implementation of the axonal delay, a similar
approach was implemented by charging a capacitor using a tran-
sistor operating in sub-threshold (Dowrick et al., 2013), so that
the duration of the delay can be programmed by adjusting the
gate voltage of the charging transistor. However, their implemen-
tation is not able to learn delays, as the value of the gate voltage
was assigned externally and the authors have not addressed the
issues of obtaining and maintaining this voltage. In contrast, our
circuit is capable of learning and storing the axonal delay between
two spikes. In (Sheik et al., 2012, 2013), the authors show how
slow dynamics of analog synapses, combined with the variability
of neuromorphic analog circuits, can be used to generate a range
of temporal delays. Again, this work is used to generate the desired
delay rather than learn the delay.

For the digital implementation of the (axonal) delay, another
approach is to use a look-up table for the axonal delay values and
use a delay sorter directly before the neurons (Scholze et al., 2011).
The delay sorter records the arrival time of a spike and will re-emit
the spike when the axonal delay time found in the look-up-table
is reached. Our polychronous network generates delay paths de
novo, so that only connections that actually appear in the training
patterns will be created. Each axon module of our polychronous
network not only propagates the post-synaptic spike with a pro-
grammable axonal delay but also transmits the pre-synaptic spike
to the destination neuron (using address remapping by configur-
ing the input and output addresses). An implementation with a
look-up table would need the axon module to store the address
of the desired axonal delay from the look-up-table, and would
need to receive the notification from the look-up-table when that
axonal delay is reached. Address-remapping would then have to
be carried out by the axon module through the configuration of
its input and output addresses. An implementation using look-
up tables would therefore be more complex and larger than our
proposed implementation.

SCALING
The performance of the proposed polychronous network (the
number of storable patterns) will scale linearly with the num-
ber of axons as long as the average number of connections per
neuron is kept below 1/4 of the number of neurons in the net-
work to ensure that cross-talk is not much of an issue (Wang
et al., 2013b). In other words, the number of neurons needs to
be increased proportionally to the number of axons to maintain
performance.

The fully digital implementation of the polychronous neural
network is a scalable design. The number of time-multiplexed

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 51 | 131

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Wang et al. Mixed-signal polychronous spiking neural network

axons implemented by one physical axon will increase linearly
with the amount of available on-chip SRAM, as long as the mul-
tiplexing rate keeps the time resolution of the system within
the biological time scale, which is generally less than 1 ms. The
number of physical axons (i.e., the ones that could be activated
simultaneously) will increase linearly with the number of avail-
able Slice LUTs, which is indeed the bottleneck for large-scale
FPGA designs. The total number of virtual axons therefore scales
linearly with the quantity of both the available on-chip SRAM
and Slice LUTs. The number of physical neurons also scales
directly with the number of the available Slice LUTs. Finally, the
timing requirement will become quite critical when the utiliza-
tion becomes high, e.g., 90% of the LUTs on an FPGA, due to
the difficulties in routing. A good balance between the number
of the physical axons, the multiplexing rate and the number of
physical neurons is therefore the key to the implementation of
a large-scale polychronous network with a good time resolu-
tion and a high utilization of the available hardware recourses
on FPGA.

The analog implementation is nowhere near as scalable as the
digital implementation, since it can only be scaled up by imple-
menting more physical copies of the neurons and axons. However,
the introduction of the multiplexed analog neuron array, making
use of the fact that only a few neurons are active at any given time
in a polychronous network, allows the number of virtual neurons
to be about 80 times larger than the number of physical neurons.
In systems that need slow dynamics or memory of past events,
i.e., using neurons with longer time constants than we have used
here, the multiplex rate would go down and we would need more
physical neurons.

LESSONS LEARNED
Some lessons have been learnt from the implementation of this
mixed-signal platform and these are discussed below.

Virtualization, i.e., the mapping of a larger address space onto
a smaller number of physical components through multiplexing
these components, is one of the key ideas for implementing large-
scale spiking neural networks, because physical components are
costly. Virtualization, when simulating neural networks, is sup-
ported by biological observations that only 1% of neurons in
our brains are active on average at any moment (Johansson and
Lansner, 2007), which means it is not necessary to implement all
neurons physically on silicon.

A mixed-signal system appears to be a powerful tool for
real-time emulation of large-scale neural networks as it can
use analog circuits for computation while keeping the flexibility
of using programmable devices such as FPGA. As the on-chip
topology of the analog circuits is generally fixed after fabrica-
tion, it is better to implement the whole system in an FPGA
for prototyping and optimization before fabricating the analog
circuits.

For the sake of multiplexing analog building blocks such as
neurons and axons in a neuromorphic system, these circuits
must be designed as standardized building blocks with a standard
protocol for communication (such as AER) with programmable
devices. Furthermore, for the maximum utilization of a fixed
sized analog chip, it is best to reduce the on-chip routing as much

as possible as the routing can be carried out off-chip by FPGAs
with more flexibility and extensibility.

Our polychronous network stores spatiotemporal patterns. A
certain amount of jitter can be tolerated in the initial spikes when
recalling a stored pattern, which is controlled by setting a time
window for coincidence detection in the FPGA implementation,
and by the neuronal time constant in the analog implemen-
tation. If the patterns are to be generated by a neuromorphic
sensor, then care needs to be taken that the sensor reliably pro-
duces (near) identical spatiotemporal patterns for identical input
signals.

CONCLUSIONS
We have presented a mixed-signal implementation of a poly-
chronous spiking neural network composed of both an analog
implementation and a digital implementation of the axon array
and the neuron array. A multiplexed analog neuron array with 4k
analog neurons was achieved by multiplexing 50 physical analog
neurons. Compared to conventional time-multiplexing systems
that operate serially and have to store and retrieve analog vari-
ables, our scheme operates in parallel, and does not require analog
storage. A novel interface circuit for synchronizing the spikes
from the analog circuits has also been presented. The proposed
interface circuit effectively eliminates the problems of timing skew
and glitches on the bus and is capable of sampling the asyn-
chronous spikes from the analog circuits correctly. The test results
using the four possible configurations of analog or digital com-
ponents have been compared and discussed. We compared our
mixed-signal implementation with our fully digital implemen-
tation and addressed the key factor that most influences the
performance of the neural network—that of generating accurate
time locked relations. The proposed implementation can be lin-
early scaled up with the quantity of available hardware resources,
although the digital implementations are significantly easier to
scale than the analog equivalents, owing to the generic FPGA
platforms used.

ACKNOWLEDGMENTS
This work has been supported by the Australian Research Council
Grant DP0881219.

REFERENCES
Arthur, J. V., and Boahen, K. (2004). “Recurrently connected silicon neurons

with active dendrites for one-shot learning,” in 2004 IEEE International Joint
Conference on Neural Networks (IEEE Cat. No.04CH37541) (IEEE) (Vancouver,
BC), 1699–1704. doi: 10.1109/IJCNN.2004.1380858

Basu, A., Ramakrishnan, S., Petre, C., Koziol, S., Brink, S., and Hasler, P. E. (2010).
Neural dynamics in reconfigurable silicon. IEEE Trans. Biomed. Circuits Syst. 4,
311–319. doi: 10.1109/TBCAS.2010.2055157

Boahen, K. (2000). Point-to-point connectivity between neuromorphic chips using
address events. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47,
416–434. doi: 10.1109/82.842110

Brink, S., Nease, S., Hasler, P., Ramakrishnan, S., Wunderlich, R., Basu, A., et al.
(2013). A learning-enabled neuron array IC based upon transistor channel
models of biological phenomena. IEEE Trans. Biomed. Circuits Syst. 7, 71–81.
doi: 10.1109/TBCAS.2012.2197858

Cauwenberghs, G. (1996). “Analog VLSI long-term dynamic storage,” in 1996
IEEE International Symposium on Circuits and Systems. Circuits and Systems
Connecting the World. ISCAS 96 (IEEE) (Atlanta, GA), 334–337. doi:
10.1109/ISCAS.1996.541601

www.frontiersin.org March 2014 | Volume 8 | Article 51 | 132

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Wang et al. Mixed-signal polychronous spiking neural network

Dowrick, T., Hall, S., and McDaid, L. (2013). A simple programmable axonal
delay scheme for spiking neural networks. Neurocomputing 108, 79–83. doi:
10.1016/j.neucom.2012.12.004

Gao, C., and Hammerstrom, D. (2007). Cortical models onto CMOL and CMOS—
architectures and performance/price. IEEE Trans. Circuits Syst. I Regul. Pap. 54,
2502–2515. doi: 10.1109/TCSI.2007.907830

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1996). A neu-
ronal learning rule for sub-millisecond temporal coding. Nature 383, 76–81.
doi: 10.1038/383076a0

Goldberg, D., Cauwenberghs, G., and Andreou, A. (2001). Probabilistic synap-
tic weighting in a reconfigurable network of VLSI integrate-and-fire neurons.
Neural Netw. 14, 781–793. doi: 10.1016/S0893-6080(01)00057-0

Harkin, J., Morgan, F., Hall, S., Dudek, P., Dowrick, T., and McDaid, L.
(2008). “Reconfigurable platforms and the challenges for large-scale imple-
mentations of spiking neural networks,” in 2008 International Conference on
Field Programmable Logic and Applications (IEEE) (Heidelberg), 483–486. doi:
10.1109/FPL.2008.4629989

Harkin, J., Morgan, F., McDaid, L., Hall, S., McGinley, B., and Cawley, S. (2009).
A reconfigurable and biologically inspired paradigm for computation using
network-on-chip and spiking neural networks. Int. J. Reconfig. Comput. 2009,
1–13. doi: 10.1155/2009/908740

Hasler, J., and Marr, B. (2013). Finding a roadmap to achieve large neuromorphic
hardware systems. Front. Neurosci. 7:118. doi: 10.3389/fnins.2013.00118

Horio, Y., Ymamamoto, M., and Nakamura, S. (1990). Active analog memo-
ries for neuro-computing. IEEE Int. Symp. Circuits Syst. 4, 2986–2989. doi:
10.1109/ISCAS.1990.112638

Hussain, S., Basu, A., Wang, R., and Hamilton, T. (in press). Delay learning
architectures for memory and classification. Neurocomputing 1–27.

Hussain, S., Basu, A., Wang, M., and Hamilton, T. J. (2012). “DELTRON:
neuromorphic architectures for delay based learning,” in 2012 IEEE Asia
Pacific Conference on Circuits and Systems (IEEE) (Kaohsiung), 304–307. doi:
10.1109/APCCAS.2012.6419032

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural
Comput. 18, 245–282. doi: 10.1162/089976606775093882

Johansson, C., and Lansner, A. (2007). Towards cortex sized artificial neural
systems. Neural Netw. 20, 48–61. doi: 10.1016/j.neunet.2006.05.029

Levy, W. B., and Baxter, R. A. (1996). Energy efficient neural codes. Neural Comput.
8, 531–543. doi: 10.1162/neco.1996.8.3.531

Liu, S., Kramer, J., Indiveri, G., Delbrück, T., and Douglas, R. (2002). Analog VLSI:
Circuits and Principles. Cambridge, MA: MIT Press.

Masuda, N., and Aihara, K. (2003). Duality of rate coding and temporal cod-
ing in multilayered feedforward networks. Neural Comput. 15, 103–125. doi:
10.1162/089976603321043711

Mihalaş, S., and Niebur, E. (2009). A generalized linear integrate-and-fire neural
model produces diverse spiking behaviors. Neural Comput. 21, 704–718. doi:
10.1162/neco.2008.12-07-680

Minkovich, K., Srinivasa, N., Cruz-Albrecht, J. M., Cho, Y., and Nogin, A. (2012).
Programming time-multiplexed reconfigurable hardware using a scalable neu-
romorphic compiler. IEEE Trans. Neural Netw. Learn. Syst. 23, 889–901. doi:
10.1109/TNNLS.2012.2191795

Mirhassani, M., Ahmadi, M., and Miller, W. C. (2007). A feed-forward
time-multiplexed neural network with mixed-signal neuron–synapse arrays.
Microelectron. Eng. 84, 300–307. doi: 10.1016/j.mee.2006.02.014

Python, D., and Enz, C. C. (2001). A micropower class-AB CMOS log-domain
filter for DECT applications. IEEE J. Solid State Circuits 36, 1067–1075. doi:
10.1109/4.933462

Saighi, S., Levi, T., Belhadj, B., Malot, O., and Tomas, J. (2010). “Hardware
system for biologically realistic, plastic, and real-time spiking neural net-
work simulations,” in 2010 International Joint Conference on Neural Networks
(Barcelona), 1–7. doi: 10.1109/IJCNN.2010.5596979

Schemmel, J., Fieres, J., and Meier, K. (2008). “Wafer-scale integration of
analog neural networks,” in 2008 International Joint Conference on Neural
Networks (IEEE World Congr. Comput. Intell.) (Hong Kong), 431–438. doi:
10.1109/IJCNN.2008.4633828

Scholze, S., Schiefer, S., Partzsch, J., Hartmann, S., Mayr, C. G., Höppner, S.,
et al. (2011). VLSI implementation of a 2.8 Gevent/s packet-based AER inter-
face with routing and event sorting functionality. Front. Neurosci. 5:117. doi:
10.3389/fnins.2011.00117

Sheik, S., Chicca, E., and Indiveri, G. (2012). “Exploiting device mismatch
in neuromorphic VLSI systems to implement axonal delays,” in 2012
International Joint Conference on Neural Networks (Brisbane, QLD), 1–6. doi:
10.1109/IJCNN.2012.6252636

Sheik, S., Pfeiffer, M., Stefanini, F., and Indiveri, G. (2013). “Spatio-temporal spike
pattern classification in neuromorphic systems,” in Biomimetic and Biohybrid
Systems, eds N. F. Lepora, A. Mura, H. G. Krapp, P. F. M. J. Verschure, and T. J.
Prescott (Heidelberg: Springer), 262–273. doi: 10.1007/978-3-642-39802-5_23

Van Rullen, R., and Thorpe, S. J. (2001). Rate coding versus temporal order cod-
ing: what the retinal ganglion cells tell the visual cortex. Neural Comput. 13,
1255–1283. doi: 10.1162/08997660152002852

Vogelstein, R. J., Mallik, U., Vogelstein, J. T., and Cauwenberghs, G. (2007).
Dynamically reconfigurable silicon array of spiking neurons with
conductance-based synapses. IEEE Trans. Neural Netw. 18, 253–265. doi:
10.1109/TNN.2006.883007

Wang, R., Cohen, G., Hamilton, T. J., Tapson, J., and Van Schaik, A. (2013a). “An
improved aVLSI axon with programmable delay using spike timing dependent
delay plasticity,” in 2013 IEEE International Symposium of Circuits and Systems
(ISCAS) (IEEE) (Beijing), 2–5.

Wang, R., Cohen, G., Stiefel, K. M., Hamilton, T. J., Tapson, J., and van Schaik,
A. (2013b). An FPGA implementation of a polychronous spiking neural net-
work with delay adaptation. Front. Neurosci. 7:14. doi: 10.3389/fnins.2013.
00014

Wang, R., Tapson, J., Hamilton, T. J., and van Schaik, A. (2011). “An analogue VLSI
implementation of polychronous spiking neural networks,” in 2011 Seventh
International Conference on Intelligent Sensors, Sensor Networks and Information
Processing (IEEE) (Adelaide, SA), 97–102. doi: 10.1109/ISSNIP.2011.6146572

Weste, N., and Harris, D. (2005). CMOS VLSI Design: a Circuits and Systems
Perspective, 3rd Edn. Boston, MA: Addison-Wesley.

Yu, T., and Cauwenberghs, G. (2010). “Log-domain time-multiplexed real-
ization of dynamical conductance-based synapses,” in Proceedings of 2010
IEEE International Symposium on Circuits System (Paris), 2558–2561. doi:
10.1109/ISCAS.2010.5537114

Zaveri, M. S., and Hammerstrom, D. (2011). Performance/price estimates for
cortex-scale hardware: a design space exploration. Neural Netw. 24, 291–304.
doi: 10.1016/j.neunet.2010.12.003

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 25 September 2013; accepted: 26 February 2014; published online: 18 March
2014.
Citation: Wang RM, Hamilton TJ, Tapson JC and van Schaik A (2014) A mixed-signal
implementation of a polychronous spiking neural network with delay adaptation.
Front. Neurosci. 8:51. doi: 10.3389/fnins.2014.00051
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2014 Wang, Hamilton, Tapson and van Schaik. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | Neuromorphic Engineering March 2014 | Volume 8 | Article 51 | 133

http://dx.doi.org/10.3389/fnins.2014.00051
http://dx.doi.org/10.3389/fnins.2014.00051
http://dx.doi.org/10.3389/fnins.2014.00051
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

ORIGINAL RESEARCH ARTICLE
published: 21 November 2013
doi: 10.3389/fnins.2013.00215

Real-time biomimetic Central Pattern Generators in an
FPGA for hybrid experiments
Matthieu Ambroise1, Timothée Levi1*, Sébastien Joucla2, Blaise Yvert2 and Sylvain Saïghi1

1 Laboratoire IMS, UMR Centre National de la Recherche Scientifique, University of Bordeaux, Talence, France
2 Laboratoire INCIA (Institute for Cognitive and Integrative Neuroscience), UMR Centre National de la Recherche Scientifique, University of Bordeaux, Talence,

France

Edited by:

André Van Schaik, The University of
Western Sydney, Australia

Reviewed by:

Jorg Conradt, Technische Universität
München, Germany
Runchun M. Wang, University of
Western Sydney, Australia
M. Anthony Lewis, Qualcomm,
QTI, USA

*Correspondence:

Timothée Levi, Laboratoire IMS,
UMR Centre National De La
Recherche Scientifique 5218,
Université de Bordeaux, 351 Cours
de la Libération, 33405 Talence,
France
e-mail: timothee.levi@
ims-bordeaux.fr

This investigation of the leech heartbeat neural network system led to the development of
a low resources, real-time, biomimetic digital hardware for use in hybrid experiments.
The leech heartbeat neural network is one of the simplest central pattern generators
(CPG). In biology, CPG provide the rhythmic bursts of spikes that form the basis for all
muscle contraction orders (heartbeat) and locomotion (walking, running, etc.). The leech
neural network system was previously investigated and this CPG formalized in the
Hodgkin–Huxley neural model (HH), the most complex devised to date. However, the
resources required for a neural model are proportional to its complexity. In response
to this issue, this article describes a biomimetic implementation of a network of 240
CPGs in an FPGA (Field Programmable Gate Array), using a simple model (Izhikevich) and
proposes a new synapse model: activity-dependent depression synapse. The network
implementation architecture operates on a single computation core. This digital system
works in real-time, requires few resources, and has the same bursting activity behavior
as the complex model. The implementation of this CPG was initially validated by
comparing it with a simulation of the complex model. Its activity was then matched
with pharmacological data from the rat spinal cord activity. This digital system opens the
way for future hybrid experiments and represents an important step toward hybridization
of biological tissue and artificial neural networks. This CPG network is also likely to be
useful for mimicking the locomotion activity of various animals and developing hybrid
experiments for neuroprosthesis development.

Keywords: central pattern generator, biomimetic, neuron model, spiking neural networks, digital hardware, FPGA

INTRODUCTION
Millions of people worldwide are affected by neurological disor-
ders which disrupt connections between brain and body, causing
paralysis or affecting cognitive capabilities. The number is likely
to increase over the next few years and current assistive tech-
nology is still limited. In recent decades, extensive research has
been devoted to Brain-Machine Interfaces (BMIs) and neuro-
prosthesis in general (Hochberg et al., 2006, 2012; Nicolelis and
Lebedev, 2009), working toward effective treatment for these
disabilities. The development of these devices has had and, hope-
fully, will continue to have a profound social impact on these
patients’ quality of life. These prostheses are designed on the basis
of our knowledge of interactions with neuronal cell assemblies,
taking into account the intrinsic spontaneous activity of neu-
ronal networks and understanding how to stimulate them into
a desired state or produce a specific behavior. The long-term goal
of replacing damaged neural networks with artificial devices also
requires the development of neural network models that match
the recorded electrophysiological patterns and are capable of pro-
ducing the correct stimulation patterns to restore the desired
function. The hardware set-up used to interface the biological
component is a Spiking Neural Network (SNN) system imple-
menting biologically realistic neural network models, ranging

from the electrophysiological properties of a single neuron to
large-scale neural networks.

Our study describes the development of a neuromorphic hard-
ware device containing a network of real-time biomimetic Central
Pattern Generators (CPG). The main goal of this research is to
create artificial CPGs that will be connected to ex vivo spinal
cord of rats and guinea pigs, thus achieving one main objec-
tive of the Brainbow European project (Brainbow, 2012) toward
hybridization. Hardware-based SNN systems were developed for
hybrid experiments with biological neurons and the description
of those pioneer platforms was reported in the literature (Jung
et al., 2001; Le Masson et al., 2002; Vogelstein et al., 2006). The
Brainbow project will go further by using a large-scale neural
network instead of few neurons to substitute the functions of a
biological sub-network. The final goal is the development of a
new generation of neuro-prostheses capable to restore the lost
communication between neuronal circuitries.

Locomotion is one of the most basic abilities of animals.
Neurobiologists have established that locomotion results from
the activity of half-center oscillators that provides alternating
bursts. The first half-center oscillator was proposed by Brown
(1914). Pools of interneurons control flexor and extensor motor
neurons with reciprocal inhibitory connections. Most rhythmic

www.frontiersin.org November 2013 | Volume 7 | Article 215 | 134

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2013.00215/abstract
http://www.frontiersin.org/people/u/111767
http://www.frontiersin.org/people/u/27693
http://community.frontiersin.org/people/S�bastien Joucla/84060
http://www.frontiersin.org/people/u/4887
http://www.frontiersin.org/people/u/3865
mailto:timothee.levi@ims-bordeaux.fr
mailto:timothee.levi@ims-bordeaux.fr
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Ambroise et al. Biomimetic CPGs for Hybrid experiments

movements are programmed by central pattern-generating net-
works consisting of neural oscillators (Marder and Bucher, 2001;
Ijspeert, 2008). CPGs are neural networks capable of producing
rhythmic patterned outputs without rhythmic sensory or central
input. CPGs underlie the production of most rhythmic motor
patterns and have been extensively studied as models of neural
network function (Hooper, 2000). Half-center oscillators con-
trol swimming in xenopus, salamander (Ijspeert et al., 2007),
and lamprey (Cohen et al., 1992), as well as leech heartbeat
(Cymbalyuk et al., 2002), as described in numerous publications.
One key article on modeling the leech heartbeat system is Hill
et al. (2001), where the Hodgkin–Huxley formalism is used to
reproduce the CPG.

The main novelty of this research was to implement the leech
heartbeat system neural network with minimum resources while
maintaining its biomimetic activity. Indeed, the final application
is a hybrid experiment that requires spike detection, spike sort-
ing, and micro-electrode stimulation. All of these modules are
implemented in the same digital board. To achieve this, the Hill
et al. (2001) model and results were reproduced using a sim-
pler model (Izhikevich, 2004), implemented in an FPGA (Field
Programmable Gate Array) board. This digital board made it pos-
sible to design a frugal, real-time network of several CPGs (in this
case, a network of 240 CPGs implemented on a Spartan6 FPGA
board). For instance, this CPG network is capable of mimicking
the activity of a salamander, which requires 40 CPGs (Ijspeert,
2001), or developing hybrid experiments (Le Masson et al., 2002)
for neuroprosthesis development (Brainbow, 2012).

The first part of this article describes the biological leech heart-
beat system, based on one segmental CPG. The next section
focuses on choosing a frugal neuron model to match the same
biological behavior. The following section explains the topol-
ogy of a single neuron and its implementation in the hardware,
followed by its extension to a neuron computation core for
increasing the size of the neural network. The next stage was to
develop a new synaptic model reproducing activity-dependent
depression phenomena to fit the biological activity of a leech
heartbeat. The architecture of this digital system is then described
in full, including the various blocks. Finally, the system was used
to design a CPG network, validated by comparing our measure-
ments with ex vivo rat spinal cord locomotion results following
pharmacological stimulation.

MATERIALS AND METHODS
DESCRIPTION OF THE LEECH BIOLOGICAL HEARTBEAT SYSTEM
All leech heartbeat studies agree that the CPG (Figure 1C)
responsible for this activity (Figure 1A) requires few neurons,
making it an ideal candidate system for elucidating the various
biomechanisms governing CPG behavior.

Modeling studies indicate that the burst duration of a leech
heart interneuron in an elemental oscillator is regulated by the
interneuron itself and by the opposite interneuron (see L3 and
R3 in Figure 1B) (Calabrese, 1995; Nadim et al., 1995; Olsen
et al., 1995; Hill et al., 2001; Jezzini et al., 2004; Norris et al.,
2007). Figure 1A shows the electrical activity in the leech heart-
beat system from extracellular recordings. The pair of neurons
is known as an elemental oscillator (Figure 1B), i.e., the smallest

FIGURE 1 | Electrical activity of the leech heartbeat system and

diagram of the CPG. Neuron cell bodies are represented by circles. Axons
and neurite processes are represented by lines. Inhibitory chemical
synapses are represented by small filled dots. (A) Electrical activity of two
heart interneurons recorded extracellularly from a chain of ganglia (Hill
et al., 2001). (B) A diagram of the elemental oscillator in the leech heartbeat
system. (C) A diagram of the segmental oscillator in the leech heartbeat
system, including two elemental oscillators, L3/R3 and L4/R4, and two
pairs of coordination neurons, L1/R1 and L2/R2.

unit that capable of producing robust oscillations under normal
conditions. These neurons oscillate in alternation with a period
of about 10–12 s (Krahl and Zerbst-Boroffka, 1983; Calabrese
et al., 1989; Olsen and Calabrese, 1996) demonstrated that the
synaptic connections among interneurons and from interneu-
rons to motor neurons were inhibitory. The synaptic interaction
between reciprocally inhibitory heart interneurons consists of a
graded component in addition to spike-mediated synaptic trans-
missions (Angstadt and Calabrese, 1991). This kind of synapse is
really difficult to implement in hardware as it contains sigmoid
functions, differential equations, memory of last spikes, and so
on. A description of our synapse model reproducing the same
behavior is included below.

Nadim et al. (1995) and Olsen et al. (1995) developed a bio-
physical model of a pair of reciprocally inhibitory interneurons in
the leech heartbeat system. This model included synaptic ionic
currents based on voltage-clamp data. Synaptic transmissions
between the interneurons consist of spike-mediated and graded
synaptic currents. The Hill et al. (2001) model was derived from
a previous two-cell, elemental oscillator model (Nadim et al.,
1995) by incorporating intrinsic and synaptic current modifica-
tions based on the results of a realistic waveform voltage-clamp

Frontiers in Neuroscience | Neuromorphic Engineering November 2013 | Volume 7 | Article 215 | 135

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Ambroise et al. Biomimetic CPGs for Hybrid experiments

study (Olsen and Calabrese, 1996). This new, segmental oscilla-
tor model behaves more similarly to biological systems. Figure 1C
shows a model of the system. The real-time digital segmental
oscillator model design will be based on this architecture. The
next part will describe the system modeling the leech heartbeat
with the goal of implementing it in hardware. The leech heartbeat
CPG was chosen for the long duration of the burst.

SYSTEM MODELING FOR HARDWARE IMPLEMENTATION
State of art
Some previous studies used silicon neurons (Indiveri et al., 2011)
to simulate the leech heartbeat system (Simoni et al., 2004; Simoni
and DeWeerth, 2007). Sorensen et al. (2004) created a hybrid
system of a heart interneuron and a silicon neuron. The silicon
neuron provides real-time operation and implements a version
of the Hodgkin–Huxley formalism (Hodgkin and Huxley, 1952).
However, due to the complexity of the model, it was only possi-
ble to use a small number of silicon neurons and, therefore, only
one CPG. This study describes the same results using a large CPG
network (240 CPGs on a Spartan6 FPGA board), in preparation
for future hybrid experiments with different CPGs. For instance,
in the salamander model (Ijspeert, 2001), the body CPG consists
of 40 interconnected segmental networks.

When a silicon neuron and heart interneuron are connected
with reciprocal inhibitory synapses of appropriate strength,
they form a hybrid elemental oscillator that produces oscilla-
tions remarkably similar to those seen in the living system.
Olypher et al. (2006) described the control of burst dura-
tion in heart interneurons using a hybrid system, where a liv-
ing, pharmacologically-isolated, heart interneuron was connected
with artificial synapses to a model heart interneuron running
in real-time (software). Using an FPGA board will make it pos-
sible to operate in real time using a large number of neurons,
together with customized systems for various applications (hybrid
experiments).

A few studies (Torres-Huitzil and Girau, 2008; Rice et al.,
2009; Serrano-Gotarredona et al., 2009; Barron-Zambrano et al.,
2010; Barron-Zambrano and Torres-Huitzil, 2013) reported on
CPG in FPGA for robotic applications. These studies used sim-
ple neuron-models and were more bio-inspired than biomimetic.
Guerrero-Riberas et al. (2006) implemented a network of LIF
neurons with synapses and plasticity, but not in biological time,
so it was impossible to perform hybrid experiments. While
multi-legged robots need CPG to move or coordinate their
movements, they implement an Amari–Hopfield CPG (Amari,
1972) or basic CPGs (Van Der Pol, 1928), modeled as non-
linear oscillators. Those models provide sinusoidal oscillations
that are not biorealistic. The ultimate goal of these studies is
to create a robot that mimics biological behavior but these
systems cannot be used for hybrid experiments. Analog hard-
ware has also been implemented (Linares-Barranco et al., 1993;
Still and Tilden, 1998; Lewis et al., 2001; Nakada, 2003; Still
et al., 2006; Lee et al., 2007; Wijekoon and Dudek, 2008).
However, it is very difficult to tune analog circuits due to param-
eter mismatch. For these works, they either design bio-inspired
oscillators for creating CPG or implement few biomimetic
neurons.

Choice and presentation of the Izhikevich model
In designing a SNN, the first step is the choice of a biologically
realistic model. Indeed, a mathematical model based differen-
tial equations is capable of reproducing a behavior quite similar
to that of a biological cell. The choice of model was based on
two criteria: the family of neurons able to be reproduced and
the number of equations. These criteria were used to compare
several models, including the Leaky Integrate and Fire model
(LIF) (Indiveri, 2007), the Hodgkin–Huxley model (HH), and the
Izhikevich model (IZH).

Hill et al. (2001) used the HH to reproduce the leech heart-
beat system with eight neurons (Figure 1C). From the equations
defined in this paper, it was established that the eight neurons
in the heartbeat leech behaved like regular spiking ones (RS).
Indeed, this model was composed of nine voltage-dependent
currents with different calcium conductances.

The HH model reproduces all types of neurons with good
accuracy (spike timing and shape). Its main drawbacks are the
large number of parameters and the equations required. In the
heartbeat network, the main focus is on excitatory neurons, like
RS. The HH model required 32 parameters for an RS and 26 for a
fast-spiking neuron (FS) (Grassia et al., 2011). Furthermore, sim-
ulating an RS neuron required four ionic channels (dynamics of
potassium and sodium ions, leak current, and slow potassium).
In contrast, LIF only involves two equations but is only capable of
simulating a few types of neurons.

The IZH represents a good solution, as it is based on two equa-
tions and is capable of reproducing many different families of
neurons by changing four parameters. Furthermore, according
to Izhikevich (2004), this model is resource-frugal, a key advan-
tage when the aim is to design a large CPG network embedded in
the same board as other modules required for hybrid experiments
(spike detection, spike sorting, stimulation, etc.).

The IZH model depends on four parameters, which make it
possible to reproduce the spiking and bursting behavior of spe-
cific types of cortical neurons. From a mathematical standpoint,
the model is described by a two-dimensional system of ordinary
differential equations (Izhikevich, 2003):

dv

dt
= 0.04v2 + 5v + 140− u+ IIzh (1)

du

dt
= a(bv − u) (2)

with the after-spike resetting conditions:

if v ≥ 30 mV⇒
{

v← c
u← u+ d

(3)

In equation (3), v is the membrane potential of the neuron, u is a
membrane recovery variable, which takes into account the activa-
tion of potassium and inactivation of sodium channels, and IIzh

describes the input current from other neurons.
The IZH model was chosen to emulate the behavior of the

excitatory cells for its simplicity and its capacity to implement
various families of neurons. The next step was to determine the

www.frontiersin.org November 2013 | Volume 7 | Article 215 | 136

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Ambroise et al. Biomimetic CPGs for Hybrid experiments

network system topology. The next section describes the design
of one neuron and its extension to a neuron computation core,
then the different synapse models implemented, and, finally, the
topology of the network.

