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Editorial on the Research Topic

Computational Resources for Understanding Biomacromolecular Covalent Modifications

Biomacromolecular covalent modifications (BCMs) include protein post-translational
modifications (PTMs) and nucleic acid modifications. To date, 670 types of PTMs have been
identified, and the most extensively studied PTMs are phosphorylation, ubiquitination, and
acetylation. They are involved in regulating almost all biological processes, such as cell cycle,
autophagy, and metabolism. More than 150 types of RNA modifications and tens of DNA
modifications have been discovered, such as N6-methyladenosine (m6A) in messenger RNAs and
5-methylcytosine (5mC) in DNAs, and they play crucial roles in controlling gene expression.
There is increasing evidence showing that PTMs are related to many diseases such as cancer and
neurological disorders. RNA modification pathways are also found to be dysregulated in human
cancer, and as such, epigenomic DNA modifications may shed some light on why certain diseases
and tumors develop with aging.

The modification processes of diverse BMCs share some common properties. The deposition of
chemical modifications (ormarks) onto biomacromolecules is catalyzed by specific enzymes named
“writers.” The enzymes that remove the modifications are called “erasers.” After recognizing the
BCM sites, regulator proteins that produce a cellular response are “readers.” Identification of these
BCM substrates and sites, as well as their “writers,” “erasers,” and “readers” can provide us a better
understanding of how cellular activities are dynamically regulated. Computational algorithms,
pipelines, tools, and databases play an increasingly important role in supporting biologists to
explore BCM regulation, especially related regulatorymechanisms of protein PTMs andDNA/RNA
modifications. We have witnessed substantial progress in computational development for BCM in
both breadth and depth in recent years. The breadth covers a dramatically increasing number of
BCM types, while the depth of new methods benefits extensively from the recent advancement
in machine learning, especially deep learning. This Research Topic highlights these active
developments with 8 predictive tools and 1 online database for BCMs in a timely manner. As shown
in Figure 1, they represent a broad range of BCM types using various computational methods.
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FIGURE 1 | Computational resources covered in this Research Topic, as well as their targeting BCM types and applied methods.

In this Research Topic, two studies developed machine-
learning frameworks to predict DNA/RNA modifications.
iPromoter-5mC (https://github.com/zlwuxi/iPromoter-5mC)
provides a deep neural network (DNN) framework to predict
DNA 5-methylcytosine (5 mC) sites (Zhang et al.). The m6A
reader (http://m6areader.rnamd.com) adopts a Support Vector
Machine (SVM) model to predict reader-specific mRNA
N6-methyladenosine (m6A) sites (Zhen et al.).

This Research Topic also presents five deep-learning tools for
PTM predictions. Two studies target protein modification on the
lysine (K) residue using convolutional neural network (CNN),
including PlantUbSite (https://github.com/wang-hong-fei/DL-
plantubsites-prediction) for predicting plant ubiquitylation
sites (Wang et al.) and DeepKhib (http://www.bioinfogo.
org/DeepKhib/) for predicting lysine 2-hydroxyisobutyrylation
(Khib) sites (Zhang et al.). Two other studies target protein
modification on the cysteine (C) residue: DeepCSO (http://www.
bioinfogo.org/DeepCSO/) provides a long short-term memory
(LSTM) tool to predict cysteine S-sulphenylation (CSO) sites
in proteins (Lyu et al.), and pCysMod (http://pcysmod.omicsbio.
info/) is a deep neural network (DNN) tool to predict multiple
types of protein cysteine modification sites, including S-
nitrosylation, S-palmitoylation, S-sulfenylation, S-sulfhydration,
and S-sulfinylation (Li et al.). Furthermore, DTL-DephosphoSite

(https://github.com/dukkakc/DTLDephos) provides an LSTM
framework to predict dephosphorylation sites in proteins
(Chaudhari et al.). All these studies demonstrate the excellent
predictive power of deep learning for PTM predictions.

PTMsnp and ActiveDriverDB focus on functional annotations
of the mutation effects on PTMs. PTMsnp (http://ptmsnp.renlab.
org/) is an online service to predict driver mutations that
potentially change PTM sites (Peng et al.). The authors use a
Bayesian hierarchical model for the prediction, covering 411,574
sites from 33 types of PTMs and 1,776,848 somatic mutations.
ActiveDriverDB (https://www.activedriverdb.org/) is an updated
database of predicted PTM-specific impact of genetic variations
based on Gaussian mixture models and Bayesian posterior
probability estimation for proteins and their interaction networks
(Krassowski et al.). An interesting estimate of the study indicates
the widespread impact of PTM, i.e., 16–21% of pathogenic disease
mutations, somatic mutations in cancer genomes and germline
variants in the human population potentially affect PTMs and
their downstream biological activities.

This Research Topic showcases state-of-the-art computational
studies of BCMs. From these excellent papers, it is evident that
the field is highly active and more research still is needed. We
hope that readers can formulate some good ideas for future
development from the papers or utilize the resources for their
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biological investigations. Finally, we, as the guest editors of this
Research Topic, would like to thank all the authors for their
valuable contributions.
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iPromoter-5mC: A Novel Fusion
Decision Predictor for the
Identification of 5-Methylcytosine
Sites in Genome-Wide DNA
Promoters
Lei Zhang, Xuan Xiao* and Zhao-Chun Xu*

Computer Department, Jing-De-Zhen Ceramic Institute, Jingdezhen, China

The hypomethylation of the whole cancer genome and the hypermethylation of the

promoter of specific tumor suppressor genes are the important reasons for the rapid

proliferation of cancer cells. Therefore, obtaining the distribution of 5-methylcytosine

(5mC) in promoters is a key step to further understand the relationship between promoter

methylation and mRNA gene expression regulation. Large-scale detection of DNA 5mC

through wet experiments is still time-consuming and laborious. Therefore, it is urgent to

design a method for identifying the 5mC site of genome-wide DNA promoters. Based

on promoter methylation data of the small cell lung cancer (SCLC) from the database

named cancer cell line Encyclopedia (CCLE), we built a fusion decision predictor called

iPromoter-5mC for identifying methylation modification sites in promoters using deep

neural network (DNN). One-Hot Encoding (One-hot) was used to encode the promoter

samples for the classification. The method achieves average AUC of 0.957 on the

independent testing dataset, indicating that our predictor is robust and reliable. A

user-friendly web-server called iPromoter-5mC could be freely accessible at http://www.

jci-bioinfo.cn/iPromoter-5mC, which will provide simple and effective means for users to

study promoter 5mC modification. The source code of the proposed methods is freely

available for academic research at https://github.com/zlwuxi/iPromoter-5mC.

Keywords: promoter, 5-methylcytosine, fusion decision, predictor, web-server, deep neural network

INTRODUCTION

DNA methylation dominates any cell processes, and plays a particularly important role in
regulating expression of gene (Bird, 2007; Deichmann, 2016; Nicoglou and Merlin, 2017).
DNA methylation at promoters and enhancers has been associated with cell differentiation,
developmental processes, cancer development, and regulation of the immune system (Muller et al.,
2019). At present, N6-methyladenine (6mA), N4-methylcytosine (4mC) and 5-methylcytosine
(5mC) are the three most well-studied types of DNA methylation (Wei et al., 2019). 5mC is a
covalent addition between the methyl group and the 5-carbon of the cytosine ring. In somatic cells,
5mC occurs almost exclusively in the context of paired symmetrical methylation of a CpG site.

Recent study (Michalak et al., 2019) suggests that aberrant levels of 5mC at CpG islands in
promoter regions is associated with inactivation of various tumor suppressor genes (TSGs). In

7
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young normal cells, 5mC is low in the promoter regions but high
in the genic and intergenic regions. However, in aging and in
cancer, a limited number of genomic loci acquire 5mC, especially
at the CpG islands in promoter regions of tumor suppressor and
Polycomb-repressed gene, resulting in gene silencing and loss of
function. In normal tissue, heterochromatin contains repeating
elements and is highly methylated. The aberrant promoter
methylation can lead to cancer initiation and progression, which
has been confirmed in CpG islandmethylator phenotype (CIMP)
cancers (Gessler, 1999; Kang et al., 2002; Mansour, 2014). Thus,
promoter methylation can be used as a potential biomarker
for cancer diagnosis and for helping determine prognosis,
indicating that identification of 5mC modification in promoter
regions by analyzing CpG islands in cell systems of a specific
cancer could provide a reference for cancer early diagnosis and
precise treatment.

Among cancers worldwide, both the incidence and death
rate of lung cancer are in the first place. Small cell lung cancer
(SCLC) poses approximately 15% of newly increasing clinical
cases with lung cancer each year (Siegel et al., 2018). Its pattern
is significantly different from other lung cancer, and is closely
related to the high expression of E2F target and EZH2 gene
of histone methyltransferase. Furthermore, SCLC is famous for
its dense cluster of high-level methylation in CpG islands of
discrete promoter. Therefore, in this study, we are concentrating
on improving the ability to access the methylation status of
promoters for a large number of genes or the entire genome
in SCLC.

One of the most usual methods for identifying DNA
methylation is distinguishing the cytosine-5 methylation within
the CpG dinucleotides (Bianchi and Zangi, 2015; Muller et al.,
2019). The popular sequencing technology for identifying 5mC
sites includesMethylated DNA immunoprecipitation sequencing
(MeDIP-seq), Methyl-Binding Domain sequencing (MBD-seq)
and DNA methylome profiling at single-base resolution through
bisulfite sequencing (MB-seq) (Down et al., 2008). However,
these wet-lab methods are expensive and time-consuming.
Therefore, it is urgent to develop a number of methods or tools
for the accurate detection of DNA 5mC modification sites.

Over the past decade, computational methods have been
proposed to identify 5mC modification sites. Bhasin et al.
(2005) developed a SVM-based model called “Methylator,” for
the prediction of 5mC modification sites using the methylated
and non-methylated CpG dinucleotide sequences from various
sources ranging from plants to humans in MethDB database
(Amoreira, 2003). Fang et al. (2006) developed a SVM-based
classifier called “MethCGI” using nucleotide sequence contents
and transcription factor binding sites as features. Compared
with the previous two, the predictor “iDNA-Methyl” (Liu et al.,
2015) constructed by using the trinucleotide composition and
pseudo amino acid components achieved higher success rates.
Recently, a novel computational tool called NanoMod (Liu et al.,
2018) was designed to improve the performance of detecting
candidate positions with DNA modifications. Based on deep
neural networks, a computational approach called DeepCpG
(Angermueller et al., 2017) was developed to predict methylation
states in single cells.

Though the research about the recognition of DNA 5mC
modification sites have had a significant advance in recent years,
but still exist shortness. Compared to increasing massive high-
throughput data, previous studies are of small sample size.
Furthermore, among above-mentioned methods, there are three
webservers developed by the researchers: Methylator, MethCGI,
and iDNA-Methyl, however, only the latter is available but slow,
causingmuch inconvenience to scholars. Most importantly, there
is still no computation tool to identify DNA 5mC modification
sites in promoters to detect the biomarkers of a specific cancer.
Therefore, in the current study, we are devoted to solve these
problems and to develop a tool or software for quickly and
precisely identifying DNA 5mC modification sites in promoters.

MATERIALS AND METHODS

Benchmark Datasets
The construction of the high-quality data sets is an essential
step in the process of establishing the classification model.
In the current study, all the sequence samples were collected
from the database named cancer cell line Encyclopedia (CCLE)
(Barretina et al., 2012; Li et al., 2019), which provided the

location information of gene promoter regions and 5mC
modification sites experimented by reduced representation
bisulfite sequencing (RRBS) (Ghandi et al., 2019) in cell lines of
various cancers. Due to the high incidence rate and mortality
rate of lung cancer, here we focused on the small cell lung
cancer (SCLC) to reveal the distribution of 5mC modification
in promoters.

In accordance with the forward/reverse (±) chain and
5mC modification sites’ positions in promoters, we collected
the sequence samples from the most recent human assembly
GRCh37/hg19 on UCSC Genome Browser. It is noteworthy that
the sample sequence containing 5mCmodification site described
as the base G (guanine) in the reverse chain should convert to the
reverse complementary sequence, compatible with the principle
that the DNA 5mC methylation tends to occur at cytosine (C).
Generally, we considered the base C with the methylation level
greater than zero as the true 5mC modification site, otherwise, as
the false 5mC modification site.

In order to more succinctly describe the promoter sequence
fragment potentially containing 5mC modification site, the
sample sequence can be expressed as

Eδ (C) = E−δE−(δ−1) · · · E−2E−1CE+1E+2 · · · E+(δ−1)E+δ (1)

where the double letter C represents the cytosine; the subscript δ
is an integer, indicating the location of the base in the sequence;
E−δ is the δ -th base upstream from the center and E+δ is the δ

-th base downstream from the center.
The sample sequence thus obtained can be divided into

two categories:

Eδ (C) ∈

{

E−δ (C)

E+δ (C)
(2)

where E−δ (C) represents a false 5mC modification segment with
C at its center, E+δ (C) denotes a true 5mCmodification segment
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TABLE 1 | Distribution of experimental data sets.

Attribute Total Training data Testing data

Positive 69,750 55,800 13,950

Negative 823,576 658,861 164,715

with C at its center, and the symbol ∈ denotes “a member of” in
the set theory.

Therefore, the benchmark dataset can be formulated by

Sδ = S−δ ∪ S+δ (3)

where S−δ denotes the negative subset containing the false 5mC
modification site samples; S+δ , the positive subset containing the

true 5mC modification site samples; and symbol ∪ represents
union in the set theory.

Unbalanced data between the true 5mC modification site
samples and the false 5mC modification site samples could
more objectively reflect the distribution of 5mC modification in
promoters. Therefore, the proportion of positive samples and
negative samples was set to about 1:11 in this study. In order to
reduce the adverse effects of redundancy and homologous bias,
sequences with more than 80% sequence similarity were removed
using CD-HIT software.

Finally, we obtained the benchmark dataset Sδ composed of
893,326 methylation sample sequences in promoter regions, of
which 69,750 sample sequences belong to the positive sample
dataset S+δ and 823,576 sample sequences belong to the negative
sample dataset S−δ . To investigate the stability and robustness of
the prediction model, we randomly selected 80% data in S+δ and
S−δ , respectively, as training set S1 for constructing and training
the prediction model, and remained 20% as independent testing
dataset S2 to test the constructed model (Table 1). These datasets
can be downloaded from the website http://www.jci-bioinfo.cn/
iPromoter-5mC/download.

Extract Features From DNA Sequences
Feature extraction, fusion and selection are the important steps in
machine learning process. Many feature extraction methods for
protein, RNA and DNA sequences, including PseAAC, PseKNC,
PCPs, PCM, PS(k-mer)NP (Zou et al., 2016), have been proposed
to overcome the prediction problem of modification sites. In
the current study, we employed two effective feature extraction
methods (one-hot and DPF) to extract feature directly formDNA
sample sequences.

One-Hot Encoding Method (One-Hot)
One-hot is a simple but effective feature extraction method,
especially for deep learningmodel. The nucleotides A, C, G and T
are denoted as one of the four one-hot vectors [1,0,0,0], [0,1,0,0],
[0,0,1,0], and [0,0,0,1] (Figure 1).

The Deoxynucleotide Property and Frequency (DPF)
Deoxynucleotides are the basic structural and functional units
of DNA, and the sequence generated by deoxynucleotides
determines biological diversity. Therefore, their chemical

FIGURE 1 | An illustration showing the one-hot encoding method.

properties can influence the inherited characteristics of the
DNA sequence to a certain extent. Similar to the encoding
method of RNA sequences used in identifying 4mC sites, the
deoxynucleotide property and frequency (DPF) (Xia et al., 2019;
Xu et al., 2019) is an effective sequence encoding scheme for
computationally identifying 5mC modification sites.

Each of the four deoxynucleotides has a different chemical
property. Given the sample sequence Q represented by Equation
(1), the k-th deoxynucleotide in Equation (1) can be converted
into a three-dimensional vector, as shown in the Equation (4).
Considering that purines have two rings between them and
pyrimidines have only one ring, we added the feature of ring
structure to feature extraction. Since there is an amino group
between A and C, but A keto group between G and T, we
added functional group features to feature extraction. In terms
of the strength of the hydrogen bond between the base pair, the
hydrogen bond between C and G is stronger than the hydrogen
bond between A and T, because A is always paired with T by
two hydrogen bonds, but C is bound to G by three hydrogen
bonds. So we added hydrogen bond features to Q, as shown in
the following expression.

Qk =
(

xk, yk, zk
)

(4)

where xk represents the “ring structure”; yk, the “functional
group”; zk, the “hydrogen bond.”

xk, yk and zk can be formulated by Equation (5):

xk =

{

1 if Qk ∈ {A , G}

0 if Qk ∈ {C , T}

yk =

{

1 if Qk ∈ {A , C}

0 if Qk ∈ {G , T}
(5)

zk =

{

1 if Qk ∈ {A , T}

0 if Qk ∈ {C , G}

In order to extract the sequence position information as much
as possible (Chen et al., 2017), the cumulative frequency
characteristics of deoxynucleotides were adopted:

λk =

∑k
j=1 F

(

Mj

)

k

(

1 ≤ k ≤ 2δ + 1
)

(6)

where k is the length of the sample sequence, λk is the density of
the deoxynucleotideQk along the subsequence from position 1 to
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position k in the sample sequence, and F
(

Mj

)

can be expressed
as below.

F
(

Mj

)

=

{

1 if Mj = Qk

0 otherwise
(7)

Then we obtained a feature vector Eν to represent the k-
th deoxynucleotide in the sample sequence, as shown in the
following formula,

Eν =
(

xk, yk, zk, λk
)

(8)

The chemical properties of deoxynucleotides reveal the intrinsic
relationship between the four different deoxy nucleotides in the
sequence and represent the sequence information as discrete
vectors by means of 0–1 coding. Therefore, by this method, we
represented the sequence with 4 × L-D (dimensional) feature
vector W to represent the sample sequence formulated by
Equation (1),

W =
[

x1y1z1λ1 · · · x2δ+1 y2δ+1 z2δ+1 λ2δ+1

]T
(9)

where the symbol T is the transpose operator.

Feature Fusion
Feature fusion usually joins several kinds of different feature
vectors into an integrated one, which could express the local and
global sequence order information of the given sample sequence.
Therefore, in this study, we not only employed one-hot and

DPF methods, but also took into account their combination.
According with this method, we represented the sequence with
2× 4× L-D (dimensional) feature vector.

Framework of the Integrated Predictor
For imbalance problems existing in positive samples and negative
samples, the down-sampling method was adopted in the current
study. We randomly divided the negative samples from the
training dataset S1 into 11 groups of equal size, one of which
can form the balance training subset by combining with the
positive samples in the same amount. And then, we could obtain
11 sub-models. After converting into a numeric vector by one-
hot, DPF or their combination, a query sequence with the base
C in its center, can be input into 11 sub-models for prediction.
The 11 prediction results thus obtained can be used to generate
the final decision whether the base C is methylated or not
by some judging methods, just like a simple majority vote or
weighted voting method (Figure 2). The integrated predictor
obtained by above-mentioned method was named as iPromoter-
5mC, which can be used to identify the 5mCmodification sites in
promoter sequences.

In this study, a simple deep neural network (DNN) framework
(Islam et al., 2018) was employed to consturcted the prediction
model. The generated feature matrix was fed into the fully
connected neural network for training. The fully connected layer
of DNN contained 64, 128, 256, 128, 64 neurons in turn, and the
activation function was ReLU (Zhuang et al., 2019). For binary
problem, the last layer contained two neurons, and sigmoid

FIGURE 2 | Framework of the integrated predictor.
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was selected as the activation function. To prevent overfitting
and improve model generalization, a dropout layer was added
before the last full connection layer, with a value of 0.3. Five-
fold cross validation was conducted to validate the reliability of
each sub-model.

Evaluation Metrics
K-fold cross-validation method could effectively utilize limited
data, and the evaluation results are as close as possible to the
model’s performance on the test set. Therefore, we used this
method to evaluate the model’s performance (Wei et al., 2018;
Chen et al., 2019a,b; Dao et al., 2019). For single label system,
there are several common evaluation indexes to measure the
predictive performance of the predictor, including Sensitivity
(Sn), Accuracy (Acc), Specificity (Sp) and Matthew’s correlation
coefficient (MCC), which can be defined as following,











































Sn = 1−
N+
−

N+
, 0 ≤ Sn ≤ 1

Sp = 1−
N+
N , 0 ≤ Sp ≤ 1

Acc = 1−
N+
−+N+

N++N
, 0 ≤ Acc ≤ 1

MCC =
1−

(

N+
−+N+
N++N

)

√

(

1+
N+N+

N+

)(

1+
N+
−N+
N

)

, 0 ≤ MCC ≤ 1

(10)

where N+ is the total number of 5mC sites actually containing
in the sample sequences, i.e., the sum of the quantities of true
positive; while N− denotes the total number of non-5mC site
sequences, i.e., the sum of the quantities of true negative; N+

−

represents the number of true 5mC sites predicted incorrectly
as non-5mC sites; N−

+ represents the number of non-5mC sites
predicted incorrectly as true 5mC sites.

In addition, we used the Receiver Operating characteristic
curve (ROC curve) to exam the performance of the entire
integrated predictor model. The true positive rate (Sn) and false
positive rate (1-Sp) were set to x-axis and y-axis to plot the ROC
curve, respectively. The area under the ROC curve, also known
as AUC, was used to quantify the performance of the model.

RESULTS AND CONCLUSIONS

Window Size Analysis
Considering the position specific deoxynucleotide bias, it is
necessary to determine the optimal window size δ of sample
sequences for identifying 5mC modification sites. Generally, if
δ is too small, the residues around the 5mC modification sites
cannot carry enough information, leading to poor prediction
effect (Xu et al., 2019). Thus, we analyzed the trend of the
precision rate of the constructed model with different window
size δ. As shown in Figure 3, the search step size for δ here was
1nt, with a range of 10–20.

According to the intuitive observation in sub-graphs (A), (B),
and (D), when δ = 20, the prediction results generated by the
three different methods were the best. In order to distinguish
the optimal model obtained by using one-hot, DPF and onehot-
DPF, we compared the most important metrics Acc and MCC
values, and found that the feature method with the best effect
was one-hot, as illustrated in sub-graphs (A) and (D). Therefore,

FIGURE 3 | Windows size analysis. Sub-graphs from (A–D) represent the ACC, Sp, Sn, MCC values generated by three different feature coding methods under

different sliding window sizes, respectively.
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the following analysis and calculation were based on δ with
20, indicating the length of the sample sequence formulated by
Equation (1) was 41nt.

FIGURE 4 | The ROC curve of the S1 dataset on our model.

TABLE 2 | The results obtained by 5-fold cross validation on the training dataset

S1.

Method Sn (%) Sp (%) Acc (%) MCC

iPromoter-5mC 87.46 90.39 90.16 0.5743

Performance of DNN Models
According to the description in section “Framework of the
integrated predictor,” we can construct the 11 sub-models based
on the training dataset S1 using one-hot feature extraction
method. A simple majority vote strategy was used to integrate
all the decisions originated from the 11 sub-models into a final
classification result. In the current study, we adopted the strict
discriminating standard for identifying 5mC modification sites.
If only all the sub-models consider that the potential 5mC sites is
a true 5mC modification site, the iPromoter-5mC model could
infer the center of this query sequence is a 5mC modification
site. After 30 repeated experiments with 5-fold cross validation,
we obtained the average values of each metric as the final results
of the iPromoter-5mC model, as shown in Table 2. The results
of the iPromoter-5mC model indicated that the performance
of our models was promising, supported by the metric values,
such as Sn, 87.46%; Sp, 90.39%; Acc, 90.16%; MCC, 0.5743.
To more directly illustrate the performance of the predictor,
a ROC curve was plotted using the training dataset S1, and
its corresponding AUC value was calculated. The high AUC
value (0.9566) indicates that our predictor iPromoter-5mC has
excellent performance and stable performance in predicting the
5mC site (Figure 4).

In order to validate the stability of the DNN algorithm
model, we compared the performance of the DNN models
constructed by one-hot, DPF, and their combination.
All the results were displayed as a histogram directly on
Figure 5. Small discrepancies of every metric value obtained
by the three different methods indicated the superior
stability of the DNN algorithm model to identify the 5mC
modification sites.

FIGURE 5 | Performance of different feature extraction methods for prediction of 5mC sites.
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TABLE 3 | The performance of iPromoter-5mC based on the independent

dataset.

Model number Sn (%) Sp (%) Acc (%) MCC AUC

1 94.48 86.53 87.15 0.5455 0.9543

2 98.32 83.19 84.37 0.5183 0.9542

3 95.88 85.77 86.56 0.5417 0.9545

4 96.97 84.71 85.66 0.5319 0.9533

5 95.49 85.97 86.72 0.5425 0.9539

6 95.59 85.88 86.64 0.5417 0.9542

7 97.84 83.84 84.93 0.5244 0.9531

8 97.94 83.75 84.86 0.5238 0.9535

9 94.24 86.71 87.29 0.5469 0.9539

10 95.98 85.69 86.49 0.5409 0.9542

11 97.53 84.04 85.09 0.5256 0.9545

iPromoter-5mC 87.77 90.42 90.22 0.5771 0.9570

The Robustness and Reliability Analysis
Independent test is an effective approach to check the
performance of the constructed classification model. Compared
with the cross-validation method, it can better verify the
robustness and reliability of the prediction models. In the section
“Benchmark datasets” in this study, we established the training
dataset S1 and independent testing dataset S2. Here, we used the
independent testing dataset S2 to further test the performance of
the predictor iPromoter-5mC. The results were listed in Table 3.

The predictive results of the 11 sub-models using the 5-fold
cross-validation method on the independent test dataset S2 were
very stable at about 95, 83, 85%, 0.52 and 0.95 in Sn, Sp, Acc,
MCC, and AUC, respectively, indicating that the constructed
sub-models are very robust for identifying 5mC modification
sites on new data. After integrating all the decisions originated
from these sub-models, the independent test performance of
this final model were 87.77, 90.42, 90.22%, 0.5771 and 0.9570
in Sn, Sp, Acc, MCC and AUC, respectively. The performance
of the predictor iPromoter-5mC was improved, mainly seen
in the metrics Acc and MCC. This implied that our designed
framework for 5mC modification site prediction is reasonable
and efficient, indicating that this method can be extended
to realize synthetic problems on accurate prediction of other
DNA/RNA modification sites.

To further validate the robustness and reliability of the
prediction framework, we implemented 5-fold cross validation
on the benchmark dataset Sδ including the training dataset S1
and the independent test dataset S2. The results of the ROC curve
shown in Figure 6 showed that the performance generated by the
same prediction framework was still reliable and stable after the
expansion of the training data, which have laid a solid foundation
for establishment of online predictor.

We are also concerned with whether ourmodels are applicable
to the data from other cell line or tissues. To do so, we firstly
constructed the benchmark dataset according to the 5mC site
information in promoter regions of human hepatocarcinoma cell
lines (HUH7_LIVER) from database CCLE. This dataset also
was divided into the training dataset and the independent test

FIGURE 6 | The performance generated by the same prediction framework

was still reliable and stable after the expansion of the training data.

TABLE 4 | The 5-fold cross validation results on the training set and the

independent test set of human hepatocarcinoma cell lines.

Method Sn (%) Sp (%) Acc (%) MCC AUC

iPromoter-5mC

(training)

80.53 95.79 93.73 0.7408 0.9736

iPromoter-5mC

(independent test)

81.22 95.79 93.81 0.7459 0.9735

dataset, which were also released on the GitHub and on our
online server. And then, we constructed the DNN model using
the same method proposed in this study. The results listed in
Table 4 were also promising, indicating that the method using
in this study can also be applied to the prediction of 5mC sites in
other cancer cell lines.

Comparison With Existing Predictor
Compared with the two early predictors Methylator and
MethCGI, the predictor iDNA-Methyl has better prediction
performance, which has been demonstrated in the study
(Liu et al., 2015). And iDNA-Methyl has own webserver
for identifying DNA 5mC sites. Therefore, we compared the
performance of iPromoter-5mC with those of iDNA-Methyl.
For convenience of comparison, the scores of the four indexes
defined in Equation 10 obtained by these two predictors based
on the independent test dataset S2 were listed in Table 5. It
can be observed from the table that the overall accuracy (Acc)
score obtained by the current iPromoter-5mC is significantly
higher than that of the existing predictors, as are the other
three indicators.

We analyzed its causes and presently summarized as follows:
(1) There is the biggest difference between iDNA-Methl
and iPromoter-5mC. From the view of the function, iDNA-
Methl detected the genome-wide methylation while iPromoter-
5mC identified the methylation sites in promoters. (2) Most
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TABLE 5 | Comparison of predictors’ performance on the independent testing dataset S2 and sample data from iDNA-Methyl by 5-fold cross validation, respectively.

Success rates Dataset S2 Sample data from iDNA-Methyl

iPromoter-5mC iDNA-Methyl iPromoter-5mC iDNA-Methyl

Sn (%) 87.77 30.62 83.48 61.25

Sp (%) 90.42 90.30 88.04 90.33

Acc (%) 90.22 85.90 86.56 77.49

MCC 0.5771 0.1730 0.7013 0.5471

FIGURE 7 | Screen shots of the homepage of the iPromoter-5mC web server.

importantly, the sizes of their benchmark dataset are significantly
different. The sample size of iPromoter-5mC is far greater
than iDNA-Methl’s, which enables our model to obtain better
correlation between sequences, causing the phenomenon that
the server iPromoter-5mC can identify the 5mC sites of the
benchmark dataset from iDNA-Methl effectively while iDNA-
Methl cannot. (3) The other reason is that the non-equilibrium
degree of the benchmark datasets from these two predictors is
significantly different. The unbalance ratio of the positive samples

and negative samples from iDNA-Methyl is about 1:2, however,
that of the iPromoter-5mC approximately up to 1:11.

In order to further analyze the performance of these
two predictors, we implemented experiments to obtain
the result by iPromoter-5mC using the sample data from
iDNA-Methyl. And we found that the performance of
iPromoter-5mC was better than that of iDNA-Methyl (Table 5),
which also benefits from a large amount of data during
our training.
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In conclusion, these results indicated that deep learning
was better suited for identify 5mC sites on a large dataset,
compared to SVM. In fact, parameter optimization of SVM
is extremely time-consuming, especially in the case of large
amount of data. The predictor iPromoter-5mC can be an
outstanding supplemental tool for identifying 5mC sites since the
predictor iDNA-Methyl.

Web-Server
A user-friendly web server could provide ease of use for broad
scholars to get their desired predictive results without following
the complex mathematical calculations. To achieve this, we had
developed an online predictor called iPromoter-5mC to identify
the 5mC modification sites in promoters, following the principle
described below.

For a given promoter sequence, a 41 bp scan window was
used to segment the sequence into equal-size sequences. If a DNA
query sequence containing potential 5mCmodifications sites is in
a forward strand, the base C in this DNA sequence will be selected
and considered as the fixed length sequence with 41, otherwise,
the base Gwill be found to construct the input sequence, and then
be converted to the reverse complementary sequence. After that,
users can follow the detailed guide to try out online experience of
our web server iPromoter-5mC.

Step 1. Click the link http://www.jci-bioinfo.cn/iPromoter-
5mC and then the top page of iPromoter-5mC will be shown in
Figure 7.

Step 2. Select the strand where the sequence is located from
the drop-down list box (the default value is the forward strand).

Step 3. Users can submit the file containing multiple
sequences in FASTA format by clicking the submit button.

Step 4. Enter the project name and your e-mail address.
The running results will be sent to you by email after finishing
the work.

CONCLUSIONS

In this study, we designed a fast and effective DNN model,
named iPromoter-5mC, to identify 5mC modification sites in
DNA promoter region in cell lines of the small cell lung cancer.
The robustness and good performance of the model were verified
by feature analysis and various experiments. More importantly,
Due to build an easy to use web server can provide users with
more convenient, we set up an online web server to identify 5mC
modification sites, which can bring great convenience to scholars’

research work. The model mentioned in this paper only targets
cell lines of lung small cell carcinoma, but the basic method and
analysis flow can also be applied to the prediction of 5mC sites of
other cancer cell lines.

Although the model in this study achieved higher predictive
performance, the future is going to be one that presents
many challenges. We are going to continue to study the
predictive problem about DNA 5mC methylation. Firstly, with
the development of single cell sequencing technology, we will
try to accurately predict single-cell DNA 5mC methylation
states using deep learning based on single-cell methylation data.
Secondly, we plan to design a scheme to achieve accurate
classification of DNA 5mC methylation level. Finally, we will
construct machine learning models based on other data in
cell lines of other cancers to better detect the biomarkers of
those cancers.
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N6-methyladenosine (m6A) is the most abundant post-transcriptional modification in
mRNA, and regulates critical biological functions via m6A reader proteins that bind
to m6A-containing transcripts. There exist multiple m6A reader proteins in the human
genome, but their respective binding specificity and functional relevance under different
biological contexts are not yet fully understood due to the limitation of experimental
approaches. An in silico study was devised to unveil the target specificity and regulatory
functions of different m6A readers. We established a support vector machine-based
computational framework to predict the epitranscriptome-wide targets of six m6A reader
proteins (YTHDF1-3, YTHDC1-2, and EIF3A) based on 58 genomic features as well
as the conventional sequence-derived features. Our model achieved an average AUC
of 0.981 and 0.893 under the full-transcript and mature mRNA model, respectively,
marking a substantial improvement in accuracy compared to the sequence encoding
schemes tested. Additionally, the distinct biological characteristics of each individual
m6A reader were explored via the distribution, conservation, Gene Ontology enrichment,
cellular components and molecular functions of their target m6A sites. A web server was
constructed for predicting the putative binding readers of m6A sites to serve the research
community, and is freely accessible at: http://m6areader.rnamd.com.

Keywords: N6-methyladenosine, m6A reader, machine learning (ML), YTH domain, eIF3a

INTRODUCTION

In the exploration of RNA epigenetics, more than 150 types of RNA modification have been
identified (Boccaletto et al., 2018). The methylation of adenosine at the N6 position (m6A) is
the most prevalent post-transcriptional modification in the mRNA (Meyer and Jaffrey, 2017),
which was discovered in a wide range of eukaryotic RNAs (Adams and Cory, 1975) as well
as viral RNAs (Gokhale et al., 2016). m6A was considered as a potential mRNA processing
regulator in 1970s (Desrosiers et al., 1974), and subsequent studies noticed intensive functions
of it (Patil et al., 2018), including cardiac gene expression (Kmietczyk et al., 2019), cell growth,
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neuronal development (Chen J. et al., 2019), stress response
(Engel et al., 2018), translation initiation, and stabilizing
junctional RNA (Liu B. et al., 2018).

Similar to other epigenetic modifications, m6A is thought to be
dynamic and reversible (Song et al., 2019). It can be installed by
methyltransferase (writers) or removed by demethylase (erasers).
This internal modification also attracts specific binding proteins,
namely readers, which bind selectively to m6A-containing
transcripts (Liao et al., 2018). Additionally, m6A performs many
functions through interacting with “reader” proteins (Hazra et al.,
2019). The most widely studied readers are YT521-B homology
(YTH) family of proteins, which possess the evolutionarily
conserved YTH domain that recognizes m6A mark. The YTH
domain consists of 100–150 residues and adopts alpha/beta fold,
with 4–5 alpha helices surrounding a curved six-stranded beta
sheet (Zhang et al., 2010). In human, five m6A readers were
reported to have the YTH domain, namely YTHDF1,2,3 and
YTHDC1,2. However, the YTH domain is not indispensable for
m6A readers, a subunit of translation initiation complex factor
EIF3 complex, called EIF3A, was reported as an m6A reader
lacking YTH domain (Meyer et al., 2015).

The m6A reader YTHDC1 is predominantly found in the
nucleus, while YTHDC2 and YTHDF1,2,3 are cytoplasmic (Patil
et al., 2016). YTHDC1 and YTHDC2 are unrelated to other
members of the YTH family based on amino acid sequence,
size or overall YTH domain organization (Patil et al., 2018). By
contrast, YTHDF family comprises three paralogs, YTHDF1-3,
that share high sequence identity with about 85% of sequence
similarity (Hazra et al., 2019). YTHDC1 and three YTHDF
proteins contain a single C-terminal YTH domain that binds
to m6A marker by a segment rich of proline, glutamate and
aspartate. Compared to other YTH domain-containing proteins,
whose YTH domains are embedded in low complexity regions,
YTHDC2 has a unique multidomain structure (Hazra et al.,
2019). N-terminal R3H domain, central DEAH-box helicase
domain and helicase associated 2 domain are also found in
YTHDC2 apart from the C-terminal YTH domain. Different
from the structures of five YTH domain-containing proteins,
EIF3 is a large multiprotein complex comprising 13 subunits
(Meyer et al., 2015). The EIF3 binding sites are predominantly
mapped at the 5′ untranslated region (5′ UTR) (Lee et al., 2015),
whereas the binding sites of YTH domain-containing proteins are
usually located near the stop codon.

