About this Research Topic
The modification processes of these different types of biomacromolecules share some common properties. The deposition of chemical modifications (or marks) onto biomacromolecules is catalyzed by specific enzymes named “writers”. The enzymes that remove the modifications are called “erasers”. After recognizing the BCM sites, regulator proteins that produce a cellular response are “readers”.
Identification of these BCM substrates and sites, “writers”, “erasers” and “readers” provide us a better understanding on how cellular activities are dynamically regulated. The development of computational algorithms, pipelines, tools, and databases will support biologists who are exploring BCM regulation, as well as provide potential biomarkers and drug targets for translational medicine.
The aim of this Research Topic is to provide highly valuable computational resources for biologists who are dissecting the biological functions, pathological roles, and/or regulatory mechanisms of protein PTMs, RNA modifications or DNA modifications.
The following areas will be covered, but not limited to:
• New computational methods for identification of BCM substrates and sites
• Useful tools/pipelines for analyzing BCM-related sequence, structure and/or omics data
• Comprehensive databases devoted to the integration of BCM knowledge
• Easy-to-understand tutorials or protocols for using BCM resources
• Systematic applications of BCM resources to make important findings.
• Cutting-edge reviews for certain aspects of BCM resources
Keywords: Biomacromolecular covalent modification, post-translational modification, DNA modification, RNA modification, machine learning, data integration
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.