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Editorial on the Research Topic

Cognitive NeuroIntelligence

In recent years, fascinating progresses have been made in utilizing artificial intelligence to
solve a broad range of problems. AI systems today can match and even outperform human
performance in certain challenging tasks, including visual cognition. Recent AI advances in deep
learning have been largely inspired by neuroscience research on biological brain and guided by
architectural constrains from biological neural networks. In this Research Topic, we advocate
further interactions between the fields of AI and cognitive neuroscience to benefit both fields. The
topic of Cognitive Neurointelligence, starting fromMay 25th, 2020 and ending on November 20th,
2020, was organized by Jia Liu, Si Wu, Ke Zhou, and Yiying Song.

On one hand, there is great potential for cognitive neuroscience to benefit AI (cognitive-
neuroscience-inspired AI). The structures and functions of neural systems, which result from
hundreds of millions of years evolution, are optimized for animals processing information in order
to survive in natural environments. They naturally serve as the resources inspiring us to develop
AI. In addition to this, cognitive neuroscience can also benefit AI research from a new aspect. The
end-to-end learning strategy makes deep convolutional neural networks (DCNNs) remaining to
be “black boxes,” where the algorithms and computations of the networks are poorly understood.
Techniques and approaches available in cognitive neuroscience, including experimental paradigms,
data analysis techniques, and theoretical hypotheses, can serve as a repertoire of tools for unveiling
the black boxes of DCNNs, illuminating the algorithms and computations inside the networks.

On the other hand, AI can make fundamental contributions to cognitive neuroscience as well
(AI-inspired cognitive neuroscience). In addition to serving as advanced mathematical tools for
analyzing big data in neuroscience, models of AI can also give us insight into understanding the
inner mechanisms of biological brain and intelligence, for instance, DCNNs have offered the best
models of biological visual systems to date. More importantly, biological brains are the result of
evolution; and analogically we canmanipulate loss functions, architectures, and datasets of DCNNs
to “re-run” evolution and therefore to pry open secrets that lead to the emergence of the human
brain and mind.

Therefore, the purpose of this Research Topic is to bring together research efforts from AI and
cognitive neuroscience, seeking to integrate AI and cognitive neuroscience toward a new field of
cognitive neurointelligence.

In the direction of cognitive-neuroscience-inspired AI, six papers in this special issue aimed
to develop advanced information processing techniques inspired by biological systems. Motived
by the unsupervised learning behavior of humans, Ji et al. proposed an unsupervised few-shot
learning algorithm for object classification. Motivated by the rapid topology perception of humans,
Wang et al. proposed a gap-junction network for fast topology detection in images. Inspired by the
balance of excitation and inhibition (E-I) interactions in neural systems, Tian G. et al. proposed an
E-I balanced network for fast signal detection. Based on the biologically plausible global feedback
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and the local STDP learning rule, Zhao et al. proposed a new
method to train multi-layer spiking neural networks. Applying
biological learning rules, Fang et al. developed spiking neural
networks for sequence generation. Zhou et al. revealed that the
function connectivity of the brain network accounts for critical
dynamics, and the latter leads to efficient information processing.
In addition, three papers in this special issue applied methods
in cognitive neuroscience to understand inner representations
in DCNNs. Liu et al. applied the concepts and measures of
coding schemes from neuroscience studies to DCNNs and
provided evidence that DCNNs adopted a hierarchically-evolved
sparse coding scheme to represent objects as the biological
brain does. Song et al. adopted a reverse-correlation approach
in psychophysical studies and found that both DCNNs and
humans utilized similar inner representations to perform the
task of face gender classification. Tian J. et al. explored the
phenomenon and mechanism of biased behaviors in DCNNs by
borrowing the paradigms and theories from a classical race bias
(i.e., the other race effect) in humans and found a human-like
multidimensional face representation in DCNN. Together, these
studies suggest the possibility that DCNNs and humans may use
an implementation-independent representation to achieve the
same computation goal.

In the direction of AI-inspired cognitive neuroscience, two
studies in this issue used DCNNs as a model to inform our
understanding of human cognition. Unlike studies on humans
where perceptual experiences are always intermingled with
conceptual guidance, Huang et al. used DCNNs to provide
evidence that the semantic relatedness of object categories can
automatically emerge from perceptual experiences without top-
down conceptual guidance. In addition, investigation on the
role of nature vs. nurture in the formation of domain-specific
modules in biological brains cannot easily dissociate the
effects of visual experience from genetic predisposition. To

overcome this limitation, Xu et al. built a model of selective
deprivation of the experience on faces with a DCNN and
demonstrated that domain-specificity may evolve from non-
specific experience without genetic predisposition, and is
further fine-tuned by domain-specific experience. In other two
studies, Zhang et al. applied AI algorithms to improve target
detection in neural signals, and Zheng et al. applied DCNNs to
investigate the transfer learning effects based on local and global
invariant features.

Finally, to meet the objective of crosstalk between the AI and
cognitive neuroscience, Chen et al. presented a Python-based
toolbox, DNN Brain, which enables researchers from both fields
to conveniently map the internal representations of DNNs and
brain, and examine their correspondences.
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Excitation-inhibition (E-I) balanced neural networks are a classic model for modeling

neural activities and functions in the cortex. The present study investigates the potential

application of E-I balanced neural networks for fast signal detection in brain-inspired

computation. We first theoretically analyze the response property of an E-I balanced

network, and find that the asynchronous firing state of the network generates an optimal

noise structure enabling the network to track input changes rapidly. We then extend the

homogeneous connectivity of an E-I balanced neural network to include local neuronal

connections, so that the network can still achieve fast response and meanwhile maintain

spatial information in the face of spatially heterogeneous signal. Finally, we carry out

simulations to demonstrate that our model works well.

Keywords: E-I balanced network, optimal noise structure, Fokker-Planck equation, fast tracking, asynchronous

state

1. INTRODUCTION

To survive in natural environments, animals have developed, through millions of years evolution,
the ability to process sensory inputs rapidly. For instance, studies have shown that human subjects
can perform complex visual analyses within 150 ms (Thorpe et al., 1996), and the response latency
of neurons in the visual cortex of monkeys is as short as tens of milliseconds (Raiguel et al., 1999;
Sugase et al., 1999).

Meanwhile, many artificial engineering systems have high demands for real-time processing
of rapidly varying signals. This is exemplified by the recently developed Spike Camera (Dong
et al., 2017), which has a sampling rate of up to 40, 000 frames per second (fps), far surpassing
conventional cameras’ 60 fps. This allows it to capture high-speed objects and their textual details,
which can be used on real-time motion detection, tracking, and recognition if we have the
appropriate algorithms and computing platforms. However, the processing speed of traditional
algorithms often cannot meet such demands.

The balance of excitation and inhibition is a general property of neural systems. The excitation-
inhibition (E-I) balanced neural network was first proposed to explain the irregular firing of cortical
neurons widely observed in the cortex (Softky and Koch, 1993; Shadlen and Newsome, 1994),
and was later confirmed by a large amount of experimental data (Haider et al., 2006; Okun and
Lampl, 2008; Dorrn et al., 2010; Graupner and Reyes, 2013). Theoretical studies have found that the
asynchronous irregular firing state spontaneously emerges in a network of excitatory and inhibitory
neurons with random connections satisfying some very loose balancing conditions (van Vreeswijk
and Sompolinsky, 1996; van Vreeswijk and Sompolinsky, 1998; Renart et al., 2010). The effects
of this chaotic state on optimal coding (Denève and Machens, 2016), working memory (Lim and
Goldman, 2014), and neuronal tuning (Hansel and van Vreeswijk, 2012), as well as its coexistence
with attractor dynamics (Litwin-Kumar and Doiron, 2012) have been widely studied.
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In the present study, we focus on the fast tracking ability
of E-I balanced networks, where the population firing rate
of the network is proportional to the input amplitude and
tracks input changes rapidly (van Vreeswijk and Sompolinsky,
1996; Renart et al., 2010), and investigate how E-I balanced
neural networks can be used for fast signal detection in
brain-inspired computation. Neuromorphic computing, which
mimics the structures and computational principles of the neural
system, is receiving increasing attention in artificial intelligence
(AI), as it has the potential to overcome the von Neumann
bottleneck in modern computers that limits their processing
speed (Indiveri and Liu, 2015). The fast response property of the
E-I balanced network makes it a naturally compatible candidate
to be implemented in neuromorphic systems to achieve rapid
information processing.

In the following sections, we show that the asynchronous
firing state of the network generates an optimal noise
structure which enables the network to track input changes
rapidly. We then extend the homogeneous connectivity of
the classical E-I balanced neural network to include local
neuronal connections, so that the network can achieve fast
response and meanwhile maintain the spatial information
when presented with spatially heterogeneous signals. Finally,
we carry out simulations to demonstrate the performance of
our model.

2. FAST RESPONSE OF A HOMOGENEOUS
E-I BALANCED NETWORK

To illustrate the mechanism of the fast response property,
we first investigate a homogeneously connected E-I
balanced network.

2.1. Intuition on the Mechanism of Fast
Response
The fast response property of an E-I balanced network is at
the population level. To understand this, let us consider a
non-leaky linear integrate-and-fire neuron, whose dynamics is
given by

τ
dv

dt
= I, (1)

where τ is the integration time constant of the neuron, v the
membrane potential, and I the input current. When v reaches the
threshold θ , the neuron generates an action potential, and v is
reset to the reset potential v0. Thus, for a constant input I0, the
time it takes for a neuron to generate a spike starting from v0 is

T = τ
θ − v0

I0
.

It can be seen that the response time of a single neuron is limited
by τ (Figure 1A).

However, when a neural population receives a signal,
if the noise in the system keeps membrane potentials of
different neurons at different levels, there will always be a
few neurons whose potentials are near the threshold that

can quickly respond to input changes. In such a case, the
network as a whole can respond to input changes very fast,
whose reaction time is only restricted by insurmountable
factors such as axonal conduction delays, rather than the
membrane time constant τ of individual neurons (Figure 1B).
The key of this mechanism is to prevent synchronous firing
of neurons and maintain a stable distribution of membrane
potentials in the neural population, and asynchronous firing
happens to be one of the hallmarks of an E-I balanced
network (Renart et al., 2010), which we shall discuss in more
detail below.

2.2. The Balancing Condition
We first present the conditions for maintaining an E-I balanced
neural network and the stationary population firing rates under
those conditions in the large N limit, where N is the number
of neurons (van Vreeswijk and Sompolinsky, 1998; Rosenbaum
et al., 2017). Consider a network of size N, with NE = qEN
being excitatory and NI = qIN inhibitory, where qE + qI =
1. The input current received by neuron i in population a
(a = E being excitatory and a = I being inhibitory) can be
written as

Iai (t) = Fai (t)+ Rai (t), a = E, I, (2)

where Fai is the feedforward (i.e., external) input, and Rai is the
recurrent input from other neurons in the network with the form

Rai (t) =
∑

b=E,I

∑

j

Jabij

∑

k

1

τb,s
e−(t−tj,k)/τb,s , a = E, I, (3)

where j indexes presynaptic neurons, τb,s is the synaptic time
constant of the presynaptic population b, and tj,k is the spike time
of the k’th spike of neuron j.

Since in both the cortex and industrial applications, the
number of neurons in a network is large, we may examine the
balanced network in the N → ∞ limit. Expressing the relevant
quantities in orders of N can help elucidate the mechanism.
Neurons in the network are connected randomly, with the
connection probability determined solely by the neuron types.
The probability that neuron j in population b connects to
neuron i in population a is pab for all i, j. Note that here pab is
constant, and does not tend to 0 as N → ∞. This regime is
usually referred to as dense connectivity, in contrast to sparse
connectivity where the number of presynaptic neurons for each
postsynaptic neuron is kept constant as N → ∞ (van Vreeswijk
and Sompolinsky, 1996; Brunel, 2000). If a connection exists,
its strength is set to be Jabij = jab/

√
N; otherwise Jabij = 0.

Here jab ∼ O(1). (O denotes scaling with respect to N → ∞
throughout this paper.) This scaling is a hallmark of balanced
networks. Note that in some earlier works, especially those
that employ a sparse connectivity regime (van Vreeswijk and
Sompolinsky, 1996), this scaling is often written as J ∼ O(

√
Kab),

where Kab is the average number of presynaptic inputs from
population b for a neuron in population a. Here, since we have
Kab = pabN and pab ∼ O(1), these two scalings are essentially
the same.
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FIGURE 1 | An illustration of the mechanism of fast response for a neural population. (A) The integration and firing process of a neuron receiving a noiseless input.

The integration time is constrained by the membrane time constant. (B) A distribution of membrane potentials across a neural population enables it to respond to

input changes rapidly. Red dots represent neurons whose potentials are close to the firing threshold, which are the first ones to respond to input changes.

Using the mean-field approximation, the time- and
population-averaged input current received by a neuron in
population a can be written as,

Ia = Fa + Ra =
√
N(faµ0 + waErE + waIrI), a = E, I, (4)

where rb is the mean firing rate of population b, b = E, I, and
wab = pabjabqb ∼ O(1). Here, we have written Fa as Fa =√
Nfaµ0, where fa,µ0 ∼ O(1), because if we notice that long-

distance projections are mainly excitatory, and assume that the
feedforward inputs originated from another neural population of
size O(N) and that the feedforward synaptic strength is also of
order O(1/

√
N), then Fa ∼ O(

√
N) is a natural consequence.

This is exactly the case in the Spike Camera data scenario that we
shall examine later in section 3.

Therefore, to keep I (and thus r) bounded when N → ∞, we
must have

waErE + waIrI + faµ0 ∼ O(
1

√
N
), a = E, I.

Letting N → ∞, we get approximate firing rates in the large
N limit

lim
N→∞

rE =
fEwII − fIwEI

wEIwIE − wEEwII
µ0,

lim
N→∞

rI =
fIwEE − fEwIE

wEIwIE − wEEwII
µ0.

(5)

To keep the above limits positive and yield a stable solution, it is
necessary and sufficient to let (van Vreeswijk and Sompolinsky,
1998)

fE

fI
>

wEI

wII
>

wEE

wIE
.

This is the condition for the balanced firing state.
It is worth noting that whatever the neuronal transfer function

is, the population firing rate in the large N limit is always

linearly proportional to µ0. That is, Equation (5) always holds.
This is a direct result of Equation (4), where the total input
current is the linear sum of the three O(

√
N) order terms. The

balanced firing state is a stable solution dynamically formed
by the network (van Vreeswijk and Sompolinsky, 1998; Renart
et al., 2010), and therefore requires no fine tuning of parameters
such as jab, which is different from some other models that
also try to recreate the asynchronous irregular firing state
(e.g., Brunel, 2000).

It should be pointed out that Equation (5) only gives the
O(1) order term of ra. To satisfy the specific transfer function
of neurons while maintaining the balance of the O(1) order
term, the firing rates are adjusted by an O(1/

√
N) term,

which results in a O(1) order correction to I (Equation 4).
We will come back to this in the specific case presented in
the next section.

2.3. The Mechanism of Fast Response
As previously mentioned, the asynchronous firing of neurons is
the key for fast response of the network. When the balancing
conditions presented in the previous section are met, the
network can achieve asynchronous irregular firing (Renart et al.,
2010). We next use a network of non-leaky linear integrate
and fire neurons to study the mechanism of fast response in
more detail. Notably, this simple neuron model has already
been implemented in a neuromorphic system (Fusi and Mattia,
1999). While not biologically realistic, this model captures
the key characteristics of integrate-and-fire neurons crucial for
neuromorphic computing.

The neuronal dynamics is given by Equation (1). For
simplicity, let v0 = 0. It can be easily seen that the transfer
function of this neuron is threshold-linear, i.e.,

r =







I

θτ
, I > 0,

0, I < 0.

(6)
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Substituting this into Equation (4) yields the population firing
rates of excitatory and inhibitory neurons

rE =
(fEwII − fIwEI)− 1√

N
fEθτI

(wEIwIE − wEEwII)+ 1√
N

θ(wEEτI + wIIτE)− 1
N θ2τIτE

µ0,

rI =
(fIwEE − fEwIE)− 1√

N
fIθτE

(wEIwIE − wEEwII)+ 1√
N

θ(wEEτI + wIIτE)− 1
N θ2τIτE

µ0.

(7)

Comparing the above result with Equation (5), we can see that
they are indeed O(1/

√
N) order corrections to the N → ∞

limit, as stated at the end of the last section. Note that the firing
rates still linearly encode the external input, which is a result of
the threshold-linear transfer function. We also check that even
when the external input is small or the number of neurons is
not large, the linear encoding property still holds, which expands
the dynamic range of the network. However, for other non-linear
neuron models, this linear encoding property may not hold.

Equation (7) is derived from the mean-field approximation,
that is, it is the result of averaging over time and neurons when
the system reaches a stable state. To study how the instantaneous
firing rate of the population changes with time when external
input changes, we need more detailed analysis. We shall use the
Fokker-Planck equation (Risken, 1996) to study the membrane
potential distribution pa(v, t) (Brunel and Hakim, 1999; Fusi and
Mattia, 1999; Brunel, 2000; Huang et al., 2011).

First, we examine the input received by a single neuron as
described in Equation (2). We consider an external input signal
with additive white Gaussian noise

Fai (t) =
√
NfaµF(t)+ σaF(t)ξ

aF
i (t), a = E, I, i = 1, · · · ,Na,

(8)
where ξaFi is a Gaussian white noise of magnitude 1 that is
independent across neurons. Note that the signal mean is of order
O(

√
N), while the variance is of order O(1). This is because if

we continue to use the settings considered before, and view the
feedforward input as coming from Poisson spike trains generated
by O(N) neurons firing at rates of order O(1), and transmitted
through synapses with the strength of order O(1/

√
N), then the

resulting input’s variance is the sum of O(N) number of terms
with the same order as the square of synaptic strengths (O(1/N)),
and is therefore of order O(1). This characteristic is also present
in the later analysis of recurrent inputs.

Next, we examine the recurrent inputs. When the network
enters the balanced state, since the neurons fire asynchronously
(Renart et al., 2010), and the effect of each spike is small, we
could use Gaussian white noise to approximate the variations of
recurrent inputs, and rewrite the second term in Equation (2) as
(Brunel, 2000)

Rai (t) =
√
NµaR(t)+ σaR(t)ξ

aR
i (t), a = E, I, (9)

where

µaR = waErE + waIrI , σ 2
aR = jaEwaErE + jaIwaIrI , (10)

and ξaRi is Gaussian noise of magnitude 1. The terms ξaRi and ξaFi
are independent due to the asynchronous firing state, and can
therefore be merged into one noise source. Thus, we transform
Equation (2) into

Iai (t) = µa(t)+ σa(t)ξ
a
i (t), a = E, I, (11)

where

µa =
√
N(waErE + waIrI + faµF)

σ 2
a = jaEwaErE + jaIwaIrI + σ 2

aF ,
(12)

and ξai is Gaussian white noise of magnitude 1. Also note that the
mean of the signal is consistent with Equation (4), and the mean
and variance are both of orderO(1).

Since the balanced state implies asynchronous firing (Renart
et al., 2010), the noise ξai of different neurons can be seen as
independent. Then, the excitatory (inhibitory) population can
be viewed as i.i.d. samples of the same random process. The
membrane potential distribution of population a, pa(v, t), can
thus be derived from Equation (11). We obtain the Fokker-
Planck equation (Brunel, 2000; Huang et al., 2011)

τa
∂pa(v, t)

∂t
= −µa

∂pa(v, t)

∂v
+

σ 2
a

2τa

∂2pa(v, t)

∂v2
, a = E, I. (13)

A few boundary conditions can be naturally imposed (Brunel and
Hakim, 1999; Brunel, 2000):

pa(v, t) = 0, ∀v > θ . (14)

pa(0
−, t) = pa(0

+, t), (15)

∂pa(0
+, t)

∂v
−

∂pa(0
−, t)

∂v
=

∂pa(θ , t)

∂v
. (16)

∫ θ

−∞
pa(v, t)dv = 1. (17)

In Equation (13), letting ∂pa/∂t = 0, and using the above
boundary conditions, we get the stationary solution

pa0(v) =



























1

θ
[1− exp(−2τaβa)] exp

(

2τav

βa

)

, v < 0

1

θ

[

1− exp

(

−2τa(θ − v)

βa

)]

, 0 6 v 6 θ

0, v > θ

(18)
where βa := σ 2

a /µa is the variance-to-mean ratio (VMR). This
result is confirmed by simulations (Figure 2A).

The population firing rate, i.e., the flux at θ , is

ra = −
σ 2
a

2τ 2a

∂pa0(v)

∂v

∣

∣

∣

∣

θ

=
µa

θτa
. (19)

which is consistent with Equation (6).
It can be seen from Equation (18) that the membrane

potential distribution is determined by the VMR βa. The ideal
noise structure is thus obtained when VMR stays constant
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FIGURE 2 | Simulation results of an uncoupled neural population. (A) The

membrane potential distribution of a neural population receiving independent

white noise-corrupted signals with a constant VMR of 1. The red curve is the

theoretical prediction given by Equation (18), and the blue histogram is the

actual simulation result. (B) The tracking performance of a neural population

depends on the input noise structure. The blue curve is the theoretical

prediction of steady-state firing rate given by Equation (19). The red curve is

the network performance when the VMR is constant (β = 1), which tracks the

input change almost instantaneously. The green curve is the network

performance when the noise variance, rather than the VMR, is constant

(σ ≡ 1), where a significant delay is present. Other parameters are:

N = 2, 500, τ = 1, θ = 1, and µ changing from 1 to 5 at time t = 5.

(Huang et al., 2011), because it ensures that when the external
input µF changes, the system remains in a stationary state where
Equation (19), and thus Equation (7), always holds. In this way,
the population rate can track input changes instantaneously and
linearly encode µF at all times. Figure 2B illustrates how the
response time of the population rate is determined by input
noise structure.

From Equations (12) and (19), we know that when the
network is at the stationary state,

βa =
σ 2
a

µa
=

jaEwaErE + jaIwaIrI + σ 2
aF

θτara
, a = E, I.

From Equation (7), we know rE, rI ∝ µF . For the σ 2
aF term,

if we continue to assume that the external input comes from
the Poisson spike trains of another population of neurons, and
the changes in µF are due to the firing rate of that population,

FIGURE 3 | Simulation results of a homogeneous E-I balanced network

tracking a time-varying input. The network receives a sinusoidal input centered

at µF = 0.1 with an amplitude of 0.05. σ 2
aF/µF = 0.1 remains constant. The

blue curve is the theoretic prediction given by Equation (7). The red curve is the

instantaneous average firing rate of excitatory neurons. The parameters are:

N = 1× 104,qI = 0.2,pab = 0.25, θ = 15, τE = 15, τI = 10, τE,s = 6, τI,s =
5, fE = 3, fI = 2, jEE = 0.25, jEI = −1, jIE = 0.4, jII = −1.

then we have σ 2
aF ∝ µF . Thus, when µaF changes, βa remains

constant. This is the ideal noise structure, and the population
rate of the network can track the external input instantaneously.
In reality, the ideal noise structure can only be approximately
satisfied, but the tracking speed of the network is still reasonably
fast, as confirmed by Figure 3.

It should be pointed out that the neuron model we used in this
section does not have a lower bound to its membrane potential. In
real applications, a reflecting barrier can be imposed at the reset
potential v0 (Fusi and Mattia, 1999). We verify that this does not
affect our main results. The neuron model used in the following
sections has a reflecting barrier.

3. PROCESSING SPATIALLY
HETEROGENEOUS INPUT WITH LOCAL
CONNECTIVITY

In the above, we have studied an E-I balanced neural network
with homogeneous connectivity, which is able to track input
changes rapidly. However, when the external input is spatially
heterogeneous, that is, when different neurons receive inputs of
different magnitudes, this homogeneous connectivity generates
statistically equivalent recurrent inputs for each neuron that
cannot balance the external inputs. The same Ria’s cannot balance
different Fia’s, causing neurons to receive inputs of order O(

√
N)

and fire pathologically. In addition, the random long-range
connections between neurons spread out local activities to the
entire network, which blurs the spatial location of inputs. In
applications, however, we often need to know not only when the
signal occurs but also where it occurs. To solve this problem,
we need to introduce local connectivity in the network. Previous
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studies have shown that if appropriate local connectivity is
included, the network can maintain the balanced firing state as
well as retain the spatial information of the input (Rosenbaum
and Doiron, 2014; Rosenbaum et al., 2017), which enables
the network to achieve both fast tracking and spatial location
encoding. Below, we briefly introduce the balancing conditions
and the response property of an E-I balanced neural network with
local connectivity.

Here, each neuron is assigned a location (x, y) on the plane,
and local connectivity is achieved by a connection probability
that decays with the spatial distance between pairs of neurons
instead of being homogeneous as in the previous sections, so that
neurons closer to each other have higher probabilities to connect
with each other. Specifically, the probability of a connection
between neurons i and j follows

P(j connects to i) ∝ Gb

(

dij
)

, (20)

where Gb is a 2-dimensional Gaussian shaped function whose
spatial spread is determined by the presynaptic population b, and
dij is the distance between the neurons.

Similar to Equation (4), we again utilize the mean-field
approximation. Only this time, we do not average over the
entire population, but rather approximate the neural activity of
population a near location x with the neural field

Ia(x) = Fa(x)+ Ra(x) =
√
N[fa(x)+ waE ∗ rE(x)− waI ∗ rI(x)],

a = E, I, (21)

where the feedforward input Fa(x) =
√
Nfa(x), wab(x) =

qbjabpabGb(x) is the mean connectivity a neuron in population
a receives from neurons in population b at location x, and ra(x)
is the firing rate. The symbol ∗ denotes the spatial convolution
against x.

Similar to section 2.2, we have

waE ∗ rE(x)− waI ∗ rI(x)+ fa(x) ∼ O(1/
√
N), a = E, I. (22)

Let N → ∞ and perform 2-dimensional Fourier transform
against x, and we get

w̃aEr̃E − w̃aI r̃I + f̃a = 0, a = E, I,

where the symbol ˜ denotes the spatial Fourier transform.
This gives

r̃E =
f̃Ew̃II − f̃Iw̃EI

w̃EIw̃IE − w̃EEw̃II
, r̃I =

f̃Ew̃IE − f̃Iw̃EE

w̃EIw̃IE − w̃EEw̃II
. (23)

To ensure that the above Fourier transform exists, it is necessary
that r̃a tends to 0 as the frequency tends to infinity. This requires
that the external input f be “wider” than recurrent input w. This
can be understood intuitively from Equation (22), where we see
convolution makeswab ∗ rb(x) wider thanwab(x), so for the terms
to balance each other, f has to be “wider” than w. Also, to get a
positive stable solution, the following condition has to be met:

f E

f I
>

wEI

wII
>

wEE

wIE
, (24)

where the bar represents spatial average. Also, to make the
solution stable, waE has to be “wider” than waI . For a more
detailed account of these conditions, see Rosenbaum and Doiron,
2014; Pyle and Rosenbaum, 2017.

Rosenbaum et al. (2017) proved the asynchronous firing
state of the network with local connections under the above
conditions. Thus, with the premise of asynchronous firing
satisfied, our results regarding the optimum noise structure in
section 2.3 still holds. Let the total input variance of the neuron in
population a at location x be σ 2

a (x), and the VMR be βa(x), and
we have

σ 2
a (x) = jaEwaE ∗ rE(x)+ jaIwaI ∗ rI(x).

The threshold-linear transfer function gives us Ia(x) = θτara(x),
so we have

βa(x) =
jaEwaE ∗ rE(x)+ jaIwaI ∗ rI(x)

θτara(x)
,

Here the division is point-wise at each x. If βa(x) is constant
at each x for arbitrary external input fa(x), it must be spatially
invariant, that is, βa(x) ≡ βa.We can thusmove the denominator
on the r.h.s. to the left, and perform Fourier transform to get

βaθτar̃a = jaEw̃aE ∗ r̃E(x)+ jaIw̃aI ∗ w̃I(x), a = E, I.

Substituting it in Equation (23), we get

−
jEEw̃EE

jEIw̃EI
=

f̃Ew̃IE − f̃Iw̃EE

f̃Ew̃II − f̃Iw̃EI

,

−
jIIw̃II

jIEw̃IE
=

f̃Ew̃II − f̃Iw̃EI

f̃Ew̃IE − f̃Iw̃EE

.

The above equations cannot be satisfied for all fa, so this network
structure cannot maintain an optimum noise structure and
track any input instantly. However, for input changes that only
concerns magnitude and not the spatial shape, βa(x) can remain
constant and allow instant tracking. For other kinds of input
changes, although instantaneous tracking is not possible, the
response speed of the network is still significantly smaller than
what the neuronal time constant allows, as we shall explore in the
next section.

4. SIMULATION RESULTS

One of the potential applications of the balanced network’s fast
response property is to process Spike Camera data in real time.
Spike Camera is a newly developed neuromorphic hardware that
encodes visual signals with spikes (Dong et al., 2017). It consists
of artificial ganglion cells, each corresponding to a pixel, that
linearly integrate the luminance intensity and fire a spike upon
reaching the threshold, converting continuous visual information
to discrete spikes. This event-based data transmission method
significantly reduces the data volume and allows for a sampling
rate of as high as 40,000 fps. Compared to another extremely
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FIGURE 4 | Schematic of the network structure in the context of processing Spike Camera data.

high-speed camera, the Dynamic Vision Sensor (DVS) (Serrano-
Gotarredona and Linares-Barranco, 2013), which only transmits
changes in light intensity, Spike Camera can directly encode the
absolute value of the luminance signal with its spiking rate while
having an even higher sampling rate. In this section, we explore
the tracking performance of our network under the setting of
processing Spike Camera-like data.

4.1. Network Structure
We use a feedforward layer consisting of 50×50 non-leaky linear
integrate-and-fire neurons to mimic the Spike Camera. Each
neuron in this layer receives visual signal from its corresponding
pixel location, and connects to the balanced network layer
through feedforward connections JaFij , a = E, I. The balanced

network layer consists of 80× 80 excitatory neurons and 40× 40
inhibitory neurons. The neurons of each population is placed
uniformly on a square area with a side length of 1. The neurons
in the feedforward layer obeys Equation (1), and have a neuronal
time constant of τF . To reflect the high sampling rate of Spike
Camera, τF is set to be very small. The connection probability of
the network obeys

P(Jabij = jab/
√
N) = pabGb(d

ab
ij ), b = F,E, I, a = E, I,

where F stands for the feedforward layer, Gb is a 2-dimensional
Gaussian distribution centered at 0 with scale parameter Ab. To
satisfy the balancing conditions, we let AF > AE > AI and make
sure that Equation (24) holds. Since spatial location is discretized
in the network, to keep the total connection probability from
population b to population a at pab, we normalize Gb by letting
∑

i Gb(d
ab
ij ) = 1, ∀j. Figure 4 demonstrates this structure.

4.2. Tracking Time-Varying Stimuli
We test the tracking performance of our network with four
example input stimuli. The first stimulus is the sudden
appearance of an object, modeled as an abrupt change in input
magnitude at the object’s location. Figure 5A shows the network’s
response to this change summarized by the population rate of
the excitatory neurons corresponding to the location of interest.

We see that in this case, the network’s activity tracks the stimulus
change very quickly.

The second stimulus is similar to the previous one, except
that the input magnitude continuously changes in a sinusoidal
manner. Figure 5B shows the tracking performance of the
network. It can be seen that the network can track the
stimulus almost instantaneously, which is expected since βE is
constant here.

The third stimulus is an object moving quickly from left to
right in the field of vision, which can be seen as a model of a
typical motion tracking task.We use the coordinates of the center
of the circular object to represent the location of the stimulus.
The coordinates calculated from the Spike Camera data and the
balanced network activity are then compared in Figures 5C,D.
The network activity closely tracks the input, and the spatial
information is preserved.

The last stimulus is similar to the previous one, except
that the motion is circular instead of linear, which implies a
constantly changing velocity. The same method is used to locate
the stimulus, and the results are shown in Figures 5E,F. The
performance is again very good.

4.3. Trackable Speeds
To explore the extent of the network’s tracking ability, we next
evaluate the temporal and spatial lags of the response. We first
change the frequency of the sinusoidal signal in the second task
in the previous section (Figure 5B) and calculate the phase lag
of the balanced network’s response. As can be seen in Figure 6A,
while the phase lag |φ| increases when the signal frequency 1/T
is higher, the delay is still very small overall.

Next, we vary the speed of the object’s circular motion in the
fourth task in the previous section (Figures 5E,F) and evaluate
the spatial phase lag of the object location decoded from the
balanced network activity compared to that of the Spike Camera
layer. As shown in Figure 6B, the tracking error is small even
when the object is moving very quickly.

Since the encoding happens at the population level, input
changes have to be propagated through the population to be
successfully tracked, and this process is mediated by synaptic
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FIGURE 5 | Performance of the network with local connections in response to time-varying stimuli. (A) Network response to the sudden appearance of an object. The

Spike Camera layer receives a disc-shaped visual input centered at (0.25, 0.5) with a radius of 0.05, whose magnitude changes abruptly from 1.5 to 15 at t = 75. A

background noise is added. The blue curve is the firing rate of the area corresponding to the visual input in the Spike Camera layer. The red curve is the rate of the

excitatory neurons at the same area in the balanced network layer, which is normalized for better comparison with the blue curve. (B) Same as panel (A), except that

the input amplitude follows the sinusoidal function µ(t) = A(sin(B ∗ 2π t/T ))+C,A = 30,B = 3/2,C = 30. (C,D) The stimulus is an object moving across the visual field

in constant velocity. The object has the same shape as panels (A,B), with a magnitude of 10. Panels (C,D) show the tracking of the x and y coordinates, respectively.

The blue curve is the object location decoded from the activity of the Spike Camera layer, and the red curve is that of the balanced network layer. (E,F) Same as

panels (C,D), except that the stimulus moves counterclockwise on a circle in constant speed. The network parameters are θ = 15, τF = 1, τE = 15, τI = 10,

τF,s = τE,s = 5, τI,s = 2.5,pEF = 0.05,pIF = 0.025,pEE = 0.02,pEI = 0.08,pIE = 0.06,pII = 0.08,AF = 0.05,AE = 0.02,AI = 0.02, jEF = 140, jIF = 93.3, jEE = 80,

jEI = −320, jIE = 40, jII = −320.

interactions. This lead us to suspect that the synaptic time
constants τb,s could be a limiting factor for tracking performance.
To study this, we varied τb,s in both the temporal and
spatial tracking tasks. Indeed, as can be seen in Figure 6, a
shorter synaptic time constant leads to better performance. In
practice, the shape of the synaptic current can be designed
to have a τb,s as small as possible. The real constricting
factor is the synaptic transmission delay, which corresponds

to the communication speed of the hardware, but this is
expected to be insignificant given the highly compact nature of
neuromorphic chips.

5. DISCUSSION AND CONCLUSION

This paper proposed an algorithm for fast response in
neuromorphic systems based on E-I balanced networks,
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FIGURE 6 | Quantifying the network’s performance with temporal and spatial phase lag. To examine the effect of the synaptic time constant on tracking performance,

we define τb,s = kτb,s0,b = F,E, I, where τb,s0 is the set of parameters used in Figure 5. (A) Temporal phase lag in the second task (Figure 5B) with different signal

periods. (B) Spatial phase lag in the fourth task (Figures 5E,F) with different circular motion periods. Ten trials for each data point. Error bars show standard deviations.

systematically analyzed its fast response mechanism, and
introduced local connections to maintain balance and retain
spatial information in the face of spatially heterogeneous inputs.
Simulations verified that the network indeed performs well with
rapidly changing input stimuli.

There are still some questions left to explore. For instance,
we have mentioned that the network cannot keep an optimal
noise structure at all times, and thus the membrane potential
distribution will change with the input. A study of the transient
dynamics during such changes could help us further improve the
network performance. As another example, notice that most of
the theoretical analyses in the paper were conducted in the limit
of N → ∞. In real-world applications, we often have to track
small objects, during which the number of neurons encoding it
usually does not exceed a few hundred. Studying the finite-size
effect could help us better understand the network dynamics.

Although we mainly discussed the case where the input comes
from Spike Camera, the network structure we proposed is not
limited to processing visual signal. The “location” of neurons can
also correspond to tuning to different variables or representation
of abstract features. To achieve real-time processing of high-
frequency data, the fast response property is required for
each computational process. There has been a lot of research
discussing how to implement various computations on top of
a balanced network (Barrett, 2012; Hansel and van Vreeswijk,
2012; Litwin-Kumar and Doiron, 2012; Lim and Goldman, 2014;
Denève and Machens, 2016; Pyle and Rosenbaum, 2017). The
asynchronous irregular state can be taken as a model of the
spontaneous state in the cortex. With the spontaneous state as
a global attractor, and the specific computations and memories
as input-sensitive local attractors (Amit and Brunel, 1997;
Litwin-Kumar and Doiron, 2012), the chaos in the network’s
balanced firing state can allow it to respond to specific inputs
very rapidly and initiate the required computation. Besides
the fast response property, the balanced state also has other
computational advantages such as stochastic resonance (Barrett,
2012).

Neuromorphic computing systems colocalize computation
and memory by mimicking neural structures like neurons

and synapses. This allows it to circumvent the von Neumann
bottleneck, granting it enormous potentials in processing speed
(Indiveri and Liu, 2015). There has been a lot of work
investigating possible mechanisms for fast neural response (e.g.,
Bharioke and Chklovskii, 2015; Yu et al., 2015) which could
potentially complement the processing speed of neuromorphic
systems, and the balance of excitation and inhibition we explored
here is one of them. The model we proposed here, with
its simple neuron model and connectivity structure, can be
readily implemented in hardware and serve as a fast-responding
module integrated in a general neuromorphic system for rapid
information processing. This paper thus lays the groundwork
for realizing various kinds of fast computation using balanced
networks, especially in neuromorphic systems.
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Visual information processing in the brain goes from global to local. A large volume of

experimental studies has suggested that among global features, the brain perceives the

topological information of an image first. Here, we propose a neural network model to

elucidate the underlying computational mechanism. The model consists of two parts.

The first part is a neural network in which neurons are coupled through gap junctions,

mimicking the neural circuit formed by alpha ganglion cells in the retina. Gap junction

plays a key role in the model, which, on one hand, facilitates the synchronized firing

of a neuron group covering a connected region of an image, and on the other hand,

staggers the firing moments of different neuron groups covering disconnected regions

of the image. These two properties endow the network with the capacity of detecting

the connectivity and closure of images. The second part of the model is a read-out

neuron, which reads out the topological information that has been converted into the

number of synchronized firings in the retina network. Our model provides a simple yet

effective mechanism for the neural system to detect the topological information of images

in ultra-speed.

Keywords: global first, topological perception, gap junction, electrical synapse, subcortical pathway, ipRGCs,

alpha RGCs, superior colliculus

1. INTRODUCTION

It has been a long-standing debate in the field concerning whether feature analysis in visual
information processing goes from local to global, or from global to local (Palmer, 1999; Chen,
2005b). The former claims that the primitives of visual processing are local features of objects.
This view has successfully explained a large number of experimental phenomena (Hubel and
Wiesel, 1959; Treisman and Gelade, 1980; Marr, 1982; Hubel, 1988; DiCarlo et al., 2012), but failed
to account for others where visual systems show superior sensitivity to global features, e.g., the
topological perception (Chen, 1982, 2005b), the configural-superiority effect (Weisstein andHarris,
1974; Navon, 1977; Pomerantz et al., 1977), the holistic processing of face and objects (Farah et al.,
1998; McKone et al., 2007; Goffaux et al., 2010; Taubert et al., 2011; Bona et al., 2016), and Gestalt
psychology (Wagemans et al., 2012). On the other hand, the global-to-local view states that in
the visual processing, global features of objects are processed first, which subsequently guide the
processing of local features (Hegdé, 2008).

In the framework of global-to-local processing, Chen et al. went one step further to argue that
the global nature of visual perception can be described by topological invariants and that the global
precedence actually is topological primacy (see review Chen, 2005b). Topology is defined as the

16
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geometric properties which are preserved under continuous
transformations, such as stretching and bending (Armstrong,
2013), and important topological properties include connectivity
and the number of holes. Two shapes are called topologically
different, as long as they differ in either the connectivity or
the number of holes (Figure 1). Over decades, accumulating
evidences on adults, infants and animals have demonstrated
that visual systems are highly sensitive to topological features.
The pioneering work of Chen (1982) first revealed that in
the adult human visual system, the topological perception is
prior to perceptions of other geometrical properties. Specifically,
under 5-ms stimulus presentation, he found that subjects could
discriminate a disc vs. a ring (which are topologically different)
with a much higher accuracy than a disc vs. a square or a
triangle (which are topologically same but different in other
geometrical properties). Later, in other tasks, including multiple-
object tracking (Zhou et al., 2010) and long-range apparent
motion perception (Zhuo et al., 2003), Chen et al. further
confirmed that the human visual perception is indeed sensitive
to the connectivity or the hole of stimuli. The studies on
infants also support the precedence of topological perception
(Piaget and Inhelder, 1956; Darke, 1982; Chien et al., 2012;
Kibbe and Leslie, 2016). It was found that newborns, even as
young as few days old, display the preference of using the
topological information to discriminate objects (Turati et al.,
2003). Furthermore, animal studies provide more evidence to
support the notion that topological perception is primitive in
the visual processing. For example, Chen et al. (2003) found
that honey bees with small brains have the ability to distinguish
patterns that are topologically different after only a few trials
learning, and they could even generalize the learned figure
to novel patterns never seen before. Experiments from other
researchers also demonstrated that chicks (Versace et al., 2016)
and pigeons (Watanabe et al., 2019) use topological features as
cues for discriminating objects.

Altogether, it suffices to say that topological properties
are essential for visual perception, and very likely, they are
the primitives of visual perception. Computationally, using
topological features to represent and characterize objects has
advantages, as it provides a relatively stable way to represent
objects under transformations like stretching, rotation, or

FIGURE 1 | Key topological properties. (A) Images a and b are topologically different in the property of connectivity. (B) Images a and b are topologically different in

the number of holes.

distortion. Although it is coarse, topology discrimination enables
animals to detect the presence of objects rapidly without detailed
local feature analysis, and this is crucial for animals to survive in
natural environments.

Despite topological perception has been well-documented in
the literature, the detail mechanism of how the neural system
implements it remains largely unclear. It is a known fact that the
conventional artificial feedforward neural network has difficulty
to recognize the topology of images (McClelland et al., 1987;
Minsky and Papert, 1987; Wang, 2000; Chen, 2005b). Recently,
a number of experimental findings indicate that topology
perception in the brain is carried out via the subcortical pathway
from retina to superior colliculus (SC) and then to higher cortex.
First, electrophysiological studies on retinal ganglia cells (RGCs)
have revealed that there exists a type of RGCs, called alpha
RGCs, which are specialized to encode the global features of
stimuli (Neuenschwander and Singer, 1996; Roy et al., 2017).
Specifically, they found that the presentation of a contiguous
stimulus, rather than disjointed local features, produced long-
range synchronization among widely separated alpha RGCs
(Neuenschwander and Singer, 1996; Roy et al., 2017), and
importantly, the occurrence of this kind of synchronization relies
on gap junctions (also called electrical synapses) between neurons
(Völgyi et al., 2013; Roy et al., 2017). Second, psychophysical
and neuroimaging studies on humans have indicated that SC,
rather than the primary visual cortex (V1), plays an important
role in topological perception. For example, Turati et al. (2003)
showed that despite of their immature visual cortex, newborns
of 2–3 days old were able to detect and discriminate perceptual
similarity based on the hole feature. Also, it was found that
aging (Meng et al., 2019) and disruption of V1 (Du et al.,
2011) significantly reduced human’s ability of discriminating
local geometric properties, but did not affect their topological
discrimination. The neuroimaging study also showed that the
neural responses in SC to hole stimuli were greater than that to
no-hole stimuli under the low awareness condition (Meng et al.,
2018). These findings are consistent with the electrophysiological
studies on SC, which unveil that the functional role of neurons
in the superficial layers of SC is to encode whether there is a new
object in their receptive fields (Rizzolatti et al., 1980; Girman and
Lund, 2007; Ito and Feldheim, 2018), and notably, their neuronal
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responses to visual stimuli are irrelevant to specific features, such
as direction, orientation or shape (Marrocco and Li, 1977; White
et al., 2017a,b).

Inspired by the above experimental findings, we propose a
simple computational model for topological perception in the
brain. Specifically, the model consists of two parts. The first
part is a neural network in which neurons are connected via
gap junctions, and it models the neural circuit formed by alpha
RGCs in the retina (Neuenschwander and Singer, 1996; Völgyi
et al., 2013; Roy et al., 2017). The second part is a read-out
neuron, which suggests a way for SC and higher cortical neurons
(Marrocco and Li, 1977; Rizzolatti et al., 1980; Girman and Lund,
2007; White et al., 2017a,b; Ito and Feldheim, 2018) to read out

the topological information extracted by the retina network. We
elucidate the computational properties of the proposed network
model, and demonstrate that the model is effective and robust for
detecting holes in various visual stimuli as observed in human
psychophysical experiments.

2. MATERIALS AND METHODS

We consider a two-layer spiking network model (see
Figures 2A,B for the network architecture illustration). The
first layer is the encoding layer, which is composed of 80 × 80
encoding neurons (ENs), and the second layer is the read-out
layer, which consists of only one read-out neuron (RON). RON

FIGURE 2 | The neural network model. (A) The model is composed of two layers. The first layer is the encoding layer which receives external inputs, and its function

is to encode the connected regions in an image. The second layer is the read-out layer, whose function is to read-out neuronal activity patterns in the encoding layer.

Notably, all neurons in the first layer project excitatory synapses to the neuron in the second layer. (B) Neurons in the encoding layer are uniformly distributed in the

space and are coupled with eight nearest neighbors with gap junctions. (C) Simulation of a pair of electrically coupled neurons N0 and N1. The top panel shows the

external input I to N0, and the bottom panel presents the voltage dynamics of the neuron pair. N0 exhibits excitation and inhibition effects on N1 at different stages of

the neuronal dynamics. At the A → B0 → B1 phase, N0 shows an excitatory effect to N1 (see N1 rise phase A → B2 → B3); while at B1 → C0 phase (refractory

period), N0 exhibits a strong inhibitory effect to N1 (see N1 decay phase B3 → C1). (D) A full circle stimulus, containing two connected regions. (E) Parameter-space

analysis of response behaviors of the network when the full circle stimulus (D) is presented. The phase plane shows three different spiking patterns which depend on

the coupling strength J and spikelet factor γ . For each pair of (γ , J), the result is obtained by averaging over 10 trials. (F) The AF behavior of the network. J = 0.5 and

γ = 0.05. (G) The SPS behavior of the network when the spikelet factor γ and the coupling strength J are too strong. J = 3.0 and γ = 0.15. (H) The TPS behavior of

the network. J = 6.0 and γ = 0.25. (F–H) The top panel shows the raster plot of spikes in the encoding layer, while the bottom panel the spikes of RON. The

abscissas and ordinates of both panels are time and neuron index, respectively. Colors indicating neurons in different groups. Specifically, coral denotes neurons on

the circle, while blue denotes neurons on the background.
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receives excitatory projections from all ENs, and hence can read
out synchronized activities in the encoding layer.

2.1. Neuronal Dynamics
For simplicity, all neurons in the model are implemented as leaky
integrate-and-fire (LIF) models. The encoding layer receives
the external inputs, and each neuron is connected to its eight
neighboring neurons by electrical synapses (Figure 2B). The
dynamics of an encoding neuron is given by

τ
dVi(t)

dt
= −Vi(t)+

∑

j∈NG(i)

I
gap
ij (t)+ Iexti (t), (1)

where the subscript i = (1, ...,N) refers to the neuron index, Vi

the membrane potential of the neuron, τ the membrane time
constant, I

gap
ij the current from neuron j transmitted through gap

junction, NG(i) the set of neurons which are electrically coupled
with the neuron i, and Iext the external current from the image.
Whenever Vi(t) reaches a fixed threshold Vth (i.e., Vi(t) ≥ Vth),
the neuron generates a spike and its potential is reset to the
rest value Vreset , followed by the refractory period τ arp. At the
onset of the simulation, membrane potentials of all neurons are
randomly initialized.

The current mediated by electrical couplings is decomposed
into two parts,

I
gap
ij (t) = I

gap,sub
ij (t)+ I

gap,sup
ij (t), (2)

where I
gap,sub
ij denotes the sub-threshold current, and I

gap,sup
ij the

supra-threshold current, called as spikelet. The sub-threshold
current mediated by electrical coupling is given by,

I
gap,sub
ij (t) = J[Vj(t)− Vi(t)], (3)

where J is the coupling strength. The supra-threshold
contribution is assumed to be proportional to the gap junction
strength J and scaled by a spikelet factor γ , which is written as,

I
gap,sup
i (t) = γ Jδ(t − t

spike
j ), (4)

where t
spike
j represents the spiking moment of neuron j and γ

is a parameter controlling the contribution of a spike to the
increment of neuronal potential.

The external current Iexti , which conveys the luminance level
of the image, is modeled as a continuous current with a Gaussian
white noise, which is written as,

Iexti (t) = µext
i + σ 2ηi(t), (5)

where µext is the mean of the external input, σ 2 the amplitude
of input fluctuations, and ηi(t) satisfies

〈

ηi(t)
〉

= 0 and
〈

ηi(t)ηj(t
′
)
〉

= δijδ(t − t
′
). Usually, the amplitude σ 2 in our

simulations is set to be a value, so that the noise amplitude is
around 10% compared to the mean external input.

The second layer in the model is a read-out neuron (RON)
(see Figure 2A), which suggests a possible way for SC neurons
to read out the topological information of an image that has
been extracted by the encoding layer (see more discussions
in Discussion section). Specifically, we consider RON receives
projections from all neurons in the encoding layer, whose
dynamics is given by

τR
dVR(t)

dt
= −VR(t)+ IchemR (t)+ InoiseR (t), (6)

where VR is the potential of RON, τR the time constant, IchemR
the chemical synaptic current from the encoding neurons, and
InoiseR the background noise. Specifically, the current transmitted
via chemical synapses is given by

IchemR (t) =
∑

j∈NC

JRδ(t − tj − D), (7)

where JR denotes the chemical synaptic strength, tj the spiking
moment of the presynaptic neuron j, NC the set of neurons in
the encoding layer, and D the transmission delay of chemical
synapses. For simplicity, we omit the rise and decay phases of
post-synaptic currents. Since the function of the read-out layer
in our model is coincidence detection, we set τR to be sufficiently
small, such that RON will fire only when a sufficient number of
neuronal spikes simultaneously arrive in a short-time window.
Additionally, the background noise is set to be

InoiseR (t) = µnoise
R + 1ηi(t), (8)

with µnoise
R and 1 are, respectively, the mean and the variance of

the noise.

2.2. Simulation Experiments
In all simulations, the dynamical equations are integrated by
using the Euler–Maruyama method with a fixed time-step
dt = 0.01 ms. The network dynamics was simulated using
Python, and the corresponding code the corresponding code can
be available in the GitHub: https://github.com/chaoming0625/
Gap_Junction_and_Topology. Parameters used in numerical
simulations are reported in Table 1.

3. RESULTS

3.1. The Neural Network Model With Gap
Junction
In our proposed model (Figures 2A,B), gap junction plays a key
role for topological detection. The neuronal interaction mediated
by gap junction exhibits two prominent properties, as illustrated
in Figure 2C. Firstly, once a neuron fires, the spike generated by
it will increase the potentials of the connected neurons rapidly,
and this tends to synchronize coupled neurons in the network.
Secondly, after firing, the neuron falls into the refractory period
with a deep low potential, which induces strong negative currents
to the connected neurons, and this tends to inhibit the firing of

coupled neurons [note that I
gap,sub
ij (t) = −Vi(t), when Vj =
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TABLE 1 | Parameter of neurons, synapses, and simulation protocol.

Parameters of the encoding neurons Values

Vth—Spike emission threshold 10 mV

Vreset—Reset potential 0 mV

τ—Membrane time constant 5 ms

τ arp—Absolute refractory period 3.5 ms

σ 2—Variance of external current 1.0–2.0 mV

Parameters of the read-out neuron Values

Vth—Spike emission threshold 10 mV

Vreset—Reset potential 0 mV

τR—Membrane time constant 0.05 ms

τ arp—Absolute refractory period 0.5 ms

µnoise
R —Mean background noise 4.0 mV

1—Variance of background noise 0.5 mV

Parameters of electrical couplings Values

J—Gap junction strength 3.0

γ—Spikelet factor 0.15

Parameters of chemical synapses Values

JR—Chemical synaptic strength 0.15 mV

D—Chemical transmission delay 0.1 ms

Parameters of the stimuli Values

Iextb —Value of black stimulus 20.0 mV

Iextg —Value of gray stimulus 12.0 mV

0]. As explained below, these two salient properties give rise to
characteristic network responses which are differentiable with
respect to connected and non-connected regions in an image.

As an example, consider a full black circle as in Figure 2D

is presented to the network. The whole image consists of two
connected regions, the circle and the background, which have
different luminance levels. In our model, neurons covering a
connected region (having the same luminance level) receive the
same external input. We find that the network exhibits three
response behaviors depending on the properties of gap junction
(Figure 2E), which are: (1) Asynchronous Firing (AF, Figure 2F),
i.e., all ENs fire independently and irregularly. This happens
when both the spikelet factor γ and the coupling strength J
are too small, and the neuronal interactions are very weak,
leading to that neuronal firings are largely driven by external
inputs with independent noises; (2) Single Population Spike (SPS,
Figure 2G), i.e., all ENs are synchronized to generate a single
population spike. This happens when the spikelet factor γ and
the coupling strength J are both too large. In such a parameter
regime, the synchronization effect of gap junction is too strong,
leading to that all ENs are synchronized irrespective to the
different external inputs they receive. (3) Two Population Spike
(TPS, Figure 2H), i.e., ENs are synchronized but meanwhile
clustered to generate two population spikes depending on the
external inputs they receive. This happens when the spikelet
factor γ and the coupling strength J have appropriate values,
so that, on one hand, the synchronization effect of gap junction
ensures that neurons covering the same connected region
(receiving the same external input) are synchronized, and, on the
other hand, the inhibitory effect of gap junction ensures that the

synchronized firings of neuron groups covering different regions
(having different luminance levels and hence receiving different
external inputs) are well-separated in time. Computationally, this
is due to that the neuron group receiving the larger external input
will generate synchronized firing first; after that the neurons fall
into the refractory period, and they will suppress and delay the
synchronized firing of the other neuron group. To accomplish
the topological detection task, we set the parameters of gap
junction in the regime of TPS, such that the network can on
one hand, generate synchronous firings to detect connected
regions, and on the other hand, stagger synchronous firings of
disconnected regions.

The synchronized responses of ENs can be easily detected
by RON. Due to the small time constant, RON only responds
to synchronized inputs from the encoding layer. As shown in
Figures 2F–H (see the lower panels), each population spike of
ENs generates a single spike of RON.

3.2. Topological Detection of the Network
The topology of an image has two fundamental features,
connectivity and closedness (the existence and the number of
holes). It is straightforward to understand that our model has
the capability of detecting the connectivity of an image. In
response to the inputs from a connected region, the responses
of the neurons covering the connected region (they receive
the similar external inputs) will become highly synchronized
due to their electrical couplings (Bennett and Zukin, 2004),
which provides a way to encode the connectivity of the
image. This is also supported by the experimental evidence,
which found that long-range synchronization occurred among
widely separated alpha RGCs with electrical couplings in
response to a continuous stimulus, rather than to disjointed
local features (Neuenschwander and Singer, 1996; Roy et al.,
2017).

Therefore, the focus of the present study is to demonstrate that
our network model has the capability of detecting the existence
and the number of holes in an image, another key property
of topology (Pomerantz et al., 2003; He, 2008; Casati, 2009;
Bertamini and Casati, 2015; Zhang et al., 2019). The stimuli
we used, as shown in Figures 3A,D,G, are adapted from the
materials in the human and animal experiments (Chen, 1982,
2005b; Chen et al., 2003; Chien et al., 2012; Zhang et al.,
2019), where Figure 3A is a solid disk without hole, Figure 3D
a stimulus containing a single hole, and Figure 3G a case
of two holes. Figures 3B,E,H are the corresponding network
responses to the stimuli, and Figures 3C,F,I are the illustrations
of synchronized neuronal responses in ENs.

Overall, we show that the number of holes in an image is
encoded by the number of synchronized responses (population
spikes) in the encoding layer, which are further readout by
the number of spikes of RON. For example, presentation of
Figure 3A produces two population spikes of ENs and two
spikes of RON (Figures 3B,C), while presentation of Figure 3D
produces three population spikes of ENs and three RON spikes
(Figures 3E,F). Notably, although the stimulation value (the
luminance level) of the hole (inside the ring in Figure 3D)
is the same as that of the background (outside the ring in
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FIGURE 3 | Topological detection of the network. (A,D,G) The images with different number of holes. (A) contains no hole, (D) one hole, and (G) two holes. (B,E,H)

The evolution of network activity. (B,E,H) Are results when stimuli (A,D,G) are presented, respectively. In each subfigure, the top panel shows the raster plot of the

encoding layer, and the bottom the dynamics of the membrane potential of RON. The abscissas of both panels are time, and the ordinates of the top and bottom

panel are neuron index and membrane potential, respectively. (C,F,I) The spatial mapping of EN spikes. (C,F,I) corresponds to (B,E,H), respectively. Neurons in the

same group are shown in the same color with (B,E,H). Pixels in the white color denote neurons not firing in the whole process. (J–L) The averaged membrane

potential traces of neurons inside, on or outside of the ring when stimuli (A,D,G) are presented, respectively. The orange line corresponds to the neurons on the ring,

the blue line the neurons on the background, and the coral and orchid lines the neurons on the holes. Parameters: J = 3.0 and γ = 0.15.