In addition to different cellular locations and structures, m6A
readers appear to function through various post-transcriptional
control mechanisms to regulate RNAs dynamically. Human
YTHDC1 has been demonstrated to participate in RNA splicing
by interacting with serine/arginine splicing factor SRSF3, which
is involved in exon inclusion and exclusion splicing (Ye et al.,
2017). As a putative RNA helicase, YTHDC2 enhances the
translation of target RNAs and reduces the abundance of target
RNAs (Hsu et al., 2017). YTHDF2 is verified to decrease the
stability and control the lifetime of its targeted methylated
mRNA transcripts (Du et al., 2016), while YTHDF1 ensures
efficient protein expression from their shared regions (Wang
et al., 2015). YTHDF3, the third member of YTHDF family,
has been proposed to share common targets (about 60%)

with both YTHDF1 and YTHDF2 (Shi et al., 2017). This
suggests potential coordination in regulating gene expression by
YTHDF family proteins. YTHDF3 can promote the function
of YTHDF1 by interacting with some ribosomal proteins to
facilitate mRNA translation. When associating with YTHDF2,
YTHDF3 could participate in mRNA decay. In addition to the
five members of YTH family, EIF3A plays an important role
in biological processes as well. It can act as both repressor
and activator of cap-dependent transcript-specific translation
through directly binding to m6A marked mRNA sequence
(Lee et al., 2015).

Since the five YTH family proteins (YTHDC1-2 and
YTHDF1-3) and EIF3A present distinctive structures and
properties, it is worth studying the preferential binding sites in
the m6A marked transcripts for each m6A reader.

Single base resolution techniques such as miCLIP (Linder
et al., 2015) are developed and are fairly effective on screening
m6A sites, and it is usually based on the iCLIP or Par-CLIP
approach (Meyer et al., 2015) to identify the binding sites
of each m6A reader. As these wet-lab experiments are costly
and laborious, computational methods may provide a viable
avenue. To date, a large number of RNA methylation sites
have been reported, providing sufficient information for effective
computational prediction. A huge amount of data extracted
from experiments encouraged the establishment of a number
of effective m6A site predictors, including WHISTLE (Chen
K. et al., 2019), SRAMP (Zhou et al., 2016), BERMP (Huang
et al., 2018), and Gene2vec (Zou et al., 2019). However, to
our knowledge, the prediction dedicated to the target specificity
of the readers is absent. In this project, we constructed a
predictor, m6A reader, to distinguish the substrate of each m6A
reader. A comprehensive analysis of these readers was then
performed, including the analysis of distribution, conservation,
GO enrichment, cellular components and molecular functions of
their respective epitranscriptome target sites.

MATERIALS AND METHODS

Collection of m6A Sites and the Target
Sites of m6A Readers
The transcriptome-wide m6A sites were collected from
17 different conditions generated from 6 different
epitranscriptome profiling approaches of base-resolution or
high resolution (Table 1).

In this study, we consider the binding sites of six m6A readers
identified by Par-CLIP or iCLIP approaches. Specifically, a total
of 16,664 m6A sites located on 4,722 different genes reported by
four experiments were considered as the target sites of YTHDC1,
and 1,234 sites on 275 genes identified by two experiments
were considered as the target sites for YTHDC2. For the three
proteins from YTHDF family, three experiments for each reader
proposed 25,597, 28,970, and 7,253 target sites located on 6,714,
6,677, and 3,495 genes for YTHDF1, YTHDF2, and YTHDF3,
respectively. Two CLIP experiments conducted on HEK2937T
cell line discovered 756 sites located in 470 genes on marked RNA
transcripts, which are targeted by EIF3A. The testing datasets
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TABLE 1 | Base-resolution or high resolution datasets of m6A sites.

Dataset Technique Cell line GEO References

S1 miCLIP MOLM13 GSE98623 Vu et al., 2017

S2 HEK293 GSE63753 Linder et al., 2015

S3 HepG2 GSE73405 Meyer et al., 2015

S4 HEK293T GSE122948 Boulias et al., 2019

S5 HepG2 GSE121942 Huang et al., 2019

S6 HCT116 GSE128699 van Tran et al., 2019

S7 m6A-CLIP HeLa GSE86336 Ke et al., 2017

S8 CD8T GSE71154 Ke et al., 2015

S9 A549

S10 MAZTER-seq HEK293T GSE122961 Garcia-Campos
et al., 2019S11 ESC

S12 m6A-REF-seq HEK293 GSE125240 Zhang et al., 2019c

S13 Brain

S14 Kidney

S15 Liver

S16 PA-m6A-seq HeLa GSE54921 Chen K. et al.,
2015a

S17 m6A-seq
(improved
protocol)

A549 GSE54365 Schwartz et al.,
2014

and training datasets are strictly segregated under all conditions.
Detailed information of the target sites of m6A readers analyzed
in this study was summarized in Table 2.

Feature Encoding Scheme and Selection
We considered both the conventional sequence-derived features
and the genome-derived features.

The sequence-derived features were summarized in the iLearn
(Chen Z. et al., 2019; Chen et al., 2020) and BioSeq-Analysis
(Liu, 2019; Liu et al., 2019), which can be divided into six different
classes. Based on their classification, we chose one method from

each class including nucleic acid composition (Lee et al., 2011),
binary encoding method (Wu et al., 2015), position-specific
tendencies of trinucleotide (He et al., 2018), electron-ion
interaction pseudopotentials (He et al., 2019), Autocorrelation
and pseudo k-tupler composition (Liu et al., 2015). Also, the
chemical property combined with nucleic frequency, which is a
popular encoding method in recent years (Bari et al., 2013; Chen
et al., 2016a,b, 2017a; Li et al., 2018), was also used in performance
testing for m6A reader target prediction.

The genomic features shown in previous projects (Chen
K. et al., 2019; Song et al., 2019) are effective in RNA
modification prediction. In order to improve the performance
of the predictor, 58 mammalian genome features belonging to 9
classes were applied. All the features used were generated by the
“GenomicFeatures R/Bioconducter” package using the transcript
annotations hg19 TxDb package (Lawrence et al., 2013). The first
class involves dummy variables indicating whether the adenosine
site overlaps the topological region within the RNA transcript.
The second class specifies the relative position of the adenosine
site on the region, while the third class tells the length of
the target mRNA transcript. Features belonging to the fourth
class measure the nucleotide distances to the splicing junction
and the nearest neighboring site. The fifth and sixth classes
are based on clustering information of modification sites and
scores related to conservation (Siepel et al., 2005; Gulko et al.,
2015), respectively. The last three feature groups describe RNA
secondary structures (Lorenz et al., 2011), genomic properties
and attributes of the genes or transcripts, respectively. More
details of the genomic features considered in our analysis were
presented in Supplementary Table S1.

Feature Selection Technique
With multiple features, the dimension of dataset increases,
leading to overfitting, information redundancy or increased
computational time. To solve this problem, feature selection

TABLE 2 | Target sites of m6A readers identified by Par-CLIP or iCLIP.

Dataset Reader Source Site # Total # Gene # Cell line

D1 YTHDC1 GSE74397 (Roundtree et al., 2017) 482 16,664 4,722 HeLa

D2 GSE58352 (Xu et al., 2014) 2,633

D3 GSE71096 (Xiao et al., 2016) 2,430

D4 GSE78030 (Patil et al., 2016) 12,309 HEK293T

D5 YTHDC2 GSE98085 (Hsu et al., 2017) 1,183 1,234 275 HeLa

D6 GSE78030 (Patil et al., 2016) 131 HEK293T

D7 YTHDF1 GSE63591 (Wang et al., 2015) 4,541 25,597 6,714 HeLa

D8 GSE83438 (Gokhale et al., 2016) 2,527 Huh7

D9 GSE78030 (Patil et al., 2016) 20,694 HEK293T

D10 YTHDF2 GSE49339 (Wang et al., 2014) 22,688 28,970 6,677 HeLa

D11 GSE83438 (Gokhale et al., 2016) 5,147 Huh7

D12 GSE78030 (Patil et al., 2016) 6,280 HEK293T

D13 YTHDF3 GSE86214 (Shi et al., 2017) 2,608 7,253 3,495 HeLa

D14 GSE83438 (Gokhale et al., 2016) 177 Huh7

D15 GSE78030 (Patil et al., 2016) 5,082 HEK293T

D16 EIF3A GSE65004 (Lee et al., 2015) 45 756 470 HEK293T

D17 GSE73405 (Meyer et al., 2015) 731
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is effective in optimizing relevant modeling variables and
improving the accuracy of the constructed models. In this
study, we performed feature selection using F-score technique
(Lin et al., 2014; Dao et al., 2019). Technically, F-score is a
wrapper-type feature selection algorithm, used to measure the
degree of difference between two real-number data sets. For a
given training sample xd, there are n+ positive samples and
n− negative samples. The F-score for the i-th feature can be
calculated as:

Fi =
(x̄(+)

i − x̄i)
2
+ (x̄(−)

i − x̄i)
2

1
n+−1

∑n+
k=1(x̄(+)

d, i − x̄(+)
i )2 + 1

n−−1
∑n+

d=1(x̄(−)
d, i − x̄(−)

i )2

where x̄(+)
i , x̄(−)

i and x̄i denote the average frequency of the
i-th feature in the positive, negative and the whole samples,
respectively; x̄(+)

d, i and x̄(−)
d, i represent the value of the i-th feature

of the d-th sequence in the positive and negative samples,
respectively. A larger F-score value means better predictive ability
of a feature. To demonstrate this relative distinguishing ability
of every genomic feature, the computed F-score values were
rescaled between 0 and 1, and ranked in the descending order.
Referring to this ranking, we used incremental feature selection
(IFS) and SVM method to complete the selection process (Chen
and Lin, 2006; Lin et al., 2014). Specifically, the feature subset
begins with the feature with the highest F-score, and the next
feature subset contains the last feature subset and one next
feature. AUC values of 5-fold cross-validation were obtained for
each feature subset.

Machine Learning Approach and
Performance Evaluation
To reduce the bias in the experiment, especially when selecting
the polyA RNAs during library preparation, we built separate
prediction models using full transcript data and mature mRNA
data, respectively. In the mature mRNA predictor, only m6A sites
located in exon regions are considered.

Since the positive-to-negative ratio of our datasets was highly
unbalanced (1:10), we randomly split the negative data into ten
parts and combined with the positive dataset with 1:1 positive-
to-negative ratio to avoid the unfavorable choice of machine
learning classifiers. Subsequently, 10 models were trained and
the average outcome score was reported as the performance of
the classifier. For each m6A reader, the target sites identified in
different experiments were mixed, and then the predictor was
trained with 80% of the total sites before being evaluated by
the remaining 20% of sites for independent testing. Specifically,
the mature mRNA datasets for YTHDF1-3, YTHDC1-2, EIF3a
have 39577, 44025, 11065, 24312, 1245, and 1200 training data,
and 9895, 11007, 2767, 6078, 311, and 300 testing data. The full
transcript datasets for those m6A readers have 40955, 46352,
11605, 26662, 1970, and 1210 training data, and 10239, 11588,
2901, 6666, 492, and 302 testing data.

Machine learning algorithms have been widely applied in
many fields of biological research such as predicting structural
and functional properties of biological sequences. We applied
Support Vector Machine (SVM) (Chang and Lin, 2011) to

compare encoding schemes and approaches. To identify a
better algorithm for model construction, we compared multiple
machine learning algorithms including SVM, Logistic Regression
(LR), Random Forest (RF), and XGBoost.

To validate the model performance, besides 5-fold cross-
validation, we also applied the cross-sample test, in which the
sites reported from one sample (or condition) were reserved for
testing purpose and the sites reported in all other samples (or
conditions) were used for training. This testing mode directly
evaluates the capability of the prediction approach to detect
reader-specific target sites under a single biological condition not
profiled previously. Besides, four commonly used performance
metrics are used for performance evaluation, including Area
under the ROC Curve (AUC) (Bradley, 1997), Precision-Recall
Curve (PR AUC) (Keilwagen et al., 2014), accuracy (Acc) (Jin and
Ling, 2005) and Mathew’s correlation coefficient (MCC) (Powers,
2008). The formula of Acc and MCC are as follows:

Acc =
TP + TN

TP + FN + TN + FP

MCC =
TP × TN − FP × FN

√
(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)

where TP is the number of true positives, TN the number of true
negatives, FP the number of false positives and FN the number of
false negatives.

Model construction and performance evaluation were
conducted in R (Version 3.6.3). Machine learning algorithms
were supported by caret package (Kuhn, 2020).

RESULTS AND DISCUSSION

Feature Selection
Due to the high reliability and effectiveness in reflecting intrinsic
relation to the targets, sequence-derived features have been
widely used and achieved high accuracy in extensive researches
focusing on the m6A site prediction. However, genome-derived
features have been discovering and currently showing a new
perspective in feature extraction (Zhou et al., 2016; Chen
et al., 2017a). Here, we extracted genome features from 41 bp
sequence data. We employed WHISTLE approach to combine
both sequence-derived features and genome-derived features
to predict the target specificity of m6A readers. To increase
robustness and reduce overfitting of the predicter, feature
selection was performed, where those most relevant features to
the targets were identified.

Initially, all the genomic features were normalized to ensure
the equal contribution of each feature. Then the F-score method
was applied to allow all features to be ranked accordingly.
Combining IFS and SVM, AUC value of 5-fold cross-validation
were obtained for each feature subset. By examining AUC
scores, the best performance was achieved by the optimal
feature subset. The detailed feature selection results were
summarized in Supplementary Figures S1–S6 for YTHDF1-3,
YTHDC1-2 and EIF3A under both the full transcript and
mature mRNA transcript, respectively. For example, it can
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TABLE 3 | Target prediction performance under cross-condition test.

Mode Method YTHDC1 YTHDC2 YTHDF1 YTHDF2 YTHDF3 EIF3A Average

Full transcript model m6A reader 0.974 0.920 0.983 0.983 0.992 1.000 0.975

Composition 0.769 0.713 0.773 0.778 0.782 0.893 0.785

MethyRNA 0.763 0.611 0.795 0.794 0.787 0.849 0.767

EIIP 0.770 0.713 0.768 0.778 0.782 0.894 0.784

PseKNC 0.733 0.643 0.743 0.755 0.753 0.852 0.747

AutoCo 0.651 0.586 0.673 0.684 0.737 0.835 0.694

PSNP 0.777 0.654 0.816 0.816 0.894 0.869 0.804

onehot 0.750 0.603 0.796 0.795 0.791 0.858 0.766

Mature mRNA model m6A reader 0.815 0.730 0.983 0.839 0.883 0.987 0.873

Composition 0.660 0.503 0.773 0.667 0.707 0.872 0.697

MethyRNA 0.659 0.631 0.795 0.695 0.733 0.833 0.724

EIIP 0.670 0.504 0.768 0.667 0.727 0.871 0.701

PseKNC 0.635 0.593 0.743 0.630 0.706 0.837 0.691

AutoCo 0.527 0.556 0.673 0.559 0.688 0.820 0.637

PSNP 0.703 0.675 0.816 0.754 0.858 0.870 0.779

onehot 0.662 0.622 0.796 0.696 0.757 0.836 0.728

In this test, the sites generated from each sample were used for independent testing, while all other samples were used for training, so the training sites and the test sites
were not reported from the same condition. This is often the real scenario of interest where models are constructed to predict target sites under a new biological context.
See Supplementary Tables S2–S6 for more detailed results.

be observed in Supplementary Figure S6A that, the best
performance of EIF3A target prediction was achieved with
the top 44 features for the mature mRNA model. Therefore,
only the top 44 features were used ultimately to build the
mature mRNA prediction models for EIF3A target prediction.
Likewise, feature selection in target prediction was conducted for
every other reader, and the predictors were constructed in the
same way.

Performance Based on Different
Features
With the nucleotide encoding methods based on chemical
properties, extensive studies have achieved high accuracy in the
m6A site prediction. However, for the first time, we explored and
compared different sequence encoding schemes for predicting
the target specificity of m6A-binding proteins.

For each m6A reader, the target sites identified in different
experiments were mixed, and then the predictor was trained with
80% of the total sites before being evaluated by the remaining
20% of sites for independent testing. As a comparison, the
performance of 5-fold cross-validation on the training data was
also reported. As shown in Supplementary Table S7, m6A reader
achieved AUC scores of 0.981 and 0.893 in independent testing
under the full transcript and mature mRNA models, respectively.
This performance is substantially better than other approaches
that did not take advantage of genome-derived features.

Subsequently, we evaluated the capability of the proposed
method in identifying the reader-specific target m6A sites under
different biological contexts. In this test, the sites generated
from each sample were used for independent testing, while
all other samples were used for training, so the training
sites and the test sites were not reported from the same
condition. This is often the real scenario of interest where

models are constructed to predict target sites in a new biological
context. Besides this cross-condition test, the results of 5-
fold cross-validation on the training data were also presented.
The detailed evaluation results on every individual sample
for every reader are shown in Supplementary Tables S2–
S6, with a summary of the cross-condition tests presented
in Table 3. It can be seen that our approach achieved a
high accuracy with AUC scores of 0.975 and 0.873 under full
transcript and mature mRNA models in the cross-condition
test. The performance is again substantially better than the
competing methods.

Detect Potential Substrate of m6A
Readers
In order to further confirm the reliability and efficiency of our
predictors, we used our predictors to detect m6A reader binding
sites on the unidentified regions. As expected, all m6A readers

FIGURE 1 | Potential substrate of m6A readers.
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bind to more than 20% m6A sites, while they bind to less than
10% unmethylated motifs as shown in Figure 1. The binding
preference is significant and reasonable, which demonstrated
the high discrimination ability of our predictors. Moreover,
we compared the previous binding sites of YTHDF family
(Figure 2A) and the prediction result of them on unidentified
regions (Figure 2B). The wet-lab and prediction result shows
that readers in YTHDF family have both common and distinct
binding sites, suggesting that the binding sites of YTHDF
proteins are not exactly identical. This is not consistent with the
conclusion in the previous study that YTHDF proteins bind to
identical sites on all m6A mRNAs (Zaccara and Jaffrey, 2020).
Our result suggests that YTHDF family proteins have similar
functions of mediating degradation of m6A mRNAs, and they
also have different functions in mRNA regulation simultaneously.
This result is consistent with our GO enrichment analysis, and

also partially supports that m6A readers’ effect on downstream
processes are much more heterogeneous and context-dependent
across transcripts (Zhang et al., 2020). The predicted probabilities
for the targeting of each m6A reader are provided on the
download page of the website1.

Model Comparison
To discover a better machine learning algorithm for our proposed
models, we compared the performance of SVM, LR, RF, and
XGBoost on mature mRNA and full transcript data for the
prediction of target specificity of six m6A readers. In general,
the performances of different machine learning algorithms are
all very high (>0.8 for mature mRNA models and >0.9 for
full transcript models) and have little difference among them as

1http://m6Areader.rnamd.com

FIGURE 2 | Substrate overlap between YTHDF family.

FIGURE 3 | Distribution of m6A readers binding sites on mRNAs. (A) Distribution of the binding sites of YTHDC1, YTHDC2, YTHDF1, YTHDF2, and YTHDF3 on
mRNAs. (B) Distribution of the binding sites of EIF3A on mRNAs. The figures were plotted using the Guitar R/Bioconductor package (Cui et al., 2016).
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shown in Supplementary Table S8. Therefore, we decided to use
SVM classifier for the predictors.

Characterizing the Target Specificity of
m6A Readers
Our result suggests that the substrates of m6A readers can be
classified, reflecting the distinct biological characteristics of each
m6A reader. We thus explored the distribution, conservation, and
functional relevance of the substrates of each m6A reader.

Here, we firstly examined the distribution of binding sites
for each reader (Figure 3). High enrichment of YTHDC1 is
observed around stop codons and CDSs. However, it can be
noticed that the binding abundance of YTHDC1 is relatively
lower than members of YTHDF family in stop codons, while it
is highly enriched in CDSs. This is consistent with the fact that
YTHDC1 is not only targeting to m6A sites at its C terminus

but also directly interacting with pre-mRNA splicing factor
SRSF3 or SRSF10, which prefers to reside on the upper stream
of m6A sites (Roundtree et al., 2017). The spatial association
among those proteins implicates the process of recruiting pre-
mRNA splicing factors and inducing mRNA splicing outcomes.
Surprisingly, YTHDC2 targets are more enriched in CDSs near
stop codons than in 3′ UTR, suggesting that YTHDC2 is distinct
from other m6A readers. As YTHDC2 is reported to be the
largest protein (∼160 kDa) among all YTH family members and
with numerous RNA binding domains (e.g., helicase domain and
two Ankyrin repeats, Hsu et al., 2017) apart from YTH domain,
besides its acknowledged functions of accelerating translation
and degradation of mRNAs as an m6A reader, it is possible
that there are potential underlying functions independent from
m6A-binding remained to be discovered. For instance, the recent
study indicated that YTHDC2 as an RNA induced ATPase moves
along the RNA from 3′ to 5′ with helicase activity, and interacts

FIGURE 4 | Conservation analysis of the m6A sites targeted by different readers. (A) Average phastCons; (B) High conservation ratio; (C) Frequency of miRNA
binding site among the targets of six m6A readers; (D) Frequency of RBP binding site among the targets of six m6A readers.
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with 5′ to 3′ exoribonuclease XRN1 mediated by two Ankyrin
repeats (ANK) on YTHDC2 (Wojtas et al., 2017). Remarkably,
YTHDF family shows a similar binding distribution in CDSs
and 3′ UTRs with peaks at around stop codons of mRNAs.
A similar pattern of results was obtained in previous studies
suggesting that YTHDFs directly interplay among one another to
collaboratively regulate translation and decay of targeted mRNAs
in the cytoplasm (Shi et al., 2017). The binding sites of EIF3A are
uniquely enriched at 5′UTRs. This is directly in line with previous
findings that the HLH motif of EIF3A interacts predominantly
with the m6A residues on the 5′UTR, and EIF3A specifically
functions to promote cap-independent translation under diverse
cellular stresses.

We then compared the conservation of all m6A readers by
phastCons score and high conservation ratio (>0.5). As seen in
Figures 4A,B, the m6A sites (targeted or not targeted by the
studied six readers) are more conservative than unmethylated
m6A motifs (DRACH). This suggests that m6A sites and the m6A
reader binding sites are more evolutionarily conserved at the
gene level, and the occurrence of m6A should be considered of
functional importance and maintained under selection pressure.
Moreover, the YTH family is more conserved compared with
other regulation components, which is similar to the finding that
YT521-B homology (YTH) RNA-binding domain in eukaryotes
is known to be highly conserved with essential Lys-364, Trp-380,
and Arg-478 (Zhang et al., 2010). Additionally, as shown in

FIGURE 5 | Gene ontology (GO) enrichment analysis for each reader’s substrates. The top 10 GO functions related to each m6A readers are presented.
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Figure 4C, compared with EIF3a binding sites and unmethylated
sites which are mostly not in 3′ UTR, targets of other m6A readers
and other untargeted m6A sites are more correlated with the
miRNA binding sites. This result agrees well with existing studies
investigated that miRNA targets are more enriched in 3′ UTR
and m6A peaks prior to the present of miRNA binding for a
majority of the time, suggesting that m6A modification functions
to enhance initiation of miRNA biogenesis (Meyer et al., 2012;
Alarcón et al., 2015). And the relative low overlapping rate
between YTHDC2 binding sites and miRNA binding sites could
be explained by multiple RNA-binding domains of YTHDC2.
Furthermore, the proportions of overlapping of RNA-binding
proteins (RBPs) and each m6A reader’s binding site are calculated.
Figure 4D shows that RBPs binding regions overlap with m6A
reader binding sites in mRNA more than the other m6A
sites, while there are even fewer overlapping regions with
unmethylated sites. This is consistent with our knowledge that
some RBPs are essential in post-transcriptional control of RNAs
including splicing, stabilization, localization and translation of
mRNA. In the process of regulating transcription and translation,
m6A readers may recruit large numbers of regulators or factors
to their targeted RNAs so as to functionally regulate biological
processes (Shi et al., 2017).

To explore the association among m6A modification, readers
and biological functions, the gene ontology (GO) enrichment
analysis was conducted to measure the biological functions of
substrates of each reader using DAVID websites (Huang da et al.,
2009). The resulting top 10 GO functions related to each m6A
readers were illustrated in Figure 5. Interestingly, YTHDC1 is
involved in mRNA splicing, mRNA processing and nuclear-
transcribed mRNA catabolic process, which is consistent with
our understanding of its role of mediating nuclear to cytoplasmic
export of nascent m6A-containing mRNAs (Roundtree et al.,
2017). The targeting of YTHDC2, shown to accelerate the
degradation of mRNA and enhance translation efficiency
(Hsu et al., 2017), are more related to nonsense-mediated decay,
protein stabilization and translational initiation. YTHDF1 targets
are enriched under the GO terms of nuclear-transcribed mRNA
catabolic process and translation initiation (Wang et al., 2015),
suggesting its function in selectively recruiting of ribosomes
and facilitating translation. YTHDF2 and YTHDF3 targets are
both associated with proteasome-mediated ubiquitin-dependent
protein catabolic process, which corresponds to our knowledge
of their regulation in the metabolism of cytosolic m6A-modified
mRNAs (Wang et al., 2014; Shi et al., 2017). EIF3A, reported to
serve as a driver of specialized translation (Lee et al., 2015), is
enriched with gene expression, translation and SRP-dependent
co-translational protein targeting to the membrane. Moreover,
as summarized in Supplementary Figure S7, six m6A readers
show high enrichment in cytosol, cytoplasm, and membrane.
Five of them (YTHDC1, YTHDF1-3, and EIF3a) are enriched
in nucleus and nucleoplasm. While YTHDC2 is more enriched
in extracellular exosome, extracellular matrix and myelin sheath
instead of nucleus or nucleoplasm. All six proteins are enriched in
the function of protein binding and poly(A) RNA binding, while
they each have other specialized functions. This is consistent
with analysis above on the enrichment of biological process and

previous relevant literature. All gene ontology enrichment results
were shown in Supplementary Table S9.

Additionally, we further confirmed the biological meanings
of the substrates of all m6A readers. Based on the results of
previous GO enrichment analysis (Chen K. et al., 2018), the most
significant p-values of top 10 terms treated with the negative
logarithm were firstly added up, and then those computed results
of identified targets were compared with those of randomly
selected substrates. With the bootstrap sampling approach,
substrates were randomly selected and analyzed for 100 times
before the results were summarized as proportions and displayed
in pie charts. Conceivably, if our results achieved on real data
are more biologically meaningful than random permutation, it
is possible that our analysis reliably unveiled the true biological
functions. Specifically, there are 88, 100, 73, 68, 80, and 100%
chances for each reader to be more enriched in biological
functions than random permutation as illustrated in Figure 6,
suggesting high possibility that our functional prediction for each
individual reader is statistically meaningful.

Web Sever for m6A Reader
A web server with a friendly graphical user interface (Figure 7)
was constructed to properly share the predictive models we
constructed for predicting target specificity of the m6A readers.
Users may upload the genome ranges in BED format to the
website, and a notification email will be sent to the given email
address once the job is finished.

FIGURE 6 | Comparing detection of m6A readers’ targets based on biological
significance. The most significant p-values of top 10 GO terms treated with
negative logarithm were added up, and those results of identified targets were
compared with those of randomly selected substrates. With the bootstrap
sampling approach, substrates were randomly selected and analyzed for 100
times before the results were summarized as proportions and displayed in pie
charts.
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FIGURE 7 | m6A reader web server. The web server takes genome ranges in BED format as the input, and supports prediction for the target sites of six m6A readers
(YTHDC1, YTHDC2, YTHDF1, YTHDF2 and YTHDF3 and EIF3A). All the materials used in the project, including the training data and codes, are also available on the
website.

CONCLUSION

With the great breakthroughs made in RNA modification-
mediated regulation of gene expression, studies of emerging
transcriptome modifications have driven rapid development
of the high-throughput sequencing technologies. With the aid
of the invention of m6A-seq (Dominissini et al., 2012) and
MeRIP-seq (Meyer et al., 2012), transcriptome-wide profiling of
m6A is now possible. Based on comprehensive high-throughput
sequencing data, MeT-DB (Liu H. et al., 2018) and RMBase (Xuan
et al., 2018) were established, providing the site information
of RNA modifications. Subsequently, single-based technologies
such as m6A-CLIP (Ke et al., 2015) and miCLIP (Linder
et al., 2015) were also developed to precisely identify the
positions of m6A. Complementary to experimental methods,
well-established computational models facilitate the analysis
of sequencing data and address the challenges presented in
the bioinformatics community by predicting potential RNA
methylation sites. The exomePeak R/Bioconductor package
(Meng et al., 2013, 2014), MACS algorithm (Zhang et al.,
2008) and DRME software (Liu et al., 2016) were introduced
to analyze epitranscriptome profiling data, which improved
our understanding of RNA methylation. Sequence-based site
prediction models such as iRNA(m6A)-PseDNC (Chen W. et al.,
2018) and iRNAMethyl (Chen et al., 2015b) applied statistical
methods, whereas m6Apred (Chen et al., 2015c), RAM-ESVM

(Chen et al., 2017b), and RNAMethPre (Xiang et al., 2016)
integrated machine learning approaches, predicting m6A sites
in different species’ transcriptome. Furthermore, potential RNA
methylation-disease associations have been revealed by m6Avar
(Zheng et al., 2018) and m6ASNP (Jiang et al., 2018). With
a similar purpose, heterogeneous networks have been used in
DRUM (Tang et al., 2019), FunDMDeep-m6A (Zhang et al.,
2019b) and Deepm6A (Zhang et al., 2019a), showing a new
perspective in studying disease-associated RNA methylation.

In this study, we constructed SVM-based models for the
prediction of target specificity of m6A readers (YTHDC1,
YTHDC2, YTHDF1, YTHDF2, YTHDF3, and EIF3A). The
proposed models rely on 58 genomic features integrated with the
sequence features related to chemical properties. After feature
selection using the F-score method, those models achieved
high prediction performance in 5-fold cross-validation and
independent testing. Additionally, we compared the performance
of different sequence encoding schemes on each reader’s substrate
prediction. As existing m6A base-resolution data suffer from
the bias of polyA selection, mature mRNA model was also
considered besides the full transcript model. Moreover, we
compared different machine learning algorithms and showed
that four algorithms all demonstrate high performance with
little difference in the prediction of target specificity of m6A
readers. We eventually decided to use SVM classifier for
our predictors.
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It is also worth mentioning that our comprehensive analysis
of m6A readers revealed potential regulatory patterns and
biological relationships. We showed that m6A reader binding
sites on mRNAs were concentrated in CDSs and 3′ UTR near
stop codons, which is in line with m6A localization. Although
distribution analysis of m6A readers has been conducted in
previous studies and suggested similar binding patterns (Xu
et al., 2014; Wang et al., 2015; Hsu et al., 2017), the results we
presented were substantially enhanced with the incorporation
of multiple datasets. Our result shed lights on the post-
transcriptional and translational functions of m6A readers on
m6A-containing mRNAs with more reliable evidence. Moreover,
computed phastCons score and conservation ratio revealed a
high conservation of the target sites of m6A readers, suggesting
that they are possibly playing necessary or essential roles in
regulating m6A-containing mRNAs. This is remarkable since
we focused on the conservation of binding sites of m6A
readers on mRNAs, rather than the conservation of m6A motifs
itself as widely studied currently (Meyer et al., 2012), thus
the biologically meaningful relationship between m6A readers
and m6A modifications was confirmed. Besides, different from
enrichment analysis alone in previous studies (Hsu et al.,
2017), we not only unveiled functional relevance through the
enrichment of the targets of m6A readers in biological process,
cellular components and molecular functions by GO analysis,
but also confirmed that reader-regulated sites are more likely
to be biologically significant than randomly selected sites. The
combination of statistical analysis and GO analysis ensures
the robust detection and critical evaluation of the biological
functions with a higher degree of confidence. Furthermore,
our GO enrichment analysis result is also consistent with the
wet-lab experiment and our prediction on unidentified regions
that YTHDF proteins have both similar functions and different
functions in the m6A mRNA regulation. This supports the
conclusion made in previous study that m6A readers’ effect
on downstream processes are much more heterogeneous and
context-dependent across transcripts (Zhang et al., 2020).

However, this study has a number of limitations that could
be improved in the future. Firstly, it has been argued that
4SU PAR-CLIP suffers from U-bias in contrast with UV-254
crosslinking or 6SG crosslinking (Ascano et al., 2012), thus
other CLIP techniques are recommended to ensure crosslinking
efficiency. Secondly, although data from different experiments
were combined to build the predictors and 5-fold cross-validation
was used to balance the bias-variance tradeoff, data of YTHDC2
and EIF3A substrates are still limited, which may make overfitting
of the models possible. Thus, the analysis and prediction will
benefit from other data from wet experiments in the future.
Thirdly, as genome-derived features improved the performance

of predictors dramatically, this suggests that genomic features
carry important characteristics of biological data. Considering
only 58 of them were involved in the feature selection procedure,
it is worth exploring more genomic features so as to allow more
effective features to be selected and reduce the bias as much as
possible. In the future, it is expected to see the expanded studies of
the enzyme target specificity and functional associations of other
RNA modifications, such as m1A and Pseudouridine, on other
types of RNAs, such as lncRNA and snRNAs, and in other species,
such as mouse and yeast. Additional studies are clearly needed
to investigate RNA-sequence-dependent m6A readers other than
YTH domain-containing proteins such as FMR1 (Edupuganti
et al., 2017). And it could be quite interesting to explore disease-
associated RNA modification based on cellular binding patterns
of regulatory proteins on modified RNAs.
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As a novel type of post-translational modification, lysine 2-Hydroxyisobutyrylation (Khib)
plays an important role in gene transcription and signal transduction. In order to
understand its regulatory mechanism, the essential step is the recognition of Khib sites.
Thousands of Khib sites have been experimentally verified across five different species.
However, there are only a couple traditional machine-learning algorithms developed
to predict Khib sites for limited species, lacking a general prediction algorithm. We
constructed a deep-learning algorithm based on convolutional neural network with the
one-hot encoding approach, dubbed CNNOH. It performs favorably to the traditional
machine-learning models and other deep-learning models across different species, in
terms of cross-validation and independent test. The area under the ROC curve (AUC)
values for CNNOH ranged from 0.82 to 0.87 for different organisms, which is superior
to the currently available Khib predictors. Moreover, we developed the general model
based on the integrated data from multiple species and it showed great universality
and effectiveness with the AUC values in the range of 0.79–0.87. Accordingly, we
constructed the on-line prediction tool dubbed DeepKhib for easily identifying Khib sites,
which includes both species-specific and general models. DeepKhib is available at
http://www.bioinfogo.org/DeepKhib.

Keywords: post-translational modification, lysine 2-hydroxyisobutyrylation, deep learning, modification site
prediction, machine learning

INTRODUCTION

Protein post-translational modification (PTM) is a key mechanism to regulate cellular functions
through covalent modification and enzyme modification, which dynamically regulates a variety of
biological events (Beltrao et al., 2013; Skelly et al., 2016). Recently, an evolutionarily conserved
short-chain lysine acylation modification dubbed lysine 2-hydroxyisobutylation (Khib) has been
reported, which introduces a steric bulk with a mass shift of+86.03 Da (Supplementary Figure 1A)
and neutralize the positive charge of lysine (Dai et al., 2014; Xiao et al., 2015). It involves various
biological functions including biosynthesis of amino acids, starch biosynthesis, carbon metabolism,
glycolysis / gluconeogenesis and transcription (Dai et al., 2014; Huang et al., 2017, 2018a; Li et al.,
2017; Meng et al., 2017; Yu et al., 2017; Wu et al., 2018; Yin et al., 2019). For instance, the decrease
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of this modification on K281 of glycolytic enzyme ENO1 reduces
its catalytic activity (Huang et al., 2018b). The three-dimension
structure of the peptide containing K281 in the center was shown
as Supplementary Figure 1B.

Thousands of Khib sites have been identified in different
species including humans, plants and prokaryotes through
large-scale experimental approaches (Dai et al., 2014; Huang
et al., 2018a), which is summarized in Supplementary Table 1.
The experimental methods, however, are time-consuming and
expensive and thus the development of prediction algorithms
in silico is necessary for the high-throughput recognition
of Khib sites. Two classifiers (i.e., iLys-Khib and Khibpred)
have been reported for predicting the Khib sites in a few
species (Ju and Wang, 2019; Wang et al., 2020). As many
different organisms have been investigated and the number
of Khib sites has increased, it is indispensable to compare
the characteristics of this modification in different species and
investigate whether it is suitable to develop a general model with
high confidence. Additionally, the reported models were based
on traditional machine-learning (ML) algorithms (e.g., Random
Forest (RF)). Recently, the deep learning (DL) algorithms, as the
modern ML architecture, have demonstrated superior prediction
performance in the field of bioinformatics, such as the prediction
of modification sites on DNA, RNA and proteins (Wang et al.,
2017; Huang et al., 2018c; Long et al., 2018; Tahir et al., 2019;
Tian et al., 2019). We have developed a few DL approaches for the
prediction of PTM sites and they all demonstrate their superiority
over conventional ML algorithms (Chen et al., 2018a, 2019; Zhao
et al., 2020). Therefore, we attempted to compare the DL models
with the traditional ML models for the prediction of Khib sites.

