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Editorial on the Research Topic

Metallic Biomaterials for Medical Applications

Biomaterials are natural or artificial materials used to make structures or implants to replace lost or
diseased biological structures to restore form and function. In actual clinical situation, they are used
in the complex environment of body fluid, so the requirements for the structure and properties of
biomaterials are very strict. Biomaterials require great physical and chemical stability, however, some
alloy elements, toxic and biological incompatible, harm the human body and some metals’
mechanical properties don’t match the human body. Therefore, for further improving the
biological and mechanical properties of metallic biomaterials, many attempts have been adopted
to design novel metallic biomaterials and different advanced processing and preparation
technologies have been developed in the content of this topic.

Titanium alloys are widely used for dental and implant materials because of their superior
biocompatibility, corrosion resistance and specific strength compared with other metallic implant
materials. In the aspect of Ti alloys, Liu et al. investigated the antibacterial properties of various
surface nano-modification of Ti implant materials and the related procedures, and the surface nano-
modification of Ti materials were discussed from three aspects: nanostructures formation
procedures, nanomaterials loading, and nano-morphology. Cheng et al. investigated a
biomedical beta type Ti–25Nb–3Zr–2Sn–3Mo alloy plate via cold rolling deformation, and the
alloy plates possessed various mechanical properties owing to the different morphology, size and
volume fraction of α precipitated phases, which would be deemed as a potential material in the
orthopedic field. Cheng et al. also investigated the microstructure evolution and mechanical
properties of metastable beta type titanium alloy (Ti-B12) after different aging treatments. MTT
test with L929 cells showed that the cytotoxicity of Ti-B12 was better than that of Ti-6Al-4V, which
was suitable for biomedical application.

As lightweight alloys with mechanical properties close to human bone and degradable in the
human environment, magnesium alloys have good biocompatibility and are widely used in
load-bearing implants and degradable stents. In terms of Mg alloys, Ibrahim et al. introduced a
Mg/SrP composite coating on Ti-6Al-4V in order to promote the bone tissue healing and
shorten the healing cycle; the results revealed that Mg/SrP coating shows more suitable
degradation rate than pure Mg, with no cytotoxicity and higher proliferation compared
with the culture medium. Qiao et al. fabricated Mg/ZrO2 metal matrix nanocomposites by
friction stir processing (FSP), and the Mg/ZrO2 achieved homogenization, densification, and
grain refinement after FSP, which are due to the grain refinement and Orowan strengthening.
Wu et al. used calcium phosphates (CaPs) coated on the surface of pure Mg through a simple
alkali-hydrothermal treatment, and the CaP coating of Mg favors cell attachment and cell
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spreading, which can endow Mg with higher surface energy
and osteogenesis capability and lower degradation than
pristine Mg.

In order to meet the biological, chemical, and mechanical
properties of actual clinical needs, it is necessary to perform
surface modification treatment on the above-mentioned
metallic biomaterials. Surface treatment methods are very
important methods to modify the physical and mechanical
properties of biomaterials. Xue et al. reviewed the main
physical and chemical surface modification techniques for
Ti related biomaterials, such as plasma spray, PIII, PIII&D,
PVD, CVD, sol-gel and MAO, and future studies were
introduced and should be focused on designing the basic
new methods or the combination of modification methods
to play a synergistic effect and combine their advantages to
conquer the deficiencies. Delannoy et al. developed a thermo-
mechanical strategy to create a radial elasticity gradient in a β
metastable Ti-Nb-Zr alloy, and shot-peening enabled to
locally induce martensitic transformation on surface, and a
decrease in indentation elastic modulus; this combination of
material and process could be suitable to produce dental
implants with mechanically enhanced biocompatibility. Yi
et al. studied the characteristics of passive films formed on
as-cast Ti-6Al-4V before and after transpassivation by
electrochemical methods, which advance the understanding
of as-cast Ti-6Al-4V polarized under different potentials for
potential biomedical applications.

In addition tomainstream titanium alloys andmagnesium alloys,
efforts should be made to develop novel metallic biomaterials. In the
aspects of new alloys andmanufacturingmethods,Ma et al. provided
an insight into the development of Ti-based high entropy alloy
(HEA), and the emergence of HEAs has brought great room for
development in the field of medical implant materials. Shi et al.
reviewed the current scenery of functional gradient metallic
materials (FGM) in the biomedical field, specifically its dental
and orthopedic applications; any improvement in FGM can lead
to big steps toward its industrialization and most notably for much
better implant designs with more biocompatibility and similarity to
natural tissues. Xu et al. investigated the copper-containing alloy as
immunoregulatory material in bone regeneration via mitochondrial
oxidative stress, and the copper-containing metal promoted the
evolution of callus through the generation of type H vessels during
the process of bone repair by upregulating the expression of PDGF-
BB derived from M2a macrophages. Attarilar et al. reviewed the
related factors in toxicity of nanoparticles such as size, concentration,
etc. with an emphasis onmetal andmetal oxide nanoparticles, which
can highlight their potential hazard and the advancement of green
non-cytotoxic nanomaterials with safe threshold dose levels to
resolve the toxicity issues.

With the maturity of additive manufacturing technology,
we should focus on developing complex, gradient and multi-
scale structures to customize medical devices. Some special
structures were utilized to realize the medical application. Lv
et al. reviewed the research progress of porous metal scaffolds,
and introduced the additive manufacturing technology used
in porous metal scaffolds, which provided unprecedented
opportunities for production of customized biomedical
implants. Zou et al. studied a novel design of
temporomandibular joint (TMJ), and an artificial TMJ
prosthesis designed with a porous structure on the
condylar neck region for lateral pterygoid muscle (LPM)
attachment was fabricated by a 3D printed Ti alloy; The
TMJ prosthesis can help LPM attach to its porous titanium
scaffold structure area for future function.

The contributions of above work were summarized as
following: the important metallic biomaterials, especially Ti
and Mg alloys; the surface treatments on biomaterials; some
new alloys and manufacturing methods; and some special
structures for special application. This research topic focused
on the recent development of metallic biomaterials for medical
applications, and all results would promote the development of
metallic biomaterials.
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Thousands of different nanoparticles (NPs) involve in our daily life with various origins
from food, cosmetics, drugs, etc. It is believed that decreasing the size of materials
up to nanometer levels can facilitate their unfavorable absorption since they can pass
the natural barriers of live tissues and organs even, they can go across the relatively
impermeable membranes. The interaction of these NPs with the biological environment
disturbs the natural functions of cells and its components and cause health issues. In
the lack of the detailed and comprehensive standard protocols about the toxicity of NPs
materials, their control, and effects, this review study focuses on the current research
literature about the related factors in toxicity of NPs such as size, concentration, etc. with
an emphasis on metal and metal oxide nanoparticles. The goal of the study is to highlight
their potential hazard and the advancement of green non-cytotoxic nanomaterials with
safe threshold dose levels to resolve the toxicity issues. This study supports the NPs
design along with minimizing the adverse effects of nanoparticles especially those used
in biological treatments.

Keywords: non-cytotoxic materials, nanomaterials, cytotoxicity, nanomedicine, metal oxide nanoparticles,
nanotoxicology

INTRODUCTION

Nanoparticles (NPs) are defined as materials with two dimensions in the range of 1–100 nm (10−9

m), while nanomaterials are determined as materials possessing just one dimension in that range
according to ASTM E2456 standard (ASTM, 2012). These NPs can have a variety of shapes with
different aspect ratios including nanorods with <10 aspect ratio, spherical, cubical, and other
possible shapes. Owing to this nanometric size level, NPs can have versatile size-dependent and
special properties such as catalytic, electrochemical, optical, magnetic features as well as increased
surface to volume ratios which in turn make them the unique materials for modern applications.
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Metal oxide nanoparticles are amidst the most widely used NPs
in a variety of applications including cosmetics (Waghmode
et al., 2019), drug and medicine industry (Klȩbowski et al., 2018),
detergents, agricultural systems (Chen, 2018), environment
(Kanchi and Ahmed, 2018), antibacterial agents (Mordorski and
Friedman, 2017), paints and textiles (Vigneshwaran et al., 2010).
Nowadays, some metallic NPs including gold NPs (Au NPs),
silver NPs (Ag NPs), and metallic magnetic NPs such as iron-
oxide NPs (IONPs) are frequently utilized and improved in order
to intensify their functions as diagnostic and remedial agents.
Table 1 lists some applications of the common metallic NPs.

Metallic NPs’ design and their modification can be done
through versatile surface functionalities so they can be
conjoined with antibodies, ligands, and drugs, consequently
raise their potential applications in biotechnology, drug and
gene delivery, magnetic separation and imaging, besides the
favorable characteristics they have a potential to cause harmful
effects if they enter to live biological systems and tissues (Yang
et al., 2018; Gu et al., 2019; Liu et al., 2019; Wang L. et al.,
2019). Unfortunately, there are many ways for unwanted and
spontaneous entry of NPs to the body system, whether through
the air we breathe or the water we drink, also foods, medicines,
clothes, and cosmetics are no exception. The main entry routes
can be considered as inhalation through the respiratory tract,
by transudation through the skin and by ingestion through the
digestive tract (Zoroddu et al., 2014). Therefore, nanomaterials
released into the body environment seem to be inevitable and
may have some unforeseen harmful effects hence it is of crucial
importance to study their toxicity-related issues. This subject
becomes of more paramount importance if we know that their
nanoscale size facilitates their penetration to different live tissues
and enables possible interaction with the same sized organs like
cells, proteins, and antibodies also they can accumulate in organs
and tissues as a foreign body (Nemmar et al., 2002; Nel et al.,
2006). This arises from the high surface area for example in the
case of two NPs with the same mass, smaller NPs have a larger
specific surface area and thus provide a more available area to
cellular interactions with nucleic acids, proteins, fatty acids, and
carbohydrates (Huang et al., 2017). Considering the so-called
issues, a new branch of research was introduced and entitled
“Nanotoxicology” which deals with the nanomaterials toxicity
(Pacheco et al., 2007). Unfortunately, there have not been yet any
comprehensive and precise standard protocols for cytotoxicity
of various materials, however, about the NPs, the concentration,
composition, size, charge, and other physicochemical factors are
considered for material selection and their possible utilization.
Various methods are used in order to estimate the cytotoxicity
levels of NPs which is categorized into two main groups of in vitro
and in vivo methods. In this regard, the in vitro group includes
dye exclusion assays (trypan blue exclusion and erythrosin B
dye exclusion assays), colorimetric assays (MTT, WST-1, neutral
red uptake and lactate dehydrogenase assays), fluorescence-
based assays (Alamar blue and protease-based viability assays),
luminometric methods (Adenosine triphosphate based method),
cell viability test in real-time (estimation of oxidative stress, ROS
level measurement, lipid peroxidation, glutathione estimation),
apoptosis based assays (Annexin-V FITC/propidium Iodide

and TUNEL assays. For determining the level of genotoxicity
of nanoparticles in vitro, micronucleus formation, cytokinesis
block micronucleus, flow micronucleus, and comet assays can
be utilized. In vivo characterization of toxicity can be done
through quantitation and bio-distribution of NPs from tissues,
electron microscopy and detection of NPs accumulation, liquid
scintillation counting, and NPs’ quantification by drug loading
and release. Also, the whole body imaging-based methods are
utilized for estimation of NPs’ toxicity and bio-distribution such
as in vivo optical imaging, computed tomography, magnetic
resonance, and nuclear medicine imaging, for more information
about cytotoxicity assessment, the readers can refer to (Shah et al.,
2020). The main objective of these nanotoxicology experiments
and studies is the comprehensive understanding in relation to
the toxicity of quantum size effects, shape, and high surface area
to volume ratio of nanomaterials in biological environments. In
this regard and considering the generally used metal and metal
oxide NPs, this review paper focuses on the nanotoxicology of
these materials with special attention to the physical properties of
NPs and their effects on toxicity. Also, the involved mechanisms
in relation to nanotoxicology will be addressed.

MECHANISMS OF NANOTOXICOLOGY

A lot of toxicity mechanism is involved with NPs and the most
common types can be listed as below and are shown in Figure 1.
As shown in Figure 1, NPs have the ability to interact with
most of the cell components from DNA and various proteins
to mitochondria, they can lead to reactive oxide species (ROS)
formation and affect the different functions of cell. In this
regard, DNA damage, lysosomal hydrolases, ROS generation,
mitochondrial dysfunction, apoptosis, cell membrane damage,
cytoplasm impairment, alterations in ATP, and permeability of
cell membrane, accumulation of NPs in Golgi and variations in
proteins all can be attributed to NPs interaction.

Reactive Oxygen Species Formation
The imbalance between production and accumulation of oxygen
reactive species (ROS) leads to the occurrence of oxidative stress
in cells and live tissues. ROS generates by mitochondria during
both physiological and pathological conditions and they are
considered as the metabolic by-products of biological systems
(Pizzino et al., 2017). They can also be referred to as free radicals
and have favorable functions at low or moderate concentrations,
they fight with pathogens and are necessary to cell signaling and
synthesize various cellular structures and proteins (Dröge, 2002).
However, in high concentrations, oxidative stress (OS) condition
takes place in which ROS suppress the live cells and organs’ ability
to detoxify and unfortunately, it can damage proteins, lipids,
and nucleic acids, and severely leads to cell death and disease
development including cancer (Katerji et al., 2019).

Oxidative stress biomarkers can be categorized in two
groups of (a) ROS modified molecules generation and (b)
deterioration or derivation of enzymes or antioxidants, the
trace of these biomarkers can be detected in body fluids
(Tsukahara, 2007). Although due to its unstable condition it
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TABLE 1 | Application of some metallic and metal oxide nanoparticles.

Metals Application of metallic and metal oxide nanoparticles

Titanium dioxide (Ti) Solar cells, food wraps, medicines, pharmaceuticals, lacquers, construction, medical devices, gas sensing,
photocatalyst, agriculture, paint, food, cosmetic, sterilization, antibacterial coatings (Waghmode et al., 2019).

Zinc and Zinc oxide (Zn) Medical and healthcare goods, sunscreens, packaging, UV-protective materials such as textiles.

Aluminum (Al) Automobile industry, aircraft, heat shielding coatings, military application, corrosion, fuel additive/propellant.

Gold (Au) Sensory probes, cellular imaging, electronic conductors, drug delivery, therapeutic agents, organic photovoltaics,
catalysis, nanofibers, textiles.

Iron (Fe) Magnetic imaging, environmental remediation, glass and ceramic industry, memory tape, resonance imaging, plastics,
nanowires, coatings, textiles, alloy and catalyst applications.

Silica (Si) Drug and gene delivery, adsorbents, electronic, sensor, catalysis, remediation of the environment pollutants, additive in
rubber and plastic industry, filler, electric and thermal insulators.

Silver (Ag) Antimicrobial coatings, textiles, batteries, surgery, wound dressings, biomedical devices, photography, electrical
devices, dental work, burns treatment.

Copper (Cu) Biosensors and electrochemical sensors, plastic additives like anti-biotic, anti-microbial, and anti-fungal agent, coatings,
textiles, nanocomposite coating, catalyst, lubricants, inks, filler.

Cerium (Ce) Chemical mechanical polishing/planarization, computer chip, corrosion, solar cells, fuel oxidation catalysis, automotive
exhaust treatment (Dhall and Self, 2018).

Manganese and its oxides (Mn) Molecular meshing, solar cells, batteries, catalysts, optoelectronics, drug delivery ion-sieves, imaging agents, magnetic
storage devices, water treatment and purification (Hoseinpour and Ghaemi, 2018; Wang W. et al., 2019).

Nickel (Ni) Fuel cells, membrane fuel cells, automotive catalytic converters, plastics, nanowires, nanofibers, textiles, coatings,
conduction, magnetic properties, catalyst, batteries, printing inks.

FIGURE 1 | The toxicity mechanisms induced by nanoparticles.

is very hard to determine the exact level of ROS, its cellular
levels can be measured through various methods such as
fluorogenic and fluorescent probes, also hydrogen peroxide
(H2O2), hydroxyl radicals (OH−), and peroxyl radicals (ROO−)
can be estimated by staining methods. In addition, ROS
molecules like hydroperoxides (R-OOH) can be quantified
by performing the (D-Roms) test through reactive oxygen

metabolites derivatives. ROS with a potent chemically reactive
characteristic contain oxygen and can be found as superoxides,
peroxides, hydroxyl radical, singlet and alpha-oxygen, Figure 2
schematically shows ROS production by NPs, it was believed that
some NPs are photosensitizers and they facilitate ROS formation
with the light assistance but for the case of tissues which are
not exposed to daylight other mechanisms are involved such as
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FIGURE 2 | NPs induced ROS production in cells, transition metal ions (Men+), or organic compounds may act as initiators of metabolic reactions that generate
ROS and they can be released from particle impurities and catalyzing Fenton-type reactions. Also, in some metallic photosensitizer NPs light exposure facilitates the
ROS production. Reproduced from Kehrer and Klotz (2015) with permission.

organic material released from combustion derived NPs. Also,
transition metal ions can be released from particle impurities
and catalyzing Fenton-type reactions, for more details about ROS
production see Kehrer and Klotz (2015), Saliani et al. (2016),
and Flores-López et al. (2019). The ROS produced as one of the
natural byproducts of the normal oxygen metabolism and they
affect the cell signaling and homeostasis (Devasagayam et al.,
2004). In addition to positive functions of ROS formation in
cells, their excess generation by external inputs such as NPs can
also lead to some harmful effects like apoptosis (programmed
cell death) and may induce damages on RNA or DNA (Wan
et al., 2012), lipid peroxidation, amino acids oxidation in proteins
and deactivation of enzymes by oxidation of co-factors are other
unfavorable results of NPs induced ROS generation (Brooker,
2018). The mechanism of ROS production by metallic NPs
depends on particle size, shape, surface area, and chemistry. ROS
have a key role in multiple cell functions and its biology. ROS
generation plays a crucial role in toxicity issues aroused from
NPs application, as well as other related phenomena like cellular
signaling fluctuations involved in cell death, proliferation, and
differentiation (Dayem et al., 2017).

Cell Damages Through NPs Induced
Membrane Perforation
Some metallic NPs like Au NPs can be used in order to maintain
unspecific attachment to the cell membrane and activated the
interim and cell membrane permeabilization in a spatial manner
(Heinemann et al., 2013). Unfortunately, this characteristic can

also cause cell damages, for instance Ag NPs with lower than
10 nm diameter have a potential to bind with the cell walls
in Escherichia coli bacteria and finally leads to cell death
(Gogoi et al., 2006). It was observed (Gopinath et al., 2008)
that Ag NPs are able to cause cell apoptosis and damage
the mitochondrial membrane during cell apoptosis with cell
membrane perforation intervention.

Cytoskeleton Components Damage
Cytoskeleton acts as a footstone of the cell architecture hence
the NPs’ influence on the cytoskeleton network must be carefully
considered. Actin and intermediate filaments, microtubules,
and different types of proteins are among the most important
components of the cytoskeleton (Ispanixtlahuatl-Meráz et al.,
2018). Despite the proven non-toxicity of TiO2 in most studies
(Ding et al., 2016; Zhang et al., 2017) it was reported that TiO2
NPs led to actin and tubulin disassembly and some alterations
in the cytoskeleton and its proteins (Vuong et al., 2016). TiO2
NPs treated epithelial cell line BEAS-2B confirms the expression
alterations in mRNAs and miRNAs which is possibly in relation
to the cytoskeleton (Thai et al., 2015). The epithelial cells co-
culturing and their proteomic analysis indicated that Ag NPs
readjust different types of cytokeratins and gelsolin, in contrast to
α- and β-tubulin together with actin which were downregulated,
and strong dissolution of Ag confirmed the strong effects of
NPs rather than Ag ions (Georgantzopoulou et al., 2016). The
ZnO NPs can be internalized by endosomes and in turn move
to lysosomes, also the existence of zinc ions causes cytotoxicity
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and actin rearrangement in cell bundles. Besides, this effected
tubulin network by ZnO NPs can generate wrapped bundles in
the periphery of the nucleus and these improper chromosomes
and spindles can subsequently distribute all over the cytoplasm
region and cause harmful effects (García-Hevia et al., 2016). Xu
F. et al. (2013) reported the cytoskeleton component failure like
and filamentous actin (F-actin) and the β-tubulin Ag NPs treated
samples, it was also demonstrated that they led to the dramatic
reduction in the number of synaptic clusters of the presynaptic
vesicle protein synaptophysin, and the postsynaptic receptor
density protein PSD-95 and lastly Ag NPs cause mitochondria
dysfunction in rat cortical cells.

DNA and Transcription Damage by NPs
and Mutagenesis Acceleration
Application of Co NPs within the non-toxic dose range
and their exposure to human lung epithelial cell line A549
demonstrated the ROS generation which finally ended to
DNA damage. Subsequently, this DNA damage led to ataxia-
telangiectasia mutated (ATM) protein activation and increase
the phosphorylation of p53 and Rad 51 protein expression,
TiO2 NPs did not indicate any considerable cytotoxic effects.
In addition, Co NPs induced DNA damage is able to actuate
various cellular reactions such as apoptosis, cell cycle arrest,
and importantly the DNA repair (Wan et al., 2012). The effects
of Cu NPs on transcriptional responses of zebrafish embryos
confirmed the up-regulation of genes in the healing of wounds
and stimulus reactions but it was seen that the genes which
are responsible for phototransduction and metabolisms were
acted in downward fashion (Zhang et al., 2018). It seems that
Cu NPs together with Cu2+ ions induce gene transcription
damages to Zebrafish embryos (Zhang et al., 2018). The study
about the mitotic and meiotic effects of Cu and CdS NPs
indicated higher degrees of cytotoxicity in Cu NPs than CdS
ones, the mitotic aberrations can be in the result of several
phenomena such as (1) DNA depolymerization and sticking of
chromosomes bundles, (2) chromosome breakages leading to
the generation of rings, bridges, fragments, and micronuclei,
(3) prevention of the centromeric division which leads to
diplochromosomes formation, (4) spindle apparatus variations
which promotes the polyploid cells and laggards. Different
mitotic cycles have the potential to initiate the meiotic cell
division, NPs inducing aberrations seem to be significant since
their consistent changes can cause heritable alterations in the
genotype (Kumbhakar et al., 2016).

Mitochondria Damage
Mitochondria is among the most important organelles of the
cells; it chiefly engages in energy supply and differentiation
procedure and unfortunately it can be mischievously affected
by NPs related toxicity. Mitochondrial permeability transition
(PT) occurrence is one of the prime causes of cell death in
which a sudden permeability increase in the inner mitochondrial
membrane to small size solutes leads to apoptosis, for example,
Au NPs with 1.4 nm diameter showed to cause oxidative stress
leading to mitochondrial PT in which the higher permeability

of mitochondrial membrane toward 1.4 nm Au NPs triggered
the cell death by necrosis (Pan et al., 2009). Gallud et al.
(2019) also proved the mitochondrial dysfunction in ammonium-
modified Au NPs, these cationic Au NPs stimulated autophagy in
macrophage-like reporter cells, and cell death can be deteriorated
by autophagy inhibition and in general mitochondria-dependent
effects of cationic Au NPs induce the quick perish in cells. Yu
et al. (2013) reported that ZnO NPs have a capability to affect the
mitochondrial membrane potential, also mitochondrial ATP level
was significantly diminished in the presence of these ZnO NPs. In
addition, interruption of mitochondria, dysfunction, and fall of
mitochondrial membrane potential after ZnO NPs treatment to
normal skin cells was proven and these NPs adversely influence
the mitochondrial network and biogenesis (Yu et al., 2013).
Iron-based NPs like Fe3O4 NPs also can lead to dysfunctions
in the mitochondrial activity, increase the ROS production in
cells and leads to the draft decrease of ATP level even it can
induce autophagy by reduction of cytoplasmic energy (Zhang
et al., 2016). These harmful effects are also be seen in TiO2 NPs
and it was reported that TiO2 NPs can cause severe mitochondrial
dysfunction, the increment of ROS levels, reduction of ATP
generation, mitochondrial phospholipids and metabolic fluxes
(Chen et al., 2018). TiO2 NPs can also affect the dynamic
of the mitochondria and leads to its dynamic imbalances and
damages in HT22 Cells and it can also activate the mitochondrial-
related apoptosis pathways (Zhao et al., 2019). In the Ag NPs
treatment with a diameter of 10 nm it was seen that these NPs
are able to impair mitochondrial function and in turn induce cell
dysfunctions (Bressan et al., 2013).

The Effect of NPs on Lysosomes
Lysosomes are defined as membrane-bound organelles
comprising hydrolases that act in the deterioration process
of macromolecules transported by various pathways including
the endocytic, phagocytic, and autophagic ones (Luzio et al.,
2014) and they are considered as acute intracellular organelles
controlling the cytotoxicity of nanomaterials (Fröhlich, 2013).
Metallic NPs like Ag NPs can be taken up by different cell types
and they are able to deposite as agglomerates or aggregates in
endosomes or lysosomes of the cytoplasm (Guo et al., 2015;
Xu et al., 2015). It was shown (Miyayama and Matsuoka, 2016)
that Ag NPs exposure on cells can lead to a reduction of Ag
dissolution rate (pH-dependent behavior) and MT expression
which in turn induce damages on pulmonary epithelial cells.
The lysosome impairment was also seen in Fe3O4 NPs (Zhang
et al., 2016), metallic NPs can lead to ROS production and its
transportation into lysosomes which finally interfering with
the lysosomal hydrolases and induce the autophagy process
(Halamoda Kenzaoui et al., 2012). It was seen that TiO2 NPs can
be responsible for the increment of lysosomal activities mainly
caused by oncogenic transformations (Zhu et al., 2012; Lammel
et al., 2019). Also, the strength of lysosomal membrane can be
significantly decreased by TiO2 NPs since they could easily get
access into digestive cells, in the next step they can accumulate in
lysosomes and then released to the alveolar lumen by apocrine
extrusion of residual bodies or by holocrine elimination of
dead cells (Jimeno-Romero et al., 2016). The Au NPs can also
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decrease the lysosomal functions by alkalization of the lysosomal
lumen which in turn induce the autophagosomes accumulation
and leads to a reduction of cellular degradative capacity and
low efficiency in damaged mitochondria release. In fact, these
unstable cellular changes absolutely have an influence on the cell
functionality, for instance in Au NPs-marked cells, cell migration
and invasion were hindered (Manshian et al., 2018).

PHYSICOCHEMICAL PROPERTIES OF
NANOPARTICLES

The potency of NPs to enter certain organs across specific
pathways and their propensity whether to be accumulated in
cell organelles or transported to other organelles is affected
by both physical and chemical properties of related NPs. In
addition, the physicochemical properties of NPs have a great
impact on their toxicity since they can change the mechanism
of toxicological response and NPs’ accumulation, uptake, and
translocation (Zoroddu et al., 2014). For instance, the same
material with different shapes and sizes can considerably change
the response of live tissue and identify the destiny of NPs as
a safe or toxic one. The important physicochemical properties
related to the cytotoxicity of nanomaterials are morphological
features like size, shape, roughness and surface area, uniformity
of agglomerates and the aggregate formation, mass of NPs, exact
chemical composition, concentration or dose of NPs, surface
charge, hydrophilicity, solubility and geometrical properties all
can influence the behavior of material (Zoroddu et al., 2014).
Figure 3 schematically shows some major physical properties
related to the toxicity of metal-based NPs in different categories
of dimension, agglomerate condition, shape, and size of NPs and
the surface charge, also each of which consisted of various states
that finally led to toxicity or safety of NPs.

Size-Dependent Toxicity in Nanoparticles
The NPs’ Size and surface area act as a key factor in its interaction
with live tissues, the nanometric size level of NPs are almost in the
same range of protein globules ranging from 2 to 10 nm, DNA
helix about just two nanometers and cell membrane thickness
with 10 nm, so they can easily pass the barriers of cells and
enter to cell organelles (Sukhanova et al., 2018). It was shown
(De Jong et al., 2008) that the distribution of gold NPs in organs
are highly size-dependent, an obvious difference was detected
between the distribution of the 10 nm and the larger particles. Ten
nm NPs were found in most of the organs whereas the larger NPs
distribution was seen in the limited organs of rats. Actually, gold
NPs with 6 nm size can freely enter to cell nucleus while these NPs
in the size range of 10–16 nm can only be found in cytoplasm and
cell membranes which shows the higher toxicity of gold NPs with
less than 10 nm size (Huo et al., 2014). Also, it was reported (Pan
et al., 2007) that gold NPs with 15 nm size is about sixty times
less toxic than 1.4 nm NPs especially for fibroblasts, epithelial
cells, macrophages, and melanoma cells. In addition, NPs size
can effectively determine and control the interactions between
transport and cell defense systems which finally influences the
kinetics of NPs distribution and concentration. It is believed that

(Zhang S. et al., 2015). NPs with smaller than 5 nm diameter
generally can defeat cell entrance barriers and they are able to pass
through cell membranes by translocation, while the larger NPs get
into the cells by phagocytosis and other possible transportation
mechanisms. The in vivo experiments (De Jong et al., 2008)
confirmed that large NPs can be easily recognized by the immune
system and prevents their entrance to the body. The surface area
as one of the important factors in NPs cytotoxicity warrants the
effective adsorption of NPs on the surface of cell organelles.

The Effect of Nanoparticles’ Shape on
Toxicity
Nanoparticles can have a variety of shapes and geometries
including spheres, ellipsoids, cylinders, sheets, cubes, spikes, and
rods which considerably affect the toxicity. In this relation, the
round-shaped NPs are more susceptible to endocytosis than
NPs with fiber and tube geometry (Champion and Mitragotri,
2006). Also, it was indicated that (Zhao et al., 2013) plate-like
and needle-like NPs induce larger necrosis proportions than
other spherical and rod-like NPs since these shapes have more
capacity to induce physical damages to cells and live tissues by
direct contact. In addition in gold NPs, geometry and shape of
the NPs have an impact on the accumulation kinetics and its
excretion and only star-like shapes can be stored in the lung,
also it was confirmed that shape and geometrical variations do
not considerably increase their chance to pass the blood-brain
barriers (Talamini et al., 2017).

Chemical Composition
Along with other critical factors like shape and size, the
chemical composition also must be considered with full attention.
Inorganic NPs with the same physical condition but distinct
chemical composition confirmed to have different toxicological
behaviors. One of the examples is the different toxicity of SiO2
and ZnO NPs with 20 nm size in which SiO2 induce oxidative
stress while ZnO influences the DNA structure (Yang H. et al.,
2009). The induced toxicity related to chemical composition
mainly arises from metallic ions’ leakage into cells, also some of
these metallic NPs are actually has a toxic nature such as As, Pb,
Cd, Hg, and Ag since they can damage the cells (Roane et al.,
2009). On the other hand, some metals like Fe and Zn are useful
from the biological aspect of view but they can be harmful at
high concentrations and cause toxicity reactions. Most of the
mentioned issues can be solved by coating the NPs cores with
polymeric shells, silica layers, or new NPs synthesis methods with
non-toxic compounds which can lead to enhanced safety and
chemical stability against metal ionic leakages and degradations
(Soenen et al., 2015).

The Effect of Crystal Structure on the
Toxicity of NPs
It was shown that the different crystal structures of the same
NPs can make alterations in the toxicity response. One of the
good examples is TiO2 owing to its various crystal structures
entitled rutile (TiO2 with prism shape), anatase (octahedral
crystals), and brookite (orthorhombic crystals). It was reported
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FIGURE 3 | Some physical properties affecting the nanotoxicology of metal-based nanoparticles. Reproduced from Buzea et al. (2007) with permission.

(Gurr et al., 2005) that 200 nm TiO2 NPs with rutile structure
caused hydrogen peroxide and oxidative DNA damage, lipid
peroxidation, micronuclei formation, and the signs of abnormal
chromosome segregation during mitosis process while in the
anatase form there was not any considerable toxicity.

The Effect of Surface Charge on Toxicity
Ionic charges can affect the interaction between the NPs with cells
hence having a great impact on toxicity related mechanisms. The
surface charge of NPs can be described by zeta potential which is
explained as the potential variation among the mobile dispersion
medium and the stationary layer of the dispersion medium that
is in attachment with the dispersed particle (Lu and Gao, 2010).
Figure 4 schematically shows the zeta potential.

The movement of particles in a fluid cause a net surface
charge generation which can be defined by zeta potential hence
the constancy of particles dispersion can be determined from
zeta potential, NPs with a zeta potential value higher than
130 mV or lower than 230 mV are unlikely to aggregate (Khan,
2020), while NPs with lower zeta potential values are prone
to stick to each other, entitled as aggregation in which the
particles are firmly bonded, or agglomeration if the particles
are weakly bonded due to van der Waal’s forces. It was proved
that the physical interaction between cellular membrane and
NPs is mainly governed by surface charge of NPs and it
was also indicated that other toxicity factors like shape and
size of NPs have minimal impact on the toxicity of Ag NPs
unless the electrostatic barrier between the NPs and cells are
overcome. It was shown that positively charged coated Ag NPs
are more toxic than that of the negatively charged NPs (El

Badawy et al., 2011). Thevenot et al. (2008) demonstrated that
negative charged COOH treated TiO2 NPs had not an impact
on the cell viability because they can easily be absorbed into
the cells without any membrane binding. In fact, the positively
charged particles are more toxic and the variance surface charge
determines the cellular uptake, the positively charged ZnO NPs
show increased toxicity values compared to negatively charged
NPs (Kim et al., 2014).

The Effect of NPs Solubility
The metallic NPs that have penetrated the cell is a source for
supplying the metal ions and have the potential to constantly
release these ions to cytoplasm environment. This metallic ion
release is directly dependent on the NPs’ dissolution rate (Khan,
2020). Despite the low dissolution, some metallic ions can show a
very toxic behavior in physiological mediums, for example, ZnO
NPs with just 10 mg/L dissolved zinc are highly toxic because
of its critical concentration and dose range (Khan, 2020) so they
should be used in the safe range and the minimum allowed limit
must be considered. Horie et al. (2009) reported that NiO NPs
have more activity compared to NiO fine particles because the
NPs can release higher amounts of Ni2+ in the medium while fine
particles do not have this capability. In addition, again because
of this solubility effect of metallic ions cupric oxide CuO NPs
are considerably more toxic than the same amount of CuCl2
(Karlsson et al., 2008). It was believed that NPs have higher
solubility rate than the bulk materials, this finding can only be
correct for NPs in the special size condition (less than 100 nm
size) hence particle sizes more than 100 nm fail to enhance the
saturation solubility in the low solubility compounds, even if
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FIGURE 4 | Schematic representation of the zeta potential zone and the electric double layer surrounding the charged nanoparticles. Reproduced from Khan, 2020.

TABLE 2 | Effect of particle size on the solubility behavior and dissolution rate
(He, 2009).

Size of particle Solubility ratio (S/S∞)* Variations in dissolution rate

10 µm 1 No considerable effect

1 µm 1.01 10-fold increase

100 nm 1.13 113- fold increase

10 nm 3.32 3320-fold increase

(S/S∞)*: the ratio of solid solubility to be dissolved with that of the substance having
infinitely large solubility.

the rate of dissolution is increased, Table 2 shows this situation
in more details.

TOXICITY OF COMMON METALLIC AND
METAL OXIDE NPs

The toxicity phenomenon is a very complicated issue that is
dependent on lots of physicochemical parameters, hence different
metallic NPs with their special nature would have various toxicity
mechanisms and indicate alterations in toxicity amount. It
was known that usually as the atomic number of the element
increases, cytotoxicity increases (Huang et al., 2017), possibly due
to band-gap energy. Also, it was shown that different materials
activate certain toxicity mechanisms. In this relation, the present
study discusses the involved nanotoxicology mechanisms of

common metallic and metal oxide NPs including Ti, Ag, Au, Zn,
and Cu, and their effects on biological environments.

Titanium Dioxide TiO2 NPs Toxicity;
in vitro and in vivo
Titanium oxide NPs are among the most manufactured NPs
with approximately 10,000 tons yearly production, owing to its
unique properties such as suitable strength and Young’s modulus
(Ansarian et al., 2019; Attarilar et al., 2020), biocompatibility
(Attarilar et al., 2019), corrosion resistance (Gode et al.,
2015), solubility properties, surface structure, and the related
aggregation manner so it has a lot of applications in industry as
listed in Table 1. This wide use of TiO2 NPs and its post disposal
in the environment may arise the health and ecosystem issues
hence its impact on live organisms in vitro and in vivo must be
studied and considered.

The impact of TiO2 NPs’ shape on toxicity was examined in
BEAS-2B cells, the shape of NPs was selected as bipyramids, rods,
and platelets. It was seen that the rod-shaped NPs induced the
most amount of toxicity, but in the platelets the genotoxicity
and oxidative DNA damage were seen and their accumulation
was higher than the rod and bipyramid-shaped NPs (Gea et al.,
2019). It seems that among different crystal structures of TiO2,
the anatase form has more toxicity. De Matteis et al. (2016)
indicated that titanium ions are more prone to release in anatase
rather than rutile form, also anatase form leads to more ROS
production in MCF-7 cell line. Consequently, anatase influences
the mitochondrial membrane and is more prone to activate the
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apoptosis pathway. TiO2 NPs treated Caco-2 cell indicated the
affected intestinal epithelium layer after 24 h exposure and the
cell viability shows the 13% reduction compared to the control
sample (Pedata et al., 2019). Transmission electron microscope
(TEM) observations showed that TiO2 NPs were selectively
accumulated in Caco-2 monolayers, as indicated in Figure 5.
Also, it was proved that titanium ions have the potential to trigger
the production of the pro-inflammatory cytokines and led to
some toxic effects on the intestinal epithelium layer (Pedata et al.,
2019). Experiments on the A549 cell line (human lung epithelial
cells) confirmed the significant cytotoxic effects of citrate-coated
TiO2 NPs also the DNA damage experiments by comet assay
indicated the increasing genotoxic effects in these citrate coated
NPs. In fact, variation in the physicochemical properties of NPs
by variation in the surface of coating affected the NPs’ toxicity
(Stoccoro et al., 2017).

An in vivo study about TiO2 NPs was done by Fabian
et al. (2008), TiO2 NPs (<100 nm) were injected to Wistar
rats. They did not find any sign of TiO2 NPs accumulation
in brain and lymph nodes, blood cells, and plasma, the most

bioaccumulation of NPs was seen in the liver and lower values
of NPs were detected in the kidney, lung, and spleen. TiO2
NPs injection into rats at a moderate dose of 20 mg/kg
for 20 days had some effects on liver including congestion,
prominent vasodilatation, and vacuolization that finally led to
liver dysfunction, TiO2 NPs injection at high doses (1387 mg/kg
body weight) led to mortality of rats after 2 days of injection
whereas the low dose injections (in the range of 10 mg/kg
body weight) induced toxicity related signs such as decreased
water and food consumption, increased number of white blood
cells (Ben Younes et al., 2015). Xu J. et al. (2013) showed
that TiO2 NPs treatment induced some damages in the kidney,
lung, brain, spleen, and liver of rats but no considerable
pathological effects were detected in rats’ heart. In another
study, the rutile TiO2 NPs treated rats indicated normal external
lung morphology while TiO2 NPs in crystalline form with 80%
anatase and 20% rutile content showed pulmonary toxicity
(Abdelgied et al., 2019). Briefly, it can be said that shape,
higher dose, crystalline structure, and phases have the potential
to cause toxicity in both in vitro and in vivo studies hence

FIGURE 5 | Transmission electron microscope micrographs of TiO2 NPs interaction with cultured Caco-2 cells, (A–C) Bright field optical microscopy analysis of
Caco-2 cells cultured (A) without, (B,C) with 500 µg/mL TiO2 NPs. Black arrows indicate TiO2 NPs accumulation observable on the surface of cells as well as in the
cytoplasm. (D–F) TEM analysis of Caco-2 cells cultured with (E,F) or without (D) 500 µg/mL TiO2 NPs. Black arrows in (E,F) indicate TiO2 NPs accumulation. (G,H)
The ultrastructural appearance of Caco-2 cells cultured with 500 µg/mL TiO2 NPs (G) with the respective map of Ti localization (ESI analysis) is shown in panel (H).
(I) Electron energy loss spectrum (EELS), withdrawn from the same sample regions of (G,H), is shown. A peak at 25 eV compatible with the TiM2,3 edge electron
energy loss was detected. Adapted from Pedata et al. (2019) with permission from Elsevier.
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the careful control of TiO2 NPs would be led to more safe
utilization of these NPs.

Silver Nanoparticles and Their Toxicity
Silver as a noble metal in nanoparticle condition is the most
widespread antibacterial agent, also Ag salts are utilized as agents
for the treatment of different bacterial infections. Consequently,

Ag NPs are vastly utilized as bactericides due to its attainment
in antibiotic resistance by various bacteria (Sintubin et al., 2012).
Ag NPs have the potential to attach to the cell membrane
of bacteria or fungi and induce damages on cell membrane
structure, intracellular components leakage and in the end cell
death (Yamanaka et al., 2005), they can also produce free radicals
and cause oxidative stress (Park et al., 2009). Ag NPs are able to

FIGURE 6 | Ag NPs interaction with bacterial cells. Ag NPs can induce (1) Ag ions leakage and ROS generation, (2) membrane proteins dysfunction, (3)
accumulation in cell membrane influencing the membrane permeability, (4) DNA damage. Adapted from Marambio-Jones and Hoek (2010) with permission.

FIGURE 7 | Transmission electron micrographs depicting Ag NPs uptake into HEK cells. (A) 80 nm Ag NPs within cytoplasmic vacuoles of a HEK; (B) higher
magnification of the (A). Arrows point to Ag NPs. Adapted from Deyhle et al. (2012).
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construct destructive binding with genomic DNA and prevent the
direct replication (Yang W. et al., 2009), it can also decrease the
activity of enzymes and other proteins in the transcription stage
(Yamanaka et al., 2005), Figure 6 shows Ag NPs interaction with
bacterial cells (Marambio-Jones and Hoek, 2010).

The dose of Ag NPs utilization for inhibition of microbial
growth must be kept under the range of human cell cytotoxicity.
In vitro cell studies indicated the dependence of cytotoxicity
on the size of Ag NPs and related ROS generation in different
cell lines including fibrosarcoma, skin carcinoma, fibroblast,
glioblastoma, hepatoma, alveolar, and keratinocyte (Wijnhoven
et al., 2009; Samberg et al., 2010). In addition to size, the
cytotoxicity and genotoxicity of Ag NPs are associated with its
coating, concentration, exposure time, environmental factors,
particle aggregation, surface oxidation to form silver oxides, etc.
(Akter et al., 2018). Both Ag and its oxides have the potential
to release Ag+ and Ag0 into media which consequently results
in ionic Ag concentration in the environmental media and
causes some degree of dysfunctions in mitochondria (Reidy
et al., 2013). Subsequently, the interaction of Ag NPs with cell
membrane proteins can lead to activation of signaling pathways
for ROS generation and eventually cause proteins and nucleic
acids destruction because of the potent affinity of silver for sulfur,
at the end all of these events led to apoptosis and reductions in
cell proliferation (Haase et al., 2012). Figure 7 shows the TEM
images indicating AG NPs uptake in HEK cells.

There are some limited in vivo studies about the Ag
NPs toxicity, it was shown that these NPs induced some
harmful impacts on reproduction, malformations, and various
morphological destructions in different animal models (Zhang
X.F. et al., 2015). Drinking Ag NPs contained water to rats
for 1–2 weeks duration, indicated Ag NPs distribution in
musculus soleus, cerebellum, spleen, duodenum, and myocardial
muscle (Pelkonen et al., 2003), also a dose-dependent Ag NPs
accumulation in the liver of rats was reported (Kim et al.,
2008). Prolonged intake of Ag NPs in the salt form with low
concentrations led to fatty degeneration in the liver and kidneys
together with variations in blood cells (Wijnhoven et al., 2009).

Intravenous Ag NPs injection in rats showed 40 mg/kg dose
(higher than 20 mg/kg dose values considered as toxic in rat
models) can cause a considerable increase in liver enzymes
whereas ROS increasing was detected in blood serum also TEM
micrographs indicated the particle deposition in the liver and
kidney of rats (Tiwari et al., 2011).

Gold Nanoparticles and Their Toxicity
Gold (Au) NPs are also having a place between widespread
NPs since they can be used in order to evaluate the cellular
uptake and tissue distribution of particles, due to their easy
to detect nature by electron microscopy and it has other
applications as listed in Table 1. In addition, gold salts such as
sodium gold thiomalate are utilized as decisive disease-modifying
antirheumatic agents (Fadeel and Garcia-Bennett, 2010) but its
long-term accumulation in the body can cause cytotoxic effects.

It was confirmed that the cellular response to Au NPs is size-
dependent. For instance, 1.4 nm Au NPs is among the most
toxic conditions of these NPs and results in rapid cell death by
necrosis (Pan et al., 2007) while it seems to be non-toxic in 15 nm
condition (Chen et al., 2009). In vitro studies about the Au NPs
(35 nm) indicated its low toxicity for murine RAW macrophages
with no considerable cell functionality blockage (Shukla et al.,
2005). Coradeghini et al. (2013) investigated the effect of 5–
20 nm Au NPs on human fetal lung fibroblast cells (MRC-5)
and no considerable effect on the viability of MRC-5 cells was
detected but cell proliferation was inhibited. Also, the oxidative
DNA damage was confirmed due to NPs’ destructive effects on
DNA. The smaller the Au NPs, the higher its tendency to induce
toxicity since smaller NPs can easily bind on cellular surfaces.
For example, Au NPs with 1.4 nm diameter are capable to bind
with DNA and influence genes (mutation) compared to their
larger counterparts (Yah, 2013). The dose of NPs has a crucial
role in cytotoxicity, for example, Au NPs with a size range of 2–
40 nm are biologically safe to MRC-5 cells but in exceeded dosage
range (10 ppm dosage) apoptosis and up-regulated expression
of pro-inflammatory genes and tumor necrosis was reported
(Yen et al., 2009).

FIGURE 8 | The relative distribution proportion of Au NPs in the spleen, kidneys, lungs, intestines, and heart of SD rats at 5, 15, 30 min, 1, 4, 12, and 24 h after IVI
(A), and after ISI in the tarsal tunnel (B). Adapted from Shi et al. (2016) and Jia et al. (2017) with permission.
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The Au NPs (5 nm) can preferentially bind to specified
growth factors like vascular endothelial growth factor (VEGF)
perhaps by cysteine residues of the heparin-binding domain and
cause the inhibition of angiogenesis in a mouse model (Fadeel
and Garcia-Bennett, 2010). Intravenous implementation of Au
NPs (18 nm diameter) in rats showed that NPs were selectively
accumulated within the liver and spleen, while NPs with 1 nm
size were secreted in urine and feces. In addition, 3.7% of 1 nm
sized particles remained in the blood at the first 24 h hence
Au NPs interaction is size-dependent (Semmler-Behnke et al.,
2008). Sonavane et al. (2008) studied the tissue distribution of
Au NPs in rats, NPs intravenous exposure confirmed the highest
accumulation in the liver and with lower amounts in the lung,

kidney, and spleen. The smaller NPs with 15 and 50 nm size even
can be found in the brain which indicates its ability to pass the
blood-brain barrier hence they have the potential to get into the
brain through neuronal transport. Au NPs with 20 nm size entry
via inhalation can concentrate in the olfactory bulb of rats (Yu
et al., 2007). Figure 8 shows the relative distribution proportion
of the Au NPs in the various organs of rats including spleen,
kidneys, lungs, intestines, and heart at different time durations.

Berce et al. (2016) investigated the bone marrow toxicity of
Au NPs in rats, it was shown that Au NPs accumulated in the
hematopoietic bone tissue and unfortunately resulting in severe
side effects such as leucopoiesis and megakaryopoiesis and also
increased levels of white blood cell and platelet were found in Au

FIGURE 9 | The pathology examination of the Au NPs treated rat organs, in 1,100 µg/kg dosage the pathology examination of the organs showed no degenerative,
inflammatory, vascular, necrotic, or apoptotic lesions over the spleen (A), lung (B), liver (C), kidney (D), and heart (E). Adapted from Berce et al. (2016) with
permission from Dove Medical Press.
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NPs treated rats compared to control ones, indicating its toxic
effects. Figure 9 shows the pathology examination of the Au
NPs treated rat organs as it was seen in the 1,100 µg/kg dosage
no considerable sign of degenerative, inflammatory, vascular,
necrotic, or apoptotic lesions was detected. While the pathology
experiments through bone marrow and sternum in Figure 10
showed that the mice which got the daily iv Tween R© 20-GNPs
had increased megakaryopoiesis as opposed to the control group.
Figures 10A,B shows the increased megakaryopoiesis as opposed
to the control group in Figures 10C,D, but no bone marrow
fibrosis was detected.

Zinc and Zinc Oxide Cytotoxicity
The zinc and zinc oxides were listed as safe substances in a
US Food and Drug Administration (USFDA) (U.S. Food Drug
Administration, 2019), while in the NPs condition it can induce
toxicity into the surrounding environment. In vitro toxicity
investigations of ZnO NPs in the size range of 40–48 nm
in exposure to Chlorella Vulgaris indicated the reduction in
viability, superoxide dismutase (SOD), and glutathione (GSH)
and also increment of lactate dehydrogenase (LDH) (Suman et al.,
2015). This finding indicates the considerable impact of ROS
production in the cytotoxicity of ZnO NPs. Together with shape
and concentration, the surface charge of ZnO NPs has a key

role in its toxicity. It was believed that the positively charged
NPs induce more toxicity and it can affect the cellular uptake
and intracellular location (Asati et al., 2010; De Angelis et al.,
2013). Kim et al. (2014) also proved the higher cytotoxicity of
positively charged ZnO NPs in comparison to the negatively
charged ones. In addition, genotoxicity and DNA damage was
seen in ZnO treated MRC5 lung cells along with the high
secretion of extracellular LDH and reduction in cell viability
(Ng et al., 2017). Also, the Zn2+ release in ZnO NPs could lead
to free radical emissions from the NPs surface and resulted in
metabolic disbalance and fluctuation in ionic state of cells related
to the deterrence of ion transport and defects in ionic homeostasis
(Namvar et al., 2015; Suman et al., 2015).

ZnO NPs treatment of rats with 300 mg/kg dose showed the
NPs concentration in the liver which led to cell trauma also a
considerable DNA lesion in the liver was seen which resulting
in oxidative stress caused DNA damage (Sharma et al., 2012),
Figure 11 shows the pathological alterations in the liver and
kidney of rats, treated with ZnO NPs for 14 consecutive days and
also the control samples. The intraperitoneal injection with 50–
200 mg of ZnO NPs/kg body dosage in Wistar rats indicated the
dose-dependent toxicity behavior of ZnO NPs with considerable
ROS generation also a major enhancement in liver enzymes
at the concentration of 100 mg/kg animal body weight was

FIGURE 10 | The pathology experiment of the bone marrow of the mice treated with Tween 20-GNPs (A,B) and of the control group (C,D). In (A,C) the
magnification was ×4, and in (B,D) ×20 magnification was used. The black arrows indicate the megakaryocytes. Adapted from Berce et al. (2016) with permission
from Dove Medical Press.
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reported (Abbasalipourkabir et al., 2015). ZnO NPs exposed liver
tissue of animals indicated inflammation, increased congestion,
chromatin condensation, and apoptosis, the tissue distribution
analysis of ZnO NPs confirmed the increasing zinc dosages in the
liver, large intestine, small intestine, and feces and some degree of
hyperkeratosis and papillomatosis were detected in the skin (Ryu
et al., 2014). Hence, ZnO NPs have toxic effects in both in vitro
and in vivo studies including cytotoxicity, oxidative stress, and
genotoxicity thus exposure to ZnO NPs should be considered and
controlled precisely.

Toxicity of Copper and Copper Oxide
NPs
Copper oxide (CuO) NPs have special characteristics like spin
dynamics, high-temperature superconductivity, and electron
correlation effects (El-Trass et al., 2012). Copper can be found in
two ionic conditions Cu1+ and Cu2+ hence it can be interacting
with biochemical reactions both as a reducing or oxidizing
agent, nevertheless, it is not favorable from the toxicity aspect
since copper ions are capable to induce oxidative stress (Valko

et al., 2005), genotoxicity (Adeyemi et al., 2020), and free radical
production (Fahmy et al., 2020).

In vitro examinations on the toxicity of CuO NPs on human
breast cancer MCF-7 cells had shown some morphological
changes in cells, also autophagic vacuoles were detected and the
cell cycle arrest caused apoptosis (Laha et al., 2014). The study
about lung epithelial cells treated with CuO NPs with 9.2 nm
size with at various concentrations indicated that these NPs led
to a reduction of cell cytotoxicity and increased level of dose-
dependent oxidative stress (Jing et al., 2015). The effect of size
and shapes on the toxicity of CuO NPs was investigated by Thit
et al. (2015), two sizes of CuO NPs with 6 nm and 100 nm larger
polydispersed CuO NPs, also microparticles and Cu ions were
examined in epithelial kidney cells. The most toxic state belongs
to the polydispersed CuO NPs and they induced a considerable
increment in intracellular ROS generation, DNA damage, and
cell death, Figure 12 schematically presents the in vitro toxicity
model of CuO NPs.

In vivo studies in mouse models have shown that CuO NPs
induced obviously epigenetic changes (Lu et al., 2016). Oral
exposure of CuO NPs into rats showed the NP uptake in spleen,

FIGURE 11 | Histopathology of liver and kidney tissues in mice, ZnO NPs treated for 14 consecutive days. (A,B) Control group showing normal liver and kidney,
(C,D) pathological alterations in the liver and kidney of ZnO NPs (300 mg/kg) treated group (indicated by arrow); magnification (200×). Adapted from Sharma et al.
(2012) with permission.
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FIGURE 12 | In vitro toxicity model of CuO NPs, the sequence of events in Poly toxicity. (1) CuO NPs are taken up via endocytosis, (2) Endocytotic vesicles are
converted to lysosomes via autophagy, (3) ROS generation, other molecules can be oxidized mitigated by the antioxidant GSH and its precursor NAC, (4) ROS
attacks DNA in the nucleus, (5) DNA damage activates signaling systems that induce cell cycle arrest, (6) Cell death by apoptosis. Reproduced from Thit et al.
(2015) with permission.

liver, kidney, brain, blood, lung, heart, urine, and feces (Lee et al.,
2016). The CuO NPs exposed rats for up to 26 days showed some
signs of increased Alanine Aminotransferase (ALT) levels as a
liver damage index, also in 512 mg/kg dosage, no variations of
histopathology were detected in liver, bone marrow, and stomach.
The released Cu ions interfered with the immune system by
lymphoid cell depletion in thymus and spleen organs, it should
be said that the dissolution and biodistribution of NPs have a
potential to act as a key factor in the toxic behavior of CuO treated

samples (De Jong et al., 2019). Other studies in relation to the
toxicity issues of metal and metal oxide NPs are listed in Table 3.

Toxicity Prevention in Metallic and Metal
Oxide NPs
The size, morphology, concentration, aggregation mode, charge,
surface properties all have an impact on toxicity and must be
considered in order to prevent the harmful effects of NPs. It
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TABLE 3 | In vitro and in vivo nanotoxicology studies of metal and metal oxide nanoparticles.

Material Condition Properties Cell line or animal
model

Conclusion References

Ag In vitro 20–30 nm Caco-2, SW480 No significant ROS generation, increased inflammation, increased cell death and
cell stress.

Abbott Chalew and
Schwab, 2013

Two nano-sized and two microsized Human red blood
cells

NPs were more hemolytic than micron-sized particles at equivalent mass
concentrations > 220 µg/ml and at surface area concentrations > 10 cm (2)/ml,
NPs released more Ag ions than microsized particles.

Choi et al., 2011

In vivo Silver-coated wound dressing Acticoat
(1 week)

Human burns
patient

Hepatotoxicity and argyria-like symptoms, Ag increase in plasma, urine and liver
enzymes.

Trop et al., 2006

30, 300 or 1000 mg/kg/day for 28
days (60 nm in size) per oral

Sprague-
Dawley rats

Higher than 300 mg of NPs may result in slight liver damage, do not induce genetic
toxicity, a gender-related difference in the accumulation of silver was noted in the
kidneys, with a twofold increase in the female kidneys.

Kim et al., 2008

Al In vitro <500 nm A549,
THP-1

Low toxicity in MTT assay. Lanone et al., 2009

Ni In vitro <500 nm A549, THP-1 Low to moderate toxicity in MTT assay. Lanone et al., 2009

Co In vitro <500 nm A549, THP-1 Co NPs induced toxicity only when incorporated as a Nickel–Cobalt–Manganese
mixed variant.

Lanone et al., 2009

Au In vitro Nanorods with 4:1 length-to-diameter
ratio

HT29 Cytotoxicity caused by free CTAB, overcoating with polymer is useful. Alkilany et al., 2009

In vivo 8 mg/kg/week (3–100 nm in size)
(4 weeks) intraperitoneal

BALB/C mice NPs ranging from 8 to 37 nm induced severe sickness, fatigue, loss of appetite,
change of fur color, and weight loss, from day 14 they exhibited a camel-like back
and crooked spine. Pathological studies showed an increase of Kupffer cells in the
liver, loss of structural integrity in the lungs, and diffusion of white pulp in the spleen.

Chen et al., 2009

0.17, 0.85, and 4.26 mg/kg body
weight (13 nm in size), (30 min
after injection for 7 days)
Intravenous, coated with PEG

BALB/C mice Acute inflammation and apoptosis in the liver, NPs accumulate in the liver and
spleen for up to 7 days with long blood circulation times, NPs presence in
cytoplasmic vesicles and lysosomes of liver Kupffer cells and spleen macrophages.

Cho W.S. et al., 2009

(12.5 nm in size) (40, 200, or
400 µg/kg/day for 8 days),
intraperitoneal

C57/BL6 mice NPs internalized inside the cell via a mechanism involving pinocytosis, also NPs
internalization in lysosomal bodies arranged in perinuclear fashion, Au NPs were
non-cytotoxic, non-immunogenic, and biocompatible properties.

Shukla et al., 2005

Ti and TiO2 In vitro 10-300 nm Caco-2 DNA damage dependency on sample processing conditions, cytotoxic in LDH and
WST-1 assay.

Gerloff et al., 2009

21 nm Caco-2, SW480 No significant ROS generation, increased inflammation, increased cell death and
cell stress.

Abbott Chalew and
Schwab, 2013

21 nm 16HBE, A549 No considerable effect on 16-HBE or A549 cell viability, strong aggregation in
culture media.

Guadagnini et al., 2015

<500 nm A549, THP-1 Moderate toxicity in MTT assay. Lanone et al., 2009

In vivo NPs containing sunscreen, mean
particle size of 20 nm

Human
volunteers

NPs penetrate deeper into human skin from an oily dispersion than from an
aqueous one.

Bennat and
Müller-Goymann, 2000

ZnO In vitro 20 nm Caco-2, SW480 Toxic but no significant ROS generation, increased inflammation, increased cell
death and cell stress.

Abbott Chalew and
Schwab, 2013

10–20 nm Caco-2 DNA damage, cytotoxic in LDH and WST-1 assay. Gerloff et al., 2009
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TABLE 3 | Continued

Material Condition Properties Cell line or animal
model

Conclusions References

<500 nm A549, THP-1 High toxicity in MTT assay. Lanone et al., 2009

288.2 and 265.7 Alveolar type II
epithelial cells Ñ10

Oxidative stress generation induced by Zn ions, Decrease in cell viability after 6 and
24 h of incubation.

Xie et al., 2012

In vivo Coated and uncoated NPs with
74.0 nm and 65.0 nm size

Human volunteers NPs did not enter or cause cellular toxicity in the viable epidermis, Zinc ion
concentrations slightly increased, repeated application of ZnO NPs to the skin, as
used in sunscreen products was determined as safe.

Mohammed et al., 2019

MgO In vitro 8 nm Caco-2 No cytotoxicity in LDH and WST-1 assay. Gerloff et al., 2009

SiO and SiO2 In vitro 14 nm Caco-2 Glutathione depletion, DNA damage, cytotoxic in LDH and WST-1 assay. Gerloff et al., 2009

25 and 50 nm, modified and not
modified with sodium oleate

16HBE, A549 Dose, time and size dependent effects, 25 nm NPs are more toxic than 50 nm ones
at lower concentrations, ROS generation ROS at toxic concentrations.

Guadagnini et al., 2015

100 nm HeLa, 3T3 Cell viability and survival decreased only about 20% at high concentration of
100 µg/mL, no significant toxic effects.

Xia et al., 2013

In vivo 20 mg/animal (1 or 2 months),
intratracheal instillation

Wistar rats Changes in pathology and fibrotic grade, the lung/body coefficient and
hydroxyproline content of SiO2 NPs were lower than microsized SiO2.

Chen et al., 2004

50 mg/kg (50, 100 or 200 nm in size),
(12, 24, 48 and 72 h, 7 days)
intravenous

BALB/C
mice

NPs trapped by macrophages in the spleen and liver and remained there until
4 weeks after the single injection, Macrophage mediated frustrated phagocytosis of
larger NPs resulted in release of pro-inflammatory cytokines and cell infiltrates within
hepatic parenchyma.

Cho M. et al., 2009

2 mg/kg (20-25 nm in size) (24 h),
intravenous

Nude mice Higher accumulation of NPs in liver, spleen, and stomach than in kidney, heart, and
lungs, hepatobiliary excretion of NPs after 15 days.

Kumar et al., 2010

Cu, CuO and CuS In vitro 50 and 100 nm, surface charge Caco-2 Positively charged NPs have higher toxicity and cell uptake, NPs transfer is a
dynamin-dependent process.

Bannunah et al., 2014

50 nm A549,
SAEC

Cell cycle arrest by Cu ions, highly toxic, inhibition of cell proliferation genes,
apoptosis.

Hanagata et al., 2011

<500 nm A549,
THP-1

High toxicity in MTT assay. Lanone et al., 2009

Length of 59.4 nm and thickness of
23.8 nm

HUVECs, RAW
264.7, KB, HeLa

Cell viability reduction in HUVECs at higher than 100 µg/mL dosages, toxicity to
HUVEC and RAW 264.7 cells, NPs uptake in RAW 264.7 cells, no considerable
change in cytoskeleton components.

Feng et al., 2015

In vivo Micro-Cu (1 µm), and nano-Cu
(80–100 nm),

Sprague-Dawley
rats

Cu NPs changed the immune function of the spleen, Alteration in the number of
blood cells in rats and lymphocyte subpopulation in the spleen, antibody production
and obvious histopathology changes.

Zhou et al., 2019

FeO and Fe3O4 In vitro 10 nm, without and with
polyethylenoxide (PEO) coating

PC3, C4-2,
HUVECs

Viability reduction, coated NPs uptake by cells, the surface-modified NPs are more
toxic than NPs without shells.

Häfeli et al., 2009

8 nm, modified and not
modified with sodium oleate

16HBE, A549 Sodium oleate coating led to an increase in cytotoxicity, strong aggregation in
culture media, toxic and inducing cytotoxicity in a dose, time and coating
dependent manner.

Guadagnini et al., 2015

In vivo Ferrite and manganese ferrite oxide
with sizes between 3 and 20 nm

Zebrafish embryos
and mice

In manganese-based NPs concentrations above 100 µg/mL showed a low survival
rate (<50%), absence of toxicity in mice

Caro et al., 2019

CeO2 In vitro 15, 25, 30, and
45 nm

BEAS-
2B

ROS generation led to cell death, NPs absorption by cells and localized in the
perinuclear space

Park et al., 2008

Frontiers
in

B
ioengineering

and
B

iotechnology
|w

w
w

.frontiersin.org
July

2020
|Volum

e
8

|A
rticle

822

23

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00822 July 16, 2020 Time: 19:31 # 18

Attarilar et al. Toxicity Occurrence in Metal Nanoparticles

was known that toxicity of metallic and metal oxide NPs is
directly related to its surface properties hence alterations in the
surface of these NPs can be a good idea for mitigating their
possible harmful effects. In this regard, various safe surface
designs are the spotlights and can be listed as utilization of surface
coatings (Osmond-McLeod et al., 2013), core-shell structures
(Davidson et al., 2015), doping-based methods (Wang et al.,
2012), geometric control (Ji et al., 2012), and surface passivation
methods (Cai et al., 2017). Among these methods, the coating
approaches seem to be simpler and more controllable and
it is almost applicable to every metallic NPs. These methods
can affect the surface reactivity and ion outlet in order to
avoid any cytotoxic occurrence. One of the coating and surface
passivation methods is sulfidation, for example, the existence
of sulfide can avoid AgNO3 toxicity (Bowles et al., 2002).
Also, Levard et al. (2013) reported that sulfidation of silver
NPs can hinder Ag ion mobility and reduce its dissolution
rate. Considering gastrointestinal digestion impact, Martirosyan
et al. (2014) used food matrix component phenolic compounds
(PCs) to prevent from the toxicology of Ag NPs. In this
regard, two major factors involving in the toxicity of Ag NPs
(the release of Ag+ and ROS) were studied. Results showed
that two PCs, quercetin and kaempferol, relatively defended
the Caco-2 cells from Ag NPs induced toxicity and these
PCs protected the epithelial barrier integrity which disrupted
by NPs. Future investigations seem to be necessary to find
more sophisticated methods in order to precise and complete
toxicity prevention.

CONCLUSION

Nanotechnology as one of the exciting and modern branches
of science found a lot of applications in various technologies
from the food and cosmetic industry to medicine and agriculture,
hence humanity is in direct contact with these nanoparticles
(NPs). Although, the nanosized materials have many benefits
compared to coarse sizes they can also have unfavorable effects
since they have the potential to pass the natural barriers of
live cells and tissues and cause toxic and inflammatory issues.
Because of these problems, a new branch of science entitled
nanotoxicology has emerged with the aim to elucidate the
possible effects of NPs and the related parameters affecting the
cytotoxicity of nanomaterials. Metal and metal oxide materials
are among the most used NPs so this review paper dedicated to
analyze the key factors influencing the toxicity of these NPs and
review the in vitro and in vivo studies to find out the possible
hazards of NPs and found a detailed guideline to control and
decrease the adverse effects of metal and metal oxide NPs. In
order to attain this goal, firstly the toxicity mechanisms including
reactive oxygen species (ROS) generation, the effect of NPs on
cell membranes, cytoskeleton components, DNA, mitochondria,
and lysosomes was discussed. Secondly, because of the obvious
effects of physical and chemical characteristics on toxicity, they
were carefully reviewed. It was found that the size of NPs
has a significant effect since its nano-sized range by increasing
the specific surface area led to more cellular interactions and

toxicity. The other key factors affecting the cytotoxicity of
NPs are shape and dimensionality, chemical composition and
NPs concentration or dosage, crystalline structures, solubility,
hydrophilicity, surface charge, and agglomeration condition. In
this regard, it was believed that it is critical to control the
physicochemical properties of NPs in order to achieve more
safe and reliable NPs since even natural non-toxic and even
antibacterial materials such as Ag, Cu, Ti, and Zn can induce
toxicity in some ranges of size, dosage and surface charges.
Overall, it seems that violating the cell passage system for example
by decreasing the size of NPs to smaller than cellular subunits,
organelles, and cells and letting them permeate and enter into
the biological structures should be strictly prevented. Thirdly,
some highlight findings of in vitro and in vivo studies about
the toxicity of metal and metal oxide NPs were discussed to
determine key factors. In the end, it is hoped that increasing
the awareness and information about this subject opens a new
horizon to understand more about the nanotoxicology and
design the modern materials and procedures with the safe
thresholds. These modern NPs should be designed meticulously
by taking into account all the intriguing and complex aspects
that arise from nanometric size ranges and also the other
affecting factors.

The emerging trends and prospects in metallic NPs’
toxicity studies are quite broad including modern NPs designs
with optimal properties, enhancing their favorable effects
and minimizing the potential toxicity, detection of toxicity
transmitting species and targets by considering their life cycle,
incorporation of various coating and surface treatments to
decrease the harmful results while maintaining the favorable
properties. Many aspects of these issues are still unsolved and
need further studies in the future to overcome the toxicity
limitations of metallic NPs and other present to-date barriers.
In this regard, methods based on the simultaneous use of
NPs with antitoxic strategies seem to be more promising.
Also, in future studies, more attention should be paid to
possible effects of biological fluids and surrounding tissues,
biokinetics, involved mechanisms, and other chemical and
biological factors. Moreover, there is a demand for more
sophisticated and validated in vitro models that are prognostic
of in vivo experiments outcomes. Finally, the resultant guidelines
should have a potency to underlie the exact NPs’ interactions
with biological systems in order to support a complete correct
risk assessment. Hence, various scientific disciplines including
chemistry, physics, medicine, and biology should be involved
and interact together to shade light on all the complex cellular-
molecular events.
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The microstructure characteristics and texture evolution of a biomedical metastable beta
Ti–25Nb–3Zr–2Sn–3Mo (TLM; wt%) titanium alloy plate cold rolled at various reductions
were studied in this article.<110> texture was easily formed in the TLM alloy plates, and
a large number of dislocation tangles were generated in the β matrix in the process of
cold rolling deformation. The dislocation lines, dislocation cells, subgrain boundaries,
and other crystal defects introduced during cold rolling had a great impact on the
morphological characteristics and volume fraction of precipitated phases during aging.
These typical crystal defects could be considered as the major triggers of the formation
of second phases, and they could also shorten the time of β→α phase transformation.
α precipitated phases, with a size range of 150–500 nm, were formed within the β

matrix in the cold deformed 34% in conjunction with the aging specimen, resulting in
the relatively high tensile strength of 931 MPa and the acceptable elongation of 6.9%.
When the TLM alloy plate was cold rolled at a reduction of 60% in conjunction with
aging, the maximum value of ultimate strength (1,005 MPa) was achieved, but the
elongation value was relatively low owing to the formation of α precipitated phases with a
large size around the subgrain boundaries. In this paper, the influence of crystal defects
and subgrain boundaries on the morphology characteristics and volume fraction of α

precipitated phases and mechanical properties will be discussed in detail.

Keywords: Cold deformation, biomedical β-type titanium alloy, α precipitated phases, mechanical properties,
texture evolution
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INTRODUCTION

Compared with other noble metals (Au, Ag), medical stainless
steel (316L), magnesium alloys (Mg–4Y–3RE), and Co–Cr–
Mo alloys (Co–28Cr–6Mo), Ti, and its alloys possess more
outstanding comprehensive performances in the metallic implant
material family (Rack and Qazi, 2006; Niinomi et al., 2012; Zhang
and Chen, 2019; Liu et al., 2020). Both large application potential
and commercial values exist in hard tissue reconstruction and
replacement due to their attractive characteristics, including low
modulus, excellent mechanical properties, as well as superior
biofunctions and biocompatibility (Niinomi, 2002; Geetha et al.,
2009; Niinomi and Nakai, 2011; Zhang et al., 2020). Hence,
Ti and Ti alloys are extensively applied in the processing and
manufacturing of dental implants, bone plates, spinal internal
fixation devices, orthodontic wires, intramedullary nails, as well
as other orthopedic repair devices (Taddei et al., 2004; Li Y. et al.,
2014; Duraccio et al., 2015). Currently, commercial Ti64 and
Ti–13Nb–13Zr are mainly applied to produce devices for joint
prosthesis. However, commercial Ti64 contains toxic elements,
such as Al and V, which may cause Alzheimer’s disease after
long-term implantation in the patient’s body (Gepreel and
Niinomi, 2013; Abdelrhman et al., 2019). The biomedical β Ti
alloy is predominantly composed of biocompatible components,
including Nb, Zr, Sn, Mo, Ta, and Fe (Wang L. et al.,
2010; Malek et al., 2012). In general, the strength level in
biomechanical properties is crucial for the long-term service
and safety of metallic implant materials and their devices
(Goriainov et al., 2014). Notably, β Ti alloys can achieve
a comprehensive matching degree with high strength, good
biocompatibility, and acceptable ductility through optimized
processing (Niinomi, 2008; Ramezannejad et al., 2019). In
addition, based on the effect of precipitation strengthening, the
strength level of β-type Ti alloy can be significantly improved
after solution treatment followed by rapid cooling and aging
(Banerjee et al., 2004; Chen et al., 2014; Xu et al., 2019b).
Up to now, several typical metastable β Ti alloys, for instance,
Ti–Mo, Ti–Nb, Ti–V, and Ti–Ta-based alloys, have received
considerable attention due to their controllable microstructures
and performances (Mantani and Tajima, 2006; Sun et al., 2010;
Min et al., 2012). A detailed investigation of the influences of
heat treatment on microstructural evolution, phase transitions,
mechanical properties, and deformation mechanisms has been
carried out for metastable β Ti alloys. Moreover, for β-type Ti
alloys, a suitable heat treatment process is beneficial to produce
fine, uniform, and dispersed α precipitates in the β matrix,
thereby improving the mechanical properties of β-type Ti alloys
(Jaworski and Ankem, 2005; Qazi et al., 2005). It is significant
to note that the density, distribution, and length-to-diameter
ratio for secondary phases are considered to be the primary
factors affecting the strength level of β-type Ti alloys. Previous
studies indicated that the improvement of strength for Ti alloys
can be achieved using the composite processing of cold rolling
followed by aging at a certain condition (Malinov et al., 2003).
A large number of dislocation tangles/proliferation, nucleation
sites, and sub-boundaries (interfaces) would be introduced into
the deformed microstructure of β-type Ti alloy during the

plastic deformation. The presence of defects is considered to
be beneficial for the refinement and uniform distribution of
precipitation phases. Meanwhile, grain refinement is apparent
(Xu et al., 2016a). In general, the crystal defects introduced
during plastic deformation are mainly composed of dislocations,
twins, and interfaces, etc., which can facilitate the β→α phase
transition (Wang et al., 2009; Karthikeyan et al., 2010). The
primary reason is that the presence of defects is able to reduce
the driving force and barrier required to the occurrence of the
phase transition to some extent.

Until now, a large number of groups are persistently focusing
on the microstructural controlling, the mechanical property
optimization, and the relationship between them, resulting
in a lot of representative studies (Ivasishin et al., 2005; Xu
et al., 2016b). Li T. et al. (2014) prepared β-type Ti–15Nb–
2Mo–2Zr–1Sn alloy with ultrafine grains using hot or cold
working followed by aging. Finer precipitates were prone to
be generated at the elongated grain boundaries or subgrain
boundaries, resulting in a significant improvement of the room
temperature strength level. Karthikeyan et al. (2010) studied the
influence of cooling rate on texture feature and variant selection
in phase transition for Ti–5Ta–1.8Nb alloy during aging. They
found that the effect of cold rolling on the microstructure and
phase transition in the subsequent annealing has a significant
inheritability. Song et al. (2010) discussed the influence of
predeformation in conjunction with aging on the microstructural
features and room-temperature mechanical properties for β-
type Ti–10Mo–8V–1Fe–3.5Al alloy. The results showed that
the alloy is only subjected to predeformation and single aging.
Although higher strength of the alloy could be achieved at
room temperature, the ductility would be very poor. The final
dislocation density could be reduced, and the plasticity level
could be further enhanced after a lower-temperature pre-aging
followed by a higher-temperature secondary aging treatment.
Guo et al. (Qiang et al., 2011) revealed the precipitation progress
and mechanism of the secondary phase and its effect on the
mechanical properties of TB5 (nominal composition: Ti–15V–
3Cr–3Sn–3Al) alloy after severe plastic deformation. They found
that finer precipitates are generated within the region of severe
deformation and evenly distributed within the β grains, while
in other transition regions, the newly precipitated phases are
thick lamellar or in a shuttle-like shape with relatively large
size. Therefore, in the processing of the semifinished products
made of β-type Ti alloys, the finer and uniformly dispersed
precipitates can be obtained using a composite preparation
method of cold deformation in conjunction with aging treatment,
leading to an obvious improvement in strength level. However,
the strengthening mechanism of biomedical β-type Ti-Nb-
Zr-Sn-Mo-based Ti alloys subjected to cold deformation in
conjunction with aging has not been definitely investigated
and proposed until now. Although biomedical β-type Ti alloys
have superior cold workability compared with α- and (α + β)-
type alloys, their plastic deformation behavior is extraordinarily
complicated. The deformation mechanism is not only related
to phase stability but also to the reduction of deformation
(Wang et al., 2015; Hafeez et al., 2020). Mechanical properties
of β type Ti alloy are associated with multiple deformation
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modes including dislocation slip, mechanical twinning, stress-
induced martensitic transformation, kinking deformation, and
dislocation-free plastic deformation, etc. (Xiang et al., 2020;
Zheng et al., 2020). Hence, the investigation on cold deformation
behavior of β-type Ti alloys has extremely important practical
significance for the development of biofunctional Ti alloys
with an excellent matching degree of lower modulus and
higher strength.

