About this Research Topic
The precise modification of biomolecules on isotropic NPs, and the oriented location of biomolecules on anisotropic NPs, have critical effects for the fabrication of novel assemblies. The plasmonic coupling and plasmonic-exciton coupling of assemblies, with well-defined configurations, should be further explored for the adjustment of optical properties. The specific electron transfer mechanism between NPs needs to be studied for the generation of electrochemical activity. It is expected that new optical phenomena and electrochemical behaviors may be discovered for assemblies in future studies. Depending on the unique signals of assemblies and the specific affinity of biomolecules, NP assemblies are becoming alternative candidates for the application in biosensing, bioimaging and phototheranostics.
This Research topic will focus on biomolecule-engineered NP assemblies for bioapplications (e.g. biosensing, bioimaging and phototheranostics.). The goal of this collection is to provide the structural parameters for the NP assemblies and the synergistic effects for the generation of optical signals and electrochemical behaviors, as well as the potential bioapplications of NP assemblies.
Potential topics included, but are not limited to:
• Controllable modification and preparation of NP assemblies
• Tunable optical properties of assemblies and the relationship with structures
• Amplified electrochemical behaviors of nanostructures for detection
• The applications of assemblies in biosensing and bioimaging
• Optical-active assemblies driven phototheranostic nanoplatforms
Keywords: Biomolecules, Nanoassemblies, Optical, Electrochemical, Biosensors
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.