In this study, we constructed a convolutional neural network
(CNN)-based architecture with one-hot encoding approach,
named as CNNOH . This model performed favorably to the
traditional ML models and other DL models across different
species, in terms of cross-validation and independent test. It is
also superior to the documented Khib predictors. Furthermore,
we constructed a general model based on the integrated data
from multiple species and it demonstrated great generality and
effectiveness. Finally, we shared both species-specific models and
the general model as the on-line prediction tool DeepKhib for
easily identifying Khib sites.

MATERIALS AND METHODS

Dataset Collection
The experimentally identified Khib sites from five different
organisms including Homo sapiens (human), Oryza sativa (rice),
Physcomitrella patens (moss) and two one-celled eukaryotes
Toxoplasma gondii and Saccharomyces cerevisiae. The data
of the species were pre-processed and the related procedure
was exemplified using the human data, as listed below
(Supplementary Figure 2).

We collected 12,166 Khib sites from 3,055 human proteins
(Wu et al., 2018). These proteins were classified into 2,466
clusters using CD-HIT with the threshold of 40% according to
the previous studies (Li and Godzik, 2006; Huang et al., 2010).

In each cluster, the protein with the most Khib sites was selected
as the representative of the cluster. On the 2,466 representatives,
9,473 Khib sites were considered positives whereas the remaining
K sites were taken as negatives. We further estimated the potential
redundancy of the positive sites by extracting the peptide segment
of seven residues with the Khib site in the center and count
the number of unique segments (Chen et al., 2018a; Xie et al.,
2018). The number (9,444) of the unique segments is 99.7%
of the total segments, suggesting considerable diversity of the
positive segments. The number of the negative sites (103,987)
is 11 times larger than that of the positive sites. To avoid
the potential impact of biased data on model construction, we
referred to previous studies and balanced positives and negatives
by randomly selecting the same number of negative sites (Huang
et al., 2018c; Tahir et al., 2019). These positives and negatives
composed the whole human dataset.

To determine the optimal sequence window for model
construction, we tested different sequence window sizes ranging
from 21 to 41, referring to the previous PTM studies where
the optimal window sizes are between 31 and 39 (Wang et al.,
2017; Chen et al., 2018a; Huang et al., 2018b). The window
size of 37 corresponded to the largest area under the ROC
curve (AUC) through 10-fold cross-validation (Supplementary
Figure 3) and was therefore selected in this study. It should
be noted that if the central lysine residue is located near the
N-terminus or C-terminus of the protein sequence, the symbol
"X" is added at the related terminus to ensure the same window
size of the sequences.

Figure 1 showed the flowcharts for all the species. The dataset
of each species was randomly separated into five groups of which
four were used for 10-fold cross-validation and the rest for
independent test. Each group contained the same number of
positives and negatives. Specifically, the cross-validation datasets
included 15,156/15,464/10,204/12,354 samples for H. sapiens/T.
gondii/O. sativa/P. patens, respectively. Accordingly, the
independent test sets comprised 3,790/3,866/2,552/3,090 samples
for these organisms, separately. These datasets are available at
http://www.bioinfogo.org/DeepKhib.

Feature Encodings
The ZSCALE Encoding
Each amino acid is characterized by five physiochemical
descriptor variables (Sandberg et al., 1998; Chen et al., 2012).

The Encoding of Extended Amino Acid Composition
(EAAC) Encoding
The EAAC encoding is based on the calculation of the amino acid
composition (AAC) that indicates the amino acid frequencies
for every position in the sequence window. EAAC is calculated
by continuously sliding using a fixed-length sequence window
(the default is 5) from the N-terminus to the C-terminus of each
peptide (Chen et al., 2018b). The related formula is listed below:

f (t,win) =
N (t,win)
N (win)

, t ∈ {A,C,D, · · · , Y} ,

win ∈
{
window1,window2, · · · ,window37

}
(1)
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FIGURE 1 | The flowchart of dataset process for H. sapiens (A), P. patens (B), O. sativa (C), T. gondii (D), and S. cerevisiae (E). All the datasets were separated into
cross-validation and independent test datasets except the S. cerevisiae dataset.

where N (t, win) is the number of amino acid t in the sliding
window win, and N(win) is the size of the sliding window win.

The Enhanced Grouped Amino Acids Content
(EGAAC) Encoding
The EGAAC feature (Zhao et al., 2020) is developed based on
the grouped amino acids content (GAAC) feature (Chen et al.,
2018b, 2020). In the GAAC feature, the 20 amino acid types are
categorized into five groups (g1: GAVLMI, g2: FYW, g3: KRH,
g4: DE and g5: STCPNQ) according to their physicochemical
properties and the frequencies of the groups are calculated for
every position in the sequence window. For the EGAAC feature,
the GAAC values are calculated in the window of fixed length
(the default as 5) continuously sliding from the N- to C-terminal
of each peptide sequence.

The One-Hot Encoding
The one-hot encoding is represented by the conversion of the
20 types of amino acids to 20 binary bits. By considering the

complemented symbol “X,” a vector of size (20+1) bits is used to
represent a single position in the peptide sequence. For example,
the amino acid “A” is represented by “100000000000000000000,”
“Y” is represented by “000000000000000000010,” and the symbol
“X” is represented by “000000000000000000001.”

Architecture of the Machine-Learning
Models
The CNN Model With One-Hot Encoding
The CNN algorithm (Fukushima, 1980) decomposes an
overall pattern into many sub-patterns (features) through a
neurocognitive machine, and then enters the hierarchically
connected feature plane for processing. The architecture of
the CNN model with one-hot encoding (called as CNNOH)
contained four layers as follows (Figure 2A).

(i) The first layer was the input layer where peptide
sequences were represented using the one-hot
encoding approach.
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FIGURE 2 | The deep-learning architectures for CNNOH (A), CNNWE (B), and GRUWE (C).
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TABLE 1 | Performances comparison of the different classifiers for human Khib prediction.

Classifier Sn Sp Acc MCC AUC

10-fold cross-validation RFEGAAC 0.727 ± 0.015 0.682 ± 0.017 0.704 ± 0.011 0.409 ± 0.022 0.775 ± 0.011

RFEAAC 0.744 ± 0.025 0.645 ± 0.023 0.695 ± 0.010 0.391 ± 0.020 0.763 ± 0.008

RFZSCALE 0.681 ± 0.016 0.662 ± 0.018 0.672 ± 0.011 0.344 ± 0.023 0.740 ± 0.014

RFEGAAC+EAAC 0.748 ± 0.019 0.691 ± 0.023 0.719 ± 0.012 0.439 ± 0.025 0.789 ± 0.011

RFEGAAC+ZSCALE 0.726 ± 0.019 0.707 ± 0.015 0.716 ± 0.012 0.433 ± 0.025 0.794 ± 0.010

RFEGAAC+EAAC+ZSCALE 0.751 ± 0.016 0.702 ± 0.022 0.727 ± 0.013 0.454 ± 0.026 0.802 ± 0.010

GRUWE 0.821 ± 0.024 0.683 ± 0.033 0.752 ± 0.009 0.509 ± 0.018 0.830 ± 0.007

CNNWE 0.849 ± 0.035 0.722 ± 0.042 0.786 ± 0.007 0.578 ± 0.012 0.867 ± 0.005

CNNOH 0.876 ± 0.025 0.700 ± 0.026 0.788 ± 0.007 0.586 ± 0.014 0.868 ± 0.004

Independent test RFEGAAC 0.719 ± 0.006 0.676 ± 0.007 0.698 ± 0.002 0.395 ± 0.004 0.767 ± 0.002

RFEAAC 0.755 ± 0.003 0.638 ± 0.007 0.697 ± 0.003 0.396 ± 0.006 0.764 ± 0.003

RFZSCALE 0.680 ± 0.008 0.658 ± 0.009 0.669 ± 0.005 0.337 ± 0.011 0.736 ± 0.003

RFEGAAC+EAAC 0.740 ± 0.006 0.678 ± 0.005 0.709 ± 0.002 0.419 ± 0.005 0.781 ± 0.002

RFEGAAC+ZSCALE 0.728 ± 0.006 0.692 ± 0.006 0.710 ± 0.002 0.420 ± 0.005 0.787 ± 0.002

RFEGAAC+EAAC+ZSCALE 0.752 ± 0.005 0.693 ± 0.004 0.723 ± 0.002 0.446 ± 0.005 0.796 ± 0.002

GRUWE 0.806 ± 0.015 0.692 ± 0.029 0.749 ± 0.004 0.501 ± 0.007 0.824 ± 0.005

CNNWE 0.846 ± 0.035 0.719 ± 0.042 0.783 ± 0.006 0.572 ± 0.009 0.865 ± 0.004

CNNOH 0.874 ± 0.026 0.690 ± 0.035 0.782 ± 0.005 0.575 ± 0.005 0.871 ± 0.001

The data sets for 10-fold cross-validation and an independent test were described in the section “Materials and Methods.” The RF classifier with the different encoding
approach was named as RFEGAAC, RFEAAC, RFZSCALE , RFEGAAC+EAAC, RFEGAAC+ZSCALE , and RFEGAAC+EAAC+ZSCALE . The RNN/CNN classifier with the word embedding
encoding approach was named as GRUWE /CNNWE , respectively. The CNN classifier with one-hot encoding was named as CNNOH. Ten models were constructed in the
10-fold cross validation and evaluated using the ten different validation datasets and the same independent dataset. Accordingly, the value Sn, Sp, Acc, MCC, and AUC
were represented by average ± standard deviation.

FIGURE 3 | Performance comparison of 10-fold cross-validation and independent test datasets of nine different models.
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(ii) The second layer was the convolution layer that
consisted of four convolution sublayers and two max
pooling sublayers. The convolution sublayers, each
sublayer uses 128 convolution filters, the length of which
are 1, 3, 9, and 10, respectively. The two max pooling
sublayers followed the third and fourth convolution
sublayers, individually.

(iii) The third layer contained the fully connected sublayer,
which contained a fully connected sublayer with eight
neuron units without flattening, and a global average
pooling sublayer, which was adopted to correlate the
feature mapping with category output in order to reduce
training parameters and avoid over-fitting.

(iv) The last layer was the output layer that included a
single unit outputting the probability score of the
modification, calculated using the “Sigmoid” function. If
the probability score is greater than a specified threshold
(e.g., 0.5), the peptide is predicted to be positive.

The "ReLU" function (Hahnloser et al., 2000) was used
as the activation function of the convolution sublayers and
fully connected sublayers of the above layers to avoid gradient
dispersion in the training process. The Adam optimizer (Kingma
and Jimmy, 2014) was used to optimize the hyper-parameters of
this model, which include batch size, maximum epoch, learning
rate and dropout rate. The maximum training period was set as
1000 epochs to ensure the convergence of the loss function values.
In each epoch, the training data set was separated and iterated in
a batch size of 1024. To avoid over-fitting, the dropout of neurons
units in each convolution sublayer of the second layer was set 70%
and that in the full connection sublayer of the third layer was set
30% (Nitish et al., 2014), the early stop strategy was adopted and
the best model was saved.

The CNN Algorithm With Word Embedding
The CNN algorithm with word embedding (CNNWE) contained
five layers (Figure 2B). The input layer receives the sequence
of window size 37 and each residue is transformed into a five-
dimensional word vector in the embedding layer. The rest layers
are the same as the corresponding layers in CNNOH .

The GRU Algorithm With Word Embedding
The GRU algorithm (Cho et al., 2014) includes an update gate
and a reset gate. The former is used to control the extent to which
the state information at the previous moment is brought into the
current state, whereas the latter is used to control the extent to
which the state information at the previous moment is ignored.
The GRU algorithm with word embedding (GRUWE) contained

TABLE 2 | The AUC values of the CNNOH model constructed for O. sativa, P.
patens, T. gondii, and H. sapiens, respectively.

Species 10-fold cross-validation Independent test

O. sativa 0.823 0.818

P. patens 0.830 0.831

T. gondii 0.862 0.865

H. sapiens 0.868 0.871

five layers (Figure 2C). The first, the second and the last layers are
the same as the corresponding layers in CNNWE. The third layer
is the recurrent layer where each word vector from the previous
layer was sequentially inputted into the related GRU unit that
contains 32 hidden neuron units. The fourth layer was the fully
connected layer that contains 128 neuron units with "ReLU" as
the activation function.

The RF Algorithms With Different Features
The Random Forest algorithm (Breiman, 2001) contains multiple
decision trees, which remain unchanged under the scaling of
feature values and various other transformations, and the output
category is determined by the mode of the category output by
the individual tree. Each tree depends on the values of a random
vector sampled independently with the same distribution for all
trees in the forest. The number of decision trees was set 140. This
classifier was developed based on the Python module “sklearn.”

Cross-Validation and Performance
Evaluation
To evaluate the performance of Khib sites prediction, we adopted
four statistical measurement methods. They included sensitivity
(Sn), specificity (Sp), accuracy (ACC), and Matthew’s correlation
coefficient (MCC), listed as follows:

Sn =
TP

TP + FN
(2)

Sp =
TN

TN + FP
(3)

Acc =
TP + TN

TP + FP + TN + FN
(4)

MCC =
TP × TN − TN × FP

√
(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)

(5)
In the above equations, TP is true positives, FP is false positives,
TN is true negatives, FN is false negatives. In addition, the
area under the receiver operating characteristic (ROC) curve
(AUC) values was calculated to evaluate the performance of the
prediction model.

TABLE 3 | The AUC values of different CNNOH models in terms of independent
test for five distinct organisms.

Prediction models Independent data sets

O. sativa P. patens T. gondii H. sapiens S. cerevisiae

O. sativa 0.818 0.788 0.782 0.803 0.721

P. patens 0.761 0.831 0.812 0.837 0.806

T. gondii 0.781 0.813 0.865 0.827 0.776

H. sapiens 0.778 0.818 0.832 0.871 0.785

General 0.802 0.840 0.860 0.868 0.789

The top two models with best performance are bold.
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FIGURE 4 | Sequence pattern surrounding the Khib sites, including the significantly enriched and depleted residues based on Khib peptides and non-modification
peptides from different species (P < 0.05, student’s T-test with Bonferroni correction). The pattern was generated using the two-sample-logo method (Vacic et al.,
2006).
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Statistical Methods
The paired student’s t-test was used to test the significant
difference between the mean values of the two paired populations.
As for multiple comparisons, the adjusted P value with the
Benjamini-Hochberg (BH) method was adopted.

RESULTS AND DISCUSSION

A couple of computational approaches has been developed
for the prediction of Khib sites (Ju and Wang, 2019; Wang
et al., 2020). Recently, this modification has been investigated
across five different species, ranging from single-celled organisms
to multiple-celled organisms and from plants to mammals.
Additionally, the number of reported sites has been significantly
increased. These raised our interest to develop novel prediction
algorithms and explore the characteristics of this modification.
We pre-processed the data from different species and separated
them into the cross-validation dataset and the independent test
set (see section “Materials and Methods” for detail; Figure 1).
We first took the human data as the representative to compare
different models and then applied the model with the best
performance to other species. The human cross-validation
dataset contained 15,156 samples and the independent test set
covered 3,790 samples, in each of which half were positives and
half were negatives.

CNNOH Showed Superior Performance
We constructed nine models, divided into two categories:
six traditional ML models and three DL models (see section
“Materials and Methods” for details). The traditional ML models
were based on the RF algorithm combined with different
encoding schemes. The DL models included a Gated Recurrent
Unit (GRU) model with the word-embedding encoding approach
dubbed GRUWE and two CNN models with the one-hot and
word-embedding encoding approaches named CNNOH and
CNNWE, respectively. Both encoding methods are common in
the DL algorithms (Chen et al., 2018a; Xie et al., 2018).

The RF-based models were developed with different
common encoding schemes, including EAAC, EGAAC and
ZSCALE. Among these encoding schemes, EGAAC had the
best performance followed by EAAC whereas ZSCALE was
the worst in terms of AUC and ACC for both 10-fold cross-
validation and the independent test (Table 1 and Figure 3).
For instance, EGAAC corresponded to the average AUC value
as 0.775, EAAC had the value as 0.763 and ZSCALE had the
value as 0.740 for cross validation. Because different encodings
represent distinct characteristics of Khib-containing peptides,
we evaluated the combinations of the encoding schemes. The
combinations showed better performances than individual
scheme and the combination of all the three was the best for
both cross-validation and the independent test, in terms of AUC,
MCC, and ACC (Table 1 and Figure 3). Therefore, the Khib
prediction accuracy could be improved by the integration of
different encoding schemes.

As the DL algorithms showed superior to the traditional ML
algorithms for a few PTM predictions in our previous studies
(Chen et al., 2019; Zhao et al., 2020), we examined the DL

algorithms for the Khib prediction. Traditionally, CNN is popular
for image prediction with spatial invariant features while RNN is
ideal for text prediction with sequence features. However, many
cases demonstrate that CNN also has good performance when
applied to sequence data (Sainath et al., 2013; Tahir et al., 2019).
Accordingly, we developed both RNN and CNN models for the
Khib prediction with two common encoding approaches: one-
hot and word-embedding. Expectedly, all three DL models were
significantly better than the traditional ML models constructed
above in the cross-validation and independent test (Table 1
and Figure 3). For instance, the average AUC values of the DL
models were above 0.824 whereas those of the ML models were
less than 0.802.

In these DL models, two CNN models CNNOH and CNNWE
had similar performances and both compared favorably to
GRUWE (Table 1 and Figure 3). CNNOH had the AUC value
as 0.868 for the cross-validation and its values of SN, SP, ACC
and MCC were 0.876, 0.700, 0.788, and 0.586, respectively.
Here, we chose CNNOH as the 2-Hydroxyisobutyrylation
predictor. We evaluated the robustness of our models by
comparing their performances between the cross-validation and
independent tests. As their performances between these two
tests had no statistically different (P > 0.01), we concluded that
our constructed models were robust and neither over-fitting
nor under-fitting.

Construction and Comparison of
Predictors for Other Species
We constructed nine models for the human organism and chose
CNNOH as the final prediction model. We applied the CNNOH
architecture to the other three organisms (i.e., T. gondii, O. sativa,
and P. patens). For each organism, we separated the dataset as
the cross-validation set and the independent set. Similar to the
human species, the CNNOH models for these species had similar
performances between cross-validation and independent test and
their AUC values were larger than 0.818 (Table 2). It indicates
that these constructed models are effective and robust.

As lysine 2-Hydroxyisobutyrylation is conserved across
different types of species, we hypothesized that the model built
for one species may be used to predict Khib sites for other
species. To test this hypothesis, we compared the performances
of the CNNOH models in terms of the independent data sets
of individual species. Additionally, we built a general CNNOH
model based on the training datasets integrated from all the
four species. Table 3 shows that the AUC values of these
predictions were larger than 0.761, suggesting that the cross-
species prediction had reliable performances. Specifically, given
a species, the best prediction performances were derived from

TABLE 4 | The prediction performance of CNNOH compared to iLys-Khib in terms
of the same cross-validation and independent test datasets.

Dataset Model Sn Sp Acc MCC AUC

10-fold cross-validation iLys-Khib 0.745 0.658 0.701 0.404 0.770

CNNOH 0.830 0.713 0.772 0.547 0.847

Independent test iLys-Khib 0.725 0.643 0.648 0.186 0.756

CNNOH 0.861 0.685 0.696 0.281 0.860
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FIGURE 5 | DeepKhib interface for the prediction of Khib sites with the option of organism-specific or general classifiers (A) and its application to the prediction (B).
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the general model and the model developed specifically for
this species. For instance, the human CNNOH model had the
best performance followed by the general model in terms
of the human independent test whereas the general model
had the best accuracy followed by the moss-specific model
for the moss independent test. These suggest that on one
hand, lysine 2-Hydroxyisobutyrylation of each species has its
own characteristics; one the other hand, this modifications
across different species share strong commonalities. Therefore,
the general model may be effectually applied to any species.
Furthermore, we evaluated the generality of the general CNNOH
model using the dataset of S. cerevisiae that contained 1,049
positive and 1,049 negative samples, which may not be enough for
build an effective DL predictor (Chen et al., 2018a). The general
model got the AUC value as 0.789, indicating the generality of this
model. In other words, the general model is effective to predict
Khib sites for any organism.

We identified and compared the significant patterns and
conserved motifs between Khib and non-Khib sequences across
the different organisms using the two-sample-logo program with
t-test (P < 0.05) with Bonferroni correction (Vacic et al., 2006).
Figure 4 shows the similarities and differences between the
species. For instance, the residues R and K at the−1 position (i.e.,
R&K@P-1) and P at +1 position (i.e., P@P+1) are significantly
depleted across the species. On the contrary, K&R@P+1 tend
to be enriched for H. sapiens but depleted for T. gondii whereas
both species have the depleted residue Serine across the positions
ranging from P-18 to P+18. These similarities between the
organisms may result in the generality and effectiveness of the
general CNNOH model.

Comparison of CNNOH With the
Reported Predictors
We assessed the performance of CNNOH by comparing it with
the existing Khib predictors KhibPred (Wang et al., 2020) and
iLys-Khib (Ju and Wang, 2019). First, we compared CNNOH
with KhibPred for individual species in terms of 10-fold cross-
validation (Wang et al., 2020). The average AUC values of
CNNOH were 0.868/0.830/0.823 for H. sapiens/P. patens/O.
sativa, respectively (Table 2). On the contrary, the corresponding
values of KhibPred were 0.831/0.781/0.825 (Wang et al., 2020).
Thus, CNNOH compares favorably to KhibPred. Second, the
model iLys-Khib was constructed and tested using 9,318 human
samples as the 10-fold cross-validation data set and 4,219 human
samples as the independent test set. We used the same datasets
to construct CNNOH and compared it with iLys-Khib. CNNOH
outperformed iLys-Khib in terms of all the measurements of
performance (e.g., Sn, Sp, Acc, MCC, and AUC) for both 10-fold
cross-validation and independent test (Table 4). For instance,
the AUC value of CNNOH was 0.860 for the independent test
whereas that of iLys-Khib was 0.756. In summary, CNNOH is a
competitive predictor.

Construction of the On-Line Khib Predictor
We developed an easy-to-use Web tool for the prediction of
Khib sites, dubbed as DeepKhib. It contains five CNNOH models,

including one general model and four models specific to the
species (i.e., H. sapiens, O. sativa, P. patens, and T. gondii).
Given a species of interest, users could select the suitable model
(e.g., the general model or the model specific to an organism)
for prediction (Figure 5A). After the protein sequences as the
fasta file format are uploaded, the prediction results will be
shown with five columns: Protein, Position, Sequence, Prediction
score, and Prediction category (Figure 5B). The prediction
category covered four types according to the prediction scores:
no (0–0.320), medium confidence (0.320–0.441), high confidence
(0.441–0.643), and very high confidence (0.643–1).

CONCLUSION

The common PTM classifiers are mainly based on the traditional
ML algorithms that require the pre-defined informative features.
Here, we applied the advanced DL algorithm CNNOH for
predicting Khib sites. CNNOH shows its superior performance,
because of the capability of the multi-layer CNN algorithm
to extract complex features and learn sparse representation in
a self-taught manner. Moreover, the general CNNOH model
demonstrates great generality and effectiveness, due to the
conservation of Khib modification from single-cell to multiple-
cell organisms. The outstanding performance of DL in the
prediction of Khib sites suggests that DL may be applied broadly
to predicting other types of modification sites.
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Protein ubiquitylation is an important posttranslational modification (PTM), which is
involved in diverse biological processes and plays an essential role in the regulation
of physiological mechanisms and diseases. The Protein Lysine Modifications Database
(PLMD) has accumulated abundant ubiquitylated proteins with their substrate sites
for more than 20 kinds of species. Numerous works have consequently developed
a variety of ubiquitylation site prediction tools across all species, mainly relying on
the predefined sequence features and machine learning algorithms. However, the
difference in ubiquitylated patterns between these species stays unclear. In this work,
the sequence-based characterization of ubiquitylated substrate sites has revealed
remarkable differences among plants, animals, and fungi. Then an improved word-
embedding scheme based on the transfer learning strategy was incorporated with the
multilayer convolutional neural network (CNN) for identifying protein ubiquitylation sites.
For the prediction of plant ubiquitylation sites, the proposed deep learning scheme could
outperform the machine learning-based methods, with the accuracy of 75.6%, precision
of 73.3%, recall of 76.7%, F-score of 0.7493, and 0.82 AUC on the independent testing
set. Although the ubiquitylated specificity of substrate sites is complicated, this work
has demonstrated that the application of the word-embedding method can enable the
extraction of informative features and help the identification of ubiquitylated sites. To
accelerate the investigation of protein ubiquitylation, the data sets and source code
used in this study are freely available at https://github.com/wang-hong-fei/DL-plant-
ubsites-prediction.

Keywords: ubiquitylation, plant, word embedding, deep learning, transfer learning, convolutional neural network

INTRODUCTION

As one of the most important posttranslational modification (PTM) processes, ubiquitylation is
a modification process in which one or more ubiquitin molecules covalently bind to substrate
proteins under the action of a series of enzymes (E1, E2, E3) (Weissman, 2001). The ubiquitin–
proteasome pathway (UPP) is the most important protein degradation pathway in eukaryotic cells
and participates in various physiological processes, including transcription regulation, cell cycle,
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apoptosis, DNA damage repair, metabolism, and immunity
(Tu et al., 2012). Moreover, its abnormal regulation is
often accompanied with the occurrence of diseases such
as cancer, neurodegenerative diseases, and liver diseases
(Hoeller et al., 2006; Popovic et al., 2014; Yamada et al.,
2018). UPP is closely related to plant physiology, and many
studies have proved that ubiquitin–proteasome degradation
is involved in plant growth and development, abiotic
stress, plant metabolism, and biological stress (Lu et al.,
2011;Marino and Rivas, 2012).

Because of the functional significance of ubiquitylation,
the identification of new ubiquitylation sites in proteins
is highly significant. However, wet laboratory experimental
validations are often time consuming and expensive (Nguyen
et al., 2016). In contrast, computation-based identification
methods, which combine big data and advanced algorithms,
can provide an alternative strategy for ubiquitylation site
prediction with fast speed and low cost. The population of
high-throughput proteomics experiment technology promotes
large-scale identification of ubiquitin-conjugated peptides and,
then, provides a very large dataset for automatic recognition of
ubiquitination sites (Nguyen et al., 2015). Recently, numerous
machine learning methods have been proposed for automatic
prediction of ubiquitination sites. The Ubipred (Tung and Ho,
2008) is the first online tool that employed the physical and
chemical properties of amino acids surrounding ubiquitination
sites as features and integrated with support vector machine
(SVM) to predict the ubiquitination sites. Then other machine
learning methods, such as the k-nearest neighbor and random
forest, are also used for ubiquitination site prediction (Radivojac
et al., 2010; Cai et al., 2012; Xiang et al., 2013; Jyun-
Rong et al., 2016). The hCKSAAP-UbSite (Chen et al., 2013)
employed the idea of the composition of k-spaced amino acid
pair (CKSAAP), which considers amino acid pair composition
features of a specific position. Qiu et al. (2015) believing,
through the simple observation of the composition of amino
acids, that the sequence order of proteins may be ignored,
utilized the pseudo-amino acid composition (PseAAC) to reserve
these essential features and developed the iUbiq-Lys. The
ubiquitylated protein data are collected from various eukaryotic
species, and, considering the features of species evolution,
Ubisite (Huang et al., 2016) proposed the position-specific
scoring matrices (PSSM), which are calculated through PSI-
BLAST. As a promising structural data modeling approach,
the deep learning method can extract features from original
data automatically without feature engineering, thus some
potential and essential features will not be ignored. He
et al. (2018) employed the deep learning approach on
ubiquitination site prediction and received a well performance on
their testing set.

However, the pattern differences between the ubiquitylated
proteins of these species are not clear. To the best of our
knowledge, no related work focuses on ubiquitylation prediction
model development for a particular species. In this work, we
first analyzed the pattern differences of ubiquitylated proteins
between plants, animals, and fungus. Then an improved word-
embedding training scheme based on transfer learning was

proposed, connecting with the multilayer convolutional neural
network (CNN) for plant ubiquitylation site prediction.

MATERIALS AND METHODS

The workflow of this study is described in Figure 1. We
collected ubiquitination sites data from the Protein Lysine
Modifications Database (PLMD) (Xu et al., 2017), which
includes data collected from plants, animals, and fungus. In
order to understand the pattern differences of ubiquitylated
protein sequences between these species, feature investigations
of three species were conducted. Several important sequence
features were compared and analyzed to illustrate the pattern
differences between plants and other species. Then a novel
transfer learning-based word-embedding training scheme was
proposed in which two steps of training were conducted. The

FIGURE 1 | Schematic diagram of the workflow for this study.
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original plant protein sequence was used for pretraining of
the word2vec network through the skip-gram model, with
the optimized parameter transfer as the initial weights of
embedding layer and fine-tuning with the subsequent layers
together. The trained word-embedding layer captured the
sequence features of the plant protein and was appropriated to
ubiquitination site prediction at the same time. The multilayer
CNN was employed as a classifier and achieved acceptable
performance for plant ubiquitination site prediction. Sufficient
experiments illustrated that the proposed method outperforms
the conventional method on both cross-validation and the
independent testing set.

Data Collection and Preprocessing
In this study, the ubiquitination protein sequence is collected
from the PLMD database (Xu et al., 2017); the original data
contains 121,742 ubiquitination sites from 25,103 proteins. We
selected ubiquitination sites from Arabidopsis thaliana, Oryza
sativa subsp indica, and O. sativa subsp japonica for the plant
subset, ubiquitination sites from Homo sapiens and Mus musculus
for the animal subset, and Saccharomyces cerevisiae for the
fungus subset. To construct positive data of modeling, a sliding
window with a length of 31 was used to intercept the protein
sequences with ubiquitylated lysine residues in the center, where
31 equals 15 amino acids from each side of the lysine residue
plus one lysine residue. If the upstream or downstream residues
of a protein are less than 15, the lacking residue is filled
with a pseudoresidue X. Then, the sequence fragments that
contained a window length of 31 amino acids were centered
at the lysine residue without annotation of the ubiquitination
and were regarded as the negative data of modeling (non-
ubiquitylated lysines). We removed the redundant protein
fragments to eliminate homology bias using the CD-HIT (Li
and Godzik, 2006) with 30% identity to ensure that none of
the segments had a larger than 30% pairwise identity in both
positive and negative peptides. There are too many negative
peptides compared to the positive peptides. In order to keep
the data balanced, we selected the same number of negative
peptides randomly as positive peptides. Finally, we obtained
7,000 protein fragments for the plant subset, 60,000 protein
fragments for the animal subset, and 17,000 protein fragments
for the fungus subset.

We obtained 3,500 ubiquitination sites from plants after the
preprocessing steps through CD-HIT tools, and then, we selected
3,500 negative samples randomly to keep the data balanced. In
this work, we employed both the independent testing and cross-
validation method to evaluate the performance of the proposed
model. We selected 1,500 protein fragments randomly from the
7,000 samples as the independent testing set, which were used
to evaluate the tuned model. In addition, we utilized the 10-
fold cross-validation method to test the model performance using
the remaining 5,500 samples. The original dataset was randomly
partitioned into 10 equal-sized subsamples; a single subsample
was retained as the validation data for testing the model, and the
remaining nine subsamples were used as training data. The cross-
validation process was then repeated 10 times, with each of the 10
subsamples used exactly once as the validation data.

Feature Investigation
Amino Acid Composition
As an important sequence feature, amino acid composition
(AAC) can reflect which kind of amino acid is more likely
to appear around the ubiquitylated lysine. In this work, we
calculated the AAC feature of each peptide using the following
equation:

Ar =
Nr

N
r = 1, 2, 3, . . . , 20

where Nr denotes the number of amino acid r, and N denotes the
length of the protein fragments.

Amino Acid Pairwise Composition
In order to understand the efforts of amino acid complexes
for ubiquitination in these species, we calculated the relative
frequencies of all possible dipeptides in the sequence. The
elements of the feature vector are defined as:

Dr,s =
Nr,s

N
, r, s = 1, 2, . . . , 20

where Nr,s denotes the count of the dipeptide r,s, and N
represents the total number of dipeptides in the encoded
segment. Consequently, a 400-dimensional vector would be
obtained for each segment. Then, heat maps were used to
illustrate the dipeptide composition difference between the
positive and negative samples, and the value of each pixel was
calculated using the following equation:

Pr,s = ln
∑

Dpositive∑
Dnegative

Positional Weighted Matrix
Then, we made the positional weighted matrix (PWM) to
illustrate the pattern differences of the amino acid distribution
around the ubiquitylated lysine between the positive and negative
samples, and three heat maps were plotted for these three
species, respectively. We define a two-dimensional matrix for
each fragment as Mi, whose horizontal axis denotes the positions
of protein fragments, and the central position is the targeted
lysine, while the vertical axis denotes all these 20 kinds of amino
acids. The final PWM for comparison of the positive and negative
samples is calculated through the following equation:

MPA = ln

∑
Mi

positive∑
Mi

negative

Two Sample Logo
We also employed the Two Sample Logo (Vacic et al., 2006)
web server to calculate and visualize the differences between
ubiquitylated fragments from different species. Two Sample
Logos can be used to determine statistically significant residues
around various active sites, protein modification sites, or to
find differences between two groups of sequences that share the
same sequence motif.

Sequence Encoding
Compared with the traditional machine learning and statistical
computation method, the deep learning approach can extract
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features automatically from original data without feature
engineering (Schmidhuber, 2015). Thus, transferring the amino
acid sequences to quantification vectors, which can be processed
by a computer program directly, is important (Hua and Quan,
2016). Word embedding is a set of techniques in natural language
processing in which words from a vocabulary are represented as
vectors using a large corpus of text as the input.

Generally, there are two main word-embedding techniques
used in sentence processing. The first method is embedding
layer in neural network (Neishi et al., 2017); the essence of
embedding layer is a fully connected neural network, which
can map the one-hot sequence to a dimensionally specified
vector. Some popular deep learning frameworks have predefined
functions for this layer. The process of parameter learning
of this method is supervised; the parameters are updated
with subsequent layers during the learning process under
the supervision of a class label. Several PTM site prediction
works are based on this scheme. Another word-embedding
technique is Word2vec (Mikolov et al., 2013), where similar
vector representations are assigned to the words that appear
in similar contexts based on word proximity as gathered from
a large corpus of documents. After training on a large corpus
of text, the vectors representing many words show interesting
and useful contextual properties. The training of word2vec is
unsupervised because the class label does not participate in the
learning process.

In this work, inspired by pretraining and fine-tuning
mechanisms of transfer learning, we first employed the original
plant protein sequences as training data and pretrained the
embedding layer based on the unsupervised skip-gram algorithm.
The optimized embedding layer can map each amino acid from
a sequence into a vector. The Euclidean distance of vectors can
reflect the relative position information of an amino acid. So, the
embedding layer can capture the spatial features of the amino
acids in the pretraining process. Then, the optimized parameters
are transferred as the initial weights of the embedding layer, and
fine tuning is done with the subsequent layers together under the
supervision of the label of fragments. By contrast, the traditional
word-embedding methods often initialize weights randomly
and are trained together subsequently, which may ignore the

sequence position information. Compared with traditional word-
embedding methods, the proposed scheme is more appropriate
for plant ubiquitination site prediction.

We employed the skip-gram method (Du et al., 2018) on
the construction of word2vec mapping network. The protein
sequences were represented as a collection of counts of n-grams,
in which n adjacent amino acids were recognized as a word.
Inspired by the idea of Hamid and Friedberg (2018), the length
of the gram of 1, 2, 3 was tested in our work, and n = 2
was optimal, leading to 202

= 400 bigrams. Figure 2 simply
shows the representation learning for bigrams with the skip-gram
training. For each protein sequence, we created two sequences
by starting the sequence from the first and second amino acids,
so that we can consider all of the overlapping bigrams for a
protein sequence. We generated the training instances using a
context window of size ±2, where we took the central word
as input and used the surrounding words within the context
window as outputs. The neural network architecture for training
was used on all of instances, then a 200-dimensional vector for
each bigram was generated by the neural network. The trained
hidden layer weights were transferred as the initial parameters
of the embedding layer in the proposed ubiquitination site
prediction model.