Ti–25Nb–3Zr–2Sn–3Mo (TLM) alloy, a type of metastable
β-type titanium alloy, is independently developed for surgical
implants by Shaanxi Key Laboratory of Biomedical Metal
Materials (Kent et al., 2010; Yu et al., 2011, 2014). The α

precipitates are generated in β grains and along with grain
boundaries after solution treatment followed by aging, leading to
an obvious increase in the strength level of the alloy (Salib et al.,
2013). Malinov et al. (2003) revealed the phase transformation
mechanism of β-21s Ti alloy under constant temperature
conditions at a temperature ranging from 400◦C to 750◦C with
the assistance of experimental research and computer simulation
methods. Meanwhile, the corresponding thermodynamic, and
kinetic models were established, respectively. Xu et al. (2015)
investigated the effect of various heat treatments on phase
transition mechanism, microstructural features, and room
temperature mechanical properties for the TB8 alloy. They found
that the location and morphological features of precipitates
are closely related to the aging temperature and time. In
addition, finer and more uniform secondary phases can
be obtained by adopting an appropriate solution treatment
followed by aging, leading to a significant increase in the
strength level. Meanwhile, Xu et al. (2016b) investigated the
microstructural features and phase transition mechanism in
the two-stage aging process. They found that the isothermal
omega transition phases precipitated in a single aging process
could provide more nucleation sites for α phases, resulting
in an apparent refinement of α phases. Kent et al. (2011)
investigated the microstructural features and phase transition
behavior of Ti–25Nb–3Zr–2Sn–3Mo alloy using accumulative
roll bonding (ARB) processing technology. The ultrafine-grained
alloy was prepared, and α precipitates with nanosize were
generated along with the grain boundaries, leading to the
increment in the strength level. In summary, for the biomedical
metastable β-type Ti alloy, the microstructure morphology
and texture component would simultaneously change during
cold deformation (Ma et al., 2018; Vajpai et al., 2018; Ozan
et al., 2019). This will induce the presence of preferred
orientation and the increase in the dislocation density, resulting
in the changing in the nucleation and growth rates of
precipitates during aging. In the meanwhile, the driving force
and barrier would be reduced when the phase transition of
β→α occurs.

This work will mainly focus on the microstructure evolution
and phase transition of TLM alloy plates after cold rolling
in conjunction with aging treatment. The effects of cold
deformation-induced dislocations and subgrain boundaries on
the formation mechanism of precipitates and mechanical
properties are also discussed. This work will provide the
theoretical guidance and technology optimization for the precise

control of microstructures and properties for high-performance
biomedical β-type Ti alloys, which has important scientific
significance and engineering value.

EXPERIMENTAL MATERIALS AND
METHODS

The TLM (Ti–25Nb–3Zr–2Sn–3Mo, wt%) alloy ingot was
produced by VAR (vacuum arc remelting) three times. The
sponge titanium (grade 0, 3–12.7 mm), sponge zirconium
(industrial grade, Zr-1), Nb–47Ti, Ti–80Sn, and Ti—2Mo binary
master alloys (chips) were used as raw materials. Consumable
electrode blocks were prepared using a 1,000-ton four-column
hydraulic press. Both the alloy ingots and master alloys
were fabricated by NIN BRC SKLBMM (Northwest Institute
for Non-ferrous Metal Research, Biomaterial Research Center,
Shaanxi Key Laboratory of Biomedical Metal Materials, Xi’an,
China). Clean turning scraps and bulk samples for testing were
machined from ingot at two various positions. The surface
of the machined sample is smooth and free of burrs. The
chemical compositions of TLM alloy were examined using
the inductively coupled plasma optical emission spectroscopy
(ICPOES, for the metallic main elements including Mo, Zr, Sn,
Fe, and Nb) and infrared absorption method (IR absorption,
for the interstitial elements including N, O, H, and C). The
chemical compositions of TLM alloy ingot at two different
positions are listed in Table 1. The ingot with a dimension of
8160 mm × 500 mm was multistep hot forged in order to
break down the coarse grains after homogenization treatment
at 1,150◦C for 8 h. The TLM alloy billets were hot rolled at
750◦C into plates with 5 mm in thickness using 2,000 tons
of reversing rolling plate equipment. First, the hot-rolled plate
billet was leveled and straightened by the automatic plate-
leveling machine. Subsequently, the oxide layer of the plate was
efficiently removed using sandblasting and mechanical polishing.
The surface of the alloy plate was polished in the end. Then
the alloy plates were solution treated (ST) at 805◦C for 1 h
followed by water cooling and cold rolled with reductions
of 6, 34, 40, and 60% in thickness by 650-type rolling plate
equipment. For the cold-rolled specimens, aging treatments were
performed at 510◦C for 8 h in the muffle furnace. Both the oxide
layer and the micrometallurgical defects were removed by NC
machines. The schematic illustration of cold rolling and heat
treatment routes for the TLM alloy plates in this work is shown
in Figure 1.

Figure 2 shows microstructures of the TLM alloy plate ST at
805◦C for 1 h followed by water cooling and aging-treated at
510◦C for 8 h after solution treatment. The inverse pole figure
(IPF) map and transmission electron microscope (TEM) images
for the ST TLM alloy plate indicate that the microstructures
are constituted by β phase, as presented in Figures 2A,B. The
α precipitates generated during one step aging after solution
treatment exhibit a needle shape within the β matrix, as shown
in Figure 2C.

The uniaxial tensile test was carried out using an INSTRON
598X (maximum load: 250 kN) machine at a constant strain
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TABLE 1 | Chemical compositions of TLM (Ti–25Nb–3Zr–2Sn–3Mo, wt%) alloy ingot at two different positions.

Position Ti Nb Zr Sn Mo Fe C N O H

Upper Bal. 25.5 3.05 2.05 3.05 0.02 0.01 0.003 0.049 0.0006

Bottom Bal. 25.8 2.96 2.03 3.08 0.02 0.02 0.003 0.044 0.0006

FIGURE 1 | Schematic illustration of cold rolling and heat treatment routes for the Ti–25Nb–3Zr–2Sn–3Mo (TLM) alloy plates used in this work.

rate of 5 × 10−3 s−1 at room temperature. Tensile samples
were machined from TLM alloy plates in compliance with ASTM
E8/E8M-13a (width: 6.0 ± 0.1 mm, gage length: 25 ± 0.1 mm).
The optical microstructures (OMs) were examined by a LEICA
microscope. Metallographic samples were etched using Kroll’s
reagent (10 vol% HF + 10 vol% HNO3 + 80 vol% H2O).
X-ray diffraction (XRD) analysis was performed by BRUKER D8
ADVANCE machine equipped with copper Kα radiation. The
acceleration voltage and operating current were set at 40 kV
and 40 mA, respectively. The XRD was conducted at 2 theta
angle of 20–90◦, a step size of 0.02◦, and a scanning speed
of 6◦/min. The texture analysis was carried out using high-
resolution XRD (XPert Pro MRD). The fracture morphology and
microstructure morphology were observed and analyzed by a
FEI Quanta 650F SEM. electron backscattered diffraction (EBSD)
characterization was conducted by AZtech (Oxford Instrument,
HKL Channel 5 data analysis software) with an accelerating
voltage of 20 kV. The microstructural morphology of high
magnification was observed using FEI Tecnai G2 F20 TEM
operating at 200 kV. TEM specimens were mechanically ground
to a thickness of approximately 40 µm using SiC abrasive paper
(400, 600, 800, 1,000, 1,200, 1,500, and 2,000 grit). The ion

milling was performed for the preparation and observation of
the TEM samples.

RESULTS AND DISCUSSION

Cold Rolling and Texture Analysis
In the process of plastic deformation of metal materials, both
the dislocation density and residual stress are extremely high
in the area with a large degree of deformation, which leads
to a significant reduction in the calibration rate of EBSD. The
quality of the obtained images is poor, and the grain shape and
crystallographic orientation cannot be achieved. On the contrary,
the calibration rate is higher, and the image quality is relatively
better in some areas with a smaller degree of deformation.
Furthermore, the calibration rate is also relatively low due to the
high density of defects or dislocations at grain boundaries. In the
early stage of the investigation, it was found that higher residual
stress would significantly affect the calibration rate (less than
50%) in cold deformed samples using EBSD technique, resulting
in blurry Kikuchi patterns. Compared with the EBSD technique,
the sample preparation of XRD is simple. The specimen is
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FIGURE 2 | Microstructures of the TLM alloy plate. (A) Electron backscatter diffraction (EBSD) map of the sample solution treated at 805◦C for 1 h. (B) Transmission
electron microscopy (TEM) image for the solution-treated sample. (C) Scanning electron microscopy (Ivasishin et al.) image for the solution-treated (805◦C/1 h, WQ)
followed by aging-treated (510◦C/8 h, AC) alloy plate (WQ, water quenching; AC, air cooling).

irradiated with characteristic X-rays, and the texture analysis
is carried out according to the difference in the diffraction
intensity in different characteristic directions. The evaluation
of macroscopic properties for crystalline materials is unique.
Therefore, the XRD technique can effectively make up for
the shortcomings of a lower calibration rate in cold deformed
metallic samples. Meanwhile, this technique is more suitable
for the investigation of texture evolution and crystallographic
orientation relationship of titanium and its alloys during cold
deformation, such as cold rolling and cold drawing.

Figure 3 shows the pole figures (PF) of TLM alloy plates cold
deformed with 6, 34, and 60% reductions in thickness measured
by XRD. It can be seen from Figure 3A that when the TLM alloy
plate is cold rolled with a 6% reduction, the β grains present a
kind of relatively random orientation distribution characteristic,
and only a small part of the β grains is rotated during cold rolling.
The main reason for the rotation of the β grains is that dislocation
tangles are dominant for the TLM alloy plate during cold rolling
at a relatively small reduction. The elongated β grains can be
observed in the cold-rolled alloy plates, and few secondary phases

or recrystallized grains were generated. In addition, as seen
from the PF in Figures 3B,C, with the increased degree of cold
rolling deformation, the <110> texture gradually appears and
increases. As shown in Figure 3B, when the TLM alloy plate is
cold deformed with 34% reduction, the intensity of both <200>
and <110> textures increase. Meanwhile, when the reduction
is raised to 60%, the TLM alloy plate has an obvious <110>
texture. It can be reasonably inferred that the β grains tend to
rotate to the <110> direction instead of <211> during cold
rolling. Generally, for β-type titanium alloys with a body-centered
cubic (BCC) structure, with the increase in the cold reduction,
the <110> texture is easier to be presented due to the tightness
of atomic arrangements and slip systems on the close-packed
plane during the plastic deformation (tension, compression, and
rolling) at room temperature.

Cold Rolling, Dislocation Distribution,
and Substructure
X-ray diffraction patterns of the TLM specimen ST at 805◦C
for 1 h followed by water quenching and cold rolling at
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FIGURE 3 | The {200}, {211}, and {110} pole figures (PF) for the TLM alloy plate after cold rolling at various reductions: (A) 6%, (B) 34%, and (C) 60%.

various reductions are indicated in Figure 4. Diffraction peaks
of orthorhombic a “phases are obviously detected in the alloy
plate ST at 805◦C for 1 h. Meanwhile, a few stress-induced
martensite a” phases gradually appear after cold rolling with
various reductions at room temperature. It can be inferred
that the phase transition of stress-induced martensite from β

phase to a “is promoted after cold deformation. In addition,
the intensity and quantity of diffraction peaks for a” phase
gradually increases with the increase in the degree of reduction
owing to the martensite phase transition that is prone to be
promoted after cold rolling. It can be observed that (110)β ,
(200)β , (211)β , and (220)β diffraction peaks are detected in all
specimens. Moreover, with the increase in the cold reduction,
the intensity of (200)β diffraction peak first decreases up to the
reduction of 34% and subsequently increases up to the reduction
of 40% and then decreases again after 60% reduction. The ratios
of β (200)/β (110) are calculated to be 0.209, 0.037, 0.029,
0.055, and 0.018, respectively. This finding demonstrates that the
texture varies with the reduction in the cold deformation; the
textures of cold-deformed TLM alloy plate gradually transform
into the <110> orientation during cold working. Generally,

the full width half maximum (FWHM) in XRD patterns of
deformed metals is used to analyze the lattice distortion owing
to the dislocation movement, deformation twins, and kinking,
etc. The FWHM value of β (110) diffraction peak obtained
using Jade 6.0 are 0.494, 0.527, 0.597, and 0.697 for the
samples cold deformed at 0 (solution-treated), 6, 34, 40, and
60% rolling reduction, respectively. It is clearly seen that with
increasing cold-deformed reduction, the values of FWHM of β

(110) diffraction peak show a rising tendency. Furthermore, the
change in the FWHM of β (110) diffraction peak in various
cold-deformed samples illustrates that dislocation tangles and
substructures are the predominant deformation mechanisms in
severe plastic deformation samples. The cold-rolled TLM alloy
plate with a large number of dislocation tangles tends to inhibit
the generation of dislocation cells and subgrains, especially in
BCC alloys. A lot of deformation bands are generated within
the deformed microstructures for the coordination deformation.
Therefore, the deformed grains and newly formed substructures,
such as subgrains, subgrain boundaries, and deformation twins,
could be found in the TLM specimens after severe plastic
deformation (Hao et al., 2012; Xu et al., 2019a).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 October 2020 | Volume 8 | Article 59852935

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-598529 October 13, 2020 Time: 17:27 # 7

Cheng et al. Cold Rolling of Titanium Alloy

FIGURE 4 | X-ray diffraction (XRD) spectra for the TLM alloy plate after cold
rolling with reductions of 0% (solution treatment), 6, 34, 40, and 60%.

Transmission electron microscope micrographs for the TLM
alloy plate after cold rolling at 34 and 60% reduction. Bright-field
images (BF) are used to reveal the crystallographic misorientation
and characteristics of cold-deformed microstructures.
Dislocation density in the cold-deformed TLM specimen
(Figure 5) is higher than that in the solution-annealed alloy
(Figure 2B). Therefore, it could be deduced that the dislocation
multiplication, mutual reactions, and movement play significant
roles in the cold rolling of TLM alloy plate. It can be seen from
the SAED pattern (Figure 5A) that the black bands scattered
within the cold-deformed TLM alloy are not newly formed
phases or other structures but the dislocation tangles generated
in the process of cold rolling. The density of dislocation increases
visibly after cold rolling at 34% reduction. Bright-field image
taken from another region of the 34% cold-deformed TLM alloy
plate is presented in Figure 5B, which displays the dislocation
pile-up near the grain boundaries as well as in the grain interior.
As seen from the SAED patterns (Figure 5B), phase transition
and newly formed substructures are observed in the region
of black and white bands. This interesting phenomenon was
previously found by Takemoto in the investigation of tensile
deformation behavior and cold rolling at various reductions for
the titanium–molybdenum alloy (Takemoto et al., 2004). The
formation of bands is attributed to the dislocation movement
and tangle non-uniformity to some extent. Additionally, it
can be observed that the extension and growth of bands are
suppressed by the grain boundary. The bright-field (BF) image
and SAED patterns for the 60% cold-deformed TLM alloy plate
are displayed in Figures 5C,D. We can also see that a severe
deformation area is primarily composed of dislocation tangle
and 112<111> type deformation twins near the grain boundary.
Generally, the ω phases induced by stress during cold rolling

were not detected by XRD and TEM in the cold-deformed
TLM alloy (Cheng et al., 2020). One of the reasons is that the
contents of β stable elements, such as Nb, Zr, Sn, and Mo,
are so high that the formation of ω precipitates is suppressed
to a large extent. This kind of ω phase can be considered as
stress-induced omega (SIO) phase transformation triggered by
the recombination of solute atoms in the {112} lattice planes with
the orientation of <111> crystallographic direction families.
The mechanism of dislocation motion and tangles can also be
clarified by the replacement of solute atoms in {112} lattice planes
in the direction of <111> during cold deformation. Moreover,
the degree of dislocation pile up improves obviously with the
increment in the reductions, which may result in the generation
of new boundaries for the β-type Ti alloys (Wu et al., 2014; Yang
et al., 2018; Rabadia et al., 2019a,b).

Aging Treatment, Precipitation Phases,
and Mechanical Properties
In general, the β→α phase transformation could be triggered
in the TLM alloy during the solution treatment plus aging.
Figure 6 presents the morphology (SEM and TEM) of the
precipitation phases for the alloy after cold rolling at various
reductions plus 510◦C aging treatment. As can be seen from
Figures 6C,F, compared with the size of precipitated phases in
the single aging-treated sample, the precipitations formed in the
TLM alloy subjected to cold rolling in conjunction with the same
aging should be refined to a large extent. When the TLM alloy
plate is cold rolled at a reduction of 34% in conjunction with
aging treatment for 8 h, the length of precipitation phases is
approximately 150–500 nm, which is much thinner than that
of a single aged one. The formation of dislocation lines or
dislocation cells introduced by cold rolling deformation plays
a very important role in the emergence of precipitates during
aging treatment. Figure 6B presents the dark-field (DF) TEM
picture of the morphology for the tiny precipitations generated
in the process of cold rolling at a 34% reduction followed by
short-time aging treatment. As seen from the SAED pattern,
the white precipitation phases should be α phase. Systematic
research on α precipitation phases with nanometer dimensions
of the initial sample, such as β21s, subjected to certain aging
heat treatment was carried out. However, α phases were hardly
observed in the β matrix using an electron microscope (Malinov
et al., 2003; Banerjee and Williams, 2013). The reason for
this interesting phenomenon is that the crystal defects, such
as dislocation lines, sub-boundaries, phase interface, and twin
boundaries, can promote the phase transition of β→α and reduce
the time of subsequent aging simultaneously (Wang Y. B. et al.,
2010; Guo et al., 2013). Figures 6A,B present that the length
of α precipitated phases is approximately 15–90 nm in the
sample cold rolled at 34% reduction followed by aging treatment
for 0.5 h. After rolling, a large number of dislocations were
introduced into the initial microstructure, which is favorable for
the homogeneous nucleation process of β→α phase transition
during aging, resulting in the refinement of α precipitations.
More and more nucleation sites in the β matrix will be conductive
to suppress the rapid growth of the α phase. Furthermore, a
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FIGURE 5 | TEM analyses of the TLM alloy plates cold rolled with various reductions. (A,B) Bright-field (BF) micrographs and SAED patterns for the specimen cold
deformed with the reduction of 34%. (C,D) Bright-field (BF) micrographs and SAED patterns for the specimen cold deformed at a reduction of 60%.

large number of newly generated interfaces were introduced
into the deformed specimen. These new interfaces accelerate
the precipitation of lamellar α phases, which may result in a
decrease in the plasticity of aged specimens. The newly generated
grain boundaries contribute to the homogeneous nucleation and
dispersed precipitation of α phase in the process cold rolling at
various reductions. Moreover, it can be seen from Figures 6D–
F that the newly generated grain boundaries appear during cold
rolling at a relatively large reduction (60%), resulting in the
linear dispersion of secondary phases along with them after
aging treatment.

Previous studies have shown that the dislocation density of
alloy is approximately 1.0 × 109 mm−2 after plastic deformation
(Azushima et al., 2008; Cheong, 2008). During cold rolling
processing, the formation of dislocations in the TLM alloy plate
could provide the driving force for β→α transformation after
aging, which contributes to the refinement of the α phase.
Therefore, the strengthening mechanisms for the TLM alloy plate
cold rolled with various reductions followed by aging could be
clarified using the above theory. This kind of finer α phase can
offer more phase interfaces, which will be regarded as one type
of powerful dislocation obstacles, and can also help to obtain the
enhancement of strength for the TLM alloy.

A schematic diagram of microstructural evolution and
precipitating process for the TLM alloy plates cold rolled with
reductions of 0, 6, 36, 40, and 60% followed by aging treatment
at 510◦C for 8 h is presented in Figure 7. The morphology
of the α phases shows a remarkable difference at various cold-
rolling reductions. Meanwhile, a large number of slip bands and
newly generated grain boundaries gradually emerge during cold
deformation. To the author’s knowledge, they are considered
as a typically inferior microstructural characteristic, which is
prone to be changed into coarse lamellar α precipitates after
following aging treatment. The dislocation slip or motion is
suppressed by this microstructure coarsening, and the ductility
is simultaneously weakened during tensile deformation at room
temperature. In addition, when the plate is cold rolled with a
reduction of 60% in conjunction with aging treatment at 510◦C
for 8 h, the maximum strength value (tensile strength: 1,005 MPa)
is achieved under this condition.

The tensile curves for TLM plate ST at 805◦C for 1 h followed
by water quenching and cold rolled with various reductions
in conjunction with aging treatment at 510◦C for 8 h are
displayed in Figure 8. For the β solution-treated (805◦C/1 h,
WQ) condition, the curve demonstrates a so-called “double
yielding” effect during the tensile deformation. The reason for
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FIGURE 6 | Micrographs of the TLM alloy plate cold rolled with various reductions in conjunction with aging treated at 510◦C. (A,B) SEM image, dark-field TEM
micrograph, and SAED pattern for the sample after cold rolling at a reduction of 34% in conjunction with aging treatment for 0.5 h. (C) SEM image for the sample
after cold rolling at a reduction of 34% in conjunction with aging treatment for 8 h. (D,E) SEM images for the sample after cold rolling at a reduction of 60% in
conjunction with aging treatment for 0.5 h. (F) SEM image for the sample after cold rolling at a reduction of 60% in conjunction with aging treatment for 8 h.

FIGURE 7 | A schematic diagram of microstructural evolution and precipitating process for the TLM alloy plates cold rolled with reductions of 0, 6, 36, 40, and 60%
followed by aging treatment at 510◦C for 8 h.

this phenomenon is that when the temperature is selected in the
beta phase region, the beta phase is in a relatively metastable
condition, and the precipitation of martensite phase (α”) is
prone to be promoted. The stress–strain curve with a fairly low

value of apparent yielding stress is caused by the nucleation
of the martensite phase and inheritance of room temperature
deformation modes. Meanwhile, the emergence of the second
yield point is attributed to the applied stress needed for the
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activation of certain slip systems, which could suppress the
movement of the martensite laths during deformation. The
tensile strength and elongation of the TLM alloy ST at 805◦C
for 1 h followed by water cooling are 609 MPa and 43.7%,
respectively. Moreover, the tensile strength gradually increases
with the increment in the reductions, while the elongation
decreases with the increment in the reduction of cold rolling. The
maximum value of tensile strength is as high as 1,005 MPa at
cold rolling with a 60% reduction followed by aging treatment.
However, the elongation of the TLM alloy plate is only about
4.5% in this condition. The TLM alloy plate has not visibly
demonstrated the characteristic of plastic deformation. It can
be inferred that the tensile strength and elongation of the
TLM alloy plate are obviously different because of the volume
percentage, size, and shape of α phases formed after cold
deformation followed by aging treatment. The TLM alloy having
finer α precipitations formed, based on the assisted nucleation
and growth of dislocation tangles, or pile up during cold
deformation with a reduction of 34%, possesses a higher tensile
strength level. The main reason for this is considered to be
the following factors including the geometrical size and volume
percentage of α phase as well as the quantity and density of
α phase interfaces, which are significantly influenced by the
degree of cold-rolling deformation. Based on the precipitation
strengthening criterion, the α precipitated phase refinement
contributes to the enhancement of tensile strength for the TLM
alloy (Gao et al., 2019; Bermingham et al., 2020). Furthermore,
it can be noted that the room temperature elongation of the
alloy plate subjected to solution annealing plus direct aging
treatment is approximately 24%, and the tensile strength is about
660 MPa. The reason is that the formation of α precipitation
phases with thick lamellar is suppressed owing to the lack of
newly formed interfaces within the (ST + AG) sample, while
they will be precipitated within the alloy plates after cold rolling
in conjunction with aging treatment. These abundant newly
formed α interfaces will hinder the dislocation slip or movement
and result in the decrease in elongation at room temperature.
Moreover, the tensile strength and elongation for the TLM alloy
plate subjected to cold rolling at a reduction of 6% followed by
510◦C aging treatment for 8 h are 882 MPa and 6.5%, respectively.

The OM of the TLM alloy plates subjected to cold rolling with
a reduction of 0% (solution treated), 34%, and 60% followed by
510◦C aging treatment for 8 h and their corresponding fracture
surfaces after tensile deformation are presented in Figure 9.
In general, the OM and fracture surfaces are often used to
analyze and characterize the details of microstructural evolution
for the experimental alloy plates according to the morphology
features and deformation behaviors to be predicted. Figures 9A,B
indicate that α phases are precipitated in the β matrix, and a
very small amount of micro precipitate-free zones (PFZ) can be
observed in the TLM alloy plate subjected to solution annealing
plus direct aging treatment. Interestingly, from Figures 9C,D,
it can be observed that more and more α precipitations with
smaller size form in the TLM alloy plate subjected to cold
rolling at a reduction of 34% and followed by aging treatment.
It is believed that the cold rolling plays a significant role in
the uniform distribution and refinement of α precipitations and

FIGURE 8 | Tensile curves for the solution-treated specimen and TLM alloy
plate subjected to cold rolling at the reductions of 0, 6, 34, 40, and 60% plus
aging at 510◦C for 8 h.

increasing in the number of secondary phases. As for the TLM
alloy plate subjected to cold rolling at a reduction of 34%, many
crystal defects induced by plastic deformation, such as dislocation
tangles or pile up, contribute to provide more nucleation sites
and suppress the over quick coarsening and growth of secondary
phases during aging. Furthermore, it can be obviously observed
in Figure 9D that the intergranular fracture mode is dominant
in the TLM alloy plate subjected to cold rolling at a reduction
of 34% followed by aging treatment. As seen from the details
of fracture surface morphology, the alloy plate shows ductile
fracture characteristic to some extent. The fracture surface is
composed of massive dimples with a size of approximately 5–
11 µm. This fracture mode is associated with the more uniform
and smaller secondary phases precipitated in the β grains and the
acceptable ductility with 6.9% at room temperature. The finer
scale of secondary phases precipitated in the process of aging
treatment after cold rolling will result in the formation of plenty
of interfaces between alpha and beta phases. These interfaces
can be considered as a lot of effective obstacles to dislocation
movement and cause visible increase in the tensile strength for
the TLM and other titanium alloys (Cai et al., 2013; Ozan et al.,
2019). The OM and fracture surface (SEM image) for the TLM
alloy plate subjected to cold rolling at a reduction of 60% and
followed by aging treatment are presented in Figures 9E,F. The
fracture surface shows the evidence of brittle failure to some
extent due to the formation of a thick lath-like α phase in the
grain boundary, which could result in a decrease in elongation
after tensile deformation at room temperature.

CONCLUSION

The microstructure characteristics of the TLM alloy plates cold
deformed at various reductions and its influence on precipitated
phases during aging treatment were mainly studied in this work.
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FIGURE 9 | Microstructures and fracture surfaces for the TLM alloy plates subjected to cold rolling at various reductions followed by aging treatment at 510◦C for
8 h: (A,B) 0% reduction. (C,D) 34% reduction; (E,F) 60% reduction.

The TLM alloy plates possessed various mechanical properties
owing to the different morphology, size, and volume fraction of
α precipitated phases after cold-rolling deformation with various
reductions (0, 6, 34, 40, and 60%) in conjunction with aging
treatment at 510◦C for 8 h. These main conclusions could be
summarized from this work:

(1) The <110> texture was prone to form in the β

solution-treated TLM alloy plates subjected to cold-rolling
deformation with various reductions at room temperature.
Dislocation tangles were visibly observed in the β matrix
after cold rolling.

(2) The α precipitated phases formed after cold rolling with
various reductions (0, 34, and 60%) in conjunction with

aging treatment possessed various characteristics. The
dimension of α precipitated phases in the alloy plate
subjected to cold rolling was smaller than that of the α

phases transformed after a direct solution treatment in
conjunction with aging.

(3) When the alloy plate was subjected to cold rolling at a
reduction of 60% in conjunction with aging, the maximum
tensile strength could be achieved, while the elongation
was relatively low. A large number of newly generated
subgrain boundaries and interfaces were prone to be
formed after cold deformation with various reductions
at room temperature. The precipitated phases with thick
lamellar were formed, which could be considered as one of
the principal reasons for the relatively low elongation.
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(4) When the alloy plate was subjected to cold rolling at a
reduction of 34% in conjunction with aging, the smaller α

precipitated phases could be formed within the β matrix,
resulting in the relatively high tensile strength of 931 MPa
and the acceptable elongation of 6.9%. Therefore, the
TLM alloy will be deemed as a potential material in the
orthopedic field.
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Influence of Strontium phosphate
Coating on the Degradation of
Physical Vapor Deposition Sprayed
Mg Coating on Ti6Al4V Substrate to
Promote Bone Tissue Healing
Muhammad Ibrahim1,2, Xiaoming Yu3, Lili Tan1* and Ke Yang1*

1 Institute of Metal Research, Chinese Academy of Science, Shenyang, China, 2School of Materials Science and Engineering,
University of Science and Technology of China, Shenyang, China, 3School of Material Science and Engineering, Shenyang Ligong
University, Shenyang, China

Ti6Al4V is one of the commonly used orthopedic metallic materials, but its bioactivity is
weak, which makes it challenging to produce bone integration between material and bone
tissue. In this study, an Mg/SrP composite coating was prepared on Ti6Al4V, to promote
bone tissue healing and shorten the healing cycle. The surface characterization, in vitro
degradation performance and bioactivity of the composite coating, were investigated. The
results revealed that Mg/SrP composite coating has more suitable degradation rate than
Pure Mg, no cytotoxicity was found on the Mg/SrP composite coated samples, higher
proliferation compared with the culture medium was found, indicating that the Mg/SrP
composite coating is a candidate coating on Ti6Al4V to improve the bioactivity.

Keywords: Ti alloy, Mg/SrP coating, degradation, biocompatibility, Mg coating

INTRODUCTION

Ti-based metal is one of the metallic materials used in dentistry and orthopedic surgery to enhance or
support or to replace an existing biological structure (Zhang and Chen, 2019; Hafeez et al., 2020; Liu
et al., 2020). Most of these medical devices are made of pure Ti and its alloy, because of their excellent
biocompatibility, enhanced corrosion resistance, and unique mechanical properties (Liu et al., 2004;
Gode et al., 2015; Yu et al., 2018b; Ebrahimi et al., 2019; Ibrahim et al., 2020). In the 1950s, Per-Ingvar
Branemark discovered the principles of osteointegration for the first time (Le et al., 2014). However, Ti-
based metal has still some shortcomings yet to be resolved. Themajor challenge for Ti is to improve the
osteointegration and enhance the bioactivity of the implants for bone regeneration and healing (Drago
and Howell, 2012; Attarilar et al., 2019; Wang et al., 2020). 3D printed porous structure and surface
modification are the conventional approaches to improve bone growth and enhance the bioactivity of
Ti. Surface modifications such as CaP coating could accelerate bone growth, and the physicochemical
changes of the implant could induce a firm bonding with the bone (Li et al., 2017).

Recently, Mg-based metals have shown great potential to be used as biocompatible and
biodegradable materials, because of their excellent properties, including relatively close elastic
modulus and density (41–45 GPa, 1.7–2.0 g/cm3) to the human bones (10–40 GPa, 1.8–2.1 g/
cm3) (Staiger et al., 2006; Witte et al., 2006; Kraus et al., 2012; Sun et al., 2012; Yu et al.,
2018a). Mg also exhibits a positive effect on bone tissue, which could improve the
reconstruction and healing of the associated bone. Witte (2015) reported that Mg-based metals
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showed a positive impact on the bone tissue, and high Mg ions
activated the surrounding bone cells (Wang et al., 2015). Zhai
et al. (2014) found that Mg also has a strong effect on the
apoptosis of osteoclasts and osteoblast, and influences the
proliferation. Therefore, Mg coating on Ti can enhance its
osteointegration properties. The main problem that exists for
Mg coating is its fast degradation (Salunke et al., 2011), mainly
when applied on implants with large surface area exposed to the
body fluid, leading to large pieces of layer peeling off the substrate
and the high alkaline environment around the implants limits its
application as a bone implant coating.

Strontium phosphate (SrP) a biocompatible coating was used
to control the degradation rate of pure Mg. Sr2+ ions have the
function to reduce bone resorption and cause to promote bone
regeneration (Boyd et al., 2015). Further SrP coating has excellent
corrosion rate and has been developed explicitly for
biocompatible orthopedic implants (Ke et al., 2014). The
morphology, size, concentration, charge, and surface
properties; all of them have a high impact on preventing
toxicity and harmful effects (Attarilar et al., 2020). To improve
the biological function of Ti6Al4V alloys, some nanoscale (Mg,
Sr)-HA powders were coated on its surface (Cao et al., 2019).

Therefore, in this work, a Mg/SrP composite coating was
deposited on the surface of the Ti alloy, to regulate the
degradation behavior of Mg-based metal coating, further
promote the bone tissue healing and shorten the healing cycle
of Ti alloy with the Mg2+ ions release from the surface. The
biocompatibility and corrosion resistance of Mg/SrP composite
coating on Ti alloy was also studied.

EXPERIMENTAL DETAILS

Materials and Methods
The schematic diagram of the Mg and Mg/SrP coatings
preparation process is shown in Figure 1. Mg coatings were
deposited on Ti6Al4V samples with a dimension of Φ 10 mm ×
3 mm by Physical Vapor Deposition (PVD) method. Firstly
Ti6Al4V substrate was polished, washed, ultrasonically
cleaned, and then dried. The vapor generated from the source

of pure Mg (99.99 wt%) at 700°C was carried by an Ar flow of 250
sccm and deposited on the substrate at a temperature of 300°C.
The vacuum pumps allowed the pressure of 10−1 Torr to collect
the high purity Mg. In the designing or optimization of PVD, the
coating thickness varies with the variation of source and substrate
distance. So it is essential to control the gap between the source
and substrate to control its depth because the coating with higher
thickness lowered the coating adhesion and possibly may affect
the bone tissue healing.

Mg coated samples were then treated with SrP coating. The
SrP coating solution consisted of 0.06 M NH4H2PO4 and
0.1 MSr (NO3)2. The dilute HNO3 was used to adjust the pH
to 3, and then the samples were immersed in the solution for
10 min at 80°C. The coated samples were washed with ethanol
and then warmly dried.

Characterization of Coatings
The surface and cross-section morphology of Mg and Mg/SrP
coatings were observed by scanning electronmicroscope (SEM, S-
3400 N) equipped with a dispersive energy spectrum (EDS).
Furthermore, the compositions of the layers were
characterized by X-ray diffractometry (XRD, Bruker D8
ADVANCE) using the CuKα line generated at 40 kV and 35 mA.

Electrochemical Test
A Gamry instrument (Reference 600) was used to examine the
electrochemical corrosion test. The samples used for this purpose
had an exposed area of 0.785 cm2 and were molded in the epoxy
resin. D-Hank’s was used to perform the test at a temperature of
37°C. The composition of D-Hank's solution was listed in Table 1.
The three-electrode cell used for this purpose consists of platinum
as the counter electrode; a saturated calomel electrode as a
reference electrode and the coated samples were working
electrode. After the 1800 s, the test started at an open-circuit
potential (OCP). At a frequency range of 100 kHz to 10 MHz, the
electrochemical impedance spectroscopy (EIS) was carried out at
the OCP. Concerning OCP, the potentiodynamic polarization
test started at a scan rate of 0.5 mV/s and a voltage of −0.25 to
0.35 V. For each coated sample the experiment was repeated three

FIGURE 1 | The schematic diagram for Mg and Mg/SrP coatings.
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times. The corrosion rate of Mg and Mg/SrP coating was
measured with the following equation (Chen et al., 2019). Icorr
the corrosion current density of the coating is measured by Tafel
extrapolation of polarization curve, Icorr is related to Pi (average
corrosion rate) in mm/year using the equation.

Pi � 22.85Icorr (1)

Immersion Test and Mg2+ Release
Mg and Mg/SrP coated samples with a size of Φ10 mm × 3 mm
were immersed in D-Hank’s solution for nine days at the ratio of
1.25 cm2/ml. The immersion solution was changed after each
24 h to keep it fresh. The pH value was recorded every 24 h before
refreshing the solution. The release of Mg2+ from each sample in

D-Hank’s solution at 1, 2, 3, 4, 5, 6, and 7 days were determined
by using inductive-coupled plasma mass spectrometry (ICP-MS,
Thermo, United States).

Cell Proliferation
MC3T3-E1 mouse preosteoblast cells were purchased from the
College of Stomatology, Fourth Military Medical University,
Xi’an, China. The α-MEM complete medium supplemented
with 10% heat-inactivated fetal bovine serum, 100 U/ml
penicillin, and 100 mg/ml streptomycin, were used for cell
culture under the condition of 5% CO2 at 37°C. MC3T3-E1
incubated cells were seeded on Mg and Mg/SrP coated
samples in a 96-well plate with an initial density of 4 × 104

cells. Kit-8 (CCK-8, Japan) was used for this purpose. The
cultured medium at the time point of 1, 3, and 5 days was
transferred to new 96-well culture plates. CCK-8 solution
(10% volume) was added onto the plates and incubated for 3 h
at 37°C. A microplate reader was then used to quantify the
absorbance of the solutions at 450 nm wavelength with a plate
reader.

Statistical Analysis
Data were expressed in standard deviation (SD) and statistically,
one-way analysis of variance (ANOVA) was analyzed with a post-
hoc Tukey test. The significant P values of less than 0.05 were
considered.

RESULTS AND DISCUSSION

Characterization of Coatings
Figure 2 presents the surface morphology of Mg and Mg/SrP
coatings on the Ti substrate. Mg coating deposited smoothly and
densely with an average particle size of 7 μm (Figure 2A). From
the Mg/SrP composite coating observation, a small crystal-like

FIGURE 2 | Surface morphologies of the coatings of Mg (A) and Mg/SrP (B).

FIGURE 3 | XRD pattern of Mg and Mg/SrP coatings on Ti alloy.
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pattern was observed (Figure 2B). From EDS analysis, there are
Mg, Sr, and P elements in the Mg/SrP coating. Further analysis of
the coating layer was carried out from the XRD pattern
(Figure 3). The Mg coating consists of both Mg and MgO. In
the Mg/SrP coating, in addition to the diffraction peak of the Mg,
the existence of diffraction peaks belonging to Sr(H2PO4)2 and
Mg(H2PO4)2 indicates the presence of crystallization in the
coating, which arguments the strength of the coating with
substrate because the coating strength with the substrate is a
key factor for evaluation of its performance. Also, the low
adhesion strength possibly delaminates the coating layer from
the surface, which may cause the failure of the implant. Previous
studies also reported the importance of coating strength with the
substrate (Cao et al., 2019).

From the cross-section morphology of the coating shown in
Figure 4, it can be seen that the thickness of Mg coating was about
50–52 μm and that of Mg/SrP was 99–101 μm (Figure 4A).

Electrochemical Measurements
The electrochemical corrosions of Mg and Mg/SrP coatings
were characterized by potentiodynamic polarization curves and
electrochemical impedance spectrometry. Figure 5 showed the
polarization curves and impedance spectra in D-Hank’s
solution at 37°C for both Mg and Mg/SrP coatings. Table 2
presents the Tafel fitting results of both kinds of coating

surfaces. From the results we can see that the Mg/SrP
coating exhibited a lower current density of 0.700 ± 0.02 μA/
cm2 compared to that of Mg coating (3.400 ± 1.01 μA/cm2), the
corrosion rate of Mg/SrP coating is approximately 0.103 ±
0.01 mm/year, also less than that of Mg (0.52 ± 0.21 mm/
year). Similarly, from electrochemical impedance
spectrometry (EIS), the higher the arc in the impedance
spectrometry is, the higher the corrosion resistance of the
material is. Hence, the corrosion resistance of the Mg/SrP
coating is significantly higher than that of Mg coating
(Figure 5B), which is also consistent with the
potentiodynamic polarization curve. It implies that the SrP
coating shows more resistant to corrosion than the Mg coating.

Figure 6 shows the equivalent circuit of Mg and Mg/SrP
coating and Table 3 shows the fitted data obtained with ZSimp
Win software. C is the double-layer capacitance of solution and
coating surface, Y04 is the constant phase element, whereas R1

and R2 show the solution and charge transfer resistance,
respectively. From Table 3 R2 shows better corrosion
resistance. The corrosion resistance of coating increases with
SrP. To analyze the degradation of coating impedance is usually
adopted. From impedance curves in Figure 5, one capacitive loop
can be found on the Nyquist plot of the coating with Mg and
Mg/SrP coating. Usually, a larger diameter of the circuit and
higher impedance means better corrosion resistance of the

FIGURE 4 | Cross-section morphology (A) and EDS (B) results of the Mg/SrP coating.
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coating Table 3. Therefore Mg/SrP coating exhibited the highest
degradation resistance.

Immersion Test
Biodegradable materials are implant materials gradually corroded
in vivo, with the release of corrosion products, which dissolve
completely and assist the healing tissue without implant residues
(Li et al., 2014a). Biodegradable Mg-based materials have been
investigated widely, due to its unique degradation in the
physiological environment, to avoid the repeated surgery of

implants (Staiger et al., 2006; Chai et al., 2012; Zheng et al.,
2014). Mg having similar mechanical properties with human
bones and have a positive effect on the growth of bone tissue
(Witte et al., 2008). The pH and Mg2+ ion release results of the
coated samples immersed in D-Hank’s solution shown in
Figure 7. The products arising from the degradation of Mg
influence apoptosis of osteoclasts and proliferation of
osteoblasts has been observed to activate bone cell (Witte
et al., 2005; Li et al., 2014b).

From the variation of pH, it can be seen that the pH value of
Mg coated sample rises rapidly on the first day of immersion in
D-Hank’s solution to around 11, reaching a maximum, and this is
significantly higher than the Mg/SrP coated sample and the blank
control sample. In the following days, the pH value is on a
downward trend, and the overall pH value drops rapidly. The pH
of the Mg/SrP coated sample shifts up quickly to 9.75 after

FIGURE 5 | Potentiodynamic polarization (A) electrochemical impedance spectrometry (B) Nyquist curves (C) curves of Mg and Mg/SrP coatings in D-Hank’s
solution.

TABLE 2 | Tafel fitting results based on potentiodynamic polarizations tested in D-Hank’s solution.

Samples Potential (V) Current density (μA/cm2) Corrosion rate (mm/year)

Mg coating −1.620 ± 0.02 3.400 ± 1.01 0.521 ± 0.21
Mg/SrP coating −1.580 ± 0.01 0.700 ± 0.02 0.103 ± 0.01

TABLE 1 | The composition of D-Hank’s solution (g/L).

KCl KH2PO4 NaCl Na2HPO4.7H2O NaHCO3 C19H14O5S

0.4 0.06 8 0.06 0.35 0.02
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immersion on the first day, much lower than that of Mg coating
on the first day, after that, its downward pH trend is much slower
than that of Mg coating, showing more Mg coating left in the Mg/
SrP coating and presenting higher pH values in a more extended
degradation period.

The deposition of SrP coating protected the Mg coating from
degradation, but the existence of small non-uniform pores
permeated the solution to inert the inner layer, and the
degradation of Mg coating occurred. When Mg2+ ions
dissolved into the solution, the cation reacted with OH−to

form Mg (OH)2 in the solution. There is a release of Mg2+

ions during a different period, with both Mg coated and Mg/
SrP coated samples indicating a rising tendency. After 7 days of
immersion, the numbers of ions gradually rise to 73 and 69 ppm
respectively, which is an indication of the continuous degradation
of Mg coating.

AlthoughMg coating has well-established biocompatibility, its
uncontrolled degradation and corrosion in the body fluid are the
main factors affecting its reliability to support bone growth or
tissues healing process. Also, the degradation of Mg causes
hydrogen evolution (Witte et al., 2008). Both the formation of
hydrogen gas cavities and the alkalization of the body fluid
around the tissues interfere with the adhesion of the cell to

FIGURE 6 | Equivalent circuit of Mg and Mg/SrP coating immersed in
D-Hank’s solution.

FIGURE 8 | Cell proliferation in extracts after 1, 3 and 5 days of
incubation measured by CCK-8 assay. Statistically (n 3 (**) indicate, p < 0.01
while (***) indicate p < 0.03).

FIGURE 7 | pH change (A) and Mg2+ ions release (B) of the coatings at different immersion time in D-Hank’s solution.

TABLE 3 | Fitting results of Mg and Mg/SrP coatings immersed in D-Hank’s
solution.

Samples R1 (ohm) Y04 (S * s^n) C (F) R2 (ohm)

Mg coating 22.23 2.963 × 10–4 0.543 7,160
Mg/SrP coating 18.34 2.123 × 10–4 0.632 7,533
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the implants. The presence of SrP coating on pure Mg coated
implants reduced these phenomena. The release of Mg2+ ions
around the implant overlaps the osteoblastic lineage and cell
proliferation, which leads to the regeneration of bone tissues.

Cell Proliferation
Mg-Sr alloy containing a trace element of strontium may
stimulate and increase the formation of new bone (Gu et al.,
2012; Tie et al., 2016).

Figure 7 shows the cell proliferation assessment during the
first 5 days. At 1st day, Mg/SrP coating cultured with cells
showed relatively comparable absorbance, while Mg coating
had a relatively lower absorbance in comparison with the
control group. However, the absorbance, after 3 days,
increased drastically for the entire group. At Day 3 and 5,
Mg/SrP showed a relative increase in cell proliferation as
compared to Mg coating and Ti groups. At day one, it is
revealed from Figure 8 that Mg coating shows a lower value of
Optical Density (OD) as compared to the control, meaning
that cell proliferation was inhibited because of the slight
increase in pH value of the medium (Yang et al., 2013)
which is not suitable for murine BMSCs to be adapted in
the early stage. But cytoplasmic membrane would not disrupt
due to the variation of pH. It’s because the human body fluid is
a considerable buffer system, which can very well adjust the
pH of the physiological system. After 3 and 5 days, the
absorbance measurements increased drastically for all
groups, and no noticeable change was found. The results of
5 days demonstrate no cytotoxicity effect for both Mg and Mg/
SrP coated implants. Furthermore, the overall proliferation of
Mg/SrP group is better than the other group, due to the
controlled release of ions and slower degradation of the
coating. Mg2+ and Sr2+ ions in the coating surface have
been found to accelerate diffusion, cell adhesion which
favor effect on the mineralization and to improve cell
proliferation (Cao et al., 2019).

CONCLUSION

In the present work, Mg/SrP composite coating was prepared on
Ti6Al4V alloy. Mg/SrP coating initiated from the formation of
MgO/Mg(OH)2 carrying SrP: After immersion in the solution
containing ammonium dihydrogen phosphate and strontium, the
conversion reaction developed, MgO/Mg(OH)2–SrP flakes into
duplex coating, which cover the entire Mg coating after 10 min.
Such coating system reduced the degradation rate of pure Mg
coating and will serve in the future to control the degradation of
Mg base coating. Further Mg/SrP coating cultured extract show
high proliferation of MC3T3-E1 cells compared with normal
culture medium. These results revealed that the Mg/SrP
composite coating showed a higher corrosion resistance and
exhibited significant biocompatibility compared with pure Mg
coating on Ti alloy.
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With the continuous progress and development in the biomedicine field, metallic
biomedical materials have attracted the considerable attention of researchers, but
the related procedures need to be further developed. Since the traditional metal
implant materials are not highly compatible with the human body, the modern materials
with excellent mechanical properties and proper biocompatibility should be developed
urgently in order to solve any adverse reactions caused by the long-term implantations.
The advent of the high-entropy alloy (HEA) as an innovative and advanced idea
emerged to develop the medical implant materials through the specific HEA designs.
The properties of these HEA materials can be predicted and regulated. In this paper,
the progression and application of titanium-based HEAs, as well as their preparation
and biological evaluation methods, are comprehensively reviewed. Additionally, the
prospects for the development and use of these alloys in implant applications are
put forward.

Keywords: titanium-based high entropy alloy, biomedical application, implant, complex alloys, multi-principal
element alloys

INTRODUCTION

In recent decades, bio-medical materials are widely used in implants and repair surgeries due
to their high strength, wear, corrosion resistance, and biocompatibility (Saini, 2015). In order to
improve the bone tissue rehabilitation in biomedical applications, a kind of materials should be
selected that possess similar properties to the natural bone so it can maintain the cell adhesion
function after implantation, promote the tissue repair, and accelerate the healing process. Among
all the biomedical implant materials, metallic ones are the most widely used material group in
the clinical practices. The metallic biomaterials include stainless steel, CoCrMo alloy, NiTi shape
memory alloy, magnesium alloy, titanium, and its alloys (Saini, 2015; Liu et al., 2020; Wang
W. et al., 2020). Titanium and its traditional alloys are ideal biomedical materials with good
mechanical properties, biocompatibility, and corrosion resistance. These materials are mostly used
in orthopedics and dental implants (Niinomi, 2003, 2008; Geetha et al., 2009; Zhu et al., 2016;
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Zhang et al., 2017; Rabadia et al., 2018), such as plates, stents,
hip and knee joint replacements, dental roots, etc. However,
pure titanium and its alloys also have some limitations such
as poor wear resistance in which the material wears out and
produces some metallic particles and debris under long-term and
repeated stress conditions. These metallic particles and debris
can cause local tissue lesions and inflammation. The Ti-6Al-4V
and Ti-6Al-7Nb alloys are known as the traditional Ti alloys
(Kobayashi et al., 1998; Tamilselvi et al., 2006; Assis and Costa,
2007; Ding et al., 2016; Wang H. et al., 2019). These two materials
fulfill the strength requirement of the implant, but the alloying
elements such as the Al and V can cause toxic effects and
adversely influence the live tissues and organs. The Al element
can accumulate in the brain, liver, spleen, kidney, thyroid, and
other tissues and organs and cause some degree of damages
(Attarilar et al., 2020). Also, the V element may cause bone
softening, anemia, and nerve disorders. Moreover, the elastic
modulus of these two titanium alloys (about 120 GPa) is still very
high compared to natural bone (10∼35 GPa). Niinomi (2008)
found that titanium alloys with low elastic modulus have better
load transfer characteristics than the alloys with high elastic
modulus. The dense metal implant bears most of the applied
load and leads to a significant reduction of stress level in the
periphery of bone tissue, hence the density and strength of the
bone tissue gradually decrease. This phenomenon is known as
the stress shielding effect, which causes slow bone healing, bone
resorption, implant loosening, and failure.

Recently, high-entropy alloys (HEAs) are known as novel
metallic functional materials and they attract considerable
attention. HEAs have great potential in the field of biomedicine
and seem to finds lots of applications in the medical industry
(Yan and Zhang, 2020). The concept of HEA was originated
from increasing the number of elements to increase the mixing
entropy of the material to achieve the purpose of a stable solid
solution alloy formation. They are also called multi-principal
element alloys (MPEAs) or compositionally complex alloys
(CCAs) (Miracle and Senkov, 2017; George et al., 2020). Based
on the multiple element principal, HEAs are the representative
of a new class of alloys that provide better performance through
composition adjustment and the controlling methods, in which
the phase composition encountered some transitions from a
single-phase solid solution toward a variety of complex phase
compositions. Moreover, researchers have divided a large number
of HEAs into two main categories and analyzed their deformation
mechanisms (Brechtl et al., 2020). The first one is based on the
crystallographic structure of the phase and includes FCC-based,
BCC-based, HCP-based, amorphous, and intermetallic HEAs.
The second one is categorized according to the phase types
and includes single-phase, dual-phase, eutectic and multi-phase
HEAs. The HEAs had attracted substantial attention due to their
excellent properties, such as high strength/hardness, high wear
resistance, high fracture toughness, excellent low temperature
performance and structural stability, good corrosion resistance,
oxidation resistance, etc. (Juan et al., 2015; Xu et al., 2015; Shang
et al., 2017; Chen J. et al., 2018; Jin et al., 2018; Qiu, 2018;
Sharma et al., 2018; Shuang et al., 2019; Tian et al., 2019; George
et al., 2020; Yao et al., 2020). For instance, Prùša et al. (2020)

investigated the strengthening mechanism of ultrafine-grained
CoCrFeNiNb HEA by mechanical alloying and spark plasma
sintering that showed ultra-high strength of 2412 MPa and high
hardness of 798 ± 9 HV at 1000◦C. Furthermore, researchers
have also realized that rapid oxidation under high temperature
conditions limits the high-temperature applicability of HEAs.
The addition and content of alloying elements are the key factors
affecting the oxidation resistance and application of HEAs.
Recent research have confirmed that the addition of Al and
Cr to the alloy can effectively improve the oxidation resistance
of HEAs, and the formation of some complex oxides can also
provide better protection for the alloy (Waseem and Ryu, 2020).

This new type of alloy and its modern concept breaks the
bottleneck of traditional material design and introduce new
ideas for the research and development of high-performance
metallic materials. Therefore, the design of Ti-HEAs materials
with excellent biocompatibility and good mechanical properties
is of great significance for the advancement of medical implants.

EMERGENCE AND DEVELOPMENT OF
TITANIUM-BASED HEAS

Yeh et al. (2004) and Yeh (2006) introduced the HEAs in 2004,
this new class of metallic materials usually composed of 5 or more
metallic elements in nearly equiatomic proportions (Cantor et al.,
2004; Miracle and Senkov, 2017; Zhang et al., 2018). Although the
composition of high entropy alloys is very complex, it is usually
composed of a single phase or two phase structures with proper
stability and flexibility (George et al., 2020).

The HEA design is based on the four effects, including the
high-entropy effect, the lattice distortion, sluggish diffusion, and
the “cocktail” effect (Zhang et al., 2014). The high entropy effect
is the landmark concept of HEAs. Initially, scholars believe that
the alloy which contains the multi-principal elements will be
led to the production of various intermetallic compounds and
or complex microstructures. However, after a while, they have
discovered a special phenomenon in which HEAs do not form
a large number of intermetallic compounds, rather they tend to
form a simple BCC, HCP, and FCC phase or even amorphous
structures after solidification, this phenomenon is defined as
the high-entropy effect. Due to this high-entropy effect, the
high mixing entropy strengthens the mutual dissolution between
elements and thereby hindering the formation of intermetallic
compounds. In general, HEAs include five or more elements
that each of them has the same probability of occupying lattice
points. The difference in atomic sizes during the formation
of the solid solution will cause lattice distortion in the crystal
structure, which is called the lattice distortion effect. When
the lattice distortion energy is too high, the crystal cannot
maintain a stable structure, and the distorted lattice will collapse
to form an amorphous phase or intermetallic compounds. But,
whether in crystal or amorphous state, this distortion effect will
affect the mechanical properties, electrical properties, optical
properties, and even chemical properties of the material. The
sluggish diffusion effect is attributed to the fact that in the
casting process of HEAs, the coordinated diffusion of multiple
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elements gets more difficult due to the liquid-solid phase changes,
and severe lattice distortion will slow down the diffusion rate
of the elements. Therefore, the phase separation rate at high
temperature is slow, even suppressed at low temperatures, which
is the major cause of nano-precipitate formation in the as-cast
HEAs. The “cocktail” effect refers to a combination effect due
to the multi-element interaction of the HEAs, which combines
the original characteristics of various elements and relatively
eliminates their shortcomings. Considering the “four core” effect,
it is easy to obtain solid solution phases, nanostructures, and
even amorphous structures with high thermal stability in HEAs
(Yeh, 2006; Zhang et al., 2014), and they can be regarded as the
composite materials on the atomic scale. Moreover, the HEA
design is not a simple mixing of elements, it is necessary to
consider the interaction between elements that will affect the
overall performance of the obtained alloy (George et al., 2020).
At present, the HEA design firstly is done through computer
simulations in which the influence of thermodynamics and
kinetics of the alloy needed to determine, also the impact of
phase formation laws must be considered (Koval et al., 2019).
Computer simulation generally uses first-principle calculations
and phase diagram calculations to predict the structure, phase
stability, and mechanical properties of HEAs. Ge H. et al. (2017)
used the first principle calculations to predict the elastic and
thermal properties of ternary or quaternary refractory HEAs
containing Al, Ti, V, Cr, Nb, and Mo elements. They found that
the calculated properties by simulations are consistent with the
experimental results. In recent years, the Hume-Rothery criterion
and the valence electron concentration criterion are often used
to study the phase and formation possibility of HEAs. Yao et al.
(2017) used the three parameters �, δ, and 1H of common solid
solutions, intermetallic compounds, and NbTaV- (Ti, W) series
alloys to predict the phase formation of the designed alloy.

In the recent research reports, the most HEAs used in
medical implants consist of refractory elements with non-toxic
and hypoallergenic nature (Stiehler et al., 2008; Yurchenko
et al., 2020). Biomedical HEAs usually employ Ti and non-
toxic and hypoallergenic elements of group IV and group V
as main components with the addition of Cu and Co elements
on the matrix. Discovery of the latest three TiTaHf-based
HEAs that showed significant biocompatibility in immersion
experiments has demonstrated the potential of these novel HEAs
can be utilized as long-term implant materials (Gurel et al.,
2020). Among them, the presence of Nb and Zr elements have
made enormous contributions to the enhancement of material
corrosion performance. Yuan et al. (2019) prepared a series of
TiZrHfNbTa HEAs with low modulus, good biocompatibility,
and low magnetic susceptibility. In addition, they systematically
analyzed and summarized the performance of HEAs with the
addition of any element. It is found that Young’s modulus in
HEAs is relatively easier to control than the traditional implant
metals, and the comparison between Ti-based HEAs and other
metallic biomaterials are indicated in Figure 1. It provides more
possibilities to utilize HEAs as biomedical implant materials in
the future. Ching et al. (2020) reported a theoretical modeling
technique to predict the properties of HEAs; they analyzed
and predicted the performance of thirteen biocompatible HEAs.

Their proposed technology is based on the quantum mechanical
measurements, total bond order density (TBOD), and partial
bond order density (PBOD). It can deeply analyze the electronic
structure and interatomic bonding of HEAs and has an important
guiding significance for the design and application of medical
HEAs in the future.

FABRICATION METHODS OF TITANIUM
BASED HEAS

The HEA preparation methods mainly include ingot metallurgy,
powder metallurgy, selective laser melting, laser cladding,
magnetron sputtering, etc. Among them, ingot metallurgy,
powder metallurgy, and selective laser melting are the most used
techniques to prepare the bulk HEAs, while laser cladding and
magnetron sputtering methods are commonly used in order
to prepare HEA thin films or coatings. The advantages and
limitations of various HEA preparation methods are listed in
Table 1.

Preparation of Bulk HEAs
Arc Melting
Arc melting is currently one of the most commonly used
preparation methods for the production of bulk HEAs
(Baldenebro-Lopez et al., 2015; Chen Y. et al., 2018; Hou
et al., 2019; Zhang J. et al., 2020). The process involves pouring
a certain proportion of metallic materials into the tongs. Then,
after repeatedly vacuuming, the vacuum furnace fills with the
protective argon gas. Subsequently, the elements are completely
melted by the plasma arc heating of the electrode, then the
water-cooled rapid cooling process solidifies the whole melt into
an alloy. The schematic of arc melting is shown in Figure 2.

Recently, Wang and Xu (2017) prepared a TiZrNbTaMo
equiatomic HEA by arc-melting, which contains BCC1 and
BCC2 dual phases, and it shows a good corrosion resistance
in phosphate buffer solution. Dirras et al. (2016) explored the
necking and fracture surfaces of the as-cast TiHfZrTaNb HEA,
and they revealed a combination of multiple slip bands, grain
boundary distortion, as well as shallow and deep dimples,
which exhibited the high tensile plastic behavior. Yuan et al.
(2019) developed the TiZrHfNbTa HEAs, and they focus on
Ti25Zr25Nb25Ta25, Ti45Zr45Nb5Ta5, and Ti15Zr15Nb35Ta35 HEA.
The transmission electron microscopy (TEM) and SEM images of
three HEAs are shown in Figure 3. Typical dendritic morphology
enriched with Nb and Ta are shown in Figure 3A,C, while
the equiaxed grains is shown in Figure 3B. Furthermore,
Ti45Zr45Nb5Ta5 HEA exhibited lower modulus values (57 Gpa)
than the equiatomic TiZrHfNbTa HEA, which is similar to
Young’s modulus of cortical bone (10∼30 Gpa). The mechanical
properties of HEAs prepared by arc-melting are shown in Table 2.
In addition, to further explore the corrosion resistance and wear
resistance of the TiZrTaHfNb HEA, Motallebzadeh et al. (2019)
made a comparison of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5
HEA with 316L, CoCrMo, and Ti6Al4V alloys. The corrosion
product morphologies of the samples after the electrochemical
test in the phosphate buffer saline (PBS) electrolyte are shown
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FIGURE 1 | Performance comparison of titanium-based HEAs and other metallic alloys, (A) Dependence of Young’s modulus and crystalline phase structure on VEC
in all the HEAs investigated. (B) Comparison of magnetic susceptibilities of alloys 1, 4, 6, and pure Zr with the alloys commonly used in medical devices. (Alloy 1:
Ti25Zr25Nb25Ta25; Alloy 2: Ti31.67Zr31.67Nb31.66Ta5; Alloy 3:Ti35Zr35Nb25Ta5; Alloy 4: Ti45Zr45Nb5Ta5; Alloy 5:Ti21.67Zr21.67Nb21.66Ta35; Alloy 6: Ti15Zr15Nb35Ta35)
(Yuan et al., 2019). Reproduced from Yuan et al. (2019) with permission.

TABLE 1 | The advantages and limitations of HEAs preparations.

Preparation methods Advantages Limitations References

Arc Melting â Simple process
â Wide range of applications

â Exist casting defects such as composition
segregation, coarse structure, internal
shrinkage cavity etc.

Zhang J. et al., 2020

Powder Metallurgy â Near net shape forming
â Higher utilization of material
â Uniform composition
â Save metals and reduce costs

â Poor toughness
â Higher die cost

Ge W. et al., 2017;
Wang et al., 2017

Magnetron sputtering â Film thickness can be controlled by adjusting sputtering
parameters.

â Low requirements on target composition
â High sputtering rate, and low base temperature can obtain

a dense film surface

â Higher preparation cost.
â Complex equipment
â Lower target utilization

Yan et al., 2018; Zhang
et al., 2018

Laser cladding â High melting and cooling rate
â Small heat affected zone
â Metallurgical combination of coating and substrate

â The cladding layer is easy to crack
â Uneven distribution of composition

Xingwu et al., 2018;
Yan et al., 2018; Liu J.
et al., 2019

in Figure 4. It can be seen that significant pitting corrosion
was detected on the surfaces of 316L, CoCrMo, and Ti6Al4V
alloy. On the contrary, there are not any clear hints of pit
formation on TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 HEA
surfaces. Annealing can effectively improve the mechanical
properties of the alloy. Researchers have investigated the effect
of annealing on the microstructure and properties of titanium
based HEA. Nagase et al. (2020) have studied the microstructure
of equiatomic and non-equiatomic TiNbTaZrMo HEA, the
dendrite coarsening and element segregation can be observed
after annealing operation.

As one of the most important methods for preparing HEAs,
a class of titanium-based HEAs prepared by arc melting, they
believed to have excellent biological properties. However, the
cytotoxicity assessment of Ti-based HEAs is still under study,
and more in vivo and in vitro experiments are needed to confirm
its biological behavior. Furthermore, mechanical properties are
also one of the significant aspects of HEAs in evaluating the
functionality of orthopedic materials. The yield strength and
Vickers hardness of as-cast titanium-based HEAs are significantly

higher than that of 316Lstainless steel, CoCrMo alloy, and
Ti6Al4V alloy, which seems promising to increase the longevity
of orthopedic implants.

Powder Metallurgy
The HEA prepared by powder metallurgy (PM) generally uses
elemental powders or pre-alloyed powders as the raw materials
(Rao et al., 2014; Wang et al., 2017,a,b). Then, the bulk HEA
is prepared through the steps of ball milling/mixing, pressing,
sintering, and subsequent processing. Compared with the casting
method, PM application can effectively decrease the segregation
of alloy components, also it can eliminate the coarse and uneven
metal casting structures and significantly improve the optimum
raw material consumption (Málek et al., 2019a). However, there
are limited studies on the preparation of HEAs by powder
metallurgy, at present.

In addition to traditional mechanical processing methods,
there are more and more researches and applications of powder
metallurgy technology in biomedical metals. According to the
recently reported studies about titanium-based HEA alloys,
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FIGURE 2 | Schematic representation of the vacuum arc melting process
(Feng et al., 2020). Reproduced from Feng et al. (2020) with permission.

Ti-Nb-Zr, Ti-Mo-Nb, Ti-Nb-Ag, Ti-Nb-Ta-Zr, Ti-Nb-Ta-Mn,
Ti-Nb-Ta-V, Ti-Al-Ni-Co-Fe, and Ti-Nb-Hf-Zr-Ta systems
(Sakaguchi et al., 2005; Gabriel et al., 2012; Wen et al., 2014;
Hussein et al., 2015; Nazari et al., 2015; Aguilar et al., 2016;
Anand Sekhar et al., 2019; Guo et al., 2019; Málek et al., 2019a,b)
were prepared by PM. Wen et al. (2014) conducted a comparative
analysis of Ti-Nb-Ag alloy after vacuum sintering and spark
plasma sintering. The sample sintered in the vacuum furnace
has some pores, while the samples sintered by SPS showed a
dense structure on the surface. Additionally, in order to study the
relationship between structure and mechanical properties with
sintering time in HEAs prepared by PM, Málek et al. (2019b)
found that HfNbTaTiZr alloy had better resistance to grain
coarsening after sintering compared with the alloy obtained by
arc melting, which had a small amount of porosity after sintering,

FIGURE 3 | SEM images and TEM bright-field micrographs of three TiZrNbTa
HEAs. (A) Ti25Zr25Nb25Ta25 (B) Ti45Zr45Nb5Ta5 (C) Ti15Zr15Nb35Ta35 HEA
(Yuan et al., 2019). Reproduced from Yuan et al. (2019) with permission.

and the porosity is eliminated in the subsequent heat treatment
process. Guo et al. (2019) have studied NbTaTiV alloy prepared
by PM, which showed excellent properties, higher hardness of
510 HV, yield strength of 1.37 GPa, and compressive fracture
strength of 2.19 GPa at room temperature.

Among these alloys, the Ti-Nb-Ta-Zr system alloys found
many applications in the biomedical field (Wang et al., 2009,
2015, 2017; Wei et al., 2011; Liu et al., 2015; Ran et al., 2018;
Gu et al., 2019; Hafeez et al., 2019, 2020). Sakaguchi et al. (2005)
studied the deformation mechanism of Ti-Nb-Ta-Zr alloys with
different Nb contents. At the same time, in order to further
explore Ti-based HEA with biomedical prospects, the biological
properties of other elements added to Ti-Nb-Ta-Zr HEA were
studied by Stráský et al. (2017). Besides, Popescu et al. (2018)

TABLE 2 | Mechanical properties of HEA prepared by arc-melting and powder metallurgy.

Alloy Procedures Young’s modulus (Gpa) Yield strength (Mpa) Elongation (%) Hardness (Gpa) References

Ti-Zr-Nb-Ta Arc-melting 89 970 23 ∼ Yuan et al., 2019

Ti-Zr-Hf-Ta Arc-melting 86 1367 4.07 ∼ Yuan et al., 2019

Ti-Zr-Hf-Nb Arc-melting 83 728 18.7 Yuan et al., 2019

TiZrHfNbTa Arc-melting 80 800∼985 ∼ 3.80 Senkov et al., 2011; Dirras et al., 2016

TiZrNbTaMo Arc-melting 153 1390 ∼ 4.90 Wang and Xu, 2017

TiZrHfCrMo Arc-melting ∼ 1250 ∼ 5.20 Nagase et al., 2020

TiNbTaZrFe Powder metallurgy 52 2425 ∼ 0.95 Popescu et al., 2018

TiNbTaZrCr Arc-melting ∼ ∼ ∼ 6.16 Poletti et al., 2016
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FIGURE 4 | FESEM images of different alloys after the potentiodynamic tests in PBS electrolyte at 37◦C. (a) 316L, (b) CoCrMo alloy, (c) Ti6Al4V, (d) TiZrTaHfNb
HEA, and (e) Ti1.5ZrTa0.5Hf0.5Nb0.5 HEA (Motallebzadeh et al., 2019). Reproduced from Motallebzadeh et al. (2019) with permission.

prepared a novel Ti40Nb20Zr20Ta10Fe10 HEA that was showed the
outstanding corrosion resistance compared with Ti6Al4V. Cao
et al. (2020) prepared TiNbTa0.5ZrAl0.5 HEA by PM and found
that after hot-working, the TiNbTa0.5ZrAl0.5 HEA transformed
from the initial BCC phase to BCC and HCP phase with
1740 MPa high-pressure yield strength (Chen et al., 2019).

From the above, it can be seen that powder metallurgy also
can be an excellent alternative process to produce Ti-based
alloys. This method can manufacture porous titanium parts
at a lower processing temperature and allows more precise
control of process variables and pore size, as well as physical
and chemical properties. In the currently existing research, it is
found that the Ti-based HEA prepared by powder metallurgy
has excellent corrosion resistance in simulated body fluids (SBFs)
and may become a potential biomedical substitute. In particular,
TiNbZrTaFe HEA has ultra-low Young’s modulus and better
corrosion resistance than traditional mental implant materials.
Especially with the development of laser 3D printing technology,
personalized metal implants will gradually be promoted in
clinics application. However, there are not many studies on
the preparation of Ti-based HEAs by powder metallurgy,
and follow-up on this method will continue to focus on its
biomedical research.

Preparation of Thin Film HEAs
According to the reported methods for preparing HEA coatings,
the surface modification techniques include electrochemical
deposition (Soare et al., 2015), physical vapor deposition (PVD)
(Khan et al., 2020; Xia et al., 2020), laser cladding (Zhang et al.,
2017; Guo et al., 2018; Wang L. et al., 2019), plasma cladding
(Anupam et al., 2019; Peng et al., 2019; Zhu et al., 2020), and
thermal spraying (Wang et al., 2011; Vallimanalan et al., 2020),

etc. Particularly, the magnetron sputtering and laser cladding in
the biomedical field are two relatively promising technologies for
the preparation of HEA coatings. The properties of titanium-
based HEA coatings prepared by two different methods are listed
in Table 3.

Magnetron Sputtering
As a significant surface modification technology, magnetron
sputtering has been widely used in various fields. Magnetron
sputtering, divided into direct current (DC) magnetron
sputtering and radio frequency (RF) magnetron sputtering by
the power supply type that is one of the PVD methods (Yan
et al., 2018; Deng et al., 2020). This method utilizes the plasma
phenomenon to bombard the target material in order to separate
metal atoms from the surface of the target and deposit a thin
film on the substrate surface. The argon (Ar) and nitrogen (N2)
gases are often used as the working gases for the preparation
of HEA films. A schematic diagram of this process is shown in
Figure 5 (Calderon Velasco et al., 2016). The working gas types
and its parameters have an extensive impact on the structure and
performance of the prepared HEA films.

Cui et al. (2020) studied the effect of different nitrogen
contents on the microstructure and mechanical properties of
the deposited HEA films, prepared the (AlCrTiZrHf)N film by
RF magnetron sputtering. They found that the hardness and
friction coefficient of the HEA film changed as the nitrogen flow
increased and the film transformed from the initial amorphous
state to the columnar structure with the FCC structure, this
exhibits the low friction coefficient and excellent wear resistance.
Liang et al. (2011) found that in the nitrogen flow rate of
4 SCCM, the hardness and elastic modulus of (TiVCrZrHf)N
coatings reach respectively to their maximum values of about
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TABLE 3 | Structural features and properties of HEA coatings prepared by laser cladding and magnetron sputtering.

Alloy Substrates Procedures Phases Young’s modulus (GPa) Hardness (GPa) References

(TiVCrZrHf)N Si Magnetron sputtering FCC ∼267.3 23.8 Liang et al., 2011

(TiZrNbHfTa)C M2 steel Magnetron sputtering FCC ∼ ∼28 Braic et al., 2012

(TiZrNbHfTa)N C45 steel Magnetron sputtering FCC ∼ ∼33 Braic et al., 2012

TiTaHfNbZr Ti-6Al-4V Magnetron sputtering Amorphous ∼ 12.51 Tüten et al., 2019

VAlTiCrCu Q235 steel Magnetron sputtering BCC 12 Chen et al., 2019

(TiHfZrVNb)N Steel Cathode vacuum-arc FCC ∼384 44.3 Pogrebnjak et al., 2014

TiZrNbWMo 45 steel Laser Cladding BCC+β-TixW1−x ∼ 12.74 Zhang et al., 2017

TiAlNiSiV Ti-6Al-4V Laser Cladding BCC ∼∼ 11.27∼13.2 Zhang L.-C. et al., 2020

Ni-Cr-Co-Ti-V Ti-6Al-4V Laser Cladding BCC ∼ 6.86 Cai et al., 2018

FIGURE 5 | (A) The schematic of magnetron sputtering, (B) balanced and unbalanced types of magnetron configurations used in MS (Calderon Velasco et al.,
2016). Reproduced from Calderon Velasco et al. (2016) with permission.

23.8 ± 0.8 and 267.3 ± 4.0 GPa. Furthermore, the corrosion
resistance of the NbTiAlSiZrNx HEA coating was prepared by
Xing et al. (2019) under the various nitrogen flow rates is
significantly different from that of 304 stainless steel. Lukáè
et al. (2020) prepared the HfNbTaTiZr HEA film that presents
a nano-cell structure with fine surface microstructure and
uneven distribution of defects by DC magnetron sputtering.
Chen et al. (2019) have studied the mechanical properties
and tribo-corrosion behavior of VAlTiCrCu HEA thin film
deposited on the surface of 304 stainless steel at different
deposition temperatures by magnetron sputtering. The film
showed excellent corrosion resistance in the H2SO4 solution,
and the hardness of the film at the deposition temperature of
300◦C was 10.93 ± 1.07 GPa, and the elastic modulus was
230.04± 56.03 GPa.

Recently, Scholars have discovered that HEA or medium-
entropy alloy films are expected to become the potential materials
to be used as surface modification coatings on implants (Nguyen
et al., 2018; Chen et al., 2020; Wang S. et al., 2020). Chen
et al. (2020) prepared TiTaNb medium entropy alloy films by
magnetron sputtering, which has excellent bio-corrosion, higher
wear resistance, and higher hardness. In addition to spraying
or depositing HEA coating on the surface of the implant
material, depositing a hydroxyapatite layer on the surface of
the implant material can also improve the biocompatibility
of metal material by using the magnetron sputtering method.
The deposition parameters can be controlled to obtain a thin,
flawless, and uniform layer, with tight adhesion to the substrate,
low roughness, corrosion and abrasion resistance, which are
essential characteristics in medical applications. Despite the
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higher Young’s modulus of the HEA film compared to human
bones, its application as a surface coating does not affect Young’s
modulus of the implant material.

Laser Cladding
Laser cladding, as a well-known surface modification process,
mainly improves the hardness, wear resistance, and corrosion
resistance of the surface of the substrate by cladding the alloy
powder on the substrate. At present, the common substrate
materials which were selected include Q235, Al, titanium,
magnesium alloys, and tool steel (Zhang et al., 2017, 2019; Zhang
J. et al., 2020; Tian et al., 2019; Wang L. et al., 2019). The principle
diagram of laser cladding is shown in Figure 6. Moreover, the
fundamental process parameters of laser cladding from several
aspects are laser power size, powder feeding method, scanning
speed, spot diameter, and overlap ratio (Shu et al., 2019).

In order to study the effect of the Ti element on the wear
resistance of the coating prepared by laser cladding, Wang X.
et al. (2020) studied CoCrFeNiTix HEA coatings with different
Ti content and found that the hardness and corrosion resistance
of the coatings increased with the addition of Ti content.
Furthermore, the main corrosion mechanism of CoCrFeNiTix
high entropy coatings in 3.5wt% NaCl solution is pitting
corrosion. Cai et al. (2018) conducted an in-depth analysis of
the phase composition and wear resistance of the Ni-Cr-Co-Ti-
V HEA coating after the laser surface modification. The coating
after the cladding and remelting process contains the Ti-rich
phase and BCC phase with the excellent wear resistance. Zhang
L.-C. et al. (2020) prepared Ti-based high entropy coatings
(TiAlNiSiV) deposited on Ti-6Al-4V alloy, which showed the
BCC structure and 1151∼1357 HV hardness in the coating.
In addition, the authors analyzed the coating strengthening

mechanism and found that solid solution strengthening and
the dispersion strengthening are the main reasons for the
hardness increase in the coating. Zhang et al. (2017) characterized
the microstructure of the TiZrNbWMo HEA coating prepared
by laser cladding. The microstructure mainly consists of
dendrites and interdendritic structures. Also, through TEM
characterization, nano-precipitates were found in this coating
that can be explained by the high-entropy and slow diffusion
effect of the HEA. Therefore, the combination of laser cladding
technology on HEA is a new attempt in surface modification
technology to improve the excellent performance of HEAs.

