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Resistive switching (RS) devices, also referred to as resistive random access memories

(ReRAMs), rely on a working principle based on the change of electrical resistance

following proper external electrical stimuli. Since the demonstration of the first

resistive memory based on a binary transition metal oxide (TMO) enclosed in a

metal–insulator–metal (MIM) structure, this class of devices has been considered a key

player for simple and low-cost memories. However, successful large-scale integration

with standard complementary metal–oxide–semiconductor (CMOS) technologies still

needs systematic investigations. In this work, we examine the beneficial effect titanium

has when employed as a buffer layer between CMOS-compatible materials like hafnium

dioxide and tungsten. Hindering the tungsten oxidation, Ti provides RS stabilization and

allows getting faster responses from the devices. Through an extensive comparative

study, the effect of both thickness and composition of Ti-based buffer layers is

investigated. The reported results show how titanium can be effectively employed to

stabilize and tailor the RS behavior of the devices, and they may open the way to

the definition of new design rules for ReRAM–CMOS integration. Moreover, the gradual

switching and the response speed tunability observed employing titanium might also

extend the domain of interest of these results to brain-inspired computing applications.

Keywords: resistive switching, ReRAM, tungsten, titanium, buffer layer

INTRODUCTION

Devices with tunable electrical resistance find application in information and communication
technologies (ICTs) since the end of the 19th century, when the so-called coherer was employed
as receiver in Marconi’s wireless telegraph (Marconi, 1899) thanks to the possibility of changing,
and retaining, its electrical conductivity upon external stimuli. Some decades later, in the 1960s,
attention started focusing on oxide materials with similar properties (Gibbons and Beadle, 1964;
Lamb and Rundle, 1967), opening the way for the wide class of devices nowadays identified as
resistivememories. Also referred to as resistive random accessmemories (ReRAMs) or oxide RAMs
(OxRAMs), these resistive switching (RS) devices typically rely on a simple metal–insulator–metal
(MIM) structure composed of two metallic electrodes enclosing an insulating oxide layer (Waser
and Aono, 2007), but similar stacks without metals have been demonstrated too (Yen et al.,
2019). As for the coherer, their working principle is based on the change of electrical resistance
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as a response to proper external electrical stimuli. The condition
of low conductivity is defined as high-resistance state (HRS),
and it can be turned into a more conductive low-resistance state
(LRS) through the so-called SET process. The opposite transition,
resulting in a resistance increase, namely the transition from
LRS to HRS, is instead named RESET. When both the state
transitions occur with the same polarity, RS devices are classified
as unipolar, while they are defined as bipolar if SET and RESET
require opposite polarities (Ielmini and Waser, 2016). In most
cases, before exhibiting successful switching between these states,
RS devices require the so-called forming process, which gives
the first transition of the pristine device to a highly conductive
state. Since the demonstration of the first resistive memory
based on a binary transition metal oxide (TMO) (Baek et al.,
2005), this class of devices has been considered a key player for
simple and low-cost memories able to compete with the market-
leading technologies (Wong et al., 2012; Meena et al., 2014).
Such a perspective translated into an unceasing driving force for
research efforts to continuously improve features like low power
consumption, high density, fast switching, high endurance, long
retention, and compatibility with complementary metal–oxide–
semiconductor (CMOS) technologies (Cai et al., 2019; Tang
et al., 2019; Xia and Yang, 2019; Wang et al., 2020). In seeking
to fulfill these requirements, many studies have been carried
out on subjects ranging from the physical behavior to the
hardware implementation. As a result, it is now well-established
that both interface-type (Celano et al., 2017; Govoreanu et al.,
2017) and filamentary-type (Joshua Yang et al., 2009; Lee et al.,
2009; Celano et al., 2014) resistive switching exist, and it is
widely accepted that the formation of a conductive filament
involves ion motion within the insulating layer of the MIM
structure (Valov, 2014; Sun et al., 2019; Wang et al., 2020). In-
memory computing systems have been shown (Zidan et al., 2018)
and brain-inspired functionalities have been demonstrated (Xia
and Yang, 2019). Despite these outstanding findings, successful
large-scale integration with standard CMOS technologies is
only just at the beginning and still needs further systematic
investigations able to provide new design rules. In this context,
many materials have been studied for both the insulating layer
and the electrodes. Silver and copper have been employed in
the so-called electrochemical metallization (ECM) memory cells,
where they work as electrochemically active electrodes to release
cations for metallic filament formation upon electromigration
through the “I” layer (Valov et al., 2011). Platinum and titanium
nitride have been shown to be suitable for inert electrodes
(Tappertzhofen et al., 2014), while oxidizing metals like tungsten,
titanium, hafnium, and tantalum have been studied as electrodes
in valence change memory (VCM) devices (Chen et al., 2013; Lin
et al., 2013; Shahrabi et al., 2019) and many oxides have been
tested as an insulating layer. Among them, resounding success
has been achieved by HfO2 (Chen et al., 2009), Ta2O5 (Kim et al.,
2016), TaOx (Yang et al., 2010), TiO2 (Chen et al., 2017), and
ZnO (Conti et al., 2019). Moreover, it has been pointed out by
different works that the whole material stack of each ReRAM cell,
and not only the single layers, is the ultimate responsible for the
device performances (Gilmer et al., 2011; Walczyk et al., 2012;
Chen et al., 2013; Kim et al., 2016; Rahaman et al., 2017; Singh

et al., 2018; Ambrosi et al., 2019; Kindsmüller et al., 2019; Lee
et al., 2019; Shahrabi et al., 2019). Particularly, in the framework
of VCM devices, a key role is played by the interaction between
the metal oxide in the “I” layer and the oxidizing electrode.
Such devices, indeed, rely on the formation and rupture of a
conductive filament resulting from local valence changes of the
metal within the oxide, which, in turn, results from the migration
of O2− ions and the subsequent formation of oxygen vacancies
(V ..

O) under the action of an applied voltage (Celano et al., 2016).
The motion of these species strongly depends on the oxygen
exchange between the oxide film and the oxidizing electrode and
can be described by the reaction:

M
(

bulk
)

+ TMO ⇋ MOx + TMO1−x + x · V ..
O + 2x·e− (1)

where M is the oxidizing electrode and TMO is the oxide in the
“I” layer.

In view of the upcoming CMOS integration, tungsten turns
out to be a feasible choice for the oxidizing electrode due
to its already established employment for vertical interconnect
accesses (VIAs). However, when used in direct contact with
an oxide, its multiple and metastable oxide forms introduce
relevant instability in the memory cell performances, so that the
insertion of a buffer layer becomes necessary (Shahrabi et al.,
2019). In order to efficiently mitigate the effect of the non-stable
oxides tungsten can form, a suitable candidate to play this role
is titanium. Thanks to the lower energy it requires for reaction
(1) with respect to tungsten (Guo and Robertson, 2014; Kim
et al., 2016), titanium can indeed extract oxygen from the “I”
layer more effectively, and so hinder the formation of metastable
tungsten oxides. Furthermore, in the perspective of possible
future applications and integrations, the strength of titanium as
a suitable candidate for buffer layers comes from its capability
to allow gradual RESET transitions for multiple resistance levels
tuning (Shahrabi et al., 2019).

In this work, a systematic study of the effect of titanium-
based buffer layers enclosed between a tungsten electrode and an
oxide layer is carried out on RS devices exhibiting hafnium oxide
(HfO2) as the insulating layer of theMIM structure and platinum
as the inert electrode. The role played by Ti in modulating
the interaction between the oxidizing electrode and the oxide
is investigated through an extensive, comparative investigation
of devices with buffer layers having different thicknesses and
different compositions. Devices without a buffer layer, namely
with the tungsten electrode in direct contact with the HfO2 film,
are also tested and kept as performance references. A clear effect
of thickness is observed in both static and dynamic operations,
with lower and tunable forming, SET and RESET voltages, better
endurance, and faster response achieved through a thicker Ti-
based buffer layer. Especially, with respect to devices without any
buffer layer, the early HRS failure is fixed and pulses down to
three orders ofmagnitude shorter can be employed. These results,
coupled with gradual RESET transitions, make the Ti buffer/W
electrode stack a versatile candidate for CMOS-compatible
ReRAM cells to be employed in brain-inspired applications.
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MATERIALS AND METHODS

Device Fabrication
For our devices, a cross-point geometry was adopted, with VIA
openings defining the active region of the ReRAM cells. Using
a standard 4-in. Si wafer with a 500-nm-thick SiO2 layer as a
substrate, platinum electrodes were first defined, starting with
sputtering deposition of a 5-nm-thick titanium adhesion layer
and a 125-nm-thick Pt film by a Pfeiffer Spider 600. Patterning
was then performed through photolithography and dry etching,
carried out with an STS Multiplex ICP etcher. Afterwards,
in order to assure electrical isolation between the electrodes,
a 100-nm-thick low thermal oxide (LTO) was deposited at
425◦C by means of low-pressure chemical vapor deposition
(LPCVD). Once the Pt electrodes were patterned and isolated,
VIA openings of different sizes were defined across the LTO
passivation layer performing photolithography and buffer oxide
etch (BOE). Thereafter, HfO2 and the Ti-based buffer layers were
deposited, the latter with thickness varying sample by sample (1,
3, and 5 nm) and the former always 5 nm thick. Concerning the
oxide, atomic layer deposition (ALD) at 200◦C was performed
by means of a BENQ TFS200, while the buffer layers were
deposited by room temperature sputtering, with an Alliance
Concept DP650, employing two different targets: pure titanium
(99.9995%) and mixed titanium–tungsten (99.99% of purity with
10% in weight of Ti). By means of the same sputtering tool, the
tungsten electrode and a titanium nitride capping layer were then
deposited, with thicknesses of 60 and 15 nm, respectively. Finally,
to pattern the electrode and define the arrays of cross-point cells,
photolithography and dry etching were performed, employing
again the STS Multiplex ICP dry etcher.

Device Characterization
The device characterization was carried out through electrical
tests in three different configurations, all of them performed
in air at room temperature. DC sweeping mode was first
adopted to evaluate the forming voltage and to inspect the
cycling operation. To this aim, a parameter analyzer (Agilent
B1500) was employed, applying voltage ramps at the tungsten
electrode and keeping grounded the platinum one. During
these measurements, a compliance current, Icc, intended to
prevent irreversible damages to the devices, was imposed
through the internal modules of the characterization tool. Pulse
measurements were instead performed to test the dynamic
behavior in terms of endurance, response speed, and retention.

In this case, since parameter analyzers generally suffer from pure
accuracy in current limitation due to a certain delay with respect
to the characteristic times of forming and SET processes (Tirano
et al., 2011; Nafria et al., 2017), an external n-channel transistor
(n-MOSFET) was used to control the compliance current. The
device under test was connected in series to the drain of the
transistor (bit line), while the source (source line) was grounded
and voltages were applied at the gate (word line) to adjust
the current limitation. Additionally, conductive atomic force
microscopy (C-AFM), by an Asylum Research Cipher VRS, was
employed to investigate the forming process directly probing the
HfO2 layer on top of the W/Ti buffer/HfO2 stacks. Full-platinum
AFM tips from Rocky Mountain Nanotechnologies were used
as the top electrode in order to reproduce the same MIM
structure as for the cross-point cells characterized by means of
the parameter analyzer.

RESULTS

All the different stacks employed for the tested devices are
summarized in Table 1. A 3D sketch of the device structure is
then reported in Figure 1A, while the field emission scanning
electron microscope (FESEM) image in Figure 1B shows the
actual geometry with a top view of a single ReRAM cell. The
micrograph in Figure 1C highlights the periodic arrangement
of the devices adopted on each sample, with the different VIA
diameters of 1.5, 2, 3, 5, and 10µm. A topography image acquired
by AFM in contact mode is also reported in Figure 1D, where a
10-µmVIA is shown.

In order to carry out a complete performance analysis suited
to compare the material stacks and investigate the effect of the Ti-
based buffer layers, 25 devices for each sample were first subjected
to a systematic DC characterization made of forming and cycling
steps. Pristine devices underwent positive voltage sweeps from 0
to 7V with a compliance current of 1mA; then, bipolar voltage
ramps ranging from −1.5V to 3V were applied to the same
devices to test the cycling behavior. Bipolar resistive switching,
with SET and RESET occurring in positive and negative polarity,
respectively, was observed for all the devices regardless of the
material stack. The latter, conversely, turned out to play a role
in the definition of the device performance. First of all, an impact
of the titanium-based buffer layers on the forming process was
observed, with a decrease of the forming voltage (VFORMING)
for thicker buffer layers (Figure 2A). Particularly, as presented

TABLE 1 | Material stacks of all the tested devices.

Sample name Inert electrode Oxide layer Buffer layer Oxidizing electrode

Material Thickness (nm) Material Thickness (nm) Material Thickness (nm) Material Thickness (nm)

noBuffer Pt 125 HfO2 5 – – W 60

mixBuffer Pt 125 HfO2 5 W:Ti 10% 3 W 60

Buffer1 Pt 125 HfO2 5 Ti 1 W 60

Buffer3 Pt 125 HfO2 5 Ti 3 W 60

Buffer5 Pt 125 HfO2 5 Ti 5 W 60
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FIGURE 1 | The cross-point geometry of the tested devices is shown through a 3D sketch (A) and a field emission scanning electron microscope (FESEM) image in

top view (B). In the first case, the schematic, not to scale, focuses on a single device emphasizing the material stack, while in the second picture the actual geometry

is shown. The periodic arrangement of the resistive random access memory (ReRAM) cells with all the different vertical interconnect access (VIA) dimensions is then

highlighted by a micrograph (C). In (D), a single VIA with a diameter of 10µm is shown by a topography image obtained with contact mode atomic force microscopy

(AFM).

FIGURE 2 | The median values of VFORMING for each material stack show a dependence of the forming process on the buffer layer. In (A), the corresponding I–V

characteristics are shown, while in (B) their exponential decay as a function of the Ti-based buffer layer thickness is presented.
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FIGURE 3 | Investigation of the forming process was performed with conductive atomic force microscopy (C-AFM) directly probing the oxide layer by means of

full-platinum tips. The resulting I–V characteristics are reported in (A–C), where VFORMING is reported to decrease with increasing amount of titanium in the buffer layer.

In (D–F), the current maps acquired after the forming process are reported, with conductive spots clearly shown for all the tested material stacks. The topography

images obtained at the same time with the current maps are then reported in (G–I), showing the presence of morphological changes in the case of the Buffer3

samples (I). In (J–L), the superposition of topographical and electrical images is presented.
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by the box plot in Figure 2B, such a reduction turned out to be
well-described by an exponential decay of the median values of
VFORMING for the samples with pure Ti buffer layers. The same
curve was then employed, the other way around, to define an
effective thickness of the mixed buffer layer, which came out to
be about 0.5 nm. Such an effective thickness, smaller than the real
one of 3 nm, clarifies that the key player in the reduction of the
forming voltage is not properly the thickness of the buffer layer
but rather the presence, and the amount, of titanium between the
hafnium dioxide film and the tungsten electrode.

Consistent results were shown by the C-AFM characterization
too. As reported in Figures 3A–C, three different stacks were
investigated, namely NoBuffer, mixBuffer, and Buffer3, with the
structure sketched in the insets of Figures 3A–C. As is clear from
those pictures, the same MIM geometry as the one schematized
in Figure 1A was reproduced thanks to the full-platinum AFM
tip, which played the role of the inert electrode. By selecting
such triplet of stacks, the key points of the previous analysis
were further investigated. Indeed, with this set of devices, two
main comparisons were possible, namely (i) the case with or
without the buffer layer and (ii) the case of pure or mixed
titanium with a fixed thickness. For each sample investigated
by means of C-AFM, forming was induced first and current
maps were produced afterwards. For both the measurements, the
platinum tip was kept grounded and voltages were applied at the
tungsten electrode. To achieve forming, voltage sweeps from 0

to 7V were employed as for the analysis carried out through
the parameter analyzer, with a current compliance set at 1 µA.
Current maps were instead produced applying fixed voltages.
Similarly to Figures 2A, 3A–C show a reduction of VFORMING

depending on the presence of titanium between the oxidizing
electrode and the oxide layer. Furthermore, in accordance with
Figure 2B, such a reduction turned out to be related to the
amount of titanium in the buffer layer rather than to the physical
thickness of the Ti-based layer only. Indeed, both the buffer
layers employed for the mixBuffer and Buffer3 samples are
3 nm thick, but their compositions differ from one another,
with the mixBuffer sample exhibiting a tungsten film with 10%
in weight of titanium instead of a pure Ti film. The current
maps, produced after forming was induced, are then reported
in Figures 3D–F. They show a nanometer-sized conductive spot
for each sample, which strongly suggests a filamentary nature
of the resistive switching in the tested devices. The topography
images, acquired simultaneously with the creation of the current
maps, are reported too (Figures 3G–I), and a superposition
of the current maps on the topography images is presented
in Figures 3J–L as the result of a point-by-point analysis of
the electrical conduction. Particularly, in the case of Buffer3
samples, the presence of morphological changes is reported
(Figure 3I), and Figure 3L highlights that such modifications
turn out to perfectly match with the conductive spot found in
the current map.

FIGURE 4 | The resistance levels (A–C) and the switching voltages (D–F) for all the vertical interconnect access (VIA) diameters were compared in a triplet of material

stacks: NoBuffer (A,D), mixBuffer (B,E), and Buffer5 (C,F).
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FIGURE 5 | Applying bipolar voltage sweeps, the switching behavior of the tested device was investigated through the resulting I–V characteristics. The reported

graphs are representative curves for each material stack. In the NoBuffer samples (A), current fluctuations occur before the SET process and RESET takes place

abruptly. A similar behavior is shown by the mixBuffer (B) and Buffer1 (C) samples also. In the Buffer3 (D) and Buffer5 (E) samples, instead, the current fluctuations in

the high-resistance state (HRS) in positive polarity are not observed; a lower VSET is found and gradual RESET occurs as it is flagged by a smooth current decrease for

negative voltages close to VRESET.
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Even though the C-AFM analysis clearly reported the
presence, in all the tested material stacks, of conductive spots
at the HfO2/Pt interface, suggesting resistive switching of
filamentary type, a statistical DC characterization was performed
to exclude a dependence of the RS on the device area as
a consequence of interfacial effects at the W/HfO2 or buffer
layer/HfO2 interface. Bymeans of the parameter analyzer, bipolar
voltage sweeps in the range −1.5 to 3V were applied on 25
devices for the NoBuffer, mixBuffer, and Buffer5 samples. As
summarized by the box plots in Figure 4, such characterization
revealed that RS parameters like the resistance levels, VSET, and
VRESET are independent of the device area since no correlation
was found between these quantities and the diameter of the
VIAs (1.5, 2, 3, 5, and 10µm). Therefore, we can conclude
that the observed resistive switching can be truly ascribed to a
filamentary mechanism.

Through the same DC characterization, that is to say applying
consecutive cycles of bipolar voltage sweeps 0V→−1.5V→ 3V
→ 0V, the switching behavior of the devices was investigated. As
is reported in Figure 5, where I–V characteristics representative
of a typical cycle for each material stack are shown, two
different behaviors can be highlighted in the DC operation
regime for Ti-based buffer layers thinner or thicker than 3 nm,
respectively. More in detail, starting from Figure 5A, which
reports the cycling behavior of the devices with no buffer
layer, clear current fluctuations can be appreciated in the
HRS for positive voltages. Interpreted from a different, but
complementary, perspective, Figure 5A shows that the devices
without a buffer layer exhibit some instability during the SET
process, with sharp transitions from HRS to LRS occurring
at relatively high voltages only after quick, repeated current
variations. A similar behavior can be observed in the case of
the mixBuffer (Figure 5B) and Buffer1 (Figure 5C) samples too,
while a clear change occurs in the Buffer3 (Figure 5D) and

Buffer5 (Figure 5E) samples. The latter two, indeed, still exhibit
abrupt switching from HRS to LRS, but the sharp transition
takes place at lower voltages and the I–V characteristics in HRS
in positive polarity are much more stable, with no fluctuations.
Moreover, as is graphically summarized in Figure 6A, which
reports the statistical variations of VSET and VRESET obtained
from the DC characterization, such improved stability in the
device operation is coupled to a significantly reduced device-to-
device variability.

The second major result arising from the insertion of a Ti-
based buffer layer, which becomes apparent for Buffer3 and
Buffer5 samples as for the HRS stability above-mentioned,
involves the opposite polarity and the opposite transition. In
Figures 5D,E, indeed, a fairly different behavior in the transition
from LRS to HRS can be appreciated, with a gradual resistance
variation instead of an abrupt switch. Interestingly, such change
does not reflect into an increased device stability or reduced
device-to-device variability. As reported in Figure 6A, indeed,
differently from VSET, the RESET voltage does not significantly
vary neither from a device to another nor from a sample to
another. Similar observations can be made for the resistance
values also, whose statistical analysis is reported in Figure 6B. In
this case, the effect of Ti-based buffer layers as a stabilizer can be
appreciated looking at the variability of the LRS in the different
samples. As is clear from the box plot, the resistance value of
the highly conductive state is significantly more stable in Buffer3
and Buffer5 samples, while a relevant device-to-device variability
affects the devices based on the other material stacks.

The statistical parameters resulting from the DC
characterization performed on a total of 125 devices are
summarized in Table 2.

Based on reaction (1), both the current fluctuations before SET
occurs and the gradual RESET can be interpreted referring to
oxygen exchanges, which, in turn, involve the oxidizing activity

FIGURE 6 | The statistical analysis of the DC characterization performed on 25 devices for each material stack is presented by means of box plots. In (A), the

switching voltages are reported, while the resistance levels are shown in (B). In both cases, for the sake of clarity, dashed lines are employed to distinguish the

different ranges of data.
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TABLE 2 | Median values and standard deviations from the statistical DC characterization.

Sample name VFORMING (V) VSET (V) VRESET (V) HRS (k�) LRS (�)

Median SD Median SD Median SD Median SD Median SD

noBuffer 3.31 0.09 1.76 0.38 −0.64 0.12 94.48 154.61 272.55 171.05

mixBuffer 3.07 0.08 2.05 0.34 −0.68 0.10 192.86 3711.84 84.86 84.86

Buffer1 2.89 0.15 1.72 0.32 −0.63 0.09 226.78 427.42 214.86 169.08

Buffer3 2.58 0.09 0.64 0.10 −0.43 0.04 309.41 499.79 483.00 77.28

Buffer5 2.49 0.12 0.65 0.10 −0.43 0.03 368.39 1011.09 474.82 69.09

FIGURE 7 | The insertion of buffer layers with increasing amount of titanium translates into a faster response of the devices, as shown by the pulse width reduction

achieved with thicker Ti-based buffer layers.

of the layers in contact with the hafnium dioxide. Since, as already
mentioned, one of these layers is always made of platinum,
which is inert, the two phenomena must be related to the
buffer layer, or to the tungsten electrode when the former is
not present. In this view, the interpretation of the observed
behavior in the DC regime can be traced back to the different
oxidizing characteristics of titanium and tungsten. Current
fluctuations may be related to the multiple, metastable oxides
tungsten can form before reaching the stable WO3 (Lassner and
Schubert, 1999; Shahrabi et al., 2019) since the emergence of
such fluctuations can be appreciated in the NoBuffer, mixBuffer,
and Buffer1 samples only. In the Buffer3 and Buffer5 samples,
indeed, the thickness of the buffer layers is such that a large
enough amount of titanium is present to effectively hinder the
formation of metastable tungsten oxides (Shahrabi et al., 2019).
On the other hand, concerning the transition from an abrupt
to a gradual RESET, similar arguments hold, and the smoother

resistance change can be again ascribed to the oxidizing behavior
of the buffer layer. The gradual transition, indeed, takes place in
the Buffer3 and Buffer5 samples only, that is to say, once more,
only in those devices with a large enough amount of titanium
between the tungsten electrode and the hafnium dioxide.

A further confirmation of the stabilizing effect given by the
titanium buffer layer was then found with pulse tests aimed
at investigating the endurance of the devices, namely their
cycling reliability. For each material stack, an initial optimization
procedure was first performed on the pulse parameters in order
to find the best combinations of pulse width and pulse amplitude.
As is shown in Figure 7, pulses were optimized for both SET and
RESET since, as shown by the DC characterization, the bipolar
RS of the tested devices is not symmetrical. Specifically, |VSET|
turned out to be higher than |VRESET|, while identical pulse
widths were used in both polarities. Finally, a delay of 200ms
was always employed between a pulse and the following one.
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FIGURE 8 | Endurance tests were performed with a fixed sequence of 2,000 SET–RESET pulse pairs. The NoBuffer (A) and mixBuffer (B) samples showed

high-resistance state (HRS) failure after about 1,500 cycles, while the devices from the other material stacks (C–E) successfully completed the fixed-length test.

Additionally, a stabilization of the HRS was observed for the Buffer1 (C), Buffer3 (D), and Buffer5 (E) samples.
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TABLE 3 | Summary of resistance values during endurance and retention measurements.

Sample name Endurance Retention

HRS LRS HRS LRS

Mean (M�) Relative

uncertainty (%)

Mean (k�) Relative

uncertainty (%)

Mean (M�) Relative

uncertainty (%)

Mean (k�) Relative

uncertainty (%)

noBuffer 4.73 119 1.27 1.4 13.22 30 1.47 4.8

mixBuffer 3.10 156 1.27 18 1.26 2.0 1.00 2.3

Buffer1 1.61 180 1.44 16 0.93 2.9 1.35 2.3

Buffer3 10.11 87 3.81 36 32.26 3.3 2.52 3.9

Buffer5 8.52 41 1.38 2.3 17.02 5.1 1.27 6.3

HRS, high-resistance state; LRS, low-resistance state.

Figure 7 clearly shows that such an optimization revealed a key
impact of titanium on the dynamical operation regime of the
tested devices. Indeed, besides the reduction of pulse amplitude
needed for successful RS, which was already pointed out with the
DC characterization, pure Ti buffer layers turned out to lead to
a pulse width reduction down to three orders of magnitude with
respect to the devices without a buffer layer.

Once the pulse parameter optimization was completed, a
common test procedure was defined and adopted for all the
material stacks, so that a clear performance comparison among
the different samples was possible. Specifically, all the devices
subjected to the endurance test were subjected to 2,000 SET–
RESET pulse pairs aimed at continuously switching between
HRS and LRS. The results of this characterization, reported
in Figure 8, show how, besides improving the device stability,
pure Ti buffer layers also have a beneficial effect on the
endurance itself. Figures 8A,B, indeed, reveal that the NoBuffer
and mixBuffer samples suffered for HRS failures preventing
them from reaching the common test length of 2,000 cycles.
Particularly, the devices from both material stacks were not able
to overcome 1,500 cycles. Conversely, the Buffer1, Buffer3, and
Buffer5 samples were all able to reach the fixed benchmark
of 2,000 cycles, thus demonstrating an improvement of about
30%. Moreover, as already mentioned, the stability of the devices
significantly improved, as is highlighted in Figures 8C–E by
the much less scattered data as the amount of titanium in
the buffer layers increases. A quantitative evaluation of the
data dispersion can be made through the relative uncertainty
(Table 3), which, in the case of HRS, turns out to be smaller
than 100% for the Buffer3 and Buffer5 samples only. In
more detail, such samples provide relative uncertainties of 87
and 41%, respectively, while 119% is found for the NoBuffer
samples, 156% in the case of the mixBuffer ones, and 180%
for the devices coming from the Buffer1 samples. The relative
uncertainties are instead much smaller for the LRS during the
endurance tests, and they do not show any trend related to the
material stack.

To complete the set of electrical characterizations, retention
tests were performed on new samples to compare the capability
of the different material stacks of preserving each resistance
state. A summary of the mean values, together with their relative
uncertainties, for both HRS and LRS during pulse operations

is presented in Table 3. As for the endurance, a common
benchmark was set for the retention tests too, and 2 × 104 s
was adopted as the fixed length for the measurements in order
to define a standard procedure for all the samples. The results
are shown in Figure 9, where a good stability is reported for
all the material stacks. In this case, no significant difference
can be appreciated depending on the buffer layer, with all
the devices able to reach the fixed value of 2 × 104 s and
small relative uncertainties on the resistance values, in both
HRS and LRS. As a consequence, the retention tests, which
rely on the stability of the conductive filament rather than on
its formation and rupture, seem to suggest that the Ti-based
buffer layers actively play a role only when oxygen exchanges,
as in reaction (1), occur, while they remain silent otherwise.
The performance tunability and improvement titanium allows to
achieve can hence be directly related to the stabilization of the
interactions between the oxidizing electrode and the oxide layer.
Compared to tungsten, titanium indeed requires a much lower
energy to create oxygen vacancies in HfO2, and this significantly
hinders the slower tungsten oxidation (Kim et al., 2016). As
a consequence, titanium efficiently mitigates the fluctuations
induced by the formation of metastable tungsten oxides
(Lassner and Schubert, 1999) and allows faster responses from
the devices.

DISCUSSION

With this work, we have shown how titanium can be employed,
as a buffer layer, to stabilize and tune the RS performances
of ReRAM cells based on CMOS-compatible materials like
HfO2 and tungsten. With an extensive, systematic approach,
125 devices with different material stacks have been tested.
Investigating different thicknesses and compositions of the Ti-
based films, a dependence of the device performances on the
buffer layer properties was found, and the amount of titanium
in the buffer layer turned out to play a key role. The presented
results can be ascribed to the different oxidizing characteristics of
titanium and tungsten. The latter, indeed, suffers from a relatively
slower oxidation process, producing a variety of metastable
oxides, responsible for the RS instability which clearly appears
in both DC switching and pulse operations. Employing buffer

Frontiers in Nanotechnology | www.frontiersin.org 11 October 2020 | Volume 2 | Article 59268414

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


Fra et al. Resistive Switching Stabilization With Titanium

FIGURE 9 | (A–E) Retention measurements, performed for a fixed time of 2 × 104 s, highlighted that a good resistance state stability is provided by all the material

stacks, with no significant contribution given by titanium.
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layers with a high enough amount of titanium, relevant changes
in the device performances have been reported. More in detail,
the response speed has been shown to significantly increase
according to the pulse width reduction of three orders of
magnitude; an improvement of about 30% has been achieved
in terms of endurance performance, and an increased stability
of the resistance states, especially the HRS, has been obtained
in the dynamic operation regime. In light of these results, the
Ti buffer/W stack turns out to be a suitable choice for CMOS-
compatible ReRAM cells that have to solve reliability issues
coming from tungsten electrodes. Furthermore, the possibility
of tuning the device performances according to the Ti-based
buffer layer properties may open the way to the definition
of new design rules for ReRAM integration with standard
CMOS technology.
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The rapid development of artificial intelligence (AI), big data analytics, cloud computing,

and Internet of Things applications expect the emerging memristor devices and their

hardware systems to solve massive data calculation with low power consumption and

small chip area. This paper provides an overview of memristor device characteristics,

models, synapse circuits, and neural network applications, especially for artificial

neural networks and spiking neural networks. It also provides research summaries,

comparisons, limitations, challenges, and future work opportunities.

Keywords: memristor, integrated circuit, artificial neural network, spiking neural network, artificial intelligence

INTRODUCTION

Resistance, capacitance and inductance are the three basic circuit components in passive circuit
theory. In 1971, Professor Leon O. Chua of the University of California at Berkeley first described
a basic circuit that relates flux to charge, called the missing fourth memristor element, and was
successfully found by a team led by Stanley Williams at HP Labs in 2008 (Chua, 1971; Strukov
et al., 2008). As a non-linear two-terminal passive electrical component, studies have shown that
the conductance of a memristor is tunable by adjusting the amplitude, direction, or duration
of its terminal voltages. Memristors have shown various outstanding properties, such as good
compatibility with CMOS technology, small device area for high-density on-chip integration,
non-volatility, fast speed, low power dissipation, and high scalability (Lee et al., 2008; Waser
et al., 2009; Akinaga and Shima, 2010; Wong et al., 2012; Yang et al., 2013; Choi et al., 2014; Sun
et al., 2020; Wang et al., 2020; Zhang et al., 2020). Thus, although memristors took many years to
transform from a purely theoretical derivation into a feasible implementation, these devices have
been widely used in applications such as machine learning and neuromorphic computing, as well
as non-volatile random-access memory (Alibart et al., 2013; Liu et al., 2013; Sarwar et al., 2013;
Fackenthal et al., 2014; Prezioso et al., 2015; Midya et al., 2017; Yan et al., 2017, 2019b,d; Ambrogio
et al., 2018; Krestinskaya et al., 2018; Li C. et al., 2018, Li et al., 2019; Wang et al., 2018a, 2019a,b;
Upadhyay et al., 2020). Furthermore, thanks to its powerful computing and storage capability, a
memristor is a promising device for processing tremendous data and increasing the data processing
efficiency in neural networks for artificial intelligence (AI) applications (Jeong and Shi, 2018).

This article intends to analyze the memristor theory, models, circuits, and important
applications in neural networks. The contents of this paper are organized as follows. Section
Memristor Characteristics and Models introduces the memristor theory and models. Section
Memristor-Based Neural Networks presents its applications in the second-generation neural
networks, namely artificial neural networks (ANNs) and the third-generation neural networks,
namely spiking neural networks (SNNs). Section Summary is the conclusions and future
research direction.
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MEMRISTOR CHARACTERISTICS AND
MODELS

The relationship between the physical quantities (namely charge
q, voltage v, flux ϕ, and current i) and basic circuit elements
(namely resistor R, capacitor C, inductor L, and memristor M)
is shown in Figure 1A (Chua, 1971). Specifically, C defined as
a linear relationship between voltage v and electric charge q (C
= dq/dv), L is defined as a relationship between magnetic flux ϕ

and current i (L = dϕ/di), R is defined as a relationship between
voltage v and current i (R = dv/di). The missing link between
the electric charge and flux is defined as the memristor M and
its differential equation is M = dϕ/dq or G = dq/dϕ. Figure 1B
shows the current-voltage characteristics of the memristor, where
the pinched hysteresis loop is its fundamental identifier (Yan
et al., 2018c). As a basic element, the memristor I–V curve cannot
be obtained using R, C, and L. According to the shape of the
pinched curve, it can be roughly classified into a digital type
memristor or an analog type memristor. The resistance of a
digital memristor exhibits an abrupt change at higher resistance
ratios. The high-resistance and low-resistance states in a digital
memristor have a long retention period, making it ideal for
memory and logic operations. An analog memristor exhibits a
gradual change in resistance. Therefore, it is more suitable for
analog circuits and hardware-based multi-state neuromorphic
system applications.

Memristor device technology and modeling research are the
cornerstones of system applications. As shown in Figure 2,
top-level system applications (brain-machine interface, face or
picture recognition, autonomous driving, IoT edge computing,
big data analytics, and cloud computing) are built on the device

FIGURE 1 | (A) Basic theoretical circuit elements, and (B) pinched hysteresis I–V loop of memristor.

technology and modeling. Memristor-based analog, digital, and
memory circuits play a key role in the link between device
materials and system applications. The main usage for bi-
stable memristors is binary switches, binary memory, and
digital logic circuits, while multi-state memristors are used
as multi-bit memories, reconfigurable analog circuits, and
neuromorphic circuits.

Since the HP labs verified the nanoscale physical
implementation, the physical behavior models of memristors
have received a lot of attention. Accuracy, convergence, and

FIGURE 2 | Memristor research and applications.
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TABLE 1 | Classic memristor models.

Models Linear ion drift Non-linear ion

drift

Simmons tunnel barrier TEAM

I–V

characteristic

v (t) =
(

Ron w(t)
D + Roff

(

1−
w(t)
D

))

i (t)

i (t) =

w(t)nβ sinh (αυ (t))+

χ [exp (γ υ (t)) − 1]

v (t) =
(

Ron+
Roff−Ron
Woff−Won

(w−won)
)

i (t) v (t) = Ron �
λ

ewoff−won
(w− won)

State variable
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dt
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exp
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−
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−
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,

i < 0



















koff
(

i(t)
ioff

− 1
)aoff

, 0 < ioff < i

kon
(

i(t)
ion

− 1
)aon

, 0 < ioff < i

0, otherwise

Interval 0 ≤ w ≤ D 0 ≤ w ≤ 1 aoff ≤ w ≤ aon aon ≤ w ≤ aoff

Control Current Voltage-controlled Current-controlled Current-controlled

mechanism controlled

Accuracy Lowest accuracy Low accuracy Highest accuracy Sufficient accuracy

Thershold

exists

No No Pracitcally exists Yes

Linearity linear No-linear No-linear No-linear

computational efficiency are the most important factors in
memristor models. These behavior models are expected to be
simple, intuitive, better understood, and closed form. Up to
date, various models have been developed, each with its unique
advantages and shortcomings. The models listed in Table 1 are
the most popular models, including a linear ion drift memristor
model, a non-linear ion drift memristor model, a Simmons
tunnel barrier memristor model, a threshold adaptive memristor
model (TEAM) (Simmons, 1963; Strukov et al., 2008; Biolek
et al., 2009; Pickett et al., 2009; Kvatinsky et al., 2012). In the
linear ion drift memristor model, D and uv represent the full
length and device mobility of a memristor film, respectively. ω(t)
is a dynamic state variable whose value is limited between 0 and
D, taking into account the size of the physical device. The low
turn-on resistance Ron is the full doped resistance when dynamic
variable ω(t) is equal to D. The high turn-off resistance Roff
is a fully undoped resistance when ω(t) is equal to 0. Besides,
a window function multiplied by a state variable is needed to
nullify the derivative and provide a non-linear transition for the
physical boundary simulation. Several window functions have
been presented for modeling memristors such as Biolek, Strukov,
Joglekar, and Prodromakis window functions (Strukov et al.,
2008; Biolek et al., 2009; Joglekar and Wolf, 2009; Strukov and
Williams, 2009; Prodromakis et al., 2011). As the first memristor
model, the linear ion drift model shows the features of simple,
intuitive, and better understood. However, the state variable
ω modulation in nano-scale devices is not a linear process,
and the memristor experimental results show non-linear I–V
characteristics. The non-linear ion drift model provides a better
description of non-linear ionic transport and higher accuracy
by experimentally fitting the parameters n, β, α, and χ (Biolek
et al., 2009). But more physical reaction kinetics still need to
be considered. The Simmons tunnel barrier model consists of a
resistor in series with an electron tunnel barrier, which provides
a more detailed representation of non-linear and asymmetrical
features (Simmons, 1963; Pickett et al., 2009). There are nine
fitting parameters in this segmentation model, which makes

the mathematical model very complicated and computationally
inefficient. The TEAM model can be thought of as a simplified
version of the Simmons tunnel barrier model (Kvatinsky et al.,
2012). However, all of the above models suffer from smoothing
problems or mathematical ill-posedness issues, and they cannot
provide robust and predictable simulation results in DC, AC,
transient analysis, not to mention complicated circuit analysis
such as noise analysis and periodic steady-state analysis (Wang
and Roychowdhury, 2016). Therefore, in the face of transistor-
level circuit design simulation, circuit designers usually have to
replace the actual memristor with an emulator (Yang et al., 2019).
The emulator is a complex CMOS circuit used to simulate some
performance aspect of a special memristor. An emulator is not a
true model, and it is very different from the real memristor model
(Yang et al., 2014). Thus, it is urgent to establish a complete
memristor model. Correct bias definition and right physical
characteristics in SPICE or Verilog-a model are important for
complex memristor circuit design. Otherwise, non-physical
predictions will confuse circuit engineers in physical chip design.

MEMRISTOR-BASED NEURAL NETWORKS

Neuron Biological Mechanisms and
Memristive Synapse
The human brain can solve complex tasks, such as image
recognition and data classification, more efficiently than
traditional computers. The reason why a brain excels in
complicated functions is the large number of neurons and
synapses that process information in parallel. As shown in
Figure 3, when an electrical signal is transmitted between
two neurons via axon and synapse, the joint strength or
weight is adjusted by the synapse. There are approximately
100 billion neurons in an entire human brain, each with
about 10,000 synapses. Pre-synaptic and post-synaptic neurons
transfer and receive the signal of excitatory and inhibitory
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FIGURE 3 | Schematic of two interconnected neurons by synapses.

post-synaptic potentials by updating synaptic weights. Long-
term potentiation (LTP) and long-term depression (LTD) are
important mechanisms in a biological nervous system, which
indicates a deep-rooted transformation in the connection
strengths between neurons. According to the interval between
pre-synaptic and post-synaptic action potentials or spikes, the
phenomenon of synaptic weight modification is known as spike-
timing-dependent plasticity (STDP) (Yan et al., 2018a, 2019c).
Due to scalability, low power operation, non-volatile features,
and small on-chip area, memristors are good candidates for
artificial synaptic devices to mimicking the LTP, LTD, and STDP
behaviors (Jo et al., 2010; Ohno et al., 2011; Kim et al., 2015;Wang
et al., 2017; Yan et al., 2017).

There are some key requirements for memristive devices
in neural network applications. For example, a wide range of
resistance is required to enable sufficient resistance states; devices
are required to have low resistance fluctuations and low device-
to-device variability; a higher absolute resistance is required
for low power dissipation; and high durability is required for
reprogramming and training (Choi et al., 2018; Yan et al., 2018b,
2019a; Xia and Yang, 2019). A concern with device stability is
resistance drift, which occurs over time or with the environment.
Resistance drift causes undesirable changes in synapse weight
and blurs different resistance states, ultimately affecting the
accuracy of neural network computation (Xia and Yang, 2019).
To deal with this drift challenge, improvements can be made
in three aspects: (1) material device engineering, (2) circuit
design, and (3) system design (Alibart et al., 2012; Choi et al.,
2018; Jiang et al., 2018; Lastras-Montaño and Cheng, 2018;
Yan et al., 2018b, 2019a; Zhao et al., 2020). For example, as
for the domain of material engineering, threading dislocations
can be used to control programming variation and enhance
switching uniformity (Choi et al., 2018). In terms of circuit-level
design, a module of two series memristors and a transistor with

the smallest size can be used, thus, the resistance ratio of the
memristor can be encoded to compensate for the resistance drift
(Lastras-Montaño and Cheng, 2018). For the system-design level,
device deviation can be reduced by protocols, such as closed
loop peripheral circuit with a write-verify function (Alibart
et al., 2012). In order to obtain linear and symmetric weight
update in LTP and LTD for efficient neural network training,
optimized programming pulses can be used to excite memristors
with either fixed-amplitude or fixed-width voltage pulses (Jiang
et al., 2018; Zhao et al., 2020). Note it is inevitable to increase
energy consumption if the memristor resistance value is changed
through complex programmable pulses.

The comparison of different memristive synapse circuit
structures is shown in Table 2 (Kim et al., 2011a; Wang et al.,
2014; Prezioso et al., 2015; Hong et al., 2019; Krestinskaya et al.,
2019). Single memristor synapse (1M) crossbar arrays in neural
networks have the lowest complexity and low power dissipation.
However, it suffers from sneak path problems and complex
peripheral switch circuits. Synapses with two memristors (2M)
have a more flexible weight range and better symmetric LTP
and LTD, but the corresponding chip area will be doubled. A
synapse with one memristor and one transistor (1M-1T) has the
advantage of solving the sneak path problem, but it also occupies
a large area in the large-scale integration of neural networks. A
bridge synapse architecture with four memristors (4M) provides
a bidirectional programming mechanism with a voltage input
voltage output. Due to the significant on-chip area overhead, the
1M-1T and 4M synapses may not be applicable for large-scale
neural networks.

Memristor-Based ANNs
The basic operations of classical hardware ANNs include
multiplication, addition, and activation, which are accomplished
by CMOS circuits such as GPUs. The weights are typically saved

Frontiers in Nanotechnology | www.frontiersin.org 4 March 2021 | Volume 3 | Article 64599521

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


Xu et al. Memristive Neural Networks

in SRAM or DRAM. Despite the scalability of CMOS circuits,
they are still not enough for ANN applications. Furthermore,
the SRAM cell size are too big to be integrated at high density.
DRAM needs to be refreshed periodically to prevent data decay.
Whether it is SRAM or DRAM, it often needs to interact with

TABLE 2 | Comparison of different structure memristive synapse circuit.

Synapses Structure Area(F2) Weight Weight

range

Other features

1M ≈4 G + Lower power

consumption;

least complex;

sneak path

problem in

neural network

array

2M ≈8 G+-G−
+,0, – Better symmetric

between LTP

and LTD;

complex

post-synaptic

neurons

1M-1T ≈24 G + Solution for

sneak path

problem with

transistor switch;

biggest size;

transistor

non-ideal effect

4M ≈16
M2

M1 +M2
−

M4

M3 +M4

+,0, – Voltage input

voltage output;

Bidirectional

programming;

bigger size

CMOS cores. No matter SRAM or DRAM, the data needs
to be fetched by to the cache and register files of the digital
processors before processing and returned through the same
databus, leading to significant speed limit and large energy
consumption, which is the main challenge for deep learning and
big data applications (Xia and Yang, 2019). Nowadays, ANNs
feature for large number of computational parameters stored
in memory compared to classical computation. For example, a
two-layer 784-800-10 fully-connected deep neural network in the
MNIST dataset has 635,200 interconnections. A state of the art
keep neural network like Visual Geometry Group (VGG) has a
few millions of parameters. These factors pose a huge challenge
to the implementation of ANN hardware. The memristor’s non-
volatility, lower power consumption, lower parasitic capacitance,
and reconfigureable resistance states, high speed, and adaptability
lead to a key role in ANN applications (Xia and Yang, 2019).
An ANN is an information processing model which are derived
from mathematical optimization. A typical ANN architecture
and its memristor crossbar are shown in Figure 4. The system
usually consists of three layers: an input layer, a middle layer or a
hidden layer, and an output layer. The connected units or nodes
are neurons which are usually series by weighted-sum module
and activation function module. Neurons also perform tasks of
decoding, control, and signal routing. Due to its powerful signal
processing capability, CMOS analog and digital logic circuits are
the best candidates for neurons hardware implementation. In
Figure 4, arrow or connecting lines represent synapses, and their
weights represent the connection strengths between two neurons.
Assume the weight modulation matrix Wij in a memristor
synapse crossbar is a M × N dimensinal matrix, where i(i = 1,
2, . . . , N) and j(i = 1, 2, . . . , M) are the index numbers of the
output and input ports of the memristor crossbar. Wij between
pre-neuron input vector Xj and post-neuron output vector Yi is

FIGURE 4 | Typical ANN architecture and its memristor crossbar.
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TABLE 3 | Typical architectures of Memristive ANNs.

TYPES Architecture Layers properties Applications Challenges

SLP/MLP Input layer+hidden

layer+output layer

Sigmoid, tanh, etc.,

activation; Full-

connections

Simple pattern classification;

Hand-written letter recognition

Power dissipation in deep ANN;

Overfitting; non-ideal memristor;

Scalability

CNN Input layer+

Convolution layer+

ReLu layer+Pooling

+Fully-connected and output layer

Convolution;

Pooling

Image classification;

Face recognition; Video analysis

CeNN Cell array with

templates; 1-D, 2-D, or 3-D

Dissipative non-linear cells;

Lyapunov function;

Neighborhood

communication

Image filtering;

Signal processing; moving object

detection

Convergence and

mulitistability in non-symmetric

networks; non-ideal

memristor

RNN Fully recurrent;

Elman; Jordan; gated recurrent unit;

long short-term memory

Temporal dynamic

behavior; directed graph along a

temporal sequence; LSTM

Speech recognition; Machine

translation;

Video processing

Hard to train for long term

dependencies; non-ideal

memristor

TABLE 4 | ANNs learning accuracy improvement by mitigating memristor

non-ideal effects.

Level Strategies Tradeoffs

Device

materials

Optimizing redox reaction at the

metal/oxide interface (Lee et al., 2015),

Threading dislocations technology

(Tanikawa et al., 2018),

Heating element, selectively enhanced

filament expansion stage (Jeong et al.,

2015)

Manufacturing cost;

Power consumption;

On-chip area;

Peripheral circuit

complexity;

Algorithm efficiency

Circuits Hybrid CMOS-memristor Neuromorphic

Synapse, 1R+1M1R for better device

symmetry (Woo and Yu, 2018),

Non-identical pulse excitation (Park et al.,

2013; Chang et al., 2017),

Bipolar-pulse-training (Li et al., 2016),

Spike edge shape design (Li S. J. et al.,

2018)

Architectures Multiple memristors cell for high

redundancy (Chen et al., 2015),

Pseudo-crossbar array, peripheral circuit

compensation (Chen et al., 2015)

Algorithms co-optimization between memristors and

ANN algorithms (Li et al., 2016)

a matrix-vector multiplication operation, expressed as Equation
(1) (Jeong and Shi, 2018).

Yi = ΣWij · Xj (1)

∆wij = r







∂

(

y− y
∗
)2

∂wij






(2)

The matrix W can be continuously adjusted until the difference
between the output value y and the target value y∗ is minimized.
The Equation (2) shows the synaptic weight tunning process with
the gradient of output error (y–y∗)2 under a training rate (Huang
et al., 2018). Therefore, a memristor crossbar is equal to a CMOS
adder plus a CMOS multiplier and an SRAM (Jeong and Shi,

2018), because data are computed, stored, and regenerated on
the same local device (i.e., a memristor itself). Besides, a crossbar
can be vertically integrated into three dimensions (Seok et al.,
2014; Lin et al., 2020; Luo et al., 2020). In this way, it saves much
chip area and power consumption. Due to the memristor synapse
update and save weight data on itself, the memory wall problem
with von Neumann bottleneck is solved.

Researchers have developed various topologies and learning
algorithms for software-based or hardware-based ANNs. Table 3
provides a comparison of typical memristive ANNs, including
single-layer perceptron (SLP) or multi-layer perceptron (MLP),
CNN, cellular neural network (CeNN), and recurrent neural
network (RNN). SLP and MLP are classic neural networks
with well-known learning rules such as Hebbian learning,
backpropagation. Although a lot of ANN studies have been
verified by simulations or small-scale implementation, a single-
layer neural network with 128 × 64 1M-1T Ta/HfO2 memristor
array has been experimentally demonstrated with an image
recognition accuracy of 89.9% for the MNIST dataset (Hu
et al., 2018). CNNs (referred to as space-invariant or shift-
invariant ANNs) are regularized versions of MLP. Their hidden
layers usually contain multiple complex activation functions, and
perform convolution or regional maximum value operations.
Researchers have demonstrated an over 70% of accuracy in
human behavior video recognition with a memristor-based 3D
CNN (Liu et al., 2020). It should be emphasized that this
verification is only a software simulation result, while the on-chip
hardware demonstration is still very challenging, especially for
deep CNNs (Wang et al., 2019a; Luo et al., 2020; Yao et al., 2020).
CeNN is a massively parallel computing neural network, whose
communication features are limited to between adjacent cell
neurons. The cells are dissipative non-linear continuous-time or
discrete-time processing units. Due to their dynamic processing
capability and flexibility, CeNNs are promising candidates for
real-time high frame rate processing or multi-target motion
detection. For example, a CeNN with 4M memristive bridge
circuit synapse has been proposed for image processing (Duan
et al., 2014). Unlike classic feed forward ANNs, RNNs have a
feedback connection that enables temporal dynamic behavior.
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Therefore, it is suitable for speech recognition applications. Long
short-term memory (LSTM) is a kind of useful RNN structure
for deep learning. Hardware implementation of LSTM networks
based on memristors have been reported (Smagulova et al., 2018;
Li et al., 2019; Tsai et al., 2019; Wang et al., 2019a).

Due to atomic-level random defects and variability in
the conductance modulation process, non-ideal memristor
characteristics are the main causes of learning accuracy loss in
ANNs. This phenomenon is manifested in the following aspects
of memristor: asymmetric non-linear weight change between
potentiation and depression, limited ON/OFF weight ratio and
device variation. Table 4 shows the main strategies for how to
deal with these issues. One can mitigate the effects of non-
ideal memristor characteristics on ANN accuracy from four
levels: device materials, circuits, architectures, and algorithms.
At device materials level, switching uniformity and analog
on/off ratio can be enhanced by optimizing redox reaction
at the metal/oxide interface, adopting threading dislocations
technology or heating element (Jeong et al., 2015; Lee et al., 2015;
Tanikawa et al., 2018). At circuits level, one can use customized
excitation pulse or hybrid CMOS-memristor synapses to mitigate
memristor non-ideal effects (Park et al., 2013; Li et al., 2016;
Chang et al., 2017; Li S. J. et al., 2018; Woo and Yu,
2018). At architectures level, common techniques are multiple
memristors cell for high redundancy, pseudo-crossbar array,
and peripheral circuit compensation (Chen et al., 2015). Co-
optimization between memristors and ANN algorithms is also
reported (Li et al., 2016). However, it should be noted that
implementation of these strategies inevitably brings side effects,
such as high manufacturing cost, large power consumption, large
chip area, complex peripheral circuits, or inefficient algorithm.
For example, the non-identical pulse excitation or bipolar-
pulse-training methods improve the linearity and symmetry of
memristor synapses, but it increases the complexity of peripheral
circuits, system power consumption, and chip area. Therefore,
trade-offs and co-optimization need to be made at each design
level to improve the learning accuracy of ANNs (Gi et al., 2018;
Fu et al., 2019). Figure 5 is a collaborative design example from

bottom-level memristor devices to top-level training algorithms
(Fu et al., 2019). The conductance response (CR) curve of
memristors is first measured to obtain its non-linearity factor.
Then, the CR curve is divided into piecewise linear segments to

obtain their slope, and the pulse width of the excitation pulse
is inversely proportional to the slope. These data are stored in
memory for comparison and correction by memristor crossbars
during the update. Through this method, the ANN recognition
accuracy is finally improved.

The memristor-based ANN applications can be software,
hardware or hybrid (Kozhevnikov and Krasilich, 2016). Software
networks tend to be more accurate than their hardware
counterparts because they do not have the analog element non-
uniformity issues. However, hardware networks feature better
speed and less power consumption due to non-von Neumann
architectures (Kozhevnikov and Krasilich, 2016). In Figure 6,
a deep neuromorphic accelerator ANN chip with 2.4 million
Al2O3/TiO2-xmemristors was designed and fabricated (Kataeva
et al., 2019). This memristor chip consists of a 24 × 43 array
with a 48 × 48 memristor crossbar at each intersection, which
means its complexity is about 1,000 times higher than previous
designs in the literature. This work is a good starting point
for the operation of medium-scale memristor ANNs. Similar
accelerators have appeared in the last 2 years (Cai et al., 2019;
Chen W.-H. et al., 2019; Xue et al., 2020).

Memristive neural networks can be used to understand
human emotion and simulate human operational abilities
(Bishop, 1995). The well-known PavlTov associative memory
experiment has been implemented in memristive ANNs with
a novel weighted-input-feedback learning method (Ma et al.,
2018). As more input signals, neurons, and memristor synapses,
complex emotional processing will be achieved in further AI
chips. Due to the material challenge and the lack of effective
models, most of the demonstrations are limited to small-scale
simulations for simple tasks. The shortcomings of memristors
are mainly the non-linearity, asymmetry, and variability, which
seriously affect the accuracy of ANNs. Moreover, the peripheral
circuits and interface must provide superior energy efficiency and
data throughput.

Memristor-Based SNN
Inspired by cognitive and computational methods of animal
brains, the third-generation neural network, SNN, makes
desirable properties of compact biological neurons mimic and
remarkable cognitive performance. The most prominent feature
of SNN is that it incorporates the concept of time into operations

FIGURE 5 | Co-design from memristor non-ideal characteristics to the ANN algorithm (Fu et al., 2019).

Frontiers in Nanotechnology | www.frontiersin.org 7 March 2021 | Volume 3 | Article 64599524

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


Xu et al. Memristive Neural Networks

FIGURE 6 | A deep neuromorphic ANN chip with 2.4 million memristor

devices (Kataeva et al., 2019).

with discrete values, while the input and output values of
the second-generation ANNs are continuous. SNN can better
leverage the strength of biological paradigm of information
processing, thanks to the hardware emulation of synapses and
neurons. ANN is calculated layer by layer, which is relatively
simple. However, spike trains in SNN are relatively difficult to
understand and efficient coding methods for these spike trains
are not easy. These dynamic events driven spikes in SNN enhance
the ability to process spatio-temporal or real-world sensory
data, with fast adaptation and exponential memorization. The
combination of spatio-temporal data allows SNN to process
signals naturally and efficiently.

Neuron models, learning rules, and external stimulus coding
are key research areas of SNN. The Hodgkin & Huxley (HH)
model, leaky Integrate-and-Fire (LIF) model, spike response
model (SRM), and Izhikevich model are the most common
models of neurons (Hodgkin and Huxley, 1952; Chua, 2013;
Ahmed et al., 2014; Pfeiffer and Pfeil, 2018; Wang and Yan,
2019; Zhao et al., 2019; Ojiugwo et al., 2020). The HH model is
a continuous-time mathematical model based on conductance.
Although this model is based on the study of squid, it is
widely used in lower or higher organisms (even humans being).
However, since complex non-linear differential equations are
set with four variables, this model is difficult to achieve high
accuracy. Chua established the memristor model of Hodgkin-
Huxley neurons and proved that memristors can be applied
to the imitation of complex neurobiology (Chua, 2013). The
Izhikevich model integrates the bio-plasticity of HH model
with simplicity and higher computational efficiency. The HH
and Izhikevich models are calculated by differential equations,
while the LIF and SRM models are computed by an integral
method. SRM is an extended version of LIF, and the Izhikevich
model can be considered as a simplified version of the Hodgkin-
Huxley model. These mathematical models are the results of

TABLE 5 | Comparison of several memristor-based SNNs.

References Neuron Synapse Learning

rules

Size Applications

Zheng and

Mazumder

(2018)

LIF 1M1R

fixed-polarity

memristor

STDP;

Supervised

learning

784-300-

10

Handwritten

digits

recognition

Chen B.

et al.

(2019)

LIF Lithium

silicate

memristor

STDP,

Unsupervised

learning,

WTA

128-128-

12

Motion-style

recognition

Shukla and

Ganguly

(2018)

LIF HfO2

memristor

STDP;

Supervised

Hebbian

16-3 Classification

problems,

Fisher Iris

dataset, etc.

Wu and

Saxena

(2018)

LIF Stochastic

binary

memristor

STDP,

Dendritic-

inspired

processing

1-4 Pattern

Recognition

Chu et al.

(2014)

LIF Pr0.7
Ca0.3MnO3-

memristor

STDP,

Unsupervised

learning

30-10 Visual Pattern

Recognition

Volos et al.

(2015)

H-R,

FHN

Flux-

controlled

memristor

STDP 2 Chaotic

oscillators;

Neurodynamic

behavior

Al-

Shedivat

et al.

(2015)

SRM Stochastic

biolek’s

memristor

model

STDP, WTA 1568-32 Handwritten

digits

recognition

different degrees of customization, trade-offs and biological
neural network optimization. Table 5 shows a comparison of
several memristor-based SNNs. It can be seen that these SNN
studies are based on STDP learning rules and LIF neurons. Most
of them are still in simple pattern recognition applications, only
a few of which have hardware implementations.

The salient features of SNNs are as follows. First, biological
neuron models (e.g., HH, LIF) are closer to biological neurons
than neurons of ANN. Second, the transmitted information
is time or frequency encoded discrete-time spikes, which can
contain more information than traditional networks. Third,
each neuron can work alone and enter a low power standby
mode when there is no input signal. Since SNNs have been
proven to be more powerful than ANNs in theory, it is
natural to widely use SNNs. Since the spike training cannot
be differentiated, the gradient descent method cannot be used
to train SNNs without losing accurate temporal information.
Another problem is that it takes a lot of computation to simulate
SNNs on normal hardware, because it requires analog differential
equations (Ojiugwo et al., 2020). Due to the complexity of SNNs,
efficient learning rules that meet the characteristics of biological
neural networks have not been discovered. This rule is required
to model not only synaptic connectivity but also its growth and
attenuation. Another challenge is the discontinuous nature of
spike sequence, which makes many classic ANN learning rules
unsuitable for SNNs, or can only be approximated, because the
convergence problem is very serious. Meanwhile, many SNNs
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FIGURE 7 | CMOS neuron and memristor synapse weight update circuit (Sun, 2015).

FIGURE 8 | CMOS-Memristor SNN (Wu and Saxena, 2018).

studies are limited to theoretical analysis and simulation of
simple tasks rather than complex and intelligent tasks (e.g.,
multiple regression analysis, deductive and inductive reasoning,
and their chip implementation) (Wang and Yan, 2019). Although
the future of SNNs is still unclear, many researchers believe that
SNNs will replace deep ANNs. The reason is that AI is essentially
a biological brain mimicking process, and SNNs can provide a
perfect mechanism for unsupervised learning.

As shown in Figure 7, a neural network is implemented
with CMOS neurons, CMOS control circuits, and memristor
synapses (Sun, 2015). The aggregation module, leaky integrate
and fire module are equivalent to the role of dendrites and
axon hillocks, respectively. Input neurons signals are temporally
and spatially summed through a common-drain aggregation
amplifier circuit. A memristor synapse gives the action potential
signal a weight and its output signal, that is, a post-synaptic
potential signal is transmitted to post-neurons. Using the action
potential signal and feedback signals from post-neurons, the
control circuit and synaptic update phase provide potentiation or
depression signals tomemristor synapses. According to the STDP

learning rules, the transistor-level weight adjustment circuit
is composed of a memristor device and CMOS transmission
gates. The transmission gates are controlled by potentiation
or depression signals. The system is very similar to the main
features of biological neurons, which is useful for neuromorphic
SNN hardware implementation. A more complete description
of SNN circuits and system applications is shown in Figure 8

(Wu and Saxena, 2018). The system consists of event-driven
CMOS neurons, a competitive neural coding algorithm [i.e.,
winner take all (WTA) learning rule], and multi-bit memristor
synapse array. A stochastic non-linear STDP learning rule with
an exponential shaped window learning function is adopted
to update memristor synapse weights in situ. The amplitude
and additional temporal delay of the half rectangular half-
triangular spike waveform can be adjusted for dendritic-inspired
processing. This work demonstrates the feasibility and excellence
of emerging memristor devices in neuromorphic applications,
with low power consumption and compact on-chip area.

Despite the large on-chip area and power dissipation in CMOS
implementation of synaptic circuits (Chicca et al., 2003; Seo et al.,
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FIGURE 9 | A memristor synapse array micrograph for SNN Application (Chu

et al., 2014).

2011), Myonglae Chu adopted Pr0.7Ca0.3MnO3-based memristor
synaptic array and CMOS leaky IAF neurons in SNN. As shown
in Figure 9, the SNN chip has been successfully developed for
visual pattern recognition with modified STDP learning rules.
The SNN hardware system includes 30 × 10 neurons and
300 memristor synapses. Although this hardware system only
recognizes numbers 0–9, it is a good attempt, as most SNN
studies have lingered around the software simulation phase (Kim
et al., 2011b; Adhikari et al., 2012; Cantley et al., 2012). One can
refer to literatures (Wang et al., 2018b; Ishii et al., 2019; Midya
et al., 2019b) for more experimental memristor-SNN demos.

Comparison Between ANNs and SNNs
A comparison between ANNs and SNNs is shown in Table 6

(Nenadic and Ghosh, 2001; Chaturvedi and Khurshid, 2011;
Zhang et al., 2020). Traditional ANNs require layer-by-layer
computation. Therefore, it is computationally intensive and has
a relatively large power consumption. An SNN changes from a
standby mode to a working mode, when a large nerve spike is
coming with its spike threshold exceeding the membrane voltage.
As a result, its system power consumption is relatively low.

SNNs with higher bio-similarity are expected to achieve
higher energy efficiency than ANNs. But SNN hardware is
harder to implement than ANN hardware. Thus, combining the
advantages of ANN and SNN and using ANN-SNN converters
to improve SNN performance is a valuable method, which has
been experimentally demonstrated (Midya et al., 2019a). The first
and second layers of a converter are ordinary ANN structures.
The output signals of the second layer are converted to a spike
sequence for a 32 × 1 1M-1T drift memristor synapse array

TABLE 6 | Comparison between ANNs and SNNs.

ANNs SNNs

Generation Second-generation NN Third-generation NN

Biological brain

mimicking

General Better

Signal processing Continuous multi-level

value

Sparse and

asynchronous binary

time-domain coded

spike signals.

Event-driven discrete

information processing

Energy efficiency General Better

Neurons and Synapses Activation functions; Hodgkin and Huxley,

LIF, etc.

Digital or analog

memristor synapses

Analog memristor

synapses

Classical algorithms Error-backpropagation SpikeProp, STDP

Chip design In progress with some

achievement.

Preliminary stage

Near-term application

goals

Long-term application

goals

at the third layer. This ANN-SNN converter may be a good
way for SNN hardware implementation. Despite the enormous
potential of SNNs, there is currently no fully satisfactory general
learning rules and its computational capability has not been
demonstrated. Most of these methods lack comparability and
generality. Compared to ANNs, the study of dynamic devices
and efficient algorithms in SNNs is very challenging. SNNs
only need to compute the activated connections, rather than all
connections at every time step in ANNs. However, the encoding
and decoding of spikes is one of the challenges in SNN research.
In fact, it needs further research in neuroscience. ANN is the
recent target of memristors, and SNN is the long-term goal in
the future.

For neural networks applications, ANN and SNN memristor
grids have some common challenges, such as sneak path
problems, IR-drop or ohmic drop, grid latency, and grid power
dissipation, as shown as Figure 10 (Zidan et al., 2013; Hu
et al., 2014, 2018; Zhang et al., 2017). The large the size of
the memristor array, the greater the effect of these parasitic
capacitances and resistances. In Figure, the desired weight-
update path is the dot-and-dash line, and the sneak path
is the dotted line, which is an undesired parallel memristor
path due to its relative resistance and non-gated memristor
elements. This phenomenon leads to undesired weight changes
and a reduction in the accuracy of neural networks. The basic
solution for the sneak path is to add a series of connected
gate-controlled MOS transistors to memristors as mentioned in
Table 2. However, this method will lead to large on-chip synapse
array and destroy the advantages of high-density integration
of memristors. Grounding an unselected memristor array is
another solution without the need to add synaptic area. But this
approach leads to more power consumption. There are other
techniques such as grounding line, floating line, additional bias,
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FIGURE 10 | Sneak path, IR-drop, latency, and energy in massive memristor grids of neural networks.

a non-unity aspect ratio of memristor arrays, three-electrode
memristor devices. They may be welcome in memristor memory
applications, but not necessarily in memristor-based neural
network applications (Zidan et al., 2013). In neural network
applications, the main concern for memristor arrays is whether
the association between input and output signals is correct
(Hu et al., 2014). This is one important difference compared
to memristor memory applications. IR-drop, memristor grid
latency, and power consumption are signal integrity effects
caused by grid parasitic resistance Rpar and parasitic capacitance
Cpar. These non-ideal factors affect the potential distribution,
signal transmission, and ultimately affect the scale of memristor
arrays. Similar to CMOS layout and routing techniques, large-
scale memristors mesh can be divided into medium-sized
modules with high-speed main signal paths for lower parasitic
resistance, grid power consumption, and latency. It is worth
noting that memristor process variations, gird IR-drop and noise
can worsen the sneak path problem.

SUMMARY

The advantage of memristors in neural network applications
is their fast processing time and energy efficiency in the
computational process. At the device level, memristors have
very low power dissipation and high on-chip density. At the
architecture level, parallel computing is performed at the same
location where data is stored, thereby avoiding frequent data
movement and memory wall issues. Due to the quantum
effect and non-ideal characteristics in the manufacturing of
nanometer memristors, the robust performance of memristor

neural networks still needs to be improved. Meanwhile, the
adaptation range of various memristor models is limited and
has not been fully explored in chip design. To date, there
are no complete unified memristor models for chip designer.
Furthermore, wire resistance, sneak path current, and half-select
problems are also challenges for high-density integration of
memristor crossbar arrays. Memristor neural network research
involves engineering, biology, physics, algorithms, architecture,
systems, circuits, equipment, and materials. There is still a long
way to go for memristive neural networks, as most research
remains in single devices or small-scale prototypes. However,
with the marketing promotion of the IoT big data and AI, the
breakthrough research of memristor-based ANN will be realized
by the joint efforts of academia and industry.
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Reliable 2D Phase Transitions for
Low-Noise and Long-Life Memory
Programming
Keyuan Ding, Tianci Li, Bin Chen and Feng Rao*

College of Materials Science and Engineering, Shenzhen University, Shenzhen, China

Extending cycling endurance and suppressing programming noise of phase-change
random-access memory (PCRAM) are the key challenges with respect to the
development of nonvolatile working memory and high-accuracy neuromorphic
computing devices. However, the large-scale atomic migration along electrical pulse
direction in the unconstrained three-dimensional phase transitions of the phase-change
materials (PCMs) induces big resistance fluctuations upon repeated programming and
renders the classic PCRAM devices into premature failure with limited cycling endurance.
Previous efforts of superlattice-like and superlattice PCM schemes cannot effectively
resolve such issues. In this work, we demonstrated that, through fine-tuning the sputtering
techniques, a phase-change heterostructure (PCH) of Sb2Te3/TiTe2 can be successfully
constructed. In contrast to its superlattice-like counterpart with inferior crystal quality, the
well-textured PCH architecture ensures the reliable (well-confined) two-dimensional phase
transitions, promoting an ultralow-noise and long-life operation of the PCRAM devices.
Our study thus provides a useful reference for better manufacturing the PCH architecture
and further exploring the excellent device performances and other new physics.

Keywords: phase-change random-accessmemory, two-dimensional phase transitions, programming noise, cycling
endurance, heterostructure

INTRODUCTION

With the development of the Internet of Things, the exponentially growing demands in data
processing and storage have imposed critical requirements on the energy efficiency and
computing speed for data-centric tasks. But in the current computing system based on
classic von Neumann architecture, the constant data shuttling between a fast central
processing unit (CPU) and other much slower program and storage memory units leads to
significantly wasted working power and limited computing speed (Kestor et al., 2013; Wong and
Salahuddin, 2015). Extensive studies on phase-change random-access memory (PCRAM)
(Wuttig, 2005; Raoux et al., 2010) thus have been devoted to resolving the issues. One route
is to renovate the von Neumann architecture by alleviating performance mismatch among
hierarchical memories (Lam, 2010; Rao et al., 2015; Yu and Chen, 2016; Rao et al., 2017), such as
Intel’s Optane DC (Choe, 2017) chips bridged between volatile dynamic random-access memory
(DRAM) and nonvolatile solid-state drive (SSD) flash memory. The other is to innovate non-von
Neumann architecture by unifying processing with storage in PCRAM cells, such as
neuromorphic computing of three paradigms (Kuzum et al., 2012; Tuma et al., 2016; Burr
et al., 2017; Boybat et al., 2018; Ielmini and Wong, 2018; Le Gallo et al., 2018; Sebastian et al.,
2018): in-memory computing, deep neural networks, and spiking neural networks.
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Commercialized PCRAM device encodes digital information
through reversible transformation between amorphous and
crystalline phases of chalcogenide PCMs (Chen et al., 2019;
Rao et al., 2019), e.g., Ge2Sb2Te5 (GST). Typical (mushroom-
or pillar-type) PCRAM devices execute three-dimensional (3D)
phase transitions of GST film, where extensive cycles of high-
energy/high-bias RESET (melting and amorphization) operation
pulses trigger long-distance migrations of Sb (Ge) and Te
elements in opposite (vertical) directions (Padilla et al., 2010;
Xie et al., 2018), giving rise to the phase segregation and the
formation of large voids near the bottom electrode. This degrades
the performing reliability and limits the endurance of mass-
produced GST devices to ∼109–1012 cycles (Yu and Chen,
2016; Xie et al., 2018), obstructing the implementation of
PCRAM as nonvolatile working memory (with > ∼1016 cycles)
for the deep modification of the von Neumann architecture
(Wong and Salahuddin, 2015). Such a considerable deviation/
variation in composition and microstructure during the
unconstrained 3D phase transitions generates large
fluctuations (noises) in programming resistance states, which
poses crucial challenges to the accomplishments of high-accuracy
and high-efficiency matrix-vector multiplications, unsupervised
learning of temporal patterns, and other data-centric
computational tasks (Burr et al., 2017; Sebastian et al., 2018).

Many efforts, e.g., superlattice-like (SLL) (Chong et al.,
2006; Lu et al., 2012; Chia Tan et al., 2013) and superlattice
(SL) (Simpson et al., 2011; Soeya et al., 2013; Takaura et al.,
2014) PCM architectures, have been made to address the issue
of limited endurance, attempting to tailor the 3D phase
transitions into 2D fashion. However, both schemes
encounter difficulties in maintaining a reliable 2D structural
transformation upon repeated programming, because the
RESET operations must be cautiously performed to avoid
local overheating; otherwise the multilayers may melt
together and then quench into a mixed amorphous phase
(Simpson et al., 2011; Li et al., 2018), as the melting
temperatures (Tm, being ∼900–1,000 K) of the adopted
PCMs in SLL or SL architectures are quite close (Chong
et al., 2006; Simpson et al., 2011; Lu et al., 2012; Chia Tan
et al., 2013; Soeya et al., 2013; Takaura et al., 2014). In addition,
the growth condition must be tightly controlled to construct
Ge(Sn)Te/Sb2Te3 SLs as Ge(Sn)Te is chemically reactive and
may alloy into Ge(Sn)SbTe-like compounds easily during
synthesis (Li et al., 2018). Inspired by the previous findings,
we recently proposed a distinct approach to address the above
issues by an innovative PCH design using Sb2Te3/TiTe2
stackings (Ding et al., 2019). The relations between crystal
quality of such stackings and the derived electrical
performances have not been disclosed yet. In this work, we
draw direct comparisons between Sb2Te3/TiTe2 SLL and PCH
(SL) cases. Note that here we only care about the sputtering
technology that is commonly employed in mass production of
PCRAM chips, rather than other techniques such as molecular
beam epitaxy or chemical vapor deposition. We further reveal
that, in contrast to the SLL case, only the well-textured (highly
oriented) PCH architecture can guarantee a reliable 2D
switching to inhibit large-scale (long-distance) atomic

diffusion along electrical pulse direction, enabling
substantially prolonged cycling endurance and suppressed
programming noise.

EXPERIMENTAL SECTION

Film Preparation and Characterization
The Sb2Te3 and TiTe2 films were deposited on a SiO2/Si substrate
by sputtering the respective pure target in ultra-high vacuumwith
a base pressure of <∼1 × 10−8 Torr, and the deposition pressure
was under ∼4.7 mTorr. For in situ heating (at ∼300°C) deposition
of the Sb2Te3, TiTe2, and PCH films, the deposition rate of Sb2Te3
and TiTe2 sublayers was controlled to be ∼0.5–1.0 nm/min. A
∼5 nm thick Sb2Te3 seed layer was predeposited on the substrate
before PCH film deposition. The ordinary Sb2Te3, TiTe2, and SLL
films were deposited at room temperature without the seed layer,
and the deposition rate of Sb2Te3 and TiTe2 sublayers was
controlled to be ∼5 nm/min. The deposited Sb2Te3 and TiTe2
sublayers are ∼5 nm and ∼3 nm thick in PCH and SLL
architectures. Half of the as-deposited films were postannealed
at 300°C for 1 h. A ∼10 nm thick SiO2 capping layer was in situ
grown on top of each film inside the vacuum chamber to avoid
oxidation. The film compositions were confirmed by Axios X-ray
fluorescence spectrum (PANalytical B.V. Netherlands). The
surface morphology of the films was analyzed by field emission
scanning electron microscope (SEM) ZEISS SUPRA 55. The X-ray
diffraction (XRD)method was employed to characterize the crystal
structures of the films (∼100 nm in thickness) in the 2θ range of
5–60o, using Cu/Kα radiation with a scanning step of 0.02o.

Device Fabrication and Electrical
Characterization
Mushroom-type SLL- and PCH-based PCRAM devices with
tungsten bottom electrode contact of ∼190 nm in diameter
were fabricated using the 0.13 μm node complementary metal-
oxide semiconductor technology. The thickness of the SLL and
PCH films in the devices was controlled to be ∼70 nm. The
∼15 nm thick TiN and ∼300 nm thick Al films were used as top
electrode in all devices. The PCH film was deposited onto the
bottom electrode of the PCRAM device under ∼300°C, while SLL
film in the PCRAM device was deposited at room temperature.
The as-fabricated SLL-based device then was postannealed at
300°C for 1 h. All the electrical measurements on PCRAM devices
were performed by using the Keithley 2400C source meter
(measuring device/film resistance) and the Tektronix
AWG5002B/AWG5202 pulse generator (generating voltage
pulse with a minimum width of ∼6 ns).