Word2vec With Convolutional Neural
Network
After sequence encoding, one-dimensional CNN was employed
to take the bigram encoding vectors as input and predict the
label of this fragment whose lysine in the central position can be
ubiquitylated or not. The forward calculation of the CNN deep
structure is an automatic feature extraction and selection process
in each layer. As shown in Figure 3, each bigram maps into a 20-
dimensional vector so that a sequence of 31 amino acid residues
is represented as a 30× 20 matrix, which was denoted as X. The
next step is the convolutional layer where the filters were used to
extract sequence features from the encoding matrix. The process
is denoted as

C1 = δ1(W1 × X + b1)

FIGURE 2 | Word2vec training process of the bigram pattern.
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FIGURE 3 | Proposed deep structure for ubiquitination site prediction model.

where δ1 is the rectified linear (Relu) function, W1 denotes the
weights of the convolution kernel, and b1 is the bias of this
layer. Then, the max pooling function is used for downsampling
procedure to reduce the feature dimension.

C1,out = max pooling(C1)

The CNN deep structure contained three same sequentially
connected blocks, and each block covered a convolution layer
with the Relu as its activation function and a max pooling layer.
The number of convolution kernels was set as 128, and the
convolution kernel size was set at 3. The size of the max pooling
windows was 2. Two fully connected layers with 128 and 64
neurons, respectively, are used to integrate features. The output
layer contained a single neuron and ends with sigmoid activation
to calculate the output x of this layer as

Sigmoid (x) =
1

1+ e−x

The backward process of the CNN network is backward
propagation, which updates and gets optimal parameters with the
following binary cross-entropy loss function.

BCE
(
ŷ, y

)
= −

1
N

n∑
i=1

[
yi · log

(
ŷi
)
+ (1− yi) · log

(
1− ŷi

)]
During the training of the CNN models, the dropout units (the
drop rate was set at 0.5) were added after each max pooling
layer in the convolutional layer, which are usually required for
generalization on unseen data and to avoid overfitting.

Implementation and Training Parameters
The proposed model was achieved through the Keras framework
under the Python language. We set the initial learning rate
as 0.001, and the RMS prop optimization method was used
with β = 0.9. We initialized the weights of the convolutional
network randomly with a Gaussian distribution (µ = 0, σ = 0.01).

The batch size is 500, and 120 epochs were conducted for
each training. All the experiments were performed on a server
equipped with Geforce RTX 2080 Ti.

RESULTS

Comparison of Features Between
Species
Amino Acid Composition
Figure 4 provides the average of positive and negative
segments, respectively, and a histogram for each species
was plotted. We can analyze the amino acid composition
differences between the positive and negative segments to show
different patterns of these spices. For the plant subset, the
average percentage of arginine (R) in ubiquitylated protein
fragments is doubled in non-ubiquitylated protein segments. By
contrast, the arginine differences between ubiquitylated and non-
ubiquitylated segments in animals and fungi are not obvious,
although the figure of positive samples is 0.7% higher than the
negative samples in animals. For animals and fungi, the average
percentage of lysine (K) in the positive protein segments is about
1% higher than in the negative samples, and this difference is not
obvious in plant samples. What is more, the percentage of leucine
(L) in ubiquitylated proteins of animal is 1% higher than in non-
ubiquitylated samples; this finding is contrary in plants and fungi.
So, the amino acid composition shows really different patterns in
different species.

Amino Acid Pairwise Composition
As shown in Figure 5, the blue pixels mean this dipeptide is
more likely to appear around ubiquitylated lysine than in non-
ubiquitylated lysine, while the red means it is less likely to appear
in ubiquitylated fragments than in the negative samples. The
darker the color, the greater the difference. For the ubiquitination
of plants, cysteine (C) is less often composed with other amino
acids, such as glycine (G), methionine (M), serine (S), and
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FIGURE 4 | Comparison of the amino acid composition (AAC) features between three species. (A) Comparison of AAC features between positive and negative
samples of plants. (B) Comparison of AAC features between positive and negative samples of plants. (C) Comparison of AAC features between positive and
negative samples of plants.
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FIGURE 5 | Heatmaps for the amino acid pairwise composition (AAPC) features of three species. (A) Heatmap for the AAPC features of plants. (B) Heatmap for the
AAPC features of animals. (C) Heatmap for the AAPC features of fungi.
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tryptophan (W). The Pr,s of these dipeptides are less than
−0.75, which denotes that the distribution of these dipeptides
presents obvious differences between the ubiquitylated and non-
ubiquitylated fragments in the plant subset. In addition, the
pairs that contain arginine (R), especially with alanine (A)
and glutamic acid (E), are more likely to appear around the
ubiquitylated lysine with Pr,s of more than 0.5. However, these
phenomena above do not appear in the animal and fungus
subsets. For the animal subset, the value of Pr,s for the majority
of the amino acid combinations range from−0.25 to 0.25, which
means that there are no obvious differences between the positive
and negative samples, expect that tryptophan (W), combined
with cysteine (C), and methionine (M), is less likely to appear
in ubiquitylated peptides than in non-ubiquitylated samples. For
the fungus subset, cysteine (C), combined with methionine (M),
and histidine (H), as well as tryptophan (W), combined with
cysteine (C), histidine (H), and phenylalanine (F), are less likely
to appear in ubiquitylated peptides than in non-ubiquitylated
samples. The Pr,s of these amino acid combinations are less than
−0.7. The statistical differences of the AAPC feature between
the ubiquitylated and non-ubiquitylated fragments show very
different patterns in three different species.

Positional Weighted Matrix
As shown in Figure 6, blue means that the amino acid is more
likely to appear in this position of ubiquitylated fragments,
and red means this position is less likely to find this amino
acid. For the ubiquitylated segments of the plant, it is more
likely that arginine (R) will be found around the ubiquitylated
lysine, especially on the 1st to 8th and −9th to −5th positions.
In addition, it is clear that histidine (H), cysteine (C), and
tryptophan (W) hardly appeared around the ubiquitylated lysine.
The feature patterns in fungi and animals are different. For fungi,
there is also some lysine (K) often appearing in the preorder of
the ubiquitylated lysine, especially on the −9th to −1st position
with M more than 0.75. However, lysine (K), which is followed by
another lysine (K) in the next position usually is not ubiquitylated
with M less than−0.75. For animals, we can find that the glutamic
acid (E) more likely appeared on the −1st and −2nd positions
near the ubiquitylated lysine with M of more than 0.75, but it
less likely to appear on 1st and 2nd positions. The features of
specific amino acid distribution in each position also differ in
different species.

Two Sample Logo
We employ the Two Sample Logo to show the differences of
amino acid distribution in each position between ubiquitylated
fragments from different species. The larger fonts denote the
amino acid that is more likely to appear in this position with
statistical significance. As shown in Figure 7A, we set the plant
ubiquitylated fragments as positive samples and the animal
ubiquitylated fragments as negative samples. We can see that
more arginine (R), glutamic acid (E), aspartic acid (D), and
alanine (A) appeared around the ubiquitylated lysine in the
plants than in the animals, while it is less likely to find leucine
(L). Then we set the plant ubiquitylated fragments as positive
samples and the animal ubiquitylated fragments as negative

samples, which are shown in Figure 7B. It is obvious that arginine
(R) and glutamic acid (E) are more likely to appear around
the ubiquitylated lysine in plants. As for the comparison of
ubiquitylated fragments between animals and fungi, there were
no obvious patterns except that there is more leucine (L) around
the ubiquitylated lysine (Figure 7C).

According to the analyses above, the sequence features of the
ubiquitylated fragments are really different between these three
species. It is significant to build a ubiquitylation site prediction
model for a single species, which can avoid the interference of
feature differences from other species.

Model Performance Evaluation
The proposed word embedding and CNN-based ubiquitination
prediction model is evaluated through a validation test scheme.
A 10-fold cross-validation is carried out on the training set
for the fine-tuning of the hyper-parameters, as well as for
evaluating the reliability of the model. In order to make the
experiment results statistically significant, five repeated runs were
conducted for each fold cross validation; the mean and standard
deviation of the 50 results were regarded as the final result. The
independent testing set was used for generalization evaluation
and performance comparison with the baseline method. The
confusion matrix of the prediction model is shown in Table 1,
and the performance evolution indexes are defined as follows:

(a) Accuracy that indicates the proportion of correctly
classified subjects among the whole subset

Accuracy =
TP + TN

TP + TN + FP + FN

(b) Precision that quantifies the proportion of samples
correctly classified among the classification

Precision =
TP

TP + FP

(c) Recall is the fraction of relevant instances that have been
retrieved over the total amount of relevant instances

Recall =
TP

TP + FN

(d) F-score considers both the precision and recall and evaluate
the model performance synthetically

F − Score =
2× Precision× Recall

Precision+ Recall

We first compared the proposed model performance with
different tuning options through the 10-fold cross-validation
scheme. Mean and standard deviation results of the cross
validation are calculated, and the comparison results are shown
in Table 2. The best performance with a mean accuracy of
78.1% and an F-score of 0.782 is given by the proposed model,
which combines the transfer word-embedding mechanism and
multilayer CNN. By contrast, the traditional one-hot sequence
encoding method combined with a 2D CNN classifier obtains the
worst performance with only a mean accuracy of 62.3% and an
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FIGURE 6 | Heatmaps for the positional weighted matrix (PWM) features of three species. (A) Heatmaps for the PWM features of plants. (B) Heatmaps for the PWM
features of animals. (C) Heatmaps for the PWM features of fungi.
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FIGURE 7 | Comparison of the Two Sample Logo of three species. (A) Two Sample Logo of positive samples between plants and animals. (B) Two Sample Logo of
positive samples between plants and fungi. (C) Two Sample Logo of positive samples between animals and fungi.

F-score of 0.647. This is mainly because the one-hot encoding
matrix is sparse, and the conventional filters cannot capture
useful sequence features. The pretrained word2vec encoding
model without supervised weights updating also received a
poor performance with a mean accuracy of 68.5% and an
F-score of 0.6771. The word2vec model was trained on original
plant protein sequences, which learned the amino acid bigram
patterns of plants. However, without the fine-tuning process,
the fixed weights cannot be adjusted to fit the ubiquitination
site prediction task well. In addition, the supervised embedding
layer with randomly initialized parameters also got a general
performance; the effort of pretraining is obvious in ubiquitination
site prediction in our proposed method. What is more, our
results suggest that the recurrent neural network (RNN) does
not contribute much to ubiquitination site prediction; this
may because the distant sequence correlation modeling is not
useful for this task.

Independent Testing Performance
A series of sequence features were extracted for modeling,
including AAC, AAPC, the CKSAAPs, as well as the position-
specific scoring matrix (PSSM). Our experiments indicated

that the random forest (RF) model outperform other popular
algorithms on all these predefined features. Table 3 shows the
comparison between the proposed model and traditional feature-
based random forest method on the testing set. The proposed
model achieved the best performance with a mean accuracy
of 75.6% and an F-score of 0.749. The random forest model
also achieved an acceptable performance based on features of
k-spaced amino acid pairs, with a mean accuracy of 73.6% and an
F-score of 0.717. The PSSM represented the evolutionary profile
of the protein sequence; the RF based on the PSSM features can
achieved a mean accuracy of 71.1% and an F-score of 0.6942.
Then as shown in Figure 8, we plotted the ROC curve with AUC
of these RF-based model and our model. The proposed model is
obvious, overall, in terms of the ROC curve with an 0.81 AUC,

TABLE 1 | Confusion matrix of ubiquitylated site prediction model.

Predicted
positive (Ub)

Predictive
negative (non-Ub)

Actual positive (Ub) True positive (TP) False negative (FN)

Actual negative (non-Ub) False positive (FP) True negative (TN)
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TABLE 2 | Cross validation performance comparison between different deep structures and feature encondings.

Model tuning Accuracy Precision Recall F-score

One-hot encoding + 2D convolutional neural network (CNN) 0.623 ± 0.037 0.662 ± 0.028 0.636 ± 0.019 0.647 ± 0.021

Embedding layer + CNN 0.732 ± 0.006 0.745 ± 0.011 0.692 ± 0.024 0.716 ± 0.029

Fixed word2vec + CNN 0.685 ± 0.024 0.701 ± 0.019 0.653 ± 0.015 0.677 ± 0.022

Transfer embedding + recurrent neural network (RNN) 0.743 ± 0.012 0.749 ± 0.004 0.716 ± 0.017 0.729 ± 0.015

Proposed method 0.782 ± 0.008 0.791 ± 0.013 0.785 ± 0.011 0.782 ± 0.016

TABLE 3 | Performance comparison between different methods on the testing set.

Method Accuracy Precision Recall F-score

Random forest (RF) with amino acid composition (AAC) 0.703 ± 0.012 0.685 ± 0.026 0.703 ± 0.019 0.694 ± 0.022

RF with amino acid pairwise composition (AAPC) 0.711 ± 0.008 0.706 ± 0.017 0.679 ± 0.021 0.692 ± 0.031

RF with k-spaced AAP (k = 5) 0.736 ± 0.006 0.721 ± 0.009 0.714 ± 0.015 0.717 ± 0.019

RF with position-specific scoring matrices (PSMM) 0.722 ± 0.014 0.718 ± 0.008 0.706 ± 0.025 0.713 ± 0.018

Proposed method 0.756 ± 0.006 0.733 ± 0.015 0.767 ± 0.017 0.749 ± 0.009

which indicates that the developed classifier has high confidence
on plant ubiquitination site prediction.

In order to evaluate the generalization of the proposed model,
we also collected data from the dbPTM and iPTMnet databases
as an extra testing set. The dbPTM (Huang et al., 2019) and
iPTMnet (Huang et al., 2018) contain 107 and 50 proteins
of A. thaliana, respectively. The CD-HIT, with 30% identity,
was employed to remove the redundant protein fragments and
eliminate homology bias with the PLMD training data. Finally, 91
positive and 217 negative fragments were used for extra testing.
The optimal model in cross validation achieved an accuracy
of 74.2%, precision of 73.1%, recall of 73.7%, and F-score of
0.733. The proposed model can also achieve equal performance
on other datasets.

FIGURE 8 | ROC curve of the different methods on the testing set.

Comparison With Other Prediction Tools
We compared the performance of the proposed method with
other popular ubiquitylation prediction tools on the independent
set. For UbPred (Xiang et al., 2013), iUbiq-Lys (Qiu et al.,
2015), and Ubisite (Huang et al., 2016), we uploaded our testing
data to their website and counted the confusion matrix of
output results to compute the performance indexes. For the
Deep ubiquitylation (He et al., 2018) and DeepUbi (Fu et al.,
2019), we reproduced their proposed structure with Keras, as
well as training steps through our data, then calculated the
evaluation indexes. As shown in Table 4, our proposed method
achieved a balanced and reasonable performance with a mean
precision of 73.3%, recall of 76.7%, and F-score with 0.749,
although it only achieved a mean accuracy of 75.6%. It can
be found that the iUbiq-Lys and Ubisite yielded a high recall
and a poor precision, which means that these tools are more
likely to classify the suspected samples as positive. Compared
with Deep ubiquitylation, the first deep learning-based tool, our
method achieved a better overall performance, which is mainly
because the word-embedding scheme is more effective to extract
the sequence features. The proposed method also outperformed
the DeepUbi to some extent because the transfer learning-based
method can capture the sequence pattern of plant proteins with
word2vec model and the weights of embedding layer just fine-
tuned around the pretrained value. In addition, the DeepUbi did
not achieve the performance they claimed; this is mainly because
the testing experiments are curried out on our plant data with on
a small scale. Their proposed structure may need a larger training
set to achieve optimal performance due to their training of the
embedding layer from a random initial value. Overall, compared
with popular tools and methods, our proposed model achieved a
better performance on plant ubiquitylation site prediction.

Then predictions were conducted on two types of single
plant protein: one contains ubiquitylated substrate sites, and
the other has no ubiquitylated sites. The proposed model was
compared with three popular ubiquitylation prediction tools,
which provide websites for sequence input. The ubiquitylated
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TABLE 4 | Performance comparison with other prediction tools.

Tool Accuracy Precision Recall F-score

UbPred (Xiang et al., 2013) 0.719 0.626 0.738 0.678

iUbiq-Lys (Qiu et al., 2015) 0.799 0.563 0.837 0.671

Ubisite (Huang et al., 2016) 0.752 0.596 0.794 0.681

Deep Ub (He et al., 2018) 0.683 ± 0.021 0.674 ± 0.018 0.703 ± 0.011 0.687 ± 0.024

DeepUbi (Fu et al., 2019) 0.739 ± 0.014 0.733 ± 0.011 0.741 ± 0.021 0.734 ± 0.011

Proposed method 0.756 ± 0.006 0.733 ± 0.015 0.767 ± 0.017 0.749 ± 0.009

TABLE 5 | Performance comparison with other tools on two types of single protein.

UniProt AC Organism Sequence length Number of lysine Reported ubiquitylated sites Predicted ubiquitylated sites

Tools Results

O23063 Arabidopsis thaliana
(Mouse-ear cress)

364 47 142; 222; 225 iUbiq-Lys 3; 4; 103; 217; 225; 363

UbPred 98; 142; 197

Ubisite 142; 225; 265; 297

Proposed model 142; 222; 225; 363

O03042 Arabidopsis thaliana
(Mouse-ear cress)

479 24 None iUbiq-Lys None

UbPred 8; 32; 201; 356; 474

Ubisite 474

Proposed model None

protein was selected from an independent testing set randomly,
and the protein that does not contain a ubiquitylated substrate
site was selected from Uniport with no ubiquitylation sites
reported. As shown in Table 5, the protein with Uniport AC
O23063 contains 47 lysine and the positions of 142, 222,
225 are ubiquitylated (Walton et al., 2016). The iUbiq-Lys
predicted five ubiquitylated sites, and only one is correct. The
UbPred predicted one ubiquitylated site with other two false
positive results. The Ubisite identified two sites successfully,
while the proposed model can predict all the ubiquitylated
sites correctly. It should be noted that the 363 position
predicted by the proposed model is a false-positive sample;
the performance of the proposed model still has room for
improvement for some fragments. The protein with Uniport
AC O03042 contains 24 lysine but no ubiquitylated site among
them. The UbPred and Ubisite provided wrong predictions, while
the iUbiq-Lys and the proposed model can classify them as
non-ubiquitylated sites.

The proposed model outperforms traditional machine
learning and deep structure mainly because of its two novel
characteristics. First, contrastive analyses found pattern
differences of ubiquitylated fragments between the three species.
Modeling for proteins from a single species can avoid the
interference of feature differences from other species. Second,
the transfer learning mechanism was employed to pretrain the
embedding layer through the original plant protein sequence
by the word2vec method, which can capture the sequence
features of plant proteins and vectorize them. The Euclidean
distance of vectors can reflect the relative position information
of the amino acids. The embedding layer can capture the spatial
features of amino acids in the pretraining process. So, the model

is appropriate for the plant ubiquitination site prediction and
achieved a better performance.

CONCLUSION

In this work, we analyzed the sequence features of ubiquitylated
protein from plants, animals, and fungi, respectively, then
indicated the feature pattern differences between these features.
We found that the amino acid distribution around the
ubiquitylated lysine of plants differ from other species obviously,
such as the clustering of arginine (R). The species of the plant
was selected as the research target for modeling. A novel transfer
learning-based word-embedding model training scheme was
proposed. The original plant protein sequence was used for
pretraining of the word2vec network through the skip-gram
model, then the optimized parameter transfer as the initial
weights of the embedding layer, fine-tuning with the subsequent
layers together. The multilayer CNN was employed as a classifier
and achieved acceptable performance for plant ubiquitination
site prediction. Compared with related prediction tools, our
method performs excellent suitability for plant ubiquitination site
prediction. Considering the pattern differences between different
species, in future work, we will integrate more data and establish
species-specialized tools for ubiquitination site prediction.
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High-throughput sequencing technologies have identified millions of genetic mutations
in multiple human diseases. However, the interpretation of the pathogenesis of these
mutations and the discovery of driver genes that dominate disease progression is still
a major challenge. Combining functional features such as protein post-translational
modification (PTM) with genetic mutations is an effective way to predict such alterations.
Here, we present PTMsnp, a web server that implements a Bayesian hierarchical
model to identify driver genetic mutations targeting PTM sites. PTMsnp accepts genetic
mutations in a standard variant call format or tabular format as input and outputs several
interactive charts of PTM-related mutations that potentially affect PTMs. Additional
functional annotations are performed to evaluate the impact of PTM-related mutations
on protein structure and function, as well as to classify variants relevant to Mendelian
disease. A total of 4,11,574 modification sites from 33 different types of PTMs and
1,776,848 somatic mutations from TCGA across 33 different cancer types are integrated
into the web server, enabling identification of candidate cancer driver genes based on
PTM. Applications of PTMsnp to the cancer cohorts and a GWAS dataset of type 2
diabetes identified a set of potential drivers together with several known disease-related
genes, indicating its reliability in distinguishing disease-related mutations and providing
potential molecular targets for new therapeutic strategies. PTMsnp is freely available at:
http://ptmsnp.renlab.org.

Keywords: protein post-translational modification, genetic mutations, Bayesian hierarchical model, driver genes,
disease

INTRODUCTION

Large-scale genome sequencing has uncovered a complex landscape of genetic mutations in
multiple patient populations. A major goal of these sequencing projects is to characterize a
few disease-related mutations from the majority of neutral passenger mutations. Currently,
the most commonly used strategy to prioritize mutations is the frequency-based approach,
such as MutSigCV (Lawrence et al., 2013), MuSiC (Dees et al., 2012), and other methods
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(Youn and Simon, 2011). These tools can reveal a number of
potential driver genes that carry recurrent mutations in a given
disease cohort. However, the known driver genes identified from
those frequency-based strategies are not sufficient to explain the
diverse mechanisms of disease progression. Therefore, several
approaches that not only consider recurrent mutations but
also combine other functional features, such as evolutionary
conservation (Reva et al., 2011), known pathway annotation
(Wendl et al., 2011) and protein-protein interaction networks
(Vandin et al., 2011; Ciriello et al., 2012), have been proposed.

Among those functional features, one of the most critical
factors that can be used in driver gene identification is protein
post-translational modifications (PTMs). As key mechanisms
to increase proteomic diversity, PTMs can regulate almost all
physiological and biochemical processes in mammalian cells.
Thus, genetic mutations that occur specifically around the PTM
sites (also known as PTM-related mutations) may potentially
alter protein functions and disturb regulatory pathways in vivo,
leading to the development of certain serious diseases, such
as cancers. A previous study has reported that mutation of
SUMO-conjugated sites in androgen receptor (AR) may result in
an increase of AR transcriptional activity, and hence promoting
cell proliferation and hypoxia-induced angiogenesis in Prostate
cancer (Lin et al., 2004). Meanwhile, experiments have also
shown that oncogenic variants altering S768 phosphorylation of
EGFR increase its catalytic activity, and S768I mutation can drive
tumorigenesis by disrupting EGFR autophosphorylation and
rewiring downstream signaling pathways (Huang L. C. et al.,
2018). In addition to cancer, Martin et al. have reported that the
G553E mutation on huntingtin (HTT) protein can abrogate its
post-translational myristoylation and induce cellular toxicity of
the protein in cellulo, consequently causing Huntington disease
(Martin et al., 2018).

In light of the significant impact of PTM-related mutations on
human diseases, several databases have been developed to curate
mutations that may potentially affect PTMs. For example, dbPTM
collected a subset of PTM-disease associations based on disease-
associated non-synonymous SNPs from dbSNP in its 2019
updated version (Huang et al., 2019). Similarly, PhosphpSitePlus
provided PTMVar dataset to characterize PTMs that overlap
with disease-associated genetic variants and polymorphisms
(Hornbeck et al., 2015). Using a similar strategy, other databases
such as iPTMnet (Huang H. et al., 2018), PRISMOID (Li et al.,
2020), and PTM-SNPs (Kim et al., 2015) were also reported in
recent publications. In considering the false positive errors that
introduced by the direct mapping of disease-related mutations
to PTM sites when deriving disease-related PTM mutations,
several studies using predictive tools to extract PTM-related
mutations were proposed. For instance, ActiveDriver revealed
a set of candidate cancer driver genes harboring mutation
hotspots proximal to known phosphorylation, acetylation and
ubiquitination sites that may cause the dysfunction of PTM-
related mechanisms (Reimand and Bader, 2013; Reimand et al.,
2013; Narayan et al., 2016). Besides, MIMP is a machine learning
method to predict whether single-nucleotide variants (SNVs)
can disrupt existing phosphorylation sites or create new sites
(Wagih et al., 2015). Using the MIMP method, ActiveDriverDB

is established for collecting human disease mutations and
genetic variants that may potentially alter four types of PTMs
(Krassowski et al., 2018). In addition, AWESOME utilized 20
PTM prediction tools to predict whether a SNP could change the
PTMs level of six common PTM types in a specific protein (Yang
et al., 2019). Besides, Simpson et al. developed DeltaScansite
to assess the impact of mutations in the flanking regions of
phosphosites (Simpson et al., 2019).

Although these reported methods have provided abundant
resources of PTM-related mutations, limitations are still existing.
First of all, the current methods carried out mutation analysis
for one or a few common PTM types, and most other
PTM types cannot be covered, thus losing a large amount of
PTM-related mutation information. Secondly, most of methods
(except ActiveDriver) only consider the impact of mutations on
PTM sites alone, and are not associated with specific disease
phenotypes, which may preserve a lot of passenger mutations
that play a neutral role in disease development. Meanwhile,
ActiveDriver only focused on cancer somatic mutations affecting
PTMs, but did not extend to other serious diseases. Finally,
previous studies mainly developed a database to curate PTM-
related mutations obtained by their computational methods for
user search, there is still no web-based tool available to annotate
rare mutations in new disease research by PTM function.
Therefore, existing computational tools are insufficient to assist
PTM-mediated disease driver identification, an efficient and easy-
to-use mutation analysis tool to discover disease driver mutations
that affect a variety of PTM types are in great need to investigate
the pathogenesis and development of multiple serious diseases.

In this paper, we introduce PTMsnp, a web server that
implements a Bayesian hierarchical model to detect driver
proteins with significant PTM-related mutations. PTMsnp has
integrated 4,11,574 modification sites from 33 different types
of PTMs and 1,776,848 somatic mutations of 33 cancer
types. From PTMsnp, one can easily identify significantly
PTM-mutated proteins (also known as driver genes) across
different cohorts from TCGA. In addition, users can upload
their own mutation resources, e.g., cohorts from genome-
wide association studies (GWASs), to obtain significantly PTM-
mutated proteins as well as potential disease-related mutations
that significantly affect PTM status. In order to further evaluate
the functional importance of PTM-related mutations, we also
integrated multiple computational predictive programs for
variant interpretation and clinical classification. To illustrate the
functionality of PTMsnp, we applied it to TCGA cancer cohorts
and a GWAS dataset of type 2 diabetes cohorts. Several known
disease-related genes were successfully identified by PTMsnp,
demonstrating that it is practicable to discover putative disease-
related genes and hypothesize how they biochemically function
in disease development.

MATERIALS AND METHODS

PTMsnp Algorithm
To identify proteins with a significantly high number of
PTM-related mutations, we first converted the coordinates of
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genetic mutations from the genomic level to the protein level
using ANNOVAR (Wang et al., 2010). For analysis, only non-
synonymous SNVs that did not create a premature stop codon
or remove the existing stop codon were retained. According
to previously published literatures (Reimand and Bader, 2013;
Reimand et al., 2013; Narayan et al., 2016; Chen et al., 2018),
the protein sequence flanking the central PTM site within seven
residues was taken as the PTM motif region. The same type of
PTM motif regions in the same protein were then merged to
create a modification region. Correspondingly, the remaining
sequences were merged separately and denoted as background
regions. The frequency of each non-synonymous SNV located
in the modification region and the background region were
separately calculated.

We assumed that, in the patient group, mutations located in
the PTM motif regions would probably damage the modification
process, thereby influencing protein functions via PTM-related
pathways. If such mutations are highly correlated with a
given disease lesion, they will probably undergo strong positive
selection; therefore, unexpectedly high mutation rates will
be observed in these regions. According to this assumption,
we developed the following Bayesian hierarchical model to
compare the mutation rate between modification regions and
background regions.

First, for a given protein, let Y1, Y2, . . ., Yk represent the count
of mutations at each position in the modification region, and
let Yk+1, Yk+2, . . ., Yn be the same count in the background
region. We then modeled the observed counts Y by a Poisson
distribution as shown in Equations 1 and 2, where λ1 and λ2 are
the mutation rates of the modification region and the background
region, respectively.

Yi ∼ Possion(λ1) i = 1, 2..., k (1)

Yi ∼ Possion(λ2) i = k+ 1, k+ 2, ..., n (2)

Since the mutation rate may vary markedly in different
positions, a prior distribution was applied to λ1 and λ2 to
capture such fluctuation. As stated in the theory of probability,
a gamma distribution is the conjugate prior to the Poisson
distribution. Therefore, two gamma distributions with different
shape parameters α and scale parameters β were used to describe
the distribution of λ1 and λ2 in Eqs 3 and 4.

λ1 ∼ Gamma(α1, β1) (3)

λ2 ∼ Gamma(α2, β2) (4)

To test the difference between the mutation rates of the
background and those of the modification regions, a variable of
interest might be the relative mutation rate, which is defined
as R = λ1/λ2. Given that, a statistical hypothesis was raised as
shown below.

H0 : R ≤ 1 (5)

H1 : R>1 (6)

The p-value under the null hypothesis can therefore be
calculated from the marginal distribution of R given the observed
data Y. A Markov chain Monte Carlo (MCMC) method was
applied to infer such distribution. To control false positives,
the Benjamini-Hochberg procedure is applied to each p-value.
If the corrected p-value for a given protein is lower than the
significance level, i.e., 0.05, we identify it as a potential disease
driver (Supplementary Methods).

Database for PTM Sites and Mutations
PTM sites of human proteins were retrieved from the dbPTM
(2019 update), iPTMnet (November 2019) database and
manually collected from published literatures in PubMed. To
unify the heterogeneity of data collected from different sources
and ensure site accuracy, we mapped the reported modification
sites to UniProtKB protein entries and used sequence
comparison to correct the original data information and
retain protein isoforms. Each mapped PTM site is attributed with
a corresponding literature (PubMed ID) and source.

Somatic mutations were downloaded from the data portals
of TCGA (18 July 2019)1. To construct an intact set of somatic
mutations, mutations generated by four different variant calling
workflows were merged and duplicated sites were removed. The
ANNOVAR program was applied to annotate the functional
consequence of all mutation sites. Only non-synonymous SNVs
that did not create a premature stop codon or remove the existing
stop codon were retained in our database.

The Processing of WTCCC T2D Dataset
The Wellcome Trust Case Control Consortium (WTCCC) Type
2 Diabetes (T2D) datasets consisted of individual–level genotypes
called by BRLMM and Chiamo (The Wellcome Trust Case
Control Consortium, 2007) were collected in this study. All
SNPs were mapped to GRCh38 (hg38) genomic coordinates
according to their RSIDs to facilitate the annotation of SNPs and
proteins. Unmapped RSIDs was discarded. For genotypes called
by BRLMM, calls with score< 0.5 were retained. For the Chiamo
data, the recommended probability threshold for inclusion
is > 0.9. After excluding low-quality samples or calls, the valid
calls derived from two calling methods are intersected to obtain
the reliable genotypes of all samples in T2D. Finally, all genotypes
are processed into VCF files and used as input for PTMsnp.

RESULTS

Data Statistics of PTM Sites and
Mutations
To assist the functional studies of cancer mutations, PTMsnp
provides a database of known PTM sites and somatic mutations.
PTM sites of human proteins are mainly derived from dbPTM
(2019 update), a database that manually curated PTM peptides
from the published literatures and integrated experimentally
verified PTM sites from 30 available PTM-related resources
such as PhosphoSitePlus (Hornbeck et al., 2015), dbPAF

1https://portal.gdc.cancer.gov/
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(Ullah et al., 2016), UniProtKB (Boutet et al., 2007), PLMD
(Xu et al., 2017), and Phospho.ELM (Dinkel et al., 2011)
etc. We also collected additional PTM modification sites
in iPTMnet, as well as manually curated from published
literatures in PubMed. After strict data correction and filtering,
a total of 4,11,574 PTM sites, covering Phosphorylation,
Ubiquitination, Acetylation, Methylation, Sumoylation,
Malonylation, O(N/C/S)-linked Glycosylation, S-nitrosylation,
Glutathionylation, Succinylation, Nitration, Palmitoylation,
Myristoylation, Hydroxylation, Crotonylation, Sulfation,
Farnesylation, Geranylgeranylation, Gamma-carboxyglutamic
acid, Pyrrolidone carboxylic acid, Citrullination, Glutarylation,
Amidation, Carbamidation, Oxidation, GPI-anchor, Lipoylation,
Neddylation, Carboxylation, and Pyruvate, were curated in our
web server. On the other hand, somatic mutations downloaded
from the data portals of TCGA were processed to retain non-
synonymous SNVs, and finally, 1,776,848 non-synonymous
SNVs across 33 cancer types (UCEC, SKCM, COAD, LUAD,
STAD, LUSC, BLCA, BRCA, HNSC, GBM, CESC, OV, READ,
LIHC, LGG, ESCA, PAAD, PRAD, KIRC, SARC, KIRP,
ACC, LAML, UCS, THCA, DLBC, CHOL, THYM, MESO,
TGCT, KICH, PCPG, and UVM) were collected in PTMsnp
(Supplementary Table S1).

Web Server Description
To start PTMsnp, genetic mutations in standard VCF or TAB
format need to be inputted in the text area or uploaded via the
file selection box (Figure 1A). An intact set of somatic mutations
from the cancer cohort of TCGA is integrated into the database,
and users can also select a cancer type of interest to start analysis.
Before calculation, several options, including PTM type, genome
assembly version, iteration and burn-in times for the MCMC
process, and q-value threshold should be set for the PTMsnp
program (Figure 1B). Besides, users can enter email address
to receive email notifications after the calculation is completed.
After the submission of an analysis task, a new record will be
added to the task monitoring bar at the bottom of the submit
page (Figure 1C). When a task status is displayed as “complete,”
the user can click the “view” button to open the result page.

The result page consists of five interactive tables and graphs.
The significantly PTM-mutated proteins that may drive the
progression of diseases are outputted as a summary table
(Figure 1D), supporting interactive operations such as filtering
and sorting by cancer type, UniProt accession number, protein
name and modification type. Each protein is directly linked to the
UniProt database according to its accession number for details.
The PTM-related mutations located in these proteins can be
expanded or collapsed by click each protein record. Original
information of PTM-related mutations such as base changes
and genotypes are retained, as well as allele frequency obtained
from ExAC database. Meanwhile, we scored the pathogenic level
of each PTM-related mutation from 0 to 7 by counting the
deleterious results of seven functional predictors [SIFT (Kumar
et al., 2009), LRT (Chun and Fay, 2009), MutationTaster (Schwarz
et al., 2010), MutationAssessor (Reva et al., 2011), FATHMM
(Shihab et al., 2013), MetaSVM, and MetaLR (Dong et al., 2015)]
curated in the dbNSFP database (Liu et al., 2016). Besides,

InterVar (Li and Wang, 2017), and Clinvar (Landrum et al.,
2018) are also integrated for clinical interpretation of PTM-
related mutations by the ACMG/AMP 2015 guideline (Richards
et al., 2015) and known disease association, respectively.
For visualization, the distribution of significant PTM-related
mutations and mutated PTM types in identified proteins are
plotted in a bar graph and a pie chart (Figure 1E). In addition,
for each identified protein, the mutation sites and known PTM
sites together with their functional domains are presented in a
schematic biological sequence diagram, where users can freely
add or remove PTM tracks (Figure 1F). Moreover, to gain
further insights into the protein function, we performed Gene
Ontology (GO) and pathway enrichment analysis using the
clusterProfiler package in R (Yu et al., 2012). The analysis
results were illustrated in bar graphs (Figure 1G) and bubble
plots (Figure 1H). All visualization diagrams are available in
publication quality for download.

PTMsnp Identifies Known Cancer Genes
With Significantly PTM-Related
Mutations
To demonstrate how PTMsnp can be used for cancer driver
genes detection, we first applied PTMsnp to analyze the somatic
mutations from TCGA cohorts across 33 different cancer
types. We selected five PTM types, including phosphorylation,
acetylation, ubiquitination, methylation and sumoylation, with
the largest number of modification sites to analyze the significant
PTM-related mutations in cancer patients. PTMsnp identified
9,359 genes with significantly unexpected numbers of PTM-
related mutations (P = 0.01, Figure 2A and Supplementary
Tables S2, S3). Known cancer genes collected from the Cancer
Gene Census (CGC) (Sondka et al., 2018), Network of Cancer
Genes (NCG 6.0) (Repana et al., 2019), ONGene (Liu et al., 2017)
as well as TSGene 2.0 (Zhao et al., 2016) database are significantly
enriched (n = 2,064, P = 1.455 × 10-8, Fisher’s exact test,
Supplementary Table S4) in our result. Approximately, one–
fourth of the identified genes (n = 2,256) contained significant
PTM-related mutations in multiple cancer types. Of which, 660
genes were well-known cancer genes, such as CTNNB1, IDH1
(Figure 3). These results showed that the significantly PTM-
mutated genes identified by PTMsnp may have a broad and
important functional impact in the cancer driving mechanism.