Figure 3D), the synchronized response of the neurons covering
the hole (the orange spikes in Figures 3E,F) always lags behind
that of the neurons covering the background (the blue spikes
in Figures 3E,F). This property comes from that compared
to the neurons outside the ring, the neurons inside the ring

receive stronger inhibition from the neurons on the ring (see
more detailed analysis in the below). Moreover, we observe
that presentation of Figure 3G (containing two holes) reliably
produces four population spikes of ENs and four RON firings
(Figures 3H,I).
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To reveal the underling mechanism, we look at the dynamics
of neurons inside, on, and outside the ring. Results are shown in
Figures 3J–L. First, we see that because of receiving a stronger
stimulation than those on the background or inside the ring, the
neurons on the ring (black pixels) generate the first population
spike; afterwards those neurons fall into a deep and relatively
long-lasting refractory period (see the voltage trace in khaki color
illustrated in Figures 3J–L). Second, during the refractory period
of ring neurons, while the neurons inside and outside the ring
all receive inhibitions from the ring neurons, inside neurons tend
to receive stronger inhibitions than outside ones (see the voltage
traces in blue and orange color shown in Figure 3K). Therefore,
under the condition of receiving the same level of stimulation, the
neurons inside the ring always generate a population spike before
the neurons outside the ring. Third, for an image containing two
holes having exactly the same size and surroundings, although
the neurons inside two holes receive the same external input and
lateral inhibition from surrounds, they still tend to fire at different
moments due to receiving independent noises (see the average
voltage dynamics in orange and orchid color in Figure 3L).

Notably, because of noises, the network response varies
over trials. In the case of discriminating two holes from one
hole, we observed a successful rate of 70%. This probabilistic
behavior is in agreement with the observation of human
psychophysical experiments, which showed that the topological
detection of humans is also probabilistic when images are
only briefly presented in <10 ms, e.g., the successful rate of
discriminating hole from circle is about 64.5% (Chen, 2005b).
For visualizing the detailed spatio-temporal voltage dynamics

when the stimuli (Figures 3A,D,G) are presented, please refer to
Supplementary Videos 1–3. Note that, for simplicity, we have
only presented the results for images with shape luminance level
changes. We check that our model works equally well when
the luminance intensity of the image changes smoothly (see
Supplementary Figure 1).

In summary, we demonstrate that the synchronization and
lateral inhibition effects mediated by gap junctions enable the
network to encode the number of holes in an image into different
numbers of population spikes of ENs, which provides a reliable
cue for the neural system to read out the topology information of
an image.

3.3. Topological Detection Is Invariant to
Variations of Shape and Spatial Frequency
To confirm that our network model can really detect
the topological property of closedness, we vary the
stimulus to various forms, while keeping their topological
property unchanged.

From our intuitive experience, circle, square, triangle, and
cross are quite different figures, but from the viewpoint of
topology, they are equivalent. Therefore, the characteristic of
network responses for topological detection should be the same.
We first conduct experiments on a solid (Figure 4A) and a
hollow squares (Figure 4D), and find that the network responses
are exactly the same as when the disk (Figure 3A) and the
ring (Figure 3D) are presented, that is, two population spikes
of ENs and two RON spikes are generated for the stimuli
without hole (comparing Figures 3B,C with Figures 4B,C),

FIGURE 4 | Topological detection with respect to shape variation of images. (A,D) Image of square shape. (A) A solid square. (D) A hollow square. (B,E) Population

spikes of ENs (top panels) and the voltage dynamics of RON (bottom panels). (C,F) Spatial activities of EN neurons. Figure legends are the same as in Figure 3.

Parameters: J = 3.0 and γ = 0.15.
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and three population spikes of ENs and three RON spikes
are generated for the stimuli with one hole (comparing
Figures 3E,F with Figures 4E,F). Furthermore, we perform
experiments on a solid triangle (Supplementary Figure 2A),
a hollow triangle (Supplementary Figure 2B), and a cross
(Supplementary Figure 2C), and get the same result. Overall,
these results confirm that the network response varies with the
topology, rather than the shape of the stimulus.

Based on the finding of Carlson et al. (1984) that geometrical
illusions are not primarily a consequence of low spatial
frequencies and the suggestion of Chen (2005a) that low spatial
frequencies are not likely to be critical to perceptual organization
in general, we try to figure out whether the spatial frequency
will affect the network behavior. Considering that the stimuli

used above are all in low spatial frequencies (LSF), we construct
new stimuli (Figures 5A,D,G) in high spatial frequencies (HSF),
which are adapted from thematerials used in human experiments
(Carlson et al., 1984; Chen, 2005b). Figures 5A,D are made of
exactly the same four line segments, while they are topologically
different. We find that the network response doesn’t vary with
the spatial frequency. Specifically, the stimulus without hole
persistently produces two population spikes of ENs and two
RON spikes (Figures 5B,C), whereas the stimulus with one hole
reliably generates three population spikes of ENs and three
RON spikes (Figures 5E,F). We also try stimuli of triangle-
shape and obtain the same result, see Supplementary Figure 3.
Furthermore, we generate a stimulus composed of discrete dots
(Figure 5G), which is similar to the figures in Carlson et al.

FIGURE 5 | Topological detection with respect to variations of spatial frequency of images. (A,D,G) Images with different spatial frequencies. (A) An image made of

four line segments without hole. (D) An image made of the same four line segments as in (A) but containing one hole. (G) An image shaped like (D) but comprised of

discrete dots. (B,E,H) Population spikes of ENs (top panels) and the voltage dynamics of RON (bottom panels). (C,F,I) Spatial activity of EN neurons. Figure legends

are the same as in Figure 3. Parameters: J = 3.0 and γ = 0.15.
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(1984) and is free of low spatial frequencies. We observe that
the network model displays the same response property as when
the continuous line is presented (comparing Figures 5H,I with
Figures 5E,F). Altogether, these results indicate that the hole
detection property of our model is rather robust to the variation
of spatial frequencies of images.

In above, we demonstrate that the topological detection of
our network model is rather robust to the variations of shape
and spatial frequency of images. It is also straightforwardly
understandable that our network model is invariant with respect
to the position shift, rotation, and distortion of an image, as
they all generate the same number of population spikes of ENs
depending only on the number of holes in the image. Thus,
our network model does have the capability of detecting the
topological property of an image.

3.4. Sensitivity of Topological Detection
In above, we have demonstrated that our network model is able
to detect the existence of holes in an image, i.e., the closure
of a region. In practice, there always exists a threshold of gap
below which we perceive disconnected segments as connected.
Therefore, we are going to investigate how our network model
is sensitive to the gap size in topological detection. We present
incomplete rings with different degrees of breach (Figure 6A)
to the network, and observe that with the small size of breach,
the network outputs three RON spikes (Figures 6B,C). However,
when the breach size θ gradually increases, the network suddenly
“recognizes” that the image has no hole (see Figure 6D), i.e.,
ENs only generate two population spikes (Figures 6E,F). This
is straightforwardly understandable, as the breach increases,
the activities of the neurons inside and outside the ring

FIGURE 6 | Sensitivity of topological detection. (A) An example of a ring with a breach, whose degree is θ . θ = 40◦ is shown. (B,C) The network activity in response

to a ring with a small breach, where ENs generate three population spikes and RON produces three spikes. J = 3.0, γ = 0.15, θ = 40◦. (D) The average number of

RON spikes vs. the breach size. The transition occurs sharply around 50◦. The results are obtained by averaging over 20 trials. (E,F) The network activity in response

to a ring with a big breach, where ENs generate two population spikes and RON produces two pulses. J = 3.0, γ = 0.15, θ = 54◦. (G–I) The response properties of

the network with a varied coupling range, where each neuron is connected to its four nearest neighbors. (G) The image of Figure 5D is presented. (H,I) The image of

Figure 5G is presented. Parameters: J = 3.0, γ = 0.20. (B,C,E–I) Figure legends are the same as Figure 3.
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become more and more synchronized due to more and more
direct interactions between them, and eventually the population
spikes they generate merges to a single one (see Figures 6E,F).
Interestingly, we find that this transition occurs sharply, which
is around the breach size of 50◦ at the current parameter
setting (see Figure 6D). We confirm that although the value of
the transition point may vary with the parameters, this sharp
transition behavior always holds (see Supplementary Figure 4).
This property can serve as a prediction of our model testable in
human psychophysical experiments.

Furthermore, we test how the coupling range of gap junction
affects the sensitivity of topological detection. We construct a
network model in which each neuron is connected with its
four nearest neighbors. We first confirm that the model has
the capability of detecting a hole in an image, see the network
response in Figure 6G when the stimulation of Figure 5D is
presented. However, we also observe that when the image
composed of dotted lines as shown in Figure 5G is presented, the
network is unable to generate synchronous firing, but is rather
in the state of irregular firing (see Figure 6H), and the network
response can no longer stagger the hole and the background. This
result tells us that the coupling range of gap junctions between
neurons strongly affects the sensitivity of topological detection
in reality.

4. DISCUSSION

In the present study, we have proposed a spiking neural network
with gap junction for topological detection. Our results show
that gap junction-coupled neural networks are intrinsically
sensitive to the topological properties, such as connectivity,
closure (Figures 3–5) or semi-closure (Figure 6) of an image.
A prominent computational property of gap junction is that it
promotes neuron synchronization, which endows the network
with the ability of detecting connected regions in an image.
Another prominent computational property of gap junction is
that it mediates strong lateral inhibition between connected
neurons after one of them fires. Together with the fact that
neurons within a closure receive much stronger inhibition than
neurons outside, the network is able to stagger the moments of
neuron firings within and outside a closure, and hence produces
different numbers of synchronized firings corresponding to an
image having or not having holes. Overall, our model provides
a simple yet effective mechanism for topological detection
in neural systems. Importantly, our model captures a key
behavioral characteristic of object vision, i.e., the ultra-speed
object detection (Thorpe et al., 1996; Kirchner and Thorpe, 2006).
It has been suggested that the human visual system has the
ability of getting “gist” of a scene when the stimulus is presented
as briefly as 10 ms (Hegdé, 2008). In the case of topological
perception, Chen (1982) demonstrated even the stimulation
duration is <10 ms, adult humans are able to discriminate
the global topological difference. Our proposed model provides
a simple mechanistic explanation for this kind of ultra-speed
topological perception: a gap junction-coupled neural network
can rapidly group those distant neurons covering the same

connected region and meanwhile segregate different neuron
groups covering different regions, forming a stable topological
visual representation in <10 ms.

4.1. Biological Plausibility
Our model uses electrical synapses to synchronize distant
neurons corresponding to a connected region. This is consistent
with the recent experimental works which found that gap
junction is important for long-range synchronization among
neurons over long distances (Neuenschwander and Singer,
1996; Völgyi et al., 2013; Roy et al., 2017). Particularly, Roy
et al. (2017) found that electrical couplings between ON
alpha RGCs and polyaxonal amacrine cells are responsible to
produce the long-range correlated activity critical for global
object perception. Specifically, they found that presentation
of large stimuli of various shapes always produced long-
range synchronization between distant ON alpha RGC pairs
under electrical coupling, whereas presentation of discontinuous
stimuli of several segments could not. Moreover, blockade of gap
junctions diminished such kind of coherent firing. These results
indicate that electrical couplings are essential for the neural
representation of the image connectivity.

We propose that a retina network with electrical coupling is
capable of encoding global topological features. This is in line
with the functional roles of ON alpha RGC network (Schmidt
et al., 2014; Allen et al., 2019). ON alpha RGCs found by Roy
et al. (2017) are actually one type of ipRGCs, i.e., M4 ipRGCs
(Schmidt et al., 2011, 2014). Recently, M4 ipRGCs are found
essential for full contrast sensitivity in mouse visual functions
(Schmidt et al., 2014). Deletion of ON alpha RGCs inmice caused
severe deficits in contrast sensitivity. Meanwhile, by constructing
special patterns that are distinguishable for cones but contain
significant contrast for melanopsin, Allen et al. (2019) found
that M4 ipRGCs in human have the capacity to encode coarse
patterns and influence the appearance of everyday images. Hence,
it is evident that M4 ipRGCs, which are crucial for the coarse
pattern encoding and contrast sensitivity, should also be able
to encode global topological patterns. However, it was reported
that M4 cells have rich dendrites and exhibit non-linear spatial
summation (Estevez et al., 2012). The simplified biophysics of our
neurons does not capture this effect, and the functional role of
dendritic computation in the M4 cells should be investigated in
the future work.

If retina RGCs are able to encode global topological patterns,
where and how these topological information extracted in the
retina are further processed? The candidate brain area is SC.
It has been long suggested that there is a type of SC neurons
which is capable of global visual processing (Rizzolatti et al., 1980;
Bender and Davidson, 1986). For example, Rizzolatti et al. (1980)
found that some neurons in SC respond very poorly to simple
visual stimuli, while produce strong and sustained discharges
for all complex stimuli. In the primate, compared with the role
of “feature detector” of neurons in visual cortex (like V1), this
type of SCs neurons is now thought to be a class of “event
detector” (Ito and Feldheim, 2018), because their responses to
the visual stimuli within their receptive fields are irrelevant to
the specific stimulus features, such as direction, orientation or
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shape (Girman and Lund, 2007; White et al., 2017a,b, 2019). One
example is the recent study done by White et al. (2017a,b, 2019),
in which they found that SC neurons in monkeys are capable of
encoding visual saliency in a featureless manner (Marrocco and
Li, 1977). Inspired by these neurobiological findings, we used a
single neuron to read out each event that ENs produce coherent
activity for a connected region in an image. However, our
implementation of the read-out mechanism is over-simplified,
because despite the existence of wide-field SC cells receiving
hundreds of RGC projections (Gabbiani et al., 2001; Wang et al.,
2010; Gale and Murphy, 2014), a SC neuron receiving global
RGC projections is rare. Future work will consider the detailed
connections between retina and SC.

4.2. Gap Junctions Mediate Retinal Lateral
Inhibition
Lateral inhibition in the retina is thought to be crucial for visual
perception (Kramer and Davenport, 2015). It has been suggested
these inhibition activities are the results of retinal microcircuits
which involve two inhibitory interneurons: horizontal cells (HCs)
in the outer retina and amacrine cells (ACs) in the inner
retina. First synaptic mechanism of lateral inhibition results
from the feedback regulation mediated by HCs, which alters the
neurotransmitter release in rods and cones (Wu, 1991). Later,
lateral inhibition due to AC GABAergic inhibitory feedback to
bipolar cells has also been observed (Feigenspan et al., 1993;
Dong andWerblin, 1998; Roska et al., 2000). Furthermore, recent
works suggested lateral inhibition occurs among RGCs which are
indirectly mediated by spiking GABAergic wide-field ACs (Chen
et al., 2016; Johnson et al., 2018). Overall, all three levels of lateral
inhibition are produced by interneurons and have been shown
to be closely involved in various visual processes, such as edge
(contrast) enhancement (Campbell and Robson, 1968; Kramer
and Davenport, 2015), spatial induction (Cook and McReynolds,
1998; Yeonan-Kim and Bertalmío, 2016), direction selectivity
(Chen et al., 2016), and color processing (Schnaitmann et al.,
2018). In this paper, our modeling study suggests that through
gap junctions, RGCs can provide direct lateral inhibition to the
coupled cells without the involvement of interneurons. This is
due to that when a RGC briefly spikes, it will enter into a
long refractory period, during which its connected cells via gap
junctions will be strongly inhibited. This kind of lateral inhibition
has been observed in Golgi cells in the cerebellar input layer
(Vervaeke et al., 2010), in which a relatively deep and protracted
afterhyperpolarization (one of the processes that contribute to
the refractory period) in Golgi cells mediated a robust form of
surround depression.

To further highlight the crucial role of gap junction-
mediated lateral inhibition in topological detection, we carry
out experiments by adding local GABAergic AC feedback
inhibitions in the model (see Supplementary Figure 5A). Since
the chemical transmission is too slow in reality, we set the
synapse delay to be 0.1ms.With such unrealistic fast feedback AC
inhibition, we observe that the network behaves similarly to that
without AC inhibitions (compare Supplementary Figures 5B,C

with Figures 3E,F). Furthermore, to ablate the lateral inhibition

of gap junctions while preserve their synchronization effect,
we artificially block gap junctions when neurons are in their
refractory period (setting J = 0). In such a way, the
contribution of local chemical inhibitions is isolated. We find
that: (1) when the receptive field of AC is not big enough
to cover most of the hole, synchronous firings of neurons
on the hole cannot be segregated from that of neurons on
the background (Supplementary Figures 5D,E); (2) when the
receptive field of AC is big enough to cover most of the
hole, synchronous firings of neurons on the hole and the
background can be well-segregated in the first 10 ms but
are mixed together later on (Supplementary Figures 5F,G).
Overall, our ablation study reveals that gap junction-mediated
lateral inhibition is the necessary and sufficient requirement for
rapid topological detection. Certainly, AC-mediated and other
chemical inhibitions are also important for neural information
processing, but they tend to work at different time scales and
are more likely responsible for non-topological feature analysis,
such as edge detection. It will be interesting to explore how
different inhibitory mechanisms cooperate together to solve the
coarse-to-fine feature analysis.

4.3. Global-to-Local Visual Processing
Starts From Early Topological Detection
It is now widely agreed that visual perception takes place
in a predominantly global-to-local or coarse-to-fine procedure
(Bullier, 2001; Bar, 2004, 2007; Hegdé, 2008). Supporting
evidence comes from the experiments using various materials,
ranging from the simple stimuli [like lines, dots, gratings, and
letters (Weisstein and Harris, 1974; Navon, 1977; Pomerantz
et al., 1977; Watt, 1987; Hughes et al., 1996)] to complex images
[such as faces (Farah et al., 1998; McKone et al., 2007; Goffaux
et al., 2010; Taubert et al., 2011) and natural scenes (Parker et al.,
1992, 1997; Schyns and Oliva, 1994; Lu et al., 2018)]. In this
framework, the global and coarse information is processed first
and subsequently activates the high-level visual cortex rather than
primary visual cortex; whereafter, a feedback signal is generated
and further guides the processing of the conventional local
feature analysis (Bar, 2003; Bar et al., 2006). The bottom-up local
feature analysis has so far been well-established, in which the
visual processing begins from extracting the local features in the
low visual areas followed by integrating such local features to
extract more global features in the higher visual areas (Hubel
andWiesel, 1959; Treisman and Gelade, 1980; Marr, 1982; Hubel,
1988; DiCarlo et al., 2012). Later, more and more researches
begin to emphasize the role of top-down facilitation in visual
perception (Bar et al., 2006; Gilbert and Li, 2013). However,
several questions remain elusive in this framework: how and
where is such top-down facilitation ignited (Bar, 2003; Goffaux
et al., 2010)? In particular, at the early visual stage, how global
features are rapidly extracted?

In the case of topological perception, it has been found that
the neural substrate of topological perception in humans lies
in the final stage of the ventral cortical visual system, i.e., the
temporal lobe (Zhuo et al., 2003; Wang et al., 2007). Moreover,
on monkeys, a single-unit recording study unveiled there exists a
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subset of inferior temporal neurons responding selectively to hole
patterns with a short latency (<100 ms) (Komatsu and Ideura,
1993). Similarly, how are such topological features extracted?
What pathway does it route through to ignite the temporal lobe?
Here, we hypothesize that the topological features (like “holes”)
begin to be extracted in the retina. Specifically, we propose
that in the retina, the alpha RGC network coupled through
electrical couplings is capable of producing the topologically
discriminable neural representations in a short time interval
of <10 ms. We also demonstrate that such rapid and stable
topological representations can be easily read-out by the SC or
higher visual cortex. Our hypothesis can be partially supported
by earlier two experiments (Ölveczky et al., 2003; Baccus et al.,
2008). Specifically, they found that there exists a subset of RGCs
specialized to distinguish local motion within the scene from the
global retinal image drift due to fixational eye movements. In
other words, the global motion detection begins in the retina,
which supports the notion of the retinal representation of global
information. In future, further detailed investigations should be
carried out.

4.4. Related Works
The most relevant work is a pioneering model called LEGION
(Wang and Terman, 1995), which was designed using the
mechanisms of local excitation and global inhibition. Wang
(2000) demonstrated that LEGION exhibits sensitivity to the
topological connectivity, but did not investigate the detection
of holes. Our model differs from LEGION in two fundamental
aspects. First, the computational mechanisms are different.
LEGION achieves synchronization via chemical excitatory
synapses between nearby oscillators and employs a global
chemical inhibitory synapse to deactivate different groups of
oscillators, which are not feasible in retina; whereas, our model
relies on gap functions which widely exist in the retina to
synchronize and differentiate neuron groups. Second, the time
courses are different. The time for LEGION to detect the
topological connectivity is too slow, as the emergence of stable
phase differences between objects needs multiple cycles. In
contrary, our model has the ability to detect the topological

property rapidly as briefly as <10 ms. Overall, our model better
captures the computational nature of the retina.
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Learning from limited exemplars (few-shot learning) is a fundamental, unsolved problem

that has been laboriously explored in the machine learning community. However, current

few-shot learners are mostly supervised and rely heavily on a large amount of labeled

examples. Unsupervised learning is a more natural procedure for cognitive mammals

and has produced promising results in many machine learning tasks. In this paper, we

propose an unsupervised feature learning method for few-shot learning. The proposed

model consists of two alternate processes, progressive clustering and episodic training.

The former generates pseudo-labeled training examples for constructing episodic tasks;

and the later trains the few-shot learner using the generated episodic tasks which

further optimizes the feature representations of data. The two processes facilitate each

other, and eventually produce a high quality few-shot learner. In our experiments, our

model achieves good generalization performance in a variety of downstream few-shot

learning tasks on Omniglot and MiniImageNet. We also construct a new few-shot person

re-identification dataset FS-Market1501 to demonstrate the feasibility of our model to a

real-world application.

Keywords: unsupervised, few-shot learning, clustering, pseudo labels, episodic learning

1. INTRODUCTION

Few-shot learning, which aims to accomplish a learning task by using very few training examples,
is receiving increasing attention in both of the machine learning and cognitive science community.
The challenge of few-shot learning lies on the fact that traditional techniques such as fine-tuning
would normally incur overfitting (Wang et al., 2018). To overcome this, an episodic training
paradigm was proposed (Vinyals et al., 2016). In such a paradigm, episodic training replaces the
conventional mini-batch training, such that a batch of episodic tasks, each of which have the same
setting as the testing environment, are presented to the learning model; and in each episodic task,
the model learns to predict the classes of unlabeled points (the query set) using very few labeled
examples (the support set). By this, the learning model acquires the transferable knowledge across
tasks, and due to the consistency between the training and testing environments, the model is able
to generalize to novel but related downstream tasks. Although this set-to-set few-shot learning
paradigm has made great progress, in its current supervised form, it requires a large number of
labeled examples for constructing episodic tasks, which is often infeasible or too expensive in
practice. So, can we build up a few-shot learner in the paradigm of episodic training using only
unlabeled data?
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It is well-known that humans have the remarkable ability to
learn a concept when given only several exposures to its instances,
for example, young children can effortlessly learn and generalize
the concept of “giraffe” after seeing a few pictures of giraffes.
While the specifics of the human learning process are complex
(trial-based, perpetual, multi-sourced, and simultaneous for
multiple tasks) and yet to be solved, previous works agree that its
nature is progressive and unsupervised in many cases (Dupoux,
2018). Given a set of unlabeled items, humans are able to organize
them into different clusters by comparing one with another. The
comparing or associating process follows a coarse-to-finemanner.
At the beginning of learning, humans tend to group items
based on fuzzy-rough knowledge such as color, shape, or size.
Subsequently, humans build up associations between items using
more fine-grained knowledge, i.e., stripes of images, functions
of items, or other domain knowledge. Furthermore, humans can
extract representative representations across categories and apply
this capability to learn new concepts (Kemp et al., 2010; Wang
et al., 2014; Gopnik and Bonawitz, 2015).

In the present study, inspired by the unsupervised and
progressive characteristics of human learning, we propose
an unsupervised model for few-shot learning via a self-
supervised training procedure (UFLST). Different from
previous unsupervised learning methods, our model integrates
unsupervised learning and episodic training into a unified
framework, which facilitates feature extraction and model
training iteratively. Basically, we adopt the episodic training
paradigm, taking advantage of its capability of extracting
transferable knowledge across tasks, but we use an unsupervised
strategy to construct episodic tasks. Specifically, we apply
progressive clustering to generate pseudo labels for unlabeled
data, and this is done alternatively with feature optimization via
few-shot learning in an iterative manner (Figure 1). Initially,
unlabeled data points are assigned into several clusters, and we
sample a few training examples from each cluster together with
their pseudo labels (the identities of clusters) to construct a set of
episodic tasks having the same setting as the testing environment.
We then train the few-shot learner using the constructed episodic
tasks and obtain improved feature representations for the data.
In the next round, we use the improved features to re-cluster

FIGURE 1 | The scheme of our model UFLST, which integrates two iterative processes: clustering and episodic training. At each iteration, unlabeled datapoints are

clustered based on the extracted features, and pseudo labels are assigned according to the cluster identities. After clustering, a set of episodic tasks are constructed

by sampling from the pseudo labeled data, and the few-shot learner is trained, which further optimizes feature representations. The two processes are repeated.

data points, generating new pseudo labels and constructing
new episodic tasks, and train the few-shot learner again.
The above two steps are repeated till a stopping criterion is
reached. After training, we expect that the few-shot learner
has acquired the transferable knowledge (the optimized feature
representations) suitable for a novel task of the same setting
as in the episodic training. Using benchmark datasets, we
demonstrate that our model outperforms other unsupervised
few-shot learning methods and approaches to the performances
of fully supervised models.

1.1. Related Works
In the paradigm of episodic training, few-shot learning
algorithms can be divided into two main categories: “learning
to optimize” and “learning to compare.” The former aims to
develop a learning algorithm which can adapt to a new task
efficiently using only few labeled examples or with only few
steps of parameter updating (Andrychowicz et al., 2016; Ravi
and Larochelle, 2016; Finn et al., 2017; Mishra et al., 2017;
Nichol and Schulman, 2018; Rusu et al., 2018), and the latter
aims to learn a proper embedding function, so that prediction
is based on the distance (metric) of a novel example to the
labeled instances (Vinyals et al., 2016; Snell et al., 2017; Liu et al.,
2018; Ren et al., 2018; Sung et al., 2018). In the present study,
we focus on the “learning to compare” framework, although
methods belonging to the other framework can also be integrated
into our model.

A number of unsupervised few-shot learning models have
been developed recently. Hsu et al. (2018) proposed a method
called CACTUs, which constructs tasks from unlabeled data
by partitioning features extracted by some prior unsupervised
feature learning methods, e.g., ACAI, BiGAN, and DeepCluster
in an automatic way and performs meta-learning over the
constructed tasks. Khodadadeh et al. (2018) proposed a method
called UMTRA, which utilizes the statistical diversity properties
and domain-specific augmentations to generate training and
validation data. Antoniou and Storkey (2019) proposed a similar
model called AAL, which uses data augmentations of the
unlabeled support set to generate the query data. All these
methods construct episodic tasks with the aid of unsupervised

Frontiers in Computational Neuroscience | www.frontiersin.org 2 October 2020 | Volume 14 | Article 8331

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ji et al. Unsupervised Few-Shot Learning

feature embedding or data augmentation; whereas in our
method, the construction of episodic tasks and model training
are performed iteratively within the same few-shot embedding
network, and they facilitate each other.

The idea of iterative training used in ourmodel is a type of self-
supervised training, which aims to artificially generate pseudo
labels for unlabeled data and then perform feature learning as
in the supervised manner iteratively. It is quite useful when
supervisory signals are not available or too expensive (de Sa,
1994). This idea was first applied in NLP tasks, which aims to
self-train a two-phase parser-reranker system using unlabeled
data (McClosky et al., 2006). Xie et al. (2016) proposed a Deep
Embedded Clustering network to jointly learn cluster centers
and network parameters. Caron et al. (2018) further proposed
strategies to solve the degenerated solution problem during deep
clustering. Fan et al. (2018) and Song et al. (2018) applied the
iterative training idea to the person re-identification task, both
of which aim to transfer the extracted feature representations
to an unseen domain. However, none of these studies have
considered integrating iterative clustering and episodic training
in unsupervised few-shot learning as we do in this work.

2. MATERIALS AND METHODS

2.1. Preliminaries
In this section, we introduce the proposed model UFLST in
detail. Consider a M-way K-shot classification task. Our goal
is to train a few-shot learner based on the unlabeled data
set X = {xi}Ni=1, where N is the total number of unlabeled
datapoints. The previous studies have demonstrated that by
matching the training and testing paradigms, episodic learning
can extract transferable knowledge across tasks suitable for few-
shot classification (Vinyals et al., 2016). In the supervised setting,
one can easily construct a set of episodic tasks, with each task
having K training examples {(xk, yk)} per class to learn the
few-shot classifier and Q query examples per class to evaluate
the learned classifier. Totally, there are K + Q examples for
each of M classes in each episodic task. In the unsupervised
setting, however, we do not have labeled data to construct
episodic tasks directly. Therefore, we consider using pseudo
labels generated by a clustering algorithm to support episodic
learning. Different from the previous work (Hsu et al., 2018)
which uses a prior trained feature embedding network to extract
fixed representations of data, data representations in our model
are dynamically fine-tuned along with the episodic training.

Let us denote the embedding function in UFLST as fθ , which
takes X as the input and outputs the corresponding feature
vector Z = {zi}, for i = 1, . . . ,N, where θ represents the
network parameters. Firstly, we cluster the unlabeled data based
on the embedding features Z and obtain the pseudo labels of
data {yi}, for i = 1, . . . ,N. Secondly, using the pseudo labeled
data, we construct a set of episodic tasks T = {T1,T2, ...,TS},
with S the number of constructed tasks in the current iteration,
and carry out episodic learning, which improves the embedding
features Z further. Notably, each episodic task Ts has the same
setting as the application, i.e., it is a M-way K-shot classification.
The above two steps are performed iteratively until a stopping

criterion is reached. Below describes the two training processes
in more detail.

2.2. Data Clustering
2.2.1. Distance Metric for Clustering
To cluster data, the first is to choose a suitable metric measuring
the distance between data points. For constructing a large
number of episodic tasks, an over-complete partition of data
points is preferred, leading to a large number of classes with
a small number of examples in each class. In such a situation,
the conventional Euclidean distance or the Cosine distance is
no longer optimal. Inspired by the re-ranking idea used in
object retrieval as a post-processing tool to improve the retrieval
accuracy, we propose to use the k-reciprocal Jaccard distance
(KRJD)metric (Qin et al., 2011; Zhong et al., 2017) as the distance
measurement between two feature points zi and zj, which is
written as

Jij = 1−
|R(zi, k) ∩ R(zj, k)|
|R(zi, k) ∪ R(zj, k)|

. (1)

Here, R(z, k) counts the k-reciprocal nearest neighbors of a
feature point z and is given by

R(z, k) =
{

zj |
(

zj ∈ N(z, k)
)

∩
(

z ∈ N(zj, k)
)}

, (2)

where N(z, k) denotes the k nearest neighbors of z. R(z, k)
imposes the condition that z and each element of R(z, k) are
mutually the k nearest neighbors of each other.

Compared to the Euclidean distance, KRJD takes into account
the reciprocal relationship between data points, and hence is
a stricter metric measuring whether two feature points match
or not. Given a query probe, we find that the results of
nearest neighbors based on the KRJD is more accurate than
that of the Euclidean distance (i.e., the k-nearest neighbors) as
demonstrated in Figure 2 (see Appendix 1 for more detail).

2.2.2. Density-Based Spatial Clustering
To partition feature points and generate pseudo labels, we
adopt a clustering method called density-based spatial clustering
algorithm (DBSCAN) (Ester et al., 1996). This method regards
clusters as the areas of high density separated by low density
regions, that is, a cluster is composed of a set of core points (i.e.,
those points in a high density region close to each other) and a
set of non-core points (i.e., those points in the surrounding low
density regions close to the core points but not to themselves).
Compared to the conventional Kmeans algorithm, DBSCAN has
a number of appealing properties: (1) it applies to any shape
of clusters, as opposed to the Kmeans algorithm assuming that
clusters are convex; (2) it requires no assumption of the number
of clusters; (3) it can detect outliers, which is extremely useful for
iterative training, as data points are typically intertwined in the
first few iterations.

After applying DBSCAN, we get the pseudo label set (the
cluster identity), which is expressed as

{yi} = DBSCAN (ms, ǫ, {zi}) , (3)
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FIGURE 2 | Comparison between k-nearest neighbors and k-reciprocal nearest neighbors. Given an probe (in the black box), nearest neighbors of the example are

shown. Examples in green boxes are those in the same class and examples in red boxes are those in different classes. (A–C) Examples from Omniglot, MiniImageNet,

and FS-Market1501, respectively. The upper row in each panel is the result of k-nearest neighbors and the lower row in each panel is the result of k-reciprocal nearest

neighbors. By adopting KRJD, more positive examples (those in the same class) appear in the nearest neighborhood of the probe.

where the parameter ms defines the minimum sample value, i.e.,
the minimum number of points huddled together for a region
to be considered as dense, and the parameter ǫ defines the
distance threshold, i.e., the maximum distance for two points to
be considered as in the same neighborhood. Higherms or lower ǫ

indicate higher density is necessary to form a cluster. Bothms and
ǫ affect the cluster numbers and the size of clusters. In general,
we want the constructed episodic tasks T to be diverse, so that

transferable knowledge can be acquired by the few-shot learner.
This corresponds to setting small ms and ǫ. We will discuss the
choice ofms and ρ in section 2.5.

2.3. Episodic Training
After removing outliers (i.e., those data points in low density
regions in the feature space) in DBSCAN, we construct episodic

tasks using the remaining pseudo labeled data {(x̃i, ỹi)}˜Ni=1, with
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˜N the number of remaining points. For each episodic task Ti,
we randomly sample M classes and K + Q examples per class as
described in section 2.1, with K + Q ≤ ms.

A number of metric loss functions can be used in our
model, including the prototypical loss (Snell et al., 2017),
the triplet loss (Weinberger and Saul, 2009; Hermans et al.,
2017), the contrastive loss (Hadsell et al., 2006), and the center
loss (Wen et al., 2016). To save space, here we mainly describe
the prototypical loss. More results of using other metric loss
functions can be found in Appendix 2. The prototypical loss
aims to learn a prototype for each class and then discriminate a
novel example based on its distance to allM prototypes, which is
written as

Lproto(z, cp; θ) =
exp(−‖z− cp‖22)

∑M
m exp(−‖z− cm‖22)

, (4)

where z is a data point from the query set of class p, and cm is
the prototype of class m given by cm =

∑

zi∈Sm (zi)/K, with Sm
the support set of class m. In practice, we choose to minimize

the negative log value of Equation 4, i.e., L
log
proto(z, cp; θ) =

− log Lproto(z, cp; θ), as the log value better reflects the geometry
of the loss function, making it easier to select a suitable learning
rate to minimize the loss function.

In summary, the above two steps for data clustering and
episodic training are performed iteratively. They facilitate
each other, similar to the EM-style algorithm: data clustering
frequently generates pseudo labeled data for episodic learning,
and the latter improves the feature representations of data, which
in return further improve the clustering quality and few-shot
learning (see section 4 for more discussions on why the iterative
learning works). The pseudo code of UFLST is summarized in
Algorithm 1.

2.4. Datasets
Omniglot contains 1,623 different handwritten characters from
50 different alphabets. There are 20 examples per class and each
of them was drawn by a different human subject via Amazon’s
Mechanical Turk. Following Vinyals et al. (2016), we split the
data into two parts: 1,200 characters for training and 423 for
testing, and we resize the images to 32× 32, instead of 28× 28.

MiniImageNet is derived from the ILSVRC-12 dataset. We
follow the data split as suggested in Ravi and Larochelle (2016),
which contains 100 classes including 64 for training, 16 for
validating, and 20 for testing. Each class contains 600 colored
images of size 84× 84.

FS-Market1501 is a person re-identification (Re-ID) dataset
modified from the Market1501 dataset (Zheng et al., 2015).
The training set contains 12,936 images with 751 pedestrian
identities and the testing set contains 16,483 images with the
remaining 750 pedestrian identities. All images were resized to
256× 128. For more details of how to construct FS-Market1501,
see Appendix 3.

2.5. Implementation Details
When training on Omniglot and MiniImageNet, we set the
model architecture to be the same as in the previous works for
fair comparison. The model consists of four stacked layers, and

Algorithm 1:Unsupervised Few-shot Feature Learning via Self-
supervised Training (UFLST)

Input: Unlabeled data set X = {xi}, the few-shot feature
embedding fθ0 , the training iteration T.

Output: Trained few-shot embedding fθT
1: t = 0
2: repeat

3: Clustering:

4: Extracting features {zi} of {xi} using the feature extractor
fθ t .

5: Calculating KRJD Jij based on the K-reciprocal nearest
neighbors of any data pairs zi and zj.

6: Clustering data using DBSCAN and generating pseudo
labels {yi}.

7: Removing outliers and obtaining the pseudo labeled data
set {(x̃i, ỹi)}.

8: Episodic Training:

9: Constructing a set of episodic tasks {Ts}; for each task,
randomly samplingM classes withK+Q examples per class
from {(x̃i, ỹi)}.

10: Updating model parameters θ t by training the few-shot
learner on the series of episodic tasks {Ts}.

11: t = t + 1
12: until t = T

each layer comprises 64-filter 3 × 3 convolution, followed by
a batch normalization, a ReLU nonlinearity, and 2 × 2 max-
pooling. When training on FS-Market1501, due to high variance
in pedestrian pose and image illumination, we use Resnet50
pretrained on ImageNet as the backbone, followed by a global
max-pooling layer and a batch normalization layer. Omniglot is
relatively easy compared to the other two datasets, and therefore
we only pre-process data with normalization. For MiniImageNet
and FS-Market1501, we randomly flip images horizontally and
crop them with random sizes, and then normalize them with
the channel-wise mean and standard deviation of the whole
dataset. Color information is important to partition images in
FS-Market1501 (pedestrians with the same ID vary in pose,
view angle, and illumination but not in the color), while it is
not that important to partition images in MiniImageNet (Caron
et al., 2018). Hence, we discard color information and increase
local contrast by adding a linear transformation based on Sobel
filters as proposed in Bojanowski and Joulin (2017) and Paulin
et al. (2015). For the clustering method DBSCAN, we set ms =
2 and ǫ to be the mean of top P values of distance pairs,
with P = ρN(N − 1)/2 and ρ = 0.0015. The values of
ms and ǫ are set to be relatively small to ensure that feature
points are well-separated, so that diverse episodic tasks can
be constructed (for more details of the choice of ms and ǫ,
see Appendix 4). For the prototype loss, we used a higher
“way” value (M = 60) during training, which leads to better
performances as empirically observed in Snell et al. (2017).
Since it is possible that the numbers of points in some clusters
are too small, we only train the model in the M-way 1-shot
learning scenario, i.e., K = Q = 1. The total number
of iterations during training is set to be 100, and in each
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iteration, 500 episodic tasks are constructed. We used Adamwith
momentum to update model parameters, and the learning rate is
set to be 0.001.

3. RESULTS

3.1. Comparison With Non-episodic
Learning Methods
Episodic learning plays a key role in leveraging unsupervised
few-shot feature learning. To demonstrate this, we first compare
our model with other unsupervised feature learning methods
without employing episodic learning. Three such methods are
chosen, which are (Denoising) AutoEncoder (Vincent et al.,
2008), InfoGAN (Chen et al., 2016), and DeepClustering (Caron
et al., 2018) (for the detailed training process of these methods,
see Appendix 5). These methods are the typical approaches
used to learn useful feature representations, covering a
wide range of unsupervised feature learning strategies
including reconstruction (prediction), two-player games,
discriminative clustering, and so on. For comparison, we
use the features extracted by these methods to calculate the
prototype of each class directly and perform the M-way
K-shot classification. The results are presented in Table 1,
which shows that: (1) compared to other unsupervised
feature learning methods whose learning objective is different
from ours, iterative data clustering and episodic learning
improves the few-shot learning performance significantly,
even when the Kmeans clustering with the Euclidean distance
is used in our model; (2) by applying DBSCAN with the
KRJD metric, the performance of our model is improved
further to a large extent. Notably, DeepClustering also jointly
learns the parameters of a neural network and the cluster
assignments of the resulting features. However, it optimizes
the feature representations with a relatively simple learning
objective (softmax classification) which is not suitable for
few-shot classification.

3.2. The Effect of Iterative Training
In our model, iterative training will gradually improve the
clustering quality and the performance of the few-shot learner.
To demonstrate this, we randomly select 10 hand-written
characters from the Futurama alphabets in Omniglot and
visualize clustering behaviors over iteration with T-SNE (Maaten
and Hinton, 2008). As shown in Figure 3, initially all data points
are intertwined with each other and no clear cluster structure
exists. Over training, clusters gradually emerge, in the sense that
data points from the same class are grouped together and the
margins between different classes are enlarged. This indicates
that our model gradually “discovers” the underlying semantic
structure of the data. We quantify the clustering quality by
computing the normalized Mutual Information (NMI) between
the pseudo labels generated by the clustering algorithm {ỹi} and
the ground truth of real labels {ŷi}, which is given by,

NMI
(

{ŷi}, {̃yi}
)

=
I({ŷi}, {̃yi})

√

H({ŷi})H({̃yi})
, (5)

where I(·, ·) is the mutual information between {ŷi} and {̃yi},
and H(·) the entropy. The value of NMI lies in [0, 1], with 1
standing for the perfect alignment between two sets. Note that
NMI is independent of the permutation of labeling orders. As
shown in Figure 4 (left), the value of NMI increases with the
training iterations and gradually reaches a high value close to
1. Remarkably, the value of NMI well predicts the classification
accuracy of the few-shot learning (Figure 4, right). These results
demonstrate that iterative data clustering and episodic training
are able to discover the underlying structure of data manifold,
and extract the representative features of data necessary for the
few-shot classification task.

3.3. Comparison With State-of-the-Art
Unsupervised Few-Shot Learning Methods
We compare our model with other state-of-the-art unsupervised
few-shot learning methods, including CACTUs (Hsu et al.,

TABLE 1 | Performances of our model compared to other non-episodic unsupervised feature learning methods on Omniglot and MiniImageNet.

Omniglot MiniImageNet

Methods (M, K) Clustering Metric (5,1) (5,5) (20,1) (20,5) (5,1) (5,5) (5,20) (5,50)

Baseline N/A N/A 57.97 79.25 34.17 59.33 25.91 32.38 37.01 38.95

AutoEncoder N/A N/A 53.63 77.34 32.98 55.01 26.17 33.01 37.98 39.39

Denoising autoEncoder N/A N/A 59.63 79.89 34.78 60.88 27.81 34.19 39.01 40.11

InfoGAN N/A N/A 51.49 76.38 31.01 53.99 29.81 36.47 40.17 42.46

BiGAN+KNN N/A N/A 49.55 68.06 27.37 46.70 25.56 31.10 37.31 43.60

BiGAN+LC N/A N/A - - - - 27.08 33.91 44.00 50.41

DeepClustering Kmeans Euclidean 59.07 79.81 34.05 60.12 28.91 36.01 39.29 41.98

UFLST Kmeans Euclidean 69.54 86.18 47.11 69.19 31.77 43.03 51.35 55.72

UFLST BSCAN KRJD 96.51 99.23 90.27 97.22 37.75 50.95 59.18 62.27

Baseline performance means training from scratch. Results based on BiGAN are adapted from Hsu et al. (2018). For complete results with confidence intervals, see Appendix 6. The

best performances are in bold.
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2018), UMTRA (Khodadadeh et al., 2018), and AAL (Antoniou
and Storkey, 2019), as shown in Table 2. On Omniglot, our
model outperforms them to a large extent. Remarkably, the best
performances of our model approaches that of two supervised
methods, which are the upper bounds for unsupervised
learning. Our model also achieves significant improvement on

MiniImageNet (note that we only test the model under the
5-way few-shot learning scenario). For example, in the 5-way 1-
shot scenario, our model achieves 37.75%, which is significant
compared to the baseline performance 25.91%.

We also note that some methods outperform our model
on MiniImageNet, e.g., DeepCluster-CACTUs-ProtoNets and

FIGURE 3 | Visualizing clustering results during iterative training with T-SNE. 10 characters from the Futurama alphabets in Omniglot are were selected and results

from iteration 1, iteration 5, and iteration 10 are showed here.

FIGURE 4 | Performances of iterative training under the 5-way 1-shot learning scenario on the Omniglot dataset. (Left) NMI vs. training iteration. (Right)

Classification accuracy vs. training iteration.

TABLE 2 | Comparison to state-of-the-art unsupervised few-shot learning models on Omniglot and MiniImageNet under different settings.

Omniglot MiniImageNet

Methods (M, K) (5,1) (5,5) (20,1) (20,5) (5,1) (5,5) (5,20) (5,50)

ACAI/DC-CACTUs-MAML (Hsu et al., 2018) 68.84 87.78 48.09 73.36 39.90 53.97 63.84 69.64

ACAI/DC-CACTUs-ProtoNets (Hsu et al., 2018) 68.12 83.58 47.75 66.27 39.18 53.36 61.54 63.55

BiGAN-CACTUs-MAML (Hsu et al., 2018) 58.18 78.66 35.56 58.62 36.24 51.28 61.33 66.91

BiGAN-CACTUs-ProtNets (Hsu et al., 2018) 54.74 71.69 33.40 50.62 36.62 50.16 59.56 63.27

UMTRA+AutoAugment (Khodadadeh et al.,

2018)

83.80 95.43 74.25 92.12 39.93 50.73 61.11 67.15

AAL-MAML++ (Antoniou and Storkey, 2019) 88.40 97.96 70.21 88.32 33.30 49.18 – –

AAL-ProtoNets (Antoniou and Storkey, 2019) 84.66 89.14 68.79 74.28 37.67 40.29 – –

UFLST+Kmeans+Euclidean (ours) 69.54 86.18 47.11 69.19 31.77 43.03 51.35 55.72

UFLST+DBSCAN+KRJD (ours) 96.51 99.23 90.27 97.22 37.75 50.95 59.18 62.27

MAML (Finn et al., 2017) (supervised) 98.7 99.9 95.8 98.9 46.81 62.13 71.03 75.54

ProtoNets (Snell et al., 2017) (supervised) 98.8 99.7 96.0 98.9 46.56 62.29 70.05 72.04

Results based on BiGAN are adapted from Hsu et al. (2018). For complete results with confidence intervals, see Appendix 7. The best performances are in bold.
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UMTRA-AutoAugment achieve 39.18 and 39.93% in the 5-way
1-shot scenario, respectively. The reasons we believe are due
to three aspects. Firstly, for the convenience of comparing to
other (un)supervised few-shot learning methods, we have used
the 4-layer convnet as the few-shot embedding network. Such
a simple network is unable to adequately extract the semantic
meanings of images under the unsupervised setting, especially as
the in-class variations of MiniImageNet are large but the total
size of the dataset is small (only 64 classes with 600 images
per class in the training set). Secondly, for constructing diverse
episodic tasks, our model prefers to over-segment the data into
hundreds of clusters, whereas the ground truth cluster number
of MiniImageNet is only 64. This induces mismatch between
the constructed episodic tasks and the ground truth. Thirdly,
the methods outperforming our model adopt either powerful
prior unsupervised feature learning to partition data points
(the CACTU-based model) or complicated data augmentation
strategies to construct the episodic tasks (the UMTRA-based
model and the AAL-based model), while our model partitions
data points with the features directly extracted from the few-shot
embedding network and only adopts a simple data augmentation
strategy to avoid overfitting. One solution is to use deeper feature
embedders, e.g., Resnet12, AlexNet in our model to improve the
performance (see Appendix 9). Even so, our model still achieves
competitive results compared to other unsupervised few-shot
learning methods.

3.4. Results on FS-Market1501
In order to show the applicability of our model to a real-world
few-shot learning problem, we apply our model on the FS-
Market1501 dataset which has been described in section 2.4.
In reality, labeled data is extremely lacking for person Re-ID,
and unsupervised learning becomes crucial. Results in Table 3

show that our UFLST model performs very well on the 1-shot
learning problem on this dataset. Note that the 1-shot learning
problem we demonstrate here is to mimic the typical single query
setting in person Re-ID. For example, 50-way 1-shot means the
model needs to identify a pedestrian from one of 50 unknown
persons by training a classifier with only one image per person.
To compare our model with the supervised results as described
in section 3.3, we train a supervised model with the same model
architecture, i.e., the Resnet50 backbone pretrained on ImageNet
as described in section 2.5. Overall, we observe that our model
achieves encouraging performances compared to the supervised
methods, in particular, in the scenario of low-way classification.
This suggests that our model is potentially feasible in practice for
person Re-ID when annotated labels are unavailable.

4. CONCLUSION AND DISCUSSION

In this study, we have proposed a model UFLST for unsupervised
few-shot learning. Different from other unsupervised feature
learning methods, such as the prediction-based and the GAN-
based ones, our model exploits the paradigm of episodic training,
which is a more effective way to implement few-shot learning.
Recently, a few unsupervised few-shot learning models based on
episodic learning were proposed, and they have taken different
strategies to construct episodic tasks from unlabeled data. For

TABLE 3 | Performances of our model on FS-Market1501 with different settings.

5-way 10-way 15-way 20-way 50-way 100-way

Baseline 48.8 35.7 29.7 27.8 20.9 16.4

UFLST-Tripetloss 72.8 63.0 56.2 53.4 42.5 35.4

UFLST-Prototypeloss 88.3 81.2 75.8 73.0 62.5 54.0

UFLST-HardTripletloss 91.4 86.9 81.6 80.4 70.1 62.1

Supervised upper bound 96.8 94.7 92.5 91.1 83.7 77.3

Only 1-shot learning is considered to mimic the typical single query evaluation condition

in person Re-ID. We adopt three metric losses to optimize the model, see Appendix 8

for detail. The best performances are in bold.

instance, CACTUs constructs episodic tasks by partitioning
the features extracted by a prior-trained unsupervised feature
embedding network with different objective functions and
then train the few-shot learner (Hsu et al., 2018). UMTRA
utilizes a domain-specific data augmentation strategy to generate
synthetic tasks for the meta-learning phase, while in such a
way, the constructed episodic tasks are restricted by the data
augmentation strategy (Khodadadeh et al., 2018). Different from
the above methods, we propose a simple yet effective way to
construct episodic tasks, that is, we partition the features directly
from the few-shot embedding network and do this in an iterative
manner along with the training of the few-shot learner; and by
this, the construction of episodic tasks and the training of few-
shot learner are improved concurrently. Furthermore, to improve
the clustering quality, we have proposed to use the k-reciprocal
Jaccard distance metric to reduce false positive examples during
the clustering.

We have demonstrated encouraging performances of
our model on two benchmark datasets, Omniglot, and
MiniImageNet. We also constructed a new dataset called
FS-Market1501 adapted from Market1501 to test our model,
and demonstrated the feasibility of our model to real-world
applications. The high efficiency of our model also prompts us to
think about why it works. The key of our model is the iterative
implementation of data clustering and episodic training, and
they tend to facilitate each other as the EM-style algorithm. At
the beginning of training, the few-shot embedding network is
randomly initialized, and the embedded features are intertwined
with each other, making the constructed episodic tasks very
noisy. However, even in such a situation, the embedded
features are not completely random as observed in Noroozi
and Favaro (2016), which showed that the performance of a
randomly initialized convnet is above the chance level. For
example, a simple multilayer perceptron built on top of the
last convolutional layer of a random AlexNet achieves 12%
accuracy on ImageNet, while the chance level is only 0.1%. This
implies that this weak signal can be exploited to bootstrap the
discriminative power of our model through iterative training.
As shown in Figures 3, 4, data clustering and feature extraction
in our model facilitate each other, which eventually produces a
well-performed few-shot learner. To our knowledge, our work is
the first one that integrates progressive clustering and episodic
training for unsupervised few-shot learning. Notably, the idea
of unsupervised iterative learning of our model agrees with the
self-learning nature of humans. It will be interesting to further
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explore the relationship between human learning and machine
learning on unsupervised few-shot learning.
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Spiking Neural Networks (SNNs) are considered as the third generation of artificial

neural networks, which are more closely with information processing in biological brains.

However, it is still a challenge for how to train the non-differential SNN efficiently and

robustly with the form of spikes. Here we give an alternative method to train SNNs by

biologically-plausible structural and functional inspirations from the brain. Firstly, inspired

by the significant top-down structural connections, a global random feedback alignment

is designed to help the SNN propagate the error target from the output layer directly to

the previous few layers. Then inspired by the local plasticity of the biological system in

which the synapses are more tuned by the neighborhood neurons, a differential STDP

is used to optimize local plasticity. Extensive experimental results on the benchmark

MNIST (98.62%) and Fashion MNIST (89.05%) have shown that the proposed algorithm

performs favorably against several state-of-the-art SNNs trained with backpropagation.

Keywords: SNN, plasticity, brain, local STDP, global feedback alignment

1. INTRODUCTION

Deep neural networks (DNNs) have been advancing the state-of-the-art performance in many
domain-specific tasks, such as image classification (He et al., 2016), visual object tracking (Danelljan
et al., 2015), visual object segmentation (Chen et al., 2017), etc. However, they are still far from the
performance of efficiency and accuracy of information processing in the biological system. The
structural connections (e.g., long-term feedback loops in the cortex) and functional plasticity (e.g.,
neighborhood plasticity based on discrete spikes) are carefully designed by the million years of
evolution in the biological brain. This phenomenon has lead to the research of biologically plausible
Spiking Neural Networks (SNNs). SNNs have received extensive research in recent years, and have
a wide range of applications in various domains, such as brain function modeling (Durstewitz et al.,
2000; Levina et al., 2007; Izhikevich and Edelman, 2008; Potjans and Diesmann, 2014; Zenke et al.,
2015; Breakspear, 2017; Khalil et al., 2017a,b, 2018), image classification (Zhang et al., 2018a; Gu
et al., 2019), decision making (Héricé et al., 2016; Zhao et al., 2018), object detection (Kim et al.,
2019), and visual tracking (Luo et al., 2020). The discrete spike activation and high dimension
information representation in SNNs make it more biologically plausible and energy-efficient.
However, due to the non-differentiable characteristics, how to properly optimize the strength of
synapses to improve the performance of the whole-brain network is still an open question.
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Hebbian theory (Amit et al., 1994) could be considered as the
first principle to demonstrate the relations between neurons, with
the description of fire together, wire together. Later, Spiking Time
Dependent Plasticity (STDP) (Bi and Poo, 1998) was proposed
to model the synaptic plasticity. All the methods mentioned
above are based on local adjustments without introducing global
plasticity information.

Learning and inference in the brain are based on the
interactions of feedforward connections and mutual feedback
connections across the hierarchy of cortical areas, as shown in
Figure 1A. Both anatomical and physiological evidences point to
the feedback connections in the brain (Felleman and Van, 1991;
Sporns and Zwi, 2004). A large number of feedback connections
in the cortex connect the feedforward series in the reverse order,
thereby bringing global information from the higher cortex to
the early cortical areas during perceptual inference. Feedback
connections from higher layers will make predictions represented
by the lower layers, and the feedforward path will get the state
of neurons in the entire hierarchy. Therefore, combining global
long-term feedback connections with local plasticity rules to train
the SNNs is an urgent problem to be explored.

In this paper, we proposed an SNN training method that
combines global feedback connections and local differential
STDP learning rule and performs favorably against several
existing state-of-the-art methods. The contributions of this paper
are summarized as follows:

• We introduce the feedback connections in SNNs, which will
help to introduce global plasticity information. The feedback
connections are random, and no additional calculations
are introduced.

• The global feedback connections combined with the local
STDP plasticity rule are combined to directly optimize the
synaptic strengths of all layers, instead of transferring error
layer by layer as Back-Propagation. Compared with other

FIGURE 1 | (A) The feedforward and feedback interactions in the brain. The massive feedback connections interact with feedforward connections contributing to the

learning and inference of the brain. (B) The whole training process of the GLSNN. The global feedforward path uses the LIF spiking neuron model to get the forward

state. The global feedback path uses the direct connection between the output layer and the hidden layers to propagate the target. The local STDP learning rule helps

to update the weight of the neighborhood layers.

methods, it provides an alternative method for training
deeper SNNs.

• Extensive experimental results on different datasets indicated
that the proposed algorithm could significantly improve the
learning ability of SNNs.