SYSTEM TOPOLOGY
Topology of one neuron core: architecture and implementation
In order to make the Izhikevich neural network more biomimetic,
the IIzh current from equation (1) was split into three: Ibias, Iexc,
and Iinh. Ibias is the biasing current, Iexc is the positive con-
tribution due to excitatory synapses, and Iinh is the negative
contribution of inhibitory synapses. Those currents will be
detailed in Synapse Model. As suggested in Cassidy and Andreou
(2008), equation (1) was multiplied by 0.78125 to make it easier
to implement on a digital board. These modifications gave (4),
where the u coefficient is still 1 thanks to Ibias current.

dv

dt
= 1/

32 v2 + 4v + 109.375− u+ Ibias + Iexc + Iinh

du

dt
= a · (bv − u)

(4)

Moreover, dv
dt = v[n+1]−v[n]

�t and, as the time step of the IZH
model is equal to one millisecond (�t = 1):

v [n+ 1] = 1/
32 v [n]2 + 5v [n]+ 109.375− u [n]

+ Ibias [n]+ Iexc [n]+ Iinh [n] (5)

u [n+ 1] = u [n]+ a.(b.v [n]− u [n])

One neuron was implemented on the FPGA board according
to these equations and specifications. This neuron was then
extended into a neuron computation core that updated the u and
v values of all neurons in the network. Consequently, the neu-
ron implementation became a neuron computation core. For
instance, around 2000 independent neurons could be imple-
mented on our digital board. In this system, the type of neuron
is defined by the four Izhikevich parameters: a, b, c, and d from
equations (2) and (3). Moreover, the state of a neuron is defined
by values u and v, and the three current values. Those 9 val-
ues were saved in a RAM for use in the next millisecond in the
step computation. By extension, the same process can be used for
every neuron in the network.

Each u and v computation step is run in parallel, using two
pipelines based on the architecture presented in [9]. The topology
is presented in Figure 2. All parameters from equations (2), (3),
and (4), as well as the u and v values used in the computation are
synchronized in one cycle before going through the pipelines (not
shown in Figure 2).

To resume, each neuron is represented by one “v” and “u”
value, four Izhikevich coefficients (a, b, c, and d), and three
currents (Ibias, Iexc, and Iinh).

Iexc, Iinh, and Ibias are added in two cycles at the beginning of
the “v” pipeline, while the “u” pipeline is still inactive (steps 1
and 2). The current sum is added to the constant 109.375 and at

FIGURE 2 | Architecture of the “u” and “v” pipelines in the neural

computation core. The computation cycles are separated by dotted lines.

the same time as the first multiplication (step 3). By multiplexing
operands, the same multiplier is used for the following multipli-
cations in different computation cycles. In step 4, v2 is obtained
by another multiplication. A simple two-bit shift makes it possi-
ble to obtain 4v and add it to v. At the same time, u is used in two
subtractions. Step 5 consists of a 5-bit shift to obtain (1/32)v2, an
addition, and the last multiplication. In step 6, the computation
of both u and v is completed. In the next step, the v value is tested
against the threshold to determine whether the neuron has emit-
ted a spike or not. This test gives the next u and v values for this
neuron to be stored in the RAM.

An RS neuron with a = 0.002, b = 0.2, c = −65, and d = 8
was used to implement the CPG.

Once the neuron computation core was implemented, the
synaptic model was chosen and implemented.

Synapse model
A network is defined by a group of neurons and a group of
synapses. Once the neuron model had been chosen, it was obvi-
ously necessary to choose a synapse model. Like the neuron
model, this model had to be biomimetic but frugal in its use of
resources. In biology, synapses are described as links between neu-
rons that transmit different types of synaptic currents to each
other to either excite or inhibit neuron activity. In our imple-
mentation, a synaptic weight (Wsyn) was added to the synaptic
current. When Wsyn was positive, it was added to Iexc (excitatory
synaptic current) and when Wsyn was negative, it was added to
Iinh (inhibitory synaptic current).

Thanks to AMPA and GABA effects, all synaptic current exci-
tations or inhibitions, respectively decay exponentially (Ben-Ari
et al., 1997). AMPA is an excitatory neurotransmitter that depo-
larizes the neuron membrane whereas GABA is an inhibitory

Frontiers in Neuroscience | Neuromorphic Engineering November 2013 | Volume 7 | Article 215 | 137

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Ambroise et al. Biomimetic CPGs for Hybrid experiments

neurotransmitter with a hyperpolarizing effect. Depolarization
or hyperpolarization are represented by a positive or negative
contribution on the synaptic current.

The synaptic current Isyn was implemented with a time
constant τsyn for the exponential decay, as follows:

Isyn(t) = −τsyn · I′syn(t) = −τsyn.
Isyn(t + T)− Isyn(t)

T
(6)

Isyn(t + T) =
(

1− T

τsyn

)
· Isyn(t) (7)

When computation step T equals one millisecond and τsyn is in
ms:

Isyn(t + 1) =
(

1− 1

τsyn

)
· Isyn(t) (8)

Isyn [n+ 1] = Isyn [n]− 1

τsyn
· Isyn [n] (9)

Adding the synaptic weight to the synaptic current, the new
equation is:

Isyn [n+ 1] = Isyn [n]− 1

τsyn
· Isyn [n]+Wsyn [n] (10)

The synaptic computation core implementation is based on the
same principle as the neuron computation core. However, this
model is not adequate to fit biological data. It was, therefore,
decided to implement an activity-dependent depression, where
the new synaptic weight, Ws, was dependent on Wsyn.

Activity-dependent depression
As the synaptic behavior described in Hill et al. (2001) requires
too many resources to be implemented on FPGA, the method
chosen to fit overall biological behavior was activity-dependent
depression (Tabak et al., 2000). Activity-dependent depression of
synapses is another biological phenomenon consisting of reduc-
ing a synaptic weight after a spike. In biology, each synapse
contribution is provided by a synaptic vesicle. These vesicles
contain ions that empty out at each spike and then regenerate, fol-
lowing an exponential rule. According to Matsuoka (1987), four
methods provide a stable rhythm within a network (regulation
of stimulus intensity, change in input, alteration of stimuli, and
change in synaptic weight). The phenomenon, known as activity-
dependent depression changes the synaptic weight depending on
the activity of the network.

This phenomenon has been reported in neurobiology litera-
ture but no model had been devised. This paper proposes a model
of this activity-dependent depression that was implemented in
digital hardware to improving our CPG network.

As previously explained, each time a neuron emits a spike; the
synapse adds a synaptic weight (Wsyn) to the synaptic current.
At the same time, the factor (δsyn) indicating the level of depres-
sion on a synaptic weight increases. Furthermore, δsyn regulates
Wsyn. The value of δsyn is between 0 and 1. Consequently, when

δsyn equals zero there is no depression on Wsyn and when δsyn

equals one there is maximum depression on Wsyn and the synapse
is exhausted.

Ws was used instead of Wsyn as the synaptic weight for each
synapse. Then, according to the activity-dependent depression
effect, when there is a spike, Ws is added to the synaptic current:

Ws [n] = Wsyn − δsyn [n] ·Wsyn (11)

The other effect of activity-dependent depression is to increase
δsyn after each spike, thanks to the percentage dissipation (P).

δsyn [n+ 1] = δsyn [n]+ P · (1− δsyn [n]) (12)

The regeneration or reloading of synaptic vesicles is represented
by δsyn decreasing to zero. Thus, δsyn decays exponentially when
no spike is emitted. So, using the method described in Synapse
Model:

δsyn [n+ 1] = δsyn [n]− 1

τreg
· δsyn [n] (13)

To summarize, all synapses are now represented by (12), (13), (14)
and:

Isyn [n+ 1] = Isyn [n]− 1

τsyn
· Isyn [n]+Ws [n] (14)

The main parameters are: synaptic weight, Wsyn; level of depres-
sion, δsyn; and percentage dissipation, P. All these parameters are
stored in the RAM on the digital board. Furthermore, this com-
putation required greater precision due to the sensitivity of the
parameters. The 26-bit signed fixed representation chosen had
1-bit for the sign, 9-bits for the whole numbers, and 16 for the
decimals.

Once the neuron and synapse models had been designed, it
was possible to develop the neural network topology.

Network topology
Three elementary blocks. The architecture was based on three
main blocks: the neuron implemented (or neuron computation
core), a synapse, and the RAM. The connectivity between those
blocks is shown in Figure 3.

So far, the neuron computation core can update the state
(“u” and “v” variables) of each neuron. In the digital network,
the role of the synapse is to update all synaptic currents and
weights related to the activity of all neurons, so the synapse block
exhibits two behaviors (spiking or not). These two behaviors are
summarized in Table 1.

The IZH model has a time step of one millisecond, so the other
computation was synchronized with this time step. The new val-
ues of u and v, the exponential decay of Isyn, and the new values
of each synaptic current are computed in the same millisecond.

Moreover, a biological neural network is composed of Nn neu-
rons and Ns synapses. To define which neuron is connected to
which and with which kind of synapse (excitatory or inhibitory),
the network is described using two matrixes: connectivity and
synaptic weight (see Figure 3). To save RAM, both matrixes are
implemented as sparse matrixes with Nn lines. The ith line in the

www.frontiersin.org November 2013 | Volume 7 | Article 215 | 138

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Ambroise et al. Biomimetic CPGs for Hybrid experiments

FIGURE 3 | Global architecture of the spiking neural network.

Table 1 | Description of the equations for synaptic currents and

activity-dependent depression.

When a spike is emitted When no spike is emitted

Synaptic current Synaptic current

Iexc [n+ 1] = Iexc [n]+Ws [n]
or
Iinh [n+ 1] = Iinh [n]+Ws [n]

Iexc [n+ 1] = Iexc [n]
and
Iinh [n+ 1] = Iinh [n]

Activity-dependent depression Activity-dependent depression

δsyn [n+ 1] = δsyn [n]+ P(1− δsyn [n]) δsyn [n+ 1] = δsyn [n]− δsyn [n]
τreg

connectivity matrix corresponds to the connectivity of presynap-
tic neuron Ni to the other neurons. The synapses are identified by
the postsynaptic neuron addresses. For example, the connection
to neuron Nj is identified by the number j on the ith line. In the
worst case, each neuron is connected to itself and all the others,
giving Nn columns. Each matrix line ends with a virtual neuron
(address Nn+ 1). This implementation is not optimum for the
worst case, but the gain is significant for biologically plausible net-
works, where the total number of synapses is at least four times
smaller. Marom and Shahaf (2002) and Garofalo et al. (2009)
estimated the average connectivity level of neural networks at
their mature phase each neuron is mono-synaptically connected
to 10–30% of all the other neurons.

There is a direct link between the matrixes: the synaptic weight
matrix is the same size as the connectivity matrix, i.e., the same
number of lines and columns, with the virtual neurons in the
same position (Figure 4). The connectivity between two neurons
described by the coordinates (k, l) in the connectivity matrix has
the weight shown in box (k, l) in the synaptic weight matrix.
A third matrix based on the same principle completes the system:
the percentage efficiency matrix, which gives the percentage dissi-
pation, P, of each synapse in a network, as defined in the previous
section on activity-dependent depression. We will describe now
the state machine of the neural network.

FIGURE 4 | Example of matrix design depending on the neural

network. Neuron 2 (N2) is connected by an inhibitory synapse to neuron 1
(N1) and by an excitatory synapse to neuron 3 (N3). Then, on line 2 in the
connectivity matrix, N2 is connected to N1, N3, and a virtual neuron (VN),
indicating the end of the connection. In the synaptic weight matrix, the
synapses for neuron 2 (S2) have a negative weight for the inhibitory
synapse and a positive weight for the excitatory synapse. Note the
correspondence of its position in both matrixes.

Network machine states. The synaptic current is computed in
three successive steps:

– EXT state: for closed-loop experiments, we implement this
state in which external feedback can interact with the artificial
neural network. This first state consists of using the synaptic
block to update the synaptic current. In this case, presynaptic
spikes are external events (see Figure 3), such as stimulation
from biological neurons in the case of neuroprosthesis. This
state makes it possible to stimulate each neuron.

– NEUR state: during this step, the neuron membrane (“u”
and “v” from Figure 2) and all exponential decay values are
computed in parallel.

– SYN state: the last step consists of updating the synaptic current
to reflect the presynaptic spikes computed in the NEUR state.
These updated current values are used in the EXT state during
the next cycle.

The EXT, NEUR, and SYN states must be completed within a
one millisecond time step. If the computation of all three states
is completed in less than 1 ms, an IDLE state is implemented
until the end of the cycle. Moreover, the blocks (neuron compu-
tation core and synapse computation core) described in Figure 3
are multiplexed in time to reduce the implementation area in
large-scale neural networks.

Our architecture has two main limits: the number of avail-
able cycles (Nc) in one millisecond and the size of the RAM
used to save all parameters. Two equations derived from these
limits determine the maximum size of the implementable
neural network, in terms of number of neuron (Nn) and
synapses (Ns).

In the EXT state, all synaptic currents are updated in 10 cycles
for each neuron, i.e., 10·Nn cycles. Each neuron requires 11 cycles
to compute the NEUR state, i.e., 11· Nn cycles. The synaptic cur-
rent update during state SYN requires 10 cycles per synapse, i.e.,

Frontiers in Neuroscience | Neuromorphic Engineering November 2013 | Volume 7 | Article 215 | 139

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Ambroise et al. Biomimetic CPGs for Hybrid experiments

10·Ns. Figure 2 describes 7 cycles for the neuron computation
core, but 4 more cycles are required to read and save the various
parameters in the RAM.

This leads to the following equation for computing the max-
imum number of neurons that may be implemented, depending
on the number of cycles available:

10 · Nn+ 11 · Nn+ 10 · Ns ≤ Nc (15)

Having built all the component parts of this real-time,
biomimetic digital system, it was possible to validate it by several
experiments, presented in the following section.

RESULTS
A CPG is defined by the number of neurons and the families of
neurons and synapses. The leech heartbeat neural network was
simulated by an appropriate CPG configuration.

Hill et al. (2001) presented an elemental oscillator, based on
two excitatory neurons linked by inhibitory synapses. A segmen-
tal oscillator may consist of 4–10 neurons. A two-neuron network
(elemental oscillator from Figure 1B) was chosen to validate our
topology, followed by an eight-neuron neural network (segmen-
tal oscillator from Figure 1C). The activity of our system was
then compared with that of an ex vivo rat spinal cord, stimu-
lated with pharmacological solutions. It was also demonstrated
that the period of bursting activity could be modified depending
on one parameter. This will be useful in future closed-loop hybrid
experiments.

Biological CPGs provide specifications concerning their
behavior. Indeed, their activity is characterized by periodic long
bursts (lasting many seconds). Each burst begins by a quick rise
in spike frequency to a maximum and ends with a low final spike
frequency.

COMPARISON OF BIOLOGICAL/DIGITAL ELEMENTAL OSCILLATOR
The first example of a CPG was the elemental oscillator (with only
two neurons). To reproduce activity accurately, it was necessary to
obtain the following values: τampa (time constant of the inhibitory
synaptic current exponential decay), τreg (time constant of the
recovery of synaptic vesicles), and P (percentage dissipation).
These values will be the same for each synapse. The following val-
ues were chosen to match biological behavior: τcurrent = 100 ms
and τreg = 4444 ms (so 1/τcurrent = 0.01 and 1/τreg = 0.0002).
The Ibias current was equal to 8 for both neurons. The synaptic
weights are−5.1 and the percentages of dissipation are 1.49.

This model was validated by comparing its implementation
with the complex model in Hill et al. (2001) (see Figure 5).

In this case, the activity of one neuron inhibits the sec-
ond neuron. Due to activity-dependent depression and the
GABA effect, the inhibition ends and lets the second neuron
fire again. In both cases (biological modeling system and digi-
tal system), the bursting activity was similar in terms of period
and duty cycle, thus validating the simplified elemental oscil-
lator with the complex one. The next step was to validate
the segmental oscillator and compare its implementation with
biological data.

FIGURE 5 | Comparison between elemental oscillator (Figure 1B)

bursting activity in the complex model simulated by scilab, as

described in Hill et al. (2001) and the elemental oscillator presented

above thanks to a logic analyzer. The time scale is the same.

FIGURE 6 | Logic analyzer measurements of the digital eight-neuron

CPG. L3 and R3 show the activity of the first oscillator. L4 and R4 show the
activity of the second oscillator. L1/R1 and L2/R2 are the coordination
neurons.

COMPARISON OF BIOLOGICAL/DIGITAL SEGMENTAL OSCILLATOR
Keeping the time constant, the biological behavior of the eight-
neuron network was duplicated using the following parameters.
This time, an eight-neuron CPG was implemented using the same
values for τcurrent and τreg than as those used for the elemen-
tal oscillator. The use of 8 neurons made it possible to maintain
the period without variation (see Table 2) by slowing down the
two pairs of oscillators with coordination neurons (De Schutter,
2000).

In Figures 1C, 6, L3/R3 and L4/R4 correspond to the two
elemental oscillators and are coupled to the L1/R1 and L2/R2
coordination neurons. The connectivity between each neuron
is following Figure 1C. The synaptic weights are −7 and the
percentage of dissipation is 2.65.

The mean period, duty cycle, and variations in spike fre-
quency depending on their position in the burst were mea-
sured to quantify the overlap of bursting activity (Table 2). The
mean period of this digital implementation was similar to bio-
logical values. Note that the segmental oscillator exhibited less
variation than the elemental system, thanks to its coordination
neurons.

Also, in general, the spike frequency of our implementation
was similar to that of the biological system. Due to our synapse

www.frontiersin.org November 2013 | Volume 7 | Article 215 | 140

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Ambroise et al. Biomimetic CPGs for Hybrid experiments

Table 2 | Comparison of burst characteristics in the two digital

implementations and the biological system.

Biological

system

Elemental

oscillator

Segmental

oscillator

(Hill et al.,

2001)

(digital) (digital)

Mean period 10–12 s 12.6 ± 1.4 s 11.2 ± 1 s

Mean duty cycle 57.2 ± 2.9% 54.7 ± 6% 46.1 ± 6%

Mean spike
frequency

11.9 ± 2.1 Hz 12.1 ± 1 Hz 11.2 ± 1 Hz

Initial spike
frequency

4.3 ± 0.7 Hz 8.5 ± 0.2 Hz 8.6 ± 0.4 Hz

Peak spike
frequency

17.5 ± 3.2 Hz 13 ± 0 Hz 12.5 ± 0 Hz

Final spike
frequency

5.8 ± 1.0 Hz 8.1 ± 0.2 Hz 9.3 ± 3 Hz

model, the frequency reached a maximum in each spike burst
but remained on a plateau instead of decreasing to the minimum
frequency immediately. In the biological system, the behavior
described is due to the enhancement and attenuation of variations
in conductance. However, the IZH model does not include con-
ductance, so it cannot be as biomimetic as the HH model. This
highlights a weak point of the implementation presented here,
but even the HH model, Hill et al. (2001) was unable to mimic
this biological variation in spike frequency in a single burst. One
discrepancy between the model and the biological system is that
the initial and final spike frequencies of a burst were consis-
tently lower in the biological system. In both implementations,
the most inconvenient drawback was the variation in the duty
cycle, explained by the stability of the IZH model. One perspec-
tive of this work to ensure stability is described in the discussion
section.

These experiments validated the implementation of our ele-
mental and segmental oscillators. This table also confirms that
designing a biomimetic system was a good choice. Indeed, the
variations of the duty cycle and the period for the bursting
activity could not be reproduced by bio-inspired oscillators. The
next step was to identify one parameter that would modify the
bursting activity period, which would be useful in closed-loop
applications.

VARIATION IN THE MEAN PERIOD DEPENDING ON ONE PARAMETER
A CPG is defined here by the number of neurons and the type
synapses involved, the static currents of each neuron, the percent-
age dissipation, and the synaptic efficiency time constant.

Changing the synaptic efficiency time constant τreg modifies
the period of each spike burst (Table 3). The variation in τreg

affects the period and duration of each burst, as well as the
duty cycle and the variability of these parameters: the greater
the value of 1/τreg, the longer the mean period of bursting
activity.

The possibility of modifying the period using a single param-
eter is very useful and was applied in a closed-loop hybrid
experiment concerning locomotion behaviors.

Table 3 | Variation in the mean period depending on the τreg

parameter.

1/τreg(ms−1) Mean period (s)

0.09 4.4 ± 1.6

0.15 7.2 ± 1.2

0.20 11.2 ± 1

0.22 12.9 ± 1.1

Table 4 | Resources required for one CPG on a Spartan 6 digital board.

Resources Total Used for Used for

available one CPG 240 CPGs

Slice FF’s 184304 1,093 (0.6%) 1,459 (0.8%)

Slice LUT 92152 1,037 (1.2%) 1,756 (1.9%)

DSP48A1 180 10 (5.6%) 10 (5.6%)

RAMB16BWER 268 1 42 (756 kb)

Total RAM 4824 kb 9 kb (0.2%) 765 kb (16%)

FPGA RESOURCES
Originally, a CPG consisted of 8 neurons and 12 synapses but
2 additional synapses per CPG were required to create a net-
work of CPG, by connecting CPG to another one. Thus, each
CPG consisted of 8 neurons and 14 synapses. In terms of cycles
and available memory, this implementation was capable of run-
ning 240 CPGs on a Spartan 6 digital board [see equation (15)
and Table 4]. The power consumption of one CPG is 8 mW and
for CPGs is 20 mW. We could reduce it in the future by design-
ing a custom ASIC. For neuroprosthesis application, the power
consumption should be lower than 80 mW/cm2 chronic heat dis-
sipation level considered to prevent tissue damage (Zumsteg et al.,
2005).

COMPARISON WITH EX-VIVO RAT SPINAL CORD RESULTS USING
PHARMACOLOGICAL STIMULATION
The final validation of this system consisted of comparing the
CPG output with ex vivo physiological data obtained from the
spinal cord of newborn rat [postnatal day (P)1–2]. Bursting
locomotor-like activity was induced by bath-application of aCSF
(artificial cerebrospinal fluid) mixed with N-methyl-DL-aspartate
(NMA; 10 μM), serotonin (5HT; 5 μM), and dopamine (DA;
50 μm) (all purchased from Sigma-Aldrich, France).

For the elemental oscillator. Neuron N1 (corresponds to neu-
ron L3 in Figure 1B) is connected to neuron N2 (corresponds to
neuron R3 in Figure 1B) by an inhibitory synapse with a synap-
tic weight of −7 and a percentage dissipation of 12%. The Ibias

current is equal to 7 for both neurons.
Figure 7 shows that the digital system fits the biological

recordings of the newborn rat spinal cord. The period and duty
cycle of the bursting activity are the same, confirming that the dig-
ital system was suitable for hybrid experiments. Instead of using
pharmacological stimulation, the digital board will be used in the
near future to create a hybrid experiment involving the ex vivo
spinal cord and the digital CPGs. A closed-loop is also possible

Frontiers in Neuroscience | Neuromorphic Engineering November 2013 | Volume 7 | Article 215 | 141

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Ambroise et al. Biomimetic CPGs for Hybrid experiments

FIGURE 7 | Comparison of pharmacological in-vitro spinal cord with

digital CPG.

thanks to the possibility of changing the mean period of bursting
activity by modifying a single parameter (τreg).

DISCUSSION
One key step in designing a neuroprosthesis is to produce a
large, resource-frugal biomimetic SNN. A biologically realistic
CPG (i.e., the leech heartbeat system neural network) was imple-
mented with a minimum resource cost in terms of neuron model,
while maintaining its biomimetic activity, as shown in the Results.
The first step was to model the biological leech heartbeat system
using a single, segmental CPG. The next stage was to choose an
efficient neuron model that required few resources for its digital
implementation but remained biorealistic enough to match the
behavior of biological cells. The topology and hardware imple-
mentation of a single neuron were then extended to form a neu-
ron computation core built into a large-scale neural network: 240
CPGs on a Spartan6 FPGA board. Furthermore, the new synaptic
model proposed reproduced the activity-dependent depression
phenomenon, which had only previously been described in biol-
ogy literature. The architecture of the entire real-time systemwas
described in detail. Finally, the system was validated by several
experiments comparing both elemental and segmental oscilla-
tors with biological data, and comparing the segmental oscilla-
tor with ex vivo rat spinal cord stimulated by pharmacological
solutions.

The short-term prospect of this work is to improve the stabil-
ity of the system using another neuron model. Currently our work
is focused on the quartic model (Touboul, 2009), which is more
stable than the Izhikevich one and also requires few resources. As
described in Table 2, this system is subject to variations in duty
cycle and mean period, likely to be reduced by using the new
model. However, these variations also exist in biology, so it is
necessary to study the actual effect of these variations in the bio-
logical system to determine whether they should be eliminated or
not.

In the medium term, this system will be included in a hybrid
experiment using an ex vivo rat spinal cord. The experiment

board includes several modules, including an MEA (Micro-
Electrode Array) and spike detection block, to detect and
record neural activity in the spinal cord. All these modules,
together with the CPG network, will be implemented in the
same FPGA. Our neurophysiologist colleagues will identify the
best spinal cord sites to stimulate and record bursting activ-
ity. These sites will be hybridized to the output of the artifi-
cial CPG described in this paper and, in turn, its activity will
drive the various ventral root outputs of the spinal cord into
full locomotor-like activity. These future experiments aim to
demonstrate that hybrid artificial/biological networks provide
possible solutions for rehabilitating lost central nervous system
function.

Our CPG network could be also used to study the locomo-
tion of different animals. Indeed, according to Ijspeert (2001),
the locomotion activity of a salamander requires 40 CPGs, so the
240 CPGs implemented on the Spartan 6 digital board would
be suitable for studying more complex locomotion. Our system
will be used in a closed-loop system with different sensors and
actuators.

ACKNOWLEDGMENTS
This work is supported by the European Union’s Seventh
Framework Programme (ICT-FET FP7/2007-2013, FET Young
Explorers scheme) under grant agreement n◦ 284772 BRAIN
BOW (www.brainbowproject.eu).

REFERENCES
Amari, S. (1972). Characteristic of the random nets of analog neuron-like ele-

ments. IEEE Trans. Syst.Man Cybern. 2, 643–657. doi: 10.1109/TSMC.1972.
4309193

Angstadt, J. D., and Calabrese, R. L. (1991). Calcium currents and graded synap-
tic transmission between heart interneurons of the leech. J. Neurosci. 11,
746–759.

Barron-Zambrano, J. H., and Torres-Huitzil, C. (2013). FPGA implementation of
a configurable neuromorphic CPG-based locomotion controller. Neural Netw.
45, 50–61. doi: 10.1016/j.neunet.2013.04.005

Barron-Zambrano, J. H., Torres-Huitzil, C., and Girau, B. (2010). FPGA-based
circuit for central pattern generator in quadruped locomotion. Aust. J. Intell.
Inform. Process. Syst. 12, 24–29.

Ben-Ari, Y., Khazipov, R., Leinekugel, X., Caillard, O., and Gaiarsa, J. L.
(1997). GABAA, NMDA and AMPA receptors: a developmentally regu-
lated ‘ménage à trois’. Trends Neurosci. 20, 523–529. doi: 10.1016/S0166-2236
(97)01147-8

Brainbow. (2012). Brainbow Project European Union’s Seventh Framework
Programme (ICT-FET FP7/2007-2013, FET Young Explorers scheme) Under
Grant Agreement n◦ 284772. Available online at: www.brainbowproject.eu

Brown, T. (1914). On the nature of the fundamental activity of the nervous centres;
together with an analysis of the conditioning of rhythmic activity in progression
and a theory of the evolution of function in the nervous system. J. Physiol. 48,
18–46.

Calabrese, R. L. (1995). “Half-center oscillators underlying rhythmic movements,”
in The Handbook of Brain Theory And Neural Networks, ed M. A. Arbib
(Cambridge, MA: MIT Press), 444–447.

Calabrese, R. L., Angstadt, J., and Arbas, E. (1989). A neural oscillator based on
reciprocal inhibition. Perspect. Neural Syst. Behav. 10, 33–50.

Cassidy, A., and Andreou, A. G. (2008). “Dynamical digital silicon neurons,” in
IEEE Biomedical Circuits and Systems Conference, BioCAS 2008, 289–292. doi:
10.1109/BIOCAS.2008.4696931

Cohen, A. H., Ermentrout, G. B., Kiemel, T., Kopel, N., Sigvardt, K. A., and
Williams, T. L. (1992). Modelling of intersegmental coordination in the lamprey
central pattern generator for locomotion. Trends Neurosci. 15, 434–438. doi:
10.1016/0166-2236(92)90006-T

www.frontiersin.org November 2013 | Volume 7 | Article 215 | 142

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Ambroise et al. Biomimetic CPGs for Hybrid experiments

Cymbalyuk, G. S., Gaudry, Q., Masino, M. A., and Calabrese, R. L. (2002). Bursting
in leech heart interneurons: cell-autonomous and network-based mechanisms.
J. Neurosci. 22, 10580–10592.

De Schutter, E. (ed.) (2000). Computational Neuroscience: Realistic Modeling for
Experimentalists. Boca Raton, FL: CRC Press. doi: 10.1201/9781420039290

Garofalo, M., Nieus, T., Massobrio, P., and Martinoia, S. (2009). Evaluation of
the performance of information theory-based methods and cross-correlation
to estimate the functional connectivity in cortical networks. PLoS ONE 4:e6482.
doi: 10.1371/journal.pone.0006482

Grassia, F., Buhry, L., Levi, T., Tomas, J., Destexhe, A., and Saighi, S. (2011). Tunable
neuromimetic integrated system for emulating cortical neuron models. Front.
Neurosci. 5:134. doi: 10.3389/fnins.2011.00134

Guerrero-Riberas, R., Morrison, A., Diesmann, M., and Pearce, T. (2006).
Programmable logic construction kits for hyper-real-time neuronal modeling.
Neural Comput. 18, 2651–2679. doi: 10.1162/neco.2006.18.11.2651

Hill, A. A., Lu, J., Masino, M. A., Olsen, O. H., and Calabrese, R. L. (2001). A model
of a segmental oscillator in the leech heartbeat neuronal network. J. Comput.
Neurosci. 10, 281–302. doi: 10.1023/A:1011216131638

Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D.,
Vogel, J., et al. (2012). Reach and grasp by people with tetraplegia using
a neurally controlled robotic arm. Nature 485, 372–375. doi: 10.1038/
nature11076

Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A.
H., et al. (2006). Neuronal ensemble control of prosthetic devices by a human
with tetraplegia. Nature 442, 164–171. doi: 10.1038/nature04970

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its applications to conduction and excitation in nerve. J. Physiol.
117, 500–544.

Hooper, S. (2000). Central pattern generators. Curr. Biol. 10, 176–177. doi: 10.1016/
S0960-9822(00)00367-5

Ijspeert, A. (2001). A connectionist central pattern generator for the aquatic and
terrestrial gaits of a simulated salamander. J. Biol. Cybern. 84, 331–348. doi:
10.1007/s004220000211

Ijspeert, A. (2008). Central pattern generators for locomotion control in animals
and robots: a review. J. Neural Netw. 21, 642–653. doi: 10.1016/j.neunet.2008.
03.014

Ijspeert, A., Crespi, A., Ryczko, D., and Cabelguen, J. (2007). From swimming to
walking with a salamander robot driven by a spinal cord model. Science 315,
1416–1420. doi: 10.1126/science.1138353

Indiveri, G. (2007). Synaptic plasticity and spike-based computation in VLSI
networks of integrate-and-fire neurons. Neural Inform. Process. Lett. Rev. 11,
135–146.

Indiveri, G., Linares-Barranco, B., Hamilton, T., Van Schaik, A., Etienne-
Cummings, R., and Delbruck, T. (2011). Neuromorphic silicon neuron circuits.
Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons. IEEE
Trans. Neural Netw. 15, 1063–1070. doi: 10.1109/TNN.2004.832719

Jezzini, S., Hill, A. A., Kuzyk, P., and Calabrese, R. L. (2004). Detailed model of
intersegmental coordination in the timing network of the leech heartbeat cen-
tral pattern generator. J. Neurophysiol. 91, 958–977. doi: 10.1152/jn.00656.2003

Jung, R., Brauer, E. J., and Abbas, J. J. (2001) Real-time interaction between a neuro-
morphic electronic circuit and the spinal cord. IEEE Trans. Neural Syst. Rehabil.
Eng. 9, 319–326. doi: 10.1109/7333.948461

Krahl, B., and Zerbst-Boroffka, I. (1983). Blood pressure in the leech. J. Exp. Biol.
107, 163–168.