Ab Initio Simulations
All the ab initio simulations were carried out with Vienna Ab
initio Simulations Package (VASP) (Kresse and Hafner, 1993).
The Perdew-Burke-Ernzerhof (PBE) functionals (Perdew et al.,
1996) and the projector augmented wave (PAW)
pseudopotentials (Blöchl, 1994) were used for VASP. The 233-
atom hexagonal supercells of SLL and PCH architectures were
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simulated with periodic boundary conditions by NVT density
functional theory- (DFT-) based molecular dynamics
(DFMD). The energy cutoff is 180 eV and the time step is 3
femtoseconds.

RESULTS AND DISCUSSION

Crystal Orientation and Morphology
Regarding the SLL films synthesized at room temperature, the
sublayers are usually amorphous or have poor crystallinity
(Chong et al., 2006; Lu et al., 2012; Chia Tan et al., 2013).
Similar situation was observed for the Sb2Te3/TiTe2 SLL
samples, as well as the pure Sb2Te3 and TiTe2 films grown on
SiO2 substrates (Supplementary Figure S1). We employed
strong postannealing actions (at 300°C for 1 h) on the as-
deposited samples to promote crystallization (Figure 1A).
Both the Sb2Te3 and TiTe2 films possess a hexagonal lattice
configuration with multiple different (random) crystal
orientations (Figure 1A), showing polycrystalline morphology
with quite small grain size (< ∼20 nm) (Figures 1B,C). One can
find many crystal ribbons and particles that may belong to the Ti-
rich titanium tellurides precipitate from the annealed TiTe2 film
(Figure 1C), which shall form rough interfaces between the
sublayers inside the SLL film. It is clear that the postannealed
Sb2Te3/TiTe2 SLL film inherits almost all the crystal orientations
from its subunits (Figure 1A), as well as an unsmoothed surface

where some crystal grains aggregated into small islands
(Figure 1D).

In stark contrast to the inferior crystalline qualities of the as-
deposited and postannealed SLL films, the diffraction intensity,
crystal orientation, and surface morphology of the samples
fabricated by using in situ heating (at ∼300°C) and slow
growth (∼0.5–1.0 nm/min) technique (see Materials and
Methods) are significantly optimized (Figure 2). A ∼5 nm
thick hexagonal Sb2Te3 seed layer was pregrown on the SiO2

substrate before the film deposition (Saito et al., 2016; Zhou et al.,
2016), acting as a crystallization template to assist epitaxial-like
crystal growth. All the in situ heating samples have much higher
diffraction intensities than those of the postannealed ones,
denoting the complete crystallinity for the formers
(Supplementary Figure S2). It is also worth noting that only
the strong (0 0 l) diffraction peaks appear for the in situ heating
Sb2Te3 sample (Figure 2A), whereas the most prominent
diffraction peaks of the postannealed Sb2Te3, i.e., (0 1 5) and
(1 0 10) in Figure 1A, become invisible. This identifies that the
degree of c-axis orientation of Sb2Te3 crystal is greatly improved
by the optimized growth technique. The in situ heating Sb2Te3
sample has quite larger hexagonal grains (>∼150–200 nm), with
the (0 0 l) plane parallel to the substrate surface (Figure 2B). The
in situ heating TiTe2 sample is also well oriented along c-axis
(Figure 2A), exhibiting a uniform surface morphology
(Figure 2C), without any big segregated crystals of non-(0 0 l)
orientations. On this basis, we then alternately deposited the

FIGURE 1 | (A) XRD curves of ∼100 nm thick Sb2Te3, TiTe2, and SLL films sandwiched between SiO2 layers (see the corresponding sketch). The films were all
deposited at room temperature and then postannealed at 300°C for 1 h, mainly showing the hexagonal (Hex) lattice configuration. For the sake of better observing the
weak diffraction peaks, the diffraction intensity is multiplied by 50 for all the curves. (B–D) SEM images of the postannealed Sb2Te3, TiTe2, and SLL films, respectively.
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FIGURE 2 | (A) XRD curves of ∼100 nm thick Sb2Te3, TiTe2, and PCH films sandwiched between SiO2 layers (see corresponding sketch). All the films were
deposited at 300°C on the pregrown seed layer (yellow thin layer in each sketch), exhibiting hexagonal (Hex) lattice configuration with strong c-axis (0 0 l) orientation. For
the sake of better observing the weak diffraction peaks, the diffraction intensity is multiplied by 2 for the Sb2Te3 curve and 50 for the TiTe2 and PCH curves. (B–D) SEM
images of the in situ heating deposited Sb2Te3, TiTe2, and PCH films, respectively.

FIGURE 3 | (A) DFMD simulations of the melting process of the PCH model. The PCH model is firstly heated up to 1,000 K rapidly within 30 ps. The Sb2Te3 and
TiTe2 sublayers are ordered. The Sb2Te3 sublayer is fully melted at 1,300 K after 30 ps, while the TiTe2 sublayer remains in the stable crystalline form. (B) DFMD
simulations of the melting process of the SLL model. The SLL model contains partially ordered Sb2Te3 and TiTe2 sublayers. After heating up to 1,000 K for 30 ps, the
Sb2Te3 sublayer becomes fully disordered and mixes with the TiTe2 sublayer. As the model is further heated at 1,300 K for 30 ps, the whole model becomes a fully
disordered liquid phase.
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Sb2Te3 and TiTe2 nanolayers to construct the PCH architecture.
Unsurprisingly, it also displays only the (0 0 l) diffraction peaks
corresponding to the ones of its subunits (Figure 2A). Compared
to the coarse granular surface of the SLL film, triangular crystals
with rather bigger size (> ∼100 nm) and pretty smooth texture
were formed in the PCH film with (0 0 l) facets parallel to the
substrate surface (Figure 2D).

Reliable Two-Dimensional Phase
Transitions
In the well-textured Sb2Te3/TiTe2 PCH, the TiTe2 blocks with
high chemical and thermal stabilities are capable of being the
robust confinement layers to restrict the phase transitions of the
Sb2Te3 blocks on 2D scale, as demonstrated by the DFMD
simulations (Figure 3A). The initial PCH model was heated
up to 1,000 K and maintained for 30 ps, where both Sb2Te3
and TiTe2 blocks can still keep crystalline form. As the
temperature further increases to 1,300 K, and after 30 ps, the
Sb2Te3 block is fully melted, while the TiTe2 block remains to be
ordered.

Regarding the as-deposited and postannealed SLL films of
poor crystallinity, there are most likely no clean and nonatomic
(van der Waals-like) gaps between their sublayers; therefore the
interlayer force cannot be weak enough. The closely bound
sublayers may be merged into a compound (bulky) phase

upon aggressive RESET operation or extensive programming,
making the 3D switching dominate eventually. Our DFMD
simulations also qualitatively illustrated such a phenomenon
(Figure 3B), where initially the Sb2Te3 and TiTe2 sublayers
are chosen to be partially crystallized (or quite disordered) as
according to the crystallographic results shown in Figure 1 and
Supplementary Figure S2. The SLL model experienced exactly
the same heating process as the PCH model. The sublayers in the
SLL model are totally disordered after heating at 1,000 K for
30 ps, and the subsequent heating at 1,300 K for another 30 ps
finally melts them down into a mixed liquid.

Extended Cycling Endurance and
Suppressed Programming Noise
We fabricated the mushroom-type SLL- and PCH-based PCRAM
devices with the same geometry (see Materials and Methods
section) to draw comparison of their electrical performances.
The PCH-based device has lower SET and RESET voltages as
compared to those of the SLL-based device (Supplementary
Figures S3, S4), correlating to the reduced programming
energy. As for the unconstrained 3D phase transitions, PCMs
are subjected to nonisothermal and nonequilibrium shocks,
giving rise to composition variation upon extensive
programming caused by long-range element diffusions along
the electrical current direction (Padilla et al., 2010; Xie et al.,

FIGURE 4 | (A) Approximately ∼107 cycling endurance of the SLL-based PCRAM device that finally failed due to SET stuck: SET (under 2.1 V) and RESET (under
3.2 V) with 20 ns width voltage pulses. (B) Approximately ∼108 cycles of the PCH device without failure under 10 ns width SET (1.6 V) and RESET (2.4 V) operations
voltage pulses. (C) Comparison of the RESET resistance fluctuations between the SLL- and PCH-based device, with the RSD being 6.3 and 0.9%, respectively. (D)
Comparison of the SET resistance fluctuations between the SLL- and PCH-based device, with the RSD being 2.2 and 0.7%, respectively.

Frontiers in Nanotechnology | www.frontiersin.org March 2021 | Volume 3 | Article 6495605

Ding et al. High-Quality Phase-Change Heterostructure

36

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


2018). Eventually, the device fails due to severe phase segregation
and big void formation near the bottom electrode. The SLL-based
device underwent repeated 3D phase transitions up to ∼107 cycles
until SET sticking failure took place (Figure 4A). We note similar
SLL-based device also presented an approximate endurance
(Shen et al., 2019), but showing considerably larger resistance
fluctuations in both RESET and SET states than those of the SLL-
based device studied in this work. The relative standard
deviations (RSDs) of RESET and SET states of the SLL-based
device are 6.3% (Figure 4C) and 2.2% (Figure 4D), respectively.

The reliable 2D phase transitions of the PCH architecture
inhibit the large-scale atomic diffusion along the electrical pulse
direction, which effectively prolongs the endurance of the PCH-
based device to ∼108 cycles without reaching failure (Figure 4B).
Note that the fast speed (∼10 ns) and long-life features of the
PCH-based device offer a feasible route to develop DRAM-like
phase-change working memory technology. Most importantly,
the PCH-based device has pretty low resistance fluctuation in
both RESET and SET states, with the RSDs being 0.9%
(Figure 4C) and 0.7% (Figure 4D), respectively. The ultralow
programming noise of the PCH-based device should also be
ascribed to the reliable 2D switching manner of the confined
Sb2Te3 sublayers, because the randomness of phase transitions
(the stochastic crystallization in particular) (Rao et al., 2017) is
markedly reduced, leading to more consistent resistance contrast
and hence better-defined logic states.

CONCLUSION

In summary, we have demonstrated that, through fine-tuning the
deposition techniques, the multilayer Sb2Te3/TiTe2 stackings can
be made into c-axis oriented heterostructure, which shall exhibit
weakly coupled interactions among the Sb2Te3 and TiTe2
building blocks. In contrast to the SLL structure that can only
execute 3D phase transitions, the PCH architecture is able to
perform reliable 2D switching of the confined Sb2Te3 sublayers.
The long-range element migration during 3D phase transitions
induces device failure after extensive cycling, which can be greatly
inhibited in the 2D switching manner, leading to the remarkably
extended cycling endurance of the PCH-based device as

compared to the SLL-based one. This shall be conducive to
the development of nonvolatile and long-life working memory
to better renovate the classic von Neumann computing system.
And above all, the PCH-based device presents rather smaller
resistance fluctuations upon repeated programming than that of
the SLL-based device. This low-noise feature is of necessity for the
accomplishments of high-accuracy neuromorphic
computing tasks.
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We demonstrate a newmemristive device (IL-Memristor), in which an ionic liquid (IL) serve

as a material to control the volatility of the resistance. ILs are ultra-low vapor pressure

liquids consisting of cations and anions at room temperature, and their introduction

into solid-state processes can provide new avenues in electronic device fabrication.

Because the device resistance change in IL-Memristor is governed by a Cu filament

formation/rupture in IL, we considered that the Cu filament stability affects the data

retention characteristics. Therefore, we controlled the data retention time by clarifying the

corrosion mechanism and performing the IL material design based on the results. It was

found out that the corrosion of Cu filaments in the IL was ruled by the comproportionation

reaction, and that the data retention characteristics of the devices varied depending on

the valence of Cu ions added to the IL. Actually, IL-Memristors involving Cu(II) and Cu(I)

show volatile and non-volatile nature with respect to the programmed resistance value,

respectively. Our results showed that data volatility can be controlled through the metal

ion species added to the IL. The present work indicates that IL-memristor is suitable for

unique applications such as artificial neuron with tunable fading characteristics that is

applicable to phenomena with a wide range of timescale.

Keywords: conductive bridge RAM, data retention characteristics, AI devices, fading memory, ionic liquids,

reservoir devices

INTRODUCTION

Memristors, which were proposed as the fourth fundamental elements of electric circuitry in 1971
(Chua, 1971), have been extensively investigated in memory and neuromorphic devices since the
reports of the TiO2 memristor in 2008 (Strukov et al., 2008; Yang et al., 2008). A memristor
is a two-terminal passive device whose resistance changes with the amount of charge passing
through it and is expected to advance electronics and electrochemical research (Sun B. et al.,
2019). As the mechanism of resistance change in the memristor, not only the movement of oxygen
vacancies (Sawa, 2008; Akinaga and Shima, 2010) but also the electrochemical metallization has
been proposed (Gan et al., 2019). Here we propose an IL-Memristor in which ionic liquids (ILs)
are introduced in a solid device as a new memristive material. ILs are ultra-low vapor pressure
liquids comprised cations and anions at room temperature (Wasserscheid and Welton, 2002;
Hallett and Welton, 2011) and can be used as chemical reaction field because of their wide
potential window (Arimoto et al., 2008), making them suitable candidates for electronic devices
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(Harada et al., 2015a,b, 2016; Saito and Iwasa, 2015; Kinoshita
et al., 2017; Yamaoka et al., 2017). Because ILs are stable in
vacuum, they can be incorporated into existing microfabrication
processes. The stability of the metal in the IL impacts the
data retention characteristics in electrochemical metallization
type memristors. Expanding the range of device applications
is possible by controlling the metal filament stability in IL-
Memristor. The stable metal filament have been applied to a
non-volatile memory, such as conducting-bridge RAM, which
are expected to become next-generation memory devices because
of their simple structure and low power consumption (Waser
et al., 2009, 2016; Valov et al., 2011). Besides, the stable
filament has been used to demonstrate electronics synapse
devices, in which a long-term potentiation (LTP) and long-term
depression (LTD) as well as spike-timing-dependent plasticity
(STDP) in the biological synapse are successfully emulated
(Jeong et al., 2016; Shi et al., 2018). Recently, the unstable
filament also attracts considerable attention because the resultant
temporal resistance change is applicable to the emerging devices
for the human brain inspired computing (Hasegawa et al.,
2011; Deng et al., 2015; Ascoli et al., 2016; Zhang et al.,
2018; Midya et al., 2019; Wang et al., 2019; Zhu et al.,
2020).

FIGURE 1 | (A) The SEM image of IL-Memristor and (B) the cross-sectional view of IL-Memristor for lines A-B in (A). Photographs of (C) the W needle used to deliver

IL microdroplet and (D) IL microdroplet on the IE and pore pattern. A metal mask for Cu AE pattering is also shown in (C,D). IL is filled in a pore structure

microfabricated in the 30 nm thick SiO2 layer between Cu and Pt electrodes. In IL-Memristor, IL is used as a location for the Cu ion transport.

As an influencing factor on the Cu filament stability, we
focused on the comproportionation reaction of Cu in IL reported
by Murase et al. (2001). We directly detected the formation of
Cu(I) from Cu(II) in IL dropped on a thin Cu film using X-ray
photoelectron spectroscopy (XPS) by taking advantage of ultra-
low vapor pressure of ILs in the vacuum. We used this reaction
to control the data retention characteristics of the IL-Memristor.
As expected from the XPS measurement results, the data
retention time was more than 10 times longer in Cu(I)-doped
IL-Memristor than that in Cu(II)-doped IL-Memristor although
reproducible resistance change was observed in both devices.
These results indicate that IL-Memristor with controllable data
volatility can be produced through changing metal ion species
in ILs.

MATERIALS AND METHODS

Device Fabrication
Figure 1A shows the SEM image of IL-Memristor. Figure 1B
shows the cross-sectional view of IL-Memristor for lines A-B in
Figure 1A. A Ta (1 nm)/Pt (20 nm)/Ta (1 nm) film was deposited
on a SiO2 substrate by sputtering, followed by chemical vapor
deposition of SiO2 (30 nm). Here, the Ta layer acts as the adhesion

Frontiers in Nanotechnology | www.frontiersin.org 2 March 2021 | Volume 3 | Article 66056340

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


Sato et al. Memristors With Controllable Data Volatility

layer between the SiO2 and Pt layers, and the Pt layer acts as
the inert electrode (IE). A pore structure with an area of 1 ×

1 µm, which determined the device size, was microfabricated
in the SiO2 layer by conventional photolithography and dry
etching. As shown in Figures 1C,D, we used a W needle
attached to a precision positioner to supply the IL microdroplet
on the microfabricated IE and pore structure. The Cu active
electrode (AE) patterns were prepared with the mask-through
sputtering process using a metal mask. The thickness of Cu
AE is 50 nm. The stacking structure of the present device is
represented as Cu (50 nm)/IL (30 nm)/Pt (20 nm). We confirmed
that the pore was successfully filled with IL from the results of
the electrical measurement, which is explained in more detail
in the Supplementary Material. 1-Butyl-3-methylimidazolium
bis(trifluoromethyl sulfonyl)amide ([bmim][Tf2N]) was used as
the IL (Harada et al., 2015a). Cu(I) was introduced into this
IL by electrolysis (Abedin et al., 2007; Qiu et al., 2010). The
introduction of Cu(II) was conducted by dissolving Cu(Tf2N)2
metal salts. Hereafter, Cu(I)-doped IL and Cu(II)-doped IL are
denoted as Cu(I)-IL and Cu(II)-IL, respectively. In addition to
that, the device using Cu(I)-IL and Cu(II)-IL are represented as
Cu(I)-IL-Memristor and Cu(II)-IL-Memristor, respectively.

Experimental Procedure
Optical microscopy of the Cu pattern in the IL was performed
in the atmosphere at room temperature. In XPS measurements,
ULVAC-PHI Quantera II applying a monochromatic Al Kα

X-ray source (1486.6 eV) was used. The photoelectron take-
off angle in XPS was 45◦. Cu patterns deposited on SiO2

substrates were introduced into the IL and observed by an optical
microscope. After 1 h, the IL was sequentially washed away by
acetone and ethanol, and the Cu pattern height was measured
using a surface profiler. We measured current–voltage (I–V),
data retention, and fading characteristics using a semiconductor
parameter analyzer (Agilent B1500A). For the data retention
characteristics, the reading voltage (−20mV) was continuously
applied during the measurement, and the current readings were
taken at regular intervals.

RESULTS AND DISCUSSION

Optical Microscopy and XPS of the Cu
Pattern in the IL
Shown in Figure 2A is the schematic illustration for the sample
configuration to observe the Cu pattern dissolution process in
IL. In this experiment, an IL droplet was dropped on the Cu
patterns by using a micropipette. The corresponding photograph
of the IL droplet and Cu patterns are depicted in Figure 2B.
Figures 2C–E show the optical microscope images of the Cu
pattern on SiO2 immediately after, 15min after, and 60min
after Cu(I)-IL dropping, respectively. Figures 2F–H show the
optical microscope images of the Cu pattern on SiO2 collected
immediately after, 15min after, and 60min after Cu(II)-IL
dropping, respectively. No change was observed in the shape of
the Cu pattern in the case of Cu(I)-IL, whereas the Cu pattern
was dissolved from the outside after 15min in the case of Cu(II)-
IL. Finally, the Cu pattern in Cu(II)-IL disappeared after 60min.

Although such electronics materials dissolution was an undesired
negative phenomenon in terms of the device reliability and long-
term use in the conventional electronics, its active utilization
is proposed in the emerging field called transient electronics
(Cheng and Vepachedu, 2016; Fu et al., 2016). The dissolution
of Cu was also confirmed from the variation in the Cu pattern
height measured by the surface profiler. Figures 3A,B show the
surface profiler measurement results for the Cu pattern in Cu(I)-
and Cu(II)-IL, respectively. The red and blue horizontal lines in
Figures 2E,H correspond to the scanned location by the surface
profiler shown in Figures 3A,B, respectively. When Cu(I)-IL was
supplied, the Cu height pattern was almost the same as that of
the as-prepared state, even after 60min. This result indicates
that the Cu pattern was not corroded in Cu(I)-IL. Moreover,
when Cu(II)-IL was supplied, the Cu pattern height decreased
over time and became <10 nm after 60min, indicating that the
Cu pattern was dissolved in Cu(II)-IL. As reported by Murase
et al. (2001), Cu dissolution in Cu(II)-IL occurs because of
the comproportionation reaction. To confirm this reaction, the
chemical states of Cu in Cu(II)-IL on the Cu thin film were
analyzed via XPS.

Because the ionization of the Cu metal [Cu(0)] is the possible
origin for Cu dissolution, we conducted XPS measurement
on IL/Cu (Figure 4A) and IL/SiO2 (Figure 4B) to identify the
change in Cu valence state during the dissolution. The former was
prepared by dropping IL onto the Cu-sputtered SiO2/Si substrate.
The thickness of the Cu thin film was 50 nm. The latter was
prepared as the control in which IL was dropped directly on the
SiO2/Si substrate. The area of the IL droplet in each case was
∼5mm in diameter, which is much larger than the detection area
of the XPS measurement (100 µm in diameter). In addition, the
IL droplet on the substrate is thick enough to be visible for the
human eye (roughly several 100 µm) and it is much thicker than
the detection depth of the present XPS measurement (<10 nm).
Therefore, from the viewpoint of the size and thickness of the IL
droplet, the Cu signal comes only from IL. In the present study,
XPS measurements were started 1 h after dropping IL to ensure
adequate time for Cu dissolution.

Figure 5A shows the Cu 2p3/2 spectra for IL/Cu and IL/SiO2.
Because Cu(Tf2N)2 dissolved in [bmim][Tf2N], the XPS signal of
Cu species was detected even in IL/SiO2. The signal intensity of
the Cu 2p3/2 spectrum for IL/Cu is much larger than that for
IL/SiO2, which can be attributed to the increase in Cu content
in IL as a result of the Cu dissolution. The chemical bonding state
of Cu in IL/Cu can be estimated from the main peak position
of the Cu 2p3/2 spectrum. The peak positions of the Cu 2p3/2
spectra in both IL/Cu and IL/SiO2 are close to those in Cu(NO3)2
(935.51 eV) and CuSO4 (936.00 eV) (Moretti and Beck, 2019).
According to the previous reports, electrons delocalize within the
S–N–S structure in Tf2N anion (Forsyth et al., 2002; Hapiot and
Lagrost, 2008; Smith et al., 2018). Additionally, because oxygen
is more electronegative than nitrogen and sulfur, it is expected
that the electrons of Cu in the IL are shared by S, N, and O in
Tf2N anion. Thus, the larger intensity of the Cu 2p3/2 spectrum
for IL/Cu proves that the number of Cu cations interacting with
Tf2N anions increased during the Cu dissolution in the IL. As
shown in Figures 5B,C, the waveform analysis for the Cu 2p3/2
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FIGURE 2 | (A) Schematic illustration and (B) photograph of Cu patterns immersed in the IL droplet. Magnified image of Cu thin film patterns (C,F) immediately after,

(D,G) 15min after, (E,H) 60min after they were introduced into Cu(I)-IL and Cu(II)-IL, respectively. The thickness of Cu pattern is 50 nm. When Cu pattern is in Cu(I)-IL,

the appearance of Cu pattern exhibited almost no change with time. On the other hands, Cu pattern gradually disappeared in Cu(II)-IL. The red and blue horizontal

lines in (E,H) correspond to the scan position for the surface profiles in Figures 3A,B.
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FIGURE 3 | The surface profiler results for (A) Cu(I)-IL and (B) Cu(II)-IL dropped onto the Cu pattern. The red curve in (A) is the surface profile measured along the red

horizontal line in Figure 2E. The blue curve in (B) correspond to the surface profile along the blue horizontal line in Figure 2H. The black lines are the surface profiles

before the Cu patterns are immersed in the IL. Note that the spiky peak shape at the edge of the Cu pattern plotted by the black line in (A) marked with an asterisk (*)

is thought to be a side-wall fence structure formed during the mask-through sputtering process. The profiles for the Cu patterns dipped in IL were measured after

removing IL by acetone and ethanol.

FIGURE 4 | Schematic illustrations of (A) IL/Cu and (B) IL/SiO2 used for XPS measurements. The size of the substrate and IL drop (roughly 5mm in diameter) is much

larger than the detection area of the XPS instrument (100µm in diameter).

XPS spectra was conducted in order to investigate the Cu valence
state in the IL in more detail. Here, the main peak was labeled as
Peak 1, and the satellite structure was split into two peaks labeled
as Peak 2 and Peak 3. The peak position for Peak 1 in IL/Cu was
935.75 eV, whereas that in IL/SiO2 was 936 eV. The lower binding
energy value for Peak 1 in IL/Cu implied that not only Cu(II) but
also Cu(I) was present in the IL on the Cu thin film. Although the
constituent metal element is identical in the ionic material, the
core-level binding energy becomes higher when the valence of the
metal element (cation) increases because an increasing number
of valence electrons is attracted by the neighboring anions. For
instance, in the case of the Cu–O binary system (Cu2O and CuO),
the main peak position shifts to a higher binding energy when

the valence of Cu is increased from Cu(I) in Cu2O to Cu(II) in
CuO (Moretti and Beck, 2019). By contrast, Peak 1 shifted to
a lower binding energy in IL/Cu compared to that in IL/SiO2,
which can be related to the valence state decrease in Cu [i.e., the
formation of Cu(I)]. Regarding the satellite structure in the Cu
2p3/2 spectra, a strong satellite structure was observed in both
samples, indicating that Cu(II) was involved in the IL. This is
reasonable because Cu(Tf2N)2 dissolved in [bmim][Tf2N] has
the divalent ions of Cu(II). However, the characteristics of the
satellite structure of IL/Cu differ from that of IL/SiO2. In the case
of IL/SiO2, the area ratio of Peak 3 to Peak 2, i.e., Peak 3/Peak 2,
was∼0.97, whereas the value of Peak 3/Peak 2 in IL/Cu was∼1.1.
The larger Peak 3/Peak 2 value in IL/Cu than that in IL/SiO2 is
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FIGURE 5 | (A) Cu 2p3/2 spectra for IL/Cu and IL/SiO2 and the waveform analysis results for the Cu 2p3/2 spectrum in (B) IL/Cu and (C) IL/SiO2. In (A), the peak

positions for some typical Cu compounds as well as Cu(II) satellite peaks are represented by the solid black bars. In (B,C), red, green, and orange curves are the fitting

results for the peak separation. Black curves are the summation of those curves.

due to the Cu(I) formation, which may be accompanied by the
weak satellite structure in Cu 2p3/2 spectrum, as observed for
Cu(I) in Cu2O (Barreca et al., 2007; Wang et al., 2007).

Considering the above Cu 2p3/2 XPS spectra measurement
results, the possible chemical reaction for Cu dissolution is

Cu(Tf2N)2 + Cu → 2Cu(Tf2N). (1)

From the viewpoint of the Cu valence state, Cu dissolution is
induced by the following comproportionation reaction:

Cu(II)+ Cu → 2Cu(I). (2)

Two other signs of Cu(I) formation in IL/Cu were obtained.
One was the Cu LMM Auger electron spectrum (Figure 6). The
intensity of the Cu LMM Auger electron spectrum in IL/Cu is
much larger than that in IL/SiO2. A similar change in the Cu
LMM Auger spectrum was observed when Cu(I) was introduced
in the [MAP][Tf2N] by the electrolysis of Cu (Qiu et al., 2010).

Another was the shape of the N 1s XPS spectra in IL/Cu
(Figure 7A) and IL/SiO2 (Figure 7B). The N 1s XPS spectrum
can be separated into two peaks (Peaks 4 and 6 in Figure 7A) for
IL/Cu, whereas it can be separated into three peaks (Peaks 4–6
in Figure 7B) for IL/SiO2. Peaks 4, 5, and 6 correspond to N in
bmim cation, N in Tf2N anion having the interaction with metal
cations, and N in free Tf2N anion (Caporali et al., 2016). Peak 5 in
IL/Cu disappeared in Ag(I) containing [bmim][Tf2N], whereas it
was observed in [bmim][Tf2N] with divalent metal cations, such
as Cu(II), Ni(II), and Zn(II) (Caporali et al., 2016). As observed
in the Cu 2p3/2 spectra, the binding energy between Cu cation
and Tf2N anion was weakened because of the formation of Cu(I),
whichmay have caused the disappearance of Peak 5 in Figure 7A.
Such feature in N 1s XPS spectrum, i.e., the disappearance of Peak
5, was also observed in Cu(I)-IL prepared by the electrolysis (see
Supplementary Material). Regarding Cu(I) in the present IL,
there is a possibility that Cu(I) partly forms the carbene complex
with imidazolium cation according to the previous studies on
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the N-heterocyclic carbenes coordinated to metals (Hapiot and
Lagrost, 2008; Hopkinson et al., 2014).

Memory Operation
The operating mechanism of the IL-Memristor is as follows:
when a voltage is applied to the AE, metal ions dissolve in
the IL and deposit on the IE to form filaments, resulting
in a low resistance state (LRS). Afterward, by applying a
negative voltage to the AE in LRS, filaments are ruptured,
resulting in a high resistance state (HRS). The switching from
HRS to LRS is called SET, whereas that from LRS to HRS
is called RESET. Figure 8A shows the I–V characteristics of

FIGURE 6 | Cu LMM Auger electron spectra for IL/Cu (red) and IL/SiO2 (blue).

The peak positions for some typical Cu compounds are depicted by black

bars.

the Cu(I)-IL-Memristor and Cu(II)-IL-Memristor, which were
plotted using the median values calculated from 500 cycles.
It should be noted that the number of DC sweep cycle in
the present study for evaluating the statistical distribution
in the operating voltages is comparable to or larger than
those in the previous reports (Yan et al., 2017, 2019a). As
indicated by the blue and red arrows in Figure 8A, the
voltage values when the filament formation/rupture occurs are
represented as VSET/VRESET, respectively. Figure 8B shows the
cumulative probabilities of the operating voltage (VSET and
VRESET) for the Cu(I)-IL-Memristor and Cu(II)-IL-Memristor.
In Figures 8A,B, the blue circles show the Cu(II)-IL-Memristor,
and the red triangles show the Cu(I)-IL-Memristor. The VSET

of the Cu(I)-IL-Memristor was lower than that of the Cu(II)-
IL-Memristor. The comproportionation reaction affects each
memristor differently: in the Cu(I)-IL-Memristor, Cu easily
deposits on the IE, whereas in the Cu(II)-IL-Memristor, Cu easily
dissolves from the AE. The reduction reaction (Cu deposition)
on the IE is more dominant in affecting the SET process than
the oxidation reaction (Cu dissolution) on the AE because the
VSET was lower in the Cu(I)-IL-Memristor than in the Cu(II)-
IL-Memristor. This result was consistent with previous reports
suggesting that the Helmholtz layer formed on the IE surface
and the proton-accepting ability of ILs affect the SET process
(Harada et al., 2016; Yamaoka et al., 2017). Additionally, the
distribution of VRESET is insusceptible to the Cu valence state
in the IL. Assuming that the operating mechanism for the
RESET process is mainly based on Joule heating (Tsuruoka
et al., 2010; Sun et al., 2014), Cu valence insusceptibility of
VRESET may be because it masks the impact of corrosion by the
comproportionation reaction. From Figure 8B, it is necessary
to point out that the Cu(I)-IL-Memristors still have statistical
variabilities in the values of VRESET and VSET. It is considered
that such variabilities strongly affect the device reliabilities such

FIGURE 7 | Waveform analysis for N 1s XPS spectrum in (A) IL/Cu and (B) IL/SiO2. Red, green, and orange curves are the fitting results for peak separation and

black curves are the summation of those curves. For IL/Cu in (A), the peak intensity for Peak 5 was zero.
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FIGURE 8 | (A) I–V characteristics and (B) cumulative probabilities of Cu(I)-IL-Memristor and Cu(II)-IL-Memristor. Red and blue plots, respectively corresponds to the

data obtained from Cu(I)-IL-Memristor and Cu(II)-IL-Memristor. VSET was defined as the voltage value just before the measured current reaches the current compliance

value (Icomp). VRESET was defined as the voltage at which the current value in the RESET process is maximized. The red and blue vertical dotted lines in (A) indicated

the VRESET and VSET values for the case of Cu(II)-IL-Memristor shown as an example. Under the negative voltage, only the voltage scan from the origin to the negative

direction was conducted in order to avoid the excessive voltage stress (For more detail, see Supplementary Material).

as cycle endurance characteristics because it results in the
resistance switching failure during the cycle endurance test.
Therefore, the suppression of the operating voltage variabilities
through the development of materials, device structures, and
fabrication processes for IL-Memristor is required. In terms of
the device-to-device reproducibility, there is some device-to-
device difference in the SET voltage distribution in Figure 8B

(see Supplementary Material). However, the impact of the Cu
valence on VSET is qualitatively assured. One of the possible
reasons for the device-to-device difference is that the volume
of the IL microdroplet involved in each IL-Memristor is
uncontrollable at present because it is transferred manually by
using a W needle. The improvement of the device fabrication
process such as adopting the ink-jet technology is required to
confirm the device-to-device reproducibility.

Data Retention Characteristics
Figure 9 depicts the data retention characteristics of IL-
Memristors. Data retention characteristics generally depend on
the current level. To confirm the data retention characteristics
at various current values, Icomp was set at 10, 20, and 200 µA.
The Cu(II)-IL-Memristor showed a short data retention time
(<103 s), whereas the Cu(I)-IL-Memristor showed a relatively
long data retention time (more than 104 s). This indicates
that the Cu filament was corroded by the comproportionation
reaction in Cu(II)-IL, as expected from optical microscopy and
XPS results of the Cu pattern in IL. Importantly, the volatility
and non-volatility of the data retention characteristics in IL-
Memristor can be controlled by changingmetal ion species added
to the IL. We found that the Cu(I)-IL-Memristor was more
suitable for non-volatile memory applications compared with the
Cu(II)-IL-Memristor. As shown in Figure 9, the resistance value

FIGURE 9 | Data retention characteristics of Cu(I)-IL-Memristor (red) and

Cu(II)-IL-Memristor (blue). For both devices, Icomp was set at 10, 20, and

200µA. The Cu(II)-IL-Memristor showed a short data retention time (<103 s),

whereas the Cu(I)-IL-Memristor showed a relatively long data retention time

(more than 104 s).

of LRS in Cu(I)-IL-Memristor can be increased by decreasing
Icomp. Therefore, both the low current operation and good
data retention are compatibly realized in Cu(I)-IL-Memristor.
Although the minimum value of Icomp in the present study is
10µA at present, the value of Icomp can be further decreased
by decreasing the device area because the device resistance in
HRS inversely scales with the device area. This is also favorable
because the device size miniaturization is expected to promote
the energy-conserving device operation.
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FIGURE 10 | (A) Measurement method for fading characteristics and the results of the fading characteristics of (B) the Cu(II)-IL-Memristor and (C) Cu(I)-IL-Memristor.

In (A), hSET and wSET denote the pulse voltage height and width for the SET pulse, while hREAD is the pulse voltage height for the read pulse. The values for hSET, wSET,

and hREAD used in the present study are specified in (B,C). The faster fading of the current value was observed in Cu(II)-IL-Memristor compared to Cu(I)-IL-Memristor.

Fading Characteristics
As shown in Figure 9, the Cu(II)-IL-Memristor demonstrated
data volatility. Recently, such volatile memristors attract
considerable attention because of the applicability to the human
brain inspired computing. Various materials including solid
oxide and sulfides exhibiting voltage resistance change are
intensively investigated in order to realize artificial synaptic
devices which mimic the information processing function of
biological synapse (Hasegawa et al., 2012; Wang et al., 2016;
Sun J. et al., 2019; Yan et al., 2019b). In addition, the memristors
exhibiting such time-dependent resistance change are developed
as the physical reservoir device for the reservoir computing (RC),
in which the fading memory function is one of the essential
requirements for the device (Tanaka et al., 2019). It has been
pointed out that the timescale of the resistance change influences
the time period between input signals to the reservoir and the
information processing time (Midya et al., 2019). Figure 10A
schematically illustrates the measurement method for the fading
characteristics of the Cu(II)-IL-Memristor. At first, a SET pulse
having a pulse height/width of hSET/wSET was applied to the
IL-Memristor in HRS to slightly decrease the device resistance.
Immediately after the application of the SET pulse, a read

pulse with a height of hREAD was applied, and the current
was monitored at regular intervals. For Cu(II)-IL-Memristor,
hSET/wSET was+0.6 V/1ms, while hREAD was−100mV. Because
the pulse voltage was used in this experiment, the SET process
was incomplete although the pulse voltage height was larger than
the median value of VSET in Figure 8, which was evaluated by
DC voltage sweep. Figure 10B shows the results of the fading
characteristics of the Cu(II)-IL-Memristor, indicating a gradual
current decrease. For comparison, fading characteristics of the
Cu(I)-IL-Memristor was also evaluated (Figure 10C). For Cu(I)-
IL-Memristor, hSET/wSET was +1.5 V/10 µs, while hREAD was
−100 mV. During the reading process, about 45% increase of
the resistance (from 15.6 to 22.8 k� was observed for 100ms
in Cu(II)-IL-Memristor. On the other hands, about 19% increase
of the resistance (from 13.6 to 16.3 k� was observed for 800ms
in Cu(I)-IL-Memristor. The faster resistance change in Cu(II)-
IL-Memristor suggests that the incomplete filament formation
and subsequent dissolution by the comproportionation reaction
in Cu(II)-IL lead to the time-dependent resistance change with
a timescale of 100ms. The timescale observed in Cu(II)-IL-
Memristor is almost comparable to that observed in a solid
diffusive memristor for RC (Midya et al., 2019). Therefore,
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the present results indicate that the Cu(II)-IL-Memristor is
suitable for AI applications such as RC because of their fading
memory characteristics. Moreover, the present results also imply
that controlling the time-dependent resistance change timescale
depending on the task executed in the reservoir is expected by
selecting the appropriate IL in IL-Memristor.

CONCLUSION

Cu corrosion in ILs was investigated by XPS. Based on this
corrosion mechanism, we fabricated two types of devices, Cu(I)-
IL-Memristor and Cu(II)-IL-Memristor, and evaluated their data
retention characteristics. The Cu(II)-IL-Memristor showed data
volatility because the comproportionation reaction promoted
the corrosion of Cu filaments, whereas the Cu(I)-IL-Memristor
was non-volatile. Our results show that data volatility and
non-volatility can be easily controlled by changing metal ion
species added to the IL. Additionally, the fading characteristics
of the Cu(II)-IL-Memristor, where the current value gradually
decreased over 100ms, were confirmed. The Cu dissolution in
IL and relevant time-dependent resistance change observed in
IL-Memristor imply the adaptability of ILs and IL-Memristor to
the emerging electronic and information processing technologies
such as transient electronics and reservoir computing.
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Memristor devices have been extensively studied as one of the most promising

technologies for next-generation non-volatile memory. However, for the memristor

devices to have a real technological impact, they must be densely packed in a large

crossbar array (CBA) exceeding Gigabytes in size. Devising a selector device that is

CMOS compatible, 3D stackable, and has a high non-linearity (NL) and great endurance

is a crucial enabling ingredient to reach this goal. Tunneling based selectors are very

promising in these aspects, but the mediocre NL value limits their applications in large

passive crossbar arrays. In this work, we demonstrated a trilayer tunneling selector based

on the Ge/Pt/TaN1+x/Ta2O5/TaN1+x/Pd layers that could achieve a NL of 3× 105, which

is the highest NL achieved using a tunnel selector so far. The record-high tunneling NL is

partially attributed to the bottom electrode’s ultra-smoothness (BE) induced by a Ge/Pt

layer. We further demonstrated the feasibility of 1S1R (1-selector 1-resistor) integration

by vertically integrating a Pd/Ta2O5/Ru based memristor on top of the proposed selector.

Keywords: selectors, high non-linearity, vertically integrated 1S1R, crossbar arrays, memristor

INTRODUCTION

Originally CBA was proposed and adapted for telecommunication switching systems at the
beginning of the twentieth century (Craft, 1925). A relay switch was placed at each crosspoint
to automatically and efficiently route any permutation of its n input (e.g., rows) to its m output
lines (e.g., column; Scudder and Reynolds, 1939). Given the CBA architecture’s simplicity and
extremely high-density capability, it has recently been adapted for memory applications (Kuekes
et al., 2000; Kuekes and Williams, 2001; Chen et al., 2003). A memristor (also called ReRAM,
resistive random access memory, when used for memory) has a simple two-terminal structure,
which is highly desirable for CBA implementation (Xia and Yang, 2019). CBA makes it possible
to achieve a device footprint of 4F2. An even higher memory density (4F2/n; n: number of the
stacked-layer) is achievable by 3D stacking the memristor devices (Lin et al., 2020). In light of
these advantages, memristor-based CBA has emerged as one of the most promising technologies
for high-density storage (Baek et al., 2005; Lee et al., 2009; Liu et al., 2014; Sills et al., 2014; Hudec
et al., 2016) as well as memory-centric computing (Mouttet, 2008; Upadhyay et al., 2016, 2019; Rao
et al., 2019; Lin et al., 2020; Wang et al., 2020). Memristor based CBAs can be used for solving
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linear regression, logistic regression, linear equations, matrix
eigenvectors, differential equations, neural networks, etc. in one
computing cycle in principle, in-situ within the CBA by using
physical law such as Ohm’s law for multiplication and Kirchhoff’s
law for summation (Rao et al., 2019; Sun et al., 2019, 2020; Wang
et al., 2020). CBAs enable a time-saving and energy-efficient
approach to solving a wide range of practical problems in the era
of big data nowadays.

On the other hand, a CBA suffers from the so-called sneak
path current issue (Yang et al., 2013; Xia and Yang, 2019). Sneak
path current could be suppressed if we can somehow make the
current-voltage relation of the “ON” state of memristor non-
linear (Joshua Yang et al., 2012). This could be achieved in
two ways: (1) By engineering intrinsic NL into the memristor
device (Xie et al., 2006; Choi et al., 2011; Joshua Yang et al.,
2012), or (2) Introducing a non-linear device, so-called selector,
in series with the memristor (Upadhyay et al., 2020) at each
crosspoint. In the first approach combining the non-linear
mechanism and switching characteristics in one structure makes
it difficult to optimize both thememory and selector performance
simultaneously and independently. So far, the maximum non-
linearity demonstrated by such devices falls well short of the
required NL for large array implementations. Connecting a
selector in series with a memristor (the 2nd approach) gives
freedom of optimizing memristor and selector independently. A
transistor can also be used as a select element in the so-called
1T1R (1-transistor 1-ReRAM) array (Rao et al., 2019;Wang et al.,
2020). However, the 3-terminal structure and large footprint
of transistors are not ideal for CBAs. The high processing
temperature of the transistors makes it almost impossible to be
used in 3D stacked memories. So the best approach to solve
the sneak path problem is to use two-terminal thin-film-based
selector devices that can be scaled laterally and stacked vertically
together with a memristor (Chen, 2015; Burr et al., 2016).

In Supplementary Figure 1, we presented a table (extension
of the table from Xia and Yang, 2019) comparing the figure of
merits of all types of selector devices proposed in the literature.
The tunneling selector stands out as the most promising
one because of the following reasons: (1) electroforming-free
operation; (2) low cycle to cycle variation; (3) high endurance
(theoretically infinite); (4) in-principle low-temperature
dependence; and (5) high-speed operation. In one of our recent
work, we have demonstrated that such a tunneling selector
even withstands the memristor’s electroforming operation in a
vertically integrated 1S1R cell (Upadhyay et al., 2020). This paper
proposes a trilayer tunneling selector with a stack structure of
Ge/Pt/TaN1+x/Ta2O5/TaN1+x/Pd. Here TaN1+x/Ta2O5/TaN1+x

layers form the trilayer tunneling barrier structure. Ge/Pt and Pt
layers are BE and top electrode (TE), respectively. We engineer
the Ge/Pt BE to provide an ultrasmooth surface on which a
trilayer stack could be deposited. The root-mean-square (rms)
roughness and peak-to-valley height distribution of the Ge/Pt
layer were measured to be 185 and 700 pm, respectively.

The requirements of a smooth BE surface for the tunneling
selector will be discussed in detail in the next section. Using
the proposed trilayer tunneling device, we have shown a record
NL of 3 × 105 and 107 for one-half and one-third biasing

schemes, respectively. This is the highest NL among all tunneling
based selectors reported so far. Furthermore, we integrated
Pd/Ta2O5/Ru based memristor on top of the proposed selector
device to realize a 1S1R cell. The 1S1R cell shows a maximum
ON/OFF ratio of 100 and a NL of 104 and 106 for one-half and
one-third biasing schemes, respectively. Again this is the highest
NL demonstrated so far in any vertically integrated 1S1R cells
to the best of our knowledge. The entire stack of the proposed
1S1R cell was deposited at room temperature, making it CMOS
compatible and 3D stackable.

TUNNELING SELECTOR DESIGN

Even though tunneling selectors have many advantages over
other types of selectors, their mediocre value of NL has been
a shortcoming. The highest NL reported in tunneling selectors
was 1.1 × 104, which we demonstrated in our previously
reported work (Choi et al., 2016). We showed a trilayer tunneling
barrier (TLTB) based selector could outperform the uniform
barrier based selectors. As shown in Figure 1A, in the case
of a uniform barrier device, the highest part of the barrier,
closest to the electron source, is barely affected by the applied
voltage. While for a “crested” barrier (Figure 1B) structure, the
highest part of the barrier is in the middle and can be pulled
down by the electric field quickly. Hence not only the barrier
width but also the barrier height of such a crested barrier are
much more sensitive to the applied electric field, resulting in
a steeper current increase upon applied voltage and a higher
non-linearity (Likharev, 1998; Jung and Cho, 2008). In other
words, an applied voltage across the device only changes the
barrier’s width in the case of the regular rectangular barrier
with a uniform barrier height. In contrast, both the barrier’s
width and height are reduced simultaneously upon applied
voltages for the crested barrier. In practice, we can approximate
a crested barrier structure with the staircase potential patterns
formed in a trilayer structure, as shown in Figure 1C. We can
achieve such a staircase energy barrier structure by sandwiching
a dielectric layer with a small electron affinity between two other
dielectric layers with larger electron affinities. This structure
could be exploited for designing a high non-linearity selector.
In this paper, we present a trilayer tunneling selector based
on Ge/Pt/TaN1+x/Ta2O5/TaN1+x/Pd layers. The proposed TLTB
(TaN1+x/Ta2O5/TaN1+x) layers form a staircase-like energy band
structure, as shown in Supplementary Figure 2. This has been
discussed in detail in our previous paper (Choi et al., 2016).

For designing a robust tunneling selector device, one needs
to take care of two critical factors: (1) Depositing a high-
quality dielectric layer that has minimal defects (e.g., Oxygen
vacancies) and is stoichiometric and dense, which could be
achieved by optimizing the deposition (sputtering in our case)
recipe for the dielectric layers; (2) Having smooth surfaces
and interfaces that can sustain a high electric field without
breakdown. The roughness in the device stack could create hot
spots due to the electric field concentration effect, resulting in
an increase of the leakage current at relatively low voltage and
low NL. With an increasing voltage, these hot spots can quickly
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FIGURE 1 | Band diagrams of different tunnel barriers. (A) Typical uniform potential barrier; (B) triangular symmetric potential barrier; (C) staircase symmetric potential

barrier.

cause a breakdown of the thin tunneling layers at relatively
low voltages. To verify this hypothesis, we performed surface
engineering for the device BE to obtain a much-smoothened
surface. We found that depositing Pt on a thin Ge nucleation
layer helps to achieve a smooth BE. For a comparative study,
we deposited (evaporated) Ta (2 nm)/Pt (15 nm), Ti (2 nm)/Pt
(15 nm), and Ge (2 nm)/Pt (15 nm) layers on a Si/SiO2 substrate.
Figure 2 shows atomic force microscopy (AFM) topographic
images of different surfaces. Figure 2A shows the rms (root
mean square) roughness (Rq) of the substrate (Si/SiO2) surface,
which was measured to be 0.116 nm. Figures 2B,C present
topographic images of the commonly used BE stacks Ta/Pt
and Ti/Pt, with the Rq being 0.306 and 0.314 nm, respectively.
Figure 2D presents the value of Rq for the Ge/Pt layer, which
came out to be 0.185 nm. To ascertain uncertainties in the
rms roughness measurement, we have done additional analysis
presented in Supplementary Figure 3. The Ge/Pt layer not only
has a significantly lower Rq but also a narrower peak-to-valley
surface topological height distribution compared to those of
Ta/Pt and Ti/Pt films, as shown in Supplementary Figure 4. The
reason why a Ge nucleation layer provides smooth Pt film may

be related to the activation energy of diffusion. If the activation
energy of Pt diffusion on Ge is higher than those on the Ta and
Ti surfaces, in that case, it could reduce the surface diffusion and
mass transportation of Pt on the Ge nucleation layer, which could
result in a smoother surface topology (Logeeswaran et al., 2009).
Ge/Pt layer also provides good adhesion with the substrate but
maybe not as great as Ti/Pt and Ta/Pt layers.

Next, we propose and demonstrate a highly non-linear TLTB
selector device built upon the engineered smooth BE layers, as
schematically shown in Figure 3A. Given that the BE smoothness
is very critical to improving the performance of the TLTB selector
device and the BE roughness will be affected by the surface
roughness of the substrate itself, we took extensive measures
to make sure the polished Si/SiO2 (100 nm) substrate surface
is clean and smooth. Starting with dipping the substrate in the
Piranha solution [a mixture of H2SO4: H2O2 (3:1)] for 10min,
so residual organics were removed from the sample surface,
followed by rinsing in the deionized water, followed by a blow-
dry using compressed N2 gun. Then to further smoothen out
the substrate surface, CHF3 + O2 plasma cleaning (Turner and
Chi, 2003; Ashraf et al., 2017) was performed in a Reactive
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FIGURE 2 | Atomic force microscopy (AFM) topographic images of different surfaces. (A) SiO2 (Substrate) surface. (B) Ta/Pt. (C) Ti/Pt. (D) Ge/Pt.

Ion Etching (RIE) chamber for 2min. Finally, the substrate was
cleaned with acetone in the ultrasonic bath for 10min to remove
any particle/contamination from the previous plasma cleaning
step.We then rinsed it in IPA (Isopropanol) in the ultrasonic bath
for 10min to dissolve the acetone with the contaminant, followed
by a blow-dry using compressed N2. Immediately after finishing
the substrate cleaning procedure, a photoresist (PR) was spin-
coated on the substrate to maintain the surface cleanliness for the
subsequent deposition of selector layers.

The PR coated substrate was then exposed by UV (ultraviolet)
light through a mask for defining BE, then Ge (2 nm)/Pt (15 nm)

layer was deposited using the e-beam evaporator followed by
the standard lift-off process. Tri-layer tunneling stack [TaN1+x

(4 nm)/Ta2O5 (3 nm)/TaN1+x (4 nm)] was deposited as a blanket
layer without breaking the vacuum, using RF magnetron
sputtering. The TaN1+x layers were deposited using a ceramic
TaN (99.99%) target in Ar + N2 medium. The TaN target has
a 1:1 ratio of Ta & N, which gives it metallic characteristics. Using
Ar + N2 mixture as the deposition gas medium, the deposited
TaN1+x film’s conductivity could be tuned based on the N2 partial
pressure (Yu et al., 2002). Similarly, an Ar+O2 mediumwas used
for Ta2O5 deposition using a ceramic Ta2O5 (99.99%) target. The

Frontiers in Nanotechnology | www.frontiersin.org 4 April 2021 | Volume 3 | Article 65602653

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


Upadhyay et al. Engineering Tunneling Selector to Achieve High Non-linearity

FIGURE 3 | Trilayer tunneling selector device performance. (A) Schematic of the proposed selector device. (B) Scanning electron microscopy image showing a

top-view image of the fabricated device. (C) A typical non-linear I–V curve of the selector device. The inset shows a linear plot of the I–V curve. (D) Endurance data

measured up to 100 million cycles.

presence of a low oxygen partial pressure during the sputtering
improves the density and the stoichiometry of the sputtered
Tantalum oxide film (Duggan et al., 1993). Finally, the standard
photolithography process was used to define the TE, and Pd
(40 nm) was deposited using DC sputtering, followed by the lift-
off process. It is worth noting that the entire selector stack was
deposited at room temperature, making this proposed device
CMOS compatible. The SEM (scanning electron microscope)
micrograph of the 20µm× 15µm crosspoint device is presented
in Figure 3B.

Keysight B1500 device parameter analyzer was used to
measure the I–V characteristics of the selector device. Bias
was applied to the TE, and the BE was grounded. The I–V
characteristics of the proposed TLTB selector device is plotted
(semi-log) in Figure 3C, where the inset shows the linear plot of

the same sweep cycles. The proposed TLTB selector device shows
very insulating behavior under low bias (≈70 pA at +1.5V). It
becomes highly conductive at a high bias (≈20.4 µA at +3V),
which results in a highly non-linear I–V characteristic of the
proposed selector device. For one-half-voltage scheme NL is
defined as NL1/2 = I(Vread)/I(Vread/2) and for one-third biasing
scheme NL could be given as NL1/3 = I(Vread)/I(Vread/3). The
measured NL of the device is around 3 × 105 (107) for one-half
(one-third biasing) schemes, as indicated in Figure 3C, which
is the highest NL of any tunneling selector device reported
so far. Supplementary Figure 5 shows multiple I–V sweep of
the selector device. A control sample with the same TLTB
structure but on different BE layers, i.e., Ti/Pt, showed a NL
of about 100, as shown in Supplementary Figure 6, which
indicates the importance of using a smooth BE for tunneling
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selector devices. Endurance measurement was conducted on the
proposed selector device for 100 Million cycles without any
noticeable degradation, as shown in Figure 3D, using 5 µs wide
3V (Vread) and 1.5V (Vread/2) pulses. It should be noted here that
we used B1530A Waveform Generator/Fast Measurement Unit
(WGFMU) for the endurance measurement. The noise floor of
WGFMU unit is limited to a few nA of current, which resulted in
a smaller NL (Compare to the actual NL of the selector device),
observed during the endurance test.

To further demonstrate the effect of the proposed
smooth BE (Ge/Pt) on tunneling selectors, we fabricated
uniform barrier devices consisting of the TLTB stack’s layers.
Supplementary Figure 7 shows the schematic of the devices
and their electrical performance. Supplementary Figures 7A,B

shows schematic of the Ge/Pt/Ta2O5/Pd and Ge/Pt/TaN1+x/Pd
devices and Supplementary Figures 7C,D shows their respective
I–V characteristics. The NL of the single tunnel barrier selectors
based on Ta2O5 and TaN1+x layers was measured to be 2 ×

103 and 1 × 103, respectively. It is worth noting that the NL
demonstrated by these simple uniform barrier devices is an
order of magnitude higher than the NL of previously reported
similar single barrier devices and other tunneling selector devices
(Kawahara et al., 2013; Woo et al., 2014). We attribute this
improvement in NL to the use of a Ge/Pt based smooth BE layer.

VERTICALLY INTEGRATED 1S1R CELL

To demonstrate the feasibility of integrating the proposed
selector device with a memristor, a vertically integrated 1S1R
cell has been fabricated. We used a recently proposed Ru based
memristor device (Yoon et al., 2020) for this demonstration. Ru
based memristor exhibit forming free and low power switching
operations, making it suitable for a 1S1R integration. Figure 4A
presents a schematic of the vertically integrated 1S1R stack.
A polished Si/SiO2 (100 nm) substrate was cleaned and Ge
(2 nm)/Pt (15 nm), TaN1+x (4 nm)/Ta2O5 (3 nm)/TaN1+x (4 nm)
layers were deposited following the methods described in the
previous section. Afterward, the Middle electrode (ME) was

patterned using photolithography. A 40 nm thick Pd layer as
the ME was sputter-deposited on top of the tri-layer tunneling
stack, followed by the lift-off process. To isolate the selector
layer from the memristor layer to be deposited on top of
it, a 20 nm thick SiO2 blanket isolation layer was deposited
using sputtering. Then the SiO2 isolation layer was patterned
and etched away using the RIE (CHF3 + O2) to define the
device region (see Supplementary Figure 8 for details). A 10 nm
thick blanket Ta2O5 switching layer was deposited using RF
magnetron sputtering. Finally, the TE was patterned using the
photolithography process, and a 40 nm thick Ru layer was
sputter-deposited using the DC magnetron sputtering followed
by the lift-off process (see the Experimental Section for more
details). Supplementary Figure 8 presents a wide-angle view of
the cross-section of the 1S1R device. For the top memristor
(1R) device, the Ru (TE) acts as an active electrode, while Pd
(ME) serves as the inert electrode. It is worth noting that in this
vertically integrated 1S1R cell, the selector was deliberately placed
at the bottom to exploit the smooth BE (Ge/Pt) for achieving a
high NL. We designed this testing structure in a way that the ME
can be electrically accessed so that measurements can be made
not only on the “1S1R” cell but also on the individual “S” and “R”
to better understand the device stack.

For characterizing the Ru based memristor device, bias was
applied to the TE of the integrated cell, the ME was grounded,
and the BE was left floating. Figure 4B presents the I–V
characteristics of the memristor device. To SET the device, a
positive dual-sweep voltage (blue lines) was applied with current
compliance (Icc) set to 10 µA. Starting with a high resistance
state (HRS), the device switched to a low resistance state (LRS)
at 1.8 V and maintained its state during the reverse sweep. A
negative dual-sweep voltage (red lines) was applied to RESET the
device without any Icc. Beginning with the LRS, device RESET
started at about −0.4V, and it switched to HRS at about −1.2V
and maintained its state afterward during the reverse sweep.
The linear plot of the same I–V is presented in the inset. This
switching mechanism is attributable to the Ru conductive path’s
formation/rupture in the switching layer. A metallic path in the

FIGURE 4 | Vertically integrated 1S1R cell. (A) Schematic of the 1S1R cell. (B) Typical I–V characteristics of the Pd/Ta2O5/Ru based memristor device. (C) Typical I–V

characteristics of the 1S1R cell with highly non-linear ON state. The inset shows a linear plot of the same I–V.
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LRS is corroborated also by the Ohmic behavior observed in the
LRS (Yoon et al., 2020).

Next, the vertically integrated 1S1R cell was electrically tested
to demonstrate successful 1S-1R operations. Bias was applied to
the TE, and the BE was grounded with the ME left floating.
The non-linear I–V characteristic of the device is presented
in Figure 4C. The 1S1R cell exhibit a NL of 104 (106) for
one-half (one-third) biasing scheme at Vread = 1.5V with an
ON/OFF ratio of around 50. The highest ON/OFF ratio of 100
could be achieved at Vread = 3.4V but with a reduced NL

value of 150. Interestingly there is a trade-off between high
NL and maximum memory window size and can be leveraged
depending on the use cases. It should be noted that adding
a resistor (memristor in the 1S1R) reduces the NL of the
selector by an amount depending on the relative resistance of
the resistor and the selector. Nevertheless, the non-linearity
exhibited in the proposed 1S1R cell is the highest among any
vertically integrated 1S1R cell presented so far to the best
of our knowledge. SEM micrograph showing the vertically
integrated 1S1R device’s top view is presented in Figure 5a.

FIGURE 5 | Physical characterization of the vertically integrated 1S1R cell. (a) Scanning electron microscopy image of the 1S1R cell showing the top view of the

device. (b) Cross-sectional STEM image of the 1S1R cell. (c) ToF-SIMS depth profile through the layers of the vertically integrated 1S1R cell.
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FIGURE 6 | Circuit level modeling of 1S1R based CBA. (A) SPICE simulation of single device IV sweep (solid line), (B) Normalize Readout Margin for different array

sizes.

TE, ME, and BE are marked on the figure. Cross-section
scanning transmission electron microscopy (STEM) image of
the 1S1R cell (Ge/Pt/TaN1+x/Ta2O5/TaN1+x/Pd/Ta2O5/Ru) is
presented in Figure 5b. STEM micrograph revealed that the
TLTB layers were amorphous. Time-of-Flight Secondary Ion
Mass Spectrometry (ToF-SIMS) was conducted at the active
region of the 1S1R device. Figure 5c presents the depth profile
through the vertically integrated 1S1R cell, identifying the stack’s
key elements.

To demonstrate the proposed selector capability, we did a
circuit simulation of the 1S1R based CBA. The SPICE model
was validated by comparing the experimental and simulated I–
V characteristics of the single device, as shown in Figure 6A.
The normalized readout margin for different sizes of the CBA
is presented in Figure 6B. We considered the two most popular
biasing schemes for our simulation: one-half and one-third
voltage schemes. The readout margin for a 100 kbits CBA is
around 20% for the one-half biasing scheme and more than 90%
for the one-third biasing scheme. The one-third biasing scheme
is more resilient to the sneak path current issue than the one-
half biasing scheme. We can conclude from the results that the
proposed selector helpsmitigate the effect of the CBA’s sneak path
currents. It could potentially support a larger array size before the
read margin hits the minimum criterion of 10% to differentiate
the states (Lo et al., 2013). Supplementary Figure 9 presents the
readout resistance state of the selected device for various array
sizes. HRS resistance decreases with array size because of an
increase in sneak path current. Since readout current for LRS is
larger than HRS, LRS current is only mildly affected by the sneak
path current and so does the LRS resistance state.

CONCLUSION

In summary, we proposed and experimentally verified the
critical role of layer smoothness and tunnel barrier shape

in determining tunnel-based selectors’ non-linearity. To prove
the concepts, we developed a Ge/Pt/TaN1+x/Ta2O5/TaN1+x/Pd
based TLTB selector, which combined the benefit of a staircase
potential barrier with the smooth BE. The proposed selector
is CMOS compatible, 3D stackable, and exhibits a record NL
value. We have engineered the BE layer (Ge/Pt) to make it an
ultrasmooth surface. The measured rms roughness and peak-
to-valley height distribution were 185 and 700 pm, respectively.
This ultrasmooth BE surface and crested barrier lead to the
demonstration of a record-high NL of 3 × 105. We further
vertically integrated the proposed TLTB selector with a Ru based
(Pd/Ta2O5/Ru) memristor device to demonstrate the feasibility
of 1S1R integration and operation. The I–V characteristics
recorded from this vertically integrated 1S1R cell show a
maximum ON/OFF ratio of 100 and a NL of 104, also a record-
high NL of any vertically integrated 1S1R cell ever reported. The
excellent device NL performance suggests that our selector could
be used to realize a large passive memristor array, which has
remained elusive so far.

EXPERIMENTAL SECTION

Trilayer Selector Fabrication
A p-type (100) Si wafer with 100 nm thermal oxide was
used as the substrate. The standard photolithography and lift-
off process were used to define 15µm wide Ge (2 nm)/Pt
(15 nm) bottom electrode and 20µm wide Pt (20 nm) top
electrode using e-beam evaporation. A trilayer structure consists
of TaN1+x (4 nm)/Ta2O5 (3 nm)/TaN1+x (4 nm) layers were
sputter-deposited on top of the BE without breaking vacuum.
TaN & Ta2O5 ceramic targets were used for RF magnetron
sputtering in an Orion 8 (AJA international) sputtering system
in the presence of an Ar-N2 mixture (15:5) and Ar-O2

mixture (20:1), respectively. Finally, 15µm wide Pd (40 nm)
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was sputter-deposited following standard photolithography and
lift-off process.

Vertically Integrated 1S1R Device
Fabrication
On a p-type (100) Silicon substrate with 100 nm thick
thermal oxide, a 20µm wide Ge (2 nm)/Pt (15 nm) line (BE)
defined by photolithography and lift-off process, was fabricated.
Then a trilayer structure consists of TaN1+x (4 nm)/Ta2O5

(3 nm)/TaN1+x (4 nm) layers were sputter-deposited on top
of the BE without breaking vacuum. TaN & Ta2O5 ceramic
targets were used for RF magnetron sputtering in an Orion 8
(AJA international) sputtering system in the presence of Ar-N2

mixture and Ar-O2 mixture, respectively. Afterward, a 15µm
wide middle electrode was patterned by photolithography, and a
40 nm thick Pd layer was deposited by RF magnetron sputtering
followed by a lift-off process. A 20 nm thick SiO2 isolation layer
was sputter deposited on the top of the selector layer to isolate
it (in the non-device-region) from the memristor layers to be
deposited on top of it. The SiO2 layer in the device region was
patterned and etched away before a 10 nm thick blanket Ta2O5

switching layer was deposited using RF magnetron sputtering.
Finally, 10µm wide TE was patterned using photolithography,
and then a Ru (40 nm) layer was deposited using sputtering
followed by a lift-off process.

Device Characterization
The DC measurements were performed using a B1500A
semiconductor parameter analyzer (Keysight), and B1530A
(Keysight) was used for pulse measurement. All electrical
measurements were performed by applying the bias to the TE
and grounding the BE. The cross-sectional TEM study of the
Ge/Pt/TaN1+x/Ta2O5/TaN1+x/Pd/Ta2O5/Ru device and the EDS
element mapping was performed using JEOL NEOARM atomic-
resolution STEM at an accelerating voltage of 200 kV. FEI Nova
200 Dual-Beam FIB was used to prepare the FIBed TEM lamella.
ToF-SIMS measurements were done using a TOF.SIMS.5-NSC
instrument, using a Bi3+ ion gun (30 keV energy, 0.49 nA
current) as the primary ion source and an O2− ion gun (1
keV energy, 120 nA current, 20µm spot size) as the sputter
source. ToF-SIMS measurements were performed in the non-
interlaced mode, where every scan of chemical analysis with
primary bismuth source was followed by sputtering using anO2−

ion gun. A low energy electron flood gun was used for charge
compensation between cycles. The vacuum level in the ToF-SIMS
during the measurements ranged from 5 to 9× 10−9 mbar.

SPICE Modeling
The devicemodel was written using Verilog-A. Cadence Virtuoso
was used for the circuit simulation. For all the simulations
worst-case scenario has been considered. The selected device
lies farthest to the row voltage source as well as farthest to
the column current sense amplifier. All the unselected and
half selected devices were switched to ON state before start
of simulation.
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Engineering Method for Tailoring
Electrical Characteristics in TiN/TiOx/
HfOx/Au Bi-Layer Oxide Memristive
Devices
Seongae Park1,2*, Stefan Klett 1, Tzvetan Ivanov1,2, Andrea Knauer2, Joachim Doell 2 and
Martin Ziegler1,2*

1Department of Electrical Engineering and Information Technology, Technische Universtität Ilmenau, Ilmenau, Germany, 2Institute
of Micro and Nanotechnologies MacroNano, Technische Universtität Ilmenau, Ilmenau, Germany

Memristive devices have led to an increased interest in neuromorphic systems. However,
different device requirements are needed for the multitude of computation schemes used
there. While linear and time-independent conductance modulation is required for machine
learning, non-linear and time-dependent properties are necessary for neurobiologically
realistic learning schemes. In this context, an adaptation of the resistance switching
characteristic is necessary with regard to the desired application. Recently, bi-layer oxide
memristive systems have proven to be a suitable device structure for this purpose, as they
combine the possibility of a tailored memristive characteristic with low power consumption
and uniformity of the device performance. However, this requires technological solutions
that allow for precise adjustment of layer thicknesses, defect densities in the oxide layers,
and suitable area sizes of the active part of the devices. For this purpose, we have
investigated the bi-layer oxide system TiN/TiOx/HfOx/Au with respect to tailored I-V non-
linearity, the number of resistance states, electroforming, and operating voltages.
Therefore, a 4-inch full device wafer process was used. This process allows a
systematic investigation, i.e., the variation of physical device parameters across the
wafer as well as a statistical evaluation of the electrical properties with regard to the
variability from device to device and from cycle to cycle. For the investigation, the thickness
of the HfOx layer was varied between 2 and 8 nm, and the size of the active area of devices
was changed between 100 and 2,500 µm2. Furthermore, the influence of the HfOx

deposition condition was investigated, which influences the conduction mechanisms
from a volume-based, filamentary to an interface-based resistive switching mechanism.
Our experimental results are supported by numerical simulations that show the
contribution of the HfOx film in the bi-layer memristive system and guide the
development of a targeting device.
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1 INTRODUCTION

Memristive devices have been under the spotlight as an ideal
element for neuromorphic computing due to their outstanding
characteristics to emulate bio realistic information processing
(Versace and Chandler, 2010; Legenstein, 2015; Mohammad
et al., 2016; Jeong and Shi, 2019; Krestinskaya et al., 2020).
Their non-volatile memory property, which is induced by an
adaptation of the resistance state by applying electrical signals,
makes them ideal candidates for the emulation of synaptic
functionalities in artificial neural networks (Sah et al., 2014).
For this application, they enable the realization of extremely
energy-efficient hardware (Massimiliano and Yuriy, 2013;
Ignatov et al., 2017) and have the potential of a high
integration capability due to their simple two-terminal device
structure (Lin et al., 2020). In particular, the integration of
memristive devices in crossbar structures is worthy of
mentioning here, which makes it possible to implement
efficient learning schemes (Prezioso et al., 2015; del Valle
et al., 2018; Alibart et al., 2013).

When considering the wide range of different neuromorphic
systems, two main fields of applications in neuromorphic systems
can be distinguished (Ielmini and Ambrogio, 2020): (i)
neurobiologically realistic learning schemes and (ii) machine
learning based algorithms. In neurobiologically realistic
learning schemes the synaptic connections of a network are
tuned by time-encoded spike-like signals (Snider, 2008), which
typically requires nonlinear memristive device characteristics in a
time-dependent manner (Ziegler et al., 2015; Dittmann and
Strachan, 2019). In contrast to that, machine learning based
algorithms use vector-matrix multiplications in which an
explicit time dependence is not required (Ziegler et al., 2018).
For that application, it is more important to set very precisely
different resistance values for the individual memristive cells in a
crossbar array (Yakopcic et al., 2015). Therefore, a time-
independent linear resistance modulation is desirable
(Chandrasekaran et al., 2019) which requires a high symmetry
between the setting and the resetting characteristic of the
memristive device over a wide range of resistance states
(Wang et al., 2016).

In last couple of years many memristive device structures have
been presented that are adequate for the machine learning
algorithms (Kim et al., 2017; Cüppers et al., 2019; Li et al.,
2020; Yao et al., 2020). It has been shown that the use of the
memristive devices can significantly simplify the training routine
in massively interconnected networks (Wang et al., 2019).
Among those devices, particularly, memristive devices with a
metal oxide bi-layer structure gained considerable interest in that
field. Those memristive devices showed a significant
improvement in the resistance modulation linearity (Li et al.,
2018a) and the number of resistance states (Stathopoulos et al.,
2017) along with the reduced variability in the resistive switching
characteristics (Wang et al., 2010). The bi-layer metal oxide
devices typically consist of an oxide layer that serves as a
reservoir of oxygen vacancies and a solid state electrolyte layer
which builds a Schottky-like interface contact with the adjacent
metallic electrode (Huang et al., 2012; Bousoulas et al., 2016; Kim

et al., 2018; Xiong et al., 2019). The resistive switching mechanism
can be described as follows (Cüppers et al., 2019): under an
external bias voltage oxygen vacancies are injected from the
reservoir layer into the solid state electrolyte layer in which
the oxygen vacancies are forming a filamentary conduction
path toward the metallic electrode. This reduces both the
resistance of the electrolyte layer and the Schottky barrier
height and leads to a lowering of the overall device resistance
(Asanuma et al., 2009; Zhao et al., 2020). An alternative concept
of a memristive bi-layer metal oxide device is the double barrier
memristive devices (DBMD) (Hansen et al., 2015). In this device
structure, an ultra-thin solid electrolyte layer is sandwiched
between a metal oxide layer and a metal electrode forming a
Schottky-like contact. Here, the metal oxide layer serves as a
diffusion barrier for oxygen ions, but not as a reservoir (Hur et al.,
2010; Yin et al., 2015; Clima et al., 2016; Dirkmann et al., 2016;
Hansen et al., 2017). The resistive switching effect is based on a
shift of the oxygen ions in the solid state electrolyte layer in the
direction of the metal electrode, which also leads to a reduction of
the Schottky barrier height (Dirkmann et al., 2016). The
advantage of the non-filamentary type of devices is that they
did not require an electroforming step (Yoon et al., 2014), and the
switching effect is based on a defined interface effect (Govoreanu
et al., 2013). However, a disadvantage compared to bi-layer metal
oxide devices with oxygen vacancy filaments is the shorter
retention time (Solan et al., 2017). Furthermore, DBMDs have a
rectifying characteristic (Gao et al., 2015) and thus a high
asymmetry in the voltage polarity. However, these devices allow
the realization of selector-free crossbar structures (Ma et al., 2017;
Hansen et al. 2018) and the realization of biologically realistic
computational schemes (Wang et al., 2015; Diederich et al., 2018).

A common challenge in the development of memristive
devices is a tailor-made design of memristive devices for a
respective computational scheme (Pei et al., 2015). For this, a
number of materials and technology parameters have to be
considered, such as the concentration of oxygen vacancies (He
et al., 2017) or active ions (Clima et al., 2016), materials for the
active layers and interface (connecting) layers (Li et al., 2018b).
But also geometrical parameters such as layer thicknesses (Park
et al., 2015;Wang et al., 2016; Li et al., 2018a) and size of the active
areas (Lee et al., 2010) have to be considered carefully. These
parameters are often only slightly known or not known at all but
must be related to the device performance for a reliable device
functionality (Niu et al., 2010; Lee et al., 2011). This particularly
requires systematic investigations of the individual parameters
and suitable device technology combined with a profound
understanding of the underlying physical processes (Sun et al.,
2019).

The aim of this work is to bridge the gap between the material
design and the electronic characteristics of memristive devices for
a tailored development of bi-layer metal oxide devices for
neuromorphic systems. For this purpose, the bi-layer system
TiN/TiOx/HfOx/Au is examined in more detail in this paper.
In detail, a four-inch wafer technology is presented, which allows
to vary different device parameters, such as layer thickness and
area size of the devices over the wafer. Using automated electronic
measurements, a statistic of important device characteristics is
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collected, and related to material properties and technology
parameters. For a detailed understanding of the resistive
switching mechanism, a physical device model is presented,
which also allows a detailed examination of the individual
device parameters. Essentially, we show that different
sputtering conditions can influence oxygen ion and oxygen
vacancy concentrations in the HfOx layer. This causes
different device characteristics. While an area-based switching
mechanism leads to a rectifying current-voltage characteristic at
high layer qualities with few oxygen vacancies, filamentary
structures are formed in the HfOx layer at higher
concentrations of oxygen vacancies. This leads to a
symmetrical current-voltage characteristic with multilevel
resistant states and improved retention. In both cases, a
change in the Schottky barrier between the HfOx layer and the
Au electrode can be identified as the reason for the observed
switching effect. For a tailored design of memristive devices for
their application, the different electronic characteristics are
related to possible applications in neuromorphic systems.

The present work is structured as follows: In chapter 2, the
implemented technology for manufacturing the memristive
devices is presented first. Then the used methods for material
and electrical characterization of the devices are discussed.
Finally, chapter 2 presents a physical device model that serves
to describe the underlying physical effects of the resistive
switching mechanisms. In chapter 3, the obtained results are

presented and discussed. For this purpose, first, the results of the
electrical measurements and their statistics are shown in relation
to an individual device and technology parameters. Then,
important parameters of the devices are related to their
electronic characteristics using the simulation model. Finally,
the chapter discusses the application of the devices in
neuromorphic computing architectures. The presented results
are summarized in chapter 4.