2. BACKGROUND

The success of DNNs is attributed mainly to the Back-
Propagation algorithm (BP) (Rumelhart et al., 1986), which
can take great advantage of the multilayer structure of neural
networks to learn features related to a given task. However, firstly,
the feedback path will have the symmetric weight of the forward
path, which does not exist in biological systems, calling the weight
transport problem (Lillicrap et al., 2016). Secondly, the precise
derivatives of the operating point used in the corresponding
feedforward path are needed. While for SNNs, information is
transmitted in discrete spikes, and it is difficult to get the precise
derivative of the operating point. Thirdly, the errors propagate
layer by layer, which can easily lead to the problem of gradient
vanishes or explosion. To tackle the problems mentioned above,
many other learning rules are proposed to train the ANNs and
further extended to train SNNs. In this section, we will review
several of these approaches and several SNN frameworks in
recent years.

2.1. Biologically Plausible Methods in ANNs
Recently, non-BP methods used to train neural networks can be
roughly divided into three categories.

One family of promising approaches is Contrastive
Hebbian Learning (Movellan, 1991). Equilibrium Propagation
approaches (Scellier and Bengio, 2017) can be seen as a particular
case of Contrastive Hebbian Learning. These kinds of energy-
based models consist of two phases, the free phase is used
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to achieve the stationary distribution, and the clamp phase
is used to update the network toward the target. Through
the iteration of these two phases, the energy of the network
can reach convergence gradually. However, due to the indirect
feedforward process, the network state is obtained byminimizing
the energy function. When the network becomes deeper, the
entire algorithm will be unstable and therefore, difficult to train.
We will give the experimental results below. Similarly, the free
phase (feedforward propagation) and the clamp phase (feedback
propagation) use the same weights, and the weight transpose
problem still exists, as mentioned in backpropagation.

In order to solve the weight transport problem, the Random
Feedback Alignment (RFA) algorithm (Lillicrap et al., 2016) uses
a fixed random matrix B instead of the transposition of synaptic
weights W, which can enable the network to converge to the
optimal solution efficiently. Subsequent work DFA (Nøkland,
2016) propagates error signals through the direct connection
matrix between the output layer and hidden layers. However, the
error feedback does not influence the neural activity, which has
not been confirmed by known biofeedback mechanisms based on
neural communication.

In the Target Propagation (TP) family, for Difference Target
Propagation (DTP) (Lee et al., 2015), targets for each hidden
layer are passed through feedback connections, which avoids
the weight transport problem, as the feedback connections are
different from feedforward connections. The error-driven local
representation alignment (LRA-E) (Ororbia and Mali, 2019),
attempt to calculate the local target with the local error loss.
Random feedback connections are utilized to transmit errors.
However, the error is calculated and propagated layer by layer,
and as the network deepens, performance will deteriorate.

2.2. Spiking Neural Networks
Much effort has been put into training SNNs, which can be
roughly divided into three categories. First, directly convert
the well-trained ANNs to SNNs. Second, SNNs are processed
in some unique methods so that they can be trained with
BP. Third, training SNNs with STDP and other biologically
plausible methods.

For the conversion methods, SDBN (O’Connor et al., 2013)
mapped an offline-trained deep belief network (DBN) onto an
efficient event-driven SNN based on the Siegert approximation.
The LIF response function is softened to lead to the bounded
derivative value, which helps SDN (Hunsberger and Eliasmith,
2015) to convert the trained static network to a dynamic spiking
network. WTSNN (Diehl et al., 2015) converted the DBNs into
SNNs through weight and threshold balancing. Although these
networks achieve good performance, the good results came from
the well-trained ANNs, which does not reflect the characteristics
of SNNs well.

For the BP training methods, DSN (O’Connor and Welling,
2016) proposed that SNN is equivalent to a deep network of ReLU
units, and could be directly trained with BP. Event-SNN (Neftci
et al., 2017) demonstrated an event-driven random BP rule
for learning deep representations. SCSNN (Wu et al., 2019)
used spike count as a surrogate for gradient backpropagation.
BPSNN (Lee et al., 2016) treated the membrane potentials of

spiking neurons as differentiable signals, which enabled the
backpropagation. HM2-BP (Jin et al., 2018) proposed a hybrid
macro/micro level backpropagation algorithm for training multi-
layer SNNs. Temporal SNN (Mostafa, 2017) trained the SNN
with temporal coding. STBP (Wu et al., 2018) trained the SNNs
with BP both in spatial and temporal domains. The excellent
performance of these methods came from BP, which turns out
to not existed in the brain.

For STDP and other biologically plausible methods,
Unsupervised-SNN (Diehl and Cook, 2015) trained an SNN
with STDP, lateral inhibition, and an adaptive spiking threshold
with a poor little performance 95% on the MNIST dataset.
LIF-BA (Samadi et al., 2017) approximated dynamic input-
output relations with piecewise-smooth functions based on fixed
feedback weights. STCA (Gu et al., 2019) trained SNNs with
credit assignments both in spatial and temporal domains. Both
of them update the weights layer by layer. VPSNN (Zhang et al.,
2018a) and Balance-SNN (Zhang et al., 2018b) trained the SNNs
with Equilibrium Propagation, Balance-SNN is an improved
version of VPSNN, which introduced much more learning rules
to get the training balance of SNNs. However, as they trained
with Equilibrium Propagation, the problems in Equilibrium
Propagation also exist in both of them.

To sum up, a model to propagate the global plasticity
information with a random feedback connection directly to each
layer combined with the local plasticity learning rule to train
SNNs has so far been rarely studied.

3. METHODS

The pipeline of our model is shown in Figure 1B. First, we will
introduce the spiking neuron model used in our framework.
Second, the global and local plasticity learning process will be
introduced. Third, the whole framework will be introduced to
understand our model better.

3.1. The Basic LIF Neuron Model
The spiking neuron model we use for temporal information
processing is the Leaky integrate-and-fire (LIF) model, which is
widely used inmost SNN frameworks. As can be seen in Figure 2,
for the LIF model, the neuron will accumulate the potential from
the input, once its potential reaches the threshold, the neuron will
be fired with a spike.

Generally, the membrane potential V can be calculated with
Equation (1)

I(t)−
V(t)

Rm
= Cm

dV(t)

dt
(1)

Rm is the membrane resistance and Cm denotes the membrane
capacitance. I(t) denotes the total input current from pre-
synaptic neurons. For simplicity, we denoteV(t) withV , I(t) with
I, gL and VL denote leaky conductance and leaky potential. In a
network with a more realistic synapse model, the input current
I is generated as a change in conductance, which is caused by
spikes of presynaptic neurons. The excitatory conductance gE
will be non-linearly increased by the number of the input spikes
δj (Gerstner et al., 2014). VE is the reversal potential from neuron
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FIGURE 2 | Illustration of LIF Neuron Model adopted from Lee et al. (2019)

and Zhang et al. (2018a).

i to neuron j. When the membrane reaches the threshold, the
neuron will produce a spike, and the membrane will be reset
to Vreset . τm = Cm

gL
, τE is the conductance decay of excitatory

neurons, wj,i is the synapse weight from neuron j to neuron i.

{

τm
dVi
dt

= −(Vi − VL)− gE
gL (Vi − VE)

τE
dgE
dt

= −gE+
∑N

j wj,iδj
(2)

3.2. The Global Plasticity Learning Process
of Our Model
The global plasticity learning process is applied to a multi-
layer feedforward neural network to illustrate better our learning
algorithm, in which neurons in the previous layer are fully
connected to the subsequent layer. In the adjacent layers,
information from pre-synaptic neurons will be transferred to the
post-synaptic neurons. For a deep spiking neural network, if only
the spike is used, it will take a long time for the information
transfer to the subsequent deeper layers, which will make the
network hard to converge. To solve the problems, Diehl and
Cook (2015) has used the spike trace to adjust the network
weights, Zhang et al. (2018a) and Lee et al. (2016)’s work use
voltage-based weight adjustments. Inspired by the residual neural
network (He et al., 2016), which transfers the information as
x + f (x), here we think that in addition to the spikes output by
the LIF neuron can be used to regulate the weight, the input to
the LIF neuron also contains a wealth of information. The final
output of the neuron is denoted as Sj(t+ 1). To convert Equation
(2) into discrete form, the whole process is shown in Equation (3):



















Vi(t + 1) = Vi(t)− dt
τm
[Vi(t)− VL + gE

gL (Vi(t)− VE)]

gE(t + 1) = gE(t)+ dt
τE
(−gE(t)+

∑N
j wj,iSj(t + 1))

δi(t + 1) = 1 Vi = Vreset if Vi > Vth

Si(t + 1) =
∑N

j wj,iSj(t + 1)+ τδi(t + 1)

(3)

τ is the constant to control the magnitude of the output. To
accelerate the calculation, we only calculate the loss at the end
of the simulation to update the target and weight. We denote the
target with ST , Sout denotes the output of the last layer, M is the
number of the samples. For the output layer, the loss function we

choose here is the L2 norm so that the prediction error can be
written as Equation (4):

{

loss =
∑M

i=1 ||Sout − ST ||2
e = 2 ∗

∑M
i=1 |Sout − ST | (4)

Supposing a network with L layers. The output of the lth layer
is denoted with Sl. For supervised learning, the target of the
penultimate layer ŜL−1 can be directly calculated, as shown in
Equation (5),Wl denotes the forward weight between the lth layer
and the (l+ 1)th. ηt represents the learning rate of the target.

ŜL−1 = SL−1 − ηt1S = SL−1 − ηtW
T
L−1e (5)

For the target of the other hidden layers, the target can not be
directly calculated as Equation (5). By introducing the feedback
connections, the prediction error can be easily transmitted to the
hidden layers, and we denote the feedback layer as Gl. Moreover,
the target of the hidden layer can be written as Equation (6):

{

Ŝl = Sl − Gl(e)
Gl(e) = Bl ∗ e+ bl

(6)

Bl denotes the random feedback weight of the lth layer, and bl
represents the random feedback bias. With the operation of all
layers, we can directly get the target of each layer.

3.3. The Local Learning Process of Our
Model
STDP can be seen as the leading learning rule in the brain,
and it can simulate the expected change of synaptic weights
depending on states between pre-synaptic and post-synaptic (Bi
and Poo, 1998), which can be regarded as a local learning rule.
As introduced in (Xie and Seung, 2000; Hinton, 2007), STDP is
associated with the change of postsynaptic activity. Here we use
the difference between the feedforward state and feedback state
to denote the change, as shown in Equation (7).

1W ∝ SjS
′
i = Sj(Si − Ŝi) (7)

where Sj and Si indicate the pre-synaptic and post-synaptic

output in the forward learning process. Ŝi denotes the target of
the ith layer calculated in Equation (6).

3.4. The Whole Learning Framework
For a multi-layer feedforward SNN, global plasticity information
should be introduced so that STDP can train the whole network
to obtain the desired result. Firstly, the feedforward process is
used to obtain the feedforward state of the network, and then
the feedback is used to obtain the targets of different hidden
layers. Then, the change of weights in different neighborhood
layers are calculated by local STDP plasticity rule in Equation (7).
Finally, the weight of the forward propagation is updated with
Equation (8):

W = W − ηw1W (8)

ηw denotes the learning rate of weight.
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FIGURE 3 | The learning process of our GLSNN compared with BP, RFA, DTP, and DFA. B in RFA and DFA means the random matrix to transfer the error directly.

Blue connection Gl in DTP means the feedback layer needs to update. Red connection GL in GLSNN means the feedback layer without updates.

Inspired by FAs (Lillicrap et al., 2016; Nøkland, 2016),
random weights can be used to transmit the error in the
network. In this paper, we use the random feedback layer to
get the target of the hidden layers. As shown in Figure 3,
in our model, feedback connections are directly connected
from the output layer to the hidden layers, which means that
the neural network can update the parameters of all hidden
layers simultaneously, and the random feedback connections
do not introduce extra computations. The details are shown
in Algorithm 1.

4. EXPERIMENTS

In this section, we experimentally evaluate the performance of
our model on two benchmark datasets, basic MNIST (LeCun,
1998) and Fashion MNIST (Xiao et al., 2017). The experiments
are performed with PyTorch on TITAN RTX. To fully reflect
the performance of our algorithm, the fully connected network
is considered to carry out the experiment without batch
normalization or weight regularization. The update method of
the weight is the Stochastic Gradient Descent (SGD) method.
In addition, we compare our GLSNN with other state-of-the-
art biological plausible methods. The initiation method of the
weight is the same as DTP (Lee et al., 2015). Also, the ablation
studies are performed to study the effect of the feedback layers.
For the parameters of the network, the learning rate for the target
ηt = 0.5, the learning rate for the weight ηw = 0.015. The
batchsize is 10. For the hyper-parameter of the LIF neuron as
described in section 3, we set VE = 0.2, VI = 0, VL = 0,

Algorithm 1 The whole learning process of our GLSNN.

Require: Initialize a multi-layer neural network with L layers
Feedforward process in Equation (3) Fi
Feedback process in Equation (6) Gi

t= 0, simulation interval dt, and simulation time T, max
iteration EPO

1: for epoch= 1 to EPO do

2: while t ≤ T do

3: for i= 1 to L-1 do
4: Si=Fi(Si−1).
5: t= t + dt
6: end for

7: end while

8: Get the prediction error e with Equation (4).
9: Get the target of the penultimate layer ŜL−1 with

Equation (5).
10: for i= 1 to L-2 do
11: Ŝi=Si − Gi(e)
12: end for

13: for i= 1 to L-1 do
14: Update synapse weights Equations (7) and (8)
15: end for

16: end for

Vth = 0.0009, Vreset = 0, τm = 0.5, τE = 0.2, τ = 0.01,
gleak = 20, the simulated time interval dt = 0.01, and the total
simulation time T = 0.1.
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FIGURE 4 | (A) The test accuracy of GLSNN of different hidden neurons of 3 hidden layers. (B) The train and test accuracy when the hidden layer is set with 800*3.

TABLE 1 | Comparison of classification accuracies of GLSNN with other SNN frameworks on the MNIST dataset.

Model Structure Neural coding Learning rule Acc

SDBN (O’Connor et al., 2013) FC Spike ANN to SNN 94.09

Unsupervised-SNN (Diehl and Cook, 2015) FC Spike STDP 95

LIF-BA (Samadi et al., 2017) FC Spike Broadcast Alignment 97.05

SN (O’Connor and Welling, 2016) FC Rate BP 97.93

Event-SNN (Neftci et al., 2017) FC Rate BP 97.98

Temporal SNN (Mostafa, 2017) FC Spike BP with Temporal Coding 98

SDN (Hunsberger and Eliasmith, 2015) FC Spike ANN to SNN 98.37

VPSNN (Zhang et al., 2018a) FC Spike Equi-prop + STDP 98.52

STCA (Gu et al., 2019) FC Spike Spatial + Tempral Credit Assignment 98.6

GLSNN (This study) FC Spike Global Feedback + STDP 98.62

Balance-SNN (Zhang et al., 2018b) FC Spike Equi-Prop + Multiple Balance Rules 98.64

SCSNN (Wu et al., 2019) FC Rate BP 98.66

BPSNN (Lee et al., 2016) FC Rate BP 98.71

HM2-BP (Jin et al., 2018) FC Rate Macro/Micro level BP 98.88

STBP (Wu et al., 2018) FC Rate Spatial + Tempral BP 98.89

4.1. MNIST
MNIST is the most widely used dataset to measure the
performance of the algorithm in machine learning. It consists
of 60,000 training samples and 10,000 test samples, used to
describe the hand-written digits from 0 to 9. The sample size
is 28*28. The number of epochs is set with 100. We wonder
how our model fares in this benchmark as the model goes
deeper in that target is directed computed from the output
layer. To that end, we have trained a network of 3 hidden
layers of different hidden neurons to evaluate the performance of
the network.

As shown in Figure 4, when the network structure is set
with [784-800-800-800-10], the test accuracy is the highest at
98.62%. To demonstrate the superiority of our GLSNN, we
compare our methods with several different SNN frameworks,

TABLE 2 | The average training time (seconds) per epoch.

500 * 1 500 * 2 500 * 3 500 * 4 500 * 5 500 * 6
80.86 124.99 133.33 178.25 200.08 256.98

as can be seen in Table 1, our GLSNN has surpassed all other
SNN frameworks trained without BP, such as Unsupervised-SNN
(Diehl and Cook, 2015), VPSNN (Zhang et al., 2018a), and

so on. Moreover, for the BP trained SNNs, we have exceeded

most of them. For the Balance-SNN (Zhang et al., 2018b), in

addition to the STDP learning rule, several other rules were
introduced, such as LTP, LTD, STF, STD, however only 0.2%

accuracy improved compared to our GLSNN. For SCSNN (Wu

et al., 2019), BPSNN (Lee et al., 2016), HM2-BP (Jin et al.,
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FIGURE 5 | The spikes in the hidden layer of the three randomly chosen samples.

FIGURE 6 | The test accuracy on MNIST dataset of GLSNN compared with

ANNs trained with BP, Equil-Prop, RFA, DFA, DTP, DTP-delta, and LRA-E with

different hidden layers.

2018), and STBP (Wu et al., 2018), the different levels of
backpropagation was connected to contribute to their superior
performance, however, which is non-existent in the human
brains. To the best of our knowledge, our result could be a
new record for the SNNs trained with STDP. The spike transfer
process is shown in Figure 5, as the network structure is set
with [784-500-500-10].

Also, to prove that our algorithm still performs well when
the network is going deeper, we test the results with different
hidden layers, whose hidden neurons are set with 256 for
consistency with the paper (Ororbia and Mali, 2019). As can
be seen in Figure 6, for Equil-prop methods, the accuracy
quickly drops down when the network is deeper. Also, the
accuracy of the DTP method begins to struggle from 95.06
to 89.9%, which shows the instability of them. Compared
with other stable methods, our GLSNN outperforms better

than them both for the five hidden layers and the eight
hidden layers, which indicates the stability and superiority of
our algorithm.

Also, to measure the computation speed of our model, we test
the average runtime per epoch with different hidden layers as
shown in Table 2.

To demonstrate the underlying mechanism of our GLSNN
model, the t-SNE method (Maaten and Hinton, 2008) was used
to visualize the model’s clustering ability of different layers. The
network structure is set with [784-500-500-10], as shown in
Figure 7, for the original input, samples of different categories
are very close to each other, and some clusters contain samples
from other categories. After the training of SNN, the separability
of the output information of the hidden layer shows more vital
clustering ability than the input layer as the interval between
the class clusters is coming larger. For the output layer, different
categories are distinguished, which has shown that the learning
process of our GLSNN has helped the network to perform better
clustering and classification performances.

4.2. Fashion MNIST
Fashion-MNIST is a more complex version compared to MNIST,
consisting of gray-scale images of clothing items. Since the
dataset is more complicated compared with MNSIT, the training
epoch is set with 200, and we tried networks of different hidden
layers, as shown in Figure 8. When the network structure is set
with five hidden layers of 200 hidden neurons each layer, the
network achieves the best performance with 89.05% accuracy
on the test dataset. Also, we compare our GLSNN with other
biologically plausible methods shown in Table 3. We have chosen
the best results of each method as recorded in (Ororbia and Mali,
2019). Our GLSNN exceeds all of them.

4.3. Ablation Studies
To study the effect of the feedback layers of the network, we create
four networks with 7, 8, 10, and 12 layers separately. All of the
hidden neurons are set with 200. First, we remove all the feedback
connections of the network, which means only the weight of the
last two-layers could be updated. Then we incrementally add
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FIGURE 7 | The visualization on the input layer, hidden layer 1, hidden layer 2, and output layer in GLSNN with t-SNE.

FIGURE 8 | (A,B) The train and test accuracy of GLSNN of different hidden layers of Fashion MNIST, the 200*n, means n hidden layers with 200 neurons each hidden

layer.
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the feedback layers in the network to see the performance of
the network.

As shown in Figure 9, with the increase of the number
of feedback layers, the performance of the network gradually

TABLE 3 | The test accuracy on the Fashion MNSIT dataset of GLSNN compared

with VPSNN and other ANNs trained with BackProp, Equi-Prop, RFA, DFA, DTP,

DTP-delta, and LRA-E.

Model Structure Type Performance

VPSNN (Zhang et al., 2018a) FC SNN 82.69

Equiprop (Scellier and Bengio, 2017) FC ANN 85.99

DTP (Lee et al., 2015) FC ANN 86.4

DTP_delta (Ororbia and Mali, 2019) FC ANN 87.01

LRA-E (Ororbia and Mali, 2019) FC ANN 87.69

RFA (Lillicrap et al., 2016) FC ANN 88.01

DFA (Nøkland, 2016) FC ANN 88.41

Backprop (Rumelhart et al., 1986) FC ANN 88.45

GLSNN (This study) FC SNN 89.05

improves. When all the feedback layers are added, the SNN
reaches the highest accuracy. The performance of the network
did not improve linearly with the increase of the feedback
layers. The variation in accuracy can be roughly divided into
three steps:

• In step 1, the linear increment of accuracy with weights tuning
in only top layers.

• In step 2, the non-increment or stabilization of
accuracy with weight tuning in both top and
mid-layers.

• In step 3, the prominent increment toward the best
accuracy with only adding into the weight tuning in the
bottom layer.

The deeper layers play a role in decision-making, while the
former layers play a role in feature extraction. That is to
say, the feedback connections play a significant role in the
perceptual inference, which is consistent with neurophysiology
(Harris and Shepherd, 2015).

FIGURE 9 | (A–D) The test accuracy of GLSNN with different feedback layers on MNIST and Fashion MNIST, and the variation in accuracy can be roughly divided into

three steps.
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4.4. Comparison With Other Traditional
SNNs Trained With STDP
For the SNNs trained with STDP, the problem is how to introduce
global information. The success of the BP algorithm in deep
neural networks training is mainly due to the chain rules,
which introduce the global error. Traditional SNNs trained with
STDP often sidestep this problem, that is they avoid multi-layer
training. For Diehl’s unsupervised SNN (Diehl and Cook, 2015),
only the weight between the input and excitatory neurons is
trained with STDP. The extension (Hao et al., 2020) modified
the last clustering layer to a supervised classification layer.
Masquelier (Masquelier and Thorpe, 2007) introduced a multi-
layer SNN combined with convolutional/pooling layer, feature
discovery layer and a classification layer. However, the first
convolutional layer is set with the Gabor filters, and only the
feature discovery layer is trained with STDP. To solve this,
Tavanaei (Tavanaei and Maida, 2017) introduced a sparse coding
model to replace the handcrafted features in Masquelier and
Thorpe (2007). However, the training is layer-wise, the feature
discovery layer can only be trained after the first convolutional
layer is completed training. Recently, Zhang’s work (Zhang et al.,
2018a) introduced the equilibrium propagation, the forward and
feedback process in SNNs are implicitly defined in the negative
and positive phase in equilibrium propagation, which solved the
multi-layer training in SNNs to a certain extent. However, due to
the implicit definition, when the network went deeper, it becomes
hard to converge to a stable situation. Our GLSNN explicitly
introduced the global feedback connections, which provides a
feasible solution to the training of the multi-layer SNN.

5. CONCLUSION AND FUTURE WORK

In this paper, we propose an SNN training method, which takes
full advantage of the global and local plasticity information.
We mimic the global feedback connections and the local STDP
learning rules in the brain, providing a powerful way to train
a multi-layer SNN. The global random feedback connections
help to propagate the target from the output layer to the hidden
layers. The local STDP learning rule is utilized to optimize
the local synaptic strength of the network with the obtained
target. Our GLSNN offers an alternative way to solve the weight
transpose problem in BP, as well as the feedback layers are
directly connected to the hidden layers, leading the weight of

each layer can be directly updated without the error transmitted
layer by layer. Experiments indicate that our GLSNN model has
performed favorably against several state-of-the-art SNNs on the
standard benchmark MNIST and Fashion MNIST dataset.

In terms of future work, the authors intend to study more
biologically inspired learning rules in this work, as we only
use the STDP local learning rule. The dynamic combination of
different learning rules and different types of spiking neurons
may further enhance the learning performance of the network.
Also, we only verify the performance on the fully connected
network structures, in the following work, we would consider
more complex network structures such as convolutional neural
network and recurrent neural network to accommodate more
complex visual perception tasks, such as video object detection
and visual tracking.
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Deep neural networks (DNNs) have attained human-level performance on dozens of

challenging tasks via an end-to-end deep learning strategy. Deep learning allows data

representations that have multiple levels of abstraction; however, it does not explicitly

provide any insights into the internal operations of DNNs. Deep learning’s success

is appealing to neuroscientists not only as a method for applying DNNs to model

biological neural systems but also as a means of adopting concepts and methods from

cognitive neuroscience to understand the internal representations of DNNs. Although

general deep learning frameworks, such as PyTorch and TensorFlow, could be used

to allow such cross-disciplinary investigations, the use of these frameworks typically

requires high-level programming expertise and comprehensive mathematical knowledge.

A toolbox specifically designed as a mechanism for cognitive neuroscientists to map

both DNNs and brains is urgently needed. Here, we present DNNBrain, a Python-based

toolbox designed for exploring the internal representations of DNNs as well as brains.

Through the integration of DNN software packages and well-established brain imaging

tools, DNNBrain provides application programming and command line interfaces for

a variety of research scenarios. These include extracting DNN activation, probing and

visualizing DNN representations, and mapping DNN representations onto the brain. We

expect that our toolbox will accelerate scientific research by both applying DNNs tomodel

biological neural systems and utilizing paradigms of cognitive neuroscience to unveil the

black box of DNNs.

Keywords: deep neural network, brain imaging, neural representation, neural encoding and decoding,

representational similarity analysis (RSA), feature visualization

INTRODUCTION

Over the past decade, artificial intelligence (AI) has been able to make dramatic advances because
of the rise of deep learning (DL) techniques. DL makes use of deep neural networks (DNNs)
to model complex non-linear relationships and thus is able to solve real-life problems. A DNN
often consists of an input layer, multiple hidden layers, and an output layer. Each layer generally
implements some non-linear operations that transform the representation at one level into another
representation at a more abstract level. In one particular example, deep convolutional neural
network (DCNN) architecture stacks multiple convolutional layers hierarchically, inspired by the
hierarchical organization of the primate ventral visual stream. A supervised learning algorithm is
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generally used to tune the parameters of the network to minimize
errors between the network output and the target label in an end-
to-end manner (LeCun et al., 1998; Rawat and Wang, 2017). As
a result, DL is able to automatically discover multiple levels of
representations that are needed for a given task (LeCun et al.,
2015; Goodfellow et al., 2016). With this built-in architecture
and learning from large external datasets, DCNNs have achieved
human-level performance on a variety of challenging object
(Krizhevsky et al., 2012; Simonyan and Zisserman, 2015; Szegedy
et al., 2015; He et al., 2016) and speech recognition tasks (Hinton
et al., 2012; Sainath et al., 2013; Hannun et al., 2014).

In addition to these achievements in engineering, DNNs
provide a potentially rich interaction between studies on both
biological and artificial information processing systems. On the
one hand, DNNs offer the best models of biological intelligence
to date (Cichy and Kaiser, 2019; Richards et al., 2019). In
particular, good correspondence between DNNs and the visual
systems has been identified (Yamins and DiCarlo, 2016; Kell
and McDermott, 2019; Serre, 2019; Lindsay, 2020). First, DNNs
exhibit behavioral patterns similar to those of human and non-
human primate observers on some object recognition tasks
(Jozwik et al., 2017; Rajalingham et al., 2018; King et al., 2019).
Second, DCNNs appear to recapitulate the representation of
visual information along the ventral stream. That is, early stages
of the ventral visual stream (e.g., V1) are well-predicted by
early layers of DNNs optimized for visual object recognition,
whereas intermediate stages (e.g., V4) are best predicted by
intermediate layers and late stages (e.g., IT) are best predicted
by late layers (Khaligh-Razavi and Kriegeskorte, 2014; Yamins
et al., 2014; Güçlü and van Gerven, 2015; Eickenberg et al., 2017).
Finally, DNNs designated for object recognition spontaneously
generate many well-known behavioral and neurophysiological
signatures of cognitive phenomena such as shape tuning (Pospisil
et al., 2018), numerosity (Nasr et al., 2019), and visual illusions
(Watanabe et al., 2018). Thus, DNNs provide a new perspective
to study the origin of intelligence. Indeed, neuroscientists have
already used DNNs tomodel the primate visual system (Schrimpf
et al., 2018; Lindsey et al., 2019; Lotter et al., 2020).

Alternatively, the end-to-end DL strategy makes DNN
a black box, without any explanation of its internal
representations. Experimental paradigms and theoretical
approaches from cognitive neuroscience have significantly
advanced our understanding of how DNNs work (Hasson
and Nusbaum, 2019). First, concepts and hypotheses from
cognitive neuroscience, such as sparse coding and modularity,
provide a hands-on terminology to describe the internal
operations of DNNs (Agrawal et al., 2014; Ritter et al., 2017).
Second, a variety of methods of manipulating stimuli, such
as stimulus degradation and simplification, have been used to
characterize unit response dynamics (Baker et al., 2018; Geirhos
et al., 2019). Finally, the rich data analysis techniques from
cognitive neuroscience, such as ablation analysis (Morcos et al.,
2018; Zhou et al., 2018), activation maximization (Nguyen
et al., 2016), and representation similarity analysis (Khaligh-
Razavi and Kriegeskorte, 2014; Jozwik et al., 2017), provide a
powerful arsenal for exploring the computational mechanisms
of DNNs.

Such a crosstalk between cognitive neuroscience and AI needs
an integrated toolbox that meets the objectives of both fields.
However, the most commonly used DL frameworks such as
PyTorch1 and TensorFlow2 are developed for AI researchers.
The use of these frameworks typically requires advanced
programming expertise and comprehensive mathematical
knowledge of DL. To our knowledge, there is no software
package, specifically designed for both AI scientists and cognitive
neuroscientists, that is able to interrogate DNNs and brains at
the same time. Therefore, it would be of great value to have
a unifying toolbox that maximally integrates DNN software
packages and well-established brain mapping tools.

In this paper, we present DNNBrain, a Python-based toolbox
specifically designed for exploring representations of both DNNs
and brains. The toolbox has five major features.

• Versatility: DNNBrain supports a diverse range of applications
for exploring DNN and brain representations. These
include accessing DNN representations, building an
encoding/decoding model for external stimuli, analyzing
representational similarity between DNN and brain, transfer
learning from pretrained models on study-specific stimuli,
and visualizing DNN representations. Moreover, DNNBrain
supports multiple modalities of input stimulus including
image, audio, and video.

• Usability: DNNBrain provides a command line interface
(CLI) and an application programming interface (API) for
the user’s convenience. At the application level, users can
directly run commands to conduct typical representation
analysis for both DNN and brain without any programming
needed. At the programming level, all algorithms and
computational pipelines are encapsulated into objects with
high-level interface in the experimental design and data
analysis language of neuroscientists. Users can easily program
their own pipelines on these encapsulated algorithms objects.

• Transparent input/output (IO): DNNBrain transparently
reads and writes multimodal neuroimaging data and multiple
customized meta-data. As a result, DNNBrain spares users
from the need to have specific knowledge about different
data formats.

• Open source: DNNBrain is freely available in source.
Users can access every detail of DNNBrain implementation.
This improves the reproducibility of experimental results,
leads to efficient debugging, and allows for accelerated
scientific progress.

• Portability: DNNBrain, implemented in Python, runs on all
major systems (e.g., Windows, Mac, and Linux). It is easy to set
up, as it has no complicated dependencies on external libraries
and packages.

As follows, we first introduce the functionalities of DNNBrain
and then describe its framework (i.e., building blocks). Finally,
with a typical application example, we demonstrate the versatility
and usability of DNNBrain in characterizing both DNNs and
brains as well as in examining the correspondences between

1https://pytorch.org
2https://www.tensorflow.org
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DNNs and brains. The toolbox is freely available for download3

and complemented with an expandable online documentation.4

Functionalities of DNNBrain
The primary aim of DNNBrain is to provide a framework that
makes it easy to explore the internal representations of DNNs
and brains, and the representational similarity between them.
To do this, DNNBrain integrates a diverse range of tools such
as encoding/decoding models to reveal stimuli or behavioral
relevance of the representations, encoding/decoding models to
map DNNs representations to those of brains, representational
similarity analysis (RSA) between DNNs and brains, visualizing
DNN representations, and transfer learning from pretrained
models on study-specific stimuli.

Encoding and Decoding Model
Information processing in the brain and DNNs can generally be
divided into two stages: (1) the neural code is generated from the
stimuli (i.e., map stimuli to neural responses), and (2) the neural
code is used to produce behavior (i.e., map neural responses
to behavioral responses; Kriegeskorte and Douglas, 2019). In
DNNBrain, neural (artificial) encoding models are implemented
to do the former, whereas neural (artificial) decoding models are
used for the latter (Figure 1).

Encoding models are implemented as linear models because
the manner in which features of stimuli are represented in
an explicit format by a neuron/voxel is a primary concern of
neuroscientists (Yamins et al., 2014; Wen et al., 2018). Two kinds
of linear models were introduced into DNNBrain to support
encoding models (Figure 2A). First, univariate linear models
(e.g., GLM, ridge, and lasso regression) were adopted to find
linear combinations of stimuli features to predict the response of
a neuron/voxel (Naselaris et al., 2011). The univariate encoding
model describes how information is encoded in the activity
of the individual neuron/voxel; however, it ignores interactions
between different neurons/voxels. Second, multivariate partial
least squares (PLS) linear models were introduced to find linear
relations in two sets of multivariate variables (i.e., stimulus
features and neural responses) by maximizing covariance of the
transformed variables (Bilenko and Gallant, 2016; O’Connell
and Chun, 2018). PLS models the covariance structures of
stimuli features and neural responses, and thus provides
information on how individual features and their interactions
contribute to predicting responses frommultiple neurons/voxels.
Decoding models, which predict behavioral responses based on
neural responses, work in the opposite direction of encoding
models. Therefore, univariate linear models used for encoding
models can serve as decoding models by simply exchanging
response variables for predictor variables of the encoding models
(Figure 2B).

DNNBrain uses cross-validation (CV) techniques (e.g.,
k-fold and leave-one-out CV) to evaluate the generalization
performance of encoding/decoding models. The CV techniques
divide a dataset into several non-overlapping subsets. Each

3http://github.com/BNUCNL/dnnbrain
4http://dnnbrain.readthedocs.io

subset is held back in turn as the test set, whereas all other
subsets are collectively used as a training dataset. The accuracy
(i.e., the fraction of correct predictions) and explained variance
are generally used to measure performance for classification-
and regression-based encoding/decoding models, respectively.
Permutation testing is utilized to test the significance of the
model performance. The null distribution is generated by
deriving the performance measure multiple times using original
data samples, but with permuted targets.

Analyzing Representational Similarity
Another focus of DNNBrain is to provide tools to examine
representational similarities between DNNs and brains (i.e.,
describe the relationships between neural responses from DNNs
and those from brains) (Figure 1). First, encoding models can be
used to examine the representational similarity between DNNs
and brains if internal representations of DNNs are considered
as extracted features of external stimuli (Figure 2A). Second,
representational similarity analysis (RSA) was implemented in
DNNBrain to evaluate the similarity between two representations
(Kriegeskorte et al., 2008) (Figure 2C). RSA differs from
encoding/decoding models, which measure the representational
similarity between DNNs and brains by examining how
brain responses could be directly predicted from DNN
responses, or vice versa. In contrast, RSA utilizes pairwise
comparison of stimuli in representation space to characterize
their representation. Representational dissimilarity, which is
often calculated as Euclidean distance or correlation distance
between two multivariate response patterns, is first created for
every pair of stimuli or conditions, and then summarized in a
representational dissimilarity matrix (RDM) which characterizes
the geometry of the set of points in the multivariate response
space. Finally, the correlation between RDMs from DNNs and
brains is calculated to measure their representational similarity.
Multiple correlation metrics are supported by DNNBrain
including the Pearson correlation, Kendall’s tau correlation,
and Spearman’s correlation. Permutation tests were integrated
in DNNBrain to estimate significance of the representational
similarity between DNNs and brains. The permutation test
randomizes the stimulus labels multiple times to generate the
null distribution.

Transfer Learning From Pretrained Models on

Study-Specific Stimuli
Training a DNN from scratch often requires a large amount
of computational demand that results in significant time and
energy costs. Moreover, there usually is not enough existing data
available to train a DNN de novo. Fortunately, it turns out that
representations from pretrained DNNs on large datasets (e.g.,
ImageNet) often work well for related new tasks. Therefore,
instead of training a DNN from scratch, it can be trained to
solve a new task by fine-tuning the weights of a pretrained
model using just a very few training examples. This is known
as transfer learning. Clearly, transfer learning is of great value
in the study of representational similarities between DNNs and
brains because it is often not possible to collect large-scale neural
datasets. DNNBrain provides a set of utilities that assists users in
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FIGURE 1 | DNNBrain is designed as an integrated toolbox that characterizes artificial representations of DNNs and neural representations of brains. After stimuli are

submitted to both DNNs and brains, the artificial neural activities, and the biological neural activities are acquired. By assembling the stimuli, the artificial activity data,

and the biological neural activity data together with custom-designed auxiliary IO files, DNNBrain allows users to easily characterize, compare, and visualize

representations of DNNs and brains.

transfer learning from pretrained DNNs on their study-specific
dataset. Users can easily specify which target layers/channels to
be fine-tuned and customize the new task layers.

Visualizing Features From DNNs
DNNs are a kind of complex non-linear transformation that
does not provide explicit explanation of their internal workings.
Identifying the relevant features that contribute most to the
responses of an artificial neuron is central to the understanding
of precisely what each neuron has learned (Montavon et al., 2018;
Nguyen et al., 2019). Three approaches have been implemented
in DNNBrain to assist users in examination of the stimulus
features that an artificial neuron prefers. The first approach is
known as top stimulus discovering. The top images with the
highest activations for a specific neuron (or unit) are identified
from a large image collection (Zeiler and Fergus, 2014; Yosinski
et al., 2015). The second approach, known as saliency mapping,
computes gradients on the input images relative to the target
unit, utilizing a backpropagation algorithm. It highlights pixels
of the image that change the unit’s activation most when its
value changes (Simonyan et al., 2014; Springenberg et al., 2015).

The third approach is termed optimal stimulus synthesizing. This
approach synthesizes the visual stimulus from initial random
noise, guided by increasing activation of the target neuron (Erhan
et al., 2009; Nguyen et al., 2016).

Other Utilities Provided by DNNBrain
In addition to the functionalities described previously,
DNNBrain provides additional flexible pipelines for
neuroscience-orientated analysis of DNNs. These include
ablation analysis of individual units (Morcos et al., 2018; Zhou
et al., 2018) and estimation of the empirical receptive field of a
unit (Zhou et al., 2014). It also comes with a variety of utilities,
such as image processing tools used for converting different data
structures (e.g., PyTorch tensor, NumPy array, and PIL image
objects), translating and cropping images, and more. Details can
be found on the DNNBrain documentation page.4

Implementation of DNNBrain
DNNBrain is a modular Python toolbox that consists of four
modules: IO, Base, Model, and Algorithm (Figure 3). The Python
language was selected for DNNBrain because it provides an ideal
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FIGURE 2 | DNNBrain provides multiple approaches to explore internal representations of DNNs and the brain, and the representational similarities between them. (A)

Top: univariate linear encoding models find optimal linear combinations of multiple stimulus features (or DNN responses) to predict the response of a neuron/voxel.

Bottom: multivariate linear models search optimal linear combinations of multiple stimulus features (or DNN responses) to predict the responses from multiple

neurons/voxels by maximizing their covariance. (B) In the opposite direction of encoding models, linear decoding models find optimal linear combinations of neural

responses (or DNN responses) to predict behavior responses. (C) Representational similarity analysis evaluates the similarity of two representations by comparing

representational dissimilarity matrices obtained from them.

environment for the research on DNNs and brains. First, Python
is currently the most commonly used programming language
for scientific computing. Many excellent Python libraries have
been developed for scientific computing. The libraries used in the
DNNBrain are as follows: NumPy for numerical computation,5

SciPy for general-purpose scientific computing,6 scikit-learn for
machine learning,7 and Python imaging library (PIL) for image

5https://numpy.org
6https://www.scipy.org
7https://scikit-learn.org

processing.8 Second, Python is increasingly used in the field of
brain imaging. Many Python libraries for brain imaging data
analysis have been developed such as NiPy9 (Millman and Brett,
2007) and fMRIPrep10 (Esteban et al., 2019). Finally, Python is
the most popular language in the field of DL. Python is well-
supported by the two most popular DNN libraries (i.e., PyTorch1

and TensorFlow2).

8http://pythonware.com/products/pil
9https://nipy.org
10https://fmriprep.org
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FIGURE 3 | DNNBrain is a modular framework which consists of four

modules: IO, Base, Model, and Algorithm. The IO module provides facilities for

managing file-related input and output operations. The Base module defines

base level classes for array computing and data transforming. The Model

module holds a variety of DNN models. The Algorithm module defines various

algorithms for exploring DNNs and the brain. All modules provide user-friendly

APIs. A set of CLIs was developed for a variety of research scenarios.

Supported by a large variety of existing software packages,
DNNBrain was designed with a high-level API in the
domain language of cognitive neuroscience. All algorithms and
computational pipelines are encapsulated into classes in an
object-oriented programmingmanner. All modules provide user-
friendly APIs. On these APIs, a set of CLIs was developed for a
variety of research scenarios.

Of note, neuroimaging data preprocessing pipelines are not
included in DNNBrain. The data need to be preprocessed
before they are input into DNNBrain. This separation between
the DNNBrain representation analysis pipeline and the data
preprocessing pipeline provides users with maximum flexibility
to utilize different neuroimaging toolboxes to preprocess
their data.

IO Module: Organizing Datasets in DNNBrain
DNNBrain introduces auxiliary file formats to handle various
types of scientific data and supporting metadata. These include
stimulus files, DNN mask files, and DNN activation files. With
these file formats, users can easily organize their inputs and
outputs. The stimulus file is a comma separated values (CSV)
text file designed to configure stimulus information including
the stimulus type (image, audio, and video), stimulus directory,

stimulus ID, stimulus duration, stimulus conditions, and other
possible stimulus attributes. The DNNmask file is also a CSV text
file designed for users to specify channels and units of interest
when analyzing DNNs. Both the stimulus file and the DNN
mask file can be easily configured with a text editor. The DNN
activation file is a HDF5 (Hierarchical Data Format) file in which
activation values from specified channels are stored. In addition,
DNNBrain uses NiBabel11 to access brain imaging files. Almost
all common MRI file formats are supported, including GIFTI,
NIfTI, CIFTI, and MGH.

Base Module: Defining the Basic Data Structure
The base module defines base level objects for data structure
and data transformations. Specifically, a set of objects is defined
to organize either data from the input stimulus or the output
activation data from the DNN. The data objects were designed
to be as simple as possible, while retaining necessary information
for further representation analysis. The stimulus object contains
stimulus paths and associated attributes (e.g., category label),
which are read from stimulus files. The activation object holds
DNN activation patterns and associated location information
(e.g., layer, channel, and unit). Aside from these data objects,
several encoding/decoding models were developed, including
popular classification and regression models such as generalized
linear models, logistic regression, and lasso. Each of these models
was wrapped from the widely used machine learning library,
scikit-learn.7

Model Module: Encapsulating DNNs
In DNNBrain, a DNNmodel is implemented as a neural network
model from PyTorch. Each DNNmodel is a sequential container
which holds the DNN architecture (i.e., connection pattern of
units) and associated connection weights. The DNN model is
equipped with a suite of methods that access attributes of the
model and update states of the model. PyTorch has become the
most popular DL framework because of its simplicity and ease
of use in creating and deploying DL applications. At present,
several well-known PyTorch DCNN models12 pretrained for
different stimulus modalities have been adopted into DNNBrain,
including AlexNet (Krizhevsky et al., 2012), VGG (Simonyan
and Zisserman, 2015), GoogLeNet (Szegedy et al., 2015), and
ResNet (He et al., 2016) for image classification; VGGish for
audio classification (Hershey et al., 2017); and R3D for video
classification (Tran et al., 2018).

Algorithm Module: Characterizing DNNs and Brains
The algorithm module defines various algorithms objects
for exploring DNNs. An algorithm object contains a DNN
model and corresponding methods that allow the study of
specific properties of the model. Three types of algorithms
are implemented in DNNBrain. The first type is the gradient
descent algorithm for DNN model training, which is wrapped
from PyTorch.13 The second type of algorithm comprises
tools for extracting and summarizing the activation of a

11https://nipy.org/nibabel
12https://github.com/pytorch/vision
13https://pytorch.org/docs/stable/optim.html
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DNN model, such as principal component analysis (PCA)
and clustering. The third type is made up of algorithms that
visualize representations of a DNN, including discovering the
top stimulus, mapping saliency features of a stimulus, and
synthesizing the maximum activation stimulus for a specific
DNN channel. Each algorithm takes a DNN model, as well as a
stimulus object, as input.

Command Line Interface
At the application level, DNNBrain provides several workflows
as command line interface, including those that access DNN
representations, visualize DNN representations, evaluate
the behavioral relevance of the representations, and map
DNN representations to brains. Users can conveniently run
commands to perform typical representation analysis on
their data.

Extension of DNNBrain
Along with the modules and algorithms that have already been
implemented in DNNBrain, the user can extend DNNBrain
in the following ways. First, any PyTorch model can be
easily wrapped into DNNBrain by inheriting DNN Class and
overriding its few methods. Second, any linear or non-linear
model can conveniently be introduced into DNNBrain as either

an encoding/decoding model, as long as they have the same
interface as the scikit-learn Classifier/Regression object. Finally,
users can write their own scripts to develop customized pipelines
by reusing the algorithms and dataset objects.

METHODS

DNN Model: AlexNet
AlexNet is used as an example to illustrate the functionality
of DNNBrain. AlexNet is one of the most influential DCNNs.
In the 2012 ImageNet challenge (Krizhevsky et al., 2012),
it demonstrated for the first time that DCNNs can increase
ImageNet classification accuracy by a significant stride. AlexNet
is composed of five convolutional (Conv) layers and three fully
connected (FC) layers that receive inputs from all units in
the previous layer (Figure 4A). Each Conv layer is generally
composed of a convolution, a rectified linear unit function
(ReLU), and max pooling operations. These operations are
repeatedly applied across the image. In this paper, when we refer
to Conv layers, we mean the output after the convolution and
ReLU operations.

Because AlexNet contains thousands of units in each layer, the
dimension (i.e., the number of units) of the activation patterns

FIGURE 4 | AlexNet architecture and activity patterns from example units. (A) AlexNet consists of five Conv layers followed by three FC layers. (B) The activation

maps from each of the five Conv layers of AlexNet were extracted for three example images (cheetah, dumbbell, and bald eagle). Presented channels are those

showing maximal mean activation for that example image within each of the five Conv layers.
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from each layer was reduced to 100 via PCA to avoid the
risk of overfitting the models in further analyses of DNN and
brain representation.

BOLD5000: Stimulus and Neuroimaging
Data
BOLD5000 is a large-scale publicly available human functional
MRI (fMRI) dataset in which four participants underwent
slow event-related BOLD fMRI while viewing ∼5,000 distinct
images depicting real-world scenes (Chang et al., 2019). The
stimulus images were drawn from the three most commonly
used computer vision datasets: 1,000 hand-curated indoor and
outdoor scene images from the Scene UNderstanding dataset
(Xiao et al., 2010), 2,000 images of multiple objects from the
Common Objects in Context dataset (Lin et al., 2014), and
1,916 images of mostly singular objects from the ImageNet
dataset (Deng et al., 2009). Each image was presented for 1 s
followed by a 9-s fixation cross. Functional MRI data were
collected using a T2∗-weighted gradient recalled echo planar
imaging multi-band pulse sequence (In-plane resolution = 2
× 2mm; 106 × 106 matrix size; 2mm slice thickness, no gap;
TR = 2,000ms; TE = 30ms; flip angle = 79◦). The scale,
diversity, and naturalness of the stimuli, combined with a slow
event-related fMRI design, make BOLD5000 an ideal dataset to
explore the DNNs and brain representations of a wide range of
visual features and object categories. The raw fMRI data were
preprocessed utilizing the fMRIPrep pipeline including motion
correction, linear detrending, and spatial registration to native
cortical surface via boundary-based registration (Esteban et al.,
2019). No additional spatial or temporal filtering was applied.
For a complete description of the experimental design, fMRI
acquisition, and preprocessing pipeline, see Chang et al. (2019).

The preprocessed individual fMRI data were firstly
transformed into 32k_fs_LR space using ciftify (Dickie et al.,
2019). BOLD response maps for each image were then estimated

from the fMRI data using the general linear model (GLM)
from HCP Pipelines (Glasser et al., 2013). The response maps
of each image were finally averaged across four subjects in
the fsLR space and used for further analyses. Moreover, we
constrained our analysis to the ventral temporal cortex (VTC), a
critical region for object visual recognition. The VTC region was
defined by merging the areas V8, FFC (fusiform face complex),
PIT (posterior inferotemporal complex), VVC (ventral visual
complex), and VMV (ventromedial visual areas) from HCP
MMP 1.0 (Glasser et al., 2016). DNNBrain pipelines support
both surface and volume data. Here, we preferred to use surface-
based preprocessed data instead of volume-based preprocessed
data because previous studies have shown that surface-based
analysis can increase the specificity of cortical activation patterns
(Van Essen et al., 1998; Brodoehl et al., 2020).

RESULTS

We demonstrated the functionality of DNNBrain on AlexNet
and BOLD5000 dataset. Specifically, we accessed DNN
activation of the images from BOLD5000, probed the category
information represented in each DNN layer, mapped the
DNN representations onto the brain, and visualized the
DNN representations. We do not aim to illustrate the full
functionalities that are available from DNNBrain, but rather to
sketch out how DNNBrain can be easily used to examine DNN
and brain representations in a realistic study. All the analyses
were implemented in both API and CLI levels. The code can be
found in the DNNBrain online documentation.4

Scanning DNNs
To examine the artificial representations of DNNs, we needed
to scan the DNN to obtain its neural activities, just as we scan
the human brain using brain imaging equipment. DNNBrain

FIGURE 5 | DNNBrain provides linear decoding models to probe the explicit representation contents of layers of interest in a DNN. On BOLD5000 stimuli, a logistic

regression model revealed that the higher a layer is, the more animate information is encoded within it.
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provides both API and CLI to extract activation states for user-
specified channels of a DNN. Figure 4 shows the activation
patterns of three example images (cheetah, dumbbell, and bald
eagle) from the channels of AlexNet which showed the maximal
mean activation within each of the five Conv layers. The
activation patterns revealed that DNN representations of the
images became more abstract along the depth of the layers.

Revealing Information Presented in DNN
Layers
To learn whether specific stimuli attributes or behavioral
performances are explicitly encoded in a certain layer of a
DNN, one direct approach is to measure to what degree the
representation from the layer is useful for decoding them. Linear
decoding models (classifier or regression) were implemented in
DNNBrain to enable this. Here, we manually sorted BOLD5000
stimulus images into binary categories (animate vs. inanimate)
according to salient objects located in each image, and then
examined how animate information is explicitly encoded in
AlexNet. In total, 2,547 images were labeled as animate and
2,369 as inanimate. We trained a logistic regression model on
the artificial representations to decode the stimulus category
for each Conv layer of AlexNet. The accuracy of the model
was evaluated with a 10-fold cross-validation. As shown in
Figure 5, the classification accuracy progressed with the depth
of Conv layers, indicating higher layers encoded more animate
information than lower layers. Moreover, the ReLU operation
within each Conv layer played a significant role in improving the
representation capacity for animate information.

Mapping Representations Between a DNN
and the Brain
A growing body of literature is investigating the potential of
DNNs to work as models of brain information processing.
Several recent studies found that internal representations of
object recognition DNNs provided the best current models
of representations of visual images in the inferior temporal
cortex of both humans and monkeys (for a recent review, see
Lindsay, 2020). Here, we adopted the univariate encoding model,
multivariate encoding model, and RSA on BOLD5000 dataset
to map artificial representations from Conv layers of AlexNet
to neural representations from the VTC of the brain. On the
artificial representation from each Conv layer of AlexNet, a
univariate GLM encoding model was constructed for each voxel
within the VTC, and a multivariate PLS encoding model was
built for the whole VTC. Encoding accuracy was evaluated with
the Pearson correlation between the measured responses and the
predicted responses from the encoding model using a 10-fold
cross-validation procedure. For RSA, RDMwas derived using the
correlation distance between each pair of stimuli, and a Pearson
correlation was used to measure the similarity between two
representations. Four main findings were revealed (Figure 6).
First, the encoding accuracy of the VTC gradually increased
for the hierarchical layers of AlexNet, indicating that as the
complexity of the visual representations increases along the DNN
hierarchy, the representations become increasingly VTC-like.
Second, the encoding accuracy varied greatly across voxels within
the VTC for the artificial representations of each AlexNet layer,

FIGURE 6 | Both the encoding model and the representational similarity

analysis are implemented in DNNBrain to help researchers to examine the

correspondence between the DNN and brain representations. (A) Encoding

accuracy maps from univariate GLM encoding models of predicting VTC

BOLD responses using artificial representation from the Conv layers of AlexNet

(top), and encoding accuracy maps from multivariate PLS encoding models of

predicting VTC BOLD responses using artificial representation from the Conv

layers of AlexNet (bottom). (B) RDMs for BOLD5000 stimuli computed on

artificial representations from Conv layers of AlexNet and brain activation

patterns from the human VTC. The representation distance between each pair

of images was quantified as the correlation distance between their

representations. The representational similarity between the DNN and the brain

is further calculated as the Pearson correlation between their RDMs.

suggesting the VTCmay organize in distinct functional modules,
each preferring different kinds of features. Third, the univariate
encoding model and the multivariate encoding model produced
similar results, indicating that interactions between different
voxels encode little representation information from each DNN
Conv layer. Finally, RSA also showed results similar to those of
encoding models, suggesting that the encoding model and RSA
are likely to be equally useful for comparing representations from
DNNs and brains.

Visualizing Features From DNNs
Visualization of critical features of a stimulus that cause the
responses of an artificial neuron is central to the understanding
of precisely what each neuron has learned. As an example, we
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FIGURE 7 | The top stimuli, saliency maps, and optimal images for three output units of AlexNet. (A) Top stimuli discovered from the BOLD5000 dataset. (B) Saliency

maps computed for the top stimuli presented in (A). (C) Optimal images synthesized from initial random noise guided by increasing the activation of corresponding

neurons.

used three DNN visualization approaches from DNNBrain (i.e.,
top stimulus, saliency map, and optimal stimulus) to visualize
the preferred features for three output units of AlexNet (i.e.,
ostrich, peacock, and flamingo). The output units were selected
as examples because produced features for them are easy to
check (i.e., each unit corresponds to a unique category). These
procedures essentially work for any unit in a DNN. As shown
in Figure 7A, the top stimulus was correctly found from 4,916
BOLD5000 images for each of three units: every top stimulus
contains the object in the correct category. Saliency maps
highlight the pixels in the top stimuli that contribute most to
the activation of the neurons (Figure 7B). Finally, the optimal
images synthesized from initial random noise correctly produced
objects of the corresponding category (Figure 7C). In summary,
these three approaches are able to reveal the visual patterns
that a neuron has learned on various levels and thus provide a
qualitative guide to neural interpretations.

DISCUSSION

DNNBrain integrates well-established DNN software and brain
imaging packages to enable researchers to conveniently map
the representations of DNNs and brains, and examine their
correspondences. DNN models provide a biologically plausible

account of biological neural systems, and show great potential for
generating novel insights into the neural mechanisms of brains.
On the other hand, experimental paradigms from cognitive
neuroscience provide powerful approaches to pry open the black
boxes of DNNs. DNNBrain, as a toolbox that is specifically
tailored toward mapping the representations of DNNs and
brains, has good potential to accelerate the merge of these
two trends.