Le Masson, G., Renaud-Le Masson, S., Debay, D., and Bal, T. (2002). Feedback inhi-
bition controls spike transfer in hybrid thalamic circuits. Nature 417, 854–858.
doi: 10.1038/nature00825

Lee, Y. J., Lee, J., Kim, K. K., Kim, Y. B., and Ayers, J. (2007). Low power cmos
electronic central pattern generator design for a biomimetic underwater robot.
Neurocomputing 71, 284–296. doi: 10.1016/j.neucom.2006.12.013

Lewis, M. A., Hartmann, M. J., Etienne-Cummings, R., and Cohen, A. H. (2001).
Control of a robot leg with an adaptive VLSI CPG chip. Neurocomputing 38–40,
1409–1421. doi: 10.1016/S0925-2312(01)00506-9

Linares-Barranco, B., Sánchez-Sinencio, E., Rodríguez-Vázquez, A., and Huertas,
J. L. (1993). “CMOS Analog Neural Network Systems Based on Oscillatory
Neurons,” in Silicon Implementation of Pulse Coded Neural Networks, eds M.

Zaghloul, J. Meador, and R. Newcomb (Boston: Kluwer Academic Publishers),
199–247.

Marder, E., and Bucher, D. (2001). Central pattern generators and the con-
trol of rhythmic movements. Curr. Biol. 11, 986–996. doi: 10.1016/S0960-
9822(01)00581-4

Marom, S., and Shahaf, G. (2002) Development, learning and memory in large
random networks of cortical neurons: lessons beyond anatomy. Q. Rev. Biophys.
35: 63–87. doi: 10.1017/S0033583501003742

Matsuoka, K. (1987). Mechanism of frequency and pattern control in the neural
rhythm generators. Biol. Cybern. 56, 345–353. doi: 10.1007/BF00319514

Nadim, F., Olsen, O. H., De Schutter, E., and Calabrese, R. L. (1995). Modeling
the leech heartbeat elemental oscillator. J. Comput. Neurosci. 2, 215–235. doi:
10.1007/BF00961435

Nakada, K. (2003). An analog cmos central pattern generator for interlimb coordi-
nation in quadruped locomotion. IEEE Tran. Neural Netw. 14, 1356–1365. doi:
10.1109/TNN.2003.816381

Nicolelis, M. A. L., and Lebedev, M. A. (2009). Principles of neural ensemble physi-
ology underlying the operation of brain-machine interfaces. Nat. Rev. Neurosci.
10, 530–540. doi: 10.1038/nrn2653

Norris, B., Weaver, A., Wenning, A., Garcia, P., and Calabrese, R. L. (2007). A cen-
tral pattern generator producing alternative outputs: phase relations of leech
hear motor neurons with respect of premotor synaptic input. J. Neurophysiol.
98, 2983–2991. doi: 10.1152/jn.00407.2007

Olsen, O. H., and Calabrese, R. L. (1996). Activation of intrinsic and synaptic
currents in leech heart interneurons by realistic waveforms. J. Neurosci. 16,
4958–4970.

Olsen, O. H., Nadim, F., and Calabrese, R. L. (1995). Modeling the leech heartbeat
elemental oscillator: II. Exploring the parameter space. J. Comput. Neurosci. 2,
237–257. doi: 10.1007/BF00961436

Olypher, A., Cymbalyuk, G., and Calabrese, R. L. (2006). Hybrid systems analysis of
the control of burst duration by low-voltage-activated calcium current in Leech
heart interneurons. J. Neurophysiol. 96, 2857–2867. doi: 10.1152/jn.00582.2006

Rice, K. L., Bhuiyan, P. A., Taha, T. M., Vutsinas, C. N., and Smith, M. C. (2009).
“FPGA Implementation of Izhikevich Spiking Neural Network for Character
Recognition,” in International Conference on Reconfigurable Computing and
FPGAs, (Cancun), 451–456.

Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-
Vicente, R., Gómez-Rodríguez, F., et al. (2009). CAVIAR: A 45k-Neuron,
5M-Synapse, 12G-connects/sec AER Hardware Sensory-Processing-Learning-
Actuating System for High Speed Visual Object Recognition and Tracking. IEEE
Trans. Neural Netw. 20, 1417–1438. doi: 10.1109/TNN.2009.2023653

Simoni, M., and DeWeerth, S. (2007). Sensory feedback in a half-center oscil-
lator model. IEEE Trans. Biomed. Eng. 54, 193–204. doi: 10.1109/TBME.
2006.886868

Simoni, M., Cymbalyuk, G., Sorensen, M., R. Calabrese, R. L., and DeWeerth, S.
(2004). A multi-conductance silicon neuron with biologically matched conduc-
tances. IEEE Trans. Biomed. Eng. 51, 342–354. doi: 10.1109/TBME.2003.820390

Sorensen, M., DeWeerth, S., Cymbalyuk, G., and Calabrese, R. L. (2004). Using a
hybrid neural system to reveal regulation of neuronal network activity by an
intrinsic current. J. Neurosci. 24, 5427–5438. doi: 10.1523/JNEUROSCI.4449-
03.2004

Still, S., and Tilden, M. W. (1998). “Controller for a four legged walking machine,”
in Neuromorphic Systems: Engineering Silicon from Neurobiology, eds L. S. Smith
and A. Hamilton, (World Scientific Publishing Co Pte Ltd), 138–148 doi:
10.1142/9789812816535_0012

Still, S., Hepp, K., and Douglas, R. J. (2006). Neuromorphic walking gait control.
IEEE Trans. Neural Netw. 17, 496–508. doi: 10.1109/TNN.2005.863454

Tabak, J., Senn, W., O’Donovan, M., and Rinzel, J. (2000). Modeling of sponta-
neous activity in developing spinal cord using activity-dependent depression in
an excitatory network. J. Neurosci. 20, 3041–3056.

Torres-Huitzil, C., and Girau, B. (2008). Implementation of central pattern gen-
erator in an FPGA-based embedded system. 18th International Conference
on Artificial Neural Networks, Vol. 5164, 179–187. doi:10.1007/978-3-540-
87559-8_19

Touboul, J. (2009). Importance of the cutoff value in the quadratic adaptive
integrate-and-fire model. Neural Comput. 21, 2114–2122. doi: 10.1162/neco.
2009.09-08-853

Van Der Pol, B. (1928). The heartbeat considered as a relaxation oscillation, and an
electrical model of the heart. Philos. Mag. 6, 763–775.

Frontiers in Neuroscience | Neuromorphic Engineering November 2013 | Volume 7 | Article 215 | 143

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Ambroise et al. Biomimetic CPGs for Hybrid experiments

Vogelstein, R. J., Tenore, F., Etienne-Cummings, R., Lewis, M. A., and Cohen, A. H.
(2006). Dynamic control of the central pattern generator for locomotion. Biol.
Cybern. 95, 555–566. doi: 10.1007/s00422-006-0119-z

Wijekoon, J., and Dudek, P. (2008). Compact silicon neuron circuit with spiking
and bursting behavior. Neural Netw. 21, 524–534. doi: 10.1016/j.neunet.2007.
12.037

Zumsteg, Z., Kemere, C., O’Driscoll, S., Santhanam, G., Ahmed, R. E., Shenoy, K.
V., et al. (2005). Power feasibility of implantable digital spike sorting circuits for
neural prosthetic systems. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 272–279.
doi: 10.1109/TNSRE.2005.854307

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 06 August 2013; accepted: 29 October 2013; published online: 21 November
2013.
Citation: Ambroise M, Levi T, Joucla S, Yvert B and Saïghi S (2013) Real-time
biomimetic Central Pattern Generators in an FPGA for hybrid experiments. Front.
Neurosci. 7:215. doi: 10.3389/fnins.2013.00215
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2013 Ambroise, Levi, Joucla, Yvert and Saïghi. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permit-
ted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

www.frontiersin.org November 2013 | Volume 7 | Article 215 | 144

http://dx.doi.org/10.3389/fnins.2013.00215
http://dx.doi.org/10.3389/fnins.2013.00215
http://dx.doi.org/10.3389/fnins.2013.00215
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

METHODS ARTICLE
published: 22 January 2014

doi: 10.3389/fnins.2013.00276

Dynamic neural fields as a step toward cognitive
neuromorphic architectures
Yulia Sandamirskaya*

Chair for Theory of Cognitive Systems, Institute for Neural Computation, Ruhr-University Bochum, Bochum, Germany

Edited by:

André Van Schaik, The University of
Western Sydney, Australia

Reviewed by:

Dylan R. Muir, University of Basel,
Switzerland
Jonathan Binas, University of Zurich
and ETH Zurich, Switzerland

*Correspondence:

Yulia Sandamirskaya, Chair for
Theory of Cognitive Systems,
Institute for Neural Computation,
Ruhr-University Bochum, 150,
44780 Bochum, Germany
e-mail: yulia.sandamirskaya@
ini.rub.de

Dynamic Field Theory (DFT) is an established framework for modeling embodied cognition.
In DFT, elementary cognitive functions such as memory formation, formation of grounded
representations, attentional processes, decision making, adaptation, and learning emerge
from neuronal dynamics. The basic computational element of this framework is a Dynamic
Neural Field (DNF). Under constraints on the time-scale of the dynamics, the DNF is
computationally equivalent to a soft winner-take-all (WTA) network, which is considered
one of the basic computational units in neuronal processing. Recently, it has been
shown how a WTA network may be implemented in neuromorphic hardware, such as
analog Very Large Scale Integration (VLSI) device. This paper leverages the relationship
between DFT and soft WTA networks to systematically revise and integrate established
DFT mechanisms that have previously been spread among different architectures. In
addition, I also identify some novel computational and architectural mechanisms of DFT
which may be implemented in neuromorphic VLSI devices using WTA networks as an
intermediate computational layer. These specific mechanisms include the stabilization of
working memory, the coupling of sensory systems to motor dynamics, intentionality, and
autonomous learning. I further demonstrate how all these elements may be integrated
into a unified architecture to generate behavior and autonomous learning.

Keywords: dynamic neural fields, cognitive neuromorphic architecture, soft winner-take-all, autonomous learning,

neural dynamics

1. INTRODUCTION
Organisms, such as animals and humans, are remarkable in
their ability to generate behavior in complex and changing envi-
ronments. Their neural systems solve challenging problems of
perception and movement generation in the real world with a
flexibility, adaptability, and robustness that surpasses the capabil-
ities of any technical system available today. The question of how
biological neural systems cope with the complexity and dynam-
ics of real-world environments and achieve their behavioral goals,
does not have a simple answer. Processes such as memory for-
mation, attention, adaptation, and learning all play crucial roles
in the biological solution to the problem of behavior generation
in real-world environments. Understanding how these processes
are realized by the neural networks of biological brains is at the
core of understanding biological cognition and building cognitive
artifacts that successfully contend with real world constraints.

The field of neuromorphic engineering may contribute to
the ambitious goal of understanding these cognitive processes
by offering platforms in which neural models may be imple-
mented in hardware using the VLSI (Very Large Scale Integration)
technology. The analog neuromorphic hardware shares several
properties with biological neural networks such as the presence
of the inherent noise, the potential mismatch of computing ele-
ments, constraints on connectivity, and a limited number of
learning mechanisms. Apart from these shared constraints, artifi-
cial and biological neural networks also maintain the advantages
of pervasive parallel computation, redundant systems to handle

sensory and motor noise, and low power consumption. Success in
the implementation of cognitive models on neuromorphic hard-
ware may lead to breakthroughs both in understanding the neural
basis of human cognition and in the development of performant
technical systems (robots) acting in real-world environments.

VLSI technology allows one to implement large neural net-
works in hardware by configuring the VLSI device to simulate
the dynamics and connectivity of a network of spiking neurons.
Such networks may be efficiently configured, connected to sen-
sors and motors, and operate in real time (Mead and Ismail,
1989; Indiveri et al., 2009, 2011). However, a challenging question
remains: how to develop these neuromorphic systems beyond
simple feed-forward reactive architectures toward architectures
capable of cognitive behavior?

Soft winner-take-all (WTA) connectivity has been recently
proposed as an important milestone on the way toward such
functional cognitive neuromorphic systems (Indiveri et al., 2009;
Rutishauser and Douglas, 2009). Soft WTA networks are com-
putational elements that are hypothesized to play a central role
in cortical processing (Douglas and Martin, 2004; Rutishauser
and Douglas, 2009). Recently, a wide variety of WTA networks
of spiking neurons have been implemented in hardware (Indiveri
et al., 2001; Abrahamsen et al., 2004; Oster and Liu, 2004; Indiveri
et al., 2009). These initial architectures have made use of WTA
connectivity to enable the effective processing of sensory infor-
mation (Liu and Delbruck, 2010) and the implementation of
finite state machines (Neftci et al., 2013). Soft WTAs introduce

www.frontiersin.org January 2014 | Volume 7 | Article 276 | 145

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2013.00276/abstract
http://www.frontiersin.org/people/u/21825
mailto:yulia.sandamirskaya@ini.rub.de
mailto:yulia.sandamirskaya@ini.rub.de
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Sandamirskaya DNFs and cognitive neuromorphic architectures

a cognitive layer to the neuromorphic hardware systems, which
enables reliable processing on unreliable elements (Neftci et al.,
2013). The WTA networks contribute to making neuromorphic
systems more cognitive, because they stabilize localized attractor
patterns in neural networks. These stable attractors organize the
dynamics of the neural system in a macroscopical way and enable
the coupling of the network to sensors and motors despite noise,
fluctuations, and neural mismatch. WTA connectivity therefore
introduces macroscopic neural dynamic states which may persist
long enough to interact with other parts of the neural-dynamic
architecture, thus moving neuromorphic systems beyond mere
reactive behavior.

However, there are still open questions on the way toward
cognitive processing with hardware WTAs. The first question con-
cerns representational power: How can we add contents to the
state in a WTA network and link this network state to perceptual
or motor variables? How can the system represent associations
and concepts such as “a red ball on the table” or “a hand mov-
ing toward an object” in this framework? The second line of
open questions concerns movement generation and the motor
behavior: How should the system represent and control move-
ments in this framework? How should it decide when to initiate
or terminate a movement? Finally, questions regarding learn-
ing also arise: How may a system learn WTA connectivity of
its neural network? How may the system learn the connections
between WTA networks in a complex architecture? Such ques-
tions are often addressed in the fields of psychophysics, cognitive
science, and artificial intelligence, but the proposed models and
solutions are often not compatible with neural implementations.
Here, I propose that Dynamic Field Theory (DFT) is a frame-
work which may make such cognitive models feasible for neu-
romorphic implementation because it formulates the principles
of cognitive representations and processes in a language com-
patible with neuromorphic soft WTA architectures. Identifying
the computational and architectural principles underlying these
cognitive models may facilitate the development of large-scale
neuromorphic cognitive systems.

DFT is a mathematical and conceptual framework which was
developed to model embodied human cognition (Schoner, 2008).
DFT is an established framework in modeling many aspects of
human cognition and development including visual and spa-
tial working memory, object and scene representation, sequence
generation, and spatial language (Johnson et al., 2008). DFT cog-
nitive models have been used to control robots and demonstrate
that the developed architectures can function autonomously in
the real-world (Erlhagen and Bicho, 2006; Sandamirskaya et al.,
2013). DFT builds on Dynamic Neural Fields (DNFs), which,
as I will discuss in the Methods section, are analogous to soft
WTAs in their dynamics and lateral connectivity within networks
(Neftci et al., 2010). Accordingly, their dynamical and structural
principles may be applied to the design of neuromorphic WTA
architectures.

In this paper, I discuss computational and architectural prin-
ciples recently developed in DFT that may be applied to WTA
neuromorphic networks. These principles can increase the repre-
sentational power and autonomy of such networks, and thus con-
tribute to the greater scalability and robustness of neuromorphic

architectures. In particular, these principles enable the coupling
of DNFs of differing dimensionality, the coupling of the archi-
tectures to sensors and motors, cognitive control over behavior,
and autonomous learning. On a simple exemplar architecture, I
demonstrate how these principles enable autonomous behavior
and learning in a neural-dynamic system coupled to real-world
sensors and motors. I also discuss the possibility of implementing
DNF architectures in neuromorphic hardware.

2. MATERIALS AND METHODS
2.1. DYNAMIC NEURAL FIELDS: BASIC DYNAMICS AND INSTABILITIES
A DNF is a mathematical description of activation dynamics
of a neuronal population in response to certain parameters of
the agent’s behavioral state. The behavioral parameters, such as
a perceptual feature, location, or motor control variable, span
dimension(s), over which the DNFs are defined (Schoner, 2008).
The dynamics of DNF may be mathematically formalized as a
differential equation, Equations (1–3), which was first analyzed
by Amari (1977), and used to model neuronal dynamics on a
population level (Wilson and Cowan, 1973; Grossberg, 1988;
Ermentrout, 1998).

τu̇(x, t) = −u(x, t)+ h+
∫

f
(
u(x′, t)

)
ω(x − x′)dx′ + S(x, t), (1)

ω(x − x′) = cexc exp

[
− (x − x′)2

2σ2
exc

]
− cinh exp

[
− (x − x′)2

2σ2
inh

]
, (2)

f
(
u(x, t)

) = 1

1+ exp[−βu(x, t)] . (3)

In Equation (1), u(x, t) is the activation of the DNF over dimen-
sion x, to which the underlying neuronal population is responsive.
h is a negative resting level and S(x, t) is an external input driv-
ing the DNF. The lateral interactions in DFT are shaped by
a symmetrical homogeneous interaction kernel, Equation (2),
with a short-range excitation and a long-range inhibition (Ellias
and Grossberg, 1975); σexc, σinh, cexc, and cinh are the width
and the amplitude of the excitatory and the inhibitory parts of
the interaction kernel respectively. The sigmoidal non-linearity,
Equation (3), shapes the output of the DNF in such a way, that
only sufficiently activated field locations contribute to neural
interactions; β determines the slope of the sigmoid.

An example of how a DNF may be linked to the activity of
a neuronal population is shown in Figure 1: First, each neu-
ron in the population contributes its tuning curve in respect
to the behavioral parameter of interest as a (virtual) input to
the DNF. The tuning curve is determined as a dependence of
the mean firing rate or the action potential of the neuron on
the value of the behavioral parameter (Figure 1A). Second, the
tuning curves of the neurons in the population are summed,
each weighted by the current activation level (e.g., mean fir-
ing rate) of the respective neuron. The resulting Distribution of
Population Activity [DPA, introduced by Bastian et al. (2003)
to derive a DNF description of neuronal data on movement
preparation in studies of reaching movements in monkeys] rep-
resents the overall activity of the selected neuronal population
in response to a given stimulus or state of the behaving neural

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 276 | 146

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Sandamirskaya DNFs and cognitive neuromorphic architectures

FIGURE 1 | Illustration of the relationship between neuronal activity

and a DNF. (A) Five exemplar “neurons” (neuronal populations) and their
tuning curves in the color dimension. (B) The tuning curves are scaled
by the mean firing rate (activation) of the neurons. (C) By summing the
scaled tuning curves, the Dynamic Population Activity [DPA, Bastian et al.

(2003)] curve in response to a given color stimulus is constructed. (D)

The DNF dynamics adds lateral interactions between neurons according
to Equation (1). The activation of the DNF is shown as a blue line, the
red line shows the output (sigmoided activation) of the DNF, the green
line is the DPA [same as in (C)].

system (Figures 1B,C). Finally, the neurons in the population
are assumed to be interconnected so that the nearby (in the
behavioral space) locations exert excitatory influence on each
other, and the far-off locations inhibit each other (“on-center, off-
surround” connectivity Ellias and Grossberg, 1975). The resulting
activation function u(x, t), is activation of the DNF. A sig-
moidal non-linearity f (u(x, t)), shapes the output of the DNF,
which impacts on the DNF itself through the lateral connections
and on the other parts of the neural architecture connected to
this DNF.

The pattern of lateral connectivity of DNFs results in
existence of a localized-bump solution in their dynamics
(Figure 1D), which is at the core of the properties of DNFs
to exert elementary cognitive functions, discussed further. In
the realm of modeling human cognition, activity peaks bridge
the low-level, graded sensory-motor representations to cate-
gorical, symbol-like representations. The localized (and sta-
bilized, i.e., sustainable over macroscopical time intervals)
representation facilitates perception, action generation, and
learning.

The connectivity pattern within DNF also makes it a soft WTA
architecture. Indeed, a WTA-connected network may be formal-
ized in terms of two neuronal populations, an excitatory and an
inhibitory one (Rutishauser and Douglas, 2009):

τẋi = −xi + f
(
Ii + αxi − β1xN − Ti

)
(4)

τ ˙xN = −xN + f
(
β2

N − 1∑
j= 1

xj − TN
)
. (5)

In Equations (4, 5), the excitatory population of nodes (neurons)
xi has an attractor dynamics driven by the external input, Ii, the
resting level potential, Ti, the self-excitatory term with strength α,
and the inhibitory term with strength β1. The inhibition is shared
by all excitatory nodes and is provided by the inhibitory neuron,
xN , which also follows an attractor dynamics, driven by activity in
the excitatory population and the resting level TN .

In these equations, the excitation constant, α, is analogous to
the excitatory part of the interaction kernel of a DNF, cexc in
Equation (2), and the strength of the coupling of the inhibitory
population onto the excitatory population, β1, corresponds to the
inhibitory part of the interaction kernel with the strength cinh.
In the DNF equation, the inhibition is coupled into the field’s
dynamics without delay, which is present in the WTA network
of Equations (4, 5).

In several studies on development of working memory and
spatial cognition in infants and toddlers, a more general DNF
equation is used, in which a separate inhibitory layer is intro-
duced [e.g., Johnson et al. (2006, 2008)]. Separate inhibitory layer

www.frontiersin.org January 2014 | Volume 7 | Article 276 | 147

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Sandamirskaya DNFs and cognitive neuromorphic architectures

leads to a delay in the inhibitory interaction among neural field’s
locations, which allows to model fine-grained effects in competi-
tion among items in the working memory depending on timing
of their presentation. The separate inhibitory layer is also used to
create a shared inhibition among perceptual and working mem-
ory neural fields, which plays a critical role in a change detection
process.

When DNF architectures are created to generate behavior in
an embodied agent, the DFT postulates that only attractor states
impact on the behavior of the controlled agent and thus the
dynamics of DNFs is typically tuned to relax as fast as possible
to the attractor state. Since this holds for the separate inhibitory
layer, the presence of the delay in the inhibitory dynamics is neg-
ligible in robotic DNF architectures. For this reason, when DNFs
are used to control robots, only single-layer dynamics are used,
where inhibition and excitation are integrated in a single equa-
tion. Since WTA dynamics in Equations (4,5) is a more general
formulation than DNFs, discussed in this paper, the equivalence
between these two mathematical structures requires a constraint
on the timing constant of the inhibitory population, which needs
to be faster than the timing constant of the excitatory population,
which in its turn is faster than the dynamics of sensor inputs to
the field.

The stable localized activity peak solution of the DNF dynam-
ics is the DNF variant of soft-WTA behavior. Intuitively, the
short-range excitatory interactions stabilize the peak solution
against decay and the long-range inhibitory interactions stabilize
peaks against spread by diffusion. The sites of the DNF, which
have above zero activity, are the “winners” of the DNF dynam-
ics. The sigmoidal non-linearity increases stability of the localized
peak. The important contribution of DFT to understanding the
dynamics of soft WTA networks is the characterization of sta-
ble states and instabilities between them based on the analysis of
Equation (1) (Amari, 1977; Schoner, 2008; Sandamirskaya et al.,
2013):

• The detection instability separates a quiescent state of the DNF
from an active state. In the quiescent state, the inputs are not
strong enough to collectively drive the DNF over the activa-
tion threshold. The DNF produces no output in this state,
it is invisible for the down-stream structures, driven by the
DNF. To the contrary, when inputs are strong enough to
drive the field over the activation threshold in one or sev-
eral locations, an activity peak emerges in the field, which
provides input to the down-stream structures, or the motor
system.
• The DNF’s inputs may drive the field over the threshold at sev-

eral locations. In this case, the field may build several activation
peaks or it may select and amplify activity at one location only,
depending on the spread of the lateral inhibition. In the latter
case, a selection instability separates an inactive state from an
activated state of the DNF dynamics.
• If the lateral interactions are strong enough, a peak in the DNF

may be sustained even if the input, which initiated the peak,
ceases. This working memory instability separates the state of
the field with no activation from the state, in which an external
inhibiting input is needed to deactivate the field.

• A negative external input or a decrease of the excitatory
input may lead to an extinction of the activity peak. This
causes a reverse detection instability, or forgetting insta-
bility, which separates an active state from the quiescent
state.

The localized-peak stable states and instabilities between them
form the basis for more complex DNF architectures, just as WTA
networks form the basis for state-based spiking network archi-
tectures. In the following, I present additional components in
the DFT, which may be translated into VLSI WTA networks and
enhance their scalability and autonomy.

2.2. COUPLING DYNAMIC NEURAL FIELDS TO SENSORY SYSTEMS
Figure 2 shows a small DNF architecture, which exemplifies the
coupling structures in DFT: coupling the DNFs to each other,
to sensors, and to motors. Here, I will introduce the principles
behind these coupling structures, while referring to the figure for
a concrete example. Overall, the simple system in the Figure 2
performs saliency computations based on color- or spatial cues
by means of neuronal dynamics (DNF or WTA computation)
and will be a building block, used in the example, presented in
Section 3.

In Figure 2, a two-dimensional perceptual color-space DNF
receives input from the robotic camera. Camera input to this
DNF is constructed in the following way. The raw hue value
of every pixel corresponds to the vertical location in the DNF,
the location of the pixel on the horizontal axis of the image
to the horizontal location in DNF, and the saturation value
of the pixel to the intensity value of the sensory input. Thus,
the input to the perceptual DNF is an unsegmented stream of
color-space associations. If the input is strong enough to pass
the activation threshold and is localized in space, a peak of
suprathreshold activity evolves, which represents the perceived
object. In Figure 2A, the camera input is not sufficient to activate
the perceptual DNF—only subthreshold hills of activity repre-
sent the four salient objects in the visual scene. However, when
the perceptual DNF receives an additional input, which speci-
fies the color of the target object and which overlaps with one
of the subthreshold hills, an activity peak evolves in the per-
ceptual DNF and signals the selection of an object of interest
(Figure 2B). The additional input arrives from another—color—
DNF, which is coupled to the perceptual DNF, as described in
Section 2.3.

Another example of coupling a sensor to the DNF is shown
in Figure 3. Here, a neuromorphic embedded Dynamic Vision
Sensor [eDVS, Conradt et al. (2009)] drives the perceptual DNF.
In the eDVS, each pixel sends an event when it sensed lumi-
nance changes. Consequently, the sensor naturally detects moving
objects. If the object of interest is not moving too fast relative to
the motor capabilities of the agent, the perceptual DNF may be
used to stabilize the representation of the instantaneous position
of the moving object in order to use this position to parametrize
the motor action (e.g., to direct the agent’s gaze toward the
object). If the object is moving too fast for the behaving system, a
predictive mechanism needs to be built into the DNF’s dynamics
(Erlhagen and Bicho, 2006).

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 276 | 148

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Sandamirskaya DNFs and cognitive neuromorphic architectures

FIGURE 2 | A small DNF architecture, which consists of a

two-dimensional color-space DNF (center), one-dimensional color- and

space- DNFs, coupled to the perceptual DNF, a camera input (top), and

an attractor motor dynamics (bottom). (A) The camera input alone is not
sufficient to activate the perceptual DNF, the system is quiescent and
produces neither output nor behavior. (B) A color cue creates an activity peak

in the color DNF over the hue value of the named color. This activity peak is
projected onto the 2D perceptual DNF as a subthreshold activity ridge, which
overlaps with the camera input for the green object. The resulting activity
peak in the 2D DNF provides input to the spatial DNF, which, in its turn, sets
an attractor for the motor dynamics. The latter drives the motor system of the
agent, initiating an overt action.

FIGURE 3 | The neuromorphic Dynamic Vision Sensor [eDVS, Conradt

et al. (2009)] on a pan-tilt unit, the output of the eDVS, integrated over a

time window of 100 ms, and the instantaneous output of the perceptual

DNF. The perceptual DNF enhances the perceptual input in a selected region
(which reached the activation threshold first), and inhibits all other locations in
the visual array, performing an elementary object segregation operation.

2.3. DYNAMIC NEURAL FIELDS OF HIGHER DIMENSIONALITY AND
COUPLINGS

A single DNF describes activation of a neuronal popula-
tion, which is sensitive to a particular behavioral parameter.
Activity of any behaving agent, however, is characterized by
many such parameters from different sensory-motor modal-
ities. In DFT, there are two ways to represent such multi-
modality of a system: multidimensional DNFs and coupled
DNFs.

The multidimensional DNFs are sensitive to combinations
of two or several behavioral parameters. The perceptual color-
space field in Figure 2 is an example of a two-dimensional DNF,
which may be activated by combinations of color and locations

in space. Such multidimensional DNFs have typically low
dimensionality.

Two DNFs of the same or different dimensionality may be
coupled with weighted connections, according to Equation (7)
(Zibner et al., 2011).

τu̇1(x, t) = −u1(x, t)+ h+
∫

f
(
u1(x′, t)

)
ω(x − x′)dx′

+ S(x, t), (6)

τu̇2(y, t) = −u2(y, t)+ h+
∫

f
(
u2(y′, t)

)
ω(y − y′)dy′

+W(x, y)× f (u1(x, t)). (7)

www.frontiersin.org January 2014 | Volume 7 | Article 276 | 149

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Sandamirskaya DNFs and cognitive neuromorphic architectures

Here, u1(x, t) and u2(y, t) are two DNFs, defined over two differ-
ent behavioral spaces, x and y. The first DNF provides an additive
input to the second DNF through the (adaptable) connection
weights matrix, W(x, y), which maps the dimensions of the space
x onto dimensions of the space y.

For example, the one-dimensional color DNF in Figure 2 rep-
resents distributions in the color (hue) dimension. This DNF
projects its activation onto the two-dimensional color-space DNF.
In particular, since the two DNFs share one dimension (color),
the output of the one-dimensional DNF is copied along the not
shared dimension (space) of the two-dimensional DNF. This typi-
cally results in a ridge-shaped input to the two-dimensional DNF
(stamming from the Gaussian shape of the activity peak in the
one-dimensional DNF). If this ridge overlaps with a localized sub-
threshold input in the two-dimensional DNF, an activity peak
evolves over the cued (in this case, by color) location (Zibner
et al., 2011).

Further, the localized output of the two-dimensional percep-
tual DNF in Figure 2 is in its turn projected on a one-dimensional
spatial DNF, which represents locations on the horizontal axis of
the image plane. This projection may be either a sum or a maxi-
mum of the DNF’s output in the dimension, not shared between
the two DNFs (here, color). An example of an adaptive cou-
pling between DNFs of the same dimensionality is presented in
Section 2.6.2.

In terms of WTA network, coupling between two DNFs is
equivalent (under constraints, stated in Section 2.1) to two WTA
networks, one of which receives output from the other one as an
external input, which is mapped through synaptic connections.

2.4. COUPLING THE DNF TO ATTRACTOR MOTOR DYNAMICS
In order to close the behavioral loop, DNF architectures have to
be coupled to the motor system of a behaving agent. The control
of motor actions may be expressed mathematically as an attractor
dynamics, where the neural system sets attractors for motor vari-
ables, such as position, velocity, or force of the effector. Deviations
from the attractor due to an external or an internal perturba-
tion are then actively corrected by the neural controller in the
motor system. Such motor attractor dynamics have been probed
in control of mobile robots (Bicho and Schoner, 1997) and multi
degrees of freedom actuators (Schaal et al., 2003; Iossifidis and
Schöner, 2004; Reimann et al., 2011), and also used to model
human motor control (Latash et al., 2007).

In order to couple the DNF dynamics to the attractor dynam-
ics for motor control, the space-code representation of the DNF
(in terms of locations of activity peaks) has to be mapped onto
the rate-code representation of the motor dynamics (in terms
of the value of the control variable). Figure 2 (bottom) and
Equation (8–9) show how the space-code of a DNF may be trans-
lated into the rate-code of attractor dynamics through a weighted
projection to the rate-coding neural node. The weights (or gain
field, λ(x)) of this projection may be subject to learning (or
adaptation) (see Section 3).

τu̇(x, t) = −u(x, t)+ h+
∫

f
(
u(x′, t)

)
ω(x − x′)dx′ + S(x, t), (8)

τφ̇(t) = −φ

∫
f (u(x, t))dx +

∫
λ(x)f (u(x, t))dx. (9)

Here, u(x, t) is a one-dimensional motor DNF, which represents
the target values of the motor variable using space coding. φ

is the motor variable, which controls movement of the robot
(e.g., velocity, position, force of a motor, or the target elonga-
tion of a muscle). This variable follows an attractor dynamics,
Equation (9) with an attractor defined by the position of the
activity peak in the DNF, u(x, t). This attractor is only turned on
when an activity peak is present in the motor DNF. The typical
choice for λ(x) is λ(x) = cx, but generally, this factor is subject to
a learning (gain adaptation) process (see Section 2.6.3).

