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Editorial on the Research Topic

A Journey Through 50 Years of Structural Bioinformatics in Memoriam of Cyrus Chothia

Dr Cyrus Chothia FRS was a pioneer and one of the founding figures of theoretical and
computational biology, nowadays commonly known as the field of bioinformatics (a term which
Cyrus never quite got used to). To cite some of his numerous contributions to the field, the work of
Cyrus and co-workers on the relationship between the divergence of sequence and divergence of
structure in proteins supported the development of methods of homology modelling (Chothia and
Lesk, 1986); his work on mechanisms of conformational change included one of the first
characterizations of the structural differences between deoxy- and oxy-haemoglobin (Baldwin
and Chothia, 1979; Lesk et al., 1985); his novel taxonomic approach to the study of the
relationship between the sequence, structure, function, and evolution of proteins, led to the
discovery of canonical structures of complementarity-determining regions (CDRs) of antibodies
(Chothia and Lesk, 1987) and the creation of a first hierarchical classification of proteins into
subfamilies, families and superfamilies based on structural, and functional similarities (Murzin et al.,
1995). His seminal research had major impacts in the field during a long career of over 50 years, and
remains a source of inspiration for new generations. We would like to honour his memory and pay
tribute to his work with this Research Topic.

Asmentioned above, Cyrus’work included diverse computational research areas including antibody
canonical loop classification. Two articles in this collection focus on the computational study and
design of antibodies. Antibodies can be used to target toxic molecules. In their work, Gilodi et al.
coupled experimental methodologies with in silicio design and showed the potential of developing an
antibody able to recognize the RNA binding regions of TDP-43. TDP-43 aggregates have been
proposed as a potential cause of ALS and their sequestration has been proposed as a therapeutic
strategy.

Although the variable domains of an antibody contain the complementarity-determining regions
(CDRs) that shape and host the antigen binding site (ABS), the elbow angle and the relative interdomain
orientations of the variable and constant domains also influence the shape of ABS (Lesk and Chothia.,
1988). Therefore, understanding the link between their dynamics and antigen specificity is crucial for the
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modelling and engineering of antibodies. Using molecular dynamics
techniques, Fernández-Quintero et al. investigated this relationship
and found that CDR loops reveal conformational transitions in the
micro-to-millisecond timescale, while the interface and elbow angle
dynamics occur on the nanosecond timescale.

The next three studies discuss and attempt to identify general
features of protein domains, in the spirit of Cyrus’ analyses of
protein structures and sequences. Chen et al. used a novel
approach based on the study of domain-mediated protein-
protein interactions, rather than a traditional focus on
individual domains, for the structural profiling of bacterial
effectors. These are proteins injected by the bacteria into the
host cells that are critical for their virulence and intracellular
survival. Their approach led to novel quantitative insights into the
structural basis of effectors that might aid the design of effective
and selective inhibitors of their pathogenic mechanisms.

As studied by Cyrus particularly in later years of his career,
interconnected functional, biophysical, and structural constraints
drive the purifying selection leading to variable levels of
conservations along protein sequences. In their work, Dubreuil
and Levy discussed these constraints while emphasising relevant
works of Cyrus. Subsequently, they focused their attention on the
evolutionary rate of disordered regions and the role of cellular
abundance in their sequence conservation. They found that
disordered regions are equivalent to super-accessible surface
residues, and they confirmed the strong divergence
interdependency between surface and core residues and the
weak evolutionary coupling of disordered and domain regions.
Finally, they observed that protein abundance impacts the
conservation of residues in core, surface and disordered
regions with constraints of similar effect size.

In the spirit of Cyrus’ global approach to analysing the protein
Universe, Konagurthu et al. tried to answer the following
question: ‘What is the architectural “basis set” of the observed
Universe of protein structures?’ The authors used an
information-theoretic inference method to identify
automatically conserved sets of secondary structural elements
within any given collection. By applying this method to the
ASTRAL SCOP domains, they created an architectural
dictionary of 1,493 substructures and used it to dissect the
protein data bank (PDB). They made the entire dictionary,
associated information and all the concept instances from the
analysis of the PDB, publicly available on a webserver (http://lcb.
infotech.monash.edu.au/prosodic).

Homology modelling is one of the most established
approaches to protein structure prediction and a longstanding
tool for Cyrus and co-workers on important structures such as the
model of the T cell receptor based on antibody structures
(Chothia et al., 1988). Homology models rely on the accurate
identification of a suitable structural template based on the
sequence of the target protein. Recently, deep learning has
shown great potential to mine the coevolutionary information
from multiple sequence alignments, leading a substantial
improvement in the detection of distant homology. An
amusing anecdote is that Cyrus had an antipathy towards the
term “coevolution”. He correctly pointed out that substitutions
are always sequential rather than simultaneous. In a mini-review,

Bhattacharya et al. presented the current advances of the protein
homology detection field driven by the use of machine learning in
Inter-Residue Interaction Map Threading.

Some classes of proteins present a low sequence identity
among homologs limiting the use of sequence-based methods
for their homology modelling. G protein-coupled receptors
(GPCRs) represent one such example. However, GPCR
sequences with similar patterns of hydrophobic residues are
often structural homologs, even with low sequence identity. In
their study, Jabeen et al. designed a method for homology
modelling of GPCRs that exploits this biophysical
characteristic, as well as other GPCR-specific features. Their
method was validated with a number of published
benchmarking datasets and a case study on an olfactory
receptor is presented in the article. Furthermore, it was
implemented in the form of a free tool called Bio-GATS
(https://github.com/amara86/Bio-GATS).