There are some issues that we would like to target in future
development. First, DNNBrain integrates many of the currently
most popular pretrained DCNN models. With the advance of
the interplay between neuroscience and DNN communities, new
DNN models are constantly emerging, and will be included
into future iterations of DNNBrain. For example, generative
adversarial networks could be introduced into DNNBrain to
help users reconstruct external stimuli (Shen et al., 2019;
VanRullen and Reddy, 2019) or synthesize preferred images
for either neurons or brain areas (Ponce et al., 2019). Second,
DNNBrain, up until now, only supports DNN models from
PyTorch, which limits the study of DNNs constructed under
other frameworks. We would like to put significant effort
toward integrating other DNN frameworks into DNNBrain,
especially TensorFlow. Third, only fMRI data are currently
well-supported in DNNBrain. The magnetoencephalography
(MEG), electroencephalography (EEG), multiunit recordings,
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and local field potentials can capture the temporal dynamics of
neural representations which fMRI cannot provide. Support for
these modalities is forthcoming according to recently published
data standardization of electrophysiology (Niso et al., 2018;
Pernet et al., 2019). Finally, DNNBrain mainly supports the
exploration of pretrained DNN models, trained on large-scale
external stimuli. It would be a good idea in the future to equip
DNNBrain with tools that fuse brain activities and external
tasks/stimuli to create DNN models that more closely resemble
the human brain. Recent advances demonstrate that brain
representations provide additional and efficient constraints on
DNN constructions (McClure and Kriegeskorte, 2016; Fong
et al., 2018). The brain has acquired a robust representation
that generalizes across many tasks. As a result, while training
DNNs to solve behavioral tasks, co-training DNNs to match
the brain’s latent representations observed from massive neural
recordings will move the representation of DNNs toward these
neural representations, andmake themmore closely resemble the
human brain.
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Recently, deep convolutional neural networks (DCNNs) have attained human-level

performances on challenging object recognition tasks owing to their complex internal

representation. However, it remains unclear how objects are represented in DCNNs with

an overwhelming number of features and non-linear operations. In parallel, the same

question has been extensively studied in primates’ brain, and three types of coding

schemes have been found: one object is coded by the entire neuronal population

(distributed coding), or by one single neuron (local coding), or by a subset of neuronal

population (sparse coding). Here we asked whether DCNNs adopted any of these coding

schemes to represent objects. Specifically, we used the population sparseness index,

which is widely-used in neurophysiological studies on primates’ brain, to characterize

the degree of sparseness at each layer in representative DCNNs pretrained for object

categorization. We found that the sparse coding scheme was adopted at all layers of

the DCNNs, and the degree of sparseness increased along the hierarchy. That is, the

coding scheme shifted from distributed-like coding at lower layers to local-like coding at

higher layers. Further, the degree of sparseness was positively correlated with DCNNs’

performance in object categorization, suggesting that the coding scheme was related

to behavioral performance. Finally, with the lesion approach, we demonstrated that both

external learning experiences and built-in gating operations were necessary to construct

such a hierarchical coding scheme. In sum, our study provides direct evidence that

DCNNs adopted a hierarchically-evolved sparse coding scheme as the biological brain

does, suggesting the possibility of an implementation-independent principle underling

object recognition.

Keywords: deep convolutional neural network, sparse coding, coding scheme, object recognition, object

representation, hierarchy

INTRODUCTION

One spectacular achievement of human vision is that we can accurately recognize objects at a
fraction of a second in the complex visual world (Thorpe et al., 1996). In recent years, deep
convolutional neural networks (DCNNs) have achieved human-level performances in object
recognition tasks (He et al., 2015; Simonyan and Zisserman, 2015; Szegedy et al., 2015). The success
is primarily credited to the architecture that generic DCNNs compose of a stack of convolutional
layers and fully-connected layers, each of which has multiple units with different filters (i.e.,

65

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2020.578158
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2020.578158&domain=pdf&date_stamp=2020-12-09
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhenzonglei@bnu.edu.cn
mailto:liujiaTHU@tsinghua.edu.cn
https://doi.org/10.3389/fncom.2020.578158
https://www.frontiersin.org/articles/10.3389/fncom.2020.578158/full


Liu et al. Hierarchical Sparse Coding of DCNN

“neurons” in DCNNs), similar to the hierarchical organization
of primates’ ventral visual stream. With such hierarchical
architecture and supervised learning on a large number of
object exemplars, DCNNs are thought to construct complex
internal representations for external objects. However,
little is known about how exactly objects are represented
in DCNNs.

This question has already puzzled neuroscientists for a long
time. To understand how primates’ visual system encodes the
external world, three types of coding schemes are proposed
to describe how neurons are integrated together to represent
an object. At one extreme is distributed coding, by which the
whole neuronal population is involved, whereas at the other
extreme is local coding, by which one neuron is designated
to represent one object. The distributed coding scheme is
superior in large coding capacity, easy generalization, and high
robustness, while the local coding scheme is good at information
compression, energy conservation and better interpretability.
In between lies the sparse coding that different subsets of
neurons in the population participate in coding different
objects. As a trade-off, sparse coding possesses advantages
of both local coding and distrusted coding (Barlow, 1972;
Thorpe, 1989; Berkes et al., 2009; Rolls, 2017; Thomas and
French, 2017; Beyeler et al., 2019). Neurophysiological studies
have revealed that the sparse coding scheme is adopted
in some areas in primate visual cortex for object recognition
(Olshausen and Field, 1996; Lehky et al., 2011; Barth and Poulet,
2012; Rolls, 2017).

Following the studies on biological intelligent systems, several
pioneer studies started to characterize DCNNs’ representation
with coding scheme (Szegedy et al., 2013; Agrawal et al., 2014;
Li et al., 2016; Wang et al., 2016; Morcos et al., 2018; Casper
et al., 2019; Parde et al., 2020). Studies using the ablation
approach show that the processing of objects usually requires
the participation of multiple units, but only 10–15% of units in
a layer are actually needed to achieve 90% of the full performance
(Agrawal et al., 2014). Even when half of the units in all layers
are ablated, the performance does not decrease significantly with
the accuracy above 90% of the full performance (Morcos et al.,
2018). Further studies quantify the number of non-zero units in
response to objects and report a trend of decrease in the number
of non-zero units along the hierarchy of DCNNs (Agrawal
et al., 2014). These preliminary results suggest that DCNNs
may adopt the sparse coding scheme, which likely evolves
along hierarchy.

Here, we adopted a prevalent metric in neurophysiological
studies on primates’ brain, population sparseness index
(PSI, Rolls and Tovee, 1995; Vinje and Gallant, 2000), to
quantify the population sparseness along the hierarchy of
two representative DCNNs, AlexNet (Krizhevsky, 2014)
and VGG11 (Simonyan and Zisserman, 2015). Specifically,
we first systematically evaluated the layer-wise sparseness
in representing objects. Then, we characterized the
functionality of sparseness by examining the relationship
between sparseness and behavioral performance in each
layer. Finally, we explored factors that may influence the
coding scheme.

MATERIALS AND METHODS

Visual Images Datasets
ImageNet Dataset
The dataset from ImageNet Large Scale Visual Recognition
Challenge 2012 (ILSVRC2012) (Russakovsky et al., 2015)
contains 1,000 categories that are organized according to the
hierarchy of WordNet (Miller, 1995). The 1,000 object categories
consist of both internal nodes and leaf nodes of WordNet, but
do not overlap with each other. The dataset contains 1.2 million
images for model training, 50,000 images for model validation
and 100,000 images for model test. In the present study, only the
validation dataset (i.e., 1,000 categories× 50 images) was used to
evaluate the coding scheme of DCNNs.

Caltech256 Dataset
The Caltech256 dataset consists of 30,607 images from 256 object
categories with a minimum number of 80 images per category
(Griffin et al., 2007). In the present study, 80 images per category
were randomly chosen from the original dataset.

DCNNs and Activation Extraction
The well-known AlexNet and VGG11 that are pretrained for
object classification were selected to explore the coding scheme
of DCNNs. Besides the two pretrained models, corresponding
weight-permuted models and ReLU-deactivated models were
also examined to investigate the factors that may influence the
coding scheme observed in the pretrained models.

Pretrained Models
AlexNet and VGG11 are pretrained on ILSVRC2012 dataset
and were downloaded from PyTorch model Zoo1. Both DCNNs
are purely feedforward: the input to each layer consists solely
of the output from the previous layer. The AlexNet consists
of 5 convolutional layers (Conv1 through Conv5) that contain
a set of feature maps with linear spatial filters, and 3 fully-
connected layers (FC1 through FC3). In between, a max (x, 0)
rectifying non-linear unit (ReLU) is applied to all units after each
convolutional and FC layer. In some convolutional layers, ReLU
is followed by anothermax-pooling sublayer. VGG11 is similar to
AlexNet in architecture except for two primary differences. First,
VGG11 uses smaller receptive fields (3× 3 with a stride of 1) than
AlexNet (11 × 11 with a stride of 4). Second, VGG11 has more
layers (8 convolutional layers) than AlexNet. When we refer to
Conv#, we mean the outputs from the ReLU sublayer in the #th
convolutional layer. Similarly, FC# means the outputs from the
#th FC layer after ReLU. The DNNBrain toolbox2 was used to
extract the DCNN activation (Chen et al., 2020). For each unit (or
channel), the activation map was averaged to produce a unit-wise
(or channel-wise) activation for each exemplar, and the activation
of the unit to an object category was then derived by averaging the
unit-wise responses from all exemplars of the category.

1https://pytorch.org/
2https://github.com/BNUCNL/dnnbrain/
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Weight-Permuted Models and Bias-Permuted Models
The weight-permutedmodels were derived by permuting weights
of the pretrained models within each layer. That is, the structures
of the original networks and the weight distribution of each layer
were preserved while the exact feature filters obtained from the
learning of the supervised task were disrupted.Weights in a given
layer can be decomposed as channel x kernel, in which kernels are
3-D tensors (i.e., input channel x height x width). Three kinds
of permutation strategies with various scales were performed:
weights were permutated across all channels and kernels, across
channels with all kernels intact, and across kernels with channel
orders unaltered. The bias-permuted models were obtained by
permuting biases in each layer with all weights and the network
structure remaining unchanged.

ReLU-Deactivated Models
The ReLU-deactivated model was the same as the pretrained
models with only ReLU being silenced in all layers by replacing
it with an identity mapping. The ReLU-deactivated model
disabled the non-linear operation after the feature extraction but
still retained the same network architectures and the learned
feature filters.

Population Sparseness Index
The PSI was calculated for each layer of DCNNs to quantify the
peakedness of the distribution of population responses elicited by
an object category, which is equivalent to the fraction of the units
in the population that participated in coding objects in the case
of binary responses (Vinje and Gallant, 2000).

PSI =
1− a

1− 1
Nu

, where a =
( (

∑

ru ) / Nu )
2

∑

(ru2 / Nu)
,

where ru is the unit-wise activation of a unit u from a target
layer in response to an object category, and Nu is the number of
units in that layer. The unit-wise activation was z-scored across
all categories for each unit, and then normalized across all units
into a range from 0 to 1 to rescale the negative values to non-
negative as required by the definition of PSI. Values of PSI near 0
indicate low sparseness that all units respond equally to the object
category, and values near 1 indicate high sparseness that only a
few units respond to the category.

Relationship Between Population

Sparseness and Classification

Performance
The relationship between sparseness and classification
performance was first explored using correlation analyses.
The Caltech256 classification task was used to estimate the
classification performance of AlexNet and VGG11 on each
category. Specifically, a logistic regression model was constructed
using activation patterns from FC2 as features to perform
a 256-class object classification. A 2-fold cross-validation
procedure was used to evaluate the classification performance.
Then, Pearson correlation coefficients between the PSI and the
classification performance were calculated across all categories
for each layer, respectively. Finally, to reveal how the sparse

coding from different layers contribute to the classification
performance, a stepwise multiple regression was conducted with
the classification performance of each category as dependent
variables and the PSI of the corresponding category from all
layers as independent variables. The regressions were conducted
for Conv layers and FC layers separately.

RESULTS

The coding scheme for object categorization in DCNN was
characterized layer by layer in the pretrained AlexNet and
VGG11 using PSI. The PSI was first evaluated on the ImageNet
validation dataset, with the same categories on which these
two DCNNs were trained. Similar findings were revealed in
the two DCNNs. First, the values of the PSI were low for all
object categories in all layers in general (median <0.4), with the
maximum values no larger than 0.6 (Figure 1), suggesting that
the sparse coding scheme was broadly adopted in all layers of
the DCNNs to represent objects. Second, in each layer, the PSI
of all categories exhibited a broad distribution (ranges >0.2),
indicating great individual differences in sparseness among
object categories. However, despite the large amount of inter-
category differences, the median PSI of each layer showed
a trend of increase along the hierarchy in both Conv and
FC layers, respectively (AlexNet: Kendall’s tau = 0.40, p <

0.001; VGG11: Kendall’s tau = 0.36, p < 0.001). A similar
result was found with the absolute value of activation before
computing the PSI (AlexNet: Kendall’s tau = −0.44, p < 0.001.;
VGG11: Kendall’s tau = −0.52, p < 0.001). Corroborative
results were also observed by fitting the activation distribution
of the neuron population with Norm distribution and Weibull
functions (Supplementary Figure 1). Note that the increase in
sparseness was not strictly monotonic, as the PSI of the first layer
was slightly higher than the adjacent ones. More interestingly,
although AlexNet and VGG11 have different numbers of Conv
layers, the major increase occurred at the last Conv layer. Similar
results have also been found in DCNNs (i.e., ResNet152 and
GoogLeNet) whose architectures are significantly different from
AlexNet and VGG11, suggesting that the hierarchical sparse
coding scheme may be a general coding strategy in DCNNs
(Supplementary Figure 2).

We replicated this finding with a new dataset, Caltech256, that
is dissimilar to the ImageNet in object categories and is thus
not in the training dataset. We found a similar pattern of the
increase in sparseness along the hierarchy (AlexNet: Kendall’s
tau = 0.35, p < 0.001; VGG11: Kendall’s tau = 0.25, p <

0.001; Supplementary Figure 3), suggesting that the increase in
sparseness did not result from image dataset. Taken together,
the hierarchically-increased sparseness suggested that there was
a systematic shift from the distributed-like coding scheme in low
layers to the local-like coding scheme in high layers.

Next, we examined the functionality of the sparse coding
scheme observed in the DCNNs. To address this question,
we tested the association between the population sparseness
and the behavioral performance by performing correlation
analyses within each layer of the DCNNs. In AlexNet, significant
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FIGURE 1 | Hierarchically sparse coding for object categories in DCNNs. (A) Layer-wise PSI distribution for object categories in DCNNs. The sparseness was

evaluated using the PSI for each object category from the ImageNet dataset (1,000 categories) in each layer separately. The distribution of PSI right-shifted along

hierarchy in general. X axis: the degree of sparseness, with higher PSI indicating a higher degree of sparseness; Y axis: the proportion of categories with a

corresponding PSI value. (B) Median of PSI for each layer. In general, the median of PSI increased along hierarchy in Conv and FC layers, respectively. X axis: the

name of layers along hierarchy; Y axis: the median of PSI.

correlations were found starting from Conv4 and beyond [rs
(254) > 0.19, ps < 0.001, Bonferroni corrected; Figure 2A].
This result suggested that the degree of sparseness in coding
object categories was predictive of performance accuracy. That
is, the sparser an object category was represented, the better
it was recognized and classified. Importantly, the correlation
coefficients also increased along hierarchy (Kendall’s tau = 0.90,
p = 0.003), with the highest correlation coefficient observed
at Conv5 (0.43) and FC2 (0.69), respectively (Figure 2A). This
trend suggests a closer relationship between the population
sparseness and the behavioral performance in higher layers.
Indeed, with a stepwise multiple regression analysis in which PSI
of all Conv/FC layers of certain categories were the independent
variables and classification performance was the dependent
variable, we confirmed that population sparseness was predictive
of behavioral performance [Conv layers: F(3, 252) = 22.54, p
< 0.001, adjusted R2 = 0.2; FC layers: F(2, 253) = 136.60, p

< 0.001, adjusted R2 = 0.52]. Meanwhile, only PSI in higher
layers starting from Conv3 remained in the regression models,
further confirming that the coding scheme as a characteristic
of representation became more essential with the increasing
hierarchical level. Similar results were also found in VGG11
(Figure 2B), suggesting that the association between sparseness
and performance may be universal in DCNNs.

Finally, we explored the factors that may affect the formation
of such a hierarchical coding scheme in the DCNNs. The
DCNNs consist of two subprocesses at the core of each layer
(Figure 3A): one is the feature extraction process whose weights
and biases are dynamically adjusted during learning, and the
other is a gating process with a fixed non-linear function (i.e.,
ReLU) that silences units with negative activities. To examine
whether the hierarchically-increased sparseness was constructed
through learning, we measured the population sparseness of
DCNNs with either the learned weights or biases randomly
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FIGURE 2 | Correlation between coding sparseness and behavioral performance. Layer-wise scatter plots of DCNNs’ classification performance vs. PSI values from

(A) AlexNet and (B) VGG11 for object categories from Caltech256. X axis: PSI value, the larger the value the sparser the coding; Y axis: DCNNs’ classification

performance for each object category. Each dot represents one category. *denotes p < 0.05, **denotes p < 0.01 and ***denotes p < 0.001. Categories with the best

or the worst classification performances were listed in Supplementary Figure 4.

permuted. In the weight-permuted models where the weights
were layer-wise permuted across all channels and kernels of the
pretrained networks, we found that the degree of sparseness
instead decreased along hierarchy (AlexNet: Kendall’s tau =
−0.53, p < 0.001; VGG11: Kendall’s tau = −0.82, p < 0.001;
Figure 3B), which was contradictory to the finding of the
undisrupted one (Figure 1). This result was replicated when the

weight permutation was performed across channels or kernels
separately (AlexNet and VGG11: Kendall’s taus <-0.53, ps
< 0.001). Meanwhile, the population sparseness of the bias-
permuted models in which all weights remained intact were also
evaluated. We found that there was no increase in sparseness
along hierarchy (AlexNet: Kendall’s tau= 0.10, p= 0.22; VGG11:
Kendall’s tau = −0.15, p = 0.03; Figure 3D). In addition, when
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FIGURE 3 | Both the learning process and the gating process play an important role in the formation of the hierarchically-evolved coding scheme in the DCNNs. (A) A

schematic diagram of the weight-permuted models. (B) Box plots of median PSI for objects across layers in the weight-permuted models, which represent the

minimum, maximum, median, first quartile and third quartile of the distribution of the median PSI values. The PSI was measured in 10 permuted models using the

same procedure as the intact one. (C) A schematic diagram of the bias-permuted models. (D) Box plots of median PSI for objects across layers in the bias-permuted

models. (E) A schematic diagram of the ReLU-deactivated models. (F) Median PSI for objects across layers in the ReLU-deactivated models. X axis: the name of

layers along hierarchy; Y axis: the median of PSI.

the ReLU sublayers were deactivated with the feature extraction
sublayers intact (Figure 3E), we also observed a decreasing
tendency of sparseness along the hierarchy (AlexNet: Kendall’s
tau = −0.21, p < 0.001; VGG11: Kendall’s tau = −0.32, p
< 0.001, Figure 3F), again in contrast to the AlexNet with
functioning ReLU (Figure 1). Similar results were also found in
VGG11, suggesting a general effect of learning and gating on the
formation of the hierarchically-evolved coding scheme inDCNN.

DISCUSSION

In the present study, we systematically characterized the coding
scheme in representing object categories at each layer of
two typical DCNNs, AlexNet, and VGG11. We found that
objects were in general sparsely encoded in the DCNNs,
and the degree of sparseness increased along the hierarchy.
Importantly, the hierarchically-evolved sparseness was able to

predict the classification performance of the DCNNs, revealing
the functionality of the sparse coding. Finally, lesion analyses of
the weight-permuted models, the bias-permuted models, and the
ReLU-deactivated models suggest that the learning experience
and the built-in gating operation account for the hierarchically
sparse coding scheme in the DCNNs. In short, our study
provided one of the empirical evidence illustrating how object
categories were represented in DCNNs for object recognition.

The finding that the degree of sparseness increased along
the hierarchy in DCNNs is consistent with previous studies
on DCNNs (Szegedy et al., 2013; Agrawal et al., 2014; Tripp,
2016; Wang et al., 2016; Morcos et al., 2018; Casper et al.,
2019; Parde et al., 2020). Our study further extended these
previous studies by conducting a layer-wise analysis throughout
all hierarchical levels and calculating the degree of sparseness
based on responses of the entire population of units (“neurons”
in DCNN). Besides, our study tested two datasets of more than
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1,000 object categories, and thus provided more comprehensive
coverage of the object space. Finally, we also examined the
functionality of sparse coding by showing that the sparser an
object category was encoded, the higher accuracy of the object
category was correctly recognized.

The fact that the hierarchically-increased coding sparseness
coincides with a hierarchically-higher behavioral relevance in
DCNNs suggests it as an organizing principle of representing a
myriad of objects efficiently. That is, at the lower level of vision,
representations recruit a larger number of generic neurons
to process myriad natural objects with high fidelity. At the
higher level, objects are decomposed into abstract features in
the object space; therefore, only a smaller but highly-specialized
group of neurons are recruited to construct the representation.
Critically, a higher degree of sparseness makes representations
more interpretable, because only at higher layers the degree
of sparseness was able to read out for behavioral performance.
One possibility is that distributed coding adopts more neuronal
crosstalk that is difficult for readout, whereas sparser coding
contains fewer higher-order relations and hence require less
amount of computation for object recognition and memory
storage/retrieval (Field, 1994; Froudarakis et al., 2014; Beyeler
et al., 2019). That is, distributed coding is better at adapting
and generalizing the variance across stimulus exemplars;
sparse coding serves to explicit interpretation for goal-directed
invariance (Földiák, 2009; Babadi and Sompolinsky, 2014; King
et al., 2019). Taken together, the evolution of sparseness along the
hierarchy likely mirrored the stages of objects being processed
and the transformation of representation from stimulus-fidelity
to goal-fidelity.

Interestingly, the sparseness was not accumulated gradually
layer by layer. Instead, the sparseness was the highest at the
last convolutional layer (i.e., Conv5 in AlexNet and Conv8
in VGG11) and fully-connected layer (i.e., FC2 in AlexNet
and VGG11), much higher than that of their preceding ones
regardless of the total number of layers in the DCNNs. This
observation suggests a mechanism that the degree of sparseness
dramatically increases at transitional layers either to the next
processing stage (from Conv layers to FC layers) or to the
generation of behavioral performance (from FC layers to
the output layer). Further studies are needed to explore the
functionality of the dramatic increase in sparseness. Note that
the finding that the increase of sparseness was observed in
two structurally-similar DCNNs (i.e., AlexNet and VGG11), and
therefore it may not be applicable to other DCNNs.

As an intelligent system, DCNNs are products of the
predesigned architecture by nature and learned features by
nurture. Our lesion study revealed that both architecture and
learning were critical for the formation of the hierarchically
sparse coding scheme. As for the innate architecture, a critical
built-in function is the non-linear gating sublayer, ReLU, that
silences neurons with negative activity (Glorot et al., 2011;
LeCun et al., 2015). Obviously, the gating function is bound to
increase the sparseness of coding because it removes weak or
irrelevant activations and thus leads objects to be represented by
a smaller number of units. Our study confirmed this intuition
by showing the disruption of hierarchically-increased sparseness
when the gating function being disabled. Besides the commonly

used gating operation ReLU, recently more approaches have been
developed to directly serve the same purpose of sparsification
(Liu et al., 2015; Kepner et al., 2018). On the other hand, the
gating function was not sufficient for a proper sparse coding
scheme, because after randomly permuting the weights of the
learned filters in the feature sublayers, the sparseness was no
longer properly constructed either. Further, the dependence
of both external learning experiences and built-in non-linear
operations implies that the sparse coding scheme may be also
adopted in biological brains, because the gating function is the
fundamental function of neurons (Lucas, 1909; Adrian, 1914)
and the deprivation of visual experiences leads to deficits in
a variety of visual functions (Wiesel and Hubel, 1963; Fine
et al., 2003; Duffy and Livingstone, 2005). In short, the current
study provides direct empirical evidence on the functionality and
formation of hierarchy-dependent coding sparseness in DCNNs;
However, the exact computational mechanisms underlying the
evolution of sparse coding along hierarchy are needed for future
work to unravel it.

Our findings with biologically-inspired DCNNs also lend
insight into coding schemes in biological systems. Because the
number of object categories, neurons, and sampling sites are
largely limited by neurophysiological techniques, availability of
subjects and ethical issues, it is difficult to characterize population
sparseness along the visual pathway (Baddeley et al., 1997; Vinje
and Gallant, 2000; Tolhurst et al., 2009). Several studies measured
the population sparseness on certain single regions in mouse,
ferret or macaque brain (Berkes et al., 2009; Froudarakis et al.,
2014; Tang et al., 2018), but with diverse experimental setups,
the evolution of population sparseness across brain regions
is unclear. Lenky et al. did record both a group of V1 and
the Inferotemporal neurons and found that the population
sparseness increased from the V1 to Inferotemporal cortex
(Lehky et al., 2005, 2011). In contrast, DCNNs can be used to
examine not only coding schemes of a large number of objects
(>1,000 object categories in our study) but also the degree of the
sparseness of all units in all layers; therefore, DCNNs may serve
as a quick-and-dirty model to pry open how visual information is
represented in biological systems.

In sum, our study on the coding scheme of object categories
in DCNNs invites future studies to understand how in
DCNN objects are recognized accurately in particular, and
how intelligence emerges under the interaction of internal
architecture and external learning experiences in general. On
one hand, approaches and findings from neurophysiological and
fMRI studies help to transpire the black-box of DCNNs and
enlighten the design of more effective DCNNs. For example,
our study suggests new algorithms for better performance by
increasing sparseness effectively possibly through learning or
gating function built in the network. On the other hand, in
contrast to the fact that neurophysiological studies on non-
human primates and fMRI studies on human are limited
either by the coverage of brain areas or by the spatial
resolution, both architecture and units’ activation in DCNNs are
transparent. Therefore, DCNNs likely provides a perfect model
to pry open mechanisms of object recognition at both micro-
and macro-levels, which helps to understand how biological
intelligent systems work.
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Deep convolutional neural networks (DCNN) nowadays can match human performance

in challenging complex tasks, but it remains unknown whether DCNNs achieve

human-like performance through human-like processes. Here we applied a

reverse-correlation method to make explicit representations of DCNNs and humans

when performing face gender classification. We found that humans and a typical DCNN,

VGG-Face, used similar critical information for this task, which mainly resided at low

spatial frequencies. Importantly, the prior task experience, which the VGG-Face was

pre-trained to process faces at the subordinate level (i.e., identification) as humans

do, seemed necessary for such representational similarity, because AlexNet, a DCNN

pre-trained to process objects at the basic level (i.e., categorization), succeeded in

gender classification but relied on a completely different representation. In sum, although

DCNNs and humans rely on different sets of hardware to process faces, they can

use a similar and implementation-independent representation to achieve the same

computation goal.

Keywords: deep convolutional neural network, face recognition, reverse correlation analysis, face representation,

visual intelligence

INTRODUCTION

In recent years, deep convolutional neural networks (DCNN) have made dramatic progresses
to achieve human-level performances in a variety of challenging complex tasks, especially visual
tasks. For example, DCNNs trained to classify over a million natural images can match human
performance on object categorization tasks (Krizhevsky, 2014; Simonyan and Zisserman, 2015;
Krizhevsky et al., 2017), and DCNNs trained with large-scale face datasets can approach human-
level performance in face recognition (Taigman et al., 2014; Parkhi et al., 2015; Schroff et al., 2015;
Ranjan et al., 2017). However, these highly complex networks have remained largely opaque, whose
internal operations are poorly understood. Specifically, it remains unknown whether DCNNs
achieve human-like performance through human-like processes. That is, do DCNNs use similar
computations and inner representations to perform tasks as humans do?

To address this question, here we applied a reverse correlation approach (Ahumada and Lovell,
1971; Gold et al., 2000; Mangini and Biederman, 2004; Martin-Malivel et al., 2006), which has been
widely used in psychophysical studies to infer internal representations of human observers that
transform inputs (e.g., stimuli) to outputs (e.g., behavior performance). This data-driven method
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allows an unbiased estimate of what is in observers’ “mind” when
performing a task, rather than manipulating specific features that
researchers a priori hypothesize to be critical for the task. Here
we applied this approach to both DCNNs and human observers
to investigate whether the DCNNs and humans utilized similar
representations to perform the task of face gender classification.

Specifically, a gender-neutral template face midway between
the average male and the average female faces was superimposed
with random noises, which rendered the template face more
male-like in some trials or more female-like in other trials. The
noisy faces were then submitted to human observers and the
VGG-Face, a typical DCNN pre-trained for face identification
(Parkhi et al., 2015). Based on the output of an observer that
a noisy face was classified as a male but not as a female,
for example, we reasoned that the noise superimposed on the
template face contained features matching the observer’s internal
male prototype. Therefore, the difference between noise patterns
of trials classified as male and those as female revealed the
facial features diagnostic for gender classification, and provided
an explicit and unbiased estimate of the representation used
by the observer for gender classification. Finally, we directly
compared the similarity of the inner representations of human
observers and the VGG-Face obtained from identical stimuli
and procedures, and examined the hypothesis that different
intelligent information-processing systems may use similar
representations to achieve the same computation goal (Marr,
1982).

RESULTS

The VGG-Face and Humans Utilized Similar

Information for Gender Classification
We used the reverse correlation approach to reconstruct the
inner representations used by the DCNN and human observers
for gender classification. Specifically, both the DCNN and human
observers were asked to classify noisy faces from a gender-neutral
template face embedded with random sinusoid noises as male or
female (Figure 1A).

For the DCNN, we first trained the VGG-Face to classify
gender using transfer learning with 21,458 face images of 52
identities (35 males) from the VGGFace2 dataset (see Methods),
and the test accuracy of gender classification of the new
network achieved 98.6% (see Supplementary Tables 1, 2 for
more details). The gender-neutral template face was roughly
equally classified as male and female by the VGG-Face (female:
54%). The noise patterns were constructed from 4,092 sinusoids
at five spatial scales, six orientations, and two phases. We
presented the template face embedded in 20,000 noise patterns
to the VGG-Face, of which 11,736 (58.7%) images were classified
as male and 8,264 (41.3%) images as female. The noise patterns
from trials classified as male or female were averaged separately
(Figure 1B), and the difference between the two average noise
patterns yielded a “classification image” (CI) that makes explicit
the information used by the VGG-Face for gender classification
(Figure 1C). A visual inspection of the CI showed that regions
around the eyes, nose, and mouth were of high contrast in the

CI, indicating the critical regions employed by the VGG-Face to
classify male from female faces.

Then, we reconstructed the representation used by human
observers in a similar way. In our study, 16 human observers
performed the gender classification task, each presented with
1,000 noisy faces. Altogether, 16,000 images were presented to the
human observers, of which 7,969 (49.8%) images were classified
asmales and 8,031 (50.2%) images as females. Similarly, the CI for
human observers was obtained (Figure 1C). Visual inspections
of the CIs for the VGG-Face and human observers revealed good
agreement between them, and Pearson’s correlation between the
two CIs was high (r = 0.73). This result suggested that the
VGG-Face and human observers utilized similar information to
classifying gender.

Further, we reconstructed inner male and female prototypes
by adding or subtracting the rescaled CI to or from the template
face for the VGG-Face and humans, respectively (Figure 1C). As
expected, the male and female prototype faces are perceptually
male-like and female-like, and highly similar between the VGG-
Face and human observers.

The Shared Representation Was Mainly

Based on Low Spatial-Frequency

Information
Having found that the VGG-Face and human observers utilized
similar information for gender classification, next we asked
whether the VGG-Face and human observers employed similar
information in all spatial frequencies. In our study, the noise
patterns were constructed from sinusoid components of five
scales of spatial frequencies (2, 4, 8, 16, and 32 cycles/image),
which enabled us to reconstruct the CIs for each scale separately
(Figure 2) and examined the similarity at each scale. We found
that the similarity was the highest at low spatial frequencies (r
= 0.87 and 0.76 at 2 and 4 cycles/images), and then decreased
sharply at high spatial frequencies (r = 0.25, 0.19, 0.11 at 8, 16,
and 32 cycles/image). Consequently, male and female prototypes
reconstructed with the noise patterns at low spatial frequencies (2
and 4 cycles/image) were more similar between human observers
and the VGG-Face than those at high spatial frequencies (8, 16,
and 32 cycles/images) (Supplementary Analysis 1). Therefore,
the shared representation for gender classification was mainly
based on information at low spatial frequencies, consistent with
previous findings that face gender processing relies heavily on low
spatial frequencies (Sergent, 1986; Valentin et al., 1994; Goffaux
et al., 2003b; Mangini and Biederman, 2004; Khalid et al., 2013).

To further quantify the contribution of different spatial
frequencies for gender classification, we calculated the
contribution of each of the 4,092 parameters from all five
spatial frequencies. For each parameter, we performed an
independent sample t-test (two-sided) between the parameter
values from the male trials and those from the female trials,
and calculated the absolute value of Cohen’s d as an index of
the contribution of each parameter to gender classification.
One hundred and four parameters in the VGG-Face and 12 in
human observers contributed significantly for the classification
(Bonferroni corrected for multiple comparisons, Figures 3A,B).
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FIGURE 1 | (A) Experiment procedure. A gender-neutral template face was superimposed with noises to create a set of gender-ambiguous faces, which were

submitted to the VGG-Face and human observers for gender classification. (B) Exemplars of noises extracted from noisy faces classified as either female or male,

(Continued)

Frontiers in Computational Neuroscience | www.frontiersin.org 3 January 2021 | Volume 14 | Article 60131476

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Song et al. Implementation-Independent Face Representation

FIGURE 1 | respectively. The noises were then averaged to reconstruct images that contained the critical information for classifying the noisy faces as male or as

female. (C) Classification images (CI) were the difference of the average noise of female by that of male. For visualization, values in each CI were normalized separately

to the range from 0 to 1, denoted by colors. By adding or subtracting the rescaled CI to or from the gender-neutral template face, female or male prototype of human

observers (Left), and the VGG-Face (Right) were created. Brain icon made by Smashicons from www.flaticon.com.

FIGURE 2 | Correspondence in representation at different scales of spatial frequencies. For visualization, values in each CI were normalized separately to the range

from 0 to 1, denoted by colors. Note that the correspondence was the highest at the low-spatial frequencies, and then decreased sharply at the high-spatial

frequencies. Scale number denotes cycles per image.

Of the 12 parameters in human observers, 9 were at the
scales of 2 and 4 cycles/images. Similarly, most of the 104
parameters in the VGG-Face were also at low-frequency
scales (7 at 2 cycles/images, 33 at 4 cycles/images, and 30 at 8
cycles/images), and the percentage of the significant parameters
at low frequencies (58 and 69% at 2 and 4 cycles/images) were
much higher than those at high frequencies (4 and 0% at 16
and 32 cycles/images). That is, both the VGG-Face and human
observers mainly relied on information at low spatial frequencies
for gender classification.

Another way is to select parameters that made the most
contributions indexed by the absolute values of Cohen’s d.
We found that the 1,885 most contributing parameters of
all 4,092 parameters already made up to 80% of the total
contribution for the VGG-Face; importantly, these parameters
also made up 48% of the contribution for human observers.
Then, we examined the similarity of parameters’ contribution
by calculating the Spearman’s correlation between Cohen’s
d of the VGG-Face and human observers for the highly-
contributing parameters at each scale of spatial frequencies. We
found that the correlation was high at low spatial frequencies
(r = 0.79 and 0.74 at 2 and 4 cycles/images), and then
declined sharply at high spatial frequencies (r = 0.21, 0.27,
and 0.17 at 8, 16, and 32 cycles/images). In contrast, there
were more parameters at high than low spatial frequencies
that contributed differently between the VGG-Face and human
observers (Supplementary Analysis 2). Taken together, at low

spatial frequencies, not only were the representations more
similar, but also the parameters underlying the representation
contributed more significantly to the task.

Human-Like Representation Requires Prior

Experience of Face Identification
Where did the representational similarity come from? One
possibility is that information at low spatial frequencies is
critical for face processing, and therefore both DCNN and
human observers were forced to exact information at low spatial
frequencies to successfully perform the task. An alternative
hypothesis is that the VGG-Face and human observers share
similar prior experiences of processing face at the subordinate
level where faces are identified into different individuals. To test
these two hypotheses, we examined another typical DCNN, the
AlexNet, that also has abundant exposure to face images but
is pre-trained to classify objects into 1,000 basic categories. We
trained the AlexNet to perform the gender classification task
with the same transfer learning procedure as that for the VGG-
Face. The testing accuracy of gender classification of the AlexNet
reached 89.3% (see Supplementary Tables 1, 2 for more details),
indicating that it was able to perform the task. However, the CIs
obtained from the Alexnet (Figures 4A,B) were in sharp contrast
to the CIs of human observers (Figures 1C, 2) as a whole (r =
−0.04) and at different scales (r = −0.28, 0.03, 0.25, 0.10, and
0.03 at the scales of 2, 4, 8, 16, and 32). We also reconstructed
the female and male prototype faces of AlexNet (Figure 4A),
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FIGURE 3 | Manhattan plot of the contribution (the absolute values of Cohen’s d) of the parameters used to construct noises in the VGG-Face (A) and in human

observers (B). Each dot denotes a parameter, and the horizontal blue line indicates the significance level after Bonferroni correction.

and they appeared quite distinct from those of human observers
and the VGG-Face (Figure 1C). This finding was unlikely due to
the differences in architecture between the VGG-Face and the
AlexNet, because the VGG-16, which has the same architecture
as the VGG-Face but is pre-trained for object categorization
as the AlexNet, showed a CI largely different from human
observers (Supplemental Analysis 3). Therefore, although the
AlexNet succeeded in performing the gender classification task,
it relied on a set of information completely different from
human observers to achieve the goal. Therefore, mere exposure
to face stimuli or large categories of stimuli is not sufficient
for the DCNNs to construct similar representations for gender
classification as human observers; instead, the task requirement
of face identification during prior experience was required.

Given that the training sample contained more male than
female faces, we also trained the VGG-Face and AlexNet for face-
gender classification with balanced training sample to exclude
the possibility that our results was caused by unbalanced training
sample (Supplementary Analysis 4).

In addition, to examine whether our results could transfer
to other face databases, we trained the VGG-Face and AlexNet
for face-gender classification using face images from another
database FairFace, the Face Attribute Dataset for Balanced
Race, Gender, and Age (Kärkkäinen and Joo, 2019), and
the main findings were replicated with this new dataset
(Supplementary Analysis 5).

Finally, to further illustrate that the CIs obtained here reflected
representations for face gender classification, we built a simple
new network that used the CIs to perform gender classification.
Specifically, we first aligned each of 26,902 face images (13,738
females) to the neutral face template and convolved each aligned
face with the CI to get an activation value (Figures 5A,B). This
procedure is equivalent to using each aligned face as an input
image and the CI as connected weights of a one-layer network

with one output unit. If the CI does represent the differences
between female and male faces, the activation distributions
of male and female faces would be dissociated. As shown in
Figure 5C, after convolving with the CI obtained from VGG-
Face, the activation distribution of female faces dissociated from
that of male faces (cohen’s d = 1.62). A similar trend of
dissociation was observed when using the CI obtained from
humans (cohen’s d = 1.58). As a baseline, we randomized the
CI image and convolved each face with the randomized CI
image, and the two activation distributions largely overlapped
(cohen’s d = 0.30). These results indicated that the CIs revealed
the information used for face gender classification, and similar
information was used by VGG-Face and humans. When using
the CI obtained from AlexNet, the two activation distributions
also largely overlapped (cohen’s d = −0.35), and the difference
between female andmale activations was in an opposite direction
to the results of VGG-Face and humans. Again, this result was
consistent with our main finding that the CI of AlexNet differed
from that of VGG-Face and humans.

DISCUSSION

Marr (1982) has proposed a three-level framework to understand
an intelligent information-processing system. At the top is the
computational level that defines the goal of the system, and in our
study, the computation goal is face gender classification; at the
bottom is the implementation level that is the physical substrate
of the system, which are the DCNNs and human brain in our
study. Most critically, in the middle is the representational and
algorithmic level that establishes approaches through which the
implementation achieves the computation goal. Despite dramatic
differences in the physical implementations between the artificial
and biological intelligent systems, similar representations may
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FIGURE 4 | (A) AlexNet’s CI for gender classification. For visualization, values in each CI were normalized separately to the range from 0 to 1, denoted by colors. Note

that the female prototype (left) and the male prototype (right) were not perceptually female-like and male-like, respectively. (B) Normalized CI at different scales of

spatial frequencies. Note that they were significantly different from those of human observers.

FIGURE 5 | Using CIs in a simple network. (A) Each of 26,902 face images was aligned to a neutral face template. (B) Each aligned face was convolved with the CI to

get an activation value. (C) Activation distributions of the female and males faces after convolving with the CIs.

be used by different systems to achieve the same computation
goal. Our study provides one of the first direct evidence to
support this hypothesis by showing that the DCNNs and humans
used similar representations to achieve the goal of face gender
classification, which were revealed by highly similar CIs between
the VGG-Face and humans. Admittedly, the present study

examined face perception which is highly domain-specific in
human visual cognition. Future study is needed to examine
whether implementation-independent representation can also be
observed in less specialized perceptual processes.

The shared representation, on one hand, may come from the
critical stimulus information needed to achieve the computation
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goal. Previous human studies on gender classification suggest
that the critical information humans used to solve the task
is embedded mainly in low spatial frequencies (Sergent, 1986;
Valentin et al., 1994; Goffaux et al., 2003b; Mangini and
Biederman, 2004; Khalid et al., 2013). Here we found that the
VGG-Face also relied heavily on low spatial frequencies of faces
for gender classification. Further, it was the information only
in this band that showed similarity to that of humans, but not
in high spatial frequencies. In other words, one reason that
the VGG-Face and humans established similar representations
based on low spatial frequencies might be that this stimulus
information is critical for the task of face gender classification.

On the other hand, the prior task experience before the gender
classification task may also play a deterministic role for DCNNs
to use a similar approach to achieve the goal as humans. Previous
studies have shown that humans usually process faces at the
subordinate level, that is, to recognize faces as individuals. Similar
to humans, the VGG-Face is also pre-trained to recognize faces
at the individual level, that is, to classify face images into different
identities (e.g., John’s face). Therefore, the similar task experience
in the past likely led the similar approaches in achieving the new
goal of gender classification.

In contrast, the AlexNet is pre-trained to recognize objects
at the basic level, that is, to classify objects into categories (e.g.,
dogs) but not individuals (John’s dog). Therefore, although the
AlexNet experiences abundant exposure to face images during
the pre-training, it processes faces as objects, different from
humans and the VGG-Face. Previous studies on humans have
shown that object recognition does not selectively rely on low- to
middle- spatial frequencies as face recognition does (Biederman
and Kalocsais, 1997; Goffaux et al., 2003a; Collin, 2006; Collin
et al., 2012). Thus, it is not surprising that although the AlexNet
also achieved a high performance (accuracy around 90%) in face
gender classification, an approach significantly different from
that of humans was adopted. Taken together, the similarity in
representation between DCNNs and humans was not guaranteed
by the common computational goal or by the passive experiences
with stimuli; instead, it was constrained by the combination
of experiences on the pre-training task in the past and critical
stimulus information needed in performing the task in the
present. The finding also suggests that DCNN can be used as a
model of biological brains to experimentally investigate the effect
of visual experience and task demands on human cognition.

The present study also brought insight from an engineering
perspective. In history, two main approaches have been proposed
to achieve and even excel human vision in artificial intelligence
(Kriegeskorte and Douglas, 2018). The neuroscience approach
adheres to biological fidelity at the implementation level,
which simulates neural circuits of brains, whereas the cognitive
approach emphasizes on cognitive fidelity, which focuses on
goal-directed algorithms and disregards implementation. Our
study suggests an intermediate approach lying in between these
two. By simulating human intelligence at the representation
level in Marr’s framework, this approach provides an abstract
description of how a system extracts critical features to construct
representation for a specific task. Because the representation
is relatively independent of implementation, the knowledge

acquired in biological systems can be easily adopted by artificial
systems with completely different substrates. Therefore, the
simulation of representation may shed light on building new AI
systems in a feasible way.

MATERIALS AND METHODS

Transfer Learning
We used the pre-trained VGG-Face network (Parkhi et al., 2015)
that consists of 13 convolutional layers and 3 fully connected (FC)
layers. Each convolutional layer and FC layer were followed by
one or more non-linearities such as ReLU and max pooling. The
VGG-Face network was pre-trained for face identification with
the VGG-Face dataset containing over two million face images of
2,662 identities.

In our study, we trained the VGG-Face for face-gender
classification using transfer learning. The final FC layer of the
VGG-Face has 2,662 units, each for one identity.We replaced this
layer with a two-unit FC layer for the binary gender classification.
All weights of the network were frozen except the weights
between the penultimate FC layer and the new final FC layer.
The training sample contains 21,458 face images (male: 14,586)
of 52 identities (male: 35) randomly selected from the VGGFace2
dataset (Cao et al., 2018). The validation sample contains other
666 face images (male: 429) from the same 52 identities. The
testing sample contains 1,000 face images (male: 500) from 24
new identities from the VGGFace2 dataset. All face images were
resized to 224×224 pixels to match the model input size. We
used in-house python package DNNbrain (Chen et al., 2020) to
train the network. The loss function was cross-entropy, and the
optimizer was Adam. The learning rate was 0.03, and the network
was trained for 25 epochs. After training, the accuracy of gender
classification reached 100% on both the training and validation
samples, and 98.6% on the testing sample.

The same training procedures were applied to AlexNet pre-
trained for object categorization (Krizhevsky et al., 2017). The
model consists of five convolutional layers and three FC layers.
The AlexNet was pre-trained on ImageNet to classify 1.2 million
images into 1,000 object categories. We also replaced the final
layer of AlexNet with a two-unit FC layer for the binary gender
classification. After transfer learning, the accuracy for gender
classification reached 92.6% on the training sample, 93.2% on the
validation sample, and 89.3% on the testing sample.

Reverse Correlation Approach
After the transfer learning on gender classification, we made the
representation explicit with the reverse correlation approach on
noisy faces. All stimuli consisted of a gender-neutral template
face superimposed with sinusoid noise patterns. The template
was a morphed face between a female average face and a male
average face (Figure 1A). The female and male average faces
were computed as a mathematical average of all female and all
male faces of the training sample after they were aligned and
wrapped into the same space with 68 landmarks using an open-
access toolbox face_morpher (https://github.com/alyssaq/face_
morpher). The average faces were 8-bit grayscale and 512 × 512
pixel images. We further created 500 morph faces that gradually
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changed from the female average face to the male average face
using face_morpher. Then we presented 500 morphed faces
evenly distributed between the female and the male average faces
to the VGG-Face to find the face most equally classified as male
and female in gender classification. The 250th morphed face,
which was classified as female with a probability of 54% by the
VGG-Face, was chosen as the gender-neutral template face in
our study.

A random noise pattern was generated for each trial. Each
noise pattern was composed of sinusoid patch layers of five
different scales of spatial frequencies (2, 4, 8, 16, and 32
cycles/image), with each patch layer made up of 1, 4, 16, 64,
and 256 sinusoid patches, respectively (Mangini and Biederman,
2004). For each sinusoid patch, sinusoids of six orientations (0,
30, 60, 90, 120, and 150 degrees) and two phases (0 and pi/2)
were summed. The amplitude of each sinusoid came from a
random sampling of a uniform distribution of values from−1 to
1. Therefore, each noise pattern was determined by 4,092 random
amplitude parameters (12, 48, 192, 768, and 3,072 parameters for
2, 4, 8, 16, and 32 cycles/image). We use the R package rcicr to
generate the sinusoid noises (Dotsch, 2017). We created 20,000
noise patterns for the DCNNs and 1,000 noise patterns for each
human observer. Each noise pattern was then superimposed on
the template face to create a different noisy face.

We resized the noisy face images to 224 × 224 pixels and
submitted them to the VGG-Face and AlexNet, and obtained
their classification prediction for each image. For VGG-Face, a
noisy face was classified as male when the activation of the male
unit was higher than the female unit. Note that the AlexNet
showed a bias toward male faces when classifying the noisy faces;
therefore, wemodified the classification criterion for the AlexNet.
That is, for AlexNet, a noisy face would be classified as male
when the activation of the male unit to the to-be-classified face
was higher than its average activation to all noisy faces. Note
that the choice of criterion would not affect the results pattern of
the VGG-Face and hence the dissociation between AlexNet and
VGG-Face, because the two criteria lead to literally identical CIs
for VGG-Face (r = 0.99).

To generate corresponding female or male prototype faces,
each CI was separately rescaled to have the same maximum pixel
value and then added or subtracted from the template face.

Participants
Sixteen college students (12 females, age 19–33 years, mean
age 22 years) from Beijing Normal University, Beijing, China,
participated in the gender classification task. All participants were
right-handed and had normal or corrected-to-normal vision. The
experiment protocol was approved by the Institutional Review
Board of the Faculty of Psychology, Beijing Normal University.
Written informed consent was obtained from all participants
before the experiment.

Experimental Procedures
Before the experiment, participants were told that they would
perform a difficult gender classification task because the faces
were superimposed with heavy noises. The template image was
not shown to participants in the experiment. The stimuli were

255-bit grayscale and 512 × 512 pixel images. PsychoPy (Peirce
et al., 2019) was used to display the stimuli and record responses.
The stimuli were presented on the screen of a Dell precision
laptop at a distance of 70 cm. The stimuli subtended a visual angle
of ∼8.2 degree. In each trial, a noisy face image was presented in
the center of the screen for 1 s, and then the screen cleared until
the participant made a response. The participants were instructed
to provide one of four responses with a key press for each trial:
probably female, possibly female, possibly male, or probably
male. No feedback was provided. Each participant performed
1,000 trials. The participants could rest every 100 trials. The total
experiment duration was about 1 h for each participant. In data
analysis, the CI was calculated by subtracting the average noise
patterns from all trials classified as male (probably male and
possibly male) from those classified as female (probably female
and possibly female).
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Understanding and producing embedded sequences according to supra-regular

grammars in language has always been considered a high-level cognitive function of

human beings, named “syntax barrier” between humans and animals. However, some

neurologists recently showed that macaques could be trained to produce embedded

sequences involving supra-regular grammars through a well-designed experiment

paradigm. Via comparing macaques and preschool children’s experimental results, they

claimed that human uniqueness might only lie in the speed and learning strategy

resulting from the chunking mechanism. Inspired by their research, we proposed

a Brain-inspired Sequence Production Spiking Neural Network (SP-SNN) to model

the same production process, followed by memory and learning mechanisms of the

multi-brain region cooperation. After experimental verification, we demonstrated that

SP-SNN could also handle embedded sequence production tasks, striding over the

“syntax barrier.” SP-SNN used Population-Coding and STDP mechanism to realize

working memory, Reward-Modulated STDP mechanism for acquiring supra-regular

grammars. Therefore, SP-SNN needs to simultaneously coordinate short-term plasticity

(STP) and long-term plasticity (LTP) mechanisms. Besides, we found that the chunking

mechanism indeed makes a difference in improving our model’s robustness. As far

as we know, our work is the first one toward the “syntax barrier” in the SNN field,

providing the computational foundation for further study of related underlying animals’

neural mechanisms in the future.

Keywords: brain-inspired intelligence, spiking neural network, reward-medulated STDP, population coding,

reinforcement learning

1. INTRODUCTION

The human capacity for language is unique on the earth: althoughmost animals communicate, only
humans show this unbounded expressive power (Fitch, 2018; Jiang et al., 2018). A significant topic
for cognitive neuroscience is determining how human computational capacities differ from those of
other animals (Deacon, 1998;Matsuzawa, 2013; Dehaene et al., 2015a; Yang, 2016; Jiang et al., 2018).
Previously, the generative algorithms acquired by animals seemmainly restricted to the lowest level
of the Chomsky hierarchy (Chomsky, 1957, 1965)—that is, regular languages (Fitch and Friederici,
2012; Fitch, 2014; Jiang et al., 2018). Thus, it has often been proposed that a pivotal gap lies between
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the levels of regular or “finite-state” grammars, which are
accessible to nonhuman animals, and supra-regular grammars
or “phrase-structure” grammars, which may only be available to
humans (Hauser et al., 2002; Fitch, 2014; Jiang et al., 2018).

Some researchers attempt to teach animals understanding
symbol sequences with nested or recursive structures, which are
characteristic of human languages, have mostly been met with
negative results (Miles, 1990; Pinker, 2003; Dehaene et al., 2015b).

So far, the generative algorithms acquired by animals
seem mostly restricted to the lowest level of the Chomsky
hierarchy (Chomsky, 1957, 1965)—that is, regular languages
(Fitch, 2004; Fitch and Friederici, 2012). Thus, it has often
been proposed that a “syntax barrier” lies between the levels
of regular or “finite-state” grammars, which are accessible to
nonhuman animals, and supra-regular grammars or “phrase-
structure” grammars, which may only be available to humans
(Hauser et al., 2002).

However, Jiang et al. (2018) designed the macaque
monkeys supra-regular rule experimental paradigm, and
they demonstrated that after extensive reinforcement training,
macaque monkeys can master the supra-regular grammar, which
breaks the barrier of syntax previously divided. Specifically,
as Figure 1B in Fitch (2018) shown, Jiang and Wang designed
a novel behavioral paradigm, delayed-sequence production
task that required the animal to explicitly generate sequences
according to the instructed grammars (Jiang et al., 2018). They
compared two grammars:

(1) a “mirror” grammar of the form ABC|CBA, which in
formal language theory involves recursive center embedding.

(2) a “repeat” grammar of the form ABC|ABC, i,e, repetition
in serial order, as shown in Figure 1A in Jiang et al. (2018).

Like the grammars of all human languages, mirror grammars
require a learner to possess supra-regular computational abilities,
which requires specific computational machinery not needed at
the lower sub-regular level Figure 1A in Fitch (2018). Besides,
monkeys spontaneously generalized the learned grammar to
novel sequences, including longer ones, and could generate
hierarchical sequences formed by an embedding of two levels
of abstract rules. Compared to monkeys, however, preschool
children learned the grammars much faster using a chunking
strategy (Jiang et al., 2018).

In fact, it is quite common for animals to complete the
sequence by the “repeat” rule. The best example is that birds
can imitate their parents’ singing (Mooney, 2009). However,
for the “mirror” sequence production, negative results are often
obtained (Dehaene et al., 2015b). The essential reason is thatmost
of the synapses (except electrical synapses) are unidirectional,
and the reverse order production requires the agent to have the
ordinal knowledge (Dehaene et al., 2015b). Even though when
people are faced with the challenge of recalling a sequence of
a phone number in reverse order, they often need to repeat
the number sequence repeatedly to determine the position of a
specific number in the sequence to complete the task. Therefore,
the “mirror” sequence production task is a complex cognitive
task that requires more advanced cognitive brain regions to
participate in Fitch (2018). It is of great significance to reveal
the cognitive process of reconstructing symbol sequence for

understanding human language ability (Dehaene et al., 2015b;
Jiang et al., 2018).

Their work inspired us to explore whether SNN can also break
the “syntax barrier.”

After experimental verification, we demonstrated SNN
could indeed handle the same sequence production task. The
innovative aspects of this work are as follows:

• As far as we know, we are the first one to demonstrated that
SNN can break the “syntax barrier” with Population-Coding
and Reward-Modulated STDP mechanism, coordinating STP
and LTP mechanisms simultaneously.
• We demonstrated that the chunking mechanism, helping

to improve the robustness and learning efficiency of
the network.
• Our work provides the computational foundation for further

study of underlying animal neural mechanisms in the future.

2. MODEL AND METHODS

2.1. Neuron Model and Synapse Learning
Rule
There are various neuron models such as the famous H-
H model (Hodgkin and Huxley, 1952), Leaky Integrate-and-
Fire neuron (LIF) model (Miller, 2018), Izhikevich neuron
model (Izhikevich, 2003), and so on.

In order to simplify the computational complexity of the
model, we choose the Leaky Integrate-and-Fire neuron model as
the building block of the Spiking Neural Network to complete the
whole experiment. Standard LIF models are shown in Equations
(1), (2), and (3).

Cm
dV

dt
= −g(V − Vs)+ I (1)

τm
dV

dt
= −(V − Vs)+

I

g
(2)

V → Vreset if (V ≥ Vthreshold). (3)

Cm is the membrane capacitance of the neuron, V is the
membrane potential of the neuron, g is the conductance of the
membrane, Vs is the steady-state leaky potential, here we let
Vs = Vreset to simplify the model. I is the input current of the
neuron. τm = Cm

g represents the voltage delay time, and different

types of neurons have different values of τm.

I =
∑

j

wj,iσj(t − 1)+ Is (4)

σi(t) =
{

0 V < Vthreshold

1 V ≥ Vthreshold
(5)

Equation (4) shows that the current of neurons consists of
two parts: the current from other neurons and the external
stimulating current Is. Wj,i is the weight of i-th neuron to j-th
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TABLE 1 | Model parameters.

Model/Rule Parameter Value

LIF model Cm 30nF

τm 30 ms

Vreset −65 mv

Vthreshold −35 mv

τref 10 ms

STDP rule τs 15 ms

τw 10 ms

A+ 4

A− 0.95

neuron. σi(t) is the indicator to judge if the i-th neuron firing
at the time of t in Equation (5). And external stimuli mainly
corresponding to the appearance of a specific symbol.

As for the synapse learning rule, Spike Timing Dependent
Plasticity (STDP) (Bi and Poo, 1998; Dan and Poo, 2004) is one
of the most important learning principles for the biological brain.
STDP postulates that the strength of the synapse is dependent on
the spike timing difference of the pre- and post-neuron (Dan and
Poo, 2006).

Here we use STDP to update synaptic weights according to
the relative time between spikes of presynaptic and postsynaptic
neurons. The modulation principle is that if the postsynaptic

neuron fires a few milliseconds after the presynaptic neuron, the
connection between the neurons will be strengthened, otherwise,
the connection will be weakened (Wittenberg and Wang, 2006).
The update function is shown in Equation (6), where A+ and A−
are learning rates. τs and τw are STDP time constant, and1t is the
delay time from the presynaptic spike to the post-synaptic spike.