In a WTA architecture, the motor variable φ [Equation (9)]
may be implemented as a neural population without lateral con-
nections, which receives input from the a motor WTA [that is
analogous to the motor DNF in Equation(8)] through a set of
synaptic connections, λ(x). This input is summed by the motor
variable population. The critical difference of this dynamics to the
DNF (or WTA) dynamics is that the motor command is defined
by the activity of the population rather than the location of an
activity peak in the population (Bicho et al., 2000).

2.5. AUTONOMY AND COGNITIVE CONTROL IN DFT
Critically, in order to close the behavioral loop, the cognitive con-
trol of the neural architecture is necessary. In particular, the agent
that has access to several perceptual and motor modalities has
to decide at each point in time, which perceptual input to use
to control the motor system and which effector of the motor
system to use to achieve a behavioral goal. This problem was
addressed recently in DFT in terms of modeling executive con-
trol in human cognition (Buss and Spencer, 2012) and in the
behavioral organization in robotics (Richter et al., 2012).

The crucial element that gives a neural architecture the desired
autonomy of executive control is based on the principle of inten-
tionality (Searle, 1983; Sandamirskaya and Schoner, 2010a). In
practice, this principle amounts to a structural extension of DNFs,
so that every behavioral state of the system has two components—
a representation of an intention, which eventually drives the
motor system of the agent, and a representation of the condition-
of-satisfaction (CoS), which is activated by the sensory input
when the action is finished and which inhibits the respective
intention. The CoS DNF is biased, or preshaped, by the intention
DNF to be sensitive to particular sensory input, characteristics for
the action outcome. This coupling from the intention to the CoS
DNF carries a predictive component of the intentional behav-
ior, which may be shaped in a learning process (Luciw et al.,
2013). Together, the intention and the CoS comprise an elemen-
tary behavior (EB, Richter et al., 2012), which generally has the
dynamics of Equations (10).

τu̇int(x, t) = −uint(x, t)+ h+
∫

f
(
uint(x′, t)

)
ω(x − x′)dx′

+ S1(x, t)− c1

∫
f (uCoS(y, t))dy, (10)

τu̇CoS(y, t) = −uCoS(y, t)+ h+
∫

f
(
uCoS(y′, t)

)
ω(y − y′)dy′

+ S2(y, t)+ c2W(x, y)f (uint(x, t))

Here, uint(x, t) is a DNF which represents possible intentions of
the agent. These intentions may be motor or perceptual goals,

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 276 | 150

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Sandamirskaya DNFs and cognitive neuromorphic architectures

which the agent aims to achieve through contact with the envi-
ronment. For instance, “locate a red object” is a typical perceptual
intention, “turn 30 degrees to the left” is an example of a motor
intention. x is a perceptual or motor variable, which characterizes
the particular intention; S1(x, t) is an external input which acti-
vates the intention. This input may be sensory (condition of initi-
ation) or motivational (task input) (Sandamirskaya et al., 2011).
uCoS(y, t) is the condition-of-satisfaction DNF, which receives a
localized input from the intention DNF through a neuronal map-
ping W(x, y) (as introduced in Section 2.3). This input makes
the CoS DNF sensitive to a particular part of the sensory input,
S2(y, t), which is characteristic for the termination conditions of
the intended perceptual or motor act. The mapping W(x, y) may
be learned (Luciw et al., 2013). When the CoS DNF is activated,
it inhibits the intention DNF by shifting its resting level below the
threshold of the forgetting instability.

The DNF structure of an elementary behavior (EB) further
stabilizes the behavioral state of the neural system. Thus, the
intentional state of the system is kept active as long as needed to
achieve the behavioral goal. The CoS autonomously detects that
the intended action is successfully accomplished and inhibits the
intention of the EB. Extinction of the previously stabilized inten-
tion gives way to the next EB to be activated. With this dynamics,
the exact duration of an upcoming action does not need to be
represented in advance (and action durations may vary to a large
degree in real-world environments). The intentional state will
be kept active until the CoS signals that the motor action has
reached its goal. This neural-dynamic mechanism of intention-
ality enables autonomous activation and deactivation of different
modalities of a larger neuronal architecture.

Since the intention and the CoS are interconnected DNFs,
their WTA implementation may be achieved as described in
Section 2.3.

2.6. LEARNING IN DFT
The following learning mechanisms are available in the DFT
framework.

2.6.1. Memory trace of previous activity
The most basic learning mechanism in DFT is the memory trace
formation, also called preshape. The memory trace changes the
subsequent dynamics of a DNF and thus is considered an ele-
mentary form of learning. In neural terms, the memory trace
amounts to local increase in excitability of neurons, which may
be counterbalanced with homeostatic processes.

Formally, the preshape is an additional layer over the same
dimensions as the associated DNF. The preshape layer receives
input from the DNF, which is integrated into the preshape
dynamics as an attractor that is approached with a time-constant
τl/λbuild, Equation (11). This build-up constant is slower than the
time-constant of the DNF dynamics. When there is no activity in
the DNF, the preshape decays with an even slower time-constant,
τl/λdecay in Equation (11).

τlṖ(x, t) = λbuild

(
− P(x, t)+ f

(
u(x, t)

))
f
(
u(x, t)

)

−λdecayP(x, t)
(

1− f
(
u(x, t)

))
. (11)

Here, P(x, t) is the strength of the memory trace at site x of the
DNF with activity u(x, t) and output f

(
u(x, t)

)
, λbuild and λdecay

are the rates of build-up and decay of the memory trace. The
build-up of the memory trace is active on sites with a high pos-
itive output f

(
u(x, t)

)
, the decay is active on the sites with a low

output. The memory trace P(x, t) is an additive input to the DNF
dynamics.

The memory trace formation can be used to account for one-
shot learning of object categories (Faubel and Schöner, 2009),
representation of visual scenes (Zibner et al., 2011), or action
sequences (Sandamirskaya and Schoner, 2010b).

In a neuromorphic WTA implementation, the memory trace,
or preshape, may be interpreted as the strength of synaptic
connections from the DNF (or WTA), u(x, t), to a “memory”
population. This “memory” population activates the preshape
by transmitting its activation through the learned synaptic con-
nections, P(x, t). Learning of the synaptic connections amounts
to attractor dynamics [as in the first parenthesis of Equation
(11)], in which the pattern of synaptic connections approaches
the pattern of the DNF’s (WTA’s) output. This learning dynamics
may also be implemented as a simple Hebbian rule: the synap-
tic weights which connect active sites of the DNF (WTA) with
the memory population are strengthened. Another possible inter-
pretation of the preshape as a change in the resting levels of
individual nodes in the DNF (WTA) is harder to implement in
neuromorphic WTA networks.

2.6.2. Learning mappings and associations
When the memory trace dynamics is defined within a structure
with a higher dimensionality than the involved DNFs, the pre-
shape dynamics leads to learning of mappings and associations.
The dynamics of an associating map is similar to the memory
trace dynamics, Equation (12).

τẆ(x, y, t) = ε(t)
(
−W(x, y, t)+ f (u1(x, t))× f (u2(y, t))

)
. (12)

The weights function, W(x, y, t), which couples the DNFs u1(x, t)
and u2(y, t) in Equation (12), as well as in Equations (4, 5),
has an attractor at the intersection between positive outputs of
the DNFs u1 and u2. The intersection is computed as a sum
between the output of u1, expanded along the dimensions of the
u2, and the output of the u2, expanded in the dimensions of the
u1, augmented with a sigmoidal threshold function (this neural-
dynamic operation is denoted by the × symbol). The shunting
term ε(t) limits learning to time intervals when a reward-
ing situation is perceived, as exemplified in the architecture in
Section 3.

This learning mechanism is equivalent to a (reward-gated)
Hebbian learning rule: the cites of the DNFs u1 and u2 become
coupled more strongly if they happen to be active simulta-
neously when learning is facilitated by the (rewarding) sig-
nal ε(t). Through the DNF dynamics, which builds localized
activity peaks in the functionally relevant states, the learning
dynamics has the properties of the adaptive resonance net-
works (ART, Carpenter et al., 1991), which emphasize the
need for localization of the learning processes in time and in
space.

www.frontiersin.org January 2014 | Volume 7 | Article 276 | 151

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Sandamirskaya DNFs and cognitive neuromorphic architectures

2.6.3. Adaptation
Adaptation [Equation (13)] is considered a learning process,
which amounts to an unnormalized change of the coupling
weights (gains) in a desired direction. A typical example is learn-
ing in the transition from the DNF’s space-code to the rate-code
of motor dynamics.

τλ̇(x, t) = ε(t)f (u(x, t)) (13)

ε(t) = error× time window

Here, λ(x, t) is a matrix of weights, or gains, defined over the
dimension of the DNF, u(x, t), which is coupled to the motor
dynamics, as in Equation (9). The gain changes in proportion
to the output of the driving DNF, u(x, t), in a learning win-
dow, defined by the term ε(t). The learning window is non-zero
in a short time window when an intended action within EB, to
which the DNF u(x, t) belongs, is finished (the respective uCoS is
active), but activity in the intention DNF is not yet extinguished.
The error is determined in a DNF system, which compares the
outcome of an action with the intended value of the motor
variable and determines the direction of change of the weights
in λ(x, t).

Now that all neural-dynamic structures developed within DFT
are presented, which may be implemented in hardware neu-
ronal networks through the WTA architecture, I will introduce
an exemplar robotic architecture, which integrates these mecha-
nisms in a neural-dynamic system, which generates behavior and
learns autonomously.

3. AN EXAMPLE OF AN ADAPTIVE ARCHITECTURE IN DFT
3.1. THE SCENARIO AND SETUP
The simple, but functioning in a closed loop learning architecture
presented in this section employs several of the principles, pre-
sented above, such as categorization properties of DNFs, coupling
between DNFs of different dimensionality, coupling to sensors
and motors, autonomous action initiation and termination, as
well as learning.

The robot, used to demonstrate the closed-loop behavior
of a neuromorohic agent, consists of an eDVS camera and a
pan-tilt unit. The eDVS camera has 128x128 event-based pix-
els, each sending a signal when a luminance change is detected.
The pan-tilt unit consists of two servo motors, which take
position signals in the range 0–2000 and are controlled to
take the corresponding pose with a small latency. The task
for this robot is to direct its gaze at a small blinking cir-
cle, which is moved around on a computer screen in front of
the robot. A successful looking movement leads to the blink-
ing circle settled in the central portion of the robot’s camera
array.

In order to accomplish this task, the robot, similarly to an ani-
mal, needs to detect the target in the visual input and in particular,
estimate and represent its location relative to the center of the field
of view of the robot. Next, according to the current location of the
target, the system needs to select a motor command, which will
bring the target into the center of the field of view. Thus, the sys-
tem needs to select the desired values for pan and tilt, which will
be sent to the servo motors.

This simple task embraces the following fundamental prob-
lems. First, the mapping between the target location and the
required motor command is a priori unknown. The system needs
to calibrate itself autonomously. In particular, the system needs
to learn a mapping between the position of the input in the cam-
era array and the motor command, which will bring the target in
the center of the visual field. The second fundamental problem
revealed in this setting is that when the camera moves, the per-
ceived location of the target on the surface of the sensor changes,
and the system needs a mechanism to keep the initial location
of the target in memory in order to learn the mapping between
the visually perceived locations and the motor commands. The
third problem is the autonomy of the looking behavior: the sys-
tems needs a mechanism to update the target representation after
both successful and unsuccessful looking actions.

Figure 4 shows the scheme of the DNF architecture, which
demonstrates how all these problems may be addressed in a
closed-loop system. Next, I will present the dynamical structures,
which constitute the architecture.

3.2. THE NEURAL-DYNAMICS ARCHITECTURE
3.2.1. Perceptual DNF
The perceptual DNF is coupled to the eDVS, as described in
Section 2.2 and effectively performs a low-pass filter operation on
the camera input in time and in space. This DNF builds peaks of
activation at locations, where events are concentrated in time and
in space in the visual array of the robot.

3.2.2. Visual intention DNF
This DNF builds sustained activity peaks that represent the target
locations (Figure 5). The peaks are sustained even if the input,
which initiated them ceases or moves. Thus, even during or after
a gaze movement, the representation of the current target is stably
represented. This allows, on the one hand, the robust coupling to
the motor system (the attractor, set for the motor system, is guar-
anteed to be kept constant for the time of the movement). On the
other hand, this memory system enables learning, since the rep-
resentation of the previous target is still active when a rewarding
input is perceived after a successful gaze.

3.2.3. Motor intention DNF
The visual intention DNF represents the target of the current gaze
action in sensory, here visual, coordinates. The movement gener-
ation system takes attractors in the motor coordinates, however
(here, the desired pan and tilt). The motor intention DNF is

FIGURE 4 | The DFT architecture for looking. See main text for details.

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 276 | 152

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Sandamirskaya DNFs and cognitive neuromorphic architectures

FIGURE 5 | The cascade from the visual input to perceptual DNF to the visual intention (target) DNF segregates and stabilizes the selected region in

the input stream.

defined over the motor coordinates and an activity peak in this
DNF creates an attractor for the motor dynamics and initiates a
gaze movement.

3.2.4. Condition of satisfaction node
The CoS DNF in this architecture is a zero-dimensional CoS node,
since it monitors directly the state of the motor system, which
is characterized by two single-valued variables, pan and tilt. The
CoS node is activated when the motor action is accomplished
[Equation (14)].

τv̇cos(t) = −vcos(t)+ h+ cexcf (vcos(t))+ c

∫
f (umot(y, t))dy

+ cafdiff , (14)

where vcos(t) is the activation of the CoS node for either the pan or
the tilt movement (the CoS of the overall movement is a thresh-
olded sum of the two CoSs). The CoS node is activated if (1) there
is activity in the motor intention DNF, umot , and (2) the detec-
tor fdiff = f (0.5− |ξpan − ˙pan|) signals that the state variable for
the pan or the tilt dynamics reaches the respective attractor, ξ . c
and ca are scaling constants for these two contributions, cexc is the
strength of self-excitation of the CoS node.

The activated CoS node inhibits both the motor and the visual
intention DNFs below activation threshold. The otherwise self-
sustained activity peaks in these DNFs cease, which causes the
CoS node loose its activation as well. The intention DNFs are
released from inhibition and regain their initial resting levels,
allowing the sensory input to induce a stabilized representation
of the next target.

3.2.5. The transformation array
The transformation between the visual and the motor coordi-
nates, needed to achieve a particular behavioral goal, e.g., center
the target object in the visual field, is a priori unknown. In the
DFT architecture presented here, this transformation is repre-
sented by a randomly initialized coupling matrix, which imple-
ments a potential all-to-all connectivity between the two DNFs.
Thus, an active visual intention DNF initially induces a peak at a
random location in the motor DNF. The lateral interactions in the
motor DNF ensure that a peak may be built, although the con-
nection matrix is random (and sparse) in the beginning of the
learning process.

In the transformation array, a learning dynamics is imple-
mented [Equation (12)]. The learning window, λ(t) is defined
by the activity in the visual match DNF, which signals when the
visual input falls onto the central part of the camera array.

3.2.6. The visual match DNF
The visual match DNF receives a preshape in the center of the
field when the visual intention DNF is active. This preshaping
input is equivalent to an expectation to perceive the target in the
visual field, which biases the visual match DNF to be sensitive to
the respective sensory input. The connectivity which enables this
predicting coupling is assumed to be given here, but could poten-
tially emerge in a developmental process [e.g., similar to Luciw
et al. (2013)].

τu̇match(x, t) = −umatch(x, t)+ h+
∫

f (umatch(x′, t))w(x − x′)dx′

+ f (uperc(x, t))+ cG(x, t)

∫
f (uvis(x, t))dx, (15)

In Equation (15), the visual match DNF, umatch(x, t) is defined
over the same (visual, 2D here) coordinates as the perceptual
DNF, uperc, and the visual intention DNF, uvis, and receives
a one-to-one input from the perceptual DNF, as well as a
Gaussian-shaped input, cG(x, t) if there’s activity in the visual
intention DNF. When the visual match DNF is active, it drives
learning in the transformation array, according to Equations
(16, 12).

ε(t) =
∫

f (umatch(x, t))dx. (16)

3.3. THE DYNAMICS OF THE ARCHITECTURE
Figure 6 show the DNF architecture for looking at work.

When salient visual input is perceived by the eDVS sensor, one
or several activity peaks emerge in the perceptual DNF (Figure 6,
left), the most salient of these peaks (i.e., the one that reached
the activation threshold first) drives the visual intention DNF
(Figure 6, middle) and induces a self-sustained activity peak in
this DNF. The peak in the visual intention DNF is sustained
even when the camera starts moving and the visual input shifts,
representing the instantaneous goal of the upcoming camera
movement.

www.frontiersin.org January 2014 | Volume 7 | Article 276 | 153

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Sandamirskaya DNFs and cognitive neuromorphic architectures

FIGURE 6 | The DFT architecture for autonomous looking and learning

the sensorimotor map. The robotic camera provides input to the perceptual
DNF, which performs initial segregation of object-like regions in the visual
stream. The visual intention DNF selects and stabilizes the spatial
representation (in visual coordinates) of a single target for the upcoming
looking action. Through adaptive weights, the visual intention DNF provides

input to the motor intention DNF, which generates attractors for the motor
dynamics. Motor dynamics signals completion of the looking act through the
CoS node, which inhibits the intention DNFs. If the looking action brings the
target object into the foveal (central) region of the field of view, the adaptive
weights are updated according to the current (decaying) activation in the
visual and motor intention DNFs.

The visual intention DNF induces an activity peak in the
motor intention DNF through the coupling weights, which are
random in the beginning of the learning process. A localized
activity peak emerges in the motor intention DNF, formed by the
lateral interactions in this field. The motor intention peak sets an
attractor for the dynamics of the pan and the tilt control variables,
which drive the robotic pan-tilt unit. When the control variables
are close to the attractor, the CoS node is activated and inhibits
the visual and the motor intention DNFs. Activity in the motor
intention DNF ceases in a forgetting instability, which leads to the
CoS node to loose its activation as well. The inhibitory influence
on the intention DNFs is released and the visual intention DNF
may build a new activity peak from the perceptual input.

When the camera movement is finished (event, detected by the
CoS node), if the input falls onto the central part of the visual
array, the visual match DNF is activated and triggers the learn-
ing process in the adaptive weights. In particular, the weights are
strengthened between the currently active positions in the visual
intention DNF and the currently active positions in the motor
intention DNF, which correspond to the just-been-active inten-
tions. When the CoS node inhibits the intention DNFs, learning
stops and a new gazing action is initiated.

Figure 7 shows the activity of the motor variables during the
gaze movements in the learning process and Figure 8 shows the
2D projections of the 4D transformation matrix, learned over

several hundred gaze movements to different target locations
(Sandamirskaya and Conradt, 2013).

4. DISCUSSION
4.1. GENERAL DISCUSSION
The principles of DFT presented in this paper set a possible
roadmap for the development of neuromorphic architectures
capable of cognitive behavior. As modeling framework, DFT
is remarkable in its capacity to address issues of embodiment,
autonomy, and learning using neural dynamics throughout. In
this paper, I have reviewed the DFT mechanisms that provide for
the creation of stabilized sensory representations, learned associa-
tions, coupled sensory-motor representations, intentionality, and
autonomous behavior and learning. In an exemplar architecture,
I demonstrated how the computational and architectural princi-
ples of DFT come together in a neural-dynamic architecture, that
coupled a neuromorphic sensor to motors and autonomously
generated looking behavior while learning in a closed behavioral
loop. The categorization properties of DNFs achieve the stabiliza-
tion of the visual input against sensory noise, while the memory
mechanisms allow the relevant representations to be kept active
long enough to parameterize and initiate motor actions and also
drive the learning process after a successful movement. Adaptive
couplings between DNFs together with a mechanism that
enables autonomous activation and deactivation of intentions

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 276 | 154

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Sandamirskaya DNFs and cognitive neuromorphic architectures

FIGURE 7 | Top: Time-course of the activation of the motor variable (velocity of the pan joint) during four steps of the learning procedure. Middle: The value of
the pan variable. Bottom: Activation of the CoS node.

FIGURE 8 | Two exemplar projections of the learned 4D transformation

array between the visual and the motor intention DNFs of the agent.

(A) Weights’ strength at the given visual-intention DNF horizontal position
as function of motor intention field coordinates (overlayed projections along
ymot). (B) Weights’ strength at the given visual-intention DNF vertical
position.

make for an architecture in which autonomous learning
accompanies behavior.

In order to “translate” the language of behavior-based attrac-
tor dynamics of DFT to spiking networks implemented in VLSI,
several possibilities have been reported recently. One solution

(Neftci et al., 2013) constitutes a method to set parameters of
the neuromorphic hardware in relation to parameters of a more
abstract WTA layer. By measuring the activity of hardware units,
the parameter mappings are calibrated in an automated proce-
dure. Another way to translate DNF dynamics to spiking net-
works is to use the vector-encoding of a dynamical system in the
neural-dynamic framework of Eliasmith (2005). This framework
allows one to implement the attractor dynamics of DNFs in terms
of a network of spiking units, which in its turn may define the
parametrization for a VLSI neuromorphic network.

These powerful tools allow one to translate between levels of
description and can be used to implement different models of
cognition in order to facilitate the development of behaving, neu-
romorphic cognitive systems. DFT is one of the frameworks that
defines the principles and constraints critical to this goal. There
are of course several other frameworks that may be used for this
purpose, each with its own advantages and limitations. Thus, the
probabilistic framework allows one to use noisy and incomplete
sensory information to infer hidden states of the environment and
weigh alternative actions, which may bring the agent closer to its
goals. Such a Bayesian framework has been applied both in the
field of modeling human cognition [e.g., Griffiths et al. (2008)]
and in robotics (Thrun et al., 2005). However, this framework has
two limitations with respect to modeling human cognition. First,
the probabilistic models focus on the functional or behavioral

www.frontiersin.org January 2014 | Volume 7 | Article 276 | 155

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Sandamirskaya DNFs and cognitive neuromorphic architectures

aspects of cognition and not the neuronal mechanisms underly-
ing cognitive processing. They often require normalization pro-
cedures which are not trivial to implement neurally. Second, the
probabilistic models often need an external mechanism to make
inferences on the probability distributions and do not account
for the process of decision making. Thus, the Bayesian archi-
tectures may achieve powerful performance and may be used to
account for empirical data on human cognition, but they do not
provide a process model of cognitive functions or offer a mecha-
nism of how these functions are achieved or realized neurally. On
the contrary, in neuronal modeling, the developed architectures
are anchored in neuronal data and focus on the mechanisms and
processes behind cognition. However, their functional implemen-
tations (i.e., embodiment) are typically limited and fail to address
important problems such as representational coupling, auton-
omy, and development. DFT aims at bridging the two approaches
to understanding cognitive processing—the functional (behav-
ioral) and the mechanistic (neuronal)—and thus naturally fits
the goal of providing for a tool to implement neuromorphic cog-
nition. The scaling of DFT toward higher cognitive functions,
such as concept representation, language, and complex action
sequencing is currently under way.

This paper aims to reveal the formalized DFT principles and
concepts developed in embodied cognition and autonomous
robotics in such a way that they may be integrated into the lan-
guage of spiking neural networks in VLSI hardware through the
structure of WTA networks. DNF may be considered a functional
description of the soft WTA networks. The successful implemen-
tation of soft WTA networks in VLSI devices to date opens the
way to employing the architectural elements of DFT in spiking
hardware architectures. These structural elements as summarized
here are (1) coupling between fields of different dimensional-
ity, (2) coupling to sensors through space-coding, (3) coupling
to rate-coded motor dynamics, (4) application of principles of
autonomy (intentionality), and (5) autonomous neural-dynamic
learning. Some of the DFT principles, such as categorization and
memory formation, are already probed in VLSI WTA networks,
resulting in a framework of state-based computing in spiking
networks. In addition, this paper formalizes mechanisms that
allow for autonomous transition between stable states through
the introduction of elementary behavior structures, namely the
intention and the conditions-of-satisfaction. This formalization
also enables autonomous learning and the robust coupling of
WTAs to each other, to sensors, and to motor dynamics.

The DFT approach considers cognitive systems from a
behavioral perspective while neuromorphic hardware system
development aims at understanding the neuronal mechanisms
underlying cognition. The fact that these two approaches con-
verge to a mathematically equivalent object—a DNF or a soft
WTA—as an elementary computational unit in the develop-
ment of cognitive neuromorphic systems is a strong argument
for the fundamental character of this computational element.
Here, I aimed at establishing a common ground for future col-
laborative projects that can facilitate progress in both fields. The
VLSI networks could scale up to produce cognitive autonomous
behavior and the DFT framework could gain access to a neural
implementation which is not only more efficient and biologically

grounded, but also open to empirical links between the behavioral
and neuronal dynamics. Bringing principles of DFT onto VLSI
chips will, on the one hand, allow one to model human cogni-
tion and make predictions under both neuronal and behavioral
constraints. On the other hand, the cooperation between the two
fields could foster the development of powerful technical cogni-
tive systems based on a parallel, low-power implementation with
VLSI.

ACKNOWLEDGMENTS
The author gratefully acknowledges support from the organizers
of the Telluride Cognitive Neuromorphic Engineering worksop
2012 and the Capo Caccia Neuromorphic Cognition 2013 work-
shop, as well as of Prof. J. Conradt for providing the hardware
setup.

FUNDING
The project was funded by the DFG SPP “Autonomous learning”
within the Priority program 1527.

REFERENCES
Abrahamsen, J. P., Hafliger, P., and Lande, T. S. (2004). “A time domain winner-

take-all network of integrate-and-fire neurons,” in Proceedings of the 2004 IEEE
International Symposium on Circuits and Systems, 2004. ISCAS’04. (Vancouver),
Vol. 5, V-361.

Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural
fields. Biol. Cyber. 27, 77–87. doi: 10.1007/BF00337259

Bastian, A., Schoner, G., and Riehle, A. (2003). Preshaping and continuous evo-
lution of motor cortical representations during movement preparation. Eur. J.
Neurosci. 18, 2047–2058. doi: 10.1046/j.1460-9568.2003.02906.x

Bicho, E., Mallet, P., and Schöner, G. (2000). Target representation on an
autonomous vehicle with low-level sensors. I. J. Robotic Res. 19, 424–447. doi:
10.1177/02783640022066950

Bicho, E., and Schoner, G. (1997). The dynamic approach to autonomous robotics
demonstrated on a low-level vehicle platform. Robot. Auton. Syst. 21, 23–35. doi:
10.1016/S0921-8890(97)00004-3

Buss, A. T., and Spencer, J. P. (2012). When seeing is knowing: the role of visual
cues in the dissociation between childrens rule knowledge and rule use. J. Exp.
Child Psychol. 111, 561–569. doi: 10.1016/j.jecp.2011.11.005

Carpenter, G. A., Grossberg, S., and Rosen, D. B. (1991). Art 2-a: an adaptive res-
onance algorithm for rapid category learning and recognition. Neural Netw. 4,
493–504. doi: 10.1016/0893-6080(91)90045-7

Conradt, J., Berner, R., Cook, M., and Delbruck, T. (2009). “An embedded
aer dynamic vision sensor for low-latency pole balancing,” in IEEE 12th
International Conference on Computer Vision Workshops (ICCV Workshops).
(Kyoto), 780–785.

Douglas, R. J., and Martin, K. A. C. (2004). Neural circuits of the neocortex. Ann.
Rev. Neurosci. 27, 419–451. doi: 10.1146/annurev.neuro.27.070203.144152

Eliasmith, C. (2005). A unified approach to building and controlling spiking attrac-
tor networks. Neural Comput. 7, 1276–1314. doi: 10.1162/0899766053630332

Ellias, S. A., and Grossberg, S. (1975). Pattern formation, contrast control, and
oscillations in the short term memory of shunting on-center off-surround
networks. Biol. Cyber. 20, 69–98. doi: 10.1007/BF00327046

Erlhagen, W., and Bicho, E. (2006). The dynamic neural field approach to cognitive
robotics. J. Neural Eng. 3, R36–R54. doi: 10.1088/1741-2560/3/3/R02

Ermentrout, B. (1998). Neural networks as spatio-temporal pattern-forming sys-
tems. Rep. Prog. Phys. 61, 353–430. doi: 10.1088/0034-4885/61/4/002

Faubel, C., and Schöner, G. (2009). “A neuro-dynamic architecture for one shot
learning of objects that uses both bottom-up recognition and top-down predic-
tion,” in Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems IROS. (St. Louis, MO: IEEE Press).

Griffiths, T. L., Kemp, C., and Tenenbaum, J. B. (2008). “Bayesian models
of cognition,” in Cambridge Handbook of Computational Cognitive Modeling
(Cambridge: Cambridge University Press), 59–100.

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 276 | 156

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Sandamirskaya DNFs and cognitive neuromorphic architectures

Grossberg, S. (1988). Nonlinear neural networks: principles, mechanisms, and
architectures. Neural Netw. 1, 17–61. doi: 10.1016/0893-6080(88)90021-4

Indiveri, G., Chicca, E., and Douglas, R. J. (2009). Artificial cognitive systems: from
vlsi networks of spiking neurons to neuromorphic cognition. Cogn. Comput. 1,
119–127. doi: 10.1007/s12559-008-9003-6

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., van Schaik, A., Etienne-
Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron
circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Indiveri, G., Murer, R., and Kramer, J. (2001). Active vision using an analog
vlsi model of selective attention. IEEE Trans. Cir. Syst. II 48, 492–500. doi:
10.1109/82.938359

Iossifidis, I., and Schöner, G. (2004). “Autonomous reaching and obstacle avoid-
ance with the anthropomorphic arm of a robotic assistant using the attractor
dynamics approach,” in Proceedings of the IEEE 2004 International Conference
on Robotics and Automation. (New Orleans, LA).

Johnson, J. S., Spencer, J. P., and Schöner, G. (2006). “A dynamic neural field the-
ory of multi-item visual working memory and change detection,” in Proceedings
of the 28th Annual Conference of the Cognitive Science Society (CogSci 2006)
(Vancouver, BC), 399–404.

Johnson, J. S., Spencer, J. P., and Schoner, G. (2008). Moving to higher ground: the
dynamic field theory and the dynamics of visual cognition. New Ideas Psychol.
26, 227–251. doi: 10.1016/j.newideapsych.2007.07.007

Latash, M. L., Scholz, J. P., and Schoner, G. (2007). Toward a new theory of motor
synergies. Motor Control 11, 276–308.

Liu, S. C., and Delbruck, T. (2010). Neuromorphic sensory systems. Curr. Opin.
Neurobiol. 20, 288–295. doi: 10.1016/j.conb.2010.03.007

Luciw, M., Kazerounian, S., Lakhmann, K., Richter, M., and Sandamirskaya, Y.
(2013). “Learning the perceptual conditions of satisfaction of elementary behav-
iors,” in Robotics: Science and Systems (RSS), Workshop “Active Learning in
Robotics: Exploration, Curiosity, and Interaction.” (Berlin).

Mead, C., and Ismail, M. (1989). Analog VLSI Implementation of Neural Systems.
Norwell, MA: Springer.

Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G., and Douglas, R. J.
(2013). Synthesizing cognition in neuromorphic electronic systems. Proc. Natl.
Acad. Sci. U.S.A. 110, E3468–E3476. doi: 10.1073/pnas.1212083110

Neftci, E., Chicca, E., Cook, M., Indiveri, G., and Douglas, R. (2010). “State-
dependent sensory processing in networks of vlsi spiking neurons,” in
Proceedings of 2010 IEEE International Symposium on Circuits and Systems
(ISCAS). (Paris), 2789–2792.

Oster, M., and Liu, S. C. (2004). “A winner-take-all spiking network with spik-
ing inputs,” in Proceedings of the 2004 11th IEEE International Conference on
Electronics, Circuits and Systems, ICECS 2004. (Tel-Aviv), 203–206.

Reimann, H., Iossifidis, I., and Schoner, G. (2011). “Autonomous movement gener-
ation for manipulators with multiple simultaneous constraints using the attrac-
tor dynamics approach,” in Proceedings of the IEEE International Conference on
Robotics and Automation ICRA (Shanghai).

Richter, M., Sandamirskaya, Y., and Schoner, G. (2012). “A robotic architecture for
action selection and behavioral organization inspired by human cognition,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems, (Algarve),
IROS.