Savojardo et al. investigated whether and to what extent
single-amino acid pathogenic variants (PVs) could be
associated with their solvent exposure. Solvent-Accessible
Surface Area (SASA) is indeed a key characteristic of
proteins in determining their folding and stability.
Savojardo et al. mapped PVs onto a curated set of
structures and determined that PVs occur more frequently
in residues which are less likely to be accessible by the solvent,
and that they are not evenly distributed among the different
residue types. Using an in-house deep learning method for the
sequence-based prediction of residue SASA, the authors
confirmed these results in 12,494 human protein sequences
for which no 3-D structure was available.

On a related topic, Di Renzo et al. investigated the
interactions between amino acids on the protein surface and
the solvent (water) to characterise their solvation properties.
Although many descriptors of such properties exist, the local
environment of each residue in the context of the protein is
complex and often overlooked by existing methods. Based on
molecular dynamics simulations, Di Renzo et al. developed a
method to characterize the dynamic hydrogen bond network at
the interface between protein and solvent, from which they
derive the solvation properties of each amino in the protein
environment.

Finally, in their review Bordin et al. presented some of Cyrus’
accomplishments in the context of the history of protein structure
classifications. The authors particularly focused on SCOP and
CATH, twomajor protein structural classifications databases, and
the evolutionary insights these two classifications have brought.
They conclude their piece by discussing how the growing volume
of data, and integration of protein sequences into these structural
classifications, is helping to predict new functions in Metazoan
organisms.

The articles in this collection cover very diverse areas of
Structural Bioinformatics, reflecting the broad impact of
Cyrus’ research.

As a final remark, Cyrus never forgot that one’s life is about the
journey and not only the destination, and was ahead of his time in
the open-minded way that he collaborated with scientists of all
backgrounds and nationalities as well as across disciplines. The
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editors and authors of this collection express their deepest
gratitude to Cyrus for his enormous contribution to the field
of Bioinformatics and for being a generous, supportive, and
inspiring colleague and friend.
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Fab consist of a heavy and light chain and can be subdivided into a variable (VH and VL)
and a constant region (CH1 and CL). The variable region contains the complementarity-
determining region (CDR), which is formed by six hypervariable loops, shaping the
antigen binding site, the paratope. Apart from the CDR loops, both the elbow angle and
the relative interdomain orientations of the VH–VL and the CH1–CL domains influence the
shape of the paratope. Thus, characterization of the interface and elbow angle dynamics
is essential to antigen specificity. We studied nine antigen-binding fragments (Fab) to
investigate the influence of affinity maturation, antibody humanization, and different light-
chain types on the interface and elbow angle dynamics. While the CDR loops reveal
conformational transitions in the micro-to-millisecond timescale, both the interface and
elbow angle dynamics occur on the low nanosecond timescale. Upon affinity maturation,
we observe a substantial rigidification of the VH and VL interdomain and elbow-angle
flexibility, reflected in a narrower and more distinct distribution. Antibody humanization
describes the process of grafting non-human CDR loops onto a representative human
framework. As the antibody framework changes upon humanization, we investigated
if both the interface and the elbow angle distributions are changed or shifted. The
results clearly showed a substantial shift in the relative VH–VL distributions upon antibody
humanization, indicating that different frameworks favor distinct interface orientations.
Additionally, the interface and elbow angle dynamics of five antibody fragments with
different light-chain types are included, because of their strong differences in elbow
angles. For these five examples, we clearly see a high variability and flexibility in both
interface and elbow angle dynamics, highlighting the fact that Fab interface orientations
and elbow angles interconvert between each other in the low nanosecond timescale.
Understanding how the relative interdomain orientations and the elbow angle influence
antigen specificity, affinity, and stability has broad implications in the field of antibody
modeling and engineering.

Keywords: VH–VL interface dynamics, CH1–CL dynamics, elbow angle, antibody structure design, antibody
structure prediction
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INTRODUCTION

Antibodies are key players as therapeutic agents because of their
ability to bind the majority of targets and their suitability for
protein engineering (Chiu et al., 2019; Kaplon and Reichert,
2019; Kaplon et al., 2020). Description of the binding properties
and characterization of the binding interface is essential for
understanding the function of the antibody. The binding ability
of antibodies is determined by the antigen-binding fragment
(Fab), in particular the variable fragment region (Fv). The Fab
consists of a heavy and a light chain and can be subdivided into
two types of structurally distinct domains termed the variable
(VH , VL) and constant domains (CH1, CL). The amino acid
residues linking VL to CL and VH to CH1 are called switch
residues (Stanfield et al., 2006). In the antigen-binding process,
the most important region is the complementarity-determining
region (CDR), which consists of six hypervariable loops that
shape the antigen-binding site, the paratope (Chothia et al., 1989;
Martin and Thornton, 1996; Al-Lazikani et al., 2000; North et al.,
2011). Apart from the diversity in length, sequence, and structure
of the CDR loops, the relative VH–VL interdomain orientation
plays an important role in determining the shape of the antigen-
binding site (Colman, 1988; Foote and Winter, 1992; Dunbar
et al., 2013; Bujotzek et al., 2016). Various studies observed that
mutations in the framework regions, in particular in the VH–
VL interface, can strongly influence the antigen-binding affinity.
Thus, mutations in the VH–VL interface result in structural
changes of the binding site geometry, thereby modifying the
relative VH–VL orientation (Riechmann et al., 1988; Foote and
Winter, 1992; Braden et al., 1994; Banfield et al., 1997; Cauerhff
et al., 2004). Numerous studies in literature focused on defining
this relative interdomain orientation (Narayanan et al., 2009;
Abhinandan, 2010; Almagro et al., 2011; Chailyan et al., 2011).
The most commonly used and robust approach to characterize
the VH–VL pose is ABangle (Dunbar et al., 2013; Teplyakov et al.,
2014; Bujotzek et al., 2015, 2016). ABangle is a computational
tool to characterize the relative orientations between the antibody
variable domains (VH and VL) by using five angles and a distance
and by comparing it to other known structures (Dunbar et al.,
2013; Bujotzek et al., 2015, 2016).