2 MATERIALS AND METHODS

2.1 Device Technology
Figure 1 shows a developed device technology for bi-layer oxide
memristive devices. In Figure 1A cross-sections of the fabricated
TiN(50 nm)/TiOx (30 nm)/HfOx (2–8 nm)/Au(50 nm) bi-layer
memristive devices with Al(300 nm) contact pads are sketched.
They are fabricated on a 4-inch oxidized silicon wafer (1 μm of
thermal SiOx) in the full device technology. This technology is
overviewed in Figure 1B and contains around 40,000 single
devices, including test structures for the device development
(see microscope images in Figure 1B). This allows the
investigation of various device parameters, such as the active
device area (six different area sizes are realized, as shown in
Figure 1B), the thickness of the active HfOx layer, and the
material compositions over the wafer for a targeted

FIGURE 1 | Schematic representation of the technology for bi-layer oxidememristive devices: Using different sputtering geometries (referred to asmethods 1 and 2
in the text), different types of devices have been produced, showing filamentary switching (referred to as type F) and area-based resistance switching (referred to as type
R). (A)Cross-section of TiN/TiOx/HfOx/Au bi-layer oxide memristive devices over the wafer. The used deposition method (method 2) allows for a variation of the thickness
of HfOx layer from 2 to 8 nm. (B)Microscope images of a complete 4-inch wafer with 40,000 single devices and sections, showing the individual cells which consist
of clusters with six devices, each with a different area size. Three regions on the wafer are indicated as A, B, and C. Each region has an area size of 0.5 × 0.5 cm2. For type
R devices a 2 nm HfOxwas deposited on all the three regions, while the thicknesses for type F have 2, 5, and 8 nm HfOx films on region A, B, and C, respectively. Here, it
was assumed that the HfOx thickness is the same in each region due to the 1-dimensional thickness change over a 4-inch wafer and the relatively small area size.
Approximately 60 memristive devices were measured in each area A, B, and C, respectively, for type F.
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development of memristive devices. For a variation of the latter
parameter, two different sputtering methods for the HfOx layer
were used. In particular, a variation in oxygen vacancies is
required to achieve a desired resistive switching process in this
class of memristive devices (He et al., 2017). Here, using a
sputtering system equipped with three confocal source targets,
two methods are employed for the deposition of the HfOx which
are referred to as method 1 and 2. During the deposition, the
substrate is rotated to obtain a uniform film thickness, while a
wedge film is formed without a rotation. The wedge is formed
only along one direction. For method 1 the HfOx layer was
deposited on the wafer under optimal conditions, i.e., rotation of
the substrate within a confocal sputtering arrangement. For
method 2 the wafer was not rotated during the sputtering of
the HfOx layer. This leads to a reduced layer quality, but also a
wedge over the wafer as shown in Figure 1A (further details are
discussed below). As a result, we obtained two distinctive bi-layer
oxide memristive device structures, which are referred to in the
following as device R and device F.

In more detail, the TiOx/HfOx bi-layer was deposited on an
inertial reactive sputtered TiN bottom-electrode via DC
magnetron sputtering, where O2/Ar of reactive gas was
adjusted with the ratio of 10/40 and 10/29 for the TiOx and
HfOx film, respectively. After the TiOx was sputtered, the
thickness of the HfOx was controlled using the two discussed
sputtering methods 1 (for device type R) and 2 (for device type F):
as seen in Figure 1A a wedge layer with a variation of the HfOx

thickness from 2 to 8 nmwas obtained for device F, where devices
were fabricated along the axis (x-direction) perpendicular to the
axis of the wedge (y-direction). Device R has a 2 nm uniform
HfOx layer. The layer deposition was finalized with an Au top-
electrode layer. Thereafter, the material stack was patterned using
photolithography and reactive ion etching for device R, while a
lift-off in Dimethylsulfoxide (DMSO) was used for device F. The
lift-off process was carried out due to the thickness variation of
HfOx in device F. Here, the investigation of the switching
behaviors was preceded after we confirmed that the two
patterning methods scarcely affected electrical characteristics.
All devices were insulated with SiO2 layers from the ambient
air to avoid the influence of moisture in switching behaviors
(Tsuruoka et al., 2012; Zhou et al., 2018; Zhou et al., 2020)
(Figure 1A), and Al contact pads were deposited by e-beam
evaporation.

2.2 Material Characterization
The development of the memristive devices was supported by a
material characterization accompanying the manufacturing
process. The thickness and the composition of the layers were
characterized by ellipsometry measurements (SE500, Sentech)
and surface profile measurements (Dektak 150, Veeco).

For a detailed material investigation, unstructured HfOx films
were deposited on silicon substrates. Therefore, the two described
sputtering methods 1 and 2 were employed to deposit 37 nm
thick HfOx films. On those films ellipsometry measurements were
performed at 632.8 nm at 70° of incidence. As the results,
refractive indices of n � 1.9889 and n � 2.0285 were measured
for, respectively, the uniform (method 1) and the wedge- (method

2) deposited HfOx films. Thus, in agreement with previous
investigations (Martínez et al., 2007) the film can be assumed
to have amorphous crystallinities. However, the obtained n value
from the uniform deposited film was higher than n of the wedge
deposited HfO2 film, which can be attributed to a reduced
packing density (Gao et al., 2016).

Furthermore, X-ray photoelectron spectroscopy (XPS)
measurement was utilized to study the quantitative atomic ratio
O/Hf in sputtered HfOx layers. The XPS analysis were carried out
using monochromatic Al_K-alpha radiation (excitation energy
hν � 1,486.68 eV) under charge neutralization using a SPECS
SAGE HR 150 XPS system equipped with a 1D delayline detector
and a Phoibos 150 analyzer. The calibration of the energy scale was
ensured by reference measurements on a polycrystalline silver
sample. Before the measurements, HfOx was sputtered on Si/
SiO2 wafers for 900 s using the two different sputtering method
1 and 2. As a result, a ratio of O/Hf of 1.80/1 was observed for
deposition method 2, while a ratio of 1.98/1 was recorded for
samples sputtered via method 1 (see SupplementaryData S1). The
sputtering method 1 provides a stoichiometry close to HfO2, while
the obtained stoichiometry viamethod 2 leads to optimal condition
for the forming of oxygen vacancy filaments (McKenna, 2014).
Thus, we can conclude that sputtering method 1 leads to a reduced
number of oxygen vacancies than the sputtering method 2. Hence,
a HfOx layer with a higher density of oxygen vacancies can be
assumed for device type F in respect to device type R.

2.3 Electrical Characterization
Current-voltage measurements (I-V curves) and voltage pulse
measurements were carried out to characterize the electrical
properties of TiOx/HfOx bi-layer memrsitive devices using a
source measurement unit (Keysight b2901a). Therefore, a
voltage is applied to the top-electrode of the device (bottom-
electrode were grounded), while the current has been measured
simultaneously. Furthermore, current compliance was imposed
during the measurement to prevent the device from damage. The
used current compliance was ICC � 10 μA, ICC � −5mA for R and
F devices, respectively. For pulse measurements the device
resistance was measured at, respectively, 1 and 0.1 V for R and
F devices. The switching voltage to set and reset the device
resistances was 3 V/−2 V for device type R and −1 V/1.5 V for
F type devices. For both devices a pulse duration of ∼10ms was
used. For a statistical evaluation of the electrical properties, median
values were extracted taking into account the variability in cycle to
cycle (C2C), and device to device (D2D). In the C2C investigation
10 times of DC voltage sweep cycles in one device were carried out.
For reliable statistics, automated measurements of more than 10
memristive devices in each device parameter were performed,
which means a total of 180 devices measured for three different
thicknesses and six different area sizes. Both C2C and D2D
statistics were investigated in DC conditions.

2.4 Physics Based Device Model
For a profound understanding of the resistive switching
mechanisms and a targeted development of the devices a
physics based device model was developed. In Figure 2A a
sketch of this device model is shown: the model consists of
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two RC elements representing, respectively, the HfOx and the
TiOx layer. The metal-semiconductor contact between the HfOx

layer and the Au electrode is considered by a Schottky diode
(DSchottky). Thus, an external applied voltage (V) is divided into
the local voltage drops at the Schottky diode (VSchottky), over the
HfOx layer (VHfOx) and the TiOx layer (VTiOx) according to

V � VSchottky + VHfOx + VTiOx (1)

An important difference between here investigated two types of
memristive devices is sketched in Figure 2B. While for the type F
device a filament of oxygen vacancies is formed under the
external voltage application, the type R device does not form
any filaments. Essential for this is the concentration of oxygen
ions and vacancies in the active HfOx layer (Dirkmann et al.,
2018). For the filamentary device F, we assumed that a number of
oxygen vacancies are the mobile ions that vary between a
minimum and a maximum concentration, denoted as Nmin

and Nmax, respectively. In detail, for the filamentary device F
we estimated Nmin � 4 · 1024 m−3 and Nmax � 2 · 1027 m−3 in
accordance with the previous work (Menzel et al., 2011;
Dirkmann et al., 2018). On the other hand, for the device type
R we assumed a significantly lower concentration of oxygen
vacancies due to a better layer quality. Here, the mobile
species are oxygen ions where a concentration of N � 1023 m−3
was used which is in qualitative agreement with (Dirkmann et al.,
2016).

The concentration of the oxygen ions and vacancies has a
particular effect on the active area used for resistance
switching (cf. Figure 2B). Thus, for the filamentary device
F only the filament area is relevant for the switching effect,
i.e., A � Afil (see upper drawing in Figure 2B). For the type R

device the whole device area is involved in the switching
mechanism, i.e., A � Adevice (see lower drawing in Figure 2B).
Both, the active area and the oxygen ion/vacancy
concentration, are relevant for the resistance of the HfOx

layer:

RHfOx � dHfOx
e · zv0 · A · μn · N

(2)

where μn is the electron mobility, zv0 is the ion charge number,
and e is the elementary charge (Hardtdegen et al., 2018).

The layer thickness of TiOx is significantly larger than that of
HfOx. Therefore, a much lower local electrical field strength is
assumed (E � Vlayer/dlayer). Thus, under an external bias voltage
oxygen ion drift is suppressed within the TiOx layer and the
resistance RTiOx of the TiOx layer can be assumed to be constant.
Nevertheless, the TiOx layer plays a crucial role in the
functionality of the bi-layer oxide structure: (i) it serves as a
reservoir for oxygen vacancies in filament devices, and (ii) it
stabilizes the switching process for both types of devices
(Stathopoulos et al., 2017; Hardtdegen et al., 2018; Mikhaylov
et al., 2020). For the latter point, the electronic contribution of the
TiOx layer is particularly important and has to be captured in the
model. In general, the electronic charge transport through metal
oxide layers can be determined by various transport mechanisms.
It has been shown that a good approximation for the electron
current is given by the following voltage realization (Jiang et al.,
2016):

ITiOx � j0 · A · sinh(VTiOx) (3)

where j0 is a fit parameter that has to be adapted to the real
devices. The layer capacitances are given by

FIGURE 2 | (A) Sketch of the physics based device model for TiN/TiOx/HfOx/Au memristive devices. The model consists of two RC elements in the TiOx and HfOx

layers and a Schottky diode at the interface of HfOx and Au top-electrode. The external source voltage is divided into three local voltage drops at the HfOx, TiOx layers,
and the Schottky diode. (B) Two different resistive switching mechanisms of type F devices (top) and type R devices (bottom) are considered. While in type F devices
oxygen vacancies form a filamentary conductive path in the HfOx film under an external voltage, in type R devices oxygen ions in the HfOx film drift toward the top
metal-electrode. As a result, in both device types the changed ion concentration leads to a modulation of the Schottky barrier height, which leads to the switching
behaviors. Hereby originates the difference in the switching mechanisms from the density of the oxygen vacancies in the HfOx film. (C)Measured I-V curves (gray) and the
simulation results (red) for type F (top) and type R (bottom) devices. The arrows point to the SET direction.
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Clayer � ε
A

dlayer
(4)

where ε � εrε0 is the permittivity of the respective layer.
The starting point of the switching model is the memristive

behavior caused by a temporal and spatial change of the oxygen
ions in the HfOx layer. This effect is taken into account in the
device model via an average ion velocity.

dx
dt

� cdrift · IIon (5)

where x is the memristive state variable, i.e., the average position
of oxygen ions or length of the filament in the HfOx layer (cf.
Figure 2B) and IIon is the ionic current of the oxygen ions.
Furthermore, cdrift describes the resulting drift constant of the
system, which is defined as

cdrift � μn · Rmean

dHfOx · A (6)

Here, Rmean is the mean resistance of the HfOx layer, which is
given by Rmean � 1

2 · [Rmin + Rmax] for devices of type F and
Rmean � RHfOx for the devices of type R. In particular, for
devices of type F the resistance of the HfOx layer can be
specified as a function of the memristive state variable x:

RHfOx � dHfOx
e · zv0 · A · μn

· [ 1
Nmax

· x + 1
Nmin

· (1 − x)] (7)

An essential important property of ionic based memristive
devices is the back diffusion of the ions. The back diffusion
determines the reliability and the storage time of the memristive
device and is crucial parameter for a precise adjustment of
multiple resistance states. In order to consider this behavior in
the model, a further term was added to Eq. 6:

cdrift � μn · Rmean

dHfOx · A − cback · [1 − (2x − 1)2] (8)

Here cback is a parameter that describes the strength of the back
diffusion and must be adapted to the measured data.

The ion current can be written in the following form using the
law of Mott and Gurney (Hardtdegen et al., 2018):

IIon � 4AeNmeana]0 · exp(−ΔWVT
) · sinh(a · EHfOx

VT
) (9)

whereΔW is the diffusion barrier, which is reduced by the electric
field EHfOx . Furthermore, VT is the thermal voltage, a the hopping
distance, and ]0 is the attempt frequency. Nmean determines the
mean concentration of mobile ion species in the HfOx layer,
i.e., Nmean � 1

2 · (Nmax + Nmin), while A is the active area of the
device, which depends on the device type (cf. Figure 2B). Thus
A � Afil for the filamentary device andA � Adevice for the interface
based switching device (cf. Figure 2B).

The interface between the HfOx/Au is assumed to be the
relevant interface for the resistive switching process in both types
of devices. In the simulation, this interface is modeled as a
Schottky diode with variable Schottky barrier (ϕB). Using the

thermionic emission theory, the charge transport over a Schottky
barrier can be described in the following equation (Sze and Ng,
2006):

IS � IR(exp eV
nVT − 1) (10)

Where n is the ideality factor, which describes the deviation from
an ideal diode characteristic, and IR the reverse current, which is
given by:

IR � A*AT2 · exp− eϕB
VT (11)

where A* is the effective Richardson constant, which is
1.20173 · 106Am−2K−2, T the local temperature, and A the
active area. Under negative voltage polarities, however, the
reverse current decreases gradually with the applied bias
voltage. Therefore, on this polarity the reverse current is (Sze
and Ng, 2006):

IR,v < 0 � −A*AT2 · exp− eϕB
VT exp

− eαr



|V |

√
VT (12)

Here αr is a device dependent parameter. In our model we
assumed that both quantities n and ϕB depend on the
concentration of moved ions at the Au/HfOx interface. A
higher concentration of the negatively charged oxygen ions at
that interface in R type devices increases the electron
concentration locally. For devices of type F an increased
concentration of oxygen vacancies increases the amount of
acceptor states for electrons at the interface and thus there is
also an accumulation of electrons at the interface. Thus, for both
type of devices a reduction of the Schottky barrier is expected,
which in turn has a significant effect on the charge transport
through the complete device. In the model this was considered by
a state variable dependency of those quantities:

ϕB(x) � ϕLRS
B · x

xmax
+ ϕHRS

B · (1 − x
xmin

) (13)

n(x) � nLRS · x
xmax

+ nHRS · (1 − x
xmin

) (14)

the values for nLRS and nHRS, as well as ϕHRSB and ϕLRSB were obtained
from the experimental I-V curves using Eq. 10. Another important
parameter influencing the ion movement within the memristive
device is the local temperature change. This includes mainly Joule
heating and plays a crucial role particularly in filamentary-based
device structures. This was taken into account in the simulation
model as follows (Ielmini and Milo, 2017).

T � I · V · Rtherm + T0 (15)

Here, Rtherm is the effective thermal resistance and T0 is the room
temperature. The temperature along the filament is assumed to be
relatively homogeneous and thus a uniform filament temperature
can be assumed (Ielmini and Milo, 2017).

The device parameters have been carefully collected from
measurements and literature and are summarized in Table 1.
The I-V curves simulated with the model are shown in Figure 2C
and compared with the measurement curves determined
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experimentally. As can be seen from this figure, the model
presented here shows very good agreement with the
experiment. A more detailed description of the results follows
in the next chapter.

3 RESULTS AND DISCUSSION

3.1 Resistive Switching and Statistical
Examinations
In Figure 3A typical obtained I-V curves of the two kinds of
memristive devices (named as F and R) are shown. Common for
both device types is that they show bipolar resistive switching
with a gradual resistance change. A major difference between
both types of devices is their voltage polarity. While type R
devices require a positive voltage (applied to the top electrode)
to set the device, type F devices require a negative voltage to be
applied for the set process. The different polarity behaviors are
originated from differences in concentration and species of
mobile ions, which will be discussed in Concentration of
Mobile Icon. Furthermore, while a highly rectifying memristive
behavior is observed for device type R, a more symmetric
memristive behavior is found for devices of type F together
with a 3 times higher current level as compared to type R
devices (cf. Figure 3A). In some more detail: the rectifying

TABLE 1 | Simulation Parameter.

Parameter Value Parameter Value

type F type R

ΦHRS
B [eV] 0.25 0.71 αr[V/A · s] 1.2 · 106

ΦLRS
B [eV] 0.06 0.61 μn[m2/V · s] 10− 5

nLRS 4.5 3.9 ]0[Hz] 3 · 1011
nLRS 5 4.45 εTiOxr 17
Nmax[m−3] 2 · 1027 εHfOxr 5.5
Nmin[m−3] 4 · 1024 ΔW[eV] 0.425
N[m−3] 1023 a[nm] 0.4
dHfOx[nm] 2–8 2.5 dTiOx[nm] 30
j0TiOx[A/m2] 5.8 · 107 5.8 · 104 Rtherm[K/W] 1.1 · 104
Adevice[μm2] 100 Afil[nm2] 6,362
Cback /Cdrift 0 3.25 · 10−11 T0[K] 273

FIGURE 3 | (A) Representative I-V curves of TiN/TiOx/HfOx/Au bi-layer memristive devices for type R (left), and type F (right). The arrows point to the resistive
switching direction. A clear rectifying behavior was observed in the type R, and a symmetric switching behavior in the type F. (B) Electroforming voltage (median values)
as a function of HfOx thickness. Electroforming voltages were tailored by the thickness of the HfOx in type F. (C) SET (blue) and RESET (red) voltages (median values) as a
function of device active area size. The smaller the area is, the lower SET/RESET voltage was observed. (D) Retention measurement and fitting curves. Type F
devices (blue) showed an improved retention characteristic compared to type R (red). The fitted curves are shown with dashed lines, and the fitting constants were 0.02
and 0.3 for type F and type R, respectively.
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behavior of devices of type R can be quantified by the ratio
between the maximum and minimum current rasym � ∣∣∣∣Imax/Imin

∣∣∣∣
at a voltage of ±0.5 V. Here we were able to determine rasym � 70
for an active device area of 100 μm2 which, however, has a strong
area dependence. In particular, for an area of 625 μm2 the
asymmetry ratio rasym is reduced from 70 to 4 (further
information is provided in Supplementary Figure 3).

An important property of memristive devices and another
difference between the here considered devices is the initial
electroforming process. While no initial electroforming step
was necessary for type R devices, type F devices had to be
electroformed at the beginning. For a more precise discussion
of the electroforming process of type F devices, the median of the
required voltages as a function of the thickness of the HfOx layer
is depicted in Figure 3B. In detail, electroforming voltages of 2.35,
2.42, and 2.52 V have been observed for, respectively, a 2, 5, and
8 nm thick HfOx layer. Thus, the electroforming voltage shows
moderate thickness scalability. After the electroforming process
type F device are operated typically at a maximum (minimum)
voltage ±0.75 V. In terms of operating voltage, type F devices also
differed from type R devices: type R devices require on average a
1.3 V higher operating voltage with a moderate area dependence
(cf. Figure 3C). The operating voltages for type R devices were
2.2 V/−0.42 V (SET/RESET) for the smallest area size and 1.7V/
0 V for the largest area size. However, the type R devices show a
more gradual transition from the inertial high resistive state
(HRS) to the low resistive state (LRS) (cf. Figure 3A).

A crucial property of memristive devices is their retention
time. Furthermore, a detailed investigation of the retention
characteristic already provides important conclusions about
the underlying resistive switching mechanism (Hansen et al.,
2015). The retention behavior for the here discussed two types of
memristive bi-layer structures are shown in Figure 3D. For the
measurement of the retention characteristics, the two types of
devices were initially set to the low resistance state and then the
resistance value of the devices was determined at regular intervals
by means of voltage pulses. As can be seen in the figure, the two
types of devices show quite different retention behaviors. For
device type R, diffusive characteristics were observed (see red data
points in Figure 3D), while much higher retention is observed for
device type F. In order to analyze the retention characteristics in
some more detail the retention curves were fitted using a power
law according to the Curie-von Schweidler equation (Mikheev
et al., 2014; Goossens et al., 2018):

R � Ron/Roff ∝ tα (16)

where α is a fit parameter, which is between 0 and 1 (Yang et al.,
2010). As a result, α � 0.3 is observed for devices of type R,
whereas α � 0.02 best reflects the experimental data for devices of
type F. While α � 0.02 describes a very good retention time for
devices of type F, α � 0.3 shows clearly lower retention for devices
of type R. This difference can be explained by the different ion
dynamics between the two devices. While in the type R device the
filamentary structures are suppressed and mobile oxygen ions are
shifted toward the electrode, in the type F devices oxygen
vacancies are organized in filamentary structures. This leads to

different activation energies of the ion dynamics. It has been
shown that the activation energy of oxygen vacancies is in the
range of 6–8 eV inside filaments (McKenna, 2014), while it is less
than 1 eV outside filaments (Dirkmann et al., 2016; Dirkmann
et al., 2018). Furthermore, it is worth mentioning that localized
electronic states at the Au/HfOx interface can also contribute to
the observed switching mechanism. The localized electronic
states are filled or emptied depending on the applied bias
voltage polarity (Hansen et al., 2015; Zhou et al., 2016). Even
if the exact mechanism underlying the switching effect cannot be
clearly explained by the presented measurements alone, the
strong difference in the retention times and the different
voltage polarity indicate that oxygen vacancies dominate the
respective switching behavior in type F devices, while mobile
oxygen ions lead to resistive switching in type R devices.

In order to be able to make suitable statements about possible
applications of the memristive devices in neuromorphic systems
and to tailor the device characteristics accordingly, a statistical
investigation of relevant device parameters is required. As
relevant device parameters we considered the thickness of the
active HfOx layer (dHfOx), the active area size A, and the
concentration of mobile ions N. The results of that
investigation are shown in Figure 4. In the cumulative
distribution function (CDF) of the resistance of type R devices
(Figure 4A) and of type F devices (Figure 4B) the resistances
were obtained from voltage sweep measurements by calculating
the corresponding median values and the standard deviations.
The resistance obeyed a lognormal distribution for all examined
devices. For devices of type R (cf. Figure 4A) the resistance
distributions for area sizes from 100 to 1,225 µm2 are shown. For
the devices of type F the different curves in Figure 4B originate
from the different dHfOx . As a result, we found that for devices of
type R the resistance window decreased with increasing active
area size A which can be attributed to the decreasing rectifying
ratio (further details are in the supplement). Furthermore, the
relatively small width of the CDF curve was observed for type R
devices indicating a high device uniformity. For the devices of
type F, the low resistant states show a steeper change in the CDF
curve than the high resistant states. Even though the found
variations in the resistances are small, the devices with a HfOx

thickness of 5 nm show here the best variability.
To be able to make detailed statements about the requirements

to be met by the physical device parameters, the influence of the
variability in relation to the physical parameters must be
examined. Therefore, normalized standard deviations of the
devices were determined and plotted as a function of the
active volume, i.e., the layer thickness of the active HfOx layer
times the device area. The obtained results for both types of
devices are shown in Figure 4C. The figure shows the different
measured variabilities for the devices of type R (triangular data
points) and the devices of type F (circular data points) as a
function of the active volume of the device. For devices of type R it
appears that the variability is only weakly affected by increased
area size. Here the normalized standard deviation of 0.2 is quite
constant over the investigated area sizes (see the dashed black line
in Figure 4C). However, for devices of type F a parabolic curve
best describes the found trend which indicates a clear optimum at
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approximately 2.6 · 103 μm2 · nm for the HRS and 2.73 · 103 μm2 ·
nm for the LRS. This means that a reduction from dHfOx � 8 nm to
dHfOx � 2 nm increases the optimal device area from Adevice �
(18 × 18) μm2 to Adevice � (36 × 36) μm2. Thus, the trend can be
observed that with extremely small layer thicknesses, a larger area
leads to a more stable device behavior.

3.2 Resistive Switching Mechanism and
Device Requirements
A sound understanding of the resistive switching mechanism is
important to enable a targeted design of the memristive devices
for application in neuromorphic systems. For this reason, the
device model described in Physics Based Device Model was used
to interpret the experimental results described above. The
obtained results are shown in Figure 2C. Therein the
experimental I-V curves are compared with simulated curves.
The used simulation parameters are summarized in Table 1. In
both cases, i.e., in the case of the filamentary (type F device) and
the interface-based device (type R device), one can see quite
good agreement between simulation model and experiment.
The main difference between the two I-V curves in the
simulation model comes from (i) differences in concentration
and species of mobile ions due to stoichiometric differences
between Hf and O, (ii) different active areas that are responsible
for the switching behavior (cf. Figure 2C), and (iii) the lowering
of the Schottky barrier and the change of the ideality factor. In
order to understand more exactly the underlying switching
mechanisms that lead to the different device characteristics,

the mentioned points (i–iii) will be discussed in the following in
more detail.

3.2.1 Schottky Barrier Height Lowering
From the measured I-V curves the minimum and the maximum
values of the variation of the Schottky barrier were determined.
Therefore, Eq. 11 was adapted to the experimental data at the
voltage interval ranging from 0 to 100 mV for both device types.
Furthermore, we made the assumption that the resistance of the
device does not change in that interval. As a result, we found that
the values for the Schottky barriers vary between 65meV and
250meV for the filamentary device F (upper graph in Figure 2C),
whereby a barrier variation of 615meV and 708meV was
obtained for the area-based device R (lower graph in
Figure 2C). In addition, the fit procedure also considered the
ideality factor as an adjustable parameter, whereby we obtained
5.0 and 4.54 for filamentary device F and 3.9 and 4.45 for the area-
based device R. A key finding from that analysis is that area-based
device has a much higher Schottky barrier, while for both devices
a strong variation of the Schottky barrier is observed. In order to
analyze that finding in more detail, simulations were carried out
with a maximal barrier lowering of 200meV . The results of the
simulations for the two device types are shown in Figure 5. The
obtained changes in the resistance value for the type R
(Figure 5A) and type F devices (Figure 5B) are shown. For
this purpose, the Schottky barrier of the high ohmic state (see
indicated ϕHRSB in the figures) was used as a starting value and the
barrier height was successively reduced, i.e., ΔϕB � (ϕHRSB − ϕLRSB ).
This confirms the experimentally observed finding of a strong

FIGURE 4 | Resistance distribution for different physical device parameters in type R devices (A), and type F devices (B). (A) CDF for different active device area
sizes of device type R. The arrows point to the direction of the increasing area. (B)CDF for different HfOx thicknesses in type F devices. (C)Device variability (σ/μ) in terms
of physical device parameters. The variability of type R devices is marked with triangles, and type F devices with circles. Red color for high resistance states, and blue
color for the low resistance were used. The fitted curves are shown with dashed lines. For type F devices a parabolic trend was observed, which shows a correlation
between the area and the thickness of the HfOx in the variability of devices.
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dependence of the resistance change of the devices on the
maximum barrier lowering for both types of devices. Two
types showed different switching mechanisms: filamentary-
and interface-type. However, Schottky contact adjustment was
an essential factor in resistive switching behaviors for both typem
F and type R devices. Thus, it can be stated that the Schottky
barrier change is the main reason for the switching behavior of
the two different memristive devices, which is in good agreement
with previously published data (Hansen et al., 2015; Hardtdegen
et al., 2018).

In fact, a significant influence on the Schottky barrier height
and therewith an important technology parameter is the material
used for the electrode and the oxide layer. Since the same
electrode material (Au) was used for both types of devices, the
observed difference can only come from the HfOx layer. In this
respect, the difference is mainly in the layer quality due to the
different manufacturing processes that we used for the two
devices. This has a particular effect on the number of oxygen
ions and vacancies, which we will discuss in more detail below.
However, a qualitative indicator of contact quality is the
asymmetry between the minimum and the maximum current
values in the I-V characteristics and the ideality factor n of the
contacts. Here we observe that n is lower for the type R devices
than for the type F devices and the type R devices show a clear
asymmetry and therefore a stronger rectifying characteristic. To
investigate this point, the asymmetry as a function of the barrier
lowering ΔϕB is shown in Figure 5C. The asymmetry was
determined by the following formula:
[(Imax − Imin)/(Imax + Imin)]. As a result, we found that the
barrier lowering of the area-based devices does not affect the

asymmetry, whereas 100mV of the type F devices is sufficient to
completely destroy the asymmetry.

3.2.2 Concentration of Mobile Ions
One of the most important parameters for the resistance
switching mechanism of memristive devices is the
concentration of mobile ions. In the simulation model we
have, therefore, investigated the concentration of mobile ions
in the HfOx layer as a further central device parameter. It turned
out that for the rectifying device R a constant low concentration
of negatively charged oxygen ions (Nmin � Nmax � 1023 m−3) best
describes the experimental I-V curve, where a variation of
positively charged oxygen vacancies from Nmin � 4 · 1024 m−3
to Nmax � 2 · 1027 m−3 for the filamentary device F gives the
best agreement with the experiment (cf. Figure 2C). These
obtained results are in good agreement with previous
investigations (Dirkmann et al., 2016; Hardtdegen et al., 2018)
and support the model outlined in Figure 2A. In order to
investigate these variations, the concentration of oxygen
vacancies was varied in the range from 5.2 · 1025 m−3 to 2.5 ·
1027 m−3 for F type device and a variation from 1 · 1022 m−3 to
1 · 1024 m−3 of oxygen ions were used for the rectifying device
type R. The simulation results are summarized in Figure 6.

Figure 6A shows I-V curves for the filamentary device with
different mean concentrations of oxygen vacancies. In particular,
two major trends for the change in oxygen vacancies can be seen:
(i) the hysteresis shows a clear variation with the change of the
oxygen vacancies, and (ii) the values for set and reset voltages
become smaller. To interpret these two properties in more detail,
Figure 6B shows the ratio RHRS/RLRS at −0.1 V as a function of the

FIGURE 5 | Influence of the Schottky barrier height lowering ΔΦB on the device resistance: the resistance value as a function of Schottky barrier lowering for type R
devices (A) and type F devices (B).ΦHRS

B is the inertial Schottky barrier height for the respective R and F type device. (C) Asymmetry as a function of the barrier lowering.
Strong asymmetric characteristics are observed in device R (circle) within 200meV in the barrier lowering, while the asymmetry was destroyed in device F (triangles) at
100meV barrier lowering.
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concentration of oxygen vacancies. What can be seen very clearly
is that there is an optimum of the ratio at 2.5 · 1026 m−3. The
reason for this is the threshold value of the oxygen diffusion,
which essentially determines RHRS and RLRS. For this purpose,
Figure 6C shows the state variable x as a function of the applied
voltage for the different concentrations at oxygen vacancies.
According to Eq. 7, the concentration of the oxygen vacancies
determines the change of the resistance of the active HfOx layer,
but also the ion drift (see Eq. 6), and thus the change of the state
variable x. What can be observed from the simulation is that high
oxygen vacancy concentrations cause a change in the state
variable already at very low voltage values (cf. Figure 6C).
This means that a threshold value for setting the device can
no longer be set precisely, which already leads to a reduced
resistance value for a voltage of −0.1 V. However, since threshold
values are important for the application, a precise setting of the
oxygen vacancies is an important device parameter that should be
chosen carefully.

The results for the rectifying memristive device under varying
concentrations of oxygen ions are shown in Figure 6D. Here it
can be seen that the concentration of oxygen ions has an effect on
the change of the resistance value as well as on the retention
characteristics. Thus, at extremely low concentrations of oxygen
ions, only small hysteric effects are observed, while a pronounced
hysteresis is only observed at a concentration of 5 · 1022 m−3. This
concentration of oxygen ions, thus, defines a critical minimum for
memristive switching behavior.

3.2.3 Area Dependence
An experimentally important indication of the type of resistive
switching mechanism is given by the area dependence of the
devices. For this purpose, the product of area times resistance
(RA) as a function of the area of the devices is shown for both
device types in Figure 7. While the upper graph of Figure 7 is
presenting the results from the rectifying device R, the graph on
the bottom is showing the area dependency for the filamentary
device F. Here, the data points are taken from the measurements

and the dashed lines are the results of the simulation model. The
expected trend can be seen for the high resistant state of the
devices: for the filamentary device F, an area independent
behavior is seen, while a clear area dependence was found for
the rectifying device R. It is noticeable that the low ohmic state of
the rectifying device R shows a non-uniform area dependence.

FIGURE 6 | Simulated I-V curves of TiN/TiOx/HfOx/Au bi-layer memristive devices with a variation of the mean concentration of mobile ions in the HfOx layer. (A) The
variation of themean concentration of positively charged ions in the range from 5.2 · 1025 m−3 to 2.5 · 1027 m−3 is simulated for type F. (B) The ratio ofRHRS/RLRS at −0.1 V
as a function of the mobile ions. The optimum memristive hysteresis was observed at the mobile ion concentrations of 2.5 · 1026 m−3. (C) The state variable (x) as a
function of the applied voltages for different concentrations of mobile ions in the HfOx layer. Operating voltages (SET/RESET voltage and threshold voltage) in the
bi-layer memristive devices were affected by the concentration of mobile ions in the HfOx layer. (D) The variation of the concentration of negatively charged ions in the
range from 1 · 1022 m−3 to 1 · 1024 m−3 is simulated for type R. The resistance values and the hysteretic effects were influenced by the concentration of oxygen ions.

FIGURE 7 | The R · A product as a function of the device active area for
(A) type R and (B) type F. The dashed lines present simulated device models.
(A) The R · A product showed a constant behavior in HRS for type R, while an
area dependent behavior for type F (B). The area dependency of the
R · A product in LRS for device R (A) was caused by the area dependency of
the ion drift constant, which was in good agreement with the simulation
results.
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One would actually expect a horizontal line in the R · A vs. A
representation chosen here. This is relevant with the drift
constant cdrift from Eq. 8, which depends on the layer
thickness of the HfOx layer (dHfox) and the active device area
(A). While the changes in the layer thicknesses (dHfox) in the
experimentally investigated interval cause only a small change in
cdrift , the changes in the area for the rectiyfying device R have a
considerable influence on cdrift . In this case, the drift constant
(cdrift) is reduced, especially for large active areas, and thus a
smaller change in the state variable x is induced during a voltage
ramp. This in turn leads directly to a smaller change in the device
resistance, which we can also observe experimentally. Thus, this
shows that the choice of the device area has an influence on the
dynamics of the oxygen ions and vacancies, especially for the
rectifyingmemristive device. Furthermore, these results give good
confirmation of the proposed switching mechanism, i.e., area-
based switching for the R-type device and filamentary switching
for the F-type device.

3.3 Applications for Neuromorphic
Computing
The emulation of synaptic plasticity processes with memristive
devices is one of the most important application fields of
memristive devices in neuromorphic systems (Ziegler et al.,
2018). In particular, this requires the design of suitable
learning and training processes (Ielmini and Ambrogio, 2020),
which needs a targeted adjustment of the resistance states of
individual memristive devices in networks. In the following
section, it is presented that type F devices fulfill requirements
for machine learning based algorithms, whereas type R devices for
neurobiologically inspired learning schemes.

The challenge in the machine learning based algorithm is to
create suitable local learning rules that guarantee a local change of
the device state so that a requested global network functionality is
enabled. Therefore, a general framework is provided by the
Hebbian learning rule (Ziegler et al., 2015), which can be
systematized in the following equation:

dωij

dt
� f (ωij,Aj,Ai) (17)

where ωij describes the coupling strength between the pre- and
the post-synaptic neuron and Aj(i) their activities, as sketched in
Figure 8A. This formula translates Hebb’s postulate, that
synaptic connections change only when the respective pre-
and post-synaptic neurons are active at the same time. The
choice of the function f is thus decisive for the learning or
training procedure of any artificial neural network. A common
way to realize the weight update according to Eq. 17 is provided
by the delta rule (Kendall et al., 2020), which is at the heart of deep
learning neural networks:

Δωij � α · (di − yi) · pj (18)

where the coefficient α is named learning rate and is usually
positive. Furthermore, pj is the activity of the pre-neuron (input
value), yi is the activity of the post-neuron (output value), and di
the desired output value for a given input pj used during learning.

To convert that equation into hardware, the coupling strength ωij

can be represented by the conductance Gij of the memristive
device, and yj, pj, and dj by voltage- or current-dependent
functions that either increase or decrease the conductance of
the memristive device (Linares-Barranco et al., 2011). Thus, for
the implementation of memristive devices in neuromorphic
network structures via the delta rule a precise change of the
conductance in dependence on applied voltage (or current) pulses
is required (Payvand et al., 2018).

In order to investigate the resistance update behavior of the
devices used here under voltage pulsing, AC pulses trains were
used (see the sketch in Figure 8B). Therefore, a voltage train of 20
SET pulses followed by 20 RESET pulses was applied to the
devices. Furthermore, the resistance states have been determined
by a readout pulse that followed each switching pulse. The results
obtained are shown in Figure 8C for type F devices and in (D) for
type R devices. Read pulses of 1.0 and 0.1 V with a pulse width of
10 ms have been used for R and F devices, respectively. For the
reset pulse, the width was 1 ms and the amplitudes were −2 and
1.5 V for R and F devices. As a result, a gradual transition change
with multiple resistance states was observed in devices of type R,
while a more binary behavior was recorded for devices of type F
(cf. Figures 8C,D). In order to investigate the pulse behavior of
the type F devices in more detail with respect to Eq. 18, the
voltage amplitudes for SET and RESET pulses were successively
changed in each pulse, as sketched in the inset of Figure 8E. The
therewith obtained resistance change as a function of the voltage
pulse amplitudes is shown in Figure 8E. Thus, a linear change in
resistance with a successive incremental increase of the voltage
pulse height was recorded for both set and reset. Furthermore, the
resistance change was nearly symmetric in both resistance states,
presenting 0.44 and 0.56 linearity for set and reset, respectively.
Hence, this behavior fulfills nicely the requirement proposed by
equation 18 and makes type F devices, together with their
relatively good retention, perfect candidates for the hardware
realization of deep learning neural networks. In this context, bi-
layer oxide memristive devices of similar types have already
proven their performance (Yao et al., 2020).

While the delta rule underlies a variety of machine learning
systems and allows an effective implementation of Hebb’s
learning rule within artificial neural networks, there is no
explicit time dependence. However, the time dependence of
learning processes is an important parameter in biology and
determines how the synaptic connection is strengthened or
weakened (Panwar et al., 2017). Here, an important property
is the memory effect of synapses which leads to a sustained
strengthening of the synaptic connection after repeated (high
frequency) excitation named long-term potentiation (LTP).
Therefore, the respective time interval between the excitation
is required. At this respect, the diffusive ionic processes of
memristive devices and their memory behavior are unique
properties for the emulation of bio-realistic time-dependent
learning (Ziegler et al., 2018), such as spike-timing dependent
plasticity (STDP) and paired-pulse facilitation (PPF), to only
mention two important plasticity processes. Many ways to
emulate such learning schemes have been presented in recent
years with memristive devices (Wang et al., 2020). However, the
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challenge here is to select the correct voltage functions for the pre-
and post-neurons, so that an appropriate voltage pulse is applied
across the memristive device (Linares-Barranco et al., 2011;
Ambrogio et al., 2013). To investigate this for the type R
device, we took a closer look at the PPF scheme. The results
obtained,therefore, are shown in Figure 8F. Two identical
sequential SET pulses were applied using different time
intervals. In this study, the PPF ratio was defined as the
incremental percentage change in the resistance after the first
and second pulses. As a result, we found, the longer the time
interval is, the smaller the resistance changes with a linear trend.
This, particularly, corresponds to the enhanced back diffusion of
oxygen ions in R type devices, as discussed above, and resembles
well with biology.

4 CONCLUSION

In summary, we have presented two bi-layer TiN/TiOx/HfOx/Au
memristive devices. Depending on the respective sputtering
method, we were able to realize different switching
mechanisms. While mobile oxygen ions are responsible for
resistance switching in type R devices, oxygen vacancies cause
the switching mechanism in type F devices. Using a statistical
analysis of the devices and a physical device model, we have
investigated the relevant technology and device parameters, and
related them to the electronic behavior of the devices. In Figure 9
these parameters are graphically summarized and their relevance

for the respective device type is shown. As you can see from that
figure for devices of type R, whose resistive switching is induced
by mobile oxygen ions, the device area (Adevice), the Schottky
barrier (ϕB), and the ratio dHfOx/dTiOx are important. In devices of
type F, whose switching mechanism can be traced back to
filamentary oxygen vacancies, also the Schottky barrier (ϕB) is

FIGURE 8 | (A) Sketch of synaptic plasticity process. (B) The waveform of voltage pulse trains; 20 SET pulses followed by 20 RESET pulses. A readout pulse
followed each switching pulse. The resulting change in resistance states under the voltage train is shown in (C) for type F, (D) for type R. The linearity in resistance change
was improved in the type R. (E) The resistance as a function of the amplitude of SET/RESET voltages in type F. The amplitude of the applied voltage for a SET (RESET)
was decreasing (increasing) to lead a next level in the resistance, and a readout voltage followed each switching voltage pulse. The multistate resistance was
observed along with the symmetricity between LRS and HRS. (F) PPF as a function of interval time between two sequent switching voltage pulses in type R. The dashed
line presents a fitted curve in the experimental data (blue). Increasing the time interval results in the weaker resistance change.

FIGURE 9 | Relevant technology and device parameters to realize a
desired resistive switching behavior in the TiN/TiOx/HfOx/Au bi-layer
memristive devices.
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important. But, for that devices the product ofAdevice and dHfOx ismore
in the focus for good device performance, than Adevice or dHfOx alone.
For both types, however, it is important to adjust the concentration of
themobile charge carriers precisely to reach a reliable performance. In
general, it can be concluded that the respective device properties must
always be tailored to the specific application. Therefore, we hope that
the framework described here helps to identify the relevant technology
parameters for that purpose.
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Resistive switching random access memory (RRAM) has emerged for non-volatile

memory application with the features of simple structure, low cost, high density, high

speed, low power, and CMOS compatibility. In recent years, RRAM technology has

made significant progress in brain-inspired computing paradigms by exploiting its unique

physical characteristics, which attempts to eliminate the energy-intensive and time-

consuming data transfer between the processing unit and the memory unit. The design

of RRAM-based computing paradigms, however, requires a detailed description of the

dominant physical effects correlated with the resistive switching processes to realize

the interaction and optimization between devices and algorithms or architectures. This

work provides an overview of the current progress on device-level resistive switching

behaviors with detailed insights into the physical effects in the resistive switching layer

and the multifunctional assistant layer. Then the circuit-level physics-based compact

models will be reviewed in terms of typical binary RRAM and the emerging analog

synaptic RRAM, which act as an interface between the device and circuit design. After

that, the interaction between device and system performances will finally be addressed

by reviewing the specific applications of brain-inspired computing systems including

neuromorphic computing, in-memory logic, and stochastic computing.

Keywords: memristive devices, RRAM, physics-based models, brain-inspired computing, neuromorphic

computing, computing in-memory, stochastic computing

INTRODUCTION

In the 1960s, the resistive switching phenomenon in metal–insulator–metal structure was first
reported by Hickmott in binary oxides (Hickmott, 1962). As the development of material
processing and device integration technologies, the research into the resistive switching in
memristive devices was revived in the late 1990s (Asamitsu et al., 1997; Sawa, 2008; Waser et al.,
2009; Wong et al., 2012; Yang et al., 2013; Pan et al., 2014; Jeong et al., 2016; Wu H. et al., 2017).
The resistive switching random access memory (RRAM) are widely investigated in recent years
for their potential to be used as a promising candidate for non-volatile memories (Asamitsu et al.,
1997; Sawa, 2008; Waser et al., 2009; Wong et al., 2012). A typical RRAM device consists of a metal
oxide-resistive switching layer sandwiched between two electrodes. The resistance of the device can
be switched reversibly between the high-resistance state (HRS) and the low resistance state (LRS).
Up to now, significant technical advances have been achieved in the device performance of RRAM,
including great scalability (<10 nm), fast speed (<1 ns), low operation voltage (<1.5V) and current
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(<1 µA), high endurance (>1012 cycles), an long retention (>10
years at room temperature for binary state RRAM) (Lee et al.,
2008, 2010, 2012; Chen et al., 2009; Chien et al., 2010; Govoreanu
et al., 2011; Wang et al., 2012; Li K. S. et al., 2014).

So far, to reveal the origins of resistive switching in RRAM, a
large variety of physical mechanisms have been proposed leading
to the resistive switching effects such as oxygen vacancy (Vo)
generation and recombination, ion migration, charge trapping
and de-trapping, thermal reaction, insulator-to-metal transition,
charge transfer, and so on (Russo et al., 2007; Wei et al., 2008;
Degraeve et al., 2010; Kwon et al., 2010; Goux et al., 2011; Kang
et al., 2015). Multiple experimental techniques have been utilized,
so far, in order to identify the resistive switching mechanism
such as high-resolution X-ray photoelectron spectroscopy (XPS),
scanning electron microscopy (SEM), conductive atomic force
microscopy (C-AFM), and transmission electron microscopy
(TEM) (Baek et al., 2004; Janousch et al., 2007; Yun et al.,
2007; Yang et al., 2012). These techniques are widely used in
the conductive-bridge random access memory (CBRAM) with
fruitful findings. However, for the metal oxide-based RRAM, it
is difficult to directly observe the Vo defects. It is now commonly
accepted that the switching behavior inmetal oxide-based RRAM
is due to the formation and rupture of the conductive filament
(CF) composed of Vo in the resistive switching layer (Sawa, 2008;
Waser et al., 2009;Wong et al., 2012; Pan et al., 2014;WuH. et al.,
2017).

In the early work, the RRAM devices with single resistive
switching layer are widely studied. The typical binary oxides
that exhibit resistive switching characteristics includes HfOx,
Al2O3, TaOx, TiOx, and NiO (Sawa, 2008; Waser et al., 2009;
Wong et al., 2012; Yang et al., 2013; Pan et al., 2014; Jeong
et al., 2016; Wu H. et al., 2017). To specifically optimize the
device performance, RRAM devices with multi-layer electrolyte
stack are also proposed and investigated such as HfOx/Al2O3,
Ta2O5/TaOx, and HfOx/TaOx, where one electrolyte layer acts
as the resistive switching layer, and the other acts as an assistant
layer to enhance the performance. After inserting an assistant
layer, the device uniformity and reliability can be improved, and
other additional function such as self-compliance, self-rectifying,
and even analog switching can be realized (Lee et al., 2011; Hsu
et al., 2014; Azzaz et al., 2015; Chou et al., 2015; Zhao et al.,
2015, 2016; Woo et al., 2016a; Wu W. et al., 2017; Wu et al.,
2018). Compared with the typical binary switching with two
stable resistance states, analog switching is an attractive device
property to mimic the function of biological synapse.

Due to the unique characteristics, RRAM has been suggested
for use as building blocks for brain-inspired computing systems
(Yang et al., 2013; Philip Wong and Salahuddin, 2015; Chi et al.,
2016; Jeong et al., 2016; Yu, 2018). The brain-inspired computing
paradigms are highly desired to overcome the bottleneck of the
so-called “memory wall” from the traditional von Neumann
architecture. The brain-inspired computing aims to carry out
calculations where the data are located, which is similar to the
information processing in the human brain. The RRAM electrical
characteristics can mimic the signal processing of biological
synapse, making it feasible to be applied into neuromorphic
applications to perform energy-efficient, fault-tolerant, and

highly parallel computing tasks (Yu et al., 2012; Gao et al.,
2014, 2016; Prezioso et al., 2015; Wang et al., 2017). RRAM was
also proposed and demonstrated to implement the stateful logic,
in which Boolean logic states were operated and stored in the
resistance of RRAM (Borghetti et al., 2010; Li et al., 2015a; Huang
P. et al., 2016). With the feature of inherent variability, RRAM
shows great potential to be used as low-cost and energy-efficient
stochastic number generator enabling stochastic computing,
which emulates the generation of neural spikes processed by the
human brain in the form of long sequences of noisy voltage spikes
(Gaba et al., 2013; Suri et al., 2013; Knag et al., 2014; Moons
and Verhelst, 2014; Ielmini and Wong, 2018; Wang et al., 2018;
Carboni and Ielmini, 2019; Zhao et al., 2019). For the design
and optimization of these brain-inspired computing systems,
related physics-basedmodels and simulation platforms have been
developed to bridge the link between device, circuit, and system,
which aims to meet the requirement for the device–circuit–
system co-design (Gao et al., 2011; Guan et al., 2012; Huang et al.,
2013, 2017, 2018; Chen et al., 2017; Larcher et al., 2017; Pedretti
et al., 2017; Zhao et al., 2019; Cai et al., 2020; Liao et al., 2020).

In this work, we will review the latest advances in the design
and optimization of metal oxide-based RRAM in the applications
of brain-inspired computing systems based on physics-based
models. First, the physical effects in both the resistive switching
layer and the multifunctional assistant layer of RRAM are
discussed in the Physical Effects of Resistive Switching Behaviors
in Resistive Switching Random Access Memory section. Then,
the physics-based compact models of typical binary RRAM
and the analog synaptic RRAM are presented in the Physics-
Based Compact Models of Resistive Switching Random Access
Memory section. In the Applications in Brain-inspired Computing
section, the design and optimization of system applications
of RRAM in novel brain-inspired computing paradigms are
explored. The reviewwill be concluded with a short summary and
future prospect.

PHYSICAL EFFECTS OF RESISTIVE
SWITCHING BEHAVIORS IN RESISTIVE
SWITCHING RANDOM ACCESS MEMORY

Understanding the dominant physical effects in the resistive
switching behaviors in metal oxide RRAM is crucial for designing
and optimizing the device performance. In this section, we will
first address the physical effects correlated with the resistive
switching layer in detail, and then discuss the various functions
of assistant layers in the bilayer device.

Physical Effects in the Resistive Switching
Layer
The resistive switching of the metal oxide RRAM has been
attributed to the filamentary modification of conduction
properties since the early 2000s (Waser et al., 2009; Wong
et al., 2012; Pan et al., 2014). To reveal the physical effects
and the resistive switching mechanism of Ox-RRAM, multiple
experimental techniques have been utilized. For the metal oxide-
based RRAM, although it is difficult to directly observe the
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Vo defects, the resistive switching behaviors can be detected by
the change in electrostatic potential distribution through in situ
electron holography, which is based on the change of transmitted
electron wave phase triggered by the accumulated charges in the
sample (Li et al., 2017). This is because the electrons traveling
along the CF would change the potential of the HfOx layer. The
in situ low-energy-filtered images can then be used to describe
the change in oxygen concentrations in HfOx layer. Based on this
technique, the bias-induced phases featuring 1ϕ

bias(x,y) of the
TiN/HfOx/AlOy/Pt structure in the forming process are shown
in Figure 1A. During the forming process, positive bias is applied
to the TiN top electrode (TE), and the increasing bias would
enhance the positive potential with the most positive charges
aggregated near the interface between the HfOx and AlOy layers.
With the bias increasing over 3V, the potential of the AlOy layer
changes to nearly zero and then becomes negative. At the same
time, in the lower half of the HfOx layer, a negative potential
emerges and then diffuses vertically toward TE. The positive
charges originated from Vo, while the negative potential can be
attributed to the transport electrons residual in the migration
path, which can be used to track the CF formation process in
the HfOx layer. The RESET process can also be monitored by
the hologram images similarly, which demonstrates that the CF
starts to rupture from the interface of TE and the HfOx layer.
Based on the above experimental results, the CFs in the resistive
switching layer are formed due to the fact that Vo are generated
and ruptured at the top interface of the HfOx layer.

To explain the physical origin of generation and rupture of
the CF, multiple switching mechanisms have been proposed in
recent years (Russo et al., 2007; Wei et al., 2008; Degraeve et al.,
2010; Kwon et al., 2010; Goux et al., 2011; Kang et al., 2015).
Combining with the experimental evidence, one widely accepted
physical mechanism is the generation and combination of Vo
with O2− (Gao et al., 2011; Guan et al., 2012; Huang et al., 2013;
Kang et al., 2015). Based on the mechanism, the microscopic
physical processes of switching of the typical TiN/HfOx/Pt device
are shown in Figure 1B. In the SET process, O2− are ionized
from the HfOx lattice accompanied by the generation of Vo.
The O2− will be driven toward TE under the electric field and
restored at the oxygen reservoir, which is the TiN electrode in
the TiN/HfOx/Pt structure. The probability of above microscopic
processes can be described as Guan et al. (2012):

Pg = f · exp(−
E0 − 1ϕ

kBT
) (1)

where f is the vibration frequency of the oxygen atom, E0 denotes
the average active energy of VO generation or O2− hopping, 1φ

is the barrier height reduction induced by the electric field, and
T is the local temperature. In the RESET process, the electrons in
the vicinity of Vo are depleted under the electric field, and then
the positively charged Vo would recombine with the dissociated
O2− released by the oxygen reservoir. The recombination of Vo
and O2− finally results in the rupture of CF.

For other resistive switching materials, such as TiO2 and
Ta2O5, the phase transition also takes place during the resistive
switching (Wei et al., 2008; Kang et al., 2015). The phase

transitions in TiO2 and Ta2O5 were calculated by ab initio
calculations as shown in Figure 1C (Kang et al., 2015). In
the Ta2O5-based RRAM, the phase transitions take place
between Ta2O5 and TaO2, and Ta2O5 is semiconductive, while
TaO2 is metallic. During the resistive switching, the CF is
composed of both Vo and TaO2. Although the effects of Vo
generation/recombination and phase transition coexist during
switching, the Vo generation/recombination is the dominant
effect based on the device simulation results (Zhao et al., 2016).

Based on the basic principle of Vo generation and
recombination, the bipolar and unipolar switching characteristics
can be explained by a unified model (Gao et al., 2011). Their
physical origins of CF formation and rupture between the
bipolar switching and unipolar switching are roughly similar.
The difference is the location that stores and releases O2−. In
the unipolar RRAM, the dissociated O2− would be absorbed or
released by the easily reduced oxide clusters near the CF, and
several different phases of oxide clusters coexist in the electrolyte
material. The O2− will be thermally activated and recombine
with the neighbor Vo in the RESET process. For both bipolar and
unipolar RRAM, the electron transport in the CF is metallic, and
the conductivity decreases with increasing temperature following
the Arrhenius law (Ielmini et al., 2010). In the region with low
Vo concentration, the electrons hop among the dispersive Vo,
and the hopping rate can be calculated by the Mott hopping
model (Mott and Davis, 1972). Therefore, the I–V characteristics
are nonlinear for the HRS device as shown in Figure 1D. Based
on the physical effects of resistive switching, the kinetic Monte
Carlo simulations can be performed to investigate the switching
dynamics in atomic scale. Figure 1D shows the CF evolution
processes during RESET and SET processes (Huang et al., 2013).
In the RESET process, the CF first ruptures at the interface
between the TiN and HfOx layer, and then the gap region
enlarges gradually. In the SET process, a thin CF first connects
the electrode and residual CF, and then the thin CF would grow
along the radius direction.

Even the filament effect and the correlated physical effects
have been widely accepted for resistive switching, the direct
experiment evidences of the physical effects in microscopic
characterizations are still lacking. Future breakthroughs in
atomic level characterization technologiesmay finally help people
to clarify the underlying physical origins.

Device Optimization With Multifunctional
Assistant Layer
The RRAM characteristics can be improved or modified by
inserting an assistant layer adjacent with the resistive switching
layer, which composes a multifunctional electrolyte stack. A
typical example is the Ta2O5/TaOX bilayer stack, which aims
to improve the endurance characteristics (Wei et al., 2008; Lee
et al., 2011). In the Ta2O5/TaOX stack, the oxygen-deficient
TaOX layer, instead of TiN electrode in the HfOX-RRAM, acts
as the oxygen reservoir. The generated O2− in the SET process
would be absorbed by the TaOx layer, in which part of O2−

will continue hopping in the TaOx layer under the electric field,
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FIGURE 1 | (A) The bias-induced phases featuring 1ϕ
bias(x,y) in the forming process of HfOx- resistive switching random access memory (RRAM). The intrinsic inner

potential is removed by using the phase image of the pristine sample without bias. The dash curve is the boundary between the positive and negative phases. TE, top

electrode; BE, bottom electrode. (B) Physical effects during SET and RESET processes. (C) Ab initio calculation results for various metal oxide materials such as

HfO2, TiO2, and Ta2O5. (D) I–V curves and the corresponding CF evolutions simulated by the kinetic Monte Carlo method during RESET and SET processes.

Reprinted from Kang et al. (2015), Huang et al. (2013), and Li et al. (2017).

while the rest will take the redox reaction with the oxygen-
deficient TaOx and be stored as lattice oxygen. The oxygen
concentration in the TaOx layer increases as O2− gradually
oxidizes TaOx, leading to the resistance increase in the TaOx
assistant layer. In this way, the current during the SET process
can be adjusted dynamically and prevented from being too
large. This can explain the self-compliance behavior observed
in measured I–V characteristics in Ta2O5/TaOX-based RRAM
as shown in Figure 2A (Zhao et al., 2016). Besides that, one
remarkable characteristic of Ta2O5/TaOX-based RRAM is the
superior endurance performance. The endurance can reach up
to 1012 as shown in Figure 2A (Lee et al., 2011). Moreover, the
endurance can be enhanced when choosing lower oxygen partial
pressure during the deposition of TaOx. The enhanced endurance
can be attributed to the capability of TaOx to take redox reactions
with O2−, which can then be stored concentrated near CF in the
TaOx layer. Figure 2A schematically shows the endurance model
in the bi-layered TaOx-based RRAM (Zhao et al., 2015). During
the resistive switching process, the concentrated distribution
of absorbed oxygen guarantees the sufficient supply of O2− in
each RESET cycle, otherwise, the O2− would distribute more
dispersively in the oxygen reservoir. If the TaOx material is easy

to take redox reactions with O2−, the endurance can be highly
enhanced, otherwise the endurance behavior would be degraded.

For HfOx-based RRAM, recent studies demonstrated that
by introducing a thin Al2O3 layer into the HfO2-based RRAM
devices, the switching uniformity, memory window, as well as
the operating current can be improved compared with the single-
layer HfOx RRAM (Yu et al., 2011; Goux et al., 2012; Azzaz et al.,
2015). Figure 2B shows the LRS and HRS retention behaviors for
the HfO2/Al2O3 device at 200◦C. The comparison between the
retention of HfO2 and HfO2/Al2O3 are also shown in Figure 2B.
The insertion of the Al2O3 assistant layer greatly improves the
device thermal stability. This can be explained by the increase
in Vo diffusion barrier due to the incorporation of Al into the
HfO2 matrix.

The assistant layer can also help the device realize self-
rectifying property. Due to the sneak current issue in the RRAM
crossbar array, the maximum array size is limited, which requires
an additional selector to suppress the current crosstalk. One
solution to reduce the cell area and fabrication complexity
is to construct a RRAM device with highly non-linear I–V
characteristics, which is also known as selector-less or self-
rectifying. A Ta/TaOx/TiO2/Ti RRAM cell is constructed with a
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FIGURE 2 | (A) The self-compliance and enhanced endurance characteristics of Ta2O5/TaOX-based RRAM and its schematic endurance model. (B) The retention

characteristics at 200◦C of the HfO2/Al2O3 device and its comparison with the single-layer HfO2 device. (C) Self-rectifying characteristics in the TaOx/TiO2-based

RRAM with 103 rectifying ratio and the schematic mechanism. (D) Analog switching behavior under both SET and RESET pulses in the HfOx/TaOx RRAM. Reprinted

from Lee et al. (2011), Azzaz et al. (2015), Chou et al. (2015), Zhao et al. (2015, 2016), Wu W. et al. (2017).

high self-rectifying ratio up to 103 for sneak current suppression
(Chou et al., 2015). Figure 2C shows the I–V characteristics of the
proposed device. No obvious SET transition is observed during
the switching from HRS to LRS. Compared with a positive-bias
current at 2V, the device shows a three-order rectifying ratio at
+2V and −2V. Different from the filamentary switching in a
single-layer device, the switching mechanism in the TaOx/TiO2-
based device can be attributed to the O2− migration under the
electric field and the Schottky barrier modulation at the Ta/TaOx
interface as shown in Figure 2C.

Compared with the abovementioned binary RRAM with two
stable resistance states, the analog RRAM with hundreds of
resistance levels is an attractive device to mimic the function
of biological synapse for neuromorphic computing. A gradual
resistance change requires analog modulation of CF evolutions,
while it contrasts with the presence of the gap, as the current
depends exponentially on the band offset and thickness of the
gap. Another issue that contrasts the analog switching is the
exponential dependence of physical effects on the field (Larcher
et al., 2017). Mitigating the strong field dependence is the key to
achieve analog switching, which can be achieved by introducing
an assistant layer in the device. Several methods have been
used to form the assistant layer such as introducing an AlOx
layer in the HfOx-based RRAM (Woo et al., 2016a; Chuang
et al., 2019), introducing a SiO2 layer at the TiN/TaOx interface
(Wang et al., 2016), insertion of a TiO2 layer in the TaOx/Ti
interface (Gao et al., 2015), and the Ar plasma treatment at
the Ti/HfO2 interface (Ku et al., 2019). Figure 2D shows the
analog switching behavior by introducing an oxygen-deficient

TaOx layer in the HfOx/Ti RRAM cell at room temperature (Wu
W. et al., 2017; Wu et al., 2018). For the HfOx/Ti RRAM cell,
the experimental measurements indicate that when increasing
the temperature in the HfOx layer, the abrupt switching changes
to analog switching due to the thermal effect. Based on this
principle, a thermal enhanced layer is designed with less thermal
conductivity than metal, therefore it will confine the heat in the
HfOx switching layer. In the HfOx/TaOx RRAM, the DC I–
V characteristics exhibits gradual current change in both SET
and RESET processes. For the operation scheme of identical
pulses, the gradual conductance modulations are achieved in
both SET and RESET processes as shown in Figure 2D. Besides
the thermal effect, simulations also show that the slower diffusion
of O2− in the bi-layer device would benefit the gradual resistance
change (Larcher et al., 2017). The slower diffusion is due to the
lower electric field within the oxygen reservoir layer, originated
by the voltage distribution and the lower dielectric constant of
the assistant layer compared with the resistive switching layer.
Therefore, a careful thermal and electric design is required to
achieve analog switching behavior.

For the analog RRAM, the distribution of multi-level
resistance states is widely spread. The wide conductance
distribution causes the overlap of neighboring conductance
states, resulting in retention degradation (Huang et al., 2018). In
addition, after programming the device to the target conductance
state, the conductance of the device may experience a notable
change in a short time scale, forming tail bits (Xu et al., 2020).
This is called conductance relaxation effect, which is different
from retention degradation. The relaxation effect and retention
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degradation are mainly due to the stochastic diffusion of O2−

and Vo, thus can be suppressed by the restriction of O2− and
Vo diffusion. For instance, Al doping in HfOx-based RRAM
and HfO2/Al2O3 multilayer stack are used to suppress the Vo
diffusion (Chen et al., 2013; Fantini et al., 2014). However, doping
may introduce dopant variations with the device scaling down
to a small size. A post annealing process after Hf/HfO2 RRAM
formation was used to form an HfOx interface layer to enhance
retention by slowing down the oxygen diffusion (Huang X. et al.,
2016). Devices with worse state instability and retention need a
short refresh interval to ensure accuracy of neural network, which
brings extra power consumption.

PHYSICS-BASED COMPACT MODELS OF
RESISTIVE SWITCHING RANDOM ACCESS
MEMORY

The compact model is very important for the development
of emerging devices. It can provide fast calculations of the
device electrical properties and be implemented into standard
IC design software to evaluate the performance of the target
system. Moreover, a compact model involving the device
physics can act as an interface between the device and the
circuit. For RRAM device, based on the understanding on
the microscopic properties of CF evolution and the correlated
device characteristics, the physics-based compact models are
investigated to capture the essential characteristics, which can be
used to design and optimize the brain-inspired systems.

Binary Resistive Switching Random
Access Memory
The first model of RRAM is the memristor model proposed
by Chua (1971). Then a physical model for the device that
behaves like a perfect memristor is proposed with a simplified
explanation of current–voltage anomalies (Strukov et al., 2008).
With the development of understanding of physical effects
in RRAM, a compact model by considering the generation
and recombination of Vo is proposed and implemented in
Ngspice (Guan et al., 2012). Numerical compact models have
also been developed based on the temperature and field-driven
ion migrations (Larentis et al., 2012; Kim et al., 2013). By
invloving the electro-themal effect, a physics-based compact
model is proposed by bridging the switching behaviors with the
evolution of CF configuration (Huang et al., 2013). The model
is implemented into HSPICE and used for simulation of large-
scale circuit by Verilog-A. In this section, this physics-based
electro-thermal model will be discussed in detail.

Based on the kinetic Monte Carlo simulations in Figure 1D,
the model with 3-D CF evolution process is developed as shown
in Figure 3A (Huang et al., 2013). For the initial state of RESET,
a cylindrical CF with the diameter w0 bridges two electrodes.
The RESET process is modeled by the increase in gap distance x
between the CF tip and the top electrode when the bias increases.
The increase rate of x is expressed as dx/dt. The x determines
the HRS resistance, and dx/dt determines the RESET speed.
The dx/dt can be calculated by the slowest process among: (1)

electrode releasing O2−, (2) O2− hopping in the switching layer,
and (3) recombination between O2− and VO.

As an example, to illustrate the modeling process, we consider
the O2− hopping process as the slowest process, which is also
called the dominant process. During RESET, the amount of O2−

flowing through the unit area of cross-section per unit time can
be written as:

JO2− = 1/2(Ph(E,T, dt)− Ph(−E,T, dt))/(a2dt) (2)

where JO2− is the O2− flow rate, a is the distance between two VO.
The coefficient 1/2 is due to the two hopping directions of O2−.
In dt, the amount of O2− hopping to VO is:

NO2− = JO2−π(w0/2)
2dt (3)

and the amount of VO that take recombination reaction with
O2− is:

NVO = π(w0/2)
2dx/a3 (4)

Combining Equations (3) and (4), we can get:

dx

dt
= af exp(−

Eh

kBT
) sinh(

αhZeE

kBT
) (5)

where Eh is the hopping barrier of O
2−, E is the electric field, αh is

the enhancement factor of the electric field for the lowering of Eh,
and Z is the charge number of oxygen ion. If the O2− releasing
or Vo recombination is the dominant process, the dx/dt can be
calculated similarly.

For the SET process, the CF evolution is divided into two
steps as shown in Figure 3A. First, a thin CF would grow from
the residual CF and then connect to the electrode. Then, the
thin CF would expand laterally along the radius direction. The
reduction speed of gap distance dx/dt and the increase in speed
of CF radius dw/dt can be calculated similarly, which are the
two factors that influence the SET operation. The equivalent
circuit of RRAM is shown in Figure 3B. It consists of a parallel
capacitance (Cp), a parallel resistance (Rp), contact resistance
(Rc), and the resistive switching elements (Rs). The conduction of
the switching element can be modeled with metallic conduction
in the CF region and hopping conduction in the gap region as
shown in Figure 3C (Huang et al., 2013). The temperature also
plays a very important role in resistive switching. In the model,
we assume uniform temperature in the electrolyte layer, and the
temperature at LRS can be written as Russo et al. (2009):

T = T0 + IVRth (6)

where T0 is the environment temperature, Rth is the effective
thermal resistance of the electrolyte. Involving the model
of conduction and temperature, the I–V characteristics can
be calculated.

The calculated DC and AC electrical characteristics are
shown in Figures 3D,E. The compact model can accurately
reproduce the gradual RESET and the abrupt SET in the DC
I–V characteristics. The transient response current waveforms
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FIGURE 3 | (A) Schematic of the conductive filament (CF) evolution model in the RESET and SET process. (B) Equivalent circuit with parasitic effects. (C) The low

resistance state (LRS) and high resistance state (HRS) conduction model. (D) Measured and calculated DC and (E) AC characteristics for different operation schemes.

Reprinted from Huang et al. (2013).

for different RESET programming schemes of −2 V/500 ns and
−2.3 V/50 ns can also be successfully reproduced. The excellent
agreement between the modeling andmeasured results shows the
validity and universality of this compact model to capture the
main features of the RRAM devices. Using the model, the critical
parameters during switching can be extracted from the physical
view, thus providing design space for device optimization and
device–circuit co-design.

Besides the basic resistive switching characteristics, the
compact model for synaptic features of HfOx-based RRAM
is developed to satisfy the co-design requirements of RRAM
synapses and the CMOS neurons in the neuromorphic
computing systems (Huang et al., 2017). The conductance
change in HfOx-based RRAM can emulate the activating or
deactivating ion channels of biological synapse, and the gradual
RESET and stochastic SET can emulate the biological depression
and potentiation processes. During RESET process, multiple
intermediate states can be achieved under proper spike pulses,
and they can be divided into three stages as shown in Figure 4A

(Huang et al., 2017). Figure 4B schematically shows the model
of gradual RESET with three stages. In the first stage, with O2−

released by the electrode, the Vo density near the electrode would
decrease, resulting in the slimming of CF. The conductance in
this stage is linear with CF width, so the conductance decrease
is relatively low. In the second stage, CF is ruptured from
the tip, and the O2− released by the electrode would continue
recombining with VO in the CF. In this stage, the resistance is
approximately exponentially dependent on the gap distance, and
thus, the conductance decreases fast. In the third stage, due to
the decrease in electric field in the gap, the reaction rates of O2−

hopping and Vo recombination decreases; hence, the resistance
would tend to saturate.

The SET process in the single-layer HfOx-based RRAM is
typically abrupt; thus, only binary states can be achieved. The SET
also demonstrates the stochastic transition behavior as shown in
Figure 4D. Figure 4E shows the model of stochastic SET. The
device will be switched to LRS with the probability P after a
positive pulse, which is related with the pulse amplitude V and
pulse width Tw. The probability P can be written as:

P =

∫ Tw

0
v exp(−

Ea − αaZeV/x

kBT
)dt (7)

P follows a distribution even for the same device.
The proposed model is verified with measurement data

as shown in Figure 4C. The gradual resistance modulation
under consecutive identical pulses can be well-reproduced.
The figure indicates that more intermediate states can be
achieved with lower initial LRS, which is beneficial for synapse
application. Figure 4F shows the measured and calculated SET
voltage distributions in 1,000 cycles for the same device.
They both roughly follow a normal distribution with similar
mean value and standard variation. Good agreements between
measurements and calculations demonstrate the validity of the
model to capture the RRAM synaptic features. In addition,
the SET stochasticity can be employed to generate stochastic
numbers, which demonstrates great potential in the application
of stochastic computing. This will be further discussed in the
Stochastic Computing section.

Analog Resistive Switching Random
Access Memory
As discussed in the Device Optimization With Multifunctional
Assistant Layer section, analog RRAM devices have been realized
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FIGURE 4 | (A) Measured gradual RESET under consecutive identical pulses. (B) CF evolution model of gradual RESET. (C) Measured and calculated gradual RESET

with different initial states. (D) Measured binary stochastic SET under consecutive identical pulses. (E) Model for stochastic SET. (F) Measured and calculated SET

voltage distributions in 1,000 cycles. Reprinted from Huang et al. (2017).

by introducing an assistant layer. Many efforts have been made
to mitigate the non-ideal effects of analog RRAM including
the programming non-linearity and asymmetry, variability, and
tuning voltage sensitivity (Woo et al., 2016a; Wu W. et al.,
2017; Wu et al., 2018). Compact models for analog RRAM
have been developed to provide insights into the influence
of electrical and thermal effects of assistant layer on the
device characteristics and provide guidance for the optimization
of non-ideal effects. In addition, the compact models can
provide fast and accurate evaluation of the training accuracy.
Multiple theories have been used to explain the analog switching
behavior. One is the multiple-weak-filament theory, in which
the local Vo concentration in the CF region is lower than
the binary RRAM; thus, multiple weak CFs are assumed to
be formed due to the percolation effect (Liao et al., 2020).
The number of weak CFs and their conductivity are strongly
dependent on the Vo concentration. Another theory describes
CF with one resistive switching (RS) region and one Vo-rich
(VR) region (Cai et al., 2020). The Vo concentration varies
in the RS region during resistive switching processes, thus,
leading to the gradual resistance modulation. Based on above
theories, the key factor for analog properties is to control
the Vo concentration and distribution in the CF, and the Vo
modulation inmultiple weak CFs can be treated as the Vo density
redistribution in the RS region. The compact model with Vo
modulation in the RS region will be introduced in detail in the
following part.

In the model, the CF is modeled with the RS region and one
VR region as shown in Figure 5A. In the SET process, due to the

generation of Vo, the percentage of Vo in the RS region (1CV
+)

increases, which can be described as:

1C+

V = 1t · f · exp(−
Ea − λZeE

kBT
)(1− CV ) (8)

where CV is the Vo concentration. For RESET process, the Vo
recombination leads to the decrease in CV . Besides the kinetic
barrier Eo, the releasing of O

2− also relies on CV at the interface
of CF and the intermediate modulation layer (IML). The O2−

percentage in the RS region CO is changed by the released O2−,
which can be described as:

1CO = 1t · f · exp(−
Eo − λZeE

kBT
) ·

a

l
(1− CO) (9)

The reduced percentage of Vo in the RS region is expressed as:

1C−

V = f · exp(−
Er

kBT
) · CV · (1CO + CO) (10)

where Er is the recombination barrier. The conduction of the
analog RRAM is modeled in Figure 5B. In the RS region, the
effective conductivity can be calculated based on the effective
medium theory, while the conductivity of IML can be calculated
by evolving the O2− concentration in IML. Based on above
model, the I–V characteristics of the analog RRAM can be
calculated as shown in Figure 5C. Gradual SET and RESET
behavior can be well-reproduced by the model, which is in
good accordance with measurement data obtained from the
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FIGURE 5 | (A) The physical switching model of the analog RRAM. (B) The conduction model. (C) The measured and calculated I–V characteristics. (D) The

comparison between abrupt and gradual SET by introducing an intermediate modulation layer (IML). (E) The influence of thermal conductivity and (F) resistivity on the

analog switching behavior. (G) Physical model of state instability and retention degradation. (H) Measured and calculated evolution of read current distributions. (I)

Measured and calculated standard deviation of read current vs baking time. (J) Measured and calculated retention degradation for a long baking time at 175◦C.

Reprinted from Cai et al. (2020) and Huang et al. (2018).

TiN/TaOx/HfOx/TiN device in Wu et al. (2018). Based on
the model, the continuous conductance accumulation can be
reproduced under identical pulses as shown in Figure 5D. By
adjusting the resistivity ρ of IML, the compact model shows good
agreement with experiments about the linearity improvement.
The non-linearity of conductance is influenced by both the
electrical and thermal effects of IML. The impacts of electrical
and thermal effects of IML on potentiation and depression are
investigated as shown in Figures 5E,F. The results indicate that
reduced thermal conductivity κ enlarges the tuning window due
to the acceleration of Vo generation under high temperature,
and the switching window is reduced with increased resistivity
ρ. Increasing ρ and κ of IML both improve the linearity of
conductance tuning, but the impact of resistivity is more obvious.
Therefore, IML material with high resistivity would be more
recommended to improve the linearity for learning accuracy in
the application of neuromorphic computing.

Although analog RRAM shows great potential in weight
storage and weight updating, it suffers from serious state
instability and retention degradation issues, which greatly affect
the performance of neural network. A physics-based analytic
model is developed to describe the statistical state instability and

retention behaviors of analog RRAM (Huang et al., 2018). In the
model, the diffusion of Vo, the Brownian-like hopping of Vo
during diffusion, and the recombination of Vo are considered.
Figure 5G shows the physical model of the state instability and
retention degradation. In a relatively short time, the Vo hopping
is similar to the random Brownian movement. The Brownian-
like hopping of Vo at the critical site of the current percolation
path (CPP) results in the fluctuation of conductance, which
is also called as the state instability. In a relatively long time,
Vo diffuses along the radius direction and recombines with the
O2− released by the IML, thus the Vo concentration C(Vo) in
the RS/VR region and the corresponding conductance decrease
(case I). The diffusion of Vo from the VR region to the RS
region will increase the conductance because the cell resistance
mainly depends on the C(Vo) in the RS region (case II). To
sum up, the diffusion and recombination of Vo will result in the
retention degradation. C(Vo) in the RS and VR regions are the
key parameters to characterize the state instability and retention
degradation. The mean C(Vo) can be obtained as a function
of time by calculating the diffusion and recombination of Vo.
Figure 5H shows the measured and calculated read current
distribution at different baking times. The distribution becomes
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wide with time. The mean and standard deviation of the read
current are in good accordance with the measured data. The
measured and calculated standard deviations of the read current
at different states are shown in Figure 5I, which indicates that the
model can reproduce the statistical state instability. To further
verify the model, the 1-kb analog RRAM array is measured
under higher temperature and longer time. Figure 5J shows the
retention behavior under 175◦C of 1.2 × 104s, which agrees
well with the model prediction. The results indicate that the
mean read current of high current states decrease with time,
while the mean read current of low current states increase with
time. The model can be used to evaluate and optimize the
performance neural network. Optimized synapse structures and
refresh operation schemes can be proposed under the guidance
of the model to mitigate the performance degradation, which
can significantly enhance the reliability of the RRAM-based
neural network.