A great deal of research has focused on exploring the effects
of surface morphology and composition on implants. The
biomimetic design of the coating roughness and porosity without
affecting the chemical structure of the substrate can accurately
control the mechanical properties and biological reactions of
the coating. Laser cladding is a flexible and effective method
to obtain the desired properties by mixing different powder
materials to form a special biological coating on the surface of
the part. However, due to the inconsistency between the thermal
expansion coefficient of the cladding layer and the matrix, surface
quality problems such as cracks and pores in the cladding layer
may be difficult to be accurately controlled.

In recent years, several concerns have been raised on the
surface modification of titanium alloy (Liu W. et al., 2019;
Wang Q. et al., 2020; Zhang L.-C. et al., 2020), which illustrates
that the surface modification technologies play a significant
role in improving the surface properties of the implant. In
addition, surface modification methods have certain limitations
because the antibacterial coatings deposited on the surface of the
implant does not have long-term antibacterial performance due
to the poor wear resistance and weak bonding forces between

FIGURE 6 | Schematic diagram of the laser cladding (Zhao et al., 2020). Reproduced from Zhao et al. (2020) with permission.
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the substrates. The titanium-based HEA coatings deposited by
laser cladding and magnetron sputtering exhibit good corrosion
resistance and wear resistance, hence HEAs can be used as a
potential coating on the surface of long-term implants. However,
the application of titanium-based HEA coatings in medical
implants is still in its infancy, and more in-vivo experiments
are needed in the later stages to ensure its potential use in
cardiovascular or oral implants.

BIOMEDICAL APPLICATIONS

The biomedical materials can be divided into several groups,
including metallic, polymer, ceramic, and bio-composite
materials (Chen and Thouas, 2015). Among them, ceramic
materials are favored in the clinical use of artificial joints, dental
restorations, and cardiovascular system restoration operations
due to their good wear properties, chemical stability, high
hardness, and good biocompatibility. Biopolymer materials are
widely used for drug release carriers, non-permanent implantable
devices, tissue induced regeneration, and tissue engineering. In
recent years, bioceramics have been widely used in orthopedic
clinics due to their excellent biocompatibility, corrosion
resistance, and rigidity. Patients can benefit from ceramic
components to replace damaged bone tissue and fill bone defects
with bioceramic particles. However, in the context of bone tissue
engineering, ceramic scaffolds are easy to become brittle, and like
metal scaffolds, its degradation rate is also difficult to accurately
control. Therefore, the development of ceramic/polymer
composite scaffolds with excellent mechanical properties has
caused more and more researchers. Pay more attention. On
the other hand, the release of ions in ceramic materials can
inhibit the inflammatory response of macrophages, which is
believed to strongly affect the biological activity of cells and
tissue regeneration. The hydrophobicity of the polymer makes
it lack of cell adsorption capacity, which limits its application
in medical implants without secondary modification (Lozano
et al., 2010; Chen and Liu, 2016; Huang et al., 2018). Therefore,
a secondary chemical treatment is introduced to treat the
surface of the polymer-based scaffold and use organic solvents
to increase micropores. Usually, surface modification or the
addition of biologically active substances helps cell adhesion and
proliferation. Therefore, the development of new biomaterials
is very urgent, and the emergence of titanium-based HEAs is
expected to meet actual clinical needs. Ilt is very necessary to
carry out corresponding in vivo and in vitro experiments.

In-vivo Evaluation
Before the implant material is officially put into clinical use, it is
necessary to evaluate its biological safety both in vivo and in vitro.
The most effective method for biocompatibility assessment is to
conduct in vivo test but unfortunately, the direct biocompatibility
test on the human body is risky, so animal implantation tests
are usually used to evaluate the biological safety of materials. In
particular, the possible applicability in human tissues should be
interpreted with caution because the results of animal models
may not necessarily predict the results of human use.

Guo et al. (2013) evaluated the biocompatibility of
Ti35Nb2Ta3Zr alloy both in vivo and in vitro conditions
and found that the degree of new bone formation around
Ti35Nb2Ta3Zr implants is equivalent to that around Ti6Al4V
implants, which showed excellent bone tissue compatibility
in vivo. Stenlund et al. (2015) evaluated the osseointegration
ability of Ti-Nb-Ta-Zr alloy that exhibits the same biological
properties with implanted pure titanium in the rat tibial model.
The light micrographs of undecalcified ground sections of the
bone interface of Ti implants and Ti–Ta–Nb–Zr implants are
shown in Figure 7. It could be observed that the osteoblasts
arranged as a woven bone in the periphery of implanted material
and indicated bone formation.

The medical research on Ti-based HEAs has remained in the
material selection stage. As far as the authors of this article know,
there is not any comprehensive in vivo evaluation study about
Ti-based HEAs as implants. In vivo tests generally evaluate the
following aspects: biomechanics, histology, histomorphometry,
and ultrastructure, as well as gene expression. It is necessary to
conduct in-depth research on the in vivo evaluation of Ti-based
HEAs in the future.

In-vitro Evaluation
Antibacterial Test
According to reports, titanium alloys and other metallic materials
as implants are susceptible to bacterial infections after surgery in
the human body. At present, in addition to the use of antibiotics,
implants with antibacterial properties are used in order to reduce
the rate of bacterial infections during implant repair surgery.
Once a bacterial infection occurs, the implant may be loosened
from its place, and it may fail. The patient usually needs to take
antibiotics for a long time or even undergo multiple operations
to heal, which will increase the mental and financial burden
for both patients and the medical system. Therefore, biomedical
material researchers have been committed to developing some
new materials with antibacterial function. The medical field also
urgently needs to develop new biomedical materials that can
play a long-term anti-infection function, thereby reducing the
possibility of infection and reducing the abuse of antibiotics.
It is of far-reaching significance to alleviate the suffering of
patients and improve people’s quality of life. In the previous
research literature (Wu et al., 2006), some researchers tested the
antibacterial properties of HEA by inoculating Staphylococcus
aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas
aeruginosa bacteria on the surface of HEA coating. After 24 h,
it was found that the HEA coating had a significant inhibitory
effect on the bacterial colony formation, and the antibacterial
rate reached 99.99%, which indicated that the HEA coatings had
positive antibacterial properties.

Generally, a small number of antibacterial elements such as
Cu and Ag will be added to the antibacterial metal material to
enhance its mechanical properties and the antibacterial activity
(Liu et al., 2014; Han et al., 2020; Wang Y. et al., 2020). In recent
years, some scholars have studied the antibacterial properties of
copper-containing Ti-based HEAs and copper-containing HEAs.
Ke et al. (2019) prepared a medical Ti-13Nb-13Zr-10Cu alloy
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FIGURE 7 | Light micrographs of undecalcified ground sections of bone interface to Ti implants. (A–C) and Ti–Ta–Nb–Zr implants (B–D) after 7 days’ healing. OCB,
original cortical bone; PMB, partially mineralized bone; BM, bone marrow; white arrow = osteoid, white arrowhead = osteoclast and the black
arrowheads = osteoblast seams (Stenlund et al., 2015). Reproduced from Stenlund et al. (2015) with permission.

that its elastic modulus was significantly lower than CP-Ti, and
showed significant antibacterial activity after 24 h of S. aureus
culture. In addition, Zhou et al. (2020) designed a novel Cu-
bearing Al0.4CoCrCuFeNi high-entropy alloy (AHEA) that was
used to prevent the growth of bio-corrosive marine bacteria. At
the same time, the antibacterial properties of different samples
(HEA and 304 stainless steel, and copper-containing 304 stainless
steel and pure copper) were compared by three marine bacteria.
The antibacterial test process is shown in Figure 8. After 1, 3, and
7 days of cultivation in the medium, the bacterial colonies on the
HEA have significantly reduced, and the antibacterial effect was
similar to pure copper (Figure 9).

Electrochemical Test
In recent years, due to the widespread use of metallic implant
materials in the medical field, researchers have tried to observe

and investigate patients after repair surgery. They found that
the implant material can be corroded due to complex body
fluids interaction. Also, stress wear between bones can happen.
As a consequence, the material will plastically deform, and
its properties are affected finally, the implant will fail, and
the patients may undergo multiple repair operations in severe
cases. At the same time, the implant materials wear with the
surrounding tissues of the human body leads to the formation
of metallic debris formation that may cause tissue infection
and allergic effects. Furthermore, corrosion and stress wear
of implants can cause the precipitation of some toxic metal
ions, which in turn can trigger toxic and allergic reactions.
In order to reduce the harmful effects of implants in the
human body, the production of novel implant materials with
excellent comprehensive performance is necessary. Therefore, in
the current research of implant materials, the corrosion resistance
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FIGURE 8 | Schematic diagram displaying the antibacterial testing experimental process (Zhou et al., 2020). Reproduced from Zhou et al. (2020) with permission.

and friction and wear properties of implants are a focus of
researchers (Ghiban et al., 2018).

Due to a certain effect of the pH value of the simulated
physiological environment on the corrosion behavior of metal
implants, many researchers have explored the corrosion behavior
of titanium-based HEAs as potential implant materials in
simulated physiological environments. Song and Xu (2020)
investigated the (TiZrNbTa)90Mo10 HEA electrochemical
properties in Ringer’s solution and used XPS to characterize the
passive film formation on the surface of (TiZrNbTa)90Mo10 HEA.
In addition, (TiZrNbTa)90Mo10 HEA exhibits robust corrosion
resistance far better than CoCrMo alloys and stainless steel.
Braic et al. (2012) prepared (TiZrNbHfTa)N and (TiZrNbHfTa)C
coatings by DC magnetron sputtering on Ti6Al4V alloy. They
examined the processed samples by the corrosion and tribological
tests in SBFs, as well as cell viability tests. These films exhibited
good protective properties and did not induce any cytotoxic
response by osteoblasts (24 and 72 h), with good morphology of
the attached cells. Aksoy et al. (2019) have studied the deposition
of TiTaHfNbZr HEA films on NiTi shape memory alloy by RF
magnetron sputtering, then they immersed it into artificial saliva
(AS) and gastric fluid (GF) solutions. This study demonstrates
that TiTaHfNbZr HEA coatings have a significant inhibitory
effect toward the release of Ni ions. Therefore, TiTaHfNbZr HEA
thin films can serve as a potential biomedical coating on NiTi
implants to prevent the release of Ni ions. Tüten et al. (2019)
prepared TiTaHfNbZr HEA coatings on Ti-6Al-4V substrates
by RF magnetron sputtering, which are considered an effective
coating for long-term orthopedic implants with a protective
effect on surface wear and cracking.

Cell Adhesion and Cytotoxicity Assay
Cell adhesion is the basic condition for maintaining the stability
of tissue structure, and it is also the regulator factor of cell

movement and function that has a significant influence on cell
proliferation and differentiation (Yang et al., 2011). Cytotoxicity
assay is usually used to evaluate the effect of alloy on cell growth
activity that represents one of the most key indicators in the
in vitro evaluation (Rincic Mlinaric et al., 2019). Cytotoxicity
is the process of chemical substances, drugs, or physiological
action of cells acting on the basic structure. These processes
include cell membrane or cytoskeleton structure, cell metabolism
process, synthesis, degradation, or release of cell components or
products, ion regulation, and cell division, etc. finally leading to
cell survival, proliferation, or functional disorders that result in
adverse reactions.

In recent years, researchers have found in the follow-up
study of patients after implant repair surgery that long-term
implantation of metal materials in the human body will cause a
series of biological problems. For example, the metal elements
such as Co and Ni in cobalt-based alloys have serious sensitization
problems, as well as the long-term implantation of Al and
V elements in the commonly used Ti-6Al-4V implants will
exert influence onhuman organs and functions. Therefore, the
detection of cytotoxicity and the activity of metal implant
materials is of great significance before implantation and repair
surgery in humans. Cytotoxicity and cell activity assays are
mainly based on the function of individual cells and they can
change in cell membrane permeability. According to scholars’
previous research, cytotoxicity and activity detection methods
are divided into the following four types: dye exclusion assays,
colorimetric assays, fluorometric assays, luminometric assays
(Aslantürk, 2018). Among them, MTT assay, XTT assay, LDP
assay of colorimetric assays are among the most commonly used
techniques in cell detection.

In order to evaluate the adhesion effect of osteoblasts
on the surface of HEA immunocytochemical methods were
used to observe the cell adhesion behavior. Hori et al. (2019)
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FIGURE 9 | (A) Schematic illustration for the antimicrobial mechanism of AHEA, (B) polarization curves of 304 SS, 304 Cu-SS, and AHEA in the simulated seawater
and (C) yield stresses and antibacterial rates (Zhou et al., 2020). Reproduced from Zhou et al. (2020) with permission.

designed a series of novel non-equiatomic Ti-Nb-Ta-Zr-Mo
HEAs. They demonstrated that this HEA system promoted the
maturation of local adhesion spots in osteoblasts. As shown
in Figure 10, it can be seen that the number of osteoblasts
adhesion on the two HEAs, including Ti1.4Zr1.4Nb0.6Ta0.6, and
Ti0.6Zr0.6Nb1.4Ta1.4Mo1.4 is larger than SUS316L. Moreover,
Ti1.4Zr1.4Nb0.6Ta0.6Mo0.6 shows superior biocompatibility
because of its fibric adhesion structure is significantly longer

than Ti0.6Zr0.6Nb1.4Ta1.4Mo1.4. Nagase et al. (2020) found
that Ti–Zr-Hf-Cr-Mo and Ti–Zr-Hf-Co-Cr-Mo HEAs showed
excellent biocompatibility compared with CP-Ti. Edalati et al.
(2020) have studied TiAlFeCoNi HEA exhibited ultra-high
hardness and favorable cellular activity by a combination of MTT
assay and microhardness measurements. Todai et al. designed
a new TiNbTaZrMo HAE that shows good biocompatibility
compares to Cp-Ti. The osteoblasts on the as-cast and annealed
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FIGURE 10 | Biocompatibility of the ingots of bio-HEAs. (A) Giemsa staining images of osteoblasts on the fabricated specimens of SUS316L (stainless steel), CP-Ti
(commercial pure titanium), and Ti1.4Zr1.4Nb0.6Ta0.6Mo0.6, (B) fluorescent images of osteoblast adhesion on the fabricated specimens of SUS316, CP-Ti,
equiatomic TiNbTaZrMo, and non-equiatomic Ti2−xZr2−xNbxTaxMox (x = 0.6, 1.4) bio-HEAs, and (C) quantitative analysis of size regulation of fibrillar adhesions
(longer than 5 µm) in osteoblasts cultured on the fabricated specimens (Hori et al., 2019). Reproduced from Hori et al. (2019) with permission.

TiNbTaZrMo HEA surface show a wide range of morphology,
which is similar to the osteoblasts on the Cp-Ti surface. On the
other hand, the distribution of osteoblasts on 316L stainless steel
shows a smaller number of various morphologies. Osteoblasts
on TiNbTaZrMo HEAs and Cp-Ti are very advantageous in the
bone matrix formation.

It can be understood from the above-mentioned explains
that Ti-based HEAs have a great potential to become a
biomedical material due to their excellent antibacterial ability,
wear resistance, and corrosion resistance, as well as lower
cytotoxicity. In particular, Ti-Nb-Ta-Zr HEAs and TiTaHf-based
HEAs have considerable biocompatibility compared with Cp-
Ti and attracts lots of attention from research communities.
Generally, implantable devices made of biomaterials aim to
improve the quality of life and extend the life of patients. After
long-term use of plastic surgical prostheses made of biologically
inert materials, the current focus is on materials that promote
the proliferation and differentiation of osteoblasts and activate
tissue repair mechanisms (called biologically active materials). In
addition, regarding the biocompatibility of implantable alloys, it
is necessary to ensure improved corrosion resistance in corrosive
physiological environments (Yang et al., 2020). Therefore, more
attention should be focused on the Ti-Nb-Ta-Zr system HEAs in

the future. Furthermore, the HEA design is also a critical factor
in determining its performance, and researchers should focus on
the establishment of the proper design principles and criteria to
develop the novel bio-HEAs.

CONCLUSION

In this review, an insight into the development of Ti-based HEAs
is provided, and it summarizes the current methods in HEAs
fabrication, HEA blocks or coatings, and analysis its properties
and biological applications. Metallic implant materials usually
are made of traditional titanium alloy, 316L stainless steel, and
CoCrMo alloys, and they have less harmful effects on the human
body after the surgery. In order to develop implant materials
with excellent functional properties, many scholars began to turn
their attention to HEAs, which have a wide range of applications
resulting from its exceptional physical, chemical, magnetization,
and mechanical properties. The emergence of HEAs has brought
great room for development in the field of medical implant
materials. This HEA design concept overturns the principles of
traditional alloy design, and it emphasizes multiple principal
elements as the basis. Also, a small number of modified elements
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were utilized to mutually control the structure and mechanical
properties of the alloy.

PROSPECTS

In recent years, due to the continuous improvement of
medical science and technology, the performance requirements
of implant materials for revision and implantation operations
have become more and more significant. Ti-based HEAs have
recently emerged as alternative implant materials to address
some of the unresolved issues in terms of performance
and biocompatibility. Compared with traditional alloys, the
complexity of various chemical elements in HEAs makes
them functional. The combination of chemical elements
can induce excellent mechanical properties also it ensures
functionality and biocompatibility. Moreover, it is suitable for
use as a new type of biocompatible metal material. Although
titanium-based HEAs are among the new potential metallic
implant material, its cytotoxicity and biological evaluation and
research on its implantation in animals are in the initial
stage and Ti-based HEAs still have not been used clinically.
Therefore, the future development of titanium-based HEAs
still needs a lot of experimental research and further in-
depth exploration.
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Depending on the requirements of specific applications, implanted materials including
metals, ceramics, and polymers have been used in various disciplines of medicine.
Titanium and its alloys as implant materials play a critical role in the orthopedic and
dental procedures. However, they still require the utilization of surface modification
technologies to not only achieve the robust osteointegration but also to increase the
antibacterial properties, which can avoid the implant-related infections. This article aims
to provide a summary of the latest advances in surface modification techniques, of
titanium and its alloys, specifically in biomedical applications. These surface techniques
include plasma spray, physical vapor deposition, sol-gel, micro-arc oxidation, etc.
Moreover, the microstructure evolution is comprehensively discussed, which is followed
by enhanced mechanical properties, osseointegration, antibacterial properties, and
clinical outcomes. Future researches should focus on the combination of multiple
methods or improving the structure and composition of the composite coating to further
enhance the coating performance.

Keywords: titanium, surface modification, implant materials, osteogenesis properties, antibacterial function

INTRODUCTION

With the growing maturity of medical technologies, it is found that implanting biomaterials into
the human body is an excellent way to treat some of the orthopedic and dental diseases (Lausmaa
et al., 1990; Ohthuki et al., 1999). The commonly used metallic biomaterials are titanium (Ti)
and its alloys (Wang et al., 2009; Guo et al., 2013; Jemat et al., 2015; Hafeez et al., 2019), 316L
stainless steel (Singh et al., 2018), and cobalt-based alloys (Wang et al., 2014). Apart from these,
shape memory alloys like magnesium (Mg) (Kirkland et al., 2010), NiTi (Bansiddhi et al., 2008;
Wang et al., 2016, Wang et al., 2018; Liu et al., 2020a,b), and tantalum (Ta) are also potential
candidates in biomedical applications (Balla et al., 2010). For the first time Ti was discovered in
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the 1790s (Chouirfa et al., 2019). Nowadays, due to its high
specific strength, strong corrosion resistance, and excellent
biocompatibility (Jemat et al., 2015; Niinomi et al., 2016; Shi
et al., 2017; Rabadia et al., 2018, 2019; Ran et al., 2018; Hafeez
et al., 2020; Wang L. et al., 2020), titanium and its alloys have
been widely used in the biomedical field (Wang et al., 2017),
among which Ti-6Al-4V alloy applications account for more
than 50% (Hu et al., 2012; Ding et al., 2016; Zhang et al.,
2017). Although their beneficial properties (Matter and Burch,
1990), titanium and its alloys are considered as inert metals
and cannot properly stimulate the proliferation of osteoblasts
and bone cells (Zhu et al., 2016; Xiao et al., 2017; Souza et al.,
2019). In addition, most of the failures are caused by implant-
related infections, thus, lots of researches have been focused
on improving the antibacterial ability of titanium implants
(Yousefi et al., 2017; Ding et al., 2019; Liu et al., 2019; Wang
et al., 2020). The exposed titanium alloy cannot resist the wear
triggered by the relative movement between the implant and
the bone, and external force and body fluid immersion will
cause the disappearance of the passive film on the titanium alloy
surface, resulting in a decrease in its corrosion performance
(Zhang and Chen, 2019). The above problems can be solved
by improving the surface properties of titanium and its alloys.
Therefore, various surface modification methods have been used
to improve the biological function, wear, and corrosion resistance
of implants. In the last decade, coatings have been using in
multiple applications to modify the surface of implants and, in
some cases, to create new surfaces with exceptional properties
that are very different from uncoated materials (Zhong, 1999,
2001; Wang et al., 2015; Wang et al., 2017; Gu et al., 2019).
Furthermore, many studies proved that surface modifications
techniques can minimize the bacterial adhesion on the implant
substrate. They can also inhibit the biofilm formation and provide
the effective bacterial removal, thus improving the performance
of implanted biomaterials (Asri et al., 2017; Awad et al., 2017;
Ahn et al., 2018; Zhang et al., 2020).

This review thematically focuses on surface modifications
technologies such as plasma spray, plasma immersion ion
implantation (PIII), plasma immersion ion implantation
and deposition (PIII&D), physical vapor deposition (PVD),
chemical vapor deposition (CVD), sol-gel, and micro-arc
oxidation (MAO) methods. These methods are divided into two
major parts: physical modification and chemical modification
techniques. In the chemical methods, the surface is dipped
into chemically active solutions, while in physical methods the
surface is exposed to highly energetic charges or other physical
species like a flame, plasma, etc. Certain technologies can have
the involvement of multiple physical and chemical processes.
Thus, it is impossible to strictly separate physical and chemical
methods. The classification mainly depends on the main idea
behind each technology. Moreover, this article summarizes
the osteogenic and antibacterial properties achieved through
surface technologies on Ti-based implant materials from these
two aspects and provides a comprehensive incite to improve
the surface techniques to manufacture the modern implant
materials with improved properties. Figure 1 shows all the
surface treatment methods along with their pros and cons.

PHYSICAL MODIFICATION

The main idea of the physical modification method in Ti-
based alloys is to treat and change the surface ultrastructure,
and these methods include plasma spray technology, PIII,
PIII&D, and PVD. The physical modification method is relatively
cheap, and the preparation method and mechanism are simple.
Correspondingly, the bonding force of the coating is weak, and
it is slightly insufficient in the preparation of complex samples.
Table 1 gives a comparison of the main results of different
physical methods.

Plasma Spray Technology
Plasma spray technology is a thermal spraying technique
using plasma arc as the heat source, and it has been widely
used to form coatings with excellent physical, chemical, and
mechanical properties (Karthikeyan et al., 1997; Shaw et al.,
2000), especially in the biomedical field. As shown in Figure 2,
many parameters involved in this method, which can potentially
affect the microstructure and properties of coatings, among them
porosity is the most significant factor which determines the
coating quality.

Hydroxyapatite (HA) coating is used to improve
osteoconductivity and enhances osseointegration. Kotian
et al. (2017) analyzed the production of HA coatings on Ti and
Ti-6Al-4V under different plasma atmospheres. They proved that
the atmosphere has a substantial influence on the composition,
crystallinity, and the formation of microcracks of HA-coated
implants. In order to obtain high-quality coatings, researchers
need to control the temperature of the plasma gas to reduce
microcracks. Besides, the atmosphere with argon and nitrogen
gases showed the highest degree of crystallinity. Furthermore,
according to Liu Y.-C. et al. (2020), a new vapor-induced pore-
forming atmospheric plasma spraying (VIPF-APS) technique
has great potential for producing bioactive porous HA coating
which enhances osteoblast attachment and differentiation.
Apart from the plasma spray technology, other strategies
have been considered to improve the overall performance
of the coating. Meanwhile, a new double-layer HA/Al2O3-
SiO2 coating was put forward by Ebrahimi et al. (2018),
compared to monolayer HA, it has improved cell behavior
and biocompatibility. Vahabzadeh et al. (2015) and Cao et al.
(2019) doped Sr (Mg and Sr) into HA coating. In Figure 3,
the formation of steroids is evident in the Sr-HA coating,
which indicates that the bone regeneration of the Sr-HA
coating is accelerated compared to uncoated Ti and HA coating
implants. As for (Mg, Sr)-HA, on the fifth day, the visible
cell adhesion prove its good biocompatibility on the surface
of the coating, and it also showed high bonding strength. In
another study, MgO, Ag2O, and gradient HA were mixed in
order to improve the biological and antibacterial properties
(Ke et al., 2019). This novel method improves osseointegration
and decreases the possibility of failure due to loosening or
infection. Besides, Otsuka et al. (2016) clarified that due to the
acceleration of dissolution at the interface, the delamination
life of the HA coating immersed in the simulated body fluid
(SBF) is shortened. Therefore, the delamination behavior of
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FIGURE 1 | Surface treatment methods with their advantages, disadvantages, and applications (Vahabzadeh et al., 2015; Wang et al., 2015; Asri et al., 2017; Azari
et al., 2019; Chouirfa et al., 2019; Kaur and Singh, 2019; Souza et al., 2019; Thangavel et al., 2019; Youn et al., 2019; Xia et al., 2020).

TABLE 1 | Main results of physical methods application on titanium and its alloys.

Methods Coating quality Process rate Bond strength Osteogenesis and
antibacterial function

Applications

Plasma spray technology
(Hanawa, 2019;
Ke et al., 2019)

Dense coating, high
bonding strength, difficult
to oxidize spray material

Not available 20–80 MPa Enhanced
osseointegration,
osteoblast proliferation and
rapid bone repair.

Wide range of materials,
suitable for a variety of
coatings

Plasma immersion ion
implantation
(Yu et al., 2017;
Shanaghi and Chu, 2019b)

Inert to surface thin
injection layer, good
biocompatibility.

Not available Not available Inhibition of
Staphylococcus aureus
and Escherichia coli (E. coli)

Used for large, heavy. and
complex shaped
workpieces

Plasma immersion ion
implantation and deposition
(Yang et al., 2007;
Yu et al., 2017)

Easy composition control,
improved density and
adhesion, suitable for
three-dimensional and
complex surfaces

≈30–40 nm min−1

in thickness
Very high Rapid osseointegration and

continuous biomechanical
stability, reduction of
gram-negative E. coli and
Pseudomonas aeruginosa

Used for precision parts
with high added value to
improve the wear
resistance

Physical vapor deposition
(Behera et al., 2020;
Liu et al., 2020)

Uniform and dense film,
strong bonding force

≈25–1,000 nm
min−1 in thickness

Moderate Surface modification to
increase the contact area,
good blood compatibility

Suitable for preparation of
special functional
composite membrane

extracorporeal circulation should be considered to extend the
service life of HA coatings.

Researchers investigated the composite coatings for a decade,
trying to improve the tribological behavior of implants,
Ganapathy et al. (2015) prepared Al2O3 −40 wt.%8 YSZ on
the biomedical grade Ti-6Al-4V alloy used for total joint
prosthetic components through plasma spray. Another method,
combined with the mutual effect of ceramics and metallic
materials, have been investigated by Veerachamy et al. (2018).
According to their research, Al2O3 +13 wt.% TiO2/-YSZ BL
can be deemed as a suitable coating on Ti-6Al–4V because of
its high antibacterial activity and superior cell compatibility.

Furthermore, the bioactive glass-ceramic coating named M2
coating (including CaO–MgO–SiO2) on Ti-6Al-4V alloy has
shown good performance in vitro. In order to figure out its
performance in osteogenesis and osseointegration, Zhang et al.
(2019) implanted it into rabbits, it was verified that the M2 coated
Ti-6Al-4V was provided with the better biological performance
in vivo and could probable replace HA coating to repair load
bearing bone implants. Many new coating materials have received
extensive attention. For instance, tricalcium magnesium silicate
is recommended as a new coating, which has almost the same
thermal expansion properties as Ti-6Al-4V, also it has the
potential to enhance the corrosion and biological behavior of
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FIGURE 2 | Related parameters and important variables of plasma spraying. Reproduced from Zhu et al. (2020) with permission.

FIGURE 3 | The evaluation of stability and new bone formation of plasma sprayed HA coating. Reproduced from Vahabzadeh et al. (2015) with permission.

permanent metallic implants (Maleki-Ghaleh et al., 2015). At the
same time, other metal elements with excellent bio-properties
like tantalum (Kuo et al., 2019), have been deposited on titanium
alloy implants.

Plasma spray technology provides a cost-effective,
straightforward, and reliable approach to prepare coatings
on titanium alloys. The gas atmosphere and temperature of
plasma spraying will affect the thermal stress and crystallinity
of the coating, which will affect the osteogenic activity and
other properties. On the one hand, as the conventional coating
material, HA needs to be upgraded by improving the production
process or with doping new elements. On the other hand, novel
coatings like metal composites should be considered. Although it
was initially found that plasma sprayed TiO2 and ZrO2 coatings

have good biological activity and biocompatibility, the related
mechanisms still need to be further explored. In addition, the
plasma spraying temperature is extremely high, and the coating
encounters large thermal stresses. Special attention should be
paid to the bonding force between the coating and the substrate.
Also, it still requires some improvement in the preparation of
coatings on small and special-shaped workpieces.

Plasma Immersion Ion Implantation
Since the PIII technique enables to embed a great variety
of elements into the near-surface region of the various
substrates, it offers unique advantages for surface modification
technologies of biomaterials (Lin et al., 2019). The most
valuable feature of PIII is that the concentration and depth
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distribution of the implanted ions in the substrate can be
strictly controlled by adjusting the implantation parameters (Jin
et al., 2014). In addition, it has been demonstrated that it can
enhance the hardness, corrosion resistance, wear resistance,
bioactivity, and antibacterial properties of biomaterials
(Chen et al., 2020).

As the most common surface coating in Ti-based alloys,
TiO2 has attracted attention in the PIII method. PIII method
and optical emission spectrometry (OES) was used to produce
TiO2, which has the potential to improve the osseointegration
of implants due to its super hydrophilicity (Lin et al., 2019).
Shiau et al. (2019) and Chen et al. (2020) investigated the
parameters of O-PIII respectively, the former proved that
the applied voltage during O-PIII treatment promote blood-
clotting and platelet activation, as shown in Figure 4, the
latter indicates that the use of higher doses of oxygen ions
can improve osteocytic differentiation and osseointegration of
dental Ti implants in vivo. In addition to O-PIII, nitrogen
plasma immersion ion implantation (N-PIII), carbon plasma
immersion ion implantation (C-PIII), etc. were also widely used
in fabricating coatings. Nitrogen was incorporated into TiO2
coatings by N-PIII, which could effectively reduce the viability of
bacteria in visible light (Zheng et al., 2020). Different from N-PIII,
C-PIII was used to preparing coatings with increased mechanical
properties and corrosion resistance (Shanaghi and Chu, 2019a).
Unfortunately, it could also release the Ni element of NiTi alloys
in the SBF solution (Shanaghi and Chu, 2019b).

Besides, the TiN thin film can be formed on Ti-6Al-4V by
N-PIII method (Huang et al., 2019), which could positively
affect the surface hardness, corrosion resistance, cell responses,
and antibacterial adhesion. Furthermore, Xu et al. (2015) added
Ag into TiN films as an antibacterial agent, which has good
cytocompatibility and retains the required mechanical properties.

The Zn-implanted Ti exhibits excellent osteogenic activity and
partly antibacterial effect. It is worth noting that the depth
profile of zinc in CP-Ti resembles a Gaussian distribution
(Jin et al., 2014). Interestingly, Yu et al. (2017) developed
dual Zn/Mg ion co-implanted titanium (Zn/Mg-PIII). Zinc is
considered as an important and necessary trace element for
bone metabolism and production, also Mg plays a critical role
in the adhesion of osteoblasts and osteoblasts to orthopedic
implants. Thus, due to the beneficial combination of Zn/Mg,
the Zn/Mg-PIII implants present good osteoinductivity, pro-
angiogenic and antibacterial effects and as shown in Figure 5,
these implants can increase the rate of osseointegration and
maintain biomechanical fixation.

In summary, with the ability to control the concentration and
depth distribution of implanted ions, PIII shows the potential to
implant single or multiple metal ions according to demand. Cell
differentiation and osseointegration can be enhanced by injecting
designated oxygen, nitrogen, or carbon ions. Additionally,
O-PIII, N-PIII, C-PIII, etc. could contribute to essential elements
for biocompatibility. Therefore, future research should focus on
the procedures to achieve reasonable implantation of multiple
metal ions by adjusting the PIII process parameters and to reduce
the cytotoxicity caused by metal ion release.

Plasma Immersion Ion Implantation and
Deposition
The PIII&D method, invented in 1987 by Conrad et al. (1987),
it has become a routine surface modification method. It has
the advantage to levitate the retained dose levels that were
limited by the sputtering because of ion implantation. Therefore,
using PIII&D with relatively low cost, a three-dimensional film
with strong adhesion, thick and without stress is possible to be

FIGURE 4 | The illustration of the presence of rutile phase TiO2, which enhances the osteocytic differentiation and osseointegration of dental Ti implants in vivo.
Reproduced from Chen et al. (2020) with permission.
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FIGURE 5 | Twelve weeks after implantation, newly formed around Zn/Mg-PIII implants and its sequential fluorescent labeling images. Reproduced from Yu et al.
(2017) with permission. (A) Micro-CT 3D images of new bone formation around various implants in rabbit femur. (B) Sequential fluorescent labeling images of
newly-formed bone around various implants in rabbit femoral condylar: Alizarin red S (red), tetracycline (yellow), Calcein (green).

produced (Yang et al., 2007). The schematic process of PIII&D
was shown in Figure 6.

Facing a crucial problem namely thrombosis, blood-
contacting biomaterials need to form an interface between the
material and blood. Yang et al. (2007) modified the surface
characteristics of biomaterial with the functional inorganic films
of Ti–O, a-C: N:H, and Si–N synthesized using PIII-D, which
can prevent the platelet adhesion/activation. Later in 2013, Ca
film deposition has been completed on Ti for the applications
of osseointegration in artificial components (Ueda et al., 2013),
which is resulted in the formation of a well adherent Ca film.
PIII&D was also used to improve the cell response to titanium,

Mg–Ag PIII&D treated Ti not only can inhibit the adhesion
and proliferation of Escherichia coli bacteria but also promote
the initial adhesion and alkaline phosphatase (ALP) expression
of MG63 cells (Cao et al., 2014). Concurrently, an excellent
compromise between the biocompatibility and cytotoxicity
of incorporated metals (like Cu, Mn, etc.) is still required.
Copper, a trace element that also exists in the human tissues,
has a well-known antimicrobial activity. Hempel et al. (2014)
testified that Cu doped and coated Ti can prevent and treat
implant-associated infections. It’s worth noting that the surface
of overdosed Cu-bearing Ti exhibits negative biocompatibilities
(Yu et al., 2016), except for the Cu coating. Yu et al. (2017)
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FIGURE 6 | A schematic representation of the PIII&D instrument. Reproduced from Hwang et al. (2019) with permission.

investigated a stable Mn ion release on Ti, showing significantly
enhanced osteogenesis-related gene expressions and providing
a better understanding of relationships between the doped
element and biological properties which are caused by additive
induction. Aim to solve the bio-inertness of Ti, Ta-implanted
entangled porous titanium (EPT) was constructed by the PIII&D
method (Wang et al., 2016). As shown in Figure 7, compared
with Ca-implanted EPTs, Ta-implanted EPTs shows more stable
and continuous effects in the long-term utilization. Another
study has deposited zirconium oxide nanostructured coating
on the Ti-6Al-4V surface to improve the tribological properties
(Saleem et al., 2017). Apart from these coatings, the penetration
of nitrogen ions can also be used to support the stability
of phospholipid artificial membranes (SLBs) with enhanced
biocompatibility (Cisternas et al., 2020). Targeting improvement
on the corrosion resistance and prolong the lifespan of Ti, carbon
film deposition was accomplished by using a PIII&D system.
Santos et al. (2019) verified the desirable properties of carbon
films as coating, it can protect the titanium alloy tubes and also
can provide new ideas in biology.

In summary, PIII&D technologies are widely used to form
metal coatings on titanium and its alloys. Injecting metal ions into
the surface of the Ti substrate through the PIII&D technology,
since the metal phase tends to act as an anode to release metal
ions, the antibacterial properties of the material can be improved.
The PIII&D method generally deposits a single metal element
on the titanium substrate, but the balance between toxicity
and biocompatibility must be considered. PIII&D technology
overcomes the apparent linearity problem of other physical
deposition methods, and it is suitable for surface modification of
complex-shaped workpieces but its biological safety should also

be scrutinized. In the future, the deposition of multiple metal
elements or carbon nanomaterials must be investigated to further
enhance the biocompatibility of the coatings.

Physical Vapor Deposition
Physical vapor deposition implies a physical coating strategy,
involving the evaporation of solid metal under the vacuum
environment and depositing it on a conductive substrate
(Hauschild et al., 2015). Generally, vacuum evaporation, ion
plating, and sputter coating, etc. are among the main methods
of PVD. Among them, magnetron sputtering technology has
been extensively studied and it results in the formation of high-
quality films over a large area and at a relatively low substrate
temperature (Nemati et al., 2018; Hamdi et al., 2019).

In the biomedical field, TiN coating concurrent with its
favorable biocompatibility can be used as a desirable blood-
contacting material. Prachar et al. (2015) compared the properties
of TiN with ZrN on pureTi, Ti-6Al-4V, and Ti35Nb6Ta titanium
alloys. It was confirmed that TiN has higher cell colonization than
ZrN. Furthermore, their color solves the issue of aesthetics in
oral implantology because the color of these coatings prevents
Ti visibility through the gingiva. Hussein et al. (2020) deposited
TiN on Ti20Nb13Zr via cathodic arc PVD. The coated alloys
show better corrosion protection behavior in both SBF and the
artificial saliva medium. Wu et al. (2019) used the high-power
impulse magnetron sputtering (HiPIMS) method which has high
peak current and maximum power to deposit TiN on TiAl6V4.
The 110 A deposited coating exhibits the highest cell viability.
However, the biocompatibility of surface-modified Ti alloys
mainly depends on the nitrogen content of the film, therefore in
the work of Nemati et al. (2018), TixNy are applied to Ti-6Al-4V
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FIGURE 7 | The difference of new bone ingrowth was evaluated through histological observation and histomorphological measurement. Reproduced from Wang
et al. (2016) with permission. (a) Undecalcified sections of samples were stained with toluidine blue at 12 weeks. The percentage of new bone ingrowth and pores in
different EPT implants measured from toluidine blue staining (b) and back scattered SEM images (c) at 6 and 12 weeks. (d) The back scattered SEM images of new
bone around and inside pores of EPT implants at 6 and 12 weeks.

substrates as thin films. They controlled the nitrogen partial
pressure and prepared samples under a mixed atmosphere of
Ar and N2. Greater mechanical properties, corrosion resistance,
and biocompatibility occurred with the upgrade of the N/Ti
ratio. In the work of Bahi et al. (2020), two types of coatings

were studied: TiN as the top layer, while the upper layer of the
others was TiO2 with two different oxygen content. The TiN
presents the best tribological performance in the multilayered
film condition when its surface slide against the bovine cortical
bone. Some researchers (Cui et al., 2019) found that compared
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to TiN and ZrN coatings, partial replacement of Ti atoms with
Zr provides excellent wear resistance and fracture toughness. The
TiZrN graded coating which was prepared by Cui et al. (2019)
is suitable for artificial joint applications that can endure large
loads and resist serious wear conditions. Besides, Hauschild et al.
(2015) put the Ag-coated cementless stem into the canine model
and showed osseous integration in vivo, where toxic side effects
did not appear. Afterward, Ag-doped NiTi (NiTi/Ag) coatings
were prepared on pure Ti substrates by Thangavel et al. (2019).
The NiTi/Ag coating with 3 at. % Ag showed the highest cell
viability of human dermal fibroblast neonatal cells and showed
a well-grown actin filament network. YSZ was deposited onto
the titanium substrate in the study of Kaliaraj et al. (2016)
unfortunately this coating couldn’t inhibit bacterial growth but it
could enhance the blood protein adhesion. Tantalum pentoxide
nanotubes (Ta2O5 NTs) were prepared on biomedical grade Ti-
6Al-4V alloy by Sarraf et al. (2017), results of the SBF tests
exhibited that on the first day of immersion, a bone-like apatite
layer has already formed on the coating of the nanotubular
array, indicating the importance of nanotubular configuration for
in vitro biological activity.

Nowadays, multi-layered coatings with prominent
osseointegration properties and mechanical strength have
become focused research areas. In this respect, HA bioceramics
have good biocompatibility but the mechanical strength is
weak. Hence, Hamdi et al. (2019) prepared triple-layered
HA/Al2O3/TiO2 coating on Ti-6Al-4V alloys. In this work, HA
plays a critical role in biocompatibility, while others improve the
corrosion behavior of the substrate, which prevents the entry
of active ions from body fluids onto the surface. Chen et al.
(2019) deposit a novel bio-functional bilayer coating consist of
calcium phosphate and magnesium (CaP-Mg) on Ti. The CaP
coating could inhibit the releasement of Mg, while the alkaline
environment caused by Mg degradation has the potential to
reduce the bacterial viability. Furthermore, BCP as a kind of
CaP is the mixture of β-TCP, Behera et al. (2020) proved that
BCP-TiO2 film can be beneficial to improve the biological
performance of implants. Nowadays, the development of
amorphous carbon (a-C) films has received a lot of attention, Liu
et al. (2020) successfully deposited Zr/a-C gradient multilayer
films (GMFs), it comprised of three distinct layers. Zr/a-C
GMFs modified Ti shows upgraded wettability, enhancing the
proliferation and adhesion of osteoblast cells.

To sum up, PVD is used as a mature method to form a nearly
perfect adhering layer of materials, which does not disintegrate
nor affects the surface topography and shows good tribological
properties. Due to the mismatch of the coefficient of thermal
expansion between the coating and the substrate, their bonding
force is weak, which limits the applications of this type of coating.
At present, the transition layer or gradient coating deposition
methods are generally used in order to reduce the mismatch of
the crystal lattice and thermal stress between the coating and
the substrate, thereby enhancing its binding force. TiN coatings
with different element doped compositions seem to be the further
research direction at present. It is necessary to consider the cell
cytotoxicity, adhesion, activity, and antibacterial properties of the
newly designed coating composition. In addition, multi-layered

coatings could provide proper performance, while researchers
should rationally design multi-layer structures to maximize their
respective advantages and avoid the possible adverse effects.

CHEMICAL MODIFICATION

The chemical modification changes the chemical properties of
the carrier surface to produce specific interactions between cell
surface molecules, which not only affect the cell surface properties
but also cause closely related changes in the internal structure
and function of cells. Chemical modifiers are relatively complex
in preparation mechanisms and they are expensive. Current
research focuses on composition control, multilayer structure
design, multi-scale coatings, or coatings with novel surface
morphologies. Table 2 gives a comparison of the main findings
of different chemical methods.

Chemical Vapor Deposition
Chemical vapor deposition represents a coating method to form
a thin film layer on the substrate surface by chemical reaction
of one or several vapor compounds or elements that contain the
final film elements (Marsh et al., 2010). It has been used in the
inorganic synthetic chemistry to prepare inorganic materials like
carbon nanotubes, graphene, TiO2, etc. (Somani et al., 2006), the
final product can be carefully controlled, both quantitatively and
qualitatively. The facts have shown that the technology is very
successful in industrial applications. However, their applications
on titanium alloy substrate for biomedical surface modification
is still limited.

Chemical vapor deposition methods are mainly used for
complex workpieces and inner hole coating. Coatings prepared
by the CVD method usually show high osteogenic activity, which
has a certain potential for orthopedic applications. Giavaresi
et al. (2003) used a metal-organic chemical vapor deposition
(MOCVD) method to prepare the titanium oxide layer on
pure titanium. Ti/MOCVD exhibited higher ALP activity than
the control group, which means it has a higher potential for
bone implantation. Subsequently, Du et al. (2016) successfully
deposited Si-doped TiO2 nanowires on the TiSi2 layer by
atmospheric pressure chemical vapor deposition (APCVD). It
is not only showing higher hydrophilic activities but also has
great importance in the field of doping. Related to the previous
works, Xu et al. (2016) grafted a thin graphitic C3N4 (g-
C3N4) layer on aligned TiO2 nanotube arrays (TiNT) by CVD.
The binary nanocomposite coating shows excellent bactericidal
efficiency. Glycidyl methacrylate (GMA) is a chemically versatile
reagent through a ring-opening reaction (Mao and Gleason,
2004; Kang et al., 2014). Hence, in the research of Park et al.
(2015), dot-patterned GMA-coated titanium implants notably
displayed higher ALP activities, while displayed increased protein
adsorption and higher calcium deposition. Furthermore, based
on the previous study, Youn et al. (2019) added recombinant
human bone morphogenic protein-2 (rhBMP2) as osteoinductive
agents on GMA-coated titanium. From in vitro analysis, they
found its good osteogenic activity without any cytotoxicity.
Scarce information exists on the effect of amino group
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TABLE 2 | Main results of chemical methods application on titanium and its alloys.

Methods Coating quality Process rate Bond strength Osteogenesis and
antibacterial function

Applications

Chemical vapor
deposition
(Du et al., 2016;
Youn et al., 2019)

Good controlling on
composition and
characteristics of the film,
flexibility

Deposition by
chemical reaction
at a high
temperature

Not available It positively affects the
proliferation and activity of
osteoblast-like cells,
sterilization efficiency
against E. coli

Used for complex
workpieces and inner hole
coating

Sol-gel
(El hadad et al., 2020;
Ziabka et al., 2020)

Easy to prepare uniform
multi-component oxide
film and quantitative
doping, effective control
on composition and
microstructure

Several steps for
the preparation of
sol-gel, transfer of
sol-gel to substrate,
aging and drying

3–55 MPa Bone-like apatite formation
in SBF, good biological
activity. antifungal effects

Used for preparing thin
films, possible for coating
on the surface of particles
of powder materials

Micro-Arc oxidation
(Sedelnikova et al., 2017;
Li et al., 2018)

Suitable for ceramic
membrane, firm bonding,
dense and uniform
ceramic membrane

≈1–3 µm min−1 in
thickness

5–44 MPa Improving the adhesion of
cells. Good antibacterial
ability against E. coli and
Staphylococcus aureus

Used for improving the
surface roughness

plasma-enhanced CVD on nerve regeneration. Hence, Zhao et al.
(2018) introduced the amino group onto the titanium disk.
Although, it exhibited the best cell attachment performance, it
inhibited the expression of the key growth factors like glial cell-
derived neurotrophic factor (GDNF) and neurotrophin nerve
growth factor (NGF) in vitro, at least within a week. Tantalum
coating on porous Ti-6Al-4V scaffold was investigated by Li et al.
(2013), they found the better bone ingrowth within the coated
scaffolds, indicating the potential for orthopedics. Interestingly,
Ji et al. (2016) compared the adhesion of Streptococcus mutans
on polished titanium (control group), magnetron sputtering
titanium, and plasma nitriding modified titanium samples. There
is not any clear difference between the treated samples and
the control group. Gu et al. (2018) indicated the influence
of heat treatment on the bonding strength and osteoinductive
activity of monolayer graphene sheets with the antibacterial and
osteoinductive properties.

In summary, the utilization of the CVD methods is not as
common as the physical methods mentioned earlier. It may be
because of its high reaction temperature that leads to a low
deposition rate, also in this method the gas source and exhaust
gas have certain toxicity, which may be harmful to the subsequent
implantation process. Despite this, the coatings made by CVD
usually have good quality, and their purity and density can
be controlled. It has been used in industries like electronics,
automobiles, aviation, and aerospace. However, vapor deposition
equipment is more expensive, and some processes have higher
film forming temperatures, which may adversely affect the
structure of the substrate. In addition, some process line-of-sight
film forming methods are more difficult to form on small shaped
parts and need to be improved. In the future, the preparation of
copolymer and inorganic coatings by CVD should be studied in
depth to form a bacteriostatic surface.

Sol-Gel
The Sol-gel technique is widely implemented to produce
multifarious oxide films. This kind of method has the following
advantages: simple fabrication environment, reliability of the

consuming equipment, high uniformity of films, and utilization
of different sizes of the substrate (Hench and West, 1990). The
main factor that affects the sol-gel method is pH, chemical
equilibrium, substrate-precursor interface, time, etc. (Wang and
Bierwagen, 2009). Figure 8 is the schematic representation
of sol-gel.

Ti, the dominant material for orthopedic application now,
maybe impairing physical integrity like change its hardness and
flexural modulus after sol-gel treatment. In order to solve this
problem, Greer et al. (2016) evaluated coatings properties at
different annealing temperatures and concluded that although
the ductility decreased, 500◦C was the optimal annealing
temperature. TiO2 coatings have good physical properties as
follows: high surface hardness, good wear resistance, low friction
coefficient, and excellent corrosion resistance. Çomaklı et al.
(2018) compared TiO2 films produced by sol-gel and successive
ionic layer adsorption and reaction (SILAR) methods, the
former exhibited better wear and corrosion resistance than
the latter. Titania containing silver was deposited on TiSi
alloys and commercially pure titanium (CP-Ti) by Horkavcova
et al. (2017) and Yetim (2017), respectively. The results
showed no cytotoxicity and excellent corrosion resistance, which
means these materials are potential candidates for orthopedic
application. Moreover, Ziabka et al. (2020) confirmed that this
coating can be used in the veterinary treatment of bone fractures.
In addition, doping with silver, TiO2 often forms a double-
layer coating with HA. As mentioned before, the use of HA
promotes bone formation, and in addition, proper chemical
homogeneity can be obtained through sol-gel technology
(Domínguez-Trujillo et al., 2018). Mohammed Hussein and Talib
Mohammed (2019) prepared bilayer TiO2/HA coating, which
has good corrosion protection with advanced crystallization and
nano-scale homogeneous surface morphology. To enhance the
adhesion strength of HA coatings sintered at low temperatures,
Robertson et al. (2019) formed titania nanotubes through
anodization. Azari et al. (2019) did further research and produced
a functionally graded HA-TiO2 on Ti-6Al-4V alloy substrate and
improved the adhesion and cohesion of the single-layer coating.
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FIGURE 8 | Schematic representation of sol-gel. Reproduced from Kaliyannan et al. (2020) with permission.

Meanwhile, other strategies have been adopted to deal with the
shortcomings of HA. Zinc substituted hydroxyapatite/bismuth
(Zn-HA/Bi-HA) biphasic coatings were fabricated through sol-
gel and dip-coating processes by Bi et al. (2020), which exhibited
the most positive effect on osteoblast proliferation.

Moreover, bio-inert ceramics like silicon dioxide and zirconia
attracts a wide range of attention because of their stability in the
human body. It also exhibits excellent load-bearing capacity and
high cell viability. Lee et al. (2017) made zirconia-coated porous-
Ti (Z-P-Ti) by the hydrothermal method, and then the sol-gel
method was used. Among the samples, Z-P-Ti_55 (Ti samples
with 55 wt.% additions of NaCl) exhibited excellent load-bearing
capacity and high cell viability. Figure 9 is the mechanism of
interaction between Z-P-Ti and the cell surface. Sandblasting
Al2O3 combined with ZrO2 sol-gel layer was obtained by Lubas
et al. (2018), providing a stable bond. Romero-Gavilan et al.
(2018) prepared silica hybrid sol-gel coating (35M35G30T) on
Ti, it can adsorb a large number of complement proteins.
These proteins are involved in maintaining cell renewal, healing,
proliferation and regeneration, and many other processes, which

might be related to their intrinsic bioactivity. The addition
of strontium (Sr) could affect their interactions with cells
and proteins. Thus, Romero-Gavilan et al. (2019) applied a
silica-hybrid sol-gel network doped with SrCl2 as a coating on Ti.
In in vitro analysis, the coating containing Sr is more abundant
in proteins involved in the coagulation process. Besides, the gene
expression of ALP and TGFβ was enhanced in the MC3T3-
E1 cells.

Recently, organic-inorganic composite coatings have also
received a lot of attention, which is a suitable candidate for
metallic prosthetic equipment. Catauro et al. (2018) synthesized
coating from a multicomponent solution. Higher vitality of
cells seeded on the coated samples was recorded and the
higher HA nucleation was detected on the CP-Ti surface after
soaking in SBF, which was also happened in the research of
Aghajanian et al. (2019). They coated the porous titanium
surface with forsterite/poly-3-hydroxybutyrate (P3HB) nano-
biocomposite, this coating inhibited the excessive pH increment
of the SBF. Moreover, Palla-Rubio et al. (2019) found that
different amounts of chitosan and tetraethyl orthosilicate (TEOS)
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FIGURE 9 | The mechanism of interaction between Z-P-Ti and the cell surface. Reproduced from Lee et al. (2017) with permission. (A) Cells culture upon Z-P-Ti.
(B) Cells entering Z-P-Ti with appropriate pore sizes. (C) Cells growth in Z-P-Ti with biocompatible microenvironment. (D) Cells growth in P-Ti with biocompatible
microenvironment.

could modulate silicon release in hybrid silica-chitosan coatings,
which plays a critical role in osteoregeneration. Based on the
former research, Ballarre et al. (2020) added gentamicin to the
chitosangelatin/silica, aimed at extending the bioactive effect.
Based on, the sol consists of ZrO2, TiO2, Li+, and polyethylene
glycol (PEG), Alcázar et al. (2019) evaluated the biocompatibility
of hybrid coatings and found that the modified titanium
surfaces have higher cellular growth. El hadad et al. (2020)
have developed a new hybrid nanocomposite coating based
on organofunctional alkoxysilanes precursors and phosphorus
precursors, which prove that the presence of phosphorus at the
molecular level can lead to the enhancement of biocompatibility.
Simultaneously, Garcia-Casas et al. (2019) also deemed that an
intermediate quantity of organophosphate showed the ability
to enhance the mineralization of the substrate, which is why
it was considered as the most suitable candidate for metallic
prosthetic equipment. The drawbacks of pure HA were overcome
by adding multi-minerals with the combination of PSSG polymer
as hydroxyapatite/sorbitol sebacate glutamate (MHAP/PSSG)
composite (Pan et al., 2019). Interestingly, Melatonin (MLT),
used primarily to regulate the circadian rhythm and its role
in bone regeneration and inflammation has been studied.
Cerqueira et al. (2020) used sol-gel coatings as a release
agent for MLT on a titanium substrate, they found that it

didn’t improve the ALP activity, but has the potential in the
activation and development of pathways. Based on the sol-
gel coating, Toirac et al. (2020) added two different fungicides
(fluconazole and anidulafungin) directly both of them exhibited
anti-fungal properties.

At present, more research is conducted on the composition
control of the sol-gel method than the process parameter control.
These sol-gel coatings greatly enhance the corrosion protection
and the migration of the metal matrix, thereby reducing the
incidence of prosthesis rejection. Like other thermal deposition
methods, it needs to consider the impact of thermal effects, so
its current clinical use is subject to certain restrictions. There
are extensive studies on the preparation of titanium dioxide, bio-
inert ceramics, and organic-inorganic composite layers. For the
titanium dioxide coating, the performance can be improved by
doping other elements or improving the structural design of the
composite coating with HA. For organic-inorganic composite
coatings, in the future, it is possible to assess the comprehensive
biocompatibility experiments by increasing the types of coating
raw materials and adjusting the ratio.

Micro-Arc Oxidation
Micro-arc oxidation, is developed based on anodizing
technology. The MAO process mainly relies on the matching
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FIGURE 10 | (A) The morphology of macrophages cultured on the surface of various materials for 1, 3, and 5 days. (B) Calcein-AM staining and (C) CCK-8 results
show that Cu(h)-MAO surface promotes the proliferation of macrophages. Reproduced from Huang et al. (2018) with permission.

FIGURE 11 | The forming mechanism and biological performance evaluation of the micro-arc oxidized TiO2 coatings with the “cortex-like” structure and the
“volcanolike” structure. Reproduced from Li et al. (2018) with permission.

adjustment of the electrolyte and the electrical parameters.
The process is done under the instantaneous high temperature
and high pressure generated by the arc discharge, on the
surface of Al, Mg, Ti, and other valve metals and their alloys.
A modified ceramic coating produced by MAO is mainly
composed of base metal oxides and supplemented with
electrolyte components (Han et al., 2003; Li et al., 2004). It has
the advantages of simple process, small area, strong processing
capacity, high production efficiency, suitable for large industrial

production, environmental protection, etc. (Liu et al., 2015;
Wang et al., 2015).

According to the principle of plasma-electrolytic oxidation,
MAO can create a macro-porous and firmly adherent TiO2
film on the Ti substrate, which got a lot of attention. Some
organic substances coated on the layer can make a balance
between antibacterial and cell compatibility (He et al., 2018).
Additionally, bioactive elements, like B, Ag, Ca, and Sr can
be incorporated with TiO2 coating to enhance its bioactivity
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and biological properties. Huang et al. (2016, 2018) prepared
boron-incorporated TiO2 coating (B-TiO2 coating) and Cu-
containing TiO2 coatings successively. Specifically, the change
of the chemical properties of the surface of B-TiO2 coating and
release of B ions from its surface is believed to be the main reason
for the improvement of ALP activity and cell differentiation. In
the latter research, although the incorporation of Cu did not
change the surface morphology and roughness, it still improved
the macrophage-mediated osteogenesis and sterilization ability
(Figure 10). Zhang et al. (2020) also fabricated Cu-TiO2 through
a one-step MAO in a solution containing ethylene diamine
tetraacetic acid cupric disodium (Na2CuEDTA) that has a two-
layered coating consisting of TiO2 and porous Ca, P-rich outer
layer containing nano-sized HA crystals. Subsequently, they
investigated the enhanced antibacterial property and osteogenic
activity of Zn-TiO2 coating fabricated by one step MAO method
(Zhang et al., 2019). This structure improved the proliferation
and differentiation of osteoblasts and slightly enhanced the
antibacterial capability relative to its relatively higher Cu content.
Ag-incorporated TiO2 coatings were prepared by Lv et al. (2019),
the resultant film exhibits significantly improved antibacterial
capability and bone-forming capacity with the increase of
Ag2O nanoparticles in the electrolyte, also it has a slightly
upgraded cytotoxicity behavior relative to polished Ti substrate.
Li et al. (2020) incorporated Ca and Sr, which are good for
bone reconstruction, into the MAO coating. This coating has
a highly porous and super-hydrophilic layered structure, which
showed excellent promoting effects in the proliferation of human
bone marrow-derived mesenchymal stem cells (hBMSC). It is
also a good way to combine MAO with other processes to
improve the performance of the coating. Therefore, Tang et al.
(2020) prepared BaTiO3 on the surface of TiO2 produced by
MAO through a hydrothermal reaction. In the early period
after bone implantation, the piezoelectric effect of this coating
may play a positive role in bone growth and bone integration.
High energy shot peening (HESP) pretreatment can be used
to enhance the stability and bioactivity of the TiO2 coatings
fabricated by MAO, Shen et al. (2020) used this method to
increase the effective doping of Ca & P elements on the surfaces.
Novel “cortex-like” coatings were investigated by Li et al. (2017,
2018), they have studied a macro/micro/nano triple hierarchical
structure and micro/nano dual-scale structured TiO2 coating on
Ti. Results proved that the “cortex-like” structure significantly
promotes the cell adhesion, diffusion, and differentiation and
increases the matrix mineralization. The graphic abstract and
schematic diagram of the “cortex-like” TiO2 were shown
in Figure 11.

The incorporation of Ca and P species into the TiO2 surfaces
can cause the biocompatible compound formation. Thus, plenty
of studies focused on obtaining HA-containing coating on
titanium and its alloys. Karbowniczek et al. (2017) proved that
in the electrolyte containing disodium hydrogen phosphate and
calcium acetate hydrate, with the Ca/P ratio of 2/1 the coated
Ti6Al7Nb alloy achieved the best combination of bioactivity
and mechanical properties. Through a two-step method, it is
also possible to produce an oxide layer with micro-pores and
bio-active elements by MAO on a surface with macro-porosity

(Costa et al., 2020). Similarly, Durdu et al. (2018) combined
thermal evaporation-physical vapor deposition (TE-PVD) and
MAO. In addition to higher hydrophilicity, the uniform and
dense apatite distribution were observed on the Ag-incorporated
coatings. Sedelnikova et al. (2017) deposited wollastonite-calcium
phosphate (WeCaP) on the pure titanium, revealing the identical
dependencies of coating thickness variation, surface roughness,
and adhesion strength with process voltage. Interestingly,
calcium-rich waste eggshell was used to produce HA coating on
Ti-6Al-4V, which is in good agreement with that of bone.

As a hot spot technology for surface modification, MAO
was used in lots of research schemes including the preparation
of titanium dioxide and HA layers. The enhanced surface
hydrophilicity of the porous coating prepared by the MAO
method can stimulate the interaction between the implant and
the surrounding biological environment, and it also brings
excellent antibacterial properties due to the presence of metal
ions. Although the anodic oxidation technology is convenient
and economical, its bonding strength with the titanium matrix
needs to be further improved. In future research, in addition
to combining with other preparation methods, the structural
design of the coating should be developed, such as the multi-
level structure designs, multi-scale coating, or coating with novel
surface morphology.

CONCLUSION

Titanium and its alloys are the most commonly used materials for
permanent implants, especially in application with direct contact
with the bone, teeth, and bodily fluid. Numerous techniques
exist to modify titanium and its alloys surfaces, their different
mechanisms, procedure, and targets were listed in this review
and with the goal for further clarification of how to choose
the corresponding surface modification process and to select its
optimum parameters for different demands.

This article reviews the main physical and chemical surface
modification techniques for Ti related biomaterials, such as
plasma spray, PIII, PIII&D, PVD, CVD, sol-gel, and MAO.
Although these methods have been applied in practice and
achieved some results, they still have some deficiencies, like the
bonding strength still needs to be improved, the influence of
thermal effects is eliminated, and how to compromise between
toxicity and biological performance, etc. Future studies must be
focused on designing the basic new methods or the combination
of a variety of surface modification methods to play a synergistic
effect and combine their advantages to conquer the deficiencies.
On the other hand, the structure and composition of the
composite coating can be tailored in order to achieve excellent
biomedical performance.
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Titanium and its alloys have superb biocompatibility, low elastic modulus, and favorable
corrosion resistance. These exceptional properties lead to its wide use as a medical
implant material. Titanium itself does not have antibacterial properties, so bacteria can
gather and adhere to its surface resulting in infection issues. The infection is among the
main reasons for implant failure in orthopedic surgeries. Nano-modification, as one of
the good options, has the potential to induce different degrees of antibacterial effect
on the surface of implant materials. At the same time, the nano-modification procedure
and the produced nanostructures should not adversely affect the osteogenic activity,
and it should simultaneously lead to favorable antibacterial properties on the surface
of the implant. This article scrutinizes and deals with the surface nano-modification of
titanium implant materials from three aspects: nanostructures formation procedures,
nanomaterials loading, and nano-morphology. In this regard, the research progress on
the antibacterial properties of various surface nano-modification of titanium implant
materials and the related procedures are introduced, and the new trends will be
discussed in order to improve the related materials and methods.

Keywords: bactericidal, nanostructure, antibacterial, nanoparticles, titanium-implants

INTRODUCTION

Currently, with the rapid development of materials science and biotechnology, titanium and its
alloys as orthopedic implant materials (Sam Froes, 2018) have been widely used in applications
such as skeleton structure fixation and joint function repair implants (Gode et al., 2015; Liang et al.,
2016; Kaur and Singh, 2019). Many new types of titanium alloys with high-quality performance
have been invented through in-depth research on titanium alloy preparation (Zhang C. et al., 2017;
Wang et al., 2018; Attarilar et al., 2019a,b; Hafeez et al., 2019) and optimization of titanium alloy
composition (Liu et al., 2015a; Wang et al., 2016; Rabadia et al., 2019a,b). These new titanium alloys
show outstanding application value in mechanical properties (Guo et al., 2013; Wang et al., 2015;
Jawed et al., 2019; Hafeez et al., 2020), corrosion resistance (Lee et al., 2015; Zhu W.Q. et al., 2019;
Malhotra et al., 2020), and osteogenic action (Zhu et al., 2016; Li H.F. et al., 2019; Lei et al., 2020).
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GRAPHICAL ABSTRACT

It is undeniable that the implant material plays a vital role in
orthopedic diseases (Hanawa, 2018; Qian et al., 2020), and its
infection risk which is directly related to the material condition
cannot be ignored (Montanaro et al., 2011; Kumar and Misra,
2018; Li and Webster, 2018). The infection of the tissue in
the periphery of implant material is one of the most severe
complications in orthopedic surgery (Pfang et al., 2019). The
occurrence of infection not only leads to the failure of the implant
and the surgery but also increases the patients’ recovery period
and makes an economic burden on both patients and the medical
system. The use of antibiotics is a common and effective way to
control this issue, but it also has some disadvantages (Klein et al.,
2016; Holleyman et al., 2019). Bacterial infection on the surface of
the implanted material may eventually form a biofilm and reduce
or completely inhibit the beneficial effects of the bactericidal
drugs. Besides, the system-administered anti-infection method
can also result in a low concentration of drugs in the surgical
area due to scars or fibrosis of the surrounding tissues, which
affects the antibacterial efficiency (Andersson and Hughes, 2012,
2014). For this reason, the preparation of titanium-based implant
materials with antibacterial properties can effectively solve this
problem. This infection issue can be solved by adding metallic
bactericidal elements or the addition of antibacterial coatings on
the surface of implants (Morones-Ramirez et al., 2005; Ben-Knaz
Wakshlak et al., 2016; Pareek et al., 2018).

The emergence of nanotechnology has caused significant
changes in many fields of science, such as physics, chemistry,
materials science, biology, computer science. Compared with
the conventical materials (Wang et al., 2008), nanoscale
materials have many new and unique properties, including
medical, mechanical, chemical, magnetic, optical (Whitesides,
2005; Dyakonov et al., 2017; Semenova et al., 2017).
Some of the nanoscale materials have appeared as new
antibacterial agents, and current studies have confirmed
that antimicrobial nanoparticles (NPs) and nanocarriers that
aimed to deliver antibiotics can effectively treat infectious

diseases (Huh and Kwon, 2011). Nanoscale materials have
higher antibacterial properties compared to traditional
antibacterial counterparts due to their high surface area
to volume ratio. Therefore, it maintains more active area
for biological interactions thus this subject seems to have
outstanding research value in biomedical applications (Xia,
2008; Avila et al., 2018). This article summarizes and analyzes
the advantages and disadvantages, procedures, antibacterial
mechanisms, and possible improvement mechanisms for
various nanoscale antibacterial materials, in order to
provide a guideline for the modern nano-antibacterial
materials with improved design and optimum properties
for implant applications.

CLASSIFICATION OF NANOMATERIALS

Based on the dimension criteria,antibacterial nanomaterials can
be divided into four categories:zero-dimensional–nanoparticles,
one-dimensional–nanowires, two-dimensional—nanofilms, and
three-dimensional–nanoblocks (Figure 1) (Saleh, 2020). Besides,
antibacterial nanomaterials can also be classified according to the
structural form or antibacterial active ingredients (Gleiter, 2000).

Classification by the Structural Form
Antibacterial nanomaterials based on the structural form can
be classified into antibacterial NPs, antibacterial nanosolids,
and antibacterial nano-assembled structures. NPs are known as
tiny particles in the size range of 1∼100 nm. Their specific
structures induce some sort of surface and interface effects
such as small size effect, macroscopic quantum tunneling and
quantum size effect (Morris, 2018). As a result, nanomaterials
with a series of excellent properties enhance the proficiency of
nano-antibacterial agents. Compared with ordinary materials,
nanomaterials have irreplaceable characteristics, especially in
the antibacterial field. Hence it is worthwhile to expand
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FIGURE 1 | Schematic illustration of the nanomaterial’s classification based
on dimensionality.

the scope of their applications. Antibacterial nanosolids can
be formed by the aggregation of nano-sized antibacterial
particles. They can be further divided into bulk, thin-film,
and nanofibrous nanomaterials. Antibacterial nano-assembled
structures refer to the artificially assembled and synthesized
antibacterial nanomaterial systems. These systems are composed
of antibacterial nanoparticles, nanofilaments, or tubes as the
basic unit. These various nanostructures can be assembled and
arranged in one dimensional, two or three-dimensional space to
form the desired nanomaterial structures (Mageswari et al., 2016;
Khan, 2020).

Nanomaterials can be synthesized through various methods
such as construction and destruction (Figure 2) (Saleh, 2020).
On the one hand, NPs can be obtained from the atomic level and
then integrated into the desired materials. The methods of this
kind of synthesis include self assembly (Zhang et al., 2019b; Deng
et al., 2020), laser pyrolysis (Laurent et al., 2010; Dumitrache
et al., 2019), condensation (Sano et al., 2020), CVD (Gutés et al.,
2012; Tyurikova et al., 2020), sol-gel method (Gonçalves, 2018),
soft lithography (Fu et al., 2018), hydrothermal methods (Zhen
et al., 2019; Moreira et al., 2020), microwave methods (Henam
et al., 2019), sonochemical (Gupta and Srivastava, 2019; Moreira
et al., 2020), synthesis using plant extracts (Ogunyemi et al., 2019;
Ranoszek-Soliwoda et al., 2019), and green synthesis (Gour and
Jain, 2019; Irshad et al., 2020). On the other hand, macroscopic
level materials can be trimmed down to NPs by different methods,
including mechanical grinding (Sviridov et al., 2017; Haque
et al., 2018), ball milling (Li Y. et al., 2020), lithography (Fu
et al., 2018), vapor deposition (Choi et al., 2018), arc-plasma
deposition (Ito et al., 2012; Takahashi et al., 2015), ion beam
technique (Heo and Gwag, 2014; Yang J. et al., 2018), severe

plastic deformation (Cui et al., 2018; Sarkari Khorrami et al.,
2019), chemical etching (Wareing et al., 2017; Pinna et al., 2020),
sputtering (Pišlová et al., 2020), and laser ablation (Pandey et al.,
2014; Abid et al., 2020).

Classification by Antibacterial Active
Ingredients
Antibacterial nanomaterials can be categorized into a metal
ion and oxide photocatalytic type according to antibacterial
active ingredients. Metal ion antibacterial nanomaterials are
metallic ions with antibacterial functions (Ag, Cu, Zn, Ni,
Co, Al) loaded in a variety of natural or synthetic substrates.
They can slowly release the antibacterial ion components
to periphery tissues in order to achieve the antibacterial
and bactericidal effects. Oxide photocatalytic antimicrobial
materials commonly are TiO, ZnO, MgO, CdS, etc. and act
in the catalysis of photocatalyst in which OH− and H2O
molecules oxidized to OH free radicals with strong oxidation
capacity. Thus, these activated surfaces can inhibit and kill
microorganisms that exists in the environment (Buzea and
Pacheco, 2017).

PREPARATION OF NANOSTRUCTURE
ON TITANIUM AND ITS ALLOYS

Titanium-based nanostructure (NS) materials have become
the focus of current research because of their unique
properties in optical, biological, and electrical fields
(Miao et al., 2015; Gupta et al., 2018; Wei et al., 2020).
Different preparation processes can be used to construct
NS titanium surfaces, common nano-morphologies for
titanium surfaces with antibacterial functions are nanotube
and nano-coating forms. Titanium surfaces with different
physical and chemical properties can influence the biological
interactions and the adhesion of cells and bacteria (Zhou
J. et al., 2018; Elbourne et al., 2019), which in turn
affects the ability of early osseointegration and the risk of
implant infection.

Preparation of Nanotubes
Titanium dioxide nanotubes have received extensive attention
because of their controllable size and highly ordered surface
arrangement. Nanotubes have a larger specific surface area
and storage space than other NS forms such as nanorods,
nanospikes, and nanowires. These characteristics make it a good
candidate among the other NS morphologies for the storage
and release of antibacterial agents. The preparation of nanotube
structures on the surface of titanium is mainly achieved by
three methods: template synthesis (Jung et al., 2002; Lee et al.,
2005), electrochemical anodization (Jun et al., 2012; Roman
et al., 2014; Cao S. et al., 2018; Shang et al., 2019; Zhang
et al., 2019d), and hydrothermal treatment (Tsai and Teng, 2004,
2006), they have different advantages and disadvantages listed in
Table 1.
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FIGURE 2 | A schematic representation of preparation procedure for various nanoparticles.

TABLE 1 | Different nanotube formation processes.

Preparation technique Shape and size Characteristics References

Template synthesis (1) Tubular arrays or loose
aggregates
(2) Diameter:10∼500 nm
(3) Length: Nanometer to micrometer

(1) Nanotubes with different diameters can be
prepared
(2) Removing the template may destroy the
morphology of the nanotubes

Choi et al., 2017; Luo
et al., 2018

Electrochemical anodization (1) Highly ordered array of nanotubes
(2) Diameter:10∼500 nm
(3) Length:100 nm∼100 µm

(1) Highly ordered
(2) Low degree of aggregation

Fathy Fahim et al.,
2009; Zhao et al., 2014

Hydrothermal treatment (1) Single or loose block tube
(2) Diameter:2∼20 nm
(3) Length: nanometer to micrometer

(1) Simple process
(2) It can prepare small diameter nanotubes
(3) Difficult to form nanotube arrays

Wang L. et al., 2014;
Aal et al., 2015

Template Synthesis
The template synthesis method can be categorized into a
hard template and a soft template method according to
the nature of templating agent. The hard template method
uses columnar single-crystal anodized aluminum oxide (AAO)
(Hoyer, 1996; Ma, 2007; Newland et al., 2018) as a template
to prepare nanotube structures by electrochemical deposition.
The preparation process for the hard template is complicated,
and the shape and size of the nanotubes are dependent on the
size and shape of the template hole. Besides, the nanotubes
destruction is possible during the separation step from the
matrix template so unfortunately, it has poor reproducibility.
In the soft template procedure surfactants used as templates

(Bernal et al., 2012; Choi et al., 2017). Firstly, the surfactant
should be mixed with water, titanium alkoxide, and other
substances, then the polymerization takes place under certain
conditions. After drying and calcination, the nanotube structure
is prepared. The soft template method overcomes the shape and
size dependence to the template holes, which is one of the big
limitations of hard templates. However, due to the necessity
of high temperatures in removing step of soft templates, the
nanotubes may collapse.

Template synthesis can prepare nanomaterials upon design
demands and obtain well-formed nanoarrays, but it still has some
drawbacks. For example, the AAO template as a commonly used
master plate is mechanically weak which makes it difficult to
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prepare metal templates with large areas (Masuda and Fukuda,
1995). Moreover, when using solvents to remove the organic
compound templates, the structure of the nanomaterials may
encounter some damages. Therefore, this synthesis method
has the potential to be further optimized to synthesize utility
materials with the desired functions using a simple operation
(Bera et al., 2004).

Electrochemical Anodization
Anodizing is one of the most commonly used methods for
preparing TiO2 nanotubes. The nanotube formation with a
high aspect ratio and the excellent ordered condition can be
attained by this method. The favorable nanotube size can be
achieved by changing different factors (electrolyte composition,
voltage, pH, anodizing time, etc.) (Gong et al., 2001; Ni et al.,
2013; Wang L.N. et al., 2014; Khudhair et al., 2016; Song
et al., 2017). Nanotube structures with tube dimensions in the
range of 0.2-1000 µm length, 15–250 nm diameters and 10–
70 nm thickness can be prepared with different anodic oxidation
parameters. The main process of preparing titanium dioxide
nanotubes by anodic oxidation are as follows: placing titanium
foil or titanium sheet in a reaction cell (electrolytes are usually
fluoride ions such as HF, NH4F, Macak et al., 2005; Alivov et al.,
2009; Minagar et al., 2014) of two- or three-electrode system,
and then a constant voltage application. The titanium sheet
or foil is oxidized by the combined action of the electric field
and fluoride ions. After some time, arrays of titanium dioxide
nanotubes with uniform distribution, ordered arrangement and
perpendicular to the substrate would be formed. The diameter of
the nanotube can be controlled by the oxidation voltage (Bozkurt
Çırak et al., 2017); the length of the nanotube is controlled by
the combination of the oxidation time (Bhadra et al., 2020),
the oxidation temperature (Mohan et al., 2020), and the pH
value of the electrolyte (Cipriano et al., 2014); the smoothness of
the nanotube, and the cleanliness of the surface are respectively
dependent on the type of electrolyte and the water content
(Sivaprakash and Narayanan, 2020).