Moreover, we found that PTMsnp identified the largest
number of significantly PTM-mutated genes in Skin Cutaneous
Melanoma (SKCM, Figure 2A). The BRAF gene ranked first
by the number of PTM-related mutations in SKCM and
harbored multiple significant PTM mutations in several cancer
types (Figure 3). BRAF, also known as serine/threonine-protein
kinase B-Raf, can phosphorylate MAP2K1 and thereby activates
the MAP kinase signal transduction pathway in living cells.
Mutations that activate BRAF functions are present in over 60%
of all melanomas (Davies et al., 2002). Studies have shown that
BRAF mutations are clustered within the P-loop and activation
segment of the kinase domain (Pratilas et al., 2012; Figure 2B).
These mutations destabilize the interaction between P-loop and
the activation segment, which normally locks the kinase in
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FIGURE 1 | A schematic workflow of the PTMsnp web server. (A) Data input section. (B) Six options set for the PTMsnp program. (C) Task records to monitor the
running task and view the results. The result page consists of five parts, including (D) A summary table of significantly PTM-mutated proteins. (E) The statistical
graphs of significant PTM-related mutations and mutated PTM types in identified proteins. (F) The mutation sites on the protein sequence and its known functional
domains. (G) GO annotation of identified proteins. (H) KEGG pathway enrichment of identified proteins.

its inactive state until the activation loop is phosphorylated.
Consistently, our method has identified a hotspot mutation at
V600 of BRAF can significantly altered the modification level of
three phosphorylation sites, namely Thr599, Ser602, and Ser605.
One of these phosphorylation sites, Thr599, is located in the
activation loop and believed to be functional in regulating the
activation of BRAF (Lavoie and Therrien, 2015; Kiel et al., 2016).
Three other mutations, including D594N, L597Q, and K601E, are
also observed to potentially affect the phosphorylation at Thr599
(Figure 2B). Existing studies have confirmed that these mutations
activate the MAPK pathway in melanoma and are associated with

sensitivity to MEK inhibitor drug therapy (Dahlman et al., 2012;
Wu et al., 2017). In view of these evidences, we hypothesized that
the proto-oncogene BRAF is activated by mutations promoting
the phosphorylation of its activation loop, implying the feasibility
of applying PTMsnp to analyze cancer mutations from the
perspective of affecting PTM modification.

Furthermore, we performed pathway analysis on the identified
driver genes using MSigDB C2 Canonical pathways (Liberzon
et al., 2015) to explore the biological system driven by
PTM-related mutations in SKCM (Figure 2C). The top 20
enriched pathways were known to regulate cell proliferation,
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FIGURE 2 | Significantly mutated proteins identified in TCGA cancer cohorts regarding 5 PTM types. (A) Number of significantly PTM-mutated genes across five
PTM types identified in different cancers. (B) Schematic diagram of mutations and protein phosphorylation modification regions within BRAF gene in five cancer
types. Upper panel shows the number of mutated samples per position. The blue and yellow dashed boxes represent the P-loop and activation loop on the BRAF
protein, respectively. The lower panel shows the mutation and phosphorylation within 594–606 region of the BRAF protein in SKCM. Positions 596–600 are the
activation segment. Above the position coordinates is the amino acid sequence. The phosphorylated amino acids are marked with a yellow solid circle. Altered
amino acid after mutation is above the original sequence. V600 has three different mutation forms, marked with different colors. (C) The enriched pathways of
PTM-mutated proteins in SKCM. (D) The enriched GO terms obtained from the identified PTM-mutated proteins in SKCM.

migration, differentiation, apoptosis, and cell motility, therefore
highlighted altered PTM level may be an important hallmark
of cancers (Hanahan and Weinberg, 2011). Similar results
were also observed in GO enrichment analysis (Figure 2D).
These driver genes are enriched in cellular processes such
as autophagy whose dysregulation has been linked to many
human pathophysiologies including cancer (Chen and Klionsky,
2011; Jiang and Mizushima, 2014). All the above results
demonstrated the functional importance of PTM functions in
cancer development. Taken together, we suggested that PTMsnp
can provide new perspectives on cancer studies, and subsequent
experimental validation may help to discover novel mechanisms
in cancerogenesis.

PTMsnp Identifies Potential Disease
Drivers in GWAS Dataset
In addition, to show the practicability of applying PTMsnp
in other disease-related studies, we further performed an

analysis on a GWAS dataset of type 2 diabetes (T2D) samples
from 1,916 tested individuals. Using PTMsnp, a total of 257
genes (Supplementary Table S5) with significant mutations
across 12 different PTM types were identified (FDR P =0.05,
Figure 4A). More than 70% PTM-related mutations are
located in phosphorylation regions (Figure 4B), which is
reasonable when considering the broadness of phosphorylation
sites. SLC16A1 has the most frequent PTM-related mutations
affecting three types of modifications including phosphorylation,
methylation, and ubiquitination (Figure 4C). The solute
carrier family 16 member 1 (SLC16A1) gene, which encodes
the monocarboxylate transporter 1 (MCT1) protein, is a
proton-coupled monocarboxylate transporter catalyzing the
transportation of many monocarboxylates, such as lactate and
pyruvate, across cell membranes. Many studies have revealed
that mutations on SLC16A1 are associated with abnormal
insulin secretion (Pullen et al., 2012; Al-Khawaga et al.,
2019). Moreover, Nikooie et al. (2013) have reported that
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FIGURE 3 | The top 30 PTM-mutated genes identified in more than 7 cancer types, among which the known cancer genes are indicated in red.

the expression of MCT1 is dramatically reduced in diabetes,
which may lead to increased insulin resistance. Besides, Zhao
et al. (2001) have also found that the overexpression of MCT
protein throughout the islet could involve in deranged insulin
secretion in some type 2 diabetes. These studies suggested
that the abnormal expression of MCT1 may be one of the
pathogenic mechanisms of T2D. On the other hand, it has been
reported that cAMP can cause the dephosphorylation of MCT1
and thereby reduce its surface expression (Smith et al., 2012).

This evidence implies a positive synergy mechanism between
MCT1 phosphorylation and its expression. Based on the
existing literatures and our results, we speculated that our
identified mutations on SLC16A1 can potentially affect its
phosphorylation state, and may further lead to abnormal
glucose sensing and even insulin resistance in T2D by changing
the expression level of MCT1. Therefore, we can reasonably
believe that SLC16A1 can serve as a novel PTM-mediated
T2D driver genes.
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FIGURE 4 | Significantly PTM-mutated proteins identified from a GWAS dataset of Type 2 Diabetes (T2D) samples with 1,916 individuals. (A) The top 30 genes
ranked by the number of significant PTM-related mutations. Bar height shows the number of samples harboring mutations in each PTM type, respectively. The red
and white gradient bar below represents the FDR q-value. (B) The proportion of PTM-related mutations of each modification type in identified proteins. (C) SLC16A1
has the most frequent PTM-related mutations affecting three types of modifications. Upper panel shows the number of mutated samples per position. Protein
domain of SLC16A1 are shown in green region along the sequence. The modified regions of three PTM types on SLC16A1 protein are shown below. The modified
position where the mutation has occurred is indicated by a red arrow. (D) Mutation M1808I were identified to significantly alter phosphorylation status of WNK1.
Protein domain of WNK1 are shown in blue and orange (PK, Protein kinase domain; OSR1-C, Oxidative-stress-responsive kinase 1 C-terminal domain). The
modified position where the mutation has occurred is indicated by a red arrow.

Furthermore, 23 well-known T2D-related genes were
found to carry significant PTM-related mutations in our
analysis (Supplementary Table S6). Of these genes, With-
no-lysine 1 (WNK1) kinase is taken here as an illustrative
example (Figure 4D). WNK1 is serine-threonine kinase
and highly expressed in skeletal muscles. An existing study
has shown that insulin can phosphorylate WNK1, thereby
activating glucose transporter 4 (GLUT4) translocation and
stimulating glucose uptake through the PI3K/Akt signaling
cascade. Decreased WNK1 phosphorylation were observed
in T2D skeletal muscle, providing a new perspective on
WNK1 function in T2D (Kim et al., 2018). Interestingly,
we observed that the M1808I mutation on WNK1 was
significantly enriched around the phrosphorylation site
Thr1810 in T2D patients, implying a pathogenic role of

WNK1 in T2D via its aberrant dephosphorylation. Given
this observation, it is worthy to perform further experiments
to verify the functional role of such mutation regarding to
phrosphorylation process.

SUMMARY AND PERSPECTIVES

Genetic mutations in human genomes include both driver
mutations that provide selective advantages to disease
progression and neutral passenger mutations present due
to genome instability. A key challenge facing the biological
community is to distinguish only a few driver mutations from the
majority of passenger mutations. Previous studies have proven
that combining mutations with other important functional
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features may provide extra guidance for driver event detection
compared to traditional frequency-based methods. PTMs have
been successfully used to predict driver mutations in diseases
owing to their extensive functions in biological processes.
However, the lack of an integrated resource of PTM sites as well as
a user-friendly web interface greatly hindered the exploration of
PTM-mediated disease progression. The PTMsnp web server was
elaborately designed and dedicated for addressing such issues.
With the collected PTM dataset, the vast majority of genetic
mutations can be further annotated, and potential disease-driven
genes can be inferred from the perspective of aberrant PTM
status. As applications, we have successfully applied PTMsnp to
the detection of cancer driver genes and disease-related genes
from type 2 diabetes cohorts. This analysis revealed the prospect
of using PTMsnp to explore the underlying pathogenesis of
known disease-related mutations and to discover novel cancer
drivers for further clinical research.

PTMsnp can be further enhanced in several aspects in
the future. First, more genetic mutations such as population
mutation datasets can be supported in future updates of PTMsnp.
Different PTM processes can be orchestrated by different
enzymatic systems, forming a dynamic regulatory cycle in
normal cells. The perturbation of such a dynamic regulatory
cycle may also lead to certain abnormalities. Therefore, the
current algorithm can be further extended to consider mutations
in PTM enzymes. In addition, the protein-protein interaction
network may also be considered to interpret the impact of
genetic mutations on PTM enzyme-substrate interactions, for
example, kinase-substrate interactions in phosphorylation. With
the ongoing database update and algorithm extensions, we expect
PTMsnp to become a useful web server for the biomedical
research community and to provide more valuable insights into
disease biology and therapy development.
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Cysteine S-sulphenylation (CSO), as a novel post-translational modification (PTM), has
emerged as a potential mechanism to regulate protein functions and affect signal
networks. Because of its functional significance, several prediction approaches have
been developed. Nevertheless, they are based on a limited dataset from Homo sapiens
and there is a lack of prediction tools for the CSO sites of other species. Recently,
this modification has been investigated at the proteomics scale for a few species and
the number of identified CSO sites has significantly increased. Thus, it is essential to
explore the characteristics of this modification across different species and construct
prediction models with better performances based on the enlarged dataset. In this study,
we constructed several classifiers and found that the long short-term memory model
with the word-embedding encoding approach, dubbed LSTMWE , performs favorably
to the traditional machine-learning models and other deep-learning models across
different species, in terms of cross-validation and independent test. The area under
the receiver operating characteristic (ROC) curve for LSTMWE ranged from 0.82 to 0.85
for different organisms, which was superior to the reported CSO predictors. Moreover,
we developed the general model based on the integrated data from different species
and it showed great universality and effectiveness. We provided the on-line prediction
service called DeepCSO that included both species-specific and general models, which
is accessible through http://www.bioinfogo.org/DeepCSO.

Keywords: machine learning, modification site prediction, deep learning, Cysteine S-sulphenylation, post-
translational modification

INTRODUCTION

Protein Cysteine S-sulphenylation (CSO) is the reversible oxidation of protein cysteinyl thiols to
suphenic acids. S-sulphenylation functions as an intermediate on the path toward other redox
modifications, such as disulfide formation, S-glutathionylation, and overoxidation to sulfinic and
sulfonic acids (Paulsen and Carroll, 2013; Huang J.J et al., 2018). This modification has been
reported to influence protein functions, regulate signal transduction and affect cell cycle (Van
Breusegem and Dat, 2006; Men and Wang, 2007; Paulsen and Carroll, 2013; Hourihan et al., 2016;
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Choudhury et al., 2017; Mhamdi and Van Breusegem, 2018).
So far, thousands of CSO sites have been identified from
different species including the mammal Homo sapiens and the
plant organism Arabidopsis thaliana using the chemoproteomics
approach (Yang et al., 2014; Li et al., 2016; Gupta et al.,
2017; Akter et al., 2018; Huang et al., 2019; summarized
in Supplementary Table 1). Nevertheless, the CSO site
detection remains a major methodological issue due to low
abundance and dynamic level of CSO-containing proteins
in vivo. In contrast to the time-consuming and expensive
experimental approaches, computational methods for predicting
CSO sites have attracted considerable attention because of their
convenience and efficiency.

Several computational methods have been developed for the
prediction of CSO sites, mainly based on a single human dataset
containing 1105 identified CSO sites (Yang et al., 2014). They
include MDD-SOH (Bui et al., 2016a), iSulf-Cys (Xu et al.,
2016), SOHSite (Bui et al., 2016b), PRESS (Sakka et al., 2016),
Sulf_FSVM (Ju and Wang, 2018), S-SulfPred (Jia and Zuo, 2017),
Fu-SulfPred (Wang et al., 2019), SulCysSite (Hasan et al., 2017),
SOHPRED (Wang et al., 2016), and PredCSO (Deng et al.,
2018). Out of them, two are based on protein three-dimensional
structures, in which PRESS relies on four different protein
structural properties (Sakka et al., 2016) whereas PredCSO is an
ensemble model that combines bootstrap resampling, gradient
tree boosting and majority voting with the 21 features refined out
using a two-step feature selection procedure (Deng et al., 2018).
The advantage of both classifiers is the inclusion of accurate
structural features but their drawback is the limitation of the
available structures. The rest classifiers are based on protein
sequences. They can be classified into two clusters in terms of
model complexity. The first cluster contains four relatively simple
models. ISulf-Cys is an SVM (Support Vector Machine)-based
classifier with the integration of three features including binary,
PSAAP, and AAindex (Xu et al., 2016). SOHSite is an SVM-based
classifier with the combined features of position-specific scoring
matrix (PSSM) and AAindex (Bui et al., 2016b). SulCysSite is
an RF (Random Forest)-based classifier with the integration
of multiple features (Hasan et al., 2017) and Sulf_FSVM is
an fuzzy SVM classifier using mRMR feature selection from
three kinds of features (Ju and Wang, 2018). The second
cluster includes four relatively complex models. MDD-SOH
contains two-layered SVMs trained with MDDLogo-identified
substrate motifs (Bui et al., 2016a). S-SulfPred is an SVM-
based classifier with the balanced training dataset established
using one-sided selection undersampling for negative samples
and synthetic minority oversampling for positive samples (Jia
and Zuo, 2017). Fu-SulfPred contains two layers of forest-based
structure with the reconstruction of training datasets for data
balance (Wang et al., 2019). SOHPRED was built by integrating
four complementary predictors (i.e., a naive Bayesian predictor,
an RF predictor, and two SVM predictors), each of which was
associated with different training features (Wang et al., 2016). In
summary, the characteristics of these sequence-based models are
the combination of distinct types of features, or/and the balancing
of training data, or/and the integration of different classifiers.
Although the developed classifiers have made contribution to the

prediction of CSO sites, most of them are currently inaccessible.
Moreover, there is a lack of prediction tools for the CSO sites of
multiple species. With the growing number of CSO sites verified,
it is essential to develop species-specific prediction models with
high accuracy or even a general model.

Compared to traditional machine-learning (ML) algorithms
(e.g., SVM and RF) used in the prediction approaches
described above, the deep-learning (DL) architecture is a
promising ML algorithm. In the DL algorithm, a suitable
representation of the input data can be transformed into
highly abstract features through propagating the whole
model. Superposition of hidden layers in neural networks
can increase the ability of feature extraction, resulting in a
more accurate interpretation of latent data patterns. Indeed,
several frequently utilized DL models have been recently
applied in the field of Bioinformatics, especially the prediction
of post-translational modification (PTM) sites. For instance,
deep neural networks were utilized for the prediction of
protein nitration and nitrosylation sites (Xie et al., 2018),
recurrent neural networks (RNNs) were employed for the
prediction of lysine Malonylation sites (Chen et al., 2018b)
and convolutional neural networks (CNNs) were used for the
prediction of phosphorylation sites and crotonylation sites
(Wang et al., 2017; Zhao et al., 2020). Deep learning algorithms
have demonstrated their advantages in the application of
large data sets, compared to the traditional ML methodology
(Chen et al., 2018b). Because of this, the introduction of
DL algorithms into the prediction of CSO sites would be a
promising move to provide reliable candidates for further
experimental consideration.

In this study, we constructed a number in silico approaches for
the prediction of the CSO sites for H. Sapiens and A. thaliana.
These approaches included the RF and SVM algorithms, one-
dimensional CNN (1D-CNN), two-dimensional CNN (2D-
CNN) and long short-term memory (LSTM) that is an RNN type.
The LSTM model with the word-embedding encoding approach,
called LSTMWE, compared favorably to the rest approaches with
AUC as 0.82 and 0.85 in human and Arabidopsis in terms of
cross-validation. Moreover, LSTMWE trained using the data from
one organism achieved outstanding performance in predicting
CSO sites of other organisms (e.g., AUC = 0.80 for the prediction
of Arabidopsis CSO sites using the human model), suggesting
that CSO is highly conserved. Therefore, we constructed a general
CSO prediction model. These models will facilitate the discovery
of new CSO sites and thus will contribute to the understanding of
roles and functions of CSO in diverse cellular processes.

MATERIALS AND METHODS

Data Collection and Preprocessing
The experimentally identified CSO sites were derived from two
different organisms including H. Sapiens and A. thaliana (Yang
et al., 2014; Li et al., 2016; Gupta et al., 2017; Akter et al., 2018;
Huang et al., 2019). The data of the species were pre-processed
and the related procedure was exemplified using the A. thaliana
data, as listed below (Figure 1A).
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FIGURE 1 | The flowchart of the dataset process for A. thaliana (A) and H. sapiens (B).

We mapped 1537 Arabidopsis CSO sites (Huang et al.,
2019) to the UniprotKB database (UniProt Comstortium, 2011)
and 1535 sites from 1130 proteins were retained as positive
sites. The rest 8819 Cysteine residues in the same proteins
were defined as negative sites. Moreover, we truncated these
protein sequences into 35-residue segments with the Cysteine
located at the center and the positive/negative sites correspond
to positive/negative segments, respectively. It should be noted
that if the central Cysteine was located around the N-terminus
or C-terminus of a protein sequence, the gap symbol “-
” was added to the corresponding positions to ensure that
the segment had the same length. The segment length was
optimized as a hyper-parameter in the Bayesian optimization
method (see details in Section of “Optimization Methods for
Hyper-Parameters”) and finally determined as 33. Furthermore,
to reduce the potential influence of the segments with high
similarity on the performance of the models to be constructed,
we set the identity of any two sequences with less than
40%, referring to previous studies (Bui et al., 2016a; Wang
et al., 2016; Xu et al., 2016). When the identity was >40%
between two positive segments or two negative segments,
one was randomly removed. When the identity was >40%
between a positive segment and a negative segment, the positive
was retained and the negative was discarded. As a result,
1380 positives and 7421 negatives were retained. Finally, we

randomly separated the positive and negative segments into
11 groups of which 10 were used for 10-fold cross-validation
(1254 positives and 6746 negatives) and the rest for an
independent test (126 positives and 675 negatives) (Figure 1A).
Similarly, the cross-validation dataset for H. sapiens contained
16,249 samples (2507 positives and 13,742 negatives) and the
independent test set comprised 1625 samples (251 positives and
1374 negatives) (Figure 1B). These datasets are available at
http://www.bioinfogo.org/DeepCSO/download.php.

Feature Encoding Schemes
Numerical Representation for Amino Acids (NUM)
The NUM encoding approach maps each type of amino acid
residue to an integer (Zhang Y. et al., 2019). Specifically, in
the alphabet “AVLIFWMPGSTCYNQHKRDE-”, each letter from
“A” to “-” is converted to the integers from 0 to 20 in turn.
For example, the sequence “VAMR” is encoded as “1,0,6,17.”
This encoding was used as the input of the first layer for both
LSTM and 1D-CNN.

Enhanced Amino Acid Composition
The enhanced amino acid composition (EAAC) encoding (Chen
et al., 2018b,c, 2020; Huang Y. et al., 2018) introduces a fixed-
length sliding window based on the encoding of amino acid
composition (AAC), which calculates the frequency of each type
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of amino acid in a protein or peptide sequence (Bhasin and
Raghava, 2004). EAAC is calculated by continuously sliding a
fixed-length sequence window (using the default value 5) from
the N-terminus to the C-terminus of each peptide. The related
formula is listed below:

f (t,win) =
N (t,win)
N (win)

, t ∈ {A,C,D, . . . , Y} ,

win ∈
{
window1,window2, . . . ,window35

}
(1)

where N(t, win) is the number of amino acid t in the sliding
window win, and N(win) is the size of the sliding window win.

Binary Encoding
In the binary encoding (Chen et al., 2018c), each amino acid is
represented by a 21-dimensional binary vector that represents 20
amino acids and a complement “-.” The corresponding position
is set as 1 and the rest position is set as 0. For example, the
amino acid “A” is represented by “100000000000000000000,” “V”
is represented by “010000000000000000000,” and the symbol
“-” is represented by “000000000000000000001,” according to the
alphabet “AVLIFWMPGSTCYNQHKRDE-.”

AAindex Encoding
AAindex is a database of various indices representing
distinct physicochemical and biochemical properties
of amino acids and pairs of amino acids.1 In the 544
physicochemical properties, we retained 531 properties
after the removal of properties with “NA.” We calculated
the performance for each property using the RF classifier

1http://www.genome.jp/aaindex/

based on the 10-fold cross-validation dataset of arabidopsis.
We selected the top 36 properties with AUC > 0.7
(Supplementary Table 3).

The Composition of k-Spaced Amino Acid Pairs
The composition of k-spaced amino acid pairs (CKSAAP)
encoding contains the frequency of the amino acid pair of which
both are separated by k-residues (k = 0, 1, 2, 3, 4, 5. We used the
default value 5) (Chen et al., 2018c). This scheme represents the
short- or long-range interactions amongst the residues along the
sequence. The CKSAAP encoding with k = 0 is identical to the
di-peptide composition.

The Position-Specific Scoring Matrix
The PSSM encoding was derived from the previous publication
(Xie et al., 2018). In brief, we calculated the statistical significance
of the differences in the frequencies of symbol occurrence
between the positive and negative samples using a two-sample
t-test (Vacic et al., 2006). Accordingly, the PSSM of significant
P-values were constructed. By integrating the PSSM of P-values
with the frequency PSSM for positive and negative samples,
we generated the final encoding PSSM that represented the
conservation tendency of the positive or negative samples.

Architecture of the Machine-Learning
Models
The LSTM Model With the Word Embedding
Encoding (LSTMWE)
LSTMWE contained five layers, listed as follows (Figure 2).

1. Input layer. Each peptide segment is converted into an
integer vector with the NUM encoding.

FIGURE 2 | The LSTMWE architecture.
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2. Word Embedding (WE) layer. Each integer of the vector
from the input layer is encoded into a four-dimension word
vector for humans and a five-dimensional word vector for
arabidopsis, respectively.

3. LSTM layer. Each of the word vectors is input sequentially
into the LSTM cell that contained 32 hidden neuron units.

4. Dense layer. It contains a single dense sublayer that has 16
neurons with the ReLU activation function for humans and
32 neurons for arabidopsis, separately.

5. Output layer. This layer has only one neuron activated
by sigmoid function, outputting the probability of the
CSO modification.

The 1D-CNN Model With the Word Embedding
Encoding
The 1D-CNN model with the word embedding encoding
(1D-CNNWE) contains five layers (Supplementary
Figure 1), where the first two layers and last one layer
were as same as LSTMWE. The third layer was a 1D
convolution layer with 22/20 filters for humans/arabidopsis
and kernel size as nine. The fourth layer had a single
dense sublayer with 16 neurons. The optimal hyper-
parameter values were obtained using the Bayesian
optimization algorithm.

The 2D-CNN Model With the PSSM Feature
We took advantage of the 2D structure of an input image
of CNN architecture and conveniently made similar 2D
inputs of PSSM matrixes with the sizes of 20 × 20 s.
The purpose of using the 2D-CNN model is to catch the
hidden figures inside PSSM profiles. Next, PSSM profiles were
connected to the 2D CNN design from the input layer through
several hidden layers to the output layer. Supplementary
Figure 2 demonstrated the procedure of inputting a PSSM
profile into the CNN model, then passing through a series
of convolutional, non-linearity, pooling and fully connected
layers and finally outputting the result. This model contained
four hidden layers including one 2D convolutional layer, one
pooling layer, one flattening layer, and one fully connected
layer. Specifically, the first layer contained a PSSM profile
on which we applied 2D convolutional operations with some
existing parameters including 5 × 5 kernel size, 15 filters and
1× 1 stride.

The RF Algorithms With Different Features
The RF algorithm integrates multiple decision trees and
chooses the classification with the most votes from the
trees. Each tree depends on the values of a random vector
sampled independently with the same distribution for all
trees in the forest. In this study, we constructed the RF
models with six different features, including binary encoding,
EAAC encoding, AAindex encoding, CKSAAP encoding,
PSSM encoding, and WE. The number of decision trees
was selected as 580 via the grid search method. These
classifiers were developed based on the Python module
“sklearn.”

The SVM Algorithms With Different Features
We applied the Python-based machine learning package “scikit-
learn” to implement the SVM algorithm and adopted the “RBF”
kernel function to build the SVM models. The above encoding
schemes for RF were applied to the SVM model. In particular, we
normalized the feature values that do not range between 0 and 1
(such as PSSM) before inputting the SVM model.

Model Training Strategy
Optimization Methods for Hyper-Parameters
The hyper-parameters of an ML classifier affect prediction
performance. Although a lot of combinations of hyper-
parameters need to be tested, there are no formal rules to
find optimal hyper-parameters. Here we applied two search
approaches [grid search and Bayesian optimization (BO)] to
automatical adjustment and evaluation of hyper-parameters
(Figure 3). Grid search is a brute-force method to find
the optimal hyper-parameters by training models using each
possible combination of hyper-parameters and retaining the
hyper-parameters corresponding to the model with the best
performance. This method applies to a limited number of
hyper-parameters due to the exponential increase in time
spent with the number of hyper-parameters. In this study,
it was used for the RF-based and SVM-based models.
The related grid search spaces (Supplementary Table 3)
were searched using the GridSearchCV function of the
sklearn library in Python. On the contrary, BO provides a
principled technique based on Bayes theorem to direct a
search of a global optimization problem, which is effective to
tune the hyper-parameters of DL models. The BO strategy

FIGURE 3 | Hyper-parameter optimization procedure for machine-learning classifiers.
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was executed using the fmin function of the hyperopt
library in Python. The BO related hyper-parameter space
contained 10 parameters, including window size, kernel size,
and dropout rate (Supplementary Table 3). The optimal hyper-
parameter combination results for the DL models were listed in
Supplementary Table 4.

Strategy of Avoiding Overfitting
1The parameters in the DL models were trained and optimized
based on binary cross-entropy loss function using the Adam
algorithm. The maximum of the training cycles was set through
the optimized number of epochs to ensure that the loss
function value converged. In each epoch, the training dataset
was separated with the batch size as 512 and iterated. To
avoid overfitting, the early-stopping strategy was applied, where
the training process was stopped early when the training loss
did not go down within 50 consecutive iterations. The model
with the smallest training loss was saved as the best model.
Moreover, the dropout rate of the neuron units was set,
which was obtained through the hyper-parameter optimization.
Supplementary Figures 3, 4 showed the training and validation
accuracy and loss curves of the LSTMWE models for different
species.

Performance Assessment of the
Predictors
Several measures were used to evaluate the prediction
performance, including accuracy (ACC), specificity (SP),
sensitivity (SN), Matthew’s correlation coefficient (MCC). They

are defined as follows:

ACC =
TP+ TN

TP+ FP+ TN+ FN

SP =
TN

TN+ FP

SN =
TP

TP+ FN

MCC =
(TP× TN)− (FN× FP)

√
(TP+ FN)× (TN+ FP)× (TP+ FP)× (TN+ FN)

where TP, TN, FP, and FN represent true positives, true negatives,
false positives, and false negatives, respectively. Additionally,
because the number of positive and negative samples was
unbalanced and the above measures were calculated based
on the threshold value, a measure that was independent of
the threshold value and unaffected by the sample ratio was
needed. Therefore, the receiver operating characteristic (ROC)
curve and AUC were employed to comprehensively evaluate
classification performance. Specifically, due to the low false-
positive rate of a predictor is significant in practical application,
the area under the ROC curve with <10% false-positive rate
(AUC01) was considered.

Statistical Methods
The paired student’s t-test was used to test the
significant difference between the mean values of the

FIGURE 4 | The flowchart of the prediction model construction.
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two paired populations. The adjusted P-value with the
Benjamini-Hochberg (BH) method was adopted for
multiple comparisons.

The Flowchart of the Prediction Model
Construction
The flowchart of the prediction model construction contained
three steps (Figure 4). This first step was data collection and
preprocessing, in which the sample data were separated
into the cross-validation dataset and the independent
test dataset for model construction and evaluation. The
second step was classifier construction, which involved data
decoding, model training, and hyper-parameter adjustment
for resulting in a robust predictive model. The third
step was the development of the final model as an online
prediction tool.

RESULTS AND DISCUSSION

LSTMWE Classifier Performed Favorably
to Other Classifiers
Many computational approaches for predicting PTM sites are
generally based on traditional ML algorithms (e.g., RF and
SVM) combined with various features encoded from peptide
sequences. In this study, we constructed both RF-based and
SVM-based predictors with different encoding schemes for
the CSO site prediction. The encoding schemes include six
features [i.e., binary, AAindex, WE, KSAAP, PSSM, and EAAC].
Moreover, deep learning algorithms have recently been applied
to the field of PTM site prediction and demonstrated their
superior performances (Wang et al., 2017; Chen et al., 2018b).
Accordingly, we developed three different DL classifiers, named
1D-CNNWE, 2D-CNNPSSM , and LSTMWE.

TABLE 1 | Performances of various classifiers for different species in terms of 10-fold cross-validation.

Classifier1 ACC2 Sn2 Sp2 MCC22 AUC2 AUC012

Arabidopsis thaliana

RFBINARY 0.743 ± 0.006 0.449 ± 0.040 0.798 ± 0.001 0.210 ± 0.032 0.696 ± 0.021 0.014 ± 0.002

RFEAAC 0.773 ± 0.007 0.628 ± 0.043 0.799 ± 0.001 0.351 ± 0.033 0.803 ± 0.019 0.024 ± 0.004

RFWE 0.748 ± 0.007 0.474 ± 0.048 0.799 ± 0.001 0.230 ± 0.038 0.728 ± 0.020 0.014 ± 0.002

RFAAINDEX 0.744 ± 0.008 0.443 ± 0.053 0.800 ± 0.001 0.206 ± 0.043 0.710 ± 0.025 0.014 ± 0.004

RFCKSAAP 0.749 ± 0.012 0.477 ± 0.078 0.800 ± 0.001 0.234 ± 0.062 0.728 ± 0.032 0.013 ± 0.003

RFPSSM 0.740 ± 0.006 0.419 ± 0.039 0.800 ± 0.000 0.188 ± 0.032 0.670 ± 0.028 0.015 ± 0.004

RFE+C+A 0.760 ± 0.006 0.544 ± 0.040 0.800 ± 0.001 0.287 ± 0.031 0.770 ± 0.016 0.020 ± 0.005

SVMBINARY 0.748 ± 0.009 0.479 ± 0.055 0.798 ± 0.003 0.234 ± 0.043 0.719 ± 0.025 0.017 ± 0.002

SVMEAAC 0.746 ± 0.009 0.458 ± 0.060 0.799 ± 0.001 0.218 ± 0.048 0.704 ± 0.026 0.015 ± 0.004

SVMAAINDEX 0.750 ± 0.008 0.486 ± 0.054 0.800 ± 0.000 0.241 ± 0.042 0.724 ± 0.023 0.016 ± 0.004

SVMCKSAAP 0.739 ± 0.007 0.421 ± 0.047 0.798 ± 0.003 0.187 ± 0.037 0.692 ± 0.030 0.013 ± 0.003

SVMPSSM 0.726 ± 0.008 0.330 ± 0.054 0.800 ± 0.001 0.113 ± 0.046 0.590 ± 0.025 0.009 ± 0.003

2D-CNNPSSM 0.766 ± 0.010 0.585 ± 0.064 0.800 ± 0.000 0.319 ± 0.050 0.781 ± 0.030 0.023 ± 0.004

1D-CNNWE 0.783 ± 0.006 0.696 ± 0.041 0.799 ± 0.001 0.401 ± 0.030 0.838 ± 0.019 0.029 ± 0.005

LSTMWE 0.786 ± 0.007 0.717 ± 0.044 0.799 ± 0.001 0.417 ± 0.032 0.852 ± 0.018 0.030 ± 0.006

Homo sapiens

RFBINARY 0.749 ± 0.004 0.466 ± 0.027 0.800 ± 0.000 0.225 ± 0.021 0.720 ± 0.013 0.016 ± 0.002

RFEAAC 0.766 ± 0.006 0.578 ± 0.039 0.800 ± 0.000 0.312 ± 0.030 0.790 ± 0.018 0.020 ± 0.002

RFWE 0.751 ± 0.004 0.480 ± 0.024 0.800 ± 0.000 0.236 ± 0.019 0.732 ± 0.015 0.018 ± 0.001

RFAAINDEX 0.750 ± 0.004 0.474 ± 0.025 0.800 ± 0.000 0.231 ± 0.020 0.734 ± 0.017 0.018 ± 0.003

RFCKSAAP 0.753 ± 0.003 0.493 ± 0.018 0.800 ± 0.000 0.246 ± 0.014 0.729 ± 0.016 0.016 ± 0.002

RFPSSM 0.748 ± 0.004 0.462 ± 0.026 0.800 ± 0.000 0.222 ± 0.021 0.707 ± 0.016 0.016 ± 0.001

RFE+S+A 0.761 ± 0.005 0.551 ± 0.033 0.800 ± 0.000 0.291 ± 0.026 0.774 ± 0.012 0.021 ± 0.002

SVMBINARY 0.750 ± 0.005 0.474 ± 0.030 0.800 ± 0.000 0.231 ± 0.024 0.720 ± 0.013 0.017 ± 0.002

SVMEAAC 0.742 ± 0.007 0.421 ± 0.049 0.800 ± 0.000 0.188 ± 0.039 0.680 ± 0.021 0.013 ± 0.002

SVMAAINDEX 0.753 ± 0.006 0.498 ± 0.041 0.800 ± 0.000 0.250 ± 0.032 0.737 ± 0.021 0.017 ± 0.001

SVMCKSAAP 0.737 ± 0.005 0.388 ± 0.031 0.800 ± 0.000 0.162 ± 0.025 0.664 ± 0.012 0.012 ± 0.002

SVMPSSM 0.725 ± 0.005 0.316 ± 0.033 0.800 ± 0.000 0.101 ± 0.028 0.578 ± 0.025 0.011 ± 0.002

2D-CNNPSSM 0.766 ± 0.004 0.581 ± 0.029 0.800 ± 0.000 0.314 ± 0.022 0.777 ± 0.011 0.022 ± 0.003

1D-CNNWE 0.778 ± 0.006 0.659 ± 0.036 0.800 ± 0.000 0.373 ± 0.027 0.819 ± 0.012 0.024 ± 0.003

LSTMWE 0.777 ± 0.006 0.651 ± 0.038 0.800 ± 0.000 0.367 ± 0.028 0.822 ± 0.011 0.024 ± 0.003

1The RF classifiers with the different features were named as RFBINARY , RFWE , etc. The 1D CNN and LSTM classifiers with the word embedding approach were named
as 1D-CNNWE and LSTMWE , respectively.2ACC, Sn, Sp, MCC, AUC, and AUC01 were described in section “Materials and Methods.” In the 10-fold cross-validation, 10
models were constructed using the 10 different validation datasets. Finally, the average performance and standard deviation of the 10 models were calculated for the
cross-validation dataset. The models with the best performances were highlighted in bold.
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FIGURE 5 | Performance comparison of different CSO predictors on Arabidopsis thaliana. The performances of CSO predictors were compared in terms of AUC (A)
and AUC01 (B), respectively, for 10-fold cross-validation. AUC (C) and AUC01 (D) curves were generated using the independent test.