APPLICATIONS IN BRAIN-INSPIRED
COMPUTING

In the era of big data, the amount of data is explosively
growing every day especially the non-structured data such as
pattern, voice, and video. However, due to the von Neumann
bottleneck, the traditional computing paradigm has a hard
time in handling the task of a large amount of non-structured
data. Fortunately, in recent years, brain-inspired computing has
developed rapidly and has demonstrated great advantages in the
fields of recognition and information processing, which could
supplement the shortcoming of the traditional computing. In this
section, the specific applications of RRAM-based brain-inspired
computing including neuromorphic computing, computing in
memory, and stochastic computing will be introduced.

Neuromorphic Computing
Neuromorphic computing is a kind of computing paradigm for
accelerating neural networks used in data-centric computing,
which paves the way for artificial intelligence with low
power consumptions, mimicking the synapse- and neuron-
interconnected biosystems in the human brain. RRAM is widely
regarded as one of the promising candidates of artificial synaptic
device, and its crossbar structure can be utilized for the
hardware acceleration of the neural networks (Hochreiter and
Schmidhuber, 1997; Hinton et al., 2006; Russo et al., 2009;
Krizhevsky et al., 2012; Graves et al., 2013; Silver et al., 2016).
The Vo/ion-based mechanism of RRAM controlling the device
conductance can emulate the synaptic plasticity, acting as the
base for learning and memory operations of the brain. RRAM
enables high-precision synaptic weight over 6 bits, bidirectional
conductance modulation, and tiny weight accumulation, so
that a high-performance deep neural network algorithm could
be realized; besides, RRAM could also implement the basic
functions of biological synaptic, such as spike time-/rate-
dependent plasticity (STDP/SRDP) and paired-pulse facilitation
(PPF), which provides an approach to establish spike neural

networks (SNN) (Yu et al., 2012; Gao et al., 2014, 2016; Prezioso
et al., 2015; Wang et al., 2017).

In a neural network composed of neurons and synapses,
neurons are connected by synapses with different weights. A two-
layer neural network can be directly mapped to a RRAM crossbar
array, where WLs are connected to the pre-neurons, and BLs are
connected to the post-neurons as shown in Figure 6A. Through
the RRAM-based synapse, the signals sent by the pre-neurons
can be transmitted to the post-neurons. The synapse weights are
mapped to the RRAM conductance. The output current Ij at the
jth column can be written as:

Ij =

m
∑

i=1

ViGi,j (11)

where Vi is the voltage applied to the ith row, and Gi,j is the
conductance of RRAM at row i and column j. Therefore, the
weighted sum, which is a time- and energy-consuming step
for neuromorphic computing based on conventional computing
system, can be performed by the RRAM crossbar array in one
step. Generally, the integrated current at each column will be
converted to voltage pulse by the neuron circuit and sent to
the post-neuron.

The weights of the RRAM-based synapses can be updated
in two ways. The first way is based on the working mechanism
of the biological neural networks, in which the weight can
be updated based on certain modification rules, such as the
STDP (Jo et al., 2010; He et al., 2014; Du et al., 2015; Eryilmaz
et al., 2015; Prezioso et al., 2016). For an STDP synapse, the
weight update direction depends on the time difference 1t
of the spikes from the pre-neuron and post-neuron as shown
in Figure 6B (Jo et al., 2010). When spikes from the pre-
neuron are before (or after) the post-neuron, the synaptic
weight increases (or decreases). It can be found that the relation
between the change in the synaptic weight and 1t can be
well-fitted with exponential decay functions, which is similar
to the STDP characteristics of biological synaptic systems as
shown in Figure 6B. Arbitrary STDP behaviors, such as anti-
STDP, symmetric STDP, and STDP with sin decay function
can be achieved with this feature. In addition to STDP, several
other synaptic functions have been realized by RRAMs, such
as SRDP, short-term plasticity (STP), and long-term plasticity
(LTP) (Yu et al., 2012; Gao et al., 2014, 2016; Prezioso et al.,
2015; Wang et al., 2017). All these achievements are helpful to
the researcher of biological neural network and will significantly
enhance the intelligence of neuromorphic hardware. Although
various functions of biological synapse have been realized by the
RRAM, a large neural network based on such synapse update
rule is still lacking due to the fact that the working mechanism
of the brain is not clear. Moreover, for the SNN, the training
is mainly achieved using the biology-like unsupervised learning
rules, which makes it difficult to support complex practical
cognitive applications.

Another principle to update the weight is the backpropagation
(BP) learning rule, which has shown its advance in pattern
and speech recognitions. The HfOx-based RRAM synaptic
device has been demonstrated with sub-pJ energy per spike
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FIGURE 6 | (A) Schematic of the RRAM-based neural network. (B) Demonstration of the spike time-/rate-dependent plasticity (STDP) in the RRAM-based synapse

and the excitatory postsynaptic current of rat hippocampal neurons. (C) Measured gradual training process of RRAM under consecutive identical pulses. (D) Improved

linearity of conductance tuning in RRAM synaptic devices by introducing an electro-thermal modulation layer. Reprinted from Wu et al. (2018), Yu et al. (2012), and Jo

et al. (2010).

to build a neuromorphic visual system. The measured gradual
training process of RRAM under consecutive identical pulses
are shown in Figure 6C (Yu et al., 2012). According to the
BP algorithm, the desirable characteristic of the RRAM synapse
is multilevel (states > 64) and low power (<0.1 pJ/spiking)
switching, and the linear and symmetric responses of synapses
to electric pulses are required for the training process. However,
that is a quite difficult task for RRAM-based synapse. To
modulate the characteristics of the RRAM-based synaptic device,
the optimization of linearity and symmetry of conductance
modulation is essential to realize efficient training tasks. The
programming schemes can be optimized by varying the operation
voltage, pulse width, gate voltage in 1T1R structure, and
compliance current (Wu et al., 2012; Park et al., 2013; Woo et al.,
2016b; Ku et al., 2019). However, this method brings additional
circuit overhead and power consumption. Then a more favorable
solution was proposed to optimize an identical programming
scheme independent of device conductance states, and the abrupt
resistance change can be avoided (Woo et al., 2016b). Besides
the operation scheme, the non-linearity can be mitigated by
the device engineering. As has been discussed in the Device
Optimization With Multifunctional Assistant Layer section and
the Analog Resistive Switching Random Access Memory section,
an electro-thermal modulation layer has been inserted between
the top electrode and resistive layer to control the distribution of
electric field and temperature in the filament region; the linearity
of conductance tuning is improved as shown in Figure 6D

(Wu et al., 2018). However, the dynamic range decreases by
this method.

The multilevel conductance capability of the RRAM-based
synapse can impact the inference accuracy. Figure 7A shows
the impact of weight precision on the accuracy of a two-layer
fully-connected neural network for MNIST dataset (Chen et al.,
2017). At least six bits are required for online training, and
one or two bits are sufficient for offline classification. Higher
weight precision is required for complicated convolutional
neural network as shown in Figure 7B (Yang and Sze,
2019). To meet this requirement, a large ON/OFF ratio with
multiple intermediate resistance states is essential. Regarding
the issue of non-ideal device characteristics, other possible
solutions may be from the interaction and optimization between
devices and algorithms or architectures. For example, in the
incorporation with recently proposed binarized neural networks
(BNNs) based on modified BP algorithm, the impact of non-
linearity in RRAM-based synapses on system performance
can be effectively eliminated. A new BNN-based hardware
implementation approach to utilize the non-linear synaptic cells
to achieve highly efficient online training is shown in Figure 7C

(Zhou et al., 2018). Based on the presented implementation
approach, the conductance tuning non-linearity has little impact
on the recognition accuracy of neural network. However, the
binarization of weight would lead to the information loss, and the
discontinuity of its quantization function increases the difficulty
of the optimization of neural networks (Qin et al., 2020).

Frontiers in Nanotechnology | www.frontiersin.org 11 April 2021 | Volume 3 | Article 65441886

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


Zhao et al. RRAM Modeling-Based Design

FIGURE 7 | (A) Impact of weight precision on accuracy in a two-layer fully neural network for MNIST dataset. (B) Impact of weight precision on accuracy of

representative DNNs. (C) Schematic of binarized neural network (BNN) algorithm and the typical example of weight accumulation process. (D) Recognition accuracy

and normalized energy consumption change as a function of baking time. Reprinted from Chen et al. (2017), Yang and Sze (2019), Zhou et al. (2018), and Xiang et al.

(2019).

The robustness of RRAM-based neural network is related with
the reliability of the RRAM-based synapse such as retention,
endurance, and immunity to noise. The impacts of device
state instability and retention on the performance of DNN
was investigated (Xiang et al., 2019). Using the analytic model
for RRAM state instability and retention degradation in the
Analog Resistive Switching Random Access Memory section, the
performance of the 11-layer RRAM-based DNN for CIFAR-10
recognition can be evaluated. Figure 7D shows the dependence
of the recognition accuracy on the baking time at 125 and
175◦C. The accuracy decreases remarkably with time due to
the overlap among neighboring resistance levels. Meanwhile, the
energy consumption during the inference increases with time as
shown in Figure 7D. This is because, for the proposed neural
network, more than 90% of the weight is located near 0, which
means most of the RRAMs are in the low conductance states.
More importantly, the differential pairs are used to store weight,
and one device is in the conductance state at least. Therefore,
the conductance of a large proportion of RRAMs increases with
the baking time, which dominates the energy consumption. To
enhance the reliability of DNN, both the device characteristics
and the operation scheme should be optimized.

To design and optimize the RRAM-based neuromorphic
system, modeling platforms have been developed to design
the neuromorphic computing circuits and find the algorithmic
constraints with device properties (Chen et al., 2017; Larcher
et al., 2017; Haensch, 2018). A comprehensive model for SNN
based on STDP is developed to predict the learning efficiency

and time for unsupervised learning from detailed spice-like
models to high-level analytical compact models (Pedretti et al.,
2017). The analytic model includes all possible pattern/noise
and noise/pattern sequences of input spikes as driving forces
for potentiation and depression, and can predict the time
evolution of pattern weight and noise weight for any set
of input variables. Using the model, the impacts of noise
density, pattern density, and pattern/noise probabilities on
learning efficiency can be investigated, and a learning efficiency
improvement up to 92% can be realized by using optimized
noise in unsupervised learning of handwritten digits from the
MNIST database. In terms of system-level learning accuracy
and hardware performance metrics, an integrated device-to-
algorithm framework NeuroSim+ for benchmarking synaptic
devices and array architectures was developed (Chen et al.,
2017). The framework includes the technology and memory
models in the device level, the synaptic array architectures and
neuron periphery in the circuit level, and the neural network
topologies in the algorithm level. The impact of device non-
ideal properties on learning accuracy, the area, latency and
energy estimation in the circuit level can then be investigated
by this framework. A two-layer multilayer perceptron (MLP)
neural network with MNIST handwritten digits is adopted as the
training and testing dataset to implement online learning and
offline classification. In the MLP neural network, the MNIST
input images are converted to black and white data to reduce
the encoding complexity. The weights are mapped to the synaptic
cores, which are the computation units for performing weighted
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sum and weight update. The synaptic core can be categorized
into the binary RRAM and analog RRAM, where binary type
is more mature. When a weighted sum or weight update
instruction is given during feed forward and BP, the instruction
will be sent to the RRAM array and device behavior model
for calculating the computation error and sent to NeuroSim
to evaluate the circuit performance. The framework facilitates
the design space exploration from device to algorithm, which is
helpful to benchmark different synaptic device candidates and
array architectures for neuromorphic applications.

For RRAM-based neuromorphic computing, although some
small-scale neural networks have been demonstrated, it is still
far from being applied. The challenges come from the design
and fabrication of RRAM arrays with high performances, device
characteristic engineering, neuron circuit design, and algorithm
modification. Possible solutions should consider the interaction
and optimization between devices and algorithm or architectures.

In-memory Logic
The conventional computation systems process information and
store information separately, which brings huge energy cost and
time wasting in data transfer between the computing units and
memories. In order to break the von Neumann bottleneck in
both the device and architecture level and meet the requirement
for energy-efficient information system, the RRAM-based logic
is proposed as a promising solution, which can perform logic
operation and store the output in the same physical location
(Borghetti et al., 2010; Li et al., 2015a; Huang P. et al., 2016).

In 2010, the RRAM-based stateful logic operation was first
proposed and experimentally demonstrated (Borghetti et al.,
2010). The basic logic operation is the implication (IMP), and
the operation is based on two RRAM devices (P and Q) and one
resistor as shown in Figure 8A. The resistance state stored in
P and Q represents the logical value. IMP is performed by two
simultaneous pulses applied on P and Q to execute conditional
toggling on Q depending on the state of P and Q. The output
of the operation is then stored in Q. If we define HRS as “1”
and LRS as “0,” the IMP result is summarized in Figure 8A.
Based on this principle, other logic computations can also be
performed. However, the initial state of Q is covered during the
operation, which hinders the logic cascading, and the Q needs
a copy operation if the value is used more than once (Li et al.,
2015b).

To prevent the input value from being covered, a method to
execute NAND and logic operations in one step was proposed
(Huang P. et al., 2016). The subcircuit to realize a NAND
operation is shown in Figure 8B. In the circuit, the device top
electrodes are connected to a common WL. A strong pulse is
applied to the WL via a reference resistor, and a small pulse is
applied to devices A and B through BL. For device Y, the BL is
grounded. The input for the operation is the resistance states of
A and B, and the output will be stored in Y, whose initial state
has been switched to HRS. If A and B are both “1,” the potential
of common WL is close to VDD, then Y will be programmed to
“0” after the operation. If any input device is “0,” the potential of
common WL is close to VR; thus, the output Y will still be “1.”
By this way, the NAND logic operation is performed. The value

of VR, VDD, and RG should be carefully designed to guarantee
the NAND operation. VDD should be larger than the SET voltage
in order to compensate the voltage drop across RG. As for VR,
on one side, it should be large enough to avoid the switching
of A and B; on the other side, it should be small enough to
avoid the switching of Y. The experimental demonstration of the
NAND logic is shown in Figure 8B. The logic function of the
subcircuit can be reconfigured by changing the applied voltage.
For example, the AND logic can also be realized using the same
subcircuit by exchanging the VDD and VR.

Besides the basic logic operation, compound logic operation
can be executed with latching the NAND logic operation.
Figure 8C shows an example of a full adder. The subcircuit is
composed of nine RRAM devices including three input devices
(addend A, summand B, and carry-in Ci), two output devices
(summary S and carry-out Co), and four assisted devices (AS1-
AS4). The computation procedure is shown in Figure 8C, which
needs 10 sequential steps. The corresponding logical states after
each procedure are read out and demonstrated as gray-scale
maps. Themeasured data indicate that the function of a full adder
can be realized correctly. In order to realize the logic operation in
arbitrary positions in the RRAM array, the structure of devices
with the same BL was also proposed and verified (Huang P. et
al., 2016). The same computing task can be performed parallelly
by cells in different rows or columns in the RRAM array by
simultaneously applying the pulses to the corresponding ports of
BL and WL.

One challenge for the RRAM-based stateful logic is the
device variations, which may cause errors to the logic operation.
Therefore, the logic operation should be robust to these device
variations, which include the SET voltage variation and resistance
variation. To quantitatively describe the robustness of the logic
operation, the dependence of maximum tolerance to SET voltage
variation on the resistance window (RH/RL) was investigated by
HSPICE simulation (Shen et al., 2019). The results indicate that
compared with the conventional scheme based on 1R structure,
the dual gate voltage scheme in the 1T1R array shows higher
robustness to the SET voltage variations as RH/RL changes from
25 to 10,000. The variation of resistance in HRS and LRS will
reduce the effective resistance window. For each given SET
voltage variation, there exists a tolerable resistance window to
ensure the successful logic operation.

The Boolean logic computing is closer to the off-the-shelf
system compared with the neuromorphic computing paradigm,
which does not require new algorithm or software. However, the
development of the RRAM-based in-memory logic is very slow
due to the lack of application scenarios, and the demonstration
of complete computing and memory unit is still missing.

Stochastic Computing
Stochastic computing (SC) is a highly fault-tolerant and energy-
efficient computing paradigm, which can realize complex
functions with simple logic units (Gaines, 1969; Lv and Wang,
2017; Hu et al., 2019). Different from the traditional binary
computing, SC operates on stochastic bit streams (SBSs), which
emulate the neural spikes processed by the brain in the form of
long sequences of noisy voltage spikes as shown in Figure 9A.
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FIGURE 8 | (A) RRAM-based IMP logic operation and the truth table. (B) The subcircuit of the NAND operation by using three RRAM devices with common WL and

the corresponding measured results. The logic inputs are stored in devices A and B, while Y stores the output. (C) The subcircuit of one-bit full adder and the

corresponding computation procedure. Here “NAND(A, B) → Y” represents that states of devices A and B are executed; the NAND operation and the output are

stored into device Y. Reprinted from Borghetti et al. (2010) and Huang P. et al. (2016).

FIGURE 9 | (A) The schematic of the RRAM-based stochastic number generator (SNG) in the stochastic computing (SC) system. The RRAM-based SNG utilizes the

probabilistic SET to randomly generate “1” or “0.” (B) The SET waiting time distribution when the pulse amplitude is 2.5 V and (C) 3.5 V. Reprinted from Knag et al.

(2014) and Zhao et al. (2019).

The information contained in the SBS is the frequency at
which the spikes appear randomly within a period of time.
For example, the value 0.4 can be represented by a 10-bit
SBS {1,0,0,1,0,1,0,0,1,0}, where the probability of “1” is 0.4.
The position of “1”s in the SBS is random, so different
SBSs can represent the same value. Moreover, SC can be
implemented with simple arithmetic units. For example, A
multiplied by B can be operated with an AND gate, while
A plus B can be operated with a MUX (Lv and Wang,
2017; Yang et al., 2017; Hu et al., 2019). Compared with the
binary system, the SBS is more fault tolerant because one-
bit flip is almost negligible. Therefore, SC can be used in

highly fault-tolerant applications such as parity-check decoding,
image processing, filter design, and neural networks (Gaudet
and Rapley, 2003; Ma et al., 2012; Alaghi et al., 2013; Li P.
et al., 2014; Canals et al., 2016; Li B. et al., 2016; Li Z. et al.,
2016).

The biggest challenge to realize SC is to generate SBS
efficiently. The traditional stochastic number generator (SNG) is
composed of a pseudo stochastic number-generating unit such
as the linear feedback shift register and a comparator. Compared
with the simple computation unit of SC, the CMOS-based SNG
occupies up to 80% of the system circuit area, which brings
huge hardware overhead. RRAM devices, with the feature of
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FIGURE 10 | (A) The measured resistance state after 100 consecutive SET and RESET pulses and the corresponding SBS. (B) The measured SBS with probability

shift behavior between continuous cycles with the same initial probability. (C) The model of probability shift behavior. (D) The measured and calculated SET probability

shift behavior. (E) The measured and calculated SET probability curve with different pulse intensity under optimized operation scheme. Reprinted from Zhao et al.

(2019).

inherent variability, shows great potential to be used as low-
cost and energy-efficient SNG (Gaba et al., 2013; Suri et al.,
2013; Knag et al., 2014; Moons and Verhelst, 2014; Ielmini and
Wong, 2018; Wang et al., 2018; Carboni and Ielmini, 2019;
Zhao et al., 2019). The inherent variability of RRAM originates
from the probabilistic SET process as have been discussed in
the Binary Resistive Switching Random Access Memory section
(Figure 4). Figures 9B,C are the measurement results of the
waiting time distribution during the SET process (Knag et al.,
2014). The SET waiting time can be obtained by performing
continuous RESET and SET operations on the device and then
recording the time before the transition from HRS to LRS
during each SET operation. Based on the measurements, the
SET waiting time roughly follows the Poisson distribution, and
the distribution curve will shift left or right when changing the
pulse amplitude. Therefore, when consecutively applying SET
and RESET pulses on the device, whether the CF would be
generated inside the device is random, so a sequence of different
current levels can be obtained, as shown in Figure 10A. Using
“1” representing the LRS and “0” representing HRS, an SBS of n
bits can be achieved. The SET probability is determined by the
intensity of SET pulse; thus, by adjusting the pulse amplitude
and pulse width, the numerical value represented by the SBS can
be adjusted.

To accurately control and predict the SET probability, the
probability should be quantitatively modeled considering the
device physics, as a small deviation of the input signal could affect
the probability significantly. By considering multiple variation

sources including the atom thermal vibration, manufacturing
parameter variation, and cycle–cycle gap distance fluctuation,
the behavior of the RRAM-based SNG can be modeled (Zhao
et al., 2019). However, the RRAM SET probability may shift
upward or downward between continuous cycles. Figure 10B
shows the measured SBS with probability shift behavior of
TiN/HfO2/Pt device. The unstable SET probability will influence
the accuracy of the SBS, which must be mitigated for the
application of RRAM-based SC. The probability shift behavior
is modeled as shown in Figure 10C. Due to the different SET
results in the N−1th cycle, the SET probability between the
N−1th and the Nth cycles will increase or decrease. For example,
the upper figure in Figure 10C corresponds to the situation
where the CF successfully connected the electrodes during the
N−1th SET process, and the device represents “1” after this
operation. At this time, the concentration of the remaining
Vo increases after RESET. The probability of generating “1”
in the next SET operation increases, and the corresponding
SET probability distribution curve would shift left. The model
can well-reproduce the probability shift behavior observed in
experiments as shown in Figure 10D. The increase or decrease
of SET probability with cycles is due to the mismatch between
SET and RESET pulses; thus, an optimized operation scheme is
proposed by the model to suppress the probability shift behavior
by applying an additional deterministic SET before each RESET
operation. After suppressing the probability shift behavior, the
SET probability dependence on pulse amplitude and pulse
width can be investigated. Figure 10E shows the calculated and
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measured SET probability curve with different pulse strengths.
The SET probability changes with pulse strength; thus, one can
use this curve to obtain the device operation scheme depending
on the desired probability, which is the value represented by SBS
in the SC application.

In addition to the SET operation, the RESET operation
also has a great influence on the SET probability. When
increasing the amplitude of RESET pulse, the probability
distribution curve shifts to the right. This is because a
stronger RESET pulse will increase the gap length before
each SET, which will reduce the probability of a successful
SET. Therefore, to obtain the expected SET probability in a
RRAM-based SNG, the SET and RESET operations should
be both carefully designed. Moreover, due to the randomness
of resistive switching and the noise in the pulse signal, the
length of SBS should be properly selected to avoid a large
error. The accuracy of SBS can be improved by using longer
SBS, but the energy consumption and calculation time will
also increase exponentially (Gaines, 1969). Therefore, according
to the requirements of the SC application scenarios, the
accuracy, energy consumption, and calculation time should be
collaboratively designed.

The challenge facing the RRAM-based SC is the
uncontrollable device stochasticity, so the distribution and
probability of switching cannot be accurately predicted, which
would seriously affect the accuracy of SC. Although the
improvement of accuracy can be realized by using a longer bit
stream length, the energy consumption will be greatly increased,
resulting in the design trade-off between accuracy and energy
consumption. The cost-effective design techniques that minimize
the disadvantages such as low precision and long bit-streams are
highly required.

SUMMARY

The RRAM-based brain-inspired computing systems has
achieved remarkable progresses in the past decades. Various
computing paradigms have been proposed to exploit the device
physics to perform neuromorphic computing, in-memory logic,
and stochastic computing. However, some key issues still need
to be addressed such as the device variability, forming voltage,
selector device, and non-linearity/symmetry of RRAM-based
synapses; thus, the design and optimization of structures,
materials, and operation schemes in the device level, by
means of the deeply physical understanding and innovative
device-engineering methods, are still required. Moreover, the
corresponding architectures and algorithms that can be utilized
to construct power-efficient brain-inspired computing systems
are still being developed, and it highly desires the persistent and
creative research to the interaction and optimization between
devices and algorithms or architectures.
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The introduction of nano-memristors in electronics may allow to boost the performance of
integrated circuits beyond the Moore era, especially in view of their extraordinary capability
to process and store data in the very same physical volume. However, recurring to
nonlinear system theory is absolutely necessary for the development of a systematic
approach to memristive circuit design. In fact, the application of linear system-theoretic
techniques is not suitable to explore thoroughly the rich dynamics of resistance switching
memories, and designing circuits without a comprehensive picture of the nonlinear
behaviour of these devices may lead to the realization of technical systems failing to
operate as desired. Converting traditional circuits to memristive equivalents may require
the adaptation of classical methods from nonlinear system theory. This paper extends the
theory of time- and space-invariant standard cellular nonlinear networks with first-order
processing elements for the case where a single non-volatile memristor is inserted in
parallel to the capacitor in each cell. A novel nonlinear system-theoretic method allows to
draw a comprehensive picture of the dynamical phenomena emerging in the memristive
mem-computing array, beautifully illustrated in the so-called Primary Mosaic for the class of
uncoupled memristor cellular nonlinear networks. Employing this new analysis tool it is
possible to elucidate, with the support of illustrative examples, how to design variability-
tolerant bio-inspired cellular nonlinear networks with second-order memristive cells for the
execution of computing tasks or of memory operations. The capability of the class of
memristor cellular nonlinear networks under focus to store and process information locally,
without the need to insert additional memory units in each cell, may allow to increase
considerably the spatial resolution of state-of-the-art purely CMOS sensor-processor
arrays. This is of great appeal for edge computing applications, especially since the
Internet-of-Things industry is currently calling for the realization of miniaturized, lightweight,
low-power, and high-speed mem-computers with sensing capability on board.

Keywords: memristor, bio-inspiredmem-computingmachines, cellular nonlinear networks, nonlinear circuit theory,
nonlinear system theory
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1 INTRODUCTION

On August 28th, 2018 GlobalFoundries announced to halt the
7 nm chip development. After installing at least one Extreme-
Ultraviolet Lithography (EUV) machine at one of its fabs, the
foundry reckoned there would not be enough customers,
interested in the cutting-edge 7 nm node technology process,
to make chip development profitable (GlobalFoundries Ltd,
2018). Despite Intel, Samsung, and TSMC are still making
efforts to reduce the size of integrated circuits (ICs) further,
transistor scaling is approaching atomic boundaries, with an
inevitable concurrent rise in manufacturing costs. This issue is
known as Moore wall. With the Moore era (Moore, 1965)
coming to a natural end (Williams, 2017), a great deal of
resources have been deployed over the past decade toward
the development of innovative disruptive nanotechnologies,
which may enable the development of versatile multi-
functional devices, that, opening the door toward the
implementation of peculiar signal processing paradigms,
would allow to boost the performance of conventional
circuits and systems without the need to shrink the size of
transistors any further. Two are the factors for the inefficiency of
machines based upon the von Neumann architecture: 1) There
is a large mismatch between processing time and shuttling time.
This issue is known asmemory wall or von Neumann bottleneck.
2) The energy dissipated by digital switching units is no longer
following the exponentially decreasing trend, predicted by
Landauer (Landauer, 1988), with the reduction in IC
dimensions. This issue, known as heat wall, poses serious
risks for the lifetime of transistors. Memristors (Chua, 1971;
Chua and Kang, 1976) represent one of the most promising
nanotechnologies to address the problems affecting state-of-
the-art electronics. A current (voltage)-controlled non-volatile
memristor (Chua, 2014; Chua, 2015) is a two-terminal device,
whose resistance (conductance) can be tuned to some desired
value by applying a current (voltage) signal through (across) it,
and which remembers its resistance (conductance) after the
current (voltage) source, in parallel to it, is disconnected (Chua,
2018a). It remembers its past! (Chua, 2018b). The most
impressive and peculiar virtue of non-volatile memristors is
the combined capability to store data, thanks to excellent data
retention levels, achievable without the need for external
batteries, and to process signals, through the rich nonlinear
dynamics of the memory state, within a single nano-scale
volume, which enables the implementation of in-memory
computing and mem-computing paradigms1, mimicking the
distributed nature of memory and processing operations in
the human brain, in future computing machines. Other
distinctive qualities of memristors are low-power and high-
speed operation, superior endurance, and, very importantly,

good compatibility with CMOS technology. While in
conventional memories data are stored as voltage levels, in
memristors the physical quantity, which holds the
information content, is the resistance. Given that all
nonvolatile memories based upon resistance switching
phenomena, irrespective of their constitutive materials and
operating principles, are memristors (Chua, 2011), a wide
range of nanotechnologies, including Resistive Random
Access Memories (ReRAMs), Phase Change Memories
(PCMs), Magnetic Tunnel Junctions (MTJs), Spin-Transfer-
Torque Magneto-Resistive Random Access Memories
(STTM-RRAMs), and Ferroelectric Tunnel Junctions (FTJs),
are competing one with the other to produce the best
performing data storage device for future brain-like
computers. While many people believe that non-volatile
nano-memristors will eventually replace conventional
memories, including Flash Memories, Dynamic RAMs
(DRAMs), and Hard Disk Drives (HDDs), the
aforementioned nanotechnologies are not yet mature enough
to draw conclusions on the portion of the nonvolatile memory
market, which memristors will be able to cover in the next five
years from now. However, edge computing technical systems
already make use of memristive memories. Panasonic
(Panasonic Ltd., 2013) have been launching mass production
of micro-computers with 64 kB ReRAM-based data storage for
battery-powered equipment, including portable devices for
medical, healthcare, and security applications already in
2013, while Fujitsu (Fujitsu Ltd, 2019) has recently taken a
step forward by offering 1024 kB ReRAMs for wearable
units–e.g., smart watches and glasses–and hearing aids. Even
when used simply as tunable resistors, memristors offer unique
opportunities to enhance the performance of conventional data
processing systems. Most computing tasks in artificial
intelligence (AI) applications consist of machine-learning
operations, such as object, image, and speech recognition,
which require the calculation of a massive number of vector-
matrix multiplications (VMMs). Nowadays these calculations
are executed through expensive and bulky supercomputers. But
with the advent of the memristor, which, leveraging Ohm’s law,
naturally carries out a multiplication operation between the
conductance it holds and the voltage falling between its
terminals, outputting the result into the current flowing
through it, it is possible to use a crossbar array (Li et al.,
2018) to compute at unprecedented rates the product
between a vector of voltages, distributed along the rows, and
a matrix of memristor crosspoint conductances, with the
computation result available in current form along the
columns (refer to the Dot Product Engine (DPE) lab
prototype developed at Hewlett Packard Enterprise (Hu
et al., 2016)). Last but not least, given that the two
constitutive elements of the human brain, namely the
synapse and the neuron, are made of nonvolatile and volatile
memristors, respectively, resistance switching memories allow
to develop innovative neuromorphic circuits, which promise to
outperform conventional purely CMOS counterparts in
mimicking the functionalities of the human brain. Non-
volatile memristor devices, in which the resistance may be

1In-memory computing refers to the partial/temporary use of data storage units for
information processing purposes, while mem-computing is associated to the
adoption of computing systems to perform memory read/write operations on
demand, as is the case for the processing elements of the proposed memristive
cellular array.
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finely tuned under excitation, may reproduce most closely the
plastic response of biological synapses to external stimuli.
Furthermore, there exist a large class of memristor physical
nano-scale realisations, which, despite being unable to store
data–for this reason they are classified as volatile memories –,
feature the extraordinary capability to amplify infinitesimal
fluctuations in energy (Bohaichuk et al., 2019; Kumar et al.,
2020), a property which is referred to as local activity (Chua,
2005), and which enables the development of realistic electronic
realisations of spiking neurons2 (Chua et al., 2012), the so-called
neuristors.

Besides constitutive the ideal framework formodeling biological
systems (Chua, 1998; Chua and Roska, 2002), Cellular Nonlinear
Networks (CNNs) (Chua and Yang, 1988a; Chua and Yang, 1988b)
represent a powerful multi-variate signal processing paradigm,
which, featuring a bio-inspired architecture, operates in a
massively parallel fashion, allowing to process data at very high
rates, as necessary in time-critical Internet-of-Things (IoT)
applications, nowadays. Purely CMOS analogue hardware
implementations of the CNN signal processing paradigm are
typically co-integrated with highly selective equal-sized sensor
arrays to allow the solution of complex computing tasks directly
where the acquisition of specific data takes place (Vázquez et al.,
2018). A technological issue, which limits the applicability scope of
these sensor-processor arrays, is related to the huge difference
between the typically small minimum size of an element of the
sensor matrix, and the relatively large minimum integrated circuit
(IC) area, which a processing element of the CNN hardware
realization usually occupies, due to the fact that it needs to
accommodate memory units, which endow the resulting
computing machine with local stored programmability on
board, allowing to harness thoroughly the advantages associated
with the massive parallelism of the CNN signal processing
paradigm. The adoption of non-volatile memristors (Chua,
2015), capable to combine data processing and storage
functionalities within a common nanoscale physical volume, in
CNN circuit design may allow to increase significantly the spatial
resolution of the cellular computing machine. Moreover,
leveraging the rich nonlinear dynamics of resistance switching
memories, the computing capabilities of the processing elements of
a memristive CNN hardware implementation (Duan et al., 2015;
DiMarco et al., 2017a; DiMarco et al., 2017b; DiMarco et al., 2018)
may be extended beyond the operational boundaries of the cells of
a traditional purely CMOS implementation.

CNNs process information through the analogue dynamics of
the cells’ states, which converge toward distinct attractors
depending upon inputs and/or initial conditions. While wave-
based computing, where the cellular array carries out data
processing tasks through the generation of specific dynamic
patterns, is an active field of research (Weiher et al., 2019),
there exists a huge library (Karacs et al., 2018) of image

processing operations, which the nonlinear dynamic array may
execute as the cells’ states approach predefined equilibria. This
paper focuses on the performance of CNNs (M-CNNs) as
equilibria-based computing (mem-computing) engine. Now, for a
full exploration of the potential of memristors in electronics,
recurring to concepts from nonlinear system theory is necessary.
In fact, linear system-theoretic methods are not suitable for the
analysis and design of memristor-based circuits. However, as is the
case here, converting traditional nonlinear circuits to memristive
equivalents may require the extension of classical nonlinear
system-theoretic techniques. The Memristor Cellular Nonlinear
Network (M-CNN), proposed in Tetzlaff et al. (2020), differs
from a standard time- and space-invariant two-dimensional
CNN (Chua and Yang, 1988a; Chua and Yang, 1988b),
characterized by first-order cells, and typically implemented in
hardware (Vázquez et al., 2018), for the inclusion of a single non-
volatile memristor in parallel to the capacitor in the circuit
implementation of each processing element. One of the most
powerful tools for the analysis of nonlinear dynamical systems
with one degree of freedom is the Dynamic Route Map (DRM)
(Chua, 2018a), which represents the system-theoretic technique of
reference for the investigation of CNNs with first-order processing
elements. Since the memristive cell in the proposed M-CNN
features two degrees of freedom, the investigation of the cellular
array calls for the generalization of the DRM graphical tool,
applicable to first-order systems only. The modified DRM
graphical tool, applicable to second-order dynamical systems, is
known as Second-Order Dynamic Route Map (DRM2) (Tetzlaff
et al., 2020). The application of this novel system-theoretic
technique to the model of the proposed M-CNN allows to gain
a deep insight into the rich nonlinear behaviour of its second-order
processing elements, unveiling dynamical phenomena, which may
not emerge in the original cellular array (Ascoli et al., 2020b). The
DRM2 graphical tool lies at the basis of a systematic methodology
to design variability-tolerant mem-computing arrays with second-
order memristive cells (Ascoli et al., 2020a).

The structure of the paper is organized as follows. Section 2
revisits the theory of CNNs, explaining the invaluable role of the
classical DRM graphical technique to analyze standard arrays of
locally coupled processing elements, and elucidating through an
illustrative example the traditional method, based upon this
system-theoretic tool, to program the cellular computing engine
for the execution of a predefined image processing task. Section 3
first defines the class of M-CNNs under study, including the model
of the non-volatile memristor hosted in each cell, secondly extends
the DRM graphical tool to second-order dynamical systems,
elucidates how this allows to draw a comprehensive picture of
the nonlinear dynamics of each memristive processing element,
and finally presents a rigorous procedure, based upon the DRM2

system-theoretic technique, to design cellular mem-computing
structures with second-order memristive cells. Sections 4 and 5
are devoted to the application of the M-CNN design methodology
for operating the multifunctional memristive cellular computing
engine as image processing system and as memory bank,
respectively. A brief discussion, summarizing the significance of
the research work, is provided in section 6. Conclusions are finally
drafted in section 7.

2Interestingly, it has been recently shown (Zhang et al., 2020) that the Cardiac
Purkinje Fiber (CPF), which is the last branch of the heart conduction system, may
be described via a modified variant of the memristive Hodgkin-Huxley equations,
revealing the ubiquituous presence of memristors in living cells.
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2 ANALYSIS AND DESIGN OF MEMRISTOR
CELLULAR NONLINEAR NETWORKS

Cellular Nonlinear Networks (CNNs) constitute a bio-inspired
multivariate signal processing paradigm, which, based upon a
massively parallel information flow, enables computations at
very high rates, and is amenable to a Very Large Scale
Integration (VLSI) circuit realization, which, centered around a
non-von-Neumann machine architecture, enables computational
universality. Introducing memristive devices in CNN VLSI design
may provide two main benefits. Firstly, the rich spectrum of
nonlinear dynamic phenomena, appearing in resistance
switching memories, may simplify or extend the functionalities

of traditional CNNs. Secondly, the unique combined capability of
nonvolatile memristors to compute and store data within the same
nanoscale physical medium may render unnecessary the need to
include spacious data storage units within the circuit
implementation of each cell, allowing to improve considerably
the number of processing elements fitting into the IC design area
allocated to the non-von-Neumann computing machine.

2.1 Theory of Cellular Nonlinear Networks
The theoretical foundations of CNNs were laid in 1988 by L. Chua
(Chua and Yang, 1988a; Chua and Yang, 1988b). In the most
general case, a CNN consists of a spatially discrete collection of
locally coupled kth-order continuous-time processing elements,
called cells, arranged at regular positions within a l-dimensional
lattice. The architecture of a small two-dimensional CNNwithM �
6 rows and N � 6 columns is presented in Figure 1A, under the
assumption that each cell C(i, j) – i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N} –
is physically coupled to its 8 adjacent neighbors only3. Each cell is
assigned a state, an input, an output, as well as a threshold. The rate
of change of the state of a cell is influenced by the inputs and
outputs of its 8 adjacent neighbors, as well as by its own input and
output, as respectively sketched through eight brown directed
segments and through one magenta directed loop in Figure 1A
for the processing element located where the 3rd row crosses the 4th

column. The block diagram in plot (b) of Figure 1 illustrates once
more the key factors affecting the dynamical behaviour of a CNN
cell. The neighbors’ inputs (outputs) aremodulated by feedforward
(feedback) synaptic weights before accessing the cell to affect the
time evolution of its state, similarly as it occurs in biological neural
networks. The cell C(i, j) of a standard time- and space-invariant
two-dimensional CNN (Chua and Roska, 2002) is implemented by
the circuit of Figure 2, where the computing core ismathematically
described by4 (i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N})

dvxi,j
dt

� − vxi,j
Cxi,j · Rxi,j

+ z · I
Cxi,j

+ 1
Cxi,j

· ∑
k�−r

k�r ∑
l�−r

l�r (iak,l + ibk,l), (1)

in case it is physically coupled to its 8 adjacent neighbors only5

i.e., r � 1. With reference to the circuit of Figure 2, the main
physical quantity within the input stage, the computing core, and
the output stage respectively are the input voltage vui,j, the voltage

FIGURE 1 | (A) Physical connectivity among the locally coupled cells of a
two-dimensional CNN with six rows and six columns. (B) Schematic
illustration of the main features of a CNN cell, revealing some of its analogies
with a biological neuron, which explains the nomenclature originally
introduced to characterize the locally coupled nonlinear dynamic array, namely
Cellular Neural Network.

3A CNN cell, exhibiting physical couplings to the eight closest processing elements,
is said to have a sphere of influence of unitary radius, or, alternatively, a 3×3 local
neighborhood.
4The determination of a numerical solution for theM×NODEs, governing the time
evolution of the states of all the processing elements, requires the preliminary
assignment of an initial condition vxi,j(0) to each cell C(i, j), as well as the
preparatory specification of the boundary conditions (Chua and Roska, 2002),
fixing the input voltage vum,n and the output voltage vym,n of each virtual cell. With
reference to a two-dimensional CNN, in which each cell exhibits a sphere of
influence of unitary radius, a processing element C(m, n) is said to be virtual if it
does not belong to the nonlinear dynamic array i.e., m ∉ {1, . . . ,M} and/or
n ∉ {1, . . . ,N}, but is part of the 3 × 3 neighborhood of a cell, which belongs to
the cellular network, being listed in the set
{C(1, 1 : N),C(M, 1 : N),C(2 : M − 1, 1),C(2 : M − 1,N)}.
5It is important to note that only CNN hardware realizations with such a basic
coupling configuration have been developed so far (Vázquez et al., 2018).
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vxi,j across a capacitor with capacitance Cxi,jR> 0, expressing the
state, and the output voltage vyi,j. Focusing on the output stage, the
latter physical quantity is defined as

vyi,j � Ryi,j · ifi,j, (2)

where Ryi,jR> 0 is the resistance of a passive linear resistor,
whereas ifi,j is the current of a voltage-controlled source,
featuring the piecewise linear expression

ifi,jbif (vxi,j) � glin ·
∣∣∣∣vxi,j + vsat

∣∣∣∣ − ∣∣∣∣vxi,j − vsat
∣∣∣∣

2
, (3)

generally known as standard nonlinearity, where glin and vsat are
positive parameters with units Ω−1 and V, respectively.
Importantly, the piecewise-linear standard nonlinearity
identifies three domains, specifically the negative saturation
region vxi,j < −vsat , the linear region

∣∣∣∣∣vxi,j∣∣∣∣∣≤ vsat , and the positive
saturation region vxi,j > +vsat , where the cell output voltage vyi,j
attains the negative saturation voltage −vsat , is a linear function of
the state vxi,j, and attains the positive saturation voltage vsat ,
respectively. Inspecting now the computing core in the cell
circuit of Figure 2, iz , defined as

izbz · I, (4)

where z is a dimensionless parameter referred to as threshold in
CNN theory (Chua and Roska, 2002), while I is a coefficient with
positive 1 A value, symbolizes the threshold current. Further,
Rxi,jR> 0 stands for the resistance of a passive linear resistor6,
while, importantly, iak,l (ibk,l), defined as

iak,lbak,l · vyi+k,j+l (5)

ibk,lbbk,l · vui+k,j+l, (6)

where ak,l (bk,l), with k, l ∈ {−1, 0, 1}, is known as feedback
(feedforward) synaptic weight in CNN theory (Chua and
Roska, 2002), represents the feedback (feedforward) synaptic
current due to the neighboring cell C(i + k, j + l), and
constituting one of the 18 contributions to the cell capacitor
current ixi,j enclosed within the round brackets to the right of the
double sum in Eq. 1. It is worth mentioning that, the CNN
mathematical description reported in Eq. 1 is known as Chua-
Yang model (Chua and Yang, 1988a; Chua and Yang, 1988b).
Despite an alternative mathematical description, known as Full-
Range model (Vázquez et al., 1993), facilitates the hardware

implementation of the CNN paradigm by restricting the set of
allowable values for the cells’ states, this paper adopts the original
Chua-Yang mathematical description for pedagogical purposes.

Typically, the right hand side of the CNN cell state Eq. 1 may
be recast as

dvxi,j
dt

� igi,j + iwi,j

Cx
, (7)

where igi,j, the so-called Internal Driving Point (DP) Component is
a function of the cell state, being defined as

igi,jbig(vxi,j) � { − vxi,j
Rx

− a0,0 · Ry · glin · vsat if vxi,j < − vsat , (8)

(a0,0 · Ry · glin − 1
Rx
) · vxi,j if

∣∣∣∣vxi,j∣∣∣∣≤ vsat , (9)

−vxi,j
Rx

+ a0,0 · Ry · glin · vsat if vxi,j > + vsat . (10)

while iwi,j, known as offset current, mostly accounts for the
coupling effects, being expressed by

iwi,j � iw({vui+k,j+l}, {vyi+k,j+l})bz · I + b0,0 · vui,j
+ ∑

k,l�−1
(k,l)≠(0,0)

(ak,l · vyi+k,j+l + bk,l · vui+k,j+l), (11)

where {vui+k,j+l} ({vyi+k,j+l}) denotes the set of input (output) voltages of all
the processing elements in the 3 × 3 neighborhood of the cell C(i, j).
Nineteen are the key parameters, which define the image processing
operation, which aCNNmay accomplish, for a predefined input/initial
condition combination, and under suitable boundary conditions,
specifically the threshold z, the feedback synaptic weights
{a−1,−1, a−1,0, a−1,+1, a0,−1, a0,0, a0,+1, a+1,−1, a+1,0, a+1,+1},
and the+feedforward synaptic weights
{b−1,−1, b−1,0, b−1,+1, b0,−1, b0,0, b0,+1, b+1,−1, b+1,0, b+1,+1}. Given the
crucial role that this 19-number set plays on the dynamical
evolution of the cells’ states, it is generally known as gene in
CNN theory. A gene defines the set of rules, which apply
concurrently in the neighborhood of each cell, allowing the
standard space-invariant CNN to carry out a given computation.

Remark 1. A CNN may be used to carry out any computing
task. The calculations are based upon the analogue dynamics of
the cell states. As transients vanish, depending on cell parameter
settings, inputs and initial conditions, each capacitor voltage may
tend toward an equilibrium, or converge to an oscillatory
waveform, which may be periodic, quasi-periodic, or even

FIGURE 2 | Input stage, computing core, implementing the state Eq. 1, and output stage of the circuit realization of a standard space-invariant CNN cell C(i, j).

6Since the CNN is space-invariant, from now onwards the following assumptions
are made: Cxi,j � Cx , Rxi,j � Rx , and Ryi,j � Ry .
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chaotic. A CNN may then process the information, inserted as
cell inputs and/or initial conditions, in two different forms
i.e., producing computation results in the form of equilibria or
waves, hence the names CNN equilibria-based computing or
CNN wave computing attributed to the respective operating
principle. In this manuscript the attention is focused on CNNs
computing via equilibria7.
Let us elucidate the classical method to design a CNN, so that it

may execute a fundamental image processing task8, carrying out
the result of the computation in the cell equilibria.
A rigorous technique to synthesize the gene of a standard

CNN, so as to allow the successful execution of a given equilibria-
based computing task, even in the presence of deviations of some
cell circuit parameters from their nominal values, was introduced
in (Zarándy, 2003), and comprehensively presented in (Itoh and
Chua, 2003). Before summarizing the line-of-thought at the basis
of this classical methodology, let us provide a brief overview of the
nonlinear dynamics of a CNN processing element.

2.2 Key Features of the CNN Cell Dynamics
The first aspect to consider for the synthesis of a suitable CNN gene
is the choice of a proper value for the self-feedback synaptic weight
a0,0. As will be clarified through qualitative sketches below, this
parameter crucially influences the directed Internal DP
Characteristic, consisting of the arrowed locus of the rate of
change of the state _vxi,j vs. the state vxi,j itself under iwi,j � 0A. As
anticipated in section 2.2 in the context of memristors, this type of
graphical representation is typically referred to as State Dynamic
Route (SDR). In the upper (lower) half of the vxi,j– _vxi,j plane, where
_vxi,j > (< )0V · s−1, arrows, supeimposed over the Internal DP
Characteristic, point toward the east (west) to indicate an
increase (a decrease) in the state vxi,j over time. The intersections
between this _vxi,j–vxi,j locus and the horizontal vxi,j-axis, marked as
filled (hollow) circles, denote the stable (unstable) equilibria of the
cell state equation under null offset current. All in all, fixing the value
for a0,0 unequivocally determines the dynamical behaviour of the cell
state vxi,j from any initial condition vxi,j ,0 under zero offset current.
With reference to9 Figure 3, plot (a) shows how a0,0 affects the
shape of the locus of the state rate of change _vxi,j vs. the state vxi,j

itself under iwi,j � 0A. As anticipated in section 2.2 in the
context of memristors, a family of directed loci of this kind,
one for each value of a control parameter (in this case a0,0), is
called DRM, here more specifically referred to as cell DRM.
Varying a0,0 from −∞ to +∞, the CNN processing element may
exhibit three distinct stability characters:

• If a0,0 <R−1
x · g−1lin · R−1

y (see the green and brown curves,
associated to non-null negative and null self-feedback
values, respectively) the cell is monostable with one and
only one GAS equilibrium at vxi,j � 0V.

• If a0,0 � R−1
x · g−1lin · R−1

y (see the pink curve) each state value
within the set [−1, 1]V is a stable but not GAS equilibrium
vxi,j for the processing element, which is said to admit a line of
equilibria.

• If a0,0 >R−1
x · g−1lin · R−1

y (see the black curve) the cell is bistable,
featuring two locally stable equilibria, one lying at vxi,j � −a0,0
in the negative saturation region, and the other at vxi,j � a0,0
in the positive saturation region, besides the separatrix
between their basins of attractions, namely the unstable
equilibrium in the origin.

The ordinates of the two breakpoints of the three-segment10

piecewise-linear Internal DP Characteristic, located at
(−vsat ,−(a0,0 · Ry · glin − R−1

x ) · vsat), and at
(+vsat ,+(a0,0 · Ry · glin − R−1

x ) · vsat), respectively, are of significant
importance in the analysis of the Shifted11 DP Characteristic (Chua
and Roska, 2002), i.e. the locus of the state rate of change _vxi,j vs. the
state vxi,j itself under non-null offset current. First of all, it is important
to point out that, under specific hypotheses, including fixed values for
all input voltages and thresholds, a standard space-invariant12 CNN is
completely stable (Chua and Roska, 2002), in the sense that the state vxi,j
of each cell C(i, j) converges asymptotically toward an equilibrium
point vxi,j, which, in general, depends upon the initial conditon vxi,j ,0.
Moreover, for a completely stable standard space-invariant CNN,
according to the bistability criterion (Chua and Roska, 2002), in
case the condition

a0,0 >R−1
x · g−1lin · R−1

y (12)

holds true, the slope of the Internal DP Characteristic in the linear
region–refer to Eq. 9 – is positive, and, consequently, the stable
equilibria of each cell under iwi,j ≠ 0A are found to lie in either of
the two saturation regions of the standard nonlinearity of Eq. 3, as
will be elucidated, shortly, through the analysis of the resulting
Family of Shifted DP Characteristics, implying that, given the
form of the standard nonlinearity Eq. 3, the final value for the
output voltage of any processing element is one of the two
saturation levels in the set { − vsat , vsat}. This is highly desirable
for image processing, where, as will be shown through an
illustrative example shortly, a CNN equilibria-based

7As reported in the template library (Karacs et al., 2018), a very large class of
computing tasks may be executed on the basis of the stable equilibria, the CNN
states dynamically evolve to, or, more precisely, of the respective cell output
voltages.
8Images to be processed, consisting of M × N pixels, are encoded into the cells’
input voltages and/or into the cells’ initial states of a CNN, which features M rows
and N columns. The output voltages, that the cells exhibit at equilibrium, and that
constitute the result of a given computing task, are mapped onto an output image
for visualization purposes. Regarding the correspondence between the color of the
image pixel at row i and column j and the real value of the respective CNN cell
input voltage vui,j or initial state vxi,j ,0bvxi,j(0 s) or output voltage vyi,j , the following
convention is adopted in the EDGE CNN design. A black (white) image pixel is
associated with a positive (negative) 1 V value, while a gray image pixel is
associated with a real number, properly extracted from the range (−1,+1) V,
so as to reveal the intensity of the color tone. The lighter (darker) is the gray color,
the closer to −(+)1 V would be the corresponding real value.
9The viewgraphs in Figure 3 have been derived under the following parameter
setting: Cx � 1 F, Rx � 1Ω, glin · Ry � 1, and vsat � 1 V.

10In the case a0,0 � 0Ω−1 the Internal DP Characteristic features a single segment
only, as illustrated graphically through the pink igi,j–vxi,j locus in Figure 3A.
11The effect of the offset current is to shift the Internal DP Characteristic,
explaining the origin for the name of the _vxi,j–vxi,j locus for iwi,j ≠ 0A.
12This theorem holds also for standard space-variant CNNs.
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computation is typically visualized in the form of a binary
output image, coding the final values of the cell output
voltages. Importantly, the output voltage of each processing
element will attain its final value i.e., one of the two possible
saturation levels, already at a finite time instant, let us denote it
as t(s)i,j , at which its state vxi,j enters the saturation region, which
hosts the equilibrium point vxi,j. For all
t ≥ t(s)b max

1≤ i≤M,1≤ j≤N
{t(s)i,j } the CNN may be considered at

steady state as far as its cell output voltages are concerned13.
It follows that, irrespective of the location of the CNN cell C(i, j)
under analysis, the offset current iwi,j, which, in general, changes over
time during transients, keeps a fixed value for all t ≥ t(s). This is of
significant importance, since from this time instant onward, the
Shifted DP Characteristic will no longer bounce, as, on the other
hand, may be the case during transients, facilitating the study of the
dynamic behaviour of the state vxi,j from any initial condition vxi,j ,0.

With reference to the viewgraphs of Figure 3B, neglecting the
marginal cases, three are the possible equilibria configurations,
which a cell C(i, j) may feature under the bistable criterion
hypothesis for iwi,j ≠ 0A.

• If iwi,j < −(a0,0 · Ry · glin − R−1
x ) · vsat (see the blue curve) the

cell turns into a monostable dynamical system, featuring one
and only one globally asymptotically stable (GAS) equilibrium
in the negative saturation region at vxi,j � −Rx · (a0,0 · Ry · glin ·
vsat − iwi,j).

• If −(a0,0 · Ry · glin − R−1
x ) · vsat <

∣∣∣∣∣iwi,j

∣∣∣∣∣< + (a0,0 · Ry · glin −
R−1
x ) · vsat (see the green, and red curves, associated to

negative and positive offset current values, respectively)
the processing element keeps its bistable character,

featuring an unstable equilibrium in the linear region at
vxi,j � −iwi,j · (a0,0 · Ry · glin − R−1

x )− 1, and two-locally stable
equilibria, one in the negative saturation region at
vxi,j � −Rx · (a0,0 · Ry · glin · vsat − iwi,j), and one in the
positive saturation region at vxi,j � +Rx · (a0,0 · Ry · glin ·
vsat + iwi,j).

• If iwi,j > + (a0,0 · Ry · glin − R−1
x ) · vsat (see the magenta curve)

the cell turns into yet anothermonostable dynamical system,
admitting one and only one GAS equilibrium in the positive
saturation region at vxi,j � +Rx · (a0,0 · Ry · glin · vsat + iwi,j).

2.3 A Systematic DRM-Based Methodology
to Design Robust CNNs
The standard method (Zarándy, 2003; Itoh and Chua, 2003)
to synthesize a suitable CNN gene for the execution of a given
computing task is based upon the set up and later solution of
an ad-hoc set of inequalities, expressed in terms of unknown
gene parameters, ensuring a robust accomplishment of the
computing task of interest. The functionalities of a given
uncoupled14 standard space-invariant completely stable
CNN, satisfying the hypotheses of the bistability criterion,

FIGURE 3 | (A) Family of Internal DP Characteristics, which a CNN cell admits for each value of the self-feedback synaptic weight a0,0 in the set {−1,0, 1, 2}Ω−1. (B)
Family of Shifted DP Characteristics, which a CNN cell admits for a0,0 � 2Ω−1 for each value of the offset current iwi,j in the set {−2,−0.5, 0,0.5, 2} . The set of cell circuit
parameter values for the derivation of these viewgraphs is provided here: Cx � 1 F, Rx � 1Ω, glin · Ry � 1, and vsat � 1 V.

13For t > t(s) the cell states continue their evolution toward the respective equilibria,
but the output stage resistor voltages keep unchanged. This makes the CNN
calculations insensitive to small variations in the nominal locations of the cell
equilibria, and allows to read the result of a certain image processing operation at
some finite time.

14A standard space-invariant CNN, in which the cell C(i, j) features a sphere of
influence of unitary radius and is described by the ODE (1), is said to be uncoupled
(Chua and Roska, 2002) if each feedback synaptic weight ak,l – k, l ∈ {−1, 0, 1} –
except for a0,0, is null. Further, if at least one feedforward synaptic weight bk,l –
k, l ∈ {−1, 0, 1} – is non-null, then the CNN is said to be non-autonomous. Each rule
in a suitable set, which an uncoupled nonlinear dynamic array is obliged to obey, so
as to execute a preliminarily specified data processing task, dictates the equilibrium
(xmi,j � xmi,j(∞), vxi,j � vxi,j(∞)) of the cell C(i, j), or the corresponding output
voltage vyi,j(∞) on the basis of conditions involving input vui+k,j+l and/or initial
condition vxi+k,j+l(0) of each processing element C(i + k, j + l) in the 3 × 3
neighborhood of the cell C(i, j) itself, only. Under these circumstances, the
rules are said to be local. In case the aforementioned CNN is coupled, on the
other hand, some of the rules – referred to as global – for the cell C(i, j) may also
depend upon the input voltage vui+m,j+n and/or the initial condition vxi+m,j+n(0) of a
remote processing element (m ∉ {−1, 0, 1} and/or n ∉ {−1, 0, 1}).
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are dictated by a set of local rules, establishing the asymptotic
value for the state vxi,j(∞) ≡ vxi,j, and, correspondingly, the
steady-state output voltage vyi,j(t(s)i,j ) of each cell C(i, j),
depending upon inputs, and initial conditions of all the
processing elements within its 3 × 3 neighbourhood.

For the reasons motivated above, in CNN designs for image
processing applications, it is common to set the numerical
value for the self-feedback synaptic weight a0,0 so as to
guarantee the satisfaction of inequality Eq. 12. Typically, to
facilitate the CNN design process, the structure of the gene
under synthesis is simplified as much as possible, given the
degree of complexity of the computing task, which the cellular
array is expected to execute, and/or the values of some of the
elements from the 19-number parameter set are assumed to be
known. The family of all the possible invariable arrowed
Shifted DP Characteristics, which a cell may admit for all
t > t(s) for any value, which the offset current may assume,
then, under the hypothesis of each of the rules, is then
examined, so as to identify the worst-case scenario, where
deviations of cell circuit parameters from their nominal values
are most likely to induce a change in the cell equilibria
configuration15, and, consequently, the emergence of CNN
computation errors. The next step is to write down an
inequality, establishing a constraint for the offset current,
and ensuring that, in such critical scenario, _vxi,j is negative
(positive) at the specified initial condition vxi,j ,0, so that the state
vxi,j would approach a desired equilibrium vxi,j in the negative
(positive) saturation region. Repeating this procedure for each
rule allows to derive an inequality set (IS), whose solutions
may be determined through numerical techniques, or, in case
the number of unknowns is small, via a geometry-based
approach. The particular values assigned to the unknowns,
allowing to program the CNN with a suitable gene, are then
selected to endow the computation with the highest degree of
tolerance against parameter variation.

2.4 Edge CNN
The aim of this section is to synthesize the gene of a standard
space-invariant non-autonomous uncoupled CNN so that the
resulting nonlinear dynamic array is able to extract the edges
from an input binary image. Next, the classical CNN design
methodology, briefly described earlier, will be applied to the
cell ODE (1) in order to achieve this purpose. The three local
rules, which each cell should obey, are reported in Table 1,
where nB defines how many of the 8 adjacent neighbors
feature a positive one V-valued input voltage. The first
rule establishes that, if the cell C(i, j) features an input
voltage vui,j equal to −1V , its output voltage vyi,j(∞) at
equilibrium is found to attain the negative saturation
voltage −vsat irrespective of the value of nB. Plot (a) in
Figure 4 depicts a possible 3 × 3 pattern around a white
pixel at row i and column j in the input binary image

under rule 1. Here 3 of the 8 neighboring pixels are black.
The pixel in the position (i, j) of the output binary image is
white at equilibrium, as depicted on the bottom of the input
pattern. The second (third) rule imposes that, in case the cell
C(i, j) features an input voltage vui,j equal to +1V, its output
voltage vyi,j(∞) at equilibrium is found to attain the negative
(positive) saturation voltage −vsat in case nB is exactly equal to 8 (is
less or equal to 7). Plot (b) ((c)) in Figure 4 depicts the only (a)
possible 3 × 3 pattern around a black pixel at row i and column j in
the input binary image under rule 2 (3). Here all (4) of the 8
neighboring pixels are black. The pixel in the position (i, j) of the
output binary image is white (black) at equilibrium, as depicted on
the bottom of the input pattern.

As clarified by Figure 5A, the CNN under design is expected
to extract the edges from an input binary image, visualizing them
in the output binary image at steady state. Since the CNN is
meant to be uncoupled, the offset current from Eq. 11 reduces
to16

iwi,j � z · I + b0,0 · vui,j + ∑
k,l�−1

(k,l)≠(0,0)

1

bk,l · vui+k,j+1. (13)

Assuming that all the feedforward synaptic weights, with
the exclusion of b0,0, are identical one to the other, namely
bk,l � b for all k, l ∈ {−1, 0,+1} such that (k, l)≠ (0, 0), indicating
how many, among the 8 neighbours of the cell C(i, j), feature a
negative one V-valued input voltage through the variable nW ,
and noting that nB + nW � 8, the formula Eq. 13 for iwi,j

reduces to

iwi,j(vui,j, nB) � z · I + b0,0 · vui,j + b · (2 · nB − 8)V , (14)

where the argument reveals the dependence of the offset current
upon vui,j and nB. Assuming that a0,0 ∈ R> 0 and b ∈ R< 0 are
given parameters, the only two unknowns for the specification of

TABLE 1 | Local rule triplet, which, irrespective of its location within the cellular
array, a processing element C(i, j) is requested to obey, for the extraction of
edges from an input binary image, preliminarily discretized into a M × N matrix of
pixels (i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}).

Local rule vui,j/ V vyi,j(‘) Conditions on nB

1 −1 −vsat Irrespective of nB
2 +1 −vsat If nB � 8
3 +1 vsat If nB ≠8

15In the theory of nonlinear dynamics, a quantitative change in the behaviour of a
system, occurring during the sweep of a control parameter, is referred to as a
bifurcation phenomenon (Strogatz, 2000).

16It is instructive to observe that a very large number of fundamental image
processing operations are possible adopting the class of standard space-invariant
uncoupled CNNs, as may be inferred by inspecting the template library (Karacs
et al., 2018). For each CNN, belonging to this class and processing still images, the
cell offset current from Eq. 13 is always a constant, and the respective Shifted DP
Characteristic is invariant over time. As anticipated earlier, with reference to a
coupled CNN, which process still images, a cell, which satisfies the bistability
condition Eq. 12, typically features a Shifted DP Characteristic, which continually
moves vertically up or down until the time instant t(s)i,j , at which the state of each cell
has entered the particular saturation region hosting the equilibrium it
asymptotically converges to, keeping unchanged thereafter.
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a suitable gene are then b0,0 and z. Figure 5B shows the directed
Internal DP Characteristic17. The state Eq. 1 under iwi,j � 0A admits
two locally stable equilibria, located one in the negative saturation
region, namely vxi,j � −a0,0 · Ry · glin · Rx · vsat , and one in the positive
saturation region, specifically vxi,j � a0,0 · Ry · glin · Rx · vsat , and
separated by an unstable equilibrium, i.e. vxi,j � 0V, positioned in
the linear region.

Let us set the initial condition vxi,j(0) of the cell ODE (1) to
+1V. Following the line-of-thought inspiring the classical CNN
design methodologies, discussed in the seminal papers (Zarándy,
2003) and (Itoh and Chua, 2003), and briefly reviewed above, let
us now examine the Family of arrowed Shifted DP
Characteristics, which a processing element may admit in all
scenarios, which may possibly emerge under the hypothesis of
each of the three rules from Table 1.

In order to fulfill rule 1, where vui,j � −1V, a condition should
be enforced to ensure that the maximum value, which the offset
current may ever attain i.e., max

0≤ nB ≤ 8
{iwi,j(−1V, nB)} � iwi,j(−1V, 0),

is smaller than the ordinate −(a0,0 · Ry · glin − Gx) · vsat of the left
breakpoint of the _vxi,j–vxi,j piecewise linear characteristic of
Figure 5B. This would guarantee a negative sign for the
ordinate of the right breakpoint of the resulting _vxi,j–vxi,j
piecewise-linear characteristic, as is the case for the arrowed
blue locus in Figure 6A, illustrating the dynamic route followed
by the cell state for iwi,j(vui,j, nB) � −2 · (a0,0 · Ry · glin − Gx) · vsat ,
where vui,j � −1V, and nB � 0, under the parameter setting,
reported in the caption of Figure 5B. As a result, for all
possible nB values in {0, 1, 2, 3, 4, 5, 6, 7, 8}, the CNN cell would
be monostable, and vxi,j would decrease monotonically over time
from the initial condition vxi,j(0) toward an equilibrium, i.e.
vxi,j � (−a0,0 · Ry · glin · vsat + iwi,j(−1V, nB)) · Rx , located in the
negative saturation region, as established by rule 1. Therefore,
the first EDGE CNN design constraint sets an upper bound for the
maximum offset current, according to

iwi,j(−1V, 0)< −(a0,0 · Ry · glin − Gx) · vsat . (15)

It is worth pointing out that the farther away from the horizontal
axis, within the plane lower half, would be positioned the right
breakpoint of the _vxi,j–vxi,j piecewise-linear characteristic in the
worst-case scenario from rule 1, and themore robust would be the
EDGE CNN design18.

Let us now derive the condition allowing the CNN to apply
rule 2 from Table 1 in the sphere of influence of any processing
cell C(i, j), which features, as each of its eight neigbours, a
positive one V-valued input voltage. Since the expected cell steady-
state output voltage vyi,j(t(s)i,j ) is once again −1V, as in rule 1,
Figure 6A can be reused to work out a suitable inequality for
rule 2 under vui,j � +1V and nB � 8. The second EDGECNNdesign
condition, ensuring that the state vxi,j of a cellC(i, j)with vui,j � +1V
and nB � 8 would asymptotically approach an equilibrium,
specifically vxi,j � (−a0,0 · Ry · glin · vsat + iwi,j(+1V, 8)) · Rx , located
in the negative saturation region, is then similar to the inequality Eq.
5, reading as

iwi,j(+1V, 8)< −(a0,0 · Ry · glin − Gx) · vsat . (16)

In order for the CNN under design to apply rule 3 from Table 1
in the 3 × 3 neighbourhood of each processing element, which
features a positive one V-valued input voltage, and is
physically coupled to at least one neighbour with a negative
one V-valued input voltage, the minimum value, which the
offset current may ever attain, namely min

1≤ nB ≤ 7
{iwi,j(+1V, nB)} �

iwi,j(+1V, 7) should be larger than the ordinate −(a0,0 · Ry ·
glin − Gx) · vsat of the left breakpoint of the _vxi,j–vxi,j
piecewise-linear characteristic of Figure 5B. This would
ensure a positive sign for the ordinate of the right
breakpoint of the resulting _vxi,j vs. vxi,j piece-wize linear
characteristic, as is the case for the arrowed blue locus in

FIGURE 4 |Graphical illustration of the application of the EDGECNN local rules 1 for nB � 3 (A), 2 (B), and 3 for nB � 4 (C). Each of the three plots visualizes, on top,
a 3 × 3 pattern around the pixel located at row i and column j in the input binary image, and, below, the pixel at position (i, j) in the output binary image at equilibrium.

17The values of some of the parameters in the cell circuit of Figure 2 are fixed as
reported in the caption of Figure 5B. Since the bistability condition Eq. 12 holds
true, the slope of the piecewise-linear locus in the linear region–refer to Eq. 9 is
strictly positive.

18In case iwi,j(−1V, 0) were found to be equal to −(a0,0 · Ry · glin − Gx) · vsat , the
right breakpoint of the resulting _vxi,j versus vxi,j locus, depicted in red in the example
of Figure 6A, would lie on the horizontal axis. Under this hypothesis, in the
worst-case scenario from rule 1, the state vxi,j would keep equal to the initial
condition vxi,j(0) � +1V at all times, and the cell C(i, j) would fail to operate as
requested. As a result, in the worst-case scenario from rule 1, the right breakpoint
of the Shifted DP Characteristic should lie within the plane lower half at some
safety distance from the horizontal axis. Note that a half-filled black circle denotes a
semistable equilibrium, which attracts only trajectories, which are initiated from
one of its two sides.
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Figure 6B, illustrating the dynamic route of the cell state for
iwi,j(vui,j, nB) � −0.5 · (a0,0 · Ry · glin − Gx) · vsat , where
vui,j � +1V, and nB � 7, under the parameter setting,
reported in the caption of Figure 5B. Consequently, for all
admissible nB values in {0, 1, 2, 3, 4, 5, 6, 7}, the cell state vxi,j
would monotonically increase over time toward an
equilibrium, i.e. vxi,j � (a0,0 · Ry · glin · vsat + iwi,j(vui,j, nB)) · Rx,
located in the positive saturation region, as required in rule

3. The third EDGE CNN design inequality is then establishing
a lower bound for the minimum offset current, i.e.19

iwi,j(+1V, 7)> −(a0,0 · Ry · glin − Gx) · vsat . (17)

FIGURE 6 |Graphs clarifying the line of reasoning behind the DRM synthesis strategy adopted in Itoh and Chua (2003) to select a suitable gene allowing the
resulting CNN to apply the local rule triplet of the binary image edge extraction operation in the 9-cell neighborhood of each processing element. The worst-case
scenario in rule 1 is analyzed in (A), where vui,j � −1 V and nB � 0. Setting vui,j � +1V and nB � 8, plot (A) allows to investigate rule 2 as well. The worst-case scenario
in rule 3 is illustrated in plot (B), where vui,j � +1V and nB � 7. The setting of the known parameters of the cell circuit of Figure 2 is reported in the caption of
Figure 5B. With reference to plot (A), in the worst-case scenario from rule 1 (in rule 2) the cell state vxi,j would evolve from the initial condition vxi,j(0) � +1V toward
the equilibrium vxi,j � −4V, as dictated by the arrowed blue locus, in case iwi,j(−(+)1 V, 0 (8)) were found to be equal to −2A, while it would keep its initial value
vxi,j(0) � +1 V at all times, as governed by the arrowed red locus, if, as a result of the CNN design, the value −1A would be assigned to iwi,j(−(+)1 V, 0 (8)). In case a
cell would feature the blue (red) SDR, either in the worst-case scenario from rule 1 or in rule 2, the CNN would operate (would fail to function) as required. With
reference to plot (B), in the worst-case scenario from rule 3, vxi,j would evolve along the arrowed blue dynamic route from the initial condition toward the
equilibrium vxi,j � 1.5V provided iwi,j(+1V,7) were found to be equal to −0.5A, while it would keep its initial value vxi,j(0) � +1 V, as established by the arrowed red
locus, if, as a result of the CNN design, the value −1A would be assigned to iwi,j(+1 V, 7). Theoretically a CNN would properly function if a cell would exhibit the red
SDR in the worst-case scenario from rule 3. However, if the cell featured the blue SDR, instead, it would additionally exhibit a little tolerance to deviations of
parameters from their nominal values. The directed Internal DP Characteristic, shown in Figure 5B, is depicted once again in black in both plots as a reference.
This SDR would induce the cell state vxi,j to converge toward the equilibrium vxi,j � 2V. It follows that a cell with such a SDR under vui,j � −1 V and nB � 0 or under
vui,j � +1V and nB � 8 (under vui,j � +1 V and nB � 7) would seriously fail to operate as desired (would function properly, exhibiting a good robustness against
parameter variability).

FIGURE 5 | (A) Graphical illustration of the operating principles of the CNN under design. (B) EDGE CNN SDR for zero offset current. Here Cx � 1 F, Rx � 1Ω,
Ry · glin � 1, and vsat � 1V. The self-feedback synaptic weight a0,0 (the b value for each of the feedforward synaptic weights, except for b0,0) is set to 2Ω−1 (−1Ω−1)
ahead of the application of the classical CNN design methodology from Itoh and Chua (2003). The cell equilibria lie at vxi,j � −2 V, at vxi,j � 0 V, and at vxi,j � 2V.

19In the worst-case scenario from rule 3 the cell is found to be bistable provided∣∣∣∣∣iwi,j(+1V, 7)
∣∣∣∣∣< (a0,0 · Ry · glin − Gx) · vsat , and monostable otherwise.
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For a robust CNN design the right breakpoint of the _vxi,j–vxi,j
piecewise-linear characteristic of a cell C(i, j) in the worst-case
scenario from rule 3 should be positioned as farther away as
possible from the horizontal axis within the plane upper half20.

For the parameter setting reported in the caption of Figure 5, the
three inequalities Eqs. 15–17 are solved through a geometric
approach on the z–b0,0 parameter plane, as shown in Figure 7,
where the green region visualizes the set of admissible solutions. For
the specification of a suitable gene, guaranteeing the expected EDGE
CNN functionality even in the presence of some small deviation of
either of the two parameters z and b0,0 from their nominal values, it
is adviceable to choose a particular solution (z*, b*0,0), whose
graphical point-based representation on the parameter plane
features an adequate distance from the boundaries of the green
region, as indicated by means of an asterisk marker in Figure 7. The
gene, synthesized in this section, allows the CNN to extract edges
from an input binary image, as displayed in plot (a) of Figure 5.

2.5 Limitations of the CNN Paradigm and of
Its Hardware Implementation
Since each of their processing elements interacts simultaneously with
the respective neighbors, CNNs may process multi-variate signals in a
massively parallel fashion, as crucially necessary in time-critical

application fields, such as industry process control, electronic
surveillance, medical augmented reality, and IoT smart sensing. In
order to harness more efficiently the bio-inspired operating principles
of these nonlinear dynamic arrays, which make them a suitable
mathematical framework for modeling neural systems, Chua and
Roska proposed an innovative computer, called CNN Universal
Machine (CNN-UM) (Roska, 1993), to implement their signal
processing paradigm. The CNN-UM, fabricated in various forms
over the years through the well-established CMOS technology21

(Vázquez et al., 2018), consists of an array of locally coupled
computing units, each of which is endowed with data storage
blocks, which allow to distribute the memory across the cellular
array, endowing the computing machine with a truly non-von
Neumann architecture, and to reconfigure the array so as to solve
any computation problem. Thanks to their massively parallel
computing power, CNN-UM hardware realizations (Vázquez et al.,
2018)may process images at rates as high as 30,000 frames per second.
Considering that, furthermore, a universal cellular array may be
physically realized within the IC area of a single chip (Vázquez
et al., 2018), CNNs are particularly suitable for the development of
miniaturized IoT technical systems, in which the integration between a
matrix of sensing elements and a network of locally coupled
computing units with local stored programmability on board
enables information processing at the same location, where data
detection takes place. A major problem, which prevents to widen
the applicability scope of this class of sensor-processor arrays, is the
limited degree of complexity of the dynamical phenomena, whichmay
possibly emerge within their physical media, due to the simplicity of
the input-output behaviours of the electrical components employed

FIGURE 7 | Illustration of the geometrical analysis adopted to solve the three inequalitiesEqs. 15–17, derived through the classical CNN designmethod (Itoh andChua,
2003) to synthesize a suitable gene for a cellular array, intended to extract edges from a given input binary image, and reducing to b0,0 > (z + 9)Ω−1, b0,0 < (−z + 7)Ω−1, and
b0,0 > (−z + 5)Ω−1, respectively, under the parameter setting reported in the caption of Figure 5B. The set of admissible solutions are enclosed within the green area. The
asterisk symbol, located at (z* ,b*

0,0) � (−3, 9Ω−1), indicates a reasoned parameter pair choice for the specification of a robust EDGE CNN gene.

20In case iwi,j(+1V, 7) were found to be equal to −(a0,0 · Ry · glin − Gx) · vsat , as
shown in red in the example of 6(b), the cell state would keep its initial value at all
times. Here, at least theoretically, rule 3 would hold true. However, in the presence
of any infinitesimally small negative-signed additive constant perturbation of the
offset current, the cell would become monostable with a globally asymptotically
stable equilibrium, specifically vxi,j � (−a0,0 · Ry · glin · vsat + iwi,j(+1V, 7)) · Rx , in
the negative saturation region, and the CNN would fail to impose rule 3 in the
neighborhood of each cell with vui,j � +1V and nB � 7. Thus, in the worst-case
scenario from rule 3, the right breakpoint of the Shifted DP Characteristic should
lie at some safety distance from the horizontal axis within the plane upper half.