Rutishauser, U., and Douglas, R. J. (2009). State-dependent computation
using coupled recurrent networks. Neural Comput. 21, 478–509. doi:
10.1162/neco.2008.03-08-734

Sandamirskaya, Y., and Conradt, J. (2013). “Learning sensorimotortransforma-
tions with dynamic neural fields,” in International Conference on Artificial Neural
Networks (ICANN). (Sofia).

Sandamirskaya, Y., Richter, M., and Schoner, G. (2011). “A neural-dynamic archi-
tecture for behavioral organization of an embodied agent,” in IEEE International
Conference on Development and Learning and on Epigenetic Robotics (ICDL
EPIROB 2011). (Frankfurt).

Sandamirskaya, Y., and Schoner, G. (2010a). An embodied account of serial order:
how instabilities drive sequence generation. Neural Netw. 23, 1164–1179. doi:
10.1016/j.neunet.2010.07.012

Sandamirskaya, Y., and Schoner, G. (2010b). An embodied account of serial order:
how instabilities drive sequence generation. Neural Netw. 23, 1164–1179. doi:
10.1016/j.neunet.2010.07.012

Sandamirskaya, Y., Zibner, S., Schneegans, S., and Schoner, G. (2013). Using
dynamic field theory to extend the embodiment stance toward higher
cognition. New Ideas Psychol. 30, 1–18. doi: 10.1016/j.newideapsych.2013.
01.002

Schaal, S., Ijspeert, A., and Billard, A. (2003). Computational approaches to
motor learning by imitation. Philos. Trans. R. Soc. Lond. B 358, 537–547. doi:
10.1098/rstb.2002.1258

Schoner, G. (2008). “Dynamical systems approaches to cognition,” in Cambridge
Handbook of Computational Cognitive Modeling, ed R. Sun (Cambridge:
Cambridge University Press), 101–126.

Searle, J. R. (1983). Intentionality—An Essay in the Philosophy of Mind. Cambridge:
Cambridge University Press.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. Vol. 1.
Cambridge: MIT press.

Wilson, H. R., and Cowan, J. D. (1973). A mathematical theory of the functional
dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80. doi:
10.1007/BF00288786

Zibner, S. K. U., Faubel, C., Iossifidis, I., and Schöner, G. (2011). Dynamic
neural fields as building blocks for a cortex-inspired architecture of
robotic scene representation. IEEE Trans. Auton. Ment. Dev. 3, 74–91.
doi: 10.1109/TAMD.2011.2109714

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 07 October 2013; accepted: 25 December 2013; published online: 22 January
2014.
Citation: Sandamirskaya Y (2014) Dynamic neural fields as a step toward cognitive
neuromorphic architectures. Front. Neurosci. 7:276. doi: 10.3389/fnins.2013.00276
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2014 Sandamirskaya. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with
these terms.

www.frontiersin.org January 2014 | Volume 7 | Article 276 | 157

http://dx.doi.org/10.3389/fnins.2013.00276
http://dx.doi.org/10.3389/fnins.2013.00276
http://dx.doi.org/10.3389/fnins.2013.00276
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

ORIGINAL RESEARCH ARTICLE
published: 17 January 2014

doi: 10.3389/fnins.2013.00278

A robust sound perception model suitable for
neuromorphic implementation
Martin Coath1,2*, Sadique Sheik3, Elisabetta Chicca4, Giacomo Indiveri3, Susan L. Denham1,2 and

Thomas Wennekers1,5

1 Cognition Institute, Plymouth University, Plymouth, UK
2 Faculty of Health and Human Sciences, School of Psychology, Plymouth University, Plymouth, UK
3 Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
4 Faculty of Technology, Cognitive Interaction Technology – Center of Excellence, Bielefeld University, Bielefeld, Germany
5 Faculty of Science and Environment, School of Computing and Mathematics, Plymouth University, Plymouth, UK

Edited by:

André Van Schaik, The University of
Western Sydney, Australia

Reviewed by:

John Harris, University of Florida,
USA
Dylan R. Muir, University of Basel,
Switzerland

*Correspondence:

Martin Coath, Cognition Institute,
Plymouth University, A222, Portland
Square, Drake Circus, Plymouth,
Devon PL48AA, UK
e-mail: mcoath@plymouth.ac.uk

We have recently demonstrated the emergence of dynamic feature sensitivity through
exposure to formative stimuli in a real-time neuromorphic system implementing a
hybrid analog/digital network of spiking neurons. This network, inspired by models
of auditory processing in mammals, includes several mutually connected layers with
distance-dependent transmission delays and learning in the form of spike timing
dependent plasticity, which effects stimulus-driven changes in the network connectivity.
Here we present results that demonstrate that the network is robust to a range of
variations in the stimulus pattern, such as are found in naturalistic stimuli and neural
responses. This robustness is a property critical to the development of realistic, electronic
neuromorphic systems. We analyze the variability of the response of the network to
“noisy” stimuli which allows us to characterize the acuity in information-theoretic terms.
This provides an objective basis for the quantitative comparison of networks, their
connectivity patterns, and learning strategies, which can inform future design decisions.
We also show, using stimuli derived from speech samples, that the principles are robust
to other challenges, such as variable presentation rate, that would have to be met by
systems deployed in the real world. Finally we demonstrate the potential applicability of
the approach to real sounds.

Keywords: auditory, modeling, plasticity, information, VLSI, neuromorphic

1. INTRODUCTION
Neurons in sensory cortex are highly adaptive, and are sensitive to
an organism’s sensory environment. This is particularly true dur-
ing early life and an epoch known as the “critical period” (Zhang
et al., 2001; Insanally et al., 2009). For many organisms sounds
of ecological importance, such as communication calls, are char-
acterized by time-varying spectra. Understanding how to build
auditory processing systems that can cope with time-varying
spectra is important. However, most neuromorphic auditory
models to date have focused on distinguishing mainly static pat-
terns, under the assumption that dynamic patterns can be learned
as sequences of static ones.

One strategy for devices that implement artificial sensory sys-
tems is to emulate biological principles. Developing this approach
holds out the hope that we might be able to build devices that
approach the efficiency and robustness of biological systems and,
in doing so, new insights in to neural processing might be gained.
If, as is widely believed, the perception of complex sensory stimuli
in vivo is based upon the population response of spiking neurons
that are tuned to stimulus features then important questions arise,
including “what are these features, and how do they come in to
existence?” The situation for artificial auditory perception is com-
plicated by the fact that the way in which sounds are represented

in mammalian auditory cortex is not well understood, and neither
are the neural mechanisms underlying the learning of dynamic
sound features.

Neural mechanisms thought to underlie, for example, sensi-
tivity to frequency sweeps include differential latency between
excitatory inputs (Razak and Fuzessery, 2008), or excitatory and
inhibitory inputs (Razak and Fuzessery, 2010), and asymmetric
inhibition (Zhang et al., 2003; Razak and Fuzessery, 2009), all of
which have been shown to correlate with sweep direction and/or
rate preference. However, these studies have focussed primarily
on local neural mechanisms (Ye et al., 2010) whereas anatomical
studies of the auditory system reveal widespread lateral connec-
tions and nested recurrent loops, and in many cases feedback
connections outnumbering feed-forward ones (Friston, 2005).

We have demonstrated previously that it is possible to address
the problem of sensitivity to dynamic stimuli, including but not
limited to frequency modulated (FM) sweeps, with a biophysi-
cally plausible model of auditory processing (Coath et al., 2010).
We have validated the model with a real-time physical system
implemented using neuromorphic electronic circuits (Sheik et al.,
2011). However, neither of these studies has investigated the
robustness of the system to stimuli that exhibit variation, either
in spike pattern, or presentation rate, or to the order of similar

www.frontiersin.org January 2014 | Volume 7 | Article 278 | 158

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2013.00278/abstract
http://www.frontiersin.org/people/u/44579
http://community.frontiersin.org/people/SadiqueSheik/26862
http://community.frontiersin.org/people/ElisabettaChicca/21489
http://www.frontiersin.org/people/u/1395
http://www.frontiersin.org/people/u/63813
http://www.frontiersin.org/people/u/5235
mailto:mcoath@plymouth.ac.uk
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Coath et al. Robust neuromorphic sound perception

stimuli when sets of stimuli are presented continuously. In addi-
tion, the spectro-temporal patterns used as stimuli in these earlier
studies are not derived from, or related to, those found in natural
sounds such as speech, or other communication calls of animals.
All of these considerations are important if the principles involved
are to be implemented in artificial sensory systems that can be
deployed in realistic environments.

In the present paper we provide evidence that the approach
first presented in Sheik et al. (2011) is suitable for “real-world”
deployment in that we extend the hardware results to an inves-
tigation of responses to “noisy” stimuli. We also present results
from a software simulation that replicates the hardware as closely
as possible using stimuli derived from speech and presented con-
tinuously at different rates. Robustness to both of these types
of stimulus variation is a necessary condition for any practical
system. Finally we predict the results from networks with compa-
rable architectures trained on real world stimuli. This approach is
useful in that it provides guidelines that can be used to inform the
design of more complex neuromorphic processing systems that
could be implemented in the future.

2. METHODS
2.1. NETWORK
2.1.1. Schematic
A schematic representation of the network, as implemented in
both hardware and software, is shown in Figure 1. The horizon-
tal axis in the figure represents the tonotopic arrangement of the
auditory system, divided in to a number of frequency channels
representing positions on the basilar membrane. The pattern of
spiking in the A neurons thus represents the output of an artifi-
cial cochlea (Chan et al., 2007). Three channels only are shown
in Figure 1, the central channel is labeled and the two flanking
channels are shown “dimmed” to illustrate how the neurons

within each channel are laterally connected to other channels.
The hardware implementation and the software simulation both
use 32 tonotopic channels. Where real stimuli are processed (see
section 2.1.5) the cochlea uses a linear gammatone filter bank, fol-
lowed by half wave rectification and low pass filtering to simulate
the phase locking characteristics of auditory nerve firing, and cen-
ter frequencies ranging from 50 to 8000 Hz equally spaced on the
Equivalent Rectangular Bandwidth scale (Glasberg and Moore,
1990).

The input neuron A, at each tonotopic position projects to a
B1 and a B2 neuron in the same channel via excitatory synapses.
The output of the network is taken to be the activity of the B2

neurons. This activity is derived from the input, but controlled by
excitatory and inhibitory projections from B1 neurons. However,
the excitatory B1→B2 projections originate only from other
tonotopic channels, these connections exhibit distance dependent
propagation delays, and terminate with plastic synapses which
are the loci of Spike Timing Dependent Plasticity (STDP) (see
section 2.1.2). Each B1 neuron is connected to a number of B2

neurons via these delayed connections that have a fan out of 14
neurons on either side. The learning rule implemented at the
synapses associated with these connections (shown as filled tri-
angles in Figure 1) ensures that the B2 neurons are active only
if there are coincidences between spikes within the channel and
delayed spikes from other channels; it is this feature that allows
the network to learn dynamic spectro-temporal patterns. The
units marked C represent the delays in the B1→B2 connections
which are implemented differently in hardware and software, see
sections 2.1.3 and 2.1.4.

2.1.2. Spike timing dependent plasticity
Plasticity in both the hardware and software networks is imple-
mented in each of the B1→B2 synapses in the form of an

A

B1

B 2

C

Excitatory

Inhibitory

Excitatory STDP

Synapses

Input

Output

Delays

FIGURE 1 | Schematic representation of the network as implemented in

hardware and software. Neurons are arranged in groups representing
positions on the tonotopic axis. Three channels only are shown, and of these
only the central channel is labeled for clarity. The two flanking channels are

shown dimmed to illustrate how the channels interconnected by delayed
excitatory projections that terminate in plastic synapses. The two populations
of B neurons receive input from the same A neurons within the same channel.
B2 neurons are excited by B1 neurons from outside their own channel.

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 278 | 159

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Coath et al. Robust neuromorphic sound perception

STDP-like model of synaptic plasticity described fully in Brader
et al. (2007). In the absence of activation, the synaptic weight,
or efficacy, drifts toward one of two stable values, 0 or 1; and
although it can take on other values, it is bounded by these two
values and stays constant at one of them unless further learning
events occur. This has the advantage of preventing instabilities
in the adaptation, such as the unbounded growth of connection
strengths.

2.1.3. Hardware implementation
The first set of results presented in section 3.1 were obtained
using a hybrid analog /digital hardware implementation of the
network model which consists of a real-time, multi-chip set-up as
described in Sheik et al. (2011). Three multi-neuron spiking chips
and an Address Event Representation (AER) mapper (Fasnacht
and Indiveri, 2011) are used connected in a serial loop. The multi-
neuron chips were fabricated using a standard AMS 0.35 μm
CMOS process.

The hardware does not directly support propagation delays
between neurons. To overcome this limitation, long synaptic
and neuronal time constants are exploited, which due to the
variability in hardware have a range of values (Sheik et al.,
2012). Given that the weights associated with the synapses
of a neuron are strong enough to produce a single output
spike, the time difference between the pre-synaptic spike and
the post-synaptic spike is considered equivalent to a propaga-
tion/transmission delay. Therefore, every projection in the model
that requires a delay is passed through an additional neuron,
referred to as a delay neuron. The delay neurons are labeled C in
Figure 1.

2.1.3.1. Frequency modulated stimuli. Trials with the hardware
network were conducted with stimuli representing Frequency
Modulated (FM) sweeps. These were prepared off-line by inject-
ing current in to integrate and fire neurons. A current pulse of
duration 5.5 ms is used in each channel in turn to generate the
burst of input spikes representing the activity of the A neurons
(see Figure 1) when presented with a frequency modulated stim-
ulus. In order to evaluate the robustness of the network response
to stimulus variation, or noise, an additional noisy current signal
is added to this injection current used to generate the input spikes
as illustrated in Figure 2. Noise is generated from an Ornstein
Uhlenbeck (OU) process with a zero mean using the forward Euler
method (Bibbona et al., 2008). We define the noise level, σ as the
ratio between the standard deviation of the OU process and the
magnitude of the actual noise free current signal used to generate
the spikes.

2.1.3.2. FM sweep trials and analysis. Trials for the hardware and
software versions of the network consisted of two parts; first the
exposure phase, using the exposure stimulus (ES), followed by a
probe phase using a number of different probe stimuli (PS) pre-
sented many times. During the exposure phase the learning rule
forces the weight, or efficacy, of each B1→ B2 plastic synapses to
either one or zero; this effects a pattern of stimulus driven con-
nectivity. The selection by the learning rule of only a few high
efficacy connections is the origin of the difference in response

FIGURE 2 | Illustration of sample spike patterns used as probe

stimuli in the hardware experiments described in section 2.1.3 to

investigate the robustness of the network response to variability in

the probe stimulus. In all cases these patterns of spikes are prepared
off-line using a model integrate and fire neuron, a 5.5 ms current pulse,
and a noise current that extends over the whole stimulus period. From
left to right the ratio between the noisy current the current pulse used
to generate the spike in a channel increases from 0 to 1. The range
illustrated is greater than that used in the experiments where the
highest level of noise is σ = 0.45.

characteristics between the B1 and the B2 neurons (Sheik et al.,
2011).

The method adopted in the first set of experiments (sec-
tion 3.1) using the hardware implementation of the network and
FM sweep stimuli was the same as that described in Sheik et al.
(2011). We reset the neurons to their resting state at the beginning
of each ES and the plastic synapses to their “low” state, that is with
effectively null synaptic efficacy. Input patterns were presented 30
times over a period of 3 seconds during which time the network
“learns.” We then measured the response of the exposed network
by probing with a set of PS that consisted of linear frequency
sweeps with different velocities; during each of these presen-
tations the number of spikes in the B2 neurons was recorded.
Stimuli representing each of the 10 sweep rates were presented 100
times for each noise level during the probe phase. These results
were used to determine the Stimulus Specific Information (SSI)
as described below.

2.1.3.3. Stimulus Specific Information. As artificial sensory sys-
tems become increasingly complex it will become increasingly
important to make principled decisions about their design. In the
majority of cases choices will have to be made where the detailed
neurobiological data is incomplete or difficult to interpret. This
inevitably leads to a requirement to quantify the performance
of the network (for comparison with in vivo data, and to guide
choices of architecture, learning rule, etc.) where no clear guid-
ance is available from physiology.

A measure that has been used to characterize neuronal
acuity is the Stimulus Specific Information (SSI) which is a
formalization of the intuitive view that a stimulus is well
encoded if it produces an unambiguous response; that is
a response that is associated with a unique, or very small
number of, stimuli. Where this is true the stimulus is read-
ily identified when one of these responses, or a response in
the correct range, appears (Butts and Goldman, 2006). This
characterization has the advantage of not being dependant
on the design or performance of a classifier. The specific

www.frontiersin.org January 2014 | Volume 7 | Article 278 | 160

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Coath et al. Robust neuromorphic sound perception

information of a response isp(r) given a set of stimuli � can be
written:

isp(r) = −
∑
�

p(�) log2 p(�)+
∑
�

p (�|r) log2 p (�|r)

where it is defined in terms of the entropy of the stimulus
ensemble, and that of the stimulus distribution conditional on a
particular response. This makes the isp(r) a measure of the reduc-
tion in uncertainty about the stimulus � gained by measuring
particular response r. Thus the value of the isp(r) is high for
unambiguous responses and low for ambiguous responses. The
SSI is simply the average specific information of the responses that
occur when a particular stimulus, �, is present:

iSSI(�) =
∑

r

p (r|�) isp(r)

We show that the performance of the network can be character-
ized by the SSI which combines features of the tuning curve, where
information is encoded in the rate of response, and of the Fisher
Information where the high-slope regions of the tuning curve are
the most informative (Butts and Goldman, 2006).

2.1.3.4. Receiver Operating Characteristics. A Receiver
Operating Characteristic (ROC) can be used as a measure of
performance of classifiers (Fawcett, 2006). ROC graphs have
their origin in signal detection theory but are also popular
in other fields, including the evaluation and comparison of
machine learning algorithms. The output from the network can
be interpreted as a binary classifier if we designate the Exposure
Stimulus as the target for identification by setting a detection
threshold. The ROC is then a graph of the False Positive Rate
(FPR) against the True Positive Rate (TPR) for all values of the
detection threshold. The FPR is simply the ratio between the
number of stimuli of the target class correctly identified (True
Positives, TP) and the total number of stimuli identified as
belonging to this class (Positives, P):

TPR = TP

P

Likewise, the FPR is the ratio between the the number of stim-
uli incorrectly identified as belonging to the target class (False
Positives, FP) and the total number of stimuli identified as not
belonging to this class (Negatives, N):

FPR = FP

N

The ROC curve is a two-dimensional visualization of the system’s
potential as a classifier. We also make use of a common method
to reduce this to a single scalar value, that is to calculate the area
under the ROC curve, abbreviated AUC; this is achieved by adding
the area of successive trapezoids (Fawcett, 2006). The Area Under
Curve (AUC) is used to quantify the relative overall ability of the
network to discriminate between the two classes of stimuli; that is
those that match the class of the Exposure Stimulus and those that

do not. This method has been widely used in the characterization
of classifiers and is believed to perform very well (Fawcett, 2006).
In all cases the AUC will be between 0.5, representing a network
that will not function as a classifier, and 1.0 which represents a
perfect classifier at all thresholds. Although useful, unlike the SSI

this ignores the information present in the response concerning
any of the other six classes.

2.1.4. Software implementation
A second set of results, presented in section 3.2, were obtained
using a network implemented in custom “C” code closely based
on the hardware implementation. The learning rule implemented
is also the same as in the hardware implementation (see sec-
tion 2.1.2). In these software simulations of the hardware imple-
mentation the lateral, or B1 to B2, projections exhibit distance
dependent delays that cover the same range of values as the
hardware network, however these delays were implemented in a
queued data structure whereas in the hardware these delays are
implemented by exploiting variability of time constants that result
from the fabrication of the chip (Sheik et al., 2011, 2012). Beside
this difference the software model was designed to be close to
the hardware implementation in order to allow for reliable pre-
dictions of the hardware’s learning and recognition capabilities.
Because the hardware operates in real biological time, use of an
emulated software version allowed us to run a large number of
tests, which would have been impossible in hardware.

2.1.4.1. Stimuli derived from speech. The stimuli used in these
experiments using the software network were derived from speech
and represent the formant tracks of a set of English words.
Formants are peaks in the frequency response of sounds caused
by resonances in the vocal tract. These peaks are the characteris-
tics that identify vowels and in most cases the two first formants
are enough to disambiguate a vowel. This approach was chosen
as it results in stimuli that increase the complexity and realism
from the single, and double, FM sweeps used in the first set of
experiments.

A vocabulary of seven words was chosen: And, Of, Yes, One,
Two, Three, Four and three examples of each were recorded using a
male speaker (the first author). Seven words were chosen because
they exhibit a variety of vowel sounds, and hence their formant
tracks exhibit a range of spectrotemporal correlations, also they
are monosyllabic and (almost) free of diphthongs. The formant
tracks of these words exhibit spectrotemporal correlations, for
example changes in frequency over time and maxima at two dif-
ferent spectral positions at the same time, that we have shown can
be learned by the network—there is more on the mechanism of
this learning in section 3.1.

The first and second formant tracks of these seven classes were
extracted using LPC which yields position (frequency) and magni-
tude parameters for formants (Ellis, 2005). The results are shown
in Figure 3 in which parts of the stimulus indicated with a thicker
line (in blue) are those with an LPC magnitude of greater than
15% of the maximum value indicating the position of the vowel.
The thin line sections (in gray) correspond to the parts of the
sound files that were silent or contained consonants. Figure 4
shows how the three examples of each word have formant tracks

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 278 | 161

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Coath et al. Robust neuromorphic sound perception

FIGURE 3 | Illustration of the derivation of simplified stimuli consisting of

the first and second formant tracks for the seven words extracted using

Linear Predictive Coding. The words were “And”, “Of”, “Yes”, “One”, “Two”,
“Three”, “Four” as labeled in titles of subfigures. The thin line segments (in

gray) are the parts of the sound files that were silent or contained consonants.
Formant tracks of vowels, shown in thicker blue line segments, were
smoothed and down-sampled to produce the patterns of current injection that
were a highly simplified representation of the speech stimuli, see Figure 5.

FIGURE 4 | Formant tracks extracted using LPC for three examples of

two different stimuli “And” and “Yes.” Sections of the individual stimuli
corresponding to vowels are indicated by thicker red, green, and blue
segmemts this Figure clearly shows that there is some variation in the
formant tracks among sets of stimuli of the same class even when
recorded from a single speaker.

that are comparable. For clarity only two of the seven words are
shown in Figure 4 and the extracted formant tracks highlighted
using thicker colored lines as in Figure 3.

The formant tracks were then smoothed and down-sampled
to produce the patterns of current injection that were a simpli-
fied representation of the stimulus, see Figure 5. These patterns
of current injection derived from the formant tracks are stored

FIGURE 5 | An example of a stimulus sequence, or “sentence,” used as

a Probe Stimulus (PS) for the second set of experiments in software

simulations. The stimulus is a concatenation of simplified formant tracks
drawn from the set of words illustrated in Figure 3. The labels on the upper
abcissa (in blue) show the stimulus class. Each “word” is arranged to be
250 ms long, hence the presentation rate in the trials referred to as
“normal” is 4 stimuli per second, see section 2.1.4.

as 32× 25 binary patterns used as inputs to the network simula-
tion, with each of the 32 rows representing a frequency channel
and each of the 25 columns representing temporal bins of 10 ms.
Thus with each monosyllabic word occupying 250 ms presenta-
tion at the ‘normal’ or 100% presentation rate is 4 stimuli per
second, a realistic rate for speech. We use the same stimuli pre-
sented at other rates (60, 150, 200% of the normal rate of 4
stimuli per second) to investigate robustness to time warping, see
section 2.1.4.

Random concatenations of the 21 stimuli produced simplified,
formant based representations of nonsense sentences of the type
“three and one of four two four yes and one of two three yes one” etc,

www.frontiersin.org January 2014 | Volume 7 | Article 278 | 162

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Coath et al. Robust neuromorphic sound perception

an example of which is shown in Figure 5. The sentences were
arranged to contain equal numbers of each stimulus and were
presented during the exposure phase without gaps.

2.1.4.2. Formant track trials and analysis. In the exposure phase
of the second set of experiments reported in section 3.2 the net-
work was exposed to 20 repetitions (5 s) of all three examples
of a single utterance; during this time the learning was switched
on. This was followed by the probe phase where all stimuli
were presented 50 times in randomized order, without gaps, and
with the learning switched off. The output spikes from the B2

were counted for each stimulus and the total number of spikes
recorded. This allows the SSI to be calculated for the speech-
derived stimuli in the same way as for the FM sweeps in the
hardware results—using the methods detailed in section 2.1.3.
Sample results are shown in Figure 9.

In addition to the SSI it is possible, because these experiments
can be interpreted as a set of keyword spotting trials based on
spiking rate, to characterize the network as a binary classifier.
The output spikes from the B2 neurons were counted during each
stimulus, and the total number of spikes recorded; from these data
we can construct the ROC and hence the AUC of the responses of
the network.

2.1.5. Learning predictions
The third set of results in section 3.3 deals with analytical pre-
dictions of what the network, either hardware or software, would
learn in ideal circumstances if exposed to an arbitrary stim-
ulus. These analytical predictions of what pattern of learning
would result from exposure to a particular stimulus are based on
the principle, mentioned in section 2, that the function of the
B2 neurons is to learn correlations between activity at different
times at different tonotopic channels. Calculating the strength of
these correlations should therefore give us an approximation of
the connectivity pattern that would result from exposure to any
arbitrary stimulus.

We calculate the strength of the correlation, and hence the pre-
dicted strength of connectivity, between two network channels x
and y after exposure. This can be written Cx,y and is calculated as
the sum of the products of the stimulus activity A, over all times t,
over all pairs of frequency channels x, y, taking in to account the
time difference caused by the delays in the lateral connections �t ,
and the time difference between the pre- and post-synaptic spikes
that is required by the STDP rule ε. The STDP rule also penalizes
any activity in y that precedes activity in x thus the pattern of
connectivity can be approximated by:

C(x, y) =
∑

t

[(
Ax,t · Ay,t+�t + ε

)− (Ax,t · Ay,t+�t − ε

)]

The value of �t is a function of the channel separation between
x and y, and the time taken for the activity to propagate between
adjacent channels ν:

�t = |x − y| · ν

It is important to note that the range of effective values of
ν is extremely limited in the current hardware due to the

implementation of the delays using the variability of time con-
stants that result from the fabrication of the chip (Sheik et al.,
2011, 2012). However, although this limitation is taken in to
account in the software model results, future hardware designs
need not exhibit these limitations if the delays are implemented
differently. It is partly to explore these possibilities that results in
section 3.3 include examples that employ a wide range of values
for ν.

A simple example of how correlation in the stimulus leads to
potentiation of a small set of synapses is illustrated in Figure 6.
The left subfigure shows activity in a channel followed by activ-
ity in another channel some time later, represented by two dots.
The propagation of activity through the lateral connections has a
fixed offset and a velocity; represented by horizontal and sloping
broken gray lines respectively. The right subfigure shows that the
synapses connecting neurons in two channels are potentiated if
they lie on the broken gray line representing the propagation.

In a second more complex example shown in Figure 7 the
two labeled dots are in exactly the same position as Figure 6 for
comparison. In this case however the stimulus consists of two
tones, both rising in frequency but with different rates and start-
ing times. The network can learn the fact that there are two sweep
velocities present at the same time as indicated by the predicted
connectivity pattern. Because the sweeps are linear the potenti-
ated synapses in red and blue are parallel to the diagonal in the
weight matrix. The black synapses are potentiated by the apparent
‘up’ velocities between pairs of points of different colors as they
diverge. Note, there will be no corresponding apparent “down”
correlations (below the diagonal) until the sweeps are further
apart because of the fixed propagation offset.

3. RESULTS
3.1. FM SWEEPS
The first set of results were obtained by recording spikes from sili-
con neurons in a hardware implementation of the network shown
in Figure 1. Using the spikes recorded form the B2 neurons it

A B

FIGURE 6 | The learning of a simple correlation in the network. (A)

Activity in a channel followed by activity in another channel some time later,
represented by the dots a1 and a2 which are in channels 5 and 9 in this
example. The propagation of activity through the lateral connections has a
fixed offset and a velocity each represented by broken gray lines in (A). (B)

Plastic synapses connecting the neuron excited by a1 to the neuron excited
by a2 are potentiated if they are on the broken gray line representing the
propagation of activity. These synapses are at position (5, 9) on the weight
matrix shown by a dot. The distance from the diagonal v is proportional to
the apparent sweep velocity from a1 to a2.

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 278 | 163

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Coath et al. Robust neuromorphic sound perception

is possible to calculate the SSI with respect to all the FM Probe
Stimuli (PS) after using each these as Exposure Stimuli (ES).
These results are shown in Figure 8 which summarizes the SSI

for all Exposure-Probe stimulus combinations at four noise lev-
els. Figure 8 shows that the maximum of the SSI occurs often,
but not always, at the sweep rate representing the ES. This is in
contrast to what we would expect if we were measuring tuning
curves. The SSI measures the reduction in uncertainty, or infor-
mativeness, provided by the response which is not necessarily at
the same place as the response maximum.

A B

FIGURE 7 | Correlations in a more complex stimulus. (A) Stimulus
consisting of two rising tones, the two dots are in exactly the same
position as Figure 6 for comparison. (B) The network can learn the fact that
there are two sweep velocities present at the same time as indicated by
the colors. Because the sweeps are linear the potentiated synapses
representing the individual sweeps (red and blue) are parallel to the diagonal
in the weight matrix. The black synapses are potentiated by the apparent
“up” velocities between pairs of points of different colors as they diverge.

FIGURE 8 | Robustness to variation in the stimulus using hardware

implementation and synthetic FM sweeps. These plots illustrate the
Stimulus Specific Information for trained network and FM sweeps using
noisy stimuli. Subfigures represent increasing values of added noise σ that
causes the spike pattern to added to and disrupted from the simple sweep
produced by current injection in to successive channels as illustrated in
Figure 2. Color scale is in bits. The maximum value is log2(10) ≈ 3.32 as
there are 10 classes of stimuli, interpreting each FM rate as a separate
class.

3.2. FORMANT TRACKS
The second set of results comes from the software version of
the network using the simplified formant track stimuli. These
results are collected in the same way as for the results in sec-
tion 3.1. Figure 9 shows the SSI for two of the seven classes of
Exposure Stimuli; “Two” and “Four.” The SSI values are shown for
the no noise condition (σ = 0.00 in blue), and for the noisiest
condition (σ = 0.45 in red). The maximum value for the SSI is
log2(7) ≈ 2.80 there being 7 classes of stimulus. The maximum
SSI is approached in the no noise condition for the ES class in
both cases; it is however also clear that there is information in
the network response concerning all classes, not only for the class
of the Exposure Stimuli. These results are representative of those
obtained with all other ES classes.

The next results, shown in Figure 10, are ROC curves for tri-
als using one of the seven stimulus classes for training; “And.”
Unlike the SSI results these figures can be obtained only by des-
ignating the Exposure Stimuli as belonging to the class to be
detected by the network after training; that is treating the net-
work as a binary classifier. Two presentation rates (Rate = 100
and 200%) combined with two noise levels (σ = 0.0 and 0.45) are
shown such as to generate four conditions including the best and
worst cases. Other results for this class are intermediate and this
pattern is repeated for all other ES classes. Full summary results
from the ROC curves presented as Area Under Curve (AUC) for
all presentation rates and noise levels are shown, for four repre-
sentative classes, in Table 1. Results for the remaining three classes
are comparable.

3.3. PREDICTED PATTERNS OF LEARNING
The third and final set of results shows the predicted pattern of
connectivity that would result from the exposure of an ideal-
ized network to spectrographic representations derived from real
sounds. These results are derived from the analytical approach
described in section 2.1.5.

First the approach is validated using sound files designed
to mimic the simple patterns used in the other experiments
previously reported. Figure 11 shows the predicted connectiv-
ity pattern derived from a spectrographic representation of a
sound file, alongside a previously reported result from Sheik
et al. (2011) using a synthetic stimulus pattern in the hardware

FIGURE 9 | Stimulus Specific Information results for two of the seven

classes of stimuli, “Two” and “Four.” In Blue is the no noise (σ = 0.00)
condition and in Red the noisiest (σ = 0.45) condition for comparison.

www.frontiersin.org January 2014 | Volume 7 | Article 278 | 164

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Coath et al. Robust neuromorphic sound perception

FIGURE 10 | Representative Receiver Operating curves (ROC) for

the network with exposure stimulus “And.” ROC curves plot the
False Positive Rate (FPR or fall-out) against the True Positive Rate
(TPR–sometimes called recall) for all detection thresholds. For clarity
only four conditions are shown with two representing the best and
worst case. The solid black line represents the best case with no
added noise (σ = 0.00) and with the probe stimuli presented at the
normal rate (Rate = 100%). The broken blue line represents the
worst case across all conditions with the added noise at 45%
(σ = 0.45) and the presentation rate at twice the normal rate
(Rate = 200%).

implementation. A range of simple patterns give comparable
results in hardware and software.