We first took the Arabidopsis data to construct and compare
different models (Huang et al., 2019). The Arabidopsis cross-
validation dataset contained 8000 samples (1254 positives and
6746 negatives) and the independent test set covered 801
samples (126 positives and 675 negatives) (Figure 1). We
compared the performances of these algorithms in terms of
several measures (e.g., ACC, MCC, AUC, and AUC01) for both
the 10-fold cross-validation (Table 1) and the independent test

TABLE 2 | The k-fold cross-validation results of existed tools.

Tools* Fold Accuracy Sensitivity Specificity AUC

MDD-SOH 5 0.68 0.7 0.7

SOHSite 5 0.71 0.72 0.72

SOHPRED 5 0.727 ± 0.005 0.742 ± 0.001 0.801 ± 0.001

iSulf-Cys 10 0.656 ± 0.007 0.673 ± 0.007 0.639 ± 0.001 0.716 ± 0.009

SulCysSite 10 0.745 ± 0.006 0.744 ± 0.002 0.806 ± 0.002

Sulf_FSVM 10 0.711 ± 0.002 0.733 ± 0.004 0.708 ± 0.002 0.788 ± 0.002

LSTMWE 10 0.739 ± 0.006 0.694 ± 0.042 0.744 ± 0.008 0.800 ± 0.011

RFEAAC 10 0.733 ± 0.006 0.607 ± 0.021 0.750 ± 0.007 0.753 ± 0.006

RFE+S+A 10 0.743 ± 0.009 0.728 ± 0.027 0.745 ± 0.009 0.807 ± 0.010

*The cross-validation dataset was derived from Yang’s publication
(Yang et al., 2014).

(Supplementary Table 5). In the traditional ML models, RFEAAC
showed superior performance than other RF-based and SVM-
based models. The previous studies of CSO site prediction
showed that the models with the combination of different
encoding methods compared favorably to their counterparts with
a single encoding approach (Bui et al., 2016b; Xu et al., 2016).
Accordingly, we constructed such models and the RF model
with the combination of EAAC, CKSAAP, and AAindex, dubbed
RFE+C+A, had the best performance. To our surprise, RFE+C+A
had inferior performance compared to RFEAAC (Table 1 and
Supplementary Table 5).

All the models constructed above were based on the
imbalanced dataset. To evaluate the effect of the imbalanced
dataset on potential overfitting of the classifiers, we reconstructed
RFEAAC based on the balanced positive and negative samples.
Specifically, because the number of negative samples was around
five times larger than that of the positive samples, we randomly
separated the negative samples into five parts and created five
subsets of training data with a 1:1 positive-to-negative ratio.
Subsequently, five RFEAAC models (sub-classifiers) were trained
and the average output score from the five sub-classifiers was
taken as the final prediction score. Supplementary Figure 5
showed the performances of the two RFEAAC models based on the
balanced and imbalanced dataset, respectively, in terms of the 10-
fold cross-validation and the independent test dataset. Because of
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FIGURE 6 | Sequence pattern surrounding the CSO sites, including the significantly enriched and depleted residues based on CSO-containing peptides and
non-modification peptides for H. sapiens (A) and A. thaliana (B) (P < 0.05, t-test with Bonferroni correction). The pattern was generated using the two-sample-logo
method (Vacic et al., 2006).

the slightly better performance of the RFEAAC model constructed
using an imbalanced training dataset, we selected the imbalanced
dataset for the construction of the models.

In our previous studies, DL models showed superior
performance than traditional ML models (Chen et al., 2018b;
Zhao et al., 2020). It is still true for the CSO site prediction.
LSTMWE had the best performance among these constructed
models in terms of ACC, Sn, MCC, and AUC values for both
10-fold cross-validation and independent test. For instance,
its AUC value is 0.852 for the cross-validation and its values
of ACC, Sn, Sp, and MCC were 0.786, 0.717, 0.799, and
0.417, respectively (Table 1 and Figures 5A,C). As prediction
performance at a low false-positive rate is highly useful in
practice, we estimated these predictors using AUC01, where the
specificity was determined to be >90%. LSTMWE again showed
the largest AUC01 values for both 10-fold cross-validation and
the independent test (Figures 5B,D). As the encoding approach
has a great impact on the traditional ML models (Chen et al.,
2018b; Huang Y. et al., 2018; Zhao et al., 2020) and the WE
approach integrated with LSTM had the best performance in this
study, we attempted to investigate whether the integration of WE
and RF had a good performance. Accordingly, we extracted WE
layer vector as feature encoding from LSTMWE and trained the
RF model, dubbed RFWE. Interestingly, RFWE did not show good
performance compared to RFEAAC, 1D-CNNWE, or LSTMWE. It
suggests that the WE encoding approach may be improper for the
construction of traditional ML algorithms.

We further constructed the models for the human organism.
The Humans cross-validation dataset contained 16,249 samples
(2507 positives and 13,742 negatives) and the independent test
set covered 1625 samples (251 positives and 1374 negatives)
(Figure 1B). Similarly, LSTMWE had the best performance
(Table 1, Supplementary Table 5, and Supplementary Figure 6).

For instance, its values of AUC, ACC, Sn, Sp, MCC, and
AUC01 for the 10-fold cross-validation were 0.822, 0.777,
0.651, 0.800, 0.367, and 0.024, respectively. We evaluated
the robustness of LSTMWE by comparing their performances
between the cross-validation and independent tests for individual
organisms. As their performances were not statistically different
for each organism (P = 0.18/0.085 for the arabidopsis/humans,
respectively), we concluded that the constructed models were
robust and neither over-fitting nor under-fitting.

LSTMWE Performed Better Than
Reported Classifiers
Six approaches for the prediction of human CSO sites were
based on 1105 identified human CSO sites (Yang et al.,
2014), including MDD-SOH, SOHSite, SOHPRED, iSulf-Cys,
SulCysSite, and Sulf_FSVM. We compare these models and
our models (i.e., RFEAAC, RFE+C+A, and LSTMWE) to evaluate
their prediction performances. Accordingly, we constructed our
models using the same dataset derived from the original study
(Yang et al., 2014). SulCysSite, LSTMWE, and RFE+C+A had
the best and similar performances (Table 2). The observation
that the model with the combined features (i.e., RFE+C+A) had
better accuracy than the counterpart with a single feature (i.e.,

TABLE 3 | Evaluation of species-specific and general LSTMWE models using the
independent test sets from different species.

Independent test sets LSTMWE model (AUC value)

Arabidopsis-specific Human-specific General

A. thaliana 0.876 0.799 0.863

H. sapiens 0.766 0.839 0.834
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FIGURE 7 | T-SNE visualization of the distributions of peptides in the human independent dataset for the outputs of input layer (A), word embedding layer (B), LSTM
layer (C), and dense layer (D) of the general LSTMWE model.

RFEAAC) is consistent with the previous studies (Bui et al.,
2016b; Xu et al., 2016) but conflicted with our observation
above that RFEAAC compared favorably to RFE+C+A. This
contradiction derived from the different amounts of the training
datasets, where the dataset here was smaller than the datasets
described above, indicating that the amount of training data
affected the performance of the models. Indeed, based on the
small human dataset (1105 positives), RFE+C+A had a better
performance than RFEAAC, whereas the performance of RFEAAC
was better than that of RFE+C+A with a large amount of the
training set (arabidopsis: 1380 positives; human 2758 positives)
(Supplementary Figure 7). In all comparisons, LSTMWE showed
the best performance (Supplementary Figure). Additionally,
as iSulf-Cys (Xu et al., 2016) is the only accessible model
to date, we compared it and LSTMWE using the human
independent dataset of this study. The AUC value (0.839) of
LSTMWE is significantly larger than that (0.666) of iSulf-Cys
(Supplementary Figure 8). In summary, LSTMWE performed
better than reported classifiers.

Conservation of the CSO Modification
and the Development of General
LSTMWE Models
Cysteine S-sulphenylation has been identified across various
organisms, ranging from yeasts to worms and from plants to
humans (Men and Wang, 2007; Hourihan et al., 2016). To
understand its conservation, we compared the characteristics
of CSO-containing peptides in human and arabidopsis
species, respectively, using the two-sample-logo approach

(Vacic et al., 2006). Figure 6 showed that both species shared
the enriched basic amino acids R and K and the depleted
polar neutral amino acid C. Nevertheless, the amino acid H
was enriched for A. thaliana whereas the hydrophobic amino
acid L was depleted for H. sapiens. As the characteristics of
CSO-containing peptides were similar between both species,
we hypothesized the generalization ability of our developed
models. To test this hypothesis, we used the human LSTMWE
model to predict the arabidopsis independent test dataset and
employed the Arabidopsis LSTMWE model to predict the human
independent test dataset. The AUC values were 0.799 and 0.766,
respectively, significantly larger than the random prediction
(i.e., AUC = 0.5; Table 3). Nevertheless, the cross-species
prediction had relatively low performance compared to the self-
species prediction (AUC = 0.876/0.839 for arabidopsis/human,
respectively). As the CSO sites were systematically analyzed in
a few species, we developed a general CSO prediction model
according to its conservation to boost the investigation for
other species. Accordingly, we mixed the training datasets of
H. Sapiens and A. thaliana and constructed the general LSTMWE
model and validated it using the independent datasets from both
organisms. The performance of the general LSTMWE model
was slightly lower than that of the self-species prediction, which
may be caused by the interference of the CSO characteristics of
other species (Table 3). Overall, the conservation of the CSO
modification leads to the effective prediction of the general
LSTMWE classifier.

To further understand the performance of the general
LSTMWE classifier, we visualized the sample distribution, based
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on the human independent dataset, from the outputs of the
input layer, WE layer, LSTM layer, and dense layer of the
general model using the t-SNE algorithm (van der Maaten and
Hinton, 2008; Figure 7). After the input layer (Figure 7A), the
positive and negative samples were mixed, as the training goes
on (Figures 7B,C), positive and negative samples were gradually
separated. After the LSTM layer, they were separated (Figure 7D).
This comparison indicates that the LSTM layer is a powerful
method to detect the distinctive features of the positives and
negatives. A similar observation is made for the arabidopsis
independent test dataset (Supplementary Figure 9).

Construction of the Online CSO
Predictor
We developed an easy-to-use online tool for the prediction
of the CSO sites, dubbed DeepCSO. DeepCSO contains three
LSTMWE models: the general model and two species-specific
models (i.e., H. sapiens and A. thaliana). The users could select
the general model or species-specific model at the input interface
and input the query protein sequences directly or upload the
sequence file. After the job submission, the prediction will start
and the prediction process may take several minutes. Finally,
the prediction results are output in tabular form with five
columns: sequence header, position, sequence, prediction score,
and prediction results at the specificity levels of 80, 85, and
90%, respectively.

Several Cysteine modification types have been reported in
the human organism, such as carbonylation (Wang et al., 2014;
Chen et al., 2017, 2018a; Zhang S. et al., 2019), oxidation (Gupta
et al., 2017; Akter et al., 2018), succination (Adam et al., 2017),
and sulfenylation. Some Cysteine sites can be modified with
multiple modification types, which cause PTM cross-regulation.
To examine potential PTM cross-regulation at the proteome
scale, we downloaded the latest human protein sequences from
the Swiss-Prot database (version: 2020_05) and applied the
human DeepCSO predictor to predict the potential CSO sites
with the annotation of the reported Cysteine modifications
(Supplementary Table 6). This resource will assist in the
investigation of the Cystine co-regulation in the community.

CONCLUSION

The current prediction tools for CSO sites are based on
traditional ML methodology that requires experts to pre-define

informative features, and no prediction tool has been developed
for other than the human organism. In this study, three LSTM-
based prediction models were constructed, where two were
organism-specific and one was general, and they compared
favorably to the reported models. Despite lacking pre-defined
features, the deep learning classifier demonstrated superior
performance compared to the traditional machine learning
methods. This may be due to the self-learning ability of deep
learning. The outstanding performance of the general model
suggests that the CSO is well conserved and the LSTM-based
model has an advantage in long-term memory to capture the key
features of the entire sequences.
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Thiol groups on cysteines can undergo multiple post-translational modifications (PTMs),
acting as a molecular switch to maintain redox homeostasis and regulating a series of
cell signaling transductions. Identification of sophistical protein cysteine modifications
is crucial for dissecting its underlying regulatory mechanism. Instead of a time-
consuming and labor-intensive experimental method, various computational methods
have attracted intense research interest due to their convenience and low cost. Here,
we developed the first comprehensive deep learning based tool pCysMod for multiple
protein cysteine modification prediction, including S-nitrosylation, S-palmitoylation,
S-sulfenylation, S-sulfhydration, and S-sulfinylation. Experimentally verified cysteine sites
curated from literature and sites collected by other databases and predicting tools were
integrated as benchmark dataset. Several protein sequence features were extracted and
united into a deep learning model, and the hyperparameters were optimized by particle
swarm optimization algorithms. Cross-validations indicated our model showed excellent
robustness and outperformed existing tools, which was able to achieve an average
AUC of 0.793, 0.807, 0.796, 0.793, and 0.876 for S-nitrosylation, S-palmitoylation,
S-sulfenylation, S-sulfhydration, and S-sulfinylation, demonstrating pCysMod was stable
and suitable for protein cysteine modification prediction. Besides, we constructed a
comprehensive protein cysteine modification prediction web server based on this model
to benefit the researches finding the potential modification sites of their interested
proteins, which could be accessed at http://pcysmod.omicsbio.info. This work will
undoubtedly greatly promote the study of protein cysteine modification and contribute
to clarifying the biological regulation mechanisms of cysteine modification within and
among the cells.

Keywords: protein cysteine modifications, feature extraction, deep learning, post-translational modifications,
prediction

Abbreviations: PTMs, post-translational modifications; Cys, cysteine; H2S, Hydrogen sulfide; NO, nitric oxide; SVM,
support vector machine; ESC, embryonic stem cell; PSO, particle swarm optimization; CKSAAP, composition of k-spaced
amino acid pairs; BE, binary encoding profiles; PSSM, position-specific scoring matrix; AAC, amino acid composition; Sp,
specificity; Sn, sensitivity; Ac, accuracy; ROC, receiver operating characteristic; AUC, area under ROC curve; MCC, Mathews
correlation coefficient; DNN, deep neural network; GCN, graph convolutional neural network.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 February 2021 | Volume 9 | Article 61736678

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.617366
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.617366
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.617366&domain=pdf&date_stamp=2021-02-23
https://www.frontiersin.org/articles/10.3389/fcell.2021.617366/full
http://pcysmod.omicsbio.info
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-617366 February 17, 2021 Time: 20:9 # 2

Li et al. pCysMod: Prediction of Cysteine Modifications

INTRODUCTION

Post-translational modifications (PTMs) occur at specific amino
acids extending the chemical repertoire of the 20 standard
amino acids, which reversibly coordinate the signaling networks
(Mann and Jensen, 2003; Mertins et al., 2013; Strzyz, 2016).
Although cysteine (Cys) appears the least frequently among these
common amino acids, it tends to act as a powerful molecular
switch to maintain redox homeostasis and regulate a series of
cell signaling transductions by PTMs (Marino and Gladyshev,
2011). The susceptibility of Cys to a variety of oxidative post-
translational modifications is mainly dependent on the thiol
groups, which are considerably more easily oxidized and highly
nucleophilic (Brandes et al., 2009; Kumsta et al., 2011). According
to different molecular conjugations to the thiol groups, cysteine
modification can be classified into different types. Nitric oxide
(NO) binding to some cysteine resides causes S-nitrosylation (Jia
J. et al., 2014) and hydrogen sulfide (H2S) causes S-sulfhydration
(Mishanina et al., 2015; Yang et al., 2015). Cumulated H2O2
reacting with cysteine leads to S-sulfenylation (Yang et al., 2015),
S-sulfinylation (Akter et al., 2018), and S-sulfonylation (Lim et al.,
2008). Cysteines can also bind metals such as Cu, Zn, and Fe to
form iron-sulfur clusters and zinc finger domains (Oteiza, 2012;
Rouault, 2015). The thioesterification reaction happened on lipid
including S-prenylation and S-palmitoylation (Roth et al., 2006).
These modifications lead to a cascade of biochemical reactions
and regulate various physiological and pathological processes,
such as autophagy (Carroll et al., 2018), protein stabilization
(Kröncke and Klotz, 2009), redox homeostasis (Fra et al., 2017),
and cell signaling (Hourihan et al., 2016), demonstrating a
close relationship with many human diseases including cancers,
diabetes, and so on. In this regard, to dissect the molecular
mechanisms and regulatory roles of cysteine modification, it
is urgently needed to precisely parse the potential cysteine
modification sites and types.

With the rapid development of high-throughput sequencing
and excellent specific chemical probes, cysteine modification
profiles get unprecedented accumulation. For example, through
a low-PH quantitation method, Fu et al. (2019) detected 1,547
sulfhydration sites on 994 proteins. Akter et al. (2018) identified
and quantified 387 S-sulfinylation sites on 296 proteins in A549
and Hela cells. Recently, with label-free quantification strategy,
Shen et al. (2017) identified 2,190 S-palmitoylated peptides
on 883 proteins in liver. However, because the experimental
methods are time consuming and labor intensive, the cysteine
modification profiles expanded slowly, which significantly
restricted the research on dissecting the molecular functions
of cysteine modification. It is necessary to develop in silico
tools to accurately predict cysteine modification sites, which will
definitely promote the experimental identification of sophistical
protein cysteine modification sites and types.

There are several computational tools used for predicting
distinct cysteine modification types. For S-nitrosylation, Xue
et al. (2010) collected 504 modification sites and constructed the
first tool GPS-SNO for predicting S-nitrosylation sites. SNOSite
(Lee et al., 2011b) predicted S-nitrosylation sites based on
586 experimental sites using support vector machine (SVM).

iSNO-ANBPB (Jia C. et al., 2014) mainly adopted an adapted
normal distribution bi-profile Bayes (ANBPB) feature extraction
model. PreSNO (Hasan et al., 2019) used the LR model to
integrate four encoding schemes with support vector machines
and RF algorithms to predict SNO sites. In 2018, Xie et al. (2018)
developed DeepNitro for the prediction of protein nitration and
nitrosylation sites based on deep learning. iSulf-Cys (Xu et al.,
2016) is the first program designed for predicting S-sulfenylation
sites based on 1,105 sites quantified in RKO cells. Ju and
Wang (2018) improved the model performance and developed
Sulf_FSVM. MDD-Palm (Weng et al., 2017) can identify
S-palmitoylation sites based on SVM. Recently, Ning et al.
(2020) developed GPS-Palm using a deep learning based graphic
presentation system for the prediction of S-palmitoylation.
Although numerous predictors with considerable performance
have been developed, the limitations are that all of these tools
can predict just one kind of modification type and there is
still room for improvement in model performance, while some
modification types such as S-sulfinylation and S-sulfhydration are
still lacking excellent predictors.

Previously, we have developed several protein post-
translational modification tools for enzyme-specific lysine
acetylation (Yu et al., 2020), calpain-specific cleavage site
(Liu et al., 2019), and S-glutathionylation site (Li et al., 2020)
prediction based on deep learning framework and particle swarm
optimization (PSO) algorithm, which achieved significantly
better performance than exiting tools. Traditional machine
learning based method requires careful feature selection and
scaling, which limited its performance. However, as a branch
of machine learning, deep learning based method can fit
high-dimensional features and clarify biological problems
better than other algorithms. For example, Xu et al. (2017)
constructed a predicting system for histone modification
and discovered a potential embryonic stem cell (ESC) fate
decision mechanism. DeepBind (Hassanzadeh and Wang,
2016) provided many candidate DNA-binding proteins by
predicting DNA and protein-binding events. These results
suggested an unprecedented excellent chance to utilize deep
learning to solve biological problems. However, a credible deep
learning framework is still lacking for comprehensive cysteine
modification prediction.

In this work, after integrating the experimentally verified
cysteine sites curated from literature and sites collected
by other databases and predicting tools, we developed the
first comprehensive deep learning based tool pCysMod
for multiple protein cysteine modification prediction,
including S-nitrosylation, S-palmitoylation, S-sulfenylation,
S-sulfhydration, and S-sulfinylation. Seven sequence features
including binary encoding profiles (BE), amino acid composition
(AAC), position-specific scoring matrix (PSSM), and
composition of k-spaced amino acid pairs (CKSAAP) were used
to represent the sequences. These features were extracted and
united into a deep learning model, and the hyperparameters were
optimized by particle swarm optimization algorithms. Cross-
validations indicated our model showed excellent robustness
and outperformed existing tools. Besides, we constructed a
comprehensive protein cysteine modification prediction web
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server based on this model to benefit the researches finding the
potential modification sites of their interested proteins, which
could be accessed at http://pcysmod.omicsbio.info.

METHODS

Benchmark Dataset Preparation
The cysteine modification sites were collected in two major
aspects. On the one hand, we curated the experimentally
verified sites by searching the literatures from PubMed. For
each modification, we used “nitrosylation,” “palmitoylation,”
“sulfenylation,” “sulfhydration,” and “sulfinylation,” together with
“cysteine” as our keywords. After traversing all related literatures
in PubMed, we manually collected all experimentally verified
sites. One the other hand, several databases and predictors with
known cysteine modification sites were integrated, including
GPS-SNO training dataset (Xue et al., 2010), Deep-Nitro training
dataset (Xie et al., 2018), SNOSite training dataset (Lee et al.,
2011b), GPS-Palm training dataset (Ning et al., 2020), iSulf-Cys
training dataset (Xu et al., 2016), Sulf_FSVM training dataset
(Ju and Wang, 2018), and dbPTM database (Huang et al.,
2018). Finally, we obtained 23,041 S-nitrosylation sites in 10,671
proteins, 2,766 S-palmitoylation sites in 1,413 proteins, 4,978
S-sulfenylation sites in 3,288 proteins, 2,721 S-sulfhydration sites
in 1,707 proteins, and 742 S-sulfinylation sites in 538 proteins as
our final training dataset (Table 1 and Supplementary Table S1).

TABLE 1 | A summary of each type of modification data.

Dataset Human Mouse Rat Other Total

Number of S-nitrosylation
sites (positive data)

10,784 4,103 1,629 2,819 38,670

Number of
non-S-nitrosylation sites
(negative data)

19,335

Number of
S-palmitoylation sites
(positive data)

748 1,773 74 174 5,532

Number of
non-S-palmitoylation sites
(negative data)

2,766

Number of S-sulfenylation
sites (positive data)

2,587 352 1 1,806 9,492

Number of
non-S-sulfenylation sites
(negative data)

4,746

Number of S-sulfhydration
sites (positive data)

2,010 0 0 525 5,070

Number of
non-S-sulfhydration sites
(negative data)

2,535

Number of S-sulfinylation
sites (positive data)

440 0 208 7 1,310

Number of
non-S-sulfinylation sites
(negative data)

655

To generate the positive and negative datasets, we retrieved the
protein sequence from UniProt database (UniProt Consortium
[UC], 2015) for each protein. For each modification, the golden
positive dataset was the modification sites from the benchmark
dataset, whereas all cysteine sites that were not modified on the
same protein were treated as the negative dataset. The sequence
box for feature extraction consists of a cysteine in the middle
and 15 upstream and downstream amino acids at both ends.
For the peptide of less than 31-amino acids, pseudo-amino acids
“∗” were added to make sure the peptides were of equal length.
If the sequence in the negative dataset was the same as the
positive set in the same cysteine modification, only the sequence
in the positive data set is preserved. In addition, due to the high
imbalance between positive and negative samples, we randomly
selected the same number of negative samples to ensure that the
number of positive peptides was equal to the number of negative
peptides (Zhao et al., 2012). At the same time, we used CD-Hit
(Fu et al., 2012) with a threshold of 90, 80, and 70% sequence
similarity treatment on a short peptide consisting of 31-amino
acids, and then performed fivefold cross-validation. In this work,
cross-validations were used to evaluate the performance of the
model. Since cross-validation is an efficient way of examining the
robustness and accuracy of a predicting model, it is unnecessary
to divide the benchmark dataset into training set and testing set
(Zhang et al., 2020).

Feature Extraction
Binary Encoding Profiles
Binary encoding (BE) (Song et al., 2010) was derived from
computational programming, which uses the binary digit, that
is, “0” or “1,” as the fundamental unit of information. Each
printable character can be uniquely represented by combining
bits. As mentioned above, each peptide in the benchmark
dataset consists of at most 21 types of amino acids, which
are ACDEFGHIKLMNPQRSTVWY∗. Hence, a 21-dimentional
binary vector was used to represent each amino acid. For
example, “A” was encoded as (100000000000000000000), “E”
was encoded as (000100000000000000000), and the pseudo-
amino acid “∗” was encoded as (000000000000000000001).
In this regard, each peptide was represented by a 651-
dimensional vector.

Amino Acid Composition
The amino acid composition (AAC) is an important feature to
identify β-barrel membrane proteins (Radivojac et al., 2010; Lee
et al., 2011a), which stand for the occurrence frequency of 21-
amino acids on any specific peptides. The feature length of this
encoding method is 21 for each peptide.

Position-Specific Scoring Matrix
Position-Specific Scoring Matrix (PSSM) was first introduced
as an alternative to consensus sequences (Stormo et al., 1982);
this feature was derived from a set of functionally related
aligned sequences, which is commonly used for computational
motif discovery in biological sequences (Stormo, 2000). For a
group of given peptides, PSSMs assume that the probabilities
for each position are statistically independent and calculate the
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probability for each specific amino acid at a particular position.
The probabilities for a particular position sum up to 1. In this
work, we calculated PSSMs for positive dataset and negative
dataset, so the dimension of this feature is 62.

Composition of k-Spaced Amino Acid Pairs
The encoding scheme based on the Composition of k-Spaced
Amino Acid Pairs (CKSAAP) (Zhao et al., 2012) is an effective
feature extraction method, which can reflect the information of
amino acid pair motifs in a set of peptides. The k-spaced means
two amino acids in a peptide separated by k-amino acids, and
CKSAAP encoding calculates the occurrence frequency for each
pair. When k = 0, it means the occurrence frequency of each
pair is composed of adjacent amino acids, and the dimension is
441. In this work, after taking computation and time cost into
consideration, we merely adopted k = 0, 1, 2, and 3, and the final
dimension of this method is 1,764.

Model Construction
Although each modification type has a special benchmark dataset
and needs a special model to fit, they have analogous model
architectures. Here, we introduce a general deep learning based
model architecture used in this work for cysteine prediction.
For each modification type, the benchmark peptide dataset was
encoded by four feature extraction methods mentioned above.
The model received the numerical transferred sequences in the
input layer, which consists of four independent DNN submodules
to train four input features. Then the four submodules were
merged and flattened into a fully connected layer after sufficiently
learning the features. Finally, pCysMod output a probability
of whether this peptide could undergo particular modification.
Early stopping and dropout functions were used to make
sure the training set was not over-represented. To optimize
the numerous hyperparameters in pCysMod, particle swarm
optimization algorithm was applied to generate the maximum
performance as previously reported (Yu et al., 2020). The python
package “pyswarm”1as used.

Performance Evaluation
Four common measurements were adopted to evaluate the
performance of pCysMod as previously described (Liu et al.,
2012), including specificity (Sp), sensitivity (Sn), accuracy
(Ac), and Mathews correlation coefficient (MCC). The detailed
descriptions of these four measurements are defined as below:

Sn =
TP

TP+ FN
(1)

Sp =
TN

TN+ FP
(2)

Ac=
TP+ TN

TP+ FP+ TN+ FN
(3)

MCC=
TP∗TN− FP∗FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(4)

1https://github.com/tisimst/pyswarm

We calculated the area under the receiver operating
characteristic (ROC) curve (AUC) values to show the model
performance. Four-, six-, eight-, and tenfold cross-validations
were used to evaluate the robustness and accuracy of pCysMod.
Tenfold cross-validation was used to compare the performance
of pCysMod with the existing tools.

Implement of the Web Server
pCysMod model was constructed by Keras, with TensorFlow as
its backend implementation. The secondary structure and surface
accessibility information of the query sequence were calculated
by NetSurfP (Petersen et al., 2009), and the disorder information
was predicted by IUPred (Dosztanyi et al., 2005). The web server
was built in PHP and Python, which could be accessed at http:
//pcysmod.omicsbio.info.

RESULTS

The Construction of Computational
Model to Predict Cysteine Modification
Sites
Cysteine modification sites were obtained in the literature and
other predictive tools (Figure 1). After removing redundant
sequences and balancing the datasets, we finally obtained 19,335
S-nitrosylation-positive sites, 2,766 S-palmitoylation-positive
sites, 4,746 S-sulfenylation-positive sites, 2,535 S-sulfhydration-
positive sites, and 655 S-sulfinylation-positive sites. The number
of negative and positive sequences of different modifications
was the same and shown in Table 1. Then, we developed the
first model to predict multiple cysteine modifications named
pCysMod. The software was based on deep learning and
PSO algorithm. The sequence features were extracted by four
methods, including BE, AAC, PSSM, and CKSAAP (Figure 1).
Furthermore, we used Python, PHP, JavaScript, and HTML to
construct pCysMod online server, which can be accessed through
http://pcysmod.omicsbio.info.

The Characteristic of Cysteine
Modification Sites and Proteins
To better understand the structure of different cysteine
modification sites, we used the secondary structure prediction
algorithms PsiPred (McGuffin et al., 2000) and IUPred
(Dosztanyi et al., 2005) to classify the cysteine sites of all
proteins. The S-nitrosylation sites and S-palmitoylation sites
were predominantly distributed in coil, while S-sulfenylation,
S-sulfhydration, and S-sulfinylation sites in coil and helix
were relatively close (Figure 2A), and the cysteine sites were
mainly predicted to locate in ordered regions (Figure 2B).
Furthermore, we used Two Sample Logo (Vacic et al., 2006)
to analyze amino acid preference. The difference between
S-sulfinylation sites and non-S-sulfinylation sites are shown in
Figure 2C. Lysine and asparagine residues were enriched around
the S-sulfinylation sites, but cysteine residues were deleterious
to the modification. In S-nitrosylation cysteine modification, the
asparagine and glutamic were enriched near the modification
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FIGURE 1 | An overview of the model.

site (Figure 2C). Lysine residues also tended to be S-sulfenylated
and S-sulfhydrated, while cysteine residues were enriched in
S-palmitoylation cysteine modification (Figure 2C).

Using the collected human proteins with different cysteine
modifications, we conducted GO and KEGG enrichment
by clusterProfiler (Yu et al., 2012). We found that the
mostly enriched biological processes were catabolic process
in S-sulfinylation and S-nitrosylation, such as carboxylic
acid catabolic process and organic acid catabolic process
(Supplementary Figure S1). S-Sulfenylation and S-sulfhydration
were related to transcription, and S-palmitoylation tended
to affect transduction (Supplementary Figure S1). Based
on the enrichment results of GO cellular components, we
observed that ribosome was enriched in different cysteine
modifications (Supplementary Figure S1). GO molecular
function and KEGG pathway analyses also indicated that
the cysteine modifications other than S-palmitoylation were
involved in the redox process (Supplementary Figures S1,
S2). The results were consistent with previous studies, which
showed that S-nitrosylation, S-sulfenylation, S-sulfhydration, and
S-sulfinylation play critical roles in oxidative post-translational
modifications (Chung et al., 2013).

Evaluating the Performance of pCysMod
We generated the first model to predict multiple types of cysteine
modification based on the method mentioned above. Four-, six-,
eight-, and tenfold cross-validations were used to evaluate the
accuracy and robustness of pCysMod. The ROC curves and
AUC values are displayed in Figure 3. The best cross-validation
AUC values for S-nitrosylation, S-palmitoylation, S-sulfenylation,
S-sulfhydration, and S-sulfinylation were 0.793, 0.807, 0.796,
0.793, and 0.876. The similar and considerable performance
declared the robustness and high accuracy of pCysMod. Since
cross-validation is an efficient way of examining the robustness
and accuracy of a predicting model, it is unnecessary to
divide the benchmark dataset into training set and testing set
(Zhang et al., 2020). We tested the predictive performance
of different feature extractions. The fivefold cross-validation
AUCs were calculated for different features, and the results
are visualized in the added Supplementary Figure S3, which
indicated that combining multiple features can obtain more
stable prediction performances. Not only that, in order to
avoid the overestimation of prediction performance due to
the possible high similarity of the sequences, we used CD-
Hit with a threshold of 70, 80, and 90% sequence similarity
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FIGURE 2 | The characteristic of cysteine modification sites and proteins. (A) The secondary structure. (B) The disorder information of cysteine modification sites.
(C) Preference for amino acids around the cysteine modification sites and non-cysteine modification sites.

analysis on short peptides composed of 31-amino acids,
and then performed fivefold cross-validation based on the
clustering results. Compared with only removing redundant
peptides, the results showed that not using CD-Hit did not
lead to an overestimation of the prediction performance
(Supplementary Table S2).

We then performed tenfold cross-validation to demonstrate
the superiority of pCysMod compared with existing tools,
including S-nitrosylation site-predicting tools GPS-SNO (Xue
et al., 2010), Deep-Nitro (Xie et al., 2018), iSNO-ANBPB
(Jia C. et al., 2014), and PreSNO (Hasan et al., 2019),
S-palmitoylation site-predicting tools GPS-Palm (Ning et al.,
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FIGURE 3 | The ROC curves and AUCs of 4-, 6-, 8-, and tenfold cross-validations are shown.

2020) and MDD-Palm (Weng et al., 2017), and S-sulfenylation
site-predicting tools iSulf-Cys (Xu et al., 2016) and Sulf_FSVM
(Ju and Wang, 2018). The performances of these predictors were
retrieved from previous reported literatures, which are shown
in Table 2. Through the comparison, we can conclude that the
performance of pCysMod is higher than or equal to existing
predictors, showing a considerable predictive power for general
cysteine modification prediction.

Finally, we have constructed an independent predictor
for each modification, with the same basic structure and
distinct hyperparameters. At the same time, we tested the
cross differentiating capabilities of five cysteine modification
predictors, that is, using the constructed model to predict other

TABLE 2 | Performance comparison of pCysMod with other predictors.

CysMod Predictor Sn (%) Sp (%) Ac (%) MCC AUC

S-Nitrosylation GPS-SNO 53.57 80.14 75.80 0.286 0.524

DeepNitro 40.0 85.0 77.7 0.236 0.743

PreSNO 60.4 76.9 75.2 0.252 0.756

iSNO-ANBPB 67.01 0.351

pCysMod 61.09 80.02 70.57 0.420 0.793

S-Palmitoylation GPS-Palm 68.47 85.04 82.67 0.448 0.855

MDD-Palm 74.0 74.0 74.0 0.40 0.80

pCysMod 62.91 80.29 71.66 0.439 0.807

S-Sulfenylation iSulf-Cys 67.31 63.89 65.59 0.312 0.715

Sulf_FSVM 68.54 68.03 68.29 0.365 0.747

pCysMod 75.66 70.08 72.84 0.458 0.796

types of cysteine modification. The prediction results show
that, different predictors have specificity for their corresponding
modification type (Supplementary Table S3). Although the
basic structure of each modified model is the same, the
internal parameters adjusted by the PSO algorithm are distinct,
showing a different modification feature and pattern of each
modification type.

Implementation of pCysMod Web Server
In order to provide an efficient and convenient way to facilitate
basic research, we generated the first comprehensive cysteine
modification prediction web server pCysMod. We tested the
pCysMod website on various commonly used web browsers,
such as Google Chrome, Internet Explorer, and Mozilla Firefox
to provide a robust service. The prediction and results pages
are shown in Figure 3. The input text box required FASTA
format protein sequence, and then we should select which type
of modification is needed to be predicted and its threshold
(Figure 4A). The prediction information was organized by two
aspects and displayed in the results page, including “Potential
cysteine modification sites” (Figure 4B) and “Secondary structure
and surface accessibility” (Figure 3C). The detailed modification
sites and types information are displayed in the “Potential
cysteine modification sites” section (Figure 4B), and the sequence
structure properties such as disordered information, secondary
structure, and surface accessibility features are shown in the
“Secondary structure and surface accessibility” (Figure 4C).
When multiple protein sequences were submitted, pCysMod will
predict and show the first one as a default. By clicking the
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FIGURE 4 | The web server of pCysMod. (A) The prediction page. (B) Potential cysteine modification sites. (C) Secondary structure and surface accessibility.

selection box, users can choose which protein to display, and
this will take 20 s in average. Besides, the proteins and peptides
used in this study were uploaded in the web server and users
can download the relevant data in the “Help” section. Overall,
pCysMod was the first comprehensive cysteine modification
prediction web server, which will undoubtedly greatly promote
the study of protein cysteine modification and contribute to
clarifying the biological regulation mechanisms of cysteine
modification within and among the cells.