21Typically, the Full-Range model (Vázquez et al., 1993) is used in place for the
Chua-Yang mathematical description of Eq. (1) to limit the range of admissible
values for the cells’ states, thus simplifying the hardware realisation of the CNN
paradigm.

Frontiers in Nanotechnology | www.frontiersin.org May 2021 | Volume 3 | Article 63302611

Ascoli et al. Mem-Computing Memristor Cellular Nonlinear Networks

105

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


in the CNN-UM constitutive blocks. Thanks to their extremely rich
dynamics, memristors may be adopted in novel designs of cellular
computing arrays so as to extend significantly the spectrum of
asymptotic spatio-temporal behaviours, which purely CMOS
CNNs may currently exhibit. Another critical issue, which affects
the performance of technical systems, combining sensing and
processing functionalities on the same physical platform, is due
to the rather low spatial resolution of state-of-the-art CNN-UM
hardware realizations, originating from the presence of spacious data
storage units within their computing units, as discussed earlier. This
limits the maximum number of sensing and processing elements,
which may be paired22 one-to-one within the available IC area of
these IoT commercial products (Toshiba Ltd., 2012). The adoption
of memristive devices, endowed with memprocessing capabilities,
may allow to obviate the inclusion of additional memory banks
within the IC design of each CNN-UM computing unit, allowing to
shrink considerably its size, and enabling the future realization of
sensor-processor arrays with unprecedented spatial resolution, of
great appeal to the IoT industry, nowadays. In this respect, it is timely
to commence investigations aimed to explore the functionalities of
Memristor CNNs (M-CNNs). In general, introducingmemristors in
the circuit implementation of a CNN processing element23 increases
the order of its ODE model, calling for the development of a new
theory to investigate the operating principles of the resulting
nonlinear dynamic array, and to program its gene to allow the
accomplishment of a pre-defined memcomputing task. The
theoretical foundations of M-CNNs shall be discussed in the
section to follow.

3 THEORY OF MEMRISTOR CELLULAR
NONLINEAR NETWORKS

Memristors are the key technology enabler for the hardware
implementation of innovative memcomputing paradigms. This
section provides some evidence for this claim, establishing the
theoretical foundations of a class of cellular memprocessing
structures, which we call M-CNNs, as anticipated in section
2.5. In order to realize one of the proposed M-CNNs a first-order
non-volatile memristor24 Mxi,j is placed in parallel with the
capacitor in the circuit implementation of each cell of the two-

dimensional standard time- and space-invariant CNN (Chua,
1998), which was discussed in section 2.1. The memristive cell of
the novel nonlinear dynamic array is shown in Figure 8.

The next section reports the mathematical description of the
proposed memristive cellular array.

3.1 M-CNN Model
The M-CNN cell C(i, j) of Figure 8 may be described by the
following pair of first-order coupled ODEs25

(i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}):
dxmi,j

dt
� g(xmi,j, vxi,j), and (18)

dvxi,j
dt

�
~igi,j + iwi,j

Cx
. (19)

The first ODE Eq. 18 governs the time evolution of the state xmi,j

of the first-order nonvolatile resistance switching memory Mx ,
which the M-CNN cell C(i, j) acccommodates, according to an
enhanced variant of a voltage-controlled memristor model,
originally formulated by Pershin and Di Ventra (Pershin et al.,
2009), and capable to capture the switching kinetics of real
memristor devices (Jo et al., 2009), as discussed in Pershin
and Di Ventra (2011). The model of the resistance switching
memory in the cell C(i, j) is a first-order element from the class of
generic memristors, defined by the DAE set

dxmi,j

dt
� g(xmi,j, vmi,j), (20)

imi,j � G(xmi,j) · vmi,j. (21)

Note that, within the processing element C(i, j), the memristor
voltage vmi,j coincides with the capacitor voltage vxi,j, thus the
expression for the memristor current imi,j in Eq. 21 reduces to

imi,j � G(xmi,j) · vxi,j. (22)

The state evolution function g(xmi,j, vmi,j) and the memductance
function G(xmi,j) in the Pershin and Di Ventra model of the
memristor in theM-CNN cell C(i, j) are respectively expressed by

g(xmi,j, vmi,j) � κ(vxi,j) · (step(vmi,j) · f (p)+ (xmi,j),+step( − vmi,j)
· f (p)− (xmi,j)), and

(23)

G(xmi,j) � 1
xmi,j

. (24)

The memristor state xmi,j, representing the device memristance, is
constrained to lie at all times within the closed set Db[xon, xoff ],
where xon and xoff denote the lowest and highest possible device

22In state-of-the-art sensor-processor arrays the input to the processing element,
lying in correspondence to the ith row and jth column of a CNN-UM hardware
realization, is derived from the output of a sensing unit, located in the same
position within a matrix of data detectors with same cell number count as the
analog-and-logic computer (i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}). Since, for a given IC
area, a sensing matrix may feature a much higher density as compared to a cellular
computing machine, the low cell number count, which purely CMOS sensor
processor arrays typically feature (Vázquez et al., 2018), could be significantly
increased by leveraging the memcomputing capability of memristors to execute the
memory functions, currently accomplished by additional data storage elements,
within the CNN-UM computing units.
23In the class of M-CNNs, investigated in this thesis, memristors are employed only
for the design of the cell circuit. Their use for the circuit implementation of the
synaptic couplings shall be the focus of future studies.
24Throughout this chapter the state, voltage, and current of the memristor Mxi,j in
the cell C(i, j) are denoted as xmi,j , vmi,j , and imi,j , respectively.

25The numerical integration of the 2 · (M × N) ODEs, dictating the time evolution
of the state vectors of all the memprocessing elements, calls for the preliminary
assignment of an initial condition {(xmi,j(0), vxi,j(0))} to each cell C(i, j), and for the
preparatory specification of the boundary conditions (Chua and Roska, 2002),
fixing the input voltage and the output voltage of each virtual cell.
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resistances, respectively. With reference to Eq. 23, step(·) stands
for the Heaviside function, while κ(vmi,j) is a piecewise-linear
nonlinearity of the form

κ(vmi,j) � −β · vmi,j +
β − α

2
· (∣∣∣∣vmi,j + Vt

∣∣∣∣ − ∣∣∣∣vmi,j − Vt

∣∣∣∣), (25)

where α ∈ R> 0 and β ∈ R> 0 are coefficients, measured in units
Ω · V−1 · s−1, denoting the smaller and larger slopes of the
characteristic for

∣∣∣∣∣vmi,j

∣∣∣∣∣≤Vt and
∣∣∣∣∣vmi,j

∣∣∣∣∣>Vt , respectively, where
Vt ∈ R> 0 represents the memristor switching threshold voltage.
Figure 9A depicts the k(vmi,j)–vmi,j chapacteristic for the
parameter setting reported in its caption.

Since the memristor state existence domain D is finite, the
state evolution function in Eq. 23 is endowed with boundary
conditions, which ensure that xmi,j never decreases below
(increases above) its lowest (largest) possible value under
vmi,j > (< ) 0V. In order to facilitate the numerical simulation
of the memristor DAE set, we reformulate the boundary
conditions as compared to their original definition26 in the
Pershin and Di Ventra model (Pershin et al., 2009), adopting
continuous and differentiable functions, inspired to Biolek’s
window (Biolek et al., 2009), and reading as

f (p)+ (xmi,j) � 1 − (xmi,j − xon
xoff − xon

− 1)
2·p
, and (26)

f (p)− (xmi,j) � 1 − (xmi,j − xon
xoff − xon

)
2·p
, (27)

where p ∈ N> 0 controls the decay rate of the window function
Eqs. 26, 27 as xmi,j approaches xon (xoff ). As graphically
illustrated in plot (b) ((c)) of Figure 9 for the parameter
configuration provided in its caption, the window function
f (p)+ (−)(xmi,j) in Eqs. 26, 27 enforces the memory state evolution
function Eq. 23 to feature a zero, and, consequently, the
memristor ODE Eq. 18 to admit an equilibrium at xmi,j �

xon (off ) under positive (negative) values of the capacitor
voltage. Since the memory state ODE Eq. 18, with
evolution function expressed by Eq. 23, is of first-order,
the classical DRM graphical tool (Chua, 2018a) may be
applied to investigate the memristor nonlinear dynamics. The
DRM of the modified Pershin and Di Ventra memristor model is
illustrated in Figure 10A for the parameter arrangement defined in its
caption. The DC value Vmi,j, assigned to the voltage falling across the
resistance switching memory, parametrizes the family of memristor
SDRs. Within the family of _xmi,j vs. xmi,j loci, the characteristic
obtained for Vmi,j � 0V, known as POP, provides hints on the
nonvolatile memory capability of the circuit element. On the basis
of the memristor model under focus, the POP is a segment of the xmi,j

axis lying between xon and xoff . Each of the points on this
segment–shown in black in Figure 10A–represents a stable but
not asymptotically stable equilibrium (Strogatz, 2000) for the ODE
Eq. 18with state evolution function Eq. 23. Particularly, the existence
of a continuumof equilibria, namely xmi,j ∈ D, for thememristor state
equation under zero input clearly reveals that the resistance switching
device is an analogue non-volatile memory. Any value for xmi,j within
its existence domain D is a possible state, which the memristor may
store, from the time at which the power is turned off, till the time at
which a new voltage stimulus is applied between its terminals. With
regard to the _xmi,j–xmi,j loci, associated to nonzero values for Vmi,j, in
Figure 10A, the device asymptotically approaches the fully off (fully
on) resistive equilibrium state xmi,j � xoff (on) in case any negative
(positive) DC voltage is applied continually between its terminals, as
indicated by the arrow superimposed on each blue (red)
characteristic, which dictates a memory state rate of change
increasing monotonically with

∣∣∣∣∣Vmi,j

∣∣∣∣∣. Irrespective of the
negative (positive) DC value assigned to the memristor voltage,
the upper (lower) bound in the memristor state existence domain
D is found to be a globally asymptotically stable equilibrium for
the ODE (18) with state evolution function Eq. 23. For the very
same parameter setting, Figure 10B demonstrates now the
smooth periodic change, which the state xmi,j of the memristor
in the cell C(i, j) undergoes over each cycle of a sinusoidal voltage
appearing between its terminals, andmathematically expressed by
vmi,j � v̂mi,j · sin(2 · π · fmi,j · t), where v̂mi,j � 2V and fmi,j � 100Hz.
Clearly, at any given time instant, the cell is effectively a second-
order dynamical system with degrees of freedom provided one by
the memristor state and one by the capacitor voltage, which is also
illustrated in plot (b) of Figure 10. Visualizing the memristor
current flowing through the memristor as a result of the capacitor

FIGURE 8 |Circuit implementation of the M-CNN cellC(i, j) (i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}). In this study the cell circuit parameters are assumed to be invariant across
theM × N bio-inspired memristive array. As a result, the following assumptions are made: Cxi,j � Cx ,Mxi,j � Mx , Rxi,j � Rx , and Rxi,j � Ry . Two are the main contributions
to the capacitor current ixi,j : one, given by the addition between ia0,0 , iRi,j , and imi,j , is a function of the two cell states, while the other, expressed by the sum of the
memcomputing core currents, which flow through the 18 branches appearing to the right of the memristor, except for the self-feedback synaptic current, capture
mostly the impact of input and output voltages of the 8 neighbors on the dynamics of the cell states themselves.

26The Pershin and Di Ventra model from (Pershin et al., 2009) adopts the
Heaviside functions step(xmi,j − xon) and step(xoff − xmi,j) in place for the
proposed continuous and differentiable variants, expressed by Eqs. 26, 27,
respectively. The use of these discontinuous functions does not always prevent
the memristor state xmi,j from exiting its existence domain D in numerical
simulation of the original model. The proposed Biolek window-based boundary
condition reformulation resolves this issue.
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voltage from plot (b) vs. the capacitor voltage itself, the resulting
pinched hysteresis loop, shown in Figure 10C, gives further
evidence for the analogue dynamic behaviour of the cell
memristor. The second M-CNN cell ODE Eq. 19 governs the
time evolution of the cell capacitor voltage vxi,j within the
memcomputing core of the circuit of Figure 8. Its right hand
side is identical as in the ODE Eq. 1 dictating the rate of change of
the capacitor voltage within the computing core of the cell of the
standard time- and space-invariant two-dimensional CNN
discussed in section 2.1, except for the presence of an
additional addend, resulting from the current through the
memristor. It follows that the expression for the offset current
iwi,j of the memristive processing element of Figure 8 is still given
by Eq. 11, while, using Eq. 22 to express the current through the
memristor, the formula for the cell Internal DP Component ~gi,j
features the new form

~igi,jb~ig(xmi,j, vxi,j) � −vxi,j
xmi,j

− vxi,j
Rx

− a0,0 · Ry · glin · vsat if vxi,j < − vsat ,

(28)

(a0,0 · Ry · glin − 1
Rx

− 1
xmi,j

) · vxi,j if
∣∣∣∣vxi,j∣∣∣∣≤ vsat ,

(29)

−vxi,j
xmi,j

− vxi,j
Rx

+ a0,0 · Ry · glin · vsat if vxi,j > + vsat .

(30)

in which Eqs. 22, 24 were employed to model the cell
memristor current imi,j and the memductance function
G(xmi,j), respectively. It is worth to note that the number of
variables in the argument of igi,j is a signature for the order of
the cell, as can be inferred by comparings Eqs. 8–10 and Eqs.
28–30. The classical cell DRM technique (Chua, 2018a),
reviewed in section 2.2, and adopted for the analysis and
synthesis of standard CNNs with first-order processing
elements, is applicable to dynamical systems with one
degree of freedom only. As a result, the development of a
systematic procedure to investigate and design M-CNNs with
second-order memristive processing elements calls for a
preliminary generalization of the DRM graphic tool.
Drawing inspiration from the phase portrait concept from

the theory of nonlinear dynamics (Strogatz, 2000), the next
section introduces a new system-theoretic notion, which we
name Second-Order DRM (DRM2), enabling the investigation
of the memcomputing capabilities of cellular nonlinear
arrays with second-order memristive cells.

3.2 A Generalized DRM Technique for the
Analysis of M-CNNs With Second-Order
Processing Elements
In this section we extend the classical DRM methodology
(Chua, 2018a) for the analysis of a nonlinear dynamic
system with two degrees of freedom. Focusing, in particular,
on the second-order M-CNN cell under study, the xmi,j–vxi,j
phase plane is the most natural domain, where the dynamical
evolution of the two states of the system, described by Eqs. 18,
19, may be studied. Let us first introduce the concept of State
Dynamic Portrait (SDP).

Remark 2. With reference to the qualitative drawing in
Figure 11, a SDP is a two-dimensional graph associated to a
prescribed choice for the offset current value. It may be obtained as
follows. First, the phase plane xmi,j–vxi,j is partitioned into at most 4
distinct regions, differing in the sign( _xmi,j) and/or in the sign( _vxi,j),
and distinguished according to the following coding map:

• Green region I: _vxi,j < 0V/s and _xmi,j < 0Ω/s.
• Yellow region II: _vxi,j > 0V/s and _xmi,j > 0Ω/s.
• Cyan region III: _vxi,j > 0V/s and _xmi,j < 0Ω/s
• Gray region IV: _vxi,j < 0V/s and _xmi,j > 0Ω/s

Then the loci _xmi,j � 0Ω/s and _vxi,j � 0V/s – respectively known as
xmi,j and vxi,j nullclines (Strogatz, 2000) – as well as their
intersections – i.e., the equilibria of the ODE set Eqs. 18, 19 –
are marked on the phase plane using the following symbolism:

• Red crosses: _xmi,j � 0Ω/s.
• Magenta diamonds: _vxi,j � 0V/s.
• Black circles: _vxi,j � 0V/s and _xmi,j � 0Ω/s.

Particularly, the local instability (stability) of an equilibrium,
studied by linearizing the state equations and studying the
properties of the Jacobian, is graphically illustrated in a given
SDP by means of a hollow (filled) black circle. The dynamical

FIGURE 9 | (A) Course of κ(vmi,j ) as a function of vmi,j for α � 105 Ω·V−1 s−1, β � 106 Ω·V−1 s−1, and Vt � 0.8 V. (B,C) Window functions, appearing in the state
evolution function Eq. 23, and preventing xmi,j from decreasing below (increasing above) the lower (upper) bound xon (xoff ) under positive (negative) memristor voltages.
Here p � 40, xon � 2 kΩ, and xoff � 10 kΩ.

Frontiers in Nanotechnology | www.frontiersin.org May 2021 | Volume 3 | Article 63302614

Ascoli et al. Mem-Computing Memristor Cellular Nonlinear Networks

108

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


behaviour of the state variables from any initial condition of
interest may be qualitatively inferred by inspecting the direction
of the vector field ( _xmi,j, _vxi,j). In fact, phase plane trajectories27,
moving through regions I, II, III, and IV, proceed in the south-
west, north-east, north-west, and south-east directions, as time goes by,
respectively. The numerical integration of the pair of first-order
coupled ODEs Eqs. 18, 19, for initial conditions in the set of
interest, allows to confirm this qualitative investigation on a
quantitative basis, allowing to endow the partitioned plane, already
accomodating nullclines and equilibria, with a number of phase plane
trajectories, extracted by plotting the two solutions vxi,j(t) and xmi,j(t)
of the model equations one against the other, and indicating, through
the guide of arrows, placed on top of them, how the second-order M-
CNN cell state evolves with time from prescribed starting points. An
arrowed phase plane trajectory, marked in blue on a given SDP, is
called a Second-Order SDR (SDR2). Finally, the family of SDPs,
obtained for each offset current value within a certain set of
interest, takes the name of Second-Order DRM (DRM2).

The proposed generalized DRM methodology may be used to
analyze the operating principles of a givenM-CNNwith second-order
memristive cells. Most importantly, the DRM2 graphical tool allows to
develop a systematic procedure to program one of the memristive
cellular arrays under focus for the execution of a predefined
memcomputing task, as outlined in the next section.

Remark 3. The DRM2 graphic tool features a much more general
applicability scope than this paper demonstrates. In fact, it allows to
investigate any second-order dynamical system, including
memristive circuit elements with two degrees of freedom.

3.3 A Rigorous DRM2-Based Methodology
for Robust M-CNN Design
The proposed DRM2-based M-CNN design methodology (Ascoli
et al., 2020a) allows to program the memristive nonlinear

dynamic array i.e., to choose numerical values for the 19 cell
core parameters28 {{ak,l}, {bk,l}, z} (k, l ∈ {−1, 0, 1}), in such a way
that the processing element C(i, j) may implement a predefined set
of rules29 (Chua, 1998), which, depending upon the specific data
storage or processing operation to be executed, dictate the steady-
state value30 of its output voltage vyi,j(t(s)i,j ) for any combination of
input voltage vui,j and initial conditions xmi,j(0) and vxi,j(0) of its two
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FIGURE 10 | (A) SDRs foliating from the memristor DRM for Vmi,j ∈ { − 1.25,−1.15,−1.05,−0.90, 0, 0.90, 1.05,1.15, 1.25}V. The blue (red) arrowed loci are
associated to negative (positive) values for the memristor voltage. In the first (latter) case, the larger is

∣∣∣∣Vmi,j

∣∣∣∣, and the higher is the speed of the memristor state in its motion
toward the equilibrium xmi,j � xoff (on). The black locus represents the memristor POP. (B) Proof of evidence for the analogue dynamic response of the memristor state,
hosted by the cell C(i, j), to a sinusoidal voltage of the form vmi,j � v̂mi,j · sin(2 · π · fmi,j · t), with amplitude v̂mi,j � 2 V and frequency fmi,j � 100Hz, appearing between
its terminals. (C) Pinched hysteresis loop emerging on the vmi,j–imi,j plane as a result of the device periodic excitation illustrated in (B). Thememristor model parameters are
set as follows: α � 105 Ω·V−1 s−1, β � 106 Ω·V−1 s−1, Vt � 0.95V, p � 40, xon � 2 kΩ, xoff � 10 kΩ.

27A phase plane trajectory is the locus of points (xmi,j(t), vxi,j(t)), with first (second)
coordinate at a given time extracted from the temporal succession of values of the
memristor state (capacitor voltage) in the solution of the second-order ODE
(18)–(19) for a given initial condition (xmi,j(0), vxi,j(0)).

28This 19-parameter set is often referred to as gene in CNN theory (Chua and
Roska, 2002), since its 19 elements crucially affect the spatio-temporal phenomena,
which may emerge in the space-invariant array of locally coupled cells, similarly as
the DNA genetic content has a significant impact on the dynamical evolution of
living beings. The 9 feedback (feedforward) synaptic weights in the set {ak,l} ({bk,l}),
with k, l ∈ {−1, 0, 1}, are typically arranged in a 3 × 3 matrix A (B), referred to as
feedback (feedforward) template in CNN theory (Chua and Roska, 2002).
29The conditions, under which a space-invariant M-CNN is uncoupled, are the
same as defined in section 2.3 for a space-invariant CNN: ak,l � 0 for all
k, l ∈ {−1, 0, 1} such that (k, l)≠ (0, 0). For a memristive cellular array from this
class the rules are said to be local (Chua and Roska, 2002), i.e., in general, they
depend upon the input voltage vui+k,j+l and/or the initial conditions xmi+k,j+l(0) and
vxi+k,j+l(0) of the two dynamical states of each cell C(i + k, j + l) within the 3 × 3
sphere of influence of C(i, j), only. In coupled M-CNNs the applicability of the
some of the rules–referred to as global (Chua and Roska, 2002)–for the cell C(i, j)
may be conditioned by the input voltage vui+m,j+n and/or the initial conditions
xmi+m,j+n(0) and vxi+m,j+n(0) of the two dynamical states of some remote cell
C(i +m, j + n), with m ∉ {−1, 0, 1} and/or n ∉ {−1, 0, 1}.
30The M-CNN computing paradigm, this section is focused upon, revolves around
the asymptotic convergence of the state vector (xmi,j , vxi,j) of the cell C(i, j) to a
relevant stable equilibrium (xmi,j , vxi,j), with ordinate located in either of the two
saturation regions of the standard nonlinearity of Eq. 3, on the basis of a set of
predefined task-dependent rules. However, as is the case for standard space-
invariant CNNs satisfying the bistability condition, the output voltages of all the
processing elements attain their final positive or negative saturation levels within a
finite time frame. Similarly as in section 2.2, denoting with t(s)i,j the time instant, at
which the capacitor voltage vxi,j of the cell C(i, j) enters the saturation region, which
accommodates the equilibrium (xmi,j , vxi,j) the cell state vector (xmi,j , vxi,j) is
expected to approach as time goes to infinity, the M-CNN may be considered
at steady state, with respect to the output voltages of all its processing elements,
from the time instant t(s) � max1≤ i≤M,1≤ j≤N(t(s)i,j ). This makes the memcomputing
task outcome insensitive to a potential change in the location of some of the cell
equilibria, which may occur due to non-idealities, including the intrinsic variability
of nanodevices employed in the nonlinear dynamic array, especially the
memristors.
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dynamical states, and under specific conditions involving neighboring
or remote processing elements. The proposed M-CNN design
methodology complementing similar works – discussed in section
2.3 – on the synthesis of CNN genes (Zarándy, 2003; Itoh and Chua,
2003), is based upon the following steps:

1. On the basis of the memcomputing task assigned to a given
M-CNN, and with reference to the processing element
C(i, j), the designer should first roughly identify, under
any possible combination of input voltage vui,j, and of
initial capacitor voltage vxi,j(0) and memory resistance
xmi,j(0), and for any condition involving neighboring and/
or remote cells, envisaged by the rule set, the most suitable
partition of the two-dimensional state space xmi,j–vxi,j, which
would guide the respective phase-plane trajectory toward an
appropriate equilibrium. In other words, this step allows to
specify the Family of SDPs i.e., the cell DRM2, under target.

2. In order to derive numerical values for the parameter set
{{ak,l}, {bk,l}, z}, where k, l ∈ {−1, 0, 1}, so as to endow the cell
with the specified DRM2, a number of inequalities,
constraining, for each scenario of any rule, the behaviour of
the sign( _xmi,j) and of the sign( _vxi,j) across the phase plane
xmi,j–vxi,j so as to control the number and stability properties of
the equilibria, which it accommodates, are written down31

through the use of the second-order ODE system Eqs. 18, 19,
with the expression for the offset current iwi,j, appearing in the
latter state equation, preliminarily simplified as much as
possible as compared to its general formula from Eq. 11, so
as to implement the given data storage or processing task as
efficiently as feasible.

3. A set of cell parameter values, satisfying concurrently all
the aforementioned inequalities, shall be determined by
means of a graphical approach, or through a numerical
algorithm, depending upon the number of unknowns.
Integrating numerically the state Eqs. 18, 19 of the
M-CNN cell C(i, j) for prescribed input voltage vui,j and
vector state initial condition (xmi,j(0), vxi,j(0)) in each
scenario encompassed in any rule, the resulting phase
plane trajectories on the relevant SDP shall be found to
evolve progressively toward the desired equilibria,
allowing the cellular array to accomplish a predefined
memcomputing task.

3.4 Application of the M-CNN Design
Methodology to Execute Fundamental
Memcomputing Tasks
In this section the proposed cell DRM2 synthesis technique is
applied to the cell model Eqs. 18, 19 to program the M-CNN to
execute an image processing operation and a couple of
memory functions, namely the data storage and retrieval
tasks. Before presenting the M-CNN design examples, it is
instructive to identify the most important properties of the
second-order system Eqs. 18, 19 through the application of
fundamental concepts from the theory of nonlinear dynamics
(Strogatz, 2000).

From the first M-CNN cell ODE Eq. 18, the formulas for the
xmi,j nullclines (Strogatz, 2000) are

xmi,j � xoff , for vxi,j < 0V, (31)

FIGURE 11 | Exemplifying SDP, which the M-CNN cell C(i, j) would typically feature under iwi,j � 0A, if a0,0 >Gx + x−1on . The capacitor voltage range under display is
[−vmax , vmax], with vmax > vsat. The linear region

∣∣∣∣vxi,j ∣∣∣∣≤ vsat is the rectangular domain enclosed within the two black dashed horizontal lines. The direction of motion of the
state vector (xmi,j , vxi,j ) in regions I, II, III, and IV is graphically illustrated in the legend.

31Despite template optimization (Chua and Roska, 2002) does not constitute the
focus of this research study, in some cases, in order to improve the robustness of the
M-CNN design, it may be adviceable to include additional inequalities, which may
endow the design with a good tolerance to parameter variability. As examples, one
could enforce a minimal distance between certain xmi,j and vxi,j nullclines to prevent
the emergence of unwanted equilibria, or between the location of a desired
equilibrium and the frontier between the saturation region, where it is due to
reside, and the linear region. Moreover, in certain M-CNN designs, the use of the
resistor of strictly positive conductance Gx in parallel to the cell capacitor allows to
keep the power dissipation in the memristor within reasonable limits at
equilibrium. Finally, within the domain of admissible solutions of a given IS,
one should select a particular one holding some safety distance from the boundary
with the remainder of the space of the cell unknown core parameters.
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xmi,j ∈ D, for vxi,j � 0V, and (32)

xmi,j � xon, for vxi,j > 0V. (33)

Employing now the second M-CNN cell ODE Eq. 19, the vxi,j
nullclines are found to be expressed by

vxi,j �
iwi,j − a0,0 · Ry · glin · vsat

Gx + 1
xmi,j

, (34)

for vxi,j < −vsat , by

vxi,j �
−iwi,j

a0,0 · Ry · glin − Gx − 1
xmi,j

, (35)

for
∣∣∣∣∣vxi,j∣∣∣∣∣≤ vsat , and by

vxi,j �
iwi,j + a0,0 · Ry · glin · vsat

Gx + 1
xmi,j

, (36)

for vxi,j > vsat
Remark 4. As it follows from Eq. 29, under iwi,j � 0A, the vxi,j

nullclines in the linear region consist of the segment, lying along the
xmi,j axis, and comprised between xon and xoff , and, in case
a(−)0,0 < a0,0 < a(+)0,0 (see Figure 12B for an example, where
Gx � 0Ω−1), where

a(−)0,0 b
Gx + x−1off
Ry · glin , and (37)

a(+)0,0 b
Gx + x−1on
Ry · glin (38)

also of the two disjoint sets vxi,j ∈ [−vsat , 0V), and (0V, vsat] for
xmi,j � 1

a0,0 ·Ry ·glin−Gx
.

Remark 5. The application of the proposed design method
to the specific M-CNN cell model Eqs. 18, 19 is unable to
control existence and/or massage the shape of the xmi,j

nullclines, which are invariably set by equations Eqs.
31–33. However, the number and graphical look of the vxi,j
versus xmi,j loci from equations Eqs. 34–36 may be altered by
tuning the cell model parameters, they are function of, so as
to allow the synthesis of a suitable cell DRM2 for the
accomplishment of a predefined memcomputing task.
The equilibria, lying at the intersections between the xmi,j

and vxi,j nullclines, are located at

Q(−)b(x(−)mi,j
, v(−)xi,j

) � ⎛⎝xoff ,
iwi,j − a0,0 · Ry · glin · vsat

Gx + x−1off
⎞⎠, (39)

if

iwi,j − a0,0 · Ry · glin · vsat
Gx + x−1off

< −vsat , (40)

in the negative saturation region, at

Q(0,−)b(x(0,−)mi,j
, v(0,−)xi,j

) � ⎛⎝xoff ,
iwi,j

−a0,0 · Ry · glin + Gx + x−1off
⎞⎠, (41)

if

−vsat ≤ iwi,j

−a0,0 · Ry · glin + Gx + x−1off
< 0V, (42)

as well as at

Q(0,+)b(x(0,+)mi,j
, v(0,+)xi,j

) � (xon, iwi,j

−a0,0 · Ry · glin + Gx + x−1on
), (43)

if

0 V<
iwi,j

−a0,0 · Ry · glin + Gx + x−1on
≤ vsat , (44)

in the linear region, and at

Q(+)b(x(+)mi,j
, v(+)xi,j ) � (xon, iwi,j + a0,0 · Ry · glin · vsat

Gx + x−1on
), (45)

if

iwi,j + a0,0 · Ry · glin · vsat
Gx + x−1on

> vsat , (46)

in the positive saturation region.
Remark 6. Under iwi,j � 0A, each point defined as

Q(0) � (x(0)mi,j
, v(0)xi,j ), with x(0)mi,j

∈ D, and v(0)mi,j
� 0V, (47)

represents a possible equilibrium for the M-CNN cell in the linear
region. Moreover, in case a0,0 � a(−)0,0 (a0,0 � a(+)0,0 ), with a(−)0,0 (a(+)0,0 )
defined in equation Eqs. 37, 38, also each point along the vertical
line of the xmi,j–vxi,j phase plane, passing through the memristor
state upper (lower) bound xoff (xon), and stretching over the
capacitor voltage range vxi,j ∈ [−vsat , 0V) (vxi,j ∈ (0V, vsat])
denotes an additional M-CNN cell equilibrium in the linear
region (Ascoli et al., 2020b). From the first M-CNN cell ODE
Eq. 18, it follows that the memristor state xmi,j increases if

vxi,j < 0 and xmi,j ∈ [xon, xoff ) (48)

and decreases if

vxi,j > 0 and xmi,j ∈ (xon, xoff ] (49)

Thus, as revealed by the illustrative cell SDP example of
Figure 11, the motion of a trajectory point (xmi,j, vxi,j) on a
given SDP points toward the east (west) in the phase plane
lower (upper) half. Inspecting now the second M-CNN cell
ODE (19), the capacitor voltage vxi,j is found to increase provided

vxi,j <
iwi,j − a0,0 · Ry · glin · vsat

Gx + 1
xmi,j

, (50)

for vxi,j < −vsat , provided

⎛⎝vxi,j +
iwi,j

a0,0 · Ry · glin − Gx − 1
xmi,j

⎞⎠ · (xmi,j −
1

a0,0 · Ry · glin − Gx
)> 0,

(51)

for
∣∣∣∣∣vxi,j∣∣∣∣∣≤ vsat , and provided
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vxi,j <
iwi,j + a0,0 · Ry · glin · vsat

Gx + 1
xmi,j

, (52)

for vxi,j > vsat , and it decreases provided the inequality sign in each
of the iwi,j-dependent conditions Eqs. 50–52 is inverted. On the
basis of inequalities Eqs. 50, 52, dictating the conditions under
which sign _vxi,j > 0V · s−1 in the negative, linear, and saturation
region, respectively, it is now possible to understand the reason
why the trajectory point (xmi,j, vxi,j) moves northward or
southward in the illustrative cell SDP example of Figure 11.

3.4.1 Zero Offset Current Scenario
It may be proved that, unlike a standard CNN processing
element, the M-CNN cell C(i, j) may never exhibit
monostability for iwi,j � 0A. In other words, under no
circumstances may the respective SDP host one and only one
globally asymptotically stable equilibrium (Strogatz, 2000).
Table 2 sums up (Ascoli et al., 2020b) the location and local
stability property of each equilibrium, which the M-CNN cell
C(i, j) may admit under zero offset current depending upon the
self-feedback synaptic weight a0,0.

Specifying the values32, reported in Table 3, for all the fixed
parameters of the cell circuit of Figure 8, the viewgraphs in plots
(a), (b), and (c) of Figure 12 illustrate the SDP of a M-CNN
processing element, accommodating no linear resistor in the
memcomputing core, under zero offset current, and for a
specific value of the self-feedback synaptic weight a0,0 in the
first, second, and third of the three sets reported in Table 2 and
Ascoli et al. (2020b).

3.4.2 Non-Zero Offset Current Scenario
Allowing a non-null offset current, accounting mostly for the
coupling effects, to flow through the capacitor in the circuit of
Figure 8 may endow the processing element with monostability,
which is useful for the accomplishment of certain mem-
computing tasks, as will be clear from the discussion of some

M-CNN designs in the sections to follow. Table 4, in which
i1(a0,0) and i2(a0,0) are defined as

i1(a0,0)b(a0,0 · Ry · glin − Gx − x−1off ) · vsat , and (53)

i2(a0,0)b(−a0,0 · Ry · glin + Gx + x−1on) · vsat , (54)

classifies the number, location, and local stability property of all
the equilibria which a M-CNN cell may possibly admit for all the
possible combinations of self-feedback synaptic weight a0,0 and
offset current iwi,j.

Remark 7. Interestingly, this table allows to draw the
codimension-2 bifurcation diagram of Figure 13, in which,
without loss of generality, Gx was set to 0Ω−1. This graph,
which, taking inspiration from CNN theory (Chua, 1998;
Chua and Roska, 2002) is called M-CNN Primary Mosaic,
visualizes the partitioning of the a0,0–iwi,j plane in domains
differing one from the other in at least one of the stable
equilibria, which the solutions of the ODE of a cell from the
class of uncoupled M-CNNs may possibly approach
depending upon the initial conditions. For each of such
domains in Figure 13, a distinct color is chosen to fill the
space within its boundaries, and the indication of the stable
and unstable equilibria, which the M-CNN cell admits for
any pair (a0,0, iwi,j) residing therein, is given.In this
manuscript the proposed DRM2-based M-CNN design
methodology shall be applied to the model Eqs. 18, 19
of a cell belonging to the class of uncoupled M-CNNs, and
featuring an offset current, which, in comparison to its
most general formula, namely Eq. 11, reduces to Eq. 13.

4 M-CNN AS A BIO-INSPIRED IMAGE
PROCESSING ENGINE

A M-CNN may be programmed to carry out any image
processing operation, which a classical CNN is able to
execute. To provide some evidence for this claim, the
next section discusses the system-theoretic design of a
memristive cellular array for the extraction of edges from
a binary image.

FIGURE 12 |Cell SDP, emerging for the fixed circuit parameter setting from Table 1, under iwi,j � 0A, andGx � 0Ω−1, and featuring a continuum of stable equilibria
for a0,0 � 0Ω−1 (A), a stable isolated equilibrium, as well as a line of equilibria with stable (unstable) character to the left (right) of a bifurcation point for a0,0 � 2 · 10− 4 Ω−1

(B), and, finally, two stable isolated equilibria, as well as a continuum of unstable equilibria for a0,0 � 2 · 10−3Ω−1 (C).

32These very same values will be assigned to all the invariable cell circuit parameters
in each of the M-CNN designs discussed below.
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4.1 Edge M-CNN
This section is devoted to the design of a M × N memristive array
capable to extract the edges from an input binary image featuring as
many rows and columns as the M-CNN. The local rule triplet, each
M-CNN cell, featuring the circuitry shown in Figure 8, is requested to
complywith, so as to execute this image processing task33, are reported
in Table 1 from section 2.4. In order to ensure that the
memprocessing elements obey this local rule set, it is wise to
synthesize the cell SDP pertaining to each scenario from rules 1
and 2 (rule 3) in such a way that it accommodates one and only one
equilibrium located in the negative (positive) saturation region
i.e., Q(−) (Q(+)), as specified by Eqs. 39, 45. In order to ease the
understanding of the steps of the proposed M-CNN design
methodology, it is adviceable to provide its result in advance. Plots
(a), (b), and (c) of Figure 14 respectively illustrate the SDP of a
M-CNN processing element, which obeys34 rule 1 for nB � 0, rule 2,
and rule 3 for nB � 7. As may be inferred by inspecting plots (a) and
(b) (plot (c)), here the cell monostability in both rules 1 and 2 (in rule
3) is enforced by making sure that only the negative (positive)
saturation region hosts a vxi,j nullcline, as expressed by Eqs. 34, 36,
and highlighted by means of magenta diamonds, and imposing that
such vxi,j � vxi,j(xmi,j) characteristic form a point of intersection, as
defined by Eqs. 39, 45, and marked via a black circle, with the vertical

xmi,j nullcline Eqs. 31, 33 indicated through red crosses in the phase
plane lower (upper) half. Adopting such a cell DRM2 synthesis
strategy, in any scenario of rule 1 and for rule 2 (under all
circumstances in rule 3), a state vector (xmi,j, vxi,j) positioned
below/above the vxi,j nullcline Eqs. 34, 36 is constrained to move
in the north/south direction, bending eastward or westward in the
phase plane lower or upper half, respectively, toward the point Eqs.
39, 45, denoting, as a result, a globally asymptotically stable
equilibrium for the second-order ODE system Eqs. 18, 19, as the
filling of the respective black circlemarker in plots (a) and (b) (plot (c))
of Figure 14 clearly indicates. Plots (a.1) (a.2), and (a.3) ((b.1), (b.2),
and (b.3)) ofFigure 15 graphically visualize the steps, envisaged by the
proposed cell SDP synthesis approach, and discussed shortly, to shape
the phase portrait of the second-order ODE Eqs. 18, 19 in the linear,
negative (positive) saturation, and positive (negative) saturation
regions, respectively, so as to enforce local rules 1 and 2 (rule 3)
from Table 1. Through a rigorous mathematical analysis of Eqs. 18,
19 in each region of the standard output nonlinearity Eq. 3 we shall
next derive an ad-hoc IS set, allowing to massage the cell DRM2, as
illustrated in Figure 15. Previous to initiate this investigation, a couple
of aspects should be pinpointed. Firstly, the cell ODE initial condition
(xmi,j(0), vxi,j(0)) may be chosen arbitrarily, since, as mentioned
earlier, irrespective of the rule, the phase plane will be allowed to
host one and only one GAS equilibrium in any possible scenario.
Secondly, we assume the same expression for the offset current as in
the EDGE CNN design, namely Eq. 14. Let us suppose that the
parameter values for b ∈ R< 0 and z ∈ R< 0 are known. As a result,

TABLE 2 | Location and local stability property of each of the equilibrium points, which a M-CNN cell may possibly admit, depending upon a0,0, under iwi,j � 0A (Ascoli et al.,
2020b). The coordinates ofQ(−),Q(0), andQ(+) are indicated in Eqs. 39, 47, and 45, respectively. With reference to the table content, we define a(−)0,0 b ~x−1off · R−1

y g−1lin , and
a(+)0,0 b ~x−1on · R−1

y g−1lin . The marginal case a0,0 � a(−)0,0 (a0,0 � a(+)0,0 ), in which, as mentioned in Remark 6, an additional line of equilibria, namely each point along the vertical line
passing through the memristor state upper (lower) bound and stretching across the capacitor voltage range vxi,j ∈ [−vsat , 0V) (vxi,j ∈ (0 V, vsat]), appears in the linear region, is
not tabulated here, but the interested reader is invited to consult (Ascoli et al., 2020b).

Self-feedback synaptic weight
range

Cell equilibrium location Local stability property

a0,0 < a(−)0,0 Q(0) � (x(0)mi,j
, v(0)xi,j )with x(0)mi,j

∈ D, and v(0)mi,j
� 0V Stable for all x(0)mi,j

values

a0,0 ∈ (a(−)0,0 , a
(+)
0,0 ) Q(−) � (xoff , −a0,0 ·Ry ·glin ·vsat

Gx+x−1off
) Stable

— Q(0) � (x(0)mi,j
, v(0)xi,j )with x(0)mi,j

∈ D, and v(0)mi,j
� 0V Stable if x(0)mi,j

∈ [xon , 1
a0,0 ·Ry ·glin−Gx

)
a0,0 > a(+)0,0 Q(−) � (xoff , −a0,0 ·Ry ·glin ·vsat

Gx+x−1off
) Stable

— Q(0) � (x(0)mi,j
, v(0)xi,j )with x(0)mi,j

∈ D, and v(0)mi,j
� 0V Unstable for all x(0)mi,j

values

— Q(+) � (xon , a0,0 ·Ry ·glin ·vsat
Gx+x−1on ) Stable

TABLE 3 | Setting of specific M-CNN cell circuit parameters, specifically α, β, and
Vt from Eq. 25, xon, xoff , and p from Eqs. 26, 27, Cx from Eq. 19, I from Eq. 4,
Ry from Eq. 2, as well as glin and vsat from Eq. 3, which are kept unchanged in the
design examples to follow.

α/ (Ω · s −1 · V −1) β/ (Ω · s− 1 · V − 1) Vt/ V xon (off)/ kΩ p

105 106 0.8 2 (10) 40
Cx/ μF I/ A Ry / kΩ glin/mΩ− 1 vsat/ V
10 1 1 1 0.1

33Indicating the memristor resistance xmi,j (capacitor voltage vxi,j) of the cell C(i, j)
as state 1 (2), the convention adopted in the EDGE M-CNN design for mapping a
given input image with M × N pixels (M · N real-valued initial cell capacitor
voltages) onto M · N real-valued cell input voltages (onto an initial state 2 image
with M × N pixels) is identical to the approach followed in section 2.1, while
discussing the operating principles of the standard array implementation.
However, since vsat is set to 0.1V here, the colour coding map for the
visualization of the steady-state cell output voltages differs from the strategy
used in section 2.1. A negative (positive) saturation voltage level for the
steady-state output voltage of a cell is converted into a white (black) pixel for
the steady-state output image.
34As will be clarified shortly, the scenario nB � 0 (7) represents the most critical
setting for the cell SDP synthesis in rule 1 (3), and, for this reason, is referred to as
worst-case scenario.
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the M-CNN gene synthesis technique will target the derivation of
suitable values for a0,0 and b0,0. An appropriate IS in these two
unknowns is derived next. The analysis of Eqs. 18, 19 focuses first on
the linear region of the phase plane.

4.1.1 Edge M-CNN Cell DRM2 Synthesis in the Linear
Region
With reference to plot (a.1) (b.1) of Figure 15, the aim of this
section is to make sure that, under all circumstances in rule 1 and
for rule 2 (in all scenarios of rule 3), the characteristic vxi,j �
vxi,j(xmi,j) of Eq. 35 lies entirely within the domain
vxi,j > (< ) + (−)vsat , as indicated by means of a dashed brown
curve without magenta diamonds. The inequality

a0,0 · Ry · glin − Gx > x−1on , (55)

ensures a positive sign for the denominator of the rational function
on the right hand side of Eq. 35 irrespective of the value assumed
by the memristor state xmi,j throughout its existence domain D.
Provided the constraint Eq. 55 holds true, enforcing a negative
(positive) polarity for the offset current35 in each scenario of rule 1
and for rule 2 (under all circumstances in rule 3) via

iwi,j(vui,j, nB)< (> ) 0A, (56)

ensures that the vxi,j–xmi,j locus, expressed by Eq. 35, falls
entirely within the phase plane positive (negative) half in
these cases. It is simple to show that, under the satisfaction
of constraint Eq. 56 with the first (second) inequality sign in
rules 1 and 2 (rule 3), the function vxi,j � vxi,j(xmi,j) features an
upward (downward) concavity, decreasing (increasing)
monotonically with the memristor state, as shown in plot
(a.1) ((b.1)) of Figure 15. As a result, under all possible
circumstances in rule 1 and for rule 2 (in all scenarios of
rule 3) the characteristic vxi,j � vxi,j(xmi,j) lies completely within
the positive (negative) saturation region, as depicted in
Figure 15 (a.1) ((b.1)), provided

−iwi,j(vui,j, nB)
a0,0 · Ry · glin − Gx − x−1off

> (< ) + ( − )vsat (57)

Let us now study the direction of motion of the state vector
(xmi,j, vxi,j) throughout the linear region. The enforcement of
inequality Eq. 55 endows the second factor on the left hand
side of constraint Eq. 51 with a strictly positive sign. It follows
that, within the domain

∣∣∣∣∣vxi,j∣∣∣∣∣≤ vsat , the capacitor voltage of the
cell circuit of Figure 8 increases over time if

vxi,j > − iwi,j

a0,0 · Ry · glin − Gx − 1
xmi,j

(58)

Since, as established by constraint Eq. 57, in rules 1 and 2 (rule 3)
the right hand side of inequality Eq. 58 assumes values larger
(lower) than +(−)vsat throughout the memristor state existence
domain, phase plane trajectories of the linear region move toward
the south (north), bending eastward or westward in the phase
plane lower or upper half, as established by condition Eq. 48 or
Eq. 49, visiting36 the gray (yellow) region IV (II) or the green
(cyan) region I (III), respectively, as indicated in plot (a.1) ((b.1))
of Figure 15.

4.1.2 Edge M-CNN Cell DRM2 Synthesis in the
Saturation Regions
The goal of this section is twofold. On one hand, in each scenario
of rule 1 and for rule 2 (under all circumstances from rule 3) the
cell SDP is expected to accommodate one and only one GAS
equilibrium point, specifically Eqs. 39, 45, over the domain
vxi,j < (> ) − (+)vsat , as indicated by the black-filled circle in
plot (a.2) (b.2) of Figure 15. On the other hand, in order to
avoid the existence of a _vxi,j � 0V · s−1 locus in the positive
(negative) saturation region under any circumstance in rule 1
and for rule 2 (in all scenarios of rule 3), the whole vxi,j � vxi,j(xmi,j)
characteristic, expressed by Eqs. 34, 36 should fall below (above)
the horizontal line vxi,j � +(−)vsat , as sketched in Figure 15 (a.3)
((b.3)), where the three dashed brown curves show its three
possible shape variants. It is straightforward to verify that, in view
of inequality Eq. 56, in any of the possible scenarios of rule 1 and
for rule 2 (under all circumstances in rule 3), the vxi,j nullcline Eqs.
34, 36 features upward (downward) concavity as it decreases
(increases) monotonically with the memristor state. As a result,

TABLE 4 | Location and local stability property of each of the equilibrium points, which a M-CNN cell may possibly admit, depending upon a0,0 and iwi,j . The coordinates of
equilibria Q(−), Q(0), Q(0), and Q(+) are respectively specified in Eqs. 39, 41, 43, and 45. The formulas for a(−)0,0 , a

(+)
0,0 , i1(a0,0), and i2(a0,0) are respectively expressed by

Eqs. 37, 38, 53, and 54. The local stability nature of each of the possible cell equilibria is also revealed. The analysis of the marginal cases is omitted from this table.

Offset current range Self-feedback synaptic weight
range

Cell equilibrium location Local stability property

iwi,j < i1(a0,0) For all a0,0 values Q(−) � (xoff , iwi,j−a0,0 · Ry · glin · vsat
Gx + x−1off

) Stable

iwi,j ∈ (i1(a0,0),0A) a0,0 < a(−)0,0 Q(0) � (xoff , iwi,j
− a0,0 ·Ry ·glin+Gx+x−1off

) Stable
iwi,j ∈ (0A, i1(a0,0)) a0,0 > a(−)0,0 — Unstable
iwi,j ∈ (0A, i2(a0,0)) a0,0 < a(+)0,0 Q(0) � (xon , iwi,j

− a0,0 ·Ry · glin+Gx+x−1on) Stable
iwi,j ∈ (i2(a0,0),0A) a0,0 > a(+)0,0 — Unstable
iwi,j > i2(a0,0) For all a0,0 values Q(+) � (xon , iwi,j + a0,0 ·Ry · glin · vsat

Gx+ x−1on ) Stable

35Given that, as discussed in section 3.4, under iwi,j � 0A, the M-CNN cell is unable
to exhibit monostable behaviour, its capacitor current necessarily includes a
nonzero offset current in this design.

36The direction of motion of the state vector (xmi,j , vxi,j) within each of the four
possible regions, which may partition a cell SDP, is qualitatively indicated in the
legend of Figure 11.
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imposing that it further assumes a value smaller (larger) than the
negative (positive) saturation voltage, when the memristor state
sits at its lowest bound i.e.,

iwi,j(vui,j, nB) − ( + )a0,0 · Ry · glin · vsat
Gx + x−1on

< (> ) − ( + ) vsat , (59)

in each of the first (latter) set of scenarios, ensures that this unique
_vxi,j � 0V · s−1 locus lies within the negative (positive) saturation
region for all xmi,j ∈ D, as visualized through a dashed brown
curve with magenta diamonds in plot (a.2) ((b.2)) of Figure 15.

This in turn allows the formation of a cell equilibrium, as
expressed by Eqs. 39, 45, and visualized through a black circle
in plot (a.2) ((b.2)) of Figure 15, for each value of
nB ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8} under vui,j � −1V, and for nB � 8
under vui,j � +1V (for each value of nB ∈ {0, 1, 2, 3, 4, 5, 6, 7}
under vui,j � +1V). Thus, with regard to rules 1 and 2 (rule 3),
recalling that _xmi,j features a positive sign throughout the phase
plane lower half, as established by Eq. 48, and recalling the
condition Eqs. 50, 52, which guarantees an increase of the cell
capacitor voltage over time in the negative (positive) saturation
region, phase plane trajectories, visiting the domain

FIGURE 14 | (A) SDP of a cell C(i, j) featuring the input voltage vui,j � −1V in the worst-case scenario nB � 0 of rule 1. (B,C) SDP of a cell C(i, j) featuring the input
voltage vui,j � +1V in the only scenario of rule 2 (in the worst-case scenario nB � 7 of rule 3).

FIGURE 13 | TheM-CNN Primary Mosaic: codimension-2 bifurcation diagram illustrating all the admissible equilibria the two states of the second-order cell from
the class of uncoupled M-CNNs may approach asymptotically depending upon the specific region of the a0,0–iwi,j parameter plane, in which the values assigned to the
self-feedback synaptic weight and to the offset current reside. A red (black) color is adopted for the symbol of each unstable (stable) M-CNN cell equilibrium, as specified
in Table 2. Without loss of generality, hereGx was set to 0Ω−1. The coordinates ofQ(−),Q(0),Q(0), andQ(+) are indicated in Eqs. 39, 41, 43, and 45. The formulas
for a(−)0,0 , a

(+)
0,0 , i1(a0,0), and i2(a0,0) are respectively expressed by Eqs. 37, 38, 53, and 54. Details on the possible steady-state behaviours of the M-CNN cell in the

marginal cases iwi,j � 0A, iwi,j � i1(a0,0), and iwi,j � i2(a0,0) have not been reported in the bifurcation diagram to keep the illustration as clear as possible. Importantly, as
studied earlier, under zero offset current, irrespective of the value specified for a0,0, in the linear region the cell admits each equilibrium Q(0), which, according to Eq. 47,
lies along the segment of the horizontal axis of the xmi,j–vxi,j phase plane comprised between xon and xoff .
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vxi,j < (> ) − (+)vsat , bend toward the east (west), evolving over
time in the north or south direction from initial conditions lying
below or above the vxi,j nullcline Eqs. 34, 36, respectively, going
through the yellow (cyan) region II (III) or gray (green) region IV
(I), as clearly indicated in Figure 15 (a.2) ((b.2)). Manipulating
the constraint, obtained by choosing the first (second) inequality
sign in Eq. 57, it is simple to demonstrate that, depending upon
its polarity, namely the sign of η(vui,j, nB)biwi,j(vui,j, nB) + a0,0 ·
Ry · glin · vsat (ξ(vui,j, nB)biwi,j(vui,j, nB) − a0,0 · Ry · glin · vsat), the
vxi,j–xmi,j locus Eqs. 34, 36 may exhibit one of three possible
graphs, as depicted in plot (a.3) ((b.3)) of Figure 15, lying,
nevertheless, entirely below (above) the horizontal line

vxi,j � +(−)vsat , under all circumstances from rule 1 and in rule
2 (for each scenario of rule 3). Given that, with reference to the
positive (negative) saturation region, the memristor state
experiences a strictly monotonic decrease (increase) over time
according to constraint Eqs. 48, 49, while _vxi,j > 0V · s−1 provided
condition Eqs. 50, 52 is satisfied, phase plane trajectories, visiting
the domain vxi,j > (< ) + (−)vsat in the SDP of any cell obeying
rules 1 and 2 (rule 3), are expected to evolve in the south-west
(north-east) direction, passing through the green (yellow) region
I (II), as visualized in plot (a.3) ((b.3)) of Figure 15. Looking at the
direction of motion of phase-plane trajectories across the phase
plane (refer to plots (a.1)-(a.3) ((b.1)-(b.3)) of Figure 15), it is

FIGURE 15 |Qualitative visualization of the strategy adopted tomassage the shape of the cell DRM2 in the EDGE as well as in the STOREM-CNN designs. Here the
stepwise application of the proposed systematic gene synthesis methodology in the linear region (a.1) ((b.1)), in the negative (positive) saturation region (a.2) ((b.2)), and in
the positive (negative) saturation region (a.3) ((b.3)) of the phase plane xmi,j–vxi,j enables to enforce the appearance of a single vxi,j nullcline, namely Eqs. 34, 36, and the
existence of one and only one equilibrium, specifically Eqs. 39, 45, in the EDGE cell SDP, which emerges in each scenario of rule 1 and for rule 2 (under all
circumstances in rule 3) from Table 4, as well as in the STORE cell SDP, which forms under the hypothesis of rule 1 (2) from Table 5. With reference to the first (latter) set
of scenarios, combining plots (a.1), (a.2), and (a.3) ((b.1), (b.2), and (b.3)) provides an ad-hoc cell SDP, given that the phase-plane partition guides all trajectories toward
the unique equilibrium in the negative (positive) saturation region, as desired in the EDGE as well as in the STORE M-CNN designs. The dashed brown curve without
magenta diamonds in (a.1) ((b.1)) is the vxi,j � vxi,j(xmi,j ) characteristic, expressed by Eq. 35, and constrained to lie in the region vxi,j > (< ) + (−)vsat, so as to keep the linear
region free of vxi,j nullclines. The dashed brown curve with magenta diamonds in (a.2) ((b.2)) represents the only locus of points of the phase plane, where _vxi,j � 0 V · s−1,
as expressed by Eqs. 34, 36. Finally, the set of three dashed brown curves without magenta diamonds in (a.3) (b.3) constitute the possible courses of the vxi,j � vxi,j(xmi,j )
characteristic, expressed by Eqs. 34, 36, constrained to lie in the region vxi,j < (> ) + (−)vsat, so as to keep the positive (negative) region free of _vxi,j � 0V · s−1 loci,
depending upon the sign of ηb iwi,j + a0,0 · vsat (ξb iwi,j − a0,0 · vsat). Interestingly, the function vxi,j(xmi,j ) of Eqs. 34, 36 is either concave down and monotone increasing if
η >0A (ξ >0A) or coinciding with the horizontal axis if η � 0A (ξ � 0A), or even concave up and monotone decreasing if η<0A (ξ <0A).
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evident that the unique equilibrium Eqs. 39, 45, which the cell
admits under the hypotheses of rules 1 and 2 (rule 3), is GAS, as
indicated through the filling of its black circle marker in
Figure 15 (a.2) ((b.2)). In regard to rule 1 (3), taking into
account the negative sign assumed for the common value b of
the off-center synaptic weigths in the feedforward template, it
may be easily realized that, under nB � 0 (7), the _vxi,j � 0V · s−1
loci (34), (35), and (36) are closest to the horizontal lines vxi,j �
−vsat (refer to plot (a.2) ((b.3))), vxi,j � + (−)vsat (refer to plot (a.1)
((b.1))), and vxi,j � +vsat (refer to plot (a.3) ((b.2))), respectively. It
follows that, with regard to rule 1 (3), the constraint triplet,
obtained from Eqs. 56, 57, and 59 by choosing the first
(second) inequality sign, should be evaluated only in the worst-
case scenario, in which none (seven) of the eight neighbours of the
M-CNN cellC(i, j) features (feature) a positive one V-valued input
voltage. Combining the resulting six conditions with the rule 2-
based constraint triplet Eqs. 56, 57, and 59 under the first
inequality sign option, and with Eq. 55, provides a total
number of 10 inequalities in the unknowns a0,0 and b0,0. Fixing
the values for two cell core circuit parameters, namely z, and b,
respectively set to−1 · 10− 4 and to −1 · 10− 4 Ω−1, and assigning the
value 1 · 10− 3 Ω−1 to the conductance Gx of the linear resistor

37 in
parallel to the capacitor in thememcomputing core of Figure 8, the
two conditions, respectively descending from constraint Eqs. 56,
57 under the first inequality sign option for the worst-case scenario
nB � 0 from rule 1, and under the second inequality sign option for
the worst-case scenario nB � 7 from rule 3, are found to be
identical one to the other, allowing to discard a couple of
inequalities from the 10 aforementioned constraints.
Manipulating the remaining 8 inequalities, it may be shown
that only 3 of them are non-redundant, specifically constraint
Eq. 55, and the pair of conditions, which respectively originate
from the variant of Eq. 57, which is associated to the choice of the
first inequality sign in the worst-case scenario nB � 0 from rule 1
and in the only scenario nB � 8 from rule 2. These 3 inequalities
may be solved numerically, but, given their low number, a
geometric approach is adopted here to derive suitable values for
the self-feedforward and self-feedback synaptic weights. The
magenta region in the a0,0–b0,0 parameter plane of Figure 16
depicts the domain of admissible solutions of the non-redundant
inequality triplet. Choosing the particular solution, which is
indicated through an asterisk symbol, namely
(a*0,0, b*0,0) � (1.675 · 10−3 Ω− 1, 80.5 · 10−5 Ω− 1), plots (a), (b),
and (c) of Figure 14 illustrate the SDPs, which foliate from the
cell DRM2 in the worst-case scenario nB � 0 from rule 1, where
iwi,j � −0.105mA, in the sole scenario nB � 8 admissible in rule 2,
where iwi,j � −0.095mA, and in the worst-case scenario nB � 7
from rule 3, where iwi,j � +0.105mA, respectively. Inspecting the
cell SDP from plot (a), (b), and (c), the GAS equilibrium is found to
be located at (10 kΩ,−0.2477V), at (10 kΩ,−0.2386V), and at
(2 kΩ,+0.1817V), respectively. With reference to Figure 16,

programming the cell core circuit parameters as indicated
above, a M-CNN with M � 64 rows and N � 60 columns is
capable to extract the edges of an input binary image, such as
the one depicted in plot (b), providing them in the output binary
image at steady-state, as in the example of plot (d), under null
initial conditions for all the capacitor voltages, as shown in plot (c)
38, upon setting the resistance of each memristor to 5 kΩ at the
beginning of the simulation, and for fixed or Dirichlet boundary
conditions (Chua and Roska, 2002), with each virtual cell input
voltage value fixed to negative 1 V.

Remark 8. The insertion of a single memristor within the
circuit implementation of the cell of a standard time- and space-
invariant CNN allows to endow the resulting memristive array
with novel functionalities, including the capability to read and
write data locally within each processing element without the
need to accommodate additional memory units, which are
currently responsible for the poor spatial resolution of state-
of-the-art CNN-UM hardware realizations.

5 M-CNN AS A MEMORY BANK: WRITE/
READ FUNCTIONALITIES

The operating principles of a M-CNN programmed to write or
read input binary data into or from the resistances of its
memristors are elucidated below.

5.1 Store M-CNN
The aim of this section is to synthesize the gene for programming
the cell C(i, j) of aM × N M-CNN to store the negative (positive)
one value, which is assigned to its input voltage vui,j on the basis of
the white (black) color of the pixel in the corresponding location
in a given input binary image with same spatial resolution as the
cellular array, as off (on) resistive state xoff (xon) in its memristor
Mxi,j at equilibrium39, for all i ∈ {1, . . . ,M}, and for all
j ∈ {1, . . . ,N}. Thus, as reported in Table 5, two are the local
rules, which each M-CNN processing element is requested to
comply with, so as to accomplish the data storage task.

Taking inspiration from the strategy adopted earlier on in the
synthesis of a suitable gene for programming the bio-inspired
memristive array to extract edges from an input binary image, a
possible approach to design the STORE M-CNN is to make sure
that the cell SDP accommodates one and only one globally
asymptotically stable equilibrium i.e., Q(−) (Q(+)), located in
the position specified in Eqs. 39, 45 under vui,j � −(+)1V, as
expected from rule 1 (2).

37The function of the linear resistor is to decrease the absolute value of the vxi,j
coordinate of the cell GAS equilibrium in each scenario from any of the three rules
from Table 1. In turn this expedient would reduce the power, which the memristor
device dissipates at equilibrium, allowing to extend its lifetime expectancy.

38As anticipated earlier, for each combination of indices i ∈ {1, . . . ,M} and
j ∈ {1, . . . ,N}, a real value within the set (−1V, 1V) ((−vsat ,+vsat)), associated
to either the cell input voltage vui,j or the cell state 2 initial condition vxi,j(0) (to the
cell output voltage vyi,j), is mapped into a suitable tone on the grayscale for
visualization purposes.
39Despite, theoretically, under the hypothesis of either rule, the two-dimensional
state vector (xmi,j , vxi,j) converges toward the respective equilibrium (xmi,j , vxi,j) as t
tends to∞, in practice it is infinitesimally close to its final destination after a finite
amount of time.
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In order to facilitate the comprehension of the STORE
M-CNN design, let us anticipate its outcome. Plot (a) ((b)) in
Figure 17 depicts the cell SDP synthesized through the proposed
DRM2-based system-theoretic technique to store the input
voltage vui,j � −(+)1V as off (on) resistance xoff (xon) in the
memristor Mxi,j according to rule 1 (2). As graphically
illustrated in the first (latter) plot, an ad-hoc IS shall be set in
place to ensure that the cell SDP under negative (positive) one
V-valued input voltage accommodates only the _vxi,j � 0V · s−1
locus Eqs. 34, 36, indicated via magenta diamonds and located in
the negative (positive) saturation region, and that the vmi,j

nullcline intersects the _xmi,j � 0Ω·s−1 locus Eqs. 31, 33,
identified via red crosses in the phase-plane lower (upper) half,

in the equilibrium Eqs. 39, 45, where, as marked by means of a
black circle, the memristor stores the off (on) resistive state xoff
(xon) expected from rule 1 (2). Shaping the cell DRM2 this way, any
trajectory of either SDP, visiting the region below (above) the single
vxi,j nullcline, would move upward (downward), bending toward
the east/west in the phase-plane lower/upper half, toward the
unique equilibrium, which, as a result, would feature global
asymptotic stability, as highlighted through the filling of the
respective black circle marker in each of plots (a) and (b) of
Figure 17. Given that the gene synthesis strategy, adopted here for
programming the bio-inspired memristive array to write binary
data into its memristors, is analogous to the one considered
previously in the EDGE M-CNN design, Figure 15 (a.1), (a.2),

FIGURE 16 | (A) Geometry-based approach to the solution of the system of three non-redundant inequalities, resulting from the application of the systematic
M-CNN design methodology from section 3.3 for the accomplishment of the binary image edge extraction task. The magenta region contains the set of admissible
solutions of the constraint triplet, which consist of inequality Eq. 55, and of the couple of conditions descending from the constraint pair Eq. 57 under the first inequality
sign option in the worst-case scenario nB � 0 from rule 1, and in the only possible scenario nB � 8 from rule 2, respectively. Recalling the invariable cell circuit
parameter setting, reported in Table 3, and setting z, b, and Gx to −1 · 10− 4, −1 · 10− 4 Ω−1, and 1 · 10− 3 Ω−1, respectively, these three inequalities are in turn found to
assume the analytical expressions a0,0 >1.5 · 10− 3 Ω−1, b0,0 > 1 · 10−1 · a0,0 + 5.9 · 10− 4 Ω−1, and b0,0 < − 1 · 10− 1 · a0,0 + 10.1 · 10−4 Ω−1. For the particular solution,
highlighted by means of an asterisk marker, specifically (a*0,0 ,b*

0,0) � (1.675 · 10−3 Ω−1 , 80.5 · 10−5 Ω−1), and residing inside the magenta triangle at some safety
distance from its sides, plots (A–C) of Figure 13 show the SDPs foliating from the resulting EDGEM-CNN cell DRM2 in the worst-case scenario nB � 0 from rule 1, in the
only possible scenario nB � 8 from rule 2, and in the worst-case scenario nB � 7 from rule 3, respectively. For the sake of completeness, referring to Figure 14, the
specification of the aforementioned solution for the non-redundant IS defines the course of the graph of the function vxi,j(xmi,j ), expressed by Eqs. 34, 36, in plot (a.3)
((b.3)) for rules 1 and 2 (for rule 3), setting, to name but the most important cases, η(vui,j , nB) (ξ(vui,j ,nB)) to 62.5 μA for nB � 0 and to −137.5 μA for nB � 1 under rule 1, as
well as to 72.5 μA under rule 2 (to −62.5 μA for nB � 7 and to 137.5 μA for nB � 6 under rule 3). (B–D) Proof of evidence for the proper functionality of a M × N M-CNN
programmed through the gene synthesized in this section (M � 64, N � 60). Plot (D) depicts the steady-state output binary image of the EDGEM-CNN, once the black-
and-white image, illustrated in plot (B), is loaded to its input, a zero is assigned to the voltage falling across each capacitor at the beginning of the simulation, as visualized
through the gray image in plot (C), the initial condition on the resistance of each memristor is set to 5 kΩ , and a negative 1 V value is attributed to the input voltage of any
virtual cell (Chua and Roska, 2002).
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and (a.3) ((b.1), (b.2), and (b.3)) are used once more to illustrate
graphically the way we wish to massage the cell SDP in the linear,
negative (positive), and positive (negative) saturation regions,
respectively, for the satisfaction of rule 1 (2) from Table 5. The
stepwise mathematical analysis of the second-order ODE Eqs. 18,
19, following shortly, shall enable to combine the graphs in plots
(a.1)-(a.3) ((b.1)-(b.3)) for the synthesis of the desired cell SDP
under vui,j � −(+)1V. Before commencing the investigations, it is
worth stressing a couple of points. Firstly, as a result of our strategy
to enforce the existence of one and only one globally asymptotically
stable equilibrium in each of the two possible cell SDPs, the choice
for the initial condition (xmi,j(0), vxi,j(0)) of the ODEsEqs. 18, 19 is
arbitrary. Secondly, since an isolated40 non-autonomous array is
expected to suffice for the accomplishment of the binary data writing
task, the expression for the offset current in Eq. 13 reduces to

iwi,j(vui,j) � I · z + b0,0 · vui,j (60)

Under the hypothesis that a value is preliminarily assigned to the
self-feedback synaptic weight a0,0 the proposed DRM2 system-
theoretic method will aim to the determination and later solution
of an ad-hoc IS in the pair of unknown parameters b0,0 and z. The
proposed gene synthesis technique is first applied to derive the
necessary constraints for well-behaved phase-plane trajectories in
the linear region of each cell SDP.

5.1.1 Store M-CNN Cell DRM2 Synthesis in the Linear
Region
The purpose of the following mathematical derivations is to make
sure that, under negative (positive) one V-valued cell input voltage,
the locus of points, lying on the characteristic vxi,j � vxi,j(xmi,j),
expressed by Eq. 35, assumes values in the positive (negative)
saturation region, as shown through a dashed brown curve without
magenta diamonds in Figure 15 (a.1) (b.1). With reference to the
right hand side of Eq. 35, a strictly positive sign is imposed on the
denominator of the rational function for all xmi,j ∈ D under the
constraint established by inequality Eq. 55. Under this hypothesis,
enforcing a negative (positive) polarity for the offset current under
vui,j � −(+)1V through the inequality

iwi,j(vui,j)< (> ) 0A, (61)

the graph of the function vxi,j(xmi,j), described by Eq. 35, is found to
lie on the phase plane upper (lower) half, and to feature a monotonic
decrease (increase) with xmi,j with upward (downward) concavity. In
the first (latter) case this vxi,j–xmi,j locus may thus be forced to fall
completely over the domain vxi,j > (< ) + (−)vsat , as visualized in
plot (a.1) ((b.1)) of Figure 15, via the additional constraint

−iwi,j(vui,j)
a0,0 · Ry · glin − Gx − x−1off

> (< ) + ( − ) vsat (62)

Under rule 1 (2), the whole phase-plane region
∣∣∣∣∣vxi,j∣∣∣∣∣≤ vsat lies

below (above) the characteristic vxi,j � vxi,j(xmi,j) of Eq. 35. As a
result, on the basis of condition Eq. 58, descending from
inequality Eq. 51 by taking into account that the second factor
on the left hand side is strictly positive in view of constraint Eq.
55, the trajectory, which each point (xmi,j, vxi,j) traces in the linear
region, evolves in the south (north) direction, bending eastward
or westward in the phase-plane lower or upper half over time, as
dictated by constraint Eq. 48 or Eq. 49, visiting the gray IV
(yellow II) or green I (cyan III) regions, as shown in plot (a.1)
((b.1)) of Figure 15. Next, our systematic M-CNN design
methodology is applied to massage the STORE cell DRM2 in
the phase-plane saturation regions.

5.1.2 Store M-CNN Cell DRM2 Synthesis in the
Saturation Regions
Two are the aims of the mathematical treatment to follow. Firstly,
referring to Figure 15 (a.2) ((b.2)), we shall make sure that, under
vui,j � −(+)1V, the characteristic vxi,j � vxi,j(xmi,j) of Eqs. 34, 36 lie
in the negative (positive) saturation region, as indicated through a
dashed brown curve with magenta diamonds, and intersect the
vertical xmi,j nullcline Eqs. 31, 33, which crosses the horizontal axis
at the memristor state upper (lower) bound, in a GAS equilibrium
point, namely Eqs. 39, 45, as marked through a black-filled circle.
Secondly, looking now at Figure 15 (a.3) ((b.3)), in order to enforce
that the processing element is monostable under the hypothesis of
either rule i.e., that the function vxi,j(xmi,j) of Eqs. 34, 36 denote the
only possible _vxi,j � 0V · s−1 locus, which the cell SDP may ever
accommodate under rule 1 (2), we shall impose that the
characteristic vxi,j � vxi,j(xmi,j) of Eqs. 34, 36 does not go through
any phase-plane point belonging to the positive (negative)
saturation region, featuring, in particular, one of three possible
graphs, as visualized by means of dashed brown curves without
magenta diamonds. It may be shown that, due to inequality Eq. 61,
under the hypothesis of rule 1 (rule 2), the _vxi,j � 0V · s−1 locus Eqs.
34, 36 exhibits upward (downward) concavity in its monotonic
decrease (increase) with the memristor state. Thus, making sure it
lies below (above) the horizontal line vxi,j � −(+)vsat at the
memristor state lower bound, via the additional inequality

iwi,j(vui,j) − ( + )a0,0 · Ry · glin · vsat
Gx + x−1on

< (> ) − ( + ) vsat , (63)

under vui,j � −(+)1V, this unique vxi,j nullcline is found assume
values within the negative (positive) saturation region over the entire
memristor state existence domain D, as depicted by means of a
dashed brown curve with magenta diamonds in Figure 15 (a.2)
((b.2)). The existence of a cell equilibrium, as specified in Eqs. 39, 45,

TABLE 5 | Pair of local rules, which the M-CNN cell C(i, j) is requested to obey, so
as to map the white (black) pixel in the corresponding position of a givenM × N
input binary image into the off (on) resistive state of its memristor Mxi,j at
equilibrium (i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}).

Local rule vui,j/ V xmi,j

1 −1 xoff
2 +1 xon

40A standard space-invariant uncoupled CNN, in which each cell features a 3 × 3
local neighbourhood, is said to be isolated (Chua and Roska, 2002) if each
feedforward synaptic weight bk,l – k, l ∈ {−1, 0, 1} – except for b0,0, is null.
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and indicated via a black circle in plot (a.2) ((b.2)) ofFigure 15, is then
guaranteed under the hypothesis of rule 1 (2).With regard to the flow
of the vector field ( _xmi,j, _vxi,j) over time, all trajectories, visiting points
lying below or above the vxi,j nullcline Eqs. 34, 36 in the phase-plane
negative (positive) saturation region under vui,j � −(+)1V, feature a
northeastward (northwestward) or southeastward (southwestward)
direction of motion, in view of inequalities Eqs. 50, 52 and Eqs. 48,
49, crossing the yellow II (cyan III) or gray IV (green I) regions,
defined in the legend of Figure 11, as illustrated in Figure 15
(a.2) ((b.2)).

Basic mathematical analysis reveals that, under the hypothesis
of rule 1 (2), the function vxi,j(xmi,j), expressed by Eqs. 34, 36, may
exhibit three possible distinct courses, depending upon the
polarity of its numerator, i.e. upon the sign of η(vui,j)biwi,j(vui,j) +
a0,0 · Ry · glin · vsat (ξ(vui,j)biwi,j(vui,j) − a0,0 · Ry · glin · vsat), but,
irrespectively, keeps always below (above) the horizontal line
vxi,j � +(−)vsat , as sketched by means of dashed brown curves
without magenta diamonds in Figure 15 (a.3) ((b.3)). It descends
that all the points, residing in the positive (negative) saturation
region of the cell SDP for vui,j � −1(+1)V, lie above (below) the
characteristic vxi,j � vxi,j(xmi,j) of Eqs. 34, 36. Therefore, on the
basis of conditions Eqs. 48, 49 and Eqs. 50, 52, a trajectory point
(xmi,j, vxi,j) evolves over time in the south-west (north-east)
direction, as it passes across the phase-plane positive
(negative) saturation region, exploring the green (yellow)
region I (II) of the two-dimensional state-space, as graphically
shown in plot (a.3) ((b.3)) of Figure 15. The global asymptotic
stability of the only equilibrium Eqs. 39, 45, which the cell SDP
hosts under a negative (positive) one V-valued input voltage,
explaining the filling of the respective black circle in plot (a.2)
((b.2)) of Figure 15, may be inferred by inspecting the flow of the

vector field ( _xmi,j, _vxi,j) throughout the phase-plane (refer to
Figure 15 (a.1)-(a.3) ((b.1)-(b.3))). Overall, our rigorous
system-theoretic M-CNN design methodology has identified a
set of 7 constraints, including condition Eq. 55, and a trio of
inequality couples, namely Eqs. 61–63, where the first (second)
sign option applies under the hypothesis of rule 1 (2). Setting the
values for a0,0 and for Gx to41 5 · 10− 3 Ω−1, and 20 · 10− 4 Ω−1,
respectively, the first condition Eq. 55 holds automatically true.
Further, the two Eq. 62 already account for all the remaining four
conditions, expressed by the inequality pairs Eqs. 61, 63.
Adopting a geometric approach to solve the two non-
redundant inequalities Eq. 62, one for each of the two possible
sign choices, in the z–b0,0 parameter plane, the coordinates of all
the points, residing within the magenta region of Figure 17C,
enable to program the M-CNN so as to accomplish the data
writing task. With reference to this same figure, as anticipated
earlier, plot (a) ((b)) visualizes the SDP, which the M-CNN cell
features under vui,j � −(+)1V, upon the assignment of
z* � 2 · 10− 4, and b*0,0 � 2 · 10− 3Ω−1 to z, and b0,0, respectively,
as it descends from the selection of the non-redundant inequality
pair solution, sitting at a precautionary distance from the
boundaries of the magenta region, and indicated through an
asterisk marker in plot (c).