The high variability in the VH–VL interdomain orientation
is an additional feature of antibodies, which directly increases
the size of the antibody repertoire (Chothia et al., 1985; Vargas-
Madrazo and Paz-García, 2003; Bujotzek et al., 2016; Knapp et al.,
2017; Fernández-Quintero et al., 2020c). This high variability
in the VH–VL interdomain distribution has been reported
for different IL-1β antibody fragments in agreement with the
respective NMR ensembles (Fernández-Quintero et al., 2020c).
By applying fast Fourier transformation to the interface angles,
timescales of 0.1–10 GHz could be assigned to the fastest
collective interdomain movements (Fernández-Quintero et al.,
2020c). With the increasing number of available Fab X-ray
structures, it was noted that these fragments also display a high
variability in the elbow angle, which is defined as the angle
between the pseudo-two-fold axes relating VH to VL and CH1
to CL (Sotriffer et al., 2000; Stanfield et al., 2006). The elbow
angle has been shown to increase Fab flexibility and thereby to

enhance the ability of the same antibody to recognize different
antigens (Landolfi et al., 2001; Stanfield et al., 2006; Niederfellner
et al., 2011). Additionally, it has been shown that mutations in the
Fab elbow region can influence the interdomain conformational
flexibility and paratope plasticity (Sotriffer et al., 2000; Henderson
et al., 2019).

The CH1–CL heterodimer was found to be significantly more
stable than the VH–VL heterodimer and has been shown to
play an essential role for antibody assembly and secretion in
the cell (Röthlisberger et al., 2005; Bönisch et al., 2017). Mutual
stabilization occurred across both Fab interfaces, and a high
degree of cooperation between VH–VL and CH1–CL could be
observed. However, direct interactions among each domain (VL,
CL/VH , and CH1) did not influence the stability of either domain
(Röthlisberger et al., 2005).

In this study, we investigate the dynamics of both relative
VH–VL, CH1–CL interface angles and the elbow angle and
their respective dependencies on different light-chain types and
shifts upon antibody humanization and affinity maturation. The
aim is to structurally and mechanistically characterize these
interdomain movements and elbow angle flexibilities and assign
and estimate timescales to these domain motions.

MATERIALS AND METHODS

Investigated Antibody Fabs
The nine investigated publicly available Fab X-ray structures were
chosen to have a representative set of antibodies covering various
challenges in antibody engineering and design, as they differ
in light-chain types (PDB accession codes: 1PLG, 1NL0, 1BBD,
7FAB, and 1DBA), upon humanization (PDB accession codes:
3L7E, 4PS4) and affinity maturation (1MLB, 2Q76).

Structure Preparation
All Fab X-ray structures were prepared in MOE (Molecular
Operating Environment, Montreal, QC, Canada: 2019)
(Molecular Operating Environment [MOE], 2020) using
the Protonate 3D (Labute, 2009) tool. With the tleap tool of
the Amber Tools20 package, the Fab structures were placed
into cubic water boxes of TIP3P (Jorgensen et al., 1983) water
molecules with a minimum wall distance to the protein of 10 Å
(El Hage et al., 2018; Gapsys and de Groot, 2019). Parameters
for all antibody simulations were derived from the AMBER
force field 14SB (Maier et al., 2015). To neutralize the charges,
we used uniform background charges (Darden et al., 1993;
Salomon-Ferrer et al., 2013; Hub et al., 2014). Each system was
carefully equilibrated using a multistep equilibration protocol
(Wallnoefer et al., 2011).

All Fabs were simulated twice for 1 µs with different
initial velocities, using molecular dynamics as implemented
in the AMBER 20 (Case et al., 2020) simulation package.
The results for the second 1 µs simulations are summarized
in Supplementary Table 1, as the conclusions are the same
as for the simulations presented in the manuscript. We
removed the equilibration and relaxation phase in the respective
simulations. Molecular dynamics simulations were performed
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using pmemd.cuda (Salomon-Ferrer et al., 2013) in an NpT
ensemble to be as close to the experimental conditions as possible
and to obtain the correct density distributions of both protein
and water. Bonds involving hydrogen atoms were restrained by
applying the SHAKE algorithm (Miyamoto and Kollman, 1992),
allowing a time step of 2.0 fs. Atmospheric pressure of the system
was preserved by weak coupling to an external bath using the
Berendsen algorithm (Berendsen et al., 1984). The Langevin
thermostat was used to maintain the temperature at 300 K during
simulations (Adelman and Doll, 1976).