Hydrothermal Treatment
Hydrothermal treatment is among the momentous methods
for nanotube production (Harsha et al., 2011). This method
has the potential to produce titanium dioxide nanotubes with
suitable crystalline structures (Swami et al., 2010). In this
procedure, usually TiO2 NPs were utilized as a titanium
source to carry out a chemical reaction in a concentrated
alkaline solution at high temperature. Subsequently, after ion
exchange and calcination, the nanotube structure is reached
(Wong et al., 2011). The hydrothermal method can synthesize
nanotubes with different diameters and lengths by controlling
the reaction conditions (Chi et al., 2007; Nakahira et al.,
2010; Khoshnood et al., 2017; Mi et al., 2017). Hydrothermal
synthesis is performed at high temperatures, and the rate
of heating is a critical factor (Seo et al., 2001). Based
on the rate of heating, the hydrothermal method can be
divided into two categories: conventional and microwave
hydrothermal procedures. In the traditional hydrothermal
synthesis method, the sample is simply heated in a general

water bath. However, its heating rate is slow and the reaction
cycle is long. Additionally, the heating of the reaction system
is not uniform. The reaction system is exposed to microwave
radiation during the microwave hydrothermal synthesis method.
Since microwave heating is a rapid method of heating, the
temperature of the reaction system very rapidly increases which
results in a significantly reduced reaction period and the
more uniform heating (Ribbens et al., 2008; Liu et al., 2014;
Meng et al., 2016).

Titanium dioxide nanotubes can be synthesized by template
synthesis, electrochemical anodization, and hydrothermal
treatment. Additionally, there are some studies on the fabrication
of nanotube structures by plasma electrolytic oxidation. Among
the various possible methods, electrochemical anodization is
the most commonly used method. By controlling the variables
of the electrochemical anodization method, it is feasible to
fabricate nanotube structures that satisfy the research needs.
It is of great importance to delicately control the release of
antibacterial agents in nanotubes and regulate the optimal size of
nanotubes in order to promote cell adhesion, proliferation, and
differentiation.

Preparation of Nano Coating
The formation of nano-scale coatings on the surface of titanium
can endow new functionalities to the surface. There are various
methods for nano-coatings preparation. the conventional surface
coating technologies are chemical vapor deposition (CVD) and
physical vapor deposition (PVD). Newly developed methods
include sol-gel, spin coating, plasma spraying, layer-by-layer
self-assembly, and electrophoretic deposition, these methods are
listed in Table 2.

Chemical Vapor Deposition
In the CVD method a single substance or compound containing
one or more gas phases of elements is utilized to perform
a chemical reaction on the substrate surface and produce a
coating. In recent decades, even inorganic coatings can be
produced through CVD technologies. Moreover, these methods
can be used to purify various substances and precipitates, single-
crystal, polycrystalline, and other inorganic thin-film materials
(Jin et al., 2013; Manawi et al., 2018). Based on the influential
parameters and chemical interactions, CVD methods can be
divided into ambient pressure (Jang et al., 2015), low-pressure
(Gao et al., 2011; Umrao et al., 2017), thermal (Zeng et al.,
2018), ultra-high vacuum (Multone et al., 2008), and organic
metal CVD methods (Maury and Senocq, 2003; Gong et al.,
2013). Various oxide coatings, nitrides, and metal nano-coatings
can be prepared by CVD methods based on the material
and the required properties through its varied techniques
(Delfini et al., 2017).

Physical Vapor Deposition
In the PVD technology, a physical phenomenon is used to
vaporize the surface of source material (solid or liquid) into
gaseous atoms, molecules, or into ions by ionization under
vacuum condition. After the vaporization step, a low-pressure
gas (or plasma) is implemented and a functional thin film is
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TABLE 2 | Various nano-coating preparation methods and the related characteristics.

Preparation technique Characteristics References

Chemical vapor deposition (1) Lower equipment cost Son et al., 2016

(2) Controllable coating density and purity

(3) Coatings deposition on complex shapes

(4) The coating is uniform and dense

(5) Firmly combined with the base materials

Physical vapor deposition (1) Simple production process Hübsch et al., 2015

(2) No pollution, less consumables

(3) The coating is uniform and dense

(4) Firmly combined with the base materials

Spin-on deposition (1) Simple production process Nguyen et al., 2020

(2) Low preparation cost and low pollution

(3) Accurate and controllable coating thickness

Sol-gel method (1) Simple production process and low equipment requirements Hübsch et al., 2015

(2) Can be prepared at room temperature

(3) Large area coating

(4) High purity and homogeneous coating

Plasma spraying (1) Simple production process Mahade et al., 2019

(2) Suitable for multiple materials

(3) Coating with low porosity, high density and smooth feature

Layer-by-layer self-assembly (1) Simple production process without any need to special equipment Elmi et al., 2019

(2) Suitable for multiple materials, including polymer materials

(3) Can precisely control the coating structure and size

Electrophoretic deposition (1) Simple production process and convenient operation Pishbin et al., 2013

(2) Low preparation cost

(3) Accurate thickness control, chemical composition, and porosity

(4) Low temperature requirements

deposited on the substrate surface (Chouirfa et al., 2019). The
PVD technology can deposit not only metallic and alloy films but
also it is capable of depositing ceramics and polymers. The main
PVD methods are vacuum evaporation, sputtering deposition,
and ion plating.

Vacuum evaporation uses laser and electron beam heating
to evaporate the material source into atoms or ions, and
subsequently deposits atoms or ions onto the surface of the
substrate to form a coating (Kumar et al., 2009; Garbacz et al.,
2010). The resultant coating from this method has relatively
large pores and poor adhesion to the substrate (Xingfang et al.,
1988; Scott et al., 2003; Krysina et al., 2020). Sputter plating
uses the base material as the anode and the target material as
the cathode. By using the sputtering deposition effect, the argon
ions generated by argon ionization knocks out the target material
atoms and deposits them on the surface of the base material. The
characteristic of this kind of coating is the presence of a few pores,
but it can combine with the substrate more efficiently (Ratova
et al., 2017; Makówka et al., 2019; Zhang et al., 2019a). Ion plating
is involved with the ionization of gasses or vaporized substances
under vacuum conditions, during the bombardment of gas ions
or vaporized material ions, evaporates, or other reaction products
are deposited on the substrate. The coating prepared by this
method is uniform and dense, basically free of pores with a strong
binding with the substrate (Li et al., 2017c; Zhang et al., 2018a;
Tian et al., 2019).

With the development of PVD methods, many advanced
PVD-based technologies have been derived which facilitate the
production of high-quality nano-coatings. These new developed
technologies include activated reactive evaporation (Bulla et al.,
2004; Biju et al., 2009; Yuvaraj et al., 2010), activated reactive
sputtering (Alajlani et al., 2016, 2017), activated reactive ion
plating (Xin et al., 2000), magnetron sputtering (Lelis et al.,
2019; Avino et al., 2020; Vuchkov et al., 2020), magnetron
sputtering pulsed laser deposition (MSPLD) (Endrino et al.,
2002; Jones and Voevodin, 2004), ionized magnetron sputtering
(Kusano et al., 1999; Tranchant et al., 2006), pulsed laser
deposition (PLD) (Paneerselvam et al., 2020; Wang et al.,
2020), and etc.

Sol-Gel Method
Sol-gel technology uses some compounds with high chemical
activity as precursors. After the raw materials are uniformly
mixed in the liquid phase, hydrolysis and condensation chemical
reactions are carried out to form a stable sol. It reacts
with water in a certain solvent and forms a sol through
hydrolysis and polycondensation interactions. After the sol
is aged, the colloidal particles slowly polymerize to form a
gel with a three-dimensional grid structure. After the gel is
dried, sintered, and solidified on the surface of the substrate,
the NS coating would be achieved (Antonelli and Ying, 1995;
Kim et al., 2004).
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Spin-on Deposition
One of the coating preparation methods entitled as the spin
coating is able to precisely control the thickness. However, the
size of the substrate is limited by the size of the spinning device
(Abu-Thabit and Makhlouf, 2020). The thickness of the coating
prepared by the spin coating method is in the range of 30 and
2000 nm. The typical spin coating method is mainly divided
into three steps: glue dispensing, high-speed rotation, and drying.
First, the spin-coating droplets are injected onto the surface of the
substrate. Then, the spin coating solution is spread on the surface
of the substrate through high-speed rotation to form a uniform
film. Finally, the remaining solvent is removed by drying; hence
the stable coating is obtained. In the process of preparing the
coating by spin coating, high-speed rotation, and drying are the
key steps to control the thickness, structure, and performance of
the coating. The schematic of the spin coating method is shown
in Figure 3.

Spin coating technology has been successfully applied in the
fields of optics (Chtouki et al., 2017; Al-Douri et al., 2018)
and electricity (Oytun and Basarir, 2019; Yildiz et al., 2019).
Simultaneously, the spin coating method is also used in the
preparation of functional thin films in the fields of biology and
medicine. For example, a hydrophilic or hydrophobic film is
produced on the surface of the base material to achieve the
purpose of antibiosis (Kaviyarasu et al., 2017; Huang Y. et al.,
2019; Li H. et al., 2020) and anti-corrosion (Kim et al., 2013;
Akram et al., 2020).

Plasma Spraying
Plasma spraying technology uses a plasma arc that driven by
direct current as a heat source to heat ceramics, alloys, metals,
and other materials to a molten or semi-molten state (Fauchais
and Montavon, 2007; Mostaghimi and Chandra, 2007). These
materials are sprayed onto the surface of the base material at
high speed, and a firmly attached surface coating is formed, this
process is schematically presented in Figure 4. Plasma spraying
is a fundamental nano-coating preparation process. This process
has high stability and excellent controllability, and a variety of
materials can be used to prepare the coating. At the same time, the
prepared coating has low porosity and high deposition efficiency
and it is suitable for preparing high melting point metal and
ceramic coatings (Cheang and Khor, 1996; Huang et al., 2014;
Goudarzi et al., 2018).

The plasma sprayed functional coatings can improve
the thermal insulation, anti-oxidation, and surface optical
performance of the base material. With further research on
functional coatings prepared by plasma spraying, some advances
have made in the biomedical field. For example, the preparation
of silver-containing coatings with antibacterial effect on the
surface of CoCr alloys using vacuum plasma spraying technique
(Liang et al., 2020). Also, the HAp coating on the Ti6Al4V
surface using the axial suspension plasma spraying method
(Hameed et al., 2019), and the HAp coating prepared by the
micro-plasma spray method (Wang et al., 2017), both presents
enhanced biological performance than the traditional plasma
spraying methods.

FIGURE 3 | Schematic diagram of spin coating method(the target particles
are applied onto the substrate, and then it accelerated to a high angular
velocity to simultaneously spread the liquid over the entire surface and
evaporate the solvent to achieve the target thickness).

Layer-by-Layer Self-Assembly
Layer-by-layer self-assembly technology is a relatively new
technology in recent years and is widely used in the biology,
materials, and nanoscience fields. As shown in Figure 5 (Zhang
et al., 2018d), this technology can assemble a variety of materials
(polyelectrolytes, small organic molecules, NPs, etc.) and can
precisely control the surface structure and size of the coating.
Nanomaterials with ordered structure prepared by self-assembly
technology show unique properties. Self-assembly technology is
currently a hotspot in the field of nanomaterial research.

Layer-by-layer self-assembly technology can be used to
fabricate filtration membranes (Rajesh et al., 2016), sensors
(Fernandes et al., 2011), and optoelectronic devices (Eom et al.,
2017). Besides, it is able to produce antibacterial coatings (Wu
et al., 2015; Huang J. et al., 2019; Li D. et al., 2019; Xia et al., 2019)
or drug controlled release coatings (Cao M. et al., 2018; Silva et al.,
2018; Zhou W. et al., 2018; Sun et al., 2020; Wu et al., 2020).
Hence, this technology seems to would have broad application
prospects in the biomedicine field.

Electrophoretic Deposition
Electrophoretic deposition is the directional movement of
charged particles in the direction of the electrode under the action
of an electric field. The outer layer of ions exerts pressure on
the charged particles, forcing the particles to gather near the
electrode and lead them to deposit (Besra and Liu, 2007). The
method can prepare a coating with a thickness of 0.1–100 µm,
which can meet the coating thickness requirements of various
medical implant materials. Electrophoretic deposition techniques
with many advantages can be used to prepare bioceramic coatings
on metallic substrates (Boccaccini et al., 2010; Avcu et al., 2019;
Alaei et al., 2020).

Mahlooji et al. (2019) prepared the chitosan-bioactive glass
(CS-BG) nanocomposite coating on the surface of Ti-6Al-4V
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FIGURE 4 | The layout of the plasma spraying setup (Viana et al., 2017).

alloy by the electrophoretic deposition. The coating has excellent
adhesive strength with the base material which can effectively
promote the formation of apatite, and also it has a favorable
biological activity. In addition, there are several related studies
on the application of electrophoretic deposition technology to
prepare bioactive glass coatings with various biological activities
(Ur Rehman et al., 2018; Ghalayani Esfahani et al., 2019). There
are also studies about the fabrication of antibacterial coatings by
this method (Braem et al., 2017; Bakhshandeh and Amin Yavari,
2018; Ning et al., 2019; Thinakaran et al., 2020). A study used
copper and chitosan to synthesize copper(II)-chitosan[Cu(II)-
CS] complex coating, which has an excellent antibacterial effect
on both Gram-positive and Gram-negative bacteria. In addition,
Human osteoblast-like cells were cultured on the coating surface,
which confirmed that the Cu (II) -CS coating had no cytotoxic
effect (Akhtar et al., 2020). Furthermore, the results of a study
about the chitosan hydrogel membrane (CHM) production by
electrophoretic deposition show that the resultant coating can
effectively promote the adhesion and growth of L-929 mouse
fibroblast cells, and has good biocompatibility. It can also be
loaded with suitable cells as a graft and is valuable from the
application point of view (Li et al., 2017d).

Nanocoatings can be manufactured by various methods
such as vapor deposition, different kinds of spraying,
electrodeposition, etc. By considering the existing coating
technologies, different manufacturing methods can be
selected according to different needs. Adding the appropriate
nanomaterials and precise adjustment of the coating parameters
leads to manufacturing the desired nano-coatings. Compared
with conventional coatings, nano-coatings have excellent
mechanical properties, such as lower porosity, higher bond
strength, higher hardness, oxidation resistance, corrosion
resistance, etc. (Taylor and Sieradzki, 2003; Ranjbar and
Rastegar, 2011; Lin et al., 2013). Therefore, the application of
surface coatings in different fields will be very beneficial. In
addition, the nanosurface coatings with antibacterial properties
will be the great help in solving the implant-related infections
and antibiotic resistance issues in clinical practice (Kose and
Ayse Kose, 2015; Yilmaz and Yorgancioglu, 2018). There are

still many problems related to nanocoatings that need further
research and discussion, such as the dispersion technique and
stability of nanoparticles in the coating medium, the different
properties of various types of nanoparticles, and their possible
applications.

NANOMATERIALS LOADING

Nanomaterials can be used as antibacterial agents on the surface
of titanium or titanium alloys and they have a potential to
effectively improve the bactericidal properties (Chen et al., 2014;
Xin et al., 2019; Xu J.W. et al., 2019). Most of the studies were
focused on the metallic nano-antibacterial agents on the surface
of titanium and its alloys (Liu et al., 2015b; Gunputh et al., 2018;
Cheng et al., 2019). In this regard, the common metal particles
are silver, zinc, copper, etc. (Vimbela et al., 2017). The NPs are
tiny particles with a particle size in the range of 1–100 nm. The
specific properties of NPs like large specific surface area, small
size effect, and quantum size effect makes them an ideal option.
Therefore, nanomaterials have a series of excellent properties,
which improves the bactericidal effects of antibacterial agents in
comparison to traditional antibacterial agents (Mi et al., 2018;
Guo et al., 2020).

Metallic Antibacterial Agents
Metallic antibacterial agents have exceptional research
value because of their strong antibacterial ability, good
biocompatibility, and excellent stability (Ahmed et al., 2016).
Inorganic antibacterial agents are usually present on the surface
of titanium substrates in the form of NPs. They can be fixed on
the surface of the titanium substrate by using a carrier or coated
on the titanium substrate’s surface to prepare a nano-coating
(Kheiri et al., 2019).

Ag
Silver has many advantages in a broad-spectrum of antibacterial
activity (Yang Z. et al., 2018; Wang L. et al., 2019). These
advantages make it the most studied and widely used metal-based
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FIGURE 5 | Schematic illustration of LbL assembly technology, which can load different types of materials on different types of substrates (Zhang et al., 2018d).

antibacterial agent. Compared with traditional silver, silver NPs
have a larger specific surface area, which significantly enhances
their antibacterial ability. In the existing reports, the antibacterial
mechanism of silver NPs mainly includes: destroying the
structure of bacterial membranes, releasing silver ions and
generating ROS to destroy enzymes in the oxidation respiratory
chain, and regulating the signal transduction pathway of bacteria
(Park et al., 2009; Tang and Zheng, 2018). Unfortunately, silver
NPs can cause significant cytotoxicity above a specific dose range.
The silver ions released by the silver NPs are highly mobile, and
their entrance into living cells with high concentrations can kill
healthy cells (AshaRani et al., 2009). The silver element forms
which served as antibacterial are Ag2O NPs (Chen et al., 2017;
Sarraf et al., 2018a; Lv et al., 2019) and Ag NPs (Cheng et al., 2019;
Pruchova et al., 2019; Surmeneva et al., 2019). The silver NPs that
were loaded on the surface of the titanium substrate to produce
NS, showing different antibacterial effects and performance that
is listed in Table 3.

A large number of experiments have proved that silver NPs
can effectively exert antibacterial properties. Silver NPs have
a good killing effect on Gram-positive cocci represented by
Staphylococcus aureus and Gram-negative bacilli represented by
Escherichia coli (Deshmukh et al., 2018; Subramaniyan et al.,
2019). Currently, the biggest challenge is to enable the stable
release of silver at a suitable concentration on the surface of
metal implants (Yang Z. et al., 2019; Zhu Y. et al., 2019; Lai
et al., 2020). The nanotube structure, which is prepared on
the surface of the titanium substrate and loaded with silver
or Ag2O NPs, is one of the solutions. Then, based on this
structure, a controlled release coating (such as a polydopamine
coating) is prepared, the controlled release phenomenon helps
to achieve a long-term antibacterial effect (Gao et al., 2019).
Compared with silver NPs, the amount of Ag+ released from
Ag2O NPs is lower, which may be due to the role of the oxide
barrier. According to reports, Ag2O NPs have a larger total
surface-to-volume ratio, which increases their contact area with
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TABLE 3 | Antibacterial effects and other related information about different silver-containing nanomaterials.

Materials Base
materials

Manufacturing technique Nanostructure
and Size

Antibacterial effect
/Antibacterial rate

Cytotoxicity Cells References

Ag-CACS-Ti Cp-Ti In situ reduction Nanoparticles E. coli: 99.8%
S. aureus: 99.9%

No L929 cells Cheng et al., 2019

Ag-TNTs Ti-6Al-4V Anodization+Chemical reduction Nanoparticles:
102 ± 21 nm

S. aureus: 99.15% – – Gunputh et al., 2018

Ag-HA Ti-6Al-4V Laser process Nanoparticles:
20∼30 nm

S. aureus: 77.59% – – Liu and Man, 2017

Ag-HA-CS Cp-Ti Pulse electrochemical deposition Nanoparticles:
303–321 nm

E. coli: 100%
S. aureus: 100%
C. albicans: 100%
P. aeruginosa: 100%

No BMSCs Wang X. et al., 2019

Ag-PDA-TNTs Cp-Ti electrochemical anodization + in situ
reduction

Nanoparticles:
13.5 ± 4.8 nm

E. coli:
54 ± 3.7%/14 days

– – Xu et al., 2017

Ag-PDA-TNTs Ti-7.5Mo Anodization + polydopamine assisted
immobilization technique

Nanoparticles C. albicans: 100%/48 h
S. aureus: 100%/48 h

No ADSCs Rosifini Alves Claro et al., 2018

Ag-GO Ti-67IMP Physical vapor deposition magnetron
sputtering + electrochemical
anodization + spin coating

Nanoparticles E. coli: 97.56%/24 h
S. aureus: 98.15%/24 h

No hFOB cells Rafieerad et al., 2019

Ag-Ti Cp-Ti Target-ion induced plasma
sputtering + Ag sputtering

Nanoparticles:
25 ± 5 nm

E. coli: 100%/12 h
S. aureus: 100%/12 h

Yes L929 fibroblast cells Kim et al., 2018

TAN/TAP Ti-Si Vacuum arc remelting + sol-gel method Nanoparticles:
∼2 µm

E. coli: 98-100%/24 h
S. aureus: 100%/24 h

No L929 fibroblast cells;
U-2OS human
osteosarcoma cells

Horkavcová et al., 2017

Ag-Sr-HA coating Cp-Ti Hydrothermal method Nanoparticles:
∼100 nm

E. coli: 99%/24 h
S. aureus: 95%/24 h

No MG63 cells Geng et al., 2016

Ag-HA coating Cp-Ti Electrostatic spraying Nanorods: length:
50 nm, diameter:
20 nm

E. coli: 100%/24 h No Osteoblast Gokcekaya et al., 2017

Ag film Ti-6Al-4V Thermal annealing + DC sputtering Thickness: 20 nm E. coli: 100%/24 h
S. aureus: 100%/24 h

Yes NIH3T3 fibroblast cells Patil et al., 2019

Ag-TiN multilayers Titanium alloy Multi-arc ion plating Thickness: 120 nm E. coli: 99.88%/24h Yes MC3T3-E1 cells Zhao et al., 2019

NiTiAg coating Cp-Ti Electrodeposition + anodization – S. aureus: 64.52%
S. epidermidis: 92.35%

– – Huang et al., 2017

(Continued)
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microorganisms (Morones-Ramirez et al., 2005). Compared with
Ag NPs, Ag2O NPs can also permeate or attach Ag+ ions to the
bacterial membrane to achieve better killing of bacteria, while
reducing the negative impact on mammalian cells (Sarraf et al.,
2018b). In addition, the antibacterial effect of silver NPs in vivo is
noteworthy. Guan et al. (2019). develop a novel surface strategy
involving the formation of polydopamine (PDA) and silver (Ag)
nanoparticle-loaded TiO2 nanorods (NRDs) coatings on Ti alloy.
In vitro antibacterial experiments showed that Ag-TiO2@PDA
NRDs coatings have antibacterial effects on Methicillin-resistant
Staphylococcus aureus on days 7 and 14 according to the
bacterial counting method. The efficiencies were 88.6± 1.5% and
80.1 ± 1.1%, respectively. The material was then implanted into
the tibia of a rat model of osteomyelitis. After four weeks, the
results of X-ray, micro-CT, and H&E staining showed that MRSA
in the tibia of rats could be killed by Ag+, confirming that the
material also had good antibacterial activity in vivo.

Moreover, with the release of silver NPs, the antibacterial
properties of the implant material surface will gradually
weaken hence it would be unable to have a long-term and
stable antibacterial effect. Therefore, controlling the silver NPs
release process and reducing the cytotoxic reactions caused
by high concentrations of silver ions is one of the main
research directions.

Cu
Copper is an essential trace element for the human body. Copper
plays an important role in maintaining the normal hematopoietic
function of the human body, promoting the formation of
connective tissue and maintaining the health of the central
nervous system. At the same time, copper has strong antibacterial
properties and is not prone to drug resistance. Copper NPs can
play an essential role in inhibiting infection and forming bone
matrix by releasing copper ions (Liu et al., 2019; Mou et al.,
2019; Anitha and Muthukumaran, 2020; Lv et al., 2020). As a
redox metal (Tripathi and Gaur, 2004; Rauf et al., 2019), it can
catalyze the formation of ROS, and at the same time, can destroy
the permeability of bacterial membranes, resulting in the leakage
of reducing sugars and proteins from cells. These mechanisms
caused fatal damage to the bacteria. The antibacterial properties
and characteristics of Cu NPs and NS containing Cu NPs are
shown in Table 4.

Zn
Zinc is one of the important trace elements in the human body
and plays a vital role in the growth and development of bones
(Zhu et al., 2018). It was known that Zn can enhance the
expression of M2 marker genes and proteins in macrophages.
The adhesion, proliferation, and expression of osteoblast-related
genes are increased by Zn (Zhang et al., 2018c; Chen et al.,
2020). Zinc NPs are non-toxic and have a higher affinity to
bacteria than ordinary zinc, which can lead to better antibacterial
effect. In the current research on the antibacterial mechanism of
zinc NPs, it has been found that zinc ions can destroy bacterial
membranes and promote the production of ROS, thereby
achieving antibacterial effects. Related research and results are
shown in Table 5. To confirm the antibacterial effects and the
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feasibility of clinical applications Zinc-containing nanocoatings
were studied, the results have shown excellent antibacterial effects
both in vitro and in vivo antimicrobial experiments. Li et al.
(2017b) prepared hybrid ZnO/poly-dopamine/arginine-glycine-
aspartate-cysteine nanorod arrays on the titanium surface using
atomic layer deposition and hydrothermal methods. The material
was implanted into the femur of the rabbit model infected with
S. aureus. After four weeks, femurs from animal models were
tested by H&E staining and Giemsa staining, the zinc-containing
nanorod arrays were less infected than the control soft tissues
and bones, demonstrating that the release of zinc ions can play
an effective anti-infective role.

Au
Gold nanoparticles (Au NPs) as an antibacterial agent have been
demonstrated in many researches (Grandi et al., 2011; Samanta
et al., 2019). It has also some other surface functions such as
photocatalysis, photothermal effect, and ROS-stimulating activity
(Xia et al., 2015). Au NPs can also achieve antibacterial effects by
destroying the cytoplasmic membrane of bacteria (Li et al., 2016).
Au NPs are non-toxic and highly light stable, which can also be
used as a probe to accurately locate biological macromolecules
on the cell surface and within the cell, and can also be used for
immunohistochemical localization.

Yang T. et al. (2019) prepared a gold nanorods (GNR)
structure on the Ti surface by layer-by-layer self-assembly
method. Also, they evaluate the photothermal antibacterial
efficiency of Ti-GNR under near-infrared radiation (NIR) with
a wavelength of 808 nm. The alamarBlueTM assay was used
to detect the number of viable bacteria on different samples.
The results showed that the antibacterial rates of Ti-GNR on
S. aureus, S. epidermidis, E. coli, and P. aeruginosa were 45.72,
56.94, 14.61, and 20.24%, respectively. The NIR-treated Ti-GNR-
NIR surface had antibacterial rates of 26.31, 31.84, 61.82, and
66.74%, respectively. The results show that the Ti-GNR surface
after near-infrared radiation has high antibacterial activity against
E. coli and P. aeruginosa. At the same time, the cell culture results
showed that the Ti-GNR and Ti-GNR-NIR surfaces had lower
cytotoxicity to MC3T3-E1 cells. Xu W. et al. (2019) prepared
TiO2 nanotube arrays (TNT) on Ti plates by anodizing, and then
loaded gold NPs (Au NPs) into TNT. Under visible light, the
antibacterial ability of nanotubes loaded with gold NPs against
anaerobic bacteria was evaluated. The experimental results show
that the average antibacterial efficiency of TNT materials loaded
with Au NPs is above 85%, and the highest antibacterial rates for
F. nucleatum and P. gingivalis can reach 92.13 and 97.34%.

Ni
Nickel is an indispensable element in the human body, and
its content is in minimal range in the human body. Nickel
maintains the structural stability and metabolism of biological
macromolecules. Lack of nickel can cause diabetes, uremia,
kidney failure, and other diseases. Studies have shown that
Ni2+ can effectively kill bacteria (Yasuyuki et al., 2010), but
excessive Ni2+ will cause cytotoxicity (Lü et al., 2009; Hang
et al., 2012). A recent study showed that Ni2+ released from
NiTi alloys could exhibit antibacterial properties (Ohtsu et al.,
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TABLE 5 | Different antibacterial properties and biocompatibility of zinc-containing coatings.

Materials Base
materials

Manufacturing technique Nanostructure Antibacterial
effect/Antibacterial rate

Cytotoxicity Cells References

ZnO-Sr-OPDA-TNTs Cp-Ti Anodization hydrothermal
treatment + atomic layer deposition

ZnO
film:thickness<2 nm

E. coli: 87%/12 h
S. aureus: 91%/24 h

No MC3T3-E1
cells

Zhang K. et al., 2017

ZnO-CS-CNTs-Ti Cp-Ti Electrophoretic deposition atomic
layer deposition

ZnO film thickness:
<10 nm

E. coli: 73%/24 h
S. aureus: 98%/24 h

Yes MC3T3-E1
cells

Zhu et al., 2017

ZnO-TiO2 coating Cp-Ti Hydrothermal low temperature
liquid phase

Nanoparticle
diameters:
50 ± 8∼80 ± 9 nm

E. coli: 93.2%/12 h
S. aureus: 97.5%/24 h

No MC3T3-E1
cells

Pang et al., 2019

Zn-Ti nanowires Cp-Ti Sol-gel + alkali heat – S. aureus: 66.58%/3 days
P. gingivalis: 45.02%/3 days
A. actinomycetemcomitans:
53.42%/3 days

No MC3T3-E1
cells

Shao et al., 2020

Zn-CHI-GEL multilayer films Cp-Ti LBL self-assembly Film thickness:
14.91 ± 0.97∼
17.72 ± 0.63 nm

E. coli: 47.37%/24 h
S. aureus: 52.94%/24 h

Yes Osteoblasts Karbowniczek et al., 2017

ZnO-TiO2 coating Cp-Ti Micro-arc oxidation Nanoparticles:
Average 30 nm

S. aureus:
51.4 ± 14.7%/24 h

No MC3T3-E1
cells

Zhang et al., 2018b

ZnO-Ti coating Cp-Ti Micro-arc oxidation – E. coli: 48.08%/24h – Zhang et al., 2019c

ZnO-PPy-HA coating Cp-Ti Electrochemical deposition Nanoparticle:
Average 243 nm

E. coli: 63.5%/12h
S. aureus: 72.8%/12h

No BMSCs Maimaiti et al., 2020

Zn-HA coating Ti-6Al-4V Co-precipitation + flame spraying 50–200 nm E. coli: 99.9%/3 h No WST-1 cells Yang et al., 2017

Zn-HA coating Ti-6Al-4V Plasma spraying – E. coli: 63.5%/7 days
S. aureus: 36.6%/7 days

No Saos-2 cells Sergi et al., 2018
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2017). However, due to slight Ni2+ release from the NiTi alloy, its
antibacterial ability is relatively weak. Therefore, in nanometric
range the specific surface area of the NiTi alloy is increased,
and the release amount of Ni2+ is increased, thereby enhancing
its antibacterial ability. Hang et al. (2018) produced Ni-Ti-
O NPs with different lengths (0.55–114 µm) on NiTi alloys
by anodization. The antibacterial effect of different samples to
S. aureus was determined by the plate counting method. It was
found that the antibacterial rate increased as the anodizing time
increased. When the length of Ni-Ti-O NPs exceeds 11 µm,
the antibacterial rate can reach 100% along with its excellent
biocompatibility.

Liu et al. (2018) also used anodizing method to prepare Ni-Ti-
O NPs on NiTi alloy and studied the effects of different annealing
temperatures (200, 400, 600◦C) on antibacterial properties and
biocompatibility. The length of the NPs is 2.05–2.78 µm. The
results show that the antibacterial rate of the smooth NiTi
alloy surface is only 36%, and the antibacterial rate of the
surface after anodizing reaches 84%. After annealing at 200◦C,
the antibacterial rate of Ni-Ti-O NPs was close to 100%.
Ni-Ti-O NPs annealed at 200–400◦C all showed good cell
compatibility. Therefore, the preparation of NPs with different
sizes on the surface of NiTi alloy can effectively enhance the
antibacterial effect of the material by increasing the specific
surface area.

An enormous number of studies on different inorganic
nanoparticles (Ag, Cu, Zn, Au, Ni) indicate that Ag NPs as
antibacterial agents have very efficient antibacterial performance
compared to other antibacterial agents. At present, the
mechanism of antibacterial actions of silver and silver ions is still
under controversy. As mentioned previously, Ag NPs stimulate
the generation of ROS and induce high oxidative stress, which is
thought to be the foremost antibacterial mechanism (Park et al.,
2009; Siritongsuk et al., 2016). Under normal circumstances, ROS
generated in the cell receives a restriction that can be eliminated
by antioxidants (Ramalingam et al., 2016). The antibacterial
effect of Ag NPs stems from the dehydrogenase inactivation
in the oxidative respiration chain along with excessive ROS
generation. These circumstances inhibit oxidative respiration
and the natural growth of the cells (Su et al., 2009; Quinteros
et al., 2016). In addition, two antibacterial mechanisms, contact
killing, and ion-mediated killing are widely accepted. Ag NPs can
anchor to the bacterial cell wall and infiltrate it, which can cause
physical changes to the bacterial membrane (bacterial membrane
damage, leakage of bacterial contents) and ultimately lead to
bacterial death (Khalandi et al., 2017; Seong and Lee, 2017). The
primary antibacterial form of Ag NPs is the silver ion (Ag+) (Liu
and Hurt, 2010; Le Ouay and Stellacci, 2015), and the target of Ag
+ has been identified as a number of molecules [DNA, peptides
(membrane-bound or inside the cell) or cofactors] (Le Ouay
and Stellacci, 2015). The interaction of Ag NPs with cellular
structures or biological molecules will result in impaired bacterial
function and ultimately death. Antibiotics are usually used to
attack particular molecules of certain bacteria, but silver ions
react with all the nearby molecules, thus having a wide-spectrum
antibacterial effect. Silver does not react with water, but can
easily dissolve in water with the presence of an oxidizing agent
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(oxygen), which is termed oxidative dissolution. The oxidative
dissolution of silver is also an important mechanism for its
antibacterial action (Molleman and Hiemstra, 2015), through
the above mentioned multiple mechanisms, which directly
or indirectly lead to the ability of Ag NPs to exert efficient
antibacterial effects.

The issue of cytotoxicity of Ag NPs still needs further studies
since it depends on lots of factors, including the shape of NPs,
dimension, concentration, etc. (Attarilar et al., 2020), since high
concentration of Ag NPs may be cytotoxic. Moreover, some other
studies demonstrated the influence of NPs’ size on cytotoxicity.
Several studies have shown that Ag NPs with the small size range
(<20 nm) may cause varying degrees of cytotoxic effects, while
large or condensed particles (>100 nm) sometimes do not have
any considerable adverse outcomes (Marambio-Jones and Hoek,
2010; Yang et al., 2012; Rizzello and Pompa, 2014; Foldbjerg et al.,
2015). Traditionally, antibiotics targeting specific infections or
classes of bacteria have been used for implant material infections.
In this regard, Ag NPs have a substantial potential to replace
with antibiotics due to their favorable antibacterial properties and
broad antibacterial activity over other inorganic nanoparticles.
Combining Ag NPs with implant materials for in vitro and in vivo
studies makes them promising antibacterial implant materials.
To reduce the toxicity of silver and to decrease the level of
silver in the blood, future research should focus on developing
effective techniques for combining silver nanoparticles with the
implant materials that can release silver ions in a controlled
and harmless way.

Antibiotics
In addition to using inorganic antibacterial agents to prepare
materials with antibacterial properties, antibiotics can also be
used on titanium or its alloys’ surfaces to prepare nano-
coatings or other NS to achieve antibacterial effects (Li et al.,
2017a; Liu et al., 2017; Mohan Raj et al., 2018). The chosen
antibiotics need to be able to kill Gram-positive cocci and Gram-
positive bacillus effectively (Hickok and Shapiro, 2012). Available
antibiotics include rifampicin, gentamicin, vancomycin, etc.
(Simchi et al., 2011) (Table 6). Under ideal conditions, the
antibiotics released by the prepared nanomaterials should reach
the effective drug concentration and should maintain a long
sufficient sterilization time (Salwiczek et al., 2014; Nguyen-Tri
et al., 2019).

BIONIC NANOSTRUCTURES

In recent years, the wings of insects, such as dragonflies and
cicadas, have attracted much attention as a model biological
system because of their excellent antibacterial and antifungal
properties (Ivanova et al., 2012; Diu et al., 2014; Kelleher
et al., 2016). Some studies have shown the presence of
physical nano-protrusions on the surface of insect wings.
Their antibacterial properties may be due to the fact that
when microbial cells come in contact with the protrusions,
they possibility enhance the stress and deformation of the
membrane structure of the microbial cells, leading to their
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destruction. It eventually leads to the dissolution and death of
the cells (Ivanova et al., 2013; Nowlin et al., 2014; Bandara
et al., 2017). By investigating the surface structure of insect
wings as a model and preparing bionic structures according
to it, new ideas for preparing modern antibacterial titanium
alloys have emerged.

Antibacterial Nanopatterns and
Fabrication Methods
It has been shown that modification of the surface morphology
of materials can be used to achieve antibacterial effects and
inhibition of biofilm formation (Modaresifar et al., 2019;
Stratakis et al., 2020). By changing the surface morphology
without adding other chemical reagents, the antibacterial
and antibiofilm formation properties can also be achieved
(Campoccia et al., 2013; Hasan et al., 2013). Moreover, it has
a slight effect on the mechanical strength of the material.

Changing the surface morphology to prepare biomimetic
structures with micron and nano-scale surface morphologies,
and exploring the effect of surface morphology and size of
titanium or its alloys that can effectively attack bacteria are
the currently urgent problems to be solved. Table 7 lists
some of the antibacterial NS formation methods and their
properties.

Different nano-morphologies can be prepared through
different preparation processes: nanoflowers, nanowires,
nanotubes, nano-ripples, NPs, and nanopillars are possible
morphologies, Figure 6. Among these nano-topographies,
nanopillars show good bactericidal effect, which may be
related to its high aspect ratio (Linklater et al., 2018). In each
nanotopography, cell activity was not significantly inhibited.
Furthermore, in some nanotopographies, the cells’ metabolic
activity tends to increase (Jaggessar et al., 2018).

There are several methods to fabricate nanopatterns, and
the commonly used methods are chemical etching (Heidarpour

FIGURE 6 | SEM micrograph of different nano-morphologies on the surface of titanium substrate. (A) Nanoflowers (Vishnu et al., 2019). (B) Nanowires (Jaggessar
et al., 2018). (C) Regular nanotubes (Rahnamaee et al., 2020). (D) irregular nanotubes (Rahnamaee et al., 2020). (E,F) nanotubes (Simi and Rajendran, 2017).
(G) Nano-ripples (Luo et al., 2020). (H) AFM micrograph of NPs (De Falco et al., 2018). (I) nanopillars (Linklater et al., 2019).
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FIGURE 7 | SEM images of different 3D geometries prepared by the focused electronbeam-induced deposition (FEBID) method. (a,b) A series of cubes. (c,d)
Smooth nanowires. (e–g) Nanoscale replica of a human hand. (h,i) Cobalt Mobius strip (Skoric et al., 2020).

et al., 2020), reactive ion etching (Ganjian et al., 2019), plasma
etching (He et al., 2013), hydrothermal synthesis (Jaggessar
and Yarlagadda, 2020; Wategaonkar et al., 2020), and anodic
oxidation (Mohan et al., 2020). The antibacterial nanopatterns
with different antibacterial efficiencies have been prepared by
these methods, but the antibacterial effect of these patterns
is still not very satisfactory, which may be due to the fact
that the production of antibacterial surfaces on titanium and
its alloys are more difficult than other materials [silicon,
polymethylmethacrylate (PMMA), etc.]. The development of
nanopatterns with efficient antibacterial properties can enable
the better clinical application of titanium-related medical
materials and may address the bacterial resistance problem
caused by antibiotic abuse. Currently, some novel methods
for nanopatterning have been developed, such as two-photon
polymerization (2PP) (Liao et al., 2020) and electron beam
induced deposition (EBID) (Perentes et al., 2004; Skoric et al.,
2020). Two-photon polymerization is a new 3D structure
fabrication technology based on CAD/CAM, that precisely
constructs 3D geometries with resolutions down to 100 nm. 2PP’s
high resolution, adaptability to a wide range of materials, and
the ability to create true 3D structures make it a very promising
technology for the fabrication of medical implants (Doraiswamy
et al., 2006; Ovsianikov and Chichkov, 2012). EBID fabrication
technology is also gaining much attention (Hirt et al., 2017),

enabling the fabrication of 3D structures in tens of nanometers
and the deposition of a wide range of materials (metallic, organic,
semiconducting, magnetic, superconducting, etc.) (Utke et al.,
2008; Huth et al., 2018). EBID technology currently achieves
vertical growth rates of hundreds of nanometers per second
(Winkler et al., 2018) and can improve processing efficiency
through several methods: optimizations of gas injection systems
(GIS) (Friedli and Utke, 2009), deposition at low temperatures
(Bresin et al., 2013), and simultaneous deposition of multiple
beams (Riedesel et al., 2019). A variety of 3D geometries
can be prepared by this method, as shown in Figure 7. In
the future, the development of high-resolution, efficient, and
controllable 3D nanomorphology methods will be a critical
challenge to be overcome.

Antibacterial Mechanism of
Nanopatterns
Nanoscale structures with specific dimensions are fabricated
on the surface of the substrate material, and this nanoscale
structure performs mechanocidal action through different
mechanisms. The interactions between nanopatterns and bacteria
are multifaceted, and the exact mechanism of bactericidal action
and the role of various factors in regulating bactericidal behavior
are still controversial (Bandara et al., 2017; Linklater et al.,
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2017). Most researchers agree that nanopatterns with high aspect
ratio are key factors in causing mechanical deformation of
the bacterial cell walls, which in turn causes their rupture
and death (Watson et al., 2015; Truong et al., 2017; Cao Y.
et al., 2018). Xue et al. (2015) have developed mathematical
models to explain the bactericidal properties of nanopatterns
on the surface of cicada wings. Gravity as well as non-
specific forces (such as van der Waals forces) have been
demonstrated to play a role in bacterial cell wall rupture.
In addition, extracellular polymeric substance (EPS) has been
demonstrated to play an important role in regulating the
bactericidal effects of nanopatterns, they are known as natural
biopolymeric mixtures of proteins and polysaccharides which
excreted by microorganisms. EPS plays an important role in
the formation of biological membranes, also it promotes cell
signaling and protects bacteria from the harmful effects of
environmental factors (Limoli et al., 2015). Bandara et al. (2017)
found that some bacteria under the influence of nanopillars
secrete EPS with adhesion. Bacteria find the adherent surface
unfit to survive and try to move away, and the anchoring
action of EPS leads to rupture of the bacterial cell wall and
bacterial death. Furthermore, the applied mechanical forces affect
the metabolomics and bacterial genome and may also be the
mechanism by which bacteria die on their surfaces (Rizzello
et al., 2011; Belas, 2014; Persat, 2017; Velic et al., 2019). The
mechanism of the antibacterial effect of nanopatterns is still
not completely clarified, hence the research on the antibacterial
mechanisms is crucial for the preparation of materials with
excellent antibacterial effect.

Factors Affecting the Antibacterial
Property of Nanopatterns
The design parameters (height, diameter, and spacing)
of the nanopatterns have a significant influence on the
antibacterial properties. Nanopatterns with different parameters
(height from 100 nm to 900 nm, diameter from 10 nm
to 300 nm, and spacing less than 500 nm) have been
reported in the literature to exhibit bactericidal properties
(Modaresifar et al., 2019). Velic et al. (2019) studied
the effect of varied design parameters of nanopatterns
on bacteria behavior by developing a two-dimensional
finite element model and demonstrated that reducing
the pillar diameter could effectively promote bactericidal
efficiency. Additionally, preparing nanopillar structures
with similar diameters but different densities and heights
showed that extra stretched nanopillars with varying
heights leads to rupture in the bacterial cell membranes
(the membranes exceeded the threshold value of stretching)
(Wu et al., 2018).

The occurrence of implant material-related infections
often begins with bacterial adhesion to the implant surface
subsequently the colonization of bacteria and biofilm formation
happens. Biofilms are bacteria produced microbial communities
formed by the EPS substrate to inhibit the damage of bacteria.
Statistically, about 99% of bacteria could exist with biofilm
status (Zimmerli and Sendi, 2017). Biofilms exist as reservoirs

for bacteria, often leading to chronic and systemic infections.
Therefore, reducing the opportunity of bacteria to adhere to
the surface of the implants is essential to prevent infection.
The adhesion of bacteria to a material surface depends on the
surface properties of the material, such as surface roughness,
wettability, and topography. Bacteria are more likely to adhere
to rough rather than smooth surfaces (Sarró et al., 2006;
Fan et al., 2013) and more likely to adhere to hydrophobic
rather than hydrophilic surfaces (Pagedar et al., 2010). At the
same time, the nanoscale surface has a higher resistance to
bacterial adhesion than the micron and macroscale surfaces
(Singh et al., 2011; Spengler et al., 2019). The severe plastic
deformation (SPD) process is a recently developed technique
for the fabrication of nanostructures (Dyakonov et al., 2019;
Shuitcev et al., 2020). It is noteworthy that by reducing the
grain size to the sub-micron range (100–500 nm) through
SPD processes, the mechanical properties of commercially
pure titanium are comparable to those of conventional
Ti-6Al-4V alloys (Singh et al., 2011). It was found that
the increase in Ra of the pure titanium surface after SPD
processing was followed by an increase in the adhesion density
of S. aureus, which was independent to P. aeruginosa. The
effect of surface hydrophilicity on bacterial adhesion can be
explained by thermodynamics (Bruinsma et al., 2001), with
a higher affinity of hydrophobic bacteria for hydrophobic
surfaces and of hydrophilic bacteria for hydrophilic surfaces
(Sabirov et al., 2015).

CONCLUSION

Nanomaterials have the characteristics of small size and large
specific surface area which lead them to have more potent
antibacterial activity and drug loading capacity than traditional
materials, thus showing an excellent antibacterial effect. However,
once the safe antimicrobial material exceeds its safe dose during
the release process, it will produce cellular cytotoxicity and
even affect the osteogenic performance of titanium implant
materials’ surfaces. Moreover, the antibacterial ability of the
implant material surface will gradually weaken with the release
of antibacterial substances. The nano-morphology on the surface
of the titanium implant material can achieve a long-term
antibacterial effect. However, the destructive effect of the nano-
morphology surface on different bacteria is quite different, and
the antibacterial range is limited. At present, the nanometer
modification of implant materials is still in its infancy and
lots of improvement must be done in order to make them an
ideal option for medical applications both form cytotoxicity
and functionality, this study aims to produce a guideline and
achieve the as-mentioned goals. In this regard, nanostructure
formation methods including template synthesis, electrochemical
anodization, and hydrothermal treatment was discussed. In
addition, nano coating methods such as CVD, PVD, sol-gel, spin
coating, electrophoretic deposition, plasma spraying, and LBL
technologies were introduced. Then different antibacterial agent
loading on these nanostructured surfaces were analyzed. The
loading substances can have metallic nature like Ag, Cu, Zn, Au,

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 18 November 2020 | Volume 8 | Article 576969106

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-576969 November 19, 2020 Time: 10:55 # 19

Liu et al. Nano-Modified Titanium-Implants’ Antibacterial Properties

and Ni, even some antibiotics including rifampicin, gentamicin,
and vancomycin can be loaded on these nanostructures.

Although, there are many known involved parameters and
methods, it seems that more research in this field is from crucial
importance since it affect the health issues. Some modern, safe
and economic methods and materials should be introduced
by researchers. The accurate and complementary guidelines
about the safe thresholds and stability of antibacterial agents
and procedures must be prepared. The precise mechanisms
both from bactericidal and functionality points of view
should be understood. The effect of antibacterial schemes on
biocompatibility, osteogenic activity, genotoxicity, and their
possible influence on periphery tissues should be analyzed. In
future, the direction of research shifts to improve the antibacterial
properties of non-cytotoxic antibacterial nanoparticles and
develop implant materials with stable and long-lasting
antibacterial effects. In the study of cytotoxic nanoparticles
with antibacterial properties (e.g., silver nanoparticles), further
clarifying the factors and mechanisms leading to cytotoxicity and
developing controllable and harmless antibacterial materials are
the next research focuses. The possible bactericidal mechanisms,
the design parameters to achieve the efficient antibacterial
performance on different bacteria species, and the development
of high-precision nanopattern processing technologies are
still among the future problems to be solved in nanopattern
antibacterial studies. This review paper can help the investigators
to develop the new methods, procedures, and materials to attain
a modern scheme in design of nanostructured antibacterial
materials with long-last, safe, biocompatible, and effective on
broad bacterial infections characteristics.
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In the mammalian skeletal system, osteogenesis and angiogenesis are closely linked by

type H vessels during bone regeneration and repair. Our previous studies confirmed the

promotion of these processes by copper-containing metal (CCM) in vitro and in vivo.

However, whether and how the coupling of angiogenesis and osteogenesis participates

in the promotion of bone regeneration by CCM in vivo is unknown. In this study,

M2a macrophages but not M2c macrophages were shown to be immunoregulated by

CCM. A CCM, 316L−5Cu, was applied to drilling hole injuries of the tibia of C57/6

mice for comparison. We observed advanced formation of cortical bone and type H

vessels beneath the new bone in the 316L−5Cu group 14 and 21 days postinjury.

Moreover, the recruitment of CD206-positive M2a macrophages, which are regarded

as the primary source of platelet-derived growth factor type BB (PDGF-BB), was

significantly promoted at the injury site at days 14 and 21. Under the stimulation of

CCM, mitochondria-derived reactive oxygen species were also found to be upregulated

in CD206hi M2a macrophages in vitro, and this upregulation was correlated with the

expression of PDGF-BB. In conclusion, our results indicate that CCM promotes the

evolution of callus through the generation of type H vessels during the process of bone

repair by upregulating the expression of PDGF-BB derived from M2a macrophages.

Keywords: 316-5Cu stainless steel, type H vessel, M2a macrophage, PDGF-BB, immunoregulation

HIGHLIGHTS:

- Copper-containing metal promoted the evolution of callus through the generation of type
H vessels in the process of bone repair.

- CD206+ M2a macrophage-derived PDGF-BB were elevated by copper-containing metal in
callus beneath the newly formed cortical bone.

- The coupling of osteogenesis and angiogenesis was linked by immunoregulation of
copper-containing biomaterials.
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INTRODUCTION

Bone fracture is an increasingly common medical incident that
results from both traumatic injury and disease-related bone
fragility. Even when adequate bone repair is achieved within
the expected time frame, treating fractures is costly and can be
protracted in the 10–20% of cases in which healing is delayed
or fails (Parker et al., 2007; Hernandez et al., 2012). The limited
treatment options for accelerating fracture repair and sustaining
peak bone mass throughout life represent a growing clinical
problem. Current biological treatments (for example, teriparatide
and strontium ranelate) are modestly effective or not broadly
applicable, creating a treatment gap in the management of
fractures and osteoporosis (Wu et al., 2013).

The intimate spatial and temporal link between osteogenesis
and angiogenesis, termed angiogenic–osteogenic coupling, can
recruit both endothelial and osteoblast precursor cells to the
locus (Zheng et al., 2018; Peng et al., 2020). A recent study
by Romeo et al. (2019) reported that type H vessels play a
crucial part in promoting the conversion of cartilage matrix to
bone tissue during bone development and regeneration. Platelet-
derived growth factor type BB (PDGF-BB), which is derived from
macrophages, contributes to the generation of type H vessels
in the first stages of these processes. It was also noted in a
recent study that emcnhiCD31hi endothelium was present during
endochondral bone formation in the osteotomy gap (Stefanowski
et al., 2019). Moreover, administration of recombinant SLIT3,
which is derived from osteoblasts and promotes formation of type
H vessels, effectively accelerated bone fracture healing in a mouse
bone fracture model (Xu et al., 2018). Thus, it was proposed
that fracture healing could be enhanced by promoting type H
vessel angiogenesis, providing a potential therapeutic approach,
particularly for cases of delayed union or non-union.

The most popular biomaterials used in managing bone
fractures are metals including titanium alloy and stainless steel,
which promote bone repair and have specific effects depending
on their components (Spiller et al., 2014; Inzana et al., 2016).
Magnesium, a transition metal element that contributes to
the biological activity regulated by neurotransmitters in bone,

GRAPHICAL ABSTRACT | 316L−5Cu stainless steel promoted the evolution of callus through the generation of type H vessels in the process of bone repair by

upregulating the expression of PDGF-BB derived from M2a macrophages, which contributes to the expression of mitochondria-derived reactive oxygen species due

to copper stress.

is favored for modification of the composition of orthopedic
medical metals (Zhang et al., 2016). Another transition metal,
copper, which is known to be an antibacterial agent, is noted
for its promotion of osteogenesis and angiogenesis (Ren et al.,
2012, 2015; Ryan et al., 2019). Our previous studies showed
that copper-containing stainless steel promoted fracture healing
by accelerating the process of callus evolution in a fracture
model (Wang et al., 2015). In the research by Chen et al.
(2020), focusing on the underlyingmechanism, copper promoted
the migration of bone marrow mesenchymal stem cells via
Rnd3-dependent cytoskeleton remodeling; however, there was no
involvement of angiogenesis. Hence, exploring whether copper
participates in the coupling of osteogenesis and angiogenesis
in bone regeneration could enhance our understanding of
this mechanism.

The immune system protects the body by eradicating
pathogenic microorganisms; however, its additional
physiological and pathological roles in a variety of biological
systems, including the musculoskeletal system, are being
gradually discovered. Xie et al. (2014) demonstrated that
PDGF-BB enhanced the formation of type H vessels and bone
during bone modeling and remodeling. They showed that
macrophages/non-resorbing osteoclast lineage cells are the main
sources of PDGF-BB in bone marrow, which further recruits
both endothelial and osteoblast precursor cells, thereby coupling
angiogenesis with osteogenesis. More specifically, Spiller et al.
(2014) found that M2a macrophages marked with CD206high

secreted the most PDGF-BB in vitro, compared withM1 andM2c
macrophages. The present study shows that copper-containing
metal (CCM) promotes bone repair in a drilling hole injury
model through enhancing the generation of type H vessels
via recruiting and activating infiltrating M2a macrophages
in callus.

METHODS AND MATERIALS

Copper-Containing Stainless Steel
Copper-containing stainless steel was designed and fabricated by
the addition of the appropriate amount of copper to medical

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 January 2021 | Volume 8 | Article 620629120

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Xu et al. Copper-Containing Alloy in Bone Regeneration

stainless steel. The experimental materials used in this study
included a previously reported 316L−5Cu stainless steel with
a nominal chemical composition (wt%) of Cr 19, Ni 13, Mo
3.5, Cu 4.5, and Fe in balance, which was obtained by vacuum
induction melting. Purchased medical-grade 316L stainless steel
was used for comparison (Ren et al., 2012, 2015). Samples were
cut from forged bars into disks of 1mm thickness and small disks
of 5mm diameter and 1mm thickness for use in the in vitro
experiments. Intramedullary nails, which were used to create
tibia injury in C57 mice in vivo, were processed by cold-drawing
316L−5Cu stainless steel to 0.45mm diameter and then cut into
9-mm lengths. All the experimental steels with single austenitic
structures were solution treated at 1,050◦C for 0.5 h, followed
by water quenching, and then aged at 700◦C for 6 h to achieve
Cu-rich precipitation in the 316L−5Cu stainless steel; this was
expected to promote the release of Cu ions from the surface of
the steel. All the samples were ground with SiC sand papers up to
grade 2000#, soaked in absolute ethanol, cleaned with ultrasonic
and deionized water, and finally sterilized at 121◦C prior to use
in experiments.

Preparation of Extracted Medium and
Polarized Macrophage Culture
Each steel sample was placed in one well of a 24-well culture
plate. Sugar-rich Dulbecco’s modified Eagle’s medium (DMEM)
was dropped onto the samples (1ml medium per 3 cm2 surface
area of experimental material), followed by incubation at 4◦C for
72 h. The media cocultured with the steel samples were extracted
and collected.

RAW264.7 cells were purchased from Cyagen Biosciences
(China). High-glucose DMEM (Life Technologies, USA)
containing 1% (v/v) penicillin/streptomycin (Thermo, USA) and
10% fetal bovine serum (Thermo, USA) was used for culture of
RAW cells. RAW cells were incubated at 37◦C with 5% CO2.
Additional drugs, namely, Mito-TEMPO (a mitochondria-
targeted ROS antagonist, 50 nM, Sigma), were added to the
culture medium for 60min before polarization.

Polarization was started by changing the culture medium
for complete medium, 316L−5Cu extracted medium, or
316L extracted medium, supplemented with the following
cytokines: 40 ng/ml recombinant murine interleukin (IL)-4
(PeproTech, 214-14) and 20 ng/ml recombinant murine IL-
13 (PeproTech, 210-13) for M2a; and 40 ng/ml recombinant
murine IL-10 (PeproTech, 210-10) for M2c. After 48 h of
polarization, cells and culture supernatants were collected for
further experiments.

Western Blotting
Total protein was extracted from RAW 264.7 cells using the same
procedures as described in detail elsewhere (Santa et al., 2016).
Briefly, raw cells were lysed using radioimmunoprecipitation
assay (RIPA) lysis buffer (Thermo, 89901) containing proteinase
inhibitors and phosphatase inhibitors (KeyGEN BioTECH,
KGP250). The protein concentrations were determined
using a bicinchoninic acid (BCA) protein assay kit (Thermo
Fisher Scientific, 23,225). Subsequently, the phenol–ethanol
supernatant was mixed with isopropanol to isolate proteins.

Equal amounts of protein and supernatants were separated
by 12.5 or 15% sodium dodecyl sulfate polyacrylamide
gel electrophoresis and transferred to 0.45 or 0.20 µm-
pore polyvinylidene fluoride membranes (Merck Millipore,
IPVH00010 or ISEQ00005). Membranes were incubated
overnight with antibodies against CD163 (Abcam, ab182422),
CD206 (Abcam, ab64693), PDGF-BB (Santa Cruz, sc365805),
MMP9 (Abcam, ab38898), and β-actin (Cell Signaling echnology,
2118). The membranes were then incubated with peroxidase-
conjugated goat antirabbit immunoglobulin G (IgG) (h+ l)
secondary antibody (1:5,000) for 1 h. Protein signals were
detected using an enhanced chemiluminescence kit (Cat.
WBKLS0500, Millipore), andWestern blot bands were examined
and analyzed with a chemiluminescence instrument (Guangzhou
Ewell Bio Technology Co. Ltd., China).

Animals and Surgical Procedure
Male C57BL/6 mice (10–12 weeks old) were housed at a
controlled temperature (22 ± 1◦C) with a light–dark cycle (7:00
am to 7:00 pm) and allowed food and water ad libitum. They
were randomly divided into two evenly sized groups: a control
(316L) group and a 316L−5Cu group. Mice were anesthetized,
and hair was removed from the left hind limb. An incision was
made on the skin over the medial aspect of the proximal tibia.
Soft tissue was cleared from the distal end of the tibial crest,
and a hole (0.8mm in diameter) that penetrated through both
the medial cortices and the intervening medulla was created in
the bone using a 21-gauge needle. A stainless steel pin (316L or
316L−5Cu) with length of 8mm and diameter of 0.45mm was
inserted into the tibial medullary cavity from the proximal tibia
following skin closure.

The study design and procedures were entirely in accordance
with the US National Research Council (2011). This study was
approved by the Animal Ethics Committee of Nanfang Hospital,
Southern Medical University.

Microcomputed Tomography
After being fixed in 10% formalin solution for 12 h at 4◦C,
microcomputed tomography (µCT) scanning was performed
(Scanco Medical, AG, Switzerland) with X-ray energy of 55
kvp and a current of 145mA, voxel size of 9µm, and
an integration time of 400ms. The scanned images were
reconstructed with NRecon (v1.6), and the data were analyzed
using CTAn (v1.9) and three-dimensional model visualization
software (µCTVol v2.0). A sequence of images within the
bone defect were chosen for analysis. Three-dimensional
histomorphometric analysis was performed using longitudinal
images of the tibia. The region of interest was set as the cylindrical
region bordered by the defect edge. The three-dimensional
structural parameter of bone volume to tissue volume ratio
was analyzed.

Histological, Immunohistochemistry, and
Immunofluorescence Analysis
Mice (n = 12 per group) were sacrificed, and tibia specimens
were harvested at days 7, 14, and 21 postinjury for observation
of the histological and histochemical alterations after injury.
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After being fixed in 10% formalin solution for 12 h at 4◦C, the
specimens were decalcified in 10% ethylenediaminetetraacetic
acid (EDTA) (Sigma) solution for 4.5 days. Two incisions,
parallel with the major axis of the drilling hole, were made
on the ventral and dorsal sides of the tibia, respectively.
At the crevice of the incisions, the bone tissue surrounding
the implant was carefully divided into two parts and forced
apart from the implant surface, minimizing the damage to the
interface tissues.

Samples were immersed in 30% (w/v) sucrose in 0.1M
phosphate buffer (pH 7.3) overnight at 4◦C, embedded in
paraffin (n = 6) and optimal cutting temperature compound
(n = 6, Sakura Finetek), and then cut into 6µm thick
sections longitudinally for hematoxylin and eosin (H&E)
and immunohistochemical staining, and 10µm thick sections
in a cryostat (Leica CM1800; Heidelberg, Germany) for
immunofluorescence staining.

For H&E staining, some of the sections obtained
previously were preheated in an air oven at 60◦C, followed
by deparaffinization and rehydration in xylene and ethanol
solutions (reducing concentrations of 100 to 70%). The sections
were then successively soaked in H&E dyes. After dehydration
with graded alcohol, histological observation was performed
using a microscope (BX63, Olympus, Tokyo, Japan), and the
fracture healing process was evaluated.

Immunohistochemical staining was performed on the
deparaffinized and rehydrated sections as described previously,
with specific primary antibody (rabbit anti-CD206; ab64693,
Abcam 1:200, UK). All the sections were counterstained using
Mayer’s hematoxylin (Sigma-Aldrich) and mounted using
a permanent mounting medium (Thermo Fisher Scientific,
Waltham, MA, USA). Quantification of positive cell numbers
within the injury site was carried out on 4µm serial sections
stained for CD206 expression. Three representative images (×40
magnification) were taken within the intramedullar injury zone
for each sample at two sectional depths at least 50µm apart.
The number of CD206+ cells was quantified by counting each
positively stained cell in each field of view.

Frozen sections embedded in optimal cutting temperature
(OCT) were processed for immunofluorescence staining of
Emcn, CD31,F4/80, CD163, CD206, and PDGF-BB. Sections
were incubated in blocking buffer (10% goat serum in
phosphate-buffered saline; PBS) for 1 h at room temperature
and incubated with primary antibodies overnight at 4◦C. The
following primary antibodies were used for immunostaining:
rat antiendomucin (Emcn, SC-65495, Santa Cruz, 1:50, US),
rabbit anti-CD31 (ab222783, Abcam, 1:50, UK), rat anti-
F4/80 (71299,Cell Signaling Technology, 1:500, USA), rabbit
anti-CD206 (ab64693, Abcam 1:200, UK), rabbit anti-CD163
(ab182422, Abcam, 1:200, UK), and mouse anti-PDGF-BB (sc-
365805, Santa Cruz, 1:50, USA). Sections were washed three
times in PBS and then incubated with secondary antibodies at
room temperature for 1 h. The following secondary antibodies
were used for immunostaining: Alexa Fluor 594-conjugated
goat antirabbit IgG (8889, Cell Signaling Technology, USA),
Alexa Fluor 488-conjugated goat antirat IgG (4416, Cell
Signaling Technology, USA), and 594-conjugated goat antimouse

(HA1112, HuaBio, China). Nuclei were counterstained with 4′,6-
diamidino-2-phenylindole (DAPI) (S2110, Solarbio, China). All
the sections were observed under a BX63 microscope (Olympus,
Tokyo, Japan).

Quantitative analysis was carried out using three
representative images (×40 magnification) taken within the
intramedullar injury zone for each specimen at three sectional
depths at least 50µm apart. The number of positive cells was
quantified by counting each positively stained cell in each field
of view.

Mitochondrial Potential Detection Using
Mitotracker Green and Mitotracker Orange
By combining both Mitotracker Green (MTG) and Mitotracker
Orange (MTO) (Invitrogen, CA, USA), the relative
mitochondrial potential with its mitochondrial mass as
baseline can be obtained (Agnello et al., 2008). Polarized and
pretreated RAW264.7 cells were seeded in six-well chamber
slides and grown to 50–70% confluence. After washing twice
with warm 1× PBS, cells were stained with 100µM MTG,
500µM MTO, and Hoechst 33324 (HuaBio, China) in DPBS
+ Ca/Mg/glucose to maintain their normal metabolic state.
Cells were then incubated for 45min at 37◦C under standard
culture conditions. The u-slide was then transferred to a confocal
microscopic station with a 37◦C heated chamber supplied with
5% CO2 for live cell imaging. Tile scan images were captured
randomly using the same TCS-SP2 confocal microscopy
system (Leica Microsystem, Nussloch GmbH, Germany)
with sequential detection for both stains. The fluorescence
intensities of MTO (excitation/emission, 554/576 nm) and MTG
(excitation/emission, 490/516 nm) were measured. For five
samples from each group, a total of 20 different microscopic
fields per sample, containing comparable numbers of cells, were
integrated to obtain fluorescence mean pixel intensity values.
The ratio of MTO/MTG intensities was then calculated and
denoted the mean index of MTO/MTG, reflecting the relative
mitochondrial potential.

Mitochondrial ROS Assay
To determine mitochondrial superoxide production, polarized
and pretreated RAW 264.7 cells were incubated for 30min
with 100µM MitoSOX dye (Thermo Fisher Scientific, M36008)
and Hoechst 33324 diluted in cell imaging solution (10mM
HEPES, 1 mg/ml bovine serum albumin, 1 mg/ml glucose,
1mM MgCl2, and 1.8mM CaCl2 in PBS) at 37◦C in
a humidified atmosphere containing 5% CO2. Then, cells
were washed with PBS. The fluorescence was read using a
SpectraMax i3x microplate reader at 510/580 nm, and the cell
number in each well was determined using a SpectraMax
MiniMax 300 imaging cytometer. Fluorescence values were
first normalized to the cell number in each well; then, all the
conditions for each genotype were normalized to the non-treated
control group.

Statistical Analysis
Statistically significant differences were determined using
unpaired t-tests with one- or two-tailed distributions using
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PRISM 7 (GraphPad software, La Jolla, CA, USA). A value
of p < 0.05 was deemed statistically significant. In all
cases, data are represented as mean ± standard error of
the mean (SEM).

RESULTS

CCM Promotes the Expression of
PDGF-BB in M2a Macrophages
M2a and M2c, two subtypes of macrophages, are known to
be closely associated with angiogenesis, linked by IL4, IL13,
and IL10 (Wu et al., 2013; Spiller et al., 2014). To identify
the subtype with the major role under CCM stimulation,
Western blotting was performed on M2 macrophages in vitro.
Upon copper stimulation, M2a cells with high expression of

CD206 and M2c cells with higher CD163 expression were
detected. The expression levels of PDGF-BB and CD206
were higher in M2a macrophages stimulated by 316L−5Cu
extract (Figure 1A), and CD206 and CD163 were identified
in this distinct type of macrophage (Figures 1A,B). Notably,
the expression levels of MMP9 and CD163 showed no
difference between the 316L and 316L−5Cu groups (Figure 1B),
indicating that M2a macrophages predominantly promoted
the expression of PDGF-BB under the stimulation of 316L–
Cu extract.

The Callus Formation Process of Bone
Repair Is Accelerated by CCM
To determine the role of M2a macrophages in bone regeneration,
a tibia drilling hole injury model in C57BL/6 mice was

FIGURE 1 | Copper-containing metal (CCM) promoted the expression of platelet-derived growth factor type BB (PDGF-BB) in M2a macrophages. Western blotting

was performed to examine the expression levels of CD206, CD163, PDGF-BB, and MMP9 in the following macrophages: M0, M2a, M2c, M2a with 316L, M2c with

316L, M2a with 316L−5Cu, and M2c with 316L−5Cu. β-Actin from cell lysis was used as a loading control. (A) Representative images of Western blots and

quantification of relative protein levels of CD206 and PDGF-BB in M2a macrophages. (B) Representative images of Western blots and quantification of relative protein

levels of CD163 and MMP9 in M2c macrophages. Data were statistically analyzed by Student’s t-test. Results are presented as mean ± SEM. n = 5.
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established, and the closure degree of the drilling hole was
measured and assessed by µCT and histomorphological
procedures. The model was established by inserting
316L−5Cu/316L pins into the bone marrow cavity of the
injured tibia as intramedullary nails. Formation of new cortical
bone in the drilling hole was faster in the 316L−5Cu group
than in the 316L group at days 14 and 21 (Figure 2A).
The bone mineral content within the drill hole was almost
2-fold higher in the 316L−5Cu group compared with the
316L group at day 21 (Figure 2B). Using H&E staining,
no difference was observed in the callus between the two
groups at day 7, whereas the formation of cortical bone
callus in the 316L−5Cu group was accelerated at the later
stage. New and integral cortical bones were observed in the
316L−5Cu group, covering the top of the drilling hole on day 21
(Figure 2A).

Type H vessels have been reported to participate in bone
fracture healing (Stefanowski et al., 2019). In the drilling
hole injury model, expression levels of Emcn and CD31 were
examined; these are markers of generation of type H vessels

in immunofluorescence-stained tissue slices. Emcn+CD31+
immunofluorescence staining was observed on the bone callus;
this was more intense from days 7 to 21 in the 316L−5Cu group,
indicating the generation of type H vessels (Figures 3A,B).
These signals were located particularly beneath the new cortical
bone at day 21. These results show that 316L−5Cu significantly
accelerated the formation of callus, accompanied by promotion
of the generation of type H vessels.

CCM Promotes Infiltration of CD206+M2a
Macrophages into Callus During Bone
Repair
Macrophages have been shown to infiltrate into the callus and
periosteum during the healing of bone fractures; in particular,
CD206+ M2 macrophages were primarily assembled in the
periosteum, with very few present in the fracture gap at day 14
in a bone fracture model (Stefanowski et al., 2019). According
to our results, CD206+ cells in both groups were located in
the callus around the newly formed bone between the hole

FIGURE 2 | Copper-containing metal (CCM) accelerated callus formation in bone repair. (A) HandE-stained histological images of the tibia of

316L/316L−5Cu-inserted mice 7, 14, and 21 days after injury. Yellow dotted lines indicate the edge of the drill hole. Scale bar represents 200µm.

(B) Three-dimensional microcomputed tomography (µCT) images of the drill holes in 316L/316L−5Cu-inserted mice 7, 14, and 21 days after injury. The ratio of bone

volume to tissue volume (BV/TV), representing bone formation in the drill holes, was calculated. Data were statistically analyzed by Student’s t-test. Results are

presented as mean ± SEM. n = 6 per time point per group.
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FIGURE 3 | 316L−5Cu significantly promoted the generation of type H

vessels. (A) Representative images of double-immunofluorescence staining

against EMCN (green) and CD31 (red). The merged yellow shows

colocalization of EMCN and CD31. White dotted lines indicate the edge of the

drill hole, and red dotted lines show the profile of the newly formed lamellar

bone. Scale bar represents 100µm. (B) Quantitative analysis of EMCN+ and

CD31+ cells within the drill holes 7, 14, and 21 days after injury. Data were

statistically analyzed by Student’s t-test. Results are presented as mean ±

SEM. n = 6 per time point per group.

gaps. Furthermore, a significant increase in CD206+ cells was
observed in the callus of the 316L−5Cu group (Figure 4A). We
further detected CD163+ cells (also known asM2cmacrophages)
with an association with angiogenesis by immunohistochemistry
and immunofluorescence. Few CD163+ cells were found during
the process of bone regeneration by immunohistochemistry
(data not published), but it was notable that a few 163+
(M2c) macrophages were located in hole gaps and in the
bone marrow cavity, especially near the endosteum. There
was no difference between the two groups (Figure 4C). We
further detected the relationship between the CD206 and F4/80
immunofluorescence signals; coexpression of CD206 and F4/80
indicates M2a macrophages. From days 7 to 21, coexpression of
CD206 and F4/80 exceeded 70% of the whole CD206 signal in the
316L−5Cu group and was significantly higher than 316L at days
7 and 14 (Figure 4E). The coexpression of the above two signals
was also higher in the 316L−5Cu group compared with the
316L group during the bone regeneration process (Figure 4D).
CD206+ M2a macrophages were found mainly in the callus of
the drilling hole in the early stage (day 7) and around the surface
of the newly formed bone (day 14). In the later stage, cells were
observed beneath the new cortical bone (day 21), indicating a
close relationship between M2a macrophages and newly formed
cortical bone (Figure 4B).

Copper Induced the Formation of Type H
Vessels Activated by
M2a-Macrophage-derived PDGF-BB
PDGF-BB, which is secreted by M2a macrophages and TRAP–
preosteoclasts, is critical for enhancing the formation of type
H vessels and bone during bone modeling and remodeling (Xu
et al., 2018). We examined PDGF-BB in callus (Figure 5A) and
found that it showed significantly higher expression in the 316–
5Cu group than in the 316L group at days 14 and 21 and that
it was located in the F4/80+ macrophages beneath the new
cortical bone (Figures 5A,B). At day 7, no difference in PDGF-BB
expression in callus was found between the 316L−5Cu and 316L
groups. These results indicate that theM2amacrophages secreted
PDGF-BB in the revolution process of bone regeneration, which
was promoted by 316–5Cu.

High Levels of Mitochondrial-Derived
Reactive Oxygen Species Might Enhance
CCM-Promoted Expression of PDGF-BB by
M2a Macrophages
Low-concentration copper preparations have been reported to
have promising immunomodulatory potential and to contribute
to oxidative stress in macrophages (Videla et al., 2003; Steinborn
et al., 2017; Zhao and Zhao, 2019). Mitochondrial-derived
reactive oxygen species (mtROS) are believed to derive mainly
from NADH dehydrogenase when there is a high NADH/NAD+
ratio in the mitochondrial matrix. The inhibitory effect of copper
on NADH dehydrogenase has been demonstrated in adenine–
copper complexes and chelating 2-valent copper complexes
(Hammud et al., 2008; Roy et al., 2015). To determine the role of
CCM in inducing PDGF-BB expression byM2amacrophages, the
oxidative stress caused by copper in macrophages was detected.
According to our results, inhibition of NADH dehydrogenase
activity occurred in M2a macrophages in the 316L−5Cu group,
compared with 316L and control group (Figure 6D). In addition,
levels of mitochondrial potential (Figures 6A,E) and mtROS
(Figures 6B,F) were significantly elevated in IL4- and IL13-
induced M2a macrophages by 316L−5Cu. Furthermore, the
elevation of PDGF-BB expression in M2a macrophages induced
by 316L−5Cu was found to be inhibited by a selective mtROS
inhibitor (Mito-TEMPO) (Figures 6C,G).

DISCUSSION

Bone injury disrupts vessels, leading to reduced nutrient supply
at the injury site. Vascularization is pivotal to the success of
complete and scar-free bone regeneration (Lienau et al., 2009).
After bone injury, type H vessels evolve in the bone formation
region and persist throughout the entire bone regeneration
process. The phenotype of type H endothelial cell structure,
which has been described in endochondral long bone growth,
is also reflected in bone regeneration (Kusumbe et al., 2014;
Ramasamy et al., 2014; Filipowska et al., 2017; Stefanowski
et al., 2019). Our findings showed that CCM inserted into the
bone marrow resulted in a significant acceleration of callus
formation by promoting the generation of type H vessels. Thus,
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FIGURE 4 | Copper-containing metal (CCM) promoted infiltration of CD206+M2a macrophages into callus during bone repair. (A) Representative images of

immunohistochemical staining and quantification of numbers of CD206+ cells within the drill holes in 316L/316L−5Cu-inserted mice at days 7, 14, and 21. Black and

white scale bars represent 100 and 50µm. (B) Representative images of double-immunofluorescence staining against F4/80 (green) and CD206 (red). The merged

yellow shows colocalization of F4/80 and CD206. (C) Representative images of immunofluorescence staining against F4/80 (green) and CD163 (red). The merged

(Continued)
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FIGURE 4 | yellow shows colocalization of F4/80 and CD163. White dotted lines indicate the edges of the drill holes, and red dotted lines show the profile of the

newly formed lamellar bone. White scale bar represents 100µm. (D) Quantification of number of F4/80+ and CD206+ cells within the drill holes in

316L/316L−5Cu-inserted mice at days 7, 14, and 21. (E) Quantitative analysis of the fractions of F4/80+ and CD206+ cells within the drill holes in

316L/316L−5Cu-inserted mice at days 7, 14, and 21. All data were collected from at least three fields of view per sample and six samples per group. Data were

statistically analyzed by Student’s t-test. Results are presented as mean ± SEM.