FIGURE 17 | (A,B) SDP of the processing elementC(i, j) for the storage of the negative (positive) one value, assigned to its input voltage vui,j on the basis of the white
(black) pixel at row i and column j of a given input binary image, in the form of off (on) resistance xoff (xon) into its memristor Mxi,j . In the first (latter) case the cell is
monostable, featuring a single equilibrium, attracting all phase-plane trajectories, and lying in the negative (positive) saturation region, along the vertical line crossing the
horizontal xmi,j–axis at the upper (lower) bound of the memristor state existence domain D, as expected from rule 1 (2) of Table 5. (C)Graphical determination of the
solutions of the non-redundant inequality pair Eq. 62, descending from the application of the proposed DRM2-centered system-theoretic bio-inspired array design
method to the model Eqs. 18, 19 of the processing element C(i, j), in each region of the standard nonlinearity (3), as discussed in detail in the text, and illustrated
graphically in Figure 14, for the synthesis of an ad-hoc family of STORE M-CNN cell SDPs. The magenta region constitutes the domain of the two-dimensional z–b0,0

parameter space, which hosts all the admissible solutions of the system of inequalities 62, which, taking into account Table 3, and assigning the values of 5 · 10− 3 Ω−1,
and of 20 · 10−4 Ω−1, to a0,0, and Gx , respectively, feature the analytical expressions b0,0 > (2.9 · 10− 4 + (−)z)Ω−1, with the positive (negative) polarity option defining a
rule 1 (2)-based constraint. The particular cell DRM2, foliating in the SDPs of plots (A) and (B), associated to a nonzero offset current iwi,j of value −1.8 and +2.2mA, and
admitting a GAS equilibrium (xmi,j , vxi,j ), sitting at (10 kΩ,−1.10 V), and at (2 kΩ,1.08V), respectively, was derived for the specific solution pair
(z* ,b*

0,0) � (2 · 10−4, 2 · 10−3 Ω−1), indicated through an asterisk in plot (C), and located well within the magenta region, conveniently away from its boundaries. For the
sake of completeness, with reference to Figure 14 (a.3) ((b.3)), the final solution of the non-redundant inequality system defines the shape of the characteristic
vxi,j � vxi,j(xmi,j ) of Eqs. 34, 36, since it sets η(vui,j ) (ξ(vui,j )) to −2.3mA (+2.7mA) for rule 1 (2).

41Similarly as in the EDGE M-CNN design, the addition of a linear resistor in
parallel to the capacitor within the memcomputing core of the processing element
circuit of Figure 8 allows to keep within reasonable limits the modulus of the
voltage, falling across the resistance switching memory at equilibrium, for each of
the two possible cell input voltage values. This preventive measure is of particular
importance in view of a future hardware realization of the bio-inspired memristive
array under study.
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Setting the values for the core circuit parameters of each cell of
a M-CNN, featuring M � 145 rows and N � 147 columns, as
established through the gene synthesis procedure, numerical
simulations reveal the capability of the resulting bio-inspired
memristive array to store binary data into its locally distributed
memristive memory bank. A white (black) pixel at row i and
column j of a binary image, featuring the same spatial resolution
as the M-CNN, and shown in Figure 18A, is first mapped onto a
negative (positive) one V-valued input voltage vui,j for the
M-CNN cell C(i, j) (i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}). Letting a
white (black) pixel code the lowest (highest) possible resistive
level for the initial condition on state 1, as well as a negative
(positive) 1 V voltage for the initial condition on state 2, xmi,j and
vxi,j are randomly initialized to one of two possible values from the
sets {xon, xoff }, and {−1,+1}V, respectively, as graphically
illustrated through binary images in plots (b) and (c) of
Figure 18, respectively. Plot (d) from the same figure
visualizes the data written into the memristors at equilibrium
through the use of a white (black)-coloured pixel in each location
corresponding to a M-CNN cell, which stores the on (off)
memristance level xon (xoff ). Given the scheme adopted for
choosing the input voltage of each cell, and for visualizing the
resistive state of each memristor at equilibrium, it follows that a
white (black) pixel in correspondence of the ith row and jth

column of the input image from plot (a) is mapped onto a
black (white) pixel in the corresponding location of the
illustrative picture from plot (d). The complementary
operation to information storage is data retrieval. The next
section elucidates the principles behind the choice of a suitable
gene for the execution of this task.

5.2 Recall M-CNN
The purpose of this section is to shape the DRM2 of the
processing element C(i, j) of a M × N M-CNN, so as to allow
the cell itself to retrieve the initial resistive state of the memristor
Mxi,j, mapping the memory content into the steady-state42 output
voltage vyi,j(t(s)i,j ) as negative (positive) saturation level −(+)vsat , in
case xmi,j ,0bxmi,j(0 s) is found to be the upper (lower) bound xoff
(xon) of the closed set D. The local rule pair, dictating the
operating principles of each RECALL M-CNN cell, is reported
in Table 6.

Given that the RECALL M-CNN is autonomous, differently
from the strategy adopted in the STOREM-CNN design, the gene
synthesis approach, followed in this section, aims to massage one
and only one SDP, hosting the solutions of the second-order ODE
Eqs. 18, 19 for both local rules from Table 6, and constituting, as
a result, the DRM2 itself. In order to achieve this purpose, the cell

should be programmed so as to operate as a bistable dynamical
system: in case the memristor, it accommodates, sits in the off
(on) resistive state, the vector field flow should guide the
trajectory toward the equilibrium Q(−) (Q(+)), which features
coordinates specified in Eqs. 39, 45, and is indicated via a black
circle in the phase-plane negative (positive) saturation region
from Figure 19A, anticipating the bistable cell SDP, which will be
synthesized shortly by means of the proposed approach. The
existence of the first (latter) equilibrium is ensured by enforcing
the existence of a vxi,j nullcline, which is defined in Eqs. 34, 36, in
the negative (positive) saturation region, as indicated via magenta
diamonds, and ensuring it would admit a point of intersection
with the _xmi,j � 0Ω · s−1 locus, which is marked with red crosses,
and expressed by Eqs. 31, 33. A fundamental step in the RECALL
M-CNN design regards the selection of a suitable initial condition
vxi,j ,0 for the capacitor voltage. It should be based upon the
necessity to ensure that, with the memristor Mxi,j storing the
off (on) resistance xoff (xon), the initial condition (xmi,j(0), vxi,j(0))
of the cell ODE Eqs. 18, 19 should belong to the basin of
attraction of the equilibrium Eqs. 39, 45.

With reference to the cell SDP in Figure 19A, in our strategy
we first imposed the existence of a _vxi,j � 0V · s−1 locus, which is
expressed by Eq. 35, also within the phase-plane domain

FIGURE 18 | (A) Input binary image with M × N pixels (M � 145,
N � 147). (B,C) Black-and-white picture coding the random initial condition
assigned to the capacitor voltage (memristor state) in each cell of a M-CNN
with same rows and columns as the input image. (D) Graphical
illustration of the data stored in the memristive memory at the end of the data
writing operation. The binary picture in (D) appears to be the logically inverted
version of the black-and-white image in (A), due to the convention,
intentionally adopted here, to map each white (black) pixel of the input binary
image to a negative (positive) one V-valued input voltage for the corresponding
M-CNN cell, and to code the memory content of each off (on) memristor at
equilibrium through a black (white) pixel.

42The task of the RECALLM-CNNmay be considered accomplished as soon as the
outputs of all its processing elements attain their final values. This occurs at the
steady-state time instant t(s)bmax1≤ i≤M,1≤ j≤N {t(s)i,j }, where vyi,j(t) � −(+)vsat for
all t ≥ t(s)i,j , with t(s)i,j denoting the time instant, at which the phase-plane trajectory
point (xmi,j , vxi,j), evolving in time according to the second-order ODE (18)–(19),
which models the dynamics of the cell C(i, j), enters the SDP negative (positive)
saturation region, hosting the equilibrium, it is asymptotically converging to, in
case the memristor Mxi,j initially sits in the highest (lowest) possible resistive state
xoff (xon).
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∣∣∣∣∣vxi,j∣∣∣∣∣≤ vsat , as indicated via magenta diamonds, and then ensured
it would cross the xmi,j nullcline, marked through red crosses, and
defined in Eq. 31, forming, as a result, the additional equilibrium
Q(0), with coordinates reported in Eq. 41, symbolized through the
black circle, and located on the linear region negative side.
Furthermore, we enforced that the vxi,j � vxi,j(xmi,j)
characteristics Eqs. 34, 35 would assume values only over a
limited range of the close set D, namely xmi,j ∈ [~xmi,j, xoff ]
within the regions vxi,j < −vsat and

∣∣∣∣∣vxi,j∣∣∣∣∣≤ vsat , respectively, with
~xmi,j representing the abscissa of their point of intersection,
residing on the frontier between negative saturation and linear
regions, away, to some extent, from the vertical line xmi,j � xon.
This design planwas instrumental for the creation of a special domain,
lying within the region vxi,j < 0V, and accommodating trajectories
moving in the south-east direction, whereas the vector field flows
toward the north-east across the remainder of the phase plane lower
half. Besides revealing the unstable nature of the equilibrium Eq. 41, as
indicated by the hollow structure of its black circle marker, the
formation of this special domain ensures that, setting the initial
condition vxi,j(0) on the capacitor voltage to an intermediate value
between the ordinates of the two equilibria, lying along the vertical line
xmi,j � xoff , the phase-plane trajectory, whichwould emerge on the cell
SDP, in case thememristor initially sits in the highest (lowest) possible
resistive state, would asymptotically approach the equilibrium located
in the negative (positive) saturation region, revealing its locally stable
nature, as highlighted through the filling of the relative black circle
symbol. The steps, to be mathematically formulated below, which our
system-theoretic methodology entails, for shaping the cell DRM2 in
the linear, negative saturation, and positive saturation region, as
desired (refer, once again to Figure 19A), are visualized through
illustrative viewgraphs in Figures 20A–C, respectively.

A rigorous mathematical analysis of the cell ODE Eqs. 18, 19
allows the derivation of a suitable IS for the creation of an ad-hoc
cell SDP, combining the coloured phase-plane regions in plots
(a), (b), and (c) of Figure 20. A preliminary requirement for
initiating the investigations is to fix the expression for the offset
current. Conjecturing that the use of a simple isolated
autonomous M-CNN would be sufficient for the
accomplishment of the data recall operation, simplifying Eq.
13, the following formula may be assigned to iwi,j:

iwi,j � I · z. (64)

Assuming that the conductance Gx of the linear resistor, appearing in
parallel with the capacitor in the cell circuit memcomputing core of
Figure 8, is a given design parameter, the IS under determination will
be expressed in terms of two unknowns only, specifically a0,0, and z,
which will enable the determination of the domain of admissible
solutions on the basis of a geometrical analysis. Let us commence the
systematic mathematical treatment from the linear region of the
standard nonlinearity of Eq. 3.

5.2.1 Recall M-CNN Cell DRM2 Synthesis in the Linear
Region
Looking at Figure 20, the purpose of this section is to make sure that
_vxi,j � 0V · s−1 on the locus of points, expressed by Eq. 35, and
indicated via a dashed brown curve with magenta diamonds in plot

(a), that such vxi,j � vxi,j(xmi,j) characteristic lies over the phase
plane region vxi,j ∈ [−vsat , 0V), forming together with the xmi,j

nullcline Eq. 31 an unstable equilibrium in the point, defined in
Eq. 31, and marked through a black hollow circle in plot (a),
intersecting the frontier between negative saturation and linear
regions in a point, specifically (~xmi,j,−vsat), which, as may be
easily verified through maths (refer to plot (b) as well), belongs
also to the graph of the function vxi,j(xmi,j) of Eq. 34, residing at
some distance from the vertical line xmi,j � xon.

Enforcing the inequality Eq. 55, and assuming a positive
polarity for the offset current according to

iwi,j > 0A, (65)

the function vxi,j(xmi,j), expressed by Eq. 35, is found to be strictly
negative, and to feature downward concavity as it increases
monotonically with the memristor state. It follows that,
through the additional condition

−iwi,j

a0,0 · Ry · glin − Gx − x−1off
> −vsat , (66)

the characteristic vxi,j � vxi,j(xmi,j) of Eq. 35 falls within the domain
vxi,j ∈ [−vsat , 0V), as illustrated via a dashed brown curve with
magenta diamonds in Figure 20A, and crosses the xmi,j nullcline
Eq. 31 in the equilibrium point Q(0), defined in Eq. 41, and
depicted as a black circle in the same figure. Furthermore, the
constraint

~xmi,jb
vsat

(a0,0 · Ry · glin − Gx) · vsat − iwi,j

> xon, (67)

establishes the requirement for the point of intersection between
the vxi,j nullcline of Eq. 35 and the horizontal line vxi,j � −vsat to lie,
at least to some extent, away from the xmi,j � xon locus.

Given that, with inequality Eq. 55 holding true, Eq. 58
expresses the condition under which _vxi,j > 0V·s−1 in the linear
region, the phase plane trajectories, lying, therein, below (above)
the vxi,j nullcline of Eq. 35, evolve over time in the south (north)
direction, bending to the east or to the west, as dictated by
constraint Eq. 48 or Eq. 49, across the domain vxi,j � [−vsat , 0)
or vxi,j � (0 vsat], exploring the gray IV (yellow II or cyan III)
region(s), as illustrated in plot (a) of Figure 20, unveiling the
unstable nature of the equilibrium point (41), which is then
visualized as a black hollow circle. The analytical treatment of the

TABLE 6 | Set of local rules, which are imposed on the processing element C(i, j)
of a M × N M-CNN, so as to allow the reading of the memory content, initially
stored in the memristor Mxi,j , and its transfer to the steady-state output voltage
vyi,j(t(s)i,j ) (i ∈ /1, . . . ,M/, j ∈ /1, . . . ,N/). The initial condition of the memristor state
xmi,j(0 s) is requested to have a crucial impact on the dynamic behaviour of the
capacitor voltage vxi,j : if Mxi,j initially sits in the off (on) resistive state xoff (xon),
vxi,j is expected to converge asymptotically toward an equilibrium value lower
(higher) than the negative (positive) saturation level, fixing, consequently,
vyi,j(t(s)i,j ) to −(+)vsat.

Local rule xmi,j(0 s)/ kΩ vyi,j(t(s)i,j )

1 xoff −vsat
2 xon +vsat
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second-order cell ODE (18)–(19) is now focused on the
saturation regions of the standard nonlinearity of Eq. 3.

5.2.2 Recall M-CNN Cell DRM2 Synthesis in the
Saturation Regions
Referring to Figure 20, the intention of this section is to
establish the existence of a _vxi,j � 0V·s−1 locus in the
negative (positive) saturation region, as expressed by Eqs.
34, 36, and highlighted via a dashed brown curve with
magenta diamonds in plot (b) ((c)), and to ensure that it
forms, together with the _xmi,j � 0Ω·s−1 locus, defined in Eqs.
31, 33, a stable equilibrium point, as given in Eqs. 39, 45, and
shown as a black filled circle in plot (b) ((c)).

As anticipated earlier, mathematical calculations reveal that the
vxi,j � vxi,j(xmi,j) characteristic of Eq. 34 intersects the frontier between
the negative saturation and linear regions in the point of abscissa ~xmi,j,
defined on the left hand side of inequality Eq. 67. Therefore, with
inequalityEq. 65 holding true, taking into account that, on the basis of
condition Eq. 67, iwi,j < a0,0 · Ry · glin · vsat , the vxi,j � vxi,j(xmi,j)
characteristic Eq. 34 is found to fall in the phase plane negative
region over the memristor state range [~xmi,j, xoff ]), featuring an
upward concavity, while it decreases monotonically with xmi,j, as
depicted through a brown curve with magenta diamonds in
Figure 20B, and forming, together with the xmi,j nullcline Eq. 31,
the equilibrium Eq. 39, indicated via a black circle in the same plot.

Focusing now on the domain vxi,j > vsat , in view of condition
Eq. 65, the vxi,j � vxi,j(xmi,j) characteristic Eq. 36 is found to be
strictly positive, and to exhibit downward concavity as it
monotonically increases with the memristor state. As a result,
imposing the new condition

iwi,j + a0,0 · Ry · glin · vsat
Gx + x−1on

> vsat (68)

ensures that the graph of the function vxi,j(xmi,j) of Eq. 36
assumes values within the domain vxi,j > vsat for all xmi,j ∈ D, as
indicated via the dashed brown curve with magenta
diamonds in Figure 20C, creating, in conjunction with the
_xmi,j � 0Ω·s−1 locus, the equilibrium Eq. 45, shown as a black
circle on the same plot. On the basis of the behaviour of the
vector field in the negative (positive) saturation region, as
established by conditions Eqs. 48, 49 and Eqs. 50, 52, phase-
plane trajectories below or above the _vxi,j � 0V·s−1 locus Eqs.
34, 36 are bound to move north-eastward (north-westward)
or south-eastward (south-westward), visiting the yellow II
(cyan III) or gray IV (green I) regions, as qualitatively
sketched in the viewgraph of Figures 20B,C, unvealing the
local stability of the equilibrium point Eqs. 39, 45, as
indicated through the filling structure of its black circle
symbol.

All in all, the application of our stepwise system-theoretic M-CNN
designmethod to the cell modelEqs. 18, 19, identifies five inequalities,
specifically Eqs. 55, 65–68. Replacing the linear resistor in parallel to
the capacitor in thememcomputing core of the cell circuit of Figure 8
with an open circuit43, the system of five inequalities may be reduced
to the triplet of non-redundant conditions Eqs. 55, 66, and 67. Solving

FIGURE 19 | (A) SDP of the bistable cell C(i, j) of the isolated and autonomous RECALL M-CNN. Choosing a suitable value for the initial condition vxi,j ,0 on the capacitor
voltage, here−0.15 V, if thememristor sits in the highest (lowest) possible resistive state xoff (xon) at the onset of the data recall procedure, the state vector (xmi,j , vxi,j ) evolves in time
toward the equilibrium (39) ((45)) located in the phase-plane region vxi,j < (> ) − (+)vsat, as expected from rule 1 (2) from Table 6. Importantly, since the memristor state xmi,j at
equilibrium is found to be identical as its initial condition xmi,j ,0, the data stored in the locally distributed memristive memory bank are unaltered by the RECALL operation.
Importantly, the values of the self-feedback synaptic weight a0,0 and of the offset current iwi,j in the SDP identify a point located in the pink domain of theM-CNNPrimary Mosaic of
Figure 13. (B)Graphical illustration of the geometric analysis, carried out in the parameter plane z–a0,0, for the determination of valid solutions of the non-redundant inequality trio,
composedof conditionsEqs. 55, 66, and 67. These three inequalities, obtained through the system-theoreticmethodology, proposed in section 3.3, allow tomassage theDRM2

of each M-CNN processing element in such a way to retrieve the information stored in the memristorMxi,j . On the basis of Table 3, and setting Gx to 0Ω−1, they are found to
feature formulas a0,0 > 5 · 10− 4 Ω−1, a0,0 > (10 · z + 1 · 10− 4)Ω−1, and a0,0 < (10 · z + 5 · 10−4)Ω−1, respectively. The coordinates of each point (z, a0,0) within the magenta
domain satisfy them concurrently. The cell SDP, depicted in plot (A), was derived for the particular solution (z* , a*0,0) � (3.5 · 10−5, 6.25 · 10−4 Ω− 1), which, as indicated via an
asterisk marker in plot (B), resides, to some extent, away from the white parameter plane region, where at least one of the three conditions does not hold true.

43The modulus of the voltage, falling across the cell memristor at equilibrium, was
found to be reasonably small, even for Gx � 0Ω−1, irrespective of the initial
condition.
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them through the geometric analysismethod, all the points lying in the
magenta region of the z–a0,0 parameter plane of Figure 19B
allow to program the M-CNN to retrieve the memory content
stored in the locally distributed memristive bank. With
reference to Figure 19, the bistable cell SDP, shown in plot
(a), was derived for the particular solution
(z*, a*0,0) � (3.5 · 10−5, 6.25 · 10−4 Ω− 1), which, as revealed via
an asterisk marker in plot (b), is safely distanced from the
white region of the parameter plane, where the three non-
redundant inequalities would not be simultaneously satisfied.
With the stable equilibrium of the positive saturation region,
positioned at (2 kΩ,+0.1950V), choosing, for the initial
condition vxi,j ,0 on the capacitor voltage, an intermediate value,
specifically −0.15V, between the ordinate of the unstable
equilibrium of the linear region, lying at (10 kΩ,−0.0667V),
and the ordinate of the stable equilibrium of the negative
saturation region, residing at (10 kΩ,−0.275V), the phase-plane
trajectory is found to converge asymptotically toward the
equilibrium over the domain vxi,j < −(+)vsat if the memristor
initially sits in the off (on) resistive state xoff (xon), as expected
from rule 1 (2) from Table 6. Remarkably, the memristor state
approaches asymptotically the same value it stored before its
memory content interrogation commenced, revealing that no
unwanted secondary effect accompanies the data reading
operation. Figure 21 demonstrates that a M × N M-CNN,
accommodating cells regularly positioned along M � 177 rows
and N � 240 columns, operates as desired, after its gene is
programmed as established by the DRM2-centered M-CNN
design methodology. The binary image, shown in plot (a),
illustrates graphically the resistive states of all the memristors. A
white (black) pixel in a given position of this image reveals that the
memristor in the equivalent location of the RECALL M-CNN
stores the lowest (highest) possible resistance before the memory
reading task is initiated. The image in plot (b) visualizes through a

uniform gray color of appropriate tone44 the common initial
condition assigned to each capacitor voltage, set to −0.15V.
Plot (c) codes the steady-state output voltages of all the cells. If
the pixel, lying at the crossing between ith row and jth column of
this image, is black (white), the steady-state output voltage of the
cell in the equivalent location of the RECALL M-CNN is the
positive (negative) saturation level.

6 DISCUSSION

The theory presented in this work is independent of the
memristor model adopted in M-CNN circuit design. In fact, it
is a general theory, which may be applied to a much wider range
of nonlinear dynamical circuits other than the cellular arrays
analyzed in the manuscript. It is worth to pinpoint that the
Second-Order Dynamic Route Map (DRM2), around which the
design methodology proposed in this paper is centered, extends
the classical Dynamic Route Map (DRM) (Chua, 1998; Chua and
Roska, 2002), applicable to first-order systems only, allowing to
draw a complete picture of the local and global behaviour of any
second-order dynamical system. For example, it shall constitute
the system-theoretic tool of reference for a thorough study of the
nonlinear dynamics of memristive devices with two state
variables. In this work the DRM2 is adopted to investigate
the spatio-temporal phenomena emerging in each of the
second-order memristive cells of a two-dimensional cellular

FIGURE 20 |Qualitative sketches illustrating graphically the steps of the system-theoretic method to massage the cell SDP in the linear (A), negative saturation (B),
and positive saturation (C) regions for the derivation of a suitable gene to program the M-CNN for the data retrieval task.

44The graphical illustration convention, adopted here for visualizing each initial cell
capacitor voltage is analogous as the one established in the discussion of the EDGE
M-CNN design: the closer is its real value, lying in the set (−1, 1) V, to the lower
(upper) bound −(+)1 V, and the lighter (darker) is the tone of the gray colour
attributed to the respective pixel.
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array. The two degrees of freedom of each cell are the voltage
across a linear capacitor and the state of a first-order non-
volatile memristor. The model (Pershin et al., 2009) adopted for
the resistance switching memory in this work is a simple yet
accurate mathematical description of a physical memristor
realization (Jo et al., 2009). The reason behind the choice of
this particular piecewise-linear memristor model for our study
lies behind the pedagogical nature of this paper. In other words,
since the aim of this manuscript is to provide researchers with
powerful system-theoretic methods to analyze memristive
cellular arrays, we found it useful to adopt an analytically
tractable memristor model, in order to allow the
determination of closed-form analytical expressions for the
nullclines as well as for the equilibria of each State Dynamic
Portrait (SDP) of a given DRM2. The systematic M-CNN design
methodology, presented in this paper, allows to derive optimal
values for the cell parameters of each second-order cell C(i, j) of
a two-dimensionalM × N array – i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N} –
on the basis of the solution of an IS, which is preliminarily set up
to obtain a desired task-dependent partition of the xmi,j–vxi,j
phase plane for each value of the input vui,j of the cell C(i, j) itself
and of the input vui+k,j+l of any of the 8 cells {C(i + k, j + l)} –
k, l ∈ {−1, 0, 1}, k, l ≠ (0, 0) – in its neighboorhod. This rigorous
system-theory-based design strategy represents one the first
examples of a systematic memristor circuit design approach.
As outlined in the paper, choosing the particular IS solution,
which holds the largest distance from the parameter space
regions, where the system would fail to operate as desired,
allows to obtain a variability-aware design, which is of great
interest, given the intrinsic cycle-to-cycle and device-to-device
variability affecting memristive nanodevices. All in all, the
system-theoretic analysis and design strategies, presented in
this paper, are applicable to any M-CNN with second-order
cells, irrespective of the particular models adopted for their
constitutive first-order dynamical components, particularly
the capacitor and the non-volatile memristor. Of course, in
case one wished to use a first-order capacitor (memristor)
model with a more complicated mathematical description, and
pertaining to some other real-world electrical energy storage
device (resistance switching memory), the appearance of the
SDPs of a given cell DRM2 would undergo inevitable changes,
since the shape of the nullclines, the number, position, and

stability of the second-order cell equilibria in the memristor
state-capacitor voltage phase plane, the rules dictating how the
sign of the time derivatives of the two states change across the
xmi,j–vxi,j phase plane, and, consequently, the final IS, leading to
the selection of an optimal cell circuit parameter set for the
implementation of a predefined memcomputing task crucially
depend upon the particular cell model, but what matters is that
the proposed theory, the highlight of this work, would keep its
validity. The only downside associated with the adoption of
more involved second-order cell models lies in the need, which
would resultingly emerge, to recur to numerical methods for
the investigation of the xmi,j–vxi,j phase plane partitioning.
Importantly, our future research efforts will be devoted to
validate the system theory-centered memcomputing M-CNN
designs by experimental verification on memristive hardware
prototypes.

7 CONCLUSION

The motto “linearize-then-analyze”, which electrical engineers have
been advocating for generations, should not drive the investigation
of highly nonlinear memristive devices, circuits and systems, which
are being developed in our times through disruptive
nanotechnologies with the intention to foster progress in
integrated circuit (IC) design beyond the Moore era. In fact,
given that linear analysis techniques are unable to gain a deep
insight into the behaviour of a nonlinear system, the availability of a
partial picture of the dynamics of a novel nano-device prevents its
conscious use in IC design. Recurring to nonlinear system theory is
thus absolutely necessary to unfold the full potential ofmemristors in
electronics. However, the conversion of classical circuits to
memristive equivalents might require the adaptation of classical
nonlinear system-theoretic analysis and design techniques, as is the
case in this study. Cellular Nonlinear Networks (CNNs) (Chua and
Yang, 1988a; Chua and Yang, 1988b) constitute one of the earliest
examples of a non-von Neumann computing architecture, where
data processing and storage tasks are locally distributed across a
multi-dimensional array of locally coupled dynamical systems. In
analogue hardware implementations of these bio-inspired
computing structures, the cells typically feature one degree of
freedom. As a result, the Dynamic Route Map (DRM) graphical

FIGURE 21 | (A) Black-and-white checkerboard visualizing the binary data stored in the locally distributed memristive memory bank previous to their retrieval. A
white (black) pixel at row i and column j in this image reveals the on (off) resistance of the memristor in the M-CNN cell C(i, j) (i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}, M � 177
N � 240). (B) Grey-scale image indicating the common −0.15 V-valued initial condition on each capacitor voltage. (C) Output binary image coding the steady-state
output voltages of all the RECALL M-CNN processing elements. A black (white) pixel in correspondence to the ith row and jth column of this image denotes a
positive (negative) saturation level +(−)vsat for the steady-state output voltage of the cell located in the corresponding position of the memristive cellular array.
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tool, a powerful system-theoretic technique for the analysis of first-
order systems, is applicable to gain a full understanding of the
dynamics of these cells. Further, a rigorous procedure, employing the
DRM analysis method, and leading to the derivation of an optimal
solution for an inequality set (IS), which constrain number, and
stability of cell equilibria for each of the possible combinations of
inputs and/or initial conditions, allows to program the cellular
network for the robust execution of a predefined computing task.
The adoption of memristors in new designs of cell and coupling
circuitry may allow to extend the processing functionalities and/or
the computing efficiency of traditional dynamic arrays, thanks to the
enrichment of the spectrum of dynamical phenomena, which may
emerge within the cellular medium, while allowing to improve the
spatial resolution of CNN analogue hardware realisations,
concurrently. It is thus timely to investigate the impact of the
introduction of memristors in new CNN designs. This work
consider a first class of Memristor CNNs (M-CNNs), in which a
first-order non-volatile resistance switching memory is inserted in
parallel to the capacitor in each cell of a two-dimensional time- and
space-invariant standard CNN. Given that the cells of each M-CNN
from the proposed class feature two degrees of freedom, the DRM
analysis methodology is no longer pertinent to gain insight into their
data processing capabilities. A novel graphical tool, inspired to the
Phase Portrait concept (Strogatz, 2000) from the theory of
nonlinear dynamics, constituting the natural extension of the
classical DRM system-theoretic technique to dynamical systems
with two degrees of freedom, and called Second-Order Dynamic
Route Map (DRM2) (Tetzlaff et al., 2020), may allow to gain a
deep insight into the dynamical phenomena emerging in cellular
arrays with second-order memristive cells (Ascoli et al., 2020b),
enabling to draw, finally, a codimension-2 bifurcation diagram,
referred to as M-CNN Primary Mosaic, which specifies all the
possible stable and unstable equilibria, which a cell may admit
for each combination of self-feedback synaptic weight a0,0 and
offset current iwi,j. Finally, a rigorous procedure (Ascoli et al.,
2020a), employing the DRM2 graphical tool, and leading to the
derivation of an optimal solution of an IS, which shape the phase

portrait of each cell in such a way that solutions of the CNN
model equations may approach predefined equilibria for each of
the possible combinations of inputs and initial conditions,
allows to tune the parameters of the cellular array for a
variability-tolerant accomplishment of a prescribed signal
processing task or of a predefined memory operation. This
work, contributing to the establishment of solid foundations
of M-CNN theory, highlights the huge potential of memristive
mem-processing structures for edge computing applications,
and is expected to serve as a source of inspiration for future
studies intended to verify the theoretical predictions on the
beneficial impact of resistance switching memories on the
performance of cellular nonlinear arrays.
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Spoken Digit Classification by
In-Materio Reservoir Computing
With Neuromorphic Atomic Switch
Networks
Sam Lilak1, Walt Woods2, Kelsey Scharnhorst 1, Christopher Dunham1, Christof Teuscher2,
Adam Z. Stieg3,4* and James K. Gimzewski 1,3,4,5*

1Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States, 2Department
of Electrical and Computer Engineering, Portland State University, Portland, OR, United States, 3California NanoSystems Institute,
University of California, Los Angeles, Los Angeles, CA, United States, 4WPI Center for Materials Nanoarchitectonics (MANA),
National Institute for Materials Science (NIMS), Tsukuba, Japan, 5Research Center for Neuromorphic AI Hardware, Kyutech,
Kitakyushu, Japan

Atomic Switch Networks comprising silver iodide (AgI) junctions, a material previously
unexplored as functional memristive elements within highly interconnected nanowire
networks, were employed as a neuromorphic substrate for physical Reservoir
Computing This new class of ASN-based devices has been physically characterized
and utilized to classify spoken digit audio data, demonstrating the utility of substrate-based
device architectures where intrinsic material properties can be exploited to perform
computation in-materio. This work demonstrates high accuracy in the classification of
temporally analyzed Free-Spoken Digit Data These results expand upon the class of viable
memristive materials available for the production of functional nanowire networks and
bolster the utility of ASN-based devices as unique hardware platforms for neuromorphic
computing applications involving memory, adaptation and learning.

Keywords: atomic switch networks, memristive, neuromorphic, reservoir computing, in-materio

INTRODUCTION

Speech recognition is a seminal task in the field of artificial intelligence and natural language
processing. Typical algorithmic approaches to speech recognition break apart sections of raw speech
data and bin them into hidden Markov models manipulating Markov chains. While effective, these
approaches are more computationally intensive than some recently developed neural network
models, which may prove a more suitable compute framework for handling increasingly larger data
sets (Schatz and Feldman, 2018; Mustafa et al., 2019; Deshmukh, 2020). Artificial Neural Networks
(ANNs) have also been a promising avenue for more efficient speech recognition tasks which offer
the benefit of being trained for natural language processing and are believed to be a more suitable
candidate for handling the varied complexity of each person’s unique voice and accent.
Implementation of ANNs in modern computing hardware remains computationally burdensome
and often requires access to and utilization of high-performance computing clusters. A suitable
hardware architecture for local execution of complex tasks such as natural language processing must
be able to process dynamic, temporal data in real-time while remaining energy efficient. Memristive
materials have been identified as strong candidate for such applications as they offer an opportunity
to alleviate the bus latency between memory and processing elements in traditional von Neumann

Edited by:
Huanglong Li,

Tsinghua University, China

Reviewed by:
Qijun Sun,

Beijing Institute of Nanoenergy and
Nanosystems (CAS), China

Jianshi Tang,
Tsinghua University, China

*Correspondence:
Adam Z. Stieg

stieg@cnsi.ucla.edu
James K. Gimzewski
gim@chem.ucla.edu

Specialty section:
This article was submitted

to Nanodevices,
a section of the journal

Frontiers in Nanotechnology

Received: 03 March 2021
Accepted: 30 April 2021
Published: 26 May 2021

Citation:
Lilak S, Woods W, Scharnhorst K,

Dunham C, Teuscher C, Stieg AZ and
Gimzewski JK (2021) Spoken Digit

Classification by In-Materio Reservoir
Computing With Neuromorphic

Atomic Switch Networks.
Front. Nanotechnol. 3:675792.

doi: 10.3389/fnano.2021.675792

Frontiers in Nanotechnology | www.frontiersin.org May 2021 | Volume 3 | Article 6757921

ORIGINAL RESEARCH
published: 26 May 2021

doi: 10.3389/fnano.2021.675792

128

http://crossmark.crossref.org/dialog/?doi=10.3389/fnano.2021.675792&domain=pdf&date_stamp=2021-05-26
https://www.frontiersin.org/articles/10.3389/fnano.2021.675792/full
https://www.frontiersin.org/articles/10.3389/fnano.2021.675792/full
https://www.frontiersin.org/articles/10.3389/fnano.2021.675792/full
https://www.frontiersin.org/articles/10.3389/fnano.2021.675792/full
http://creativecommons.org/licenses/by/4.0/
mailto:stieg@cnsi.ucla.edu
mailto:gim@chem.ucla.edu
https://doi.org/10.3389/fnano.2021.675792
https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://doi.org/10.3389/fnano.2021.675792


architectures while also performing in-memory computation
with reduced power consumption (Ielmini and Wong, 2018).
The nonlinear character of memristors, resulting from the
underlying physics of the material itself, is essential for
enabling simultaneous storage of data (memory) and
performance of complex tasks with it (processing) through a
relatively new technique known as evolution in-materio (Miller
and Downing, 2002; Harding and Miller, 2009; Miller et al., 2014;
Dale et al., 2017).

The growing field of evolution in-materio computing has
sought to optimize computational architectures via
evolutionary (search) algorithms (Harding and Miller, 2009;
Dale et al., 2017). The materials and architectures employed
vary with the desired facet of computation, but ideally these
materials are computationally and energetically efficient at
employing a litany of machine learning based algorithms.
Utilizing a single hardware element capable of exhibiting both
memory and processing alleviates the burden of busing
information between two separate hardware components,
reducing latency in computation (Mustafa et al., 2019). The
most robust currently known architecture that combines the
aforementioned elements is the mammalian brain, which has
been both a foundation and inspiration toward the development
of architectures which can efficiently process multi-input,
chaotic, and/or time-varying (temporal) datasets.

This work focuses on the class of neuromorphic computing
devices known as Atomic Switch Networks (ASN), comprising a
highly interconnected network of memristive nanowire junctions
as shown schematically in Figure 1. Ongoing efforts to develop
memristive hardware for neuromorphic computing include not
only ASNs, but also patterned crossbar arrays, and nanoparticle
clusters (Moon et al., 2019; Du et al., 2017; Alibart et al., 2013;
Sattar et al., 2013; Tappertzhofen et al., 2012). ASN-based devices
provide a physical system with structure and functional dynamics
reminiscent of the mammalian brain (Srinivasa and Cruz-
Albrecht, 2012; Avizienis et al., 2012; Türel et al., 2004;
Calimera et al., 2013) that has previously been employed as a
computational material for applications in Reservoir Computing
(RC) (Lukoševičius and Jaeger, 2009; Schrauwen et al., 2007;
Snyder et al., 2012; Du et al., 2017; Goudarzi et al., 2014; Sillin
et al., 2013; Fu et al., 2020). The atomic switch is a nanoscale
electroionic element consisting of a Metal-Insulator-Metal
(MIM) junction whose properties can be manipulated via a
time-dependent input signal (Zhu et al., 2020; Kuncic et al.,
2020; Manning and et al., 2018; Manning et al., 2017). Individual
atomic switches have been shown to produce memristive,
nonlinear responses, exhibiting both short and long-term
memory as well as quantized conductance (Sattar et al., 2013;
Tappertzhofen et al., 2012; Terabe et al., 2005; Hasegawa et al.,
2010). For electrochemical metallization memristors filament
growth is dominated by cation transport through the
insulating medium as shown in Figure 1 and has been
experimentally observed in-situ (Guo et al., 2007; Yang et al.,
2012; Sun et al., 2019). These properties render atomic switches
and other memristive systems as ideal circuit elements for use
within a network architecture that can serve as a dynamic
physical reservoir used to solve complex computational tasks,

including speech recognition and natural language processing
(Kan et al., 2021; Zhong et al., 2021).

RC provides a framework for computing complex functions
using a dynamical system as a “reservoir” (Lukoševičius and
Jaeger, 2009; Hashmi et al., 2011; Lukoševičius et al., 2012; Sillin
et al., 2013). The RC framework is ideal for the processing of
dynamic, temporal real-time signals and can be used in many of
the same situations as recurrent feed-forward neural networks.
RC also offers advantages such as fault-tolerance and the
capacity for learning (Hashmi et al., 2011; Stieg et al., 2014).
Passing a time varying input through a dynamic reservoir
produces a higher dimensional representation of the signal
through nonlinear transformation, where different points on
the reservoir are measured and linearly combined to reproduce
an arbitrary output signal as shown in Figure 2. Training is only
performed on the linear readout coefficients (voltage readouts
are shown in Figure 3 and in Supplementary Figure S2
demonstrating a reproducible response over time); the
reservoir dynamics themselves are generally considered fixed.
Limiting training to the weights between the reservoir and
output layer alleviates the need to use gradient-descent based
methods, greatly minimizing the associated computational
burden.

As an alternative to simulation-driven RC, in-materio RC
leverages material complexity for computational purposes
(Teuscher, 2017; Konkoli et al., 2018; Tanaka et al., 2019;
Nakajima, 2020). Whereas early implementations of RC
simply utilized a body of a liquid acting as the dynamic
reservoir, more recent works harnessed the intrinsic properties
of complex physical systems, including ASNs, as the basis for a
computation (Lukosevicius, 2011; Lukoševičius et al., 2012;
Snyder et al., 2012; Goudarzi et al., 2014; Fu et al., 2020).
Software RC has historically been demonstrated as a suitable
method for a litany of complex tasks including pattern
classification, signal generation and temporal based logic tasks
(Tanaka et al., 2019). Hardware based approaches to RC
commonly leverage photonic interactions or memristor
dynamics, though photonic systems aren’t performing
computations in-materio in contrast to memristors
(Vandoorne et al., 2010; Tanaka et al., 2019). In-materio
approaches to traditional RC have recently garnered attention
as potential candidates to accelerate compute times while
achieving higher power efficiency. Recent in-materio studies
have demonstrated high accuracy in time-series analysis
(Moon et al., 2019; Zhong et al., 2021), handwritten digit
identification (Midya et al., 2019) and biosignal processing
(Kudithipudi et al., 2016).

Computational neural models such as the perceptron and
support vector machine can also be used as reservoirs; however,
long convergence times can be a drawback depending on the task.
Material-based reservoirs have the benefit of efficiently
performing these tasks in-situ, enabling low-power, on-chip
computing (Loppacher et al., 2003; Kuzum et al., 2012; Bürger
et al., 2015). This alternative approach offers the opportunity to
employ neural networks andmachine learning algorithms offline,
without the need to access servers, clusters and other high-
performance computing infrastructures.
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ASNs have been shown to represent uniquely suitable
class of materials for implementation of hardware-based RC,
namely complex network architectures with the requisite
material complexity (Avizienis et al., 2012; Stieg et al., 2014;
Nayak et al., 2010). These self-organized systems offer a
unique opportunity to produce highly interconnected
memristive networks, where a density of atomic switch
junctions of up to 108/cm30 has been previously reported.
The fabrication scheme, based on electroless deposition,
produces a diverse ensemble of silver nanowires with
varying lengths, widths and thereby junction dimensions.
This structural diversity in the material substrate imparts a
distribution of operational characteristics that improves the
capacity to perform non-linear transformations of input
signals.

Herein, we report the use of a newmemristive material, silver
iodide (AgI), as the functional element in the ASN framework
(Liang et al., 2007; Tappertzhofen et al., 2012; Cai et al., 2013).
Silver iodide can be robustly prepared in a brief vapor phase
reaction of iodine vapor with silver nanowires at room
temperature in contrast to the lengthy formation times at
elevated temperatures of previously reported silver sulfides.
This promising material provides voltage-controlled
resistance in both the bulk and when integrated into crossbar
architectures, rendering it suitable as a memristive material for
RC applications which require non-linear transformations and
quantized conductance states (Stieg et al., 2014). This work
expands the catalog of investigated ASNmaterials by fabricating

and testing AgI for non-linear, temporal computation through
the classification of spoken digits.

METHODS

Device Fabrication
The substrate for ASN devices, a multielectrode array enabling
spatiotemporal stimulation and monitoring, was fabricated using
standard thermally oxidized (500 nm) silicon wafers as the base
substrate. A 16-electrode grid of Pt (150 nm) was patterned by
photolithography and deposited using a negative photoresist (AZ
NLOF 2020) onto a Cr or Ti wetting layer (5 nm). Liftoff was
induced overnight in N-methyl-2-pyrrolidone (NMP) at 60°C.
Point contact electrodes were prepared using a patterned
insulating layer of SU-8 (400 nm) which was soft baked
(90°C), exposed to UV, post exposure baked (90°C), developed
for 3 min, and hard baked at 180°C for 30 min. An array of copper
(300 nm) seed sites with 5 × 5 μm spacing in a grid were patterned
onto inner point contact electrodes and deposited onto AZ NLOF
2020 via metal evaporation at 3 nm/s followed by lift-off
overnight in NMP (60°C). The resultant device platforms
consist of a stack of Si/SiO2/Cr/Pt-electrodes/SU-8/Cu-posts
(Supplementary Figure S1) and were stored in inert
atmosphere until bottom-up silver nanoarchitecture
construction (Sillin et al., 2013; Demis et al., 2016).

This substrate was placed into a 50 mm solution of silver
nitrate (AgNO3) for 30–60 min. Silver nanowires formed through

FIGURE 1 | Schematic diagram of an AgI-based ASN device, from nanowire junction to chip. (A) initial high resistance state of the system. (B) filament formation
process under an applied bias (C) completed silver filament short circuits between overlapping nanowires (low resistance state). Yellow-gray represents AgI. Dark-gray
represents Ag. Filament formation occurs as a gapless junction between Ag nanowires. (D) SEM image of the interconnected nanowire (scale bar � 20 um). (E) Optical
image of microelectrode array at center of the ASN device (scale bar � 360 um). (F) Optical image of a complete 16-electrode ASN device (scale bar � 5 mm).
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an electroless deposition reaction involving the reduction of
silver and the oxidation of copper through the following
reaction:

Cu0(s) + 2Ag+(aq)→Cu+2(aq) + 2Ag0(s)

The ordered copper posts (5 × 5 µm) directed a density-
controlled formation of interconnected silver nanowires,
whereby each ASN exhibited a unique structure determined
by the bottom-up fabrication of metal cations. Subsequent
silver iodide was formed in a nitrogen purged and sealed glass
chamber with the ASN chip suspended over a small iodine
pellet. Two different experimental techniques, one under
ambient conditions (5 min exposure time) and the other
with added heat (30°C, 2–3 min exposure time) were
employed with both techniques successfully iodizing the
silver nanowires.

2Ag(s) + I2(g)→ 2AgI(s)

UV-Vis and XPS samples were prepared using transparent silver
thin films (20 nm). These films were deposited on glass cover
slides via a silver target in a Hummer 6.2 sputter system at 15 mA
from Anatech Ltd. (Hayward, CA, United States) under an argon
vacuum environment (80 mtorr).

Material Characterization
Optical and scanning electron microscopy (SEM) were used to
characterize the as-fabricated structure of the nanowire network.
SEM images were acquired using the JEOL JSM-7500F. X-Ray
photoelectron (XPS) and UV-VIS spectroscopy were employed
using transparent Ag thin film substrates with Ag as a control.
Absorbance spectra of thin films were collected using the HP
8453 spectrophotometer. XPS spectra were obtained on an AXIS
Ultra DLD XPS instrument from Kratos Analytical. The X-ray
source was Al Kα at 1,486.6 eV. Survey (1,200 eV) and high-
resolution scans were integrated over 4 and 16 sweeps,
respectively.

FIGURE 2 | Overview of a traditional software-based reservoir (top) in contrast to the ASN acting as an in-materio reservoir (bottom), in which 13 MFCC’s are
sequentially delivered to the ASN in the form of a time-varying voltage to a single electrode. Utilizing physical nodes enables hardware acceleration at a lower power cost.
Simultaneous, real-time voltage measurements are carried out at each of the remaining 14 electrodes and provided to an output layer for regression analysis.
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Electrical Characterization
Characterization of ASN devices involves the spatially defined
stimulation and monitoring of electrical activity throughout
the network in the form of current and voltage traces. All
input-output signals were generated/acquired using a
purpose-built software package developed in Labview in
conjunction with dedicated hardware manufactured by
National Instruments. A data acquisition card (DAQ)
(model PXIe-6368) was used to deliver input signals routed
through a shielded connector box (model SCB-68A) to the
ASN device. A source measurement unit (model PXIe-4141)
was used to measure current flow through the ASN at user-
selected electrodes, where acquired and applied signals were
routed using a 16 × 32 switch matrix terminal block (model
TB-2642B). Voltage traces were simultaneously monitored at
all 16 electrodes using the DAQ card. All components were
housed in a National Instruments chassis (model PXIe-1078)
with an embedded controller.

Prior to any FSDD output signals, each ASN was driven
through an initialization (activation) process in which the
electrodes were sequentially stimulated with 7 Hz triangle
waves. This process was repeated with increasing voltages
(0.01–1 V) to realize switching patterns within the network.
The switch matrix was employed in conjunction with the
DAQ to calculate the resistance of every electrode
combination prior to and after initialization, where successful
activation was characterized by a sharp reduction in the network-
wide parallel resistance as compared to the virgin metal system.
Current-voltage and voltage-voltage measurements utilized
triangle wave outputs from the DAQ card. The FSDD signal
outputs were also produced by the DAQ card at selected electrode
locations via the switch matrix.

Reservoir Computing
The AgI ASN’s were evaluated for their potential RC applications
through three different tests: non-temporal logic operations,
temporal logic operations and recall of previous inputs and
spoken digit classification. The non-linear XOR task was
chosen for all logic operations and the assessment of the
networks temporal properties as described in the
Supplementary Information.

Spoken digit classification was implemented in AgI ASN
devices via RC using the FSDD. The task was not performed
using raw audio data, but rather using Mel-Frequency
Cepstrum Coefficients (MFCCs) of the data, similar to
previously reported techniques. Each 8 kHz wave-format
sound file from the FSDD was zero-padded up to 1 s of
recording length and then converted into MFCCs using the
“python_speech_features” Python package. Mel-frequency
cepstrum is a short-term power spectrum of the sound
waves, using a linear cosine transform of a log power
spectrum and is a nonlinear mel scale of frequency that
approximates the human auditory response better than
standard linear spacing of frequency components.

Default settings were used, resulting in an array of MFCCs
where each 25 ms window of signal was parameterized by 13
MFCCs. Windows were offset by 10 ms, resulting in 1,287 total

coefficients. To reduce device thrashing, the resulting MFCC
array was flattened and fed to the network one at a time. The
entire temporal sequence of the lowest-frequency coefficient
was passed first, then the next-lowest-frequency coefficient’s
values, and so on. The resulting 1,287 Hz signal (shown in
Figure 2) was sent to an input electrode, 14 electrodes were
measured, and another electrode was grounded. Both the input
and 14 read electrodes were recorded at 1 kHz. For RC, the
resulting voltage streams were sampled at the end of sub-
windows of computation, and the entire collection of sampled
recordings was linearly regressed to indicate which digit was
spoken (see Figure 4). Twelve unique spoken digit recordings
were used, characterized by two speakers, saying three digits,
two unique times. The FSDD speakers were “Jackson” and
“Theo”, the digits spoken were zero, one, or two, and the first
two instances of each digit were used. As a baseline,
regressions were performed on only the input electrode’s
voltage reading (“input only” mode) as well as on the full
electrode suite of the input electrode and the 14 readout
electrodes (“reservoir” mode).

RESULTS AND DISCUSSION

Material and Device Characterization
Silver nanowire networks like those shown in Figure 1B were
reliably produced based on previously developed protocols.
The network functionalization process requires conversion of
silver nanowire junctions to silver iodide. The protocol for the
formation of silver iodide was validated using UV-Vis and
X-ray Photoelectron Spectroscopies (XPS). Figure 4 provides
representative visible absorption spectra of as-prepared Ag
and AgI thin films. Ag thin films prepared by desktop
sputtering exhibited a Surface Plasmon Resonance (SPR),
suggesting the presence of silver islands within the film
(Bharathi Mohan et al., 2007). These results are in line with
previous reports which have demonstrated that silver exposed
to iodine decreases SPR intensity coupled with a buildup of
excitons. An absorbance peak around 420 nm has been
previously reported and longer exposure to iodine at
ambient temperature yielded a red-shifted maximum, which
has been associated with the formation of larger AgI particles
(Bharathi Mohan et al., 2007; Gnanavel and Sunandana, 2008).
XPS results shown in Figure 5 confirmed the presence of
characteristic peaks for iodide 3d5/2 and 3d3/2 core level
energies previously reported in metal iodides at binding
energies of 620 and 631 electron volts (eV) which are
absent in silver control samples (Kato and et al., 2015).
While both functionalization protocols successfully
produced AgI, the heated method was used for all ASN
devices due to quicker sublimation of solid iodine.

To confirm the viability of AgI networks as a physical
substrate for in-materio RC, the spatially distributed
nonlinear characteristics of the ASN were examined.
Voltage traces acquired at each of the 14 measurement
electrodes enabled the analysis of Lissajous plots (V-V) as
shown in Figure 6. AgI devices demonstrated distributed
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nonlinear dynamics throughout the entirety of the nanowire
network as a consequence of their highly interconnected
nature, where a stable and reproducible nonlinear
transformation of the input signal was observed. Different
switching regimes emerge throughout the network (Figure 6)
demonstrating different dynamics dominating spatial regions,
suggesting there is a combination of switching dominated
(blue, green plots) and capacitance dominated (red, pink)
regions distributed throughout the network under an
applied bias at any given electrode combination. The
switching for mechanism for AgI junctions is accepted to
arise from the formation metallic filaments between the
insulating material classifying them as electrochemical
metallization cells (Guo et al., 2007; Yang et al., 2012; Sun
et al., 2019; Yang et al., 2013). The memristive properties of

individual AgI junctions have been well characterized by
Tappertzhofen et al. (2012), Sánta et al. (2020) and clearly
demonstrate pinched hysteresis in their I-V curves. The
unique dynamics observed in ASNs are the result of
coupled memristive switching events among many
interconnected junctions, where measurements at a point
electrode capture the dynamics of an ensemble of
memristive elements rather than a single one.
Consequently, Lissajous plots of ASN device operation do
not commonly produce the characteristic pinched hysteresis
loops associated with individual memristive junctions. This
capacity for the non-linear transformation of time-varying
signals and temporal datasets renders the AgI nanowire
network ideal for the performance RC-based speech
recognition tasks.

FIGURE 3 | (A) The workflow for RC-based speech recognition using ASN-based devices involved encoding and separation of raw audio data - spoken digits -
data into overlapping windows, each of which was converted into 13 MFCCs. Individual MFCCs were arranged to minimize input thrashing and then delivered as input
voltage to a single electrode of the ASN device. Output data, in the form of voltage traces, was collected at all remaining electrodes. (B) The raw FSDD audio signal of
“Jackson” speaking the digit zero and its subsequent conversion to a voltage signal (C). The resultant 14 voltage recordings and their unique responses are overlaid
in (D) with additional detail provided in Supplementary Material.
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AgI Atomic Switch Networks-Based
Reservoir Computing
AgI nanowire networks were evaluated for their RC potential
in spoken digit recognition as shown schematically in
Figure 4. To effectively benchmark the value of the
nanowire network in the performance of a spoken digit
classification task, linear regression was performed in two
ways. First, linear regression of the input voltages only -
defined as “Input Only”-was carried out in the absence of
the physical reservoir. Second, the full reservoir
system–defined as “Reservoir” - employed regression of
both the input signal and all device outputs. Inclusion of
the input signal allows the regression to more accurately
discern correlations between the transformed output signals
and the input itself. FSDD digits encoded as MFCCs and
passed to the network as a temporal sequence at 1,287 Hz
were successfully classified as shown in Figure 7. A sufficient
number of training examples were found to stabilize the
reservoir’s behavior, and evaluating testing data on only a
single array of readout coefficients was found to be valid
(Scharnhorst et al., 2017).

The target function was regressed by dividing the measured
electrode data into N segments and using the last data point from
each segment, this post-processing of voltage traces is done
offline. For the “input only” mode, this means that N � 80
used 80 values in the regression. For the “reservoir” mode, this
means that N � 80 used 80 × 15 � 1,200 values in the regression.
To determine the accuracy at each N value, 12-fold cross-
validation was employed using 11 of the audio files as training
data and the 12th audio file as testing data. Each file was delivered
to the device multiple times on a loop, aggregating far more than
twelve tests to compute the accuracy. Nonetheless, there were
only 12 unique data streams used. As a result, this problem

suffered from significant overfitting, indicated by the “input only”
results decreasing in accuracy as more points were used for the
regression. This overfitting manifested as significant noise in the
accuracy; N � 100 might give an accuracy as high as 100%, while
N � 101 would give an accuracy of 54%. To account for this, the
space of points N tested was divided into windows of size 25, and
the average and standard deviation of accuracy within this
window is shown in Figure 7. For instance, the mean and
standard deviation shown at N � 100 indicate the statistics for
N ∈ {88, ..., 112}. The ASN reservoir also demonstrated highly
accurate results across a wide range of input voltages (0.5–10 V),
suggesting potential utility of these devices for low-power
applications.

These results clearly demonstrate the added stability provided
by the ASN reservoir, evidenced by consistent accuracy at higher
points of regression in the reservoir. The ASN’s robustness and
versatility was demonstrated by its capability to discern spoken
digits when stimulated by both high and low voltage signals
without a significant loss in accuracy. The ASN also provided a
moderate benefit in accuracy, even before the input-only lines
began overfitting. The lack of overfitting on the reservoir lines
could be interpreted as a side-effect of the temporal, non-linear
properties of the reservoir. This is corroborated by the fact that
the reservoir lines achieved higher accuracy than the input only
lines, a phenomenon that could not be achieved without non-
linear or temporal behavior. Rather than relying on a stream of
individual values, each of which has some noise associated, the
reservoir readout mode could rely on 15 such streams. Assuming
the noise on each electrode is somewhat independent, averaging
these channels could have significantly reduced noise.

CONCLUSION

Neuromorphic nanowire networks such as the ASN represent a
burgeoning class of material architectures whose dynamical

FIGURE 4 | UV-Vis spectra of silver thin films before and after iodization
under ambient (λ max � 433 nm) and heated to 30°C (λ max � 424 nm). The
presence of surface plasmon resonance in the blank silver samples suggests
the thin films are discontinuous small islands of metal formed during the
sputtering process.

FIGURE 5 | XPS spectra of the iodine 3d5/2 and 3d3/2 core levels in
silver-based ASN devices exposed to (sample, red) and not exposed to
(control, black) iodization procedures. The two peaks at 620 and 631 eV
correspond to the expected I− bands for I3/d7.
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FIGURE 6 |Representative normalized Lissajous plots of all 16 electrodes measured simultaneously using a 7 Hz triangle waveform swept from –1 to +1 V over the
course of 23 s with the grounded electrode (top left) and input signal (top right) recorded. Different colors correspond to different emergent dynamics spatially
distributed throughout the network. The first sweep can be seen in all plots as indicated by the black arrow. The network demonstrated a spatially diverse system with
reproducible, non-linear behavior distributed throughout the networks.

FIGURE 7 | (Left) Performance of the spoken digit classification task using AgI nanowire networks for in-materio RC to tap the temporal sequence of spoken digit
MFCCs at N different points and regressing to identify the digit spoken. Mean accuracy and standard deviation clearly shows that the “Reservoir” readout method
avoided overfitting and improved task performance as compared to using the “Input Only” mode (Right). The input signal amplitude (voltage) was observed to have
minimal. impact on accuracy, indicating the potential for maintaining task performance under low-power operation of AgI ASNs.
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nature makes them uniquely suited to serve as physical substrates
for hardware-based, in-materio computing. While the ever-
increasing demands for computational capacity and
complexity continue to challenge even the most advanced
computing architectures, dynamical in-memory compute
platforms such as the ASN may provide an alternative
solution that is scalable, energy-efficient, adaptive, and capable
of processing complex, time-varying data without the need for
pre-programming or remote intervention. Expanding the catalog
of memristive materials amenable to production of ASN-based
devices, and thereby the diversity of network dynamics available
for task performance, further increases their potential utility as a
platform technology for next-generation computing applications.
The new AgI-based ASN devices reported here served as a
dynamic, memristive reservoir for the nonlinear
transformation of temporal data and demonstrated the
capacity to reliably classify spoken digits with high accuracy
across a wide range of input voltages. Combined with the
relative ease and low cost of the fabrication process, these AgI
nanowire networks represent both a new material system that is
ripe for future study and an opportunity to further develop the
concept of in-materio computing toward real-world applications.
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One of the main goals of neuromorphic computing is the implementation and design of

systems capable of dynamic evolution with respect to their own experience. In biology,

synaptic scaling is the homeostatic mechanism which controls the frequency of neural

spikes within stable boundaries for improved learning activity. To introduce such control

mechanism in a hardware spiking neural network (SNN), we present here a novel artificial

neuron based on phase change memory (PCM) devices capable of internal regulation

via homeostatic and plastic phenomena. We experimentally show that this mechanism

increases the robustness of the system thus optimizing the multi-pattern learning

under spike-timing-dependent plasticity (STDP). It also improves the continual learning

capability of hybrid supervised-unsupervised convolutional neural networks (CNNs), in

terms of both resilience and accuracy. Furthermore, the use of neurons capable of

self-regulating their fire responsivity as a function of the PCM internal state enables the

design of dynamic networks. In this scenario, we propose to use the PCM-based neurons

to design bio-inspired recurrent networks for autonomous decision making in navigation

tasks. The agent relies on neuronal spike-frequency adaptation (SFA) to explore the

environment via penalties and rewards. Finally, we show that the conductance drift of the

PCM devices, contrarily to the applications in neural network accelerators, can improve

the overall energy efficiency of neuromorphic computing by implementing bio-plausible

active forgetting.

Keywords: brain-inspired computing, unsupervised learning, reinforcement learning, spike-timing-dependent

plasticity, hardware resilience, homeostatic scaling, synaptic scaling, phase change memory

1. INTRODUCTION

The field of artificial intelligence (AI) has recently seen significant breakthroughs in the research,
showing high performance in several tasks such as image recognition, natural language processing
and playing games (Collobert et al., 2011; Krizhevsky et al., 2012; Mikolov et al., 2012; Silver et al.,
2016). The most widespread approach to AI has focused on deep learning, where the intelligent
systems are trained via specific algorithms such as backpropagation (LeCun et al., 2015). However,
the pre-tuning of the training parameters, which requires time and power intensive procedures,
deprives the systems of the plastic adaptation to the environment which, on the other hand, is one
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of the fundamental properties of the biological organisms.
This lack of resilience with respect to a constantly changing
environment is what actually hinders the current AI to achieve
human-like accuracy in daily-life tasks (Parisi et al., 2019).

Biological organisms collect, settle and modulate the
information relying on specific mechanisms of synaptic plasticity
and neural activity (Turrigiano, 1999). In particular, the learning
procedure is usually explained in terms of Hebbian-type
plasticity, where the time correlation between the pre-synaptic
and post-synaptic spikes induces variations of the synaptic
weights (Fox and Stryker, 2017; Lisman, 2017), as in spike-
timing-dependent plasticity (STDP) (Masquelier and Thorpe,
2007). On the other hand, Hebbian learning cannot completely
describe the learning procedure of the brain, since the only STDP
theory foresees a continual synaptic potentiation and depression
as a consequence of the correlation between the neuronal
responses and the corresponding inputs (Miller and MacKay,
2008). In fact, biological systems adopt homeostatic regulation
to keep the overall neuronal and synaptic activities within safe
boundaries, which also helps to counteract unwanted changes
of the firing rate due to external perturbations (Turrigiano,
1999). In this framework, the synaptic scaling, or homeostatic
scaling (Turrigiano, 2008), refers to the biological mechanism
able to counteract a chronically high firing rate of a population
of neurons. Thus, Hebbian learning and homeostatic regulation
sustain each other for the optimization of experience-based
knowledge toward continual adaptation of real-life information
(Abraham and Robins, 2005; Zenke et al., 2017).

Experience-based knowledge, where agents learn a behavioral
policy by interacting with the world and consequently receiving
penalties and rewards, is a scientific field shared between
neuroscience and computer science known as “reinforcement
learning” (Kaelbling et al., 1996). One of the leading
reinforcement mechanism is associated with dopamine, a
pleasure-related neurotransmitter, which is released in the
brain when a person succeeds in solving a problem (Schultz
et al., 1997). In the literature, several approaches have been
proposed to facilitate reinforcement learning. For instance,
reinforcement techniques have been shown to enable the
learning of optimized behavioral policy for a given model of the
space, where the agent continually looks for the maximization
of the reward thus acquiring an accurate mapping of the
environment (Sutton, 1988). However, in real life, an agent
must build its own model by incremental experience of positive
and negative events, as studied by model-free methods such
as (i) Q-learning (Watkins and Dayan, 1992) and (ii) temporal
difference learning, TD(λ) (Doya, 2000). In particular, in
the last few years, such cognitive functions have been widely
discussed in the framework of attractor neural networks for
the key role of cognitive functions, such as context dependent
decision making (Doya, 2000; Kuzum et al., 2012), thus gaining
momentum as viable networks to replicate human-like behaviors
(Chicca et al., 2014).

The combination of the benefits introduced by homeostatic
mechanism and reinforcement learning would thus improve the
artificial intelligence systems toward the ability to autonomously
interact with the environment in real life situations.

In this framework, several neuromorphic spiking neural
networks (SNNs) based on CMOS technology have been
proposed, demonstrating VLSI synaptic circuits with
homeostatic neurons (Bartolozzi and Indiveri, 2006; Chicca
et al., 2014; Qiao et al., 2017) and reward-based decision-making
circuits (Wunderlich et al., 2019; Yan et al., 2019). At the
same time, non-volatile memory devices, such as phase change
memory (PCM), have raised considerable interest as promising
synaptic connections for neuromorphic computation, thanks to
the 3D stacking capability, the low-voltage operation and the
ability to serve as embedded non-volatile memory in computing
systems (Suri et al., 2012; Xu et al., 2020; Ren et al., 2021).
In particular, PCMs have recently demonstrated outstanding
multi-level capability (Kuzum et al., 2013; Ren et al., 2021),
which enables continual learning in neural networks (Bianchi
et al., 2019; Muñoz-Martín et al., 2019) and decision making in
brain-inspired cognitive systems (Eryilmaz et al., 2014).

In this work, we present a novel artificial integrate-and-fire
(I&F) neuron based on PCM devices implementing homeostatic
mechanisms. In particular, the gradual crystallization of a PCM
device enables the continual tuning of the internal threshold of
the neuron as a function of the level of firing excitation. This
adaptation process improves the learning capability and directly
translates in hardware the homeostatic control mechanism that
manages the synaptic weight update during STDP. We show that
the homeostatic neuron can optimize the pattern specialization of
large images, e.g., those taken from the Fashion-MNIST dataset,
while enabling high robustness against errors and external
perturbations (Muñoz-Martín et al., 2020). In this framework,
we propose the use of PCM-based homeostatic neurons for
achieving continual learning in standard convolutional neural
network. We also analyze the impact of device programming
failure in relation to the multilevel capability of the PCM devices.
The impact of PCM conductance drift is also studied (Suri et al.,
2012; Xu et al., 2020; Ren et al., 2021), demonstrating that
this device non-ideality could implement bio-inspired features,
such as active forgetting. Finally, we propose a novel bio-
inspired recurrent neural network (RNN) capable of solving
reinforcement learning tasks. The internal state of each neuron of
the RNN is mapped by the self-adaptive threshold using a PCM
device, which modulates, as before, the firing excitability. The
more the neuron fires, the more the control PCM conductance
increases, thus mapping the dynamic behavior of the network
in real time (Bianchi et al., 2020b). In this work, the recurrent
PCM device enables the study of several reinforcement learning
tasks such as decision making during autonomous navigation,
with particular attention in terms of power-efficiency. This work
highlights the importance of PCM devices as key elements
to achieve adaptation, learning and autonomous navigation
exploiting the benefits of local edge computing.

2. BIO-INSPIRED LEARNING IN
ARTIFICIAL NEURAL NETWORKS

Figure 1A shows a schematic illustration of spike-frequency
adaptation (SFA) in a neuronal cell. When a signal excites a
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FIGURE 1 | (A) Biological neurons are stimulated by spikes coming from the synaptic connections and modulate their response in frequency as a function of the

spiking activity. (B) By implementing the spike frequency adaptation in hardware, it is possible to introduce a boundary for the learning activity of large images, e.g.,

from the Fashion-MNIST dataset, thus boosting the overall specialization accuracy. (C) Furthermore, the specialization of the output neuron results in a decrease the

firing activity of the neuron, thus optimizing the energy consumption.

neuron, the output firing rate is balanced between an increase
due to the synaptic potentiation and a decrease due to the
homeostatic mechanism (Indiveri et al., 2011). In synaptic
learning processes, this threshold regulation aims at stabilizing
the learning activity and limiting the growth of the synaptic
weights, thus enabling low energy consumption and better
accuracy of classification.

The homeostatic adaptation has been studied in the case
of a winner-take-all (WTA) network for the classification of
large images. The output homeostatic neurons (POSTs) must
specialize on different classes of images presented at the input
of the WTA, Figure 1B, thus enabling the spike-frequency
adaptive mechanism that limits the power consumption and
enables efficient classification (Figure 1C; Pedretti et al., 2018).
Classification is achieved by using both excitatory synapses,
which evolve by increasing or decreasing the conductance
accordingly to STDP, and inhibitory synapses, which prevent
the same specialization on different patterns by discharging
the integration at each POST firing activity (Bianchi et al.,
2020a). Synaptic excitatory dynamics are reproduced by using
PCM devices switching from low resistive state (LRS) to high
resistive state (HRS), and vice versa. Potentiation is achieved
when the POST fires after the pre-neurons (PREs), while
depression is achieved when the POST fires before the PRE
(Bianchi et al., 2020c).

2.1. Hardware Realization of the
Homeostatic Neuron
Figure 2 illustrates the artificial neuron circuit, where the
threshold is managed by a control PCM directly connected to
the comparator which compares the membrane potential with
the threshold. PCM devices typically show multilevel storage
with a large number of analog conductance states (Kim et al.,
2019). In Figure 2, the multilevel behavior is obtained by the
applications of repeated set pulses to the top electrode for gradual
crystallization or amorphization, thus causing a modulation of
the neuronal threshold (Suri et al., 2011; Wright et al., 2013;
Tuma et al., 2016).

The incoming PRE spikes are weighted by PCM synapses
which induce a synaptic current collected by the “integration”
block in Figure 2. The synaptic current spikes are integrated
until the internal potential hits the threshold of the neuron.
This event causes the generation of two spikes, namely (i) a
POST spike which is applied to the next layer of neurons, and
(ii) a second spike which is applied to the top electrode of the
internal PCM device to induce partial crystallization, which is
responsible for a self-threshold regulation. Each crystallization
pulse leads to an incremental set transition of the PCM device
to higher conductive values GPCM . The PCM conductance is the
leading element setting the responsivity of the neurons since it
maps the fire threshold VTH of the neuron. In particular, VTH is
obtained as the read current of the PCM biased at negative values
(Vread < 0) after conversion by the trans-impedance amplifier
of Figure 2, namely VTH = −RLGPCMVread, where RL is the
feedback resistance and GPCM also includes the conductance of
the series transistor M1. Initially, the PCM device is prepared
in the HRS, thus resulting in low current IC and low threshold
voltage VTH . As the POST fires, the incremental crystallization of
the PCM causes the increase of the threshold with respect to the
first reference firing value. The gradual crystallization procedure
is thus iterated at every POST fire, causing a continuous increase
of VTH . As a result, more input spikes are needed to induce the
fire of the neuron or, equivalently, the spiking frequency of the
POST decreases at increasing crystallization of the control PCM.

2.2. Characteristics of the PCM Devices
The PCM is programmed by set (with current ISET) and reset
signal pulses as shown in Figure 3A. Figure 3B shows the
cumulative distribution of the LRS and HRS resistances after
the application of the programming signals, with two orders
of magnitude of resistive window. On the other hand, note
that the PCM shows a gradual increase of conductance which
suitably reproduces the adaptive threshold regulation of VTH . In
particular, the variation of LRS distributions can be modulated
by proper choice of IPULSE, thus enabling multilevel states. The
multilevel behavior of the PCMs can be obtained by both starting
from a full LRS and applying incremental amorphizing pulses,
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FIGURE 2 | Scheme of the homeostatic neuron with the control PCM device which regulates the internal threshold. The spike signals coming from other neurons

(e.g., pre-synaptic neurons) are integrated (“Integration” block) using an Arduino microcontroller (2 or Mega2560 in the measurements we performed). Arduino also

manages the fire activity when the threshold of the neuron is overcome. When this happens, two signals are generated: (i) the “Out” response of the neuron and (ii) the

crystallization pulse for the gradual increase of the PCM conductance. In this way the internal threshold VTH of the neuron increases.

as indicated in Figure 3A, or from a partial HRS and applying
crystallizing pulses. Note that the crystallization depends on both
the amplitude and duration of the pulses. In general, GPCM is
more easily modulated by using shorter pulses and intermediate
set voltages. In this way, the conductive multilevel states can be
spread over one order of magnitude, thus enabling the possibility
of effective modulation of the threshold (Wong et al., 2010).

Note that the PCM resistance suffers from the conductance
drift in time, which is due to the structural relaxation of the
device (Kim et al., 2019). Figures 3C–E illustrate the time
evolution of three different resistance distributions. Experimental
data show that the conductance drift is higher for higher
initial resistances, thus obtaining a non-linear increase in time

of the initial programmed conductive value if the device is
not continuously re-programmed. Such variation in time of
the synaptic weights implemented with PCM devices is a key
limitation for the design of neural accelerators (Kim et al., 2019;
Joshi et al., 2020). The progressive decrease of the conductance
also affects the homeostatic mechanism. However, the drift can
also have a beneficial effect in our bio-inspired neuron, since
it gives the possibility of spontaneous forgetting. In fact, the
threshold of the neuron naturally decreases during drift, thus
increasing the neuronal firing excitability and enabling an active
forgetting mechanism.

Note that the PCM devices can be also programmed in
multilevel states by applying repetitive voltage rectangular pulses,
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FIGURE 3 | (A) Typical current programming signals used to set and reset the PCM device to low resistive state (LRS) and high resistive state (HRS), respectively.

(B) LRS and HRS experimental distributions of the PCM devices. (C–E) Distributions of three different programmed multilevel resistive states to highlight the effect of

the conductance drift in time. Note that the conductance drift is more evident at higher initial values of resistances. (F) Voltage-based rectangular programming pulses

for achieving multilevel resistive states starting from a partial HRS. (G) Multilevel characteristics at different set voltages as a function of the number of rectangular

pulses for a pulse duration TSET = 75 ns. (H) Experimental color maps varying the number of pulses for achieving multilevel states as a function of the rectangular

pulse amplitude and duration.

as highlighted in Figure 3F starting from a partial HRS. In
particular, it is possible to modulate the number of multilevel
states by proper choice of the voltage amplitude VSET at fixed
pulse duration TSET , as highlighted in Figure 3G for TSET =

75 ns. Note also that it is possible to have a modulation of the
resistive states at various combination of duration and amplitude
of the repetitive programming pulses, as depicted in Figure 3H,
thus giving rise to an extensive resistive modulation as a function
of the target programming condition. This is very important
for the development of neuromorphic and neural networks with
PCM-based homeostatic neurons, as it is going to be analyzed in
the following.

3. UNSUPERVISED STDP WITH
HOMEOSTATIC MECHANISM

To study the properties of the homeostatic neuron with respect
to the classification accuracy of input images, we designed a
spiking neural network capable of unsupervised learning by
STDP. The input patterns are submitted asynchronously, which
means that not all the patterns are presented with fixed density
and shape to the network. Note also that the input signal consists
of an alternation of the asynchronous pattern and random noise
spikes, where noise, used for background depression, has lower
density and input appearance probability in order to assure
circuital and learning stability during operation (Bianchi et al.,
2020c). Figure 4A illustrates the SNN, where PCM synapses
have 1-transistor/1-resistor (1T1R) structure with the gates of

the transistors connected by wordlines (WLs) and the PCM top
electrodes connected by bitlines (BLs). The bitlines are directly
linked to the neurons, since the feedback neuronal signal is used
to adjust the synaptic weights involved in the STDP protocol
(Ambrogio et al., 2016a). Thus, with respect to Figure 2, which
represents the main structure of the homeostatic neuron, a
further signal line is needed for the unsupervised learning with
STDP. Input spikes are applied to the WLs to induce synaptic
currents that are summed at each column to feed the I&F
POSTs with self-adaptive threshold, according to the scheme of
Figure 2. The feedback spike consists of a set pulse of voltage
VTE, followed by a pulse of reset voltage. The overlap between
the PRE spike and the POST spike induces potentiation (set
transition) or depression (reset transition) for positive or negative
delay between the two spikes (Bianchi et al., 2020c). During
potentiation the synaptic element switches to LRS, while during
depression the synaptic element switches to HRS. Thus, the
STDP is mapped in a binary framework, which enables simpler
hardware computation with respect to bio-inspired analog STDP
(Bianchi et al., 2020c). Note that an extra column of PCM
synapses programmed in the HRS is used to discriminate pattern
and noise, i.e., in particular, spike integration is enabled only for
the presentation of an input pattern, to prevent a decay of the
overall accuracy due to noise (Ambrogio et al., 2016b).

Figure 4B shows the measured weights of the 16 PCM
synapses, divided in pattern synapses and background
synapses which were not stimulated by input pattern spikes.
Once the internal potential overcomes the threshold VTH ,
the POST generates a spike, thus enabling the synaptic
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FIGURE 4 | (A) Experimental setup for the asynchronous STDP, where the inputs are submitted at the wordlines (WLs). Every column connects the WLs to a specific

POST by using 1T1R PCM excitatory synapses, while the inhibitory synapses are implemented via discharge signals of the integrators. A further column of HRS

devices is used for pattern/noise detection. The integration activity of each neuron is enabled only for IDET > IREF . (B) Experimental evolution of the pattern and

background synapses under STDP. Note that the inputs are presented to the network asynchronously, since the potentiation and depression are gradual. (C) At every

firing activity, the internal PCM device of the neuron is incrementally set thus obtaining an overall reduction of the spiking frequency due to the increase of the internal

threshold of the neuron. This spike frequency adaptation enables optimized pattern specialization and reduced energy consumption. (D) Schematic representation of

the experimental setup with several POST-synaptic neurons in order to implement a WTA network. Note that the microcontroller (we used both Arduino 2 and Arduino

Mega2560) acts as master of the system.

potentiation/depression (depending on the PRE/POST spike
delay) and the increase of the homeostatic PCM conductance. In
turn, the PCM conductance increase causes the increase of VTH ,
hence the homeostatic control mechanism. This is evidenced
by the decreased POST spiking frequency in Figure 4C,
which ensures an improved energy efficiency of the SNN. The
integration is disabled when the POST fires in order to avoid the
integration of set/reset pulses to prevent excessive charge storage
in the integrator block of Figure 2.