1wj,i =
{

A+e(1t/τ+) −τw < 1t < 0

−A−e(−1t/τ−) 0 < 1t < τw
(6)

All the parameters can be found in Table 1.

2.2. Working Memory Based on Population
Coding
In the macaque monkeys’ sequence producing experiment,
researchers designed the paradigm where the macaque monkeys
need to produce the sequence of the spatial symbols according to
different rules, i.e., Repeat/Mirror.

Obviously, working memory is a necessary condition for
sequence producing (Jiang et al., 2018). Just as the macaque
monkeys must memorize the spatial symbols before producing
process, our SNN should also include the corresponding
circuit to accomplish working memory function. Therefore, we
implemented the Working Memory Circuit (WMC) to realize
related function, which will be covered in detail in this section.

Neurons can encode complicated temporal sequences such as
themating songs that songbirds learn, store, and replay (Quiroga,
2012; Yi et al., 2019). Inspired by the previous research work, an
invariant, sparse, and explicit code, which might be important
in the transformation of complex visual percepts into long-term

FIGURE 1 | The architecture of Working Memory Circuit (WMC), each row of

neuron populations corresponding to the six symbol on the screen shown to

macaques in biology experiment. And the synapses between populations

update with STDP learning rule.

and more abstract memories (Quiroga, 2012). It is reliable to
assume when the macaques try to memorize the raw sequence,
different populations of neurons are activated, i.e., they are bound
to different light spots. Based on this assumption, we designed the
Working Memory Circuit (WMC) to mimic the neuron activity
of macaque monkeys.

Figure 1 shows the single unit of Working Memory Circuit,
which includes six populations of neurons corresponding to six
appear on the screen, the corresponding neuronal population will
be stimulated in a short time window by an extra input current.
Regarding the number of neurons of neuron population, we try
different sizes in the experiment, which will be discussed in detail
in the following chapters.

Inspired by biological discoveries we translate the appearance
of single symbol in screen into the external input stimulation
to corresponding spike neuron population. We choose Poisson
Encoding as the method of input stimulation.

Due to the randomness of the Poisson Encoding, part of
neurons in the population will fire at different times when the
external stimulation window is given. The main function of
inhibitory neurons is lateral inhibition. In order to make only
one population of neurons fire among the six symbols, the
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inhibitory neurons in each population will inhibit remaining five
populations of neurons.

Because symbols appear in sequential order, different
populations of neurons will fire in turn. It is precisely because of
different populations of neurons fire in a particular order, STDP
rules can make a difference in the process of memory. Figure 1
shows how the STDP rules influence the memorizing process
with different temporal activation of neuron populations.

The whole memorizing process starts with the cross in the
center of the screen in Figure 1B in Fitch (2018) lit, which
corresponds to the “begin” neuron population in WMC. This
population obtains extra current and part of the memorize will
fire. Then, according to the examples of Figure 1A in Jiang et al.
(2018), symbols 1, 2, and 5 appear in turn, and the corresponding
neuron population obtains the extra current in turn and fire
in turn. Due to the mechanism of STDP, new synapses are
formed between the corresponding populations of neurons of
symbols 1, 2, and 5, as shown in Figure 1, then completing the
memory process. It is worth mentioning that the “125” sequence
is just an example for convenience of understanding, WMC can
memorize the sequence composed of any three symbols in the set
of position symbols.

2.3. Motor Circuit
In the macaques’ sequence producing experimental paradigm,
macaques need to press the light spots in the screen by correct
sequence to get the reward (Jiang et al., 2018). Neuroscientists
have found that in the biological brain, action instructions are
encoded by specific motor neurons (Wichterle et al., 2002).
Correspondingly, in our model, we must define the triggers of
pressing action.

The center part of Figure 2 shows the concrete structure of
the motor circuit. Motor circuit receives the projection from
Working Memory Circuit and Reinforcement Learning Circuit.

In a nutshell themacaquemonkeys perform a specific position
keystroke operation once a corresponding motor neuron fire.
In our SNN model, the network output a symbol once. (Six
light spots, in this case, correspond to six motor neurons in
each population).

2.4. Reinforcement Learning With
Reward-Modulated STDP
Unlike the short-term plasticity (STP) (Markram and Tsodyks,
1996; Abbott et al., 1997; Zucker and Regehr, 2002)mechanism in
the memory process, macaque monkeys use long-term plasticity
(LTP) (Bi and Poo, 2001) mechanism as the mean of learning
Repeat/Mirror rules (Jiang et al., 2018). That means macaque
monkeys’ memory about a particular sequence maintains short
time, while the learning of producing rules are in the long
term. According to the experimental paradigm in the references,
macaquemonkeys will be rewarded with food or water if they can
complete the production of the sequence in the course of training,
and punitive measures (i.e., blowing the monkey’s eyes with air)
will be launched if there are any symbolic errors in the production
process (Jiang et al., 2018). Therefore, it is reasonable to assume
that the learning of the Repeat/Mirror rules in macaque monkeys
is based on reinforcement learning.

The Reinforcement Learning Circuit (RLC) on the right side
of Figure 2 is the core function circuit that enables the network
to master different rules. The RLC consists of presynaptic and
postsynaptic parts, each of which contains several populations of
neurons. In Figure 2, on the right side of RLC are the presynaptic
neuron populations, which receive external stimulation and affect
postsynaptic neuron populations in RLC; on the left side are the
postsynaptic neuron populations, which receive the projection
from the presynaptic neuron populations and transmit the signal
to the motor neurons, guiding the motor neurons to fire in a
specific order.

In addition to the presynaptic “cue” neuron population
and postsynaptic “end” neuron population, the remaining six
populations of neurons correspond to each other, divided
into three population by row, corresponding to the first,
second, and third positions in the sequence, respectively.
Dehaene have proposed that a taxonomy of five distinct
cerebral mechanisms for sequence coding: transitions and timing
knowledge, chunking, ordinal knowledge, algebraic patterns, and
nested tree structures (Dehaene et al., 2015b), which inspired
us that the ordinal knowledge should be encoded by different
populations of neurons.

Therefore, the core of the so-called different “rules” lies in the
connection mode of the reinforcement learning circuit. Just as
macaque monkeys acquire rules in experiments, the acquisition
of rule learning of our networks is also a reinforcement
learning process.

Before the experiment was completed in the macaque
monkeys (Jiang et al., 2018), these two rules were considered
supra-regular rules that only human beings could master.
Figure 2 shows all the components of the network, including
memory circuit, motor neurons population, and reinforcement
learning circuit. In this case, for the convenience of introduction,
we will describe the process to complete the sequences of length
three production task.

How SNN can realize reinforcement learning is an open
question hitherto, there is some leading research work in this
field (Urbanczik and Senn, 2009; Frémaux and Gerstner, 2016;
Wang et al., 2018). The main contradiction lies in the current
learning rules of SNN synapses, such as STDP, Hebbian, etc.,
that the time of synaptic update was slightly later than the
time of local neuron fire, however, in reinforcement learning,
reward/punishment come after a trial. How to build a bridge
between reward/punishment and synaptic learning rules such as
STDP is where the crux lies (Izhikevich, 2007).

After full investigation, we adopt reward-modulated STDP (R-
STDP) to implement the whole experiment due to the excellent
biology plausibility (Frémaux and Gerstner, 2016).

The main idea of R-STDP is to modulate the outcome of
“standard” STDP by a reward term (Friedrich et al., 2011).

Synaptic eligibility trace (right box in Figure 3) stores a
temporary memory of the STDP outcome so that it is still
available by the time a delayed reward signal is received (Frémaux
and Gerstner, 2016). We regard the timing condition (or
“learning window”) of traditional STDP as STDP(ni, nj), ni and nj
denote the presynaptic and postsynaptic neuron in the network.
The synaptic eligibility trace keeps a transient memory in the
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FIGURE 2 | The whole architecture of SP-SNN is divided into three neuron circuits. The orange lines in Working Memory Circuit mean the synapses inner WMC that is

formulated by STDP rule. The thin black lines between WMC and Motor Neurons represent every population neurons in WMC project to the same motor neuron,

which fire to trigger the output action. The gray arrows between Reinforcement Learning Circuit and Motor Neurons display each population neurons in RLC project to

the same motor neuron as well. Moreover, the thick black lines in RLC show the synapses inner RLC. With reinforcement learning, the network will gradually learn

different sequence reconstruction rules, which will be reflected in the weight distribution of synaptic connections in RLC.

form of a running average of recent spike-timing coincidences.
Synaptic eligibility traces arise from theoretical considerations
and effectively bridge the temporal gap between the neural
activity and the reward signal.

1ej,i = −
ej,i

τe
+ STDP(ni, nj) (7)

ej,i is the eligibility traces between presynaptic neuron i and
postsynaptic neuron j, τe is the time constant of the eligibility
trace. The running average is equivalent to a low-pass filter. In
R-STDP mechanism, the synaptic weight W changes when the
neuromodulatorM signals exist.

1W = M ∗ E (8)

Considering the complexity of the network, we simply choose R-
max policy i.e., M = R. R is the reward or punish signal toward
network which is given by the experiment environment. Actually,

R is the function of time t, Equation (9) shows how R changes
through time.

R(t) =















Cr t − tr ≤ TR

Cp t − tp ≤ TR

0 t − tr > TR

0 t − tp > TR

(9)

Cr and Cp are the constants of reward and punish signal. tr and tp
denote the latest time of reward and punish. And TR is the size of
time window of reward or punish signal. In the experiment, we
set Cr = 10, Cp = −10, and TR = 5.

Specifically, in the process of a sequence production, macaque
monkeys need to memorize symbols sequence firstly, through
STDP learning rules to complete the STP of WMC when the
production process starts, under the guidance of the start signal,
the neurons in WMC corresponding to the symbols in the
original sequence fire in an ideal situation. Because there is a
corresponding population to target connection between WMC
and the motor neuron population, the membrane potential of
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FIGURE 3 | The schematic diagram of Reward-modulated STDP. Different from the general STDP rules, when neurons implements the R-STDP rules the synaptic

weights will not be updated once the pre- and post-synaptic neurons generate spike pair, but temporarily stores the variations of weights in the eligibility trace. Only

when the reward or punishment signal comes, the corresponding synaptic weights will be updated according to the current value of the eligibility trace and the

reward/punishment signal.

Algorithm 1: The learning process of SP-SNN

1. Initialize Npopulation = 50,Vthreshold = −35mv, and other parameters of the network
2. Load Training Set(S)
3. Start training procedure
for every sequence in S do

Memory stage:
Increase Is of corresponding populations
Update weightsWWMC with STDP rule by Equation (6) ⊲ STDP rule

Reinforcement learning stage:
Increase Is of begin populations of RLC
if output correct sequence then

R(t)← Cr ⊲ Give reward
else

R(t)← Cp ⊲ Give punishment
end if
Update weightsWRLC by Equation (8) ⊲ R-STDP rule

end for
4. Start test procedure

motor neurons corresponding to the symbol increases. Although
the membrane potential of these particular motor neurons
has not reached the threshold of the action potential, it will
be significantly increased compared with other neurons. Once
the post-synapse neuron population in the RLC starts to fire
frequently, the membrane potential of corresponding motor
neurons population will rise quickly until fire. For a different
rule, Repeat/Mirror, the network should produce the sequence
by a different order, which means different firing order of post-
synapse populations in RLC. It is where reinforcement learning
makes a difference.

The more detailed learning process of SP-SNN is shown in
Algorithm 1.

2.5. The Chunking Mechanism of SP-SNN
Through the design and verification of the macaque monkeys
supra-regular rule experimental paradigm, it is found that after
intensive training, macaque monkeys can master the supra-
regular grammar, breaking the barrier of syntax previously
divided (Jiang et al., 2018). Jiang et al. (2018) point out that
whether there is a clear boundary between human and animal

language competence needs to be discussed in detail again
(Fitch, 2018).

Neuroscientists and psychologists have been exploring the
Chunking Mechanism for a long time (Ellis, 1996; Gobet et al.,
2001; Fujii and Graybiel, 2003). It is generally believed that
this mechanism plays an essential role in human short-term
working memory (Burtis, 1982), knowledge acquisition (Laird
et al., 1984; Gobet, 2005), and even skill learning (Rosenbloom
et al., 1989; Pammi et al., 2004). Bibbig et al. (1995) showed
that after learning the hippocampus neurons form chunks that
are special representations for co-occurrence of neural events in
several association areas via computer simulations of a spiking
neural network.

Decomposing a long sequence into several shorter sequences
to improve the efficiency and accuracy of memory is the core
component of chunking mechanism (Ellis, 1996). For example,
it is difficult for one person to remember a whole sequence
of mobile phone numbers. Instead, the mobile phone number
sequence is decomposed into several shorter sequences to realize
the memory. Therefore, inspired by Chunking Mechanism in
the cognitive process of biological brain, we try to explore
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FIGURE 4 | (A) Before the introduction of chunking strategy, the neural network architecture diagram. (B) After the introduction of chunking strategy, the neural

network architecture diagram. For the convenience of composition, WMC and motor circuit are merged into gray hexagons, each refers to six different position

symbols.

the introduction of a biologically similar Chunking Mechanism
into the network, and then observe the changes in network
performance of sequence representation. Specifically, compared
with the network without Chunking Mechanism, the main
difference of the new network is the connection mode, i.e., after
the introduction of Chunking Mechanism, the long sequence is
segmented into several shorter chunks.

For instance, as shown in Figure 4A, several populations of
neurons corresponding to six position symbols in the WMC fire
sequentially according to the order in which symbols appear.
The synaptic connections among six gray hexagons will be
shaped by STDP rule, representing the memory for a 6-length
sequence. Figure 4B shows how the network splitting a 6-length
sequence into two 3-length chunks. Based on this instance, we
completed the construction of spike neural network in the form
of Figures 4A,B in the follow-up experiment, to explore the
influence of chunking mechanism.

3. EXPERIMENT

3.1. Sequence Memory With Population
Coding and STDP
First of all, we completed the construction of WMC, whose
structure is shown in the Figure 1.

The experimental process is divided into two stages: memory
stage and test stage. In the memory stage, the original sequence
was repeatedly displayed to SP-SNN several times. Each time
a position symbol appears, the corresponding population of
neurons is stimulated by external current stimuli and fire. Here
we use the Poisson encode to activate the neuron population. The
sequential firing of different populations of neurons combined
with the STDP rule formed specific synaptic connections, thus

forming the memory of specific sequence. This process is shown
in Figure 5A for 0–400 ms.

In the test stage, as shown in Figure 5A for 600–800
ms, we only give the network a start signal, i.e., activate
the “begin” neuron population, and then let the network
independent work without any external stimulation, and
observe the firing state of the network. When more
than half of the neurons in a neuron population fired,
it is considered that the network outputs corresponding
symbol. Only when all the symbols in the sequence are
output in the correct order can we think that the sequence
is correctly memorized. Figure 5B shows the synaptic
connection between neurons after one trial of sequence
memory experiment.

In Working Memory Circuit (WMC), all connections are

initialized to a small random number very close to 0. Neural

plasticity occurs between different populations of neurons to
realize sequence memory, and weak synaptic connections are
maintained within the neuron population.

In order to better understand whether the population coding
strategy contributes to the robustness of the model, we tested
the recall accuracy of the WMC toward 3-length sequence
with and without population coding strategy for different
intensities of background noise, which is widely present in
the human brain (Hidaka et al., 2000; Mišic et al., 2010).
We introduce Gaussian white noise as the background noise
of the network.Each neuron receives a stimulus current of
Gaussian white noise, that is, a random variable with a
mean value of 0 and a variance of σ 2. According to the
definition, the noise intensity of white Gaussian noise equals
to σ 2. We test the accuracy of the network under different
noise intensity.
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FIGURE 5 | (A) The spike trains of neural network of working memory task with population coding strategy. Each blue dot indicates that the neurons corresponding to

the vertical axis discharge at the time node corresponding to the horizontal axis. The number of neuron in population is 60 in this implementation. (B) The weights

distribution of neural network after implement STDP learning.

Intuitively, as Figure 6 shown, we found with the
increase of C (the number of single neurons population),
the noise resistance of the model becomes more robust.
When we increase C from 1 to 30 and then to 60, the
accuracy of the model is greatly improved under the same
noise conditions. Population coding strategy can indeed
significantly improve the robustness of the model. However,
when C continues to increase to 80 or even 100, the
accuracy of the model increases slightly. It is interesting
to explore the cause, we will discuss this phenomenon
in the next chapter. Considering the computational
complexity and experiment, we set C = 60 to carry out
the follow-up experiments.

3.2. Sequence Production
Then, we completed the whole network test, including WMC,
MC, and RLC, and demonstrated that SNN could reproduce the
sequence according to different rules. For example, for the reverse
production of a sequence of length 3, the spike trains and the
strength of synaptic connections between different populations
of neurons are shown in the Figure 7.

Compared with the result in Jiang et al. (2018), they
found that the accuracy of macaque monkeys in the process
of production sequences according to Mirror rules after
the acquisition of rules is U-shaped as Figure 5A in Jiang
et al. (2018) shown. Neuroscientists claim that the main
reason causes this phenomenon are: the superposition of
primacy and recency effect, which are considered essential
in the process of evolution (Luchins, 1957; Jiang et al.,
2018).

It is a well-established finding that the items at the beginning
or at the end of the list are more likely to be recalled than the
items in the middle of that list, which are termed the primacy
and recency effects (Stewart et al., 2004). And both primacy and

FIGURE 6 | Three different color curves show that the memory accuracy of the

network for the sequence decreases with the background noise enhancement

when C (the number of single neurons population) takes different values.

recency effects can be obtained in nonhuman primates (Castro
and Larsen, 1992).

In our practical simulation experiment, we found that the
accuracy of the production of different position symbols is
close to 100% after the network acquires specific rules, which
is difficult to reflect the difference of different positions in
the sequence. Therefore, in order to compare with biological
experiments, we pull-in the background noise based on the
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FIGURE 7 | (A) The spike trains of the whole neural network during R-STDP training process. Each blue dot indicates that the neurons corresponding to the vertical

axis discharge at the time node corresponding to the horizontal axis. As for the number of neurons, WMC is composed of No. 1-979 neurons, No. 980–997 are motor

neurons and RLC consists of No. 998 1639 neurons, respectively. (B) The weights distribution of Reinforcement Learning Circuit after implement R-STDP learning,

which contains the supra-regular grammars (Mirror rule in this figure).

FIGURE 8 | (A) Three different color curves represent the reconstruction accuracy of the network for three different positions in the sequence, respectively. With the

increase of noise intensity, the accuracy of the three positions show a downward trend, but they always maintain the relationship of U-shape. (B) The average value of

production accuracy of neural network for three different positions under different noise intensity.

original network. What we are very excited about is: as
shown in Figure 8A, with the increase of noise, the accuracy
of different position symbols in the network production
sequence is gradually decreasing, but the production accuracy
of different position symbols in the sequence has always
maintained this U-shaped structure, which shows that the

network structure and connection structure we constructed

is highly biologically interpretable. Furthermore, Figure 8B

shows the average accuracy of three positions. It is of some

enlightenment to further understand how macaque monkeys
can complete the task of sequence production and break the
grammatical barrier.

3.3. Sequence Production With Chunking
Mechanism
For the network structure after the introduction of Chunking
Mechanism, since the production rules are consistent within each
chunk, different chunks can share a population of reinforcement
learning postsynaptic neurons, as shown in Figure 4B.

Individually, in this case, in the sequence memory stage, six
symbols appear sequentially and are cut into two chunks of
3+3. Two chunks form specific connections to complete local
memory. In the sequence production stage, the RLC begins to
work, and in conjunction with the WMC, correct motor neurons
fire, completing the so-called sequence production. During
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FIGURE 9 | The blue curve and the green curve represent the production

accuracy of neural network with or without chunking strategy, respectively.

With the increase of noise intensity, both accuracy decreases. However, the

accuracy of networks with chunking strategy is always higher than that without

chunking strategy.

the experiment, we trained the original network, as shown
in Figure 4A, and the network after introducing Chunking
Mechanism, as shown in Figure 4B, respectively. Then, we
compared the difference in production accuracy between the two
networks under different noise conditions, the result is shown
in Figure 9. As the noise intensity increases, the accuracy of
both networks decreases. However, the accuracy of Chunking
Mechanism network is always higher than that of the original
network, which fully reflects the vital role Chunking Mechanism
plays in this task. We will discuss the reasons for Chunking
Mechanism’s role in detail in section 4.

4. DISCUSSION

We demonstrated that through the fusion of neuron population
coding, STDP synaptic learning mechanism, and reinforcement
learning mechanism (R-STDP), the SNN network could perform
the same ability as macaque monkeys to construct the
sequences according to super-regular rules, which was previously
considered unique to humans. As far as we know, our work
is the first to complete the research of sequence production
based on SNN in accordance with supra-regular rules at the
computational level.

Inspired by the research about “grandmother cells” in
neuroscience (Bowers, 2009; Quiroga, 2012), we proposed to
use the activation of a population of neurons to represent the
emergence of a specific symbol in the brain, which may be caused
by extra stimuli (correspond with the memory stage), or by the
current from other populations of neurons within the network
(correspond with the sequence production stage). In the process
of experiment, we found that the population coding has stronger

robustness and stability than the single neuron coding. However,
when the number of neurons in the group reaches a certain
degree, the robustness of the network tends to be stable and
will not grow infinitely. How the brain sets the size of neuron
populations to balance the robustness and consumption will be a
very interesting topic in our future research.

Inspired by the training process toward macaque monkeys
in the experimental paradigm of sequence production (Jiang
et al., 2018), we introduced the reinforcement learning
mechanism in super-regular rule learning, mainly using the
R-STDP mechanism with eligibility traces method (Frémaux
and Gerstner, 2016). Before defining the structure, we thought
the difficulty of this work is that every time a network (or
monkey) gets a reward or punishment, it is easy for the
network (or monkey) to link the symbols with the reward and
punishment signals, actually the production rules behind the
symbols are related to the reward and punishment signals. In our
experiments, we substantially helped the network to complete
the transition from symbols to rules behind symbols, that was,
reward and punishment signals are associated with rules, not
just with symbols themselves. In the future work, how to let the
network automatically complete this process, rather than directly
tell the network in a priori way, is a very worthy of study.

In the experimental results of Jiang et al. (2018), the accuracy
of symbol production for different positions in the sequence is
different, and generally presents a U-shaped rule, i.e., the effect
of sequence production in the middle of the sequence is weaker
than that at the beginning and the end. This feature is considered
to be an essential feature in the evolution process. Psychologists
and cognitive scientists believe that this phenomenon is the result
of the superposition of the primacy and recency effect (Luchins,
1957; Stewart et al., 2004).

During the experiment, our proposed network structure was
consistent with macro-cognitive behavior of macaque monkeys,
showing the accuracy of U-type production. The reason why
the network can show U-type accuracy is that our proposed
network structure combined the “primary effect” and “recency
effect” simultaneously.

Respectively, as for the “primary effect,” in WMC, the neuron
populations corresponding to the first symbol in the sequence
is stimulated by the “begin” neuron population, and most of
the neurons in the “begin” neuron population are firing in the
specific time window belong to “begin” population, which leads
to the firing of the first symbol neuron population will be more
intense, directly leading to the greater increase of membrane
potential of the corresponding motor neuron of the first symbol.
Therefore, the first symbol has better noise resistance, causing the
so-called “primary effect.”

About the “recency effect,” because the building block of spike
neural network is a LIF neuronmodel, and the LIF neuron model
has a leakage mechanism (Miller, 2018), the membrane potential
of the pre-activated motor neuron gradually decreases with the
passage of time, and the last sign appears because of its shortest
production time, and its membrane potential decreases the least,
resulting in the “proximal effect.”

Inspired by Chunking Mechanism in the biological brain, we
implemented the Chunking Mechanism based on SNN in the
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experiment and verified that it plays a vital role in improving the
accuracy of production. After analysis, we found that Chunking
Mechanism can shorten the sequence length of the production
process. In the example of Figure 4, the original network without
Chunking Mechanism needs to recall the whole sequence of
length six first, and then produce it with RLC. Because of
the leakage characteristics of motor neurons, the membrane
potential of motor neurons at corresponding locations decreases
dramatically, which makes it easier to make mistakes. While
Chunking Mechanism is introduced, hardly when every chunk
is recalled, it will be produced immediately. Compared to the
original network, the duration of the decline of the membrane
potential of the new network motor neurons will be shorter, and
the correspondingmembrane potential will be higher, causing the
higher accuracy.

However, we must admit that the chunking mechanism used
in this work still has some limitations. The main limitation
is that we implicitly help SP-SNN to divide a long sequence
into several chunks, that is, to decompose a sequence of length
six into two subsequences of length 3. However, in the actual
human cognitive process, cutting long sequences into chunks has
substantial autonomy and flexibility. How can SNN complete
this process spontaneously? How do different segmentation
methods, such as equal-length segmentation and unequal-length
segmentation, affect the cognitive process’s results? These are
the problems worthy of exploration in the future. However, our
work still completes the preliminary exploration of the chunking
mechanism and demonstrates that the chunking mechanism is of
great help to improve the model’s robustness.

The following will discuss the difference between our work
and the current popular artificial neural network or deep
learning. The difference mainly consists of three parts.

First, almost all the current artificial neural networks set the
weight between neurons to be fixed at the inference stage (only
changes when the network is training), which is different from the
real nervous system. In the real nervous system, the connection
between neurons will be affected by the strength of input signal,
time process and other factors, temporary change with neuron
activity, which is called short-term plasticity of the synapse (STP),
also known as dynamic connection (Markram and Tsodyks, 1996;
Fung et al., 2015).

From the computational point of view, STP provides
the biological neural network one more time dimension in
information processing than the artificial neural network with
a fixed weight, so it has more computational potential and can
perform complex cognitive tasks. From this point of view, it is
obvious that in our network WMC adopts short-term plasticity
(STP). While the synapse in RLC changes in the long term, which
can be looked like a particular kind of long-term plasticity (LTP).
Compared with artificial neural network, our network integrates
STP and LTP mechanism, makes full use of time dimension, and
to a certain extent, expands the boundary of SNN’s information
processing capacity.

Second, although the neural network trained by the current
deep learning technology can solve some specific problems,
its plausibility is very poor (Castelvecchi, 2016), which leads
to serious security problems (such as Adversarial Examples

Problem) and becomes a black cloud over the head of deep
learning (Goodfellow et al., 2014; Liu et al., 2016).

However, our model is totally different. In the experiment,
we can check the firing state and weight distribution of
network at any time, which can be used to judge the
working memory of the current network, the learning process
of rules, and so on. That is to say, the network we
build is completely interpretable. Although the complexity of
our model is not comparable to the current deep learning
technology, our work may bring some inspiration for the
construction of more interpretable artificial intelligence system
in the future.

Finally, for researchers in the field of neuroscience and
cognitive science, our work provides a new perspective to some
extent, that is, how to use the neural network of connectionism
to represent the symbol reasoning of symbolism. In this work,
we demonstrate the feasibility of using spike neural network to
complete the task of production sequence according to supra-
regular rules, breaking the “syntax barrier” of animals. For
further explore the representation of symbols in the animal brain,
as well as how non-human primates such as macaque monkeys
complete the task of sequence representation, our work lay the
foundation of computing.

5. CONCLUSION

This paper proposed a Brain-inspired Sequence Production
Spiking Neural Network (SP-SNN) to model the Sequence
Production process, inspired by a biological experiment
paradigm which showed that macaques could be trained to
produce embedded sequences involved supra-regular grammars.

After experimental verification, we demonstrated that SP-
SNN could also handle embedded sequence production tasks,
striding over the “syntax barrier.” SP-SNN coordinates STP and
LTPmechanisms simultaneously. As for STP, Population-Coding
and STDP mechanisms realize working memory. As for LTP,
the R-STDP mechanism shapes Reinforcement Learning Circuit
for different supra-regular grammars, whose synaptic weights
do not change until a reward/punishment occurs. The U-shape
accuracy of the results of SP-SNN and macaque, which is caused
by the superposition of primacy and recency effect, further
strengthened the biological plausibility of SP-SNN. Besides, we
found the chunking mechanism, i.e., divides a long sequence into
several subsequences, indeed makes a difference to improve our
model’s robustness.

As far as we know, our work is the first one toward the “syntax
barrier” in the SNN field. In future research, we hope to compare
the electrical activity of SP-SNN with the electrophysiological
data of macaque in the sequence production task to expose more
underlying animals’ neural mechanisms in this cognitive process.
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The convolutional neural networks (CNNs) are a powerful tool of image classification

that has been widely adopted in applications of automated scene segmentation and

identification. However, the mechanisms underlying CNN image classification remain to

be elucidated. In this study, we developed a new approach to address this issue by

investigating transfer of learning in representative CNNs (AlexNet, VGG, ResNet-101, and

Inception-ResNet-v2) on classifying geometric shapes based on local/global features or

invariants. While the local features are based on simple components, such as orientation

of line segment or whether two lines are parallel, the global features are based on the

whole object such as whether an object has a hole or whether an object is inside of

another object. Six experiments were conducted to test two hypotheses on CNN shape

classification. The first hypothesis is that transfer of learning based on local features

is higher than transfer of learning based on global features. The second hypothesis

is that the CNNs with more layers and advanced architectures have higher transfer

of learning based global features. The first two experiments examined how the CNNs

transferred learning of discriminating local features (square, rectangle, trapezoid, and

parallelogram). The other four experiments examined how the CNNs transferred learning

of discriminating global features (presence of a hole, connectivity, and inside/outside

relationship). While the CNNs exhibited robust learning on classifying shapes, transfer

of learning varied from task to task, and model to model. The results rejected both

hypotheses. First, some CNNs exhibited lower transfer of learning based on local features

than that based on global features. Second the advanced CNNs exhibited lower transfer

of learning on global features than that of the earlier models. Among the tested geometric

features, we found that learning of discriminating inside/outside relationship was the

most difficult to be transferred, indicating an effective benchmark to develop future

CNNs. In contrast to the “ImageNet” approach that employs natural images to train and

analyze the CNNs, the results show proof of concept for the “ShapeNet” approach that

employs well-defined geometric shapes to elucidate the strengths and limitations of the

computation in CNN image classification. This “ShapeNet” approach will also provide

insights into understanding visual information processing the primate visual systems.

Keywords: ShapeNet, topological perception, convolutional neural network (CNN), global feature, shape

classification
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INTRODUCTION

Over the past six decades, investigations of visual system
anatomy, physiology, psychophysics and computation have
resulted in a general model of vision, which begins from
extracting the local features of the retinal images in the
lower visual areas [e.g., Lateral Geniculate Nucleus (LGN),
V1], then integrates the local features to extract the global
features in the higher visual areas (e.g., V4 and IT) (Hubel
and Wiesel, 1977; Marr, 1982). The convolutional neural
networks (CNNs) are primarily inspired by this local-to-global
hierarchical architecture of the visual pathways. Similar visual
neurons that encode visual properties of a special region of
the visual field (i.e., receptive fields), the CNN units perform
computations using inputs from special regions of the image
and the receptive fields of units at different CNN layers
exhibit different properties. With roots in biology, math and
computer science, the CNNs have been the most influential
innovation in the field of computer vision and artificial
intelligence (AI). The CNNs can be trained to classify natural
images with accuracies comparable to or better than humans.
It has become the core of top companies’ services, such as
Facebook’s automatic tagging algorithms, Google’s photo search,
and Amazon’s product recommendations.

Despite the commercial success of the CNNs, however, little
is known about how the CNNs achieve image classification
and whether there are inherent limitations. This knowledge
is important for avoiding catastrophic errors of the CNN
applications in critical areas. To provide insight into the CNNs
limitations vs. advantages, we developed a new approach of
training and testing the CNNs, which is an alternative to
the popular ImageNet approach. The body of literatures (Liu
et al., 2018; Hussain et al., 2018) reported the performance of
CNNs transfer learning based on image classification. Instead of
using natural images to train and test the CNNs, we employed
geometric shapes as the training and testing datasets (Zheng
et al., 2019). In addition to training the CNNs to perform
shape classification tasks, we focused on assessing how the
CNN learning in the training datasets is transferred to new
datasets (i.e., transfer datasets), which have new shapes that
share local/global features with the training datasets. By varying
the train and transfer datasets, we will be able to determine
whether a local/global feature is extracted by the CNNs during
the learning process. The goal was to directly test two hypotheses
on CNN image classification. The first hypothesis is that transfer
of learning based on local features is higher than transfer
of learning based on global features. The second hypothesis
is that the CNNs with advanced architectures have higher
transfer of learning based on global features. In this study, we
analyzed transfer of learning in four representative CNNmodels,
i.e., AlexNet, VGG-19, ResNet-101, and InceptionResNet-v2,
which have been trained on the ImageNet and achieved high
accuracies in classifying natural images. We found that the
results rejected the two hypotheses. Although preliminary,
the present study provided proof of concept for this new
“ShapeNet” approach.

CONVOLUTIONAL NEURAL NETWORKS

Overview of Convolutional Neural
Networks
In this study, four representative CNN models were tested,
including the first deep-CNN (AlexNet), a significantly
improved CNN model (VGG-19), and two milestones of the
advanced CNNs (ResNet-101 and Inception-ResNet-v2). Their
characteristics are summarized in Table 1. All the CNN models
take color images as inputs, thus three-channel grayscale images
are created for training. All shape images are scaled to proper
size according to each model prior to training and testing. The
four CNNs have been pretrained with the ImageNet.

AlexNet
AlexNet (Krizhevsky et al., 2012) is a deep CNN for image
classification that won the ILSVRC (The ImageNet Large Scale
Visual Recognition Challenge) 2012 competition (Russakovsky
et al., 2015). It was the first model performed so well on the
historically difficult ImageNet. AlexNet has eight layers with
a total of 63M parameters (Table 1). The first five layers are
convolutional and the last three layers are fully connected. The
AlexNet uses Relu instead of Tanh to add non-linearity and
accelerates the speed by six times at the same accuracy. It uses
dropout instead of regularization to deal with overfitting. AlexNet
was trained using batch stochastic gradient descent (SGD), with
specific values formomentum and weight decay.

VGG-19
Simonyan and Zisserman (2014) created a 19-layer (16 conv., 3
fully-connected) CNN that strictly used 3 × 3 filters with stride
and pad of 1, along with 2 × 2 max-pooling layers with stride
2, called VGG-19 model1 To reduce the number of parameters in
such a deep network, it uses small 3× 3 filters in all convolutional
layers and best utilized with its 7.3% error rate. The VGG-19 has
a total of 143.7M parameters. As the winner of ILSVRC 2015, it
is one of the most influential models because it reinforced the
notion that the CNNs need to have a deep network of layers for
hierarchical representation of visual data.

ResNet-101 and Inception-ResNet-v2
As the winner of ILSVRC 2015, the ResNet-101 (He et al., 2016)
has 101 layers, consisting 33 three-layer residual blocks plus
input and output layers. Identity connections learn incremental,
or residual, representations, which creates a path for back-
propagation. The identity layers gradually transform from simple
to complex. Such evolution occurs if the parameters for the f (x)
part begin at or near zero. The residual block helps overcome the
hard training problem in DeepNet (> 30 layers) due to vanishing
gradients. The ResNet-101 model uses 3 × 3 filters with stride of
2, and 3× 3 max-pooling layers with stride 2.

Inception-ResNet-v2 is a hybrid inception version with
residual connections, which leads to dramatically improved
recognition performance and training speed in contrast with

1Very Deep Convolutional Networks for Large-Scale Visual Recognition, http://

www.robots.ox.ac.uk/\simvgg/research/very_deep/.
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TABLE 1 | Summary of the four CNN models.

CNN Model AlexNet VGG-19 ResNet-101 Inception-ResNet-v2

Top-1 Accuracy (on ImageNet) 57.1% 71.3% 77.1% 80.0%

Number of Layers 8 19 101 164

Number of Parameters 63M 143.7M 44.5M 56M

Input Image Size 227 × 227 × 3 224 × 224 × 3 224 × 224 × 3 299 × 299 × 3

the inception architecture (Szegedy et al., 2017). The inception
model uses variant kernel size (in v1) to capture the features
from variant object size and location, introduces batch (weight)
normalization (in v2) and factorizing convolutions (in v3),
and uses bottleneck layers (1 × 1) to avoid a parameter
explosion. The combination of the two most recent ideas:
residual connections (Szegedy et al., 2016) and the latest revised
version of the inception architecture (Szegedy et al., 2016). It
is argued that residual connections are inherently important
for training very deep architectures (He et al., 2016). Since
inception networks tend to be very deep, it is natural to
replace the filter concatenation stage of the inception architecture
with residual connections. This would allow Inception to
reap the benefits of the residual approach while retaining its
computational efficiency.

EXPERIMENTAL RESULTS

Experimental Design and Datasets
As shown in Table 2, there were 24 categories of shapes
(540 images per category), which were generated in MatLab
with variations created with transforms including translation,
rotation and scaling. For the learning tasks, 85% of the learning
datasets were used for training and 15% of the learning
datasets were used for measuring validation accuracies, which
are reported as learning accuracies. For the transfer tasks,
classification accuracies in the transfer datasets are reported as
transfer accuracies. Notice that the training datasets and the
transfer datasets were different and separated. For example,
in Experiment A.1, the CNNs were trained with squares and
trapezoids, but never with rectangles. The four CNNs, which
were pretrained with the ImageNet, were retrained with the
learning datasets for 20 epochs.

To quantitatively evaluate transfer of learning (Figures 1–6),
we define transfer index (TFI) as

TFI = HAUCTransfer/HAUCLearn×100%, (1)

where the Half Area Under Curve (HAUC) is calculated using
the (Accuracy 50) and Epoch number. In general, we are
interested in classifiers with accuracies higher than 50%. Using
(Accuracy 50) instead of Accuracy is also for normalization
purpose. HAUCTransfer can be negative. The higher the TFI, the
higher the transfer of learning of a CNN. A perfect transfer, TFI=
100% can be achieved when both transfer accuracy and learning
accuracy are 100%.

In the following discussion and all tables (Tables 3–8), we use
the TFI values to measure the performance of transfer learning.

The bold TFI values in each table indicate the best CNNmodel in
that experiment.

Classification With Local Features:
Different Shapes
In Experiment A, the CNNs were trained to discriminate squares
vs. trapezoids. If the classification was based on angles of
neighboring sides or parallelism of opposing sides, we expect
the models to classify rectangles vs. trapezoids as squares
vs. trapezoids in Experiment A.1 (see the red curves labeled
“Transferring 1” in Figure 1). In general, we expect that a trained
model recognizes Column 1 images in the transfer dataset as
Colum 1 images in the training dataset (Table 2) if the shared
geometric invariants were used for classification. Note that the
parallelograms appear in both columns, which partially explains
that the accuracies of Transfer 2 and Transfer 3 are lower than
that of Transfer 1 (Figure 1 and Table 3). The Inception-ResNet-
v2 model performed the best and achieved 62.94, 42.26, and
20.68% of transfer index on the three transfer tests (Table 3).

In Experiment B, squares vs. parallelograms were used to train
the CNNs. Trapezoids were listed in both columns, which caused
lower accuracies of Transfer 1 and Transfer 3 (shown in red and
green curves in Figure 2). The VGG-19 model was the best and
reached 47.4, 61.3, and 13.88% of transfer index (Table 4). The
low transfer accuracies indicate that similarity extraction were
not complete. Transfer of learning was the worst when classifying
two unseen shapes (Transfer 3 in Experiment A and Experiment
B, green curves in Figures 1, 2). Note that the transfer curves
were in “parallel” with the learning curves, indicating the CNNs
did extract similarities between the training dataset and the
transfer datasets. Linear regressions were performed to quantify
the relationship between learning accuracy and transfer accuracy
(Supplemental Materials). Slope and R of the regressions were
used to assess the correlation between transfer accuracy and
learning accuracy.

Classification With Global Features:
No-Hole vs. One-Hole
The CNNs were trained to discriminate disks (no-hole) vs.
rings (one-hole), and transfer of learning was tested on triangles
vs. triangle-rings in Experiment C.1 and squares vs. square-
rings in Experiment C.2, respectively. A perfect transfer would
be expected if the presence of a hole was used to perform
the classification. The Inception-ResNet-v2 performed the best
(Figure 3) and achieved 77.2 and 81.48% of transfer index for the
two transfer tasks, respectively (Table 5).
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TABLE 2 | Examples of shapes for the learning and transfer tasks.

Exp. # Sample images for learning tasks Sample images for transfer tasks Description

A.1 Learning: Square vs. Trapezoid

Transfer: Rectangle vs. Trapezoid

A.2 Learning: Parallelogram vs. Trapezoid

Transfer: Rectangle vs. Parallelogram

A.3 Learning: Square vs. Trapezoid

Transfer: Rectangle vs. Trapezoid

B.1 Learning: Square vs. Parallelogram

Transfer: Trapezoid vs. Parallelogram

B.2 Learning: Square vs. Parallelogram

Transfer: Rectangle vs. Parallelogram

B.3 Learning: Square vs. Parallelogram

Transfer: Rectangle vs. Trapezoid

C.1 Learning: Disk vs. Ring

Transfer: Triangle vs. Triangle-ring

C.2 Learning: Disk vs. Ring

Transfer: Square vs. Square-ring

D.1 Learning: Irregular-disk vs. Irregular-ring

Transfer: Irregular-triangle vs. Irregular-triangle-ring

D.2 Learning: Irregular-disk vs. Irregular-ring

Transfer: Irregular-square vs. Irregular-square-ring

E Learning: Isosceles-triangle vs. Disassembled-Isosceles-triangle

Transfer: Irregular-triangle vs. Disassembled-irregular-triangle

F Learning: Dot-inside-circle vs. Dot-outside-circle

Transfer: Dot-inside-square vs. Dot-outside-square

Similar tests with irregular shapes were conducted in
Experiment D. The VGG-19 model had high transfer index
of 94.68 and 97.22% for the two transfer tasks, respectively

(Figure 4 and Table 6). The high transfer performance were
impressive when considering the fact of that the model had never
been exposed to shapes in the transfer datasets, indicating that
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FIGURE 1 | Experiment A. The top panels show the images used in learning and transfer tasks. The lower panel is learning and transfer accuracies as a function of

training epochs for the four CNN models.

presence of a hole (a topological invariant) was likely extracted
and used for classification.

Note that the transfer index values of irregular shapes are

higher than that of regular shapes. More experiments are needed
to identify the underlying mechanisms.

Classification With Global Features:
Connectivity
In Experiment E, the four CNNs were trained with
isosceles-triangles (connected) vs. its three sides separated
(not connected), and transfer of learning were tested
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FIGURE 2 | Experiment B. The top panels show the images used in learning and transfer tasks. The lower panel is learning and transfer accuracies as a function of

training epochs for the four CNN models.

on irregular-triangles vs. its three sides separated. If
connectivity (a topological invariant) was extracted
during the learning, we would expect high transfer
accuracies in this task. Among the four models, VGG-19
exhibited the highest transfer index of 92.78% (Figure 5
and Table 7).

Classification With Global Features:
Inside/Outside Relationship
In Experiment F, the CNNs were trained to discriminate dot-
inside-circle vs. dot-outside-circle, and transfer of learning was
tested on dot-inside-square vs. dot-outside-square (Figure 6).
While the VGG-19 achieved a moderate transfer index of 65.92%
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FIGURE 3 | Experiment C. The top panels show the images used in learning and transfer tasks. The lower panel is learning and transfer accuracies as a function of

training epochs for the four CNN models.

(Table 8), the other three models, including the two advanced
models, exhibited lower transfer index of 46.74 and 13.11%,
respectively, indicating that inside/outside relationship was not
extracted for classification during the learning phase.

SUMMARY AND DISCUSSION

In this study, we trained four CNNs to perform shape
classification tasks based on local or global features and
further examined how learning of classifying shapes in the
training datasets was transferred to classifying shapes in the
transfer datasets, which share local or global features with
the training datasets. Experiments were designed to test two
hypotheses on transfer of CNN learning. First, we wanted

to test whether learning tasks based on local features have a
higher transfer accuracy than that based on global features.
This hypothesis was motivated by the local-to-global hierarchical
organization of the CNN architecture, where local features are
fully extracted and represented by the early layers. Second,
we wanted to test whether the advanced CNNs have higher
transfer accuracy for learning tasks based on global features
than the early CNNs. This hypothesis was motivated by
the fact that the advanced CNNs employ more layers and
recurrent connections, which had advantages of extracting
global features by integrating inputs from a large region.
Although this is a pilot study using the ShapeNet approach,
our results provide clear evidence that does not support the
two hypotheses.
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FIGURE 4 | Experiment D. The top panels show the images used in learning and transfer tasks. The lower panel is learning and transfer accuracies as a function of

training epochs for the four CNN models.

As expected, the CNNs performed well in the learning tasks,
regardless classifying shapes using local features (Experiments
A and B) or global features (Experiments C–F). After 20
epochs of training, they classified the shapes in the training
datasets at high accuracies (>95%), indicating feasibility of
employing pre-trained CNNs to learn new tasks on a small
dataset. However, their performance in the transfer experiments
varied from task to task, and from model to model. Regarding
the first hypothesis, we found that transfer accuracies for local
features (Experiments A and B) were lower than those with
global features (Experiments C–F). In the example of Resnet101,
after it was trained to discriminate squares from trapezoids,
they were tested to discriminate rectangles from trapezoids.

The squares share many local features with squares, such as
four angles of 90 degrees, two pairs of sides parallel to each
other, etc. If the model learned to discriminate the pair of
shapes based on these shared features, we should expect a
perfect transfer, TFI = 100%. Contrary to this prediction, we
found that Resnet101 only had 53.36% transfer to rectangles
and 24.94% transfer to parallelograms. On the other hand, after
Resnet-101 was trained to discriminate regular triangle from
their separated sides, they were tested to discriminate irregular
triangles from their separated sides. If Restnet101 learned to
discriminate connected shape from disconnected shapes (i.e.,
connectivity, a topological invariant), we would expect to observe
a high transfer accuracy. Indeed, it showed a transfer index
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FIGURE 5 | Experiment E. The top panels show the images used in learning and transfer tasks. The lower panel is learning and transfer accuracies as a function of

training epochs for the four CNN models.

of 77.06%, much higher than the transfer accuracy based on
local features. This finding is counterintuitive, suggesting a
lack of understanding of the mechanisms underlying CNN
image classification. However, the ShapeNet analysis provides a
quantitative approach to gain insight into this difficult problem.
Future studies will systematically manipulate the differences
between the learning datasets and the transfer datasets to tease
out the features used in the learning tasks.

Regarding the second hypothesis, we found that the more
advanced CNNs do not have higher transfer accuracies based
on global features. For example, Inception-ResNet-v2 has 192
layers and VGG19 has 19 layers. However, VGG19 exhibited
higher transfer accuracies on learning based on global features,
such as connectivity (Table 7, 92.78 vs. 87.91%) and inside-
outside relationship (Table 8, 65.92 vs. 13.11%). Among the
three global (topological) invariants, we found that inside/outside
relationship had the lowest transfer performance in the CNNs
(Figure 7). In the training datasets of dot-inside-circle/dot-
outside-circle, circle size, circle position and dot position

with respect to the circle varied from image to image. The
high learning accuracies (>99%) indicate that the CNNs
successfully extracted the common features of the learning
datasets. However, after only replacing circle by square, the
models performed poorly in classifying dot-inside-square and
dot-outside-square. The most advanced CNN model only had
a transfer index of 13.11%. This counterintuitive result suggests
that the CNNs achieved shape classification by adopting different
strategies than extracting inside/outside relationship. Note that
different from the other tasks, where the transfer curves
are in parallel with the learning curves, indicating extracting
shared properties between the training datasets and the transfer
datasets (Supplementary Figures 1, 2), the transfer curve for
the Inception-ResNet-v2 did not increase in parallel with the
learning curve. In fact, the correlation coefficient between the
transfer accuracy and learning accuracy was −0.17. Among the
three tested global features, inside-outside relationship seems to
be a limitation of the CNNs, which is not overcome by increasing
depth and recurrent connections. This task may be an effective
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FIGURE 6 | Experiment F. The top panels show the images used in learning and transfer tasks. The lower panel is learning and transfer accuracies as a function of

training epochs for the four CNN models.

TABLE 3 | Exp. A. Learning accuracies and transfer index (TFI, percentage) of the four CNNs (Epoch 1 and 20) and the slope and R of the regression.

Epoch#\CNN AlexNet VGG-19 ResNet-101 Inception-ResNet-v2

1 (learning) 69.44 76.94 69.91 63.70

20 (learning) 75.28 93.43 90.09 91.20

Transfer Exp. A.1 A.2 A.3 A.1 A.2 A.3 A.1 A.2 A.3 A.1 A.2 A.3

1 (TFI) 4.78 7.15 −2.37 12.03 3.45 8.57 18.58 13.01 5.58 41.24 45.26 −4.09

20 (TFI) 22.35 4.39 17.96 46.49 22.82 23.67 53.36 24.94 28.41 62.94 42.26 20.68

Slope of regression 0.738 0.029 0.708 0.868 0.548 0.320 0.809 0.366 0.443 0.733 0.462 0.271

R of regression 0.959 0.163 0.943 0.990 0.989 0.921 0.981 0.952 0.974 0.987 0.966 0.912

The bold values denote the best CNN model corresponding to the highest TFI values in each experiment.

benchmark for developing new CNNs that can extract global
features under various conditions.

In summary, this pilot study presented a proof of concept
of the “ShapeNet” approach that can be used to elucidate the
mechanisms underlying CNN image classification. Rejecting the
two intuitive hypotheses indicate clear knowledge gaps in our

understanding of CNN image processing. Since the same stimuli
and tasks can be used to study visual information processing
in humans and monkeys, the “ShapeNet” approach may be
an effective platform to compare CNN vision and biology
vision. In fact, in addition to the well-known local-to-global
approach, there are accumulating evidence for an alternative
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TABLE 4 | Exp. B. Learning accuracies and transfer index (TFI, percentage) of the four CNNs (Epoch 1 and 20) and the slope and R of the regression.

Epoch#\CNN AlexNet VGG-19 ResNet-101 Inception-ResNet-v2

1 (learning) 70.00 73.98 70.00 59.07

20 (learning) 83.43 100.00 97.13 79.54

Transfer Exp. B.1 B.2 B.3 B.1 B.2 B.3 B.1 B.2 B.3 B.1 B.2 B.3

1 (TFI) 19.45 42.60 23.15 4.63 18.14 13.51 8.80 19.45 10.65 50.06 9.15 −40.79

20 (TFI) 20.49 36.82 16.33 47.40 61.30 13.88 41.65 36.16 −5.50 38.25 44.82 6.57

Slope of regression 0.435 0.483 0.048 0.766 0.941 0.175 0.723 0.566 −0.157 0.341 0.581 0.240

R of regression 0.692 0.780 0.223 0.955 0.983 0.876 0.970 0.974 0.822 0.880 0.970 0.873

The bold values denote the best CNN model corresponding to the highest TFI values in each experiment.

TABLE 5 | Experiment C. Learning accuracies and transfer index (TFI, percentage) of the four CNNs (Epoch 1 and 20) and the slope and R of the regression (N/A mean

not applicable).

Epoch#\CNN AlexNet VGG-19 ResNet-101 Inception-ResNet-v2

1 (learning) 96.76 100.00 99.17 84.91

20 (learning) 100.00 100.00 100.00 100.00

Transfer Exp. C.1 C.2 C.1 C.2 C.1 C.2 C.1 C.2

1 (TFI) 10.01 32.93 −5.26 19.50 3.56 24.77 43.83 34.06

20 (TFI) 13.06 61.20 −5.26 5.84 4.88 33.14 77.20 81.48

Slope of regression 0.729 4.436 N/A N/A 0.724 3.767 1.690 1.980

R of regression 0.754 0.758 N/A N/A 0.412 0.707 0.940 0.967

The bold values denote the best CNN model corresponding to the highest TFI values in each experiment.

TABLE 6 | Experiment D. Learning accuracies and transfer index (TFI, percentage) of the four CNNs (Epoch 1 and 20) and the slope and R of the regression.

Epoch#\CNN AlexNet VGG-19 ResNet-101 Inception-ResNet-v2

1 (learning) 95.27 100.00 89.20 64.68

20 (learning) 100.00 100.00 100.00 99.72

Transfer Exp. D.1 D.2 D.1 D.2 D.1 D.2 D.1 D.2

1 (TFI) 34.26 72.61 86.58 85.64 36.33 44.87 87.67 86.85

20 (TFI) 79.86 96.30 94.68 97.22 46.76 50.70 93.34 86.36

Slope of regression 5.218 3.188 N/A N/A 0.909 0.721 0.584 0.610

R of regression 0.907 0.909 N/A N/A 0.641 0.584 0.911 0.813

The bold values denote the best CNN model corresponding to the highest TFI values in each experiment.

TABLE 7 | Experiment E. Learning accuracies and transfer index (TFI, percentage)

of the four CNNs (Epoch 1 and 20) and the slope and R of the regression.

Epoch#\CNN AlexNet VGG-19 ResNet-101 Inception-ResNet-v2

1 (learning) 61.67 98.98 75.83 75.83

20 (learning) 94.91 100.00 99.26 98.98

1 (TFI) 38.05 87.71 45.88 83.51

20 (TFI) 52.57 92.78 77.06 87.91

Slope of regression 0.639 3.514 1.134 0.967

R of regression 0.967 0.897 0.976 0.967

The bold values denote the best CNN model corresponding to the highest TFI values in

each experiment.

TABLE 8 | Experiment F. Learning accuracies and transfer index (TFI, percentage)

of the four CNNs (Epoch 1 and 20) and the slope and R of the regression.

Epoch#\CNN AlexNet VGG-19 ResNet-101 Inception-ResNet-v2

1 (learning) 80.46 100.00 89.81 70.19

20 (learning) 100.00 100.00 99.91 99.44

1 (TFI) 36.18 35.00 29.77 41.26

20 (TFI) 55.92 65.92 46.74 13.11

Slope of regression 0.838 N/A 1.138 −0.167

R of regression 0.764 N/A 0.824 0.393

The bold values denote the best CNN model corresponding to the highest TFI values in

each experiment.
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FIGURE 7 | Evaluation and comparison of transfer learning of the four CNN models using transfer index.

global-to-local approach, such as object-superiority (Weisstein
and Harris, 1974), early detection of topological properties
(Chen, 1982, 1990), and rapid processing of global features
in non-human primates (Huang et al., 2017). While the exact

underlying mechanisms and differences between CNN models
and primate visual systems are unknown, the results suggested
that the primate visual systems process local and global features
in different ways than the CNNs. By recognizing the differences,
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future studies will be focused on extending the analysis to
other local/global geometrical invariants to understand the
CNNs and the biological visual functions. In particular, we
will test how humans and monkeys transfer their learning
based on inside/outside relationships (topological invariant). We
believe comparison between the CNN vision and biological
vision using the “ShapeNet” approach will provide insight into
a better understanding of visual information processing in
both systems.
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Human not only can effortlessly recognize objects, but also characterize object

categories into semantic concepts with a nested hierarchical structure. One dominant

view is that top-down conceptual guidance is necessary to form such hierarchy. Here

we challenged this idea by examining whether deep convolutional neural networks

(DCNNs) could learn relations among objects purely based on bottom-up perceptual

experience of objects through training for object categorization. Specifically, we explored

representational similarity among objects in a typical DCNN (e.g., AlexNet), and found that

representations of object categories were organized in a hierarchical fashion, suggesting

that the relatedness among objects emerged automatically when learning to recognize

them. Critically, the emerged relatedness of objects in the DCNN was highly similar

to the WordNet in human, implying that top-down conceptual guidance may not be

a prerequisite for human learning the relatedness among objects. In addition, the

developmental trajectory of the relatedness among objects during training revealed that

the hierarchical structure was constructed in a coarse-to-fine fashion, and evolved into

maturity before the establishment of object recognition ability. Finally, the fineness of the

relatedness was greatly shaped by the demand of tasks that the DCNN performed, as

the higher superordinate level of object classification was, the coarser the hierarchical

structure of the relatedness emerged. Taken together, our study provides the first

empirical evidence that semantic relatedness of objects emerged as a by-product of

object recognition in DCNNs, implying that human may acquire semantic knowledge on

objects without explicit top-down conceptual guidance.

Keywords: deep convolutional neural network, semantic relatedness,WordNet, perceptual experience, conceptual

guidance

SIGNIFICANCE

The origin of semantic concepts is in a long-standing debate, where top-down conceptual guidance
is thought necessary to form the hierarchy structure of objects. However, an alternative hypothesis
argues that semantic concepts derive from the perception of natural environments. Here, we
addressed these hypotheses by examining whether deep convolutional neural networks (DCNNs),
which only have abundant perceptual experience of objects, can emerge the semantic relatedness
of objects with no conceptual relation information was provided. We found that in the DCNNs
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representations of objects were organized in a hierarchical
fashion, which was highly similar to WordNet in human. This
finding suggests that top-down conceptual guidance may not be
a prerequisite for human learning the relatedness among objects;
rather, semantic relatedness of objects may emerge from the
perception of visual experiences for object recognition.