FIGURE 5 | M2a macrophage-derived platelet-derived growth factor type BB

(PDGF-BB) levels were elevated by 316L−5Cu. (A) Representative images of

double-immunofluorescence staining against F4/80 (green) and PDGF-BB

(red) at days 14 and 21. The merged yellow shows colocalization of F4/80 and

PDGF-BB. Scale bars represent 100µm. (B) Quantification of numbers of

F4/80+ and PDGF-BB+ cells within drill holes in 316L/316L−5Cu inserted

mice at days 14 and 21. Data were collected from at least three fields of view

per sample and six samples per group. Data were statistically analyzed by

Student’s t-test. Results are presented as mean ± SEM.

it appeared that copper also took advantage of angiogenesis in
bone regeneration.

Macrophages are a heterogeneous group of cells that carry out
distinct functions in different tissues; they also lie on, or close
to, the outer (abluminal) surface of blood vessels and perform
several crucial activities at this interface between the tissue
and blood. In addition to adaptive immunity, the inflammatory
innate immune response is a major regulator of vascularization
through the activity of different types of macrophages and the
cytokines secreted (Lapenna et al., 2018). Macrophages exist on

a spectrum of diverse phenotypes, from “classically activated”
M1 to “alternatively activated” M2 macrophages (Murray et al.,
2014). TheM2a andM2c subsets that constituteM2macrophages
are typically considered to promote angiogenesis and tissue
regeneration (Wang et al., 2017; Stefanowski et al., 2019). Lin’s
research on the incorporation of Cu2+ into bioactive glass
ceramics showed that copper ions considerably induced the
transition to M2 polarization of macrophages in vitro, possibly
via activating the hypoxia-inducible factor (HIF) signaling
pathway. However, M2 polarization was only verified in vitro,
and its mechanism was unclear. Among the M2 macrophages
involved in angiogenesis, CD206+M2a macrophages are known
to specifically secrete high levels of PDGF-BB, whereas M2c
macrophages secrete high levels of MMP9, an important protease
involved in vascular remodeling (Wu et al., 2013; Spiller et al.,
2014). In the present study, the subset of CD206+ macrophages
was proved to infiltrate into the callus and was located beneath
the newly formed typeH vessels in the 316L−5Cu group, whereas
few CD206+ macrophages were found in the 316L group.
These results were consistent with those reported by Stefanowski
et al. (2019). CD163+ macrophages have been proven to play
a part in angiogenesis in the liver and brain but have not been
reported to have a role in bone injury (Etzerodt and Moestrup,
2013; Nielsen et al., 2020). Few CD163+ macrophages were
found to be involved in the process of fracture healing in
either group, suggesting that the association between CD163+
and angiogenesis in bone injury is not strong. Our findings
indicate that CCM accelerated the formation of callus in bone
regeneration via activating the expression of PDGF-BB derived
fromM2a macrophages.

The immunoregulatory effect of intracellular copper
metabolism has been examined in several studies (Videla
et al., 2003; Steinborn et al., 2017; Zhao and Zhao, 2019).
Deigendesch et al. (2018) found that depriving intracellular
copper transporters of copper ions inhibited inflammasome
activation in macrophages, thereby regulating the immune
phenotype of macrophages. The present study found that mtROS
were pivotal to the beneficial effect of CCM on bone repair.
mt-ROS are believed to originate from proton leakage, which
occurs mostly in complexes I and III (Angajala et al., 2018). Two
copper-containing complexes were proved to inhibit the activity
of mitochondrial complex I (NADH-UQ-reductase). In other
work (not published), we found that bone infections treated with
CCM also showed inhibition of NADH, resulting in an increase
in mtROS. In this study, we found a similar upregulation
of mtROS induced by copper in M2a macrophages, which
promoted the expression of PDGF-BB. The increased PDGF-BB
expression induced by copper was reduced by Mito-TEMPO,
further confirming our results.

In our previous studies, the copper-containing stainless steel,
316L−5Cu, possessed a typical austenitic microstructure, have
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FIGURE 6 | High levels of mitochondrial-derived reactive oxygen species (mtROS) could induce copper-containing metal (CCM)-promoted expression of

platelet-derived growth factor type BB (PDGF-BB) from M2a macrophages. (A) Representative images of immunofluorescence of Mitotracker Orange (MTO), merge of

(Continued)
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FIGURE 6 | MTO/Mitotracker Green (MTG)/Hoechst 33324 of M0 macrophages and M2a macrophages pretreated with vehicle (complete medium), 316L, and

316L−5Cu extract, respectively. (B) Representative images of immunofluorescence of MitoSOX, merge of MitoSOX/Hoechst 33324 of M0 and M2a macrophages

pretreated with vehicle (complete medium), 316L, and 316L−5Cu extract, respectively. Scale bars in (A,B) represent 50µm. (C) Western blotting was performed to

examine levels of PDGF-BB in medium of M0 and M2a macrophages pretreated with vehicle, 316L, and 316L−5Cu. In addition, M2a macrophages pretreated with

316L and 316L−5Cu were further prestimulated with 50 nM Mito-TEMPO for 60min before macrophage polarization. (D) Quantitative analysis of NADH/NAD+ in M2a

macrophages pretreated with vehicle, 316L, and 316L−5Cu extract, respectively. Data were statistically analyzed by Student’s t test. Results are presented as mean

± SEM. n = 5. (E) Quantification of fluorescence intensity of MTO/MTG based on the cell count, representing mitochondrial potential. (F) Quantification of mean

fluorescence intensity (MFI) of MitoSOX based on the cell count, which was represented by mtROS. (G) Data were statistically analyzed by Student’s t-test. Results

are presented as mean ± SEM. n = 5.

been proven to have the stable precipitating behavior in vitro,
the release rate of copper ions was 5.079 ng/cm2/day over 28
days in vitro (Sun et al., 2016; Yang et al., 2017). Our other study
showed that there was a significant increase in Cu2+ content in
the bone calluses of the copper-containing stainless steel at 3, 6,
and 9 weeks, but in serum. Over all, the Cu ions release from the
steel was measured to be very tiny, <10 ppb/day (Wang et al.,
2017).

Like the study of biochemical reagents, immunoregulation
of copper-containing metal has become an important target in
research on the use of biomaterials in bone disease (Dukhinova
et al., 2019). In the past few years, the development direction
of biomaterials engineering has shifted from “immune evasive”
to “immune interactive,” with a focus on modulating the
inflammatory response and promoting tissue regeneration
(Taraballi et al., 2018). The effects on angiogenesis and
osteogenesis of copper-containing biomaterials are continuously
followed in bone diseases. Recently, the immunoregulatory
effect of copper was reported in several studies (Lin et al.,
2019; Liu et al., 2019). This study was the first to establish
the links among immunoregulation, angiogenesis, and
osteogenesis induced by copper-containing biomaterials in
bone repair.

Taken together, these results demonstrate that formation
of type H vessels was promoted during bone regeneration
by the application of 316L−5Cu to drilling hole models in
mice. CD206+ M2a macrophages in callus beneath the newly
formed cortical bone were elevated by 316L−5Cu. The important
crosstalk between M2a macrophages and vascularization was
confirmed to be mediated by PDGF-BB. In addition, the
promotion of PDGF-BB expression in M2a macrophages by
CCMmight have been induced by high levels of mtROS resulting

from the inhibition of NADH dehydrogenase. Our findings
underline the importance of CCM in the bone regeneration
process by linking the innate immune response in bone repair
to local angiogenesis.
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Functional gradient materials (FGMs), as a modern group of materials, can provide

multiple functions and are able to well mimic the hierarchical and gradient structure

of natural systems. Because biomedical implants usually substitute the bone tissues

and bone is an organic, natural FGM material, it seems quite reasonable to use

the FGM concept in these applications. These FGMs have numerous advantages,

including the ability to tailor the desired mechanical and biological response by

producing various gradations, such as composition, porosity, and size; mitigating some

limitations, such as stress-shielding effects; improving osseointegration; and enhancing

electrochemical behavior and wear resistance. Although these are beneficial aspects,

there is still a notable lack of comprehensive guidelines and standards. This paper

aims to comprehensively review the current scenery of FGM metallic materials in the

biomedical field, specifically its dental and orthopedic applications. It also introduces

various processing methods, especially additive manufacturing methods that have a

substantial impact on FGM production, mentioning its prospects and how FGMs can

change the direction of both industry and biomedicine. Any improvement in FGM

knowledge and technology can lead to big steps toward its industrialization and most

notably for much better implant designs with more biocompatibility and similarity to

natural tissues that enhance the quality of life for human beings.

Keywords: implants, biomedicine, functional gradient material, additive manufacturing, graded structures

INTRODUCTION

Today’s medicine desperately needs modern materials and methods that have multiple applications
meeting different goals. In this regard, the biomedical field deals with technology development
that helps to enhance the quality of human life; hence, each parameter is of crucial importance.
The success of biomedical devices mostly depends on the materials used to make them; a variety
of materials, including metals and their alloys, ceramics, composites (Zhu et al., 2018; Wang L.
et al., 2019), and polymers, are used in the biomedical field. Moreover, implant design is the other
significant factor; currently, there are many types of implant designs, and most of them are in
an attempt to mimic the function of natural organs. Generally, each device consists of only one
component with a unified structure. However, medical devices should meet some requirements,
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such as biocompatibility, osseointegration, strength, corrosion,
and abrasion resistance, low elastic modulus, fatigue durability,
and chemical similarity with biological tissues, and the traditional
designs may not satisfy these varied requirements (Ehtemam-
Haghighi et al., 2016; Okulov et al., 2017; Wang S. et al., 2019).
For instance, some devices can cause premature failure or failure
after long-term use in the human body (Niinomi and Nakai,
2011; Liu et al., 2016); these issues stem from the fact that one
or more basic mechanical or biological requirements are not
fully met. Bone structure is always in a remodeling procedure,
which makes it possible to react with its environment and
stressors in this regard. According to Wolff ’s law, bone tissue is
produced and strengthens in the direction of mechanical stress
lines. Wolff ’s law clinically has been proven by the apparent
fabrication of osteophytes around an arthritic joint and also
by the occurrence of osteoporosis due to the stress-shielding
effect (Burke and Goodman, 2008). The stress-shielding effect
is the bone density reduction (osteopenia) that happens as a
result of stress removal from the bone by an implant, specifically
orthopedic implants, and it is a major problem leading to failure
of the implant and increasing the cost of surgery (Zhang B. et al.,
2018). Taking this information into account, the necessity to
find modern solutions is urgent and leads to the development
of functional graded materials (FGMs). This FGM concept is
a promising method to control the stress-shielding effect. For
example, both radial and axial FGM dental implants considerably
reduced the stress-shielding effect in the periphery of bone tissue
(Asgharzadeh Shirazi et al., 2017), and FGM utilization can also
prevent this phenomena in femoral prostheses (Oshkour et al.,
2013) and other biomedical implants. In this regard, Hedia and
Fouda (2013) show that FGM material with vertical gradation of
hydroxyapatite (HA) at the end of the stem tibia to collagen at
the upper layers of the tibia plate can reduce the stress-shielding
effect by 78%. Moreover, FGM materials can also withstand high
sliding and contact forces (Suresh, 2001) and have better and
stronger adhesion, shear bond strength, and fatigue properties
(Matsuo et al., 2001; Henriques et al., 2012).

The FGM concept was first introduced during the 1980s by
Japanese scholars, whose main goal was the reduction of thermal
stresses in metallic-composite materials utilized in reusable
rocket engines (Koizumi and Niino, 1995). Nowadays, there
are lots of studies devoted to FGM design (Mohd Ali et al.,
2020). Over time, the benefits of this concept were realized in
the modern biomedical and tissue engineering field because one
of the characteristics of living tissues and natural structures is
their functional gradation that can be seen in bone (Wegst et al.,
2015), the wings of various insects (Appel et al., 2015), fish armor
(Zimmermann et al., 2013), gecko skin (Arzt, 2006; Jagnandan
et al., 2014), etc. (Liu et al., 2017).

The main objective of tissue engineering is to fabricate
biological substitutes that well mimic the structure and properties
of the live organ and structure in order to treat the injured regions
of the body (Vacanti, 2006). Nature is full of various structures
known as spatially heterogeneous composites with customizable
properties. Biological systems have seven key characteristics,
known as the Arzt heptahedron, based on which all bioinspired
conceptions must be designed, and it is shown in Figure 1.

These seven key characteristics of biological systems are (1) self-
assembly, (2) multifunctionality, (3) self-healing, (4) hierarchy
of structure, (5) evolution against environmental constraint,
(6) synthesis under T∼300K and P∼1 atm conditions, and
(7) hydration necessity. FGM biomaterials try to obey these
criteria to fully mimic the natural structures because these natural
components have excellent proficiency, and manmade parts
still have a long way to go to reach them. There are lots of
successful biomimetic FGM designs with promising properties
that show the ability of utilizing this concept in biomedical
implants (Chavara et al., 2009; Bin Qasim et al., 2020). One
of the commercially used examples in this field is superelastic
nickel titanium (Ni-Ti) orthodontic arch wires with graded
functionality (Braz Fernandes et al., 2019).

In this regard, FGM design in tissue engineering is considered
an innovative scheme for improving biomedical device
performance and aims to reach specified multifunctional
characteristics through spatial, structural, or compositional
gradation, leading to tailored properties (Kawasaki and
Watanabe, 1997). The most important advantage of FGMs is
their capability in providing tailored morphological features
that lead to the occurrence of graded physical and mechanical
properties in a specific direction. FGMs have gradual transitions
from composition, constituents, microstructure, grain size,
texture, porosity, etc., along with one or more directions that
lead to functional property changes. Also, according to interface
condition, FGMs are classified into continuous and discontinues
types. Figure 2 schematically represents the FGM structure and
types. Moreover, to produce biomimetic FGM parts, it is better
to use seven common biological structure parts found in nature,
such as fibers, helical, layered, tubular, gradient, cellular, suture,
and overlapped components (Liu et al., 2017).

Metallic implant materials, including titanium (Ti) and its
alloys, stainless steel, Co-Cr alloys, and NiTi shape memory
alloys, are utilized commonly in cases in which high mechanical
properties are required. Among these metallic materials, Ti
attractedmuch attention because of its supreme biocompatibility,
excellent corrosion resistance, low density, good mechanical
properties, etc. (Rack and Qazi, 2006; Gode et al., 2015; Wang
et al., 2017a; Attarilar et al., 2019a,b, 2020). For the case of
Ti utilized in dental and orthopedic surgeries, the main goal
of functionalization is to improve the osseointegration of the
implant by surface engineering (Yang et al., 2006; Wang et al.,
2015; Zhu et al., 2016; Ding et al., 2019; Wang Q. et al.,
2020). Nowadays, additive manufacturing is also used in order
to mitigate the stress-shielding effect by the production of Ti
structures with gradation in pore size and shape from the surface
to the center of the part (Yuan et al., 2019). Metallic FGMs
have lots of applications as biomaterials utilized in various parts
of the body. Finite element analysis by Enab (2012) indicates
that the FGM tibia tray has superb biomechanical performance,
mitigating stress-shielding and shear stress issues. It is shown
that downward gradual elastic modulus variation of the tibia
tray from 40 to 110 GPa in the vertical direction reduces the
stresses. Also, the metallic FGMs have numerous applications in
orthopedic surgery (Sola et al., 2016) and dentistry (Senan and
Madfa, 2017). Metallic implants are very suitable to maintain the
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FIGURE 1 | Arzt heptahedron indicating the seven key features of biological systems in nature that synthetic biomaterials still cannot reach, including self-assembly,

multifunctionality, self-healing, the hierarchy of structure, evolution against environmental constraint, synthesis under T∼300K and P∼1 atm, and hydration. Natural

examples: (A) self-assembled peptide nanostructures with permission from Gazit (2007), (B) multifunctional butterfly wing with permission from Miyako et al. (2013),

(C) gecko tail regeneration with permission from Gecko Tail Regeneration (2011), (D) evolution in Timema stick insects with permission from Nosil et al. (2018), and (E)

hierarchical bone structure with permission from Wegst et al. (2015).

requirements for bone implant application, load-bearing parts,
and scaffolds, and this review paper especially focuses on the
materials utilized in dental and bone applications. Due to the
growing number of older populations in the world, the need
for de novo multifunctional implants grows rapidly day by day;
hence, this subject is of crucial importance and may open new
horizons in the aspect of metallic FGMs.

FGM MANUFACTURING METHODS

The manufacturing technique is of key importance to attain
high-quality FGMs with the desired gradation and properties;
therefore, numerous methods have been proposed and used so
far; each of which has its own pros and cons, and these methods
are listed in Figure 3. The FGM production techniques can be
categorized into four main processes: gas-based methods, liquid
phase (Chen et al., 2000), solid phase (Tripathy et al., 2018),
and additive manufacturing processes. Also, there are some
other methods, such as ion beam–assisted deposition. Recently,
additive manufacturing (AM) techniques have become a very
popular method for the production of FGMs because these
methods have the capability to manufacture complex porous
structures with even nanometric resolution (Zhang et al., 2019).
These AM techniques are among the best options for biomedical
and implant applications because they are fast and economic, and

most importantly, they can be precisely adjusted to meet patient-
specific needs, such as shape, dimension, and even texture of
the related live tissues (Javaid and Haleem, 2018; Culmone et al.,
2019).

Gas-Based Techniques
Chemical Vapor Deposition
One of the most common ways to produce FGMs is to
produce surface coatings and induce surface gradation. Gas-
based processes are among these coating-based methods, and
chemical vapor deposition (CVD) is a popular method in this
group. In the CVD method, various energy sources can be
used, including light, heat, and plasma, to deposit materials on
a surface. The used gases are usually in the form of hydride,
bromide, and chloride. The gradation of deposited material can
be tailored by temperature, gas ratio, gas type, flow rate, etc.
(Hirai, 1995). The beneficial aspects of the CVD method in
FGM fabrication are the potential to control the continuous
variation of the composition, its low-temperature condition, and
the resultant near-net designated shape of samples (Naebe and
Shirvanimoghaddam, 2016). In the CVD technique, a carbon
source in the gas phase and a kind of energy source (light,
plasma, or a resistively heated coil) is utilized to transfer energy
to a gaseous carbon molecule. In this process, hydrocarbons,
including methane, carbon monoxide, and acetylene, etc., are
used as carbon sources. These hydrocarbons flow in a quartz
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FIGURE 2 | The various kinds of FGM materials. (A) The categorization, (B) schematic representing the various kinds of structural and chemical gradients in FGMs

with permission from Li X. et al. (2020).

tube while heating in an oven (∼720◦C); a schematic of the
CVD technique can be found in Figure 4A. Due to energy
application, the hydrocarbon chains are broken, and this leads
to the production of pure carbon molecules; hence, the carbon
can diffuse toward the heated substrate that is coated with a
catalyst species (usually transition metals, such as Ni, Fe, or
Co), where it binds. The CVD process has several advantages,
such as low power input, lower temperature range, relatively

high purity, and most importantly, the possibility to scale up the
process (Endo et al., 1993). Liu et al. (2006) show the effectiveness
of the plasma-enhanced CVD process in the development of
an anticorrosion diamond-like carbon (DLC) FGM coating
deposition on a Nitinol (NiTi) substrate. The produced DLC
coating has a 150-nm-thick graded layer with excellent adhesivity
to the substrate and effective corrosion protection in simulated
body fluids.
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FIGURE 3 | Various technologies for the production of FGMs resulting in bulk samples, coating, or thin-film fabrication: gas-based technique, such as chemical vapor

deposition (CVD) (Choy, 2003); liquid-phase process (Faure et al., 2013); solid-phase process, such as spark-plasma-sintering (SPS) (Xie et al., 2011); additive

manufacturing, such as laser engineered net shaping (LENS) (Cong and Ning, 2017); and other methods, such as plasma-spraying process (Unabia et al., 2018).

FIGURE 4 | (A) The schematic representation of the chemical vapor deposition (CVD) method, including its various parts like an oven, quartz boat and tube, gas inlet,

and outlet sections. (B) The schematic representation of the physical vapor deposition (PVD) method with permission from Mishra et al. (2019).
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Physical Vapor Deposition
The gas-based physical vapor deposition (PVD) technique is
among the well-known approaches to produce various thin
films and coatings. In this process, the material transforms
from the condensed phase to a vapor phase and subsequently
rearranges to the condensed phase as a thin film or coating
on the substrate. Figure 4B shows a schematic of the PVD
device. The PVD method has numerous applications, including
optics, electronic, chemical, semiconductors, solar panels, food
packaging, TiN coatings in cutting tools, etc. The advantages
of the PVD process are its ability to produce various kinds of
coatings (organic and inorganic), environmentally friendliness,
and achieving durable coatings with favorable properties, but
unfortunately, it is operating under high temperatures and
vacuum conditions. The magnetron sputtering PVD systems can
be used to produce ion-substituted Ca-P-based coatings on the
surface of an implant, and these coatings, such as hydroxyapatite
(HA) show significant influence on cell interactions, including
cell proliferation, adhesion, and differentiation (Qadir et al.,
2019). The PVD method is a proper candidate to develop a
reproducible preparation of nano rough titanium thin films with
biological properties (Lüdecke et al., 2013). Also, a new kind of
gradient DLC coating is produced by the plasma source ion PVD
system, and it can have some applications on artificial mechanical
heart valves (Yin et al., 1999).

The plasma spray technique, as one of the PVD methods, can
be used to produce three-layered-FGM hydroxyapatite (HA)/Ti-
6Al-4V coatings with progressive variation of microhardness,
Young’s modulus, microstructure, and porosity between layers
(Khor et al., 2003). The excellent tensile adhesion strength of
these coatings, fracture toughness, microhardness, etc., of this
FGM makes it a suitable choice for biomedical applications. The
beneficial properties of compositionally graded doped (HA)/Ti-
6Al-4V FGM produced by the plasma spray technique are
also confirmed by Ke et al. (2019). Moreover, the in vitro
human experiments by osteoblast cell culture and tests against
E. coli and S. aureus bacterial species prove its superb biological
performance. This FGM shows favorable interfacial mechanical
and antibacterial properties (due to an MgO and Ag2O mixture
with HA) for possible use in load-bearing orthopedic and dental
implants (Ke et al., 2019).

Liquid Phase Processes
Electrophoretic Deposition
In the electrophoretic deposition (EPD) technique, a stable
colloidal suspension is used in which, due to the existence of
an electric field, the charged particles are moved and deposited
on a conductive substrate with the oppositely charged condition.
As observed in Figure 5A, the colloidal particles are randomly
dispersed and are able to move freely in the solvent suspension.
In Figure 5B, the surface of the particles are charged due to
electrochemical equilibrium, and in Figure 5C, the external
electrical field causes the preferential movement of charged
particles toward the oppositely charged electrode, which is the
substrate. Finally, in Figure 5D, the adsorbed charged particles
get some electrons and transform into the firmly deposited layer
of particles on the surface of the substrate (Amrollahi et al.,

2016). EPD has the potential to fabricate a variety of materials
from traditional to advanced materials from nanometric thin
films and coatings to a thick film, and from porous scaffold
parts to highly compact coatings and FGMs. In EPD, both AC
and DC electrical fields can be used, but DC is more common
(Amrollahi et al., 2016). This method has lots of advantages
with versatile application: some of its pros include simple
device and utilization, short processing time, economic, facile
modification, desirable dense packing of particles, high-quality
microstructure, fabrication of geometrically complicated shapes,
and simple control of the thickness and morphology (Sarkar
et al., 2012). Sun et al. (2009) utilize a cathodic EPD method
in order to fabricate multilayered HA-chitosan FGM coatings
with HA particles, and this method has the potential to produce
layers with different thicknesses ranging between 2 to 200µm.
The resultant composite chitosan-heparin layers can be used
for surface modification of HA-chitosan coatings and improving
blood compatibility.

Solid Phase Processes
Powder Metallurgy
Powder metallurgy (PM) is one of the well-known solid-phase
processes to produce FGMs in which a graded powder material is
mixed with a specific proportion stacked together in a continuous
manner or via step-by-step stages. Then, the stacked material
is compacted by pressing to achieve a dense condition, and
the resultant compact part is sintered in a specified range of
temperature to reach a 100% dense part (Madan and Bhowmick,
2020). Themost significant stages of the PM process, respectively,
are powder weighing, powder mixing, compaction, and sintering.
Compaction is usually performed under a controlled atmosphere
with low temperatures, and sintering should be done at a high
temperature range. To improve the quality of the PM part,
it is common to do some postprocessing, such as coining,
repressing, and resintering. PM methods are widely used in the
production of FGM parts, specifically ceramic FGMs. One of
the important advantages of these methods is their ability to
produce intricate and complicated shapes out of any metallic or
ceramic powders, and it is the best method to produce FGMs
out of solid constituents (Tripathy et al., 2017). Shahrjerdi et al.
(2011) produce metal-ceramic composite FGM by a pressur-
less sintering method using pure Ti and HA; the compositional
gradation was from the metallic (Ti) end to the ceramic (HA)
end. In order to optimize biocompatibility and mechanical
properties, Watari et al. (2004) fabricate a Ti/HA FGM by PM
method, and this specimen shows the better maturation of freshly
formed bone cells in the HA-rich region than the Ti-rich zone.
The produced graded structure causes proper osteogenesis and
mechanical and stress relaxation properties. Overall, these studies
indicate that FGM fabrication and the resultant gradation affect
the tissue reaction in a graded manner; hence, it is possible to
tailor the biological response of tissues by the development of
FGM biomaterials.

Spark Plasma Sintering
The spark plasma sintering (SPS) method is a compressive,
solid-state method in which a pulsed electric current energizing
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FIGURE 5 | The schematic of four stages of the electrophoretic deposition (EPD) technique: (A) colloidal particle dispersion, (B) charged particles due to

electrochemical interactions, (C) electrophoresis, and (D) deposition of a firm layer of particles on the substrate.

sintering is used (Tokita, 2010) and can be efficiently utilized to
produce FGM parts. Kondo et al. (2004) use the SPS method
to fabricate titanium nitride/apatite functionally graded implants
with acceptable mechanical properties and new bone formation
around the femur of a rat model. In the SPS method, electric
current is utilized in the densification step, in which a pulsed DC
current is directly transferred to a graphite die and the powder
compact; this process is schematically shown in Figure 6. In
the SPS method, the compact part is heated internally; hence,
high heating rates (∼1,000 K/min) are possible, and also, it
leads to a very fast sintering process (a few minutes). The
characteristics of this method include short holding times, fast
heating, fast cooling, and the potential to achieve completely
dense parts at relatively low temperatures. Using the SPS
method in the fabrication of HAp/zirconia composites with
biomedical applications helps to inhibit undesirable chemical
reactions that lead to reduction in the biocompatibility and
mechanical properties of the part. The SPS process with a proper
temperature range and high pressing loads ensures the proper
characteristics of HA ceramic composites without the accuracy
of decomposition reactions; hence, the resultant HAp/zirconia
composites are five to seven times stronger and seven times
tougher with the suitable biological response (Shen et al., 2001).

Additive Manufacturing Methods
Additive manufacturing (AM) technologies, also known as 3-D
printing methods, are among the most recent FGM fabrication
procedures (Zhang B. et al., 2016), and some of them are shown
in Figure 7. They have the potential to fabricate very complex
and intricate porous parts with high resolution. They are simple
and direct methods that do not need any dies, tooling, joining,
sintering, or assembling steps. AM technology has numerous
advantages and is a unique procedure to produce different
structural and industrial parts. In particular, it has a big impact
on the biomedical field. Some of its advantages that can be
mentioned are its economic nature, ability to mass produce,
potential to produce very complex parts, repeatability, shorter
time to market, ability to use various materials (organic or
inorganic), etc. (Attaran, 2017). One of the significant benefits of
3-D printing technology is the possibility to use a computer-aided
design (CAD) technique that enables fabricating completely
patient-specific implants (Jardini et al., 2014; Mobbs et al.,

FIGURE 6 | The schematic of spark plasma sintering.

2017). During AM processing, first, the 3-D CAD model is
converted to a printable digital files (such as.STL files), and
then the processed data are grouped as thin, 2-D slices using
slicing software. Subsequently, the developed slices are fed to
the 3-D printer device to build the final parts in a layer-by-
layer manner (Zhang L. et al., 2016). There are numerous AM
methods, each of which has its benefits and limitations. The
most important methods in the fabrication of metallic FGM
structures are selective laser melting (SLM) and electron beam
melting (EBM) methods, and more information about the AM
methods can be found in (Bikas et al., 2016; Awad et al., 2018;
Ngo et al., 2018). AM manufacturing techniques have a sizeable
impact on the biomedical field. Table 1 summarizes some of the
studies that have been done on the biomedical application of
AM-manufactured FGMs.

Selective Laser Melting (SLM) and Electron Beam

Melting (EBM)
The SLM method, also known as direct metal laser melting
(DMLM) or laser powder bed fusion (LPBF), is among the most
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FIGURE 7 | Schematic representation of some additive manufacturing methods with permission from Yan et al. (2020).

famous rapid prototyping techniques, and it uses a high power-
density laser tomelt and fusemetallic powders together. The SLM
process has several successive steps from digital data preparation
to the ejection of the produced part from the building platform.
At the first step, stereolithography (.STL) files are utilized to
generate the slice data for each layer, and then the CAD data are
transferred to the SLM machine. Initially, the first thin layer of
metal powder lies on a tray, and then a laser beam with a high
energy-density beam melts and fuses the preferred regions of the
powder layer according to the CAD data. After that, the building
platform is lowered, and the next layer of powder is deposited
on the previous layer. Then, the laser beam begins to scan a new
layer. This cycle is repeated numerous times until the 3-D part
is completely produced. Finally, the completed 3-D part can be
removed from the platform manually or by special devices, and
also, the loose powder is removed from the surface of the part
(Yap et al., 2015). The SLM process has numerous benefits that
make it one of the most used 3-D printing methods, including
the short time to market-, no restriction in geometry and ability
to produce very complex and porous parts, relatively low cost, no
need for assembly steps, etc. (Yap et al., 2015).

The SLM technique is able to produce complex porous FGM
scaffolds; for example, the gradient porosity variation strategy

is suitable for orthopedic implants to mimic the natural bone
structure. Xiong et al. (2020) studied the production of porous
Ti6Al4V FGM parts for orthopedic applications by utilization
of the SLM method. The gradient porous cellular structures
have two kinds of unit cells (honeycomb and diamond-like
unit cells). The porosity of samples was in the range of 52–
67% with the approximate pore size between 420 and 630µm,
and then the mechanical and physical properties as well as
their deformation behavior was studied. The resultant Young’s
modulus was comparable with the cortical bone (Xiong et al.,
2020). In another study, Onal et al. (2018) use the SLM technique
to produce Ti6Al4V porous scaffolds with three strut diameters
(0.4, 0.6, and 0.8mm), two gradations (dense-in, dense-out),
and BCC structure. The obtained mechanical properties of all
designed scaffolds fall in the cortical bone range. Also, the results
indicate that dense-in scaffolds with small pores located in the
core region and large pores on the outer surface are the best
condition for load-bearing implants (Onal et al., 2018).

The EBM method is one of the famous layer-by-layer
techniques. It has great potential in the fabrication of high-
resolution metallic components (Chern et al., 2020; Tan et al.,
2020) and the near net shape parts with intricate geometries
(Wang et al., 2016). The process begins with the selective
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TABLE 1 | The application and the biological and mechanical properties of mostly AM-fabricated metallic FGMs.

Method Material Mechanical properties Biological properties Application References

SLM Ti6Al4V Young’s modulus in the range of cortical bone.

The highest strength and toughness in

honeycomb structures with supporting

structure in the outer layer.

– Orthopedic Xiong et al., 2020

SLM Ti6Al4V Mechanical properties in the range of cortical

bone. Small pores with ∼900µm in core

regions increase mechanical strength.

Large pores, about 1,100µm in the

outer surface, enhances cell

penetration and proliferation.

Load-bearing implants Onal et al., 2018

SLM Ti6Al4V The variation in unit cell orientation affects the

mechanical properties; this change is a function

of the geometrical dimension of the unit cell

size. There is a functional relationship between

elastic modulus and compressive strength.

– Bone implant Weißmann et al., 2016

SLM Ti6Al4V AM-produced porous FGM can decrease the

elastic modulus up to 80% and enhance the

biomechanical performance.

– Bone scaffolds and

orthopedic implants

Wang et al., 2017b

SLM Ti6Al4V Porosity variation strategy (diamond lattice

structures) results in an elastic modulus of

3.7–5.7 GPa and yield strength of 27.1–84.7

MPa, which lie in the range of the

corresponding mechanical properties of

cancellous bone and cortical bone.

– Bone scaffolds Zhang X.-Y. et al., 2018

SLM Pure Ti Diamond porous FGM scaffold production with

a good geometric reproduction, possessing a

wide range of graded volume fraction. The

elastic modulus is comparable to cancellous

bone and can be tailored by tuning the graded

volume fraction.

– Bone implant Han et al., 2018a

SLM CoCr Pillar-octahedral-shape CoCr cellular structures

with a porosity range of 41–67% indicate

stiffness, strength, and energy absorption

values that are similar to natural bone.

– Metallic orthopedic

implants

Limmahakhun et al., 2017

SLM CoCrMo FGM design (square pore cellular structures)

decrease the stiffness and weight up to 48%

compared to the traditional fully dense stem.

– Femoral stem implant Hazlehurst et al., 2014a

SLM CoCrMo FGM structure (square pore) reduced the

stress-shielding effect without compromising

the bone strength. The most effective design is

the full porous stems with an axially graded

stiffness.

– Hip implant Hazlehurst et al., 2014b

EBM Ti6Al4V The deformation response of graded meshes is

the weighted percentage of stress-strain

response of each uniform mesh constituent. By

tailoring the relative density and volume

fraction, the graded meshes can achieve high

strength and energy absorption values.

– Implants that can

withstand abrupt

impact fractures.

Li et al., 2016

EBM Ti6Al4V – AM manufactured interconnected

gradient porous architecture

enhances cellular functions, including

adhesion, proliferation, mineralization,

and synthesis of actin and vinculin

proteins.

Medication of

segmental bone

defects and bone

remodeling

Nune et al., 2016

EBM Ti6Al4V Aimed to inhibit the stress-shielding effect by

decreasing the elastic modulus mismatch

between the bone tissue and titanium alloy

implant.

3-D printed interconnected porous

FGM is conducive to osteoblast cell

functions, including proliferation,

adhesion, calcium deposition, and

synthesis of proteins, such as actin,

vinculin, and fibronectin.

Bone implants Nune et al., 2017

EBM Ti6Al4V The weighted average gradient porosities of

65–21% show high compressive strength and

hardness and suitable elastic modulus for bone

implant application.

– Treatment of segmental

bone defect

Surmeneva et al., 2017

(Continued)
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TABLE 1 | Continued

Method Material Mechanical properties Biological properties Application References

EBM Ti6Al4V Regular diamond lattice indicates suitable

compression strength and elastic modulus to

implant application. Uniaxial compression

behavior along the direction of gradation can

be well-predicted by a simple rule of mixtures

approach.

– Orthopedic implant

applications

van Grunsven et al., 2014

EBM Ti6Al4V Periodic cellular structures with a 49%−70%

porosity range with mechanical properties

(effective stiffness, compressive strength

values) suitable for loading conditions.

– Hip and mandible

implants

Parthasarathy et al., 2011

EBM Ti6Al4V The porous FGM (open-cell cubic structure)

has a compressive strength with a transition

region between 4 and 8mm and is superior to

a sharp interface.

– Biomedical implants Wu et al., 2018

SLM 316L stainless

steel

High density of subgrain boundaries and

dislocations is responsible for good plasticity,

and the considerable number of voids induces

premature instability and fracture.

Higher biocompatibility and good

biological performance.

Medical implant

applications.

Kong et al., 2018

Laser

metal

deposition

Stainless steel,

HS6-5-2

Low porosity and no delamination occurrence

were seen. According to microhardness tests,

gradient materials sintered in the N2-10% H2

atmosphere and reinforced with the VC carbide

have the maximum hardness.

– Possible biomedical

application.

Matula and Dobrzański,

2006

Laser

cladding

Dissimilar

stainless steel

(SS)-zirconium

(Zr)

Functionally graded deposition in dissimilar

materials resulted in production of disintegrated

structure and numerous longitudinal and

horizontal cracks. Possibly micro-cracks are

the result of large thermal stress build-up

during the layer-by-layer AM process.

– – Khodabakhshi et al., 2019

melting of discrete powder layers via an electron-beam gun under
the vacuum condition, and this melting stage is accomplished
by the energy emission via the electron beam of a tungsten
filament, which can be effectively controlled by two magnetic
coils (Galarraga et al., 2016). In the EBM process, each slice
is separated into two prescribed zones, including contours and
squares. Initially, the contour zone known as an interface between
the sample and the surrounding powders is 3-D printed. After
that, the square zone acting as the inner zone between these
boundary and contour zones is 3-D printed by EBM. One of
the advantages of EBM is the use of a vacuum chamber that
restrains any impurity and contamination accumulation and
leads to the fabrication of high-quality specimens possessing
good mechanical properties (Wang et al., 2018; Wang P. et al.,
2020).

A multiple-layered, gradient cellular Ti6Al4V scaffold was
produced by the EBM technique, and the mechanical properties
were studied by uniaxial compression testing (Surmeneva et al.,
2017). Five types of structures with various designs (two layers,
three-layered structures, BCC and diamond-like structures with
different unit cell sizes) and with weighted average gradient
porosities of 65–21% resulted in compressive strength and
Young’s modulus in the range of 31–212 MPa and 0.9–3.6 GPa,
respectively. Also, the results indicate that the lattice cell design
significantly affects the failure mechanism. Nune et al. (2017)
investigate the biological response of osteoblasts to Ti-6Al-4V

FGM mesh arrays fabricated by the EBM method. The gradient
structure is composed of different unit cells from G1 to G3
(rhombic dodecahedrons) because it is reported that these types
of unit cells havemore production flexibility (Li et al., 2014). They
are shown in Figure 8A. The CAD models of unit cells ranging
from G1 to G3 with 36, 30, and 23 α angles with respective pore
sizes of about 600, 400, and 200µm are shown in Figure 8B.
Also, the scanning electron micrographs (SEM) of these gradient
mesh structures are, respectively, shown in Figure 8E. It is
worth mentioning that the strut thickness was fixed at∼500µm.
Figure 8C shows a histogram of the normalized expression
level of proteins (actin, vinculin, and fibronectin). There is not
any significant difference in the normalized expression level of
fibronectin protein on the struts of the FGM with respect to
different regions, but overall, the cellular structure is conducive
to the synthesis of proteins. In addition, the cell proliferation
histogram in Figure 8D shows that the proliferation of osteoblast
cells repeatedly increased with time such that the proliferation
rate was about 47%/day on the seventh day. The G1 to G3 regions
of FGM demonstrated substantial variations in the distribution
of cell nuclei (Figure 8F), and it declined from G1 to G3 with
higher density on G1. This reduction in the distribution of nuclei
can be related to the topography of the strut surface. In general,
this EBM-produced FGM improved the osteoblasts response,
including protein synthesis, cell adhesion, proliferation, and
calcium deposition (Nune et al., 2017).
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FIGURE 8 | Biological response of osteoblasts to Ti-6Al-4V FGM mesh arrays with permission from Nune et al. (2017): (A) micrograph of gradient mesh structure with

2-D CAD design of a gradient mesh structure with unit cells ranging from G1 to G3, (B) CAD models of G1 to G3 unit cells with 36, 30, and 23 angles of α with

respective pore sizes of ∼600, 400, and 200µm, (C) normalized expression level of proteins (actin, vinculin, and fibronectin) histogram, (D) cell proliferation histogram,

(E) scanning electron micrographs of gradient cellular structure, and (F) high magnification fluorescence micrographs illustrating the distribution of extracellular

fibronectin (green), DAPI stained nucleus (blue) on pre-osteoblasts seeded on FGMs with pore size ranging from ∼600 to ∼200µm after 14 days of culture. *The

significant difference with 95% confidence level (p < 0.05).

THE FUNCTIONAL DESIGN OF FGMS IN
BIOMEDICAL APPLICATIONS

Metallic implants are usually designed to serve as load-bearing
implants and are not aimed at being temporary used. They
usually have a permanent nature except for some magnesium-
based ones for specific applications in which the corrosion
rate is of significant importance. Although they have excellent
mechanical strength and uniaxial tensile and compression
strength, the metallic implants have one major limitation because
of their Young’s modulus, which is much larger than natural
human bone and leads to stress shielding issues and early failure
of the implant. The cortical bone has a Young’s modulus value
between 5 and 23 GPa, and these values are, respectively, about
114, 190, 45, 44, and 120 for Ti-6Al-4V, 316L stainless steel, pure
Mg, WE43Mg alloy, and pure Ti (Haghshenas, 2017). Because
of this big difference, the FGM design in metallic implants aim
to solve this issue. Satisfactorily good mechanical gradation can
be achieved by FGM design and controlling the related variants.
Also, by smart hierarchical surface design and fabrication of
biomechanical and chemical bonding in surface layers of FGMs,
the bone cells can attach and differentiate easily on them and
facilitate the treatment procedure (Liu et al., 2017; Bahraminasab

and Edwards, 2019; Bai et al., 2019). This kind of gradation is
also seen in natural systems and can lead to variations in the
mechanical properties of the part; one of the good examples is
the bone shown in Figure 1E that can be used in load-bearing
applications (Wegst et al., 2015). There are lots of examples
in nature, including fish scales and shark teeth, where their
unique structure can resist contact and impact forces (Chen et al.,
2012). This concept can be used in metallic parts in order to
enhance mechanical strength against contact deformation and
damage (Suresh, 2001), cracking (Bao and Wang, 1995), and
improvement of other mechanical properties (Islam et al., 2020).
Sedighi et al. (2017) produce a five-layered Ti/HA composite
FGM for dental implant applications. In this study, Ti and HA
powders were mixed with different Ti-to-HA ratios (100, 90:10,
80:20, 70:30, and 60:40), and then samples were sintered by the
SPSmethod, the results confirm the gradedmicrohardness values
and microstructure differences. Also, some other researchers
studied the effect of these gradual changes using AM methods
(Lima et al., 2017; Han et al., 2018b).

FGM Dental Implants
The primary idea behind the utilization of FGMs in dental
implants is that the characteristics of the implant can be
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accurately designed and adjusted to ensure the complete
mimicking of the periphery bone tissue and provide the
biomechanical necessities according to a specific region of the
host bone. Hence, the utilization of FGM dental implants is
very beneficial and can enhance integration and implant stability
(Lin et al., 2009a). The main advantages of using FGM parts
in dental applications are reducing the stress-shielding effect
(Hedia, 2005), improving biocompatibility (Watari et al., 2004),
inhibition of thermal-mechanical failure (Wang et al., 2007), and
providing biomechanical requirements (Yang and Xiang, 2007).
Moreover, these modern FGM implants can help to solve the
mechanical properties’ mismatch issues between implants and
native biomaterials, and this is an important problem because
it can reduce osseointegration and bone remodeling. In FGM
dental implant applications, usually a cylindrical shape is utilized
in which the composition varies in the axial direction (Mehrali
et al., 2013). The FGM dental implants are designed with varied
properties in a certain pattern to match the biomechanical
characteristics in a specified region (Lin et al., 2009b). These
FGMs are usually composed of collagen HA and Ti as it is
known that collagen HA is a key constituent of human bones
and other related tissues, and this material can enhance the
biocompatibility (Watari et al., 2004). Lin et al. (2009b) studied
the effect of FGM design on bone remodeling in a computational
remodeling scheme [finite element modeling (FEM)]. In this
study, 8 FE models were used, seven of them with varying m
values (m = 10, 8, 5, 2, 1, 0.5, and 0.1) plus a model of full Ti
for comparison. The m value indicates the ratio in the volumetric
fraction of the Ti to HAP/Col compositions, m = 10 shows the
richest content of Ti, and m = 0.1 indicates the highest ratio of
collagen HAP. Figure 9 shows the results of this investigation. It
clearly indicates that reducing the FGM gradient leads to better
bone remodeling performance, but unfortunately, the low m
values at the same time can reduce the stiffness of implantation. It
is suggested that this problem can be solved by a multi-objective
optimization scheme.

Yang and Xiang (2007) investigate a biomechanical response
of a dental FGM implant under static and harmonic occlusal
forces by the 3-D FEM concept. The implant material was
a combination of a bioceramic and a biometal with a
smooth composition and properties gradient in the longitudinal
direction. In this study, the interaction of the implant and the
periphery bone tissues was studied. The samples were produced
by the dry method and electric furnace heating (similar to
Watari et al., 1998), and varied ratios of Ti to HAP were
used (composition varying between pure Ti to 100% HAP) in
the longitudinal direction. The dental implant, along with the
supporting bone system, is shown in Figure 10A, and other
properties of the implant can be seen in Figures 10B–F. The
occlusal forces are directly applied to the upper part of the
abutment, and then it is directed down to the implant by the
screw connection. These occlusal forces mostly are supported
by the cortical bone; the large volume percentage of Ti in the
upper region of the implant and higher HAP amount in the
lower region is favorable because it maintains a satisfactory load-
bearing capacity, and also, it can effectively reduce the material
mismatch between the implant and the surrounding bone tissues.

Figures 10G–J illustrates the von-Mises stress and displacement
distributions in FGM under various conditions and confirms
that produced stresses are much lower in the middle and lower
regions of the implant. Moreover, in Figure 10K, the maximum
Von-Mises stress values at various osseointegration phases (zones
A = initial, B = mid, and C = complete osseointegration) are
compared, and the maximum stresses decrease by increasing the
Young’s modulus, and the osseointegration condition improves.
The condition of the surrounding bone system largely affects the
natural frequencies, the variations of frequencies upon the elastic
modulus can be used to analyze dental implant performance
and its osseointegration. Figure 10L shows that the fundamental
frequency considerably enhanced in improved osseointegration
conditions. Overall, this study suggests that the utilization of
the FGM scheme is a very beneficial procedure for improving
the biomechanical response of dental implants (Yang and Xiang,
2007).

The FGM surface coatings can also be used to improve
dental implant function (He and Swain, 2009; He et al., 2014),
Aldousari et al. (2018) compare three various dental implant
models, including (1) a homogenous dental implant with a
homogenous coating, (2) a homogenous dental implant with
an FGM coating, and (3) a functionally graded implant with a
homogenous coating material. It is seen that the third model
with the FGM structure and homogenous coating is the most
suitable to reduce the stress-shielding effect. Also, the porous
FGMs can be used in orthodontic or maxillofacial implants
(Becker and Bolton, 1997; Suk et al., 2003). In this regard, Becker
et al. (1995) studied various porous biomedical alloys, including
316L stainless-steel, Co-29Cr-6Mo alloy, and Ti-6Al-4V alloy,
and confirmed their possible use. Subsequently, Oh et al. (2007)
investigated the effect of various pore size in both in vitro and in
vivo biological experiments and showed that the optimum pore
size range for fibroblast ingrowth is 5–15µm, for chondrocyte
ingrowth is about 70–120µm, and for bone regeneration is
in the range of 100–400µm. There are lots of investigations
about the porous FGMs. Matsuno et al. (1998) studied the
laminated HA/Zr composite with the gradient composition, and
its promising properties, such as osteoconductivity and high
mechanical strength, show its potential for use in dental and
orthopedic implants. Another successful porous FGM Ti dental
implant was produced by Traini et al. (2008) via direct laser
metal sintering with satisfactorily elastic properties, minimum
stress shielding effects, and improved long-term performance.
Additionally, there are lots of finite element modeling about
FGM dental implants showing the effectiveness of the FGM
concept in reduction of stresses in periphery tissues (Sadollah and
Bahreininejad, 2011; Ichim et al., 2016).

FGM Orthopedic Implants
Bone tissue is a popular natural FGM structure; hence, it seems
very rational to use FGM parts in the treatment of various
bone-related issues, such as orthopedic implants. In this regard,
biomimetic FGM designs seems to be a prospective solution
for implant applications (Boughton et al., 2006, 2013). One
example is the BioFITM arthroplasty design, which emulates
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FIGURE 9 | Variation of FGM properties in accordance with FGM characteristics: (A) Young’s modulus, (B) peri-implant bone remodeling against cancellous bone

density, and (C) peri-implant bone remodeling against cortical neck density with permission from Lin et al. (2009b).

FIGURE 10 | The biomechanical response of three-dimensional FEM designed FGM dental implant in the surrounding bone with permission from Yang and Xiang

(2007): (A) FGM dental implant to bone condition, (B) longitudinal fluctuations in material properties of FGM implant, (C) FGM configuration, (D) the thread details, (E)

the implant-bone system, (F) FGM implant; the von-Mises stress and displacement distributions in FGM under various conditions: (G) vertical occlusal force, (H)

inclined occlusal force, (I) vertical occlusal force, (J) inclined occlusal force. Influence of elastic modulus of the peri-implant bones (K) on maximum Von-Mises

stresses and (L) on the FGM fundamental frequency.

bone characteristics of vertebral bone; it successfully mimics the
connective intervertebral disk function (Boughton et al., 2010).

AM technologies have a great potential to fabricate various
orthopedic implants from lattice structures and FGMs
(Mahmoud and Elbestawi, 2017). The FGM parts can be

designed in order to exactly mimic the features of the desired
region and maintain the necessities, such as inhibition of
the stress-shielding effect and preventing the harmful shear
stresses that may be produced in the bone-implant interface
regions. There are numerous studies about FGM orthopedic
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implants, but this review briefly discusses metallic orthopedic
FGM implants. Batin and Popa (2011) fabricates a Ti/HA-based
implant by powder metallurgy with compositional changes
in various layers. It is concluded that, by increasing the HA
content, the elastic modulus and compressive strength show the
decreasing trend. Akmal et al. (2016) investigate the bioactivity
and electrochemical properties of various FGMs produced from
stainless steel 316L (SS) reinforced with HA by the powder
metallurgy technique. The HA concentration was varied between
0 and 20 wt.% with 5 wt.% increments in each layer; a montage
micrograph of successive layers of the mix-FGM in the unetched
condition is shown in Figure 11a, and it can be seen that HA has
a homogenous distribution in various layers of mix-FGM. Also,
an increasing trend of HA from the top to bottom layers is clear,
and there is not any crack formation inside the layers or even
at the interfaces. To further analyze the interlocking between
the matrix and the reinforcement phases, the cross-section of
mix-FGM was etched, and its montage micrograph is shown in
Figure 11b. The grayish phase demonstrates the SS matrix, and
the dull phases are the discontinuous HA phase. Moreover, the
microstructure shows the existence of pores, and the porosity
has an increasing manner, and grain size reduces in HA content
increments. This means that HA content can hinder grain
growth by the pinning effect. The electrochemical observations
confirm the great performance of these FGMs against corrosion
attack in 0.9% NaCl solution.

As discussed earlier, AM manufacturing has a great impact
on the biomedical implant industry, and this is also true of
orthopedic implants. Lots of new concepts have been introduced.
Xiong et al. (2020) investigate the mechanical properties of SLM-
produced Ti6Al4V FGMs with orthopedic implant applications.
The rational design in which a radial gradient porous architecture
with the potential to mimic the gradient structure of bone is
proposed and can be seen in Figure 12. The SLM-produced
samples have a linear varying porosity along the radial direction
with two porous regions. A high-porosity region is similar to
cancellous bone in the inside part for maintaining favorable
regeneration and growth of cells and a low-porosity region is
similar to cortical bone in the outer areas of the implant with
a high load-bearing potential. This design leads to mechanical
properties (Young’s modulus and yield strength) in the range
of natural human bone. It is confirmed that the addition of
structural support can substantially improve its compressive
strength and toughness along with the preservation of the
appropriate elastic modulus. It can also improve the stability of
the scaffold and maintain solid energy absorption ability (Xiong
et al., 2020). Overall, AMmethods are among the best candidates
for FGM production in the biomedical field.

The mechanical property gradation (Young’s modulus and
hardness) was developed by Jung et al. (2009) via local heating
of a groove rolled (Ti-35%Nb)-4%Sn rod for artificial hip joint
application with high strength value at one side and low Young’s
modulus at the other side; this design can be used for novel
orthopedic implants. Hedia et al. (2014) design a cemented stem
scheme through an FGM concept, and the result is that the most
optimized approach is to use a cemented stem with gradation of
Ti and collagen in which the upper stem layer is from Ti and the
lower stem layer is composed of collagen. This novel cemented

stem design has the potential to eliminate the stress-shielding
issue, especially at the nearby medial femoral region.

METALLIC FGMs FOR BIOMEDICAL
APPLICATIONS

In previous sections, the importance and many applications of
FGM Ti alloys are discussed, especially the AM manufactured
ones. This section aims to analyze other types of FGM
manufacturing methods in various metallic and multi-metallic
systems. Metal and metal–ceramic composites are one of the
most important classes of metallic FGMs, and most of them are
designed especially for biomedical applications (Mortensen and
Suresh, 1995; Suresh and Mortensen, 1997; Petit et al., 2018). In
one study (Matuła et al., 2020), gradient porosities were produced
by the powder metallurgy method on titanium/zirconium
samples for biomedical applications, and this is shown in
Figure 13. It is observed that the sintering process led to
fabrication of a non-stoichiometric Zr (Ti) phase due to diffusion
along the transition area. Also, gradual microstructural changes
are seen in the transition zones, which lead to improved
microhardness values. Moreover, the Rietveld refinement results
confirm that pressure application during cold isostatic pressing
had no significant influence on the unit cells.

Wilson et al. (2013) fabricate a functionally gradient bio-
coating containing Co-Cr-Mo material (0–100%) on Ti-6Al-
4V substrate via laser deposition (Figure 14A). Also, the SEM
images of gradient Ti-6Al-4V/Co-Cr-Mo composite structure
is shown in Figures 14B–G. This FGM material is aimed
at reducing the influence of thermal expansion differences
between two biomaterials through insolation cover. The
results show the successful formation of a composite with
excellent microscopic integrity without gross crack formation
(Figure 14H) and favorable bonding strength between Co-
Cr-Mo-alloy coatings and Ti-6Al-4V substrates. The gradual
microhardness improvement by more than 83% was seen from
Ti-6Al-4V substrate to the 50:50 composition layer. The average
bonding strength was about 63.4 MPa; it was seen that the
particles of Co-Cr-Mo coating were removed from the Ti-6Al-
4V substrate through the adhesive mechanism. Also, the tensile
strength was about 34.5 MPa and was much greater than the
required minimum coating strength according to the ASTM
standards. Overall, functionally gradient Ti-6Al-4V/Co-Cr-Mo
material has a great potential to reduce the effects of thermal
expansion differences between two biomaterials and, according
to favorable microhardness, tensile, bonding strength, and
biocompatibility, can be considered as a good FGM candidate for
biomedical applications.

One of the approaches to produce various metallic FGMs is
sedimentation and flotation because gravity is a phenomenon
that is active everywhere on the earth. By exploiting this method,
particles with varied size, density, and mass can move differently
in liquid metals and alloys, leading to formation of graded
structures, and this can be done by thermal controlling of die
cooling (Drenchev et al., 2002). It is believed that sedimentation
and flotation is one of the best available concepts to fabricate
large-scale FGMs with very smooth and gradual variations in

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 14 January 2021 | Volume 8 | Article 616845144

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Shi et al. Functional Gradient Metallic Biomaterials

FIGURE 11 | (a) A montage micrograph without etching condition of mix-FGMs and (b) Montage image after etching with permission from Akmal et al. (2016).

FIGURE 12 | AM manufactured and rationally designed porous Ti6Al4V FGM scaffolds for orthopedic implant applications with permission from Xiong et al. (2020).

composition and microstructure. Yu et al. (2003) produce a sort
ofW–Mo–Ti FGMwith density gradients via a co-sedimentation
method, and the samples were deposited after layer-by-layer
settlement of the corresponding powders. First, the pure Ti layer
is settled; second, the Ti–Mo graded layer; third, the Mo–W
graded layer, and finally, the pure W layer has been settled. Also,
a minor amount of Ni and Cu powders were used as sintering
activators. After powder treatment, a set of suspensions was
prepared and poured successively into a sedimentation container.
After attaining full particle sedimentation, the deposit body
compacted and sintered at 1,200◦C under a pressure of 30 MPa
in a vacuum furnace; Figure 15 shows the electron micrograph
and linear distributions of elements along the cross-section of
W–Mo–Ti FGM.

The structural, physical, and mechanical properties of
stainless steel (SS-316L)/HA and SS-316L/calcium silicate (CS)
FGMs that were produced by powder metallurgical solid-
state sintering were studied by Ataollahi et al. (2015). It is
shown that high-temperature sintering led to the reaction
between compounds of the SS-316L and HA although it has
no considerable effect in the SS-316L/CS composite. Uniaxial
compressive mechanical experiments show sharp reduction
in SS-316L/HA with increasing HA content up to 20 wt.%
and gradual variations in SS-316L/CS composites with CS
content up to 50 wt.%. Also, the mechanical properties of SS-
316L/HA FGM decreased with temperature increment although
it showed improvement for the case of SS-316L/CS FGM.
It is concluded that the SS-316L/CS composites and their
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FIGURE 13 | (A) The SEM micrographs of initial powders and photo of the sample, including various zones across the sample; (B) the SEM micrographs of various

zones: (a–c) Ti/Zr(–) produced under the pressure of 500 MPa; and (d–f) Ti/Zr(+) that was produced under 1,000 MPa pressure, reproduced with permission of

(Matuła et al., 2020).

FIGURE 14 | (A) The experimental setup of laser deposition, including the insulation cover and the composition of five-layer functional gradient of Ti-6Al-4V/Co-Cr-Mo

samples; (B–G) Corresponding SEM images of gradient Ti-6Al-4V/Co-Cr-Mo composite structure 1000×, (B) 10 wt.%, (C) ∼20 wt.%, (D) ∼30 wt.%, (E) ∼35 wt.%,

and (F) ∼40 wt.% Co-Cr-Mo material, (G) the interface zone between 50/50 wt.% Ti-6Al-4V/Co-Cr-Mo and 100 wt.% Co-Cr-Mo; (H) Cross-section of the sample

showing the Co-Cr-Mo gradient coating and some crack and pore formation on Ti-6Al-4V with up to 100% coating on the top layer; images were reproduced from

Wilson et al. (2013) with permission.
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FIGURE 15 | The electron micrograph and linear distributions of elements along the cross-section of W–Mo–Ti FGM with permission from Yu et al. (2003).

FGMs have much better compressive mechanical properties
compared to the SS-316L/HA composites and their FGMs.
Moreover, the SS-316L/CS FGMs with better mechanical and
enhanced gradation in physical and structural properties are
among the suitable candidates for potential use in the load-
bearing application (Ataollahi et al., 2015). A novel FGM by
introduction of aluminum oxide and an yttria stabilized zirconia
(YSZ) cushion layer was produced via the SPS process for
potential bone implant applications (Afzal et al., 2012). The
main goal of this FGM design was to attain a smooth gradation
of functionality, including improved toughness of the bulk,
and retained biocompatibility of the surface. In this regard,
HA and YSZ with, respectively, ∼1.5 and ∼6.2 MPa.m1/2

fracture toughness were attached to a transition layer of Al2O3,
inducing the minimum gradient of mechanical properties with
fracture toughness of ∼3.5 MPa.m1/2 (Figure 16). Measurement
of hardness, fracture toughness, and cellular activities across
the FGM cross-section illustrates the successful achievement to
smooth transition in the HAp-Al2O3-YSZ FGM composite. Also,
L929 fibroblast and Saos-2 osteoblast cell culturing showed the
promising cell proliferation and adhesion on the FGM surface.
It seems that this HAp-Al2O3-YSZ FGM has favorable properties
for its possible utilization in bone implants.

Another interesting study (Attarilar et al., 2019b), uses the
grain size variation concept to fabricate pure Ti FGM material
for biomedical applications with enhanced mechanical and
biocompatibility properties. For this aim, a combined severe
plastic deformation method was used. First, an ultrafine-grained
(UFG) structure in the bulk of a material was produced by
equal channel angular pressing (ECAP) in order to strengthen
the bulk. Subsequently, the surface of the material reached a
nanosized (NS) microstructure via surface mechanical attrition
treatment (SMAT) (Figure 17). The surface nanostructures
were considerably beneficial because they enhanced roughness,
wettability, and TiO2 oxide formation and led to better
biomechanical bonding of cells and, finally, improved biological
response. Moreover, nanoindentation experiments showed the
gradual microhardness improvement values from the UFG

substrate to the NS surface layer, and the osteosarcoma G292
cell culturing confirmed the improved biological response
through cell viability, alkaline phosphatase (ALP) activity, and
cell attachment experiments (Attarilar et al., 2019b). A very
interesting aspect of this research is that the successful FGM
structure was achieved without the need to create composites
and additional materials, so the bonding and separation issues
encountered between different layers was completely mitigated.

A magnesium-based FGM composite for temporary
orthopedic implant applications was produced by the SPS
method due to its exceptional biodegradation behavior and
mechanical characteristics similar to natural bone, which reduces
the unfavorable stress-shielding effect (Dubey et al., 2020). The
major drawback of Mg is its high in vivo corrosion rate, so the
Mg-HA FGM production aimed to overcome this limitation. The
FGM consisted of Mg at the core area with gradual increments of
HA toward the outer layers (Figure 18). It is confirmed that this
FGM has the potential to successfully attain a high corrosion-
resistant property (about 154% improvement) in the surface
along with uniform mechanical integrity distribution across
the FGM structure. Moreover, it improved biocompatibility,
osteoconductivity, and excellent osteogenic differentiation
confirmed by MG63 cell culturing (Dubey et al., 2020). It
seems that utilization of Mg-based FGM is a promising
candidate with favorable properties for temporary orthopedic
implant applications.

Gradient Nanostructured (GNS) Metals and
Alloys
One of the important classes of FGMs is called gradient
nanostructures (GNS), including gradient nanograined, nano-
twinned, and nano-laminated metals and alloys. Sometimes,
these GNS materials can exhibit extraordinary mechanical
properties, such as strain hardening, strength–ductility synergy,
enhanced fracture and fatigue resistance, and significant
corrosion and wear resistance, that are not easily found in
materials with homogeneous or random structures. Usually
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FIGURE 16 | (A) The spark plasma sintering (SPS) processed FGM sample; (B) schematic representation of FGM structure, including hardness, toughness, and

biological response of different layers; (C) hardness values across the FGM cross-section with permission from Afzal et al. (2012).

FIGURE 17 | The EBSD micrographs of Ti FGM with grain size gradation in cross-section; (A,C) the annealed+ SMATed sample; (B,D) SMAT+ 4 passes ECAPed

sample (black and white images (A,B,E) are grain boundary maps, and colored images (C,D) are Euler maps; (E) the magnified image of (A); (F) shows the

microstructural gradation in a cross-section of the SMAT+ECAP sample, reproduced with permission from Attarilar et al. (2019b).

GNS metals and alloys are fabricated with a gradation in
the microstructure (grain size, twin thickness, and/or lamellar
thickness) from the surface to the depth of the sample as
illustrated in Figure 2B (Li X. et al., 2020).

One of the good examples of GNS materials is the nano-
twin structure. Wang et al. (2013) produced an architectured
surface layer with a gradient decrease in twin density in a Fe–
Mn austenitic steel via the surface mechanical grinding treatment

(SMGT) technique. This gradation in twin density corresponds
to a gradient hardness reduction from 5.3 GPa in the top
layer to about 2.2 GPa in the coarse-grained core. Also, the
hardness dependence to twin thickness and superior strength–
ductility synergy was observed in these samples; Figure 19 shows
the TEM cross-sectional micrographs of the SMGT Fe–Mn
sample at different depths from the top surface. In the topmost
layer (∼10µm thick, Figure 19A), the existence of nanosized
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FIGURE 18 | (a) The schematic of Mg-based co-centric FGM composite, (b,c) image of FGM sample with different co-centric layers, (c′,c′′ ) the corresponding EDS

and optical morphology images in various FGM layers, (d–g) optical micrographs of individual layers with various HA constituent with permission from Dubey et al.

(2020).

grains with random orientations is clear. In the underneath
layer (45µm), a mixed microstructure of nanosized grains and
nanoscale twin bundles are seen. Then, as we get closer to the
depths of the sample, it can be seen that, gradually, the twin
density and nano-twin bundle volume fraction increases while
the volume fraction of nanograins drops.

As another example of GNS, the gradient nano-grained
(GND) Cu with almost twice the yield stress of conventional Cu
samples, significant strain softening, and excellent plasticity, was
fabricated by the SMGT process (Chen et al., 2017) (Figure 20A).
It was seen that the GND Cu layer could accommodate massive
plastic strains. Liu et al. (2015) use the SMGT process to fabricate
a nano-laminated structure in nickel by utilization of varied
gradation of strain and strain rates in the subsurface layer
with about 10–80µm depth from surface; the existence of 2-
D laminated structures with low angle boundaries and strong
deformation textures with an average thickness of about 20 nm
were observed (Figure 20B). It was confirmed that deformation
of these nano-laminated structures happened due to dislocation
slip and deformation twining at the nanoscale, finally leading to

formation of nano-sized equiaxed grain structure. Another GND
Cu structure was fabricated by direct-current electrodeposition
with a controllable, homogeneous nano-twinned component
(Cheng et al., 2018). It was seen that the structure includes a
large number of preferentially oriented nanometer-scale twin
boundaries enclosed within the micrometer-scale columnar-
shaped grains (Figure 20C).

THE 4-D PRINTING IN METALLIC FGMs

Four-dimensional (4D) printing methods have the same
principles as 3-D printing and are very similar to it; the main
difference is the layer-by-layer formation of smart materials in
which one more dimension is added to the material. Therefore,
the 4-D printed part can transform its shape with respect to
other physical and chemical parameters, such as temperature,
pressure, humidity, light, magnetic and electric fields, and even
time. These 4-D printed parts have a programmable nature that
is a very favorable property; they can easily be controlled and
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FIGURE 20 | (A) The SEM micrograph of gradient nanograined Cu confirming the grain size increase with depth with TEM micrographs from various depths. (B) The

SEM micrograph showing the microstructure evolution in gradient nano-laminated Ni, including three distinct regions with nanostructures (NS), ultrafine-grained (UFG),

and ultrafine-laminated (UFL) structures with depth increase along with TEM pictures from different depths. (C) SEM micrographs of the gradient nano-twinned

structure in Cu confirming the reduction of grain size and twin thickness with depth along with TEM images of twin and grains at various depths. The solid blue lines

inside SEM images present local hardness magnitude with respect to depth in the gradient layer. Image reused with permission from Li X. et al. (2020).

FIGURE 19 | The TEM cross-sectional micrographs of the SMGT Fe–Mn

sample at different depths from the top surface. (A) ∼10µm; (B) 45µm; (C)

188µm; (D) 440µm, inset pictures are the corresponding selected area

electron diffraction patterns with permission from Wang et al. (2013).

respond according to the environmental condition and design
requirements. This technology has many promising applications
especially in customized implants and smart biomaterials (Javaid
and Haleem, 2020). There are very limited studies about 4-D
printing of metallic parts, most of the studies are about the 4-D
printing of polymeric materials. Chen et al. (2019) introduces an
innovative procedure capable of 3-D printed multimetal via an
electrochemical 3-D printer system. This modern technology can

produce bimetallic structures through the selective deposition
of various metals; hence, a temperature-responsive reaction can
be programmed into the 4-D printed metallic parts. Although
the studies in this area are very rare, due to the favorable and
controllable properties of 4-D printing technologies, it seems
that they have a very bright future in the production of smart
metallic biomaterials.

FUTURE SCENERY

The FGM concept was an evolutionary pathway toward the
design of multifunctional systems with lots of advantages,
including smart design, potential to mimic natural biological
systems, rapid and integrated designs, utilization of CAD systems
and FEM-based schemes, enhanced properties, and conquering
limitations such as the stress-shielding effect, etc. Although
these are valuable advantages, numerous issues should still be
solved, such as lack of systematic and detailed guidelines for
various applications, design principles, involved mechanisms,
widely accepted standards, and new technologies. Hence,
future investigations should focus on overcoming these issues
and providing comprehensive databases; improving techniques
and related computer models, software, etc.; fabrication of
modern devices; enhancing the compatibility of these parts
with the entire system both biologically and mechanically;
improving the fabrication resolution with the capacity to produce
slight gradations; finding new methods to carefully tailor the
distribution of phases, pores, and other constituents; upgrading
the utilized materials; application of new concepts such as 4-
D designs (Javaid and Haleem, 2019); bioprinting (Dwivedi and
Mehrotra, 2020); metamaterials (Zhu et al., 2019; Sepehri et al.,
2020); and so on. In this regard, considering the great impact of
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AM technology, it should be further developed because it still is
not applicable in real industrial conditions.

FGMs can be utilized in various areas, including biomedicine,
structural parts, aviation, thermal management, energy-
absorbing systems, optoelectronic, electromagnetic interference
shielding (EMI), and even geological models that can analyze
earthquakes and natural landslide disasters (Li Y. et al., 2020).
The FGM concept can also be used in 4-D printing by the
functionally graded additive manufacturing (FGAM) concept
in which a single AM process incorporates the gradational
mixing of materials in order to construct freeform geometries
with changing properties within one component (Sudarmadji
et al., 2011; Pei et al., 2017). Unfortunately, the existing AM
technologies only have prototyping advantages with very limited
functionality, so extensive research progress should be devoted
to this field. The FGM designs profiting from the 4-D concept
(Javaid and Haleem, 2020) can lead to the fabrication of de novo
and smart parts that can completely change our lives; these
intelligent, multifunctional systems can be used in the treatment
of various diseases and hazardous tasks for humans. In brief,
it can be said that FGMs have a great potential to influence
the future of biomedicine and industry through their intricate
gradients and multifunctional nature, and they demonstrate
great prospects in the future of our technologies. In particular, it
would open new horizons in biomedicine.

CONCLUSIONS

FGMs as a modern concept of materials attract much attention
from academicians, the medical field, and industry. Because of
the graded nature of bone and other natural systems, utilization
of FGMs are very beneficial in biomedicine, and they can improve
the overall performance of implants both biologically and
biomechanically. This review paper comprehensively discusses
the design criteria, techniques, applications, pros, and cons
of FGMs, especially in biomaterials. In this regard, different
FGM production methods are studied, especially additive
manufacturing methods that are very capable in the production
of complex FGM structures with high resolution and with
multifunctional characteristics. Also, other methods, such as
powder metallurgy, gas-based, liquid-based, and solid-phase
processes, are introduced. The biological concept of FGM design

and the functional design of FGMs in biomedical applications are
discussed thoroughly. The utilization of FGM design in dental
and orthopedic implants is specifically considered in which the
FEM-based designs are used to simulate natural tissues. The effect
of FEM design in biological and biomechanical performance
of implants is the focus of research because the main aim of
these graded designs is to affect these properties. Subsequently,
the future scenery of FGM, its applications, and the limitations
that should be overcome were briefly mentioned. The modern
concepts that can assist the more rapid development of FGM
and its applications were introduced, including bioprinting, 4-
D designs, metamaterials, etc. Finally, it can be said that FGMs,
as a modern scheme, can substantially influence the future of
biomedicine and its application, but still, it needs to be further
developed from both a technological point of view and scientific
aspect, and it has a long way to go to reach its optimum condition
and vast industrialization. Hence, this review paper aimed to
illuminate the way toward the modern, smart, and advantageous
FGM biomaterials.
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Medical Application
Jun Cheng 1,2*, Jinshan Li 1*, Sen Yu 2, Zhaoxin Du 3, Xiaoyong Zhang 4, Wen Zhang 2,

Jinyang Gai 4, Hongchuan Wang 5, Hongjie Song 2 and Zhentao Yu 6

1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, China, 2 Shaanxi Key

Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi’an, China, 3 School of

Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China, 4 State Key Laboratory of

Powder Metallurgy, Central South University, Changsha, China, 5 School of Material Science and Engineering, Northeastern
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Themicrostructural evolution and tensile performance of ameta-stable β-type biomedical

Ti−10Mo−6Zr−4Sn−3Nb (Ti-B12) alloy subjected to one-stage aging (OSA) and

two-stage aging (TSA) are investigated in this work. The OSA treatment is performed

at 510◦C for 8 h. The TSA treatments are composed of low-temperature aging

and high-temperature aging. In the first step, low-temperature aging is conducted

at 325◦C for 2 h. In the second step, the aging temperature is the same as that

in the OSA. The result of the microstructure evolution shows that the precipitated

secondary phase after aging is mainly influenced by the process of phase transition.

There is a marked difference in the microstructure of the Ti-B12 alloy subjected to

the OSA and TSA treatments. The needle-shaped α phases are precipitated in the

parent β phase after the OSA treatment. Conversely, the short shuttle-like α phases

precipitated after the TSA treatment are formed in the β matrix with the aid of the

role of the isothermal ω transitional phase-assisted phase transition. The electron

backscattered diffraction results indicate that the crystallographic orientation relationship

of the α phases precipitated during the TSA treatment is basically analogous to

those in the OSA treatment. The relatively higher tensile strength of 1,275 MPa is

achieved by strengthening the effect of the short shuttle-like α precipitation with a

size of 0.123µm in length during the TSA treatment, associating with a suitable

elongation of 12% at room temperature simultaneously. The fracture surfaces of the

samples after the OSA and TSA treatments indicate that preventing the coarsening

of the α layers in the grain boundaries is favorable for the enhancement of strength

of Ti-B12 at room temperature. MTT test was carried out to evaluate the acute
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cytotoxicity and biocompatibility of the implanted material using L929 cells. The relative

proliferation rates of cytotoxicity levels 0, 1, 2, 3, and 4 are ≥100, 80–99, 50–79,

30–49, and 0–29%, respectively. The cytotoxicity of the Ti-B12 alloy is slightly better

than that of the Ti−6Al−4V alloy, which can meet the requirements of medical materials

for biomedical materials.

Keywords: phase transition, aging treatment, α precipitated phases, tensile properties, biomedical Ti alloy

INTRODUCTION

In comparison to α and (α + β) Ti alloys, meta-stable
β-type Ti alloys possess outstanding comprehensive mechanical
performance (Weiss and Semiatin, 1998; Banerjee and Williams,
2013; Zhu et al., 2016; Zhang et al., 2017; Kaur and Singh, 2019).
They have been successfully applied in the aerospace, biomedical,

marine, and weapon industries for several decades, owing to their

superior biocompatibility, low modulus, corrosion resistance,

specific strength, and processability (Cui et al., 2011; Niinomi
et al., 2012; Guo et al., 2013; Zhang and Chen, 2019). The higher

tensile strength at room temperature could be achieved through
the use of aging with a lower temperature due to the finer-
scale secondary phases precipitated in the parent β phase for β-
type titanium alloys. Moreover, a microstructural configuration
with finer, dispersive, and more uniformly distributed α

precipitates at the prior β grain boundaries is considered
to optimize and enhance the mechanical performance and
microstructure stability for the vast majority of β-type titanium
alloys (Tang et al., 2000; Qazi et al., 2005; Chen et al., 2020;
Vishnu et al., 2020; Zhang et al., 2020). Compared with the
conventional one-stage aging treatment, the two-stage aging
(TSA) treatment is considered to be a valid approach to optimize
the mechanical performance of most meta-stable β-type Ti
alloys. Schmidt et al. (2011) discussed the influence of duplex
aging treatment on the fatigue behavior of a typical meta-
stable Ti−3Al−8V−6Cr−4Mo−4Zr (wt%). They found that,
compared with the one-stage aged specimen, the two-stage aging
treatment was employed to improve the fatigue limit value and
reduce the rate of fatigue crack growth. The primary reason
was that the plenty dispersive ωiso phases result in the uniform
precipitation of α phases after the TSA treatment. Cui and
Guo (2009) reported the microstructural evolution and tensile
performances of a meta-stable Ti−28Nb−13Zr−0.5Fe under
various aging conditions. They found that, when the alloy was
aged at 350◦C, the formation of precipitated α phases would
lead to a dramatic increase in the number density of nucleation
sites within the β matrix. The isothermal ω transitional phase
was transformed into the α phase step by step with the increase
in the temperature or the duration of aging, resulting in the
refinement of precipitates and the improvement in the strength of
alloy at room temperature. Santhosh et al. (2014) proved that the
objective of the refinement and the increase in the amount of α

phase could be achieved using low-temperature aging. A method
of TSA was used to enhance the comprehensive mechanical
performances at room temperature. For instance, higher tensile
strength and favorable elongation can be achieved using this

method. Ivasishin et al. (2008) studied the microstructure control
using the different thermo-mechanical working methods in
a typical β-type Ti−15V−3Cr−3Sn−3Al alloy. They reported
that this alloy with the slowest kinetics in precipitation of the
secondary phase could be prepared through the use of duplex
aging in order to obtain a relatively higher strength within a
limited time for industrial-scale applications.