Figure 4D shows a simplified schematic to explain the
management of the homeostatic neuron for the STDP
measurements in a WTA network. An Arduino 2 (or Mega2560)
microcontroller acts as master of the whole setup, managing
both the gate voltages and the proper top electrode biases of the
synaptic elements implemented with PCMs. The microcontroller

also manages the results of the integration signal with respect
to the adaptive internal thresholds of the homeostatic neurons.
Note also that, at fire, the multiplexers enable the passage of the
top electrode voltage of the synapses in order to implement the
STDP learning paradigm.

3.1. Fashion-MNIST Accuracy and
Robustness
To study the effect of homeostatic scaling on multi-pattern
unsupervised learning, we simulated our SNN for the average
classification of images from the Fashion-MNIST dataset,
characterized by 10 different classes of clothes. Figure 5 shows
the confusion matrices from Monte Carlo simulations for
the learning accuracies without homeostasis (Figure 5A) and
with homeostasis (Figure 5B). The study is carried out by
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FIGURE 5 | Confusion matrices for the study of the average accuracy of the learning activities for the 10 classes of the Fashion-MNIST training dataset without

(A) and with (B) homeostasis. The learning accuracy highlights a high and stable tendency only when homeostatic neurons are used as post-synaptic neurons in the

WTA network, reaching a value of 97%. (C) Fire activities of 5 homeostatic and non-homeostatic (D) neurons in 500 epochs of pattern and noise presentations. The

homeostatic neurons are robust against “false” patterns presentations from another dataset, e.g., MNIST (here submitted after the 250th epoch).

considering one image for each of the 10 classes of the
training dataset, replicating the study for the available 60,000
images and implementing the WTA protocol with a single-
layer perceptron of 784 input neurons and 10 output neurons
for each case (Ambrogio et al., 2016a). The learning accuracies
are then averaged for each class to assess the overall efficiency.
Homeostatic scaling allows for an accuracy increase by about
20% on average for the pattern specialization during learning
of ten different images from the Fashion-MNIST dataset, which
highlights the importance for unsupervised learning of PCM-
based adaptive threshold. Such adaptive mechanism is also
fundamental for achieving better accuracy in deep neural
networks, where the homeostatic scaling improves the neuronal
specialization for a pattern of a specific class of the dataset
(Martin et al., 2020). The improvement of the accuracy can
be directly referred to the better specialization achieved by
the control PCM device which assures an optimized threshold
level for each specific neuronal spiking activity. In fact, the
homeostatic mechanism allows to exceed the threshold only
when the learnt pattern appears at the input. Note that, thanks
to the additional bitline of Figure 4A used for pattern/noise
detection, the low-density inputs are neglected, thus avoiding
spurious firing activity.

Homeostatic scaling also improves the robustness of the
network for the classification when external perturbations, such
as disturbs, errors or false patterns from other datasets, are
presented at the input. To test the classification robustness of
the network, Figure 5 show the output neuronal spikes during
the classification of five images from Fashion-MNIST with
homeostasis (Figure 5C) and without homeostasis (Figure 5D).
In the first phase of the experiment, five images from
Fashion-MNIST are presented and classified. In this phase,
the non-homeostatic neurons show some errors due to the
lack of a dedicated “specialization,” while no significant errors
are evident among the homeostatic neurons. In the second
phase of the experiment, handwritten digit patterns from the
MNIST dataset are presented along with the Fashion-MNIST
patterns. The homeostatic neurons do not show erroneous

spikes since they have been specialized on the Fashion-MNIST
patterns during the previous learning procedure. On the other
hand, the non-homeostatic neurons show spurious spikes in
correspondence of the presentations of the false patterns, due
to the fact that the similarity between the patterns of the two
datasets is sufficient to induce a false fire. Such behavior is
avoided using the thresholdmodulationmechanismwhich allows
to set a specific threshold for a specific learnt pattern, thus
highlighting the higher classification robustness thanks to the
homeostatic scaling procedure.

3.2. Active Forgetting by Conductance Drift
The PCM device is programmed by set pulses (with current ISET)
and reset transitions. The variation of the resistive distributions
can be modulated by incremental application of pulsed signals at
the top electrode of the device, thus enabling multilevel states.
These states are affected by conductance drift if the device is
not constantly re-programmed in time. During standard STDP
procedures, the conductance drift does not affect the overall
behavior of the network, since the devices are continually set
and reset in the pattern and background positions. Similarly, the
internal state used to calibrate the threshold does not suffer too,
since the drift effect is not appreciable in the reference timescale,
as already seen in Figure 4C.

STDP has been recently used in the final classification layer
of deep convolutional networks for achieving continual learning
(Muñoz-Martín et al., 2019). In this kind of neural networks, the
convolutional filters generate responses which constitute artificial
patterns that are learnt and classified afterwards via unsupervised
WTA STDP. This procedure enables the incremental learning
of new patterns during inference, since the convolutional filters
give (for the new classes) a combination of responses which is
original with respect to the others. However, since the variability
among the new artificial patterns is high there is the possibility
of having neurons which commit errors, specializing on input
patterns that are unlikely to appear again at the input of
the WTA STDP. In this situation, the internal PCM device
is not activated for a long time, thus causing a decrease of
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FIGURE 6 | (A) The conductive drift leads to a substantial decrease of the threshold whenever the neuron is not excited (and the device is not reprogrammed), red

line. This behavior well fits the bio-inspired forgetting and can lead to the recovery of a wrong spiking specialization toward improved classification. On the other hand,

blue line, if the neuron is regularly excited (even if not often in time), the drift effect does not lead to active forgetting. (B) The conductance drift of the PCM devices has

a positive effect for the recovery of neurons which committed error during the classification, such as neurons that have specialized on “wrong” patterns. At increasing

drift of the control PCM device, the internal threshold gets progressively smaller, and the neuron is induced to fire again to the presentation of another pattern

(eventually the “good” one). This favorable scenario is due to the fact the pattern information is correlated in time, while the errors are not. Thus, the drift effect can

recover the error and increase the probability of accurate spiking activity in time.

the threshold, as shown by the Monte Carlo simulations in
Figure 6A. Here, in particular, you can see that a regular spiking
activity continually adjusts the threshold of the device, thus
avoiding the lowering of the threshold. On the other hand,
once a spurious spike activity is taken into consideration (red
line), the internal threshold decreases considerably in time, since
the spurious firing activity is not correlated. Note that such
behavior can induce a neuron to change specialization, since
the reduction of the threshold is proportional to an increase of
neuronal excitability.

Furthermore, the conductance drift in time could be directly
referred to the bio-plausible active forgetting, which erases
previously stored information as a complementary procedure
with respect to the homeostatic scaling consolidation (Davis
and Zhong, 2017). Such active scaling forgetting gets rid of
the unwanted pattern specialization and allows for a further
specialization neuron able to be dedicated to more likely patterns
at the input. Figure 6B shows the Monte Carlo simulations of the
probability of recovering a past incorrect spiking event toward
a fair accurate specialization at decreasing threshold conditions.
In particular, it is evident that, increasing the conductance drift
in time, it is possible to increase the firing excitability too.
This is very relevant, since an incorrect specialization due to an
uncorrelated error can be recovered by the correct excitation of a
time-correlated input (i.e., a pattern), which is far more probable
to contribute to the firing activity. Note that the presented figure
is referred only to previously misunderstood firing activities, that
are the only cases for which the drift plays a positive role.

4. HOMEOSTATIC NEURON IN
RECURRENT NEURAL NETWORKS

The bio-inspired spike-frequency adaptation modulates the fire
excitability of a neuron inside a neural network. In other words,
the fire responsivity directly depends on the past specialization
history of the network. Such behavior along a temporal sequence
is the key element for the recurrent neural networks (RNN)
which can be thus re-designed taking advantage of the SFA
mechanism (Amit, 1989).

To support the spike-frequency adaptation of the neurons
for reinforcement learning tasks, we considered a free-model
decision-making test where an agent has to move in an
environment until it finds a global reward. In particular, we
considered the navigation problem of Figure 7A, where an
agent explores the maze via penalties and rewards until it is
successful in finding the escape path. In this case study, each
point of the environment is configured as a homeostatic neuron
which modulates its internal state as a function of the firing
history of that particular position inside the environment. In
particular, the reward is given when the agent reaches the
prize causing the decrease of the internal threshold of the
rewarded positions, while the punishment arises when the
agent touches a barrier causing the increase of the internal
threshold (Frémaux et al., 2013). Once the agent finds the
escape path, it starts to remember the successful way by
progressive rewards, i.e., the internal thresholds of successive
positions decrease. Thus, the network evolves relying only
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FIGURE 7 | (A) Case study maze for the investigation of the reinforcement learning capabilities of the bio-inspired RNN. (B) The synapses of the RNN link

symmetrically each neuron to and from the nearest neighbors. At every position P, the neuron sends a signal to the synaptic gates of its neighbors. When one neuron

integrates enough current to overcome its internal threshold, it fires and inhibits all the network. Every firing activity maps the movement of the agent. The schematic of

the circuit also shows the connections among the nearest neighbors. (C) Experimental measurement for a single movement of the agent inside the case study maze.

The nearest neurons start to integrate current until one (North-East neuron) overcomes the threshold and fires. Note that the fire activity of the neuron causes an

increase of the PCM internal‘threshold.

on the self-adaptive threshold mechanism of reward and
penalty and on the synaptic plasticity, without any further
external aid.

We addressed the problem of a maze of size MxM (M = 30) by
a brain-inspired RNNwithM2 self-adaptive neurons, where each
neuron represents a position within the maze. Figure 7B shows a
section of the RNN limited to the current position P and the eight
nearest neighbors, which map the eight fundamental cardinal
directions. Note that the RNN is completely symmetrical, since
each connection between the current position and one of the
adjacent is configured by two symmetric synapses to and from
P. Each synapse has a 1T1R structure where the PCM device
is randomly initialized in HRS or LRS. Note that the further
synapses connecting the nearest neurons also contribute to the
definition of a symmetric matrix with respect to the diagonal of
the RNN. Synaptic weights along the diagonal are all zero because
a neuron, i.e., a position, is not self-connected. Note that an
inhibitory signal enables a WTA algorithm, as already described
in the first section of this manuscript.

4.1. The Movement of the Agent
The environmental boundaries are initially defined by
programming the thresholds of each position. The goal of
the network is to find the escape route across the maze via
reinforcement learning, thus supporting the relevance of the
PCM plastic properties for typical neuromorphic abilities
(Frémaux et al., 2013).

At any time, only the occupied neuron P is activated by
external spike stimulation. The firing activity of the neuron P
induces two types of event: first, the threshold VTH of neuron
P increases, due to the homeostatic mechanism; second, nearest
neighbor neurons are stimulated by the spiking activity of neuron
P. This dynamics was experimentally validated by the RNN with
PCM neurons and synapses of Figure 7B, where each neuron is
connected to the nearest neighbor positions, e.g., E is connected

to P, NE and SE. Figure 7C shows themeasured internal potential
VINT for the eight nearest neurons during stimulation of neuron
P with an external spiking signal of limited duration. Since all
synapses are initially programmed in random state (i.e., 50%
in LRS, 50% in HRS), only those neurons which are connected
by synapses with relatively high conductance show substantial
current integration. Once the first neuron reaches the threshold,
namely neuron North-East in the example of Figure 7C, the
agentmoves to the corresponding position and a new cycle can be
started by zeroing the internal potential VINT of all the neurons
(i.e., the typical inhibitory signal already discussed for the WTA
network). Note that, as the agent position changes, the synaptic
weights must be reinitialized to enable trial-to-trial variations
of the random walk, thus boosting the effect of penalties and
rewards. Note also that the self-adaptive threshold mechanism
induces partial crystallization of the control PCM of the firing
neuron, thus preventing the agent to come back to previously
occupied positions. In fact, as visible in Figure 7C, once a neuron
fires it increases its internal threshold, thus making less probable
the coming back to that position from the surrounding ones
during the next movements of the agent.

4.2. Penalty/Reward Mechanisms and
Optimization of the Solution
Figure 8A shows the randomwalks of the agent during successive
trials. Each experiment is limited in time, since the agent has to
find the reward by elaborating a strategy, rather than testing each
single position (Frémaux et al., 2013). If the agent cannot escape
within 400 spikes, (i.e., steps of the agent), a new trial starts by
reinitializing the agent position and the synaptic weights. The
reinforcement learning is instead retained from trial to trial and
only relies on (i) penalties, when the agent touches a wall, or
(ii) rewards, when the escape paths is found. Both penalties and
rewards are mapped by acting on the internal VTH of the neuron,
thus increasing or decreasing the neuronal responsivity. When
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FIGURE 8 | (A) Example of three random walks for successive trials of exploration of the agent. (B) Example of three successive trials after finding the escape path:

the agent progressively improves its policy for finding the reward, eventually not committing errors anymore. (C) Time to get to the escape path as a function of the

number of trials for 10 different experiments of 15 trials each.

the agent touches a wall, a penalty is assigned to that position by
increasing the corresponding VTH . On the other hand, when the
agent finds the escape path, a reward is given by lowering theVTH

of the last positions occupied by the agent.
As shown in Figure 8B, once the escape path has been

disclosed, the system tends to follow the preferential path toward
the objective. This happens because the reward policy introduces
a positive feedback, which reduces the VTH of the path thus
improving the preference of the agent to follow the escape path.
Figure 8C shows the time to find the reward as a function of
successive trials. Note that the reward has two main effects,
namely (i), the system self-optimizes its policy map by increasing
the time efficiency, and (ii) the spiking activities concentrate in
the positions close to the target, thus reducing any unwanted
energy consumption along ordinary positions which do not
give any reward. As a result, the experience-based evolution of
our RNN relies on PCM-based neurons and synaptic plasticity
and enables the optimization of reinforcement learning for
autonomous decision-making navigation.

4.3. Impact of Drift on Reinforcement
Learning
To study the impact of the drift, we studied the effect of the drift-
induced decrease of the internal neuronal threshold in Figure 9A.
The decrease of the internal threshold causes a decrease of the
necessary time to get to the final reward for each trial. On the
other hand, the drift also affects the threshold of the punished
neurons, but the drift does not drive such positions to a condition
comparable with the ordinary ones.

The difference between the reinforcement learning with and
without PCM drift decreases at increasing trial of specialization,
since the reward facilitate the identification of the successful
path by acting on the threshold of the corresponding positions
(less integration time per single step is needed to follow the

rewarded path). Figure 9B shows the accuracy (i.e., the ability
of finding the escape path considering a fixed number of
trials per experiment) over 1,000 Monte Carlo simulations. The
study indicates that the drift of the PCMs increases the error
probability, lowering the overall efficiency of the network. As
a result, drift does not introduce significant benefit in the case
of reinforcement learning, with respect to the STDP learning.
In more complex situations, where the surrounding boundaries
change continuously thus requiring a constant reconfiguration by
the agent, the drift-induced forgetting mechanism could become
favorable, since it would boost the quest toward other points of
the environment.

4.4. Energetic Efficiency
The energy efficiency of reinforcement learning can be improved
by operating the devices in burst-mode (Bianchi et al., 2019),
which consists of the application of fast pulsed signals at
the electrodes of the PCM devices, thus enabling a consistent
reduction of the required energy per single operation. In our
simulations, we stimulated the devices with pulsed signal with
duration of 100 ns separated by silent periods of 10 µs as shown
in Figure 10A.

Figure 10B shows the average energy per single exploration
trial of the agent, indicating that the energy consumption
decreases as the agent refines its strategy. During the initial trials,
the energy consumption due to integration needed to explore
the environment is larger than the other contributions, since the
agent requires many steps to explore the surroundings. Once the
final reward is achieved, the integration procedure requires less
energy, thanks to the threshold decrease in the path positions
close to the objective. Note also that the simulation without
drift indicates a higher integration energy, which is due to the
fact that the internal states undergo a decrease of the respective
threshold due to conductance drift, thus requiring less power per
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FIGURE 9 | (A) Monte Carlo simulations of the minimum time needed to successfully find the escape path with and without the drift effect of the PCM devices. The

larger the drift, the lower the time to get to the final reward. (B) Impact of the drift on the accuracy for finding the escape path over 1,000 trials of the same experiment.

Note that the drift is not a benefit since the decreasing VTH (with respect to the nominal VTH0) can lead to misunderstanding in the policy map definition.

FIGURE 10 | (A) Burst-mode operation for power-saving during PCM-based working procedure of the RNN. (B) Note that the required energy for the operations

carried out by the RNN is dependent on the grade of specialization of the network and on the final achievement with respect to the disclosure of the escape path. In

fact, once the final reward is found, the network progressively decreases the total need of integration energy. Note that the simulated energy consumption reduction

also comes with a decrease in the overall accuracy for finding the escape path when conductance drift is considered. (C) Monte Carlo simulations of the global

accuracy for the case study maze considering increasing trial and error procedures for the programming of the internal state and of the inter-neuronal synaptic devices.

single trial. The energy consumption decrease, as well as the time
decrease to get to the solution, depends on the timescale of the
reinforcement learning execution in hardware, since longer times
means larger conductance drift.

Figure 10C shows the accuracy for finding the reward
as a function of the number of memory access per single

device (e.g., the PCM internal state of the neurons) in
order to assure the theoretical conductance value assessed
during the simulations. However, a 30 times higher
energy consumption for best programming condition
only improves the accuracy by 1.5%, on average. This
result indicates the substantial robustness and efficiency of
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bio-inspired neuromorphic computing for reinforcement
learning tasks.

5. CONTINUAL LEARNING IN ARTIFICIAL
NEURAL NETWORKS

STDP-based unsupervised learning with homeostatic neurons is
a robust approach for achieving continual learning in artificial
neural networks. In particular, STDP has been already introduced
in the last layer of convolutional neural networks (CNNs)
in order to get resilience in neural systems trained with the
backpropagation algorithm (Muñoz-Martín et al., 2019). These
kinds of hybrid supervised/unsupervised neural networks rely

on custom training algorithms to extract, after convolution,
single-bit responses per each filter relative to a found/not found

trained feature, as illustrated in Figure 11. After convolution, a

novel feature map arises, which is then classified by means of
post-synaptic neurons under the STDP learning paradigm. In

order to study the effect of the introduction of PCM-based SFA

neurons in this neural system, we built a WTA network with
ten POSTs capable of spike frequency adaptation, as in Figure 2,

and inhibitory signals. The inhibition, in particular, enables the

drop of the internal potential of all the neurons when a fire event
occurs (Pedretti et al., 2017; Bianchi et al., 2020c).

The use of neurons with SFA control mechanism in the
last layer of the network of Figure 11 introduces robustness

FIGURE 11 | Schematic architecture of the hybrid supervised-unsupervised neural network. The input patterns coming from the dataset are convolved with

pre-trained convolutional filters. Each filter, which can recognize a generic feature, “feature-filter,” or a specific class, “class filter,” gives a single-bit response (found/not

found response). The responses of the convolutional filters give thus rise to a binary feature map, which is then classified by homeostatic neurons using the STDP

paradigm in the WTA architecture.

FIGURE 12 | Comparison of the accuracies of previous works (Muñoz-Martín et al., 2019) (A) with the accuracies obtainable after using homeostatic neurons in the

last layer of the network (B). Note that the accuracy results increase in the second case, which is mainly due to the improved specialization capability and to the active

forgetting mechanism introduced by the SFA homeostatic neurons.
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and improved accuracy with respect to previous works, as
reported in Figure 12 for the inference of the MNIST dataset
(10,000 patterns of handwritten digits). This is due to two
main contributions, namely: (i) the improved specialization
capability of the neurons to get specialized on specific input
patterns (each neuron modulates its internal threshold on a
specific feature map arising from the patterns joining the same
class, as also studied in Figure 5); (ii) errors in the WTA
classification are prone to be corrected thanks to the spontaneous
forgetting mechanism studied in Figure 6. This latter point, in
particular, is due to the fact the classification errors are not
correlated in time, thus driving a wrong fire event to be forgotten
in time.

Thus, the homeostatic neurons appear as key elements
to introduce both resilience and accuracy in artificial neural
networks, paving the way for the next technological steps of
artificial intelligent computation.

6. CONCLUSIONS

In this work we introduced a novel artificial neuron based
on phase change memory (PCM) devices capable of internal
regulation via homeostatic and plastic procedures. The neuron
relies on the definition of the internal threshold by multilevel
programming of the control PCM devices, thus enabling the
specialization of large patterns and the continual learning
capability of CNNs by introducing the STDP procedure in
a supervised framework. The novel neuron is also used
to introduce a bio-inspired recurrent neural network which
directly creates a directed experienced-graph in time by
keeping trace of the fire history of each neuron of the

network. Such recurrent connections based on neurons capable
of spike frequency adaptation demonstrate decision-making
capabilities for navigation tasks. Furthermore, we show that
conductance drift of the PCM devices can be used to emulate
active forgetting in neural networks. This work supports the
suitability of PCM devices for the optimization of synaptic
dynamics and the implementation of brain-inspired computing
in artificial intelligence.
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The Hodgkin-Huxley (HH) spiking neuron model reproduces the dynamic characteristics

of the neuron by mimicking the action potential, ionic channels, and spiking behaviors.

The memristor is a nonlinear device with variable resistance. In this paper, the memristor

is introduced to the HH spiking model, and the memristive Hodgkin-Huxley spiking

neuron model (MHH) is presented. We experimentally compare the HH spiking model

and the MHH spiking model by applying different stimuli. First, the individual current

pulse is injected into the HH and MHH spiking models. The comparison between action

potentials, current densities, and conductances is carried out. Second, the reverse

single pulse stimulus and a series of pulse stimuli are applied to the two models. The

effects of current density and action time on the production of the action potential are

analyzed. Finally, the sinusoidal current stimulus acts on the two models. The various

spiking behaviors are realized by adjusting the frequency of the sinusoidal stimulus. We

experimentally demonstrate that the MHH spiking model generates more action potential

than the HH spiking model and takes a short time to change the memductance. The

reverse stimulus cannot activate the action potential in both models. The MHH spiking

model performs smoother waveforms and a faster speed to return to the resting potential.

The larger the external stimulus, the faster action potential generated, and the more

noticeable change in conductances. Meanwhile, the MHH spiking model shows the

various spiking patterns of neurons.

Keywords: HH, MHH, memristor, neuron, spiking

1. INTRODUCTION

Neurons with highly nonlinear characteristics act as the basic functional unit of receiving and
propagating signals. The whole procedure of processing signals in the nerve system needs the
cooperation of neurons. Some theoretical knowledge and research methods are beneficial to unveil
the mechanism of information propagation in neurons. Italian scientist Camillo Golgi worked on
the nervous system structure and earned the Nobel Prize for physiology and medicine in 1906
(Dröscher, 1998). In 1998, Ramon y Cajal pointed out that the neurons without directly connecting
each other in the nerve system (Raviola and Mazzarello, 2011). To replicate the functions and
mechanisms of neurons, we urgently need to construct the biophysical model. A variety of
neuron models are emerging, and the Hodgkin-Huxley (HH) spiking neuron model is the original
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(Hodgkin and Huxley, 1989). Stochastic Hodgkin-Huxley
Neuron Systems with the NEF is helpful to study neuron
sensitivity (Chen and Li, 2010). The Hodgkin-HuxleyModel with
automatic parameter estimation is applied to the neuromimetic
chips (Buhry et al., 2011). The space-clamped Hodgkin-Huxley
model effectively inhibits the production of spikes under the
injection of the noisy synaptic input (Tuckwell and Ditlevsen,
2016). The Langevin is combined with the Hodgkin-Huxley
system performs accurate interspike interval (ISI) and realizes the
accuracy minimal loss (Pu and Thomas, 2020). The Berger-Levy
theory is introduced to the Hodgkin-Huxley model, demonstrate
that the information communication between neurons is related
to the presynaptic firing rate and the synchronization (Ghavami
et al., 2018).

The memristor with the non-volatility and variable resistance
characteristics is regarded as the fourth passive circuit element.
Therefore, it becomes a hot topic in neural computing (Le et al.,
2015), learning andmemorizing (Sayyaparaju et al., 2018), micro-
circuitry design (Berdan et al., 2014), biological synapse (Mandal
and Saha, 2016), and neuron modeling (Maheshwar et al., 2014),
and so on. The synaptic plasticity of biological neuronal systems
can be realized by memristors and memristive crossbar in 3-D
architecture to mimic the human brain (Truong et al., 2016).
The memristor with hysteresis and memory characteristics is
the most promising candidate for establishing the brain-like
neuromorphic system (Mokhtar et al., 2017). The key features of
biological neurons and synapses can be mimicked by memristors
(Berdan et al., 2016; Mandal and Saha, 2016). The ion motion
in neurons is represented by the electrical conductance change
of a memristor (Xia and Yang, 2019). A memristor is used
as a two-terminal resistor with memory (Chua, 1971; Strukov
et al., 2008) performs well in storing information according to
the physical laws (Yang et al., 2013). The memristor entirely
avoids the data transformation bottleneck between the memory
and computation (Li and Wang, 2019). The memristor crossbar
array can be used to integrate the co-processor chip, which
will realize machine learning algorithms and neuromorphic
computing (James, 2019).

This work elaborates on the construction of the memristive
Hodgkin-Huxley spiking neuron model. The mathematical
expressions and the circuit of the HH spiking model are
presented and analyzed in sections 2, 3. Section 4 describes the
MHH spikingmodel and discusses the memristors used to mimic
the ion channels. The comparison between two models under
the different stimuli is conducted in section 5. Section 6 is the
conclusion of the paper.

2. THE HODGKIN-HUXLEY (HH) SPIKING
NEURON MODEL

The neuron cell membrane is a voltage-gated ion channel, which
has high selectivity for the permeability of external and internal
ions in body fluid. Only one type of ion can pass through
specific channels. There involves four ionic components, sodium,
potassium, calcium, and chloride. The transmembrane current
depends on the rapid inward current caused by sodium and

the slow outward current caused by potassium (Häusser, 2000).
The ion concentration difference inside and outside of the cell
is the primary driving force of neural activities. When the
sodium channels are opened, the high concentration sodium
flows from extracellular to intracellular, the depolarization is
produced, the action potential is generated. And then, the sodium
channels are closed, and the potassium channels are opened,
the potassium permeates from intracellular to extracellular, the
repolarization is performed. Finally, the membrane potential
undergoes a hyperpolarization phase, the membrane potential
shifts back to the resting potential. The above process is the
generation mechanism of the action potential in a neuron.

The inside of the axon membrane is full of ionic fluids
(cytoplasm), the outside of the axonmembrane is filled with body
fluids. The fluids (conductor) of intracellular and extracellular
are separated by the axon membrane (insulator). When an
insulator separates two conductors, the capacitor emerges to
model the charge storage capacity. The part of the axon
membrane without ion channels is equivalent to a capacitor
(Cm). The axon membrane of the neuron consists of the lipid
bilayer, the membrane protein, and ion channels (the upper
image in Figure 1). The sodium ion channel is represented by
a nonlinear conductance (gNa), the potassium ion channel is
denoted by a nonlinear conductance (gK), and other ion channels
are described as a linear conductance (gL) (Beck et al., 2020).
When the neuron is in the resting state, a potential difference
is caused by the ionic concentration between the intracellular
and extracellular fluids. The potential difference is called the
equilibrium potential of each ion (ENa, EK , and EL), which
is equivalent to a driving power supply (the lower image in
Figure 1).

When the neuron is in the resting state, there is a resting
potential. Here, we choose vrest =−65 mV as the resting potential
in experiments (Hodgkin and Huxley, 1952). The Vm denotes
the membrane potential, ENa (50 mV), EK (−70 mV), and EL
(−50 mV) represent the Nernst equilibrium potentials. When
the potassium current passes through the potassium channel,
the potassium current is proportional to the difference between
the membrane potential and EK (Hodgkin and Huxley, 1989;
Börgers, 2017):

IK = gK(Vm − EK) (1)

Here, gK is the potassium conductance, (Vm-EK) is the potassium
driving force. The sodium current and the leaky current are
described as:

INa = gNa(Vm − ENa) (2)

IL = gL(Vm − EL) (3)

The ion channels are sensitive to membrane potential, which
control the open and close states of channels.

In the Hodgkin-Huxley spiking model, the conductance value
of each ion channel is decided by the gate-controlled variables m,
n, h, and 0 ≤ m ≤ 1, 0 ≤ n ≤ 1, 0 ≤ h ≤ 1. The potassium
channel depends on four active gate variables (n). The sodium
channel is controlled by three active gate variables (m) and
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FIGURE 1 | The voltage-gated channel of the axon cell membrane.

one inactive gate variable (h). The potassium conductance, the
sodium conductance, and the leaky conductance are described as:

gK = gKmaxn
4 (4)

gNa = gNamaxm
3h (5)

gL = gLmax (6)

Here, gKmax, gNamax, and gLmax denote the maximum values of
potassium, sodium, and leaky conductances, accordingly. Their
values are 36, 120, 0.3 Ohm−1cm−2 (Hodgkin and Huxley,
1952, 1989). The expressions of gate-controlled variables of ion
channels are written as follows:

dm/dt = 1/τm(m∞ −m) (7)

dn/dt = 1/τn(n∞ − n) (8)

dh/dt = 1/τh(h∞ − h) (9)

The time constants τm, τn, and τh change with m, n, and h,
accordingly. The transition rate α characterizes the ion channels
change from the close state to the open state. The transition rate
β indicates the ion channels vary from the open state to the close
state. m∞, n∞, and h∞ are the steady-state values of the gate
variables m, n, and h, accordingly (Saïgai et al., 2011). They are all
the functions of the membrane potential. Their expressions are:

m∞ = αm/(αm + βm) (10)

n∞ = αn/(αn + βn) (11)

h∞ = αh/(αh + βh) (12)

τm = 1/(αm + βm) (13)

τn = 1/(αn + βn) (14)

τh = 1/(αh + βh) (15)
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αm = ϕ(2.5− 0.1(Vm − Vrest))/(e
(2.5−0.1(Vm−Vrest)) − 1) (16)

αn = ϕ(0.1− 0.01(Vm − Vrest))/(e
(1−0.1(Vm−Vrest)) − 1) (17)

αh = 0.07ϕe(−(Vm−Vrest))/20 (18)

βm = 4ϕe(−(Vm−Vrest))/20 (19)

βn = 0.125ϕe(−(Vm−Vrest))/80 (20)

βh = ϕ/(e(3.0−0.1(Vm−Vrest)) + 1) (21)

Here, ϕ=3(T−6.3)/10. The relationship between the transition state
and the membrane potential is shown in Figure 2 (Hodgkin and
Huxley, 1952, 1989; Börgers, 2017).

The HH spiking neuron model is strongly dependent on
the temperature, and the early experiments were carried out
under the temperatures T = 6.3◦C and T = 18.5◦C. When
the temperature is 6.3◦C, the transition rates of the active
gates αn and αm (Figure 2A), the inactive rate βh (Figure 2B)
increase with the rise of the membrane potential. The inactive
transition rate αh (Figure 2A), the active transition rates βn and
βm (Figure 2B) decrease with the increase of the membrane
potential. When the temperature is increased to 18.5◦C, the
transition rates α and β show the same experimental phenomena
(Figures 2C,D) as above. We compare the transition rates at
different temperatures, and the difference is performed in the
light blue ellipse. When the temperature is 6.3◦C, αn varies from
0 to 10, αm alters from 0 to 1, αh changes from 0.5 to 0 (the
enlarged plot in Figure 2A). When the temperature is 18.5◦C, αn

varies from 0 to 36, αm adjusts from 0 to 3.5, αh changes from 2
to 0 (the enlarged plot in Figure 2C). When the temperature is
set to 6.3◦C, βn varies from 37 to 0, βm adjusts from 0.2 to 0, βh

changes from 0 to 1 (the enlarged plot in Figure 2B). When the
temperature is increased to 18.5◦C, βn varies from 140 to 0, βm

adjusts from 0.8 to 0, βh changes from 0 to 4 (the enlarged plot in
Figure 2D). The higher the temperature, the greater the range of
conversion rates, the longer time needed to return to the critical
value of the transition rate.

When the temperatures are T = 6.3◦C and T = 18.5◦C,
the simulation plots between the steady values of gate variables
(m∞, n∞, and h∞) and the membrane potential, the relationship
between the time constant (τm, τn, and τh) and the membrane
potential, as shown in Figure 3.

The steady-state values (m∞ and n∞) of activation gate
variables (m and n) change from 0 to 1 with the increase of
the membrane potential. The steady-state value (h∞) of the
inactivation gate variable (h) decreases with the increase of the
membrane potential (Figures 3A,C). The steady-state values are
not affected by the change of temperature.When the temperature
is 6.3◦C, τn varies from 5.8 to 1, τm adjusts from 0.8 to 0,
τh changes from 9 to 1. When the temperature is increased
to 18.5◦C, τn varies from 1.5 to 0.25, τm adjusts from 0.2 to
0, τh changes from 2.25 to 0.25 (Figures 3B,D). The higher
temperature, the smaller the range of τ .

3. THE ELECTRICAL CIRCUIT OF THE
HODGKIN-HUXLEY SPIKING NEURON

The significant electrical properties of a neuron can be precisely
replicated by the HH circuit model, as shown in Figure 4A

(Hodgkin and Huxley, 1989).
Here, C is the membrane capacitor. gNa is the sodium

conductance, gK is the potassium conductance, and gL is the leaky
conductance. Vm is the membrane potential. IC is the capacitor
current, INa is the sodium current, IK is the potassium current,
and IL is the leaky current. Iext is the external stimulus. ENa, EK ,
and EL are ion concentration differences of sodium, potassium,
and leakage [namely, the equilibrium potentials (Emili et al.,
2003) are calculated by the Nernst equation (Hill, 1992)]. The
arrow directions of currents are pointing from inside to outside
of the membrane. The value of the extracellular potential is set to
zero (Vout= 0, namely, the extracellular is grounded) (Hodgkin
and Huxley, 1989).

According to Kirchhoff’s voltage-current law, the circuit
equations are described as:

Vm = Vin − Vout (22)

IC = dQ/dt (23)

Q = CVm (24)

Im = INa + IK + IL (25)

Iext = IC + INa + IK + IL = IC + Im (26)

In the giant squid axon experiment, the current through the axon
membrane is expressed as the current density J(t, x). It represents
the amount of the electric current per square centimeter, and
its unit is mAcm−2. Based on the mathematical analysis of the
RC equivalent circuit (Figure 4A), the following voltage-current
equations are obtained.

C∂Vm(t, x)/∂t = −Jm(t, x)+ Jext(t, x)+ 1/(2rin)∂
2Vm(t)/∂x

2

(27)

Jm = JNa + JK + JL (28)

JNa = gNa(Vm − ENa) (29)

JK = gK(Vm − EK) (30)

JL = gL(Vm − EL) (31)

The left side of (27) is the charging or discharging rate per
unit area for the capacitor. Jm(t, x) is the total current density
that flows through the membrane. JNa is the current density
passing through sodium conductance. JK is the current density of
potassium. Vm is the membrane potential. Jext(t, x) is the external
stimulus. The last term is the charge rate of longitudinal current
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FIGURE 2 | The relationship between transition state and membrane potential. (A) The evolution of the transition rate α at the temperature of 6.3◦C. (B) The variation

of the transition rate β at the temperature of 6.3◦C. (C) The evolution of the transition rate α at the temperature of 18.5◦C. (D) The change of the transition rate β at

the temperature of 18.5◦C.

along the inside membrane surface. It depends only on the time
t rather than the location x, so the quadratic partial differential
term equals zero, (27) can be rewritten as:

C∂Vm(t, x)/∂t = −Jm(t, x)+ Jext(t, x) (32)

The propagated action potential is performed by (32). The action
potential is sensitive to the temperature. The action potential
of the cell membrane shows distinct firing behaviors under
various temperatures.

When the temperature is 6.3◦C, the HH spiking model
generates three action potentials in 20 ms, the duration of a
spike is 7.65 ms (Figure 5A). When the temperature becomes
15◦C, the HH spiking model generates six action potentials in
20 ms, the duration of a spike decreases to 3.35 ms (Figure 5B).
When the temperature is increased to 20◦C, the HH spiking
model generates nine action potentials in 20 ms, the duration
of a spike reduces to 1.95 ms (Figure 5C). We increase the
temperature to 35◦C, and there is no action potential produced
after one action potential is generated (Figure 5D). We decrease
the temperature to −20◦C, and the action potential cannot be
obtained (Figure 5E). The temperature affects the time duration
of the spike, the generation of action potentials, and the firing
frequency of a neuron. It is hard to achieve the action potential
when the temperature is too high or low. The increase of
temperature has significantly decreased the time duration of the
spike and remarkably produced a higher firing frequency.

The external stimuli with various intensities act on the HH
spiking model, which performs different action potentials. When
the current density is 0.001mAcm−2, the HH spiking model
cannot produce the action potential (Figure 6A). When the
current densities are increased to 0.01 and 0.09mAcm−2, the

action potentials are obtained (Figures 6B,C). However, when
the current density becomes 0.2mAcm−2, the HH spiking model
generates one action potential. After that, it cannot produce the
action potentials (Figure 6D). The external stimulus is related
to the generation of the action potential. The larger the external
stimulus, the higher the firing frequency. If the external stimulus
is too larger or small, the HH spiking model cannot reproduce
the action potential.

When the action time of the external stimulus is 1 ms,
there is not enough time to show the complete firing process
(Figure 7A). Therefore, the action time is increased to 10 ms, and
the action potential is generated (Figure 7B). When the action
time becomes 20 or 50 ms, the HH spiking model produces more
action potentials (Figures 7C,D). Thus, the action time of the
external stimulus has a strong influence on the generation of
the action potential. The longer the action time, the more action
potentials generated. But when the action time is too long or
short, the HH spiking model cannot perform the firing process.

4. THE MEMRISTIVE HODGKIN-HUXLEY
(MHH) SPIKING NEURON MODEL

In the HH circuit model, the potassium conductance and the
sodium conductance are voltage-gated channels, which can be
described by time and membrane potential. The flux-controlled
memristor with the nonvolatile property is the function of time
and voltage, which can be used in a nonlinear circuit system
(Petras, 2010; Corinto and Forti, 2017; Corinto et al., 2018).
Based on the HH spiking model, we replace the sodium and
potassium conductances with the flux-controlled memristors
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FIGURE 3 | The relationship between gate-controlled variables, the time constant, and the membrane potential. (A) The evolution of the gate-controlled variables (m,

n, and h) at the temperature of 6.3◦C. (B) The change of the time constant (τ ) at the temperature of 6.3◦C. (C) The change of the gate-controlled variables (m, n, and

h) at the temperature of 18.5◦C. (D) The evolution of the time constant (τ ) at the temperature of 18.5◦C.

(Wang et al., 2012), and the memristive Hodgkin-Huxley spiking
neuron model is constructed (Figure 4B).

Some of the mathematical expressions in the HH spiking
model need to be modified. gNa and gK in (4) and (5) are replaced
by the memristance and rewritten as:

gMK = 1/MKn
4 (33)

gMNa = 1/MNam
3h (34)

The conductance values of the sodium and potassium ion
channels become the function of time, and the membrane
potential will change with the evolution of the memristance.

The flux-controlled memristor is described as (Wang et al.,
2012):

M(φ(t)) =















20000 φ(t) < −0.75
√

−3.98× 108φ(t)+ 108 φ(t) ≥ −0.75 and
φ(t) < 0.25

100 φ(t)) ≥ 0.25

(35)

Where MK=MNa=M is the function of time. The potassium
memristance (gMK) and the sodium memristance (gMNa) are
functions involved with time and membrane potential. When the
various external stimuli act on the MHH spiking neuron model,
changes in gMK and gMNa are performed in Figure 8.

The initial values of memductances and reductance gMK=
0.5×10−4 Ohm−1cm−2, gMNa= 0.5×10−4 Ohm−1cm−2, and
gL= 0.3×10−3 Ohm−1cm−2 [0.5×10−4 is the reciprocal of
the maximum value (20,000 Ohmcm−2) of a memristor]. The
temperature is 6.3◦C, C is 1 µF m−2. ENa is 50 mV, EK is −70

mV, and EL is−50 mV.
When the external stimulus [0.008 mA cm−2 (gMNa)] is

applied to the MHH spiking model, the sodium memductance

(the coral color curve) does not change in the time range from 0

to 1.025 ms (the enlarged plot in Figure 8A). Then, the sodium

memductance increases to 0.029Ohm−1cm−2 and then decreases

to zero. When the MHH spiking model receives the external
stimulus [0.08mAcm−2 (gMNa1)], the sodium memductance (the
dark red curve) remains the same in the time range from 0ms to
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FIGURE 4 | The electrical circuit of the axon cell membrane. (A) The HH circuit model. (B) The MHH circuit model.

1.38ms (the enlarged plot in Figure 8A). And themaximum value
of the sodium memductance is 0.031 Ohm−1cm−2. Likewise,
when the external stimulus [0.8 mAcm−2 (gMNa2)] acts on the
MHH spiking model, the sodium memductance (the purple
curve) does not change in the time range from 0 to 0.97 ms
(the enlarged plot in Figure 8A). And the maximum value of the
sodium memductance is 0.038 Ohm−1cm−2.

When the external stimulus [0.04 mAcm−2 (gMK)] is injected
into the MHH spiking model, the potassium memductance (the
coral color curve) does not change from 0 to 1.5 ms (the enlarged
plot in Figure 8B). Then, the potassium memductance increases
and attains 0.0324 Ohm−1cm−2. Likewise, the MHH spiking
model receives the external stimuli [(0.08 mAcm−2 (gMK1) and
0.16mAcm−2 (gMK2)], the potassiummemductance (the dark red
curve reaches 0.0348 Ohm−1cm−2 and the purple curve attains
0.0359 Ohm−1cm−2 (the enlarged plot in Figure 8B) are stable at
constant values (Figure 8B).

The sodium memductance and the potassium memductance
are associated with the external stimulus. The stronger the
external input, the faster thememductance changes, the larger the
memductance value. The change curves of sodium and potassium
memductance are similar to the theoretical curves (refer to
Hodgkin and Huxley, 1989). Therefore, the memristors can
mimic the sodium ion channel and the potassium ion channel.

The temperature is selected as 6.3◦C, and the external current
is 0.08 mAcm−2. The transition rate parameters (α and β), gate
variables (m∞, n∞, and h∞), and the time constant (τ ) in the
MHH spiking model are shown in Figure 9.

The transition rates of the active gates (αn and αm, Figure 9A),
the inactive transiton rate (βh, Figure 9B) enhance with the
increase of the membrane potential. The inactive transition
rate (αh, Figure 9A), the active transition rates (βn and βm,
Figure 9B) decrease with the rise in the membrane potential. The
steady-state values (m∞ and n∞) of activation gate variables (m

and n) change from 0 to 1 with the increase of the membrane
potential. The steady-state value (h∞) of the inactivation gate
variable (h) decreases with the increase of the membrane
potential (Figure 9C). The time constant τn changes from 4.52
to 0, τm adjusts from 0.5 to 0, and τh varies from 8.57 to 0
(Figure 9D). The changing processes of the transition rate, gate
variables, and the time constant in the MHH spiking model have
high similarities with those of the HH spikingmodel in Figures 2,
3. Therefore, the memristors can be utilized as the sodium ion
channel and the potassium ion channel.

When the current density Jm in (28) is replaced by JM ,
conductances gNa and gK in (29) and (30) are replaced by gMNa

and gMK , and the current equations are rewritten as:

JM = JMNa + JMK + JL (36)

JMNa = gMNa(V − ENa) (37)

JMK = gMK(V − EK) (38)

The membrane potential Vm in (32) is replaced by VM , and
the membrane potential of the MHH spiking neuron model is
described as:

C∂VM(t, x)/∂t = −JM(t, x)+ Jext(t, x) (39)

The electrical equivalent circuit of the HH spiking model is based
on the voltage-clamp experimental method. When the voltage-
clamp values are distinct, the variables perform various variations
in the HH and MHH spiking models. Here, the temperature T =
6.3◦C. The clamp voltage is denoted by Vclamp, and its value is
selected as +20 or +80 mV. The resting potential Vrest =−65 mV.
The membrane potential Vm=Vclamp +Vrest .

When the clamp-voltage value is 20 mV, the membrane
potential becomes −45 mV. Changes of Na+ and K+ gate
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FIGURE 5 | The action potentials under the different temperatures (the external stimulus is 0.08 mAcm−2 ). (A) The temperature is 6.3◦C. (B) The temperature is 15◦C.

(C) The temperature is 20◦C. (D) The temperature is 35◦C. (E) The temperature is −20◦C.

variables in the MHH spiking model (the plots on the left in
Figure 10B) are the same as those in the HH spiking model (the
plots on the left in Figure 10A). The HH spiking model generates
the reverse curves of JNa and Jm, and their maxima are −0.17
and −0.21 mAcm−2. The maximum of the forward curve JK is
0.14 mAcm−2, and the forward curve JL reaches 0.009 mAcm−2.
The peak values of gK and gNa are 4.54 and 2.25 mOhm−1cm−2

(the plots on the right in Figure 10A). The MHH spiking model
produces the reverse curves of JMNa and JM , and their maxima

are−0.18 and−0.16mAcm−2. The forward curves of JMK and JL
attain their maxima 0.04 and 0.009mAcm−2. The maxima of gMK

and gMNa are 1.26 and 1.88mOhm−1cm−2 (the plots on the right
in Figure 10B).

The variable values of the HH spiking model are more
significant than those of the MHH spiking model (because the
memristance is large, its initial value is 10,000 Ohmcm−2). When
the clamp-voltage value is 20 mV, both spiking models cannot
generate the action potential.
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FIGURE 6 | The distinct stimuli are applied to the HH model. (A) The external stimulus is 0.001 mAcm−2. (B) The external stimulus is 0.01 mAcm−2. (C) The external

stimulus is 0.09 mAcm−2. (D) The external stimulus is 0.2 mAcm−2.

FIGURE 7 | The firing behaviors under the various action time of the external stimulus. (A) The action time is 1 ms. (B) The action time is 10 ms. (C) The action time is

20 ms. (D) The action time is 50 ms.

Frontiers in Neuroscience | www.frontiersin.org 9 September 2021 | Volume 15 | Article 730566161

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fang et al. Memristive Hodgkin-Huxley Spiking Neuron Model

FIGURE 8 | Changes of the memristance under the distinct input currents. (A) The variations of the sodium memristance. (B) The variations of the potassium

memristance.

A transient increase of sodium ions in the cell leads to the
depolarization of the action potential. The waveforms of the two
models change in the same way when the clamp voltage is 80 mV
(the membrane potential is 15 mV). We take the MHH model
as an example and make a vertical comparison (Figures 10B,D).
With the increase of clamp voltage, the current densities of
sodium and potassium increase significantly. The value of gate
variable n changes from 0.5 to 1, and the value of gate variable m
varies from 0.4 to 1. The potassium memductance changes from
1.26 to 8 mOhm−1cm−2, and the sodium memductance changes
from 1.88 to 30mOhm−1cm−2.

When the clamp-voltage value is 80 mV, the HH and MHH
spiking models can produce the action potential. The gate
variables n and m change with the identical waveforms. The
current densities, the potassium conductance, and the sodium
conductance are different. The maxima of JMNa, JMK , JL, and JM
are −1.059, 0.74, 0.0297, and −0.97 mAcm−2 (the right-upper
plot in Figure 10D), which are larger than those of the HH
spiking model (Figure 10C). The variation ranges of potassium
conductance and sodium conductance for the MHH spiking

model are [0 8], [0 30] less than those [0 29], [0 37] in the HH
spiking model. The higher the voltage-clamp value, the larger the
variable values, the smaller the conductance variation range.

5. THE COMPARISON BETWEEN TWO
MODELS UNDER THE DIFFERENT
STIMULI

5.1. The Individual Current Pulse Stimulus
The forward stimulus Jext = 0.1mAcm−2 (the pulse width is 0.1
ms) is applied to the HH spiking model and the MHH spiking
model, the temperature is selected as 18.5◦C, and the response
time of the model is 5 ms. The initial value of the membrane
potential is the resting potential, Vrest =−65 mV.

Here, Jext is the external stimulus, JNa (JMNa) is the sodium
current (the coral color curve), JK (JMK) is the potassium current
(the blue curve), JL (JML) is the leaky current (the green curve),
and Jm (JM) is the total current (the purple curve) flowing
through the cell membrane in the HH (MHH) spiking model. V
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FIGURE 9 | The transition rate, gate variables, and time constant of the MHH spiking model. (A) The variation process of the transition α. (B) The variation process of

the transition rate β. (C) The variation process of gate variables. (D) The variation of the time constant τ .

(VM) is the action potential generated by the HH (MHH) spiking
model. gNa (gMNa) is the sodium conductance (the sodium
memductance), and gK (gMK) is the potassium conductance (the
potassium memductance) in the HH (MHH) spiking model.

The HH andMHH spikingmodels receive the external stimuli
and produce the corresponding current densities of the ion
channels. The sodium current is negative because the sodium
ions move from the outside to the inside of the cell. In contrast,
the potassium current is positive because the potassium ions
flow from intracellular to extracellular. The potassium and total
current densities (the peak values: JK = 0.82 mAcm−2, Jm=
−0.51 mAcm−2) generated by the HH spiking model are larger
than those (the peak values: JMK = 0.4 mAcm−2, JM = −0.53
mAcm−2) in the MHH spiking model. The sodium and leaky
current densities (the peak values: JNa=−0.7mAcm−2, JL= 0.024
mAcm−2) generated by the HH spiking model are smaller than
those (the peak values: JMNa=−0.6mAcm−2, JL= 0.026mAcm−2)
in the MHH spiking model. The sodium current of the MHH
model has a smooth perturbation at around t = 1.072 s, and the

sodium current of the HH model has an obvious perturbation
at around t = 1.279 s. The perturbation is caused by the rapid
variation of potassium conductance (potassium memductance).
The curves formed by the MHH model (the left side plot in
Figure 11B) are smoother than those in the HH model (the left
side plot in Figure 11A) because the memristor has a unique
time-varying property.

The HH spiking model and the MHH spiking model can
perform the action potential. Themembrane potential peak value
(VM = 38.33mV at 1.188ms) of theMHHmodel (themiddle plot
in Figure 11B) is stronger than that (Vm = 28.31 mV at 1.366 ms)
of the HH model (the central plot in Figure 11A). Meanwhile,
the MHH spiking model takes a short time to produce the action
potential. After generating the action potential, both models
return to the equilibrium state (the resting state,Vrest =−65mV).

The HH spiking model takes 1.354 ms to reach the maximum
value of gNa (23.53 mOhm−1cm−2) and needs 1.715 ms to get
the peak value of gK (12.45 mOhm−1cm−2; the right side plot
in Figure 11A). Therefore, the MHH spiking model takes 1.134
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FIGURE 10 | The distinct clamp voltages are applied to the HH spiking model and the MHH spiking model. (A) The HH model with Vclamp = 20 mV. (B) The MHH

model with Vclamp = 20 mV. (C) The HH model with Vclamp = 80 mV. (D) The MHH model with Vclamp = 80 mV.

ms to attain the maximum value of gMNa (20.81 mOhm−1cm−2)
and needs 1.673 ms to reach the peak value of gMK (5.196
mOhm−1cm−2) (the right side plot in Figure 11B). The rise
in sodium conductance (sodium memductance) is faster than
potassium conductance (potassium memductance). The MHH
spikingmodel utilizes less time than the HHmodel to activate the
change of the memductance; however, the obtained memductane
is small. Because the variation in the memductance is slight in a
short time (5 ms), it maintains a large memristance.

5.2. The Reverse Single Current Pulse
Stimulus
The reverse stimulus (Jext =−0.1mAcm−2, the pulse width is 0.1
ms) acts on the HH spiking model and the MHH spiking model,

the temperature is 18.5◦C, and the response time of the model
is 5 ms.

There are not enough ions to move from intracellular
(extracellular) to extracellular (intracellular); therefore, the
sodium current and the potassium current cannot be produced
(the left-side plots in Figures 11C,D). The significant variation of
the conductance causes the generation of potassium and sodium
currents. The sodium conductance (sodium memductance)
is close to zero (the right-side plots in Figures 11C,D).
The potassium conductance (potassium memductance)
decreases from 0.37 mOhm−1cm−2 (0.36 mOhm−1cm−2) to
0.17 mOhm−1cm−2 (0.14 mOhm−1cm−2) and then increases to
0.35 mOhm−1cm−2 (0.26 mOhm−1cm−2). The HH and MHH
spiking models are unable to generate the action potential,
and the membrane potentials become hyperpolarization
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FIGURE 11 | The single pulse and the reverse pules are applied to two models. (A) The single current pulse is injected into the HH spiking model. (B) The single

current pulse is injected into the MHH spiking model. (C) The reverse current pulse is injected into the HH spiking model. (D) The reverse current pulse is injected into

the MHH spiking model.

before returning to their resting states (the middle plots in
Figures 11C,D.

5.3. The Three External Stimuli With
Different Intensity
The external stimuli Jext1 = 0.5 mAcm−2, Jext2 =1 mAcm−2, and
Jext3 =2 mAcm−2 are injected into the HH spiking model and

the MHH spiking model, the temperature is 18.5◦C, the response
time is 5 ms.

When the small external stimulus (Jext1 = 0.5 mA.cm−2) is
applied to the HH spiking model, the action potential cannot
be produced. The membrane potential has a slight rise (Vm =
−60 mv) and then returns to the resting potential (−65 mv)
at 3 ms (the second plot in Figure 12A). The current density
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FIGURE 12 | The three different current pulses are applied to the HH and MHH spiking models. (A) The HH spiking model. (B) The MHH spiking model.

is zero (the first plot in Figure 12A). There is only a slight
change in the conductance, which can be ignored (the third plot
in Figure 12A). However, when the MHH spiking receives the
stimulus Jext1 = 0.5 mA.cm−2, the action potential is obtained
(the second plot in Figure 12B). The changes in current densities
and the memductance are noticeable. When the external stimuli
increase to Jext2 = 1 mA.cm−2 and Jext1 = 2 mA.cm−2, the
values in current density, membrane potential, and conductances
strengthen gradually (Figure 12).

The larger the external stimulus, the faster the action potential
is produced, the higher the peak value is generated, the more
significant change in conductances, and the greater the current
density. The smaller the external stimulus, the longer time it takes
to produce the action potential. The peak value of membrane
potential in the MHH model (the middle plot in Figure 12B)
is greater than that of the HH model (the middle plot in
Figure 12A). The maximum values of current densities and
conductances in theMHH spikingmodel (the first and third plots
in Figure 12B) are lower than those in the HH spikingmodel (the
first and third plots in Figure 12A).

5.4. A Series of Pulse Stimuli
When a series of pulses (Jext(n)= 1mAcm−2, n = 1,2,......,18,
the temperature is 18.5◦C.) act on the HH and MHH spiking
models, the action potentials are achieved. However, not
every single pulse can cause the generation of the action
potential (the first plots in Figures 13A,B). Only when the
action potential generated by the previous pulse has enough
time to return to its resting state, another action potential
will be generated. The MHH spiking model [six action
potentials (the second plot in Figure 13B)] generates more

action potentials than the HH spiking model (five action
potentials (the second plot in Figure 13A)). Meanwhile, the
action potential performs two oscillation behaviors in the MHH
spiking model (inside the blue ellipse in Figure 13B), and
the action potential shows three oscillation behaviors in the
HH spiking model (inside the blue ellipse in Figure 13A).
The memductances in the MHH model (the third plot
in Figure 13B) are smaller than those in the HH model
(the third plot in Figure 13A), which causes the current
density produced by the MHH model (the first plot in
Figure 13B) to be lower than the HH model (the first plot in
Figure 13A).

The action time of the external stimulus is extended to 100
ms, and two models can produce more action potentials than
Figures 13A,B. The MHH spiking model generates more action
potentials (the middle plot in Figure 13C) than the HH spiking
model (the middle plot in Figure 13D).

The action time is increased to 200 ms, the doublet
currents (Shigaki et al., 2020) are generated in the MHH
spiking model, one is large, the other is small (the enlarged
plot inside the left ellipse in Figure 13F). Meanwhile, the
action potential is produced before the current pulse comes
in the MHH model because the memristor has an initial
charge even though it is very small (the enlarged plot inside
the right ellipse in Figure 13F). The current intensity, the
voltage peak value, and conductances in the HH spiking
model (Figure 13E) are larger than the simulation results in
Figure 13F.

With the increasing of time length, the conductance (or
memductance) and the current density of sodium and potassium
increase dramatically. The more time we give, the more
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FIGURE 13 | The distinct action time of the external stimulus is set for the two models. (A) The HH spiking model with 20 ms action time. (B) The MHH spiking model

with 20 ms action time. (C) The HH spiking model with 100 ms action time. (D) The MHH spiking model with 100 ms action time. (E) The HH spiking model with 200

ms action time. (F) The MHH spiking model with 200 ms action time.

Frontiers in Neuroscience | www.frontiersin.org 15 September 2021 | Volume 15 | Article 730566167

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fang et al. Memristive Hodgkin-Huxley Spiking Neuron Model

FIGURE 14 | The time periods of the sinusoidal signal. Tin = 0.01 ms, Tin = 1 ms, Tin = 5 ms, Tin = 20 ms, Tin = 60 ms.

action potentials are generated, the larger the peak values of
current densities, conductances (or memductances), and action
potentials. However, the action time length should not be too
long; otherwise, the function of neurons cannot be replicated
effectively (Chen et al., 2019).

5.5. The Sinusoidal Current Stimulus
The sinusoidal stimulus [Jext = Jextm× sin(2 t/Tin), Jextm=0.01
mA.cm−2] is a positive-negative periodic signal with a single-
frequency component. Tin is the time period of input signals, and
the temperature is 18.5◦C.
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When Tin = 0.01 ms and Tin = 1 ms, the sinusoidal stimuli are
applied to the HH spiking model. The action potential cannot
be obtained because there is not enough time for the neuron
to depolarize. But the MHH model generates action potentials
under the same conditions. The frequency of the sinusoidal
stimulus affects the generation of the action potential. When the
frequency is low, there is sufficient time to depolarize, and the
action potential occurs (Figure 14). When Tin = 5 ms, the HH
and MHH spiking models produce the action potentials, their
spiking patterns belong to tonic spikes in pyramidal neurons.
When Tin = 20 ms, the MHH model generates the repetitive
bursts with doublet spikes, and the HH model performs the
tonic spiking. When the value of Tin is increased to 60 ms, the
action potential cannot be produced in the HH spiking model
but can be obtained in the MHH model. The frequency range
of the sinusoidal stimulus in the MHH spiking model is wider
than that of the HH spiking model. The various spiking patterns
can be obtained by appropriately adjusting the frequency of the
sinusoidal signal.

6. CONCLUSION

The biological neuron is expressed adequately by the classic HH
spiking model. It is sensitive to the temperature, the strength of
the external stimulus, and the action time of the stimulus. The
MHH spiking model successfully simulates the generation of the
action potential in a neuron. When the different external stimuli
are applied to the HH and MHH spiking models, the action
potential is produced, and various spiking patterns are achieved.
The MHH spiking model has advantages in generating the action
potential through the comparison with the HH spiking model.
The waveforms with smaller perturbations formed by the MHH

spiking model are smooth. The higher frequency of the external
stimulus, the more action potentials generated. The response
speed of the MHH spiking model is faster than that of the
HH spiking model. The various spiking behaviors are obtained
by adjusting the signal frequency in the MHH spiking model.
And meanwhile, the combination between neuron models and
a memristor provides the possibility to scale down the neuron
circuit and gives a novel way to replicate the functions of the
biological neuron.
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In neuromorphic computing, memristors (or “memory resistors”) have been primarily
studied as key elements in artificial synapse implementations, where the memristor
provides a variable weight with intrinsic long-term memory capabilities, based on its
modifiable resistive-switching characteristics. Here, we demonstrate an efficient
methodology for simulating resistive-switching of HfO2 memristors within Synopsys
TCAD Sentaurus—a well established, versatile framework for electronic device
simulation, visualization and modeling. Kinetic Monte Carlo is used to model the
temporal dynamics of filament formation and rupture wherein additional band-to-trap
electronic transitions are included to account for polaronic effects due to strong electron-
lattice coupling in HfO2. The conductive filament is modeled as oxygen vacancies which
behave as electron traps as opposed to ionized donors, consistent with recent
experimental data showing p-type conductivity in HfOx films having high oxygen
vacancy concentrations and ab-initio calculations showing the increased
thermodynamic stability of neutral and charged oxygen vacancies under conditions of
electron injection. Pulsed IV characteristics are obtained by inputting the dynamic state of
the system—which consists of oxygen ions, unoccupied oxygen vacancies, and occupied
oxygen vacancies at various positions—into Synopsis TCAD Sentaurus for quasi-static
simulations. This allows direct visualization of filament electrostatics as well as the
implementation of a nonlocal, trap-assisted-tunneling model to estimate current-
voltage characteristics during switching. The model utilizes effective masses and work
functions of the top and bottom electrodes as additional parameters influencing filament
dynamics. Together, this approach can be used to provide valuable device- and circuit-
level insight, such as forming voltage, resistance levels and success rates of programming
operations, as we demonstrate.
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1 INTRODUCTION

In recent years, memristor devices have shown great potential for
neuromorphic computing due to their resistive-switching
dynamics and electrical behavior resembling that of biological
synapses (Chua, 1971; Xia and Yang, 2019; Strukov et al., 2008).
Memristors are resistors with memory whose resistance level can
be controlled either through an applied voltage (i.e., flux-linkage)
or current (i.e., charge-fluence). Oxide memristors tend to be
voltage-controlled, having a metal-oxide-metal device structure
identical to a parallel-plate capacitor. Since the oxide thickness
tends to be thin (∼ 2–5 nm) (Pi et al., 2019) and the switching
speed can be very fast (<1 ns) (Choi et al., 2016), a small amount
of energy is required for programming resistance states. With
these unique features, in addition to non-volatility, they have
shown the great promise for building energy and area efficient
memristive crossbar arrays (1T1R arrays) to form neural
networks for a wide range of applications including robotics,
computer vision, and speech recognition (Yao et al., 2017; Li et al.,
2018b,a; Hu et al., 2016). A 1T1R crossbar array (Figure 1A)
offers added benefits due to the use of a transistor in each resistive
RAM (RRAM) memory cell. The transistor plays a major role in
mitigating the sneak current path and programming disturbance
associated with resistive (i.e., 1R) crossbar arrays (Manem et al.,
2012; Yao et al., 2015). Furthermore, the transistor’s gate terminal
in the 1T1R cell allows for better control over the current through
the memristive device. It also provides more resilience to the
switching voltage magnitude and attains better uniformity (Liu
et al., 2014).

Electroforming, a one-time forming or initialization process, is
often required in transition metal oxide (TMO) memristors
(Strukov et al., 2008), which have been widely used for
memristive crossbar arrays, including those used in
neuromorphic systems. However, for forming, the voltage
often needs to be higher than the nominal supply voltage of
modern CMOS processes, which causes significant design and
integration challenges (Amer et al., 2017b,a). Memristors with
high forming voltages require dedicated circuitry capable of
tolerating such high voltage levels for executing the in-field
forming. Furthermore, the area constraints associated with the
in-field forming circuitry undermines the density benefits of the
crossbars. In addition, such transistors are generally large
compared to the regular devices to accommodate these high
forming voltages (Figure 1B). For example, for a 65 nm
CMOS process (Beckmann et al., 2016; Amer et al., 2017a)
used to prepare 80 nm × 80 nm memristor areas, the
minimum length of the transistor used in the 1T1R cell could
be as much as 0.5 μm to endure forming voltages up to 3.3 V. In
contrast, the minimum length of the regular transistor used for
peripheral circuitry is 60 nmwith the nominal voltage 1.2 V or 1.0
V, depending on the process. Thus, researchers have focused on
lowering the forming voltages to a level of operation that allows
for better exploitation of memristive crossbar density (Govoreanu
et al., 2011; Koveshnikov et al., 2012; Huang et al., 2013a; Chen,
2013; Kim et al., 2016; Amer et al., 2017c).

The electroforming process, in addition to reset and set
operations, can be simulated from a condensed set of rate

equations that define all possible changes of state of the
system using Kinetic Monte Carlo (KMC). Rate equations
used to model filament dynamics are typically based on the
following physical transitions: oxygen ion (i.e., O2−) and
vacancy (i.e., V2+

O ) diffusion, and the generation and
recombination of Frenkel pairs {V2+

O , O2−}. These have been
implemented, successfully, by several authors for both 2D and
3D filaments with fitting capability to experimental data
(Sementa et al., 2017; Aldana et al., 2018, 2020; Loy et al.,
2020). The large difference in diffusion rates of oxygen ions
and oxygen vacancies tends to favor filament growth along
preexisting vacancy sites or positions in which the local
electric field is high (e.g., grain boundaries or point defects)
according to the thermochemical model of dielectric
breakdown (McPherson et al., 2003). As a consequence,
resulting filaments obtained from previous KMC approaches
consist of positively charged oxygen vacancies resulting from
the repetition of: 1) breaking Hf–O bonds and 2) the formation of
Frenkel pairs consisting of nearly stationary oxygen vacancies and
relatively diffuse, oxygen ions at interstitial sites. In other words,
forming/set operations are thus determined by the local electric
field—producing dendritic filament growth—whereas reset is
determined by the coincidence of oxygen ion diffusion and
recombination.

Despite growing evidence to the contrary, few modelling
approaches allow the charge state of the oxygen vacancy
(i.e., +2) to change during forming. In effect, oxygen vacancies
are modeled as fixed charges for the purpose of determining
filament evolution, yet as electron traps for the purpose of
calculating current, which is based on nonlocal multiple-
phonon trap-assisted tunneling in which trap occupancy
dynamics is fundamentally important. This inconsistency
greatly limits the utility of existing approaches to provide
increased physical insight into HfOx switching
behavior–beyond that which existing compact models already
provide (Bianchi et al. (2020); Yu and Wong (2010); Huang et al.
(2013b); Guan et al. (2012b); Jiang et al. (2014))–which can be
extended to device design, circuits and systems-level refinements
(e.g., reducing forming voltage). The assumption of a static
positive charge contradicts experimental evidence showing
p-type conductivity in highly defective HfOx films
(Hildebrandt et al., 2011)—suggesting that oxygen vacancies
are deep acceptor-like traps (>3 eV from the conduction band
edge). Moreover, ab-inito calculations have shown the
thermodynamic stability of neutral and negatively charged
vacancy states increases in conditions of electron injection
(i.e., current flow) due to electron capture (Bradley et al.,
2015). This is consistent with experimental work using in-situ
TEM electron holography and EELS in which oxygen-vacancy
filaments were observed, spatially, as regions of negative space-
charge (Li et al., 2017). Unlike previous KMC approaches,
together these observations are, in fact, self-consistent with the
physical assumptions used to model current flow in HfO2 based
memristive devices, in which, conduction occurs through a
nonlocal, trap-assisted tunneling process involving electron
capture and emission—appropriate for insulators having point
defects (e.g., TaOx, HfOx, ZrOx, NbOx).
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Here, using a simple 2D model, we show that, in addition to
the conventional set of rate equations (i.e., Frenkel pair
generation/recombination and diffusion) filament evolution
in HfOx can be modeled self-consistently as the result of band-
to-trap electron capture and emission processes between the
electrodes and oxygen vacancies (Figure 2). In this way, the
conductive filament consists of occupied oxygen vacancy
electron traps, which lower their energy upon electron
capture due to strong coupling between ionized defects and
the lattice in HfOx (Huang-Rhys factor, S � 17) as depicted in
Figure 2. The primary benefit in this approach is that
additional parameters associated with the electrodes (e.g.,
work function, effective mass) and those of the oxygen
vacancy states (e.g., trap energy level, capture cross-section,
thermal barrier and binding energy) are intimately linked to
resistive switching behavior, as we show. Not only do these
additional parameters provide more depth in terms of physical
insight and modeling capability, they are readily accessible
experimentally or through ab-initio estimates. Using TCAD
Sentaurus (Synopsys, 2019), we demonstrate that the common
forming, reset and set characteristics can be successfully
reproduced and visualized. In particular, we show that
certain regions within the filament have a negative
potential–stemming from a negative space charge due to
electron capture. This is consistent with recent experimental
work describing the filament as a negative potential synapse (Li
et al., 2017). Next, we couple our device model with a
phenomenological compact model to bring in physics-based
insights to the circuit-level simulation of a memristor-based

synapse topology. Finally, to underscore the unique strength of
our model, we investigate a device-circuit co-design strategy
powered by Monte-Carlo simulations with different levels of
initial oxygen vacancy volume faction.

2 METHODS

2.1 Material Specifications and Device
Geometry
A complete list of parameters used to specify the HfO2 layer are
provided in Table 1. Of these, the parameters related to hafnium-
oxygen bond energy and polarization were obtained from the
thermochemical model (McPherson et al., 2003), assuming a
100% monoclinic phase composition. This makes clear the
assumptions regarding crystalline phase of the HfO2 thin film
and the activation enthalpy required for breaking the hafnium-
oxygen bond–which differs due to differences in polarization and
the number of bonds required to be broken about the Hf central
atom. It should be noted that, in practice, a mixture of monoclinic
and tetragonal phases are present in varying ratios–the
monoclinic phase has a nominal breakdown field of
6.7 MV cm−1 whereas the tetragonal phase has a breakdown
field of 3.9 MV cm−1 (McPherson et al., 2003). Empirically, the
breakdown field is found to vary between 3 and 5 MV cm−1 (Sire
et al., 2007) for atomic layer deposition (ALD) grown HfO2 films
on TiN of comparable thickness used in this work.

As indicated in Figure 3A, the memristor is modeled as a two-
dimensional top-electrode (TE)/HfOx/bottom-electrode (BE)

FIGURE 1 | (A) A M × N crossbar array of one-transistor, one-memristor (1T1R) devices for neuromorphic applications. (B) Illustration of the size of transistors
needed for memristors having high and low forming voltages.
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FIGURE 2 | Depiction of electron capture and emission as band-to-trap and trap-to-band, respectively for a trap located below the Fermi level of the cathode (i.e.
ΔETF < 0). (A) The forming and set process is facilitated by electron capture and lattice relaxation. (B) The reset process is facilitated by electron emission and lattice
relaxation.

TABLE 1 | Summary of nominal materials parameters used in this work unless otherwise stated.

Parameter Description Value and unit

T Lattice Temperature 300 K
ϵr Relative permittivity 21
fph Attempt-to-escape frequency 10 THz
Ea,V2+

O
Activation energy for V2+

O diffusion 1.5 eV

Ea,O2− Activation energy for bulk O2− diffusion 0.7 eV
Ea,O2− Activation energy for interfacial O2− diffusion 0.375 eV
Ea,g,bulk Activation energy for Frenkel pair generation (bulk) 4.50 eV
Ea,g,pair Activation energy for Frenkel pair generation (pair) 2.97 eV
Ea,r,bulk Activation energy for Frenkel pair recombination (bulk) 0.2 eV
Ea,r,pair Activation energy for Frenkel pair recombination (pair) 0.83 eV
Ea,t Activation energy for V2+

O capture cross-section 0.1 eV
Ea,get. Activation energy for gettering of oxygen at TE/oxide interface 0.1 eV
σ0 capture cross-section for V2+

O 1 × 10−16 cm2

nbe electron concentration of bottom electrode 1 × 1023 cm−3

Δri Jump distance for V2+
O and O2− 3 Å

�p0 HfO2 molecular dipole moment 11 × 10−10 Cm
S Huang-Rhys factor 17
Zω0 Optical phonon energy 0.07 eV
Eg HfO2 Bandgap energy 5.9 eV
Et Trap level of V2+

O relative to conduction-band edge 3.0 eV
ΔEt Trap level reduction due to lattice relaxation 0.2 eV
χ HfO2 electron affinity 2 eV
x0 Initial volume-fraction of V2+

O defects 0.0002
Ni Concentration of oxygen vacancies and oxygen ions 1 × 1018 cm−3
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structure on a square grid. The HfOx thickness is 5 nm and the
device width is 40 nm. The Ti (TE) and TiN (BE) electrodes are
modeled as ideal, Ohmic contacts with a 0Ω series resistance. The
work function of the Ti and TiN layers were set to 4.33 and 4.5 eV
respectively. The electron effective masses of the Ti and TiN
layers were set to 3.2 and 2.0 respectively according to literature
(Lima et al., 2012). Following the lattice-gas model, a grid point
represents the smallest physical unit considered by this
simulation, capable of representing either an empty “site” (for
diffusion or the formation of a Frenkel pair), a positively charged
oxygen vacancy (V2+

O ), a negatively charged oxygen ion interstitial

(O2−) or a negatively charged oxygen vacancy (V2−
O ) which also

represents the conductive filament. Thus, field-independent
transitions (e.g. Frenkel pair recombination) occur over
nearest-neighbor distances whereas field-dependent transitions
(e.g. Frenkel pair generation, ion diffusion) interact over many
grid points through the screened Coulomb potential.

The initial state of the system can be defined by
randomizing the location of oxygen vacancies and oxygen
ions (needed to ensure charge-neutrality)–to represent an
amorphous film. Alternatively, since it is known that ALD-
deposited HfO2 thin films exhibit a columnar grain

TABLE 2 | Summary of transitions rates modelled using Kinetic Monte Carlo procedure and their parameters. Lattice coordinates are listed as relative positions to a given
lattice point at (i, j) following the convention of the lattice gas model (Jansen, 2012). * � site, O2− � oxygenion, V2+

O � positively charged oxygen vacancy (unoccupied),
V2−
O � negatively c harged oxygen vacancy (occupied)

Transition Reaction Parameters

Oxygen Vacancy Diffusion (0, 0), (±1, 0): V2+
O ∗ → ∗ V2+

O
fph ,Ea,V2+

O
,ΔrV2+

O

(0, 0), (0,±1): V2+
O ∗ → ∗ V2+

O

Oxygen Ion Diffusion (0, 0), (±1, 0): O2+
V ∗ → ∗ O2+

V
fph ,Ea,O2− ,ΔrO2−

(0, 0), (0,±1): O2+
V ∗ → ∗ O2+

V

Frenkel Pair Generation (0, 0), (±1, 0): ∗ ∗→ V2+
O O2− fph ,Ea,g ,

→p0 , ϵr
(0, 0), (0,±1): ∗ ∗→ V2+

O O2−

Frenkel Pair Recombination (0, 0), (±1, 0): V2+
O O2− → ∗ ∗ fph, Ea,r

(0, 0), (0,±1): V2+
O O2− → ∗ ∗

Electron Capture (0, 0): V2+ → V2− σ0 ,m∗
n,cath. , ncath. ,Et ,Ea,tΦcath.

Electron Emission (0, 0): V2− → V2+ σ0 ,m∗
n,cath. , ncath. ,Et ,Ea,tΦcath.

Oxygen Gettering at TE/Oxide (0, 0): O2− → * fph, Ea,get.

FIGURE 3 | (A) Illustration showing device geometry and description of the processes modeled using Kinetic Monte Carlo. (B) Example voltage waveform used to
perform forming, reset, and set operations in sequence using a stepped voltage ramp with a KMC simulation time of 100 ns. The resulting state of the system at the end
of each voltage increment is used as input to Synopsys TCAD Sentaurus.
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morphology (≈8 nm grain size (Ho et al., 2003)), oxygen
vacancies can be placed along grain boundaries due to the
reduced formation energy–to represent a polycrystalline film.
The initial concentration of vacancies is determined by a
variable volume fraction parameter which we nominally set
to 0.0002 (i.e., 0.02 at. %). Our focus here is to demonstrate the
key differences and advantages of our physical model
incorporating additional electronic transitions to the
constitutive rate equations describing filament dynamics
and its implementation in TCAD Sentaurus.