An example of this approach using a recording of a biological
communication call is shown in Figure 13. The example chosen
is a recording of a call from a Weddle Seal; the cochleagraphic
representation of this call can be seen in Figure 12. These results
show the predicted connection patterns that would result from
training a network similar to that used in the hardware and sim-
ulation experiments. However the results require a wider range of
propagation rates between channels than can be achieved with the
current hardware.

Four results are illustrated in Figure 13, each using a differ-
ent value of ν, the time taken for activity to propagate between
adjacent channels. Figure 13A shows the result with the lowest
value for ν; note the emphasis on connections below the diago-
nal indicating down-sweeps and the distance from the diagonal
to the lower left maximum of the connectivity represents the
“chirp” FM rate of the successive downward sweeps in the seal
call. In contrast to A the predicted connectivity in C results from
an apparent up sweep. This apparent “up” activity in fact rep-
resents correlations between successive down-sweeps, that is the
relationship between the maxima of each down-sweep (at low
frequency) and the majority of the succeeding down-sweep at
higher frequency. B contains features visible in A and C and so
best characterizes the stimulus, while the longest value for ν in
Figure 13D captures few, if any, of the dynamic features of the
stimulus.

Table 1 | Combined table showing Area Under Curve (AUC) results for

all noise conditions and all presentation rates for four of the

Exposure Stimuli, “And”,“Of”,“Yes”,“Four.”

Rate

60% 100% 150% 200%

“And”
σ =
0.00% 0.97 0.97 0.95 0.95
0.15% 0.94 0.95 0.96 0.93
0.35% 0.92 0.92 0.92 0.90
0.45% 0.87 0.86 0.85 0.85
“Of”
σ =
0.00% 0.88 0.93 0.86 0.84
0.15% 0.88 0.88 0.87 0.84
0.35% 0.85 0.84 0.85 0.80
0.45% 0.78 0.76 0.81 0.78
“Yes”
σ =
0.00% 0.95 0.98 0.96 0.95
0.15% 0.95 0.95 0.95 0.94
0.35% 0.92 0.92 0.91 0.90
0.45% 0.88 0.85 0.86 0.81
“Four”
σ =
0.00% 0.96 0.97 0.97 0.95
0.15% 0.95 0.96 0.96 0.92
0.35% 0.90 0.94 0.93 0.88
0.45% 0.86 0.87 0.85 0.82

Example ROC curves for the “And” stimulus can be seen in Figure 10. Other

ROC and AUC results are comparable in all seven classes.

A B

C D

FIGURE 11 | Comparison between hardware result using a synthetic

stimulus pattern (A,B) and learning prediction using a real sound file

(C,D). Top row shows raster of synthetic exposure stimulus (A) and
resulting network connectivity after exposure (B) for hardware
network—these figures are taken from Sheik et al. (2011). Bottom row
shows spectrogram of comparable sound file (C) and the analytically
predicted pattern of connectivity (D) based on correlations in the stimulus
representation as described in section 2.1.5.

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 278 | 165

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Coath et al. Robust neuromorphic sound perception

FIGURE 12 | An example of a natural communication call, in this case a

Weddle Seal, shown here as a spectrogram. This pattern was used to
derive the predicted learning patterns shown in Figure 13.

FIGURE 13 | This figure shows the predicted connectivity of the

network, as Figure 11D, but for the Weddle seal call; the spectrogram

for this call is shown in Figure 12. There are four predictions based on a
range of values for the propagation rate between channels. (A–D) show the
predicted pattern of connectivity with increasing values of ν corresponding
to the network adapting to correlations at progressively longer time scales.
Note that in (A) the distance from the diagonal to the lower left local
maximum represents the “chirp” FM rate. In (C) a clear apparent up-sweep
is caused by the low frequency maxima of each chirp and the majority of
the next successive chirp being at higher frequency. The (B) shows features
of (A,C). The (D) captures less of the dynamic nature of the stimulus.

4. DISCUSSION AND CONCLUSION
The results presented here show that the previously published
results and approach (Sheik et al., 2011) are not limited to simple
stereotypical stimuli and, even in this highly challenging arena,
that there is scope for implementing systems that are robust to
realistic signal variability. The stimuli used in these studies exhibit
a range of different spectro-temporal properties, are presented
continuously rather than in isolation, exhibit wide variability due
to added noise, and have a variable presentation rate. All of these
complications, and distortions, represent a substantial challenge
and are necessary prerequisites to the development of systems that
can deployed in real situations.

In section 2.1.5 we discuss how the network is capable of
simultaneously representing the position, rate of change, and
spectral distance (and to a more limited extent temporal distance)
between features in the stimuli. Adaptive sensitivity to all of these
has been demonstrated in hardware and software. The robustness
in the system is derived from the fact that, although noise and
variable presentation rate alter or degrade these patterns of fea-
tures, it requires either or both types of variability to be present to
a very large degree for the degradation to cause the correlations
to be masked completely.

We have introduced an information theoretic characterization
of the performance of the network, the SSI, based on the vari-
ability of the stimuli and the consequent range of responses to a
single stimulus class. This represents a method of quantifying the
performance of a hardware system that has not been previously
reported in an engineering context, but has direct parallels in
physiological measurements. The substitution of an information
theoretic measure for a classifier is deliberate, because it focusses
on the information present in the response rather than the design
or performance of the classifier. Our results, summarized in
Figures 8 and 9 indicate that the adaptation of the network to
the formative stimulus produces a differential response that is
informative with respect to all classes.

Sensory stimuli, in particular auditory stimuli, contain both
short and long range temporal correlations. The techniques
currently employed in the hardware implementation primarily
address correlations only over time scales of the order of synap-
tic or membrane time constants, up to those represented by the
propagation of excitation to adjacent regions. However we have
shown that the principles embodied in the network could be
extended to longer time scales making it feasible to build systems
capable of adapting to complex stimuli, such as animal commu-
nication calls. In hardware, longer time scales could be addressed
using many levels of recurrence between widely separated layers,
as is observed in the mammalian auditory system. Alternatively,
from a pragmatic perspective, it could be tackled with working
memory and neuromorphic implementations of state machine
based approaches (Neftci et al., 2013).

Alongside our previously reported results (Sheik et al., 2011)
we pointed out that in order to be useful, the properties of
the neuromorphic system we described would have to be val-
idated against noise and other variations in the stimulus, and
to be shown to work with more realistic stimuli. We also
promised to go beyond the demonstration of emergent sensi-
tivity to a stimulus parameter, and to quantify the increase in
acuity in information-theoretic terms; thus providing a basis
for the quantitative comparison of networks, connectivity pat-
terns, and learning strategies in the future. In this work we have
made significant progress in all of these aims. The approach
has been shown to be capable of handling considerable stim-
ulus variation, changes in presentation rate, and the increased
complexity of stimulus. Had it fallen at any of these hurdles
then the feasibility of the approach would have been called in
to question. It is clear, then, that each of these new results is
evidence that the approach could lead to a neuromorphic sub-
system engineered for dynamic pattern recognition in real world
applications.

www.frontiersin.org January 2014 | Volume 7 | Article 278 | 166

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Coath et al. Robust neuromorphic sound perception

ACKNOWLEDGMENTS
FUNDING
This work was supported by the European Community’s
Seventh Framework Programme (grants no.231168-SCANDLE
and no.257219-neuroP), and by the Cluster of Excellence 277
(CITEC, Bielefeld University). We would like to thank our col-
league Robert Mill for many helpful suggestions and contribu-
tions made during the work underlying this manuscript.

REFERENCES
Bibbona, E., Panfilo, G., and Tavella, P. (2008). The Ornstein–Uhlenbeck pro-

cess as a model of a low pass filtered white noise. Metrologia 45, S117. doi:
10.1088/0026-1394/45/6/S17

Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in a neural
network with spike-driven synaptic dynamics. Neural Comput. 19, 2881–2912.
doi: 10.1162/neco.2007.19.11.2881

Butts, D. A., and Goldman, M. S. (2006). Tuning curves, neuronal variability, and
sensory coding. PLoS Biol. 4:e92. doi: 10.1371/journal.pbio.0040092

Chan, V., Liu, S.-C., and van Schaik, A. (2007). AER EAR: A matched silicon cochlea
pair with address event representation interface. IEEE Trans. Cir. Syst. I 54,
48–59. doi: 10.1109/TCSI.2006.887979

Coath, M., Mill, R., Denham, S., and Wennekers, T. (2010). “The emergence of
feature sensitivity in a recurrent model of auditory cortex with spike timing
dependent plasticity,” in Proceedings of BICS 2010 (Madrid).

Ellis, D. P. W. (2005). Sinewave Speech Analysis/Synthesis in Matlab. Web resource
available online at: http://www.ee.columbia.edu/ln/labrosa/matlab/sws/

Fasnacht, D., and Indiveri, G. (2011). “A PCI based high-fanout AER mapper with
2 GiB RAM look-up table, 0.8 μs latency and 66 mhz output event-rate,” in
Conference on Information Sciences and Systems, CISS 2011 (Baltimore, MD:
Johns Hopkins University), 1–6.

Fawcett, T. (2006). An introduction to roc analysis. Patt. Recogn. Lett. 27, 861–874.
doi: 10.1016/j.patrec.2005.10.010

Friston, K. (2005). A theory of cortical responses. Philos. Trans. R. Soc. Lond. B Biol.
Sci. 360, 815–836. doi: 10.1098/rstb.2005.1622

Glasberg, B. R., and Moore, B. C. (1990). Derivation of auditory filter shapes from
notched noise data. Hear. Res. 47, 103–138. doi: 10.1016/0378-5955(90)90170-T

Insanally, M. N., Köver, H., Kim, H., and Bao, S. (2009). Feature-dependent sensi-
tive periods in the development of complex sound representation. J. Neurosci.
29, 5456–5462. doi: 10.1523/JNEUROSCI.5311-08.2009

Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G., and Douglas, R. (2013).
Synthesizing cognition in neuromorphic electronic systems. Proc. Natl. Acad.
Sci. U.S.A. 110, E3468–E3476. doi: 10.1073/pnas.1212083110

Razak, K. A., and Fuzessery, Z. M. (2008). Facilitatory mechanisms underlying
selectivity for the direction and rate of frequency modulated sweeps in the
auditory cortex. J. Neurosci. 28, 9806–9816. doi: 10.1523/JNEUROSCI.1293-
08.2008

Razak, K. A., and Fuzessery, Z. M. (2009). GABA shapes selectivity for the rate and
direction of frequency-modulated sweeps in the auditory cortex. J. Neurophysiol.
102, 1366–1378. doi: 10.1152/jn.00334.2009

Razak, K. A., and Fuzessery, Z. M. (2010). Development of parallel auditory thala-
mocortical pathways for two different behaviors. Front. Neuroanat. 4:134. doi:
10.3389/fnana.2010.00134

Sheik, S., Chicca, E., and Indiveri, G. (2012). “Exploiting device mismatch in neu-
romorphic vlsi systems to implement axonal delays,” in The 2012 International
Joint Conference on Neural Networks (IJCNN) (Brisbane), 1–6.

Sheik, S., Coath, M., Indiveri, G., Denham, S., Wennekers, T., and Chicca, E. (2011).
Emergent auditory feature tuning in a real-time neuromorphic vlsi system.
Front. Neurosci. 6:17. doi: 10.3389/fnins.2012.00017

Ye, C., Poo, M., Dan, Y., and Zhang, X. (2010). Synaptic mechanisms of direc-
tion selectivity in primary auditory cortex. J. Neurosci. 30, 1861–1868. doi:
10.1523/JNEUROSCI.3088-09.2010

Zhang, L. I., Bao, S., and Merzenich, M. M. (2001). Persistent and specific influ-
ences of early acoustic environments on primary auditory cortex. Nat. Neurosci.
4, 1123–1130. doi: 10.1038/nn745

Zhang, L. I., Tan, A. Y. Y., Schreiner, C. E., and Merzenich, M. M. (2003).
Topography and synaptic shaping of direction selectivity in primary auditory
cortex. Nature 424, 201–205. doi: 10.1038/nature01796

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 24 September 2013; accepted: 30 December 2013; published online: 17
January 2014.
Citation: Coath M, Sheik S, Chicca E, Indiveri G, Denham SL and Wennekers T (2014)
A robust sound perception model suitable for neuromorphic implementation. Front.
Neurosci. 7:278. doi: 10.3389/fnins.2013.00278
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2014 Coath, Sheik, Chicca, Indiveri, Denham and Wennekers. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 278 | 167

http://www.ee.columbia.edu/ln/labrosa/matlab/sws/
http://dx.doi.org/10.3389/fnins.2013.00278
http://dx.doi.org/10.3389/fnins.2013.00278
http://dx.doi.org/10.3389/fnins.2013.00278
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

ORIGINAL RESEARCH ARTICLE
published: 04 February 2014

doi: 10.3389/fnins.2014.00010

An efficient automated parameter tuning framework for
spiking neural networks
Kristofor D. Carlson1, Jayram Moorkanikara Nageswaran2, Nikil Dutt3 and Jeffrey L. Krichmar1,3*

1 Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA
2 Brain Corporation, San Diego, CA, USA
3 Department of Computer Science, University of California Irvine, Irvine, CA, USA

Edited by:

Tobi Delbruck, ETH Zurich and
University of Zurich, Switzerland

Reviewed by:

Michael Schmuker, Freie Universität
Berlin, Germany
Siddharth Joshi, University of
California, San Diego, USA

*Correspondence:

Jeffrey L. Krichmar, Department of
Cognitive Sciences, University of
California Irvine, 2328 Social and
Behavioral Sciences Gateway,
Irvine, CA 92697-5100, USA
e-mail: jkrichma@uci.edu

As the desire for biologically realistic spiking neural networks (SNNs) increases, tuning
the enormous number of open parameters in these models becomes a difficult challenge.
SNNs have been used to successfully model complex neural circuits that explore various
neural phenomena such as neural plasticity, vision systems, auditory systems, neural
oscillations, and many other important topics of neural function. Additionally, SNNs are
particularly well-adapted to run on neuromorphic hardware that will support biological
brain-scale architectures. Although the inclusion of realistic plasticity equations, neural
dynamics, and recurrent topologies has increased the descriptive power of SNNs, it
has also made the task of tuning these biologically realistic SNNs difficult. To meet
this challenge, we present an automated parameter tuning framework capable of tuning
SNNs quickly and efficiently using evolutionary algorithms (EA) and inexpensive, readily
accessible graphics processing units (GPUs). A sample SNN with 4104 neurons was tuned
to give V1 simple cell-like tuning curve responses and produce self-organizing receptive
fields (SORFs) when presented with a random sequence of counterphase sinusoidal
grating stimuli. A performance analysis comparing the GPU-accelerated implementation
to a single-threaded central processing unit (CPU) implementation was carried out and
showed a speedup of 65× of the GPU implementation over the CPU implementation,
or 0.35 h per generation for GPU vs. 23.5 h per generation for CPU. Additionally, the
parameter value solutions found in the tuned SNN were studied and found to be stable
and repeatable. The automated parameter tuning framework presented here will be of
use to both the computational neuroscience and neuromorphic engineering communities,
making the process of constructing and tuning large-scale SNNs much quicker and easier.

Keywords: spiking neural networks, parameter tuning, evolutionary algorithms, GPU programming,

self-organizing receptive fields, STDP

INTRODUCTION
Although much progress has been made in simulating large-scale
spiking neural networks (SNNs), there are still many challenges to
overcome before these neurobiologically inspired algorithms can
be used in practical applications that can be deployed on neuro-
morphic hardware (Boahen, 2005; Markram, 2006; Nageswaran
et al., 2010; Indiveri et al., 2011). Moreover, it has been difficult
to construct SNNs large enough to describe the complex func-
tionality and dynamics found in real nervous systems (Izhikevich
and Edelman, 2008; Krichmar et al., 2011; Eliasmith et al., 2012).
Foremost among these challenges are the tuning and stabiliza-
tion of large-scale dynamical systems, which are characterized by
many state values and open parameters (Djurfeldt et al., 2008).
The task of tuning SNNs is becoming more difficult as neurosci-
entists move away from simpler models toward more realistic, but
complex models to describe the properties of network elements
(van Geit et al., 2008). For example, many modelers have moved
away from simple “integrate and fire” neuron models to models
which capture a wider range of neuronal dynamics, but have more
open parameters (Izhikevich, 2003; Brette and Gerstner, 2005).

A similar shift in complexity is occurring when simulating synap-
tic plasticity (Abbott and Nelson, 2000), as new types of plasticity
models such as homeostatic synaptic scaling (Watt and Desai,
2010; Carlson et al., 2013), short-term plasticity (Mongillo et al.,
2008), and spike-timing dependent plasticity (STDP) (Song et al.,
2000; van Rossum et al., 2000) are being incorporated into SNNs.
In addition, network topologies are shifting from conventional
feed-forward connectivity to recurrent connectivity, which have
more complex dynamics and require precise tuning of synaptic
feedback for stable activity (Seung et al., 2000).

For these reasons, the process of hand-tuning SNNs is often
extremely time-consuming and inefficient which has led to inter-
est among researchers in automating this process. To address these
challenges, we present an automated tuning framework that uti-
lizes the parallel nature of graphics processing units (GPUs) and
the optimization capabilities of evolutionary algorithms (EAs) to
tune open parameters of SNNs in a fast and efficient manner.

The present article describes a means to automate param-
eter tuning of spiking neural networks which are compatible
with present and future neuromorphic hardware. However, it is

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 168

http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/journal/10.3389/fnins.2014.00010/abstract
http://www.frontiersin.org/people/u/106283
http://www.frontiersin.org/people/u/113899
http://www.frontiersin.org/people/u/32914
http://www.frontiersin.org/people/u/473
mailto:jkrichma@uci.edu
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

important to first examine the role SNN models play in the devel-
opment of neuromorphic hardware. Recent neuromorphic sci-
ence funding initiatives, such as the SyNAPSE project in the USA
and the FACETS/BrainScaleS projects in Europe, have resulted
in the construction of neuromorphic chips. Not surprisingly,
the research groups involved in producing these neuromorphic
hardware devices have also spent a great deal of time build-
ing software simulation and interface frameworks (Amir et al.,
2013; Thibeault and Srinivasa, 2013). This is because the novel
hardware requires new software environments and methodolo-
gies to run applications (Brüderle et al., 2011). There are two main
software development tasks required to run neuromorphic appli-
cations on a hardware device. First, the neuromorphic application
must be designed and tuned to perform a particular cognitive or
computational function. This is the focus of our present study.
Second, the model description of the neuromorphic application
must be mapped onto the neuromorphic hardware device com-
puting elements. There have been a number of recent studies that
have applied various optimization techniques to solve this map-
ping problem with some success (Ehrlich et al., 2010; Sheik et al.,
2011; Gao et al., 2012; Neftci et al., 2013). Although both tasks are
integral to developing neuromorphic hardware applications, the
latter is outside the scope of present study.

There has been a great deal of work in the computational
neuroscience community on automating the process of parame-
ter tuning neuronal models. A variety of different methodologies
have been used to automate parameter tuning in neural mod-
els, many of which are summarized in the review by van Geit
et al. (2008). Svensson et al. (2012) fit a nine-parameter model
of a filter-based visual neuron to experimental data using both
gradient following (GF) methods and EAs. Some groups have
used optimization techniques to tune ion channels kinetics for
compartmental neurons (Hendrickson et al., 2011; Ben-Shalom
et al., 2012) while other groups have used quantum optimiza-
tion techniques and EAs to tune more abstract networks of
neurons (Schliebs et al., 2009, 2010). Additionally, brute force
methods of searching the parameter space were used to exam-
ine a three-neuron model of a lobster stomatogastric circuit by
creating large databases of compartmental neurons with varying
membrane conductance values and testing the resulting func-
tional behavior of this circuit (Prinz et al., 2003, 2004). Some
automated parameter-search tools have been developed as inter-
faces between neural simulators and the optimization meth-
ods used to tune them such as Neurofitter (van Geit et al.,
2008). Other tools allow for the automatic compilation of very
large sets of simulation runs across a wide range of parameter
values and experimental conditions (Calin-Jageman and Katz,
2006).

Unlike these parameter tuning methodologies, which have
been applied to small neural circuits, single neurons or net-
works of hundreds of neurons, our focus is the automated tuning
of much larger neural systems (on the scale of 103–106 neu-
rons). Neural networks at these scales become more useful for the
description of cognitive models and closer to the scale of SNNs
currently being designed to run on neuromorphic hardware
(Esser et al., 2013; Thibeault and Srinivasa, 2013). Recent work
by Rossant et al. (2011) and Eliasmith et al. (2012) has focused on

tuning large-scale SNNs; we compare these approaches with our
tuning framework in the discussion section.

A parallel line of research in automated parameter tuning has
taken place where larger, more abstract artificial neural networks
(ANNs) are constructed using EAs (Fogel et al., 1990). The build-
ing of ANNs using EAs can be broken into two basic method-
ologies: direct encoding and indirect encoding. Much work has
been done using the direct encoding approach, where the genetic
description of the individual, or the genotype, is directly mapped
to the actual traits of the individual, or the phenotype (Hancock,
1992; Gomez and Miikkulainen, 1997; Stanley and Miikkulainen,
2002). An EA is said to use direct encoding when there is a one-
to-one correspondence between parameter values, like synaptic
weight values and genotype values. Drawbacks of this approach
include poor genotype scaling for large network encodings and
very large parameter spaces due to the lack of geometrical con-
straints of the networks. Alternatively, indirect encoding allows
the genotype to specify a rule or method for growing the ANN
instead of specifying the parameter values directly (Husbands
et al., 1998; Beer, 2000; Floreano and Urzelai, 2001; Stanley and
Miikkulainen, 2003). NeuroEvolution of Augmented Topologies
(NEAT) and HyperNEAT use indirect encoding to evolve net-
work topologies, beginning with a small network and adding
complexity to that network as evolution progresses (Stanley and
Miikkulainen, 2002; Stanley et al., 2009; Clune et al., 2011; Risi
and Stanley, 2012). HyperNEAT has been used to encode net-
works with as many as 8 million connections and networks
evolved using NEAT have been used in food-gathering tasks
(Stanley et al., 2009), in a checkers-playing ANN that exhibits
topographic mappings (Gauci and Stanley, 2010), and in evolv-
ing robot gaits in hardware (Yosinski et al., 2011). The present
study utilizes the indirect encoding approach, in which the learn-
ing parameters are evolved, as opposed to the direct encoding
approach where the synaptic weights are evolved. This allows for a
large reduction in the parameter space. Although EAs are an effec-
tive tool for constructing ANNs, they often require long execution
times to produce well-tuned networks. A number of parallel com-
puting techniques can be used to reduce the execution time of
EAs, however, this paper focuses mainly on parallelization via
GPU computing.

With the development of mature GPU parallel computing
platforms like CUDA (Nickolls et al., 2008) and OpenCL (Stone
et al., 2010), GPU accelerated algorithms have been applied to
a variety of tasks in scientific computing. GPU acceleration has
been used to increase the throughput of EAs (Maitre et al.,
2009), simulate neural field models of the primary visual cor-
tex V1 (Baladron et al., 2012), and search parameter spaces in
bio-inspired object-recognition models (Pinto et al., 2009). In
addition to these applications, a number of research groups in the
computational neuroscience community (Brette and Goodman,
2012) have developed and implemented parallel implementa-
tions of SNNs on GPUs (Bernhard and Keriven, 2006; Fidjeland
et al., 2009; Nageswaran et al., 2009b; Bhuiyan et al., 2010; Han
and Taha, 2010; Hoffmann et al., 2010; Yudanov et al., 2010;
Ahmadi and Soleimani, 2011; Nowotny, 2011; Thibeault et al.,
2011; de Ladurantaye et al., 2012; Mirsu et al., 2012; Pallipuram
et al., 2012). GPU-driven SNN simulators have already been used

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 10 | 169

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

in SNN models of the basal forebrain (Avery et al., 2012), the
basal ganglia (Igarashi et al., 2011), the cerebellum (Yamazaki and
Igarashi, 2013), and the olfactory system (Nowotny, 2010).

Our present study drastically decreases the time it takes to tune
SNN models by combining a freely available EA library with our
previous work (Nageswaran et al., 2009b; Richert et al., 2011),
which consisted of a parallelized GPU implementation of an SNN
simulator. Although other research groups have used EAs and
GPUs to tune SNNs (Rossant et al., 2011), our approach is more
general as it tunes a variety of SNN parameters and utilizes fitness
functions that can be broadly applied to the behavior of the entire
SNN. As a proof of concept, we introduce a parameter tuning
framework to evolve SNNs capable of producing self-organized
receptive fields similar to those found in V1 simple cells in
response to patterned inputs. An indirect encoding approach was
utilized as the parameters tuned in the SNN governed Hebbian
learning, homeostasis, maximum input stimulus firing rates, and
synaptic weight ranges. A performance analysis compared the
parallelized GPU implementation of the tuning framework with
the equivalent central processing unit (CPU) implementation and
found a speedup of 65× (i.e., 0.35 h per generation vs. 23.5 h
per generation) when SNNs were run concurrently on the GPU.
Using affordable, widely-accessible GPU-powered video cards,
the software package presented here is capable of tuning complex
SNNs in a fast and efficient manner. The automated parameter
tuning framework is publicly available and could be very use-
ful for the implementation of large-scale SNNs on neuromorphic
hardware or for the development of large-scale SNN simulations
that describe complex brain functions.

METHODS
GPU ACCELERATED SNNs IN CARLsim
An important feature of the automated parameter tuning frame-
work is the ability to run multiple SNNs in parallel on the GPU,
allowing significant acceleration of the EA evaluation phase. We

first briefly review the approaches CARLsim uses to run SNNs
in parallel before describing the general layout of the automated
parameter tuning framework and describe how a researcher
would use the tool to tune SNNs. Figure 1 shows the basic CUDA
GPU architecture, which consists of a multiple streaming mul-
tiprocessors (SMs) and a global memory, accessible to all SMs.
Each SM is comprised of multiple floating-point scalar processors
(SPs), at least one special function unit (SFU), and a cache/shared
memory. CUDA code is distributed and executed in groups of 32
threads called warps. Each SM has at least one warp scheduler that
ensures maximum thread concurrency by switching from slower
to faster executing warps. Our simulations utilized an NVIDIA
Tesla M2090 GPU with 6 GB of global memory, 512 cores (each
operating at 1.30 GHz) grouped into 16 SMs (32 SPs per SM), and
a single precision compute power of 1331.2 GFLOPS.

The CARLsim parallel GPU implementation was written to
optimize four main performance metrics: parallelism, memory
bandwidth, memory usage, and thread divergence which are
discussed in greater detail in (Nageswaran et al., 2009a). The
term parallelism refers to both the degree to which the appli-
cation data is mapped to parallel threads and the structure of
the mapping itself. CARLsim utilizes both neuronal parallelism
(N-parallelism), where individual neurons are mapped to
processing elements and simulated in parallel, and synaptic par-
allelism (S-parallelism), where synaptic data are mapped to pro-
cessing elements and simulated in parallel. Anytime a neuronal
state variable is updated, N-parallelism is used, and anytime a
weight update is necessary, S-parallelism is used. Sparse repre-
sentation techniques such as the storage of SNN data structures
using the reduced Address Event Representation (AER) format
and the use of a circular queue to represent firing event data
decrease both memory and memory bandwidth usage. GPUs exe-
cute many threads concurrently (1536 threads per SM in the Tesla
M2090) and manage these threads by providing a thread sched-
uler for each SM which organizes groups of threads into warps.

FIGURE 1 | A simplified diagram of NVIDIA CUDA GPU architecture (adapted from Nageswaran et al., 2009a,b). Our simulations used an NVIDIA Tesla
2090 GPU that had 16 streaming multiprocessors (SM) made up of 32 scalar processors (SPs) and 6 GB of global memory.

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 170

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

Thread/warp divergence occurs when threads in a single warp
execute different operations, forcing the faster executing threads
to wait until the slower threads have completed. In CARLsim,
thread/warp divergence is minimized during diverging loop exe-
cutions by buffering the data until all threads can execute the
diverging loop simultaneously.

AUTOMATED PARAMETER TUNING FRAMEWORK DESCRIPTION
To test the feasibility of an automated parameter tuning frame-
work, our group used EAs to tune open parameters in SNNs
running concurrently on a GPU. As a proof of concept, the
SNNs were evolved to produce orientation-dependent stimulus
responses similar to those found in simple cells of the primary
visual cortex (V1) through the formation self-organizing recep-
tive fields (SORFs). The general evolutionary approach was as
follows: (1) A population of neural networks was created, each
with a unique set of neural parameter values that defined over-
all behavior. (2) Each SNN was then ranked based on a fitness
value assigned by the objective function. (3) The highest ranked
individuals were selected, recombined, and mutated to form the
offspring for the next generation. (4) This process continued
until a desired fitness was reached or until other termination
conditions were met (Figure 2A).

The automated parameter tuning framework consisted of
three software packages and is shown in Figure 2B. The frame-
work includes: (1) the CARLsim SNN simulator (Richert et al.,
2011), (2) the Evolving Objects (EO) computational framework,

a publically available evolutionary computation toolkit (Keijzer
et al., 2002), and (3) a Parameter Tuning Interface (PTI),
developed by our group, to provide an interface between
CARLsim and EO. Evolving Objects is available at http://eodev.
sourceforge.net/ and both CARLsim and the PTI are available at
http://www.socsci.uci.edu/∼jkrichma/CARLsim/. The EO com-
putational framework runs the evolutionary algorithm on the
user-designated parameters of SNNs in CARLsim. The PTI allows
the objective function to be calculated independent of the EO
computation framework. Parameter values are passed from the
EO computation framework through the PTI to the SNN in
CARLsim where the objective function is calculated. After the
objective function is executed, the results are passed from the
SNN in CARLsim through the PTI back to the EO computa-
tion framework for processing by the EA. With this approach, the
fitness function calculation, which involves running each SNN
in the population, can be run in parallel on the GPU while the
remainder of EA calculations can be performed using the CPU
(Figure 2B).

USING THE PARAMETER TUNING INTERFACE
In addition to providing a means for CARLsim and EO to
exchange data, the PTI hides the low level description and con-
figuration of EO from the user by providing a simple application
programming interface (API). Before using the PTI, the user
must have a properly configured EO parameter file, which is a
plain text file that provides the user with control over an EO

FIGURE 2 | (A) Flow chart for the execution of an Evolutionary
Algorithm (EA). A population of individuals (μ) is first initialized and
then evaluated. After evaluation, the most successful individuals are
selected to reproduce via recombination and mutation to create an
offspring generation (λ). The offspring then become parents for a new
generation of the EA. This continues until a termination condition is
reached. The light blue boxes denote operations that are carried out
serially on the CPU while the light brown box denotes operations

carried out in parallel on the GPU. The operations inside the dotted
gray box are described in greater detail in (B). (B) Description of the
automated parameter tuning framework consists of the CARLsim SNN
simulator (light brown), the EO computational framework (light blue),
and the Parameter Tuning Interface (PTI) (light green). The PTI passes
tuning parameters (PN) to CARLsim for evaluation in parallel on the
GPU. After evaluation, fitness values (FN) are passed from CARLsim
back to EO via the PTI.

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 10 | 171

http://eodev.sourceforge.net/
http://eodev.sourceforge.net/
http://www.socsci.uci.edu/~jkrichma/CARLsim/
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

configuration. An example of an EO parameter file is shown in
Supplementary 1 of the supplementary materials. At execution,
EO reads the parameter file to configure all aspects of the EA,
including selection, recombination, mutation, population size,
termination conditions, and many other EA properties. Beginners
to EO can use the example EO parameter files included with the
EO source code for the automated parameter tuning framework
presented here. A sample program overview of the PTI and a sum-
mary of the PTI-API are included in Supplementary materials
sections 2 and 3. Additional EO examples and documentation can
be found online at http://eodev.sourceforge.net/eo/tutorial/html/
eoTutorial.html. After creating a valid EO parameter file, the user
is ready to use the PTI and CARLsim to tune SNNs.