Interface Angle Calculations
ABangle is a computational tool (Dunbar et al., 2013; Bujotzek
et al., 2015, 2016; Fernández-Quintero et al., 2020c) used
to characterize the relative orientations between the antibody
variable domains (VH and VL) using six measurements (five
angles and a distance). A plane is projected on each of the
two variable domains. To define these planes, the first two
components of a principal component analysis of 240 reference
coordinates were used for VH and VL each. The reference
coordinate set consists of Cα coordinates of eight conserved
residues for 30 cluster representatives from a sequence clustering
of the non-redundant ABangle antibody data set. The planes
were then fit through those 240 coordinates, and consensus
structures consisting of 35 structurally conserved Cα positions
were created for the VH and VL domain. Between these two
planes, a distance vector C is defined. The six measures are

then two tilt angles between each plane (HC1, HC2, LC1, and
LC2) and a torsion angle (HL) between the two planes along the
distance vector C (dc). The ABangle script can calculate these
measures for an arbitrary Fv region by aligning the consensus
structures to the found core set positions and fitting the planes
and distance vector from this alignment. This online available
tool was combined with an in-house python script to reduce
computational effort and to visualize our simulation data over
time. The in-house script makes use of ANARCI (Dunbar and
Deane, 2016) for fast local annotation of the Fv region and pytraj
for rapid trajectory processing. The resulting fluctuations in the
HL angle (Supplementary Figure S3) were further analyzed with
a fast Fourier transformation (FFT) (Bergland, 1969) in python
to characterize the frequency and timescale of these movements.
We applied a frequency filter to assign timescales to movements.

To characterize the relative interdomain CH1 and CL
orientations (Supplementary Figure S3), we defined a torsion
angle between the center of mass (COM) of the loops of the
C-terminal CH1 domain, the COM of the CH1, the COM of
the CL domain, and the COM of the loops of the C-terminal
CL domain.

As measure for the elbow angle (Supplementary Figure S3),
we calculated a torsion angle between the COM of the variable
domain, a defined vector between the COMs of the switch regions
(hinge heavy and hinge light) and the COM of the constant
region. Figure 1 depicts all used interface and elbow angle
definitions, showing the Fab domains as Lego model.

FIGURE 1 | Elbow angle, ABangle (HL angle), and CH1–CL interface angle definitions depicted as Lego models. The constant domains are illustrated in dark green
(CH1) and dark blue (CL), while the variable domains are shown in light green (VH ) and light blue (VL). To calculate the CH1–CL interface angle, we defined a torsion
angle between the center of mass of the C-terminal loops of the CH1 domain, the center of mass of CH1, the center of mass of the CL domain, and the center of
mass of the C-terminal loops of the CL domains. The center of masses of the CH1 and CL C-terminal loops are depicted in this figure, as CL and CH1 loops. For the
elbow angle definition, all used centers of mass to define the torsion angle are illustrated. The centers of mass of the switch or hinge regions are abbreviated with hh
(hinge heavy) and hl (hinge light).
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RESULTS

The first five introduced antigen-binding fragments are part of
a study, discussing the influence of different light-chain types
(κ and λ light chains) on the resulting elbow angle distributions
observed in X-ray structures (Stanfield et al., 2006). While the
other six discussed Fabs contribute to a better understanding
of the interface and elbow angle flexibilities upon antibody
humanization and affinity maturation (Cauerhff et al., 2004;
Fransson et al., 2010). By using MD simulations, we investigate
the conformational variability of these interface and elbow
angle distributions in solution and assign timescales to the
dynamics of these movements, which have direct implications
in the design of antibody paratopes and molecular recognition.
The first investigated antibody is the 10C12 antibody (PDB
accession code: 1NL0), inhibiting the human Factor IX calcium-
stabilized N-terminal gamma-carboxyglutamic acid-rich (Gla)
domain, which is a membrane-anchoring domain found on
vitamin K-dependent blood coagulation and regulatory proteins.
The 10C12 antibody is a conformation-specific anti-Factor IX
antibody to interfere with the Factor IX-membrane interaction
(Huang et al., 2004). Same as the 10C12 antibody, the highly
resolved IgG1 Fab structure with the PDB accession code 7FAB
also contains a λ light chain. The biggest difference between the
two Fab structures is the elbow angle orientation.

Figure 2A illustrates the respective distributions and the
results of the fast Fourier transformation (FFT) of the two λ

light-chain antibodies for both interface angles (VH–VL and
CH1–CL) and the elbow angle. The 10C12 antibody is colored

in blue, while the IgG1 7FAB antibody is colored yellow.
The fast Fourier transformation shows that all angles of both
the 10C12 and IgG1 7FAB antibodies have high variations
and allows to assign timescales of 0.1–10 GHz to the fastest
collective angle movements. The highest flexibility and variability
can be observed for the elbow angle, which fluctuates about
±15◦ in less than 10 ns, while both interface angles fluctuate
around ±5◦ in less than 1 ns. Especially interesting is that
these fast fluctuations in the low nanosecond timescale are
substantially faster compared to conformational rearrangements
in the antibody paratope, which is in line with previous studies
(Fernández-Quintero et al., 2019a,c, 2020a,b). Additionally, also
from the histograms (Figure 2B) it can be seen that the elbow
angle has the highest variability, compared to the interface angle
distributions. The starting X-ray structures of the respective
antibodies are plotted into the histograms and color-coded,
respectively. The third antibody investigated is the highly specific
anti-progesterone antibody DB3 (PDB accession code: 1DBA)
which can bind progesterone with nanomolar affinity. The DB3
antibody (containing a κ light chain) binds progesterone by
forming a hydrophobic pocket by interactions between the three
complementarity determining regions L1, H2, and H3 (Arevalo
et al., 1993). Another example for a κ light-chain antibody is
the IgG2 κ murine monoclonal antibody with high specificity for
α-(2→8)-linked sialic acid polymers (PDB accession code 1PLG)
(Evans et al., 1995). The fifth studied antigen-binding fragment
(IgG2, κ light chain) 8F5, which is obtained by immunization
with the native HRV2, neutralizes human rhinovirus serotype 2
and cross-reacts with peptides of the viral capsid protein VP2