DISCUSSION

Protein cysteine modifications lead to a series of biochemical
reactions, regulate various physiological and pathological
processes, such as autophagy (Carroll et al., 2018), protein
stabilization (Kröncke and Klotz, 2009), redox homeostasis
(Fra et al., 2017), and cell signaling (Hourihan et al., 2016),
demonstrating a close relationship with many human diseases
including cancers, diabetes, and so on. Although many efforts
have been made in this field, the experimental identification
of cysteine modification proteins is tedious and laborious and
the underlying molecular mechanisms are still unclear. In this
regard, to dissect the molecular mechanisms and regulatory roles
of cysteine modification, it is urgently needed to precisely parse
the potential cysteine modification sites and types.

Through carefully curated previous reported literatures,
predictors, and databases, we generated a benchmark
dataset that consists of five types of cysteine modification,
including S-nitrosylation, S-palmitoylation, S-sulfenylation,
S-sulfhydration, and S-sulfinylation. The cysteine modification
sites prefer to enrich in ordered regions. Consistent with previous
reports, S-nitrosylation, S-sulfenylation, S-sulfhydration, and
S-sulfinylation play crucial roles in oxidative post-translational
modifications (Chung et al., 2013). Besides, the thioesterification
reaction can cause S-palmitoylation by reversibly adding one

or multiple palmitoyl moieties to cysteine residues (Roth et al.,
2006), and S-palmitoylation also mediates a series of biochemical
reactions, such as metabolism (Shen et al., 2017) and autophagy
(Kim et al., 2019).

Then, we generated the pCysMod to predict multiple
types of cysteine modification. Four-, six-, eight-, and tenfold
cross-validations declared the robustness and high accuracy
of pCysMod. Tenfold cross-validation comparison indicated a
considerable predictive power for general cysteine modification
prediction. We further generated the first comprehensive cysteine
modification prediction web server pCysMod to provide an
efficient and convenient way to facilitate basic research.

Although pCysMod has performed excellently in predicting
cysteine modification, the limitations still exit. Currently,
the cysteine modification data are still limited. We will
keep collecting more modification types for future plans to
generate a more comprehensive cysteine modification predictor.
Furthermore, more deep learning methods could be taken
into consideration, such as graph convolutional neural network
(GCN), capsule network, and attention mechanisms, which may
be an important and meaningful approach to help improving the
current performance.
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Deciphering the functional impact of genetic variation is required to understand
phenotypic diversity and the molecular mechanisms of inherited disease and cancer.
While millions of genetic variants are now mapped in genome sequencing projects,
distinguishing functional variants remains a major challenge. Protein-coding variation
can be interpreted using post-translational modification (PTM) sites that are core
components of cellular signaling networks controlling molecular processes and
pathways. ActiveDriverDB is an interactive proteo-genomics database that uses more
than 260,000 experimentally detected PTM sites to predict the functional impact of
genetic variation in disease, cancer and the human population. Using machine learning
tools, we prioritize proteins and pathways with enriched PTM-specific amino acid
substitutions that potentially rewire signaling networks via induced or disrupted short
linear motifs of kinase binding. We then map these effects to site-specific protein
interaction networks and drug targets. In the 2021 update, we increased the PTM
datasets by nearly 50%, included glycosylation, sumoylation and succinylation as new
types of PTMs, and updated the workflows to interpret inherited disease mutations. We
added a recent phosphoproteomics dataset reflecting the cellular response to SARS-
CoV-2 to predict the impact of human genetic variation on COVID-19 infection and
disease course. Overall, we estimate that 16-21% of known amino acid substitutions
affect PTM sites among pathogenic disease mutations, somatic mutations in cancer
genomes and germline variants in the human population. These data underline the
potential of interpreting genetic variation through the lens of PTMs and signaling
networks. The open-source database is freely available at www.ActiveDriverDB.org.

Keywords: post-translational modifications (PTM), genome variation, disease genes, cancer drivers, cell
signaling, protein interaction networks, databases
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INTRODUCTION

Genome-wide sequencing and association studies are rapidly
increasing the catalog of human genetic variation such as
single-nucleotide variants (SNVs) responsible for phenotypic
traits and disease risks (Claussnitzer et al., 2020; Karczewski
et al., 2020; The 1000 Genomes Project Consortium, 2015).
Sequencing of cancer genomes reveals a complex landscape
of somatic variation where a minority of driver mutations
enable the oncogenic properties of cells by altering the
activity of cancer genes and molecular pathways (Bailey et al.,
2018; ICGC/TCGA Pan-Cancer Analysis of Whole Genomes
Consortium., 2020; Reyna et al., 2020). Extensive somatic
variation found in healthy cells in normal tissues (Blokzijl
et al., 2016; Martincorena et al., 2015) adds another dimension
of genetic complexity and suggests that populations of cells
with distinct genetic makeups are present in every individual.
Characterizing the implications of genome variation to cellular
and physiological function and disease pathogenesis remains a
difficult computational and experimental challenge (Gonzalez-
Perez et al., 2013; MacArthur et al., 2014).

Post-translational modifications (PTMs) are core components
of signaling networks that expand the functional range of
proteins by controlling protein activation, degradation, and
protein–protein interactions. PTMs are chemical or polypeptide
modifications of amino acids that act as molecular switches.
Various enzymes add or remove modifications on substrate
proteins or read the modified sites to carry out cellular programs
(Pawson, 1995). Signaling networks of PTMs are a major focus
of therapy development (Gharwan and Groninger, 2016; Hoeller
and Dikic, 2009; Jones et al., 2016). Phosphorylation, acetylation,
methylation, and ubiquitination are among the most commonly
occurring PTMs in human cells whereas hundreds of classes
of PTMs are known (Mann and Jensen, 2003; Montecchi-
Palazzi et al., 2008). These PTMs are now routinely mapped
using high-throughput techniques and consequently, large public
datasets for human proteins are available. Major databases such
as PhosphoSitePlus (Hornbeck et al., 2015), UniProt (UniProt
Consortium, 2019) and others maintain consistently updated
collections of PTM sites derived from high-throughput and
focused experimental studies.

PTM sites in human proteins are known to be enriched in
somatic driver mutations in cancer genomes (Creixell et al., 2015;
Radivojac et al., 2008; Reimand and Bader, 2013; Reimand et al.,
2013; Wang et al., 2015) and germline variants implicated in
the pathogenesis of human diseases and cancer predisposition
(Huang et al., 2018; Li et al., 2010; Reimand et al., 2015). In
contrast, PTM sites are depleted of genetic variation in the general
human population, indicating the functional importance of
conserved PTM signaling and the role of evolutionary constraint
(Li et al., 2010; Reimand et al., 2015). Thus, integrative analyses
of genetic variation using PTMs is likely to contribute to our
understanding of molecular and genetic mechanisms. Besides the
amino acid substitutions replacing the central modified residue
of a PTM site, a larger class of substitutions affects PTMs by
altering the short linear motifs recognized by kinases and other
enzymes (Creixell et al., 2015; Reimand et al., 2013; Wagih

et al., 2015). For example, the sequence motifs targeted by the
ubiquitination system and controlling the degradation of cancer
driver proteins are commonly affected by somatic mutations
(Martínez-Jiménez et al., 2020; Narayan et al., 2016). As a
canonical example of PTM-associated cancer driver mutations,
substitutions in the N-terminal phosphosites of the oncogene
beta-catenin (CTNNB1) stabilize the protein by disrupting
phosphorylation-dependent ubiquitylation (Morin et al., 1997),
causing downstream activation of the Wnt pathway and resulting
in oncogenesis in diverse cancer types. In a recent study,
hotspot somatic substitutions in the splicing factor 3B subunit
1 (SF3B1) at the ubiquitinated residue K700 were shown to
abolish ubiquitylation, disrupt its mRNA interactions and cause
altered splicing of a subset of transcripts (Zhang et al., 2019),
consistent with our earlier analysis (Narayan et al., 2016). As
proteomic and genetic datasets grow rapidly, systematic analyses
and data resources allow researchers to study potential disease
mechanisms involving genetic variation in signaling networks.

We developed the ActiveDriverDB database (www.
ActiveDriverDB.org) to facilitate integrative analyses of human
genetic variation and PTM sites. We present a major update to
our original publication (Krassowski et al., 2017) that includes
additional genomic and proteomic datasets, new types of PTMs
and improved workflows. We included a phosphoproteomics
dataset of SARS-CoV-2 response (Bouhaddou et al., 2020) to
enhance integrative analyses of human population variation
and infection-specific PTMs. This article describes the major
workflows of our database and reviews the recent updates.

RESULTS

The ActiveDriverDB Server
ActiveDriverDB is a web-based database for interpreting protein-
coding variation in human genomes using PTM sites (Figure 1).
Our leading hypothesis is that amino acid substitutions caused
by SNVs in PTM sites can alter signaling networks by creating,
altering, and disrupting the sites. Genetic variation of PTM sites
can affect modification and downstream signaling directly by
substituting the modified residue or indirectly by modifying the
consensus binding sequences (i.e., short linear motifs) located in
the flanking sequences of post-translationally modified residues.
Thus, an integrated analysis of PTM sites and genetic variation
can evaluate the functional impact of variants and lead to
mechanistic insights.

To address this hypothesis, we collected more than quarter
of a million unique, experimentally detected PTM sites in
the human proteome using the powerful resources available
in the public databases PhosphoSitePlus (Hornbeck et al.,
2015), UniProt (UniProt Consortium, 2019), Phospho.ELM
(Dinkel et al., 2011), and HPRD (Keshava Prasad et al., 2009;
Figures 1A, 2A,B). ActiveDriverDB covers seven major types
of PTMs with the largest sets of experimental data available for
the human proteome. These include 149,299 phosphorylation
sites (57%), 87,852 ubiquitination sites (34%), 12,380 methylation
sites (4.7%), 11,394 acetylation sites (4.4%), and three types of
PTM sites added in the 2021 update of the database: 6,081
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FIGURE 1 | Outline of ActiveDriverDB. ActiveDriverDB is an interactive proteo-genomics database for interpreting human genetic variation using post-translational
modification (PTM) sites. (A,B) The database integrates PTM sites from experimental studies collected from proteomics databases with amino acid substitutions
from genome sequencing projects and curated databeses of disease mutations. (C) In the Sequence View, substitutions in PTM sites are classified based on their
functional impact as direct (at a PTM residue), proximal or distal (within 1–2 or 3–7 positions of a PTM residue), or network-rewiring. (D) Network-rewiring
substitutions at PTM sites are predicted to disrupt short linear motifs or create new motifs bound by kinases and other enzymes. (E) In the Network View, proteins
and PTM sites are visualized with their interactions with PTM enzymes (e. g., kinases) and the known drugs targeting the enzymes. (F) The database also provides
prioritized lists of genes and pathways, comprehensive data visualizations and an application user interface (API) for analysing custom variant datasets using
computational pipelines.

glycosylation sites (2.3%), 8,049 sumoylation sites (3.1%), and
203 succinylation sites (0.08%). The 261,348 unique PTM sites
occur in proteins encoded by 15,570 genes (i.e., 82% of protein-
coding genes). Different types of PTMs are known to act in
concert in important cellular processes (Dantuma and van
Attikum, 2016). Consistently, a fraction of mutated PTM sites
(5.5%) is affected by multiple types of PTMs, suggesting that
such complex signaling activities may be altered through amino
acid substitutions. In this article, we summarize the counts
of PTM sites and substitutions in canonical protein isoforms
for individual genes, however, our database includes all high-
confidence protein isoforms with 552,068 PTM sites. These data
show the extent of PTMs in the human proteome and underline
their value in interpreting protein-coding genome variation
using our database.

We analyzed human genetic variation datasets of three classes
using flanking sequences of seven amino acids on both sides of
the post-translationally modified residue (Figures 1B, 2A,B).
First, we integrated the ClinVar catalog of inherited disease
mutations (Landrum et al., 2020) with 237,930 unique
amino acid substitutions, of which 65,162 (27%) affected
PTM sites. We prioritized 28,976 substitutions classified as
pathogenic or likely pathogenic in ClinVar and found that

6,913 (24%) of these affected PTM sites. When considering
the entire ClinVar dataset of disease-associated substitutions,
22% occurred in PTM sites (65,162/237,930). Second, we
integrated somatic genome variation of human cancers of
nearly 40 types, including the Cancer Genome Atlas (TCGA)
PanCanAtlas dataset with ∼10,000 cancer exomes (Ellrott
et al., 2018), as well as the ICGC/TCGA Pan-Cancer Analysis
of Whole Genomes (PCAWG) dataset with ∼2,500 whole
cancer genomes (ICGC/TCGA Pan-Cancer Analysis of Whole
Genomes Consortium., 2020) added in the 2021 update of our
database. This resulted in a total of 889,792 unique amino acid
substitutions, of which 179,470 (20%) affected PTM sites. Third,
we integrated two datasets of genome variation in the human
population, the 1000 Genomes Project (The 1000 Genomes
Project Consortium, 2015) and ESP6500 (Tennessen et al., 2012)
with a total of 1,047,196 unique amino acid substitutions, of
which 217,932 (21%) affected PTM sites. Together, these genetic
maps include 2,049,883 unique amino acid substitutions of
which 436,192 (21%) are predicted to affect PTM sites. Our
variant impact predictions show the strongest effects on a subset
of substitutions in PTM sites: 37,186 (8.5%) substitutions replace
the central PTM residue and therefore likely to abolish PTMs, and
35,136 (8.1%) are predicted to create or disrupt kinase-binding
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FIGURE 2 | PTM sites and mutations in ActiveDriverDB. (A) Summary of genetic variants (i.e., amino acid substitutions) affecting PTM sites in the database. Eight
types of PTM sites are shown as horizontal stacked bar plots (left to right) with five genome variation data-stes (top to bottom): interited disease mutations (*ClinVar:
only pathogenic and likely pathogenic variants), somatic cancer mutations (TCGA, PCAWG) and human population variation (1000 Genomes, ESP6500). Colors
indicate the predicted impact of substitution on PTM sites. Total numbers of unique PTM-associated substitutions in consensus protein isoforms are shown. (B) Bar
plot shows counts of PTM sites and relatedd substitutions in ActiveDriverDB. The current and previous versions of the database are compared. (C) Allele frequency
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motifs by substituting important amino acid residues within
seven positions of PTM sites (Wagih et al., 2015). The majority of
substitutions are classified as proximal (30%) or distal (53%) and
are located at 1–2 or 3–7 positions from the nearest PTM site,
respectively (Figure 3A). Most proximal and distal substitutions
cannot be interpreted reliably in the context of known kinase-
binding motifs; however, these may affect uncharacterized
sequence motifs of phosphorylation and other PTM types or
cause smaller alterations of sequence motifs (Figures 3B,C).
The genomic variation of amino acid substitutions in PTM sites
provides a wealth of novel hypotheses for further computational

and experimental studies to understand genotype–phenotype
associations and PTM function.

The Sequence View
The first major workflow of ActiveDriverDB starts with a gene
ID of interest provided by the user. The database displays an
interactive color-coded overview of the protein sequence where
the amino acid substitutions are annotated with respect to their
impact on PTM sites and their frequency in the genetic dataset
(Figure 1C). The user may choose to focus on cancer genomes,
inherited diseases, or genome variation in the human population.
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FIGURE 3 | Putative impact of adjacent and distal PTM-flanking residues on kinase binding motifs. (A) Histogram of substitutions in PTM sites relative to the
distance to the closest modified residues. (B) Enrichments of amino acids in the 125 kinase binding site models of position weight matrices (PWMs). Each point
represents a position in the consensus binding sequence (short linear motif) of a specific kinase. For each flanking position in the motif (X-axis), the amino acid with
the highest enrichment relative to its proteome-wide distribution is shown on the Y-axis, indicating the potential impact of sustitutions at these positions. Kinases with
amino acids showing at least eight-fold enrichment at the furthest flanking positions (6th, 7th) are labelled. (C) Examples of kinases with enrichments at the 6th and
7th flanking positions of PTM sites. PWM logos show the prevalence of specific amino acids (Y-axis) at the flanking positions (X-axis). Asterisks show the furthest
flanking positions from panel A.

The data can be filter based on the disease subtype, type of
PTM or the annotations of genetic variants. Four categories
are used to classify the PTM-specific impacts of substitutions.
Direct mutations substitute a central, modified residue of a PTM
site with another non-modifiable amino acid residue that will
likely disrupt PTMs at the site. Proximal and distal mutations
induce a substitution within 1–2 or 3–7 residues, respectively,
from the closest PTM site. For a subset of distal and proximal
mutations, we predict that the substitutions have a plausible
network-rewiring effect since they disrupt an existing short linear
motif of a known kinase or other PTM enzyme (i.e., motif loss)
or create a new sequence motif (i.e., motif gain) in the flanking
sequence of the PTM site (Figures 1D, 2A). Network-rewiring
mutations are predicted using the MIMP method that uses a
machine-learning framework of Gaussian mixture models and
Bayesian posterior probability estimation to quantify the impact
of substitutions on short linear motifs (Wagih et al., 2015).
The Sequence View also displays a table of mutations and their
impact on PTM sites, information on protein domains (Finn
et al., 2017), evolutionary conservation (Pollard et al., 2010) and

disorder (Ward et al., 2004), and hyperlinks to external databases.
This view allows researchers to construct experimentally testable
hypotheses of variant function and associations with phenotypes
and disease.

The Network View
The second major workflow starts from a gene of interest in
a protein–protein interaction network. The network shows
the protein as the central node (i.e., the substrate) and
all kinases and other PTM enzymes targeting the protein
are shown as peripheral nodes. Approved drugs targeting
these PTM enzymes, derived from the DrugBank database
(Wishart et al., 2018), are displayed via secondary peripheral
interactions of the network. The Network View focuses on
enzyme–substrate interactions that occur at individual PTM
sites and provides predictions of substitutions causing gains
and losses of these interactions through altered sequence
motifs, derived from the MIMP method (Wagih et al.,
2015). Two types of networks are provided. First, the high-
confidence experimental networks only include experimentally
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validated enzyme–substrate interactions at specific PTM sites
collected from databases and previous studies (Hornbeck
et al., 2015; Reimand and Bader, 2013; UniProt Consortium,
2019; Wagih et al., 2015). The lenient MIMP-predicted
networks include computationally predicted interactions at
confirmed PTM sites based on the presence of known kinase
binding motifs or de novo motifs induced by amino acid
substitutions (Wagih et al., 2015). This systems-levels overview
of PTM-associated mutations helps predict their impact on
downstream signaling networks and discover potential avenues
for experimental modulation.

Gene and Pathway Prioritization
We statistically analyzed PTM sites and amino acid substitutions
to nominate statistically significant cancer driver genes, inherited
disease genes, and molecular pathways with enrichments of
PTM-associated substitutions (FDR < 0.05), using methods
we developed previously (Paczkowska et al., 2020; Reimand
and Bader, 2013). The database includes top-ranking genes
with frequent PTM-associated mutations in inherited disease
and multiple types of cancer (Figure 2D). The genes were
prioritized using the ActiveDriver method that uses a Poisson
statistical model to identify significant over-representations of
substitutions at the PTM sites of individual proteins (Reimand
and Bader, 2013). For pathway prioritization, genes with enriched
substitutions in PTM sites were collapsed into enriched Gene
Ontology terms and Reactome molecular pathways using the
ActivePathways data fusion method (Paczkowska et al., 2020).
Lists of genes and pathways were derived for the combined
set of all PTMs, and also separately for each PTM type. To
prioritize genes involved in inherited disease, we focused on the
mutations with pathogenic or likely pathogenic effects. Gene and
pathway prioritization allows researchers to find individual genes
and groups of functionally related genes with PTM-associated
disease mutations.

Searching, Data Downloads, and Automated Analysis
ActiveDriverDB can be queried interactively and included in
automated pipelines. The most common approach is to search
the database interactively using a gene symbol or RefSeq ID
(e.g., TP53 or NM_000345), or a specific amino acid substitution
or a SNV in the GRCh37 version of the human genome
(e.g., IDH1 R132H or chr2 209113112 G A). The database can
be queried using names of molecular pathways (e.g., R-HSA-
1640170 or Cell Cycle) or diseases (e.g., Noonan syndrome) and
all genes with such annotations are retrieved. Users can upload a
dataset of genetic variants from their experiments to a password-
protected area of the database and analyze their data interactively.
The upload form supports protein and DNA coordinates of
genetic variants. ActiveDriverDB can be used computationally
via an Application User Interface (API) of the Representational
State Transfer (REST) pattern that provides automated tools to
annotate genetic datasets using PTM information. The datasets
used in the database are also available for bulk downloads. In
this update, we have improved the annotations of PTM sites
by adding names of source databases, several classes of protein
IDs and flanking sequences of PTM sites. PubMed IDs are

available for a subset of sites. The downloadable datasets include
PTM sites, PTM-associated substitutions, site-specific enzyme–
substrate interaction networks, protein sequences, and disorder
predictions. We also provide interactive charts displaying the
counts of PTM sites and associated substitutions in the database.

Genetic Variation in Phosphorylation
Sites Induced by SARS-CoV-2 Infection
To enable detailed studies of the cellular changes induced
by SARS-CoV-2 infection, we incorporated a recent dataset
that quantified the proteome-wide phosphorylation changes
in response to SARS-CoV-2 infection in Vero E6 cells of
green monkeys (Chlorocebus sabaeus) (Bouhaddou et al.,
2020). We integrated 1,530 unique SARS-CoV-2 modulated
phosphosites in proteins encoded by 949 genes that were
detected with significant phosphorylation differences in
infected vs. control cells at the 24-hour post-infection
time point (FDR < 0.05 in infected cells; FDR > 0.05 in
controls). The majority of these phosphosites occur on
serine residues (88%) followed by threonines (11.3%) and
tyrosines (0.7%). We filtered a small subset of phosphosites
(1%) that mapped to non-phosphorylatable residues in
human proteins (i.e., other than S/T/Y) to avoid inclusion
of non-human phosphorylation sites and potential sequence
alignment artifacts. This dataset enables integrated analyses of
human genome variation, PTM sites and signaling networks
underlying the SARS-CoV-2 infection and the coronavirus
disease (COVID-19) pandemic.

We evaluated the extent of human genome variation
and known disease mutations affecting these phosphosites.
ActiveDriverDB includes 3,961 amino acid substitutions
affecting SARS-CoV-2-modulated phosphosites. These include
2,007 unique substitutions observed in the two human
population cohorts (1000 Genomes; ESP6500) and 1,615
unique substitutions detected in somatic cancer genome
sequencing projects (TCGA and PCAWG), and 39 unique
substitutions with pathogenic or likely pathogenic effects
documented in the ClinVar database (Figure 2A). We evaluated
the impact of these PTM-associated substitutions. A relatively
large fraction of substitutions (27%) were predicted to create
or disrupt kinase binding motifs according to MIMP (Wagih
et al., 2015). A minority of substitutions (5.1%) replaced the
phospho-residue with another residue, likely causing direct
disruptions of signaling. The remaining substitutions were
considered as proximal (17%) or distal (51%) relative to the
phosphosites. We also studied the allele frequencies of these
PTM-specific substitutions in the human population and found
that the majority of variants were of low frequency (i.e., less than
1%) in the 1000 Genomes Project dataset (The 1000 Genomes
Project Consortium, 2015), however dozens of variants were
more prevalent population-wide (Figure 2C). Of the most
variable proteins with respect to SARS-CoV-2-specific PTM sites,
two are related to alternative splicing (SRRM1, SRRM2) and
one to cell cycle regulation (MKI67) (Figure 2D). Interestingly,
altered SRRM2 phosphorylation has been also observed in
HIV-1 infection (Wojcechowskyj et al., 2013). Collectively,
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these data suggest that the variable cellular and physiological
responses to SARS-CoV-2 infection in humans may have a
genetic component that affects the PTM sites and signaling
networks that respond to viral infection. Further analysis and
experiments may lead to insights to disease mechanisms and
therapy options.

Interpreting Genetic Variation Through
Protein Glycosylation
Glycosylation is a type of PTM that involves the conjugation of
diverse glycan structures to proteins, in particular extracellular
components such as receptors and secreted proteins (reviewed
in Moremen et al., 2012; Reily et al., 2019). Glycosylation
modifications are conducted by approximately 700 enzymes
and multiple subtypes are known, whereas N- and O-linked
glycosylation are the most common subtypes. Glycosylation is
involved in the folding and quality control of proteins and
modulates protein function and protein–protein interactions.
Glycosylation of extracellular protein domains in cell–cell
signaling contributes to developmental processes and the
immune system (Moremen et al., 2012). Aberrant glycosylation
patterns, often linked to genetic abnormalities of specific
glycosylation enzymes, play important roles in autoimmune
diseases such as inflammatory bowel disease, diabetes mellitus,
systemic lupus, and congenital disorders of glycosylation (Reily
et al., 2019). In cancer, glycosylation is involved in the
pathways of metastasis, anti-apoptosis and therapy resistance,
and the PTM is also used in diagnostic and prognostic
biomarkers (Reily et al., 2019). The increasing availability of
comprehensive glycoproteomic datasets generated in human
samples (Chen et al., 2009; Liu et al., 2005; Wollscheid et al.,
2009) enhances the interpretation of disease genes and mutations
using this PTM type.

We collected 7,021 experimentally determined glycosylation
sites (including 6,081 unique sites) in proteins encoded by 1,683
genes from proteomics databases (Hornbeck et al., 2015; Keshava
Prasad et al., 2009; UniProt Consortium, 2019; Figure 2B).
These include the major subtypes of N-glycosylation (2,680
sites) and O-glycosylation (2,856 sites), a few S- and C-linked
glycosylation sites, and 1,437 glycosylation sites with no specified
subtype. Interestingly, a fraction of proteins (167 or 10%) has
glycosylation sites that co-occur with phosphorylation sites,
indicating crosstalk of the underlying signaling networks. In total,
we found 15,355 unique amino acid substitutions that affect
glycosylation sites, including 429 substitutions with pathogenic
or likely pathogenic effects in disease genes in the ClinVar
dataset and 6,364 somatic substitutions in cancer genomes
(Figure 2A). We selected the genes with most significant
glycosylation-associated mutations in cancer and inherited
disease using ActiveDriver (FDR < 0.05; top 10 genes shown)
(Figure 2D). In cancer genomes, frequent substitutions at
glycosylation sites are apparent in epidermal growth factor
receptors and oncogenes EGFR and ERBB3, as well as PAPPA, a
secreted protein involved in the activation of insulin-like growth
factor pathways (Lawrence et al., 1999). Germline mutations
with pathogenic or likely pathogenic effects at glycosylation
sites are associated with cardiomyopathies (MYH7), cancer

predisposition (CDH1), epilepsy (SCN1B), and others. These
examples showcase an integrative analysis of disease mutations
with protein glycosylation sites that may offer insights into
disease mechanisms.

Interpreting Genetic Variation Through
Protein Sumoylation
Sumoylation is a PTM that involves the reversible conjugation of
SUMO polypeptides (small ubiquitin-related modifiers SUMO1-
4) to consensus sequence sites in target proteins (reviewed in
Geiss-Friedlander and Melchior, 2007; Flotho and Melchior,
2013; Celen and Sahin, 2020). Sumoylation plays a key role
for the cellular response to stress, such as heat shock and
DNA damage (Enserink, 2015). In response to DNA damage,
sumoylation acts in concert with ubiquitylation events to
orchestrate the recruitment of repair proteins to DNA breaks
(Dantuma and van Attikum, 2016). A similar interplay of the
two modifiers is observed in hypoxic stress response (Cheng
et al., 2007). Sumoylation affects lysine residues primarily in
nuclear proteins and is thought to regulate protein activation,
inactivation and degradation, and protein–protein interactions.
Aberrant sumoylation is implicated in malignancies including
ovarian, lung, breast, and prostate cancer (Celen and Sahin, 2020;
Geiss-Friedlander and Melchior, 2007). Defects in sumoylation
are also associated with neurodegenerative pathologies such as
Huntington’s, Parkinson’s and Alzheimer’s diseases (reviewed in
Yang et al., 2017). Finally, sumoylation is involved in intrinsic and
innate immunity and is a target of viral infection (Hu et al., 2016;
Liu et al., 2016).

The updated ActiveDriverDB database includes 8,049
experimentally determined sumoylation sites in 2,478 unique
genes primarily collected from PhosphoSitePlus (Hornbeck
et al., 2015). Interestingly, more than half of sumoylation sites
(4,783 or 59%) co-occur with other types of PTMs, in particular
ubiquitination sites. We found 19,226 amino acid substitutions at
sumoylation sites (16,914 unique), including 8,450 substitutions
in the human population genomics datasets, 8,465 somatic
substitutions in cancer genomes, and 397 pathogenic or likely
pathogenic substitutions of the ClinVar database, suggesting
potential disease mechanisms at mutated sumoylation sites.
Driver gene analysis of PTM-enriched amino acid substitutions
revealed multiple genes with germline and somatic mutations.
In the TCGA cancer genomics dataset, the transcription factors
(TFs) BCOR (BCL6 corepressor, FDR = 1.2 × 10−35) and
BCLAF1 (Bcl-2-associated transcription factor 1; ActiveDriver
FDR = 9.8 × 10−4) were significantly enriched in substitutions in
glycosylation sites. Both TFs act as transcriptional repressors of
apoptosis and are known as cancer driver genes in the COSMIC
Cancer Gene Census database (Futreal et al., 2004). Several
other TFs of the less-studied zinc finger family were found in
the analysis (Figure 2D). Sumoylation is known as a mechanism
of modulating TF activity, thus somatic substitutions in PTM
sites may lead to aberrant TF activity in cancer and cause
downstream transcriptional deregulation of cancer hallmark
pathways. Further study of these substitutions at PTM sites may
refine our understanding of known cancer genes and reveal
novel candidates.
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Interpreting Genetic Variation Through
Protein Succinylation
Succinylation is a PTM that involves the transfer of succinyl
groups to lysine residues of substrate proteins via enzyme-
dependent and independent means (reviewed in Sreedhar et al.,
2020; Trefely et al., 2020). Succinylation has been described
only recently (Zhang et al., 2011) and its molecular mechanisms
are not fully understood. The highest levels of succinylation
are found in mitochondrial proteins, however, high-throughput
studies have also detected modifications of cytoplasmic and
nuclear proteins. The succinyltransferases CPT1A and KAT2A
conduct target-specific modifications while succinyl turnover is
controlled by the sirtuin proteins SIRT5 and SIRT7 that regulate
bulk succinylation and DNA-damage-dependent succinylation,
respectively (Du et al., 2011; Li et al., 2016). The modification
is increasingly implicated in transcriptional regulation as histone
proteins are often succinylated and site mutations have functional
consequences (Smestad et al., 2018; Xie et al., 2012). However, the
lysine residues affected by succinylation also undergo other PTMs
such as acetylation, methylation and ubiquitylation. Therefore,
more research is needed to understand the role of succinylation
and its interactions with other PTMs in core cellular processes
and human disease (Sreedhar et al., 2020).

Our database includes 203 unique, experimentally
determined succinylation sites in proteins encoded by 63
genes, all of which co-occur with other lysine PTMs such as
acetylation, methylation, ubiquitylation and sumoylation. Using
ActiveDriverDB, we found 772 amino acid substitutions at
succinylation sites (705 unique), including 250 substitutions
in the human population genomics datasets and 462 somatic
substitutions in cancer genomes. In the TCGA cohort of cancer
genomes, our analysis highlighted several genes encoding
histone proteins (H3J, H2BB, H2BG), reinforcing the role of
succinylation in chromatin regulation and suggesting potential
PTM-specific driver mutations. In the ClinVar dataset of
pathogenic or likely pathogenic mutations, two histone proteins
(H3F3A, HIST1H4C) and the copper-zinc superoxide dismutase
1 (SOD1) were highlighted. Mutations in SOD1 are associated
with familial amyotrophic lateral sclerosis (Rosen et al., 1993).
SOD1 regulates the accumulation of harmful superoxide radicals
in cells and coordinated succinylation is required for its function
(Lin et al., 2013) whereas mutations impacting its catalytic
activity induce the formation of fibrillar aggregates that are toxic
for cells (DiDonato et al., 2003). ActiveDriverDB highlights three
substitutions flanking the succinylated residue K123 of SOD1
that are annotated as likely pathogenic for amyotrophic lateral
sclerosis, suggesting potential hypotheses of these substitutions
and altered succinylation in this lethal neurogenerative disease.
Further succinylation-associated mutations and putative disease
mechanisms are likely to be revealed as larger datasets of these
PTM sites are published.

Improved Annotation of Pathogenic
Germline Variants of Human Disease
We updated the collection of inherited disease mutations from
the ClinVar database (Landrum et al., 2020) and improved the

workflow of interpreting these using PTM sites. The new release
of ActiveDriverDB includes 237,930 amino acid substitutions
associated with human diseases, a four-fold increase compared
to the ClinVar dataset included in the previous version of
ActiveDriverDB (56,739). The data have been filtered carefully
to only include variants with evidence of involvement in human
disease. Genetic variants with germline, parental, maternal, and
biparental and de novo origin are included in the database
while variants of somatic and unknown origin are excluded to
improve the analysis of inherited disease variants. Variants can
be filtered based on clinical significance (such as pathogenic,
benign, drug response, etc.) and a star rating reflecting the overall
strength of evidence. Hyperlinks to the corresponding records in
the databases ClinVar and dbSNP allow researchers to quickly
access detailed descriptions of the variants and the original
publications reporting the evidence of disease associations and
pathogenesis. The updated variant filtering and annotations
allow higher-confidence interpretation of disease variants with
PTM information.

Evaluating the Importance of Distal
Flanking Residues of PTM Sites Using
Sequence Binding Motifs of Kinases
The majority of substitutions in PTM sites in our database
are classified as distal and proximal and are located adjacent
to modified residues, especially in the three flanking positions
(Figure 3A). Only a minority of these substitutions are predicted
to have network-rewiring effects since they affect critical sequence
residues, however the flanking sequences of PTMs may contain
additional functional residues that mediate weaker effects and
therefore remain understudied in the database. To quantify the
potential effects of proximal and distal substitutions in PTM
sites, we systematically analyzed the 130 sequence-binding motifs
of kinases used in our database. The motifs are represented as
position weight matrices (PWMs) and used for network-rewiring
predictions (Wagih et al., 2015). We quantified the PWMs in
terms of the strongest amino acid enrichments at each position
relative to the proteome-wide distributions of amino acids.

We found that each position of flanking sequence around
the PTM sites included at least five-fold enrichment of specific
amino acids in several sequence-binding models of kinases
(Figure 3B). The strongest enrichments of specific amino acids
occurred in the flanking windows of three residues around the
modified residue. The three flanking positions are also covered
by the most substitutions, indicating widespread genetic effects
on PTM signaling. However, further positions upstream and
downstream of the modified residue also appeared to encode
some information with regards to kinase binding. Even when
considering only the furthest positions six and seven of the
PTM sites, the motifs of 28 kinases included at least five-
fold enrichments of certain amino acids whereas more than
ten-fold enrichments were observed for six kinases (CAMKK1,
CDK7, MARK1, PDK1, PDPK1, and STK11) (Figure 3C). The
effects measured here likely represent an underestimate since the
sequence specificities of many PTM enzymes remain unknown.
In summary, this analysis suggests that substitutions at both
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proximal and distal flanking positions around the modified PTM
sites may affect signaling networks.

Lastly, we asked whether the inclusion of the furthest flanking
positions of six and seven from the PTM sites substantially biased
our estimates of PTM-associated substitutions seen in known
disease genes, in cancer genomes and the human population.
Even when excluding the most distal amino acid substitutions at
the flanking positions six and seven, a substantial fraction of all
human amino acid substitutions is predicted to affect PTM sites.
Using this more conservative estimate, PTM sites are affected
by 17% of substitutions overall, including 19% of pathogenic
or likely pathogenic substitutions in ClinVar and 22% of all
ClinVar substitutions, 16% of somatic substitutions in cancer
genomes, and 17% of substitutions in the human population
genomics datasets. PTM sites, in particular when including the
flanking sequences of seven amino acids, are enriched in disease
mutations and negatively selected in the human population
(Huang et al., 2018; Li et al., 2010; Reimand and Bader, 2013;
Reimand et al., 2013; Reimand et al., 2015). Thus, additional
functional substitutions likely exist in the flanking sequences of
PTMs that cannot be interpreted yet using current proteomics
datasets and computational models.