INTRODUCTION

Objects in this world are complicated. Variations of objects
(e.g., orientation, size, shape and color) create challenges for
human to flexibly recognize and categorize them (Logothetis
and Sheinberg, 1996). To survive in such difficult and diverse
environments, humans learn to characterize objects into a rich
and nested hierarchical structure, which finally evolves into
semantic concepts (Tanaka, 1996; Yamins et al., 2014). However,
how the hierarchically-structured semantic concepts are formed
is still hotly debated.

Two hypotheses have been proposed. One hypothesis
(Mahon and Caramazza, 2009; Leshinskaya and Caramazza,
2016) suggests that semantic concepts are only formed and
accessed through abstract symbols that are independent of
perceptual experiences. Supporting evidence comes from studies
on congenitally blind people, whose core semantic retrieval
system in the frontal-temporal cortex can still be activated for
retrieving visually-experienced semantic information (Noppeney
et al., 2003; Noppeney, 2007). In addition, functional brain
imaging studies find that supramodal regions in the ventral
temporal occipital cortex (e.g., superior occipital, inferior and
superior parietal areas) are also involved in processing objects
in blind individuals (Lambert et al., 2004; Ricciardi et al., 2014).
Therefore, perceptual experiences seemed not necessary for the
emergence of semantic concepts.

An alternative hypothesis argues that the development
of semantic concepts derives from perception of natural
environments (Sloutsky, 2003; Roy, 2005; Barsalou, 2008). For
example, in a word/no word match-to-sample task, Imai et al.
(1994) decouple taxonomic and perceptual similarity of words,
and find that younger children rely on the visual property of
objects, rather than taxonomic concepts, in response to novel
words. More direct evidence comes from a study on 10-month-
old infants who learn new words by the perceptual salience of an
object rather than social cues provided by the caregivers (Pruden
et al., 2006). That is, perceptual features are needed to form
semantic concepts.

One inevitable limitation of these studies is that perceptual
experiences and conceptual guidance are tightly intermingled
during the development; therefore, it is impossible to examine
one factor with the other controlled. In contrast, the advance of
deep convolutional neural networks (DCNNs) provides a perfect
model to examine how semantic relatedness is formed (Khaligh-
Razavi and Kriegeskorte, 2014; Jozwik et al., 2017; Peterson et al.,
2018). On one hand, DCNNs have abundant visual experiences
on objects, as with the presence of millions of natural images, the
DCNNs learn to extract critical visual features to classify objects
into categories as perfectly as human. On the other hand, during

the training, the relation among object categories is not provided
in the training task or in the supervised feedback. Therefore,
conceptual guidance is completely absent in the DCNNs. With
such characteristics of the DCNNs, here we asked whether
semantic relatedness among object categories was able to emerge
with no top-down conceptual guidance.

To address this question, we used a typical DCNN, AlexNet,
which is designed for classifying objects into 1,000 categories
in ImageNet. Specifically, we first measured whether the
representations of some object categories were more similar than
their relation to others, which formed a hierarchical structure of
object categories as a whole.We reasoned that if a stable and well-
organized hierarchical structure was observed, the hypothesis of
the necessity of conceptual guidance in forming the semantic
relatedness was challenged.

MATERIALS AND METHODS

The ImageNet Dataset
We used the ILSVRC2012 dataset (Russakovsky et al., 2015)
as the image stimulus (http://image-net.org/challenges/LSVRC/
2012/). Both training and validation datasets were used in this
study. The ILSVRC2012 training dataset contains about 1.2
million images with labels from 1,000 categories. The validation
dataset contains 50,000 unduplicated images that belong to the
same 1,000 categories as the training dataset.

Each object category from ILSVRC2012 dataset corresponds
to one semantic concept in the WordNet (Deng et al., 2009).
Semantic concepts are described with multiple words or phrases,
coined as “synonym sets” or “synset” in abbreviation. The synsets
used in the ILSVRC2012 are selected from WordNet, and none
has a parent-child relation with others. All 1,000 synsets have the
same ontology root (i.e., entity) and most of them are subsets of
the superordinate synset of physical entity. Specifically, 3 synsets
belong to abstract entity (e.g., bubble, street sign, and traffic light),
39 synsets belong to matter (e.g., menu), 9 synsets belong to
geological formation (e.g., cliff), 517 synsets belong to artifact
(e.g., abacus), 407 synsets belong to living things (e.g., tench),
and 16 synsets belong to fruits (e.g., strawberry). As shown
in Figure 1A, the 1,000 synsets are organized in a hierarchical
structure based on the WordNet.

Deep Convolutional Neural Networks
(DCNNs)
Six fully-pretrained DCNNs from three DCNN families were
used to examine whether the emergence of semantic relatedness
was a general feature of DCNNs. All DCNNs were pretrained on
ImageNet with 1.2 million images for the classification of 1,000
object categories. The models were downloaded from PyTorch
model Zoo (https://pytorch.org/docs/stable/torchvision/models.
html).

AlexNet

AlexNet consists of 8 layers of computational units stacked into
a hierarchical architecture, with the first 5 convolutional layers
and the last 3 fully-connected layers for category classification.
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FIGURE 1 | (A) The hierarchical structure of 1,000 object categories in the WordNet. All categories were derived from an ontology root (e.g., entity), and most of them

are the subsets of the physical entity. The 1,000 categories cover a wide range of physical objects, making it suitable to study the emerge of object relatedness.

Numerals after each word are the number of categories belonging to this superordinate category. (B) The architecture of AlexNet. The AlexNet includes 8 layers of

computational units stacked into a hierarchical architecture: the first 5 are convolutional layers, and the last 3 layers are fully connected for category classification.

Rectification (ReLU) non-linearity is applied after all layers
except for the last fully-connected layer (Figure 1B).

VGG

Two VGG networks, including VGG11 and VGG19, were used
to examine whether the number of layers was critical for the
emergence of semantic relatedness. VGG11 and VGG19 include
11 and 19 weight layers, respectively, with the first 8 and 16
convolutional layers and the last 3 fully-connected layers. All
hidden layers are equipped with the ReLU non-linearity.

ResNet

Three ResNet, including ResNet18, ResNet50, and ResNet101
were used to examine the effect of residue blocks on the
emergence of semantic relatedness. ResNet18, ResNet50,
and ResNet101 include 18, 50, and 101 weight layers,
respectively, with all convolutional layers except for the last
fully-connected layer. For every two convolutional layers,
a residue block is constructed by inserting a shortcut
connection. ReLU nonlinearity is applied within these
residue blocks.
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The Semantic Similarity of Category in
WordNet
The semantic similarity of the 1,000 object categories was
evaluated by the WordNet 3.0 (Miller, 1995), which is one
of the most popularly-used and largest lexical databases of
English. In WordNet, the lexical hierarchy is connected by
several superordinate synsets in semantic relations, providing a
hierarchical tree-like structure for the 1,000 synsets.

We measured the semantic similarity between each pair of the
1,000 synsets using Wu and Palmer’s similarity (Wu and Palmer,
1994), which computed the similarities between concepts in an
ontology restricted to taxonomic links. This measure is given by:

SimWP(X,Y) =
2N

N1 + N2

Where N1 and N2 are the depth between the concepts X, Y and
the ontology root (i.e., “entity” in WordNet) and N is the depth
between the least common subsume (i.e., most specific ancestor
node) and the ontology root.

Representation Similarity of Categories in
DCNNs
Responses to each image were extracted from all of the
convolutional layers and the last fully-connected layer using
the ILSVRC2012 validation dataset with the DNNBrain toolbox
(Chen et al., 2020) (https://github.com/BNUCNL/dnnbrain). No
ReLU was performed for the responses. Responses of stimulus
from the same category were averaged to make a response
pattern for this category. The category similarity of a layer was
measured as correlations of response patterns between each of
two categories. In addition, correspondence between the category
representational similarity from the DCNNs and the WordNet
semantic similarity was calculated to measure the extent to which
the relatedness of objects in the DCNNs was similar to that
in humans.

The Development of the Relatedness in
DCNNs
To investigate how the hierarchical structure of objects emerged
in the AlexNet, we retrained it from scratch with about 1.2
million images that belong to the 1,000 categories from the
ImageNet training dataset (Deng et al., 2009) using the PyTorch
toolbox (Paszke et al., 2019). The network was trained for 50
epochs, with the initial learning rate as 0.01 and a step multiple
of 0.1 every 15 epochs. The parameters of each model were
optimized using stochastic gradient descent with the momentum
and weight decay was fixed at 0.9 and 0.0005, respectively. Each
input image was transformed by random crop, horizontal flip,
and normalization to improve the training effect of the network.
During the training progression, object classification accuracy
was evaluated in predicting the category of 50,000 images from
the ILSVRC2012 validation dataset in each epoch. In the end,
the top-1 and top-5 accuracies for the AlexNet were 51.0%
and 74.5%.

During the training progression, we input images from the
ILSVRC2012 validation dataset by simply feedforwarding in

each epoch to get the activation responses, and then averaged
responses within each category and computed the similarity
between each pair of categories for the category similarity.
Correspondence between the category similarity from the
AlexNet and the WordNet semantic similarity in each training
stage was measured to evaluate how similar the relatedness of
objects was between the AlexNet and human.

To reveal at which semantic level the category similarity
from the AlexNet showed better correspondence to the
WordNet semantic similarity, the category similarity from
the AlexNet was measured at a coarse level and a fine-
grained level, respectively. In particular, we first manually
selected 19 superordinate concepts (i.e., food, fungus, fish,
bird, amphibian, reptile, mammal, invertebrate, conveyance,
device, container, equipment, implement, furnishing, toiletry,
covering, commodity, structure, and geological formation)
that covered most of the 1,000 categories by referring to the
WordNet hierarchical relationship, then grouped categories
into these superordinate concepts. The coarse-grained
correspondence was measured as the correlation between
the AlexNet category similarity and the WordNet semantic
similarity in 19 superordinate concepts. In turn, the similarity
among superordinate concepts was calculated by averaging
the category representation similarities from each pair of
superordinate concepts. The fine-grained correspondence was
measured as the averaged correspondence between the AlexNet
category similarity and the WordNet semantic similarity within
each superordinate concept.

Effect of Object Co-occurrence to the
Formation of Semantic Relatedness
We examined the effect of object co-occurrence in images on the
emergence of semantic relatedness. To do this, annotations of
object bounding boxes were collected from http://image-net.org/
download-bboxes, which were annotated and verified through
Amazon Mechanical Turk. To match results from the previous
section, bounding boxes of the same 1,000 categories from the
ILSVRC2012 dataset were selected, including 544,546 images and
corresponding bounding boxes from the ILSVRC2012 training
dataset, plus 50,000 images and corresponding bounding boxes
from the ILSVRC2012 validation dataset.

Object bounding boxes provide information to distinguish
objects from the background in each image. Pixels outside the
object bounding boxes in each image were labeled as background,
which was removed by setting to 255 (i.e., white color). In
addition, for images containing multiple object bounding boxes
(i.e., multiple objects), we randomly selected one of the object
bounding boxes from these images, and retained the object
within the box. Taken together, only one single object of an image
remained, excluding the possibility of object co-occurrence as a
source for the emergence of semantic relatedness.

We retrained an AlexNet with these single-object images
using the Pytorch toolbox for 50 epochs. The top-1 and top-
5 accuracies for the single-object AlexNet were 46.7% and
72.0%. Lower prediction accuracy was likely due to fewer images
were used for training. Representational similarity of categories
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in the single-object AlexNet was measured with responses
from the last fully-connected layer, and then compared with
representation similarity of categories in the pre-trained AlexNet.
The developmental trajectory of the single-object AlexNet was
also evaluated in each training stage.

Effect of Task Demands on Semantic
Relatedness
The effect of task demands on semantic relatedness was examined
by re-training AlexNet to classify objects at superordinate levels
(e.g., the living thing vs. artifact) as compared to the original
AlexNet mainly at the basic level (e.g., traffic light, crane).

One superordinate classification occurred at the highest
level of the WordNet: the living thing and the artifact, which
consisted of 958 object categories from the ILSVRC2012
dataset. The other superordinate classification occurred at
an intermediate level, which consisted of 19 superordinate
categories (fungus, fish, bird, amphibian, reptile, canine, primate,

feline, ungulate, invertebrate, conveyance, device, container,
equipment, implement, furnishing, covering, commodity, and
structure). They together consisted of 866 object categories,
which were the subset of the 958 categories contained in
the superordinate categories of living thing and the artifact.
To match the number of object categories, here we used
866 object categories in both superordinate classification
tasks, which included 1,108,643 images from the ILSVRC2012
training dataset and 43,301 images from the ILSVRC2012
validation dataset.

The AlexNet for superordinate classification shared the
identical architecture as the original AlexNet, except that one
extra FC layer was appended to the FC3 layer (i.e., the last
FC layer of the original AlexNet). The extra FC layer was
designated for different superordinate classification tasks, as
the AlexNet for two superordinate categories (AlexNet-Cate2)
had two output units, and the AlexNet for 19 intermediate
categories (AlexNet-Cate19) had 19 output units. Besides, since

FIGURE 2 | The category representational similarity of the AlexNet (A) and the semantic similarity of WordNet hierarchy (B). Categories were ordered according to the

WordNet semantic hierarchy. A simplified hierarchical structure was shown as an indicator of superordinate categories in WordNet semantic similarity. For the ease of

comparison between AlexNet’s category similarity and WordNet semantic similarity, categories belong to the same superordinate category were marked with a black

box. The AlexNet category similarity showed good correspondence to the WordNet semantic similarity. Asterisk denotes p < 0.001.
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a new FC layer was appended to the original AlexNet that
may change the dynamics of the network, we also built an
AlexNet with an extra FC layer that included 1,000 output units
(AlexNet-Cate1000) as the original one. The AlexNet-Cate1000
was designated for validation and for comparison with the
AlexNet-Cate2 and AlexNet-Cate19.

The new AlexNets (i.e., AlexNet-Cate2/Cate19/Cate1000)
were trained using the Pytorch toolbox for 50 epochs. The
top-1 accuracy (top-5 accuracy) were 94.7% (100.0%), 68.7%
(95.6%) and 49.0% (73.6%), respectively. Representational
similarities of categories in the new AlexNets were measured
with responses from all of their layers. Category similarity
from the AlexNet-Cate1000 was compared with that of the
original AlexNet to validate if they shared a similar hierarchy of
semantic relatedness.

Data Availability
All data and code underlying our study and necessary to
reproduce our results are available on Github: https://github.
com/helloTC/SemanticRelation.

RESULTS

We first evaluated whether there was a hierarchical structure
among object categories in the AlexNet, which was trained
to classify object categories from the ImageNet containing no
relation information among objects. For this, responses from
the last fully-connected layer of the AlexNet (i.e., FC3) were
averaged across images of each category as the response pattern
for this category, and the similarity between two categories was
calculated as the correlation between their response patterns.
A great variance in similarity was observed, with the highest
similarity between object toy poodle and object miniature
poodle (r = 0.99), the lowest between object snail and object
fur coat (r = −0.62), and the mean similarity of r =
0.21. The variance in similarity observed was significantly
larger than variance from a randomized structure (permutation
analysis, p < 0.001), suggesting that objects were structurally
organized (Figure 2A, left). A close inspection of Figure 2A

revealed two large clusters, one is living things and the other
artifacts. Within each cluster, there are sub-clusters, as within-
cluster variance was smaller than that of neighboring sub-
clusters. The nested structure in similarity suggests that a

FIGURE 3 | Category representations in the DCNNs were stabled across architectures. (A) Categorical representations from AlexNet, two VGGs (i.e., VGG11 and

VGG19), and three ResNets (i.e., ResNet18, ResNet50, and ResNet101) showed consistent hierarchical relation of object categories. (B) The hierarchical relations

that emerged in these DCNNs were almost identical among each other. (C) Correspondences between the hierarchical relation among objects in the DCNNs and

semantic similarity of WordNet in humans were significant.
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FIGURE 4 | The category representational similarity in different convolutional layers of the AlexNet. Hierarchical relations of objects in the AlexNet gradually emerged

as a function of convolutional layers, so was the correspondence between the representational similarity in the AlexNet and WordNet semantic similarity in human.

Coarse structure first emerged in lower layers, while the fine-grained structure was prominent only in higher layers.

hierarchical relation among objects emerged in the AlexNet
without conceptual guidance.

Similar nested structures of objects were also observed in
DCNNs with different architectures (e.g., layer number and
kernel size), including two VGGs and three ResNets, which
are designed for the same task (Figure 3A). Importantly, the
hierarchical relations of the object categories that emerged from
the VGG family and ResNet family were almost identical to that
from the AlexNet (r > 0.89 for all DCNNs tested, Figure 3B),
implying that the emerged hierarchical relation among object
categories was invariant to implementations, but rather resulted
from inherent properties of the stimulus and the task that
DCNNs received and performed. Because human brains used
images from the same physical world to perform the same task,
one intuitive thought is that the hierarchical relation observed in
the DCNNs may be similar to the semantic relatedness of objects
in human.

To test this conjecture, the names of the object categories
were put into WordNet derived from human, and their semantic
similarity was calculated with the Wu and Palmer’s similarity
approach (Figure 2B). We found that there was a significant
correlation between semantic similarity of WordNet in human
and the hierarchical relation among objects in the AlexNet (r =
0.56, p < 0.001), and correlation also reached significance for
both the living thing (r = 0.70, p < 0.001) and artifact (r = 0.41,
p < 0.001). Similar correspondence to the semantic similarity
of WordNet in human was also observed in DCNNs from the
VGG family and ResNet family (Figure 3C). In addition, the
correspondence of the AlexNet increased as a function of layers
(Figure 4), with lower correlations observed in first two layers

(layer 1: r = 0.21, layer 2: r = 0.15) and higher correlations in
the third (r = 0.41), forth (r = 0.51), and fifth (r = 0.53) layers.
A close inspection on the increases of hierarchy among layers
revealed that coarse structure (e.g., the living thing vs. artifact)
first emerged in lower layers, and a fine-grained structure was
prominent only in higher layers.

How did the hierarchical relatedness of object categories
emerge from unstructured image dataset in the DCNNs? To
address this question, we explored the developmental trajectory
of the relatedness when the AlexNet was trained to recognize
objects. Two findings were observed. First, correspondence in
the hierarchical relatedness of object categories between the
AlexNet and the WordNet was established within the first
epoch (r = 0.60, Figure 5A), whereas the performance for
object recognition (top-1 accuracy: 8.9%) was far below that
of the fully trained one (top 1 accuracy: 51%). Instead, at
least 40 training epochs were needed to attain the matched
performance to the fully trained model. The asynchronous
development illuminated that the relatedness of object categories
in the AlexNet was formed before it was capable of performing
the task. Second, within the development of the hierarchical
relatedness, there was a progression from a coarse structure
to a fine-grained structure. That is, the coarse structure based
on the 19 concepts (e.g., bird and device) merged from 1,000
object categories reached a plateau within the first epoch
(Figure 5B), with a correlation of 0.65 to the WordNet. In
contrast, the fine-grained structure within the 19 concepts (e.g.,
crane and flamingo in bird) did not approach a plateau until
40 epochs’ training, with an averaged correlation of 0.38 to
WordNet in humans. Therefore, the hierarchical relatedness of
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FIGURE 5 | Developmental trajectory of the relatedness. (A) The developmental trajectory of the correspondence in the hierarchical relatedness of object categories

between the AlexNet and WordNet (red line). The classification accuracy of the AlexNet was shown in blue. The hierarchical structure evolved into maturity far before

the establishment of object recognition ability. To illuminate results within the first epoch, correspondence to the WordNet semantic similarity for every 100,000 images

was plotted. Dash line indicates epoch 1 and epoch 40, respectively. (B) A coarse to fine shift during training progression. The coarse structure based on the 19

superordinate categories reached a plateau within the first epoch (red line), while the fine-grained structure reached a plateau after 40 epochs’ training (blue line). Dash

line indicates epoch 1 and epoch 40, respectively. (C) The category similarities of the AlexNet in different training stages for comparison. From left to right, category

similarities of the AlexNet without training, AlexNet trained with 500,000 images within the first epoch, AlexNet trained after the first epoch and AlexNet trained after

the 40th epoch. Color bar indicates correlation coefficients.

object categories was formed in a coarse-to-fine fashion, with
the coarse structure formed before the fine-grained structure
(Figure 5C).

In natural environments, objects are seldom alone; further,
semantically-related ones are often present together. This object
co-occurrence may be preserved in images for training DCNNs,
and thus contribute to the emergence of semantic relatedness
in a DCNN. To rule out this possibility, we trained an AlexNet
with images containing a single object without any background
(i.e., the single-object AlexNet, see Materials and Methods)
(Figure 6A). We found that the hierarchical relation of object
categories from the single-object AlexNet was highly correlated
with that in the pre-trained AlexNet (r = 0.83) (Figure 6B),
suggesting that the object co-occurrence was not critical for the
emergency of semantic relatedness in DCNNs. In addition, a
similar developmental trajectory was also observed (Figure 6C).

Another probable factor that may shape the hierarchy is
the task demand, as recent studies suggest behavior-related
representations of DCNNs are largely shaped by tasks that
DCNNs performed (Song et al., 2020), rather than the physical
properties of stimuli (Xu et al., 2020). To test this possibility,
we directly compared AlexNet-Cate2 and AlexNet-Cate19 that

were designated to classify objects into 2 or 19 superordinate
categories, respectively (Figure 7A). The newly added FC layer
did not significantly change the internal dynamics of the original
AlexNet, as the semantic hierarchy observed in the AlexNet-
Cate1000 was almost identical to that of the original AlexNet (r
> 0.90 for all layers).

We examined the semantic relatedness of the FC3 layer in
AlexNet-Cate2 and AlexNet-Cate19, which corresponds to the
last layer of the original AlexNet. First, the coarse structure was
reserved, as the semantic relatedness emerged in the Alexnet-
Cate2 (r = 0.65, p < 0.001) and AlexNet-Cate19 (r = 0.89, p
< 0.001) was significantly correlated with that in the AlexNet-
Cate1000 (Figure 7B). However, the degree of the fineness
of the structures differed greatly, as the higher superordinate
level of object classification was, the coarser the structure
of the relatedness emerged. Importantly, such difference was
prominent only at the later layers of the networks (Figure 7C).
That is, the relatedness of object categories in the first four
layers of AlexNet-Cate2 and AlexNet-Cate19 was similar to
that in the AlexNet-Cate1000 (rs > 0.89), possibly driven by
the physical properties of stimuli. Then, after the fourth layer,
their correspondence to AlexNet-Cate1000 decreased gradually,
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FIGURE 6 | Effect of object co-occurrence on the emergence of semantic relatedness in AlexNet. (A) Original images used for training AlexNet contain objects

present in the background, which may contribute to the emergence of semantic relatedness in AlexNet. After removing the background, only one object remained. (B)

Category similarity of the single-object AlexNet, which was trained with images containing only one object. Hierarchical relation is prominent. (C) The developmental

trajectory of the single-object AlexNet (red) was drawn against that of the original AlexNet (blue). Note that to match the number of images used to train the

single-object AlexNet, stages for training the original AlexNet with 600,000 to 1,200,000 images within the first epoch were not plotted.

with that of AlexNet-Cate2 decreasing more dramatically. The
divergence in correspondence likely reflected the difference in
task demands. In short, the stimulus-behavior dissociation that
gradually formed along the hierarchy of the networks reflects
the joint efforts of stimuli and tasks in shaping the semantic
relatedness of object categories.

DISCUSSIONS

In this study, we used DCNNs as a model for human
cognition to examine whether the semantic relatedness of
object categories can automatically emerge without top-down
conceptual guidance. First, we found that almost identical
hierarchical structures of object categorizes emerged in AlexNet,
VGG family, and ResNet family, which were highly similar to
the WordNet derived in humans. This result suggests that the
relation among object categories can be automatically formed
without a prior conceptual relationship and independent of
implementation hardware. Interestingly, the level of fineness of
the semantic relatedness was attributed to the task demands of
networks, as the stimulus-behavior dissociation was observed
along the hierarchy of network layers. In sum, our study
provided the first empirical evidence that even without top-down
conceptual guidance, the semantic relatedness of objects can be

formed from the joint effort of physical properties of stimuli and
task demands of networks.

Unlike studies on humans where perceptual experiences are
always intermingled with conceptual guidance, the DCNNs
provide a perfect model to demonstrate how perceptual
experiences contribute to the construction of relatedness among
objects (Peterson et al., 2018). This finding is in line with
developmental studies where children prefer to naming objects
by referring to their perceptual features, suggesting that the
perceptual property of objects play an important role in early
accessing lexical knowledge (Imai et al., 1994; Gershkoffstowe
and Smith, 2004; Samuelson and Smith, 2005). Further,
the emerged semantic relatedness is likely independent of
implementation, because the DCNNs and human brain, which
differ significantly in hardware, show highly similar hierarchical
structures of objects.

The similarity in the semantic structure may result from
the similarity in architecture that DCNNs are designed with an
architecture similar to the human sensory cortex. Accordingly,
similar anatomy may lead to similar functions that give rise
to similar structures of the relatedness among objects. For
example, the top level of the hierarchy was the living things
vs. artifacts, mirroring the axis of the mid-fusiform sulcus that
separates the coding of animate objects and artifacts in the brain
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FIGURE 7 | Effect of task demands on semantic relatedness in AlexNet. (A) The architectures of AlexNet-Cate19 and AlexNet-Cate2, both of which inherited the

same architecture as the original AlexNet, except that one extra FC layer was appended to the FC3 layer. (B) Category similarities of AlexNet-Cate19 and

AlexNet-Cate2 from the FC3 layer. The hierarchical structures were less prominent in AlexNet-Cate19 as compared to the original AlexNet, and almost absent in

AlexNet-Cate2. (C) Stimulus-behavior dissociation was formed along the hierarchy of the networks, with the similarity in representation diverging after the fourth

convolutional layers. Error bars indicate the standard deviation of the AlexNet-Cate2 and AlexNet-Cate19 after the training was repeated eight times.

(Grill-Spector and Weiner, 2014), echoing the proposal that
DCNNs are feasible models to understand visual cortex (Yamins
et al., 2014; Yamins and DiCarlo, 2016). Indeed, Bao et al.
(2020) have found that category-selective regions in the primate
inferior temporal cortex are organized to encode the object space
constructed by dimensions extracted from DCNNs.

Another and more plausible possibility may be the way by
which objects are coded in representational space. In DCNNs,
an object is firstly decomposed into multiple features, and
mapped to a representational space (Xu et al., 2020). Then,
the object is reconstructed from the feature repertoire of the
representational space based on the demand of tasks (Xiang et al.,
2019; Yang et al., 2019; Song et al., 2020). The representational
space allows DCNNs to use the efficient coding scheme (Barlow,
1961; Liu et al., 2020) to reduce the redundancy of the natural
stimuli, which is also widely observed in neuroscience studies
(Dan et al., 1996; Kastner et al., 2015). Further, features of the
representational space are distributedly represented by different
units (Liu et al., 2020; Yang and Wang, 2020); therefore, if
two objects are perceptually similar because of shared features,
they are likely represented by the same set of units. In this

way, the relation between two objects is then derived from the
connections among units. This intuition is consistent with the
hypothesis of parallel distributed processing (McClelland and
Rogers, 2003; Saxe et al., 2019), where knowledge arises from
the interactions of units through connections. Accordingly, the
knowledge stored in the strengths of the connections finally
becomes the building blocks of the hierarchical structure of
object categories.

Importantly, such hierarchical structure emerged in a coarse-
to-fine fashion. That is, at the initial stage of learning, DCNNs
may encode global features to identify relations among objects
when only a small number of exemplars are available. For
example, dogs and cats are the same, but they are not trees
based on general appearance. When more exemplars are learned,
features in the repertoire are greatly enriched, and thus are
capable of providing fine-grained representations for objects
to establish the hierarchical structure of relationships among
objects. This coarse-to-fine representation is also observed in
infants, as infants are able to distinguish animals and vehicles
at 7 months old, but fail to differentiate dogs from cats until 11
months old (Mandler andMcdonough, 1993, 1998; Pauen, 2002).

Frontiers in Computational Neuroscience | www.frontiersin.org 10 February 2021 | Volume 15 | Article 625804118

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Huang et al. Semantic Relatedness in DCNNs

Interestingly, we also found that the hierarchical structure
evolved into maturity before the establishment of object
recognition ability. This is not surprising because the enriched
and structured feature repertoire is necessary for DCNNs to
successfully recognize novel objects never seen before. For
example, in a recent study where DCNN’s experience on
faces is selectively deprived, the DCNN is still capable of
accomplishing a variety of face tasks behaviorally and evolving
face-specific modules internally (Xu et al., 2020). Therefore,
a mature representational space of objects will greatly benefit
DCNNs’ performance. This mechanism has already widely used
in computer science, as transfer learning, for example, utilizes it
to harness a pretrained network to work in another domain with
a small number of exemplars but still with high accuracy (Olivas
et al., 2009).

Besides the physical properties of stimuli, the demand of tasks
also played an important role in shaping the representational
space of objects especially when it needs to be read out for
behavioral performance (Peterson et al., 2018; Turner et al.,
2019). When the DCNN was designated to classify objects
at superordinate levels rather than at the basic level, the
representational space became coarser and the nested structure
of the semantic relatedness was less prominent. However, at
the earlier layers of the network, the representational space
was less likely affected by task demands; rather it was mainly
driven by the physical properties of stimuli. As the information
flew into later layers, the stimulus-behavior dissociation was
observed, as the representational space was mainly shaped by the
demand of tasks. Therefore, it is possible that DCNNs extracted
images’ features based on image statistics into a repertoire to
construct a representational space in lower layers, and then only
selected features necessary for tasks that the network performed
to constructed a new representational space in higher layers. Note
that the demand of tasks did not provide any information on the
hierachical stucture of objects, and therefore it only shaped the
level of fineness of semantic relatedness. Given the similarity in
anatomy between DCNNs and primates’ systems, future studies
are advocated to examine whether primates’ visual cortex also
follows similar rules to transfer sensation to perception and
finally to concepts that lead to behaviors.

In sum, our study demonstrated that perceptual similarity
among object categories and the demand of tasks jointly shaped

the hierarchical structure among objects. However, there are

several limitations to this study. First, this finding did not
necessarily rule out the role of conceptual guidance in forming
the semantic relatedness, which was clearly illustrated by a
moderate correlation between the DCNNs and humans in the
hierarchical structure among objects. In addition, the DCNNs
used in this study are purely feedforward, andmay not be suitable
for studies on conceptual guidance. Therefore, other deep neural
networks with feedback connections, such as Feedback-CNN or
predictive coding network (Lotter et al., 2016; Cao et al., 2018),
or networks directly trained with lexical and semantic relations
(Bayer and Riccardi, 2016), shall be used to understand how
relations between concepts modulate the semantic relatedness of
objects without the influence of perceptual experiences. Second, it
is counter-intuitive that the semantic relatedness was not derived
from object co-occurrence in natural images. That is, it may result
from features, rather than co-appearance frequencies, shared by
objects. Further studies are needed to examine this hypothesis
to unveil the bottom-up mechanism in forming the semantic
relatedness of objects.
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Background: The rapid serial visual presentation (RSVP) paradigm is a high-speed

paradigm of brain–computer interface (BCI) applications. The target stimuli evoke

event-related potential (ERP) activity of odd-ball effect, which can be used to detect

the onsets of targets. Thus, the neural control can be produced by identifying the

target stimulus. However, the ERPs in single trials vary in latency and length, which

makes it difficult to accurately discriminate the targets against their neighbors, the

near-non-targets. Thus, it reduces the efficiency of the BCI paradigm.

Methods: To overcome the difficulty of ERP detection against their neighbors, we

proposed a simple but novel ternary classification method to train the classifiers. The

new method not only distinguished the target against all other samples but also further

separated the target, near-non-target, and other, far-non-target samples. To verify the

efficiency of the new method, we performed the RSVP experiment. The natural scene

pictures with or without pedestrians were used; the ones with pedestrians were used

as targets. Magnetoencephalography (MEG) data of 10 subjects were acquired during

presentation. The SVM and CNN in EEGNet architecture classifiers were used to detect

the onsets of target.

Results: We obtained fairly high target detection scores using SVM and EEGNet

classifiers based on MEG data. The proposed ternary classification method showed

that the near-non-target samples can be discriminated from others, and the separation

significantly increased the ERP detection scores in the EEGNet classifier. Moreover, the

visualization of the new method suggested the different underling of SVM and EEGNet

classifiers in ERP detection of the RSVP experiment.

Conclusion: In the RSVP experiment, the near-non-target samples contain separable

ERP activity. The ERP detection scores can be increased using classifiers of the EEGNet

model, by separating the non-target into near- and far-targets based on their delay

against targets.

Keywords: RSVP, ERP, MEG, CNN, SVM
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INTRODUCTION

Rapid serial visual presentation (RSVP) is a high-speed brain–
computer interface (BCI) experiment paradigm. In the rapid
presented sequences, the odd-ball pictures can trigger the
unique event-related potential (ERP) activity, known as P300
visual-evoked potentials in the brain (Won et al., 2019).

This neural signal is generally chosen from a variety of
well-studied non-invasive electroencephalography (EEG) and
magnetoencephalography (MEG) signals (Lawhern et al., 2018).
The detection of ERP onsets can be used to identify the pictures of
interest in the sequence (Helfrich and Knight, 2019). As a result,
the RSVP paradigm has been used in multiple BCI applications,
e.g., picture identification, screen spellers, and other applications
that require identifying target stimulus at high speed.

The applications of RSVP in BCI largely depend on the

ERP detection accuracy. The machine learning methods have
been widely used in ERP detection using the noisy single
sample signals (Huang et al., 2011; Cecotti, 2016; Lin et al.,
2017). Machine learning algorithm formulates the classifier

to learn the ERP pattern in the high-dimensional neural
signal, and automatically suppress the effect of noise. The
xdawn algorithm was used to enhance ERP components in the
EEG and MEG data. Support vector machine (SVM), linear
discriminator (Cecotti, 2016), and convolution neural network
(CNN) classifiers (Lawhern et al., 2018) have been applied to
ERP detection tasks (Xiao et al., 2020). The weighted linear
discriminant analysis has been used to reduce calibration time
in the P300-based BCI paradigm; it not only reduces the
computation request but also reduces the fatigue of subjects
prior to BCI experiment (Jin et al., 2020b). Further, optimal
feature selection method of common spatial pattern using L1-
norm and Dempster–Shafer theory has been used in the EEG
dataset to improve the robust against the non-stationary across
time and subjects (Jin et al., 2020c). Despite the improvements in
algorithm, it is still difficult to obtain the reliable ERP waveform
from a single trial since the signal-to-noise rate is large in neural
signal (Creel, 2019).

Besides the algorithm improvement, the paradigm of RSVP
experiments also evolved. Jin et al. has developed a novel cheeks-
stim paradigm for the P300 BCI experiment to substantially
increase the efficiency and experience of BCI users (Lin et al.,
2018; Jin et al., 2020a). Indeed, the reliable ERP can be obtained
by averaging the waveform of several ERP trials, and there are
RSVP paradigm improvements using the averaged multiple trials
to increase the accuracy of ERP detection. Lin et al. developed a
novel triple RSVP paradigm for the P300 BCI speller. It presented
three single target character stimuli three times and uses the
averaged signal to increase ERP detection accuracy (Lin et al.,
2018). Cecotti et al. used the dual-RSVP paradigm. The sequence
was presented synchronously with a fixed lag, and the succeeding
two signals were used to increase the ERP detection accuracy
(Cecotti, 2016). Additionally, the triple-RSVP paradigm has also
been used to acquire higher accuracy (Mijani et al., 2019). It
shows that the classifiers took the benefit from the dual sample
combination and produced higher detection score. The new
RSVP paradigm designs indeed improved the performance of the

RSVP BCI application; however, it still left the difficulty of single
sample ERP detection problem unsolved, which is important to
common RSVP applications.

One of the main difficulties of ERP detection using a single
trial is their complex dynamics (Barry and De Blasio, 2018), since
they vary in latency and length across trials. The high-speed
presented stimulus in the RSVP paradigm makes the stimulus
closer with each other and the difference more ambiguous in
temporal. Evenly, the presentation speed is becoming so fast that
the ERP reaches its peak after the next stimuli onset, when the
presentation rate is larger than 30Hz. Thus, detecting the target
samples against their neighbors is becoming more difficult and
produces a higher error rate on the single-trial ERP detection.

In this study, we presented an RSVP experiment with MEG
data acquired. The visual material is natural scene pictures
with or without pedestrians, and the pictures with pedestrians
were used as target pictures. We used a new training method
to increase the ERP detection scores. In the new method, the
samples were separated into three classes instead of two classes
in the traditional method. They are target, near-non-target, and
far-non-target samples. Thus, we used the classifier not only
discriminating the target and other samples but also learning
the difference between target samples and their neighbors. The
SVM and CNN in EEGNet architecture classifiers were trained
to detect ERP based on MEG data. The experiment results
showed that the new training method improved ERP detection
scores of the EEGNet classifier. The visualization results further
explained the different underling of ERP detection of SVM and
EEGNet classifiers.

MATERIALS AND METHODS

Visual Stimuli and Procedure
The participants were seated in the MEG scanner, and a screen
was in front at 680 mm. During the MEG scanning, they were
required to gaze on the center of the screen. The rapid visual
stimuli were presented on the screen using a rapid flashed
sequence of pictures. The picture size was 500 × 500 pixels2

covering 150 × 150 mm2 areas in the screen; thus, it subtended
the area of 12.6 × 12.6 degrees2 in visual angle. The flash rate of
pictures was set as 10 Hz, and there were no gaps between two
consecutive pictures.

All the pictures were selected from a dataset consisting of
1,400 colored street scene pictures. The pictures containing
pedestrians were used as target pictures, and others were used
as non-target pictures. There were 56 target pictures and 1,344
non-target pictures in the dataset.

During a block, 100 pictures were shown in random order.
The ratio of target pictures was set to 4%, resulting in 100 pictures
with 4 target pictures and 96 non-target pictures. In every block,
the 100 pictures were randomly sampled from the dataset without
replacement. As a result, one session contained 14 blocks. During
a session, the participants were required to press a button in their
right hand when they were ready to start a block and press the
same button when they see a target picture as soon as possible.
The aim of asking participants to press the button is to keep
them focused on the screen, and the button-pressing events were
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also recorded to make sure that the participant saw the target
pictures instead of missing them. All the participants finished 11
consecutive sessions during the RSVP experiment. The paradigm
of the RSVP experiment can be found in Figure 1.

Participants
The experiment recruited 10 college students as participants
in the RSVP experiment (seven males and three females,
aged 23.79 ± 3.6) without previous training in the
task. The participants practiced through a pseudo-RSVP block
immediately before they entered the MEG scanner. The aim was
only tomake sure they had understood the rule of button pressing
during the experiment. The participants exhibited normal or
corrected-to-normal vision with no neurological problems and
were financially compensated for their participation. The study
was approved by the local ethics committee (Institute of
Automation Chinese Academy of Sciences). All participants
gave a written informed consent and received payment for
their participation.

MEG Acquirement and Preprocessing
During MEG experiment, subjects performed RSVP experiment
in a MEG scanner. MEG recordings were conducted in a
magnetically shielded room with a whole-head CTF MEG
system with 272 channels (MISL-CTF DSQ-3500, Vancouver,
BC, Canada) at the MEG Center of Institute of Biophysics,
Chinese Academy of Sciences. Prior to data acquisition, three
coils were attached to the left and right pre-auricular points and
nasion of each participant, and a head localization procedure
was performed before and after each acquisition to locate the
participant’s head relative to the coordinate system fixed to the
MEG system. Participants were asked to lie in a supine position,
and a projection screen was used to present visual stimuli
during recording.

MEG data were recorded at a sampling rate of 1, 200 Hz,
filtered between 0 and 600 Hz. We preprocessed the data using
MNE software (Gramfort et al., 2014). The artificial noise of
eye moving was suppressed using ICA method (Dimigen, 2020).
Since ICA is sensitive to low-frequency drifts, the 1-Hz high-
pass filter was used to suppress low-frequency signal prior to
ICA fitting. Then, the sources with large skewness, kurtosis, and
variance scores weremarked and zeroed out from raw data. Then,
the raw data were down-sampled to the sample rate of 100 Hz.
The down-sampled data were then filtered by a band-pass filter
to fetch data in the frequency band of 0.115Hz.

Data samples were then fetched from the filtered data. For
every picture presented in the RSVP experiment, the time
window ranging from−200 to 1, 200ms from the onset was used
to fetch the data sample. The samples also referred to the MEG
epochs in some studies. The samples were baseline-corrected by
the averaged value between −200 and 0 ms from the onset. The
linear drifts were removed from the samples. As a result, the data
sample could be represented by a matrix of 272 rows and 140
columns; 272 rows represented 272 channels and 140 columns
represented 140 time points from−200 to 1,200ms. The samples
were then used to detect ERP activity. The averaged time series of
the signals are plotted in Figure 2.

ERP-Based Target Detection
MEG Sample Labeling
The lag between samples was 100ms since the presentation rate
was 10Hz. However, the length of the samples was 1,400ms.
Thus, the samples inevitably overlapped with their neighbors.
The traditional ERP detection method used dual classification,
which only separated target and non-target samples, e.g., labeling
target epochs as label 1 and non-target epochs as label 2. As
a result, they used the same label to represent the non-target
samples with or without ERP components. It forced the classifier
to distinguish the ERP signals against their neighbors, which
might contain the same ERP with a small latency. Thus, the
confusion will inevitably decrease the accuracy of ERP detection.

In this study, we used three classification methods to further
separate the target signal from their neighbors. Three labels were
used in the experiment: target label (noted as 1), far-non-target
label (noted as 2), and near-non-target label (noted as 3). The far-
non-target samples refer to the epochs whose onset was far from
target stimulus, which means that there were no target stimuli
occurring within a 0.5-s range. The other non-target epochs were
labeled as near-non-target labels. Simply, the target samples were
ERP samples, the near-non-target samples contained ERP but of
incorrect latency, and the far-non-target samples did not contain
ERP activity.

ERP Detection Using SVM
The SVM is a widely used statistical learning algorithm, especially
for large datasets with high dimensionality (Vapnik, 1998).
It has been reported that SVM outperforms other competing
methods in many researches (Williams, 2003; Pohlmeyer et al.,
2011). The SVM has also been used for ERP detection in
the RSVP experiment (Huang et al., 2011). Since the SVM
was originally designed for binary classification, the trinary
classification method used the one-against-one method that was
proposed by Chih-Wei and Chih-Jen (2002) in the “libsvm”
software package.

The prior feature extraction was also necessary for SVM
classifier. We used signal enhancement with xdawn algorithm
(Rivet et al., 2009). The xdawn method was used as a supervised
feature extraction method to enhance the ERP components in
the MEG data by maximizing the signal-to-signal-plus-noise rate
(Cecotti, 2016). The number of components was set to six in this
study based on prior research and visualization results. Thus, the
272-sensorMEGdata were converted into six-component feature
data to fit the SVM classifier.

SVM uses RBF kernel to explore more flexible classification
strategy for high-dimensional data. In this study, we set the
prior parameter gamma as “scale” to automatically calculate the
variance of the training data. Since non-target samples were
dozen times outnumbered target samples, we set the class-weight
option as “balanced” to increase the weight of target signal in loss
function to obtain a meaningful classifier.

ERP Detection Using EEGNet
EEGNet is an outstanding CNN architecture to detect ERP signal
in EEG data (Lawhern et al., 2018). In this study, we used
EEGNet to detect the ERP signal in MEG data. The EEGNet
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FIGURE 1 | The paradigm and examples of pictures used in the RSVP experiment. The examples of target and non-target pictures are plotted on (A,B). The

paradigm is plotted on (C) and the ternary classification labeling protocol is plotted on (D).

FIGURE 2 | Average waveform visualization of MEG samples. The A/B/C row plots the average waveform of the frequency of Delta/Theta/Alpha band. The 1/2/3

column plots the average waveform of target/near-/far-non-target samples.

classifier was built and trained using “pytorch” toolbox in the
high-performance GPU server. Since there were 272 sensors
in the MEG data other than the 64 sensors in the EEG data,
we changed the input number to 272 accordingly. Additionally,

we used softmax function in the output to match the ternary
classification. The loss function was calculated using the output
of EEGNet and one hot-coded sample label. The architecture
was the same as the “DeepConvNet” model of EEGNet (Lawhern
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TABLE 1 | Scoures table of ERP detection.

Recall Precision F1 score Accuracy

SVM (binary) 0.8206 ± 0.1304 0.8649 ± 0.0828 0.8364 ± 0.1027 0.9875 ± 0.0068

SVM (ternary) 0.8243 ± 0.1259 0.8610 ± 0.0823 0.8384 ± 0.1027 0.9876 ± 0.0070

Net (binary) 0.8740 ± 0.0837 0.7574 ± 0.1216 0.8085 ± 0.0987 0.9829 ± 0.0097

Net-3 (ternary) 0.8513 ± 0.0847 0.8731 ± 0.0775 0.8608 ± 0.0749 0.9890 ± 0.0059

The bold values refer the highest value of the column.

FIGURE 3 | ERP detection scores with ternary classification of all the 10 subjects in box-and-whisker plots. The SVM labels refer to the score of SVM classifier, and

the Net labels refer to the score of EEGNet classifier.

et al., 2018). The parameters in the EEGNet were upgraded using
the Adam optimizer. The learning rate was set as 0.001 for initiate
and then the rate was set to shrink to 0.8 times every 50 epochs
to avoid overfitting. The training process contained 500 epochs,
and 300 training samples with equal class number were randomly
selected in each epoch. Since the EEGNet classifier performed
feature selection automatically using the first convolution layers,
the band filtered MEG data were used directly without additional
feature extraction process in prior.

Cross-Session Validation
We used the SVM and CNN model in EEGNet architecture
classifier to detect ERP for identifying the target samples. To
evaluate the reusability of the classifiers, we applied cross folder
protocol to separate the MEG data into training and testing
dataset recursively. The separation is based on the sessions of the
experiment to keep the independency between the training and
testing data. Since all the subjects finished 11 sessions of the RSVP
experiment, we applied the 11-folder protocol. In each folder, the
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data of one session were used as testing dataset, and data of other
sessions were concatenated to generate the training data.

In folders of 11 sessions, the following training and testing
procedure were repeated. In the SVM part, the training dataset
was used to train the xdawn spatial filter to perform feature
extraction, and then the features were used to train an SVM
classifier. The testing dataset was then applied by the trained
xdawn spatial filter and SVM classifier to evaluate the detection
scores. In the EEGNet part, the training dataset was used to train
the parameter of the net without prior feature extraction and then
the testing dataset was used to evaluate the detection scores.

As a result, we performed cross-session validation within
subject to validate the discriminating power of the method. It was
operated as the online experiment simulation. The model was
fitted to samples in training sessions and then the test samples
were transformed one by one to obtained the labels. Although
the ternary classification gave labels of three class labels, we
merged the near- and far-non-target labels as the non-target label.
Thus, the ternary classification method was used to increase the
discriminating power, and it was transparent to the experiment
since it eventually produced binary labels.

Additionally, we also visualized the features to investigate the
ERP detection underling of SVM and EEGNet classifiers. For the
SVM classifier, the features extracted by the xdawn spatial filter
were visualized. For EEGNet, the activity of the first convolution
layer was visualized. We used the TSNE projection method to
project the features into the two-dimensional manifold space. In
the space, we showed the distribution of the target, near-, and
far-non-target samples in a distance invariance manner.

RESULTS

ERP Detection Scores
The ERP detection scores were recorded and compared between
SVM and EEGNet classifiers. The scores of interests are the
recall rate, precision rate, and F1 score of the target samples,
which was also the aim of the RSVP experiment. The average
scores of all the subjects were shown in Table 1. The recall
score was higher for the EEGNet classifier. Additionally, the
ternary classification method increased the scores of the EEGNet
classifier beyond the SVM. The scores of EEGNet and SVM using
ternary classification of all the subjects were plotted in Figure 3.
It showed that the scores of EEGNet was higher than SVM on
more subjects. The variance among cross-session folders of the
EEGNet method were smaller. Moreover, the EEGNet with the
ternary classificationmethod also produced the highest F1 scores.

To make sure the comparison was valid, we applied analysis
of variance (ANOVA) (Rouder et al., 2016) and paired t-test
(Xu et al., 2017) method to test the statistical level of the
difference between the scores. Firstly, to settle the complicity
of the experiment, we used ANOVA to testify if the difference
between the scores was because of the usage of classifiers. As
a result, we used three-factor ANOVA; the factors were subject
factor, folder factor, and method factor. The results showed
that the method factor had main effect, which suggested that
the choice of classifiers affected the scores. Then, we used the
t-test method to obtain the p-value of the difference. The results

TABLE 2 | ANOVA tables of scores.

Df sum_sq mean_sq F PR (>F)

Recall

Subject 9.0 1.1160 0.1240 21.4217 4.6338e−24

Method 1.0 0.0354 0.0354 6.1178 1.4347e−02

Folder 10.0 0.0956 0.0095 1.6530 9.5467e−02

Resibinary 173.0 1.0015 0.0057 NaN NaN

Precision

Subject 9.0 0.8201 0.0911 42.8921 1.3668e−39

Method 1.0 0.0071 0.0071 3.3651 6.8306e−02

Folder 10.0 0.0409 0.0040 1.9261 4.4532e−02

Resibinary 173.0 0.3675 0.002125 NaN NaN

F1 Score

Subject 9.0 0.9869 0.1096 37.6439 2.4480e−36

Method 1.0 0.0244 0.0244 8.3976 4.2433e−03

Folder 10.0 0.0620 0.0062 2.1310 2.4425e−02

Resibinary 173.0 0.5039 0.0029 NaN NaN

Accuracy

Subject 9.0 0.0058 0.0006 55.5035 1.9985e−46

Method 1.0 0.0000 0.0000 8.0118 5.1975e−03

Folder 10.0 0.0003 0.0000 2.7216 3.9466e−03

Resibinary 173.0 0.0020 0.0000 NaN NaN

showed that the increase of the EEGNet was significant since
the p-value was < 0.001 for recall score and F1 score, please see
Table 2 for the detail values.

Figure 4 shows the confusion matrix of the classification.
Firstly, it shows that the near- and far-non-target samples can
be discriminated. The first row of the matrix had three columns,
which showed the ratio of target samples being detected as
target, near-non-target, and far-non-target samples. The second
and third rows showed the ratio of near-non-target and far-
non-target samples, respectively. As a result, the diagonal values
were the ratio of the three classes of samples being correctly
classified. The other values were the ratio of being incorrectly
classified. The first row was used to calculate the scores of target
samples classification. The value in the first column referred to
the true-positive rate (TPR) (Albieri and Didelez, 2014). The
value in the second and third columns referred to the false-
negative rate (FNR) of target to near-non-target and far-non-
target, respectively. The first column was used to calculate the
scores of samples being classified to target samples. The false-
positive rate (FPR) of near-non-target to target was the value of
the second row and first column in the matrix.

The results showed that the TPR of target samples was
higher in EEGNet, and the FNR of target to far-non-target
was lower in EEGNet. According to the first column, the FPR
of near-non-target to target is lower in EEGNet. According to
the other elements in the matrixes, the discriminating power
between target and near-non-target was also higher in EEGNet.
It suggested that the higher scores of EEGNet were due to
the fact that the new three classification method could increase
the discriminating power between target and near-non-target of
the EEGNet classifier.
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FIGURE 4 | The average confusion matrix of the SVM and EEGNet method using ternary classification. The float numbers on the grids are the average value of

percentage.

FIGURE 5 | The TPR and FPR curves of EEGNet with thresholds of all the 10 subjects. The two plots on the bottom were the same as the plots on the top, other than

using a smaller value range.
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FIGURE 6 | Average waveform plots of six xdawn features. The six grids refer to the six features; the colors refer to ternary kinds of samples.

Additionally, since we used softmax function on the output
layer of EEGNet, the probability of the sample as a target sample
could be obtained. The TPR and FPR curves among different
thresholds (Zhang et al., 2015) of target samples were plotted
in Figure 5 based on the output of EEGNet. The area under
curve (AUC) values of EEGNet were 0.9808 ± 0.0197 of binary
classification and 0.9858 ± 0.0136 of ternary classification.
The results showed that the ternary classification produced
higher AUC values and lower FPR values than traditional
binary classification protocol. The results suggested that the
ternary classification method can largely suppress the FPR of
target samples.

Visualization
Figure 2 plots the waveform and topotactical activity of averaged
samples of one subject on different frequency bands. The graphs
used the joint plotting visualization method of MNE software,
and the colors represented the 272 channels of the MEG set. The
waveform of target samples on the Delta band clearly showed
the ERP activity of the target pictures. The waveform on the
Alpha band showed the SSVEP activity triggered by the 10-Hz
presentation, and the SSVEP occurred in all the three kinds
of samples. The differences between near- and far-non-target
samples were mainly on the Delta band, and even their activities

were both weak. It showed that the activity pattern of near-non-
target samples was similar to target samples, and the far-non-
target samples did not show similarity.

Figure 6 plots all the six averaged components of xdawn
extraction. The order was set as decreasing order of explained
variance. It turned out that the first three features cover the main
differences between target and non-target signals. There was
little difference between near- and far-non-target samples. The
SSVEP components mainly existed in the latter three features,
which suggested that they were less important to ERP detection.
Figure 7 plots samples in the two-dimensional manifold space.
It showed a similar trend with the averaged plot. The first three
features were more separated among the three kinds of samples.

The visualization of EEGNet features was done in the same
way as the SVM features. Figure 8 plots the waveform of
the averaged 25 features. Figure 9 plots the features in the
two-dimensional manifold space. It showed that all the 25
features show difference between three kinds of samples. The
difference between near- and far-non-target samples was also
clear. Moreover, the features containing SSVEP also showed
difference among three classes. The features of No. 11, 13, 14,
15, 16, 17, 20, 22, and 24 showed a large difference between
target and non-target samples. The features of No. 3, 5, 20, and
19 showed moderate difference between near- and far-non-target
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FIGURE 7 | Projection of samples of six xdawn features in two-dimensional manifold space. The six grids refer to the six features; the colors refer to ternary kinds of

samples.

samples. The results were consistent with the confusion matrix
of Figure 4, which showed large error rate between near- and
far-non-target samples.

DISCUSSION

In this study, the MEG data were acquired during the RSVP
experiment; the rapid presented pictures were natural scene
pictures, and the pictures with pedestrians were used as target
pictures. We presented the new ternary classification method
to train the SVM and EEGNet classifiers to detect ERP signal
to identify the onset of target stimulus. The new method has
improved the detection scores using the EEGNet classifier.

The traditional machine learning method in the RSVP
experiment only used binary classification to discriminate the
target and other samples. The method ignores the similarity
of target samples and their neighbors. The speed of RSVP in
the experiment was 10 Hz. The latency between two samples
was 0.1 s. However, the latency of a classic reliable ERP was
about 0.3 s, which was widely known as the P300 feature
signal (Mijani et al., 2019). The length of the ERP was not
narrow either. As a result, the near-non-target samples inevitably
contained the ERP the same as target samples (see the average
waveform in Figure 2). The difference between them was only

that the target samples contained the ERP with the “correct”
latency, which was occasionally too small in some samples to
distinguish them.

We separated the samples into three classes: target, near-,
and far-non-target samples. The waveforms showed that the
difference between them were mainly on the Delta band, and the
near-non-target samples were more similar to the target samples
(see Figure 2). The visualization of the features showed the
difference between them either (see Figures 6–9). Thus, the non-
target samples should be separated into two sets, the ones near
a target sample (near-non-target) and others (far-non-target).
The traditional methods did not separate the two kinds of non-
target samples either. As a result, the classifiers had to solve the
confusion by detecting some ERP signals and discarding others,
which was bad to ERP detection.

The new ternary classification method trained the classifier
to learn not only the difference between target and others but
also the difference between target samples and their neighbors.
It actually separated the ERP detection task into two folders.
The first one was to detect ERP components in the samples to
find target and near-non-target samples. The second one was
to distinguish the two classes. The confusion matrix of EEGNet
proved that the new method increased the TPR of target and
near-target samples (see Figure 4).
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FIGURE 8 | Average waveform plots of 25 EEGNet features. The 25 grids refer to the 25 features; the colors refer to ternary kinds of samples.

Compared with the SVM classifier, the EEGNet provided
higher TPR for ERP component detection. Although the TPR
of far-non-target samples was lower than SVM, the incorrect
samples were more likely to be classified as the near-non-target
samples. Finally, the scores of target samples using EEGNet were
overly higher than using the SVM classifier. The ROC plots of
EEGNet showed the difference between the traditional binary
and new ternary methods in detail (see Figure 5). The FPRs
of target detection of the ternary method were largely lower
than those of the binary method, while the TPRs of the two

methods were similar. The results explained that the ternary
method produced higher precision score than the binary method
(see Table 1). It was shown that the TPR only reached 0.85 in
confusion matrix (see Figure 5) and the overall accuracy reached
0.98 (see Table 1). The reason was the non-target samples
largely outnumbered the target samples. Based on EEGNet
classifier results, the TNR was extremely high (see the second
and third row of the first column of the confusion matrix),
which made the overall accuracy higher than the TRP value of
target samples.
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FIGURE 9 | Projection of samples of 25 EEGNet features in two-dimensional manifold space. The 25 grids refer to the 25 features; the colors refer to ternary kinds of

samples.