FIGURE 2 | (A) Comparison of the two considered λ light-chain antibodies 10C12 (PDB: 1NL0) and IgG1 Fab (PDB: 7FAB). The biggest difference between these
two antibodies is the elbow angle. The distributions of the 10C12 antibody are depicted in blue, while the IgG1 antibody angle distributions are colored yellow.
Additionally, the FFT of the respective distributions are displayed, showing the angle variations occurring faster than 1 ns, between 0.1 and 10 ns, and slower than
10 ns. (B) Histograms of the respective interface and elbow angle distributions, including the respective X-ray structures of both λ light chain antibodies, which were
used as starting structures for molecular dynamics simulations.
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(PDB accession code 1BBD) (Tormo et al., 1992). All three κ

light-chain antibodies were simulated for two times 1 µs, and
the results are depicted in Figure 3. In line with the results of
the λ light-chain Fabs, the FFT in Figure 3A shows that the
variability of the interface and elbow angles can be captured
in the low nanosecond timescale. The histograms in Figure 3B
clearly show that compared to Figure 2, especially in the elbow
angle and the CH1–CL interface histograms, the distributions
have much more overlay and are also narrower, indicating less
variability and diversity in these angles when considering κ light-
chain antibodies.

To investigate the effect of antibody humanization, we
chose the humanization of a mouse anti-human IL-13 antibody
(PDB accession codes: 3L7E and 4PS4) (Fransson et al., 2010;
Teplyakov et al., 2011). The antibodies are humanized by the
human-framework adaptation method (HFA), which comprises
a selection (human framework selection), and an optimization
(specificity-determining residue optimization) step. IL-13 is an
important member of the growth-hormone-like cytokine family
and is involved in the development of asthma (Grünig et al.,
2012). Figure 4 shows the comparison of the c836 antibody with
the humanized Specificity Determining Residue Optimization
(SDRO) optimized m1295 Fab to investigate if the relative
interdomain orientations and the elbow angle distributions
are shifted upon antibody humanization. While the relative
interdomain VH–VL angle distributions are slightly shifted, the
CH1–CL interface angle distribution for the m1295 variant
completely overlaps with the c836 Fab and is much narrower,
as a result of the specificity optimization process (Figure 4A).

The elbow angle distribution for the chimeric c836 Fab is shaped
bimodally, while m1295 has only one dominant elbow angle
minimum in solution (Figure 4B). Again, the variability of the
interface and elbow angle movements can be captured, as their
fluctuations occur in the 0.1–10 GHz timescale.

Another unique ability of antibodies is to evolve in response
to antigens and undergo cycles of mutation and selection leading
to an enhanced affinity and specificity (Wabl and Steinberg, 1996;
Acierno et al., 2007; Mishra and Mariuzza, 2018). To understand
and characterize the underlying biophysical mechanism of
affinity maturation, we investigated the maturation of an anti-
chicken egg-white lysozyme antibody D44.1 (PDB accession
codes 1MLB and 2Q76) (Braden et al., 1994; Cauerhff et al., 2004).
Both D44.1 and the matured F10.6.6 Fab are murine monoclonal
antibodies, which are related in sequence and structure as
they origin from the same gene rearrangement. The affinity
matured F10.6.6 antibody (KA = 1.02∗1010 M−1) was reported
to have a 700-times higher-affinity constant compared to D44.1
(KA = 1.44∗107 M−1), due to a higher surface complementarity
to the antigen (Acierno et al., 2007). The D44.1 Fab differs from
the affinity matured variant F10.6.6 in twenty mutations, seven of
them located in the CDR loops, while the other mutations can be
found in both the VH–VL and CH1–CL interface. As the majority
of mutations occur in the framework, already on the structural
level a stabilization of the VH–VL interface has been reported
(Braden et al., 1994; Cauerhff et al., 2004). Figure 5 shows the
angle distributions of the D44.1 antibody compared to the further
matured F10.6.6 antibody. Upon affinity maturation, we observe
a rigidification in the VH–VL angle and elbow angle distributions

FIGURE 3 | (A) Comparison of the three κ light chain antibodies, which also show a big spread in the elbow angle in the crystal structures. The specific
anti-progesterone antibody DB3 (PDB: 1DBA) is colored in green. The 8F5 antibody (PDB: 1BBD) is colored in red, and the X-ray structure of the murine antibody
which has a high specificity toward α-(2→8)-linked sialic acid polymers (PDB: 1PLG) is colored light blue. Additionally, the FFT of the respective distributions are
displayed, showing the angle variations occurring faster than 1 ns, between 0.1 and 10 ns, and slower than 10 ns. (B) Histograms of the respective interface and
elbow angle distributions, including the respective X-ray structures of all three κ light chain antibodies, which were used as starting structures for molecular dynamics
simulations.
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FIGURE 4 | (A) Influence of different framework origins on the relative interface and elbow angle distributions. The chimeric c836 antibody (PDB: 3L7E) is illustrated
in blue, while the optimized humanization variant m1295 (PDB: 4PS4) is depicted in orange. The calculations of the FFT of the respective distributions are displayed,
showing the angle variations occurring faster than 1 ns, between 0.1 and 10 ns, and slower than 10 ns. (B) Histograms of the respective interface and elbow angle
distributions, including the respective X-ray structures of the chimeric and the humanized Fabs, which were used as starting structures for molecular dynamics
simulations.