DISCUSSION

The increasing availability of genomic and proteomic
technologies expedites the development of diverse applications
in research, medicine and society. Human cells and tissues can
be profiled at an improved resolution and decreased cost and
cause an increasing influx of multi-omics datasets in the public
domain. The collection of experimentally validated PTM sites in
ActiveDriverDB has grown by 47% compared to the first release
of the database in 2017 (261,348 vs. 178,204) while the dataset of
disease-associated genome variants has quadrupled in size. Thus,
we have the opportunity to interpret an ever-larger number of
protein-coding variants in the human genome at an enhanced
level of detail. In particular, the network-rewiring impact of
variants is likely underestimated currently, since high-confidence
short linear motifs are known only for a subset of kinases
and other enzymes. Careful computational analysis of short
linear motifs in conjunction with known PTM sites is required
since such low-complexity motifs are statistically expected
to occur frequently across the proteome. As we continue to
expand the known repertoire of sequence-binding specificities
of diverse PTM enzymes, we are increasingly able to predict
the precise network-rewiring effects of substitutions in PTM
sites observed in disease genes and the human population.
Incorporation of protein structural information may further
expand the collection of PTM-associated substitutions since
linearly distant amino acids may affect PTMs through spatial
interactions in the three-dimensional structures (Kamburov
et al., 2015; Iqbal et al., 2020; Hu et al., 2021; Porta-Pardo et al.,
2015). However, as the community rapidly generates larger and
more sophisticated experimental datasets, the databases that use
these for downstream analyses should be updated as well, since
the analysis of -omics datasets with outdated annotations has
detrimental effects on data interpretation (Wadi et al., 2016).

In future updates of the database, we aim to specifically expand
the genetic variation datasets mapping the human population,
cancer genomes and inherited diseases. ActiveDriverDB and
similar resources (Hornbeck et al., 2015; Wang et al., 2015; Li
et al., 2020; Yang et al., 2019) allow a diverse community of
molecular and cell biologists, geneticists and computational
researchers to interpret complex genomic variation data using
PTM sites and signaling networks and to explore detailed
hypotheses of molecular mechanisms. These can contribute
to the development of innovative therapies, biomarkers and
precision medicine strategies.
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Phosphorylation, which is mediated by protein kinases and opposed by protein
phosphatases, is an important post-translational modification that regulates many
cellular processes, including cellular metabolism, cell migration, and cell division. Due
to its essential role in cellular physiology, a great deal of attention has been devoted
to identifying sites of phosphorylation on cellular proteins and understanding how
modification of these sites affects their cellular functions. This has led to the development
of several computational methods designed to predict sites of phosphorylation based
on a protein’s primary amino acid sequence. In contrast, much less attention has
been paid to dephosphorylation and its role in regulating the phosphorylation status
of proteins inside cells. Indeed, to date, dephosphorylation site prediction tools have
been restricted to a few tyrosine phosphatases. To fill this knowledge gap, we have
employed a transfer learning strategy to develop a deep learning-based model to
predict sites that are likely to be dephosphorylated. Based on independent test
results, our model, which we termed DTL-DephosSite, achieved efficiency scores for
phosphoserine/phosphothreonine residues of 84%, 84% and 0.68 with respect to
sensitivity (SN), specificity (SP) and Matthew’s correlation coefficient (MCC). Similarly,
DTL-DephosSite exhibited efficiency scores of 75%, 88% and 0.64 for phosphotyrosine
residues with respect to SN, SP, and MCC.

Keywords: post-translational modification, deep learning, transfer learning, dephosphorylation, computational
prediction

INTRODUCTION

Protein phosphorylation is an important posttranslational modification (PTM) that regulates
many cellular activities and contributes to the etiology and progression of several pervasive
diseases, including cancer, diabetes, cardiovascular disease, and neurodegeneration. In eukaryotic
cells, phosphorylation, and subsequent dephosphorylation, occurs on serine (S), threonine (T),
and tyrosine (Y) residues located on the protein surface. To date, more than two-thirds of
the ∼21,000 proteins encoded by the human genome have been shown to be phosphorylated,
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making phosphorylation one of the most wide-spread and
broadly studied protein PTMs (Ardito et al., 2017). The
precise regulation of the phosphorylation status of a protein
depends on the opposing activities of protein kinases, which
catalyze the transfer of the γ-phosphate of ATP to their
downstream substrates, and protein phosphatases, which catalyze
the dephosphorylation (i.e., removal of the phosphate group)
from the modified site (Figure 1). While it is often assumed that
any site that can be phosphorylated can also be dephosphorylated,
this may not always be the case (Bechtel et al., 1977; Bornancin
and Parker, 1997; Keshwani et al., 2012; Senga et al., 2015).
Similarly, certain sites may be dephosphorylated more efficiently
than others. Though rare, there are instances of phosphorylation
sites that are resistant to dephosphorylation. For instance, once
phosphorylated, both T197 and S338 in cAMP-dependent protein
kinase (PKA) are resistant to dephosphorylation (Bechtel et al.,
1977; Keshwani et al., 2012). Similarly, protein kinase G (PKG),
protein kinase C (PKC), and calcium/calmodulin-dependent
protein kinase 1δ (CAMK1δ) each exhibit phosphatase-resistant
states (Bornancin and Parker, 1997; Keshwani et al., 2012; Senga
et al., 2015). The relative efficiency of dephosphorylation at a
particular site may be, at least partially, dependent on the local
protein environment and the ability of phosphatases to recognize
the phosphosite.

Phosphorylation site prediction has recently emerged as an
important problem in the field of bioinformatics. As a result,
many phosphorylation site prediction tools have been developed
to predict both general and kinase-specific phosphorylation
sites (Lumbanraja et al., 2019; Luo et al., 2019; Haixia et al.,
2020; Wang D. et al., 2020; Ahmed et al., 2021; Guo et al.,
2021). For instance, to predict general phosphorylation sites
based on the primary amino acid sequence of an input
protein, Ismail et al. developed the Random Forest (RF)-based
phosphosite predictor 2.0 (RF-Phos 2.0) (Ismail et al., 2016).
RF-Phos 2.0 assesses the relative importance of hand-selected
features to identify putative sites of phosphorylation across
many protein families. More recently, Luo et al. developed

FIGURE 1 | Phosphorylation and dephosphorylation, mediated by kinase and
phosphatase as a key reversible post translational modification.

Deep-Phos, a general and kinase-specific phosphorylation site
predictor based on multilayer convolutional neural networks
(CNN) (Luo et al., 2019).

While many phosphorylation site prediction tools have been
developed over the past decade to identify putative sites of
S, T, and Y phosphorylation (Ismail et al., 2016; Luo et al.,
2019; Wang D. et al., 2020), computational prediction of
dephosphorylation sites has been much more limited (Wang
et al., 2016). Information about dephosphorylation sites is
important because it can provide insights into the molecular
determinants of phosphatase recognition and may offer clues
about the biological half-life of a given phosphorylation event.
To date, computational methods for dephosphorylation site
prediction have focused on a relatively small group of tyrosine
phosphatases consisting of protein tyrosine phosphatase 1B
(PTP1B) and the Src homology 2 (SH2) domain-containing
phosphatases, SHP-1 and SHP-2 (Wu et al., 2014; Wang
et al., 2016; Jia et al., 2017). For instance, Wu et al.
developed a method that uses the k-nearest neighbor algorithm
to identity the substrate sites of PTP1B, SHP-1, and SHP-
2 based on the sequence features of manually collected
dephosphorylation sites (Wu et al., 2014). Meanwhile, Wang
et al. developed two sophisticated models for predicting the
substrate dephosphorylation sites of these phosphatases. The
first model, which they termed MGPS-DEPHOS, is modified
from the Group-based Prediction System (GPS) while the second
model, termed CKSAAP-DEPHOS, utilizes a combination of
support vector machine (SVM) and the k-spaced amino acid pairs
(CKSAAP) encoding scheme. Finally, Jia et al. (2017) combined
the sequence-based bi-profile Bayes feature extraction technique
and SVM to predict sites for the same three phosphatases.

One of the primary reasons for the proliferation of
phosphorylation site predictors over the past decade is the
availability of large databases cataloging experimentally
identified phosphorylation sites, such as PhosphoSitePlus and
PhosphoELM (Dinkel et al., 2011; Hornbeck et al., 2019).
Unfortunately, similar databases have not been available for
dephosphorylation sites. However, with the recent curation of
the DEPOD database of S, T, and Y dephosphorylation sites, the
development of dephosphorylation site predictors is now feasible
(Damle and Köhn, 2019). In this study, we compiled a dataset of
S, T, and Y dephosphorylation sites from the DEPOD database
(Damle and Köhn, 2019) and further extended the available
dataset through literature mining, increasing the database more
than threefold. We then developed a transfer learning approach
utilizing the phosphorylation dataset and a bidirectional long
short-term memory (Bi-LSTM) deep learning-based model to
predict dephosphorylation sites on proteins. To our knowledge,
this is the first study to develop a general dephosphorylation
predictor for Y residues and the first to predict general
dephosphorylation sites for S/T residues. Our models, which we
termed DTL-DephosSite-ST and DTL-DephosSite-Y, performed
well when assessed using both five-fold cross-validation and an
independent test set.

Here we have developed the first general phosphatase site
prediction tool. Unlike phosphatase-specific methods, which are
designed to predict both the site of dephosphorylation and
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the phosphatase mediating the dephosphorylation event, our
general dephosphorylation site prediction method is able to
identify putative sites of dephosphorylation irrespective of the
phosphatase mediating the dephosphorylation event. This is
analogous to the results obtained by MS/MS-based experiments,
where information about the responsible phosphatase is not
known. Importantly, phosphatase-specific methods are currently
restricted to predictions for only three phosphatases (i.e., PTP1B,
SHP1, and SHP2), which represent a very small fraction of
phosphatases encoded by the human genome. This is likely due,
in part, to limited information about the specific phosphatase
that mediates a given dephosphorylation event. Therefore,
general dephosphorylation site prediction methods offer distinct
advantages when the primary goal is to predict whether or not a
given site is dephosphorylated.

MATERIALS AND METHODS

Datasets
The human DEPhOsphorylation Database, DEPOD, is a database
of dephosphorylation sites that was recently expanded in an
updated version in 2019 (Damle and Köhn, 2019). DEPOD
accounts for 241 active and 13 inactive human phosphatases
in total. Among the active phosphatases, 194 include substrate
data. This database provided the starting point to create
dephosphorylation datasets for S, T, and Y residues. To this end,
we collected all the FASTA sequences from the UniProt database
(UniProt Consortium, 2019) and extracted windows with the
targeted S/T/Y residue at the center and 16 residues on each
side. Negative sequences were extracted using all S/T/Y residues
except those that are known positive sites (i.e., all residues
except those sites that are known to be dephosphorylated).
During the generation of sequences, no fillers (i.e., “-”) were
used. To minimize the loss of sequences occurring at the ends,
a maximum window size of 33 was chosen. Any redundant
sequences within and between the positive and negative sites were
removed to obtain a non-redundant set. Similar to our previous
studies (Chaudhari et al., 2020; Thapa et al., 2020), we used
an under-sampling strategy to balance the dataset, which had
more negative sites than positive sites prior to balancing (Aridas
GLitaFNaCK, 2017). Under-sampling allows random selection of
negative sequences to make the number of negative sites equal to
the number of positive sequences, thus balancing the dataset.

Once constructed, the dataset was further divided into training
and test sets, such that 80% of the data was used to train the
models and the remaining 20% of the data was kept aside for
independent testing. This training-test dataset, which we termed
the DEPOD-19 dataset (Table 1), consists of 133 positive sites for
S, 58 positive sites for T, and 101 positive sites for Y (Table 1).

Though phosphorylation is one of the most wide-spread
and well-studied PTMs in eukaryotes, comprehensive lists of
dephosphorylation sites are scarce. This is likely due to the lack
of computational studies in the field and technical challenges
associated with the detection of dephosphorylation sites.
Therefore, in order to enlarge the dephosphorylation site dataset
(Damle and Köhn, 2019), we did a comprehensive literature

review to identify phosphorylated sites that were down-regulated
in cells following treatment with various agents. For a given
site to be considered dephosphorylated, there must have been
no co-stimulation during treatment and the analysis must have
been conducted less than an hour after stimulation (to prevent
changes in protein expression from substantially contributing
to the observed changes in phosphorylation state). Moreover,
because many phosphorylation sites have been identified in
human cells, we only considered publications using human cells.
Finally, to avoid errors stemming from heterogeneity in the
phosphorylation patterns in different phases of the cell cycle, our
analyses only included cells that had been arrested in the mitotic
phase. Using these criteria, we developed the “Downreg” dataset,
which consists of 949 dephosphorylation sites in 624 proteins.
These included 772 S, 152 T, and 25 Y residues, which represents
an ∼3.25-fold increase relative to the DEPOD-19 dataset, as
summarized in Table 1 and Supplementary Table 2. A summary
of the data sources and the corresponding descriptive statistics
for each study (e.g., false discovery rate and data distribution)
are included in Supplementary Table 1 and all the newly added
dephosphorylation sites from the “Downreg” dataset have been
added in Supplementary Table 12.

During sequence extraction, a sub-sequence with window
size of 33 centered around the site of interest was created
in a manner similar to that described for the DEPOD-19
dataset above. Supplementary Table 1 summarizes the literature
sources and the number of dephosphorylation sites identified.
Removal of common sequences within and between the positive
and negative sets was performed to obtain a non-redundant
dataset. Finally, the “combined dephosphorylation site” dataset
was obtained by merging the DEPOD-19 and Downreg datasets
and removing any duplicate protein sequences of window size
33. The combined dephosphorylation dataset (ComDephos) is
summarized in Table 1. For model development, the DEPOD-19
and the ComDephos datasets were used.

Bidirectional LSTM Model
Long Short-Term Memory (LSTM) models are known to
provide good performance with sequence data (Hochreiter and
Schmidhuber, 1997). LSTM uses different memory cells and
an additive gradient function helps to overcome the vanishing
and exploding gradient problems in recurrent neural networks
(RNN). Importantly, the use of memory cells can keep sequence
information in the network for long periods of time.

TABLE 1 | Summary of the training and test datasets used for model development
based on sites extracted from the DEPOD-19, Downreg (literature resources) and
composite ComDephos datasets.

Dataset Residue Train Test Total positive Total negative

DEPOD-19 ST 304 78 191 191

Y 161 41 101 101

Downreg ST 1478 370 924 924

Y 40 10 25 25

ComDephos ST 1,806 446 1,112 1,112

Y 201 50 125 125
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FIGURE 2 | Schematic illustrating the Bi-LSTM deep learning architecture and the parameters used. The input sequence is first fed into embedding layer with
dimension of 21, then through two Bi-LSTM layers with 128 neurons and then followed by a time-distributed layer of 128 neurons, which was followed by a flatten
layer and then followed by dense layer with 2 neurons with softmax activation.

A single LSTM cell consists of three gates: “input,” “forget,”
and “output” gates (Figure 2). The input layer (zt) consists of
a sigmoid layer and a tanh layer. The sigmoid layer filters the
previous state to select the relevant cell states for the context
while the tanh layer provides a range of values to take to the
selected states. The forget layer (rt) consists of a sigmoid layer,
which filters the irrelevant previous cell states by dropping them
out. The output layer (hþt) employs a tanh layer to provide
an update to the selected states, as provided by the input layer
(Hochreiter and Schmidhuber, 1997).

The forget gate layer takes previous hidden cells and inputs for
each previous cell state. The sigmoid node in the forget gate adds
in 0 or 1 to the previous hidden state, deciding whether it would
be passed over to the next hidden state. The input gate layer has
sigmoid and tanh nodes, where the sigmoid acts as a selection
node and selects the values that need to be updated. Meanwhile,
the tanh nodes provide a vector of new candidate values for the
selected states, acting as the update node. Finally, the output is
obtained by adding previous values for old states and updated
values for the selective nodes.

In this architecture, we have employed a bidirectional LSTM
layer (Bi-LSTM), which uses twice the number of neurons as a
conventional LSTM layer. The double neurons create two sets of
networks, moving in both the forward and the reverse directions
(Schuster and Paliwal, 1997). Thus, a Bi-LSTM layer is able to
predict the context of the target residue from the residues from
both directions. For example, given a window sequence:

NYTPTSPNYSPTSPSYSPTSPSYSPTSPSYSPS

where the S (red) in the center represents the target residue,
the forward LSTM network would predict the probability of
having S, given the knowledge of the residues preceding it (i.e.,
“NYTPTSPNYSPTSPSY”) while the backward/reverse LSTM
network would predict the probability of having S, given the
knowledge of residues following it (i.e., “PTSPSYSPTSPSYSPS”).
The window sequences were integer encoded, such that each
character in the sequence was replaced by its corresponding
integer value. The integer encoded sequences were then fed to
the embedding layer, which provides an embedding dimension of
21, which is known to be optimal based on our previous studies
(Chaudhari et al., 2020; Thapa et al., 2020). The embedding layer
helps in capturing the latent representation of the encodings
using a look-up table (Keras, 2015). For model development, a Bi-
LSTM layer with 128 neurons was used, with timesteps equivalent
to the window size, and return sequences kept as “true.” Next,
it was followed with a time-distributed layer of 128 neurons.
The time-distributed layer applies dense layer operation to every
timestep of the 3D tensor (Keras, 2015). This was followed by
a flatten layer with a dropout of 0.4 to avoid overfitting and
a dense layer of 64 neurons, which was then followed by the
output dense layer with 2 neurons with softmax activation. The
model was compiled on binary cross-entropy loss using the Adam
optimizer (Kingma and Ba, 2014). We used two callbacks while
fitting the model: ModelCheckpoint and reduce learning rate on
Plateau. ModelCheckpoint obtains the best model with respect
to validation accuracy while the reducing learning rate helps in
learning the parameters better, especially when the data size is
small (Li and Hoiem, 2018). Parameters have been optimized to
the settings shown in Table 2.
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TABLE 2 | Parameters used in LSTM Model for dephosphorylation.

Parameters Settings

Embedding output dimension 21

Learning rate 0.01

Batch size 512

Epochs 30

LSTM_layer1_neurons 128

Dropout 0.4

Dense_layer_neurons 128, 64, 2

Transfer Learning
As molecular counterparts, phosphorylation and
dephosphorylation are closely related to one another but
the cellular enzymes catalyzing each event (as well as the
molecular determinants underlying recognition of the sites) are
different. Moreover, the extensive study of phosphorylation sites
has resulted in a comparatively large dataset of phosphosites,
while the amount of information about dephosphorylation
events has led to a relatively sparse dataset. Taken together, these
observations suggest that a transfer learning strategy could be
applied to dephosphorylation site prediction.

Recently, deep learning has been used to solve various
problems in bioinformatics (Li et al., 2019; Tang et al., 2019;
Chaudhari et al., 2020; Thapa et al., 2020; Wang D. et al.,
2020; Wang Y. et al., 2020). One of the most serious problems
associated with deep learning stems from data dependence. For
instance, a significant challenge is posed by the lack of labeled

data for the task-of-interest, e.g., dephosphorylation. Indeed, the
problem of insufficient training data is an inescapable problem
in various areas of bioinformatics. For dephosphorylation, the
expense of data acquisition makes it particularly difficult to
construct a large-scale, well-annotated dataset.

Previous studies suggest that, when trained on images, deep
learning networks tend to learn first-layer features that do not
appear to be specific to a particular task (Yosinski et al., 2014).
Such first layer features are general in that they are applicable to
many datasets and tasks. Exploiting this fact, transfer learning
relaxes the hypothesis that the training data and test data are
not required to be “independently and identically distributed”
and that the model in the target domain does not need to be
trained from scratch, which can significantly reduce the burden
of training data size (Tan et al., 2018). Transfer of knowledge
through shared parameters and weights of the source model and
the target domain is one of the strategies in transfer learning
(Weiss et al., 2016).

With the exception of a handful of dual specificity kinases
and phosphatases, most kinases and phosphatases recognize
either S/T or Y residues. Therefore, as is common in
phosphorylation site prediction, we considered two models: one
for S and T residues and another for Y residues. Thus, distinct
phosphorylation and dephosphorylation datasets were formed
and designated the Phos-ST and Phos-Y datasets and the Dephos-
ST and Dephos-Y datasets.

During transfer learning, three important questions need to
be answered: (a) what to transfer, (b) when to transfer, and
(c) how to transfer. Therefore, to allow our framework to

FIGURE 3 | Schematic illustrating the transfer-learning. Green dotted box depicts the training on source task, phosphorylation (S,T), to obtain the Phos-ST model.
Once the Phos-Model was obtained the Bi-LSTM model was instantiated with the Phos-Model weights before being trained on the dephosphorylation data. Blue
dotted box depicts the transfer learning on the target task, dephosphorylation for ST residues, to obtain the DTL-DephosSite-ST model. During transfer learning, all
layers were allowed to re-train and none of the layers were frozen. (We tried various options with various layers frozen but this version produced the best results).
Orange dotted box depicts the transfer learning from DTL-DephosSite-ST, to obtain the DTL-DephosSite-Y model.
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accommodate smaller datasets, we applied a two-step transfer
learning scheme that included a pre-training step and a fine-
tuning step (Figure 3). The pre-training step results in a source
model, which is then available to adapt on the target dataset
through fine-tuning.

The pre-training step involves the training of our Bi-LSTM
model (as described in section “Bidirectional LSTM Model”) on
the available phosphorylation data (Wang D. et al., 2020), which
are provided in Supplementary Table 3. This resulted in a Phos-
model that contains learned weights to classify a given motif as
phosphorylated or not, specifically the S/T residues. During the
fine-tuning step, the weights learned by the source Phos-model
were transferred to a new instance of the Bi-LSTM architecture.
The model was then trained on the Dephos data containing
the S/T residues in the center, thus obtaining a transfer-learned
Dephos model for S/T residues. We experimented with different
combinations of frozen and re-trained layers and identified a
model, where all layers are allowed to re-train, that learned
better than others.

Similarly, for the prediction of Y dephosphorylation sites,
we experimented with performing transfer learning from Phos-
ST-to-Dephos-Y as well as Phos-Y-to-Dephos-Y. These studies
suggested that the Dephos-ST-to-Dephos-Y transfer worked the
best. Thus, the pre-training step involved training the Dephos-ST
model, initialized with transfer-learned weights from Phos-ST on
the Dephos-ST dataset. During the fine-tuning step, we retrained
all layers on the Dephos-Y dataset. Though varying the layers that
were kept frozen or re-trained had less impact in performance,
retraining all layers helped in attaining more consistent results.

Finally, we also employed the transfer learned Dephos-Y
model on the available phosphatase specific datasets (Wang et al.,
2016) for PTP1B, SHP1, and SHP2 (Supplementary Table 9).

Performance and Evaluation
To evaluate the performance of each model, we used a confusion
matrix to determine Sensitivity (SN), Specificity (SP), Accuracy
(ACC) and the Receiver Operating Characteristic (ROC) curve as
the performance metrics. The models were evaluated using five-
fold cross-validation on the benchmark training dataset and an
independent test set.

ACC describes the correctly predicted residues out of the
total residues (Eq. 1). Meanwhile, SN defines the model’s ability
to distinguish positive residues (Eq. 2) and SP measures the
model’s ability to correctly identify the negative residues (Eq. 3).
Matthews Correlation Coefficient (MCC) is the calculated score
that takes into account the model’s predictive capability with
respect to both positive and negative residues (Eq. 4). Likewise,
the ROC curve provides a graphical representation of the
diagnostic ability of the classifier. The area under the ROC curve
(AUC) is used to compare various models, with the models
having the highest AUC scores generally performing better in
classification than those with lower AUC scores.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (1)

Sensitivity =
TP

TP + FN
× 100 (2)

Specificity =
TN

TN + FP
× 100 (3)

MCC =
(TP) (TN)− (FP)(FN)

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(4)

RESULTS AND DISCUSSION

Bidirectional Model on Dephos Datasets
(Without Transfer Learning)
To efficiently identify sites that are likely to be dephosphorylated
in proteins, we sought to develop a dephosphorylation site
prediction tool using the recently expanded DEPOD-19 dataset
(Table 1). To this end, we first extracted FASTA sequences
from the DEPOD-19 dataset. During extraction, we limited
the window size to 33 in order to minimize the loss of
sequences at the ends of the sequences. We then applied a
bidirectional long short-term memory (Bi-LSTM) deep learning
strategy to the dataset. During these analyses, we trained on
the train dataset and the performance of the resulting model
was evaluated using an independent test set (representing 20%
of the original dataset) that was kept aside from the training
set. These analyses suggest that our preliminary model had
reasonable sensitivity (SN) and receiver operating characteristic
(ROC) scores of 0.85 and 0.79, respectively. However, this
preliminary model suffered with respect to specificity (SP) and
Matthew’s correlation coefficient (MCC), where it exhibited
scores of 0.49 and 0.36, respectively (Table 3). A feature-based
machine learning strategy employing random forest (RF) yielded
similar results (Supplementary Table 4).

Though the DEPOD-19 dataset has recently been expanded
to include 584 total sites, it still represents a relatively small
dataset for model development using machine learning strategies.
Therefore, to further expand the dataset, we conducted a
comprehensive literature search for dephosphorylation sites. This
yielded an additional 1,898 sites whose phosphorylation status
decreased within an hour of treatment in mitotically arrested
cells (Table 1; see section “Materials and Methods” for details).
Combining this so called “Downreg” dataset with those sites that
had already been curated in the DEPOD-19 dataset resulted in
a composite “ComDephos” dataset containing 2,503 total, non-
redundant dephosphorylation sites (composed of 1,806 S, 446
T, and 251 Y sites) (Table 1). We then repeated our Bi-LSTM-
based learning scheme using the newly developed ComDephos
dataset and assessed performance based on our independent test
set (Table 3 and Supplementary Table 5). This led to marginal

TABLE 3 | Performance of Deep learning model on Depod19 and ComDephos
datasets.

Dataset MCC Specificity Sensitivity ROC_AUC

Depod19 0.36 0.49 0.85 0.79

ComDephos 0.46 0.71 0.76 0.81

Independent test results using the DEPOD-19 and the ComDephos datasets for
ST residue.
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improvements in model performance using the independent
datasets. For instance, while ROC increased marginally (2.5%),
SP increased by 44.8% and SN decreased by 10.5%. Together,
these changes resulted in a 27.8% increase in overall model
performance, as assessed by MCC.

The observed gains are likely due to an increase in the size
of the dataset, consistent with several reports that suggest that
deep learning models perform well on large datasets and that an
increase in the size of the dataset can increase the performance
of the resulting model (Zhao, 2017; Feng et al., 2019). However,
despite these gains, performance of the model developed using
the ComDephos dataset was still relatively poor. Therefore, we
asked if model performance could be enhanced using a transfer
learning strategy.

Development of S/T Dephosphorylation
Site Predictor Using Transfer Learning
on the Phosphorylation Site Database
In contrast to dephosphorylation sites, phosphorylation sites
have been extensively annotated, totaling 484,110 sites in 20,217
proteins (PhosphoSitePlus; Hornbeck et al., 2019), as 1/31/2021).
Given the inherent similarities in the physiochemical properties
of the modified sites and the potential differences in the molecular
determinants used by kinases and phosphatases to recognize
sites of phosphorylation and dephosphorylation, respectively, we
reasoned that a transfer learning approach could be applied to
develop a model to predict sites of dephosphorylation (Figure 3).
Therefore, we used the phosphorylation dataset described by
Wang et al. (2017). This dataset, which is composed of 31,944
experimentally determined phosphorylation sites and an equal
number of negative sites (i.e., S, T, or Y residues that are
not known to be phosphorylated), was used to generate a
source model (Supplementary Table 3). First, we explored
the effect that window size had on phosphosite prediction.
To this end, progressively smaller window sizes were created,
starting with a window size of 33. This was achieved by
removing one residue from each end of the sequence in
successive steps to yield windows of 33, 31, 29, 27, 25, and 23.
We then trained the Bi-LSTM model on the phosphorylation
training dataset using each window size and tested on the
independent test set (Supplementary Table 6). This led to our
source phosphorylation model (Phos-Model) for their respective
windows, which was used for transfer learning to the target
dephosphorylation dataset.

Next, to apply the knowledge gained from phosphorylation
site prediction to dephosphorylation, the Bi-LSTM model was
instantiated with the Phos-Model weights before being trained
on the DEPOD-19 and ComDephos datasets. During transfer
learning, all layers were allowed to re-train in the fine-tuning
step. This yielded a transfer-learned dephosphorylation model
for each window size. To determine the optimal window size,
we then conducted five-fold cross-validation of the transfer-
learned dephosphorylation dataset based on the ComDephos
dataset (Table 4). These analyses suggested that window sizes
of 29 and 31 led to the best predictors based on MCC.
A similar trend was also observed for the phosphorylation

TABLE 4 | Five-fold cross-validation of various window sizes for prediction of S/T
residues following transfer learning using Phos-Model (source) and ComDephos
dataset (target).

Window
size

MCC ± SD Specificity
± SD

Sensitivity
± SD

Accuracy
± SD

ROC_AUC

23 0.58± 0.05 0.78± 0.04 0.80± 0.01 0.79± 0.02 0.86

25 0.60± 0.04 0.78± 0.02 0.82± 0.03 0.80± 0.02 0.86

27 0.60± 0.05 0.79± 0.04 0.81± 0.02 0.80± 0.02 0.87

29 0.61 ± 0.04 0.79 ± 0.02 0.82± 0.03 0.80± 0.02 0.86

31 0.61 ± 0.04 0.77± 0.03 0.83 ± 0.03 0.80± 0.02 0.87

33 0.60± 0.05 0.78± 0.04 0.82± 0.03 0.80± 0.02 0.87

The highest scores in each metric are highlighted in boldface.

dataset (Supplementary Table 6) and for a transfer-learned
model trained on the DEPOD-19 dataset (Supplementary
Table 7). Since a window size of 31 performed marginally better
with respect to SN and ROC, we selected this window for
further analysis. We termed this transfer learned, deep learning-
based S/T dephosphorylation site predictor, DTL-DephosSite-
ST. Importantly, compared to the S/T model developed using
deep learning alone, DTL-DephosSite-ST exhibited an increase
in all performance metrics. This resulted in an ∼3.26-fold
increase in overall performance for S/T, as assessed by MCC.
Likewise, using our independent dataset, DTL-DephosSite-
ST outperformed similar transfer-learned dephosphorylation
site prediction models that had been trained using either
different deep learning architectures, such as conventional LSTM
or CNN, or the recently developed DeepPhos (Luo et al.,
2019) phosphorylation site predictor, which utilizes densely
connected CNNs (Table 5). Taken together, these data suggest
that DTL-DephosSite-ST effectively predicts putative sites of
dephosphorylation on S/T residues.

Transfer Learning Dephos-Y
With a transfer-learned S/T dephosphorylation site model in
hand, we used a similar strategy to identify putative sites of
Y dephosphorylation. Specifically, transfer learning was applied
to the Y residues in the ComDephos dataset using DTL-
DephosSite-ST as the source model. To obtain the DTL-
DephosSite-Y, the model was instantiated with the weights
of DTL-DephosSite-ST and all layers were re-trained on the
ComDephos-Y dataset. Similar to the results for the S/T models,

TABLE 5 | Comparison between DTL-DephosSite-ST and transfer-learned
models developed using other deep learning architectures based on an
independent test set.

Architecture MCC Specificity Sensitivity ROC_AUC

CNN 0.60 0.74 0.86 0.89

LSTM 0.64 0.79 0.85 0.86

DeepPhos (DC-CNN): (Luo
et al., 2019)

0.64 0.82 0.83 0.89

DTL-DephosSite-ST (Bi-LSTM) 0.68 0.84 0.84 0.90

CNN, Convolutional Neural Network; LSTM, Long short-term memory; DC-CNN,
Densely connected CNN; Bi-LSTM, bidirectional LSTM. The highest scores in each
metric are highlighted in boldface.
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five-fold cross-validation suggested that window sizes of 27 and
31 performed the best, with a window size of 31 exhibiting
slightly higher values for the majority of performance metrics
(Table 6). Interestingly, models that were trained in the same
manner using the smaller DEPOD-19 dataset resulted in a
more sporadic distribution across windows, with a window
size of 27 achieving the best specificity, and a window size
of 31 producing the highest values for MCC and Sensitivity
(Supplementary Table 7). Such a sporadic distribution may
suggest that we are approaching a lower limit with respect
to the size of the dataset, beyond which transfer learning
becomes less effective.

Similarly, models that were trained using different
combinations of source models and target datasets
(e.g., Phospho-Y as source and ComDephos as target
or Phospho-Y as source and DEPOD-19 as target)
yielded models that performed well in most metrics, but
not as well as the window size 31 Y dephoshorylation
model generated using DTL-DephosSite-ST as the source
model and the ComDephos dataset as the target dataset
(Supplementary Table 8). For instance, window sizes
of 27 and 31 exhibited similar MCC, with window size
of 31 achieving the best specificity, accuracy and ROC
scores. Therefore, we chose this model, which we named
DTL-DephosSite-Y, for further analysis. Similar to DTL-
DephosSite-ST, the newly developed DTL-DephosSite-Y
performed well when evaluated using an independent test
set (Table 7).

CONCLUSION

Here, we describe a strategy that combines deep learning with
transfer learning to develop general dephosphorylation site
predictors of S/T and Y residues. To our knowledge, the resulting
models, termed DTL-DephosSite-ST and DTL-DephosSite-Y,
are the first general dephosphorylation site predictors for S/T
and Y dephosphorylation, respectively. Deep learning-based
models have recently been developed for several important
PTMs, including phosphorylation, methylation, acetylation, and
succinylation, to name a few (Wang et al., 2017; Luo et al.,
2019; Wu et al., 2019; Al-barakati et al., 2020; Chaudhari
et al., 2020; Thapa et al., 2020; Ahmed et al., 2021). Similar

TABLE 6 | Five-fold cross-validation of various window sizes for prediction of Y
residues following transfer learning using DTL-DephosSite-ST (source) and
ComDephos dataset (target).

Window
size

MCC ± SD Specificity
± SD

Sensitivity
± SD

Accuracy
± SD

ROC_AUC

23 0.53± 0.09 0.76± 0.11 0.76± 0.07 0.76± 0.04 0.81

25 0.49± 0.13 0.76± 0.12 0.72± 0.09 0.74± 0.06 0.79

27 0.59 ± 0.06 0.78± 0.10 0.80 ± 0.09 0.79± 0.03 0.82

29 0.50± 0.07 0.74± 0.06 0.76± 0.06 0.75± 0.03 0.82

31 0.59 ± 0.10 0.83 ± 0.09 0.76± 0.06 0.80 ± 0.05 0.83
33 0.58± 0.08 0.78± 0.07 0.80 ± 0.04 0.79± 0.05 0.82

The highest scores for each metric are highlighted in boldface.

TABLE 7 | Independent test results of DeepPhos (Luo et al., 2019),
DTL-DephosSite-ST and DTL-DephosSite-Y on ComDephos independent set,
using the optimized parameters.

Predictor MCC Specificity Sensitivity Accuracy ROC_AUC

DeepPhos 0.44 0.48 0.92 0.70 0.86

DTL-DephosSite-ST 0.68 0.84 0.84 0.84 0.90

DTL-DephosSite-Y 0.64 0.88 0.75 0.82 0.89

Here, results of DeepPhos model is provided to show the performance of a
model trained on just Phosphorylation sites. The highest scores in each metric
are highlighted in boldface.

to previous deep learning-based models, our models did not
require any hand selected features during model development.
However, unlike many of the other deep learning-based
models that were developed using extensive PTM data, the
number of experimentally identified dephosphorylation sites
was relatively low. As a consequence, our initial attempts to
develop dephosphorylation site predictors based solely on deep
learning yielded models that did not predict sites efficiently.
This is consistent with reports that deep learning does not
perform as well on small datasets (Zhao, 2017; Feng et al.,
2019). To overcome this limitation, we developed a transfer
learning-based approach. Specifically, we generated a source
model based on knowledge gained about phosphorylation
using a Bi-LSTM deep learning architecture and then applied
this information to the ComDephos dataset using transfer
learning. The resulting models performed markedly better
than those developed using Bi-LSTM alone. This suggests
that our approach is able to learn solely through the
patterns of motif sequences. Importantly, by utilizing a
transfer learning-based strategy, we were able to capitalize
on the richness of phosphorylation site datasets in order
to improve the efficacy of dephosphorylation prediction.
This provides an attractive solution to the scarce data
problem and may be applicable in the development of
other PTM predictors.

During this project, we also expanded the DEPOD-19
dephosphorylation dataset 3.25-fold to create computational
datasets of dephosphorylation. Importantly, this study
relies upon the correlation between the cellular processes
of phosphorylation and dephosphorylation. We have
attempted to measure the level of transferability between
phosphorylation and dephosphorylation. Similar correlations
are also likely to be found for other PTMs where the
forward and reverse reactions are catalyzed by different
classes of enzymes, such as methylation/demethylation
and acetylation/deacetylation. Prediction of sites of these
modifications may thus be amenable to transfer learning.
Likewise, PTMs that differ in the molecular characteristics
of the PTM itself, but which utilize related enzymes,
such as ubiquitin E3 ligases and SUMO E3 ligases,
may also be amenable to transfer learning. Finally, all
datasets and code developed during this study has been
made freely available to the bioinformatics community at
https://github.com/dukkakc/DTLDephos to further contribute
toward the study of dephosphorylation.
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