Based on the results of the study, the separation increased
the ERP detection scores. The results suggested that the reason
EEGNet produced higher ERP detection scores was that it
had learned the difference between the samples with ERP and
other samples without ERP signals. Furthermore, the results
also suggested that the CNN model was better at detecting
ERP components despite their variance in latency, which were
consistent with the translation invariance of the CNN model
(Furukawa, 2017). The visualization of 25 features of samples
also verified that the CNNmodel can effectively extract the useful

features automatically in the RSVP experiment (see Figure 9). As
a result, the xdawn spatial filter was not necessary for the EEGNet
classifier. Meanwhile, it also hinted that the CNN model could
benefit from the correct separation of the samples.

The SVM classifier did not benefit from the ternary method.
It might be due to the fact that SVM used time points in the
samples as independent feature dimensions. The shifts of ERP
components in near-non-target samples converted the feature
from dimensions. Thus, it was hard for the SVM classifier to
track the dependence between the time points. The reason we
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used xdawn in SVM classification was the lack of automatically
extracting features of the SVM classifier (Bascil et al., 2016). The
results also suggested that the six components had fully covered
the explainable variance, and the increase of the components was
not necessary.

CONCLUSION

In this study, the MEG data were acquired during the RSVP
experiment; the rapid presented pictures were natural scene
pictures, and the pictures with pedestrians were used as target
pictures.We also presented the new ternary classificationmethod
to train the SVM and EEGNet classifiers to detect ERP signal
to identify the onset of target stimulus. We obtained a fair
ERP detection accuracy using traditional SVM and EEGNet
classifiers. The proposed ternary classification method showed
the discrimination of the near- and far-non-targets in the RSVP
experiment and increased accuracy in the EEGNet classifier. The
visualization of the results also uncovered the different ERP
detection underling between SVM and EEGNet classifiers.
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The increasingly popular application of AI runs the risk of amplifying social bias, such

as classifying non-white faces as animals. Recent research has largely attributed this

bias to the training data implemented. However, the underlying mechanism is poorly

understood; therefore, strategies to rectify the bias are unresolved. Here, we examined

a typical deep convolutional neural network (DCNN), VGG-Face, which was trained with

a face dataset consisting of more white faces than black and Asian faces. The transfer

learning result showed significantly better performance in identifying white faces, similar

to the well-known social bias in humans, the other-race effect (ORE). To test whether

the effect resulted from the imbalance of face images, we retrained the VGG-Face with

a dataset containing more Asian faces, and found a reverse ORE that the newly-trained

VGG-Face preferred Asian faces over white faces in identification accuracy. Additionally,

when the number of Asian faces and white faces were matched in the dataset, the DCNN

did not show any bias. To further examine how imbalanced image input led to the ORE,

we performed a representational similarity analysis on VGG-Face’s activation. We found

that when the dataset contained more white faces, the representation of white faces was

more distinct, indexed by smaller in-group similarity and larger representational Euclidean

distance. That is, white faces were scattered more sparsely in the representational face

space of the VGG-Face than the other faces. Importantly, the distinctiveness of faces was

positively correlated with identification accuracy, which explained the ORE observed in

the VGG-Face. In summary, our study revealed the mechanism underlying the ORE in

DCNNs, which provides a novel approach to studying AI ethics. In addition, the face

multidimensional representation theory discovered in humans was also applicable to

DCNNs, advocating for future studies to apply more cognitive theories to understand

DCNNs’ behavior.

Keywords: deep convolutional neural network, faces, other race effect, multidimensional face race representation,

contact theory
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INTRODUCTION

With enormous progress in artificial intelligence (AI),
deep convolutional neural networks (DCNN) have shown
extraordinary performance in computer vision, natural language
processing, and complex strategy video games. However,
the application of DCNNs increases the risk of amplifying
social bias (Zou and Schiebinger, 2018). For example, a word-
embedding processing system may associate women with
homemakers, or a face identification network may match
non-white faces to inanimate objects, suggesting the existence
of gender and race biases in DCNNs (Bolukbasi et al., 2016).
Although the phenomenon of social bias has been widely
recognized, the underlying mechanism of such bias is little
understood (Caliskan et al., 2017; Garg et al., 2018). In this
study, we explored how biased behaviors were generated
in DCNNs.

Insight into human biases may help to understand DCNNs’
biased responses. A classical race bias, the other race effect (ORE)
(Malpass and Kravitz, 1969; Valentine, 1991), shows that people
are better at identifying faces of their own race than those of other
races (Meissner and Brigham, 2001). The reason underlying the
ORE is that people usually have more experiences with faces of
their own race (Valentine, 1991), which leads to a better capacity
of recognizing faces of their own race. Accordingly, we reasoned
that a similar biased response might also be present in DCNNs,
as DCNNs tend to perform better on data that most closely
resembles the training data. Note that the biased response in
DCNNs is not identical to the ORE in humans; however, given
the same underlying causes, here we borrowed the term “ORE”
to index the biased responses in DCNNs for simplicity. On the
other hand, one influential human recognition theory, the face
multidimensional representation space (MDS) theory, proposes
that ORE comes from the difference in representing faces in
a multidimensional space, or simply “face space” (Valentine,
1991; Valentine et al., 2016; O’toole et al., 2018). According
to this theory, face space is a Euclidean multidimensional
space, with dimensions representing facial features. The distance
between two faces in the space indexes their perceptual similarity.
Under the frame of this theory, faces of one’s own race are
scattered widely in the face space (i.e., high distinctiveness)
and faces of other races are clustered in a smaller space (i.e.,
low distinctiveness) (Valentine, 1991; Valentine et al., 2016).
Therefore, the higher distinctiveness in representation leads to
better recognition of own-race faces than that of other-race
faces. In this study, we examine whether the ORE in DCNNs, if
observed, may be accounted for by a similar mechanism.

To address the aforementioned question, the current study

chose a typical DCNN, VGG-Face (Figure 1A), which is widely

used for face recognition (Parkhi et al., 2015). We first examined
whether there was a similar ORE in VGG-Face and explored

its face representation space using MDS theory. First, we
manipulated the ratio of face images of different races to examine
whether the ORE in the VGG-Face changed as a function of
the frequencies of encountered races (Chiroro and Valentine,
1995). Secondly, we examined whether frequent interaction with
one race led to sparser distribution (i.e., high distinctiveness) in

VGG-Face’s representation space. Thirdly, we explored whether
the difference in representation led to the ORE.

MATERIALS AND METHODS

Convolutional Neural Network Model
In this study, a well-known deep neural network, VGG-
Face (available in http://www.robots.ox.ac.uk/~albanie/pytorch-
models.html) was used for model testing, model retraining, and
model activation extraction (Parkhi et al., 2015). An illustration
of the VGG-Face architecture is shown in Figure 1A. This
framework consists of five groups of convolutional layers and
three fully connected layers, with 16 layers in total. Each
convolutional layer comprises some convolution operators,
followed by a non-linear rectification layer, such as ReLU and
max pooling. The input images (for example, 3 × 224 × 224
pixels color image) are transferred into 2,622 representational
units, each corresponding to a unit of the last fully connected
layer (FC3), representing a certain identity.

Face Stimuli
The VGG-Face was originally trained for face identification tasks
with the VGGFace dataset (including 2,622 identities in total,
with 2,271 downloadable identities).

As shown in Figure 1B, to test the performance of the VGG-
Face on three races, 300 different identities were selected from
another face dataset, VGGFace2 (Cao et al., 2018). Face images
that were present in both the VGGFace and VGGFace2 datasets
were excluded (see https://github.com/JinhuaTian/DCNN_
other_race_effect/tree/master/face_materials for details). We
classified the remaining 8,250 identities into four groups: white
(6,995 identities), black (518 identities), Asian (345 identities),
and other races (392 identities). Three hundred identities
were randomly selected from the first three groups (100
identities for each race) and separated into in-house transferring
learning (300 identities, each containing 100 images), validating
(300 identities, each containing 50 images), and testing (300
identities, each containing 50 images) datasets. These three
datasets contained the same identities but with different face
exemplars; therefore, biased responses were unlikely to be
introduced at the phase of transferring learning. Note that the
dataset for transferring learning, validating, and testing was not
overlapped with the dataset used for pre-training the network.
We performed the transfer learning on the VGG-Face with the
transfer learning dataset, validated the model with the validating
dataset, and finally used the testing dataset to measure the
identification accuracy of three different races. To confirm the
reproducibility of our results, we sampled the other two datasets
for transfer learning (detailed information is provided in the
Supplementary Material 1.3).

Transfer Learning
We tested the identification performance of VGG-Face with new
identities using transfer learning (Yosinski et al., 2014), which
trains a pre-trained network with another small set of related
stimuli. Transfer learning was performed on the pre-trained
VGG-Face with the in-house training set.We replaced the last FC
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FIGURE 1 | (A) Illustration of VGG-Face’s architecture used in this study. The model comprised five convolutional blocks (conv1-conv5) and three fully connected

layers (FC1-FC3). (B) Data organization of transfer learning and model retraining. (C) The change of test accuracy during VGG-Face transfer learning. The x axis

represents training accuracy, and the y axis represents training epochs. The black and blue line represent training and validation accuracy changes during model

training separately. (D) Identification accuracy of the VGG-Face on white, black, and Asian faces.

layer (the third fully connected layer, FC3, containing 2,662 units)
of the VGG-Face with another fully connected layer containing
300 units (each representing a unique face identity used in
training and testing procedures). Subsequently, we froze the
parameters prior to the classification layer (FC3) and trained the
FC3 using the training dataset. Detailed training parameters were
obtained from a previous study (Krizhevsky, 2014). All networks
are trained for face identification using the cross-entropy loss
function with a stochastic gradient descent (SGD) optimizer
(initial learning rate = 0.01, momentum = 0.9). Images were
normalized to the same luminance (mean= [0.485, 0.456, 0.406],
SD = [0.229, 0.224, 0.225]) and resized to the 3 × 224 × 224
pixels. Data argumentation used 15◦ random rotation and a 50%
chance of horizontal flip. All models were trained for 90 epochs,
and the learning rate decayed 250−1/3 (≈ 0.159) after every
23 epochs (1/4 training epochs). To achieve optimal training

accuracy and prevent overfitting, we saved the best model, which
had the highest validating accuracy during training. The training
procedure is shown in Figure 1C. After transfer learning, this
network (the best model) was tested using the testing dataset.
The performance difference between the three races was analyzed
using a repeated-measures analysis of variance (ANOVA).

Model Retraining
According to human contact theory, low interracial interactions
are the main cause of ORE. For a DCNN, biased training data
may lead to biased performance. To examine this hypothesis,
we further retrained the VGG-Face using two “biased” face
sets and one matched face set, and then tested whether these
models showed a face bias. The training face sets were composed
of different numbers of Asian and white faces. The different
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composition of Asian and white faces simulates the “white
biased,” “Asian biased,” and “unbiased” datasets.

Retraining Materials
All images used for model retraining and validating were selected
from the VGGFace2 datasets. We selected 404 Asian identities
and 404 white identities for model training and testing. For the
white-biased model, we randomly selected 304 white identities
out of 404 identities for model training. For the Asian-biased
model, we randomly selected 304 Asian identities out of 404
identities for model training. For unbiased model training, we
selected 152 Asian and 152 white identities. The training datasets
were further separated into training and validation sets. We
selected 30 of each identity (15,000 images in total) as the
validation dataset, and the remaining faces (109,450 images for
the Asian biased model, 103,745 images for the white biased
model, and 105,781 images for the unbiased model) were used
for model training. Two hundred other identities (100 identities
for each race) were selected for transfer learning and testing.

Retraining Procedure
Recent studies have shown that the softmax loss function in
VGG-Face lacks the power of discrimination (Cao et al., 2020),
and therefore may result in the ORE observed in the network. To
rule out this possibility, we re-trained VGG-Face with new loss
functions, such as focal loss (Lin et al., 2017) and Arcface (Deng
et al., 2019), which are designed to solve the simple hard example
imbalance or long-tailed problem caused by imbalanced training
data. We used the same VGG-Face framework as the pre-trained
model. All networks were trained for face identification with a
stochastic gradient descent (SGD) optimizer (initial learning rate
= 0.01, momentum = 0.9). Images were normalized to the same
luminance (mean = [0.485, 0.456, 0.406], SD = [0.229, 0.224,
0.225]) and resized to 3 × 224 × 224 pixels. Data argumentation
used 15◦ random rotation and a 50% chance of horizontal flip. All
models were trained for 90 epochs, and the learning rate decayed
250−1/3 (≈ 0.159) after every 23 epochs (1/4 training epochs).
To achieve optimal training accuracy and prevent overfitting, we
saved the best model, which had the highest validating accuracy
during training. The saved model was used for further model
testing using the testing dataset.

Face Representation Difference of Three

Races in VGG
To explore the representation pattern of different races in VGG-
Face, we further analyzed the face representation difference. It
has been suggested that activation responses of the layer prior
to the final classification layer (the second fully connected layer:
FC2) is a typical representation of each face in DCNNs (O’toole
et al., 2018). Thus, we extracted the activation responses in the
FC2 layer for all the testing faces using an in-house Python
package, namely, DNNBrain (Chen et al., 2020) with the PyTorch
framework (Paszke et al., 2019).

To describe the distinctness of each race group, we used
three measurements to describe the distribution of face space.
First, we applied the representation similarity analysis to obtain
the representational dissimilarity correlation matrix (RDM) of

three race faces with FC2 activation. To further explore the
representation difference between the three races, we used the
in-group similarity to describe representation variance within
a race group. The in-group similarity was calculated as the
averaged Pearson correlation of a certain identity with other
identities of the same race. Specifically, a face with larger in-group
similarity indicated smaller representation distinctiveness. That
is, the larger the distinctiveness, the better the performance in
discriminating identities.

Next, we used FC2 activation to construct the face space
describing the distribution of different faces. Valentine and Endo
(1992) assume the face space to be an n-dimensional space; a
face is represented as a point localized in the space. The axes of
the space represent dimensions to discriminate faces. According
to this hypothesis, we used the average activation of all faces
as the possible center coordinates of this face space. Thus, we
computed the Euclidean distance of the averaged activation from
each face to all averaged face activations as a measurement of face
distinctiveness. A face with a larger Euclidean distance indicated
larger representation distinctiveness. The activation differences
in the three races were also analyzed using a one-way ANOVA.

Face Representation Visualization
For a better visualization of the representation of the face
space, we used the t-SNE (t-distributed stochastic neighbor
embedding, t-SNE) method to reduce face representation
dimensions and visualize the activation distribution. The t-SNE
starts by converting the high-dimensional Euclidean distances
between data points into conditional probabilities that represent
similarities (Van Der Maaten and Hinton, 2008). We used the t-
SNE to squeeze the activation vectors (2,622 units) of each face’s
activation into two dimensions and plotted these conditional
probabilities on a two-dimensional coordinate for visualization.
The t-SNEwas performed using default parameters (learning rate
= 200, iteration= 1,000).

Correlation Between Face Representation

and Identification Performance
To explore whether VGG-Face activation and its performance
were correlated, we computed the Spearman correlation as
well as the Pearson correlation between the in-group similarity
and Euclidean distance with face identification accuracy of
the VGG-Face.

RESULTS

First, we used transfer learning to examine race bias in the
VGG-Face. The average accuracy of all identities was 77.6%,
significantly higher than the stochastic probability (0.33%),
indicating the success of transfer learning. A one-way ANOVA
showed a significant main effect of race (F2, 297 = 8.762, p <

0.001, η2p = 0.056), with white faces being identified significantly

better than Asian faces (p < 0.001, d
′ = 0.545) and marginally

significantly better than black (p = 0.071, d
′ = 0.353) faces

(Figure 1D). No significant difference was found in accuracy
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between the identification of black and Asian faces (p = 0.176,

d
′ = 0.255).
To verify face selection bias in VGG network training,

we classified the available VGGFace dataset into four groups,
namely, white (1,984 identities, 87.2%), black (211 identities,

9.7%), Asian (52 identities, 2.3%), and other races (brown or

mixed race, 24 identities, 1.1%). As faces in the dataset were

overwhelmingly white, the better identification accuracy for
white faces suggested that the ORE also existed in the VGG-Face.

A direct test on whether the ORE observed in the VGG-Face
resulted from the imbalance of races present in the dataset was to
manipulate the ratio of the number of faces of each race. To do
this, we retrained the VGG network using white-biased (white
vs. Asian: 100 vs. 0%), Asian biased (0 vs. 100%), and unbiased
(50 vs. 50%) datasets, respectively. As shown in Figure 2, the
three DCNNs showed different patterns of ORE. For the DCNN
trained with the white-biased dataset, white faces were identified
significantly better than Asian faces (softmax: t198 =3.934, p <

0.001, d
′ = 0.562; focal loss: t198 =4.203, p < 0.001, d

′ = 0.617;

Arcface: t198 = 3.405, p < 0.001, d
′ = 0.486). In contrast, in

the Asian-biased DCNN, Asian faces were identified better than

white faces (softmax: t198 = 2.693, p = 0.008, d
′ = 0.381; focal

loss: t198 = 2.689, p= 0.008, d
′ = 0.382; Arcface: t198 = 2.0880., p

= 0.038, d
′ = 0.296). Finally, no ORE was found in the unbiased

DCNN (softmax: t198 = 1.135, p = 0.258, d
′ = 0.161; Focal loss:

t198 = 0.905, p = 0.367, d
′ = 0.132). Taken together, the ORE

observed in the VGG-Face resulted from unbalanced experiences
with different numbers of faces per race during model training.

How do unbalanced experiences shape the internal
representation of faces in the VGG-Face? To address
this question, we calculated the correlations between the
representations of faces, which were indexed by the activations
in the FC2 layer, and then constructed a correlation matrix
consisting of Asian, white, and black faces (Figure 3A). A direct
observation of Figure 3A revealed that faces of each race were
grouped into one cluster; that is, the representations for faces
were more similar within a race than between races, suggesting
that faces from the same race were grouped together in the
multidimensional space. Importantly, the representational
similarity of white faces was smallest, compared with Asian (p <

0.001, d
′ = 1.29) and black (p < 0.001, d

′ = 2.077) faces, and that

of Asian faces was smaller than that of black faces (p < 0.001, d
′

FIGURE 2 | Identification performance of three retrained VGG networks (i.e., white biased model, Asian biased model, and unbiased model) using softmax, focal loss,

and Arcface. **p < 0.01; *p < 0.05; –, not significant.

FIGURE 3 | (A) VGG-Face FC2 activation correlation matrix of Asian, white, and black faces. (B) Face distinctiveness of white, black, and Asian faces measured using

in-group similarity. (C) Face distinctiveness of white, black, and Asian faces measured using face Euclidean distance.
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= 0.4) (Figure 3B). That is, the representations for white faces
were the sparsest in the face space. To quantify the sparseness of
the representation, we calculated the Euclidean distance of the
representation of individual faces to the averaged representation
of all faces. As shown in Figure 3C, the representation of white
faces was localized farther from the averaged representation than

that of Asian (p = 0.008, d
′ = 0.386) and black (p < 0.001, d

′

= 1.286) faces, and that of Asian faces was farther than that of
black faces (p < 0.001, d

′ = 0.773). The activation of faces in the
last fully connected layer (FC3) was also extracted and analyzed,
which showed a similar representational pattern as FC2 (detailed
information is provided in the Supplementary Materials).

To visualize how race faces were represented in the face
space, we used t-SNE to reduce multiple dimensions to two
dimensions. As shown in Figure 4A, representations for each
race were grouped into one cluster; however, the clusters for
Asian and black faces were denser, whereas white faces were
distributed more sparsely in the face space.

Finally, we explored whether the difference in sparseness of
the representation was related to the ORE observed in VGG-
Face. As shown in Figure 4B, the correlation analysis showed a
significant negative correlation between in-group similarity and
face identification accuracy (coefficient Pearson’s correlation R
= −0.458, p < 0.001, Spearman correlation R = −0.499, p <

0.001). As shown in Figure 4C, the correlation analysis showed
a significant positive correlation between Euclidean distance and
face identification accuracy (coefficient Pearson’s correlation R
= 0.579, p < 0.001, Spearman correlation R = 0.621, p <

0.001). That is, if a face was represented further from the average
representation, it was more accurately identified by the VGG-
Face. For the VGG-Face trained by a dataset dominated by white
faces, white faces on average had the largest representational
distance, and they were the most likely to be identified correctly,
which therefore resulted in the ORE.

DISCUSSION

In this study, we examined the ORE in VGG-Face. By
manipulating the ratio of faces of different races in the training
dataset, the results demonstrated that unbalanced datasets led to
the appearance of the ORE in VGG-Face, in line with studies

on humans, which have reported that visual experiences affect
the identification accuracy of a particular race’s face (Chiroro
and Valentine, 1995; Meissner and Brigham, 2001). Importantly,
the representation similarity analysis revealed that if white faces
dominated the dataset, they were distributed more sparsely in the
multidimensional representational space of faces in VGG-Face,
resulting in better behavioral performance. On the other hand,
a similar phenomenon, called “long tailed problem,” suggested
that the model performs better on the head domains (i.e., high-
frequency domain) than on the tail domains (i.e., low-frequency
domain). The inter-class distance was usually used to distinguish
the head domain from the tail domain. The head domain usually
showed a larger inter-class indicator than that of the tail domain
(Cao et al., 2020), which seems to be opposite to our result. In
our study, we used intra-class distance (in-group similarity and
in-group Euclidean distance), which was widely used to quantify
the sparseness of the representation. We found the faces of the
majority race were scatteredmore sparsely in the representational
face space. This result is consistent with previous results in
humans (Valentine, 1991; Valentine et al., 2016), which implied
a similar mechanism. In sum, with the MDS theory in human, we
provided a novel approach to understand race biases in DCNNs.

The AI ethical problem has attracted broad attention to
the field of AI (Zemel et al., 2013; Zou and Schiebinger,
2018). However, the mechanism underlying AI biases is poorly
understood. Our study confirmed that the ORE bias might be
derived from an unbalanced training dataset. This is consistent
with the contact theory (Chiroro and Valentine, 1995) in
humans, according to which high-contact faces are recognized
more accurately than low-contact ones. Previous studies in
humans suggest that high in-group interaction leads to sparser
representation (high distinctiveness) of in-group faces in face
space, whereas low interaction leads to denser representation
(low distinctiveness) of out-group faces (Valentine, 1991;
Valentine et al., 2016). In the current study, we also found that
in the representational space of VGG-Face, “own-race” faces
(i.e., white faces) showed larger distinctiveness than that of
“other-race” faces (i.e., Asian and black faces). Furthermore, the
distinctiveness was indexed by the representational similarity
of faces, which may serve as a more sensitive index than the
ratio of faces in the unbalanced dataset. Therefore, before formal
training, an examination of representational similarity in MDS

FIGURE 4 | (A) T-SNE visualization of FC2 activation of Asian, white, and black faces. (B) Correlation between in-group similarity and face identification accuracy. (C)

Correlation between face Euclidean distance to averaged face activation and face identification accuracy.
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with a portion of the training dataset may provide an estimate of
the skewness of the datasets and the biased performance under
current task demands.

Therefore, a more effective way of controlling AI biases
may come from new algorithms that can modulate the internal
representations of DCNNs. Currently, most efforts have been
focused on the construction of balanced datasets and the
approaches of training DCNNs, and guidelines have been advised
(Gebru et al., 2018; Mitchell et al., 2019). However, it is laborious
to balance datasets not only in terms of data collection, but also
in terms of task demands. It might be more efficient if a revised
back-propagation algorithm could minimize errors between
outputs and goals and rectify differences in distinctiveness of the
representation of interests. For example, in the field of natural
language processing, Beutel et al. (2017) and Zhang et al. (2018)
proposed a multi-task adversarial learning method to manipulate
the biased representational subspace and thusmitigate the gender
bias of model performance. They built a multi-head DCNN
where one head was for target classification and another was for
removing information about unfair attributes learned from the
data. Similarly, in the field of computer vision, further studies
could also explore ways to manipulate the face representational
space to reduce social bias in DCNNs.

In conclusion, our study used a well-known phenomenon,
the ORE, to investigate the mechanism inside DCNNs that leads
to biased performance. In addition, we found a human-like
multidimensional face representation in DCNN, suggesting that
paradigms and theories discovered in human studies may also
be helpful in identifying the underlying mechanisms of DCNNs.

There are many other types of biases in AI, such as gender bias
and age bias; therefore, our study invites broad investigation on
these ethical problems in AI.
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The optimal organization for functional segregation and integration in brain is made

evident by the “small-world” feature of functional connectivity (FC) networks and is

further supported by the loss of this feature that has been described in many types of

brain disease. However, it remains unknown how such optimally organized FC networks

arise from the brain’s structural constrains. On the other hand, an emerging literature

suggests that brain function may be supported by critical neural dynamics, which is

believed to facilitate information processing in brain. Though previous investigations have

shown that the critical dynamics plays an important role in understanding the relation

between whole brain structural connectivity and functional connectivity, it is not clear if the

critical dynamics could be responsible for the optimal FC network configuration in human

brains. Here, we show that the long-range temporal correlations (LRTCs) in the resting

state fMRI blood-oxygen-level-dependent (BOLD) signals are significantly correlated with

the topological matrices of the FC brain network. Using structure-dynamics-function

modeling approach that incorporates diffusion tensor imaging (DTI) data and simple

cellular automata dynamics, we showed that the critical dynamics could optimize the

whole brain FC network organization by, e.g., maximizing the clustering coefficient while

minimizing the characteristic path length. We also demonstrated with a more detailed

excitation-inhibition neuronal network model that loss of local excitation-inhibition

(E/I) balance causes failure of critical dynamics, therefore disrupting the optimal FC

network organization. The results highlighted the crucial role of the critical dynamics

in forming an optimal organization of FC networks in the brain and have potential

application to the understanding and modeling of abnormal FC configurations in

neuropsychiatric disorders.

Keywords: fMRI, functional connection networks, criticality, DTI, Greenberg-Hasting model, E/I ratio
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INTRODUCTION

Functional connectivity (FC) analysis of resting state human
brain allows to understand how the functional networks are
organized, how this organization is related to behavior, and how
it changes in case of pathology (van den Heuvel and Hulshoff
Pol, 2010; Lee et al., 2013; Yu et al., 2016). Recent studies have
identified the so-called resting-state networks which consist of
anatomically separated, but functionally linked brain regions that
show a high level of ongoing FC during rest (Heine et al., 2012;
Raichle, 2015). The graph theoretical analysis of resting-state
functional magnetic resonance imaging (fMRI) has revealed the
“small-world” feature of the whole brain functional connectivity
network (Rubinov and Sporns, 2010). Compared with random
networks, small-world networks exhibit shorter characteristic
path length but higher clustering coefficients (Watts and Strogatz,
1998). This specific organization of functional network is believed
to benefit the higher-level cognitive functions requiring the
integration of information from different brain regions (Watts
and Strogatz, 1998), maximize efficiency at a minimal cost for
effective information processing between multiple brain regions
(Achard and Bullmore, 2007), and promote low wiring costs
(Bassett and Bullmore, 2006). The small-world organization
of brain functional network is likely to be related to human
intellectual performance (van den Heuvel et al., 2009) and
disrupted with normal aging (Wang et al., 2010). Extensive
studies also showed that this small-world properties of functional
network are altered by diseases such as schizophrenia (Liu et al.,
2008), AD (Sanz-Arigita et al., 2010), autism (Rudie et al.,
2013), etc. Specifically, the alterations are normally characterized
by increased characteristic path length, as well as decreased
clustering coefficient and efficiency [for an example, pleases
see Ref. (Liu et al., 2008) for details], implying the disrupted
organization of FC networks for integration and segregation.
However, little is known about the underlying dynamics based
on which this optimal FC network is established, and how its
disruption induced by disease is associated with changes in
brain dynamics.

The theory from statistical physics has predicted that resting
state brain dynamics operates close to a critical point, hallmarked
by power-law distributions of spatiotemporal cascades of
activity-termed neuronal avalanche. Scale-free avalanches have
been observed in different scales of neural systems with different
methods (Beggs and Plenz, 2003; Gireesh and Plenz, 2008;
Ribeiro et al., 2010), including local field potentials (Thiagarajan
et al., 2010; Plenz, 2012), human electroencephalography (EEG)
(Meisel et al., 2013), magnetoencephalogram (MEG) (Palva et al.,
2013; Shriki et al., 2013), and fMRI (He, 2011; Tagliazucchi
et al., 2012). It is suggested that there are many computational
advantages for the neural systems being poised around this
critical point. It maximize the number of meta-stable states
(Haldeman and Beggs, 2005), the dynamic range to the input
stimuli (Shew et al., 2009; Gautam et al., 2015), as well
as the information capacity and transmission (Shew et al.,
2011) of the cortical neural networks. Furthermore, cortical
EI balance are found to be crucial for the forming of critical
behavior at multiple levels of neuronal organization (Poil et al.,
2012), perhaps achieved through self-organization with synaptic

plasticity (Stepp et al., 2015). On the other hand, a leading theory,
proposed over a decade ago as a model for autism (Rubenstein
and Merzenich, 2003), holds that brain disorders arise from
imbalanced EI in brain circuitry. This concept has since been
applied to many other brain disorders, such as schizophrenia,
tuberous sclerosis, and Angelman syndrome (O’Donnell et al.,
2017). These studies have led to the conjecture that criticality
may be a signature of healthy neural systems, and conversely
excursion from such an optimal point may be responsible for a
diversity of brain disorder (Massobrio et al., 2015; Cocchi et al.,
2017).

Recent modeling studies have also revealed crucial role of
critical dynamics in understanding the relation between large
scale brain architecture and function. For example, the spatial
organization of resting state networks observed in the resting
state fMRI data, such as default mode network, emerge at the
critical point in the dynamic network derived from human
brain neuroanatomical connections (Haimovici et al., 2013).
The structure-function coupling is maximal when the global
network dynamics operate at a critical point (Deco et al., 2014a),
and the decoupling of functional connectivity from anatomical
constraints is found in the brains losing consciousness,
accompanied with fading signature of criticality (Tagliazucchi
et al., 2016). In addition, the local excitation/inhibition ratio
(E/I ratio) significantly improves the model’s prediction of the
empirical human functional connectivity at the large-scale brain
level (Deco et al., 2014b). The loss of small-world organization
of FC networks and failure of critical dynamics in diseased brain
implies the potential relationship between them. However, it is
still not clear how the organization of the FC network depends
on the large-scale critical dynamics in brains.

In this work, we answered this question by investigating:
(i) the correlation between topological metrics of FC network
and the long-range temporal correlations (LRTCs) of BOLD
signals in fMRI data of healthy subjects; (ii) the dependence of
these metrics on the control parameter (excitation threshold)
in a toy model which combines the structural diffusion tensor
imaging (DTI) and Greenberg-Hasting (GH) dynamics around
the critical point; (iii) the impact of local E/I ratio on the
critical dynamics and thus the functional network metrics in
a biological plausible whole brain model. We showed that
with the critical dynamics, the brain FC network exhibited
optimized organization, characterized by maximized efficiency
and clustering coefficient, but shortest characteristic path length.
We also showed that local E/I ratio have a great influence on this
large-scale critical dynamics and organization of FC networks.
We discussed the potential application of our findings to the
understanding and modeling of abnormal FC configurations in
brain disorders.

RESULTS

Correlation of Network Metrics With

LRTCs in Resting-State fMRI Data
We first assessed LRTCs in BOLD signals from the resting-
state fMRI data of 95 healthy subjects by computing the Hurst
exponent in the temporal domain using classical rescaled range
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(RS) method (Blythe and Nikulin, 2017) (“METHOD AND

MATERIALS,” “Hurst Exponent H”). A Hurst exponent in the
range 0.5 < H < 1 indicates the presence of LRTCs, i.e., a high
value in the series will probably be followed by another high
value. An exponent of 0 < H < 0.5 is obtained when the time
series is anticorrelated (switching between high and low values
in consecutive time steps). The uncorrelated temporal activity
with exponential decay of the autocorrelation function yields
an exponent of H = 0.5. After preprocessing with the standard
preprocessing procedure (“METHOD AND MATERIALS,”
“fMRI Data Acquisition and Preprocessing”), the automated
anatomical labeling atlas (AAL) (Tzourio-Mazoyer et al., 2002)
was used to parcellate the brain into 90 brain regions, and the
mean BOLD signals were extracted in each brain region by
averaging the signals of all voxels within the region. For each
subject, the Hurst exponents were calculated for each mean
BOLD time series, and the mean Hurst exponent (H) from 90
brain regions was taken as a measure of LRTCs at the whole
brain level for this subject. The Hurst exponent reflects the
temporal correlations of a signal. The group averaged Hurst
exponent in our study is 0.8628 ± 0.0188, indicating the long-
range memory of the BOLD signals in human brain (He, 2011).
However, the variance in the Hurst exponent among subjects
should not be ascribed to noise sources, such as physiological
noise. On the contrary, considering criticality as a theory of long-
range fluctuation in the human brain, it reflects the different
intrinsic brain dynamics among subjects that can be described
by a departure from the criticality (Blythe and Nikulin, 2017), as
we demonstrated below.

For each subject, we applied a binarizing threshold Td to
the absolute values of the correlation coefficients among mean
BOLD signals from 90 brain regions to construct the FC
network. Then six typical topological metrics, namely global
and local efficiency (Eglobal and Elocal), characteristic path length
(L), clustering coefficient (Cglobal), mean connection strength
(Ecorr), and sparsity (S) of the FC networks for each subject
were calculated (“METHOD AND MATERIALS,” “Network
Metrics”). We found there existed significant correlations
between these metrics and the Hurst exponents (Figure 1). The
longer temporal memory in BOLD signals yields higher global
efficiency (Figure 1A), local efficiency (Figure 1B), clustering
coefficient (Figure 1D), mean connection strength (Figure 1E),
and sparsity (Figure 1F), but shortest characteristic path length
(Figure 1C).

We then investigated the dependence of topological metrics
and their correlations with Hurst exponents on the binarized
threshold Td. We first determined the small-world regime of
the FC networks for Td (Liu et al., 2008). The upper criteria
for Td are so set to make sure there is no isolated node
in the network (red vertical lines in Figure 2). To determine
the lower criteria for Td, we compared the global efficiency
of brain FC networks with that estimated in a random graph
with the same degree distribution over a range of network
sparsity (Supplementary Figure 1A). Then the lower criteria
are set as the smallest value of the threshold Td (blue
vertical line in Figure 2) with which the global efficiency
curve for the brain networks is below the global efficiency

curve for the random networks. In this range of threshold
Td, the Hurst exponents and the topological metrics are
significantly correlated (Figure 2, the threshold values with
correlation coefficients R > 0.26 are marked with open circles
and R < −0.26 with filled circles. The corresponding p-
values are indicated with triangles if p < 0.01). It was
also noticed in Figure 2 that as the threshold Td increases,
the global efficiency (Figure 2A), local efficiency (Figure 2B),
clustering coefficient (Figure 2D), and sparsity (Figure 2F)
decrease, whereas the characteristic path length (Figure 2C)
and the mean connection strength (Figure 2E) increase. The
binarizing threshold dependent changes of these topological
metrics are in line with previous study, e.g., Ref. (Liu et al.,
2008).

The Critical Dynamics in the DTI+GH Brain

Network Model
We built a toy brain network model which combines the DTI
structural connection data among the 90 brain regions and
GH excitable cellular automatons to simulate the BOLD signals
from 90 brain regions (Figure 3, see details in the “METHOD

AND MATERIALS,” “DTI+GH Brain Network Model”). In
this model, the DTI connection data provides the number of
fibers connecting every two brain regions, which is taken as the
connection weights among the regions. The regional dynamics
is given by simple rules that describe the excitation of the
active media. Previous work has demonstrated that such simple
dynamical brain model is sufficient to replicate fundamental
features of spontaneous brain activity observed in fMRI data.
For example, the resting state networks, such as default mode
network, emerge in such kind of whole brain models with the
critical dynamics (Haimovici et al., 2013).

The criticality refers to a balanced state between ordered
and disordered and is characterized by power law distribution
of avalanche activity (i.e., the avalanche size distribution shows
no characteristic scale). The supercritical state refers to the
ordered states that are characterized by avalanche with large
size, whereas the subcritical state refers to the disordered states
that are characterized by avalanches with small size (Beggs and
Plenz, 2003; Tagliazucchi et al., 2012; Shriki et al., 2013). In our
model, we calculated the avalanche size distribution from the
spatiotemporal patterns of excited nodes for different excitation
threshold Tm (“METHOD AND MATERIALS,” “Avalanche
Detection”). When Tm is low, the nodes in the model are excited
easily, and their activities are highly synchronized to result in
a rather ordered state (Figure 4D). Thus, the activities tend to
form avalanches with large size to have a power-law slope with
a heavier tail in the distribution (Figure 4A), indicating the
supercritical dynamics. Whereas, when Tm is high, the nodes in
the network are less excitable, and their activities are random
and less synchronized (Figure 4F). Thus, the groups of activity
are small and die out quickly, unlikely to form avalanches with
large size, which is termed as subcritical regime (Figure 4C). In
both cases, the size distribution of avalanches demonstrates a
characteristic scale. However, with moderate Tm (Tm ≈ 0.52)
the scale-free avalanche distribution emerges with an exponent of
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FIGURE 1 | Scatter plots with trend line showing the dependence of topological metrics of FC network on Hurst exponents. (A) Global efficiency. (B) Local efficiency.

(C) Characteristic path length. (D) Clustering coefficient. (E) Mean connection strength. (F) Sparsity. The topological metrics of FC networks were calculated with

threshold Td = 0.4. Pearson correlation coefficient (R) for all six topological metrics were significant (p < 0.01).

−1.5 (Figure 4B), and the system is perched between order and
random (Figure 4E).

We then convolved the activities of each node in the
model with the hemodynamic response function to generate 90
simulated BOLD time series (“METHOD AND MATERIALS,”
“DTI+GH Brain Network Model”). Typical BOLD signals
of arbitrarily chosen brain regions for supercritical, critical,
and subcritical regimes are demonstrated in Figures 4G–I,
respectively. The Hurst exponent calculated from these simulated
BOLD signals yields its largest value at the critical point
(Supplementary Figure 2A). The FC matrices corresponding
to different regimes were then obtained by calculating the
correlation coefficients among 90 simulated BOLD time series
as before. We compared the similarity between simulated
FC matrices and experimental FC networks and found
the maximal similarity occurs around the critical point
(Supplementary Figure 3A). It is also seen that when the
system is poised at the critical point, the FC matrix exhibits
patterns which is similar to the DTI structural connections
(Figure 4K), whereas the supercritical and subcritical dynamics
fail to replicate the DTI structural connections (Figures 4J,L).

This phenomenon has been systematically studied with computer
modeling and experiment on propofol-induced departure from
critical dynamics (Tagliazucchi et al., 2016). It was argued that
the functional organization of the brain is constrained and
enabled by the unique structural organization (Tagliazucchi et al.,
2016), and the spontaneous brain activity can be understood
as an ever-transient exploration of the repertoire of paths
offered by structural connections (Deco et al., 2014a; Tagliazucchi
et al., 2016). The critical dynamics of the system would allow
a more widespread exploration of all possibilities offered by
the structural connections, makes FCs better reproduce its
structural connections [see Ref. (Tagliazucchi et al., 2016) for a
vivid explanation].

Optimal Organization of the FC Network at

Criticality
We then investigated the changes of FC network metrics across
the transition from supercritical to subcritical regime in the
DTI+GHmodel. The simulated FCmatrices were binarized with
threshold Td and the corresponding metrics were calculated in
the small-world regime as before (Supplementary Figure 1B).
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FIGURE 2 | The dependence of topological metrics of the FC networks and their correlations with Hurst exponents on the threshold Td . (A) Global efficiency. (B)

Local efficiency. (C) Characteristic path length. (D) Clustering coefficient. (E) Mean connection strength. (F) Sparsity. The red vertical lines mark the upper criteria

above which there is no isolated node in the network, and the blue vertical lines mark the lower criteria below which the global efficiency curve for the brain networks is

less than the global efficiency curve for the random networks. Open circles indicate that the correlation coefficients between the Hurst exponent and the

corresponding topological metrics are larger than 0.26, where filled circles mark the correlation coefficients that is smaller than −0.26. Triangles mark the

corresponding p-values of the correlation analysis that is significant (p < 0.01).

It is seen from Figure 5 that around the critical point (Tm

= 0.52), all the network metrics are maximized except for
the characteristic path length which is minimized (Figure 5C).
These results imply that critical dynamics can optimize brain
FC network organization and the departure from criticality will
cause the disruption of this optimal balance between integration
and segregation.

It was also seen from Figure 5 that with the increase
of binarizing threshold Td, global efficiency (Figure 5A),
local efficiency (Figure 5B), clustering coefficient (Figure 5D),
and sparsity (Figure 5F) decrease, whereas the characteristic
path length (Figure 5C) and the mean connection strength
(Figure 5E) increase. The dependence of these network metrics
on the binarizing threshold Td predicted by our model is in
line with that obtained from the fMRI data (Figure 2), and that
reported by other researchers (Liu et al., 2008).

Local E/I Ratio Tunes Critical Dynamics in

the DTI+EI Network Model
Next, we built a large-scale brain functional model based on
DTI structural connection data and EI neuronal networks
(Figure 6). In this model, the neural activity in each region is

modeled with a neuronal network composing 100 excitatory
(E) and 25 inhibitory (I) neurons so that the ratio of number
of excitatory neurons to that of inhibitory ones is 4:1. The
single neuron dynamics is modeled with Izhikevich cortical
spiking neuron model, which is computationally efficient and
biologically plausible (Izhikevich, 2004). The neurons in each EI
networks are connected with a probability of 0.5. The excitatory
neurons send out only excitatory synaptic connections to other
neurons and inhibitory neurons send out only inhibitory ones.
In the simulation, we systematically change the E–E connection
strength but fixed other ones and define the ratio of E–E to I–I
synaptic connection strength as the local E/I ratio. The number
of excitatory neurons that establish inter-regional connections is
proportional to the number of fibers connecting corresponding
brain regions (see “METHOD AND MATERIALS,” “DTI+EI
Whole Brain Model” for details).

Through adjusting the local E/I ratio in each region
simultaneously, we observed the power law distribution of
avalanche activities with exponent of −1.5 within each brain
region when the E/I ratio is around 2.025 (Figure 7B), indicating
the critical dynamics of the system. Whereas, the system
is supercritical when the E/I ratio is high (Figure 7A) but
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FIGURE 3 | The DTI+GH whole brain model. (A) The DTI structural connection matrix. (B) The Greenberg-Hastings (GH) cellular automaton model for dynamics of

each brain region. The GH model has three states: quiescent (Q), excitation (E), and refractory (R). The colored arrows indicated the transition between these states.

The transition from Q to E can happen with a small probability r1, or if the sum of the connection weights wij with the active neighbors j is higher than a threshold Tm.

Once the system is excited, it always goes to R. Then it transits from R to Q with a probability r2 after several steps of delaying. (C) Demonstration of the method to

extract avalanches from simulation of the whole brain model. The spatial activity in several simulation step is assigned as a frame (consecutive frames are divided by

white lines). An avalanche is defined as the consecutive frames that are preceded by a blank frame (in which no activation occurs, marked with light cyan) and ended

by a blank frame. The avalanche size is the total number of excited nodes in this avalanche. Black dots represent the excited nodes that are in the state E.

subcritical when the E/I ratio is low (Figure 7C). The spikes of the
neurons are quite synchronized when the system is supercritical,
especially for the excitatory neurons because of the strong
excitatory connections among them (Figure 7D), but the firings
are rather random when the system is subcritical with decreased
excitatory connections (Figure 7F). The critical dynamics of
the system exhibits moderate synchrony where synchronous
firing occurs occasionally among excitatory neurons (Figure 7E).
After, taking spike rate in each region as the input, we
used the Balloon-Windkessel hemodynamic model to generate
simulated BOLD signal for each region (see “METHOD AND

MATERIALS” for details). Figures 7G–I demonstrates the
examples of simulated BOLD signals from arbitrarily chosen
brain regions for each case. Again, the Hurst exponent of these
simulated BOLD signals exhibits its maximal values at the critical
point (Supplementary Figure 2B). We then obtained the 90 ×
90 FC matrices from the 90 simulated BOLD time series for each

regime. We observed FC patterns emerge when the system is
critical (Figure 7K). However, the pattern vanishes if the system
is poised in the supercritical (Figure 7J) or subcritical regimes
(Figure 7L). Again, the simulated FC matrices are most close to
experimental FC network when the model is at its critical point
(Supplementary Figure 3B).

Dependence of FC Network Metrics on

Local E/I Ratio in the DTI+EI Model
We then calculated the dependence of simulated FC network
metrics on the E/I ratio and the binarizing threshold Td. The
range of Td for small-world regime was determined in the
same way as before (Supplementary Figure 1C). It is seen from
Figure 8 that the E/I ratio, at where the critical dynamics
emerges, maximizes the global efficiency (Figure 8A), local
efficiency (Figure 8B), clustering coefficient (Figure 8D), mean
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FIGURE 4 | The avalanche activity in the DTI+GH brain network model, the simulated BOLD signals, and FC matrices. Through tuning the excitation threshold Tm,

the mode can exhibit typical avalanche distribution corresponding to supercritical (A), critical (B), and subcritical (C) dynamics. The horizontal axes are the size of

avalanches, and vertical axes are the corresponding probability. The black lines in (A–C) indicate power law with exponent = −1.5. (D–F) The raster plots of

spatial-temporal excitation distributions corresponding to (A–C). The dots in the raster plots represent the excitation of the nodes (i.e., in state E). (G–L) The typical

simulated BOLD signals of an arbitrarily chosen nodes and simulated FC matrices from the DTI+GH brain model in the supercritical (G,J), critical (H,K), and

subcritical (I,L) regimes. Scale bar indicates the FC strength among the nodes in the model. The parameters of GH model in simulations are r1 = 0.005, r2 = 0.98,

and ndelay = 55.

connection strength (Figure 8E), and sparsity (Figure 8F) but

minimizes the characteristic path length (Figure 8C). These

results further suggest that the local E/I ratio could adjust the
global brain dynamics to the critical state, so as to achieve the
balance between segregation and integration in FC networks.
On the other hand, this optimal organization of FC networks
could be damaged when the optimal E/I ratio is altered. As
the binarizing threshold Td increases, global efficiency, local
efficiency, clustering coefficient, and sparsity decrease, but the
characteristic path length and the mean connection strength

increase. The dependence of these metrics on the binarizing
threshold is in line with our above results from fMRI data
analysis (Figure 2), the DTI+GH brain model (Figure 5) and
that reported by other researchers (Liu et al., 2008).

DISCUSSION AND CONCLUSION

It has been shown that a network with shorter characteristic
path length benefit the global efficiency, while a network with
densely local connectivity benefit the local efficiency. Only
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FIGURE 5 | The dependence of FC network topological metrics simulated with DTI+GH model on the excitation threshold Tm and binarizing threshold Td. (A) Global

efficiency. (B) Local efficiency. (C) Characteristic path length. (D) Clustering coefficient. (E) Mean connection strength. (F) Sparsity. The results were obtained by

averaging results from 1,000 times of simulation. In each simulation, the obtained raw BOLD signals were sampled every 140 iteration steps to achieve the simulated

BOLD time series of 200 time points.

in the small-world region, i.e., low characteristic path length
combined with large clustering coefficient, does the network
display globally and locally efficient at the same time (Latora

and Marchiori, 2001). Recent analysis of human brain functional
networks derived from EEG/MEG and fMRI experiments
showed that these networks exhibit prominent small-world
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FIGURE 6 | The DTI+EI whole brain model. (A) The DTI structural connection matrix. (B) Example of two excitation-inhibition (EI) neuronal networks that represent

two brain regions. Each regional neuron network consists of one excitation neuron pool and one inhibitory neuron pool. They are 80% excitatory neurons and 20%

inhibitory neurons in the network. The excitatory neurons send our only excitatory synapses to other neurons and the inhibitory neurons send out only inhibitory

synapses. The two EI networks are coupled only by excitatory inter-regional connections.

organization. Through forming intrinsically densely connected
and strongly coupled local network communities, the small-
world topology facilitates functional segregation. Meanwhile, by
enabling global communication between communities through
network hubs, it also promotes functional integration (Bassett
and Bullmore, 2006; Sporns, 2013). In this work, through resting-
state fMRI data analysis and computational model of whole brain
dynamics, we demonstrated that the critical dynamics favors
this optimal organization of FC networks, and failure of critical
dynamics causes the collapse of balance between segregation and
integration in the network by increasing the characteristic path
length and decreasing the cluster coefficient.

Critical dynamics in brains has been observed at brains at
different levels, from single neuron to the whole brain levels,
with different recoding techniques (Shew et al., 2009; Gal and
Marom, 2013; Gollo et al., 2013; Mora et al., 2015). Recent
work with resting-state fMRI data analysis demonstrated the
existence of large-scale critical dynamics, hallmarked by scale-
free avalanche activity, in the human cortex (Tagliazucchi et al.,
2012). Beside these observations, the critical brain hypothesis
argued that criticality benefits neural information processing
in many ways, e.g., the maximal information transmission and
storage capabilities (Shew et al., 2011; Timme et al., 2016).
However, these arguments usually defined the advantages of
criticality in the general framework of information-theoretic
[e.g., mutual information entropy (Shew et al., 2011)], neural
dynamics [e.g., maximal dynamic range (Shew et al., 2009;
Gautam et al., 2015), or the number of the metastable states in the

energy landscape (Shew et al., 2009)], but their direct relations to
brain functions are unclear. The FC network metrics have been
related to many factors that affect brain functional performance,
e.g., intellectual performance (van den Heuvel et al., 2009),
aging (Wang et al., 2010), and a variety of brain diseases (Stam
et al., 2007; Liu et al., 2008; Wang et al., 2009; Sanz-Arigita
et al., 2010; Zhang et al., 2011; Rudie et al., 2013). Furthermore,
it is believed that both segregated and integrated information
processing are facilitated by the small-world topology of FC
networks. The information transmission efficiency is maximized
with this small-world topology, with their high clustering
coefficient for segregated processing and short characteristic
path length for integrated processing. Meanwhile, the disrupted
network organization was found in neuropsychiatric disorders,
usually characterized by increased characteristic path length and
decreased cluster coefficient, and these changes were correlated
with symptom severity in clinical-scale examinations (Stam et al.,
2007; Liu et al., 2008; Wang et al., 2009; Zhang et al., 2011;
Rudie et al., 2013). In our work, we found the critical dynamics
maximizes clustering coefficient but minimizes the characteristic
path length and yields both maximal local and global efficiency
of the FC network. So our findings presented in this work not
only uncovered the possible underlying dynamics fromwhich the
small-world FC network organization emerges but also revealed
the advantage of large-scale critical dynamic in information
processing at the whole brain level.

It is well-established that the EI balanced is critical for the
forming of critical dynamics in healthy brains (Poil et al.,
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FIGURE 7 | The dynamical behaviors of the DTI+EI brain model. Through tuning the E/I ratio, the model can exhibits supercritical (A), critical (B), and subcritical (C)

avalanche dynamics in each regions. Colored lines are corresponding to different brain regions chosen arbitrarily. (D–F) The raster plots of spatial-temporal firing

distributions of an arbitrarily chosen brain regions corresponding to (A–C). The firings are more synchronized in the supercritical regions (D), but the firings are rather

random when the system is subcritical with decreased excitatory connections (F). The critical dynamics is characterized with moderate synchrony (E). The dots in the

raster plots indicate the firing of the neurons. (G–L) The typical simulated BOLD signals of an arbitrarily chosen brain region and simulated FC matrices from the

DTI+EI brain model in the supercritical (G,J), critical (H,K) and subcritical (I,L) regimes. Scale bar indicates the FC strength among the nodes in the model.

2012; Yang et al., 2012), and the neural systems may achieved
this balanced state through synaptic plasticity (de Arcangelis
et al., 2006; Stepp et al., 2015). On the contrary, the EI
imbalance hypothesis has been postulated to underlie brain

dysfunction across neurodevelopmental and neuropsychiatric
disorders (Canitano and Pallagrosi, 2017; Foss-Feig et al., 2017).
It was recently demonstrated that regulating the local E/I ratio
crucially changes not only the characteristics of the emergent
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FIGURE 8 | The dependence of topological metrics of the FC network on the thresholding value Td and E/I ratio in the DTI+EI whole brain model. (A) Global

efficiency. (B) Local efficiency. (C) Characteristic path length. (D) Clustering coefficient. (E) Mean connection strength. (F) Sparsity. The results were obtained by

averaging results from 10 times of simulation. Each simulation last for 480 s with a time step of 1ms and the first 180 s was removed for stability. The obtained raw

BOLD signals were then normalized and sampled at a rate of 0.5Hz.

resting activity but also evoked activity. It also gives a more
robust prediction of resting state FCs. Furthermore, it enhances
the information capacity and the discrimination accuracy in the
global networks (Deco et al., 2014b). These arguments have led to
another hypothesis that criticality is a signature of healthy neural
systems (Massobrio et al., 2015). In this study, we demonstrated
that through tuning the E/I ratio of the brain model, the system
could be poised at the critical point, and at this critical point,
the functional integration and segregation of brain FC network
is optimized. Considering the well-reported disruption of FC
network in brain diseases, our modeling work with EI networks
not only revealed the crucial role of the local E/I ratio in the
forming of the optimal organization of whole brain FC networks

but also provided supportive evidence for the hypothesis of
EI imbalance by linking it with disruption of FC organization
at the whole brains level, which has been observed in many
brain diseases.

One attractive point and also the limitation of EI imbalance
hypothesis is that brain disorders can be arranged in an
imaginary line around the optimal point that balances excitation
and inhibition. The limitation for unidimensionality of the
EI imbalance has been discussed recently and it was argued
that the higher dimensional models can better capture the
multidimensional computational functions of neural circuits
(O’Donnell et al., 2017). Therefore, EI balance may be not the
only factor that is responsible for aberrant neural activity and
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FC network organization in diseased brains. Our results from
DTI+GH model suggested that the general conclusion in this
work still holds even in this case, since optimal organization
of FC networks can emerge from critical dynamics without EI
connections. These results implies the possibility of utilizing
criticality to bridge the gap between altered FC organization
caused by diseases at the whole brain level and aberrant neural
activity described by higher dimensional models at the circuit
level, rather than one-dimensional EI model.

However, there are several limitations in the current study.
In the fMRI data analysis, the Hurst exponent was used as
an indicator of criticality. However, it cannot distinguish the
super- or subcritical state of the system. The full solution
for this problem requires the calculation of avalanche size
distribution, branching ratio, as well as mean synchronization,
as had done in EEG (Meisel et al., 2013). However, though the
scale-free distribution of avalanche has been observed with fMRI
(Tagliazucchi et al., 2012), the applicability of this method alone
to identify super- or subcritical dynamics is still questionable. The
major concern is that unlike EEG, fMRI does not measure neural
activity directly but via the changes of BOLD signals. Therefore,
future investigations that combines EEG and fMRI are necessary
to validate the conclusions drawn from this study (Fagerholm
et al., 2015).

It is also noticed that after the critical dynamics in our models
is established, there is quite a few parameters that must be
determined to obtain the simulated BOLD signals. Due to the
simplificationsmade in themodels, the neural activities produced
by models are not exactly in the same time scale as in the real
brains. Therefore, though we used the standard parameters for
hemodynamic response function in models [it is also noticed that
though these function and model were used widely in simulation
of BOLD signals (Deco et al., 2011; Haimovici et al., 2013;
Tagliazucchi et al., 2016), they were actually proposed for task-
related hemodynamic response, not for resting state], simulation
parameters (such as fMRI sampling rate, duration for scanning
session) are not exactly the same as these in the experiment.
Therefore, our results in this work requires further test with
more detailed simulations of whole brain neural dynamics, as
well as more detailed simulation of hemodynamic response in the
resting state fMRI (Rangaprakash et al., 2017).

In this study, we tested the hypothesis that critical dynamics
is responsible for optimal organization of brain FC networks
which is usually featured with “small worldness.” We found that
the LRTCs of the BOLD signals measured with Hurst exponent
is significantly correlated with the topological metrics of the
FC networks, suggesting there exists an optimal dynamics for
the brain FC network organization. Based on the inter-regional
structural connection provided by DTI data, we built two kinds
of whole brain dynamics model, using either simple cellular
automaton, or more biological plausible neuronal networks with
EI synaptic connections. In these models, we demonstrated that
the critical dynamics could optimize the brain FC network
organization through maximizing its cluster coefficient, while
minimizing the shortest characteristic path length, so to achieve
highest efficiency information transmission in the brain. We
further showed that the local E/I ratio would have a great impact

on critical dynamics and the organization of whole brain FC
networks, suggesting imbalanced EI in brain circuitry may be
responsible for the loss of small worldness in FC networks of
brain disorder.