FIGURE 5 | (A) Influence of affinity maturation on the relative interface and elbow angle distributions. The D44.1 Fab (colored in cyan) reveals a broader interface and
elbow angle distribution compared to the matured F10.6.6 antibody. The calculations of the FFT of the respective distributions are displayed, showing the angle
variations occurring faster than 1 ns, between 0.1 and 10 ns, and slower than 10 ns. (B) Histograms of the respective interface and elbow angle distributions,
including the respective X-ray structures of the affinity maturation pair D44.1 and F10.6.6, which were used as starting structures for molecular dynamics simulations.

(Figure 5A). This rigidification can also be confirmed by the
narrower histograms of the matured F10.6.6 Fab illustrated in
Figure 5B. In agreement with previous results, the FFT of both
the D44.1 and F10.6.6 antibodies shows that also in this example

the dynamics and flexibility of the interface and elbow angle
distributions occur in the low nanosecond timescale. We used the
X-ray structures crystallized without antigen as starting structure
for the simulations to identify whether the binding competent
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relative interdomain and elbow angle orientations are preexisting
without the presence of the antigen. We clearly see that for the
D44.1 antibody the relative interdomain orientation of the crystal
structure binding to the antigen is present and more favorable
in solution compared to the X-ray structure without the antigen.
The resulting elbow angle distribution (Figure 5B) in solution
shows that none of the two available crystal structures of the
D44.1 antibody is actually favored in solution. Upon maturation,
the relative interdomain orientations, especially the VH–VL
orientation, in the X-ray structures do not change anymore upon
binding, which is in line with the observed rigidification already
on the X-ray structural level. The fact that we sample all binding
competent VH–VL interface orientations supports the idea of a
preexisting conformational ensemble out of which the binding
competent state is selected and therefore follows the paradigm
of conformational selection (Ma et al., 1999; Tsai et al., 1999;
Fernández-Quintero et al., 2019a,b, 2020e).

DISCUSSION

In this present study, we characterize and quantify the relative
interdomain and elbow angle orientations between antibodies
bearing κ or λ light chains and between antibodies before
and after humanization, upon affinity maturation. By using
FFT, we were able to assign timescales to these fast interface
and elbow angle movements in the low nanosecond timescale,
which has direct implications in the field of antibody structure
engineering and design.

Various studies already investigated the influence of different
light chains (κ or λ light chains) on phenotypic differences,
e.g., conformational flexibility, half-life, and propensity to alter
antibody specificity (Montaño and Morrison, 2002; Wardemann
et al., 2004; Stanfield et al., 2006; Townsend et al., 2016). Thus,
the differences in κ and λ light chains result in distinct binding
specificities. In line with previous observations, we observe that κ

and λ light chains differ in their conformational flexibility. While
the distributions in interface and elbow angles of the κ light-chain
antibodies—independently of their starting geometries—overlap
with each other and result in similar favorable orientations in
solution, the Fabs consisting of a λ light chain reveal shifts
and a higher diversity in possible elbow angles and interface
orientations (Figures 2, 3). We can clearly see from the FFT that
the fast interface and elbow angle movements take place in the
low nanosecond timescale (0.1–10 GHz) independent of the light
chain (Figures 2A, 3A). We particularly chose the antibodies to
have the biggest spread in the elbow angle orientations, ranging
from 127◦ to 220◦ (Supplementary Figure S1). The 10C12
antibody (Figure 2A—blue) shows overall much more variability
in all interface and elbow angles in the 0.1–10 GHz timescale,
compared to the IgG1 7FAB antibody.

The free energy surfaces of the interface and elbow angle
movements are shaped parabolically. Thus, if the fast movements
of the interface and elbow angle are approximated by a harmonic
potential, the force constants by fitting the free energy curves to
quadratic functions and calculated the characteristic frequencies
of the domain movements by using classical mechanics. As

observed by the FFT, the majority of the interdomain and
elbow angle dynamics occurs in the low nanosecond timescale
(Figure 6 and Supplementary Figure S4). Figure 6 illustrates
the respective free energy surface with the fitted quadratic
functions. The fluctuations of these interdomain and elbow
angles occur in the 0.1–10 GHz timescale and interconvert
between each other in the 0.1–10 GHz timescale. The fact that
these interface and elbow angles fluctuate ±5◦/±10◦ within this
single minimum in solution introduces a new view on these
interfaces which directly influences the design and structure
prediction of antibodies. Compared to the fast interdomain and
elbow angle dynamics, the loop rearrangements occur in the
high micro-to-millisecond timescale. Therefore, changes in the
CDR loop conformations might be responsible for the dynamics
slower than 10 ns. Thus, also conformational changes of the
paratope directly influence the relative interdomain orientations
and the elbow angle (Sotriffer et al., 1998; Sotriffer et al., 2000;
Fernández-Quintero et al., 2020c,f).