2.2 Filament Evolution Under Voltage Stress
Filament evolution during forming, set and reset operations are
described using a simple set of rate equations corresponding to
the following physical processes, as outlined in Table 2:

• Electron capture or emission by oxygen vacancies
• Oxygen vacancy and ion diffusion
• Frenkel pair generation and recombination (isolated bulk
and nearest neighbor pairs)

• Oxygen gettering by Ti

These processes are implemented via a classical KMC
selection algorithm applied to a chosen initial state of the
system (top electrode, bottom electrode, oxygen ion, oxygen
vacancy and filament), and updated in time according to
Poisson statistics and the time scale of each selected
mechanism. The details of the dynamical monte carlo
algorithm and the meaning of simulation time (Fichthorn
and Weinberg, 1991), and its application to the formation
of 2D/3D conductive filaments (metallic and oxygen vacancy)
has been discussed elsewhere (Sementa et al., 2017; Aldana
et al., 2018, 2020; Loy et al., 2020). Here, we provide a minimal
outline of the essential aspects, assumptions and parameters of
the rate equations we’ve implemented. In particular, we
highlight the physical assumptions that establish
consistency between phenomenological models of filament
evolution and models of electric conduction—needed for
efficient and accurate device-circuit co-design.

2.2.1 Filament Changes Mediated by Electron
Capture/Emission
We model filament precipitation (dissolution) as the net result of
Frenkel pair generation (recombination) and electron capture
(emission) by oxygen vacancy electron traps. For simplicity, we
couple oxygen vacancy traps to the conduction band in the
bottom-electrode, which permits straightforward evaluation of
rate equations within the electron trap picture. Conventionally,
capture and emission rates are defined in terms of a thermally
activated capture-cross section, a tunneling coefficient, and a
field-dependent trap barrier that depends on the relative energy
difference between the trap level and the Fermi level of the bottom
electrode. In other words, the forming, set and reset operations
are described as band-to-trap (or trap-to-band) electronic
transitions within the Wentzel-Kramers-Brillouin (WKB)
approximation Eqs 1–3.

Rc ≈ σ0vthnbe exp −yt

y0
( ) exp −Ea,t

kBT
( )

exp −Etf − qEyyt

kBT
( ) Etf > 0

exp
qEyyt

kBT
( ) Etf < 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1)

Re ≈ σ0vthnbe exp −yt

y0
( ) exp −Ea,t

kBT
( )

exp −qEyyt

kBT
( ) Etf > 0

exp −−Etf + qEyyt

kBT
( ) Etf < 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(2)

Etf ≡ Et − Ef,be (3)

These expressions are derived in the Supplementary
Material. Here, yt represents the y-coordinate of the trap
relative to the electrode, y0 is a parameter related to the
wavefunction overlap between the electronic state in the trap
and in the electrode. Within the WKB approximation, after
applying the triangular barrier approximation for the bands we
have the following:

y0 � 2∫tox

0

��������
2m∗qEyy

√
Z

dy( )
−1

≈
3qZEy

4
����
2m∗√

Φbe − χox( )3/2 (4)

The quantity Φbe − χox represents the conduction band offset
between the bottom electrode and the oxide, in terms of the work
function of the bottom electrode Φbe and the electron affinity of
the oxide χox.

In Eqs 1–3, it is assumed that the electric field has a symmetric
influence on transition rates, that is, the barrier lowering in the forward
direction is equal and opposite that of the reverse in order to maintain
steady-state equilibrium. The case statements in Eqs 1, 2 exist since the
trapmay be higher (i.e.,Etf> 0) or lower (Etf< 0) than the Fermi level in
the bottom electrode. Parameters which depend on the bottom
electrode are the electron concentration, nbe and the effective-mass,
m*

n,be, which enters through the thermal velocity (Eq. 5):

vth �
����
3kbT
m∗

n,be

√
(5)

We note that the time scale of electron capture and emission
depends on the product of the carrier concentration in the
electrodes, the thermal velocity and the capture cross section
of oxygen vacancies as shown in Eqs 1–3 through a common
exponential prefactor. Using values listed in Table 1, the ratio of
the exponential prefactors for electronic (σ0nBEvth) and atomic
processes (fph) is evaluated to be 8.25, so electronic processes are
expected to occur much faster than atomic ones. However, the
rate of electronic transitions also depends on the local electric
field and the position of the trap relative to the electrode and so
the above estimate only reflects those traps that are close to the
bottom electrode. Therefore, the relative rates of electronic and
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atomic processes are expected to differ (generally reducing) as
one moves from the BE to the TE under forming/set and from the
TE to the BE under reset due to the change in voltage polarity.

The initial system consists of the electrodes and an initial
concentration of positively charged, unoccupied oxygen
vacancies. It should be noted that, although we have assumed
a +2 charge state, the +2 oxygen vacancy is unstable in the
presence of interstitial oxygen and/or conditions of electron
injection. This is supported by ab-initio calculations suggesting
that Frenkel pairs stabilize through the formation of neutral and/
or negatively charged oxygen vacancies—facilitated by electron
capture (Bradley et al., 2015). Experimentally, this is supported by
the observation of p-type conductivity in highly defective HfOx

films, suggesting that oxygen vacancies interact and stabilize as
deep acceptors (Hildebrandt et al., 2011) as opposed to shallow
donors. Thus, the formation of conductive oxygen vacancy
filaments can be regarded as thermodynamically driven by the
increase in binding energy due to electron capture of single
vacancies and expected to subsequently stabilize due to defect
aggregation (i.e. filament growth). We account for these effects by
lowering the energy level of an oxygen vacancy, Et upon electron
capture, by an amount equal to the increase in binding energy of
neutral and negatively charged vacancies (≈0.2–0.9 eV) as
predicted by ab-initio calculations (Bradley et al., 2015;
Sementa et al., 2017). In general, this is a lattice relaxation
process involving the emission/absorption of multiple phonons
as described by several authors (Englman and Jortner, 1970;
Henry and Lang, 1977; Nasyrov et al., 2004; Nasyrov and
Gritsenko, 2011). Here, for simplicity, we assume the lattice
relaxation coincides with electron capture (or emission). The
assumed electron capture and emission processes are illustrated
in Figure 2.

The significance of this model of filament growth is that it is
more consistent with the nonlocal trap-assisted tunneling
processes associated with electron conduction, which we later
implement in TCAD Sentaurus to calculate the current-voltage
characteristics as a more rigorous extension of these assumptions.

2.2.2 Oxygen Ion and Vacancy Diffusion
The rate of diffusion of oxygen ion and oxygen vacancy species is
described as an Arrhenius Eq. 6. Here, the important parameters
are the thermal barrier, ionic charge, and jump distance for each
diffusing species.

Rd,i � fph exp − Ea,i − qi �E · Δri
kBT

( ); i � {O2−, V2+
O } (6)

2.2.3 Frenkel Pair Generation
Oxygen vacancy formation is achieved through the production of
Frenkel pairs, requiring the breaking of metal-oxygen bonds. A
thermochemical description of dielectric breakdown exists
(McPherson et al., 2003), in which the activation energy for
breakdown is lowered by the local electric field projection along a
polarizable bond axis. This expression is common in describing
dielectric breakdown in thin insulators and is common in oxide-
reliability studies Eq. 7.

Rg � fph exp
−Ea,g − �E · p0

�→ 2+ϵr
3( )

kBT
⎛⎝ ⎞⎠ (7)

Within this model, breakdown is expected to begin at an
electric field that lowers the effective thermal barrier to zero.

| �Ebd| � Ea,g

|→p0 |
2 + ϵr
3

( ) (8)

The value of Ea,g determines the minimum voltage needed for
forming, and is therefore an important consideration for the
design of memristor circuits, as previously discussed. Using
typical values for HfO2 (p0 � 11 × 10−10 Cm, Ea,g � 4.5 eV, ϵr
� 21), the breakdown field |Ebd| � 5.3 MV cm−1. This value
corresponds to a nominal forming voltage roughly equal to half
the HfO2 thickness when measured in nanometers (i.e., Vform ≈
2.5 V for a 5 nm film). Empirically, Ea,g is found to reduce with
increased volume fraction of oxygen vacancies, as is commonly
observed in highly defective HfOx films, providing an empirical
means for reducing forming voltage through the controlled
introduction of defects. For example, choice of precursor
(Hazra et al., 2019) and reaction time (Hazra et al., 2020) for
the atomic-layer deposition of HfOx films have a profound
influence on forming voltage and pre-forming high-resistance
levels. Furthermore, recent work have incorporated a model
having a large (68%) reduction in the activation energy of
forming oxygen vacancies at the Ti/HfO2 interface as opposed
to the bulk (Xu et al., 2020). This may be anticipated, since the net
energy cost of breaking Hf-O bonds is lowered by the large driving
force of oxidation (gettering) in the Ti (Stout and Gibbons, 1955).
These factors imply that Ea,g is a spatially-dependent parameter,
essential to filament formation dynamics. According to ab-initio
work, which also includes the effect of electron injection, we
assume a 36% reduction in the activation barrier to Frenkel pair
generation in the vicinity of existing nearest-neighbor Frenkel
defect pairs (Bradley et al., 2015). Phenomenologically speaking,
this accounts for the accelerating effect that point defects have on
dielectric breakdown, as is well-known from oxide reliability
studies. Additionally, this attempts to account for the
formation of stable clusters of oxygen vacancies in regions
where the binding energy is high and may be a potential
source of retention failure in addition to existing theories based
on oxygen diffusion (Raghavan et al., 2015; Kumar et al., 2017).

2.2.4 Frenkel Pair Recombination
As previously discussed, upon formation, charged Frenkel pairs
in HfO2 are unstable, requiring additional electrons from the
conduction band to neutralize the oxygen vacancy and prevent
rapid recombination. It is therefore expected that the thermal
barrier to recombination is small relative to other processes,
producing a rapid recombination rate, which we model using
a simple field-independent Arrhenius Eq. 9. We use a value of
0.2 eV, according to previous work (Larcher et al., 2012), though
this value becomes most relevant during reset operations, when
the recombination rate of Frenkel pairs and electron emission
(filament precipitation) becomes comparable for deep level
vacancy states.
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Rr � fph exp − Ea

kBT
( ) (9)

2.3 Synopsys TCAD Sentaurus Modeling of
Electric Current
2.3.1 Simulation Domain and Defect Modeling
Device geometry is defined in Synopsys TCAD Sentaurus with
mesh refined using a maximum element size of 1 Å.
Concentration profiles for each species (i.e., oxygen ions,
unoccupied/occupied vacancies) were defined as point
defects having Gaussian shape with decay length of 3 Å,
corresponding to the minimum ion jump distance and grid
spacing in our KMC model. Positions for each species were
obtained from the output of the KMC simulation at each
voltage step. Oxygen ions are modeled as negative fixed
charges, with concentration as a parameter chosen to
compensate the charge density of oxygen vacancies.
Unoccupied oxygen vacancies are modeled as donors
located 3 eV below the conduction band edge. Occupied
oxygen vacancies are modeled as acceptors located
0.2–0.9 eV below the donor level, depending on the binding
energy parameter (ΔEt). As mentioned previously, the energy
level difference between unoccupied/occupied oxygen
vacancies reflects the increase in binding energy upon
electron capture due to the large lattice coupling of ionized
vacancies in HfOx. To model effects due to disorder, the energy
levels of oxygen vacancies were defined having Gaussian
energy broadening (σ � 0.33 eV) consistent with similar
approaches (Jiménez-Molinos et al., 2002).

2.3.2 Electric Current
Electric current was calculated using an electron barrier-
tunneling model that couples each trap to the conduction
band of the top and bottom electrodes through nonlocal,
multiphonon-assisted inelastic and elastic transitions. Steady-
state conditions were assumed. The rate of inelastic electron
capture is described in terms of a maximum transition rate
multiplied by the WKB tunneling probability Ti,j � |Ψ(yi)

Ψ(yj)|2 and

the phonon transition probability Mi,j � (S−l)2
S e−S(2fB+1)+ lZω0

2kT Il(z)

for a transition between two states denoted i and j located at yi
and yj.

cni,j � τ−10 Ti,jMi,j (10)

Sentaurus uses the asymptotic (large order) approximation to
the conventional expression for Il(z), the modified Bessel function
of order l contained withinMi,j, and is therefore appropriate when
the number of phonons emitted during a transition is large
(Schenk and Heiser, 1997). Under this approximation, the
capture rate for an electron in the conduction band of an
electrode at y � 0 to a trap located at yt can be written as:

cn � τ−10
Ψ(yt)
Ψ(0)
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
2(S − l)2

S

1���
2π

√ 1�
χ

√ z

l + χ
( )

l

F1/2
EF − EC(0)

kT
( ) e

−S 2fB+1( )+ lZω0

2kT
+ χ( )

(11)

τ−10 ≡

����������
m*

n,bem
3
0k

3T3
√

Z3 �
χ

√ gcVTSω0
(12)

χ ≡
������
l2 + z2

√
(13)

z ≡ 2S
���������
fb fb + 1( )√

(14)

fb � 1

exp
Zω0

kT
( ) − 1

(15)

l ≡
|EC(0) − ET|

Zω0
(16)

The emission rate is then computed from the capture rate
using the principle of detailed balance.

en � cn exp −EC(0) − ET

kT
( ) (17)

Parameters for the model were defined as follows. The Huang-
Rhys factor, S, was set to 17, the phonon energy to 0.07 eV, and
the electron effective mass of HfOx was set to the band mass 0.1
according to similar reports (Guan et al., 2012a). Nonlocal
tunneling paths were considered, extending outwards from
each electrode towards the opposite electrode along the oxide
thickness. Electrodes were treated as Ohmic, with a variable work
function with nominal values defined to mimic realistic device
structures having a Titanium top-electrode (ΨTE � 4.33 eV,
m*

n,te � 3.2) and titanium nitride bottom-electrode (ΨBE �
4.55 eV, m*

n,be � 2.0) (Lima et al., 2012). Trap volumes were
estimated according to the effective mass of electrons in HfOx

and trap level relative to the conduction band edge (Palma et al.,
1997; Jiménez-Molinos et al., 2002).

VT �
����
4π/3

√
Z����������������

2m*
n,ox|EC(0) − ET|

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
3

(18)

2.4 HSPICE Transient Simulations
To better utilize the insights provided by the device model, we
couple the KMC + TCAD framework with a phenomenological
compact model (Verilog-A) (Amer et al., 2017c) for the
memristor to facilitate circuit-level simulations (in HSPICE).
This compact model assumes a piecewise linear current-
voltage (I-V) behavior in pre-forming and post-forming states
of the memristor. The compact model considers the resistance
behavior of the memristor (during the forming process) as
follows:

RM � RPre−forming VM <Vforming

RPost−forming VM >Vforming
{ (19)

Here, VM and RM are the voltage and resistance of the memristor
(respectively). Clearly, forming voltage (Vforming), pre-forming
(RPre−forming) and post-forming (RPost−forming) resistance levels are
the three necessary parameters for the forming operation of the
memristor. This piecewise linear compact model considers ohmic
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current-voltage relation before and after forming. We extract the
parameters for this compact model using extensive analysis
powered by the KMC + TCAD framework. We simulate the
DC I-V characteristics for 25 device instances with an idealized
ramp voltage across the memristor and formulate distributions of
device resistance and forming voltage.

We simulate the forming operation for a memristor-based
synapse circuit (shown in Figure 4A) in HSPICE to obtain the
time dynamics of the voltage across the memristor. This synapse
circuit can control all the operations of a memristor such as
forming, set, reset and read. In this work, we only utilize the
forming portion of the circuit. Therefore, the connections
corresponding to other three operations are greyed out. Here,
Mp1 transistor controls the forming of the memristor and Mn1

transistor is used to set the compliance current limit during the
forming process.

To simulate the forming process in HSPICE, we calibrate the
compact model with the relevant parameters (forming voltage, pre-
forming HRS, and post-forming LRS), extracted from the KMC +
TCAD simulations. Note, the ideal approach to calibrate the
compact model would be to use iterations between the circuit
level simulations and KMC + TCAD simulations. The approach

would include running the KMC + TCAD simulations with the
results from the circuit level simulation and then again simulating
the circuit with the KMC + TCAD results. But, this would require a
compact model that could capture the non-linear behavior observed
in the KMC + TCAD simulations. Here, to calibrate the model for
circuit simulations, we choose the mean values of the pre-forming
HRS (1.2MΩ), and post-forming LRS (1.3 kΩ) to set up the
compact model. As for the forming voltage, we choose the
maximum value of the corresponding distribution (2.4 V), to
capture the worst-case scenario. For the transistors, we use the
DGXFET NMOS/PMOS models for the IBM 65 nm 10LPe process.

Figures 4B–D illustrate the simulated transient characteristics
of the synapse circuit (only the forming process), bearing the
signature of the circuit-level interactions of the memristor. We
govern the forming process with appropriately designed control
signals ( �Forming and Set). We first turn on theMn1 transistor by
applying an appropriate gate voltage (Set). Then, we turn on the
Mp1 transistor to control the forming of the memristor. The
voltage across the memristor (VM) gradually increases when the
forming operation begins (Figure 4C). The memristor takes the
prime share of the supply voltage (VDD) when the two series
transistors (Mp1 andMn1) turn ON. Subsequently, after successful

FIGURE 4 | (A) Schematic of the memristor-based synapse circuit that can control forming, set, reset and read operations in a memristor device. In this work, the
set, reset and readout portions of the circuit are greyed out (unused). (B) Time dynamics of the input signals ( �Forming and Set) to control the forming process. Time
dynamics of (C) memristor voltage (VM), and (D) memristor current (IM) for the applied input signals.
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forming, the resistance of the memristor drastically reduces and
so does the voltage across it. This circuit topology serves as the
baseline for the Monte-Carlo simulations (discussed later).

3 RESULTS

3.1 Filament Formation Dynamics
Figure 5 shows the filament formation dynamics for a single
device simulation at a constant voltage of 3 V applied to the top

electrode and 0 V applied to the bottom electrode. For this
simulation, the initial defect volume fraction was chosen to
correspond with 1 oxygen vacancy within the simulation
domain. New defects tend to form in the vicinity of pre-
existing defects due to: 1) a lower formation energy in the
presence of pre-existing Frenkel pairs; and 2) a higher electric
field in the vicinity of a charged filament. As time progresses,
filament growth proceeds towards the top electrode, where the
electric field is highest. Once the electrodes have bridged,
additional filament growth occurs along the width of the top
electrode. This occurs due to: 1) a higher lateral electric field, 2)
the effect of oxygen gettering by the Ti top electrode, which
readily removes oxygen ion interstitials, and 3) screening of the
electric field seen by points closer to the bottom electrode by
charged vacancies near the top electrode.

Since bond breaking is modeled as a statistical process, it is
necessary to evaluate the behavior of more than one device. Thus,
we further investigate forming dynamics by assessing the
statistical distribution of forming times for repeated device
simulations. Here, we focus on the forming time–the time
required to form, which we estimate by halting the simulation
once a predefined number of filament states are formed. We use a
volume fraction of 0.1, which should correspond to a
concentration of the order of ≈1 × 1021 cm−3. This is
comparable to what has been observed experimentally in
HfOx films having high oxygen vacancy concentrations
(Hildebrandt et al., 2011), reported as high as 6 × 1021 cm−3.

We note that since the forming process is modeled using the
thermochemical model of dielectric breakdown, the forming time
is synonymous with the time-dependent-dielectric-breakdown
(TDDB), and is therefore an experimental observable which is
straightforward to measure and, most importantly, can be used to
validate kinetic monte carlo simulation models. Previous authors
have compared the effect of top and bottom electrodes on the

FIGURE 5 | An example of filament formation dynamics with the top
electrode at 3 V and the bottom electrode at 0 V. The red squares are the
filament, the green circles are oxygen ions and the blue circles are unoccupied
oxygen vacancies.

FIGURE 6 | Comparison of forming time distributions obtained from our
simulations and experimental work (Lorenzi et al., 2013) for a TiN/HfO2/Pt
device at an electric field of 5 MV cm−1 and 6 MV cm−1.
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forming time for nearly stoichiometric 10 nm thick HfO2 thin
films deposited by atomic layer deposition (Lorenzi et al., 2013;
Cagli et al., 2011). Figure 6 shows a Weibull distribution of
forming times obtained from our simulation and those of Lorenzi
et al., 2013 for a TiN/HfO2/Pt device at an electric field of
5 MV cm−1 and 6 MV cm−1. Simulation results at both values
of electric field show reasonable quantitative agreement to
experiment. At the lower electric field of 5 MV cm−1, there
appears to be a deviation from a Weibull distribution,
however the forming times are similar in magnitude. These
results illustrate the similarity between forming time and
TDDB, and provide a potential route towards empirical
validation of simulation models—from which the activation
energy of Frenkel pair generation, Ea,g and the field-
acceleration factor, c can be derived (McPherson and Mogul,
1998).

ln(TDDB)∝ Ea,g

kBT
− cE (20)

This is especially important to establish agreement to
experimental results, since HfOx films can exhibit mixed
crystalline phases and variable oxygen content depending on
deposition conditions—both of which are expected to modify Ea,g
and c.

3.2 Current-Voltage Characteristics
Figure 7 shows the complete current-voltage (IV) characteristics
for a forming, reset and set programming cycle. In order to obtain
IV characteristics, snapshots of the state of the system are taken at
the end of each voltage step shown in Figure 3B. In this case, the
time step is 1 µs and the voltage step is 0.1 V. In Figure 7A,
intermediate filament states are shown at different stages of
programming. It can be seen that, at forming, a large volume

fraction of the device consists of oxygen vacancy filament with a
structure that extends laterally near the top electrode. The spatial
extent of the filament (i.e., volume fraction of vacancies) will
ultimately be controlled by the flux linkage (forming voltage ×
time), which is set by the compliance current in practice.

Several of the well-known aspects of oxide memristors are
captured by this simulated result shown in Figure 7B: 1) the high-
resistance initial state of the as-prepared thin-film; 2) A low
resistance state after forming; 3) A gradual reset behavior with
programmable analog high-resistance levels; and 4) A low-
resistance state following set of the order of kilo-Ohms. The
ability to quantify and visualize the increase in current upon set
(potentiation) and the decrease in current upon reset (depression)
is a key benefit of Figure 7B incorporating TCAD Sentaurus for
modeling synaptic behavior.

3.3 Filament Electrostatics
Figure 8 shows key aspects of the filament electrostatics. In
Figure 8A, the electrostatic potential and x and y components
of the electric field throughout the device are shown. In regions
where the filament bridges the top and bottom electrode, the
voltage drop across this region is large enough such that the
filament region has a net negative potential near the bottom
electrode. This agrees well with experimental results which relied
on in-situ TEM electron holography measurements (Li et al.,
2017), in which they described the filament as a “negative
potential synapse.” Our results show that this stems directly
from the negative space-charge associated with the filament,
assumed to be due to electron capture (V2+

O →V2−
O ), and

supported by both experimental and theoretical insights. We
show this explicitly, by comparing two different line
plots—outside the filament and within the filament—in
Figures 8B,C. A dashed line at a potential of zero is added as

FIGURE 7 | (A) Filament positions corresponding to different points along the programming sequence (forming, reset, set). (B) Pulsed IV characteristics for the
complete programming sequence.
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a visual aid, clearly indicating a negative potential within the
filament. This is also reflected in the energy band diagram in
Figure 8C, which shows a negative curvature as expected for a
negative space charge.

3.4 Monte Carlo Analysis of Synapse
Forming Circuit
Finally, we use the unique capability of the KMC + TCAD model
to investigate a device-circuit co-design strategy. We test
memristor characteristics for different levels of initial oxygen
vacancy volume faction (x), a design variable that can be easily
controlled during the fabrication process. Figure 9A shows the
pre-forming HRS for different values of x for 25 devices (each)
obtained from the KMC + TCAD simulations. Considering the
circuit-level scenario of a synapse, the variations in the
characteristics of multiple transistors need to be superposed
with the inherent device-level variations of the memristor. To
account for all these variations concurrently, we run 1000-point
(3σ) Monte-Carlo simulations for the forming circuit using the
data obtained from the KMC + TCAD framework. We utilize the
dependence of the pre-forming HRS on the initial oxygen vacancy
volume faction and the threshold voltage variation of the PMOS
and NMOS transistors to set the input distributions for the
Monte-Carlo simulations. Figure 9A shows the pre-forming
HRS for different values of x for 25 devices (each) obtained
from the KMC + TCAD simulations. Without any loss of
generality, we run the Monte-Carlo simulation for two values

of x (0.02 and 0.04%). To incorporate the threshold voltage
variation of the transistors, we use a gaussian distribution with
a mean value equal to the nominal threshold voltage (0.65 V for
65 nm DGXFET transistors) and standard deviation of 20 mV
(shown in the table of Figure 9B). We also run the Monte-Carlo
simulations with different levels of current compliance,
controlled by applying appropriate gate voltage (Set) to Mn1.

Figures 9C,D show the scatter plots for the average current
through the memristor and average power of the forming circuit,
respectively. Each of these metrics have been reported for
different levels of compliance currents (different levels of Set).
To ensure a fair comparison, we allow a constant time for the
forming process for all cases. Naturally, we observe that for lower
compliance limits, many instances of the Monte-Carlo
simulations exhibit “unsuccessful” forming. Note, a
compliance limit may lead to a different level of post-forming
LRS and hence might be treated as successful, if the post-forming
LRS is known during the design stage. However, if such changes
in the post-forming LRS occurs dynamically and randomly, those
will lead to read/sense failure. Therefore, we simplify our analysis
by tagging such cases as ‘Forming Failure’. Higher compliance
limit allows most memristor instances to successfully form and
hence leads to a larger average current level (Figure 9C). If the
memristor can successfully form, it goes to post-forming LRS
(1.3kω in our simulation). Otherwise, it remains in the pre-
forming HRS which is much larger compared to LRS.
Therefore, the increase in the value of Set increases the
average current of the memristor due to the increase in the

FIGURE 8 | (A) Filament electrostatics after forming, including the electrostatic potential, and electric field components. (B) Comparison of electrostatic potential
inside and outside of a filament region as indicated in the red lines in (A). The filament region shows a region of negative potential and can be likened to a “negative
potential synapse.” (C)Comparison of the energy band diagram inside and outside of the filament. Within the filament, a negative curvature indicates that the filament is a
negative space-charge region.
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number of formed memristors. Since, the average power of the
forming circuit is very closely related to the memristor current,
the average forming power shows the same trend like the average
memristor current (Figure 9D). The initial oxygen vacancy
volume factions lead to similar results, with different levels of
mean value and standard deviation for the memristor current and
forming power (Figures 9C,D). Figure 9A shows that the pre-
forming HRS for x � 0.02% has a larger standard deviation
compared to that for x � 0.04%. Therefore, the memristor current
and forming power obtained from the Monte-Carlo simulation

show larger standard deviation for x � 0.02% compared to the
case of x � 0.04%. But only for Set � 1.5 V, the smallest value of
pre-forming HRS of the memristors that cannot form becomes
comparable to the value of the post-forming LRS. Therefore, the
effect of x on the standard deviation of the memristor current and
forming power gets suppressed. Figures 9E,F show the histogram
plot for Monte-Carlo results of memristor current and forming
power shown in the scatter plots (Figures 9C,D).

Based on these Monte-Carlo simulations, we correlate the
compliance limits (controlled by the Set pulse) with the pre-

FIGURE 9 | (A) Dependence of pre-forming HRS on the initial oxygen vacancy volume fraction (x). These results are obtained from KMC-TCAD simulation for 25
devices. (B) Table shows the values of mean and standard deviation of the threshold voltage distribution ofMp1 andMn1 transistors used for the Monte-Carlo simulation.
Scatter plot of the (C) memristor current, and (D) average power consumption of the forming circuit obtained from the 1,000 point Monte-Carlo simulation for three
different values of Set (1 V, 1.2 and 1.5 V) and the pre-forming HRS values for two different values of x (0.02 and 0.04%). Histogram plot of the (E) memristor
current, and (F) average power consumption of the forming circuit for the data shown in the scatter plots of (C) and (D) respectively. Dependence of forming success and
failure on the values of Set for the pre-forming HRS values obtained for (g) x � 0.02%, and (h) x � 0.04%.
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forming HRS (RPre−forming) level of the memristor. Figure 9G
illustrates the combinations of Set and RPre−forming that lead to
successful forming (and vice versa). Clearly, for a given
compliance limit, the pre-forming HRS level of a memristor
needs to be higher than a critical threshold (Rform−TH),
illustrated (in Figure 9G) as a line separating the successful
and unsuccessful forming cases. Figure 9H shows similar
trends for a different initial oxygen vacancy volume faction.
Our analysis shows a pathway to optimize the synapse circuit
by correlating the material and circuit-level design knobs.

4 CONCLUSION

The ability to design and implement fast, scalable and robust
neuromorphic systems relies heavily upon our fundamental
understanding of memristor switching. Oxide memristors,
envisioned for RRAM-based neuromorphic systems, exhibit
changes in resistance state through multiple synergistic effects
involving electronic and atomic degrees of freedom, often
modelled as separate influences. One of the main purposes of
this work was to establish a more direct connection between the
two in order to: 1) provide a unified view of filament evolution
and electronic conduction; 2) to implement this description
within a state-of-the-art TCAD framework for modeling
electric conduction; and 3) gain circuit-level insight.

Here, we have argued the use of a simple model of filament
evolution that makes explicit use of Fermi-Dirac statistics,
coupling the rate of defect generation and recombination to
electronic transitions associated with conduction and lattice
relaxation. By combining Synopsys TCAD Sentaurus with
Kinetic Monte Carlo simulations of filament evolution, we
have shown the ability to quantify both the common and subtle
aspects of resistive-switching behavior of HfOx memristors.
Quasi-static snapshots of the device state—consisting of
positive/negative oxygen vacancies, and oxygen ions—were
taken at various voltages to obtain IV characteristics under
stepped voltage ramp conditions. Electric conduction in
oxygen vacancy filaments is modeled as trap-to-band
transitions between occupied and unoccupied electronic
states assisted by multiphonon absorption and emission.
According to Fermi-Dirac statistics, such processes are
expected to occur within a band of energies in the vicinity
of the Fermi level wherein both occupied and unoccupied
states are probable. Thus, the occupancy of a trap and its
relation to the Fermi level is fundamentally related to
transition rates associated with electronic conduction. The
use of TCAD Sentaurus provides a powerful framework for
modeling these and other conduction processes as well as
visualizing filament electrostatics, as we’ve shown. In
particular, we have obtained results that are consistent with
experimental observations of a negative space charge and

potential associated with a vacancy-rich filament. Our
approach will enable the more efficient evaluation of
memristor device behavior and circuit performance,
stemming from physics-based modeling, having a direct
impact and benefit on the fields of neuromorphic
computing, memory design and dynamical systems.
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TReMo+: Modeling Ternary and Binary
ReRAM-Based Memories With
Flexible Write-Verification
Mechanisms
Shima Hosseinzadeh*, Mehrdad Biglari and Dietmar Fey

Department Computer Science, Chair of Computer Architecture, Friedrich-Alexander-Universitat Erlangen-Nürnberg (FAU),
Erlangen, Germany

Non-volatile memory (NVM) technologies offer a number of advantages over conventional
memory technologies such as SRAM and DRAM. These include a smaller area
requirement, a lower energy requirement for reading and partly for writing, too, and, of
course, the non-volatility and especially the qualitative advantage of multi-bit capability. It is
expected that memristors based on resistive random access memories (ReRAMs), phase-
change memories, or spin-transfer torque random access memories will replace
conventional memory technologies in certain areas or complement them in hybrid
solutions. To support the design of systems that use NVMs, there is still research to
be done on the modeling side of NVMs. In this paper, we focus on multi-bit ternary
memories in particular. Ternary NVMs allow the implementation of extremely memory-
efficient ternary weights in neural networks, which have sufficiently high accuracy in
interference, or they are part of carry-free fast ternary adders. Furthermore, we lay a
focus on the technology side of memristive ReRAMs. In this paper, a novel memory model
in the circuit level is presented to support the design of systems that profit from ternary data
representations. This model considers two read methods of ternary ReRAMs, namely,
serial read and parallel read. They are extensively studied and compared in this work, as
well as the write-verification method that is often used in NVMs to reduce the device stress
and to increase the endurance. In addition, a comprehensive tool for the ternary model was
developed, which is capable of performing energy, performance, and area estimation for a
given setup. In this work, three case studies were conducted, namely, area cost per trit,
excessive parameter selection for thewrite-verificationmethod, and the assessment of pulse
width variation and their energy latency trade-off for the write-verification method in ReRAM.

Keywords: memristor, ternary system, analytical circuit model, ReRAM, ternary memory model, non-volatile
memory, write-verification programming

1 INTRODUCTION

Ever since the creation of the digital computing systems, the base of two has mostly been utilized for
information processing and communication. Nevertheless, it is long known that a ternary
representation of data, i.e., for each digit di of a number holds, e.g., di ∈ { − 1, 0, 1} or di ∈ {0,
1, 2}, offers advantages over the binary system in some aspects (Metze and Robertson, 1959;
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Avizienis, 1961; Parhami, 1470). One of the most attractive merits
of using the ternary system is its capability of carrying out an
addition operation in two steps, i.e., in O (1), regardless of the
operand length [an example can be found in the work of Fey
(2014)]. Using a binary data representation, this can be done only
in O (log(N)) with a reasonable hardware effort. Furthermore,
neural networks with ternary weights are much better than ones
with binary weights and not much worse than ones with floating-
point weights concerning the recognition accuracy, and they
require much less storage capacity than neural networks with
floating-point weights (Yonekawa et al., 2018).

However, realizing ternary states with binary storage elements
requires two binary storage elements, e.g., flip-flops (Rath, 1975),
making such designs immensely expensive. With the emergence of
CMOS-compatible multi-bit capable memristive resistive random
access memories (ReRAMs)1, this situation changed. This is
achievable by ReRAMs because their resistive window can be
splitted into quantized levels for having multilevel states (El-
Slehdar et al., 2013). The idea of programming memristive devices
into several resistance states was proposed, e.g., in thework of Kinoshita
et al. (2007), inwhich the authors analyzed the application of a thin-film
memristor as an N-level ReRAM element. Another approach, which
was introduced by Junsangsri et al. (2014), uses two memristors to
obtain three different states to handle ternary states instead of multiple
quantized memristive levels but loses the advantage of saving one
storage cell compared to multi-bit approach.

Using memristive devices for ternary arithmetic was first
investigated by Fey (2014). On the basis of the work of Fey
et al. (2016), the improvement in the energy-delay product and
area for a ternary adder circuitry using multi-bit registers based
on memristors compared to SRAM-based solutions was shown.
The architecture can be further enhanced by using memristor-
based pipeline registers that make it possible to use homogeneous
pipelines for not only the addition operation but also the
subtraction and multiplication operations instead of
superscalar pipelines that use different pipeline paths for
various operations (Fey, 2015). Although various proposals for
ternary memristive circuits are now available in the literature,
there is still a lack of sufficient ternarymodeling at the circuit level
to be able to use such components systematically and more easily
than today in one’s own circuits.

Memory modeling enables architectural exploration and system
integration of different memory technologies and design approaches.
To ease the process ofmemorymodeling, a need for a comprehensive
modeling tool seems to be evident. Luckily, some high-precision
open-source modeling tools such as CACTI (Wilton and Jouppi,
1996; Thoziyoor and Ahn, 2008), NVSim (Xiangyu Dong et al.,
2012), and Destiny (Mittal et al., 2017) enable designers not only to
utilize them with their original offered toolsets but also to build upon
the current features for state-of-the-art modeling, which, in our case,
is ternary memory modeling.

Research and development on non-volatile memories (NVMs)
either require prototype chips, which are limited to a small
portion of the entire design area, or a simulation tool that

estimates energy, area, and performance of NVMs with
different design specifications before the real chip fabrication.
When designing a ternary system, researchers cannot benefit
from any of the aforementioned solutions because there are no
ternary memory chip fabrications and appropriate simulation
tools have yet to be developed. Although the current most
popular NVM simulation tools offer some design and
estimation features, they still have limitations with respect to
ternary memory design and accurate evaluation.

In this work, for the first time, to the best of our knowledge, a
new ternary model has been developed that utilizes different
reading and writing methods. Moreover, a comprehensive
simulation tool for ternary memory modeling has been
developed, which uses the NVSim (Xiangyu Dong et al., 2012)
as its base. The main contributions of this work are as follows:

• Development of a comprehensive simulation tool for ternary
memory modeling called “TReMo+”. On the one hand, the
TReMo+ benefits from the methods and feature sets used by
the most well-known memory simulation tools, namely, NVSim
(Xiangyu Dong et al., 2012) and Destiny (Mittal et al., 2017), and
on the other hand, it adds some more features for the first
time ever.

• One of the unique features of the TReMo+ is that it supports
the generic write-verification method for both reset and set
operation, with the capability of overwriting average iteration,
and different pulse width and voltage or current amplitude for
consecutive pulses. This write method is made available for
both the binary and ternary memory models.

• For the first time, TReMo+ introduced two new read methods,
namely, serial and novel parallel read, which are configurable
based on the desire of the user. The serial read method was
adapted from the work of Mittal et al. (2017), and the novel
parallel read approach was introduced in our previous work
(Hosseinzadeh et al., 2020).

• Because the TReMo+ supports not only binary but also ternary
memory modeling, the tool now enables users to choose
optimization target for ternary memory (alongside with binary
memory modeling), which could be area, latency, and energy.

Furthermore, we demonstrated the application of our model
with three case studies. In addition to area cost per trit evaluation
studied in our previous work (Hosseinzadeh et al., 2020), we
present two further case studies in this work, namely, excessive
parameter selections for the write-verification method and
programming pulse width assessment. In the first case study,
the impact of Incremental Step Pulse and Verify Algorithm
(ISPVA) on delay and energy consumption is investigated to
achieve more reliable writing operations and compared it to other
known methods. These comparisons between different write
schemes including the overhead and enhancements (as a
trade-off analysis) are possible by using the presented model
using the TReMo+ tool that we developed.

The TReMo+ modeling tool can assist researchers who are
modeling systems in architecture-level tools such as gem5
(Binkert et al., 2011) by estimating performance, energy, latency,
and area of the ternary ReRAM-based memory models. This tool1The term memristor and ReRAM are used in this paper interchangeably.
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also givesmemory designers the ability to employ ternary logic based
on ReRAM in their designs. The benefits of this work are not only
limited to stand-alone ternary logic but also include exploiting new
storage mechanisms and architectures. In other words, TReMo+
supports the use of innovative computing storage technology in own
CMOS-based designs.

The rest of the paper is structed as follows: In Section 2, some
basic information about the ReRAM will be presented, and
different reading and writing methodologies on this memory
will be studied. In Section 3, after having a deep overview of the
state-of-the-art memory simulation tools, a thorough comparison
among them will be reported. Section 4 is about implementation
of the novel read and write methods in ReRAM devices, followed
by Section 5, in which the results will be presented. Last, in
Section 6, three case studies will be elaborated, and a brief
conclusion will be presented in Section 7.

2 PRELIMINARIES

2.1 ReRAM
Many of the NVM technologies, such as PCRAM and STTRAM,
are designed on the basis of electrically inferred resistive
switching effects. ReRAM is implemented by utilizing electro-
and thermochemical effects, resulting in the resistance change of
a memory architecture, in which a metal/oxide/metal layer stack
is used to store data (Hosseinzadeh et al., 2020). In our confined

variation, which is a bipolar ReRAM, a metal oxide layer (e.g., Ti
O 2, Hf O 2) is sandwiched between two metal electrodes to store
data. The value stored in the memory is dependent on the oxygen
vacancy concentration of the metal oxide layer. When a voltage is
applied to the two electrodes, conductive filaments (CFs) are
either formed or ruptured, depending upon the voltage polarity.
In case of CF formation inside the metal oxide, the top and the
bottom of the electrodes are bridged, and the current can flow
inside the CF. In this situation, the cell is considered to be in a
low-resistance state (LRS), representing the value of “1”.
Oppositely, when the CF is ruptured, the top and the bottom
electrodes are disconnected and thus result in a high-resistance
state (HRS) representing the value of “0” (Yang et al., 2008).

It has been proven by Xu et al. (2013) that the size of the CF
has a direct relation with the value of the current, meaning that
the cell resistance can be controlled by changing the strength of
the CF. Therefore, it would be possible to program the middle-
level resistance of ReRAM between the HRS and the LRS by
manipulating the programming current and to establish by the
multi-bit capability.

Figure 1 represents the physical behavior of a bipolar ternary
ReRAM memory. As it can be seen in Figure 1A, by increasing
the size of the CFs, the resistance is decreased, resulting in two
distinct LRSs, namely, LRS1, and LRS2. On the other hand, as it
can be seen in Figure 1B, by decreasing the size of the CFs, the
resistance is increased, resulting in the HRS. Programming to
intermediate states can be started from either the highest-
resistance state (H2L programming) or the lowest-resistance
state (L2H programming).

2.2 Read Methodologies in ReRAM
The normal read operations in ReRAM and many other NVM
technologies are identical. The read operation can be done in two
ways, in which both of them take advantage of the fact that NVMs
have different resistances in LRS and HRS states. In the first
method, a small voltage is applied on the bitline attached to NVM
storage cell, and the current moving through the cell is measured.
In the second method, a small current is sent out in the bitline,
and in return, the voltage across the memory cell is measured.
The methods are known as current sensing or voltage sensing,
respectively. The response back from the cell comes in the form of
voltage (or current), and afterward, it is compared against a
reference voltage (or current). The comparison is done by
utilizing a sense amplifier (SA) (Xiangyu Dong et al., 2012).

Depending on the resistance levels stored in one cell, the
number of SAs varies. In the case of SLC (single-level cell or 1 bit
per cell), it is sufficient to use one SA for the read operation
(Xiangyu Dong et al., 2012), whereas in non-SLCs, the number of
the SAs should be more than one, depending on whether the read
operation is done in serial or in parallel.

2.2.1 Serial Read
Serial sensing for the non-SLC memories can be done by two
methods. In our case, non-SLC memories consist of MLC (multi-
level cell or 2 bits per cell for storing four states), TLC (triple-level
cell or 3 bits per cell for storing eight states), and ternary (three
states in 2 bits per cell) memories. The first method is the sensing

FIGURE 1 |Multi-level switching in ternary ReRAM: (A) H2L and (B) L2H
programming.
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model, which is based on the multi-step “sequential single
reference”. This method is based on the non-linearity nature
of charging and discharging resistance of the NVMs. Within the
resistance change time, the SA captures samples from it (Xu et al.,
2013). The second method is the binary search read out model, in
which the number of read out iterations is based on the number of
stored bits in the cell (Mittal et al., 2017).

2.2.2 Parallel Read
In the parallel sensing method, only a single step is needed, but
the current (or voltage) is compared with multiple current (or
voltage) references (Xu et al., 2013). On the basis of the work of
Xu et al. (2013), the MLC parallel read circuitry is associated with
seven sets of SA.

In our work, ternary read circuitry could be the binary search
readout method or the parallel read method. We carry out two
comparisons using the binary read approach for the ternary
memory. For distinguishing the resistances in ternary
memories with the parallel read approach, two SAs are enough.

2.3 Write Methodologies in ReRAM
A set operation is defined as switching between HRS and LRS, and
reset is vice versa (Biglari et al., 2018). Because there is a large
resistance variation, cell programmingwith verification could add an
extra level of reliability (Higuchi et al., 2012). To control the cell
programming in intermediate states, either the DC sweep (Grossi
et al., 2016), write-verification (Higuchi et al., 2012; Song et al., 2013),
or ISPVA (Higuchi et al., 2012) is applied, which could start from
lowest- to highest-resistance state (L2H) or vice versa (H2L).

The ISPVA is based on a chain of increasing voltage pulses on
the drain electrode during set operation, whereas during reset
operation, this sequence of pulses is applied to the source
terminal. After applying each pulse, a read verification is done
to check whether the read current has reached the threshold value
for the set and the reset operation. The algorithm stops when the
threshold is reached (Pérez et al., 2018). Although single pulse
benefits from shorter forming time by using high compliance and
voltage parameters (Grossi et al., 2016), ISPVA offers a wide
range of advantages including improvements in spatial process
variation, more reliable writing, and higher endurance (Pérez
et al., 2018; Pérez et al., 2019).

2.4 Trade-offs in Writing Parameter
Selections
The high cycle-to-cycle and device-to-device variability in
switching characteristics of ReRAM devices will result in
excessive electrical stress on ReRAM cells during the worst
case–based programming (Biglari et al., 2019). This
contributes to a higher energy consumption as well as reduced
reliability (Yu et al., 2012) and endurance (Song et al., 2013). To
tackle this problem, novel structures have been proposed that
intrinsically reduce this stress at the cell level (Linn et al., 2010;
Biglari and Fey, 2017). Write-verification (Song et al., 2013;
Higuchi et al., 2012) and feedback-based programming (Lee
et al., 2017; Biglari et al., 2018) terminate the write operation
after detecting that the device has reached the desired state.

In write-verification programming, this detection is done by
reading the device between programming steps, whereas in
feedback-based programming, the resistive state of the cell is
monitored at real time during programming. The ISPVA method
mentioned in the previous section is in the category of write-
verification method. Both methods also enable multi-level
programming of the ReRAM cells (Lieske et al., 2018; Puglisi
et al., 2015). This work models a write-verification method that is
the most common practice for memory design.

Although bearing the extra cost of the write-verification
method is undeniable, it can be seen in other experiments that
the ISPVA method was utilized both for SLC and MLC types of
memory, mainly due its numerous advantages mentioned above
(Pérez et al., 2018; Pérez et al., 2019).

A key capability of a memory model is to demonstrate how the
observed behavior of a memory cell (in this case, ReRAM) at the
device level will affect the overall behavior and performance
characteristics of complete memories constructed with it.

In this case study, we study how write-verification parameter
selection affects delay and energy consumption of the realized
memory in relation to its endurance and reliability properties.

3 SIMULATION TOOL

3.1 The NVSim Tool
To investigate early phases of NVM design, a simulator for
ReRAM circuit level design is needed, so that the evaluation
without any real-chip fabrication can be done. Among existing
tools used in industry and academia for NVM estimation, the
NVSim (Xiangyu Dong et al., 2012) and Destiny (Mittal et al.,
2017) are the most popular ones.

The NVSim simulates some of non-volatile memristor–based
memory technologies, such as phase-change memory, spin-
transfer torque random access memory, and ReRAM. As an
input, the NVSim takes device parameters and optimizes the
circuit design and, as an output, evaluates the area, energy, and
performance with the given design specification.

NVSim organizes chips using three main building blocks: bank,
mat, and subarray. As shown in Figure 2, the top level building block
in the hierarchy is the bank, and each bank consists of some mats,
and last, subarrays are designed insidemats as the basic structure of a
memory, in which they contain memory arrays and peripheral
circuitry. The peripheral circuitry has SAs, a multiplexer (Mux), a
decoder, and an output driver, and the overall cell layout is
controlled by the access transistor. In Figure 3, the peripheral
circuitry associated with the bitline of the subarray, used by
NVSim, is depicted (Xiangyu Dong et al., 2012).

The NVSim only models the SLC memories with regard to
the submitted code. A more recent fork of NVSim, called
Destiny, introduced a design evaluation of MLCs. In our work,
a novel design for ternary memory simulation is implemented
by heavily modifying the original NVSim code. The main focus
of our work is internal sensing, and changes for ternary
modification are done in the subarray level, especially in the
peripheral circuitry, and then, the effects are evaluated in
higher levels of the cell design. Needless to say, this work
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focuses on modeling of memories and not designing circuits.
Therefore, we modeled the ternary model on the basis of the
block diagrams. Describing the details regarding the building
block of our models is out of scope of this work. However, for
circuit detail of every module, the base of most of modules is
described in the manuscript and guideline of CACTI (Wilton
and Jouppi, 1996; Thoziyoor and Ahn, 2008) and some small
parts in NVSim (Xiangyu Dong et al., 2012). Furthermore, our
solution differs in further features that are outlined next.

3.2 Simulation Tools Comparison
Among many NVM simulation tools, NVSim (Xiangyu Dong
et al., 2012) and Destiny (Mittal et al., 2017) are the ones offering
the richest features. However, these tools lack certain essential
features for more accurate results and for maintaining the
fast-paced NVM technology. The present work addressed
some of these issues by adding the missing features to the toolset.

For instance, NVSim only supports SLC design, whereas
Destiny included MLC, allowing a cell to store 1 bit, 2 bits, 3

FIGURE 2 | Memory array organization in NVSim (Xiangyu Dong et al., 2012).

FIGURE 3 | Peripheral circuitry associated with bitlines in the NVSim.
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bits, etc. The present work introduced the support for ternary
memory cells considering three states for the first time.

The support for the generic write-verification–based method
that is capable of variant pulse width and variant current or
voltage amplitude for both set and reset operation is another
feature added in TReMo+, which was entirely absent in the
NVSim. In addition, there are no verifications done when
writing data, neither in reset before set nor in set before reset
in NVSim, whereas in TReMo+, the verification is possible for
both cases. In Destiny, only the write-verification method with
fixed voltage and current is supported. Although not directly
mentioned in the Destiny paper, it is evident that, in latency and
energy calculation formulae, time pulses for voltage and current
are equal, which is not the common write method for memories.
For more realistic and accurate results, in TReMo+, we added the
enhanced variant of write-verification method for both reset and
set operations, namely, 1) with the dynamic voltage levels and
pulse widths and 2) current levels with the variant pulse widths.
Moreover, TReMo+ has two read methods, namely, serial and the
novel parallel read methods, whereas in Destiny, only serial read
is available.

4 IMPLEMENTATION ANDMETHODOLOGY

4.1 Sense Amplifier Read Circuitry
To adapt the NVSim SA read circuitry to the ternary memories, it
is necessary to take both read methods into consideration,
specifically the serial read and the parallel read.

In the serial read, there are no modifications needed to the
internal SA block of the original NVSim. However, the total
number of SAs are halved, due to the halved number of columns
in ternary memory. It is notable to mention that, for the serial
read, as shown in Figure 4, the maximum number of read
iterations should be two times.

In contrast, the parallel read requires some adjustments in the
NVSim SA read circuitry. To store three values in one cell, it is
necessary to have a trit cell; we therefore added an extra SA
coupled with the existing SA so that it would be possible to read
from a cell concurrently. Storing ternary data requires at least
three distinguished levels of resistance. To accomplish this, at
least two sense SAs with different voltage references are required.
Therefore, one bitline should be connected to two SAs.

The general idea of dividing and distinguishing the resistance
level in parallel read circuitry is demonstrated in Figure 5. As a
result, Vref1 and Vref2 should adhere to the following rules: 1). To
prove this design, the truth table is shown in Figure 5B.

VLRS1 <Vref1 <VLRS2, VLRS2 <Vref2 <VHRS (1)

The original SA in NVSim is based on the SA used in the
CACTI (Thoziyoor and Ahn, 2008) tool, which is voltage-based.
Therefore, we kept this module unchanged. In case of current
sensing, an I-V converter is needed, which is responsible for
converting the current running in the bitlines to voltage before
passing through the SAs. Because two SAs work simultaneously,
one I-V converter is sufficient to be shared among two SAs in case
of current sensing depicted in Figure 6B.

4.2 Write Operation Modeling for
Single-Level Cell and Non–Single-Level
Cells
4.2.1 Single Write
In non-crossbar structures, the write pulse is applied once to the
cell, assuming that the cell will be written in only one single pulse.
Writing to the cells is performed in two steps. First, the row

FIGURE 4 | Serial read model for ternary memory.

FIGURE 5 | (A) Resistance level in ternary memory. (B) Truth table for
parallel ternary read.

FIGURE 6 | (A) SA circuitry for ternary memory in parallel read. (B) The
ternary SA block layout. Pitch is the maximum allowed width for one SA layout
in NVSim.
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decoder applies the row address to latch the data from a row of the
ReRAM subarray module into the SAs. Second, after the data
become latched, the column address is applied, and the read or
write access will be performed. Figure 7 shows the write path for a
single cell. The latency is calculated by summing the worst-case
latency of reset and set pulse, the maximum value among decoder
latency, and the summation of the column decoder latency
(calculated by summation of latency of bitline Mux decoder,
SA Mux decoder level 1 and level 2 modules) and the latency of
other modules in the write path (calculated by summation of
latency of bitline Mux, SA Mux level 1 and level 2).

In crossbar structures, because set and reset operations cannot
be performed simultaneously, two methods for write operations
are available; first, having a separated set and reset operation
called “reset before set” or ”set before reset”method and, second,
in which all the cells in the selected row are erased before a
selective set operation is carried out. This method is called the
“erase before set” or “erase before reset” method (Xiangyu Dong
et al., 2012).

4.2.2 Verification After Single Write
Another write scheme that is utilized and modeled in this
work is the verification after single write. The latency of any
cell type (crossbar or non-crossbar) with the “write and
verification” scheme is higher than the “without
verification” one. The read latency itself comes from the
latency of every module in the read path sequentially, for
instance, SAs, bitline Muxes, and different multiplexers that
come after the SAs or the decoders. From the write energy
perspective, in the “write and verification scheme”, the energy
consumed for the verification, specifically in the cell and the
SA, are added to the write energy. Therefore, the write energy
in this scheme is higher than that of the “write without
verification” scheme.

4.2.3 The Write-Verification Method
There are two variants of write-verification methods that
have been modeled in this work. The first variant is based on
the write method used by Xu et al. (2013). On the basis of this
variant of write-verification method, first, the device is
initialized to reset state by a single pulse followed by an
iterative sequence of set and verification pulses until the
device has reached the desired resistive level (Figure 8A)
or vice versa. The second variant is based on the write method
used by Pérez et al. (2017). On the basis of this variant of
write-verification method, first, the device is being initialized
to reset state with a sequence of iterative reset and verification
pulses. Then, it is programmed to the desired resistive state
by a sequence of iterative set and verification pulses
(Figure 8B).

The average energy for single-pulse–based reset (first variant)
is calculated by the following:

Ereset � Vreset × Vreset − Vdrop,reset( )/RLRS × treset (2)

The amounts of energy consumed during the sequence of
program and verification pulses for the reset operation in second
variant and the set operation for both variants are calculated by
either (3) or (4) as follows. It is considered that the average
number of iterations for set and reset operations is assigned to
variable “n” and “m”, respectively.

If the set or reset operation holds the current source, then the
energy is calculated by the following:

Eset|reset � ∑n|m
i�1

vdd × PI i[ ] × PT i[ ]( )+(
Vread − Vdrop,read( )/RLRS × vdd × tread( )))

(3)

If the set operation holds the voltage source, then energy for
the set operation is calculated by the following:

Eset|reset � ∑n|m
i�1

PV i[ ] × PV i[ ] − Vdrop,set( )/(
RLRS × PT i[ ] + Vread × Iread × tread)

(4)

PV � [v1, v2, . . . ,vn|vm] consists of a sequence of voltages in the
write-verification method for the set or reset procedure.

FIGURE 7 | The write path for one cell at the subarray level.
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PI � [I1, I2, . . . ,In|Im] consists of a sequence of currents in the
write-verification method for the set or reset procedure.
PT � [t1, t2, . . . ,tn|tm] consists of a sequence of pulse widths of
current or voltage pulses for the set or reset procedure.

Vdrop is the voltage dropping on the device due to the transistor
connected to the cell while reading or writing.

The total required energy for writing is as follows:

Ewrite � Ereset + Eset (5)

The total latency for writing for the first variant write-
verification is calculated by the following:

Latencywrite � n × tread + treset +∑n
i�1

PT i[ ] (6)

The total latency for writing for the second variant write-
verification is calculated by the following:

Latencywrite � n +m( ) × tread +∑m
i�1

PT i[ ] +∑n
i�1

PT i[ ] (7)

4.3 Analysis of Single-Level Cell and Parallel
Ternary
In this section, an architecture for ternary memory in the
subarray level is modeled and evaluated in terms of area,
latency, and dynamic energy.

4.3.1 Ternary Area Consumption
Figure 9 shows the SLC and the ternary memory in parallel read
models in one frame. Given an SLC memory with the capacity

specified by the product of the number of rows and columns,
represented by the color black, a ternary memory with the same
capacity is compared to it using the color red.

It can be seen that, in the parallel ternary memory, there has
been some modifications, when compared to the SLC memory.
The first change is the number of columns is halved in the

FIGURE 8 | (A) The first variant of write-verification model (reset before set). (B) The second variant of write-verification model (ISPVA).

FIGURE 9 | The peripheral circuitry for SLC memory (black bordered
modules) and the proposed ternary memory (red bordered modules) in
parallel read.
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subarray because each cell is capable of storing a trit.
Subsequently, the width of the precharger is also halved for
the same reason mentioned above. Moving forward to the
layers below, the number of bitline multiplexers is halved,
caused by the reduced number of columns. In the SA layer,
the total number of internal SAs is kept unchanged, whereas the
width of the SA layer is halved. It is also notable to mention that
the height of each internal SA is slightly longer than that of SLC,
but the effect of this is neglectable in the SA layer because the
height of the I-V converter is dominant. In the next layer, namely,
SA multiplexer level 1, the number of multiplexers has not
changed, obviously because the number of SAs in the previous
layer was kept constant. The same logic applies to the SA
multiplexer level 2, and therefore, the total number is kept
unchanged.

To estimate the area of each peripheral circuitry component,
each component is delved into the actual gate-level logic design
considering the height and width of each gate as it is also done in
NVSim and CACTI. The height and width of each gate is
dependent on the optimization target as we have three
different types of transistors (latency-optimized, balances, and
area-optimized) with different sizes. When calculating the total
area at the subarray level in SLC memory, the following formulas
are used (8) (9).

H � ∑5
i�1

Hi +HArray (8)

W � MAX ∑4
i�1

Wi
⎛⎝ ⎞⎠ +WArray (9)

H1, H2, H3, H4, H5, and Harray are the height of precharger,
bitline Mux, SA layer, SA Mux level 1, SA MUX level 2, and
subarray modules, respectively, as depicted in Figure 9. W1, W2,
W3, W4, and Warray are the width of row decoder, bitline Mux
decoder, SA Mux decoder level 1, SA Mux decoder level 2, and
subarray modules, respectively, as depicted in Figure 11. The
total area is calculated bymultiplication of the total height and the
width. When evaluating the area consumption of the ternary
memory with parallel read mode, all the heights and widths
measurements are the same, except for Warray, which is halved,
and the height of the SA. As a result, the total subarray area of the
SLC memory is almost two times greater than that of the ternary
memory.

In the case of ternary memory with serial read mode, there are
some minor changes when compared to ternary memory with
parallel read mode. First, the number of SAs is halved, whereas
the width of each SA is doubled, keeping the total width of the SA
layer unchanged. Second, the number of SA multiplexer level 1
and level 2 is halved because of the decreased number of SAs in
the previous layer.

4.3.2 Ternary Latency
The latency calculated for the components is based on RC
analysis and the simplified version of Horowitz’s timing
model that is used in the NVSim tool (Xiangyu Dong et al.,
2012) .

Delay � τ

										
ln
1
2

( )2

+ αβ

√
(10)

In this formula, α is the slope of the input, β � gmR is the
normalized input transconductance by the output resistance, and
τ is the RC time constant. When comparing the latency of the
SLC memory cell with the ternary memory cell, some differences
in the latency of each component can be found.

Row decoder is the first component with halved latency. The
reason is that the number of subarray columns is halved, which
results in halved wordline capacitance that is loaded to the row
decoder.

Bitline multiplexer decoder is another component with halved
latency, when compared to that of SLC. The capacitance loaded to
this module comes from the capacitance of the wordline and the
pass transistors of the multiplexers, and they are both halved. The
same reason applies to the SA multiplexer level 1 and level 2
decoders. The total decoder latency is calculated by finding the
maximum latency of the modules mentioned above, resulting in
halved decoder latency.

When reading from the memory cell, the total read latency
is the summation of the decoder latency, the bitline delay, and
the delay of multiplexers through the read path. In the case of
ternary memory with parallel read mode, the total read latency
is less than that of SLC due to the halved decoder latency
mentioned above, leaving the other latency values unchanged.
However, in ternary memory with serial read mode, in
addition to the halved decoder latency, SAs latency is
doubled because binary search reading should be done at
least twice. The comparison between the ternary memory
with serial read mode and parallel read mode is also an
interesting matter, because the read latency of the ternary
memory with parallel read mode is lower than that of serial
one. It can be justified that parallel read sensing is done in
parallel with the use of the SA, whereas in serial read mode, two
times more comparisons are needed in the worst-case scenario.

If we put the write latency under scrutiny, then we realize that
the latency of the ternary cell is higher than that of SLC because
the programming ternary cells need more write iterations than
SLC. When comparing the write latency of the ternary memory
with parallel read mode with that of the serial one, the write
latency in the parallel mode is lower due to lower read latency in
the parallel mode during the writing program by write-
verification compared to the serial read.

4.3.3 Ternary Energy Consumption
The energy consumption comparison is done in this section
between the ternary memory and the SLC memory type. The
dynamic energy and leakage power consumption can be modeled
as follows:

Edynamic � C × V2
DD

Pleakage � VDD × ILeak
(11)

The dynamic energy of the precharger is halved because of the
halved number of columns, which is caused by dividing the
capacitance of the wordline by two. Dynamic energy of other
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modules including the decoders of the bitline multiplexers, row
decoder, and SA level 1 and level 2 decoders is also halved for the
exact same reasons mentioned above. The read dynamic energy
consumed in SAs is the same in both cases because they have the
same number of SAs. The dynamic energy of bitline multiplexer is
unchanged; although the load capacitance of the two SAs
connected parallel to it is doubled, the number of columns is
halved.

Cell read energy is also lower in ternary memory, because, first,
read pulse is not considered in the calculation and, second, the
number of columns in the cell is halved compared to that of SLC.
When reading from the ternary memory cell, the read dynamic
energy is calculated by adding all dynamic energy of the active
components mentioned above and cell read energy in the read
path. In parallel read, sensing is done in parallel with the use of
SA, whereas in serial read, two times more comparisons are
needed in the worst-case scenario. As a result, the read energy
consumption during serial read is higher than that of the parallel
variant.

For a write operation on the ternary memory cell, the write
dynamic energy is the sum of all active modules mentioned above
plus write dynamic energy of the write path depending upon the
writing method. When the write-verification method is used for
writing data on a ternary cell, it will definitely need more
iterations compared to the single-pulse method, resulting in
higher write energy in ternary memory. It can therefore be
concluded that the total dynamic energy in ternary is greater
than SLC, despite the number of columns in SLC being two times
more. It is worth to consider that the write energy for the ternary
memory with parallel read mode is higher than that of the ternary
memory with serial read mode because the two SAs are used for
concurrent sensing passing through the bitline multiplexer that
doubles the capacitance.

If the reset dynamic energy and the set dynamic energy were
analyzed separately assuming the first variant of write-
verification, the reset dynamic energy in SLC would be greater
than in the ternary memory because the number of columns in
SLC is higher than in the ternary memory. However, because the
number of iterations in ternary memory is higher than SLC, the
set dynamic energy in this memory is greater than SLC,
outweighing the number of columns in ternary.

Regarding the cell leakage, the total leakage in SLC is higher
than that of the ternary memory. The reason behind this is the
effect of the dominant precharger leakage in SLC on the total
leakage.

5 RESULTS

5.1 Single-Level Cell ReRAM With
Write-Verification
The motivation for this section is to demonstrate some additional
enhancements on SLC memory models, previously modeled in
NVSim, such as the verification after single write or first variant of
write-verification method by considering the overhead of the
verification controller as input.

In cases of verification-based write method, a finite state
machine (FSM) is required to control the write scheme. For
instance, when a write voltage is applied, the state machine is
utilized to verify the current whether the write was successful
followed by iteration termination or the voltage should still be
increased. The overhead values of this state machine, including
the energy, latency, and area, are technology dependent;
therefore, these values can be estimated by the synthesis
results of the desired controller. The FSM overhead values,
including the area, latency, and energy overhead, are then
given as an input to the simulator for a more accurate result.
Therefore, TReMo+ is capable of getting the overhead of write
driver as an input to make estimated values closer to real
fabricated chip values. However, our evaluations for the
memory arrays are based on the IHP cell settings, and they
also do not have a write-driver to produce the pulse trains. The
pulse trains in IHP company are produced with a computer-
based system called RIFLE SE. Therefore, even the IHP
researchers do not have the overhead values for producing the
consecutive pulses, and as a result, the overhead of the control
circuitry is not considered in the results.

The SLC ReRAM model used for this section is based on a
0.18-µm 4-Mb MOS-accessed ReRAM prototype chip (Sheu
et al., 2011). According to Xu et al. (2013), the set and reset
pulse duration were set to 5 ns

Table 1 contains a thorough comparison of 1T1R and crossbar
architecture, each with and without verification after the writing
scheme with different underline physics.

As it can be seen, the verification method after writing to the
cells has increased the write energy and the latency based on the
explained reasons in Section 4.3. The write latency has increased
at least by 42%.

5.2 Ternary Memory With Serial and Parallel
Modes Vs. Single-Level Cell Memory
The experimental results shown in Table 2 are based on the
prototype chip of Sheu et al. (2011) with the first variant of
write-verification method for different memory models
including SLC and ternary memroy with serial and parallel
mode. It is assumed that the average number of iterations set in
the first variant of write-verification method for SLC and
ternary model are 5 and 12, respectively. In addition, the
projected results for the ternary memory in serial and
parallel modes are compared with the SLC memory in
Table 2. As it can be seen in Table 2, the parallel read has
a lower read latency in comparison with the serial read while
keeping the overhead to a minimum level.

In MLC mode, the ReRAM prototype chip has a write latency
of 160 (Sheu et al., 2011). Using first variant of write-verification
method with number of set iterations as 12 in TReMo+, we
observe the write latency for ternary memory with serial and
parallel modes that are 122.965 and 122.960 ns, respectively, as
shown in Table 2. Thus, our ternary memory projected to have
lower write latency than the MLC version of the prototype chip as
expected within an acceptable error rate.
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6 CASE STUDIES

6.1 Write-Verification Parameter Settings
Trade-offs
The work described in this subsection models the first variant of
the write-verification method, which is explained in Section
4.2.3, and investigates the trade-off, which is explained in
Section 2.4. The write-verification setting determines the write
energy and write latency.

In this case study, we examine how the selection of the write-
verification parameter affects the delay and the energy
consumption of the realized memory in relation to its
endurance and reliability properties. For the evaluation, the
results from Pérez et al. (2017) are used as reference for our
simulated data with TReMo+. The paper contains measurement
data concerning the average number of programming iterations,
the set voltage, and the voltage step acquired from various
experiments on real ReRAM devices programmed using
ISPVA. These devices were made by IHP2. The known device
configuration from Pérez et al. (2017) served as inputs to our
simulation tool. The write latency, the write energy, and the set
energy at the chip level were collected from the output of the
simulator. As shown in Table 3, by incrementing the voltage step,
both the write latency and the spent energies for set and resetting
of the device decrease subsequently. As a result, this study shows
how the advancement of the device level, e.g., a still sufficient
lower iteration number, can actually affect the actual design of
memories. Therefore, the conveyed idea is that, for the minimum
write latency and energy, the voltage step should be high.
However, this is not the ultimate consideration because cell
reliability and endurance after writing should also be

examined, and these features can be negatively affected by
large voltage steps.

With regard to the experiment done by Pérez et al. (2017),
two important results were presented: 1) On the basis of
Figure 10, by incrementing the voltage step, the number of
cells willing to be set within the expected current threshold
(the current threshold is the current threshold condition for
the set operation in ISPVA) will decrease from ∼80%−90% to ∼
60%. In other words, cells will be set with only one current peak
when the voltage step is low, whereas in the opposite case when
the voltage step is high, two current peaks appear (Figure 10).
Quantization of the conduction is inherent to the CF, and
therefore, it is always there. However, this behavior of the
memory cell is due to the increase of the voltage step, and the
overstress on the sample makes the conduction “jumping” to
the next level of quantization, which means to a conduction
level coherent with two CFs as it was observed and found by
Pérez et al. (2017). It was demonstrated by Pérez et al. (2017)
that, in lower-voltage steps, only one CF forms in the cell,
whereas in higher-voltage steps, two separate CFs are formed
or in other words the device is overset. 2) The carried-out
cycling experiment on programmed cells with various voltage
steps shows that the cells that are set with lower-voltage steps

TABLE 1 | The effect of single verification andmultiple verification on latency and energy of crossbar and SLC 1T1R architecture. Item number 1 does not have the verification
method after writing, whereas item number 2 has only one iteration of verification. Last, item number 3 has verification with five times iteration. The reason behind different
numbers of iteration is due to different underlying physics.

Num Cell Type Verification Avg No.
Itr

Write Latency
(ns)

Write Energy
(nJ)

1 SLC Crossbar N 0 14.236 3.391
2 SLC Crossbar Y 1 19.389 3.493
3 SLC 1T1R N 0 12.256 1.143
4 SLC 1T1R Y 1 18.496 1.144
5 SLC 1T1R Y 5 64.956 21.957

TABLE 2 | 1T1R SLC memory vs. ternary memory with serial and parallel read based on the first variant of write-verification scheme.

Cell
Level

Read
Method

Avg
No.
Itr

Verification Total
Area
(mm2)

Read
Latency

(ns)

Write
Latency

(ns)

Read
Energy
(nJ)

Reset
Energy
(nJ)

Write
Energy
(nJ)

Set
Energy
(nJ)

SLC 1T1R Normal 5 Y 74.045 10.96 66.512 3.895 17.785 41.370 31.218
Ternary
1T1R

Serial 12 Y 37.374 7.713 122.965 1.438 8.383 39.860 34.275

Ternary
1T1R

Parallel 12 Y 37.489 5.234 122.960 1.470 8.398 39.864 34.281

TABLE 3 | The impact of ISPVA settings on latency and energy of the total
memory.

VStep Avg No. Itr Write Latency (ns) EWrite (nJ) ESet (nJ)

0.05 14 280003.507 2334.976 1757.618
0.1 8 170003.507 1926.703 1349.345
0.2 5 110003.507 1624.092 1046.724
0.4 3 70003.507 1243.907 666.549

2Innovations for High Performance Microelectronics.
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tend to be more stable than those with higher-voltage steps,
making them only partially stable. The reason behind this
instability is that, in higher voltages, two filaments are involved
(or overset behavior) in the process of switching, making the
reliability fragile (Pérez et al., 2017).

It can be concluded that, for writing with the write-verification
method (in this experiment, for the ISPVAmethod), there should
be a trade-off when choosing an appropriate voltage step. The
voltage step should not be too large to jeopardize the stability and,
at the same time, should not be too low to increase the cells energy
consumption.

6.2 Programming Pulse Width Assessment
Trade-off
The work presented in this subsection models the second variant
of the write-verification method, which is explained in Section
2.4. In this case study, we first verify that the results from
TReMo+ correspond to the data at the cell level from IHP,
and then, we examine how the programming of different pulse
widths at the cell level affects the write energy and write latency at
the chip level.

For this study, the results at the cell, such as the average
iteration number for set and reset operation and the reset and set
voltage for different pulse widths at the cell level, are extracted
from the work of Perez et al. (2020). Besides, those data at the cell
level and the IHP device configuration, such as 4 Kbit, read pulse
width, and HRS and LRS values, given by Perez et al. (2020), are
used as input to the simulation tool. As a result, the energy and
latency at the cell and chip levels are collected from the output of
the simulator.

For the first assessment, five different pulse widths—50 ns,
100 ns, 500 ns, 1 µs, and 10 μs—for both reset and set in ISPVA
operation were utilized. Figure 11 depicts the trend of energy at
the cell level for set (S_E_Cell), reset (RS_E_Cell), and read
energy (RD_E_Cell_for_Rs, RD_E_Cell_for_Rs). Furthermore,
we show in Figure 11 the read energy on the chip level for read
(RD_E_total), reset (RS_E_total), and set (S_E_total). The data
from TReMo+ at the cell match with the data at the cell level from
IHP (Perez et al., 2020). Read energy at the cell and chip levels for
set and reset operation is independent of the set and reset pulse
width. However, reset and set energy at the cell and chip levels are
increasing by the growth of pulse width. It is also evident that the
reset energy is higher than the set energy both at the cell level and
the chip level. It is validated that TReMo+’s result matches that of
IHP’s at the cell level. In addition, TReMo+ also estimates the
write latency and write energy at the chip level.

FIGURE 10 | Current distribution for set operation with incremental
voltage step. In the top curve, a lower incremental step is used as in the
bottom. This figure is depicted based on Figure 6 in the work of Pérez et al.
(2017).

FIGURE 11 | Average energy required to do reset (blue dots) and set (red dots) operations, read energy for set and reset, and total read on a single 1T1R ReRAM
cell and 4 Kbit ReRAm memory arrays.
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In the second assessment, TReMo+ was executed using
different ordered pairs of the reset and set pulse widths.
The ordered pairs are consist of the total combination of
50 ns, 100 ns, 500 ns, 1 µs, and 10 μs for set and 50 ns,

100 ns, 500 ns, 1 µs, and 10 μs for reset, making 25 cell
configurations. These are used to evaluate the effect of
different pulse widths on the energy and latency at the chip
level and the best points in terms of the write energy and write

FIGURE 12 | Write energy over different pulse widths.

FIGURE 13 | Write latency over different pulse widths.

TABLE 4 | Cost per trit.

Cell Level Total Area (mm2) Total No. Cells Area Cost Per Trit
(μm2)

Parallel Ternary 3.294 4194304 0.7846
SLC 6.491 8388608 0.7738
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latency. Needless to say, TReMo+ is capable of evaluating any
pulse width given as an input. Therefore, there is no limitation
to use our tool for any pulse width. Furthermore, for this case
study, we utilized the experimental data at the cell level from
the IHP company available in the work of Perez et al. (2020).
Because of some limitation in producing a pulse width smaller
than 50 ns for their experiments, they did not assess pulse
width smaller than 50 ns in their analysis.

As it is depicted in Figure 12, the best point from write energy
perspective belongs to 50 ns for reset and set pulse width.
However, the lowest write latency belongs to 100 ns for reset
pulse width and 500 ns for set pulse width, as depicted in
Figure 13. Furthermore, as it can be seen in Figure 12, when
increasing the set pulse width while keeping the reset pulse width
fixed, the write latency will grow in each iteration. However, in
this situation, the write energy will fall up to the third point but
then starts to increase from the fourth point onward as depicted
in Figure 12. As a result, the lowest write energy point among
every five points is the third one. This shows the obvious trade-off
between write latency and energy latency.

On the basis of the retention and the reliability test in the
work of Perez et al. (2020), there is no reliability issue for
different combinations of reset and pulse width, except for that
of 50 and 50 ns for reset and set pulse width, due to longer
ending tail in Figure 3 in the work of Perez et al. (2020). That
means, on the basis of the experimental results, although 50 ns
for both reset and set pulse width shows the best write energy,
100 ns for reset and 50 ns for set pulse width with the second
minimum write energy seems to be the best point for
programming the cell with ISPVA with no reliability issue.
Having discussed this, still a trade-off would exist to
determine which programming pulse width ensures the
lowest energy and the most reliable operation.

6.3 Area Cost per Trit
Cost per bit is one of the most important aspects whenmodeling a
novel memory technology. Some memory design goals, such as
technology scaling, chip yield enhancement, and cell structure
modernization, all point toward reducing cost per bit of a
memory chip.

When adapting the MLC memory for ternary memory design,
the issue of area arises in a sense that is based on Section 4.1.
Ternary memory does not require any decoders for the reading
operation, whereas MLC needs at least seven sets of SA and an
extra decoder (Xu et al., 2013). The results in Table 4 also prove
that the area per trit in the ternary memory is the most
optimal case.

According to Xu et al. (2014), to calculate cost per trit, area and
fabrication costs are the most important factors. On the basis of
the above explanation and assuming that fabrication costs in
MLC and ternary memory are the same, a lower cost per trit in

comparison to the MLC counterpart is given because the ternary
memory has a smaller area. The experimental results shown in
Table 4 are based on the same settings utilized in Section 6.2 but
for 1-Mbmemory chip capacity. The number of cells calculated in
Table 4 is total number of cells of simulated complete array for
the given setting.

7 CONCLUSION

In this paper, a new memristor-based ternary memory model was
modeled that benefits from optimized reading and writing
methods. Alongside the serial read method, the parallel read
for the ternary memory model was modeled for the first time,
which made the read latency lower than its rival and, at the same
time, kept the overhead to a minimum. The writing method of
choice in this paper was the write-verification method, which
offered more reliable writing operation, compared with the
single-pulse method.

Moreover, some case studies were presented for proving the
usefulness and versatility of the model, including parameter
selection for write-verification method and their ramifications
on energy and latency, programming pulse width assessment and
its trade-off in energy and latency, and a study on area cost per trit
proving that the ternary case offers the most optimal solution in
terms of area consumption.

Finally, to ease the process of ternary memory development by
researchers and manufacturers, a comprehensive tool was
developed that is capable of performing energy, performance,
and area estimation for a given setting.
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