In conclusion, we demonstrated that the critical dynamics
could optimize the brain FC network organization through
maximizing its cluster coefficient, while minimizing the
characteristic path length, so to achieve highest efficiency
information transmission in the brain. Furthermore, imbalanced
EI in brain circuitry may be responsible for the loss of the optimal
organization in FC networks observed in brain disorder. Our
findings revealed the crucial role of large scale critical dynamics
in the forming of optimal FC network organization for efficient
information processing, and potential relationship between local
EI imbalance and the disrupted small-world organization. We
hope that in the future these findings could not only lead to
fundamental understanding on human brain function in health
and its alterations in disease, but also help to develop whole
brain computer models that could account for these alterations
in brain disorder.

METHODS AND MATERIALS

fMRI Data Acquisition and Preprocessing
One hundred right-handed healthy subjects (mean age: 31.2
± 8.8 years, range: 15–70 years, 63 males) participated in the
study. The degree of education is from 0 to 23 years (mean: 8.5
years). All participants were screened to ensure they were free
of neurological or psychiatric disorders. The data was acquired
using a Siemens Trio 3.0 Tesla MRI scanner at the Second
Hospital of Lanzhou University. All subjects provided written
informed consent prior to the study which was approved by the
medical ethics committee of the Second Hospital of Lanzhou
University in accordance with the 1964 Declaration of Helsinki
and its later amendments or comparable ethical standards.
Participants were instructed to relax and keep their eyes closed,
remain as motionless as possible, and not to think of anything
in particular. Both functional and high-solution structural MRI
were applied to all participants. T2∗-weighted resting-state fMRI
data were acquired using a gradient-echo EPI sequence, TR =
2 s, TE = 30ms, slice thickness = 3mm, gap = 0.99mm, FOV
= 240mm, matrix size = 64 × 64. The scans lasted 360 s (180
volumes). High-resolution T1-weighted images were acquired
with a magnetization prepared rapid gradient echo sequence, TR
= 2 s, TE = 2.67ms, inversion time = 900ms, slice thickness =
1mm, gap = 1mm, FOV = 220 × 220mm, matrix size = 256
× 224.

Preprocessing of fMRI data was performed using Statistical
Parametric Mapping (SPM) 8 (http://www.fil.ion.ucl.ac.uk/spm)
and the Data Processing Assistant for Resting-State fMRI
(DPARSF) within the Data Processing and Analysis for Brain
Imaging (DPABI) (Yan and Zang, 2010). Volumes were corrected
for slice timing and head movements, and five subjects were
excluded for excessive head movement (>3mm or >3◦) during
the scan. After spatial normalization (Montreal Neurological
Institute space), resampling (3mm isotropic voxels), and spatial
smoothing (4mm, full-width, half-maximum Gaussian kernel),
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volumes were preprocessed using linear trend subtraction and
temporal filtering (0.01–0.08Hz). In addition, using the general
linear regression, nuisance regressors including head motions,
global mean signals, white matter signals, and cerebrospinal fluid
signals were regressed out from the fMRI time series.

The DTI Data Acquisition and Processing
In this study, the DTI data was obtained from IMAGEN
consortium, which included 142 healthy participants (76 females,
age: 14.5 ± 0.2 years). The detailed information of data
acquisition could be found in Ref. (Schumann et al., 2010). The
DTI data were corrected for motion and eddy current distortion
using FMRIB Software Library v5.0 (FSL, http://www.fmrib.ox.
ac.uk/fsl) (Jenkinson et al., 2012). In addition, we extracted
the brain mask from the B0 image. We used the TrackVis
(Wang et al., 2007) to perform the fiber tractography with the
deterministic tracking method. Maps of fractional anisotropy
(FA) were computed from the DTI data. The regions of interest
(ROIs) were determined by the AAL atlas-based T1 image from
each subject (Tzourio-Mazoyer et al., 2002), using the PANDA
suite (Cui et al., 2013). Finally, between each pair of ROIs,
we assessed the fiber number to construct the DTI structural
connection matrix.

Hurst Exponent
We use the Hurst exponent to measure the extent of long-range
memory of the BOLD time series, either from the fMRI data or
from the simulation with both brain models. The Hurst exponent
is estimated using the method of classical rescaled range (RS)
method (Blythe and Nikulin, 2017):

1. Divide the time series {y(t)}Tt=1 into M subseries by choosing
an appropriate number n, and each subseries has a window
length of n.

2. For each subseries (m = 1, 2, M), calculate the local
statistic LSn,m = Rn,m

Sn,m
. The range of mth subseries

Rn,m = max (Z1, Z2, . . . ,Zn) − min (Z1, Z2, . . . ,Zn),

where Zk =
∑k

t=1 (yt,m − yn,m). Sn,m is the standard
deviation of mth subseries, which is calculated as Sn,m =
√

1
n

∑n
t=1 (yt,m − yn,m)

2
. Then by averaging over all subseries,

we obtain the global statistic, i.e., SSn = 1
M

∑M
m= 1 LSn,m.

3. Through changing n and repeating the previous steps, we
obtain a series of SSn corresponding to a different choice of n.

4. The Hurst exponent is estimated by fitting the power law
SSn ≈ CnH to the data. This can be done by running a
double logarithm regression for a series of SSn corresponding
to different values of n.

In the calculation, the global Hurst exponent of the whole brain
level was obtained by average the local Hurst exponent across
90 brain regions in both fMRI data analysis and the DTI+EI
model. Whereas, in the DTI+GH models, to obtain the stable
estimation of Hurst exponent of the systems, we first averaged
the 90 simulated BOLD time series and then calculated its
Hurst exponent.

Network Metrics
First, we used the AAL template to extract from 90 brain regions
90 time series, each of which is the averaged BOLD signals across
all the voxels in each region. The correlation coefficients for each
pair of the time series was then calculated to build the FC matrix
z(i, j) (i, j = 1, 2, 90), in which each off-diagonal element is
the correlation coefficient between a pair of brain regions. The
FC network was constructed by setting a threshold Td to each
element in the absolute FC matrix:

aij =
{

1 if
∣

∣z(i, j)
∣

∣ ≥ Td

0 otherwise
(1)

The networkmetrics of a FC network with n nodes was calculated
as follows:

The degree of a node i is defined as the number of its
direct neighbors:

ki =
∑

j∈N
aij (2)

where aij is the connection between nodes i and j, aij = 1 when
they are directly linked, aij = 0 if not.

The connectivity strength of the node i is:

Ei_corr =
1

ki

∑

j∈N

∣

∣z(i, j)
∣

∣ · aij, (3)

which is a measure to evaluate the strength of the connectivity
between node i and the nodes connected to it. The connectivity
strength of a network is:

Ecorr =
1

n

∑

i∈N
Ei_corr. (4)

The ratio of the number of existing edges to the number of
maximum possible number:

S =
1

n(n− 1)

∑

i∈N
ki, (5)

is defined as the sparsity of the network.
Characteristic path length measures the extent of average

connectivity or overall routing efficiency of the network (Sanz-
Arigita et al., 2010), which is defined as

L =
1

n

∑

i∈N
Li =

1

n

∑

i∈N

∑

j∈N,j6=i dij

n− 1
, (6)

in which dij =
∑

auv∈gi↔j
auv is the shortest path length between

nodes i and j with the shortest way gi↔j and Li is the mean
shortest path length of node i.

Global efficiency is a measure of the efficiency of parallel
information transfer in the network at the global level:

Eglobal =
1

n

∑

i∈N
Ei =

1

n

∑

i∈N

∑

j∈N,j6=i dij
−1

n− 1
. (7)
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Local efficiency, which measures the efficiency at the local level,
is defined as:

Elocal =
1

n

∑

i∈N
Eloc,i =

1

n

∑

i∈N

∑

j,h∈N,j6=i aijaih
[

djh(Ni)
]−1

ki(ki − 1)
, (8)

where djh(Ni) is the shortest path length between nodes j and h
which should be the nodes directly connected to node i.

Clustering coefficient measures the possibility that any two
neighbors of one node are also connected, i.e., the extent of the
local density of the network:

Cglobal =
1

n

∑

i∈N
Ci =

1

n

∑

i∈N

2ti

ki(ki − 1)
, (9)

where ti = 1
2

∑

j,h∈N aijaihajh is the number of triangles around

node i.
The network metrics were calculated in a range of threshold

that is small enough to assure the mean number of connected
nodes within each group was > 89, yet large enough so that the
small worldness of network still holds, i.e., the global efficiency
of the normal networks is less than the global efficiency of the
random networks.

DTI+GH Brain Network Model
The DTI+GH brain network model used in this study was
adapted from the model proposed by Haimovici et al. (2013). The
coupling strength wij between any two nodes i and j was given
by the corresponding element in the DTI structural connection
matrix multiplied by 0.01. Each node was modeled with the
Greenberg-Hastings (GH) dynamics. The detailed description of
GH dynamics could be found in Ref. (Haimovici et al., 2013). We
binarized the time series of each node by assigning state E= 1 and
the rest of the states into 0 s. To model the brain neurometabolic
coupling, we then convolved the binarized time series with a
hemodynamic response function (Henson and Friston, 2007):

f (t) =
(

t − o

d

)p−1(exp(−(t − o)/d)

d(p− 1)!

)p−1
, (10)

where d= 0.6 is the time-scaling, o= 0 is the onset delay, and
p = 3 is an integer phase-delay (the peak delay is given by pd,
and the dispersion by pd2). The obtained raw BOLD signals were
sampled every 140 iteration steps to have the simulated BOLD
time series of 200 time points.

DTI+EI Whole Brain Model
In this model, each brain region is modeled by an EI neuronal
network comprising 100 excitatory and 25 inhibitory neurons. As
in the mammalian neocortex, the ratio of excitatory to inhibitory
cells is 4 to 1 (DeFelipe et al., 2002). The connection probability
between these neurons is set to 0.5. Then we use the Izhikevich

model to produce single neuron dynamics (Izhikevich, 2004):

dvi

dt
= 0.04(vi)

2 + 5vi + 140− ui + Isynapse + ξ (t), (11)

dui

dt
= a

(

bvi − ui
)

, (12)

If vi≥30mV, then

{

vi ← c

ui ← ui + d
(13)

where vi and ui represent the ith neuron’s membrane potential
and recovery, respectively. The parameters a, b, c, and d are
set to model either excitatory (0.02, 0.2, −65 + 15r2, 2.8−6r2)
or inhibitory (0.02 + 0.08r, 0.2–0.05r, −65, 2) neurons. To
introduce some variability in the neuronal population, the
variable r is drawn from a uniform distribution U(0,1). Isynapse
represents synaptic currents this neuron receives from other
neurons. ξ (t) is the background Gaussian white noise with
〈

ξ (t)
〉

=0 and
〈

ξ (t)ξ (t′)
〉

=Dδ(t-t’), where the noise intensity D =
25 for excitatory neurons and D = 6.25 for inhibitory neurons.
Equation (13) models the after-spike reset behavior when the
membrane potential vi exceeds a threshold. This model is widely
used in large-scale neuronal network modeling because of its
computational efficiency and biological plausibility (Izhikevich,
2004).

In our model, the synaptic current received by one neuron
(Isynapse) can be divided into two parts: Iiintra<uscore>synapse is the

synaptic current the ith neuron receives from other neurons in
this brain region, which is written as:

Iiintra<uscore>synapse =
∑

j6=i
g
ij
E→E,E→I,I→E,I→I δ

(

t− t
j

spike

)

, (14)

where t
j

spike
is the time instant when the presynaptic neuron

j that exerts synaptic connection to the neuron i fires a
spike. The summation runs across all the neurons that exert
synaptic connection to the neuron i. The intra-regional synaptic

connecting strength is set as follow: g
ij
E→I = 1 if the jth neuron

is excitatory and ith neuron is inhibitory; g
ij
I→E,I→I = −1 if the

jth neuron is inhibitory no matter if the ith neuron is excitatory
or inhibitory. In the simulation, we systematically varied the

connections among excitatory neurons g
ij
E→E to change the local

E/I ratio, which was defined as the ratio of g
ij
E→E to g

ij
I→ I .

The inter-regional connections are set only for excitatory
neurons among the different brain regions. Therefore,

I
ij
inter<uscore>synapse = 0 if neurons i and j belong to different

regions and at least one of them is an inhibitory neuron. The
inter-regional connection probability of excitatory neurons in
each pair of brain regions is proportional to their corresponding
DTI structural connection strength and the maximum is set to be
0.5. Specifically, if the DTI connection between regionm and n is
q, then the excitatory neurons in these two brain regions have an
inter-regional connection probability of 0.5qmn/qmax, where qmax

is the highest value in the DTI matrix. For example, for neuron
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i in one region, it receives inter-regional synaptic currents from
neuron j in another region is written in the following form:

I
ij
inter<uscore>synapse =

∑

i ∈ M
j ∈ N

g
ij
E↔E δ(t− t

j

spike
), (15)

where E ↔ E represents the inter-regional excitatory synaptic

coupling. The inter-regional synaptic connection g
ij
E↔E = 0.15

in the simulation.
For DTI+EI model, the fMRI BOLD signals are computed

with Balloon-Windkessel hemodynamic model (Friston et al.,
2003). The regional BOLD signal is driven by the collective
neuronal activity of both excitatory and inhibitory neurons. For
region i, we define neuronal activity zi as the ratio of number
of spikes to the number of neurons in the region within a
time window of 1ms. We assume zi causes an increase in a
vasodilatory signal si that increases the flow fi. The inflow fi
then causes changes in blood volume vi and deoxyhemoglobin
content qi:

dsi (t)

dt
= ǫizi − kisi − γi

(

fi − 1
)

, (16)

dfi (t)

dt
= si, (17)

τi
dvi (t)

dt
= fi − v

1/α
i , (18)

τi
dqi (t)

dt
=

fi(1− (1− ρi)
fi )

ρi
−

qiv
1/α
i

vi
, (19)

where ρ is the resting oxygen extraction fraction. Taken as a
static non-linear function of volume and deoxyhemoglobin that
comprises a volume-weighted sum of extra- and intravascular
signals, the BOLD signal is then calculated as:

yi = V0(7ρi
(

1− qi
)

+ 2

(

1−
qi

vi

)

+ (2ρi − 0.2)(1− vi)),(20)

where V0 = 0.02 is the resting blood volume fraction. The
biophysical parameters in the simulation were set as ǫi = 0.2,
ki = 0.65, γi = 0.41, τi = 0.98, αi = 0.32, and ρi = 0.34.
The simulation last for 480 s with a time step of 1ms, and the first
180 s was removed for stability. The obtained raw BOLD signals
were then normalized and sampled every 2 s (TR).

Avalanche Detection
For the DTI+GH model, the simulated time series were
subsequently binarized by assigning the active state to 1 and
the other two to 0. Then the raster plot of the activations was
divided intomany consecutive frames.We calculated the number
of activated nodes Ni for frame i. In addition, this frame is
blank if Ni = 0. If the consecutive frames contain activated
nodes, proceeding with blank frame, and ended with blank frame,
then the activities in these consecutive frames is defined as an
avalanche. The number of total activated nodes in this avalanche
is defined as its size. The frame length of DTI+GHmodel was set

to two iteration steps so to obtain avalanche size distribution with
power law distribution of−1.5 (Beggs and Plenz, 2003).

For the DTI+EI model, the detection of avalanche in each
region is the same as before, except that the activation of nodes
is replaced with the firing events of the neurons. The frame
length is chosen to be 2ms so as to produce power law avalanche
distributions with exponents closest to−1.5.
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The hypothesis that the brain might operate at or near-phase
transitions because criticality facilitates information processing
capabilities and health. This hypothesis was strongly driven
by theoretical concepts and supported by many experimental
studies. Recent structure-dynamics-function modeling studies
combining the structural and functional imaging data at whole
brain level demonstrated the functional connectivity (FC)
emerges from structural connectivity when the brain dynamics
is poised at the criticality. It is therefore conjectured that
criticality may facilitate the optimal organization of FC networks,
usually characterized by “small worldness” which are corrupted
in disordered brains. There are several arguments for this
conjecture: First, criticality has been argued to optimize the
neural systems for computation, whereas the “small worldness”
FC network has been considered an efficient way for inter-
regional communication in brains. Second, it has been shown in
experiments and simulations that a proper excitation-inhibition
(E/I) balance is required to maintain critical dynamics in cortical
networks. Accordingly, E/I imbalances have been implicated in
various brain disorders, such as autism, schizophrenia, etc. In
this study, we demonstrated that the FC network organization
is optimized by critical dynamics by maximizing the cluster
coefficient while minimizing the characteristic path length, so
to yield maximal global and local efficiency in information
transmission. We also demonstrated with whole brain model
that the local E/I ratio can be optimized to produce critical
dynamics in the system, thereby yielding optimal organization of
FC networks at the whole brain level.
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Canwe recognize faces with zero experience on faces? This question is critical because it

examines the role of experiences in the formation of domain-specificmodules in the brain.

Investigation with humans and non-human animals on this issue cannot easily dissociate

the effect of the visual experience from that of the hardwired domain-specificity.

Therefore, the present study built a model of selective deprivation of the experience on

faces with a representative deep convolutional neural network, AlexNet, by removing

all images containing faces from its training stimuli. This model did not show

significant deficits in face categorization and discrimination, and face-selective modules

automatically emerged. However, the deprivation reduced the domain-specificity of the

face module. In sum, our study provides empirical evidence on the role of nature vs.

nurture in developing the domain-specific modules that domain-specificity may evolve

from non-specific experience without genetic predisposition, and is further fine-tuned by

domain-specific experience.

Keywords: face perception, face domain, deep convolutional neural network, visual deprivation, experience

INTRODUCTION

A fundamental question in cognitive neuroscience is how nature and nurture form our cognitive
modules. In the center of the debate is the origin of face recognition ability. Numerous studies
have revealed both behavioral and neural signatures of face-specific processing, indicating a face
module in the brain (for reviews, see Kanwisher and Yovel, 2006; Freiwald et al., 2016). Further
studies from behavioral genetics revealed the contribution of genetics on the development of the
face-specific recognition ability in humans (Wilmer et al., 2010; Zhu et al., 2010). Collectively, these
studies suggest an innate domain-specific module for face cognition. However, it is unclear whether
the visual experience is also necessary for the development of the face module.

A direct approach to address this question is visual deprivation. Two studies on monkeys
selectively deprived the visual experience of faces since birth, while leaving the rest of experiences
untouched (Sugita, 2008; Arcaro et al., 2017). They report that face-deprived monkeys are still
capable of categorizing and discriminating faces (Sugita, 2008), though less prominent in selective
looking preference to faces over non-face objects (Arcaro et al., 2017). Further examination of the
brain of the experience-deprivedmonkeys fails to localize typical face-selective cortical regions with
the standard criterion; however, in the inferior temporal cortex where face-selective regions are
normally localized, weak and variable face-selective activation (i.e., neural responses to faces larger
than non-face objects) is observed (Arcaro et al., 2017). Taken together, without visual experiences
of faces, rudimental functions to process faces may still evolve to some extent.
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Two related but independent hypotheses may explain the
emergence of the face module without face experiences. An
intuitive answer is that the rudimental functions are hardwired in
the brain by genetic predisposition (Wilmer et al., 2010; McKone
et al., 2012). Alternatively, we argue that the face module may
emerge from experiences on non-face objects and related general-
purpose processes, because representations for faces may be
constructed by abundant features derived from non-face objects.
Unfortunately, studies on humans and monkeys are unable to
thoroughly decouple the effect of nature and nurture to test these
two hypotheses.

Recent advances in deep convolutional neural network
(DCNN) provide an ideal test platform to examine the
impact of visual experiences on face modules without genetic
predisposition. DCNNs are found similar to human visual cortex
both structurally and functionally (Kriegeskorte, 2015), but free
of any predisposition on functional modules. Therefore, with
DCNNs we can manipulate experiences without considering
interactions from genetic predisposition. In this study, we asked
whether DCNNs can achieve face-specific recognition ability
when visual experiences on faces were selectively deprived.

To do this, we trained a representative DCNN, AlexNet
(Krizhevsky et al., 2012), to categorize non-face objects with
face images carefully removed from the training dataset. Once
this face-deprived DCNN (d-AlexNet) was trained, we compared
its behavioral performance to that of a normal AlexNet of
the same architecture but with faces present during training.
Specifically, we examined their performance in both face
categorization (i.e., differentiating faces from non-face objects)
and discrimination (i.e., discriminating faces among different
individuals) tasks. We predicted that the d-AlexNet, though
without predisposition and experiences of faces, may still
develop face selectivity through its visual experiences of non-
face objects.

MATERIALS AND METHODS

Stimuli
Deprivation Dataset
The deprivation dataset was constructed to train the d-AlexNet.
It was based on the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) 2012 dataset (Deng et al., 2009), which
contains 1,281,167 images for training and 50,000 images for
validation, in 1,000 categories. These images were first subjected
to automated screening with an in-house face-detection toolbox
based on VGG-Face (Parkhi et al., 2015), and then further
screened by two human raters, who separately judged whether a
given image contains faces of humans or non-human primates
regardless of the orientation and intactness of the face, or
anthropopathic artwork, cartoons, and artifacts. We removed
images judged by either rater as containing any above-mentioned
contents. Finally, we removed categories whose remaining
images were <640 images (approximately half of the original
number of images in a category). The resultant dataset consists
of 736 categories, with 662,619 images for training and 33,897 for
testing the performance.

Classification Dataset
To train a classifier that can classify faces, we constructed
a classification dataset consisting of 204 categories of non-
face objects and one face category, each of 80 exemplars.
For the non-face categories, we manually screened Caltech-
256 (Griffin et al., 2007) to remove images containing human,
primate, or cartoon faces, and then removed categories whose
remaining images were <80. In each of the 204 remaining
non-face categories, we randomly chose 70 images for training
and another 10 for calculating classification accuracy. The face
category was constructed by randomly selecting 1,000 faces
images from Faces in the Wild (FITW) dataset (Berg et al., 2005).
Among them, 70 were used as training data and another 10
for classification accuracy. In addition, to characterize DCNN’s
ability in differentiating faces from object categories, we compiled
a second dataset consisting of all images in the face category
except those used in training.

Discrimination Dataset
To train a classifier that can discriminate faces at individual level,
we constructed a discrimination dataset consisting of face images
of 133 individuals, 300 images each, selected from the Casia-
WebFace database (Yi et al., 2014). For each individual in the
dataset, 250 were randomly chosen for training and another 50
for calculating discrimination accuracy.

Representation Dataset
To examine representational similarity of faces and non-
face images between the d-AlexNet and the normal one, we
constructed a representation dataset with two categories, faces
and bowling pins as an “unseen” non-face object category that
was not presented to the DCNNs during training. Each category
consisted of 80 images. The face images were a random subset of
FITW, and images of bowling pins were randomly chosen from
the corresponding category in Caltech-256.

Movies Clips for DCNN-Brain Correspondence

Analysis
We examined the correspondence between the face-selective
response of the DCNNs and brain activity using a set of 18 clips of
8-min natural color videos from the Internet that are diverse yet
representative of real-life visual experiences (Wen et al., 2017).

The Deep Convolutional Neural Network
Our model of selective deprivation, the d-AlexNet, was built
with the architecture of the well-known DCNN “AlexNet”
(Krizhevsky et al., 2012, see Figure 1A for illustration). AlexNet
is a feed-forward hierarchical convolutional neural network
consisting of five convolutional layers (denoted as Conv1–
Conv5, respectively) and three fully connected layers denoted as
FC1–FC3. Each convolutional layer consists of a convolutional
sublayer, followed by a ReLU sublayer, and Conv1, 2, and 5
are further followed by a pooling sublayer. Each convolutional
sublayer consists of a set of distinct channels. Each channel
convolves the input with a distinct linear filter (kernel) which
extracts filtered outputs from all locations within the input
with a particular stride size. FC1–FC3 are fully connected
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FIGURE 1 | (A) An illustration of the screening to remove images containing faces for the d-AlexNet. The “faces” shown in the figure were AI-generated for illustration

purpose only, and therefore have no relation to real person. In the experiment, face images were from the ImageNet, with real persons’ faces. (B) The classification

performance across categories of the two DCNNs was comparable. (C) Both DCNNs achieved high accuracy in categorizing faces from other images. (D) Both

DCNNs’ performance in discriminating faces was above the chance level, and the d-AlexNet’s accuracy was significantly higher than that of the AlexNet. The error

bars in (B) denote the standard error of the mean across the 205 categories in the Classification dataset. The error bars in (D) denote the standard error of the mean

across the 133 identities in the Discrimination dataset. The asterisk denotes statistical significance (α = 0.05). n.s. denotes no significance.

layers. FC3 is followed by a sublayer using a softmax function
to output a vector that represents the probability of the
visual input containing the corresponding object category
(Krizhevsky et al., 2012).

The d-AlexNet used the architecture of AlexNet but changed
the number of units in FC3 to 736 and changed the following
softmax function accordingly to match the number of categories
in the deprivation dataset. The d-AlexNet was initialized with
values drawn from a uniform distribution, and was then trained
on the deprivation dataset following the approach specified
in Krizhevsky (2014). We used the pre-trained AlexNet from
pytorch 1.2.0 as the normal DCNN, referred to as the AlexNet
in this paper for brevity.

The present study referred to channels in the convolutional
sublayers by the layer they belong to and a channel index,
following the convention of pytorch 1.2.0. For instance, Layer
5-Ch256 refers to the 256th convolutional channel of Layer 5.

To test the generalizability of the main findings of the
present study, we also applied the same deprivation on another
well-known DCNN, “ResNet-18” (He et al., 2016). ResNet-18
introduces residual learning blocks in a DCNN to overcome the
degradation problem in the training of DCNNs, and achieves
even better performance than AlexNet in object categorization
task with a deeper architecture. The d-ResNet used the
architecture of ResNet-18 but changed the number of units in
the FC layer to 736 and changed the following softmax function
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accordingly to match the number of categories in the deprivation
dataset. The d-ResNet was trained on the deprivation dataset
following the same approach specified above. For comparison, we
used the pre-trained ResNet-18 from pytorch 1.2.0 as the normal
DCNN, referred to as the ResNet in this study for brevity.

Transfer Learning for Classification and

Discrimination
To examine to what extent our manipulation of the visual
experience affected the categorical processing of faces, we
replaced the fully-connected layers of each DCNN with a two-
layer face-classification classifier. The first layer was a fully
connected layer with 43,264 units as inputs and 4,096 units
as outputs with sigmoid activation function, and the second
was a fully connected layer with 4,096 units as inputs and 205
units as outputs, each of which corresponded to one category
of the classification dataset. This classifier, therefore, classified
each image into one category of the classification dataset. The
face-classification classifier was trained for each DCNN with the
training images in the classification dataset for 90 epochs.

To examine to what extent our manipulation of the
visual experience affected face discrimination, we similarly
replaced the fully connected layers of each DCNN with a
discrimination classifier. The discrimination classifier differed
from the classification classifier only in its second layer,
which had 133 units instead as outputs, each corresponding
to one individual in the discrimination dataset. The face-
discrimination classifier was trained for each DCNN with the
training images in the discrimination dataset for 90 epochs. The
same transfer learning was applied to the d-ResNet and the
pre-trained ResNet-18.

The Face Selective Channels in DCNNs
To identify the channels selectively responsive to faces, we
submitted images in the classification dataset to each DCNN,
recorded the average activation in each channel of Conv5 after
ReLU in response to each image, and then averaged the channel-
wise activation within each category. We selected channels
where the face category evoked the highest activation, and used
the Mann-Whitney U test to examine the activation difference
between faces and objects that had the second-highest activation
in these channels (p< 0.05, Bonferroni corrected). The selectivity
of each face channel thus identified was indexed by the selective
ratio. The selective ratio was calculated by dividing the face
activation by the second-highest activation. In addition, we
measured the lifetime sparseness of each face-selective channel
as an index for selectivity of faces among all non-face objects. We
first normalized the mean activations of a face channel in Layer5
to all the categories to the range of 0–1, and then calculated
lifetime sparseness with the formula:

S =
(
∑

i=1,n ri/n
)2

∑

i=1,n

(

ri2/n
)

where ri is the normalized activations to the ith object category.
The smaller this value is, the higher the selectivity is.

To confirm the face selectivity of the selected channels, we also
tested their categorical selectivity with the fMRI localizer stimuli
typically used to identify face-selective regions. More specifically,
we recorded each channels’ responses to the localizer stimuli
from the face and the tool condition of the Human Connectome
Project dataset (Van Essen et al., 2013), and examined the
significance of face selectivity of each face channel by comparing
the activation in the face condition and that of the tool condition
in this channel using the Mann-Whitney U test described above.

Since we found face-selective channels in the d-AlexNet and
reduced face selectivity of these channels comparing with face-
selective channels in the AlexNet, we proceeded to test the
robustness of these findings. Another five instances of face-
deprived AlexNet were each independently trained in the same
way as the d-AlexNet. In these instances, we searched for face-
selective channels, computed their face selectivity, and examined
the significance of their face selectivity by the Mann-Whitney
U test on their responses to the classification dataset as well
as on the fMRI localizer stimuli, in the same way as we did
in the d-AlexNet and the AlexNet. The same procedure of
channel identification was also applied to the d-ResNet and the
pre-trained ResNet-18.

DCNN-Brain Correspondence
We submitted the movie clips to the DCNNs. Following Wen
et al. (2017)’s approach, we extracted and log-transformed the
channel-wise output (the average activation after ReLU) of each
face-selective channel using the toolbox DNNBrain (Chen et al.,
2020), and then convolved it with a canonical hemodynamic
response function (HRF) with a positive peak at 4 s. The
HRF convolved channel-wise activity was then down-sampled
to match the sampling rate of functional magnetic resonance
imaging (fMRI) and the resultant timeseries was standardized
before further analysis.

Neural activation in the brain was derived from the
preprocessed data in Wen et al. (2017). The fMRI data were
recorded while human participants viewed each movie clips
twice. We averaged the standardized time series across repetition
and across subjects for each clip. Then, for each DCNN, we
conducted multiple regression for each clip, with the activation
time series of each brain vertex as the dependent variable and
that of face-selective channels in this network as independent
variables. For the d-AlexNet, all face-selective channels were
included. For the AlexNet, we included the same number of face-
selective channels with the highest face selectivity to match the
complexity of the regression model. We used the R2 of each
vertex as the index of the overall Goodness of fit of the regression
in that vertex. The R2 values were then averaged across clips.
The larger the R2 value, the higher correspondence between the
DCNN and the brain in response to movie clips.

To test whether the correspondence changes between
networks reflected an overall increase in the correspondence
between fMRI signal and the activation of the face channels
of the AlexNet comparing with the d-AlexNet (in contrast to
an increase selectively within the face-selective regions), we
delineated the face-selective regions and the object-selective
regions and compared the correspondence between the top two

Frontiers in Computational Neuroscience | www.frontiersin.org 4 May 2021 | Volume 15 | Article 626259162

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Xu et al. Face Module in Face-Deprived DCNN

face channels of each network and the face- and the object-
selective regions. The face- and the object- selective regions
were defined by functional localizer data of Human Connectome
Project (Van Essen et al., 2013). Two hundred vertexes of
the highest Z value in the tool-avg contrast were delineated
as the object-selective ROIs, and two hundred vertexes of
the highest Z value in the face-tool contrast were delineated
as the face-selective ROIs. The channel-brain correspondence
of each vertex with the ROIs was indexed by R2 of the
regression with the fMRI time series of this vertex as the
dependent variable and the time series of the top-two face
channels as the independent variables. A two-way ANOVA
with visual experiences (d-AlexNet vs. AlexNet) and categorical
selectivity (the object-selective regions vs. the face-selective
regions) as independent variables was conducted to examine the
difference between the channel-brain correspondence between
the categorical-selective regions and the face-selective channels
of the d-AlexNet and the AlexNet.

To examine whether the channel-brain correspondence
changed in different face-selective regions equally, we delineated
the bilateral fusiform face areas (FFA) and the occipital
face area (OFA) with the maximum-probability atlas of
face-selective regions (Zhen et al., 2015). Two hundred of
vertexes of the highest probability of the left FFA and
200 of the right FFA were included in the ROI of FFA,
and the ROI of OFA was delineated in the same way.
The correspondence with brain activation in each ROI
and the impact of the visual experience was examined
by submitting the vertex-wise R2 into a two-way ANOVA
with visual experience (d-AlexNet vs. AlexNet) as within-
subject factor and regional correspondence (OFA and FFA) as
between-subject factor.

Face Inversion Effect in DCNNs
The average activation amplitude of the top two face-selective
channels of each DCNN in response to upright and inverted
version of 20 faces from the Reconstructing Faces dataset
(VanRullen and Reddy, 2019) was measured. The inverted faces
were generated by vertically flipping the upright ones. The face
inversion effect in the d-AlexNet was measured with paired
sample t-tests (two-tailed) and the impact of the experience on
the face inversion effect was examined by two-way ANOVAs with
visual experience (d-AlexNet vs. AlexNet) and inversion (upright
vs. inverted) as within-subject factors.

Representational Similarity Analysis
To examine whether faces in the d-AlexNet were processed
in an object-like fashion, we compared the within-category
representational similarity of faces to that of bowling pins,
an “unseen” non-face object category never exposed to either
DCNN. Specifically, for each image in the representation dataset,
we arranged the average activations of each channel of Conv5
after ReLU into vectors, and then for each pair of images
we calculated and then Fisher-z transformed the correlation
between their vectors, which served as an index of pairwise
representational similarity. Within-category similarity between
pairs of face images and that between pairs of object images

were calculated separately. A 2 × 2 ANOVA was conducted with
visual experience (d-AlexNet vs. AlexNet) and category (face
vs. object) as independent factors. In addition, cross-category
similarity between faces and bowling pins was also calculated
for each DCNN, and a paired sample t-test (two-tailed) on two
DCNNs was conducted.

Sparse Coding and Empirical Receptive

Field
To quantify the degree of sparseness of the face-selective channels
in representing faces, we submitted the same set of 20 natural
images containing faces from FITW to each DCNN, and
measured the number of activated units (i.e., the units showing
above-zero activation) in the face-selective channels. The more
non-zero units observed in the face-selective channels, the less
sparse the representation for faces is. The coding sparseness of
the two DCNNs was compared with a paired-sample t-test.

We also calculated the size of the empirical receptive field
of the face-selective channels. Specifically, we obtained the
activation maps of 1,000 images randomly chosen from FITW.
Using the toolbox DNNBrain (Chen et al., 2020), we up-sampled
each activation map to the same size of the input. For each image,
we averaged the up-sampled activation within the theoretical
receptive field of each unit (the part of the image covered by
the convolution of this unit and the preceding computation,
decided by the network architecture), and selected the unit with
the highest average activation. We then cropped the up-sampled
activation map by the theoretical receptive field of this unit, to
locate the image part that activated this channel most across all
the units. Then, we averaged corresponding cropped activation
maps across all the face images, and the resultant map denotes the
empirical receptive field of this channel, delineating the part of
the theoretical receptive field that causes this channel to respond
strongly in viewing its preferred stimuli.

RESULTS

The d-AlexNet was trained with a dataset of 662,619 non-
face images consisting of 736 non-face categories, generated by
removing images containing faces from the ILSVRC 2012 dataset
(Figure 1A). The d-AlexNet was initialized and trained in the
same way as the AlexNet. Both networks were trained following
the approach specified in Krizhevsky (2014). The resultant top-
1 accuracy (57.29%) and the top-5 accuracy (80.11%) were
comparable with the pre-trained AlexNet.

We first examined the performance of the d-AlexNet in
two representative tasks of face processing, face categorization
(i.e., differentiating faces from non-face objects) and face
discrimination (i.e., identifying different individuals). The output
of Conv5 after ReLU of the d-AlexNet was used to classify objects
in the classification dataset (see Materials and Methods). The
averaged categorization accuracy of the d-AlexNet (67.40%) was
well above the chance level (0.49%), and comparable to that in
the AlexNet [68.60%, t(204) = 1.26, p = 0.209, Cohen’s d =
0.007, Figure 1B]. Critically, the d-AlexNet, although with no
experience on faces, succeeded in the face categorization task,
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with an accuracy of 86.50% in categorizing faces from non-face
objects. Note that the accuracy was numerically smaller than
the AlexNet’s accuracy in categorizing faces (93.90%) though
(Figure 1C).

A similar pattern was observed in the face discrimination task.
In this task, the output of Conv5 after ReLU of each DCNN
was used to identify 33,250 face images into 133 identities in
the discrimination dataset (see section Materials and Methods).
As expected, the AlexNet was capable of face discrimination
(65.9%), well above the chance level (0.75%), consistent with
previous studies (AbdAlmageed et al., 2016; Grundstrom et al.,
2016). Critically, the d-AlexNet also showed the capability of
discriminating faces, with an accuracy of 69.30% that was even
significantly higher than that of the AlexNet, t(132) = 3.16,
p = 0.002, Cohen’s d = 0.20, (Figure 1D). Taken together, visual
experiences on faces seemed not necessary for developing basic
functions of processing faces.

Was a face module formed in the d-AlexNet to support
these functions? To answer this question, we searched all
the channels in Conv5 of the d-AlexNet, where face-selective
channels have been previously identified in the AlexNet (Baek
et al., 2019). To do this, we calculated the activation of each
channel in Conv5 after ReLU in response to each category of the
classification dataset, and then identified channels that showed
significantly higher response to faces than non-face images with
Mann-Whitney U test (ps < 0.05, Bonferroni corrected). Two
face-selective channels (Ch29 and Ch50) met this criterion in
the d-AlexNet (for an example channel, see Figure 2A, right),
whereas four face-selective channels (Ch185, Ch125, Ch60, and
Ch187) were identified in the AlexNet (for an example channel,
see Figure 2A, left). The face-selective channels in two DCNNs
differed in selectivity. The averaged selective ratio, the ratio of
the activation magnitude to faces by that to the most activated
non-face object category, was 1.29 (range: 1.22–1.36) in the d-
AlexNet, much lower than that in the AlexNet (average ratio:
3.63, range: 1.43–6.66). The lifetime sparseness, which measures
the breadth of tuning of a channel in response to a set of
categories, also showed a similar result. The average lifetime
sparseness index of the face channels in the AlexNet (mean =
0.25, range: 0.11–0.51) was smaller than that in the d-AlexNet
(mean= 0.71, range: 0.70–0.71), indicating higher face selectivity
in the AlexNet than that in the d-AlexNet. To confirm that the
emergence of the face-selective channels in the d-AlexNet was
not because of chance factors in network training, another five
instances of face-deprived networks were independently initiated
and trained respectively. One or two face-selective channels
emerged in each of these face-deprived network instances,
though the level of face selectivity was lower as compared to the
AlexNet. In addition, we tested the face selectivity of the face
channels in all face-deprived networks with the stimuli used to
localize face-selective regions in fMRI studies, and found that
the responses in these face-selective channels were significantly
higher to the faces than those to the objects (Mann-Whitney
U test, ps < 0.05, Bonferroni corrected). Taken together, this
finding suggested that the face-selective channels indeed emerged
in the d-AlexNet, though the face selectivity was weaker than
the AlexNet.

To test the generalizability of these findings, we applied
the same deprivation manipulation to another representative
DCNN architecture, the ResNet-18, and the resultant d-ResNet
reached top-1 accuracy (69.57%) and the top-5 accuracy
(89.47%), comparable with those of the ResNet. Further,
the face categorization accuracy of the d-ResNet (92.90%)
was comparable to that of the ResNet (96.02%), and the
discrimination accuracy of d-ResNet (65.34%) comparable to
that of the pre-trained ResNet (59.80%). These findings were
similar to those achieved with the d-AlexNet and the AlexNet.

How did the face-selective channels correspond to face-
selective cortical regions in humans, such as the FFA and
OFA? To answer this question, we calculated the coefficient of
determination (R2) of the multiple regression with the output
of the face-selective channels as regressors and the fMRI signals
from human visual cortex in response to movies on natural
vision as the regressand (see section Materials and Methods). As
shown in Figure 2B (right), the face-selective channels identified
in the d-AlexNet corresponded to the bilateral FFA, OFA, and the
posterior superior temporal sulcus face area (pSTS-FA). Similar
correspondence was also found with the top two face-selective
channels in the AlexNet (Figure 2B, left). Direct visual inspection
revealed that the deprivation weakened the correspondence
between the face-selective channels and face-selective regions
in human brain. The increased channel-brain correspondence
in the face-selective regions in the AlexNet compared with
the d-AlexNet was confirmed by a two-way ANOVA of visual
experience (d-AlexNet vs. AlexNet) by categorical selectivity
(fMRI defined object-selective vs. face-selective regions, see
section Methods). In addition to a main effect of categorical
selectivity [F(1, 398) = 53.04, p < 0.001, partial η2 = 0.12], we
also observed a two-way interaction [F(1, 398) = 79.99, p < 0.001,
partial η2 = 0.17]. Follow-up simple effect analyses revealed that
the correspondence to the face-selective regions decreased in the
d-AlexNet as compared with the AlexNet in the face-selective
regions (MD = −0.01, p < 0.001), but increased in the object-
selective regions (MD= 0.013, p< 0.001), further indicating that
the changes between the face-selective channels and human face-
selective regions cannot be attributed to a global decrease in the
channel-brain correspondence in the d-AlexNet comparing with
the AlexNet.

We then examined whether this decrease in channel-brain
correspondence affected different face-selective regions equally.
A two-way ANOVA of visual experience (d-AlexNet vs. AlexNet)
by regional correspondence (the OFA vs. the FFA) confirmed
the decrease of channel-brain correspondence in the d-AlexNet
compared with the AlexNet with a significant main effect of
visual experiences [F(1, 798) = 161.97, p < 0.001, partial η2 =
0.17]. In addition, the main effect of the regional correspondence
showed that the response profile of the face-selective channels
in the DCNNs fitted better with the activation of the FFA than
that of the OFA [F(1, 798) = 98.69, p = 0.001, partial η2 = 0.11],
suggesting that the face-selective channels in DCNNs may in
general tend to process faces as a whole than face parts. Critically,
the two-way interaction was significant [F(1, 798) = 84.9, p <

0.001, partial η2 = 0.10], indicating that the experience affected
the correspondence to the FFA and OFA disproportionally. A
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FIGURE 2 | (A) The category-wise activation profiles of example face-selective channels of the AlexNet (left) and the d-AlexNet (right). The “faces” shown here were

AI-generated for illustration purpose only. (B) The R2 maps of the regression with the activation of the d-AlexNet’s (right) or the AlexNet’s face-selective channels (left)

as the independent variables. The higher R2 in multiple regression, the better correspondence between the face channels in the DCNNs and the face-selective regions

in the human brain. The crimson lines delineate the ROIs of the OFA and the FFA. (C) The face-channels of both DCNNs corresponded better with the FFA than the

OFA, and the difference between the AlexNet and the d-AlexNet was larger in the FFA. (D) Face inversion effect. The average activation amplitude of the top two

face-selective channels differed in response to upright and inverted faces in the AlexNet but not the d-AlexNet. The error bar denotes standard error. The asterisk

denotes statistical significance (α = 0.05). n.s. denotes no significance.

simple effect analysis revealed that the correspondence to the
FFA (MD = 0.023, p < 0.001) was increased by face-specific
experiences to a significantly larger extent than that to the OFA

(MD = 0.004, p = 0.013, Figure 2C). Since the FFA is more
involved in holistic processing of faces and the OFA is more
dedicated to the part-based analysis, the disproportional decrease
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in correspondence between the face-selective channels in the d-
AlexNet and the FFA implied that the role of the experience on
faces was to facilitate the processing of faces as a whole.

To test this conjecture, we examined whether the d-AlexNet
responded stronger to upright than inverted faces, since human
studies suggested that the upright faces were processed in a more
holistic manner than inverted faces. As expected, there was a face
inversion effect in the AlexNet’s face-selective channels, with the
magnitude of the activation to upright faces significantly larger
than that to inverted faces [t(19) = 6.45, p < 0.001, Cohen’s
d= 1.44] (Figure 2D). However, no inversion effect was observed
in the d-AlexNet, as the magnitude of the activation to upright
faces was not significantly larger than that to inverted faces
[t(19) = 0.86, p = 0.40]. The lack of the inversion effect in
the d-AlexNet was further supported by a two-way interaction
of visual experience by orientation of faces, [F(1, 19) = 7.79,
p = 0.012, partial η

2 = 0.29]. That is, unlike the AlexNet,
the d-AlexNet processed upright faces in the same fashion as
inverted faces.

Previous studies on human suggested that inverted faces are
processed in an object-like fashion. That is, it relies more on
the parts-based analysis than the holistic processing. Therefore,
we speculated that in the d-AlexNet faces were also represented
more like non-face objects. To test this speculation, we first
compared the representational similarity among responses in
Conv5 to faces and bowling-pins, which were not present as a
category in the training dataset of either DCNNs, and therefore
alien to both DCNNs. As expected, the two-way interaction
of experience (AlexNet vs. d-AlexNet) by category (faces vs.
bowling-pins) was significant [F(1, 6,318) = 4,110.88, p < 0.001,
partial η

2 = 0.39], and the simple effect analysis suggested that
the representation for faces in the AlexNet was more similar
between each other than in the d-AlexNet (MD = 0.16, p <

0.001), whereas the within-category representation similarity for
bowling-pins showed the same but numerically smaller between-
DCNN difference (MD= 0.005, p= 0.002) (Figure 3A).

A more critical test was to examine how face-specific
experiences made faces being processed differently from objects.
Here we calculated between-category similarities between faces
and bowling-pins.We found that the between-category similarity
between faces and bowling-pins was significantly higher in the d-
AlexNet than that in the AlexNet [t(3,159) = 42.42, MD = 0.07,
p < 0.001, Cohen’s d = 0.76] (Figure 3B), suggesting that faces
in the d-AlexNet were indeed represented more like objects. In
short, although d-AlexNet was able to perform face tasks similar
to the one with face-specific experiences, it represented faces in
an object-like fashion.

Finally, we asked how faceness was achieved in DCNNs
with face-specific experiences. Neurophysiological studies on
monkeys demonstrate experience-associated sharpening of
neural response, with fewer neurons activated after learning.
Here we performed a similar analysis by measuring the number
of non-zero units (i.e., units with above-zero activation) of the
face-selective channels activated by natural images containing
faces. As shown in the activation map (Figure 3C), a smaller
number of units were activated by faces in the AlexNet than
that in the d-AlexNet [t(19) = 3.317, MD = 15.78, Cohen’s d =

0.74] (Figure 3D), suggesting that the experience on faces made
the representation to faces sparser, and thus allowing for more
efficient coding. Another effect of visual experiences observed
in neurophysiological studies is that experiences reduce the size
of neurons’ receptive field. Here we also mapped the empirical
receptive field of the face-selective channels (see sectionMaterials
and Methods). Similarly, we found that the empirical receptive
field of the AlexNet was smaller than that of the d-AlexNet.
That is, within the theoretical receptive field, the empirical
receptive field of the face-selective channels in the AlexNet was
tuned to focus on a smaller region by face-specific experiences
(Figure 3E).

DISCUSSION

This study presented a DCNN model of selective visual
deprivation of faces. Specifically, we chose the AlexNet as a
test platform because of the functional correspondence along
the hierarchy between the AlexNet and primates’ ventral visual
pathway (e.g., Krizhevsky et al., 2012; Cadieu et al., 2014;
Wen et al., 2017; Pospisil et al., 2018; Baek et al., 2019). We
found that without genetic predisposition and face-specific visual
experiences, DCNNs were still capable of face perception. In
addition, face-selective channels were also present in the d-
AlexNet, which corresponded to human face-selective regions.
That is, the visual experience of faces was not necessary for an
intelligent system to develop a face-selective module. On the
other hand, besides the slightly compromised selectivity of the
module, the deprivation led the d-AlexNet to process faces in
a fashion more similar to that of processing objects. Indeed,
unlike the AlexNet, face inversion did not affect the response
magnitude of the face-selective channels in the d-AlexNet, and
the representation of faces was more similar to objects as
compared to the AlexNet. Finally, face-specific experiences might
affect face processing by fine-tuning the sparse coding and the
size of the receptive field of the face-selective channels. In sum,
our study addressed a long-standing debate on nature vs. nurture
in developing the face-specific module, and illuminated the role
of visual experiences in shaping the module.

Given the main-stream viewpoint that faces are special and
therefore cannot be compensated by the presence of non-
face objects, it may seem surprising that without domain-
specific visual experience, the face-selective processing and
modules still emerged in the d-AlexNet. These observations were
further replicated with another well-known DCNN architecture,
the ResNet-18, suggesting the generalizability of our findings.
However, our finding is consistent with previous studies on
non-human primates and new-born human infants (Bushneil
et al., 1989; Valenza et al., 1996; Sugita, 2008), where the face-
specific experience is found not necessary for face detection and
recognition. Therefore, our study argues against the experience-
independent hypothesis that face specificity is largely attributed
to either innate face-specific mechanisms (Morton and Johnson,
1991; McKone et al., 2012) or domain-general processing with
predisposed biases (Simion et al., 2001; Simion and Di Giorgio,
2015). Our study argues against this conjecture, because unlike
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FIGURE 3 | (A) The within-category similarity in the face category and an unseen non-face category (bowling pins) in the DCNNs. (B) The between-category similarity

between faces and bowling pins. (C) The activation maps of a typical face-selective channel of each DCNN in responses to natural images containing faces. Each

pixel denotes activation in one unit. The color denotes the activation amplitude (a.u.). (D) The extent of activation of the face-selective channels of each DCNN in

responses to natural images containing faces. (E) The empirical receptive fields of the top two face-selective channels of each DCNN. The color denotes the average

activation amplitude (a.u, see section Sparse Coding and Empirical Receptive Field). The error bar denotes standard error. The asterisk denotes statistical significance

(α = 0.05). The real faces used in this figure are adapted from the FITW dataset.
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any biological system, DCNNs have no domain-specific genetic
inheritance or processing biases. Therefore, the face-specific
processing observed in DCNNs had to derive from domain-
general factors. From this sense, the present study provides one
of the first direct evidence against themain-stream viewpoint and
suggests that face specificity may emerge from domain-general
visual experience.

We speculated that the face-selective processing and module
in the d-AlexNet may result from the rich features represented
in the multiple layers of the network; face-like features might be
utilized when the neural network was forced to categorize faces
even though these features were not learned for this purpose.
In fact, previous studies on DCNNs have shown that DCNN’s
lower layers showed sensitivity to myriad visual features similar
to primates’ primary visual cortex (Krizhevsky et al., 2012), while
the higher layers are tuned to complex features resembling those
represented in the ventral visual pathway (Yamins et al., 2014;
Güçlü and van Gerven, 2015). With such a repertoire of rich
features, a representational space for faces, or any natural object,
may be constructed by selecting features that are potentially
useful in face tasks. With such repertoire of rich features, a
representational space for faces, or for any natural object, may
be constructed by selecting features that are potentially useful in
face tasks.

Supporting evidence for this conjecture came from the
observation that the d-AlexNet processed faces in an object-
like fashion. For example, the face inversion effect, a signature
of face-specific processing in human (Yin, 1969; Kanwisher
et al., 1998) was absent in the d-AlexNet. Distinct from other
non-face stimuli, faces are recognized better when they are
upright than inverted (Yin, 1969), and the neural response
to upright faces is stronger than that to inverted ones (e.g.,
Kanwisher et al., 1998; Rossion and Gauthier, 2002). This
face inversion effect is attributed to that face processing relies
particularly heavily on configural processing—processing of the
relations among features instead of individual features. Since the
configural information is difficult to perceive in inverted faces
in a system with face specificity, inverted faces cannot engage
face-specific processing as upright faces. Therefore, the finding
of the lack of the face inversion effect in the DNN without
face experience strengthened our argument that the lack of face
experience leads to the compromise of face specificity. That is,
similar to inverted faces, upright faces may also be processed
like objects in the d-AlexNet. A more direct illustration of the
object-like representation of faces came from the analysis of
the representational similarity between faces and objects. As
compared to the AlexNet, faces in the representational space
of the d-AlexNet were less congregated among each other;
instead they were more intermingled with non-face object
categories. The finding that face representation was no longer
qualitatively different from object representation may help to
explain the performance of the d-AlexNet. Because faces were
less segregated from objects in the representational space, the
d-AlexNet’s accuracy of face categorization was worse than that
of the AlexNet. In contrast, within the face category, individual
faces were less congregated in the representational space;
therefore, the discrimination of individual faces became easier

instead, suggested by the slightly higher face discrimination
accuracy in the d-AlexNet than the AlexNet. In short, when the
representational space of the d-AlexNet was formed exclusively
based on features from non-face stimuli, faces were represented
no longer qualitatively different from non-face objects, which
inevitably led to “object-like” face processing.

The face-specific processing is likely achieved through prior
exposure to faces. At first glance, the effect of face-specific
experiences seemed quantitative, as in the AlexNet, both the
selectivity to faces and the number of the face-selective channels
were increased, and the correspondence between the face-
selective channels and the face-selective regions in human
brain was tighter. However, careful scrutiny of the difference
between the two DCNNs revealed that the changes led by the
experience may be qualitative. For example, the deprivation of
visual experiences disproportionally weakened the DCNN-brain
correspondence in the FFA as comparing to the OFA, and the
FFA is engaged more in the configural processing and the OFA
in parts-based analysis (Liu et al., 2010; Nichols et al., 2010;
Zhao et al., 2014). Therefore, the “face-like” face processing
may come from the fact that face-specific experiences led the
representation of faces more congregated within face category
and more separable from the representation of non-face objects
stimuli (see also Gomez et al., 2019). In this way, a relative
encapsulated representation may help developing a unique way
of processing faces, qualitatively different from non-face objects.

The computational transparency of DCNNsmay shed light on
the development of domain specificity of the face module. First,
we found that face-specific experiences increased the sparseness
of face representation, as fewer units of the face channels were
activated by faces in the AlexNet. The experience-dependent
sparse coding has been widely discovered in the visual cortex
(for reviews, see Desimone, 1996; Grill-Spector et al., 2006). The
experience-induced increase of sparseness is thought to reflect
a preference-narrowing process that tunes neurons to a smaller
range of stimuli (Kohn and Movshon, 2004); therefore, with
sparse coding faces are less likely to be intermingled with non-
face objects, whichmay lead tomore congregated representations
in the representational space in the AlexNet, as compared to
the d-AlexNet. Second, we found that the empirical receptive
field of the face channels in the AlexNet was smaller than
that in the d-AlexNet, suggesting that the visual experience
on faces decreased the size of the receptive field of the face
channels. This finding fits perfectly with neurophysiological
studies that the size of receptive fields of visual neurons is
reduced after eye-opening (Braastad and Heggelund, 1985;
Tavazoie and Reid, 2000; Cantrell et al., 2010). Importantly,
along with the refined receptive fields, the selectivity of neurons
increases (Spilmann, 2014), possibly because neurons can avoid
distracting information by focusing on a more restricted part of
stimuli, which may further allowed finer representation of the
selected regions. This is especially important for processing faces
because faces are highly homogeneous, and some information
is identical across faces, such as parts composition (eyes, noses,
and mouth) and their configural arrangements. Therefore, the
reduced receptive field of the face channels may facilitate selective
analyses of discriminative face features while avoiding irrelevant

Frontiers in Computational Neuroscience | www.frontiersin.org 10 May 2021 | Volume 15 | Article 626259168

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Xu et al. Face Module in Face-Deprived DCNN

information. Further, the sharpening of the receptive field and
the fine-tuned selectivity may result in superior discrimination
ability on faces, and allow faces to be processed at the sub-
ordinate level (i.e., identification), whereas the rest of objects are
largely processed at the basic level (i.e., categorization).

It has long been assumed that domain-specific visual
experiences and inheritance are the pre-requisites in the
development of the face module in the brain. In our study
with DCNN as a model, we completely decoupled the genetic
predisposition and face-specific visual experiences, and found
that the representation for faces can be constructed with
features from non-face objects to realize basic functions
for face recognition. Therefore, in many situations, the
difference between faces and objects is “quantitative” rather than
“qualitative,” as they are represented in a continuum of the
representational space. In addition, we also found that face-
specific experiences likely fine-tuned the face representation, and
thus transformed the “object-like” face processing into “face-
specific” processing. However, we shall be cautious that our
findingmay not be applicable for the development of facemodule
in human, as in the biological brain experience-induced changes
are partly attributed to the inhibition from lateral connections
(Norman and O’Reilly, 2003; Grill-Spector et al., 2006), whereas
there is no lateral or feedback connection in DCNNs. However,
despite structural differences, recent studies have shown similar
representation for faces between DCNNs and humans (Song
et al., 2021), suggesting that a common mechanism may be
shared by both artificial and biological intelligent systems. Future
studies are needed to examine the applicability of our finding
to humans. In addition, higher cognitive functions such as
attractiveness judgement and social-traits inference are also
important components of face processing, but the present study
followed the literature on face deprivation in humans and non-
human primates and therefore focused on the sensory and
perceptual stages of face processing. Future study may consider
investigating the experiential effects on the social and affective
aspects of face processing to comprehensively understand the
effect of experience.

On the other hand, our study illustrated the advantages
of using DCNN as a model to understand human mind

because of its computational transparency and its dissociation

of factors in nature and nurture. Thus, our study invites future
studies with DCNNs to understand the development of domain
specificity in particular and a broad range of cognitive modules
in general.
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