In the context of antibody humanization (Zhang et al., 2013;
Margreitter et al., 2016), apart from the CDR loop length
and sequence, the relative VH–VL interdomain orientation
has already been discussed to directly influence antigen
binding (Bujotzek et al., 2016). Modulation of the VH–VL
orientation diversifies antibody paratopes and thereby allows
to accommodate diverse antigenic shapes that antibodies are
confronted with (Teplyakov et al., 2011; Bujotzek et al.,
2016). Figure 4 shows the humanization of a mouse anti-
human IL-13 antibody, which after the humanization and
SDRO process showed a higher specificity compared to the
murine (Fransson et al., 2010). This step-by-step antibody
humanization has already been shown to result in a reduced
conformational diversity, reflected by a substantial decrease in
conformational space (Fernández-Quintero et al., 2020a). Our
results are perfectly in line with these observations, as the
CH1–CL interface angle and the elbow angle rigidify upon
humanization. Additionally, we were able to identify a small

FIGURE 6 | An exemplary free energy surface of the DB3 antibody with the
fitted quadratic function is illustrated and shows that these interdomain and
elbow angle fluctuations interconvert with each other in the 0.1–10 GHz
timescale. We estimated the force constants k and included the respective
equations used for the frequency f calculations. The variable I represents the
moment of inertia which was used to calculate the frequencies.
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shift in the VH–VL interface distribution in solution for the
m1295, which might be more favorable and contribute to better
recognition and binding of the antigen.

Elucidating the affinity maturation process has been the focus
of numerous studies (Cauerhff et al., 2004; Cho et al., 2005;
Acierno et al., 2007; Li et al., 2010; Wong et al., 2011; Adhikary
et al., 2015; Jeliazkov et al., 2018; Mishra and Mariuzza, 2018;
Fernández-Quintero et al., 2019b; Shehata et al., 2019; Chan et al.,
2020). Upon affinity maturation (Figure 5), we observe for the
matured F10.6.6 antibody in both VH–VL interface and elbow
angle histograms (Figure 5B) a narrower distribution, compared
to the broader surface of the D44.1 Fab (Supplementary
Table S1). A structural ensemble for both antibodies before
and after affinity maturation is illustrated in Supplementary
Figure S2, and also the rigidification upon affinity maturation is
reflected in a lower number of clusters. Even though rigidification
might only be one of the various consequences of affinity
maturation, it still represents a fundamental mechanism resulting
in an increase in specificity (Thorpe and Brooks, 2007; Li
et al., 2015; Di Palma and Tramontano, 2017). Therefore,
understanding the interface and elbow angle flexibility and
dynamics upon affinity maturation is a prerequisite for all
other affinity increasing changes, e.g., improved interfacial
interactions, increased buried surface area, and improved shaped
complementarity (Fernández-Quintero et al., 2020d,e). This
observed rigidification, not only in the CDR loops but also in
the VH–VL and elbow angle dynamics, clearly confirms the role
of the interdomain dynamics in tailoring antibody specificity.
All binding competent interface and elbow angle orientations
preexist in solution, without the presence of the antigen. Thus,
the relative interdomain and elbow angles clearly follow the
concept of conformational selection (Ma et al., 1999).

CONCLUSION

For all investigated antibodies, we observe that changes in the
sequences (e.g., different light-chain types, humanization, and
affinity maturation) can influence and shift the interface and
elbow angle distributions. Our results show that antibodies
with a λ light chain do not only have broader X-ray angle
distributions but also have higher variations in their relative
interface angle distributions, especially in the CH1 and CL

distributions. Upon humanization of a mouse anti-human IL-
13 antibody, we observe small shifts in the VH–VL distributions
and a rigidification in CH1 and CL and elbow angle distributions.
In line with the rigidification as a consequence of the specificity
optimization process, we also observe a rigidification in the VH–
VL and elbow angle distributions upon affinity maturation. The
rigidification upon affinity maturation might only be one of
various consequences; however, understanding the flexibilities of
the antibody interfaces is prerequisite for all other specificity-
increasing changes. Both Fab interfaces and the elbow angle show
movements occurring in the 0.1–10 GHz timescale (fluctuations
around ±5◦/±10◦, respectively), which directly influence the
binding site geometry. Thus, the understanding of these fast
dynamics has broad implications in the field of antibody structure
prediction and design.
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Solvent accessibility (SASA) is a key feature of proteins for determining their folding

and stability. SASA is computed from protein structures with different algorithms, and

from protein sequences with machine-learning based approaches trained on solved

structures. Here we ask the question as to which extent solvent exposure of residues

can be associated to the pathogenicity of the variation. By this, SASA of the wild-type

residue acquires a role in the context of functional annotation of protein single-residue

variations (SRVs). By mapping variations on a curated database of human protein

structures, we found that residues targeted by disease related SRVs are less accessible

to solvent than residues involved in polymorphisms. The disease association is not

evenly distributed among the different residue types: SRVs targeting glycine, tryptophan,

tyrosine, and cysteine are more frequently disease associated than others. For all

residues, the proportion of disease related SRVs largely increases when the wild-type

residue is buried and decreases when it is exposed. The extent of the increase depends

on the residue type. With the aid of an in house developed predictor, based on a

deep learning procedure and performing at the state-of-the-art, we are able to confirm

the above tendency by analyzing a large data set of residues subjected to variations

and occurring in some 12,494 human protein sequences still lacking three-dimensional

structure (derived from HUMSAVAR). Our data support the notion that surface accessible

area is a distinguished property of residues that undergo variation and that pathogenicity

is more frequently associated to the buried property than to the exposed one.