The Ti−10Mo−6Zr−4Sn−3Nb (Ti-B12) alloy is a newly
developed β-Ti alloy used in surgical implants, such as
dental archwires and catheter guide wires. It is considered
to be an excellent candidate alloy for Ti−6Al−4V, CP-Ti
applied in orthopedic surgery and dentistry, owing to its
relatively higher tensile strength, lower modulus, and non-toxic
alloying elements (Guo et al., 2019; Du et al., 2020, Rabadia
et al., 2019). The Ti-B12 alloy is developed by Shaanxi Key
Laboratory of Biomedical Metal Materials based on the d-
electron theoretical approach (Cheng et al., 2020). The room-
temperature mechanical performance for the meta-stable β-
type Ti-B12 alloy can be controlled and optimized through
the use of different solution treatments plus aging treatments.
The Ti-B12 alloy subjected to solution treatment followed by
aging treatment would possess an attractive combination of
room-temperature tensile strength and ductility. Moreover, the
molybdenum equivalent of the Ti-B12 alloy is calculated to
be about 10.9. Generally, a higher molybdenum equivalent
value is one of the necessary conditions for the continuous
phase transformation of β → ω → α in meta-stable β-Ti
alloys (Li et al., 2015, 2016, 2018). Microstructure and micro-
texture evolution in the process of aging treatment can result
in a significant change in the mechanical performance of the
alloy. Therefore, it is necessary to understand the evolution
law of microstructure and texture components during the OSA
and TSA treatments. The objective is to clarify the phase
transformation mechanism of β → α and β → ω → α under
various aging conditions.

The room-temperature and elevated-temperature mechanical
performances of meta-stable β-type Ti alloys can be improved by
the formation of a large number of finer α precipitates uniformly
distributed in the β matrix. The meta-stable ω transitional phase
can be considered as a type of effective nucleation site for
the precipitation of the α phase during the TSA treatment.
The isothermal ω transitional phase can be induced by the
diffusion of solute atoms during aging at a relatively lower
temperature (300–400◦C). To clarify the formation mechanism
of the ω phase, the crystal structure, and the elemental diffusion
during the phase transformation from an unsymmetrical ω

embryo to a symmetrical isothermal ω phase is very important.
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TABLE 1 | Chemical composition of Ti-B12 alloy ingot used in the present

work (wt%).

Ti Mo Zr Sn Nb C N O H Fe

Bal. 10.11 5.71 4.32 2.83 0.024 0.017 0.11 0.0037 0.02

Nevertheless, almost no investigations have been conducted on
the above-mentioned scientific questions, and no research efforts
have been made to clarify the atomic-scale structure evolution
and elemental diffusion of isothermal ω phase after the low-
temperature aging treatment. Consequently, the mechanism of
phase transformation from β to ω during the low-temperature
aging has not been explained yet.

This research work is carried out to investigate the
microstructural evolution of Ti-B12 alloy after the OSA and TSA
treatments and its influence on room-temperature mechanical
performance. Furthermore, the influence of TSA treatment on
the precipitation and the transformation mechanism of the α

phase is discussed as well. Cytotoxicity evaluation for Ti-B12
alloy is also carried out using the MTT method.

EXPERIMENTAL MATERIALS AND
METHODS

The Ti-B12 alloy ingot was produced using a vacuum arc
remelting furnace (VAR, 50 kg). The ingot was remelted three
times to ensure homogeneity and prevent segregation. In this
work, the raw materials for VAR included sponge titanium with
small particles (particle size: 0.83–12.7mm; grade 0), Ti-32Mo
master alloy with thin sheet-like, industrial zirconium sponge
(Zr-1; particle size: 3–8mm), and Ti-80Sn and Nb-47Ti master
alloy with chips-like. The chemical composition of the Ti-B12
alloy ingot is provided in Table 1. The Ti-B12 cast ingot was
homogenized at 1,180◦C to improve the metallurgical quality. A
6.3 MN rapid forging press and a GFM (Austria) radial forging
machine were used to carry out billet forging and final forging
in the temperature range of the β and (α + β) phase regions,
respectively. Finally, a 250-type bar rolling mill was employed
to manufacture hot-rolled round bars (diameter: 9mm). Several
bars were cut using an electric discharge machine and lathe.

Based on the Ti-Mo phase diagram and ITT diagram, it can be
deduced that the isothermal ω transitional phase will precipitate
within the parent β phase after low-temperature aging. The low-
temperature aging treatment is usually carried out below 400◦C.
Moreover, the α phase is prone to precipitate in the temperature
ranging from 500 to 600◦C. In our previous work, the finer α

phase tends to precipitate after aging at 510◦C for 8 h, which is
beneficial for the significant improvement in strength at room
temperature. First of all, the Ti-B12 alloy bars were subjected to
a solution treatment at 790◦C for 1 h, followed by water cooling.
Subsequently, two types of aging treatments were carried out by
electric furnace in air. One-stage aging was carried out at 510◦C
for 1, 2, 4, and 8 h, respectively. TSA was firstly performed at
325◦C for 2 h and then conducted at 510◦C for 0.2, 1, 2, 4, and
8 h, respectively.

The microstructure of each specimen was observed using
optical microscopy (OM, OLYMPUS BX61), scanning electron
microscopy (SEM, FEI Quanta 650F) equipped with electron
backscattered diffraction (EBSD, Oxford Instruments + HKL
Channel 5 software package), and transmission electron
microscopy (TEM) (FEI Tecnai G2 F20). EBSD and X-ray
diffraction (XRD, Bruker D8 Focus) techniques were used to
characterize the evolution of microstructure and crystallographic
orientation. The polished bulk specimen was examined by XRD
to analyze the phase constituent and phase transformation. The
measurements of XRD were carried out in the range of 30–
80◦, with a constant step of 0.02◦ and a scanning speed of
6◦/min. The accelerating voltage and current are 40 kV and
40mA, respectively.

Uniaxial tensile testing was conducted using an INSTRON
598X system (maximum load: 250 kN) at room temperature.
The strain rate was ∼0.006 mm/min. Tensile specimens were
machined following the GB/T 228-2007 standard. The diameter
and the gauge length of the tensile samples were 3 and
15mm, respectively. The specimens were etched using Kroll
reagent (8% HNO3 + 2% HF + 90% H2O, vol%) for 5–10 s.
The fracture surface and the microstructure of the specimen
were characterized by SEM in secondary electron mode. TEM
observation was conducted by a FEI Tecnai G2 F20 operated
at an accelerating voltage of 300 kV. TEM specimen was
mechanically ground to a foil with a thickness of 40µm
using SiC paper until 2000 grade. The foil was punched
into several discs of 3mm in diameter, which would be
thinned by the ion milling technique (Gatan 691) for the
TEM characterization.

MTT test was carried out to evaluate the cytotoxicity and
biocompatibility of the implanted material using L929 cells.
GB/T 16886.5-2017 biological evaluation of medical devices—
part 5: tests for in vitro cytotoxicity was used in this work. The
L929 cells in the logarithmic growth phase were selected to be
digested with trypsin. The cell culture medium was diluted to
a L929 cell suspension with a concentration of 1 × 104/ml.
They were inoculated on four 96-well culture plates (0.20ml
cell suspension per well). The cells were cultured for 24 h at
37◦C. The original culture medium was discarded after the cells
adhered to the wall. After rinsing with physiological saline three
times, two kinds of extracts for Ti-B12 and Ti−6Al−4V alloy
and RPMI1640 cell culture medium were added to a 48-well
plate (0.20ml cell suspension per well). They were incubated
at 5% CO2 atmosphere at a constant temperature (37◦C). The
respective culture solution was carefully replaced after 72 and
120 h. A culture plate was taken out, and the original culture
medium was carefully aspirated after 24, 72, 120, and 168 h.
The 0.20ml fresh RPMI1640 culture medium and 20 µl MTT
(5 mg/ml, thiazolyl blue) solution were added to the culture
plate and continued to be cultured for 4 h. The solution in
wells was carefully removed and washed twice with physiological
saline; 0.20ml dimethyl sulfoxide (DMSO) was added into each
well. The culture plate was gently shaken for 10min, and the
absorbance value (OD value) of each well with an enzyme-linked
immunoassay at 490-nm wavelength was measured using 0.20ml
DMSO as a reference.
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RESULTS AND DISCUSSION

Microstructure for Solution-Treated,
One-Stage-Aged, and Two-Stage-Aged
Specimens
Figure 1 displays OM and SEM images for Ti-B12 alloy
subjected to solution-treated, one-stage aging, and two-stage
aging treatments. Based on previous investigations (Rack et al.,
1970; Laheurte et al., 2006; Cai et al., 2012, 2013), the Ti-
B12 alloy subjected to an appropriate solution treatment in
conjunction with aging treatment could achieve outstanding
comprehensive mechanical properties. Therefore, in this work,
based on β transus temperature (Tβ = 760◦C) measured using
the conventional metallographic procedure, the solution heat
treatment is determined to be 790◦C/h and air cooling (AC).
As shown in Figure 1A, the specimen subjected to solution
treatment followed by air cooling ismainly composed of equiaxed
β grains. Based on the analysis by Image pro-plus 6.0 software, the
average grain size is about 88µm. Some deformation streamlines
also exist in the microstructure. Figure 1B displays the SEM
image for the Ti-B12 alloy bar subjected to the OSA. Cluster-
like α phase with micron-scale was precipitated in the β grains
of the sample subjected to the OSA for 4 h. The SEM image for
the Ti-B12 alloy subjected to solution treatment in conjunction
with low-temperature aging at 325◦C for 2 h followed by high-
temperature aging at 510◦C for 4 h is presented in Figure 1C.
It can be clearly seen that the α phase continuously precipitates
at the grain boundary triple junctions of β grains. Meanwhile, a
large amount of fine and dispersive α phases with “needle-like”
shape are generated within the β equiaxed grains. Compared with
Figures 1B,C shows that the size of the α phase precipitating
in the sample subjected to TSA is significantly finer than that
subjected to OSA. It is noteworthy that there are some differences
between the nucleation site and the growth rate of grains under
various heat treatments.

The TEM bright-field (BF) images and the corresponding
selected area diffraction (SAD) patterns of Ti-B12 alloys
subjected to OSA at 510◦C for 1 h and TSA at 325◦C for 2 h
followed by 510◦C for 1 h are presented in Figure 2. In general,
BF and dark-field (DF) images are employed to characterize
the morphology and distribution of secondary phase in the
metallic materials. Meanwhile, SAD patterns are often used
to illustrate the phase transition mechanism and orientation
relationship after various aging treatments. Figure 2C presents
a SAD pattern of [001]β zone axis for Ti-B12 alloy subjected
to solution treatment followed by OSA. It can be found that
the reflection spots are presented at 1/2 {211}β positions, which
reveals that the α phase precipitates from the parent β phase
after aging. As presented in Figures 2A,B, te α precipitates in the
OSA specimen are needle-shaped. The length is ∼0.675µm, and
the width is about 0.087µm. The morphologies of the α phases
precipitated from the β matrix after low-temperature aging at
325◦C for 2 h followed by high-temperature aging at 510◦C for
1 h are shown in Figure 2D. It can be found that the refining
effect of the α phase in the TSA specimen is obvious compared
to the OSA one. The morphology of the α phases precipitated
from the β matrix after TSA is short shuttle-like. The length and

width are about 0.123 and 0.0228µm, respectively. As seen in
the difference between Figures 2A,D, it can be noticed that the α

phase has been refined obviously after the TSA treatment, owing
to the effect of the isothermal ω transitional phase-assisted phase
transition. Furthermore, as seen in Figure 2E, the SAD pattern
of the Ti-B12 alloy does not display any additional reflection
spots because a large number of isothermal ω transitional phases
precipitated from the parent β phase during the low-temperature
aging treatment have completely transformed into α precipitates
after the high-temperature aging at 510◦C for 1 h. As can
be observed in Figures 2B,D, it is necessary to note that the
isothermal ω transitional phase-assisted nucleation mechanism
plays a significant role in the precipitation and growth of the
precipitated α phase within the β grains. However, the accurate
nucleation positions of the α precipitates are too difficult to
be confirmed only by TEM dark-field images (Nag et al., 2009;
Zheng et al., 2016a,b; Chen et al., 2018; Shi et al., 2019).

Phase Transition in Ti-B12 Alloy After the
Two-Stage Aging Treatment
The XRD patterns for the Ti-B12 alloy subjected to solution
treatment at 790◦C in conjunction with low-temperature aging
at 325◦C followed by high-temperature aging at 510◦C are
shown in Figure 3. The XRD spectra for the Ti-B12 specimen
solution-treated at 790◦C for 1 h followed by water quenching
are shown in Figure 3A. The experimental result indicates that
there are some diffraction peaks of the β phase with a body-
centered cubic structure because the solution temperature is
located in the temperature range of the β phase zone. As can
be seen in Figure 3B, the diffraction peaks of the ω phase begin
to emerge in (111) and (112) planes during low-temperature
aging at 325◦C for 2 h. The co-existence of the diffraction peaks
for β and ω phases indicates that the phase transition from ω

phase to α phase has not yet taken place after low-temperature
aging. Furthermore, the SAD pattern for the low-temperature
aged specimen is presented in Figure 4B. It can be deduced
that there are no α precipitates which are transformed from
the β parent phase or isothermal ω transitional phase under
this condition. When the Ti-B12 alloy was subjected to low-
temperature aging at 325◦C for 2 h followed by high-temperature
aging at 510◦C for 0.2 h, the (101)α diffraction peak is presented.
This phase transformation is also accompanied by the appearance
of isothermal (111)ω and (112)ω diffraction peaks. Moreover,
when the Ti-B12 alloy is subjected to low-temperature aging
at 325◦C for 2 h followed by high-temperature aging at 510◦C
for 0.2 h, the precipitated α phase with finer scale would be
transformed from isothermal ω transitional phase or β parent
phase. Previous investigations showed that the phase transition
from ω phase to α phase would be induced in some biomedical
β Ti alloys (Chaves et al., 2015; Wang et al., 2018). As can be
seen in Figure 3C, the XRD results for the TSA specimen (low-
temperature aging at 325◦C for 2 h followed by high-temperature
aging at 510◦C for 1 h) show that there is no isothermal ω

transitional phase retained after the high-temperature aging at
510◦C for 1 h. The result of the XRD is identical to that of the
SAD pattern for the Ti-B12 alloy in Figure 2E. Moreover, it can
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FIGURE 1 | Microstructures of Ti-B12 alloy subjected to (A) solution treatment at 790◦C for 1 h followed by air cooling (optical microscopy), (B) one-stage aging at

510◦C for 4 h after solution treatment (scanning electron microscopy, SEM), and (C) two-stage aging (TSA) at 325◦C for 2 h followed by 510◦C for 4 h after solution

treatment (SEM).

FIGURE 2 | Transmission electron microscopy (TEM) pictures for Ti-B12 alloy subjected to one-stage aging (OSA) and two-stage aging (TSA) (B,C) OSA at 510◦C for

1 h (D,E) and TSA at 325◦C for 2 h followed by 510◦C for 1 h. (A,D) TEM bright-field images, (B) TEM dark-field images, and (C,E) selected area diffraction patterns.

be seen in Figure 3C that extending the aging time will result in
the enhancement of (100)α, (101)α, and (102)α diffraction peak
intensity in the XRD spectrum. Compared with the XRD spectra
of the Ti-B12 alloy subjected to aging at 510◦C for 0.2 and 1 h, the
results of the XRD spectra for the Ti-B12 specimens subjected
to aging at 510◦C for 4 and 8 h indicate that the quantity of α

precipitates obviously increases with the prolongation of aging
time. Meanwhile, the intensity of (100)α, (101)α, and (102)α

diffraction peaks also increases under the above-mentioned heat
treatment conditions.

Figures 4A,B present the DF image and SAD pattern of the
Ti-B12 alloy subjected to low-temperature aging at 325◦C for
2 h. As can be observed in Figure 4A, a lot of ellipsoid-like
isothermal ω transitional phases with the size of ∼57 nm are
precipitated from the parent β phases. As shown in Figure 4B,
reflection spots are presented at 1/3 and 2/3 {211}β positions of
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FIGURE 3 | X-ray diffraction patterns for Ti-B12 alloy subjected to solution treatment (A), solution treatment followed by low-temperature aging (LTA) at 325◦C for 2 h

(B), and LTA followed by high-temperature aging at 510◦C for 0.2 h (B) and 1, 4, and 8 h (C).

the Ti-B12 alloy subjected to solution heat treatment at 790◦C
for 1 h plus low-temperature aging at 325◦C for 2 h, owing
to the precipitation of ω phases. The result of Figure 4B will
coincide with the specific orientation relationship of [210](002)β
// [−1011](−11-1)ω1 // [−2111](−101)ω2 (Qazi et al., 2005;
Cui and Guo, 2009; Nag et al., 2009; Wang et al., 2009). As can
be seen in Figure 4C, there is evidence that the short shuttle-
like α phases precipitate with the assistance of the isothermal
ω phase during aging treatment. The enlarged image provides
a strong evidence for the evolution of the ω transitional phase
transformed into α phase. It can be reasonably deduced that the
potential nucleation and growth of a new phase may emerge at
the boundaries between parent β phase and ωiso phase. Previous
research work has been carried out for the investigation of phase
transformation in Ti−5Al−5Mo−5V−3Cr−0.5Fe (Ti-5553)
alloy (Nag et al., 2009). A SAD pattern of the Ti-B12 alloy

subjected to solution treatment followed by low-temperature
aging at 325◦C for 2 h and high-temperature aging at 510◦C for
0.2 h is presented in Figure 4D. Reflection spots are presented
at 1/3 and 2/3 {110}β positions because of the existence of
a residual isothermal ω transitional phase during the low-
aging treatment. Moreover, the emergence of newly generated
reflection spots corresponding to the α phase demonstrates that
these α precipitates are transformed from the isothermal ω

transitional phase or the parent β phase during high-temperature
aging treatment at 510◦C for 0.2 h.

Texture Evolution of Ti-B12 Alloy Subjected
to OSA and TSA
EBSD maps of Ti-B12 alloys subjected to one-stage aging
and two-stage aging are shown in Figure 5. It can be seen
from the inverse pole figure (IPF) maps (Figures 5A,B)
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FIGURE 4 | Transmission electron microscopy (TEM) pictures for Ti-B12 alloy solution treated at 790◦C for 1 h plus (A,B) low temperature aging at 325◦C for 2 h and

(C,D) low-temperature aging at 325◦C for 2 h followed by high-temperature aging at 510◦C for 0.2 h. (A,C) TEM dark-field images. (B,D) Selected area diffraction

patterns.

that complete recrystallization can be obtained in the alloy
after solution treatment followed by aging. Meanwhile,
the β grain size of the TSA sample is slightly larger
than that of the OSA sample. As can be observed in
Figures 5C,D, the β grain orientation of the Ti-B12
alloys subjected to OSA and TSA presents a random
distribution. The maximum values of pole density are 3.63
and 3.93, respectively.

A small step (20 nm) is applied to collect the crystal
orientation information on the α and β phases in order to
clearly characterize the orientation relationship between the
parent phase and the precipitated phase. The results of the
orientation relationship between the α and β phases are displayed
in Figure 6. Figure 6A presents the IPF map of the OSA sample,
which contains one β grain and two α grains (α1 and α2).
Figures 6B,C are the pole figures of the β grains and the α

phases, respectively. It can be clearly seen that the α1, α2,
and β1 grains satisfy the following orientation relationship:
{0001}α // {110}β and <11-20> α // <111> β, that is to
say, the β → α in the OSA specimen follows the typical
Burgers orientation relationship (BOR) (Chai et al., 2017, 2018).
Similarly, Figure 6D shows the IPF map of the TSA specimen. As
can be seen in Figures 6E,F, both α and β phases follow the BOR
as well.

Previous investigations have indicated that the finer α

precipitates are formed by contact with the surface of the
isothermal ω phase. The habit plane is usually defined as (11-20)
ω // (11-20) α. It is proved that the α phase tends to nucleate
at the interface between the ω and β phases. The reason is that
this interface is regarded as the minimum misfit low-index habit
plane betweenω and β phases, resulting in a significant reduction
of apparent activation energy for the nucleation and growth of
α precipitates (Ohmori et al., 2001; Cremasco et al., 2011; Chen
et al., 2019; Dong et al., 2020; Xiang et al., 2020). Hence, α phases
with the aid of the isothermal ω phase-assisted nucleation will
possess a basically similar BORwith those formed under the OSA
condition. It can also be reasonably deduced that, although the
size of the secondary phase has become obviously smaller, the
phase transition from β to α phase with the aid of isothermal
ω phase cannot change the crystallographic orientation of the
precipitated phase.

Mechanical Properties at Room
Temperature and Fracture Behavior for
OSA and TSA Ti-B12 Alloy
The most outstanding mechanical properties for the Ti-B12
alloy can be achieved after TSA (low-temperature aging followed
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FIGURE 5 | Electron backscattered diffraction maps of Ti-B12 alloys subjected to one-stage aging (790◦C/h, AC + 510◦C/8 h, AC) and two-stage aging (790◦C/h,

AC + 325◦C/2 h, AC + 510◦C/8 h, AC). (A,B) Inverse pole figure maps. (C,D) Pole figure maps.

FIGURE 6 | Results of the orientation relationship between α and β phases.

(A–C) Oone-stage aging (790◦C/h, AC + 510◦C/8 h, AC) condition, (D–F)

two-stage aging (790◦C/h, AC + 325◦C/2 h, AC + 510◦C/8 h, AC) condition.

(A,D) Inverse pole figure maps. (B,C,E,F) Pole figure maps.

by high-temperature aging). An attractive matching degree of
strength and elongation can be obtained through the use of low-
temperature aging at 325◦C for 2 h followed by high-temperature
aging at 510◦C for 8 h. In this case, the influence of low-
temperature aging at 325◦C on the microstructural evolution
is favorable for the refinement of α precipitates. The reason
for this phenomenon is that the isothermal ω transitional
phase precipitated during low-temperature aging will result in
the increase in the density of nucleation sites for the phase
transformation from β phase to α phase. Therefore, the adoption
of TSA is beneficial to form a large number of dispersed α

precipitates with a significantly small size in the β matrix. A
schematic drawing of isothermal ω transitional phase-assisted
phase transformation from β to α is presented in Figure 7.
In general, the process of isothermal ω transitional phase-
assisted α precipitates predominantly includes the nucleation,
multiplication, growth of ω embryo in conjunction with
precipitation and, near in situ growth of α phase as well as the
consumption of ω precipitates during the whole aging process.
Both the precipitation of the ω phase and the parent β phase
satisfy a given crystallographic orientation relationship, that is,
the habit plane. The growth orientation of the isothermalω phase
is considered to be in the invariant direction of the habit plane.
Moreover, there is a Burgers vector whose constant normal is
perpendicular to the habit plane. The crystallographic orientation
relationship of constant normal is maintained unchanged during
the whole phase transformation process. Assuming that the
constant normal in the real space and the one in the reciprocal
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space are all determined, the growth direction of the precipitated
phase can be deduced based on the orientation relationship
between the ω and β phases. The ω phase possesses a {111}β
habit plane, and the growth direction of the precipitated phase
is usually <14 14 15> β. The migration interface between the
ω and α phases is extremely close to the habit plane of the α

phase, and the deviation angle of the two planes is about 5.1◦.
Since the Ti-B12 alloy is subjected to low-temperature aging,
the morphological characteristics of the ω phase are strongly
influenced by the role of the secondary α phase nucleation and
growth, owing to the intimate contact between the isothermal
ω precipitated phase and the parent β phase as well as the
anisotropy of the α precipitates. The α precipitates are prone
to nucleate at the ω/β interface. In the initial stage of low-
temperature aging, the isothermal ω phase is quickly exhausted
by the secondary α phase, and it finally disappeared under
the influence of ω-assisted α phase precipitates. Consequently,
the initial ellipsoid-like ω phase will be decomposed along the
direction of theω/α interfacemigration, leading to the formation
of a short shuttle-like precipitated phase during TSA.

The tensile curves of the Ti-B12 alloy subjected to OSA
(510◦C for 8 h) and TSA (low-temperature aging at 325◦C for
2 h followed by high-temperature aging at 510◦C for 8 h) after
solution treatment are presented in Figure 8. In contrast to the
OSA specimen, a relatively higher strength and an acceptable
elongation at room temperature can be obtained through the
TSA process. As can be seen in Figure 8, the tensile strength of
the OSA specimen subjected to aging at 510◦C for 8 h is about
982 MPa. However, the most outstanding mechanical properties
(tensile strength: 1,275 MPa, elongation: 12%) can be achieved
in the TSA Ti-B12 alloy, owing to its peculiar microstructure.
In addition, a serration phenomenon can be observed in the
stress–strain curve. Such a serration phenomenon is attributed
to the effect of stress relaxation during tensile testing at room
temperature. Therefore, this phenomenon is inevitable. The
microstructure and fracture behavior for the alloy will be
described in detail in the following paragraphs.

The mechanical properties for some β-type Ti alloys are
greatly affected by the precipitation of secondary phases after
aging treatment because the mechanical properties, including
strength and ductility, strongly depend on the density (ρ) and
volume fraction (vol.%) of the precipitated phases within the
parent phase (Gao et al., 2019; Yang et al., 2019; Li et al.,
2020; Tang et al., 2020; Xiao et al., 2020; Lai et al., 2021).
Hence, optical microscopy can be employed to analyze and
evaluate the peculiar microstructure for various aged specimens
and the plastic deformation behavior. The optical images for
the microstructures for OSA (790◦C/h, AC + 510◦C/8 h, AC)
and TSA (low-temperature aging at 325◦C for 2 h followed
by high-temperature aging at 510◦C for 8 h) specimens are
presented in Figures 9A,D. It can be seen in Figure 9A that there
are some precipitate-free zones existing in the microstructure
and continuously thick α layers covering a portion of grain
boundaries entirely in the OSA sample. Therefore, we can
suppose that low-temperature aging is critical to increase the
number of α precipitates and inhibit the coarsening of α layers.
In contrast, as can be observed in Figure 9D, the α layers and

the size of α phases within the β grains for the TSA specimen
are obviously smaller than those of the OSA one. Meanwhile,
as can be seen in Figure 1C, the region around triple grain
boundaries displays the morphology of the α phase precipitated
within the β grains and continuous α layers in the boundaries at
high magnification. A large number of isothermal ω transitional
phases can be regarded as effective obstacles that prevent the
emergence of α layers in the boundaries and the growth of
secondary phase within the β grains. Figures 9B,C,E,F show
the morphologies of the fracture surfaces at low and high
magnification in the OSA and TSA samples. It can be seen
from the fracture surfaces of the OSA and TSA samples that the
predominant mechanism is the ductile fracture with a certain
degree of cleavage fracture feature after tensile deformation at
room temperature. As can be seen in Figure 9B, transgranular
fracture and some deep dimples are observed on the fracture
surface of the Ti-B12 alloy after OSA. As shown in Figure 9C,
some evidence of predominantly ductile and slightly brittle
fracture is detected on the fracture surface using secondary
electronmode. Therefore, it can be deduced that a mixed fracture
behavior is exhibited in the Ti-B12 alloy subjected to OSA at
510◦C for 8 h after solution treatment in the temperature range
of the β phase region. In particular, a transgranular fracture
mode plays a more dominant role in the alloy after tensile
deformation to some extent. Moreover, Figures 9E,F indicate
that intergranular fracture plays a pivotal role during tensile
deformation. The numbers of dimples decrease sharply and
become shallow. The overall number of cleavage facets in the
fracture surface increases obviously after tensile deformation at
room temperature. The scale of dimples is ∼40–90µm. This
characteristic is associated with the shape of the α phase, owing
to the refinement of the secondary phase and the absence of
thick α layers in the boundaries. This comparative study on
the fracture behavior of the Ti-B12 alloy can demonstrate the
negative influence of the thick α layers in the grain boundaries
on the elongation and the positive role of TSA on the fracture
behavior at room temperature. Hence, one can conclude that
the employment of TSA can effectively prevent the coarsening
of the α layers in the boundaries to achieve an attractive
combination of higher room-temperature tensile strength and
reasonable ductility.

Cytotoxicity Evaluation for Ti-B12 Alloy
Using the MTT Method
The relative number of L929 cells in each well (indicated by the
OD value) is determined using theMTTmethod after 24, 72, 120,
and 168 h. The measured OD values are displayed in Table 2;
relative rate of cell proliferation = (OD value of experimental
group / OD value of blank control group) × 100%. The relative
cell proliferation rate is calculated. The evaluation criteria are
obtained for the cytotoxicity of implanted material. The relative
proliferation rate of cytotoxicity levels 0, 1, 2, 3, and 4 is ≥100,
80–99, 50–79, 30–49, and 0–29%, respectively. The results of the
cytotoxicity test indicate that, compared with the cell culture
medium, neither the Ti-B12 nor the Ti−6Al−4V alloy showed
obvious cytotoxicity. The Ti−6Al−4V alloy has been widely used
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FIGURE 7 | Schematic drawing of the isothermal ω transitional phase-assisted phase transformation from β to α.

as an implanted material. In addition, it can be seen that the
cytotoxicity of the Ti-B12 alloy is slightly better than that of the
Ti−6Al−4V alloy, which can meet the requirements of medical
materials for material cytotoxicity. Thus, it is evident that the
Ti-B12 alloy has excellent biocompatibility.

CONCLUSIONS

The influence of isothermal ω transitional phase-assisted phase
transition for the Ti−10Mo−6Zr−4Sn−3Nb (Ti-B12) alloy is
investigated in this work. The microstructural evolution and
mechanical performance at room temperature of the Ti-B12 alloy
subjected to OSA and TSA treatment are investigated using OM,
SEM, TEM (SAD), XRD, and EBSD. MTT test was carried out
to evaluate the acute cytotoxicity and biocompatibility of the
implanted material. The main conclusions can be summarized
as follows:

(1) The small ellipsoid-like isothermal ω transitional phases
with the size of∼57 nm precipitated from the parent β phase
when the Ti-B12 alloy is subjected to solution treatment
at 790◦C for 1 h and air cooling in conjunction with low-
temperature aging at 325◦C for 2 h. A definite orientation
relationship (OR) is presented between the ω phase and the
β matrix. While the alloy is subjected to high-temperature
aging treatment at 510◦C, a large number of short shuttle-
like α phases precipitate at positions of the isothermal ω

transitional phases. Such amicrostructure is considered to be

FIGURE 8 | Tensile curves (engineering stress–engineering strain) for Ti-B12

alloy subjected to one-stage aging (790◦C/h, AC + 510◦C/8 h) and two-stage

aging (low-temperature aging at 325◦C for 2 h followed by high-temperature

aging at 510◦C/8 h) after solution treatment (790◦C/h, AC). The inset shows

the corresponding fracture surface at low magnification.

favorable for the room-temperaturemechanical properties of
the Ti-B12 alloy.

(2) The Ti-B12 alloy subjected to OSA at 510◦C for 8 h
possesses a relatively lower tensile strength, owing to the
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FIGURE 9 | Scanning electron microscopy images of the microstructures and fracture surfaces for Ti-B12 alloy subjected to (A–C) solution treatment (790◦C/h, AC)

plus one-stage aging treatment at 510◦C for 8 h and (D–F) solution treatment (790◦C/h, AC) in conjunction with two-stage aging treatment at 325◦C for 2 h followed

by 510◦C for 8 h. (A,D) Optical microstructures. (B,C,E,F) Magnified images of fracture surfaces.

TABLE 2 | The result of cytotoxicity measured by MTT assay (OD values) (n = 24).

Time (h) OD values

RPMI1640 Ti-B12 (relative

proliferation rate, %)

TC4 (relative

proliferation rate, %)

24 0.235 ± 0.021 0.240 ± 0.018 (102) 0.230 ± 0.027 (98)

72 0.532 ± 0.026 0.528 ± 0.025 (99) 0.515 ± 0.028 (97)

120 0.894 ± 0.035 0.887 ± 0.032 (99) 0.850 ± 0.042 (95)

168 1.15 ± 0.042 1.12 ± 0.038 (97) 1.10 ± 0.051 (96)

coarsening of the α phases on the β grain boundaries and
in the β grains. The precipitated α phases in the OSA
alloy are directly generated in the parent β phase, which
fulfills the BOR of (0001)α // (110)β. In addition, the
crystallographic orientation of the α phases in the TSA
alloy subjected to low-temperature aging at 325◦C for 2 h
followed by high-temperature aging at 510◦C for 8 h is
basically analogous to those in the OSA due to the existence
of (10–20)ω // (10–20)α orientation relationship after the
high-temperature aging.

(3) The Ti-B12 alloy subjected to TSA (low-temperature aging at
325◦C for 2 h followed by high-temperature aging at 510◦C
for 8 h) possesses outstanding comprehensive mechanical
properties (tensile strength: 1,275 MPa, elongation: 12%)
at room temperature. A large number of isothermal ω

transitional phases can be regarded as effective obstacles that
prevent the emergence of thick α layers in boundaries and the
rapid growth of secondary phases in the β grains for the Ti-
B12 alloy subjected to low-temperature aging at 325◦C. The

morphologies of the fracture surfaces in the TSA specimen
show that the number of dimples tends to decrease and
become shallow; the intergranular fracture mechanism plays
a major role during tensile deformation.

(4) The relative proliferation rate of cytotoxicity levels 0, 1, 2, 3,
and 4 is≥100, 80–99, 50–79, 30–49, and 0–29%, respectively,
for the Ti-B12 alloy. The cytotoxicity of the Ti-B12 alloy is
slightly better than that of the Ti−6Al−4V alloy, which can
meet the requirements of biomedical materials.
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Introduction: In temporomandibular joint (TMJ) replacement operation, due to the

condylectomy, the lateral pterygoid muscle (LPM) lost attachment and had impact on

the mandible kinematic function. This study aimed to design a novel TMJ replacement

prosthesis for LPM attachment and to verify its feasibility by preliminary in vitro and in

vivo experiments.

Materials and Methods: An artificial TMJ prosthesis designed with a porous structure

on the condylar neck region for LPM attachment was fabricated by a 3D printed titanium

(Ti) alloy. A rat myoblast cell line (L6) was tested for adhesion and biocompatibility

with porous titanium scaffolds in vitro by cell counting Kit-8 (CCK-8), scanning electron

microscope (SEM), flow cytometry (FCM), real-time quantitative polymerase chain

reaction (RT-qPCR), immunocytofluorescense, western blotting, etc. The porous titanium

scaffolds were further embedded in the rat intervertebral muscle to analyze muscle

growth and biomechanical strength in vivo. The novel artificial TMJ prosthesis was

implanted to reconstruct the goat’s condyle and LPM reattachment was analyzed by

hard tissue section and avulsion force test.

Results: L6 muscle cells showed good proliferation potential on the porous Ti

scaffold under SEM scanning and FCM test. In RT-qPCR, immunocytofluorescense and

western blotting tests, the L6 cell lines had good myogenic capacity when cultured

on the scaffold with high expression of factors such as Myod1 and myoglobin, etc.

In the in vivo experiment, muscles penetrated into the porous scaffold in both rats

and goats. In rat’s intervertebral muscle implantation, the avulsion force was 0.716

N/mm2 in 4 weeks after operation and was significantly increased to 0.801 N/mm2

at 8 weeks (p < 0.05). In goat condylar reconstruction with the porous scaffold

prosthesis, muscles attached to the prosthesis with the avulsion force of 0.436 N/mm2

at 8 weeks, but was smaller than the biological muscle-bone attachment force.
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Conclusion: The novel designed TMJ prosthesis can help LPM attach to its porous

titanium scaffold structure area for future function.

Keywords: temporomandibular joint, prosthesis, lateral pterygoid muscle, porous titanium scaffold, muscle

attachment

INTRODUCTION

The temporomandibular joint (TMJ) plays a key role in
mouth opening, speech, chewing, and swallowing. TMJ disease
is common in clinical settings. At present, artificial total
joint replacement has become a mainstay treatment modality
for advanced osteoarthrosis, condylar tumors, TMJ ankylosis,
autologous bone graft failure, and other conditions (Mercuri
et al., 2007; Guarda-Nardini et al., 2008). However, removal
of the condyle also leads to the detachment of the lateral
pterygoid muscle (LPM) which participates in the movement
of mandibular laterotrusion and protrusion (Westermark, 2010;
Celebi et al., 2011; Zheng et al., 2019). Although it has been
reported that muscle can reattach to an autologous bone graft
(Wang et al., 2018), it has not been found to form a reattachment
with the metal of the artificial joint. The loss of attachment of
the pterygoid muscle results in lateral and forward movement
limitation and serves as an obstacle in fine chewing functions.
Studies have shown that the natural condylar translational
movement range is about 16mm, whereas the artificial joint
can only make a rotation movement <6mm (Sonnenburg and
Sonnenburg, 1985; Mercuri et al., 1995; Wojczyńska et al., 2016).
This increases the burden on other muscles and the contralateral
natural joint, leading to discomfort and/or internal derangement
of the contralateral joint (Ramos and Mesnard, 2015). Our
previous study also found out that more than 30% of patients
with unilateral joint replacement complained about discomfort
in their contralateral joints, including clicking, soreness, muscle
tension, etc. (Zou et al., 2019).

Based on the above, we propose a hypothesis that if the
LPM can reattach to the artificial joint, it will promote the
function of the joint (Figure 1A). In this study, we used 3D
printing technology to establish a porous structure in the
TMJ prosthesis for LPM reattachment. We then tested its
feasibility through an in vitro cell experiment and in vivo in rat
intramuscular implantation and goat condyle reconstruction to
test its biocompatibility.

MATERIALS AND METHODS

This study was approved by the local ethics board of the hospital
(Jiuyuan Lunshen, No. 73, 2015).

Design and Manufacture of 3D Printed
Porous Titanium Scaffold and TMJ
Prosthesis
A porous titanium structure with a diameter of 5mm, a thickness
of 2mm, a pore diameter of 500µm, and a porosity of 75% was
designed for cell adhesion experiments in vitro. In addition, a
porous titanium scaffold with a diameter of 10mm, a thickness
of 5mm, and same pore diameter and porosity as the first

structure was designed for the use of intervertebral muscles in
the rat’s back implantation. Based on the Computed Tomography
(CT) dicom data of goat mandibles, a prosthesis for condyle
replacement was designed with a porous structure in the neck
for LPM reattachment (Figures 1B–E). The scanning electron
microscopy (SEM) and energy dispersive spectrometer (EDS)
scanning were used to confirm the element consist of the printed
scaffold (Figures 1F–J). All the above scaffolds and prosthesis
were produced using 3D printing by Ti6Al4V (Sunshine Co
Ltd, Shanghai, China). Ultrasonic cleaning and disinfection
under high temperature and high pressure conditions were
also performed.

Cytology Evaluation of 3D Printed Porous
Titanium Scaffold for Myogenic Cell
Adhesion and Bioactivity
The porous titanium scaffold materials were fully immersed in
α-MEM medium containing 10% fetal bovine serum (FBS) and
cultured at 37◦C in a 5% CO2 incubator for 72 h. The material
leaching liquid was collected and stored in a refrigerator at 4◦C.

The L6 rat myoblast cell line (purchased from the Chinese
Academy of Biology Cell Bank, Shanghai) was inoculated into a
96-well plate at a density of 2 × 103 cells per well. The material
leaching liquid and a 10% FBS α-MEM complete medium were
also added. The observation period was every 24 h and lasted for 5
days, with five replicate wells set in each group. The proliferation
of cells in the two groups was determined by a cell counting kit-8
(CCK-8) test in order to study the biological toxicity impact of
porous titanium material on L6 cells.

The L6 cells were inoculated on the surface of the porous
titanium scaffold at a concentration of 1 × 10 6/ml and
cultured in a 37◦C 5% CO2 incubator for 4 h to allow the
cells to adhere to the material. They were then cultured
in a complete medium containing of 10% serum, which
was changed every other day. After days 1, 3, and 5 of
incubation, the cells were fixed with 2.5% glutaraldehyde
for 4 h at room temperature, and the morphology,
adhesion, as well as proliferation of the cells were observed
by SEM.

Flow cytometric analysis was carried out to verify the
apoptosis which was led by the L6 cells co-cultured with
scaffolds due to impact of metal material after 1, 3, and 5 days.
Furthermore, after co-culturing with scaffolds, the L6 cells were
stained by Calcein-AM and propidium iodide (PI) to label living
cells and dead cells, respectively. In the fluorescence scan, the
Calcein-AM stained living cells showed green fluorescence and
PI stained dead cells showed red fluorescence.

Total RNA was obtained from the L6 cells cultured on the
scaffold for 3 days by using RNAExpress Total RNAKit (Ncmbio,
Suzhou, China) according to the manufacturer’s instructions.
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FIGURE 1 | The 3D printed titanium porous scaffold and the elements analysis. (A) The schematic diagram of “LPM functional reattachment region” of TMJ

prosthesis. (B) The 3D printed titanium scaffold for cytological experiments. (C) The 3D printed titanium scaffold for rat intervertebral implantation. (D) The CAD design

of the novel prosthesis. (E) Simulated surgery and implantation of prosthesis in goat with CAD. (F) SEM scanning of cytological used Titanium scaffold. (G) EDS test of

the elements in the 3D printed scaffolds. (H,I) Mapping analysis of the elements in the 3D printed scaffolds. (J) Merge of the EDS mapping analysis.

NanoDrop 2000/2000C spectrophotometer was used to tested the
purity and concentration of RNA at wavelengths of 260/280 nm.
PrimeScriptTM RT Reagent Kit (TaKaRa Biotechnology) was then
used to reverse transcribe 1µg of extracted RNA into cDNA. The
resultant cDNA was used as template in the TB Green R© Premix
ExTaqTM Kit (TaKaRa Biotechnology) master mix and real-time
quantitative polymerase chain reaction (RT-qPCR) reactions was
performed on the Light Cycler96 Real-Time PCR System (Roche.
Ltd, Switzerland). And the rat primer sets used were displayed in
Table 1.

After 3 days of co-cultured with scaffold incubation, the
scaffold material combined with the cells was fixed with
4% paraformaldehyde and permeabilized with 0.5% Triton
X-100 (Sigma Aldrich) for 10min at room temperature. It
was then blocked with 5% bovine serum albumin (BSA)
for 30min and incubated with the primary antibodies for
the cell adhesion and myogenic-related proteins (integrin-
β1, 1:200; myoD, 1:200; Desmin, 1:200, Myoglobin, 1:100)

overnight at 4◦C. After that, the secondary anti-bodies and
the Fluorescein isothiocyanate-labeled (FITC) phalloidin for
cytoskeleton staining were incubated for 1 h at 37◦C. The results
were tested using immunofluorescence detection to confirm
adhesion and biological activity of the L6 myoblasts on the 3D
printed porous titanium scaffolds.

To define the biological activity potential of the L6 myoblasts
on the Titanium scaffold, total cellular proteins (TCPs) were
extracted from both the L6 cells cultivated on the scaffold and
the common culture dish to be used as a control, after 3 days
of inoculation for western blotting. The membranes were kept
in 5% skim milk in 1 × TBST (Tris-buffered saline with 0.1%
Tween 20) at room temperature for 1 h and then incubated with
the primary antibodies (Gapdh, HuaxingBio, 1:3000; Desmin,
Zenbio, 1:1000; MyoD, HuaxingBio, 1:1000; Myoglobin, Zenbio,
1:1000; Integrin-β1, HuaxingBio, 1:2000, TNNT1, HuaxingBio,
1:1000; VCL, HuaxingBio, 1:1000) overnight shaking at 4◦C.
Thereafter, the secondary anti-bodies were incubated for 1 h at
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TABLE 1 | Primers for the target gene.

Gene name 5’-3’ sequence (forward; reverse)

Integrin-β1 Forward 5’-CTGGTTCTATTTCACCTACTCAG-3’

Reverse 5’-CCAGTAGGACAGTCTGGAG-3

VCL Forward 5’-CTACAACTCCCATCAAGCTG-3’

Reverse 5’-TCTCGTCAAATACCTCTTCCC-3’

Desmin Forward 5’-TCTCAACTTCCGAGAAACCA-3’

Reverse 5’-TCAATGGTCTTGATCATCACTG-3’

MYH4 Forward 5’-TCATCTGGTAACACAAGAGGTGC-3’

Reverse 5’-ACTTCCGGAGGTAAGGAGCA-3’

MyoD1 Forward 5’-ATGGCATGATGGATTACAGC-3’

Reverse 5’-GACGCCTCACTGTAGTAGG-3’

TNN1 Forward 5’-GATGGAGAAATTGAAGCAACAG-3’

Reverse 5’-CCCTTTCGGAATTTCTGGG-3’

Myoglobin Forward 5’-GCAGGCTCAAGAAAGTGAATGA-3’

Reverse 5’-TAGGCGCTCAATGTACTGGAT-3’

GAPDH Forward 5’-AACTCCCATTCTTCCACCT-3’

Reverse 5’-TTGTCATACCAGGAAATGAGC-3’

room temperature and the antibody reactivity was visualized
by using Bio-rad Gel Doc XR+ image scanning (Bio-rad. Inc.,
CA, USA).

Rat Intramuscular Implantation of 3D
Printed Porous Titanium Scaffold for
Muscle Attachment Evaluation
After chloral hydrate injection anesthesia, the porous titanium
scaffold with a diameter of 10mm and a thickness of 5mm
was implanted into the intervertebral muscles of both sides
of six male Sprague-Dawley rats (6 weeks), with one scaffold
on each side (Figures 2A,B). The rats were then overdosed
with an excess of anesthetic on weeks 4 and 8. Each time 3
rats were sacrificed and one side of the fresh samples were
then tested for the maximum peeling off force of the porous
titanium scaffold-muscle using a tensile tester (Instron 3345,
Shanghai, China); while the other side specimens were fixed
in 4% paraformaldehyde for 24 h and embedded in resin for
hard tissue slicing. The distribution of muscle and collagen
fibers was distinguished by Van Gieson (V-G) staining. The
microscopy scans mainly focused on the integration of tissue-
scaffold interface integration and angiogenesis in slice. Three
fields from the upper, middle and lower part of the complete
image acquisition were selected randomly for each sample, which
were analyzed by Image J software (NIH, USA) to quantify the
percentage of tissue ingrowth area of the total pore area and to
demonstrate the integration of the muscle-metal interface as well
as the muscle and collagen distribution.

Goat Condylar Replacement by Novel
Designed Prosthesis for LPM Attachment
Six male 12-month-old goats were used for right condyle removal
and reconstruction with a novel designed prosthesis under
general anesthesia (Figure 2C). Their left TMJ was untouched

FIGURE 2 | The surgical procedure of the in vivo experiment of rats and

goats. (A) The implantation of the Titanium scaffold into the intervertebral

muscle. (B) The suture, make the muscle surround the scaffold completely. (C)

The implantation of the porous prosthesis and fasten the LPM with 5-0

absorbable suture to the prosthesis. (D) 8 weeks after surgery, the LPM grow

into the porous prosthesis (Orange arrow).

as a control method. Eight weeks after their operations, the
goats were euthanized in order to enable mandible removal.
Three of the prosthesis specimens was used to test the avulsion
force of the LPM from the prosthesis with the tensile tester.
The other three prostheses along with the LPM was fixed with
4% paraformaldehyde and prepared for hard tissue slicing with
hematoxylin-eosin (HE) staining and V-G staining. The six
normal condyles were resected with LPM attachment for avulsion
force for use as a control base. The passive maximum incision
opening (MIO) of the goats pre- and post-operation were also
recorded as a biological function test of the prosthesis.

Statistical Analysis
All statistical analyses were performed with SPSS software
(version 19.0). The results of measurement were displayed as
mean ± standard deviation (SD). The independent-sample t-
test was used for RT-qPCR, western blotting measurement,
histological analysis and avulsion force comparison, and one-way
ANOVA test was used for CCK-8 proliferation rate. A p-value of
0.05 was considered statistically significant.

RESULTS

The results of CCK-8 cell proliferation test experiment showed
that there was no significant difference in cell proliferation
between the material leaching solution culture group and the
normal medium group, indicating that the porous titanium
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FIGURE 3 | The biosafety of the scaffold were verified after co-cultivation with the scaffold. (A) CCK-8 test of cell proliferation in leaching liquid and ordinary culture

medium, and in both situations, cells proliferate actively with no statistical difference (p > 0.05). (B–G) SEM scanning of L6 myoblast cultivated on the Titanium

(Continued)
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FIGURE 3 | scaffold, (B,E) showed in 1 day, (C,F) showed in 3 days, (D,G) showed in 5 days, could see significant cell proliferation in 5 days, (B–D) 50 x, (E–G) 500

x. (H) Flow cytometry detection analysis of the cells cultured in dishes and on the Ti scaffold; and both the cells cultured in dishes or on the scaffold showed high

activity with low apoptosis rate. (I) The cells on the scaffolds were taken by laser confocal microscopy (Green are living cells, and red are dead cells) in 1, 3, and 5

days. Significant proliferation with low cell death rate can be observed.

material had no obvious toxicity to L6 cell proliferation
(Figure 3A).

SEM observation showed that the L6 cells adhered tightly
to the porous titanium scaffold material, with continuous cell
proliferation and the number of cells increasing significantly.
Under the 50-foldmicroscope, a large number of cells can be seen
sticking to the scaffold material. Furthermore, under the 500-
fold microscope, the cells can be seen to be stretched, and reveal
pseudopods. The pseudopods allow the cells to connect to each
other and across the pores of thematerial, which can be seen from
adjacent cells. Moreover, some cells even merged to form a sheet,
and a large amount of secretory matrix is visible covering the
surface of the material (Figures 3B–G). Flow cytometric analysis
of L6 co-cultured with scaffolds revealed that the co-cultured on
the scaffold did not cause an obvious increase in apoptosis due
to the metal iron release or scaffold structure compared with
dishes (Figure 3H). Moreover, after co-culturing with scaffolds,
the Calcein-AM and PI staining results revealed that the L6
cells exhibited good biocompatibility and proliferation capacity
cultured on the scaffold (Figure 3I).

The RT-qPCR results showed that when co-cultured on the
scaffold, the L6 cells showed even stronger myogenic bioactivity
compared with cultured in the dishes (Figure 4A). The results
of confocal microscopy scanning showed that the FITC labeled
cytoskeleton and integrin-β1 were abundantly expressed after
the L6 cells were co-cultured with porous titanium scaffolds.
The myogenic-related factors as MyoD, Myoglobin, Desmin
were significantly expressed, indicating that the myoblasts
and porous titanium scaffold have strong biocompatibility
in vitro (Figure 4B). The western blot results of cell culture on
scaffold and the control group showed that the L6 myoblast
showed greater myogenic differentiation factor expression on
the 3D printed titanium scaffold, and the expression of MyoD,
myoglobin and TNNT1were significantly higher than the control
group, with no difference in Desmin. However, the expression of
integrin-β1 factor in the scaffold group was lower than that in
control group (p < 0.05, Figures 4C,D).

For the in vivo experiment, the rat intervertebral muscle
porous titanium scaffold was implanted for 4 and 8 week-
periods. After drawing materials, the gross overview showed that
the muscles and materials of the two groups were both well-
combined, the color was red-pink and soft to the touch, with
no ectopic bone formation (Figures 5A,E). Additionally, the V-
G staining of the slice showed that the muscle cells and collagen
fibers grew into the porous titanium scaffold together, and some
porous titanium scaffolds had blank areas at the edges of the
scaffold and the tissue, which means that they were not fully
integrated. The newly formed red stained tube-like structure is
visible in the pores, which is more common in the week 8 samples
and demonstrates a new capillary (Figures 5B–D,F–H). The

muscle tissue can grow into majority of the pores of in the cross-
section view of the specimen of 8 week, but the distribution was
not uniform (Figure 5I). The avulsion force for the 4 weeks group
was 0.716 N/mm2 and increased to 0.801 N/mm2 at 8 weeks
(Figure 5J). And in the histological analysis, the average rate of
integration was 88.36% at 4 weeks, which further increased to
93.27% (p < 0.05) at 8 weeks, at which the proportion of collagen
fibers increased from 27.37% to 35.98% (p < 0.05) and the
proportion of muscle fibers decreased accordingly (Figure 5K).

The average passive MIO of the six goats under general
anesthesia was 57.38± 2.83mm pre-operatively, and the average
passive MIO was 56.47± 3.97mm at 8 weeks after the operation,
with no significant difference (p > 0.05). A gross view of the
six prosthesis specimens showed that muscle grew into the
porous area of the prosthesis (Figure 2D). There was no ectopic
bone formation either in or outside the muscle attachment.
The average maximum avulsion pressure of the LPM from the
condyle in the goat was 0.989 ± 0.036 N/mm2, and 0.436 ±

0.038 N/mm2 of the LPM from the novel designed prosthesis at
8 weeks (p < 0.05, Figures 6A–C). The hard tissue slice with HE
staining and V-G staining showed that the biomimetic prosthesis
formed increasingly good biological integration with the tissue.
It is showed that until the 8th week, the tissue penetrated
into the muscle function zone and almost formed complete
integration with obvious vessel generated (Figures 6D–I). The
prosthesis-tissue junction was mainly collagen fiber binding, and
the neonatal vessel structure was visible. And according to the HE
stanning and histological analysis, the tissue ingrowth percentage
increase from 73.28± 5.86 to 93.65± 3.78 (p < 0.01, Figure 6J),
and the number of capillaries and vessels increased to 7.29± 1.48
per field as well at 8 weeks specimens (p< 0.05, Figure 6K). Also,
it has to be admitted that there were still some small blank gaps
between the edge of the prosthesis and the tissue.

DISCUSSION

TMJ is the only movable joint of the cranial and maxillofacial
region, which dominates the mandibular movement and
participates in important functions such as speech and chewing.
Artificial TMJ replacement is an effective method for end-
stage TMJ diseases. It has been widely used in European and
North America. However, the main problem of artificial TMJ
prosthesis is limited joint function, especially in laterotrusion
and protrusion movement, which is caused by the loss of LPM
attachment and functioning (Wojczyńska et al., 2016). Although
there have been many modifications based on mechanical
changes, few considered muscle reattachment, until one sutured
muscle to a porous structure filled with bone marrow in a
designed TMJ prosthesis (Mommaerts, 2019). In this study, we
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FIGURE 4 | Bioactivity test of L6 myoblast on Titanium scaffold in vitro. (A) RT-qPCR analysis of mRNA expression fold change of integrin-β1, Desmin, MyoD,

Myoglobin, TNNT1 and VCL expression in dish cultured and scaffold incubated group. The data are presented as the mean ± SD (*p < 0.05, **p < 0.01, ***p <

0.001). (B) Confocal microscopy with immunofluorescence of nuclei, cytoskeleton, Desmin, integrin-β1, MyoD and Myoglobin. (C) Western blot results of integrin-β1,

Desmin, MyoD, Myoglobin, TNNT1, and VCL protein expression in dish cultured and scaffold incubated group. (D) Proteins expression levels were normalized to the

expression of GAPDH. The data are presented as the mean ± SD (**p < 0.01).

proposed a novel design for LPM attachment to prostheses
by using 3D printed porous scaffold and test the possibility
of only muscle attachment and ingrowth by in vitro and
in vivo experiments.

It is confirmed that titanium and titanium alloys have good
biological compatibility with bone tissue and, as such, have been
widely employed in surgical internal rigid fixation, implants,
and prostheses (Li et al., 2013; Dai et al., 2016; Bosshardt
et al., 2017; Ghanaati et al., 2019). The modification of titanium
alloy can be benefit to the tissue integration as more elements
has been added to the mixture, which can increase the bone
growth and integration (Guo et al., 2013; Liu et al., 2015). The
development of 3D printing technology has helped to realize
advances in porous scaffold manufacture, which provides a
favorable environment for the transportation of cells, blood
vessels, tissue metabolites products and nutrients. It is reported
that a pore size of about 400µm is beneficial for the growth
of bone tissue (Bobyn et al., 1999), and a large pore size is
conducive to the penetration and regeneration of blood vessels
(Thorson et al., 2019). Porous titanium also has good osteo-
conductivity and can achieve biological fixation with bone.
The studies above gave us a clue that the Ti porous structure

scaffold may also have the potential for soft tissue reconstruction,
thus in this study, we tried to use porous Ti scaffold for
muscle attachment.

Research on the adhesion between titanium alloys and soft
tissues has gained more and more attention in recent years.
In the previous studies, researchers found that the fibroblast
can form a dense biological integration with the implants and
can reach better results with surface modifications as roughed
surface (Lee et al., 2015; Rieger et al., 2015). Furthermore, it
was also discovered in the craniofacial surgery that after 1 year
implantation, the surface of the titanium plate was generally
covered with dense, fibrous connective tissue (Armencea et al.,
2019). Janseen et al. found the porous titanium is suitable for the
soft tissue ingrowth and combination (Janssen et al., 2009). He
used a porous titanium mesh to reconstruct a tracheal support
placed under the mucosa of rabbit trachea. After 6 weeks, HE
staining revealed that the fibrous connective tissue grew into
the titanium mesh and that the porous titanium mesh formed a
tight integration with the tracheal cartilage. Additionally, Zhao
et al. (2008) implanted the porous titanium mesh into the
intervertebral muscle of rats. After 8 weeks, themaximummuscle
avulsion force from the porous titanium mesh reached to 2.46N,
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FIGURE 5 | The implantation of titanium scaffold into the intervertebral muscle of rats. (A–D) The specimen of 4 weeks, (A) Gross specimen, (B) hard slicing with V-G

staining, 10 x, (C,D) hard slicing with V-G staining, 20 x; (E–H) The specimen of 8 weeks, (E) Gross specimen, (F) hard slicing with V-G staining, 10 x, (G,H) hard

slicing with V-G staining, 20 x. Blue arrow: the blank gap between tissue and pore, red arrow: the newly formed capillary. (I) Histologic cross-section at 8 weeks

showing the ingrowth of muscle tissue into the scaffold,4 x. (J) The avulsion force of titanium scaffold implanted in rats for 4 and 8 weeks; with a significant increase in

8 weeks (*p < 0.05). (K) The histological analysis of the tissue integrated percentage and distribution in rats. The data are presented as the mean ± SD (*p < 0.05).
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FIGURE 6 | The in-situ reconstruction of goat temporomandibular joint with porous Titanium prosthesis. (A) The avulsion force test of goat condyle-LPM. (B) The

avulsion force test of prosthesis-LPM reattachment. (C) The average maximum avulsion pressure of condyle-LPM and prosthesis-LPM in both 4 and 8 weeks. The

(Continued)
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FIGURE 6 | data are presented as the mean ± SD (*p < 0.05). (D–I) The hard slicing of prosthesis-LPM specimen. (D) The V-G staining of hard slice of

muscle-reattachment functional prosthesis at 4 weeks, 4x−10x. (E) The HE staining of hard slice of muscle-reattachment functional prosthesis at 4 weeks, 4x−10x.

(F) The V-G staining of hard slice of muscle-reattachment functional prosthesis at 8 weeks, 4x−10x. (G) The HE staining of hard slice of muscle-reattachment

functional prosthesis at 8 weeks, higher percentage of space were occupied with new ingrowth tissue with vessels compared with 4 weeks specimen, 4x−10x. (H)

The V-G staining of hard slice of muscle-reattachment functional prosthesis through cross-section at 8 weeks, 4x. (I) The HE staining of hard slice of

muscle-reattachment functional prosthesis through cross-section at 8 weeks; and the muscle tissue with new generated vessel can be observed, 4x. (J) The

histological analysis of the tissue ingrowth percentage in the in-situ replaced prosthesis based on HE stanning. The data are presented as the mean ± SD (**p <

0.01). (K) The number of capillaries and vessels in optical microscope scanning filed. The data are presented as the mean ± SD (**p < 0.01).

and the pressure reached to 0.56± 0.23 N/mm2, which is smaller
than that (0.801 N/mm2) in our study.

In tendon reconstruction, Reach et al. (2007) showed that the
tendon can heal directly with the porous titanium material and
reached 90% of the mechanical strength of the control side 6
weeks after fixation with titanium nails and spacers in the achilles
tendon reconstruction of beagles, and good kinematic function
as walking and running was also acquired. As it was shown in
our study, the bio-connection of porous structure and the soft
tissue is mainly formed with collagen fibers, thus how to form
a prosthesis-tendon-muscle reconstruction and its function may
need further research to meet higher requirement.

In this study, we first proposed the hypothesis that muscle
can attach to the prosthesis with porous scaffold, then tested
the possibility by muscle cells with the porous scaffold in vitro.
After positive result, we moved to rat muscle implantation and
later on condyle reconstruction in goat. The results showed that
both myoblast cells andmuscle tissues had good biocompatibility
with the porous titanium scaffolds. According to the PCR and
western blot experiment, the L6 myoblast cells cultured on
the scaffold showed better myogenic capability when compared
with the common culture group, but less integrin-β1 expression
because of the culture dish surface treatment. This serves as
an important reminder that future improvement of the scaffold
design could consider enhancing the muscle adhesion through
material modification, which plays a vital important role in
the tissue integration and the metal material scaffold. More
irons or structure modifications may be tested for cell adhesion
improvement. The implantation of a porous titanium scaffold
in rat muscle further confirmed that muscle can grow into the
pores of the scaffold in vivo, and the integration percentage
between muscle and the porous titanium scaffold increased
along with the implantation time. Our novel prosthesis for goat
condyle reconstruction likewise showed the feasibility of muscle
attachment to a prosthesis. Muscles with new blood vessels could
be observed in the porous titanium scaffold. In the pore, collagen
fibers were integrated with the titanium at the edge, while muscle
fibers were integrated in the middle of the pore. This being
the case, more time and observation are needed to understand
whether muscle fibers will change to collagen fibers like muscle
tendons after biomechanical movement. Whereas, the tracking
force of themuscle from the prosthesis 8 weeks after implantation
reached to 0.436 N/mm2, which is still insufficient compared
with the one of condyle-LPM attachment (0.989 N/mm2). Thus,
further research is needed to optimize the material structure and
improve the force of muscle attachment to the porous scaffold.
In the future study, it may be concerned that the promising

myogenic iron could be added into the metal materials to
promote the cell adhesion and tissue integration as what has been
done in the bone research.

In conclusion, our novel TMJ prosthetic provides the
possibility of muscle ingrowth and attachment which may
improve mandibular movement in the future.
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1School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China, 2School of
Science, Jiangsu University of Science and Technology, Zhenjiang, China, 3Key Laboratory of Marine Materials and Related
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In this work, the characteristics of passive films formed on as-cast Ti-6Al-4V before and
after transpassivation by electrochemical methods will be studied. A simulated body fluid of
Hank’s solution was used as the electrolyte in this work. According to the potentiodynamic
polarization test, the passivation range, transpassive range, and repassivation range of as-
cast Ti-6Al-4V were obtained. Afterward, the potentiostatic polarization was employed to
passivate the Ti-6Al-4V in both passivation and repassivation ranges. Electrochemical
impedance spectroscopy (EIS) was used to analyze the characteristics of formed passive
films. Different electrochemical behavior of as-cast Ti–6Al-4V is found in passivation and
repassivation ranges. The passivation current density of the sample in the repassivation
range is significantly larger than that in the passivation range. Meanwhile, the growth rate of
passive film in the repassivation range is also greater than that in the passivation range.
Although the sample shows a higher charge transfer impedance in the repassivation range,
metastable pitting corrosion is also observed, indicating the formation of the unstable
passive film. Such results advance the understanding of as-cast Ti-6Al-4V polarized under
different potentials for potential biomedical applications.

Keywords: Ti-6Al-4V, corrosion, passive film, transpassivation, electrochemical measurement, Mott-Schottky

INTRODUCTION

Titanium (Ti) and its alloys are widely used in a wide variety of industrial applications, such as
biomedical, marine, and chemical industries, due to their fascinating properties, including high
specific strength, excellent corrosion resistance, and good biocompatibility (Lu et al., 2009; Rabadia
et al., 2019a; Zhang and Chen, 2019; Chen et al., 2020a; Liu et al., 2020). Primarily, Ti alloys can be
classified as α-type Ti alloys (Zhang and Attar, 2016; Chen et al., 2017b; Zheng et al., 2019; Chen
et al., 2020b), (α+β)-type Ti alloys (Kang and Yang, 2019; Montiel et al., 2020; Semenova et al., 2020),
β-type Ti alloys (Zhang et al., 2011; Wang et al., 2016; Wang et al., 2018a; Rabadia et al., 2019b; S. Liu
et al., 2020), and Ti-based composites (Zhang and Xu, 2004; Zhang et al., 2006; Lu et al., 2009; Yang
et al., 2020a; Yang et al., 2020b). Among the commercial Ti materials, Ti–6Al–4V alloy has received
considerable attention owing to good fatigue resistance, strength, and corrosion resistance (Bai et al.,
2017; Dai et al., 2017; Zhao et al., 2018). However, Ti–6Al–4V still has some intrinsic disadvantages.
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For example, Ti–6Al–4V exhibits a relatively low hardness of
290–375 HV (Zhang et al., 2020b). The low wear resistance of
Ti–6Al–4V may easily cause the seizure in service (Stolyarov
et al., 2004). Furthermore, although Ti–6Al–4V exhibits good
corrosion resistance in the corrosive environment, a complex
corrosive environment always degrades the corrosion resistance
of Ti–6Al–4V due to the presence of halogen ions, hydrogen ions,
hydroxyl ions, and also other functional groups (Hanawa, 2004;
Chen and Thouas, 2015; Yu et al., 2015; Qin et al., 2019). Such
species degrade the passive film formed on Ti–6Al–4V and
thereby the corrosion resistance. Therefore, surface
modifications are frequently employed to produce the barrier
layer on Ti–6Al–4V before it is applicated.

So far, there are a variety of surface modification methods for
improving the surface properties of metallic materials, such as
laser processing (Balla et al., 2010; Chai et al., 2017; Chai et al.,
2018; Xiang et al., 2020), microarc oxidation (Wang et al., 2018b;
Dehghanghadikolaei et al., 2019; Yang et al., 2020b), thermal
spraying (Jaeggi et al., 2011; Chen et al., 2019a; Chen et al.,
2019b), friction stir processing (Wang et al., 2015; Wang et al.,
2017; Zhang et al., 2019c), ion implantation (Rautray et al., 2011;
Qin et al., 2017), and so on. Among these methods, anodic
oxidation is a costly method that applies an anodic potential
on the metallic sample in the solution. Afterward, a compact and
protective oxide film can be produced after the anodic oxidation
process (Liu et al., 2004). Such a protective oxide film enhances
the surface properties of Ti and Ti alloys. Therefore, anodic
oxidation is a good method to synthesize different types of oxide
films on metallic materials. The primary advantage of anodic
oxidation is the good adhesion and bonding between the oxide
film and Ti substrate. Hence, the anodic oxidized Ti and Ti alloys
can be well-employed in the aerospace and biomedical industry
(Aladjem, 1973; Babilas et al., 2016; Yang et al., 2020c).

The thickness of the produced oxide film on Ti and Ti alloys is
determined by the applied anodic potential (Liu et al., 2004).
Generally, the thickness of oxide film is almost linearly dependent
on the applied potential, obeying the relationship of d � αU ,
where d is the thickness of produced oxide film and U is the
applied potential. α is a constant, which is within a range of
1.5–3 nm V−1, depending on the chemical compositions of Ti
electrodes and solution (Liu et al., 2004). However, such an
empirical formula may be not accurate since the transpassive
behavior and the repassivation are always found in the
potentiodynamic polarization curve of Ti and Ti alloys above
the applied potential of about 1–1.5 V (Narayanan and Seshadri,
2008; Qin et al., 2019; Seo and Lee, 2019). The transpassive
behavior of Ti and Ti alloys results from the oxygen evolution
reaction (Kong andWu, 2007). Water is decomposed into H2 and
O2 during this reaction, leading to the imperfection of the passive
films formed on Ti and Ti alloys. Therefore, is this equation
appropriate for Ti and Ti alloys in all passivation range? Or is the
passivation film produced at the higher potential certainly better
than that produced at lower potential? Such questions are still
unclear. However, the information regarding the passive films
produced before and after transpassive behavior is significantly
important to the further understanding of the passivation
behavior of Ti and Ti alloys and their wider applications.

Therefore, in this work, as-cast Ti–6Al–4V is selected as the
experimental alloy. According to the potentiodynamic polarization
curve, the first passivation range and the repassivation range can be
obtained. Subsequently, the oxide films are produced at the
different passivation range and are investigated based on their
semiconductive properties and impedances. Hence,
electrochemical measurements are primarily used and the
formation mechanism of oxide film on Ti–6Al–4V.

EXPERIMENTAL

Material Preparation and Microstructural
Characterization
As-cast Ti–6Al–4V alloy was prepared via vacuum arc remelting
three times to ensure uniformity. The compositions of the
experimental alloy were 5.94 wt% Al, 4.28 wt% V, and the
balance of Ti. The sample was ground and polished to a
mirror surface finish. Afterward, the polished sample was
etched in a mixed solution of HF, HNO3, and H2O for about
15 s (1:2:7 in vol%). The microstructure of the etched sample was
examined by an optical microscope (OM, OLYMPUS PMG3).
The phase constituent of the polished sample was analyzed by an
X-ray diffraction (XRD) diffractometer (Empyrean, PANalytical)
with Co-Kα radiation. During the XRD test, the following
parameters were used: the scanning range was between 30°

and 100°, and the scanning rate was 0.03°/s. Jade 6.5 software
was used to analyze the obtained XRD data.

Electrochemical Measurements
The specimens with a size of 10 × 10 × 10 mm3 were employed for
electrochemical measurements. The exposure area of the specimen
was about 100 mm2. Hank’s solution is used as the electrolyte and
composed of 0.35 g/L NaHCO3, 0.140 gL−1 CaCl2, 0.098 gL−1

MgSO4, 0.4 gL−1 KCl, 0.06 gL−1 KH2PO4, 8 gL−1 NaCl,
0.048 gL−1 Na2HPO4, 1 gL−1 C6H12O6, and 0.011 gL−1

C19H14O5SNa. The pH of Hank’s solution is adjusted to 7.35 by
diluted HCl and NaOH. A three-electrode-system electrochemical
workstation (CHI660E, Chenhua) was employed for characterizing
the corrosion behavior of as-cast Ti-6Al-4V. Ti-6Al-4V was
employed as the working electrode, a platinum sheet was used
as the counter electrode, and a saturated calomel electrode (SCE)
was used as the reference electrode. The open-circuit potential
(OCP) test for 1800 s was conducted before the electrochemical
impedance spectroscopy (EIS) test and potentiodynamic
polarization test. Subsequently, a potentiodynamic polarization
test was conducted in a sweeping range of −0.25–+2 V (vs.
OCP) at a sweeping step of 0.2 mV/s. According to the
potentiodynamic polarization test, the passivation range,
transpassive range, and repassivation range were obtained.
Therefore, the potentiostatic polarization was employed to
passivate the Ti-6Al-4V samples at the potentials of 0.1 VSCE,
0.3 VSCE, 0.5 VSCE, 0.7 VSCE, 0.9 VSCE, 2.1 VSCE, 2.3 VSCE,
2.5 VSCE, 2.7 VSCE, and 2.9 VSCE. Then, EIS was conducted to
acquire effective capacitance at 1 kHz (Guan et al., 2018).
Subsequently, Mott-Schottky tests were done at the frequency of
1 kHz, sweeping the potential from film formation potential to ‒
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1.0 V (vs. OCP) with a step of 10 mV/s. All potentials reported
were against SCE in this work. Each test was repeated three times to
ensure the data reproducibility. The software ZsimpWin 3.30 was
used to analyze the EIS data and the software Cview 2.6 was used to
analyze the potentiodynamic polarization data.

RESULTS AND DISCUSSION

Microstructural Features
Figure 1 shows the XRD pattern of the Ti-6Al-4V sample. Since Ti-
6Al-4V is a dual-phase Ti alloy ((α+β)-type Ti alloy), the peaks of
both α-Ti and β-Ti are observed. V is a β-stabilizer for Ti alloys
(Chen et al., 2020a). Due to the small content of V in the sample,
only a weak peak of β-Ti is observed in the XRD pattern. According
to the integrated area method (Zhang et al., 2003;Chen et al., 2018a;
Sang et al., 2019), the volume fraction of α-Ti is calculated to be 95%
and β-Ti is 5%. Generally, (α+β)-type Ti alloys contain a certain
fraction of β phase (about 5–30 vol%) (Lei et al., 2017). Therefore,
(α+β)-type Ti alloys are heat treatable due to the second phase in the

metal matrix (Chen et al., 2015b; Zhang et al., 2017; Sabban et al.,
2019). Figure 2 is the optical image of the microstructure of Ti-6Al-
4V. It can be observed that the primary β grains have a size over
several hundred microns. β-Ti is distributed on the boundaries of
primary β grains. In the inner part of primary β grains, a
considerable number of α-Ti laths are found. Such a
Widmanstätten microstructure is produced due to the
transformation of β → α at a relatively low speed. Similar
microstructures can be frequently found in the hexagonal close-
packedmetallicmaterials, such as Zr alloys and other Ti alloys (Chen
et al., 2018b; Chen et al., 2018c; Yang et al., 2019; Yang et al., 2020a).

Potentiodynamic Polarization Test
Figure 3 shows the potentiodynamic polarization curve of the sample
in Hank’s solution at 37°C. Typically, the sample is passivated after the
anodic activation zone as an indication of nearly constant passivation
current density. Such a typical electrochemical behavior is frequently
observed in valve metals (Qin et al., 2019). After fitting the
potentiodynamic polarization curve, it shows that the corrosion
potential of as-cast Ti-6Al-4V in Hank’s solution at 37°C is
-0.405 ± 0.027 VSCE. The corrosion potential indicates the energy
needed for corrosion reaction of a specific alloy in a specific corrosive
environment (Chen et al., 2017a). The corrosion current density of as-
cast Ti-6Al-4V is 0.031 ± 0.008 μA cm−2. The corrosion current
density illustrates the spontaneous corrosion rate of a specific alloy
at the corrosion potential (Chen et al., 2017a). The data of both
corrosion potential and corrosion current density fall in the outcomes
in the literature, indicating the reliability of the potentiodynamic
polarization test in this work. As seen from Figure 3, when the
applied anodic potential exceeds a certain value, the passivation
current density keeps almost constant as the applied anodic
potential increases (Qin et al., 2017; Zhang et al., 2019a; Zhang
et al., 2019b). The passivation current density is nearly constant
from the potential of 0 VSCE to 1.2 VSCE. For Ti and Ti alloys,
transpassive behavior is often observed (Narayanan and Seshadri,
2008; Qin et al., 2019; Seo and Lee, 2019). In this work, the
transpassivation range is observed from 1.2 VSCE to 1.5 VSCE. The

FIGURE 1 | X-ray diffraction pattern of as-cast Ti-6Al-4V used in
this work.

FIGURE 2 | Optical image of the microstructure of as-cast Ti-6Al-4V.

FIGURE 3 | Potentiodynamic polarization curve of as-cast Ti-6Al-4V in
Hank’s solution at 37°C.
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current density rapidly increases with increasing the applied potential.
When the applied potential reaches 1.5 VSCE, the repassivation
behavior of Ti-6Al-4V takes place. The passivation current density
of Ti-6Al-4V slowly increases with increasing the applied potential in
the repassivation range. Meanwhile, another feature can be observed.
In the passivation range, the potentiodynamic polarization curve is
significantly smooth. However, in the repassivation range, the
potentiodynamic polarization curve is not smooth but has several
stabs. Such stabs are indicative of metastable pitting corrosion
(Frankel, 1998). Such a finding indicates the passivation of Ti-6Al-
4V is imperfect in the repassivation range. According to the results of
potentiodynamic polarization tests, the film formation potentials for
potentiostatic polarization tests are selected at 0.1–0.9 VSCE and
2.1∼2.9 VSCE in the following.