EVOLVING SNNs WITH V1 SIMPLE CELL RESPONSES AND SORF
FORMATION
As a proof of concept, the ability of the automated parameter tun-
ing network to construct an SNN capable of producing SORFs
and orientation-dependent stimulus responses was examined.
This set of simulations was presented with grayscale counterphase
gratings of varying orientations. The EO computation framework
evolved SNN parameters that characterized spike-timing depen-
dent plasticity (STDP), homeostasis, the maximum firing rates of
the neurons encoding the stimuli, and the range of weight values
for non-plastic connections. The network topology of the SNN,
shown in Figure 3, modeled the visual pathway from the lateral
geniculate nucleus (LGN) to the primary visual cortex (V1).

Each individual in the population participated in a train-
ing phase, where synaptic weights were modified according to
STDP and homeostatic learning rules, and a testing phase where

a multi-component objective function was used to evaluate an
individual’s ability to reproduce V1 simple-cell behavior. The
training phase consisted of the presentation of 40 grayscale sinu-
soidal grating patterns of varying orientation (from π/40 to π)
in random sequence to the SNN for approximately 100 min. Each
pattern was presented to the network for 2 s while 1 Hz Poisson
noise was applied to the network for 500 ms between pattern pre-
sentations. During the testing phase eight grating orientations
(from π/8 to π) were presented to the network and the fir-
ing rate responses of the four output neurons in the Exc group
were recorded. STDP and homeostasis were enabled during the
training phase but were disabled for the testing phase. The evo-
lutionary algorithm began with the random initialization of the
parent population, consisting of 10 SNNs, and produced 10 off-
spring per generation. Ten SNN configurations ran in parallel. To
evolve V1 simple cell responses, a real-valued optimization algo-
rithm called Evolution Strategies (De Jong, 2002) was used with
deterministic tournament selection, weak-elitism replacement,
40% Gaussian mutation and 50% crossover. Weak-elitism ensures
the overall fitness monotonically increases each generation by
replacing the worst fitness individual of the offspring population
with the best fitness individual of the parent population. Fourteen
parameters were evolved: four parameters associated with E→ E
STDP, four parameters associated with E→ I STDP, the homeo-
static target firing rates of the Exc and Inh groups, the strength of
the fixed uniformly random On(Off)Buffer→ Exc group connec-
tions, the strength of the plastic Exc→ Inh group connections,
the strength of the fixed uniformly random Inh→ Exc group
connections, and the maximum firing rate response to the input
stimuli. The range of allowable values for each parameter is shown

FIGURE 3 | Network architecture of the SNN tuned by the parameter

tuning framework to produce V1 simple cell response and SORFs. N
represents the number of neurons used in different groups. E→E and E→ I

STDP curves are included to describe plastic On(Off)Buffer→Exc and
Exc→ Inh connections. Tuned parameters are indicated with dashed arrows
and boxes.

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 172

http://eodev.sourceforge.net/eo/tutorial/html/eoTutorial.html
http://eodev.sourceforge.net/eo/tutorial/html/eoTutorial.html
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

in Table 1. The parameter ranges for the STDP time windows
were constrained by experimental data (Caporale and Dan, 2008)
while the remaining parameter ranges were chosen to produce
SNNs with biologically realistic firing rates.

The multi-component objective function was constructed
by requiring output neurons to have desirable traits in neu-
ronal response activity, namely, decorrelation, sparseness, and
a description of the stimulus that employs the entire response
range. The total fitness function to be maximized, fitnesstotal, is
described by Equation (1) and required each fitness component in
the denominator to be minimized. Fitness values were normalized
by the highest fitness value and ranged from 0 to 1. The fit-
ness function consisted of three fitness components, fitnessdecorr,
fitnessGauss, fitnessmaxRate, and a scaling factor K which had a
value of 4.4 in all simulations discussed here.

fitnesstotal = 1

fitnessdecorr + fitnessGauss + Kscaling factor · fitnessmaxRate
(1)

Here fitnessdecorr, described in Equation (2), was minimized if
each output neuron responded uniquely and preferentially to
a grating orientation, causing the average firing rates of each
neuron to be decorrelated. The fitness component, fitnessGauss,
was minimized when each Exc group neuron had an idealized
Gaussian tuning curve response and is defined in Equation (4).
The fitness component, fitnessmaxRate, was minimized when the
maximum firing rate of the output neurons achieved a target fir-
ing rate, which helped neuronal activity remain stable and sparse,
and is defined in Equation (6). A scaling term, Kscaling factor = 4.4,
was used to correctly balance the maximum firing rate require-
ment against the decorrelation and Gaussian tuning curve curve
requirements. Taken together, both fitnessmaxRate and fitnessGauss

result in the assignment of high fitness values to neurons that
have a stimulus response that utilizes the entire neuronal response

Table 1 | Range of allowable values for parameters optimized by the

automated parameter tuning framework.

Parameters Range

Max. Poiss. Rate 10–40 Hz

Buff→Exc Wts 4.0e-3–1.6e-2

Exc→ Inh Wts 0.1–1.0

Inh→Exc Wts 0.1–0.5

Rtarget Exc 10–30 Hz

Rtarget Inh 40–100 Hz

A+ Exc 9.6e-6–4.8e-5

A− Exc 9.6e-6–4.8e-5

τ+ Exc 10–60 ms

τ− Exc 5–100 ms

A+ Inh 9.6e-6–4.8e-5

A− Inh 9.6e-6–4.8e-5

τ+ Inh 10–60 ms

τ− Inh 5–100 ms

Weight ranges and STDP A+ and A− parameters are dimensionless and their

relative magnitudes are important for creating a functional SNN.

range from approximately 0 to 60 Hz, which is an important
aspect of neuronal activity.

The fitnessdecorr component of the fitness function enforced
decorrelation in the Exc group neuronal firing rates so that each
neuron responded maximally to a different stimulus presenta-
tion angle. Equation (2) ensured the angles of maximum response
θi

max for each neuron, i, were as far from one another as possible
by minimizing the difference between the two closest maximum
angles (Di

min) and the maximum possible value of Di
min, called

Dtarget. Di
min is described in Equation (3) and Dtarget had a value

of π/4.

fitnessdecorr =
N = 4∑
i= 1

∣∣∣Di
min − Dtarget

∣∣∣ (2)

Di
min = min

(∣∣∣θi
max − θ

j
max

∣∣∣) ∀ j �= i (3)

The next fitness component fitnessGauss ensured that each Exc
group neuron had a Gaussian tuning curve response similar to
that found in V1 simple cells. The difference between the normal-
ized firing rate Ri

j and a normalized Gaussian Gi
j was calculated

for every presentation angle for each Exc group neuron and was
summed over all angles and neurons. This is shown in Equation
(4) while a description of the Gaussian is shown in Equation (5),
where ri

max is the maximum firing rate for the ith neuron, θi
max

is the angle of maximum response of the ith neuron, θj is the
jth stimulus angle, and σ was chosen to be 15π/180 to match
experimental observations (Henry et al., 1974).

fitnessGauss =
N = 4∑
i= i

M= 40∑
j= 1

∣∣∣Ri
j − Gi

j

∣∣∣ (4)

Gi
j = ri

max exp

⎡
⎣−1

2

(
θj − θi

max

σ

)2
⎤
⎦ (5)

The fitnessmaxRate component, in combination with the
Inh→ Exc group connections, helped to enforce the requirement
that the Exc group neurons had sparse firing rates by limiting the
firing rate of each neuron to a maximum target firing rate Rmax

target

of 60 Hz. The difference between the maximum firing rate Ri
max

of each Exc group neuron and the maximum target firing rate
was calculated and summed over all Exc group neurons as shown
in Equation (6).

fitnessmaxRate =
N = 4∑
i= 1

∣∣∣Ri
max − Rmax

target

∣∣∣ (6)

Each fitness component had a fitness constraint imposed on it
which caused the individual to be assigned a poor overall fitness
if it fell outside a particular range of values. Recall that the fitness
components are in the denominator of the total fitness equation
making lower fitness component values more fit than higher fit-
ness component values. The constraints are expressed as upper
limits. Those individuals with fitness components larger than the

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 10 | 173

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

upper limit were assigned poor overall fitness values by adding
240 to the denominator of Equation (1). The fitness component
fitnessdecorr had an upper limit constraint of 15, the fitness com-
ponent fitnessGauss had an upper limit of 1300, and the fitness
component fitnessmaxRate had an upper limit of 160.

NETWORK MODEL
The input to the network consisted of a 32× 32 grid of grayscale
pixels, ranging from -1 to 1, which were connected to a pair of
32× 32 Poisson spiking neuron groups with one-to-one topol-
ogy to model the On/Off receptive fields found in the LGN.
One Poisson spiking neuron group, the OnPoiss group, had lin-
ear spiking responses corresponding to Equation (7) while the
OffPoiss group had responses corresponding to Equation (8).
Here, ri,On (ri,Off) represent the firing rate of neuron i, of the
On(Off)Poiss group in response to the value of the input p,
pixel i. The rates had maximum values of 1 and were scaled
with the Max. Poiss. Rate parameter. Each On(Off)Poiss group
had fixed excitatory synapses with one-to-one connectivity to
a pair of 32× 32 spiking neuron groups consisting of regular
spiking (RS) Izhikevich neurons (Izhikevich et al., 2004), called
the On(Off)Buffer groups. The On(Off)Buffer group neurons
have a refractory period and were included to produce more
realistic spike dynamics in response to the stimulus input. The
On(Off) Buffer groups were included because Poisson spiking
neurons with a built-in delay period were not part of the standard
NVIDIA CUDA Random Number Generation (cuRAND) library
and were therefore, more difficult to generate. On(Off)Buffer
neurons had plastic excitatory synapses with all-to-all connec-
tivity to an output group of RS neurons called the Exc group.
Finally, to induce competition and encourage sparse firing, the
Exc group made plastic excitatory all-to-all connections to a fast-
spiking (FS) inhibitory neuron group (Izhikevich et al., 2004),
which made fixed inhibitory all-to-all connections back to the Exc
group.

ri,On
(
pi
) =

{
pi, pi > 0

0, pi ≤ 0
(7)

ri,Off
(
p
) =

{
0, pi > 0∣∣pi

∣∣ , pi ≤ 0
(8)

The mathematical description of the Poisson spiking neurons
used in the simulation is shown in Equation (9).

ti+ 1 = ti − ln (xi) /r (9)

The spike times were generated iteratively by generating inter-
spike intervals (ISIs) from an exponential distribution (Dayan
and Abbott, 2001). Here ti is the spike time of the current spike,
ti+ 1 is the spike time of the next spike, r is the average firing
rate, and xi is the current random number (uniformly distributed
between 0 and 1) used to generate the next spike time.

The spiking neurons used in the simulation were Izhikevich-
type neurons and were chosen because they are computationally
efficient and able to produce neural dynamics with a high degree

of accuracy (Izhikevich, 2003). All excitatory neurons were mod-
eled as RS neurons while all inhibitory neurons were modeled
as FS neurons. The dynamics of Izhikevich neurons are shown
in Equations (10, 11) and consist of a 2D system of ordinary
differential equations.

dυ

dt
= 0.04υ2 + 5υ+ 140− u+ I (10)

du

dt
= a(bυ− u) (11)

Here, υ is the membrane potential of the neuron and u is the
recovery variable. The neuron dynamics for spiking are as follows:

If υ ≥ 30 mv, then

{
υ← c

u← u+ d
. The variables a, b, c, and d

are specific to the type of Izhikevich neuron being modeled. For
RS neurons, a = 0.02, b = 0.2, c = −65.0, and d = 8.0. For FS
neurons, a = 0.1, b = 0.2, c = −65.0, and d = 2.0. The synap-
tic input for the spiking neurons consisted of excitatory NMDA
and AMPA currents and inhibitory GABAA and GABAB cur-
rents (Izhikevich and Edelman, 2008) and has the form shown in
Equation (12). Each conductance has the general form of g(υ−
υ0) where g is the conductance, υ is the membrane potential, and
υ0 is the reversal potential.

I = gNMDA

[
υ+ 80

60

]2

1+ [υ+ 80
60

]2
(υ− 0)+ gAMPA (υ− 0)

+ gGABAA (υ+ 70)+ gGABAB (υ+ 90) (12)

The conductances obey the first order dynamics shown in
Equation (13).

dgi

dt
= − gi

τ i
(13)

Here i denotes a particular conductance (NMDA, AMPA, GABAA,
or GABAB) and τ denotes the decay constant for the conduc-
tance. The decay constants are τNMDA = 100 ms, τAMPA = 5 ms,
τGABAA = 6 ms, and τGABAB = 150 ms.

All plastic connections used a standard nearest-neighbor
STDP implementation (Izhikevich and Desai, 2003) but dis-
tinct STDP rules were used for STDP occurring between
excitatory-to-excitatory (E→ E) neurons and STDP occurring
between excitatory-to-inhibitory (E→ I) neurons. Excitatory-to-
excitatory plastic connections had traditional STDP curves as
detailed in (Bi and Poo, 1998) while excitatory-to-inhibitory plas-
tic connections used STDP curves where potentiation occurred
for pre-after-post pairings and depression occurred for pre-
before-post pairings as found in experiments (Bell et al., 1997). A
model for homeostatic synaptic scaling (Carlson et al., 2013) was
also included to prevent runaway synaptic dynamics that often
arise in STDP learning rules.

The STDP update rule used in our simulations is shown in
Equation (14).

dwi,j

dt
= δ+ β

(
LTPi,j + LTDi,j

)
(14)

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 174

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

The synaptic weight from presynaptic neuron i to postsynaptic
neuron j is indicated by the variable wi,j. Additionally, δ is a bias
often set to zero or a positive number to push the network toward
positive weight increases for low synaptic input, while β is the
learning rate. The weight changes were updated every time step
(1 ms) but the weights themselves are modified once every 1 s.

To model homeostatic synaptic plasticity the STDP update
rule was modified as shown in Equation (15) where α = 0.1 and
β = 1.0.

dwi,j

dt
=
[
α · wi,j

(
1− R

Rtarget

)
+ β

(
LTPi,j + LTDi,j

)] · K (15)

Here, α is the homeostatic scaling factor while R and Rtarget are the
average and target firing rates, respectively, for the postsynaptic
neuron, j. A stability term denoted by K, damps oscillations in the
weight updates and speeds up learning. K is defined as:

K = R

T · (1+ ∣∣1− R/Rtarget
∣∣ · γ) (16)

In Equation (16), γ is a tuning factor and T is the time scale over
which the firing rate of the postsynaptic neuron is averaged. Here
γ = 50 and T = 10 s.

SIMULATION DETAILS
The SORF formation and performance analysis simulations were
developed and implemented on a publically available neural sim-
ulator (Nageswaran et al., 2009b; Richert et al., 2011) and the
forward Euler method (Giordano and Nakanishi, 2006) was used
to integrate the difference equations with a step size of 1 ms for
plasticity equations and 0.5 ms for neuronal activity equations.
The CPU version of CARLsim was run on a system with an
Intel Core i7 2.67 GHz quad-core processor with 6 GB of mem-
ory. The GPU version of CARLsim was run on a NVIDIA Tesla
GPU M2090 card, with 6 GB of total memory and 512 cores.
The GPU was capable of 665 GFLOPS of double precision, 1.33
TFLOPs of single precision, and had a memory bandwidth of
117 GB/s. The GPU was in a 12-core CPU cluster with 24 GB of
memory and 4 GPU cards. Simulations executed on the CPU were
single-threaded, while simulations executed on the GPU were
parallelized, but only on a single GPU.

RESULTS
An SNN capable of SORF formation and V1 simple cell like
responses to counterphase grating stimuli presentation was
constructed using the automated parameter tuning framework
described above. Using a configuration with 10 SNNs running
simultaneously on the GPU, each having 4104 neurons, the auto-
mated parameter tuning framework took 127.2 h to complete 287
generations of the EA and used a stopping criterion that halted
the EA after the completion of 100 generations without a change
in the fitness of the best individual or after the completion of 500
generations. The average and best fitness values for every gener-
ation are shown in red and blue, respectively, in Figure 4. The
automated parameter tuning framework constructed 128 SNNs
out of 2880 total SNNs (4.4%) that displayed SORF formation
and V1 simple cell like responses and produced the first of these

FIGURE 4 | Plot of best and average fitness vs. generation number for

entire simulation run (287 generations, 4104 neuron SNNs, 10 parallel

configurations). All values were normalized to the best fitness value. The
error bars denote the standard deviation for the average fitness at intervals
of once per 20 generations. Initially the standard deviation of the average
fitness is large as the EA explores the parameter space, but over time, the
standard deviation decreases as the EA finds better solutions.

Table 2 | Sorted fitness values (higher is better) for the initial and final

SNN populations.

Initial population fitness values Final population fitness values

0.1949 1.0000

0.1780 0.9807

0.1594 0.9481

0.1551 0.9454

0.1444 0.9384

0.1399 0.9294

0.1212 0.9146

0.1006 0.9107

0.0977 0.9105

0.0913 0.9040

Entries with a shaded background denote SNNs with V1 simple cell responses

and SORF formation for every Exc group neuron (4).

SNNs at generation 52. Table 2 shows the fitness values of the 10
initial SNNs and the fitness values after 287 generations. Shaded
table entries denote SNNs that produced SORFs and V1 sim-
ple cell-like tuning curves for all four Exc group neurons while
unshaded table entries indicate SNNs that failed to produce these
neural phenomena. All SNNs from the initial population had very
low fitness, produced no orientation selectivity, and had no SORF
formation. All SNNs from the final population except for the last
individual (fitness = 0.9040) had high fitness values, produced
V1 simple cell-like tuning curve responses, and produced SORFs.
The last individual in Table 2, had a high fitness, but only pro-
duced V1 simple-cell like tuning curve responses and SORFs in
three of the four Exc group neurons.

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 10 | 175

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

EVOLVING SNNs WITH V1 SIMPLE CELL RESPONSES AND SORF
FORMATION
A single set of parameter values from the highest fitness
individual (row 1, column 2 in Table 2) was used to gener-
ate Figures 5–7A, 10, these parameter values can be found in
Supplementary 4 of the supplementary materials. Figure 5 shows
the firing rates of four output neurons from the Exc group in
response to all 40 input stimulus grating orientations. Each plot
represents the firing rate of an individual Exc group neuron,
denoted by a blue line, along with an idealized Gaussian tuning
curve similar to those found in simple cell responses in visual cor-
tical area V1 of the visual cortex (Henry et al., 1974), denoted by

FIGURE 5 | Plot of the firing rate response of Exc group neurons vs.

grating presentation orientation angle. The blue lines indicate the firing
rate of a neuron in the simulation while the dotted red lines indicate
idealized Gaussian tuning curves. Together, the four excitatory neurons
cover the stimulus space of all the possible presentation angles.

FIGURE 6 | Synaptic weights for the On(Off)Buffer → Exc connections

of a high fitness SNN individual. (A) Initial weight values before training.
(B) After training for approximately 100 simulated minutes with STDP and
homeostasis, the synaptic weight patterns resemble Gabor filters. (C) Four
example orientation grating patterns are shown.

a dashed red line. The firing rate responses from the Exc group
neurons qualitatively match the idealized V1 simple cell Gaussian
tuning curves. The maximum firing rate responses of Exc group
neurons were constrained by the sparsity requirement of the fit-
ness function and peaked at an average value of 67 Hz. The firing
rate responses were also decorrelated, another requirement of the
fitness function, which lead to different preferred orientations for
each of the Exc group neurons.

To examine the ability of the automated parameter tuning
framework to construct SNNs capable of SORF formation, the
synaptic weights between the On(Off)Buffer groups and the
Exc group were visualized in Figure 6 for the highest fitness
SNN. Each plot is a composite of the connections between the
On(Off)Buffer group and a single Exc group neuron, where
light regions represent strong synaptic connections and dark
regions represent weak synaptic connections. Figure 6A shows

FIGURE 7 | The responses of the Exc group neurons (identified by their

neuron id on the y-axis) were tested for all 40 grating orientations.

One orientation was presented per second and the test ran for 40 s (x-axis).
(A) Neuronal spike responses of 400 neurons trained with the highest
fitness SNN parameters found using the parameter tuning framework. (B)

Neuronal spike responses of 400 neurons trained using a single set of low
fitness parameters. The neurons were arranged such that those neurons
responding to similar orientations were grouped together for both (A,B).
This accounts for the strong diagonal pattern found in (A) and the very faint
diagonal pattern found in (B). Neuronal spike responses in (A) are sparse in
that relatively few neurons code for one orientation while neuronal spike
responses in (B) are not sparse. Additional, many of the neuronal spike
responses in part (A) employ a wide range of firing rates to describe a
subset of the orientation stimulus space while spike responses in (B) have
similar firing responses across all angles in all cases.

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 176

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

the initial randomized synaptic weights while Figure 6B shows
the final synaptic weights after 100 min of simulation time dur-
ing the training period. The synaptic connections between the
On(Off)Buffer neurons and the Exc neurons in Figure 6B formed
receptive fields that resembled Gabor filters, which have been used
extensively to model V1 simple cell responses (Jones and Palmer,
1987). Figure 6C shows four example counterphase sinusoidal
grating orientations used as visual input into the SNN.

Figure 7 shows a raster plot of 400 Exc group neurons from
100 SNNs that were trained using the highest fitness parame-
ter values taken from row 2, column 1 of Table 2 and shown in
Figure 7A compared with a set of very low fitness parameters,
fitness = 0.0978, shown in Figure 7B. Neurons that have sim-
ilar preferred orientation angles have been placed close to one
another. The high fitness neurons in Figure 7A have responses
that are sparse (only a small subset of the neurons respond to
any particular stimulus angle) and orthogonal (different neu-
rons respond to different stimulus orientations) while neurons in
Figure 7B do not have these properties. Although each high fit-
ness neuron responds to a small subset of stimulus orientations,
taken together the high fitness neurons have responses that cover
all the possible stimulus orientations while low fitness neurons
do not have responses that carry meaningful information in this
respect.

Figure 8 compares the evolved parameters of “high fitness”
SNNs with “low fitness” SNNs. We judged an SNN to be high
fitness if its three fitness component values met the following cut-
offs: fitnessdecorr had a cutoff value of 15, fitnessGauss had a cutoff
value of 950, and fitnessmaxRate had a cutoff value of 50. We found
these cutoffs produced SNNs with SORFs in the receptive fields
of at least 3 out of 4 of the Exc group neurons. There were 128
high fitness SNNs and 2752 low fitness SNNs out of the 2880 total
SNNs constructed and tested by the parameter tuning framework.

Figure 8 shows a comparison between homeostatic target fir-
ing rate parameters for Exc and Inh groups for high fitness

FIGURE 8 | Plot of the target homeostatic firing rate parameters for

Exc group and Inh group for high fitness SNNs shown in (A) and low

fitness SNNs shown in (B). The Exc group homeostatic target firing rate is
significantly more constrained (between the ranges of 10–14 Hz) for the
high fitness SNNs as opposed to the corresponding parameters for the low
fitness SNNs. There were 128 high fitness SNNs and 2752 low fitness
SNNs out of a total of 2880 individuals. EAs allow parent individuals to pass
high value parameter values directly to their offspring, because of this,
there are many offspring with identical high fitness values. This explains
why there are not 128 distinct points distinguishable in (A).

SNNs (shown in Figure 8A) found using the parameter tuning
framework along with the remaining low fitness parameter values
(shown in Figure 8B). Each point represents a target Exc and Inh
firing rate pair for a given SNN. The homeostatic target firing rate
parameter for Exc groups in high fitness SNNs is clustered around
a relatively small region (10–14 Hz) when compared to the total
allowed target firing rate ranges of the Exc and Inh groups which
are 10–30 and 40–100 Hz, respectively. The low fitness SNNs have
Exc and Inh groups with target firing rates that have a much
wider range of values. It is interesting that successful SNNs clus-
ter around a low Exc group homeostatic firing rate (10–14 Hz).
This may be due to the interplay between STDP time windows or
the maximum input Poisson firing rate. In high fitness SNNs, Inh
groups with higher homeostatic target firing rates are rare, but the
distribution of firing rates is broader.

We next examined the relationship between STDP plastic-
ity parameters among high fitness SNNs individuals exclusively.
Figure 9A shows the LTD/LTP decay constant ratios, which dic-
tate the size of the LTP and LTD time windows, for Buffer to Exc
group connections and Exc to Inh group connections. Figure 9B
shows a comparison between LTD/LTP amplitude ratios for
Buffer to Exc group connections and Exc to Inh group connec-
tions. The overall parameter ranges can be found in Table 1. The
Buffer to Exc decay constant ratio in Figure 9A is within close
range of experimental observations by (Bi and Poo, 1998), that
show the LTD decay constant as being roughly twice as large at
the LTP decay constant. The Exc to Inh LTD/LTP decay constant
ratio in Figure 9A has a broader distribution of values that ranged
from approximately 1 to 4. These values also fall within the range
of experimental measurements of the LTD/LTP decay constant
ratio of approximately one (Bell et al., 1997). High fitness SNNs
in Figure 9B show a narrow distribution of LTD/LTP amplitude
ratios that favor an LTD/LTP ratio less than one for Buffer to Exc
group connections while Exc to Inh group connections show sig-
nificantly broader LTD/LTP amplitude ratios with values ranging
from approximately 1 to 4.

FIGURE 9 | The time windows in which STDP occurs are often

modeled as decaying exponentials and each of the LTP and LTD

windows can be characterized by single decay constant. The degree to
which the weight is increased during LTP or decreased during LTD is often
called the LTP/LTD amplitude or magnitude. (A) Ratio of the STDP LTD/LTP
decay constant for the Buffer to Exc group connections (blue) and the Exc
to Inh group connections (red) for high fitness SNNs. (B) The ratio of the
STDP LTD/LTP amplitude for the Buffer to Exc group connections (blue) and
the Exc to Inh group connections (blue) for high fitness SNNs.

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 10 | 177

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

STABILITY ANALYSIS
To ensure that the solutions found by the automated tuning
framework were stable, the parameter set from the highest fit-
ness SNN was used to train and test an SNN for an additional
100 trials, allowing the SORFs to be learned through STDP and
tested as described in the previous section. That is, a single set
of parameters was tested to ensure that the ability of a naïve
SNN to form SORFs was repeatable and independent of stimu-
lus presentation order. Thus, the order of stimulus presentations
was randomized between trials and each trial consisted of train-
ing and testing phases. Parameter values were deemed stable if
the SNNs consistently produced V1 simple cell-like responses and
SORFs for the majority of the trials. A robustness analysis on the
effect of small perturbations on the functional behavior of the
SNNs was not performed. To further analyze the stability of the
parameter values, firing rate responses from the Exc group over
all 100 trials were used to decode eight test angles presented to
the trained SNNs with a widely used population decoding algo-
rithm (Dayan and Abbott, 2001). At each presentation of the eight
orientation test angles, the neuronal firing rate and its preferred
stimulus orientation (i.e., the orientation for which the neuron
fired maximally) were used to create a population vector for all
the Exc neurons from the 100 trials (4 Exc neurons per trial× 100
trials = 400 neurons in total). The neuronal population vec-
tors were averaged and the resultant vector was compared to the
stimulus orientation angle.

The results of the 100 training and testing trials for the iden-
tical set of parameters were as follows. 76% of the trials had
SNNs with tuning curves that qualitatively matched V1 simple
cell responses and produced Gabor filter-like SORFs. The remain-
ing 24% of the trials had SNNs with three Exc group neurons that
produced good behavior and a single Exc group neuron with a
bimodal tuning curve and a SORF that resembled two overlap-
ping Gabor filters at different angles. A population code from the
firing rate responses of the 400 Exc group neurons was used to
decode the orientation of the presented test stimuli. Figure 10
shows the population decoding results for eight presented test
angles. The smaller black arrows are neuronal responses from the
400 neurons which sum to the population vector, shown with a
blue arrow. The lengths of the individual neural response vectors
(black arrows) were normalized by dividing the mean firing rate
by 2. The length of the population vector (blue arrow) was nor-
malized by dividing the sum of the individual responses by the
magnitude of the vector. The population vector was very close to
the presented test stimulus orientation for every case with a mean
error of 3.4◦ and a standard deviation of 2.3◦.

PERFORMANCE ANALYSIS
To test the computational performance of the automated param-
eter tuning framework, three different sized SNNs were run using
either a serial CPU implementation or a parallel GPU implemen-
tation of CARLsim. Each SNN had identical topology except for
the size of the On(Off)Poiss and On(Off)Buffer groups which
were either 16× 16, 24× 24, or 32× 32 giving rise to networks
with 1032, 2312, and 4104 neurons, respectively. The number of
configurations executed in parallel on the GPU was varied from 5
to 30 for all network sizes and execution times were recorded.

FIGURE 10 | Population decoding of eight test presentation angles. The
test presentation angle θ, is shown above each population decoding figure.
100 simulation runs, each with identical parameter values but different
training presentation orders, were conducted and the firing rates of the Exc
group neurons were recorded. The individual responses of each of the 400
neurons (4 Exc neurons × 100 runs) are shown with solid black arrows.
These individuals were summed to give a population vector (shown with a
blue arrow) that was compared to the correct presentation angle (shown
with a red arrow). Both the population vectors and correct presentation
angle vectors were normalized while the component vectors were scaled
down by a factor of 2 for display purposes (see text for details).

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 178

http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

The parallelized GPU SNN implementation showed impres-
sive speedups over the CPU SNN implementation (Figure 11).
The largest speedup (65×) was found when 30 SNN configura-
tions, each with 4104 neurons, were run in parallel, which took
21.1 min to complete a single generation, whereas 10 SNN con-
figurations with 4104 neurons required 26.4 min to complete a
single generation. In contrast, the CPU took 23.5 h for a single
generation. It would be interesting to compare the GPU perfor-
mance with a multi-threaded CPU simulation and there may be
gains in such an approach. However, in our experience SNNs on
such systems do not optimize or scale as well as GPUs. Because
the calculation of SNN neuronal and synaptic states can be cast
as single instruction multiple data (SIMD), parallel computation
of SNNs is more suited to GPUs having thousands of simple
cores, rather than multithreaded CPUs having many less, but
more powerful cores.

As the number of concurrent SNN configurations grows, the
speedup increases slowly and nearly plateaus for 30 parallel SNN
configurations. These speedup plateaus are mostly likely due to
the limitations of the GPU core number and clock-frequency, and
not the GPU global memory size as 99% of the GPU was utilized
but less than 20% of the GPU memory was utilized for the largest
simulation configurations. It should be noted that although the
single SNN configuration was moderately sized, all 30 configu-
rations together comprised a large-scale network (i.e., 123,120
total neurons) that was running simultaneously. This parameter
tuning approach can be scaled to tune larger SNNs by running
fewer configurations in parallel or by spreading the computation
and memory usage across multiple GPUs with an MPI/CUDA
implementation.

DISCUSSION
With the growing interest in large-scale neuromorphic applica-
tions using spiking neural networks, the challenge of tuning the
vast number of open parameters is becoming increasingly impor-
tant. We introduced an automated parameter tuning framework

FIGURE 11 | Plot of GPU speedup over CPU vs. number of SNNs run in

parallel for different sized SNNs and different numbers of SNNs run in

parallel. Three different SNN sizes were used, the blue line denotes SNNs
with 1032 neurons, the green line denotes SNNs with 2312 neurons, and
the red line denotes SNNs with 4104 neurons.

that can quickly and efficiently tune SNNs by utilizing inex-
pensive, off-the-shelf GPU computing technology as a substitute
for more expensive alternatives such as supercomputing clusters.
The automated parameter tuning framework consists solely of
freely available open source software. As a proof of concept, the
framework was used to tune 14 neural parameters in an SNN
ranging from 1032 to 4104-neurons. The tuned SNNs evolved
STDP and homeostasis parameters that learned to produce V1
simple cell-like tuning curve responses and SORFs. We observed
speedups of 65× using the GPU for parallelization over a CPU.
Additionally, the solutions found by the automated parameter
tuning framework were shown to be stable.

There are a few research groups that have designed soft-
ware frameworks capable of tuning large-scale SNNs. Eliasmith
et al. (2012) constructed a 2.5 million neuron simulation that
demonstrated eight diverse behavioral tasks by taking a con-
trol theoretic approach called the Neural Engineering Framework
(NEF) to tune very large-scale models. The NEF is implemented
in a neural simulator called Nengo and can specify the connec-
tion weights between two neuronal populations given the input
population, the output population, and the desired computation
to be performed on those representations. Our parameter tun-
ing framework takes a different approach, allowing the user to
tune not only individual synaptic weights but also parameters
related to plasticity rules, connection topology, and other biolog-
ically relevant parameters. Our framework does not require the
user to specify the desired computations between two neuronal
populations but rather leaves it to the user to specify the exact
fitness function. The popular SNN simulator, Brian (Goodman
and Brette, 2009), also has support for parameter tuning in the
form of a parallelized CPU/GPU tuning toolkit. Their toolkit has
been used to match individual neuron models to electrophysi-
ological data and also to reduce complex biophysical models to
simple phenomenological ones (Rossant et al., 2011). Our tuning
framework is focused more on tuning the overall SNN behav-
ior as opposed to tuning a spiking model neuron that captures
electrophysiological data.