Potentiostatic Polarization Tests
It has been widely reported that the current density of the sample
decreases quickly within the first 30 s and then slowly decreases to
a nearly stable value due to the formation of the passive film (Gai
et al., 2018). Therefore, the growth kinetics of passive film follows
the Macdonald model (Lakatos-Varsányi et al., 1998), which can
be expressed as the following equation:

log i � logA − n log t, (1)

where i is the current density, t is the passive time, and A and n are
constants. The value of n can be used to indicate the growth rate of
the passive film. Figure 4 reveals the double-log plots of current-
time of as-cast Ti-6Al-4V in the potentiostatic polarization tests in
the passivation range and repassivation range in Hank’s solution at
37°C, respectively. It can be found that the double-log plots of
current-time are basically linear and the current density of the
sample at high potential is always greater than that at low potential.
Basically, n in Eq. (1) tending to be −1 illustrates that the growth
process is primarily determined by the electrical field to generate a
compact and protective passive film (Galvele et al., 1990). In
Figure 4A, the values of n are −0.857, −0.912, −0.877, −0.859,
and −0.935 for the double-log plots of current-time obtained at
0.1 VSCE, 0.3 VSCE, 0.5 VSCE, 0.7 VSCE, and 0.9 VSCE. In Figure 4B,
the values of n are −0.816, −0.834, −0.835, −0.788, and −0.713 for
the double-log plots of current-time obtained at 2.1 VSCE, 2.3 VSCE,
2.5 VSCE, 2.7 VSCE, and 2.9 VSCE. Based on these results, the passive
films formed at the passivation range have higher quality than those
formed at the repassivation range. Meanwhile, similar to the results
presented in Figure 3, the curves obtained at the passivation range
(0.1∼0.9 VSCE) are smooth. By contrast, the curves obtained at the
passivation range are not smooth. Some features of metastable
pitting corrosion are found. In particular, at the applied potential of
2.9 VSCE, the metastable pitting corrosion is significantly obvious.
The pitting corrosion results from the rupture of passive films form
on the Ti and Ti alloys. If the rupture of passive films is healed by the
passivation ability of alloys, the pitting corrosion is defined as the
metastable pitting corrosion. If the rupture of passive films is not
healed, the pitting corrosion is stable pitting corrosion. Generally,
such stabs in the curves of current density (including Figures 3, 4)
indicate the rupture and healing of passive film (Dai et al., 2016a;
Dai et al., 2016b; Qin et al., 2018). The higher applied anodic
potential provides a higher capability to adsorb the anions,
including halide ions (Basame and White, 2000). The halide ions
are well known as one of the factors to trigger the metastable pitting
corrosion, even stable pitting corrosion for the passive metals.
Therefore, lots of metastable pitting corrosion phenomena are

FIGURE 4 | Double-log plots of current-time of as-cast Ti-6Al-4V in the
potentiostatic polarization tests under different file formation potentials in
Hank’s solution at 37°C, (A) the curves obtained under 0.1-0.9 V and (B) the
curves obtained under 2.1-2.9 V.

FIGURE 5 |Quasi-steady passivation current densities of as-cast Ti-6Al-
4V in potentiostatic polarization tests under different applied potentials in
Hank’s solution at 37°C.
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observed under high potential. Such a phenomenon is always
associated with the sudden increase and subsequent decrease in
the current density. This finding reflects the low quality of passive
film formed on the sample at the applied potential of 2.9 VSCE.

After 1800 s potentiostatic polarization tests in Hank’s solution at
37°C, the passivation current densities of the samples almost reach
stability. The quasi-steady passivation current densities of samples are
shown in Figure 5. It can be found that the quasi-steady passivation
current densities of samples gradually increase from 0.276 μA cm−2 to
0.425 μA cm−2 in the passivation range. In comparison, the quasi-
steady passivation current densities of samples significantly increase to
1.682 μA cm−2–3.985 μA cm−2 in the repassivation range, which is
increased by an order of magnitude. The quasi-steady passivation
current densities could elucidate the migration of ions at a specific
potential (Chen et al., 2017b; Guan et al., 2018). Although the alloy can
be regarded as the stable passivation state in the current situation, the
quasi-steady passivation current density illustrates the balance of the
formation and dissolution of the passive film. According to Faraday’s
law, higher quasi-steady passivation current density is related to the
smaller impedance of passive film (Vautrin-Ul et al., 2007). Therefore,
such a finding may specify that the quality of passive films formed on
as-cast Ti-6Al-4V in the repassivation range is not as good as that
formed on as-cast Ti-6Al-4V in the passivation range.

Electrochemical Impedance Spectroscopy
To further investigate the electrochemical system at the metal/
solution interfaces, EIS was conducted on the samples polarized
under different potentials in Hank’s solution at 37°C. Figure 6
shows the EIS results of the samples on which the potentiostatic
polarization tests were conducted at 0.1∼0.9 VSCE, including the

Nyquist diagram, Bode plot, and equivalent circuit diagram.
Figure 6A is the Nyquist plots. All Nyquist plots have only one
capacitor arc, which has a very large radius. The radius of the
capacitor arc increases with increasing the film formation potential.
From the Bode plots (Figures 6B, C), it is hard to distinguish the
difference among the five samples. By fitting the EIS data using the
equivalent circuit diagram in Figure 6D, the impedance
information of passive films formed on the samples at different
potentials can be obtained. In this equivalent circuit diagram
(Figure 6D), Rs and Rct correspond to the solution resistance
and charge transfer resistance, respectively. Because of the
influence of the surface roughness, the constant phase element
(CPE) is used (Chen et al., 2018d; Liang et al., 2018; Yang et al.,
2018). n is the parameter of CPE. For n � 1, CPE is regarded as an
ideal capacitor, whereas CPE is nonideal when 0.5 < n < 1 (Zhang
et al., 2020a). The fitted results of EIS are listed in Table 1.χ2 is the
sum of the square of the difference between theoretical and
experimental points, which is lower than 0.007, indicating a
good quality of the fitting in this experiment. These results
show that the values of Rs for all tests are almost the same.
However, there is a significant distinction in the values of Rct.
For the sample on which the potentiostatic polarization test was
conducted at 0.1 VSCE, the value of Rct is 1.86 ± 0.10MΩ cm2. The
values of Rct increase with the increasing film formation potential.
When the film formation potential is 0.9 VSCE, the value of Rct

reaches 4.35 ± 1.21MΩ cm2. Rct indicates the impedance of
electrons from the metal to the solution. Therefore, the higher
value of Rct illustrates the higher protectiveness of passive film.
Such a result is consistent with the outcome in the other works
(Shibata and Zhu, 1994).

FIGURE 6 | Electrochemical impedance spectroscopy of as-cast Ti-6Al-4V under different film formation potentials in passivation range in Hank’s solution at 37°C,
(A) Nyquist plots, (B) Bode impedance plots, (C) Bode phase diagram and (D) equivalent circuit.
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EIS was also conducted in the repassivation range in order to
understand the electrochemical system at the metal/solution
interfaces after transpassivation. Figure 7 shows the Nyquist
diagram, Bode plot, and the equivalent circuit diagram used
for the samples on which the potentiostatic polarization tests
were conducted at 2.1∼2.9 VSCE. The impedance of passive film
formed in the range of 2.1∼2.9 VSCE (Figure 7A) is significantly
larger than that in the range of 0.1∼0.9 VSCE (Figure 6A). Such a
result is in line with the outcomes in the literature that the
thickness of the passive film formed on Ti and Ti alloys
increases with increasing the applied anodic potential (Al-
Mayouf et al., 2004; Guan et al., 2018). The Bode phase angle
plot in Figure 7C is also different from that in Figure 6C. In
Figure 6C, the curve from 102 Hz to 10−2 Hz is a wide plateau. In
comparison, the curve from 102 Hz to 10−2 Hz has dual dumps in
Figure 7C. Such a finding illustrates that the passive film formed
on the samples in the repassivation range may have a bilayer
structure, namely, the inner barrier layer and outer porous layer

(Aziz-Kerrzo et al., 2001). Table 2 lists the fitting results of EIS in
Figure 7. Different equivalent circuits are used for fitting EIS of
different-structured passive films. Therefore, for this EIS, a
R(Q(R(QR)) equivalent circuit diagram is used to highlight the
outer porous layer on the polarized sample. Rs, Rct, and CPE have
the same meaning as Figure 6. Rf is the film resistance, which
illustrates the diffusion resistance in the defects of the outer
porous layer (Zhang et al., 2020a). χ2 is lower than 0.0007,
which also indicates a good quality of the fitting. Apparently,
Rf is significantly lower than Rct. Therefore, the corrosion
resistance (as well as the impedance of passive film) of the
polarized sample strongly depends on the value of Rct. The
value of Rct for the sample polarized at 2.1 VSCE is 7.691 ±
1.203MΩ cm2, which is nearly two times that for the sample
polarized at 0.9 VSCE. Such a finding demonstrates that the
impedance of passive film formed on the as-cast Ti-6Al-4V
increases with increasing the applied potential regardless of the
occurrence of transpassive behavior. With the continuous

TABLE 1 | Fitting results of electrochemical impedance spectra for as-cast Ti–6Al–4V after OCP tests in Hank’s solutions at 37°C. Rs means solution resistance, Rct indicates
charge transfer resistance, CPE describes charge transfer capacitance, n is the exponent of CPE, and χ2 is the sum of the square of the difference between theoretical
and experimental points.

Potential (VSCE) Rs (Ω·cm2) n Rct (MΩ·cm2) CPE ×
10−5 (F·cm−2)

χ2

0.1 18.01 ± 0.89 0.8654 ± 0.072 1.86 ± 0.10 2.24 ± 0.12 3.03 × 10−3

0.3 17.64 ± 0.72 0.8601 ± 0.090 2.76 ± 0.30 1.87 ± 0.57 1.14 × 10−3

0.5 16.70 ± 0.86 0.9049 ± 0.008 3.34 ± 0.03 1.92 ± 0.02 6.37 × 10−3

0.7 19.18 ± 0.80 0.9081 ± 0.003 3.26 ± 1.10 2.12 ± 0.43 1.53 × 10−3

0.9 18.94 ± 1.20 0.8997 ± 0.005 4.35 ± 1.21 2.01 ± 0.05 2.75 × 10−3

FIGURE 7 | Electrochemical impedance spectroscopy of as-cast Ti-6Al-4V under different film formation potentials in the repassivation range in Hank’s solution at
37°C, (A) Nyquist plots, (B) Bode impedance plots, (C) Bode phase diagram and (D) equivalent circuit.
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increase in the applied potential, the value of Rct reaches 27.143 ±
2.74 MΩ cm2 for the sample polarized at 2.9 VSCE. Therefore, the
passive film formed on the sample polarized at 2.9 VSCE has the
best protectiveness in all samples used in this work.

Growth of Passive Films
According to the anodic oxidation theory, the thickness of the
passive film is almost linearly dependent on the applied potential
(Liu et al., 2004). Therefore, the thicknesses of passive films (LSS)
formed on samples polarized at different passivation ranges were
calculated by the following equation:

LSS � εε0A
Ceff

, (2)

where ε is the relative dielectric constant (60 for TiO2 (Gai et al.,
2018)), ε0 is the vacuumdielectric constant (8.85× 10–14 F cm−1),A is
the area of Ti electrode, and Ceff is the effective capacitance. By
processing the EIS data using ZsimpWin software, the capacitance vs.
frequency curves of the polarized samples could be obtained. The
capacitance at 1 kHz was selected as effective capacitance (Guan et al.,
2018). Based on the calculation using Eq. 1, the thicknesses of passive
films formed on samples polarized at different passivation ranges are
shown in Figure 8. Figure 8A shows the thicknesses of passive films
formed on samples polarized in the passivation range. The thicknesses
of passive films basically obey the linear relationship with the film
formation potential, which is consistent with the anodic oxidation
theory. As seen from the fitting result, the slope of the fitted line is 3.30
nm/VSCE. This result means that the passive film has an increase of
3.30 nm per VSCE. The thicknesses of passive films also obey the linear
relationship with the film formation potential in the repassivation
range. However, the slope of the fitted line in Figure 8B is different
from that inFigure 8A. The passive film grows at a growth rate of 3.84
nm/VSCE in the repassivation range, which is higher than that in the
passivation range. Therefore, one can conclude that the as-cast Ti-6Al-
4V has distinct passive film growth rates in different passivation range.

Possible Film Formation Mechanism Before
and After Transpassivation
As is well known, the quality of formed passive films determines
the corrosion resistance of passive metals in corrosive environments
(Chen et al., 2015a; Chen et al., 2016). The criterion for the quality of
passive films may be varied in line with different purposes (Lu et al.,
2008; Zhang et al., 2019b). In this work, an apparent transpassivation

range is found before the passivation range and repassivation range.
Both passivation current densities and quasi-steady passivation
current densities of the samples in the potentiodynamic
polarization and potentiostatic polarization significantly increase in
the repassivation range as compared to those in the passivation range
(Figures 3, 5). The passivation current densities illustrate the ionic
migration in the passive films formed on the samples at the given
potentials, namely, the exchange of substances between the sample
and corrosive environment (Huang and Blackwood, 2005).
Therefore, it can be confirmed that the higher film formation
potential results in a higher film growth rate and a higher film
dissolution rate (Figure 5). Although the passive films formed under
higher applied potentials show a higher impedance, the higher
passivation current densities of the samples also indicate the
higher corrosion rates under the given applied potentials.
Therefore, two questions can be divided hereafter. The as-cast Ti-
6Al-4Vmay have a higher corrosion rate at a higher applied potential,
hence it can not be applied as an electrode (or other equivalents)
under a high potential. However, the passive film formed under the
high potential has high impedance. Therefore, the polarized as-cast
Ti-6Al-4V can be used as the workpiece (or part) in a corrosive
environment without applied potential (such as the human body).
Such a polarized as-cast Ti-6Al-4V would possess superior corrosion
resistance due to the high-impedance passive film.

The applied potential provides the higher driving force to
adsorb the negative ions in the electrolyte and also increases the
electric field in the passive film (DespiĆ et al., 1988). Within the
adsorbed negative ions, OH− or O2- forms TiO2 (Zhang et al.,
2020b). As such, the thickness of passive film always increases
with increasing applied potential. However, the higher applied
potential also would adsorbmore ingress ions (such as halide ions).
Such ingress ions would trigger the localized breakdown of passive
film (Zhang et al., 2018), which is observed in the samples polarized
at 2.9 VSCE (Figure 5). According to the point defect model, the
pitting corrosion or metastable pitting corrosion results from the
condensation of cation vacancies catalyzed by aggressive ions
(Macdonald, 2011). Based on the existing data, the density of
oxygen vacancies in the passive films formed on Ti-6Al-4V
decreases with increasing applied potential (Jia et al., 2016; Gai
et al., 2018). Hence, to achieve the condensation of oxygen
vacancies, a high electric field in the passive film is required. As
discussed above, the sample polarized under higher applied
potential shows higher steady-state passivation current density.
Such a phenomenon also demonstrates a higher electric field in the
passive film. The higher electric field directly results in the high

TABLE 2 | Fitting results of electrochemical impedance spectra for as-cast Ti–6Al–4V after OCP tests in Hank’s solutions at 37°C. Rs means solution resistance, Rf is film
resistance,Rct indicates charge transfer resistance, CPE1 andCPE2 describe film capacitance and charge transfer capacitance, n1 and n2 are the exponents of CPE1 and
CPE2, and χ2 is the sum of the square of the difference between theoretical and experimental points.

Potential
(VSCE)

Rs

(Ω·cm2)
Rf

(kΩ·cm2)
n1 CPE1 × 10−6

(F·cm−2)
Rct

(MΩ·cm2)
CPE2 × 10−5

(F·cm−2)
n2 χ2

2.1 15.05 ± 1.28 6.191 ± 0.50 0.8018 ± 0.050 7.19 ± 0.84 7.691 ± 1.20 2.109 ± 0.08 0.9266 ± 0.052 5.71× 10−4

2.3 16.03 ± 1.12 6.728 ± 0.02 0.8306 ± 0.061 7.15 ± 0.52 14.587 ± 1.11 2.425 ± 0.65 0.8316 ± 0.104 3.47× 10−4

2.5 13.26 ± 2.55 7.495 ± 0.52 0.7919 ± 0.098 5.66 ± 0.32 18.337 ± 1.72 2.972 ± 0.04 0.9409 ± 0.060 4.08× 10−4

2.7 15.66 ± 1.83 7.570 ± 0.20 0.8608 ± 0.088 6.30 ± 0.69 24.580 ± 2.86 3.449 ± 0.86 0.9084 ± 0.037 6.11× 10−4

2.9 14.19 ± 0.20 8.027 ± 0.06 0.7717 ± 0.006 7.33 ± 0.05 27.143 ± 2.74 2.226 ± 0.08 0.9805 ± 0.012 3.73× 10−4
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diffusion coefficient of oxygen vacancies (Lu et al., 2009; Guan
et al., 2018). The flux of oxygen vacancies is the function of the
density of oxygen vacancies and their diffusion coefficient. A high
flux of oxygen vacancies could result in the condensation of cation
vacancies. Due to observed high possibility of metastable pitting
corrosion under high applied potential (repassivation range), one
can conclude that the applied potential is decisive for the localized
destruction of the passive film.

CONCLUSION

In this work, the electrochemical behavior of as-cast Ti-6Al-4V in
Hank’s solution at 37 °C before and after transpassivation was
investigated. After carefully analyzing the microstructure of as-
cast Ti-6Al-4V, the potentiodynamic polarization test was

conducted to confirm the passivation and repassivation ranges.
By investigating the electrochemical impedance spectroscopy of
the samples polarized in passivation and repassivation ranges,
characteristics of passive films formed on as-cast Ti-6Al-4V are
further understood. Some key conclusions are drawn as follows.

(1) In the potentiodynamic polarization test, the passivation
range is observed from 0 VSCE to 1.2 VSCE for the sample.
Subsequently, the transpassivation behavior of the sample is
found from 1.2 VSCE to 1.5 VSCE. Afterward, the repassivation
range is observed from 1.5 VSCE to the end of the test.

(2) Potentiostatic polarization tests were conducted at
0.1∼0.9 VSCE and 2.1∼2.9 VSCE to produce passive films on
the samples. The growth kinetics of the passive film follows the
Macdonald model. With increasing the film formation
potential, the quasi-steady passivation current densities of
as-cast Ti-6Al-4V increase. Metastable pitting corrosion is
observed under the applied potentials of 2.7 VSCE and 2.9 VSCE.

(3) Electrochemical impedance spectroscopy examinations were
carried out on the potentiostatic polarized samples. The
results show that the thickness of the passive film as well
as the charge transfer of the samples increases with increasing
the applied potential. The formed passive films before and
after transpassivation have different growth rates, which are
calculated as 3.30 nm/VSCE and 3.84 nm/VSCE in the
passivation range and repassivation range.

(4) Based on the result of this work, one can conclude that the
passive film formed under high applied potential has better
protectiveness. Therefore, although the transpassivation
behavior may destroy the passive film to some extent, the
passive film formed under higher applied potential still has
higher impedance. However, the higher applied potential also
provides the higher driving force to adsorb the aggressive
ions in the electrolyte and also increases the electric field in
the passive film. Therefore, metastable pitting corrosion is
observed at the high applied potential.
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The objective of this study was to develop a thermo-mechanical strategy to create a

radial elasticity gradient in a β metastable Ti-Nb-Zr alloy, and to characterize it in terms

of microstructural and mechanical properties. A first investigation was conducted on

thin samples of Ti-20Nb-6Zr (at.%) submitted to various thermo-mechanical treatments.

Microstructure-properties relationships and elastic variability of this alloy were determined

performing uniaxial tensile tests, X-ray diffraction and scanning and transmission electron

microscopies. Based on these preliminary results, mechanical deformation was identified

as a potential way to lower the elastic modulus of the alloy. In order to create elastically

graded pieces, shot-peening was therefore carried out on thicker samples to engender

surface deformation. In this second part of the work, local mechanical properties were

evaluated by instrumented micro-indentation. Experimental observations demonstrated

that shot-peening enabled to locally induce martensitic transformation on surface, and a

decrease in indentation elastic modulus from 85 to 65 GPa over 400µmwas highlighted.

Surface deformation proved to be an efficient way of creating an elasticity gradient in β

metastable titanium alloys. This combination of material and process could be suitable

to produce dental implants with mechanically enhanced biocompatibility.

Keywords: titanium alloys, elasticity gradient, elastic modulus, surface deformation, instrumented indentation,

stress-induced martensite

INTRODUCTION

In the field of implanted medical devices, the notion of biocompatibility has evolved steadily over
time and is no longer only synonymous with bio-inertness. Nowadays, an active biocompatibility
is being sought, giving a greater focus on the integration of biomaterials and the responses of
the human body (Williams, 1987, 2003; Doherty et al., 1992). In the case of dental implants,
this means to promote bone remodeling in order to achieve good osseointegration. Aside from
biological and chemical considerations, mechanical aspects are therefore equally critical to the
development of highly performant biomaterials. Indeed, the bone remodeling is physiologically
driven by mechanical stimuli and under- or overloading of bone tissue could engender resorption
or necrosis issues (Rieger et al., 2011; Laheurte et al., 2014). The difficulty relies on the fact that
the use of dental implants can affect this bone density regulation in various ways. First, the absence
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of periodontal ligament no longer allows to provide a damping
effect, which can create load peaks in the surrounding bone
(Kitamura et al., 2004; Mariani et al., 2008; Consolaro et al.,
2010). And several studies have shown that the elastic mismatch
observed at the bone/implant interface could give rise to stress
shielding and poor stress distribution around the device (Kroger
et al., 1998; Niinomi and Nakai, 2011). As a matter of fact,
although lower than those of previously used 316L steel or Co-
Cr-Mo alloys, Young’s moduli of current standard biomedical
titanium alloys (CP Ti or TA6V) still remain about 5–10 times
higher than the one of bone (Geetha et al., 2009). This calls for
further efforts to minimize this modulus gap.

In recent years, various research works have been carried out
to reduce the originally quite high elastic modulus of titanium
alloys, classically around 100 GPa for conventional α or α + β

alloys (Kuroda et al., 1998; Geetha et al., 2009; Zhang and Chen,
2019). One of the most advanced track concerns the development
of new low-modulus compositions, mainly belonging to β-type
alloys, which started in the 90’s and enabled to reach moduli
down to about 60 GPa (Zheng et al., 2012; Shi et al., 2013;
Laheurte et al., 2014; Piotrowski et al., 2014; Brizuela et al.,
2019). It should be noted, however, that these alloys generally
exhibit a limited mechanical strength. Alongside this research
of adapted formulations and thermo-mechanical treatments, the
creation of porous structures (Li et al., 2014; Liu et al., 2015;
Wally et al., 2015; Okulov et al., 2017) or the use of low-
modulus coatings (Koshy and Philip, 2015) have also proven to
be effective in lowering the stiffness of investigated materials.
Nevertheless, these methods, based on complex processes which
can be difficult to control, have often led to a deterioration of
other properties, including drops in mechanical resistance (Yue
et al., 1984; Bandyopadhyay et al., 2010; Oldani and Dominguez,
2012) or additional weaknesses related to the multi-material
interfaces (Mimura et al., 2004; Oshida et al., 2010; Xue et al.,
2020). To face these issues, and since iso-elasticity is essentially
required at the bone/implant interface, structures displaying
gradients in porosity or in chemical compositions were also
studied. Once again, even after having overcome the obstacle
of producing such complex structures, a compromise between
promoting bone remodeling and maintaining a sufficient level
of mechanical resistance was difficult to achieve (Lin et al., 2010;
Mehrali et al., 2013).

The original concept developed in this work tries to
exploit the advantages of some of the previously mentioned
research axes, based on the diversity offered by titanium
alloys. Indeed, in addition to intrinsic reasons, related to
their chemical composition, some titanium alloys can present
changes in modulus due to specific elastic behaviors linked to
martensitic transformations. The innovative idea investigated
here, which has recently been patented (Prima and Nowak,
2012), consists in using the elastic variability displayed by this
kind of alloys and creating an elastic gradient resulting from a
microstructural gradient, thus preserving a monolithic material
with a homogeneous chemical composition. The elastic softening
should be localized on surface, to enhance the load transfer to
the bone, and the initial stiffer microstructure should be kept
in the core material to ensure the stability and durability of the

medical implanted device. In order to induce only a superficial
transformation, shot-peening has emerged as a suitable option.
This technical process is commonly used to superficially treat
medical implants and, as well as creating a rough surface with
beneficial effect on bone growth, the resulting residual stress layer
seems to enhance fatigue performance of the materials (Javier Gil
et al., 2007).

Therefore the aim of this study is to assess the feasibility
of creating an elasticity gradient through this strategy of
surface deformation by shot-peening on a β-metastable titanium
alloy, and thus consider this approach for the production of
dental implants.

MATERIALS AND METHODS

Material Selection
Among titanium alloys, Ti-20Nb-6Zr (at.%), also referred as
TNZ, was selected as a candidate for this project for several
motives. Already studied for its superelastic behavior (Sun
et al., 2010, 2011; Zhang et al., 2013), this alloy only contains
biocompatible chemical elements and avoids, in particular,
species such as aluminum or vanadium, considered likely
to contribute to cytotoxicity or neurodegenerative troubles,
thus compromising the extensive use of TA6V (Laing et al.,
1967; Steinemann, 1980; Walker et al., 1989; Rao et al., 1996;
Riley et al., 2003; Gomes et al., 2011; US Food and Drug
Administration, 2019). This material also displays interesting
mechanical properties, namely strength-elongation combination
comparable to the one of grade 4 CP Ti in a quenched
state (full β phase). Moreover, its martensitic start temperature
is situated just below room temperature, which provides the
alloy the possibility to easily undergo stress-induced martensitic
(SIM) transformation at room temperature. As previously
said, this enables to further reduce its originally already low
intrinsic modulus.

Elaboration and Thermo-Mechanical
Processing Route
A Ti-20Nb-6Zr (at.%) ingot was prepared by vacuum arc melting
and hot forged down to a 50-mm-diameter billet. Plate-shaped
parts, cut from this billet, were solution treated under air at
1,173K for 900s, water quenched and mechanically polished to
remove the outer oxidized part. From this step, cold-rolled state
with controlled thickness reduction was obtained differently,
depending on the part of the considered work, as follows: for
the preliminary work, performed on thin samples, polished
pieces were cold-rolled (CR) at room temperature down to about
0.5mm of thickness (reduction ratio ≈ 90%), whereas for the
work on thicker samples, cold-rolling was stopped at about 5mm
of thickness (reduction ratio ≈ 70%). To produce quenched
state, both thin and thick samples were then thermally treated
at 1,173K during 1,800s under controlled atmosphere and finally
water quenched.

Additional surface mechanical treatment was applied on some
of the 5 mm-thick samples by shot-peening. This was done
on a Wheelabrator industrial prototype (IRT-M2P, Metz), using
s130 steel balls at an intensity of 32A on Almen scale, which
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represents severe conditions. Both static and dynamic tests were
performed. Static experiments were defined by the exposure time
to shot-peening during which the nozzle was kept in front of
the treated area, whereas dynamic experiments used the coverage
percentage of the surface. In that later case, for which the shot-
peening nozzle moved parallel to the surface, a number of passes
necessary to cover 100% of the surface was determined and, as an
example, a coverage of 300% was done reproducing three times
this number of passes.

Microstructural Characterization
Phase constitution was analyzed by X-ray diffraction (XRD)
using a copper anticathode (Panalytical X’Pert PRO, 45 kV,
40mA). All the samples weremechanically polished prior to XRD
analyses except shot-peened samples, which were kept without
any further surface alteration. Microstructural observations
were done on an EBSD-equipped scanning electron microscope
(SEM—Zeiss LEO-1530). For that purpose, thick samples were
cut in half to reveal the cross-section of the shot-peened surface—
for concerned sample—, mounted in conductive resin (Struers
Polyfast) and mechanically polished on 800, 1,200, 2,500, and
4,000 silicon carbide abrasive papers. Further polishing was
done using a mixture of colloidal silica suspension (Struers OP-
S) and hydrogen peroxide until mirror-like finish, and a final
step was performed on a vibratory polisher (Buehler VibroMet)
for 12 h with silica suspension (Struers OP-S) to remove
slight deformations and damages remaining from mechanical
polishing. Observations were also done using a transmission
electron microscope (TEM–JEOL 2000FX). Sections of thin
samples were cut, mechanically rounded and polished on
silicon carbide abrasive papers to get pre-thinned 3-mm-
diameter disks, typically between 100 and 200µm thick. They
were then prepared using twin-jet electrochemical polishing
(Struers TenuPol with a solution of methanol, 2-butoxyethanol,
perchloric and hydrochloric acids at around 263 K).

Mechanical Properties
Uniaxial tensile tests were conducted to measure the mechanical
properties of flat samples. Dogbone tensile specimens were taken
along the rolling direction and tested at a strain rate of 10−3s−1

on a MTS Criterion (Model 43) machine equipped with a
25mm gauge length extensometer. Regarding thicker samples,
local properties were estimated by carrying out indentation
profiles on mirror-polished samples prepared as previously
mentioned for SEM observations. Micro-hardness values and
elasticity moduli were extracted from instrumented indentation
experiments performed on an Anton PaarMicro Hardness Tester
(ENSAM, Paris) using Vickers indent and 500 mN load with 5s
holding. Experimental parameters were determined on the basis
of a previous design of experiments, done on pure titanium,
in order to maximize the measurement accuracy. Oliver-Pharr
method was used and indentation moduli EIT were calculated
from the unloading curves through the following relation:

EIT =
1− (νS)

2

1
Er

−
1−(νi)

2

Ei

where Er is the reduced elastic modulus, Ei is the indenter
modulus, and νs and νi represent, respectively the specimen and
the indenter Poisson coefficients (Oliver and Pharr, 1992, 2004).

RESULTS AND DISCUSSION

Assessment of Elastic Variability on
Thermo-Mechanically Treated TNZ
Samples
The first part of the work aimed at studying the behavior
of the TNZ alloy and assessing the potential variability of
its microstructure and properties, and particularly its elastic
modulus, after various thermo-mechanical treatments. For this
purpose, thin samples (0.5mm) were prepared as mentioned in
the previous section. Mechanical tests and observations were
performed in the as-obtained cold-rolled state, referred as CR,
and after an additional solution treatment in the β phase
field followed by water quenching, referred as ST or quenched
state. This rapid cooling was done to avoid the precipitation
of alpha or isothermal omega phases, which would cause a
chemical partition of β-stabilizing elements in the matrix and
therefore the inhibition of subsequently desired stress-induced
martensitic transformation.

XRD profiles of deformed and quenched states are presented
in Figure 1. ST state is mainly constituted of β phase, and its
lattice parameter is estimated based on experimentally observed
peak positions as follows: aβ = 3.299Å for this bcc structure
belonging to Im3m space group. No α phase is detected,
thus assessing the efficiency of rapid quenching. Regarding
the CR state, formation of a large amount of α′′ martensite
during cold-rolling process can be clearly evidenced by the
appearance of several additional peaks on the corresponding
diffractogram. Compared to quenched state, a broadening of
the XRD peaks can be noticed. This accounts for the important
grain refinement—decrease of the coherent domain sizes—and
high level of distortion generated by the deformation process, as
well as the near-continuous diffraction rings obtained for this
microstructure and visible on the SAED pattern in Figure 2.
In addition, in the bright-field image, dark areas linked to
dislocation tangles are also indicators of the severity of the
cold-rolling deformation.

Tensile stress-strain curves of ST and CR specimens are
presented in Figure 3. The quenched specimen exhibits large
ductility (>40%) and moderate strength (Rm = 530 MPa).
A double-yielding phenomenon can be seen at the beginning
of the ST curve. The first yielding, located in the elastic part
(“plateau” at about 250 MPa), is the signature of the stress-
induced martensitic transformation, whereas the second yielding
(around 375 MPa) can be attributed to the transition to the
plastic range.

Tensile curve of deformed state shows that severe cold-rolling
up to 90% reduction ratio enabled to drastically increase the
mechanical resistance of the alloy up to 1,050 MPa, but at the
expense of the ductility which drops to only a few percent. The
presence, at the initial stage of the tensile test, of a finemartensitic
microstructure and a high dislocation density can be responsible
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for this impressive strengthening. In addition, a classical linear
elastic behavior can be noticed here, suggesting that any further
martensitic transformation or martensite variants reorientation
takes place in the material and a saturation state has been reached
(Schneider et al., 2005).

FIGURE 1 | XRD profiles of cold-rolled (CR– 90% thickness reduction) and

water quenched (ST) TNZ specimens.

FIGURE 2 | Bright-field micrograph and corresponding selected area electron

diffraction (SAED) pattern of cold-rolled TNZ sample (CR state).

Incipient Young’s moduli were extracted from the early stage
of the curves for both microstructural states, 66 and 55 GPa were
obtained for ST and CR specimens, respectively. Bearing in mind
that cold-rolling was performed on a solution-treated state, these
results indicate that stress-induced martensitic transformation
and variants rearrangement that occur when deforming single
phase β TNZ alloy can lead to an elastic softening exceeding
15%. This result is consistent with the gradual lowering of elastic
modulus which was already observed in previous works during
incremental loading-unloading tensile tests performed on this
alloy (Sun et al., 2010; Zhang et al., 2013). This information is
of great relevance since it enables to develop a practical strategy
to create an elasticity gradient in TNZ, by applying a local
deformation on surface of thicker samples in β phase.

Creation of Elasticity Gradient
As the creation of a gradient was now being sought, thin samples
could no longer be used from a practical point of view. To
put into action the strategy described just above, thicker water-
quenched TNZ samples were produced. The thickness of 5mm
was chosen in order to be close to the diameter of current
commercial dental implants. Shot-peening mechanical treatment
was then applied on one side of the pieces. Various experimental
conditions were used: 100%, 300% and 1s as defined in section
Elaboration and Thermo-Mechanical Processing Route.

XRD analyses were performed on samples before and after
shot-peening as illustrated by Figure 4. For the initial ST state,
only surface XRD profile is displayed but mid-thickness was also
analyzed to ensure that the whole sample was in single β phase.
After shot-peening, additional peaks ascribed to α′′ martensite
were detected for all treated samples. (020) (021), and (130) peaks
were the easier to identify although they are quite small. This low
intensity may reflect that only a moderate quantity of martensite
is actually trapped after this mechanical process, compared to
previous heavy cold-rolling. The fact that no other potential
peaks associated with martensite were revealed can be attributed
to the broadening of β peaks, due to residual stress in the material
after the mechanical treatment, or is simply linked to the strong

FIGURE 3 | Engineering stress-strain tensile curves of cold-rolled (CR) and water quenched (ST) TNZ specimens (insert: magnified view of the initial part of the curves).
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FIGURE 4 | XRD profiles obtained on surface of TNZ samples before (initial

surface–ST state) and after shot-peening (at various coverage percentages).

crystallographic variant selection which operates during stress-
induced martensitic transformation. Nevertheless, based on the
observation of (020)α′′ peak, which is more pronounced for
samples shot-peened at 300% or during 1s, it can be suggested
that these tougher conditions led to the creation of a higher
amount of martensite, compared to shot-peening at 100%.

Cross-sectional observations carried out before and after
mechanical surface treatment are gathered in Figure 5. EBSD
analysis revealed equiaxed β grains in the initial ST state and
additional bands were found for all the samples which were
submitted to shot-peening. The density of these bands is very
high on extreme surface and is decreasing gradually toward the
depth. Furthermore, it may be noted that the size of the affected
area seems to correlate with the severity of the shot-peening.
Indeed, as can be seen from the bottom part of Figure 5, a
larger dark saturated zone is observable for the sample submitted
to the 1s treatment, which can be regarded as the tougher
mechanical process, compared to 300 and 100% coverages. Due
to important residual stresses and the fine scale of these new
microstructural features, and despite the use of a small step size
of 0.2µm, EBSD indexation of the bands was difficult to achieve

FIGURE 5 | Cross-sectional microstructural observations by scanning electron microscopy of TNZ samples before (top) and after various shot-peening conditions

(bottom). Gray scale images correspond to EBSD IQ (Image Quality) maps and the colored one is a crystallographic orientation cartography of the β phase, color

coding is given by the standard triangle on the right.
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for shot-peened samples. However, based on the shape of these
bands, their size, and information from previous XRD analyses,
it seems quite obvious to associate them with the presence of
α′′ martensite. In addition, some features appeared as potential
β twins. As a matter of fact, and as illustrated by Figure 6,
misorientation profiles made across the β matrix and some of the
bands revealed misorientation angles of about 50.5◦ which are
typical of {332}<113>β twins. The origin of these twins is not yet
clear and investigations did not allow us to determine whether
they have been induced during the shot-peening process or
whether they have resulted from the reversion of α′′ phase, itself
created during the deformation process. This second assumption
is based on the fact that the reversion of parent {130}<310>α′′

twins to {332}<113>β twins has already been reported in the
literature during unloading of a α′′ martensitic titanium alloy
(Bertrand et al., 2016; Castany et al., 2016).

Previous elements are all indicators showing that shot-
peening was efficient to trigger martensitic transformation
in surface of TNZ samples. To evaluate the associated local
changes in terms of mechanical properties and highlight the
desired elasticity gradient, instrumented micro-indentation tests
were conducted. Hardness and modulus profiles obtained from
the surface toward the depth of samples shot-peened at a
coverage percentage of 300% are given in Figure 7. Whereas the
mechanical treatment increased the surface hardness, as expected
from the literature (Schulze, 2006), mainly because of the residual
stresses and the introduction of numerous dislocations into
the material, a decrease in indentation modulus (EIT) was also
evidenced. Its value falls from about 87 GPa at mid-thickness to
67 GPa on the shot-peened surface of the piece.

It is important to point out that indentation modulus values,
computed from indentation experiments using Oliver-Pharr
method, are higher than Young’s modulus values extracted from
tensile curves. This overestimation at nano- or micro-scale
compared to macro-scale has already been reported in previous
works (Fizanne-Michel et al., 2014). Nonetheless, despite the shift
that might exist, the two moduli remain comparable as they

follow the same evolution, making it possible to bring to light
the presence of an elasticity gradient. It can be observed that
data points are slightly scattered. In addition to experimental
uncertainty, which was estimated to be around ±2 GPa in a
preliminary work, this dispersion could be attributed to the
large grain size of our material (up to about 100µm). As a
matter of fact, recent study showed a significant influence of
crystal orientation on indentation modulus in a superelastic
titanium alloy, highlighting the strong elastic anisotropy of the
β phase (Jabir et al., 2019). Yet, in our tested range, diagonals
of the indentation prints are only about 20µm long and reflect,
therefore, the contribution of only one single grain in most cases.

As can be seen from the bottom part of Figure 7, the evolution
of the mechanical properties is well correlated with the evolution
of the microstructure. From the depth to the surface, a clear
relationship can be established between the decrease in the elastic
modulus and the increase in the band density, both related to a
higher amount of martensite near the surface. Concerning the
depth affected by the mechanical treatment, it is worth noting
that changes in properties extend over ∼400µm for these shot-
peening conditions. This gradient depth would be particularly
appropriate to the current common size of dental implants
(diameter from 3 to 5 mm).

These results validate the strategy we developed and
establish a proof of concept that mechanical surface
treatment of a biocompatible β-metastable titanium alloy
can induce martensitic transformation on surface, and that
this microstructural gradient can lead to an elasticity gradient.
This turns out to be promising for dental implantology, as the
resulting decrease in modulus obtained in surface should help
avoid stress-shielding issues and thus promote osseointegration
of the implant. In other words, it should mechanically improve
the biocompatibility of implanted devices.

Furthermore, the method that was chosen in our study,
namely shot-peening, is particularly relevant because it creates
a rough surface which could certainly enhance not only bone
remodeling but also fatigue performance of the implant. Further

FIGURE 6 | EBSD crystallographic orientation cartography of β phase obtained on a TNZ sample submitted to shot-peening at a coverage percentage of 100% (left).

Acquisition was made about 150µm away from the surface to get better confidence index. Misorientation profile between A and B points indicated on the orientation

map (right).
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FIGURE 7 | Hardness and modulus profiles obtained from instrumented micro-indentation measurements conducted on a TNZ sample submitted to shot-peening at

a coverage percentage of 300% (top). First part of the curves (surface) superimposed on the EBSD Image Quality map corresponding to this sample (bottom).

specific mechanical and biological tests should be conducted to
check these properties. The impact of the shot-peening process

on a threading should also be assessed to ensure it does not

damage this important part of the device. In case of deterioration,
thread-rolling could be considered as an attractive alternative in

the production of dental implants, since it could be a suitable

process to create the threaded part and induce the desired
surface deformation at the same time (Domblesky and Feng,

2002).
Although the depth of created gradient, of about 400µm,

seems convenient for the intended application, the mechanical
strength of the core material or the amplitude of modulus change

could be optimized. Regarding TNZ alloy, future work could
concern the modification of the solution treatment parameters in

order to reduce the grain size. This would strengthen the material

due to Hall-Petch effect and would also be more desirable for
indentation measurements. In addition, it may be relevant to

try applying the strategy we built to other β-metastable alloys
or, even, to develop new strategies suitable for other types

of titanium alloys. This could be done by investigating other

microstructural states and identifying those which can also cause

changes in the elastic modulus.

CONCLUSION

According to the results presented in this study, the following
conclusions can be drawn:

(1) Stress-induced martensitic transformation in a β metastable
biocompatible Ti-20Nb-6Zr (at.%) alloy led to a decrease
in elastic modulus. This has given rise to a novel strategy
consisting in applying a surface mechanical treatment on a β

phase titanium alloy in order to create an elasticity gradient.
(2) Shot-peening turned out to be efficient to induce

local deformation, microstructural gradient based
on martensitic transformation, and thus to create an
elasticity gradient.

(3) Local evolution of elastic modulus was measured by
instrumented micro-indentation and a gradient in
indentation modulus from 87 GPa in the core material
to 67 GPa on surface, over 400µm, was revealed after
shot-peening at a coverage percentage of 300%.

(4) Creation of elasticity gradient is a promising way to
avoid stress-shielding issues, promote osseointegration
and produce implanted devices with mechanically
enhanced biocompatibility.
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Magnesium (Mg) and its alloys have attached more and more attention because of their
potential as a new type of biodegradable metal materials. In this work, AZ31/ZrO2

nanocomposites with good uniformity were prepared successfully by friction stir
processing (FSP). The scanning electron microscope (SEM) and transmission electron
microscope (TEM) were used to characterize the microstructure of the composites. The
mechanical properties, electrochemical corrosion properties and biological properties
were evaluated. In addition, the effect of reinforced particles (ZrO2) on the microstructure
and properties of the composite was studied comparing with FSP AZ31 Mg alloy.
The results show that compared with the base metal (BM), the AZ31/ZrO2 composite
material achieves homogenization, densification, and grain refinement after FSP. The
combination of dynamic recrystallization and ZrO2 particles leads to grain refinement of
Mg alloy, and the average grain size of AZ31/ZrO2 composites is 3.2 µm. After FSP,
the c-axis of grain is deflected under the compression stress of shoulder and the shear
stress of pin. The ultimate tensile strength (UTS) and yield strength (YS) of BM were 283
and 137 MPa, respectively, the UTS and YS of AZ31/ZrO2 composites were 427 and
217 MPa, respectively. The grain refinement and Orowan strengthening are the major
strengthening mechanisms. Moreover, the corrosion resistance in simulated body fluid
of Mg alloy is improved by grain refinement and the barrier effect of ZrO2.

Keywords: Friction stir processing, microstructure, mechanical properties, corrosion properties, texture

INTRODUCTION

Magnesium (Mg) and its alloys are considered to have great potential in biomedical application
due to the high strength-to-weight ratio, good biocompatibility and promotion of bone cell
healing (Staiger et al., 2006; Castellani et al., 2011; Henderson et al., 2014). However, the high
corrosion and degradation rates in vivo, and the low strength limit their application development
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(Morisada et al., 2006a). Previous studies have shown that the
Mg matrix composites prepared by adding secondary particles to
Mg can significantly reduce the corrosion and degradation rates,
thus improve strength, corrosion resistance, and biocompatibility
(Lan et al., 2004; Wang et al., 2004; Ugandhar et al., 2006).

At present, powder metallurgy (Davis and Ward, 1993), in-situ
fabrication (Daniel et al., 1997), spray deposition (Lavernia and
Grant, 1988), and stir casting (Hashim et al., 1999) are commonly
used to fabricate composites. However, the composites fabricated
by the above methods have many defects such as voids, which
is eliminated by severe plastic deformation methods such as
extrusion and rolling, leading to a longer process and higher cost.
Therefore, it is necessary to develop an effective technique to
prepare high-quality composites.

Friction stir processing (FSP) is an alternative solid-state
processing technology for producing Mg matrix composites,
based on the principles of friction stir welding (FSW), potentially
addressing the above-mentioned limitations (Mishra and Ma,
2005). Specifically, FSP can achieve the homogenization,
densification, and grain refinement of microstructure
simultaneously (Ammouri et al., 2015; Ni et al., 2016; Xu
and Bao, 2016), thus improve the mechanical properties and
corrosion properties of materials. In 2006, Morisada et al.
(2006b) first prepared AZ31/MWCNTs (multi-walled carbon
nanotubes) surface composites by FSP. It was reported that the
low temperature could avoid the interfacial reaction between
reinforced particles and Mg matrix during FSP. Furthermore,
severe plastic deformation contributed to the fragment and
uniform mixing of reinforced particles. This work has attracted
many research interests in the preparation of Mg matrix
composites by FSP.

So far, a lot of reinforced particles, such as TiC (Balakrishnan
et al., 2015; Navazani and Dehghani, 2015), TiAlC (Gobara
et al., 2015), Al2O3 (Azizieh et al., 2018), B4C (Vedabouriswaran
and Aravindan, 2018), MWCNT (Morisada et al., 2006b; Arab
et al., 2017), and SiC (Morisada et al., 2006a) have been added
in Mg matrix by FSP, improving the mechanical properties
of the alloys. For example, Navazani and Dehghani (2015)
and Balakrishnan et al. (2015) studied the microstructure and
mechanical properties of AZ31/TiC composites fabricated by
FSP. The results showed that TiC particles distributed uniformly
in AZ31 Mg matrix after FSP, which promoted the grain
refinement and improved the microhardness. According to
the research of Azizieh et al. (2018), adding Al2O3 to AZ31
Mg alloy with FSP effectively increased the wear resistance
of the material. It has been reported (Vedabouriswaran and
Aravindan, 2018) that after adding B4C particles to RZ 5
Mg alloy, the coarse grains in base metal (BM) become
the fine grains in composites due to the pinning effect of
reinforced particles. The microhardness and tensile strength
from 81 HV and 200 MPa (BM) increased to 403 HV and
320 MPa (composites), respectively. This phenomenon also be
founded in AZ31/SiC composites fabricated by FSP (Morisada
et al., 2006a). However, there are few reports on the above-
mentioned reinforcing particles for improving biocompatibility
of Mg alloys, it is vital to find other materials to address
the above problem.

Studies have shown that the addition of ZrO2 particles
in Mg matrix contributes to the mechanical properties and
biocompatibility of materials (Navazani and Dehghani, 2016;
Vignesh et al., 2019). For example, Navazani and Dehghani
(2016) added ZrO2 particles to AZ31 Mg plate through FSP,
then observed that the particles promote the grain refinement
and improve the mechanical properties of composites. Vignesh
et al. (2019) prepared AZ91D-ZrO2 surface composites by
FSP. It was reported that the combination of FSP and ZrO2
reduced the grain size, and broke and disperse the secondary
particles. The dispersion of ZrO2 particles can increase the
accumulated surface potential, thereby improving the corrosion
resistance of composites. However, only simply characterize and
evaluate the microstructure and performance of ZrO2/Mg matrix
composites in previous researches, the influence mechanism
of microstructure on mechanical properties and corrosion
resistance has not been thoroughly and comprehensively
analyzed and discussed.

In view of the above problems, AZ31/ZrO2 nanocomposites
are prepared in this work by FSP. The microstructure, mechanical
properties, and corrosion resistance of AZ31 Mg alloy and
AZ31/ZrO2 nanocomposites are analyzed in detail to clary the
influence of FSP and ZrO2 particles on the Mg alloy, respectively.
The present work intends to provide a new insight for the
preparation of biomedical Mg matrix composites.

MATERIALS AND EXPERIMENTAL
METHODS

Materials Preparation
A rolled AZ31 Mg plate with a dimension of
100 mm × 80 mm × 3 mm was used as Base metal (BM)
in this work. ZrO2 powder with a diameter ranging from 50
to 150 nm and an average diameter of 80 nm was used as
reinforcement as shown in Figure 1. The volume fraction of
the ZrO2 particles added to the plate is about 17.6%. Holes
with diameter of 3 mm, depth of 1 mm and hole spacing
of 10 mm were drilled by a drilling machine on the surface
of the AZ31 Mg alloy plates. After filling the prefabricated
holes with ZrO2 particles, these plates were processed by FSP.
The AZ31 Mg alloy plates with and without ZrO2 particles
were processed on a FSP machine (LM-BM16), respectively.
The stir tool consisting of cylindrical shoulder of 20 mm in
diameter, pin of 2 mm in length and 4 mm in diameter. The
tool rotation speed was 1180 rpm, the processing speed was
23.5 mm/min, the tilt angle was 2◦ and the plunge depth was
0.5 mm. All samples were processed six passes. The schematic
of the FSP is shown in Figure 2. Here into, AZ31 Mg alloy
sample without ZrO2 particles by FSP is marked as FSP, and
the AZ31 Mg alloy sample with ZrO2 particles is marked as
FSP-ZrO2.

Microstructural Characterization
Metallographic specimens were taken along the perpendicular
PD with a dimension of 20 mm × 5 mm × 3 mm, which
were grinded, polished, and etched by picric acid etching
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FIGURE 1 | SEM micrograph of ZrO2 powder.

solution (10 mL acetic acid + 10 mL water + 4.2 g picric
acid dissolved in 100 mL alcohol) for 10 s. The microstructures
were observed using scanning electron microscope (SEM,
Gemini SEM 300) with electron backscatter diffraction (EBSD)
at a voltage of ∼5 kv. The samples were electrolytically
polished in a 10 vol.% of perchloric acid solution at a
voltage of ∼10 V and a temperature of −20◦C. TEM samples
with a dimension of 10 mm × 10 mm × 1 mm were
cut from stir zone (SZ) in FSP-ZrO2, and ground to a
thickness of approximately to 40 µm with sandpaper, and

then the twin-jet electropolishing was conducted using 6%
perchloric acid ethanol solution at −30◦C. TEM observations
were performed on JEM-200CX equipment at a voltage
of∼120 kv.

Mechanical Properties
The hardness sample with the dimension of
20 mm × 5 mm × 3 mm were cut along the vertical PD.
The hardness testing was carried on the TD × ND plane using
a 401MVD microhardness tester with a loading of 100 g and
a dwell time of 10 s. Indentations spacing were 0.5 mm in this
work. The tensile specimens with a gauge section dimension
of 34 mm × 8 mm × 3 mm were cut along PD, ground
and polished, then tested on an Instron 8,801 equipment
at room temperature. The strain rate was 1.0 × 10−3 s−1.
Each testing was repeated at least three times to ensure the
accuracy of data. The fracture surfaces of tensile specimens were
characterized by SEM.

Electrochemical Corrosion Performance
The electrochemical corrosion samples with a dimension of
8 mm × 8 mm × 3 mm were cut from BM, FSP (SZ), and
FSP-ZrO2 (SZ). After grinding and polishing the sample, the
electrochemical test was performed on the Gamry Reference
600 + instrument. The corrosion solution was simulated body
fluid (8.035 g/L). NaCl, 0.355 g/L NaHCO3, 0.225 g/L KCl,
0.231 g/L K2HPO4·3H2O, 0.311 g/L MgCl2·6H2O, 39 mL/L
HCl (1 mol/L), 0.292 g/L CaCl2, 0.072 g /L NaSO4, 6.118 g/L
Tris, 1 mol/L HCl) (Kokubo and Takadama, 2006). The samples

FIGURE 2 | Schematic of the FSP. (AS and RS represent the advancing and retreating sides, respectively. PD, TD, and ND represent processing, transverse, and
normal directions, respectively. Unit: mm).
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were used as the working electrodes, Ag/AgCl (saturated KCl)
and platinum strip were used as the reference and counter
electrodes, respectively. Before recording the potentiodynamic
polarization curves, the samples were soaked in the simulated
body fluid (SBF) solution for 300 s to get the steady
reaction condition. The impedance measurement scan frequency
ranges from 100,000 Hz to 0.1 Hz with an excitation signal
amplitude is 10 mV. The impedance data were analyzed using
the ZSimpWin software. The initial potential is reduced by
500 mV relative to the open circuit potential (OCP), and the
termination potential is increased by 1.5 V relative to the

OCP. The scan rate is 1 mV/s, and the test temperature is
room temperature.

Scanning Vibrating Electrode Technique
(SVET) Measurement
The SVET samples were cut from BM, and SZ of the FSP and FSP-
ZrO2 samples with a dimension of 8 µm× 8 µm. After grinding
and polishing, they were tested on the Princeton VersaSCAN
instrument. The measurements were performed in SBF and at an
OCP. The scanning range was 600 µm × 600 µm, the scanning

FIGURE 3 | The IPF map of (A) BM, (B) FSP and (C) FSP-ZrO2; (D) The EDS map of FSP-ZrO2 sample; (E) and (F) TEM images of FSP-ZrO2 sample, respectively.
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speed was 10 µm/s, and the process combined surface scanning
and line scanning. The SVET samples were immersed for 1, 3,
6, and 24 h, respectively. The statistical analysis of SVET data
was carried out with Origin software. The voltages were displayed
in a three-dimensional (3D) maps, which showed the spatial
distribution of the voltage as a function of the (x, y) position in
the scan region. The voltage value in the SVET map is positive for
anodic currents and negative for cathodic currents. The contour
map of the voltage was located at the bottom of the 3D map.

RESULTS

Microstructure Evolution
Figures 3A–C show the inverse pole figure (IPF) of BM, FSP
and FSP-ZrO2 samples. BM exhibits equiaxed grains with the

size ranging from 0.2 to 53.5 µm, and the average size is
10 µm (Figure 3A). Compared with BM, FSP displays a more
uniform microstructure and finer grain, with a grain size range
of 0.1–15 µm and an average size of 4.0 µm (Figure 3B).
The microstructure of FSP-ZrO2 sample is further homogenized
and refined, with a grain size range of 0.1–14 µm and an
average grain size of 3.2 µm (Figure 3C), which indicates
that ZrO2 particles contribute to reducing grain size. Morisada
et al. (2006a) showed that FSP with the SiC particles can refine
grains more effectively due to the enhancement of the induced
strain and the pinning effect by the SiC particles. Therefore,
it can be considered that the ZrO2 particles in this work play
a similar role to the SiC particles in the report. Figure 3D
shows the distribution of Zr elements in FSP-ZrO2 sample.
Zr element is uniformly distributed in the Mg matrix without
obvious vacancies and aggregation, indicating that the ZrO2

FIGURE 4 | The grain boundary map: (A) BM, (B) FSP, (C) FSP-ZrO2; and recrystallized grain distribution map: (D) BM, (E) FSP, (F) FSP-ZrO2.
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particles are evenly distributed in the composites after FSP.
Figures 3E,F are TEM images of FSP-ZrO2 samples. It can
be clearly seen that the ZrO2 particles (white arrows) are well
combined with the matrix, and mainly nucleate within the grains
rather than preferentially distribute along the grain boundaries
(red arrows). In addition, due to the high temperature and
severe plastic deformation during FSP, the dislocation around
the ZrO2 particles is unevenly distributed, forming dislocation-
rich areas (i.e., dislocation tangle) and dislocation-sparse areas
(Figure 3F). During FSP, the stress is concentrated around the
ZrO2 particles due to the significant difference between the elastic
modulus of the ZrO2 particles and Mg matrix, thus a large
number of dislocations are generated around ZrO2 particles. On

the other hand, the dynamic recovery is reduced owing to the low
stacking fault energy of Mg alloys, resulting in dense and sparse
dislocations (Vignesh et al., 2019).

Figures 4A–F show the grain boundary distribution maps
and recrystallized grain distribution maps of BM, FSP, and FSP-
ZrO2 samples, respectively. The insets are the misorientation
angle distribution maps. The green and red lines represent
low angle grain boundaries (LAGBs) of 2∼15◦and high angle
grain boundaries (HAGBs) of >15◦, respectively. Blue indicates
recrystallized grains, yellow indicates sub-grains, and red
indicates deformed grains. It can be seen that the proportions of
HGABs in BM, FSP, and FSP-ZrO2 samples are 86.3, 52.8, and
66.5%, respectively. The proportions of recrystallized grains are

FIGURE 5 | The pole figure of {0001} plane: (A) BM, (B) FSP, (C) FSP-ZrO2.
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89.83, 34.37, and 48.79%, respectively. The HAGB ratios of the
above three samples are all reduced because of the dislocations
(Figures 3E,F) produced inside the grains during FSP. It is worth
noting that there are a large number of 60◦± 5◦ and 86◦ ± 5◦
twins in BM sample, 60◦ ± 5◦ twins in FSP sample are reduced,
and two twins in FSP-ZrO2 composites disappear, as shown in the
inserts in Figures 4A–C. The grain size affects twin deformation,
the finer the grain, the more difficult to twin. Therefore, the
main reason for the reduction of twins is that FSP and the

combination of FSP with ZrO2 particles makes the grain refined
(Figures 3B,C).

Figures 5, 6 display {0001}, {1120}, and {1010} pole figures,
and the {0001} orientation distribution function (ODF) map
of BM, FSP, and FSP-ZrO2 samples, respectively. The c-axis of
{0001} plane of BM parallel to ND (Figure 5A), showing a typical
rolled texture with the polar density of 14.63, and the texture
component is {1120} < 0001 > or {1010} < 0001 > texture
(Figure 6A). The c-axis of {0001} plane of FSP sample is deflected

FIGURE 6 | The ODF map of {0001} plane: (A) BM, (B) FSP, (C) FSP-ZrO2; (D) the standard ODF map of hcp structure.
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from PD and TD approximately 45◦ and 80◦, respectively
(Figure 5B), and the texture component consists of {1010} or
{1120} fiber texture with the polar density of 60.25 (Figure 6B).
The c-axis of {0001} plane of FSP-ZrO2 sample is deflected from
PD and TD approximately 15◦ and 85◦, respectively (Figure 5C),
and the texture component consists of {0001} < 1120 or
{0001} < 1010 texture with the polar density of 77.21
(Figure 6C). The detailed statistical results about the texture of
three samples on the {0001} planes are shown in Table 1. It has
been reported that the deflection of c-axis on the {0001} plane of
FSP sample is mainly due to the shear stress induced by shoulder
and stir pin (Huang et al., 2019). It is worth noting that the
deflection angle of c-axis of FSP-ZrO2 sample is larger than that
of FSP sample, which may be due to the fact that ZrO2 particles
increase the friction coefficient of the material during the plastic
flow process, causing more grains on the {0001} plane to deflect.

Figure 7 presents the Schmidt factor (SF) distribution of
(0001) basal slip along TD and PD of BM, FSP and FSP-ZrO2
specimens. The average SFs of BM, FSP, and FSP-ZrO2 specimens
along TD are 0.21, 0.28, and 0.17, respectively, and the average
SFs along PD are 0.21, 0.45, and 0.30, respectively. BM has the
same SF value along TD and PD, and both samples after FSP
have different SFs along TD and PD due to the different angles
between their c-axis and TD / PD. In addition, the average SF of
FSP sample is higher than that of BM, and the average SF of FSP-
ZrO2 sample is lower than that of BM. In addition, the average
SF is arranged from large to small as FSP > BM > FSP-ZrO2.
This indicates that FSP make material soften, while ZrO2 particles
make material harden. This phenomenon has been confirmed in
the studies of Navazani and Dehghani (2016) and Jin et al. (2019).

Figure 8 shows the microhardness distribution of the cross
section of BM, FSP, and FSP-ZrO2 samples. The average
microhardness of BM is 71 HV. The average microhardness of
the FSP sample is reduced to 53 HV, which is mainly because
the SF increases along PD (Figures 7C,D), causing the material
to soften. The average microhardness of FSP-ZrO2 samples is 99
HV, which is about 40% higher than that of BM. On the one hand,
ZrO2 particles further refine the grains of the Mg alloy during FSP
(Figure 3C), and improve the strengthening effect of the refined
grains. On the other hand, ZrO2 particles increase the resistance
of dislocation movement (Vignesh et al., 2019), so that more
dislocations accumulate when the material undergoes plastic
deformation (Figures 3E,F), thereby strengthening the matrix.

Figure 9 shows the stress-strain curves of BM, FSP, and FSP-
ZrO2 samples. The ultimate tensile strength (UTS) of BM, FSP,

TABLE 1 | Detailed statistical results about the texture of three samples of
{0001} plane.

{0001}

Samples The angle between
c-axis and TD (◦)

The angle between
c-axis and PD (◦)

Polar density

BM 0 90 14.63

FSP 80 45 60.25

FSP-ZrO2 85 15 77.21

and FSP-ZrO2 samples is 283, 265, and 427 MPa, the yield
strength (YS) is 137, 91, and 217 MPa, and the elongation is
15.5, 13.6, and 9.5%, respectively. Compared to BM, the YS and
elongation for FSP specimens reduces, and the YS of FSP-ZrO2
specimens increases by 80 MPa, while the elongation significantly
reduces by about 6%. Since the ZrO2 particles impede the strain
around the matrix (Figures 3E,F), thus a plastic deformation
gradient is generated on the ZrO2/matrix interface, resulting in
the uneven plasticity and the lower elongation for FSP-ZrO2
composites. The mechanical properties of materials are usually
determined by the microstructure, and detailed analysis will be
discussed later. Figure 10 shows the fracture morphology of BM,
FSP, and FSP-ZrO2 samples after tensile testing. It can be seen that
the fracture of BM is composed of dimples with different depths
and cleavage surfaces (Figure 10A), showing a typical quasi-
cleavage fracture. The fracture of FSP sample also presents quasi-
cleavage fracture characteristics, with more uniform and fewer
dimples, while more cleavage surfaces (Figure 10B), indicating
a decrease in plasticity. The fracture of FSP-ZrO2 sample is
composed of dimples and a small amount of cleavage surfaces
(Figure 10C). There are a large number of ZrO2 particles in
the dimples (Figure 10D), showing the microporous aggregate
fracture characteristics. This is consistent with the previous
stress-strain curve results (Figure 9).

Electrochemical Corrosion Performance
Figure 11A shows the curves of open circuit potential (OCP) of
BM, FSP and FSP-ZrO2 samples in SBF solution with time. It
can be seen that the corrosion potential of the sample increases
as time increases. In the initial stage of corrosion, the OCP of
BM and FSP samples are similar, while the OCP of FSP-ZrO2 is
higher, indicating that the FSP-ZrO2 sample is easier to form a
passivation film and has a lower self-corrosion tendency.

Figure 11B shows the potentiodynamic polarization curves of
BM, FSP, and FSP-ZrO2 samples in SBF solution. The corrosion
potential of BM and FSP samples are the same, while the
corrosion potential of FSP-ZrO2 is lower, suggesting that FSP-
ZrO2 samples are more sensitive to corrosion and easier to form
passivation films. According to the corrosion current density, the
order of samples is FSP < FSP-ZrO2 < BM. Corrosion rate (Pi)
that can be calculated according to Eq. (1).

Pi = 22.85icorr (1)

This means that BM presents the fastest corrosion rate and FSP
sample exhibits the slowest. The results of corrosion potential
(Ecorr), corrosion current density (icorr) and corrosion rate (Pi)
of BM, FSP and FSP-ZrO2 samples are listed in Table 2.

Figure 11C exhibits the Nyquist plots of BM, FSP and FSP-
ZrO2 samples in SBF solution. All samples are characterized by
a capacitive loop in high and medium frequency range, and an
inductive loop in the low frequency range. The capacitive loop
is caused by the charge transfer process on the surface of the
passive film, and the inductive loop is formed by the adhesion
of Mg+ ions and Mg(OH)+ ions on the surface of the sample
(Zhuang et al., 2015). FSP samples show the largest radius of
capacitive and inductive loop, followed by FSP-ZrO2 samples,
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FIGURE 7 | Schmid factor distribution map of TD (on the left side) and PD (on the right side) of (0001) basal slip system (A,B) BM, (C,D) FSP, (E,F) FSP-ZrO2.

and finally BM. Generally, the larger the radius of capacitive
and inductive loop, the better corrosion resistance of the sample
(Wang et al., 2018). Furthermore, the dislocation density at the
ZrO2 particles is too large (Figures 3E,F), and thus the local
corrosion is aggravated (Liu et al., 2008). It has been reported that
dislocations are easily formed between the ZrO2 particles and the
matrix due to a large mismatch of thermal expansion coefficient
between them (ZrO2 particles is ∼7.5 × 10−6 K−1, Mg matrix
is ∼27.1 × 10−6 K−1) (Liu et al., 2008; Vedabouriswaran and
Aravindan, 2018). Therefore, the FSP-ZrO2 composite exhibits
worse corrosion performance than FSP sample. In summary, it
can be considered that the corrosion resistance of FSP samples is
the best, followed by FSP-ZrO2, and the corrosion resistance of
BM is the worst.

SVET Voltage Maps
Figure 12 shows the SVET maps of BM, FSP and FSP-ZrO2
samples soaked in SBF at 0, 1, 3, 6, and 24 h, respectively. It can
be seen that a local violent reaction occurs in BM when it is just
soaked in SBF, the maximum voltage is 0.122 mv. When they are
soaked for 24 h, the voltage drops to 0.017 mv. The maximum
voltage for FSP samples is 0.024 mv when they are just soaked
in SBF, and the voltage is reduced to 0.000 mv for 24 h. The
maximum voltage for FSP-ZrO2 sample just immersed in SBF
is −0.004 mv, and the voltage first increases and then decreases
during the corrosion process. After being soaked for 24 h, the
voltage drops to −0.005 mv. The above results indicate that FSP-
ZrO2 samples are more prone to passivation during the corrosion
process, followed by FSP and BM is the worst.
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FIGURE 8 | The microhardness distribution of BM, FSP and FSP-ZrO2
samples.

DISCUSSION

Relationship Between Microstructure
and Mechanical Property
Base metal exhibits coarse grains with inhomogeneous
distribution of grain size (Figure 3A), while the FSP sample
presents fine and uniform grains. During FSP, the effect of severe
plastic deformation, high temperature and strain rate breaks the
grains and causes dynamic recrystallization, resulting in the grain
refinement of Mg alloy (Figure 3B). LAGBs entangled inside the
FSP sample to form fine recrystallized grains (Figures 4A,B),
indicating that continuous dynamic recrystallization (CDRX)
occurs. Severe plastic deformation increases the dislocation
density in grains, and the dislocations rotate or rearrange to
form LAGBs in FSP process. These LAGBs gradually transform
into HAGBs in the subsequent plastic deformation process
(Figures 4A,B).

Compared with FSP sample, grain size of FSP-ZrO2 sample
is refined, and HAGBs and recrystallized grains increase
(Figures 3, 4). This is mainly due to the following three reasons.
First, the elastic modulus of ZrO2 particles is different from that
of Mg matrix, which will increase dislocation density and provide
more nucleation sites for CDRX during FSP (Figures 3E,F).
Second, ZrO2 particles will increase the strain and strain
rate, thereby refining the grains (Mukherjee and Ghosh, 2010;
Navazani and Dehghani, 2016). Third, ZrO2 particles pin the
dislocations, hindering the movement of dislocations and growth
of grain (Figures 3E,F; Mazaheri et al., 2019).

In Figures 5, 6, the grain orientation and texture of three
samples have changed significantly. Mg alloy undergoes plastic
flow under the combination of the shoulder and stirring pin
during FSP, which greatly changes the grain orientation and
texture (Yuan et al., 2011). From Figure 5B, it can be seen that
the c-axis is deflected and the polar density increases for FSP
sample, under the action of the compressive stress induced by the
rotation of the shoulder and the shearing force of the stirring pin.
For Mg alloy, basal slip has a lower critical resolved shear stress

(CRSS) compared to prismatic slip and pyramidal slip (Park et al.,
2003; Woo et al., 2006). Therefore, basal slip is easier to start in
FSP, resulting in the formation of obvious basal texture, and the
highest polar density is four times that of BM. In addition, the
deflected angle of the c-axis on the {0001} plane in FSP-ZrO2
sample is larger than that of FSP sample, and the polar density
is also significantly increased. This indicates that ZrO2 particles
contribute to the initiation of basal slip and increase the strength
of basal texture.

In general, the mechanical properties of Mg alloys are mainly
affected by grain size, secondary phase and grain orientation.
There is hardly precipitates in AZ31 Mg alloy, so the influence of
precipitates on the alloy is not considered after FSP. During FSP,
the grains of the alloy are significantly refined and uniformed,
while the strength is significantly lower than that of BM
(Figure 9). The grain refinement strengthening effect is not
enough to compensate for the strength loss caused by other
factors. Moreover, Mg alloy undergoes severe plastic deformation
during FSP, and the texture composition completely different
from BM is formed in the processing zone (Figures 5, 6). In
addition, compared with BM, the SF value of each area for FSP
sample is increased, and the basal slip is easy to proceed, so the
strength of FSP sample is reduced. This reduction of strength
caused by the softening of grain orientation has been confirmed
in our previous studies (Wang et al., 2020). The strength of FSP-
ZrO2 sample is significantly higher than that of BM, as shown
in Figure 9. Several strengthening mechanisms of composites
have been proposed (Lloyd, 1994). It has been reported that
increases in the YS and UTS of FSP-ZrO2 composites by addition
of reinforcing particles may be attributable to three factors as
following (Chang et al., 2007; Navazani and Dehghani, 2016;
Mazaheri et al., 2019). Firstly, the grains are obviously refined
due to the dynamic recrystallization caused by FSP and the
pinning effect of ZrO2, triggering grain refinement strengthening
(Morisada et al., 2006a; Cao et al., 2014; Sun et al., 2017).
Secondly, ZrO2 particles uniformly distributed in the matrix
are pinned to the grain boundaries, hindering the movement

FIGURE 9 | The stress-strain curves of BM, FSP and FSP-ZrO2 samples.
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FIGURE 10 | The fracture surfaces of tensile samples: (A) BM, (B) FSP, (C) FSP-ZrO2, (D) the enlarged view of red rectangle of (c).

of dislocations and causing Orowan strengthening. Thirdly, the
load-transfer strengthening caused by the difference in elastic
modulus between Mg matrix and ZrO2 particles.

Furthermore, the contribution of each strengthening
mechanism to the YS of FSP-ZrO2 composites can be calculated
using the mathematical equations as following (Hall, 1951; Zhang
and Chen, 2006; Shahin et al., 2019):

σy = σ0 + kyd−1/2 (2)

where σs is the yield strength, σ0 is the friction stress, ky is the
stress concentration factor (5 MPa mm1/2), and d is the average
grain size.

σorowan =
√

3
Gb
L

(3)

where G is the shear modulus (1.64 × 104 MPa), b is Burgers
vector (3.21 × 10−10 m), L is the average distance between ZrO2
particles (350 nm).

σLT =
σmyfv

2
(4)

where σmy is the YS of BM (137 MPa), fv is the volume fraction of
ZrO2 particles (about 17.6%).

Based on Eqs. (2) – (4), the calculated strength increments
between the as-received AZ31 and FSP-ZrO2 samples were about
39.8, 26.8, and 12.1 MPa, respectively. This indicates that grain
refinement strengthening contributes to improve the strength
of the material, followed by Orowan strengthening, and finally

load transfer strengthening. This is because the reduction of
the grain size for metal matrix directly effects the increase of
the strength characteristics of specimens after uniaxial tensile
(Vedabouriswaran and Aravindan, 2018). Saikrishna et al. (2017)
also proposed the similar conclusion. In addition, the size of the
reinforcement particle (Orowan strengthening) contributes in
the improvement of strength. Therefore, FSP-ZrO2 sample in this
work presents the highest UTS and YS. Adding the contributions
of various strength mechanisms, the strength increment of the
material is 78.7 MPa, whereas the measured strength increment
is approximately 80 MPa (Figure 9). This indicates a good
agreement between the calculated and measured amounts of
strength. In conclusion, the grain refinement and Orowan
strengthening mechanism can be considered as the major reason
of the enhanced strength for FSP-ZrO2 sample in this work.

Corrosion Mechanism of the FSP-ZrO2
As shown in Figure 11B, BM, FSP samples and FSP-
ZrO2 composites exhibit similar cathodic reaction and anodic
dissolution characteristics. It is known that Mg and its alloys
suffer electrochemical corrosion in aqueous solutions, involving
cathodic reduction of water (5) and anodic dissolution of Mg (6)
(Esmaily et al., 2016).

2H2O+ 2e− → H2 ↑ 2OH− (5)

Mg→ Mg2+
+ 2e− (6)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 March 2021 | Volume 9 | Article 605171211

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-605171 March 19, 2021 Time: 16:22 # 12

Qiao et al. Mg/ZrO2 Nanocomposites Fabricated by FSP

FIGURE 11 | The BM, FSP and FSP-ZrO2 samples in SBF solution: (A) E versus time curves; (B) Tafel polarization curves; (C) Nyquist plots.

According to Eqs. (5) and (6), the overall corrosion reaction (7)
during electrochemical corrosion processing as following:

Mg+ 2H2O = Mg(OH)2 +H2 ↑ (7)

Mg dissociates in aqueous environments to form Mg
hydroxide (Mg(OH)2) and hydrogen (H2) gas. The Mg(OH)2
corrosion film product formed on the alloy surface is a very poor
electronic conductor and the rate of corrosion is hence strongly
reduced (Esmaily et al., 2016).

The electrochemical corrosion test and SVET measurement of
BM, FSP, and FSP-ZrO2 samples were carried out (Figures 11, 12)
in this work. In both tests, the corrosion rate of FSP-ZrO2 sample
is lower than that of BM (Table 2), which indicates that it has
better corrosion resistance. In the electrochemical corrosion test,
the corrosion resistance of FSP sample is better than that of
FSP-ZrO2 sample, while the opposite result appears in the SVET
measurement. For Mg alloys, grain size and grain orientation are
the main factors affecting their corrosion resistance (Huang et al.,
2019). For Mg matrix composites, in addition to the above two
factors, reinforced particles also affect the corrosion resistance
significantly (Vignesh et al., 2019).

Generally, grain refinement is considered to effectively
improve the corrosion resistance of Mg alloys (Saikrishna et al.,
2017; Wang et al., 2018; Huang et al., 2019). The corrosion
resistance depends on the grain size, via the grain boundary
defects. The high grain boundary energy and chemical activity
promote rapid transfer rate of electrons and materials, resulting

in a strong chemical reaction, so the grain boundary can provide
more nucleation sites for the passive film. Fine-grained structure
can provide more grain boundaries, and the smaller grain size
can promote the formation of the protective Mg(OH)2 layer.
Moreover, Choi and Kim (2015) reported that the grain boundary
is conducive to stress release and can reduce the number of
cracks in the protective film or corrosion layer. Therefore, grain
refinement can improve the biological corrosion resistance of
Mg alloy. In constant, it has been reported that the grain
refinement and the increase of grain boundaries are harmful to
corrosion properties. Because of the high defect density at the
grain boundary, the material has a greater tendency to corrosion.
According to Figures 11, 12, the grain size of FSP and FSP-ZrO2
samples in this study is smaller than that of BM, which means that
they have better corrosion resistance, so it can be considered that
grain refinement contributes to improve the corrosion resistance
of FSP-ZrO2 composites.

On the other hand, grain orientation is also a critical factor
for influencing the corrosion behavior of FSP-ZrO2 composites.

TABLE 2 | The results of Ecorr , icorr and Pi of samples in SBF solution.