SNNs constructed and tuned with our framework could be
converted to run on any neuromorphic device that incorporates
the AER format for spike events and supports basic connection
topologies. This is the case for many neuromorphic hardware
devices (Furber et al., 2012; Cruz-Albrecht et al., 2013; Esser et al.,
2013; Pfeil et al., 2013). Although the framework presented here
was run on the CARLsim simulator, which utilizes the Izhikevich
neuron and STDP, the automated tuning framework presented
here could readily be extended to support any spiking model, such
as the leaky integrate-and-fire neuron or the adaptive exponential
integrate-and-fire neuron (Brette and Gerstner, 2005).

SNNs with thousands of neurons, multiple plasticity rules,
homeostatic mechanisms, and feedback connections, similar to
the SNN presented here, are notoriously difficult to construct and
tune. The automated parameter tuning framework presented here
can currently be applied to much larger SNNs (on the scale of
106 neurons) with more complex network topologies but GPU
memory constraints limit the tuning of larger SNNs. Currently,
CARLsim SNN simulations are limited to approximately 500 K
neurons and 100 M synapses on a single Tesla M2090 GPU, but a

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 10 | 179

http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

version that allows SNN simulations to run across multiple GPUs
is in development and will increase the size of SNNs that can be
tuned using this framework. The combination of a multi-GPU
version of CARLsim and the implementation of more advanced
evolutionary computation principles, such as multi-objective fit-
ness functions and co-evolving populations, should allow the
framework to be scalable and capable of tuning large-scale SNNs
on the scale of millions of neurons. The highly efficient automated
parameter tuning framework presented here can reduce the time
researchers spend constructing and tuning large-scale SNNs and
could prove to be a valuable contribution to both the neuro-
morphic engineering and computational neuroscience research
communities.

ACKNOWLEDGMENTS
This work was supported by the Defense Advanced Research
Projects Agency (DARPA) subcontract 801888-BS and by NSF
Award IIS/RI-1302125. We thank Micah Richert for his work
developing the custom spiking neural network simulator and
homeostatic plasticity model. We also thank Michael Avery and
Michael Beyeler for valuable feedback and discussion on this
project. Finally, we thank the reviewers for their feedback which
greatly improved the accuracy and clarity of the manuscript.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fnins.2014.

00010/abstract

REFERENCES
Abbott, L. F., and Nelson, S. B. (2000). Synaptic plasticity: taming the beast. Nat.

Neurosci. 3, 1178–1183. doi: 10.1038/81453
Ahmadi, A., and Soleimani, H. (2011). “A GPU based simulation of multilayer spik-

ing neural networks,” in Proceedings of the 2011 Iranian Conference on Electrical
Engineering (ICEE) (Tehran), 1–5.

Amir, A., Datta, P., Risk, W. P., Cassidy, A. S., Kusnitz, J. A., Esser, S. K., et al.
(2013). “Cognitive computing programming paradigm: a corelet language
for composing networks of neurosynaptic cores,” in Proceedings of the 2013
International Joint Conference on Neural Networks (IJCNN) (Dallas, TX). doi:
10.1109/IJCNN.2013.6707078

Avery, M., Krichmar, J. L., and Dutt, N. (2012). “Spiking neuron model of
basal forebrain enhancement of visual attention,” in Proccedings of the 2012
International Joint Conference on Neural Networks (IJCNN) (Brisbane, QLD),
1–8. doi: 10.1109/IJCNN.2012.6252578

Baladron, J., Fasoli, D., and Faugeras, O. (2012). Three applications of
GPU computing in neuroscience. Comput. Sci. Eng. 14, 40–47. doi:
10.1109/MCSE.2011.119

Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends Cogn. Sci. 4,
91–99. doi: 10.1016/S1364-6613(99)01440-0

Bell, C. C., Han, V. Z., Sugawara, Y., and Grant, K. (1997). Synaptic plasticity in a
cerebellum-like structure depends on temporal order. Nature 387, 278–281. doi:
10.1038/387278a0

Ben-Shalom, R., Aviv, A., Razon, B., and Korngreen, A. (2012). Optimizing ion
channel models using a parallel genetic algorithm on graphical processors.
J. Neurosci. Methods 206, 183–194. doi: 10.1016/j.jneumeth.2012.02.024

Bernhard, F., and Keriven, R. (2006). “Spiking neurons on GPUs,” in Computational
Science—ICCS 2006 Lecture Notes in Computer Science, eds V. Alexandrov, G.
Albada, P. A. Sloot, and J. Dongarra (Berlin; Heidelberg: Springer), 236–243.

Bhuiyan, M. A., Pallipuram, V. K., and Smith, M. C. (2010). “Acceleration
of spiking neural networks in emerging multi-core and GPU archi-
tectures,” in Parallel Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on (Atlanta, GA), 1–8. doi:
10.1109/IPDPSW.2010.5470899

Bi, G. Q., and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell
type. J. Neurosci. 18, 10464–10472.

Boahen, K. (2005). Neuromorphic microchips. Sci. Am. 292, 56–63. doi:
10.1038/scientificamerican0505-56

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.
doi: 10.1152/jn.00686.2005

Brette, R., and Goodman, D. F. M. (2012). Simulating spiking neural networks on
GPU. Network 23, 167–182. doi: 10.3109/0954898X.2012.730170

Brüderle, D., Petrovici, M. A., Vogginger, B., Ehrlich, M., Pfeil, T., Millner, S.,
et al. (2011). A comprehensive workflow for general-purpose neural modeling
with highly configurable neuromorphic hardware systems. Biol. Cybern. 104,
263–296. doi: 10.1007/s00422-011-0435-9

Calin-Jageman, R. J., and Katz, P. S. (2006). A distributed computing tool for
generating neural simulation databases. Neural Comput. 18, 2923–2927. doi:
10.1162/neco.2006.18.12.2923

Caporale, N., and Dan, Y. (2008). Spike timing-dependent plastic-
ity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46. doi:
10.1146/annurev.neuro.31.060407.125639

Carlson, K. D., Richert, M., Dutt, N., and Krichmar, J. L. (2013). “Biologically plau-
sible models of homeostasis and STDP: stability and learning in spiking neural
networks,” in Proceedings of the 2013 International Joint Conference on Neural
Networks (IJCNN) (Dallas, TX). doi: 10.1109/IJCNN.2013.6706961

Clune, J., Stanley, K. O., Pennock, R. T., and Ofria, C. (2011). On the perfor-
mance of indirect encoding across the continuum of regularity. IEEE Trans. Evol.
Comput. 15, 346–367. doi: 10.1109/TEVC.2010.2104157

Cruz-Albrecht, J. M., Derosier, T., and Srinivasa, N. (2013). A scalable neural chip
with synaptic electronics using CMOS integrated memristors. Nanotechnology
24, 384011. doi: 10.1088/0957-4484/24/38/384011

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience. Cambridge: MIT
press.

De Jong, K. A. (2002). Evolutionary Computation: A Unified Approach. Cambridge:
The MIT Press.

de Ladurantaye, V., Lavoie, J., Bergeron, J., Parenteau, M., Lu, H., Pichevar, R., et al.
(2012). A parallel supercomputer implementation of a biological inspired neu-
ral network and its use for pattern recognition. J. Phys. Conf. Ser. 341, 012024.
doi: 10.1088/1742-6596/341/1/012024

Djurfeldt, M., Ekeberg, O., and Lansner, A. (2008). Large-scale modeling—a tool
for conquering the complexity of the brain. Front. Neuroinformatics 2:1. doi:
10.3389/neuro.11.001.2008

Ehrlich, M., Wendt, K., Zühl, L., Schüffny, R., Brüderle, D., Müller, E., et al. (2010).
“A software framework for mapping neural networks to a wafer-scale neu-
romorphic hardware system,” in Proceedings of ANNIIP (Funchal, Madeira),
43–52.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al.
(2012). A large-scale model of the functioning brain. Science 338, 1202–1205.
doi: 10.1126/science.1225266

Esser, S. K., Andreopoulus, A., Appuswamy, R., Datta, P., Barch, D., Amir,
A., et al. (2013). “Cognitive computing systems: algorithms and appli-
cations for networks of neurosynaptic cores,” in Proceedings of the 2013
International Joint Conference on Neural Networks (IJCNN) (Dallas, TX). doi:
10.1109/IJCNN.2013.6706746

Fidjeland, A. K., Roesch, E. B., Shanahan, M. P., and Luk, W. (2009). “NeMo: a
platform for neural modelling of spiking neurons using GPUs,” in Application-
specific Systems, Architectures and Processors, 2009 ASAP 2009. 20th IEEE
International Conference on, (Boston, MA), 137–144.

Floreano, D., and Urzelai, J. (2001). Neural morphogenesis, synaptic plas-
ticity, and evolution. Theory Biosci. 120, 225–240. doi: 10.1007/s12064-
001-0020-1

Fogel, D. B., Fogel, L. J., and Porto, V. W. (1990). Evolving neural networks. Biol.
Cybern. 63, 487–493. doi: 10.1007/BF00199581

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.
(2012). Overview of the SpiNNaker system architecture. IEEE Trans. Comput.
62, 2454. doi: 10.1109/TC.2012.142

Gao, P., Benjamin, B. V., and Boahen, K. (2012). Dynamical system guided
mapping of quantitative neuronal models onto neuromorphic hardware.
IEEE Trans. Circuits Syst. Regul. Pap. 59, 2383–2394. doi: 10.1109/TCSI.
2012.2188956

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 180

http://www.frontiersin.org/journal/10.3389/fnins.2014.00010/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2014.00010/abstract
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

Gauci, J., and Stanley, K. O. (2010). Autonomous evolution of topographic reg-
ularities in artificial neural networks. Neural Comput. 22, 1860–1898. doi:
10.1162/neco.2010.06-09-1042

Giordano, N. J., and Nakanishi, H. (2006). Computational Physics. 2nd Edn. Upper
Saddle River, NJ: Pearson Prentice Hall.

Gomez, F., and Miikkulainen, R. (1997). Incremental evolution of complex general
behavior. Adapt. Behav. 5, 317–342. doi: 10.1177/105971239700500305

Goodman, D. F. M., and Brette, R. (2009). The brian simulator. Front. Neurosci.
3:192–197. doi: 10.3389/neuro.01.026.2009

Han, B., and Taha, T. M. (2010). “Neuromorphic models on a GPGPU cluster,”
in Proceedings of the 2010 International Joint Conference on Neural Networks
(IJCNN) (Barcelona), 1–8. doi: 10.1109/IJCNN.2010.5596803

Hancock, P. J. B. (1992). “Genetic algorithms and permutation problems: a
comparison of recombination operators for neural net structure specifi-
cation,” in International Workshop on Combinations of Genetic Algorithms
and Neural Networks, 1992, COGANN-92, (Baltimore, MD), 108–122. doi:
10.1109/COGANN.1992.273944

Hendrickson, E. B., Edgerton, J. R., and Jaeger, D. (2011). The use of auto-
mated parameter searches to improve ion channel kinetics for neural modeling.
J. Comput. Neurosci. 31, 329–346. doi: 10.1007/s10827-010-0312-x

Henry, G., Dreher, B., and Bishop, P. (1974). Orientation specificity of cells in cat
striate cortex. J. Neurophysiol. 37, 1394–1409.

Hoffmann, J., El-Laithy, K., Güttler, F., and Bogdan, M. (2010). “Simulating
biological-inspired spiking neural networks with OpenCL,” in Artificial
Neural Networks—ICANN 2010 Lecture Notes in Computer Science, eds
K. Diamantaras, W. Duch, and L. Iliadis (Berlin; Heidelberg: Springer),
184–187.

Husbands, P., Smith, T., Jakobi, N., and O’Shea, M. (1998). Better living through
chemistry: evolving GasNets for robot control. Connect. Sci. 10, 185–210. doi:
10.1080/095400998116404

Igarashi, J., Shouno, O., Fukai, T., and Tsujino, H. (2011). Real-time simulation
of a spiking neural network model of the basal ganglia circuitry using general
purpose computing on graphics processing units. Neural Netw. 24, 950–960.
doi: 10.1016/j.neunet.2011.06.008

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., van Schaik, A., Etienne-
Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron
circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M., and Desai, N. S. (2003). Relating STDP to BCM. Neural Comput.
15, 1511–1523. doi: 10.1162/089976603321891783

Izhikevich, E. M., and Edelman, G. M. (2008). Large-scale model of mammalian
thalamocortical systems. Proc. Natl. Acad. Sci. U.S.A. 105, 3593–3598. doi:
10.1073/pnas.0712231105

Izhikevich, E. M., Gally, J. A., and Edelman, G. M. (2004). Spike-timing dynamics
of neuronal groups. Cereb. Cortex 14, 933–944. doi: 10.1093/cercor/bhh053

Jones, J., and Palmer, L. (1987). An evaluation of the two-dimensional gabor fil-
ter model of simple receptive-fields in cat striate cortex. J. Neurophysiol. 58,
1233–1258.

Keijzer, M., Merelo, J. J., Romero, G., and Schoenauer, M. (2002). “Evolving objects:
a general purpose evolutionary computation library,” in Artficial Evolution, eds
P. Collet, C. Fonlupt, J. K. Hao, E. Lutton, and M. Schoenauer (Berlin: Springer-
Verlag), 231–242.

Krichmar, J. L., Dutt, N., Nageswaran, J. M., and Richert, M. (2011).
“Neuromorphic modeling abstractions and simulation of large-scale
cortical networks,” in Proceedings of the 2011 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD) (San Jose, CA), 334–338. doi:
10.1109/ICCAD.2011.6105350

Maitre, O., Baumes, L. A., Lachiche, N., Corma, A., and Collet, P. (2009). “Coarse
grain parallelization of evolutionary algorithms on GPGPU cards with EASEA,”
in Proceedings of the 11th Annual conference on Genetic and evolutionary compu-
tation (Montreal, QC), 1403–1410.

Markram, H. (2006). The blue brain project. Nat. Rev. Neurosci. 7, 153–160. doi:
10.1038/nrn1848

Mirsu, R., Micut, S., Caleanu, C., and Mirsu, D. B. (2012). Optimized simulation
framework for spiking neural networks using GPU’s. Adv. Electr. Comp. Eng. 12,
61–68. doi: 10.4316/aece.2012.02011

Mongillo, G., Barak, O., and Tsodyks, M. (2008). Synaptic theory of working
memory. Science 319, 1543–1546. doi: 10.1126/science.1150769

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum,
A. (2009a). “Efficient simulation of large-scale spiking neural networks
using CUDA graphics processors,” in Proceedings of the 2009 International
Joint Conference on Neural Networks (IJCNN). (Piscataway, NJ: IEEE Press),
3201–3208.

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum, A. V.
(2009b). A configurable simulation environment for the efficient simulation of
large-scale spiking neural networks on graphics processors. Neural Netw. 22,
791–800. doi: 10.1016/j.neunet.2009.06.028

Nageswaran, J. M., Richert, M., Dutt, N., and Krichmar, J. L. (2010). “Towards
reverse engineering the brain: modeling abstractions and simulation frame-
works,” in VLSI System on Chip Conference (VLSI-SoC), 2010 18th IEEE/IFIP,
(Madrid), 1–6. doi: 10.1109/VLSISOC.2010.5642630

Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G., and Douglas, R. J.
(2013). Synthesizing cognition in neuromorphic electronic systems. Proc. Natl.
Acad. Sci. U.S.A. 110:E3468–E3476. doi: 10.1073/pnas.1212083110. Available
online at: http://www.pnas.org/content/early/2013/07/17/1212083110

Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008). Scalable parallel
programming with CUDA. Queue 6, 40–53. doi: 10.1145/1365490.1365500

Nowotny, T. (2010). “Parallel implementation of a spiking neuronal network model
of unsupervised olfactory learning on NVidia CUDA,” in The Proceedings of the
2010 International Joint Conference on Neural Networks (IJCNN) (Barcelona),
1–8. doi: 10.1109/IJCNN.2010.5596358

Nowotny, T. (2011). Flexible neuronal network simulation framework using
code generation for NVidia(R) CUDATM. BMC Neurosci. 12:P239. doi:
10.1186/1471-2202-12-S1-P239

Pallipuram, V. K., Smith, M. C., Raut, N., and Ren, X. (2012). “Exploring
multi-level parallelism for large-scale spiking neural networks,” in Proceedings
of the International Conference on Parallel and Distributed Techniques and
Applications (PDPTA 2012) held in conjunction with WORLDCOMP 2012,
(Las Vegas, NV), 773–779.

Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Schmuker, M., et al. (2013). Six
networks on a universal neuromorphic computing substrate. Front. Neurosci.
7:11. doi: 10.3389/fnins.2013.00011

Pinto, N., Doukhan, D., DiCarlo, J. J., and Cox, D. D. (2009). A high-throughput
screening approach to discovering good forms of biologically inspired
visual representation. PLoS Comput. Biol. 5:e1000579. doi: 10.1371/jour-
nal.pcbi.1000579

Prinz, A. A., Billimoria, C. P., and Marder, E. (2003). Alternative to hand-tuning
conductance-based models: construction and analysis of databases of model
neurons. J. Neurophysiol. 90, 3998–4015. doi: 10.1152/jn.00641.2003

Prinz, A. A., Bucher, D., and Marder, E. (2004). Similar network activity from
disparate circuit parameters. Nat. Neurosci. 7, 1345–1352. doi: 10.1038/nn1352

Richert, M., Nageswaran, J. M., Dutt, N., and Krichmar, J. L. (2011). An efficient
simulation environment for modeling large-scale cortical processing. Front.
Neuroinform. 5:19. doi: 10.3389/fninf.2011.00019

Risi, S., and Stanley, K. O. (2012). An enhanced hypercube-based encoding for
evolving the placement, density, and connectivity of neurons. Artif. Life 18,
331–363. doi: 10.1162/ARTL_a_00071

Rossant, C., Goodman, D. F., Fontaine, B., Platkiewicz, J., Magnusson, A. K., and
Brette, R. (2011). Fitting neuron models to spike trains. Front. Neurosci. 5:9. doi:
10.3389/fnins.2011.00009

Schliebs, S., Defoin-Platel, M., Worner, S., and Kasabov, N. (2009). Integrated
feature and parameter optimization for an evolving spiking neural network:
exploring heterogeneous probabilistic models. Neural Netw. 22, 623–632. doi:
10.1016/j.neunet.2009.06.038

Schliebs, S., Kasabov, N., and Defoin-Platel, M. (2010). On the probabilistic opti-
mization of spiking neural networks. Int. J. Neural Syst. 20, 481–500. doi:
10.1142/S0129065710002565

Seung, H. S., Lee, D. D., Reis, B. Y., and Tank, D. W. (2000). Stability of the memory
of eye position in a recurrent network of conductance-based model neurons.
Neuron 26, 259–271. doi: 10.1016/S0896-6273(00)81155-1

Sheik, S., Stefanini, F., Neftci, E., Chicca, E., and Indiveri, G. (2011). “Systematic
configuration and automatic tuning of neuromorphic systems,” in Circuits and
Systems (ISCAS), 2011 IEEE International Symposium on, (Rio de Janeiro),
873–876. doi: 10.1109/ISCAS.2011.5937705

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive hebbian learning
through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.
doi: 10.1038/78829

Frontiers in Neuroscience | Neuromorphic Engineering February 2014 | Volume 8 | Article 10 | 181

http://www.pnas.org/content/early/2013/07/17/1212083110
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering
http://www.frontiersin.org/Neuromorphic_Engineering/archive

Carlson et al. Efficient spiking network parameter tuning

Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009). A hypercube-based
encoding for evolving large-scale neural networks. Artif. Life 15, 185–212. doi:
10.1162/artl.2009.15.2.15202

Stanley, K. O., and Miikkulainen, R. (2002). “Efficient evolution of neural network
topologies,” in The Proceedings of the Genetic and Evolutionary Computation
Conference, eds W. B. Langdon, E. Cantu-Paz, K. E. Mathias, R. Roy, D. Davis, R.
Poli, et al. (Piscataway, NJ; San Francisco, CA: Morgan Kaufmann), 1757–1762.

Stanley, K. O., and Miikkulainen, R. (2003). A taxonomy for artificial embryogeny.
Artif. Life 9, 93–130. doi: 10.1162/106454603322221487

Stone, J. E., Gohara, D., and Shi, G. (2010). OpenCL: a parallel programming stan-
dard for heterogeneous computing systems. Comput. Sci. Eng. 12, 66–73. doi:
10.1109/MCSE.2010.69

Svensson, C. M., Coombes, S., and Peirce, J. W. (2012). Using evolutionary algo-
rithms for fitting high-dimensional models to neuronal data. Neuroinformatics
10, 199–218. doi: 10.1007/s12021-012-9140-7

Thibeault, C. M., Hoang, R. V., and Harris, F. C. (2011). “A novel multi-GPU neural
simulator,” in Proceedings of the 2011 International Conference on Bioinformatics
and Computational Biology (BICoB) (New Orleans, LA), 146–151.

Thibeault, C. M., and Srinivasa, N. (2013). Using a hybrid neuron in physiologi-
cally inspired models of the basal ganglia. Front. Comput. Neurosci. 7:88. doi:
10.3389/fncom.2013.00088

van Geit, W., de Schutter, E., and Achard, P. (2008). Automated neuron model opti-
mization techniques: a review. Biol. Cybern. 99, 241–251. doi: 10.1007/s00422-
008-0257-6

van Rossum, M. C. W., Bi, G. Q., and Turrigiano, G. G. (2000). Stable hebbian
learning from spike timing-dependent plasticity. J. Neurosci. 20, 8812–8821.

Watt, A. J., and Desai, N. S. (2010). Homeostatic plasticity and STDP: keep-
ing a neuron’s cool in a fluctuating world. Front. Synaptic Neurosci. 2:5. doi:
10.3389/fnsyn.2010.00005

Yamazaki, T., and Igarashi, J. (2013). Realtime cerebellum: a large-scale spiking net-
work model of the cerebellum that runs in realtime using a graphics processing
unit. Neural Netw. 47, 103–111. doi: 10.1016/j.neunet.2013.01.019

Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J. C., and Lipson, H. (2011).
“Evolving robot gaits in hardware: the HyperNEAT generative encoding vs.
parameter optimization,” in Proceedings of the 20th European Conference on
Artificial Life (Paris).

Yudanov, D., Shaaban, M., Melton, R., and Reznik, L. (2010). “GPU-based
simulation of spiking neural networks with real-time performance and high
accuracy,” in Proceedings of the 2010 International Joint Conference on Neural
Networks (IJCNN) (Barcelona), 1–8. doi: 10.1109/IJCNN.2010.5596334

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 26 August 2013; accepted: 17 January 2014; published online: 04 February
2014.
Citation: Carlson KD, Nageswaran JM, Dutt N and Krichmar JL (2014) An efficient
automated parameter tuning framework for spiking neural networks. Front. Neurosci.
8:10. doi: 10.3389/fnins.2014.00010
This article was submitted to Neuromorphic Engineering, a section of the journal
Frontiers in Neuroscience.
Copyright © 2014 Carlson, Nageswaran, Dutt and Krichmar. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org February 2014 | Volume 8 | Article 10 | 182

http://dx.doi.org/10.3389/fnins.2014.00010
http://dx.doi.org/10.3389/fnins.2014.00010
http://dx.doi.org/10.3389/fnins.2014.00010
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuromorphic_Engineering/archive

	Cover
	Frontiers Copyright Statement
	Neuromorphic Engineering Systems and Applications
	Table of Contents
	Research topic: neuromorphic engineering systems and applications. A snapshot of neuromorphic systems engineering
	Regarding the Event-Based Vision Papers
	Regarding Event-Driven Deep Networks
	Regarding Floating Gate Technology
	Regarding other Topics in Network Architectures
	Summary
	References

	Adaptive pulsed laser line extraction for terrain reconstruction using a dynamic vision sensor
	Introduction
	The Dynamic Vision Sensor (DVS)

	MaterialS and Methods
	Hardware Setup
	Calibration
	Laser Stripe Extraction
	Algorithm optimization

	Parameter Settings

	Results
	Extraction Performance
	Terrain Reconstruction

	Discussion
	Acknowledgments
	Supplementary Material
	References

	Robotic goalie with 3ms reaction time at 4% CPU load using event-based dynamic vision sensor
	Introduction
	Materials and Methods: Goalie Architecture
	Dynamic Vision Sensor
	Event-Driven Tracking Algorithm
	Goalie Self-Calibration
	USB Interfaces and Servo Control

	Results
	Conclusion
	Acknowledgments
	Supplementary Material
	References

	Event-driven visual attention for the humanoid robot iCub
	Introduction
	Methods
	Hardware
	Software
	Event Driven Visual Attention—EVA
	Feature extraction
	Saliency map and attention selection
	Ocular movements

	Performance and Benchmark
	First Experiment, Gratings with Different Orientations
	Case A, bright illumination
	Case B, dim illumination

	Second Experiment: Chaotic Pendulum
	Third Experiment: Performance Scaling with Quantity of Information

	Discussion
	Acknowledgments
	Funding
	Supplementary Material
	References

	On the use of orientation filters for 3D reconstruction in event-driven stereo vision
	Introduction
	Neuromorphic Silicon Retina
	Stereo Calibration
	Event Matching
	Retinas Events Matching Algorithm (A)
	Restriction 1: temporal match
	Restriction 2: epipolar restriction
	Restriction 3: ordering constraint
	Restriction 4: polarity

	Gabor Filter Events Matching Algorithm (B)

	3D Reconstruction
	Results
	Hardware Setup
	Calibration Results
	Precision Characterization
	3D Reconstruction
	Pen
	Ring
	Cube

	Conclusion
	Acknowledgments
	Supplementary Material
	References

	Asynchronous visual event-based time-to-contact
	Introduction
	Time Encoded Imaging
	Event-Based TTC Computation
	Event-Based Visual Motion Flow
	Time-To-Contact
	Focus of Expansion

	Experimental Results
	Conclusions and Perspectives
	Acknowledgments
	Funding
	References

	Real-time classification and sensor fusion with a spiking deep belief network
	Introduction
	Materials and Methods
	Deep Belief Networks
	Training a RBM
	Persistent CD and transient weights
	Constructing DBNs by stacking RBMs

	Discrete-Time and Event-Driven Neuron Models
	Training the Network
	Task
	Network Architecture
	Training

	Simulation of an Event-Driven DBN
	Real-Time Implementation
	Neuromorphic visual input
	Multi-sensory fusion
	Neuromorphic Auditory Input

	Results
	Classification Performance
	Generation Mode
	Real-Time Visual Recognition
	Real-Time Sensory Fusion

	Discussion
	Acknowledgments
	Supplementary Material
	References

	Event-driven contrastive divergence for spiking neuromorphic systems
	Introduction
	Materials and Methods
	Neural Sampling With Noisy I&F Neurons
	Stochastic I&F neurons
	Calibration protocol

	Validation of Neural Sampling Using I&F Neurons
	Neural Architecture for Learning A Model of Mnist Hand-Written Digits

	Results
	Event-Driven Contrastive Divergence
	Pairwise STDP with a global modulatory signal approximates CD

	Learning a Generative Model of Hand-Written Digits
	The choice of the number of class neurons Nc
	Neural parameters with finite precision

	Generative Properties of the RBM

	Discussion
	Applicability to Neuromorphic Hardware
	Outlook: a Custom Learning Rule

	Acknowledgments
	References

	Compiling probabilistic, bio-inspired circuits on a field programmable analog array
	Introduction
	Extremely Efficient Stochastic Circuits
	A Programmable Thermal Noise Circuit
	Programming Bernoulli Trials at Telluride Workshop
	Temperature Invariant Bernoulli Trials

	Gillespie's Algorithm for Stochastic Computation
	Gillespie's Algorithm
	Computational Steps in Gillespie's Algorithm
	Expansion to any Dynamical System

	Reconfigurable Analog Hardware for Stochastic Computation
	Stochastic Circuit Architecture

	Chip Measurements and Experimental Results
	Validation of Randomness

	Conclusions and Future Directions
	Acknowledgments
	References

	An adaptable neuromorphic model of orientation selectivity based on floating gate dynamics
	Introduction
	Time-Staggered Winner Take All
	Orientation Selectivity
	Building a Framework for Multidimensional Feature Selectivity
	Orientation Selective Cell Model and Simulation
	Orientation Tuning and Performance Under Abnormal Stimulation
	Analyzing the Effect of Nature Vs Nurture

	Response to Spatial Frequency and Periodic Patterns
	Diffusive Interaction of Cells
	Modification of Orientation Tuning Under Neighborhood Influence
	Buffer Device for Diffusive Coupling
	Simulation of Diffusive Interaction Between Cells

	Results and Discussion
	Acknowledgments
	Supplementary Material
	References

	A mixed-signal implementation of a polychronous spiking neural network with delay adaptation
	Introduction
	Materials and Methods
	Proposed Polychronous Network
	Training and recalling patterns
	Neural network structure

	Design Choice
	Topology
	AER bus

	Analog Implementation
	Analog neuron array
	Analog axon array

	Mixed-Signal Implementation
	Multiplexed analog neuron array
	Synchronization interface circuit
	Address remapping

	Results
	Performance of the Interface Circuit
	Digital Axon Array and Analog Neuron Array
	Delay programming
	Delay adaptation
	Effect of noise
	Capacity for storing spatio-temporal patterns

	Analog Axon Array and Digital Neuron Array
	Analog Axon Array and Analog Neuron Array

	Discussion
	Performance Comparison
	Efficiency of the implementation
	Analog vs. digital implementations
	Comparison with other solutions

	Scaling
	Lessons Learned

	Conclusions
	Acknowledgments
	References

	Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments
	Introduction
	Materials and Methods
	Description of the Leech Biological Heartbeat System
	System Modeling for Hardware Implementation
	State of art
	Choice and presentation of the Izhikevich model

	System Topology
	Topology of one neuron core: architecture and implementation
	Synapse model
	Activity-dependent depression
	Network topology
	Three elementary blocks
	Network machine states

	Results
	Comparison of Biological/Digital Elemental Oscillator
	Comparison of Biological/Digital Segmental Oscillator
	Variation in the Mean Period Depending on One Parameter
	FPGA Resources
	Comparison with Ex-Vivo Rat Spinal Cord Results Using Pharmacological Stimulation

	Discussion
	Acknowledgments
	References

	Dynamic neural fields as a step toward cognitive neuromorphic architectures
	Introduction
	Materials and Methods
	Dynamic Neural Fields: Basic Dynamics and Instabilities
	Coupling Dynamic Neural Fields to sensory systems
	Dynamic Neural Fields of Higher Dimensionality and Couplings
	Coupling the DNF to Attractor Motor Dynamics
	Autonomy and Cognitive Control in DFT
	Learning in DFT
	Memory trace of previous activity
	Learning mappings and associations
	Adaptation

	An Example of an Adaptive Architecture in DFT
	The Scenario and Setup
	The Neural-Dynamics Architecture
	Perceptual DNF
	Visual intention DNF
	Motor intention DNF
	Condition of satisfaction node
	The transformation array
	The visual match DNF

	The Dynamics of the Architecture

	Discussion
	General Discussion

	Acknowledgments
	Funding
	References

	A robust sound perception model suitable for neuromorphic implementation
	Introduction
	Methods
	Network
	Schematic
	Spike timing dependent plasticity
	Hardware implementation
	Frequency modulated stimuli
	FM sweep trials and analysis
	Stimulus Specific Information
	Receiver Operating Characteristics

	Software implementation
	Stimuli derived from speech
	Formant track trials and analysis

	Learning predictions

	Results
	FM Sweeps
	Formant Tracks
	Predicted Patterns of Learning

	Discussion and Conclusion
	Acknowledgments
	Funding

	References

	An efficient automated parameter tuning framework for spiking neural networks
	Introduction
	Methods
	GPU Accelerated SNNs in CARLsim
	Automated Parameter Tuning Framework Description
	Using the Parameter Tuning Interface
	Evolving SNNs with V1 Simple Cell Responses and SORF Formation
	Network Model
	Simulation Details

	Results
	Evolving SNNs with V1 Simple Cell Responses and SORF Formation
	Stability Analysis
	Performance Analysis

	Discussion
	Acknowledgments
	Supplementary Material
	References