Sample Ecorr (V) icorr (mA/cm2) Pi (mm/y)

BM −1.61 ± 0.02 0.271 ± 0.003 6.19 ± 0.02

FSP −1.61 ± 0.01 0.090 ± 0.002 2.06 ± 0.04

FSP-ZrO2 −1.64 ± 0.01 0.217 ± 0.001 4.96 ± 0.02
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FIGURE 12 | The SVET voltage maps of BM, FSP and FSP-ZrO2 samples in SBF solution for 0 h, 1 h, 3 h, 6 h, 24 h, respectively.
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Previous studies have shown that the (0001) plane of Mg alloy is
more resistant to corrosion than (10–10) and (11–20) plane (Liu
et al., 2008; Campo et al., 2014; Huang et al., 2019). The (0001)
plane of Mg alloy exhibits the highest atomic density (1.13× 1019,
atom/m2) and the lowest surface energy, which leads to a low
atomic dissolution rate during the corrosion. Besides, Micro-zone
primary cells are formed between different grain orientations,
which in turn affects the OCP (Song et al., 2010). In this study,
the micro-galvanic effect in FSP and FSP-ZrO2 samples leads
to preferential dissolution of grains with (10–10) and (11–20)
orientations, resulting in the increase of OCP (Figure 11A), thus
improving the corrosion resistance of the materials.

In addition, the effect of ZrO2 particles on the corrosion
performance of FSP-ZrO2 sample cannot be ignored. The
secondary particles improve the corrosion resistance of Mg alloy
mainly in the following two ways. One is to promote grain
refinement, and the other is to play a role in obstacle. According
to the previous experimental results (Figures 3, 4), adding ZrO2
particles into AZ31 Mg with FSP can promote grain refinement,
and then improve the corrosion performance. Similar results
have been reported (Esmaily et al., 2016; Wang et al., 2018;
Huang et al., 2019). Moreover, Vignesh et al. (2019) believed
that the dispersion distribution of ZrO2 particles in composites
increases the cumulative corrosion potential of the material,
which increases the corrosion resistance of the composite.
Mensah-Darkwa et al. (2013) studied the corrosion properties
of Mg-hydroxyapatite (HA) composites and found that HA
provides greater resistance to electrons and ions on the surface of
Mg, so it essentially has greater corrosion resistance. In this study,
during the corrosion process of FSP-ZrO2 sample, there are many
dislocations (Figures 3E,F) around ZrO2 particles. Corrosion
is more likely to occur at the position where the dislocation
intersects the surface of the matrix (Liu et al., 2008). Therefore,
ZrO2 particles can be used as obstacles to effectively prevent the
penetration of corrosion and ultimately improve the corrosion
resistance of the alloy. It is reported that reinforced particles
can also reduce the corrosion resistance of the composites (Liu
et al., 2008). For example, Saikrishna et al. (2017) prepared
MWCNT/Mg composites by FSP, but its corrosion resistance
was reduced because the added carbon nanotubes provide a
nucleation site for galvanic corrosion. Meanwhile, this effect
suppresses the effect of grain size and grain orientation on
corrosion properties.

In summary, grain size, ZrO2 particles and grain orientation
all influence the corrosion properties. Among them, the grain size
is the main factor affecting the corrosion performance. According
to the microstructure results, the size of FSP-ZrO2 (3.2 µm) is
smaller than that of FSP (4 µm) and should have better corrosion
resistance, which had been confirmed by SVET measurement
(Figure 11). However, its electrochemical corrosion performance
is lower than that of FSP sample, which may be due to the
stress concentration caused by the pits left by the shedding of
ZrO2 particles, which accelerates the corrosion rate. When the
grain size is similar, ZrO2 particles are easy to fall off and affect
the corrosion performance. In addition, grain orientation has
little effect on the corrosion performance because it affects the
corrosion performance by affecting the surface energy.

CONCLUSION

(1) AZ31/ZrO2 composites with fine, densified and
homogenized microstructure can be prepared by FSP. The
grain size is refined from 10 µm of BM to 3.2 µm. After
FSP, a strong basal texture is produced, and the c-axis
of the grain is deflected under the action of compressive
stress of shoulder and shear stress of pin.

(2) With the addition of ZrO2 particles, the microhardness
of FSP-ZrO2 composites increases from 71 HV (BM)
to 99 HV, UTS from 273 MPa (BM) to 427 MPa, YS
from 137 MPa (BM) to 217 MPa. The strengthening
mechanisms of the composites are mainly fine grain
strengthening and Orowan strengthening. Compared with
BM, the addition of ZrO2 particles increase the brittleness
but decrease the elongation. BM and FSP samples show
quasi-cleavage fracture characteristics, while FSP-ZrO2
composites present microporous polymerization fracture
characteristics.

(3) The electrochemical corrosion behavior of three samples in
SBF solution shows that the icorr of FSP-ZrO2 composites
decreases and the radius of capacitive loop increases,
indicating that the corrosion rate decreases but the
corrosion resistance increases for the composites. The
main factors affecting the corrosion performance are grain
size and ZrO2 particles.
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Design an implant similar to the human bone is one of the critical problems in bone tissue
engineering. Metal porous scaffolds have good prospects in bone tissue replacement
due to their matching elastic modulus, better strength, and biocompatibility. However,
traditional processing methods are challenging to fabricate scaffolds with a porous
structure, limiting the development of porous scaffolds. With the advancement of
additive manufacturing (AM) and computer-aided technologies, the development of
porous metal scaffolds also ushers in unprecedented opportunities. In recent years,
many new metal materials and innovative design methods are used to fabricate porous
scaffolds with excellent mechanical properties and biocompatibility. This article reviews
the research progress of porous metal scaffolds, and introduces the AM technologies
used in porous metal scaffolds. Then the applications of different metal materials in bone
scaffolds are summarized, and the advantages and limitations of various scaffold design
methods are discussed. Finally, we look forward to the development prospects of AM in
porous metal scaffolds.

Keywords: metal material, additive manufacturing, porous scaffold, design, bone tissue engineering

INTRODUCTION

Bone defects caused by pathologies such as fracture, bone tumor, or external trauma are among
the main problems in clinical treatment (Moiduddin et al., 2017). Autologous bone transplantation
is considered to be a good choice, but the mismatched performance of different bone sites and
the limited number of useful bone grafts limit the application of autologous bone transplantation
(Henkel et al., 2013). In contrast, allogeneic bone transplantation has an obvious risk of immune
rejection and infection, which affects bone formation and is prone to bone resorption. Therefore, it
is ideal to seek natural bone replacement for bone transplantation in orthopedics.

As an alternative material, porous metal scaffolds avoid a series of adverse reactions in natural
bone grafting and have gradually attracted researchers’ attention. To simulate the mechanical
properties and biocompatibility of real bone, porous metal scaffolds not only have interconnected
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porous structures but also have good mechanical properties and
biocompatibility (Li et al., 2020a). Mechanical properties mainly
include better yield strength, matching elastic modulus, and
better fatigue strength (Yuan et al., 2019). Common biomedical
metal materials such as Ti and Ti alloys can completely meet
bone implants needs in terms of strength. Nevertheless, the
elastic modulus of dense metals is much greater than that of
human bones, which is prone to bone resorption and leads to
bone loosening in the human body (Bundy, 2008). The porous
scaffolds can obtain matching elastic modulus with human bone
by adjusting the pore size and porosity (Kelly et al., 2019),
and at the same time have better yield and fatigue strength
(Chen et al., 2018). Porous metal scaffolds should also have good
biocompatibility, which not only can promote cell attachment,
growth, proliferation, and differentiation, but also facilitates the
transport of nutrients and metabolic wastes (Little et al., 2011;
Saint-Pastou Terrier and Gasque, 2017).

Traditional processing methods are challenging to prepare
porous metal scaffolds with complex structures, while additive
manufacturing (AM) technology can prepare the scaffolds with
controllable structures, shape, and properties (Wang et al.,
2020a). Thus AM is one of the most effective methods to prepare
porous metal scaffolds. The design of porous metal scaffolds
is another crucial problem because scaffold features such as
unit type, pore size, porosity, and distribution have significantly
influence on their mechanical properties and biocompatibility.
Therefore, this article introduces the AM technologies for
preparing metal scaffolds and summaries the research progress
in relative metal materials, including non-biodegradable metals
(Ti alloys, Ta alloy, and stainless steel), and biodegradable metals
(Fe, Mg alloy, and Zn alloy). Besides, we review the structural
characteristics of porous metal scaffolds and their design methods
in detail, and evaluate the advantages and limitations of these
methods. Finally, we prospect the future development direction
of bone scaffolds.

BASIC REQUIREMENTS FOR METAL
POROUS SCAFFOLDS

For metal implants, the elastic modulus is a very important
mechanical performance (Ngo et al., 2018). Large elastic modulus
differences between the implants and the bone tissue can result in
“stress shielding” effect, which will gradually trigger the loosening
of the implant, finally leading to the failure of implant. As known
to all, solid metals has much higher elastic modulus than bone
tissue (Li et al., 2020a). Obviously, the solid metals are not suitable
to use as implants. Thus porous structures were designed in order
to reduce the elastic modulus of the solid metals. Metal porous
implants should be non-toxic, non-rejection, and non-allergenic,
which requires us to select suitable metal as raw material (Roseti
et al., 2017). Good biocompatibility is also reflected in the
reasonable porous shape and distribution, which can promote
the adhesion and growth of bone tissue cells (Shor et al., 2007).
In addition, metal porous scaffolds should have good wear and
corrosion resistance. Worse wear resistance can cause loosening
of the scaffolds, and metal particles caused by wear or metal ions

formed due to the corrosion effect can lead to tissue reactions and
lesions (Wang et al., 2020a). Furthermore, the scaffolds should
have good machinability, and the structures can be obtained
using existing processing technologies.

ADDITIVE MANUFACTURING
TECHNOLOGY

Additive manufacturing (AM) technologies, also known as
3D printing, attracts extensive attention in the fabrication of
biomedical implants due to their capability of manufacturing
porous scaffolds with irregular shapes (Chen et al., 2020b).
AM prepares products by layer-by-layer stacking method, which
divides into the following three steps. Firstly, the entity model
is established by commercial software such as UG, Pro/Engineer,
SolidWorks, and Materialise 3-Matic, etc. Secondly, the model is
imported into slicing software for slicing and layering. Finally,
the layered file is imported into a 3D printer, and the parts
are formed layer by layer from bottom to top. At present, the
AM technologies suitable for preparing porous metal scaffolds
mainly divides into two categories: powder bed fusion technology
(PBF) and directional deposition technology (DED) (Chen et al.,
2020a). Compared with DED, PBF can prepare the parts with
better manufacturing accuracy and surface quality and are more
prevalent in the biomedical field. Therefore, this article focuses
on powder bed fusion technologies, including selective laser
sintering (SLS), selective laser melting (SLM), and electron beam
melting (EBM) (Chen et al., 2020b). The differences in these AM
technologies are summarized, as shown in Table 1.

Selective Laser Sintering (SLS) and
Selective Laser Melting (SLM)
Figure 1A show the schematic diagram of SLS. SLS uses a laser
as an energy source to sinter the powder materials (Szymczyk-
Ziółkowska et al., 2020). After melting one layer, the equipment
descends to fabrication platform and raises the powder delivery
platform. Then the roller rolls out powders on the fabrication
platform, and a new layer of sintering begins. This process is
repeated until entirely formation of the part. When using SLS,
prepared material need introduce binder materials (alloys with
a low melting point) to reduce the melting point, promoting
sintering (Lee et al., 2017). SLS can prepare a variety of materials
such as polymers (Goodridge et al., 2012), metals and alloys (Bae
et al., 2014), etc. but it is challenging to prepare metal materials
with a high melting points.

Selective laser melting is developed based on SLS technology,
and its principles are the same. Nevertheless, powder material
and the bonding mechanisms in the two technologies are
different. In SLS technology, the powder materials are heated
to partly melt by laser beams instead of completely melting
(Bose et al., 2018). Powders with a low melting points are used
as binders for bonding high melting point metals (Qu, 2020).
Compared with SLS, the laser of SLM has higher energy (Dogan
et al., 2020), which can completely melt the powder. Thus it can
prepare metals or alloys with a high melting points. The parts
prepared by SLM have higher dimensional accuracy and density,
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and their mechanical properties are comparable to those of forged
one. Due to the high sintering temperature, the powder sintering
needs to be performed under the protection of inert gas to prevent
metal oxidation (Wang et al., 2017).

Selective laser melting technology also has shortcomings. The
surface of parts prepared by SLM can adhere to some particles
that do not melt completely (Zadpoor, 2019), resulting in its
high surface roughness. It is necessary to smooth the surface
by sandblasting or chemical corrosion (Ahmadi et al., 2019;
Zadpoor, 2019). Besides, when the SLM is used to process brittle
materials, residual stresses are easily generated inside the parts

during the cooling process. Thus it is often necessary to adopt
isobaric sintering or heat treatment to eliminate residual stress
(Fang et al., 2020).

Electron Beam Melting (EBM)
Electron beam melting, like SLS and SLM, is a powder bed fusion
technology (PBF). The significant differences between SLM and
EBM are the source of energy, and their energy sources are
laser and high-energy, high-speed electron beams, respectively.
Figure 1B show the principle of EBM. The electron gun emits
electrons, and then the electron beam is accelerated by the heated

TABLE 1 | Summaries of four different additive manufacturing technologies: selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM),
and directional deposition technology (DED).

Category Materials Application Resolution
(µm)

Advantages Disadvantages References

SLS Polymers
Metals
Alloys

• Biomedical fabrication

• Shipbuilding
• Auto industry
• Aerospace

76–100 • Superior mechanical
properties
• Complex geometry
• No supporting
• High utilization of powder
Materials

• Low energy efficiency
• Expensive
Low density

Chohan et al., 2017; Ngo et al., 2018

SLM Metals
Alloys

• Biomedical fabrication

• Shipbuilding
• Auto industry
• Aerospace

80–250 • Superior mechanical
properties
• Complex geometry
• No supporting
• High density

Expensive
• Residual stress
• Rough surface
• Time consuming process

Sood et al., 2010; Tofail et al., 2018

EBM Metals
Alloys

• Biomedical fabrication

• Shipbuilding
• Auto industry
• Aerospace

50–100 • Superior mechanical
properties
• Complex geometry
• No supporting

Expensive
• Rough surface
• Time consuming process

Ngo et al., 2018; Qu, 2020

DED Metals
Alloys
Ceramics
Glass
Polymers

• Aerospace
• Repair of bespoke
parts
• Biomedical
application

250 Good mechanical
properties
• Rapid cooling rates
• Effective time and cost of
repairs

Low resolution
• Low surface quality
• Producing less complex
• parts

Gibson et al., 2015; Mohamed et al., 2015

FIGURE 1 | Schematic diagrams of PBF including (A) SLS and SLM, and (B) EBM (Ataee et al., 2017).
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tungsten wire, and the direction and diameter of the electron
beam are controlled by a magnetic lens (or coil) (Yuan et al.,
2019). During sintering, the metal power melts entirely, and then
the electron beam sweeps the powder along the preset path and
processing parameters. The powders can be melted and solidified
into a metal entity, finally forming a thin layer with a thickness of
0.05–0.2 mm. Then the powders are spread and sintered again
and this operation was repeated until the formation of parts
entirely. To prevent the oxidation of the metal powder, the entire
process needs to be carried out in a vacuum (Gokuldoss et al.,
2017). EBM’s advantages are lies in the higher energy density of
the electron beam, faster rate of powder melting and forming (Liu
et al., 2016). Due to the high energy density, EBM technology
can prepare refractory metals with high melting points. During
processing, EBM usually heats the powder bed, which can reduce
the temperature differences between the powder bed and the
metal. Thus the residual stress of parts is small (Gokuldoss
et al., 2017). Like the SLM technology, the parts prepared by
EBM have high surface roughness (Gong et al., 2014), and the
dimensional error and surface integrity are worse than those
of the cast one.

THE METAL MATERIAL USED IN
POROUS SCAFFOLDS

Non-biodegradable Metals
The non-biodegradable metal materials currently used in porous
scaffolds mainly include pure Ti (Wauthle et al., 2015a), Ti alloy
(Kapat et al., 2017; Onal et al., 2018; Cutolo et al., 2020), Ta
(Wauthle et al., 2015b), 316L stainless steel (Yan et al., 2014),
NiTi alloy (Habijan et al., 2013), and Co-Cr alloy (Demir and
Previtali, 2017), etc. Table 2 lists the mechanical properties of

different non-biodegradable porous scaffolds (Peng et al., 2019).
Ti alloys are widely used in orthopedic implants due to the better
biocompatibility, corrosion resistance, and excellent mechanical
properties (Zhu et al., 2016). Ti-6Al-4V has more matching elastic
modulus with human bone and relatively low price (Yang et al.,
2018; Lv et al., 2019), which is the most studied biomedical Ti
alloy (Cheng et al., 2014; Zhu et al., 2018). However, cytotoxicity
experiments of Ti-6Al-4V scaffolds also indicate that the release
of Al and V ions occurs in the human body, which affects cell
proliferation and causes cytotoxicity (Surmeneva et al., 2019).
Pure Ti, as a good biometal material, avoids the release of harmful
ions (Liu J. et al., 2020). Wauthle et al. (2015b) and Liu S.
et al. (2020) prepared pure Ti scaffolds with a dodecahedral unit
structure and found that the scaffolds have higher fatigue cycle
strength and ductility than that of Ti-6Al-4V. The Nb and Zr
elements also have good biocompatibility (Sing et al., 2016) and
have been used as alloying elements to improve the biological and
mechanical properties of Ti alloys (Lin et al., 2013). Liang et al.
(2020) prepared Ti-25Nb porous scaffolds with a hydrophilic
surface structure. They found that Ti-25Nb scaffold can promote
the expression of phagocyte M2 type and enhance the activity
of anti-inflammatory phagocytes. Luo et al. (2020) found that
the Ti-30Nb-5Ta-8Zr scaffold exhibits similar fatigue strength,
compression, and tensile properties with cortical bone, and they
also established the functional relationship between the porosity,
yield strength, and elastic modulus of the alloy. Wauthle et al.
(2015b) and Wang H. et al. (2019) prepared three type porous
metal scaffolds, including Ta, pure Ti, and Ti-6Al-4V. They
found that Ta porous scaffolds have the same cell proliferation,
survival and osteogenic properties as Ti scaffolds. Moreover, the
Ta scaffolds have better toughness and fatigue limit than Ti-6Al-
4V scaffolds (Guo et al., 2013). However, Ta scaffold has a higher
price, which limits its wide application.

TABLE 2 | Mechanical properties of different porous metal scaffolds.

Mechanical properties of porous metal scaffolds

Materials(structure) Elastic modulus (GPa) Yield strength (MPa) References

Ti-6Al-4V (Gyroid and Diamond) 3.8 152.6 145.7 Liu et al., 2018

Ti-6Al-4V (Octahedral) 2.1–4.7 71–190 Yan et al., 2019

Pure Ti (Diamond) 0.557–0.661 50 Taniguchi et al., 2016

Pure Ti (FGPS) 0.28–0.59 3.79–17.75 Han et al., 2018

Pure Ta (Diamond) 3.1 393.62 Wang H. et al., 2019

Pure Ta (Dodecahedron) 1.22 12.7 Wauthle et al., 2015b

Ti-30Nb-5Ta-8Zr (Rhombic dodecahedron, Body diagonals) 0.7–4.4 12.5–67 Luo et al., 2020

Ti35Zr28Nb (Face centered cubic) 1.1 27 Li et al., 2019a

Ti-35Nb-2Ta-3Zr 3.1 3.5 3.9 136 137 149 Hafeez et al., 2020

CoCr F75 (Diamond) 3.43 2.32 2.22 116.34 75.97 78.57 Hooreweder et al., 2017

NiTi (Octahedron, Cellular gyroid, Sheet gyroid) 21 29 44 Speirs et al., 2017

NiTi 3.7–13.5 Bartolomeu et al., 2020; Liu S. et al., 2020

316L (Gyroid) 2.04 2.48 2.71 55 72.1 89.4 Ma et al., 2019

316L (Gyroid) 14.41–15.53 251–302 Yan et al., 2014

Fe (Diamond) 2.81 0.89 1.77 1.75 53.1 10.7 32.9 30.5 Li et al., 2019b

Fe-35Mn (Schwarz Primitive) 33.5 304 Carluccio et al., 2020

Zn (Diamond) 0.786 10.8 Li et al., 2020c

Mg WE43 (Diamond) 0.7–0.8 23 Li et al., 2018
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Ma et al. (2019) prepared 316L stainless steel porous scaffolds
and studied the influence of the pore size and porosity on
their elastic modulus, yield strength, and permeability. They also
established the functional relationship of the above parameters
and predicted the permeability of the scaffold. Čapek et al. (2016)
also obtained 316L stainless steel scaffolds with good mechanical
properties and found that the mechanical properties are close to
that of trabecular bone. However, compared with Ti alloy and Ta,
stainless steel has a higher elastic modulus, which easily leads to
stress shielding (Yamamoto et al., 2004). Thus how to adjust the
pore size and porosity of scaffolds and balance their relationship
between strength and elastic modulus is the crucial point for 316L
stainless steel porous scaffolds.

NiTi alloy has the characteristics of superelasticity and shape
memory, which have a good application prospect in biomedical
field (Wang L. et al., 2016; Liu et al., 2019). Nevertheless, the
Ni ions in the alloy have cytotoxicity, which is a concerning
matter to people. Habijan et al. (2013) prepared NiTi scaffolds
with different porosity and surface morphology, and cultivated
stem human mesenchymal stem cells (hMSC) on NiTi scaffolds.
They found that the amount of Ni released in the porous
scaffold is higher than that of the dense sample, but all
were below the cytotoxic concentration. They also found that
changing the spot diameter can improve the scaffold surface
morphology, and reducing the spot diameter can reduce Ni
ions’ release. They believed that NiTi scaffolds are suitable
carriers for hMSC, but the process parameters and post-
processing still need to be optimized before in vivo studies
(Liu et al., 2021).

The Co–Cr alloy has good biocompatibility (Baldwin and
Hunt, 2006), corrosion resistance, and wear resistance, and is
widely used in orthopedic surgery, especially in hip replacement
or knee replacement. However, the osseointegration and
biomechanical properties of Co–Cr alloy are inferior to Ti-6Al-
4V. Shah et al. (2016) prepared Co–Cr and Ti-6Al-4V porous
scaffolds by EBM. In vivo implantation experiments found that
the bone-implant bonding rate of the Co–Cr scaffold is lower
than that of the Ti-6Al-4V, but they have similar bone cell
density and distribution in a newly formed bone. Caravaggi
et al. (2019) prepared Co–Cr scaffolds with different porous
structures by SLM, and found that the elastic modulus of porous
structure is about 32 GPa, which is close to the elastic modulus of
human bone. Cell culture experiments showed that the number
of cells on the porous structure continued to increase over the
course of 1 week, indicating that the Co–Cr alloy had good
biocompatibility.

Biodegradable Metals
The biodegradable metal can effectively avoid chronic local
inflammation (Moravej and Mantovani, 2011), continuous
physical stimulation (Song and Song, 2007), and implant-related
infections, which has broad prospects in the biomedical field. At
present, Fe, Mg, and Zn alloys are widely studied as materials
for degradable scaffolds (Li et al., 2020b). How to match the rate
of metal degradation to that of bone tissue ingrowth is the main
challenge. Table 2 lists the mechanical properties of Fe, Mg, and
Zn porous scaffolds.

Fe is an element needed by the human body, and also
has good biocompatibility. The main problem for Fe is
the slower degradation rate in the human body, which can
inhibit the ingrowth rate of bone tissue. Li et al. (2019b)
prepared gradient porous Fe scaffolds and the pore size of
scaffolds are 600 µm (S0.4), 600–800 µm (Dense-out), 800–
600 µm (Dense-in), and 800–600 µm (S0.2). They found
that the scaffold of S0.2 and Dense-out had exactly the same
structure in the center (Figure 2B), but the weight loss of
the Dense-out scaffold in the center was higher than that
of the S0.2 scaffold, as shown in Figure 2C. They believe
that the Dense-out scaffold has higher flow velocities in the
center than on the periphery, as shown in Figure 2D. Adding
alloy elements into the Fe can also affect its degradation
rate. Carluccio et al. (2019) prepared Fe and Fe–Mn porous
scaffolds. They found that the corrosion rate of Fe–Mn
scaffold is much higher than that of pure Fe. They believed
that a galvanic cell is formed between the different metal
scaffolds, which accelerates Fe–Mn alloy’s degradation. The Fe–
Mn alloy scaffold has good biocompatibility and vitality to
mammalian cells.

Mg alloy porous scaffolds have a higher degradation rate,
leading to its complete degradation before bone tissue fully grows
into the scaffolds. To decrease the degradation rate, surface
modification (plasma electrolytic oxidation), and heat treatment
of the scaffold were performed by Kopp et al. (2019). They
found that Mg hydroxide and oxide are formed on the scaffold
surface, which slows down the degradation rate in the simulated
body fluid. Mg is more active, and there are problems such
as difficulty in preparation, powder splashing, cracks, and so
on (Wang et al., 2020d). The degradation rate of Mg scaffolds
also can produce hydrogen that affects cell proliferation. They
believed that if the problems mentioned above can be dealt with,
Mg alloys will have a more significant impact in the biomedical
field.

Zn alloys have gradually attracted extensive attention from
researchers because their degradation rate is closest to bone tissue
(Su et al., 2019; Fu et al., 2020), which is very beneficial to the
healing of bone tissue. Li et al. (2020c) prepared Zn scaffolds with
a diamond structure and found that the mechanical properties
are similar to cancellous bone. The volume loss is 7.8 and 3.6%,
respectively, after 28 days of dynamic and static immersion
in vitro, and the degradation rate is between Mg and Fe, as shown
in Figure 2A. The mechanical properties of the Zn scaffolds after
soaking can be improved after a small amount of degradation.
Cockerill et al. (2020) prepared Zn scaffolds with different pore
sizes through combination methods of AM and casting and
found that the Zn scaffolds have good biocompatibility and
antibacterial properties.

High Entropy Alloys
Compared with traditional metals and alloys, high-entropy alloys
are gradually becoming a focus of attention due to their better
comprehensive properties. These alloys are no longer based on
a particular component, but are made of a variety of metal to
provide better properties such as strength, corrosion resistance,
and biocompatibility (Ma et al., 2020).
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FIGURE 2 | (A) The morphologies of samples after in vitro immersion tests (Li et al., 2020b). (B) Functionally graded structure of porous Fe scaffolds. (C) The weight
of S0.2 and Dense-out for 28 days. (D) The flow distributions in S0.2 and Dense-out according to CFD modeling (Li et al., 2019b).

Motallebzadeh et al. (2019) prepared TiZrTaHfNb and
Ti1.5ZrTa0.5Hf0.5Nb0.5 high entropy alloys and compared
their properties with 316L, CoCrMo, and Ti6Al4V alloys.
They found that the high entropy alloy show higher wear
resistance and corrosion resistance. They attributed the higher
mechanical properties to the “cocktail effect” of the high entropy

alloy. Nagase et al. (2019) developed novel TiZrHfCr0.2Mo
and TiZrHfCo0.07Cr0.07Mo high-entropy alloys for metallic
biomaterials based on the combination of Ti–Nb–Ta–Zr–
Mo and Co–Cr–Mo alloy systems. The experimental results
showed that newly developed high entropy has comparable
biocompatibility with pure Ti.
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THE STRUCTURE DESIGN OF POROUS
METAL SCAFFOLDS

The ideal scaffold should be a porous structure in space that
provides space for cells to adhere, grow and proliferate, and
have mechanical properties similar to the bone tissue (Cheng
et al., 2014). Pore size and porosity are very important structural
parameters, which have a direct impact on mechanical properties
and biocompatibility of bone scaffolds. Proper pore size can
provide growth space for cells, and proper porosity can ensure
transportation of nutrients and metabolites in bone tissue (Cheng
et al., 2014). Besides, the shape of the porous scaffold structure is
also related to the biocompatibility and mechanical properties.
The continuous and smooth porous structure can avoid stress
concentration and facilitate the attachment of cells to the
scaffold surface.

Porous scaffold prepared by the traditional foaming (Murray,
2003) and sintered microsphere methods (Mark et al., 2002) has a
single structural unit, and the shape, size, and spatial distribution
can not be precisely controlled. With the development of
computer-aided design and AM technologies, problems
as mentioned above have gradually been improved. AM
technologies not only can accurately control the porous scaffold
size and spatial structure distribution but also can obtain ideal
mechanical properties and biocompatibility of porous scaffold
by adjusting the pore size and porosity. In this section, the
pore size and porosity of the scaffold are described, and the
influence of pore size and porosity on the scaffold’s performance
are summarized. Then current design methods for porous
metal scaffold including CAD structure, topology optimization,
minimal surface structure, Voronoi mosaic method, CT imaging
method, etc. are systematically reviewed.

Pore Size and Porosity of the Porous
Metal Scaffold
The porous scaffold’s pore size is generally defined by the
inscribed circle method, as shown in Figure 3. The definition
of porosity is the percentage of pore space in the solid structure
given by the following formula:

Porosity = (1-VP/VS)× 100%
Among them: VPis the volume of the porous structure and VS

is the volume of the dense structure.

FIGURE 3 | Basic structural unit: p: aperture, t: pillar thickness (Arabnejad
et al., 2016).

The Influence of Pore Size and Porosity on
Biocompatibility
Many investigations reported that the optimal pore size and
porosity of the porous scaffold are about 200–1200 µm (Ataee
et al., 2018) and 60–95% (Zhou et al., 2015), respectively.
To explore a more specific range of porosity, Ma et al.
(2020b) prepared convolute structured scaffolds with a porosity
of 75–88% to study the effect of different porosity on cell
proliferation. They found that a scaffold with a porosity of 88.8%
has the largest number of cells, and they believed that increasing
porosity could increase the specific surface area of the porous
scaffold and improve its permeability.

Ouyang et al. (2019) explored the pore size’s effect on the
biocompatibility of porous scaffolds and designed Ti-6Al-4V
scaffolds with pore sizes of 400, 650, 850, and 1100 µm,
respectively. They found that increasing pore size can reduce
the thickness and specific surface area of the pillar and increase
the scaffolds’s permeability. Cell proliferation and in vivo bone
formation first increase and then decrease with the increase of
pore size, and the best pore size is 650 µm. Ran et al. (2018)
compared the bone ingrowth of Ti-6Al-4V scaffolds with a
different pore sizes (400, 600, and 800 µm). They found that
the bone ingrowth properties of the scaffold with pores size
of 800 µm and 600 µm is significantly better than that of
400 µm.

Wang S. et al. (2019) compared the biocompatibility of Ti-
6Al-4V scaffold with different structures, including OTC, TC,
and OTC+TC (PFGS) structures. They found that the OTC
structure has the fastest cell proliferation in 1–4 days, and the
PFGS structure has the fastest cell proliferation in 4–7 days. In
contrast, TC structure has slowest cell proliferation in 1–7 days.
They believed that increasing the pore size can improve the
permeability of the structure and high permeability can transport
more oxygen and nutrients, which is conducive to cell growth
in the early stage of cell culture (Wang et al., 2020c). PFGS
has a smaller inner hole that is conducive to cell adhesion
and differentiation, so the PFGS structure shows a higher cell
proliferation rate in the later stage of cell culture.

The Influence of Pore Size and Porosity on
Mechanical Properties
The dense metal materials have a much higher elastic modulus
than human bone. For example, the elastic modulus of pure Ti
and Ti-6Al-4V are 112 and 132 Gpa, respectively (Sing et al.,
2016). While the elastic modulus of trabecular or cancellous bone
is between 0.02 and 2 Gpa (Wang X. et al., 2016), cortical bone
is higher, ranging from 7.7 to 21.8 Gpa (Zhang et al., 2018). At
present, the implant’s elastic modulus is mainly controlled by
adjusting the pore size and porosity. Yan et al. (2015) prepared
Ti-6Al-4V scaffolds with G and D structures with a porosity of
80–95%, a pore size of 480–1600 µm, and found that the elastic
modulus is about 0.12–1.25 GPa. The pore size and porosity
of scaffold also have immediate impact on strength (Ran et al.,
2018). Zhao et al. (2019) prepared octahedral structured Ti-6Al-
4V porous scaffolds with pore sizes of 500 and 1000 µm and
found that increasing pore size can decrease the tensile strength
and fatigue strength. Therefore, increasing the pore size and can
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reduces the elastic modulus, but it will also cause a decrease in the
tensile strength and fatigue strength of the scaffold.

Structure Design Methods of Porous
Metal Scaffold
CAD Method
The main principle of the CAD method is to design different
types of hole-making units and then create a porous scaffold
through the Boolean operation (Zhao et al., 2018). As the
basic unit of a porous scaffold, the shape, porosity, pore

size, and surface area have a direct impact on the overall
performance. Thus in the early stage, researchers mainly focused
on the design of the hole-making unit. Based on bionic
characteristics of different parts of human bones, Sun et al.
(2005) designed structural units with disk and rod shapes using
computer-aided tissue technology (CATE). They obtained a
combination of different units by adding the same circular
boundary on different units. Finally, a unit library that can
combine multiple structural units was established. Chua et al.
(2003) used the CAD method to develop a standard unit
library containing 11 kinds of hole elements and developed

FIGURE 4 | Structures designed by different design methods.
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an automatic assembly unit to match the anatomical shape of
bone tissue. Polyhedra and lattice structure play an important
role in CAD design due to their simple structure and good
mechanical properties. Maskery et al., 2016 designed a gradient
BCC (body centered cubic) lattice model (see Figure 4) to
compare their mechanical properties and energy absorption
with a uniform one. They found that the gradient structure
is able to absorb around 114% higher energy than uniform
structure. Li et al. (2019a) established the FCC (face-centered
cubic structure) and BCC lattice models, and they considered
that this simple and reliable models can obtain the desired
mechanical properties and biocompatibility. Limmahakhun
et al. (2017) established four structures (octahedron, column
octahedron, cube and truncated octahedron), as shown in
Figure 4. The mechanical tests and in vitro cellular experiments
showed that the column octahedron structure can balance
mechanical and biological properties, and are more suitable
as the basic unit of bone scaffold. Although created units
using CAD method are simple and have a low mechanical
property (Wettergreen et al., 2005; Chantarapanich et al., 2012),
the method still provides ideas for the following research.

Triple Periodic Minimal Surface (TPMS) Structure
A minimal surface is an implicit equivalent surface with zero
mean curvature. If the minimal surface is periodic in three
independent directions, it is usually called triple periodic minimal
surface (TPMS). TPMS can be expressed by a trigonometric

function, as shown in Table 3. Changing the TPMS’s threshold
value can accurately control the internal pore structure, optimize
the gradient pore structure, and maximize the specific surface
area of the scaffold.

Yoo (2011b) proposed a three-dimensional bone scaffold
design method that integrated distance field algorithms and
TPMS curved surfaces. This method can automatically obtain
a bone scaffold model with complex microstructures and
high quality free-form external surfaces. Yoo (2011a) proposed
another TPMS design method that two different TPMS structures
can be combined by using a linear interpolation algorithm. Yang
et al. (2014) reported that smooth transition between multiple
different TPMS substructures could be combined by sigmoid
and Gaussian radial basis functions (Yang and Zhou, 2014;
Yang et al., 2015). Ma et al. (2020a) proposed a new method
for designing heterogeneous porous scaffolds, that is, TPMS
units were combined with grid units using shape functions,
and they obtained a conformal refined discrete scaffold of a
full hexahedral grid. After finite element analysis, they found
that the elastic modulus, strength, and energy absorption of
the heterogeneous scaffolds are significantly improved than
uniform structure.

Nature bone has a porous gradient structure; thus, the gradient
TPMS structure is a hot spot in scaffolds design (Almeida
and Bártolo, 2014; Zhou et al., 2020). Wang et al. (2020c)
designed a symmetrical gradient Ti-6Al-4V scaffolds with a P
structure. They found that the gradient structure has better
mechanical performance than that of the uniform structure.

TABLE 3 | Common minimal surface structures.

TPMS unit Mathematical expressions

P (SchwarzP) structure ϕ(x,y,z)=cos(ωxx)+cos(ωyy)+cos(ωzz)=C

D (Diamond) structure ϕ(x,y,z)=cos(ωxx)cos(ωyycos(ωzz)-sin(wxx)sin(wyy)sin(wxz)=C

G (Gyroid) structure ϕ(x,y,z)=sin(ωxx)cos(ωyy)+sin(ωyy)cos(ωzz)+sin(ωzz)cos(ωxx)=C

F–RD structure ϕ(x,y,z)=4cos(ωxx)cos(ωyy)cos(ωzz)-[cos(2ωxx)cos(2ωyy)+cos(2ωzz)2(ωxx)+cos(2ωyy)cos(2ωzz)]=C

I–WP structure S ϕ(x,y,z)=2[cos(ωxx)cos(ωyy)+cos(ωzz)cos(ωxx)+cos(ωyy)cos(ωzz)]-[cos(2ωxx)+cos(2ωyy)+cos(2ωzz)=C
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Zhang X.Y. et al. (2020) proposed a new method that flexible
control of structural parameters can be realized by changing the
TPMS equation and found that those structure design parameters
have obviously effects on the scaffold performance.

Voronoi Tessellation Method
Voronoi tessellation is a space division method based on seed
points (Du et al., 2020). The seed points are connected through a
specific algorithm to form a space polygon surrounding the seed
points. Based on these polygonal edges, irregular porous scaffolds
are generated (Xiao and Yin, 2016). Thus the internal structure of
natural bone can be well simulated by irregular porous scaffolds
based on the Voronoi tessellation principle.

Kou and Tan (2010) proposed a design method with
controllable shape and distribution by using the two-
dimensional Voronoi diagram and they obtained irregular
concave and convex polygons through the merging of
Voronoi units. Then the boundaries of the concave and
convex polygons were interconnected to form a bracket. The
method makes a heterogeneous porous structure easier and
maintain the irregularities in natural bone. Fantini et al. (2016)
and Fantini and Curto (2017) used the three-dimensional
Voronoi tessellation method to design porous structures, and
obtained the three-dimensional Voronoi unit by processing
the three-dimensional coordinates, and established the
porous structure by Boolean operation on Voronoi unit, as
shown in Figure 4. Lei et al. (2020) proposed a new Voronoi
tessellation method to control the distribution of seed points
and established a function relationship of the porosity and the
number of seed points. Through this method, they obtained
a Voronoi tessellation scaffold with a gradient distribution
of seed points, which realizes the global control of the lattice
porous structure.

The Voronoi tessellation method can generate an irregular
pore model with controllable pore size and distribution, and the
automation degree of generating the model is relatively higher.
However, this method can not generate complicate porous
structure due to the difficulty in the visualization of the porous
scaffolds (Wang et al., 2020b).

Topology Optimization
Topology optimization technology is a mathematical method
based on finite elements (Marinela et al., 2019), which
can rearrange materials or structures to obtain the required
mechanical properties (Zhao et al., 2014). It is a powerful method
for the design of complex structures with multi-scale features
(Chen and Huang, 2019).

Yang et al. (2013) proposed a topology optimization method
of periodic hole unit structure and designed a porous scaffold
with a required Young’s modulus, as shown in Figure 4.
Radman et al. (2012) specified the volume or shear modulus
of units, and optimized the primary unit through the anti-
homogeneous two-way advanced optimization technology, and
established functionally gradient porous structure by the proper
connection between adjacent basic units. Xiao et al. (2012)
rearranged the structure of the model under the constraint of
volume fraction to achieve the ideal stiffness through the topology

optimization method and obtain optimal three-dimensional
structure of porous scaffolds (Xiao et al., 2013). Nasrullah et al.
(2020) established 11 kinds of porous structures by topology
optimization of lattice structures, and reported a conical lattice
structure that can provide energy absorption of up to 127 kJ/kg.
Zhang L. et al. (2020) combined the topology optimization
with numerical homogenization method to design high stiffness
lattice structure, and successfully obtained a new lattice structure
with high load-bearing and energy absorption capacity, and the
relative elastic modulus can reach 0.037.

Topology optimization methods can combine with a variety
of design methods to achieve required mechanical properties
and biocompatibility (Wang X. et al., 2016; Park et al., 2018).
Nevertheless, the design methods have many variables and high
calculations (Zhang X.Y. et al., 2019). How to balance the
relationship between structural design and calculation efficiency
remains to be resolved (Dias et al., 2014).

CT Imaging Method
The main principle of CT imaging method is to analysis and
processing of CT or MRI images (Feinberg et al., 1999) and
to extract key features by various reconstruction algorithms to
perform three-dimensional reconstruction. The modeling flow
chart is shown in Figure 5.

Hollister (2005) performed gray-scale processing of medical
images and obtained the distribution of solid voxel and void
information using a binarization segmentation algorithm. Then

FIGURE 5 | CT image modeling process (Podshivalov et al., 2013).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 March 2021 | Volume 9 | Article 641130226

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-641130 March 22, 2021 Time: 8:53 # 11

Lv et al. Additive Manufacturing Metal Porous Scaffolds

they established the porous structure by mapping the defined
porous structure unit to the solid voxel. Podshivalov et al. (2013)
segmented the CT image and removed the redundant shadow
part, then repaired hole on the model, and finally obtained
ideal bone scaffold model, as shown in Figure 4. Ben and
Fischer (2015) made important progress in CT image adaptive
model reconstruction. They introduced the quadtree and octree
algorithms into the process of adaptive model reconstruction,
which greatly simplifies the modeling process. Zheng et al. (2020)
scanned skull samples, extracted the shape of the skull and
reconstructed inside structure of the trabecular. Cell cultures
experiment showed that the model restores the internal structure
of the skull, and has good biocompatibility. The CT imaging
method can produce porous structure closest to the three-
dimensional structure inside the bone tissue (Cai, 2008; Cai
and Xi, 2009; Cai et al., 2012). However, the method has a
high dependence on the image resolution (Li et al., 2006), and
the simplification processing of CT or MRI data is relatively
cumbersome, which leads to certain restrictions on its clinical
application (Jones et al., 2007).

Comparison of Porous Scaffold Design
Methods
At present, CAD design and topology optimization methods are
the widely used methods in the design of porous scaffolds because
these methods are simple and reliable, and simultaneously
meeting the basic requirements of reducing the modulus of
the scaffolds. The structures designed by TPMS and Voronoi
methods are more similar to the internal structure of human
bone, and they have better permeability and mechanical
properties than the structure designed by CAD method. The

CT imaging method can reflect the real structure of bone. If
the reconstruction process of the model can be simplified, it is
believed that the CT imaging method can be further developed.
The comparisons of these modeling methods are summarized, as
shown in Table 4.

The above is the comparison and summary of structural
unit design methods. In addition, we also pay attention to the
overall design of the scaffold, and the hierarchical structure is
the hot spot in the overall design of the scaffold (He et al.,
2021). The real shape of bone in human body is the porous
structure with gradient distribution. According to the size and
porosity of the pores, bone can be divided into dense and
cancellous bone from the outside to the inside (Du et al., 2019).
Only vascular and nerve channels remain in dense bone, with
a porosity of about 5–30%. Cancellous bone has a porosity
of 30–90%, and can deform under stress and absorb energy
shocks from outside (Liu et al., 2018). The hierarchical structure
of natural bone in human body can not only meet the needs
of material transportation, but also meet the requirements of
mechanical properties. Singh et al. (2010) and Huang et al.
(2014) demonstrated that the hierarchical structure of the scaffold
can produce anisotropic mechanical properties, which are more
similar to the mechanical properties of human bones than the
homogeneous structure. If the unit design is combined with the
overall hierarchical design, scaffolds with better comprehensive
performance can be obtained.

SUMMARY AND OUTLOOK

Additive manufacturing technology provides unprecedented
opportunities for the production of customized biomedical

TABLE 4 | Comparison of porous scaffold design methods.

Methods Structures Design principle Advantages Disadvantages References

CAD method Boolean operations
between unit structures

• Low cost
• High efficiency
• Good permeability

• Poor controllability of
parameters
• Poor mechanical
properties

Zhao et al., 2018;
Maconachie et al., 2019;
Ren et al., 2019

TPMS method Modeling of
trigonometric function
expression of minimal
surface

• Smooth transition
• Large specific surface
area
• Good controllability of
parameters

• Small function coverage Yoo, 2011b; Abueidda
et al., 2019; Yu et al., 2019

Topology optimization method According to
requirements,
optimized by finite
element method

• Combine with multiple
design methods
• Good mechanical
properties
• Good permeability

• Variable and complex
parameters

Challis et al., 2010; Yang
et al., 2013

Voronoi tessellation method Based on the seed
point, surround the
seed point to form a
spatial polygon, and
build a support based
on the edge of the
polygon

• Simulate the irregular
porosity of natural bone
• Good controllability of
parameters

• Poor mechanical
performance
• Complex relationship
between parameters and
performance

Gómez et al., 2016; Fantini
et al., 2016; Fantini and
Curto, 2017

CT imaging method Extract the key shape
features of the CT
images and perform 3D
reconstruction

• Internal structure closest
to natural bone
• Good permeability

• Complex data processing

• High equipment
requirements

Gómez et al., 2016
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implants. With the development of materials science and
computer-assisted technologies, metal porous scaffolds produced
by AM, additive manufacturing have been applied in clinical
practice. In the future, the preparation of porous metal scaffolds
by AM, additive manufacturing still has great potential in the
following fields.

(1) The metal scaffolds with degradable materials can
effectively reduce the subsequent maintenance problems of
the implant. However, the most widely used materials for
metal porous scaffolds are still non-degradable metals such
as pure Ti, Ti alloys, 316L and so on. So it is particularly
important to design and prepare new biodegradable
materials that matching degradation rate with bone tissue.

(2) Real bone in the human body has gradient microstructures;
thus the development of porous scaffolds with gradient
structure is a future development trend. At present, it
is challenging to obtain a gradient scaffold with better
performance with a single design method. Therefore,
combination methods of topology optimization, CAD and
minimal surface and so on. Can be tried to design the
gradient structure in the future.

(3) Surface modification can effectively improve the
osteogenesis, bacteriostasis, and biocompatibility of porous
scaffolds. At present, preparation of inorganic and organic
surfaces, or changing the surface morphologies of bone
implants are the main surface modification methods. In the
future, new surface modification materials and methods
used for porous scaffolds should be developed in order to
improve its biocompatibility or realize the treatment of
certain diseases.

(4) At present, most of the researches on the biocompatibility
of the scaffold only stays in cell experiments, which
lacks accurate evaluation of the scaffold performances.
Thus effective in vivo osteogenic experiment should be
introduced and biological standards should be established

to more scientifically evaluate the osteogenic ability of
porous scaffolds.

(5) 4D printing is a concept that has emerged in recent
years, which generally refers to programmatical change in
shape and function of 3D printed scaffolds over time. The
change can adjust the mechanical properties or structure
characteristics of the porous scaffolds and expand its
functions and applications, providing a broader prospect
for the development of porous scaffolds.
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Enhancement of Bone Regeneration
on Calcium-Phosphate-Coated
Magnesium Mesh: Using the Rat
Calvarial Model
Shuang Wu, Yong-Seok Jang*† and Min-Ho Lee*†

Department of Dental Biomaterials, Institute of Oral Bioscience, Institute of Biodegradable Material, School of Dentistry,
Jeonbuk National University, Jeonju-si, South Korea

Metallic biodegradable magnesium (Mg) is a promising material in the biomedical
field owing to its excellent biocompatibility, bioabsorbability, and biomechanical
characteristics. Calcium phosphates (CaPs) were coated on the surface of pure Mg
through a simple alkali-hydrothermal treatment. The surface properties of CaP coatings
formed on Mg were identified through wettability, direct cell seeding, and release tests
since the surface properties of biomaterials can affect the reaction of the host tissue.
The effect of CaP-coated Mg mesh on guided bone regeneration in rat calvaria with
the critical-size defect was also evaluated in vivo using several comprehensive analyses
in comparison with untreated Mg mesh. Following the application of protective CaP
coating, the surface energy of Mg improved with higher hydrophilicity and cell affinity.
At the same time, the CaP coating endowed Mg with higher Ca affinity and lower
degradation. The Mg mesh with CaP coating had higher osteointegration and bone
affinity than pristine Mg mesh.

Keywords: magnesium mesh, surface modification, calcium phosphate, guided bone regeneration, rat calvarial
defect

INTRODUCTION

Guided bone regeneration (GBR) is an osteogenesis technique that has been developed from guided
tissue regeneration, and it is used for regenerating new bone at sites with insufficient dimensions,
heights, and bone volumes. Bone regeneration procedures, such as reconstruction of the bone
structure after excision of ameloblastoma and jaw tumors, augmentation of the deficient height
of alveolar ridges caused by periodontics, sinus elevation before implantation, and increase in jaw
bone size horizontally or vertically before implantation at the site of tooth loss, are required in many
patients undergoing oral and maxillofacial or orthopedic surgery (Miura et al., 2012). Using barrier
membranes to form a secluded space is the key to this reconstructive procedure because the newly
formed bone can be forced to collapse by the upper soft tissue of a large bone defect. Titanium alloys,
cobalt–chromium alloys, and stainless steel are widely used as implant materials in traditional
surgery. They have excellent mechanical strength, biostability, and durability, but they can cause
stress-shielding effects, and additional surgery is often required to remove the implant after
healing. Moreover, they can lead to the visualization of artifacts in magnetic resonance
imaging and three-dimensional computed tomography technology, which is not conducive
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to bone structure monitoring and image evaluation (Hargreaves
et al., 2011). Compared with the non-absorbable materials, the
advantages of absorbable materials are evident. The latter can
degrade in a physiological environment, reducing the need for
additional removal surgeries and decreasing the incidence of
secondary injuries to the wound; therefore, absorbable materials
have been widely used in the biomedical field. However, the
unpredictable resorption and unstable rigidity of absorbable
materials can affect the structural integrity and barrier function
of membranes (Rakhmatia et al., 2013). Therefore, a suitable
GBR membrane is expected to not only have sufficient rigidity
to reserve anatomic space at the site and exhibit bioactivity to
boost new bone formation but also be able to degrade after bone
regeneration is complete.

Magnesium (Mg) is a promising biomaterial and has
attracted considerable research attention due to its excellent
biodegradability, biocompatibility, and biomechanical properties
(Staiger et al., 2006). Mg is the fourth most abundant metal
ion in the human body, half of which is stored in the bone
tissue, and the remaining excess ions are excreted through
urine (De Baaij et al., 2015). The density of lightweight Mg is
approximately 1.74 g/cm3, and elastic modulus is 41–45 GPa.
Both of these parameters are similar to those of the human bone
(1.8–2.1 g/cm3, 3–20 GPa) and better than those of commonly
used materials, such as titanium alloys (4.4–4.5 g/cm3, 110–
117 GPa) and stainless steel (7.9–8.1 g/cm3, 189–205 GPa)
(Walker et al., 2014). Moreover, Mg also plays a regulatory
role as a calcium-sensing receptor in the bone and calcium
metabolism (Schlingmann, 2007). The history of biodegradable
Mg implants began shortly after the discovery of Mg by
Sir Humphrey Davy in 1808 (Witte, 2010). In 1878, Huse
used Mg wire as a ligature to successfully stop bleeding in
three patients and discovered the corrosive characteristics of
Mg in the body (Bettman and Zimmerman, 1935). Since
then, many studies have attempted to explore the in vivo
application of Mg as miniscrews and cardiovascular stents
(Witte, 2010). However, the rapid degradation of Mg in the
physiological environment raises the problem of changing
the pH around the implant and releasing gas, which not
only reduces the mechanical strength but also increases the
metabolic burden on human organs, thereby limiting its
clinical applicability. Hence, many studies have focused on
improving the corrosion resistance of Mg and its alloys using
various methods.

Surface modification and alloying are the main methods
used to control degradation and maintain mechanical properties
in pure Mg (PM); however, it is difficult to achieve the
required degree of corrosion resistance by alloying alone (Tian
and Liu, 2015). Therefore, surface modification is used to
form a degradable dynamic interface on Mg-based materials,
improving biocompatibility, imparting corrosion resistance, and
maintaining mechanical strength; ultimately, such materials can
be degraded without the release of any toxic by-products.
Calcium phosphates (CaPs) have been used as coatings on
implant surfaces because of their biocompatibility, bioactivity,
and osteoconductive and osteoinductive properties (Jeong et al.,
2019). CaP ceramics may also have the ability to induce

appropriate host reactions to connect bone and materials via
chemical bonding (Surmenev et al., 2014). Additionally, CaPs
have chemical composition and properties similar to those of
the mineral phase of human bones and teeth (Yang et al., 2005).
Recently, CaPs have been successfully coated on AZ31, Mg–Zn,
and AZ91D to improve their corrosion performance to different
degrees of success (Xu et al., 2012).

The novelty of the current study is that the effect of CaP
coating on pure Mg, in the field of surface performance and
in vivo osteointegration, was studied from the perspective
of the material interface, as this is the first step when the
implant material interacts with the host. A uniform and
dense CaP protective coating was formed on the surface
of PM meshes using a simple alkali-hydrothermal treatment.
Surface-modified Mg meshes have excellent biocompatibility and
improved corrosion resistance compared with untreated Mg
meshes. In particular, samples treated for 2 h showed the best
biological activity among various groups stratified according to
treatment time. Based on the results, the 2-h group samples
were selected to further investigate their application potential
as biomedical materials using an animal model. The present
study aimed to evaluate the performance difference between the
Mg mesh subjected to alkali-hydrothermal treatment for 2 h
and original Mg mesh, using in vivo and in vitro tests. The
effect of the CaP coating layer on surface wettability, direct
cell seeding, and ion release was evaluated. To further confirm
and verify the advantages of CaP coating on the Mg surface
over the untreated surface, a critical-size rat calvarial defect
was used to evaluate the GBR of CaP-coated Mg mesh and
the pure Mg mesh. Osteogenesis was assessed via quantitative
and qualitative analyses of GBR employing microcomputed
tomography (micro-CT) scanning, histomorphometry, and
three-dimensional reconstruction.

MATERIALS AND METHODS

Sample Preparation and Surface
Modification
Magnesium foils (99.9% high purity) (Goodfellow, England),
100 mm × 100 mm × 0.1 mm in dimensions, were prepared
by rolling and used as the substrate. The Mg foil was subjected
to laser microprocessing to form a Mg mesh with a diameter of
10 mm and hole diameter of 0.4 mm. According to the American
Society for Testing and Materials (ASTM) standard (G1-03),
chemical cleaning procedures were performed to remove the
surface corrosion products and revitalize the surface. The Mg
samples were directly placed into a beaker filled with a solution
containing 0.25 mol/L Ca–ethylenediaminetetraacetic acid
(EDTA) (C10H12CaN2Na2O8) and 0.25 mol/L KH2PO4,
and the solution was adjusted to a pH value of 8.9
with NaOH. The alkaline-hydrothermal treatment was
conducted at 90◦C for 2 h.

The microstructure and morphology of the CaP coating
were identified using scanning electron microscopy (SEM;
JSM-5900, JEOL, Japan). The cross-section of surface-modified
Mg was sputtered with platinum coating, following which
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the cross-sectional morphological microstructure was observed
using field emission scanning electron microscopy (FE-SEM;
SU-70, HITACHI, Japan), while the elemental composition of the
designated localized area on the cross-section was investigated
using energy dispersive spectroscopy with FE-SEM.

Implant–Body Fluid Interface Analysis
The initial contact between the implant and host is at the interface
between the sample and body fluid. The surface property
of the implant is an important consideration for its clinical
applicability, which can affect the surface wettability, tissue
adhesion, and the release of active ingredients of biomaterials.
Therefore, the surface difference between PM and coated Mg
(CM) was evaluated by the contact angle, direct cell seeding, and
ion release tests.

Wettability
The hydrophilicity of the sample surface was evaluated by the
contact angles of dropping the cell culture medium on prepared
samples to determine the wettability of the sample. To prevent
oil or pollution from the skin and environment from affecting
the sample surfaces, it was necessary to use 70% ethanol to
clean the sample placement plane and use forceps to place the
samples. Contact angles and images were obtained by the touch
drop method using a contact angle analyzer (Phoenix-300 Touch,
Surface Electro Optics, South Korea).

Cell Adhesion
The mouse osteoblast cell line, MC3T3-E1, obtained from
the American Type Culture Collection, was used directly for
seeding onto the prepared sample surface to evaluate cell
adhesion and the changes in surface morphological. MC3T3-E1
cells were maintained in a culture medium at 37◦C in a
humidified atmosphere containing 5% CO2. Cells were cultured
in α-minimum essential medium (Gibco Co., Carlsbad, CA,
United States) supplemented with 10% fetal bovine serum
(Gibco Co.), 500 U/ml penicillin (Gibco Co.), and 500 mg/ml
streptomycin (Gibco Co.).

After sterilizing the prepared samples with ultraviolet (UV)
radiation for 30 min per side, the samples were placed in 24-well
cell culture plates. Next, MC3T3-E1 cells at a density of 1.5× 104

cells/ml were carefully seeded onto the sample surfaces (three
wells per group). The cultures were incubated at 37◦C in a 5%
CO2 incubator for 3 days. The morphology of the cells adhered to
the samples was observed using SEM. The samples were washed
twice with phosphate-buffered saline (PBS) and fixed with 2.5%
glutaraldehyde (GA) for 2 h at 4◦C. After removing GA and
washing twice with PBS, the cells were fixed with 1% osmium for
2 h at 4◦C. Following dehydration with gradient ethanol (30, 50,
70, 80, 90, and 100%) for 10 min each at 4◦C, the samples were
ion sputtered and analyzed by SEM.

Release Test
Both sides of PM and CM were sterilized by UV radiation
for 30 min before performing corrosion tests. The tests were
performed by soaking the prepared samples in Earle’s balanced
salt solution (EBSS) and incubating at 37◦C in 5% CO2. EBSS

(1×) was prepared following the manufacturer’s instructions of
commercial EBSS 10× (E7510, Sigma, United States). Prepared
samples were immersed in a solution in which the ratio of media
volume to sample surface area is 0.255 ml/mm2 [more than the
minimum of 0.20 mml/mm2 (ASTM International, 2012)]. Mg
and Ca concentrations in EBSS, before and after immersion,
were quantitatively analyzed using an inductively coupled
plasma-optical emission spectrometer (ICP-OES; Agilent 7500a,
Agilent Technologies, Wilmington, DE, United States). Samples
were collected after by taking out 1-ml aliquots and then
replacing them with 1 ml of fresh EBSS. All measurements were
performed in triplicate.

In vivo Analyses
Sixteen Mg meshes manufactured were divided into PM and
CM mesh groups for in vivo studies. Male Sprague–Dawley
rats, aged 8 weeks and weighing 250 ± 20 g, were used as
experimental subjects. One week before the experiment, the rats
were housed in the animal room at a constant temperature,
humidity, and standard light–dark schedule to acclimatize them
to the environment.

All animal experiments were conducted under ethical
clearance, which was approved by the Institutional Animal
Care and Use Committee of the Jeonbuk National University,
Laboratory Animal Center, Jeonju-si, South Korea (approval
number: CBNU 2020-008).

Procedures
The surgery was conducted under aseptic conditions. All samples
were sent to the hospital disinfection room (Jeonbuk National
University Hospital) for ethylene oxide sterilization before
performing the in vivo tests.

An 8-mm critical size defect was created surgically,
as described in previous studies (Wu et al., 2019). After
intramuscular injection of 50 mg/kg of Zoletil (Zoletil 50, Virbac
Laboratories, France) and 15 mg/kg of xylazine hydrochloride
(Rompun, Bayer, South Korea) to induce general anesthesia,
the skin at the surgical site was shaved and then disinfected
with iodine scrubs. Additional local anesthesia (0.5 ml of 1%
lidocaine) was injected on the calvaria to aid the effects of
anesthesia and reduce hemorrhaging. A 2-cm incision was
created from the lambda to the middle of the nasal bones, and
the periosteum was bluntly dissected to expose the calvaria.
The critical-size defect was performed using a trephine bur
connected to an endodontic motor (X-SMART, Dentsply,
Switzerland) under copious saline irrigation. The edges of the
8-mm-diameter defect were checked carefully and washed to
remove residual bone debris. Care was taken to avoid damaging
the dura or brain under the bone. The defect was completely
covered by mesh, and the periosteum was positioned over
the mesh and sutured with bioabsorbable silk (5–0 glyconate
monofilament, B. Braun, Rubí, Spain), following which the skin
was closed using a non-absorbable nylon silk (4/0 blue nylon,
Ailee Co., Ltd., Busan, South Korea). To prevent infection,
antibiotics (amikacin; Samu Median Co., Ltd., South Korea)
were administered subcutaneously for 3 days postoperatively.
The rats were sacrificed at 4 and 8 weeks by euthanization
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with an overdose of thiopental sodium (Choongwae Pharma
Corporation, Seoul, South Korea).

Micro-CT
The excised blocks, 20 mm × 20 mm in dimensions, were
stored in 10% formalin before being dispatched to the Center
for University-Wide Research Facilities at Jeonbuk National
University. For quantitative and qualitative analyses, micro-CT
(Skyscan 1076) was used to examine the dissected specimens
at an 18-µm resolution with a 1-mm aluminum filter.
The blocks were scanned at 100 kV voltage and 100 µA
current with 360◦ scanning rotation. The three-dimensional
images were reconstructed and analyzed using the NRecon
reconstruction program and CT-analyzer software (SkyScan,
Aartselaar, Belgium). Regions of interest (ROIs) were created
by manually drawing in the region of the 8-mm critical
defect to distinguish the newly formed bone and Mg mesh.
Three-dimensional images were reconstructed using the CTvox
program (SkyScan).

Histological Analysis
After micro-CT scanning, the blocks obtained in each group
were subjected to a series of fixation, staining, and embedding
processes for performing histological analysis.

After micro-CT scanning, the blocks were fixed in fresh
10% formalin for 2 days and stained using Villanueva solution
(Polysciences, Inc., Eppelheim, Germany). The blocks were
then dehydrated with gradient ethanol (80, 90, 95, and
100%) and 100% acetone. To embed the blocks in resin,
the blocks were prepermeated with methylmethacrylate
(MMA, Yaruki Pure Chemicals Co., Ltd., Kyoto, Japan) under
vacuum for 2 h and then infiltrated with the polymerization
mixture (PMMA) at 35◦C for 3 days followed by 60◦C
for 1 day. Prepared resin blocks were cut into 0.7-mm-
thick slices through the central line of the defect using
a low-speed saw (EXAKT 300 CP, EXAKT Technologies

Inc., Norderstedt, Germany). Slices were ground to 70-µm
thickness for histological analysis using a microgrinding
system (EXAKT 400 CS, EXAKT Technologies Inc.).
Histomorphometric analysis was conducted using optical
microscopy (10× magnification and 30× magnification; EZ4D,
Leica, Wetzlar, Germany).

Statistical Analyses
The data are presented as the mean ± standard deviation (SD).
One-way ANOVA with post hoc Tukey’s test was performed, and
p < 0.05 was considered statistically significant.

RESULTS

Figure 1 shows the results of the surface morphology and
cross-sectional elemental distribution of CM. After 2 h of alkali-
hydrothermal treatment, the rod-like particles assembled to
form a dense and uniform coating layer with a cauliflower-
like structure. The thickness of the coating was in the range of
1.5–2.2 µm, and two distinct strata consisting of the dense inner
layer and rod-like irregular orientation outer layer were visible.
Elemental mapping showed the distribution of Ca, P, O, and
Mg in the cross-section. The line profiles of Ca and P showed
broad peaks in the outer layer of the coating, while those of
Mg and O showed broad peaks in the inner layer. The interface
between the Mg substrate and coating was not straight, indicating
that a corrosion reaction occurred. The elemental distribution
of the point profile showed that Mg mainly existed in the inner
layer of the coating, indicating that Mg(OH)2 was formed at
the interface between the Mg substrate and coating after 2 h of
alkali-hydrothermal treatment.

The wettability of the sample surface (Figure 2) was evaluated
by the touch drop method and presented as optical images
and contact angles. The results show that the hydrophilic CaP

FIGURE 1 | (A,B) Surface morphology and (C) cross-sectional elemental analysis of CaP-coated Mg after alkali-hydrothermal treatment for 2 h.
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FIGURE 2 | Contact angles of PM and CM were measured using Phoenix-300 Touch, representing the hydrophilicity of the sample surface. PM, pure magnesium;
CM, calcium-phosphate-coated magnesium.

FIGURE 3 | Scanning electron microscopy (SEM) analysis of MC3T3-E1 cells cultured on (A,C) pure magnesium (PM) and (B,D) calcium-phosphate-coated
magnesium (CM) for 3 days. Red color box of A and B enlarged in C and D respectively.

coating reduced the contact angle of CM to 22.69± 2.27◦, which
significantly improved the wettability of CM compared to that of
PM (105.66± 7.86◦).

Figure 3 shows the attachment of MC3T3-E1 cells on PM
and CM after 3 days of cell culture observed by FE-SEM.
Images obtained at 100× magnification showed the attachment
of numerous cells and improved cell distribution on the surface of

CM compared to that of PM. The morphology of MC3T3-E1 cells
cultured on CM showed an elongated shape without filopodia
extensions, indicating that the cells were in a state of proliferation.
However, in PM, many cells were not found on the surface; in
addition, the material appeared to be severely degraded. The few
cells detected on PM were white in color and round in shape,
indicating cell death and detachment.
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FIGURE 4 | Changes in the concentration of Mg and Ca ions in Earle’s balanced salt solution (EBSS) during the 6-week ion release test of pure magnesium (PM) and
calcium-phosphate-coated magnesium (CM) (* indicates significant difference between PM and CM; a indicates significant differences compared to 1 week; b
indicates significant differences compared to 2 weeks; c indicates significant differences compared to 4 weeks).

Figure 4 shows changes in the concentration of Mg and Ca
ions in EBSS during the 6-week ion release test of PM and CM.
ICP-OES test data showed that the release amount and rate of
Mg ions from PM were significantly higher than those from CM,
indicating that CM had excellent corrosion resistance. At 1 week
of immersion in EBSS, the concentration of Ca ions in the PM
(677.04± 34.46) and CM (575.82± 8.50) groups was lower than
that in EBSS initially (776.88 ppm). However, the concentration
of Ca ions in the PM group began to increase after 1 week,
which indicated that deposited Ca ions continued to be released
along with the degradation of PM. The concentration of Ca
ions in the CM group continued to decrease throughout the test
period, which indicated that CaP coating significantly improved
the corrosion resistance of Mg and made surface-modified Mg
with favorable calcium affinity.

Quantitative assessment was performed using micro-CT to
investigate bone reconstruction within the ROI in rat calvaria.
As shown in Figure 5, both the new bone volume and mineral
density in the 8-mm critical-size defect of rat calvaria placed
with PM and CM increased with time. New bone volume in the
CM group was significantly higher than that in the PM group
at 4 weeks postsurgery (p ≤ 0.05). From 4 to 8 weeks, even if
the amount of new bone formation in the CM group increased
significantly, there was no significant difference compared with
the PM group. In terms of bone mineral density, there was no
significant difference between the CM and PM groups.

To confirm the residual amount of Mg mesh, the ROI was
manually drawn to mark the placement of Mg mesh in the rat
calvarial model based on micro-CT data. The Mg meshes of
all groups showed time-dependent degradation, and the volume
of Mg in all groups decreased during each assessed period. As

shown in Figure 6, the corrosion speed of PM was fast. The
residual Mg volume of PM was 3.74 ± 0.12 mm3 at 8 weeks,
and the percentage of Mg degradation reached 58.49%. However,
the residual Mg volume of CM was 7.02 ± 0.75 mm3, and
percentage of Mg degradation reached 21.98%. These results
were consistent with the three-dimensional reconstructed micro-
CT image showing that the PM meshes experienced severe
degradation after implantation (Figure 6B).

Figures 7, 8 show bone formation in the rat calvarial
defect from the perspective of overall and partial views,
respectively. In the three-dimensional reconstruction image of
CTvox (see Figure 7), new bone formation can be observed above
and beneath the Mg mesh, and both the area of new bone and
residual mesh volume in the CM group were higher than those
in the PM group. In addition, the partial views in Figure 8 show
the relationship between the membrane and new bone in the CM
group in which CM led to the generation of a dense and regular
new bone layer and also had a direct contact between the mesh
and newly formed bones. However, because gas was released
when Mg was degraded in the physiological environment, it
created a gap between the new bone layer and mesh (Figure 8).
In particular, the severe degradation of PM led to a large gap
between the new bone and mesh in the PM group.

DISCUSSION

Previous studies on Mg have mainly focused on the development
of Mg alloys to improve surface properties and corrosion
protection because alloying is an effective method to improve
the mechanical strength of Mg. However, it is difficult to achieve
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FIGURE 5 | Quantitative analysis results of new bone volume and mineral density in the critical-size defects of rat calvaria obtained from micro-CT data (*p ≤ 0.05).

the desired degree of corrosion resistance by alloying alone
since thin Mg(OH)2 formed spontaneously on the surface can
be easily destroyed in the physiological environment including
chloride ions, as well as microgalvanic corrosion can occur
due to the different potential between Mg matrix and alloy
elements (Gusieva et al., 2015). Furthermore, to improve the
mechanical strength of Mg alloys, some components such as
aluminum (Abd El-Rahman, 2003) are added, which increases
the uncertain toxicity of commercial Mg alloys (Song, 2007).
Therefore, to improve not only corrosion resistance but also
biostability and biosafety, CaP coating was produced on PM,
which has been previously confirmed to be effective in controlling
early corrosion (Gan et al., 2013) and improving bioactivity
(Lorenz et al., 2009).

Recent studies have investigated CaPs as a long-term
biocompatibility coating on PM. Zhang et al. (2009) found that
biomimetic CaP coating could increase corrosion protection
compared with untreated Mg. Gan et al. (2013) showed that
bioactive coating with Ca and P on PM was relatively dense and
uniform and significantly enhanced corrosion resistance in
Hank’s solution. In the study conducted by Lorenz, the protective
layer containing CaP was formed by soaking Mg in simulated
body fluid for 5 days, leading to favorable initial cell adhesion to
samples, but poor protective properties of this layer prevented
long-term cell survival (Lorenz et al., 2009). Research on the
biocompatibility, biosafety, and biostability of Mg also plays
a role in the study of bioabsorbable implants for biomedical
applications. It has been shown that amorphous CaP coating
on PM mesh significantly retards the biodegradation of PM
and improves bone formation in rat calvaria (Wu et al.,
2019). A protective CaP coating was formed on PM through a
simple alkali-hydrothermal treatment, which not only effectively
increased the ratio of Ca and P but also improved corrosion

resistance and biocompatibility. In particular, Mg after alkali-
hydrothermal treatment for 2 h induced excellent differentiation
and proliferation of MC3T3-E1 cells, indicating that Mg has
high biocompatibility and biosafety and is suitable for further
exploration in bone tissue engineering.

In tissue engineering, the scaffold substrates are mostly
dependent on the surface features of materials. The initial
interaction immediately occurs between the host tissue and
surface of the barrier membrane when the material is placed
in the human body and exposed to body fluid, followed by
a series of cell–material interactions. Hence, the implant–body
fluid interface has a profound impact on the biocompatibility of
biomaterials, and the surface properties of materials influence
the biological response of the host. Following the application
of CaP coating, a series of experiments were performed on
the implant–body fluid interface to determine the energy of
the surface of Mg in this study. The surface energy generated
by the external unsaturated bond is higher than its internal
energy. Therefore, when a liquid is placed on a low-energy
surface metal, the contact angle is higher than that of a
high-energy surface metal (Mekayarajjananonth and Winkler,
1999). When the hydrophobic solid surface of PM with a
contact angle of 105.66 ± 7.86◦ (higher than 90◦) changed
to a hydrophilic surface of CM with a contact angle of
22.68 ± 2.27◦, the CaP coating significantly improved the
wettability and surface energy of Mg (Figure 2). Moreover,
HAp coating can induce cell attachment, proliferation, and
differentiation and increase the activity of osteoblasts (Kim
et al., 2014). As shown by the results of the direct cell
test (Figure 3), the stable hydrophilic surface of CM has
the advantage of inducing cell attachment and cell spreading
compared to the hydrophobic surface of PM. This is consistent
with previous studies showing that hydrophilic materials with
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FIGURE 6 | (A) Quantitative analysis results and (B) three-dimensional reconstruction images of the Mg meshes used in the rat calvarial model for guided bone
regeneration obtained using micro-CT [* indicates significant difference between pure magnesium (PM) and calcium-phosphate-coated magnesium (CM)].

low water contact angles can promote cell adhesion (Ishizaki
et al., 2010), spreading (Amornsudthiwat et al., 2013), and
proliferation (Watanabe et al., 2012; Kim et al., 2016). Cell
adhesion and surface interaction with biomaterials in tissue
engineering are mainly attributed to the wettability of materials
(Aronov et al., 2006).

During the 6 weeks of the release test, the concentration of Mg
ions in the PM group continuously increased to 500.12 ± 45.26,
while the concentration of Mg ions in the CM group did
not increase (268.56 ± 27.07). This indicates that the release
of Mg ions was significantly reduced by the protective CaP
coating in the CM group. At 1 week of immersion, Mg ion
concentration in the CM group was 185.46 ± 1.87, which
was close to the initial Mg ion concentration of 185.81 due
to the deposition of Mg ions on the surface of CM owing
to their affinity toward electronegative ions such as OH− and
PO4

3−. Ca ion concentration in all groups decreased after

1 week of EBSS immersion. In previous studies, CaP coating
has displayed bioactivity in simulated body solutions. Ca ions
were released into the peri-implant region in the initial stage
of implantation, resulting in local supersaturation of Ca ions.
Next, the ions were redeposited from the simulated body solution
into the implant, which triggered HAp formation (Cazalbou
et al., 2005; Paital and Dahotre, 2009). However, the first ion
assessment in the current study was carried out after 1 week of
immersion, which is markedly beyond the 2 days of immersion
assessed in the previous study (Nguyen et al., 2013). This
might be the reason why the initial release of Ca ions was
not detected in the current study, yet the deposition and
concentration reduction in Ca ions were detected (Figure 6).
The redeposition layer was a biological apatite layer produced
by a biomimetic coating method. Two factors contributed to
this layer: (i) CaP coating in CM provided nucleation sites for
further deposition of apatite and (ii) the alkaline environment
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FIGURE 7 | Micro-CT images of the morphology of degraded Mg mesh and newly formed bone in the rat calvaria. The degraded Mg mesh is highlighted in orange.

FIGURE 8 | Histological cross-sectional images of bone formation in the pure magnesium (PM) and calcium-phosphate-coated magnesium (CM) groups after 4 and
8 weeks of implantation. Histomorphology is presented as 10× magnification of coronal slices and focal areas of the center and side points (30×).

processed into CM provided the necessary functional groups
(such as H2PO4

− and OH−) for apatite formation (Tanahashi
and Matsuda, 1997). As a result (Figure 3D), the structure of CM
changed slightly after incubation for 3 days and could induce cell
attachment, proliferation, and differentiation to form new bones
(Paital and Dahotre, 2009).

After placing meshes for 4 and 8 weeks (Figures 7, 8), a
new bone was formed above and beneath the surface-treated

meshes and was in close contact. This indicates that the
CaP coating has a high affinity for osteoblasts, resulting
in osteointegration at the implant–host tissue interface. The
degradation of Mg is inevitably accompanied by gas release
(Mg + 2H2O→Mg2+ + 2OH− + H2↑), which results in
the detachment of newly formed bone or osteoblasts from the
mesh. Especially in PM (Figure 8), the large amount of gas
produced pushed osteoblasts far away from the mesh, generating
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a gap between the new bone layer and mesh. After implantation
in rat models, the mesh volume of CM and PM decreased after
the biodegradation of Mg. By calculating the residual Mg volume,
the extent of degradation in CM was lower than that in PM
(Figure 6); this is because CM with a protective CaP coating
exhibited high corrosion resistance. In addition, excessive Mg
ion release during corrosion of the uncoated sample possibly
inactivated new bone formation (Serre et al., 1998; Wong et al.,
2010), thereby resulting in less new bone formation around
the PM compared with the CM. The high osteoblast affinity
of coating in CM also contributed to the higher bone volume
in CM. Within 4–8 weeks, even if the volume of new bone
formed in CM significantly increased, there was no significant
difference compared with PM. This may be attributed to the
time-dependent degradation of the CaP coating.

CONCLUSION

The results of this study demonstrate that the corrosion rate and
osteogenesis capability of Mg in the physiological environment
can be tailored by using a simple alkali-hydrothermal treatment.
CaP coating of Mg favors cell attachment and cell spreading.
The formation of a bioactive CaP coating can endow Mg with
higher surface energy and osteogenesis capability and lower
degradation than PM.
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