Keywords: solvent accessible surface area, relative solvent accessibility, protein variations, prediction of solvent

accessible surface, pathogenic protein variations

INTRODUCTION

In structural bioinformatics, Solvent Accessible Surface Area (SASA) [or briefly Accessible Surface
Area (ASA)] of proteins has always been considered a main feature for determining protein folding
and stability. Early computational studies (Lee and Richards, 1971; Chothia, 1976; Miller et al.,
1987, and references therein) emphasized the role of solvent exposed vs. non-exposed amino
acid residues in determining the protein structure. Typically, ASA is defined as the polar solvent
accessible area of a given protein, and it is computed by means of a solvent molecule, which
probes the protein surface beyond the van der Waals radius. After the first rolling ball algorithm
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(Shrake and Rupley, 1973), many alternatives became available
for computing ASA from the atomic coordinates of the protein
in its folded and unfolded state [for review see Ali et al.
(2014)]. Evidently, ASA is a function of the three dimensional
structure of the protein and, based on ASA values, amino acid
residues of a protein can be classified as buried or exposed
(Kabsch and Sander, 1983), a property that is conserved through
evolution in protein families (Rost and Sander, 1994). ASA is
routinely computed as an absolute value or as Relative Solvent
Accessibility (RSA), when the ASA value is divided by the
maximum possible solvent accessible surface area of the residue
(Tien et al., 2013). ASA gained also a pivot role in detecting
protein-protein interfaces of molecular complexes in the Protein
Data Bank (PDB) [for review see Savojardo et al. (2020), and
references therein].

With the advent of machine and deep learning-based
approaches (Baldi, 2018), many methods became available for
predicting RSA and ASA. They differ mainly in the machine
learning approach, the volume of the database of protein
structures and the predicted output (ASA, RSA, or binary
classification) (Rost and Sander, 1994; Pollastri et al., 2002;
Drozdetskiy et al., 2015; Ma and Wang, 2015; Fan et al., 2016;
Wu et al., 2017; Kaleel et al., 2019; Klausen et al., 2019).

Surface accessible area of residues can be important also
for functional annotation of disease related protein variants.
However, this property has been rarely included into the
physico-chemical characteristics adopted to describe the residues
undergoing variations (Chen and Zhou, 2005; Martelli et al.,
2016; Savojardo et al., 2019).

In this study, we investigate the relation between the
pathogenicity of human protein variations and the solvent
exposure of the residues undergoing variation (wild-type
residues). To this aim, we provide an updated version of a
highly curated dataset of Single Residue Variations (SRVs)
occurring in human proteins that can be mapped in high-
quality structures deposited in the Protein Data Bank (PDB).
The dataset, here referred to as HVAR3D-2.0, is generated from
data available at the HUMASVAR database and builds on top of
data previously analyzed in a different study (Savojardo et al.,
2019). On this structural dataset, we explore the relationship
between pathogenicity of SRVs and the solvent accessibility of
the corresponding wild-type residues. In particular, we determine
that the majority (67%) of disease-related SRVs occur in buried
positions whereas neutral SRVs occur mostly (64.3%) in exposed
residues. Moreover, SRVs targeting specific residue types such as
glycine, tryptophan, tyrosine, and cysteine, are more frequently
associated with disease than others are. Finally, for all residues,
and in particular for asparagine, glutamine, histidine, and
lysine, the proportion of disease related SRVs largely increases
when the wild-type residue is buried, and decreases when it is
exposed, confirming that, among other factors, the context can
be associated to the pathogenicity of the variations (Casadio et al.,
2011).

We extended the above analysis to a larger set of variations
included in HUMSAVAR and collected in a dataset called
HVARSEQ. In order to estimate the solvent accessibility of all
residues undergoing disease-related or neutral SRVs in human

proteins, we developed an in-house method based on deep-
learning for predicting solvent exposure from sequence. Our
method performance is comparable to state-of-the-art methods.
We apply it to all the residues of human protein sequences,
undergoing pathogenic and neutral SRVs in HVARSEQ.

Results of the large-scale analysis on protein sequences
support what observed in protein structures and confirm
the different distribution buried/exposed wild-type residues in
disease-related and neutral SRVs. Our data suggest that solvent
accessibility is a distinguished property of wild type residues
undergoing pathogenic variations.

MATERIALS AND METHODS

Variation Databases
All human Single-Residue Variations (SRVs) were collected from
HUMASVAR version 2020_04 (Aug 2020). As a first filtering step,
we retained variations labeled as “Disease” and “Polymorphism,”
neglecting all variations labeled as “Unclassified.” Disease-related
SRVs not associated with OMIM diseases were excluded. After
this procedure we ended up with a large set of SRVs occurring
on human protein sequence. Here this dataset is referred to as
HVARSEQ (Human VARiations in SEQuences)

In order to build the structural dataset (here referred to
as HVAR3D-2.0, Human VARiations in three Dimensional
structures), we firstly identified, among all the sequences included
in HVARSEQ, the subset of proteins endowed with a PDB
structure meeting the following criteria:

• Coverage of the corresponding UniProtKB sequence is ≥70%;
• Experimental method is X-ray crystallography;
• Resolution is ≤ 3Å.

The mapping of SRV positions on protein structure was
performed using data from the Structure Integration with
Function, Taxonomy and Sequence (SIFTS) project1. Protein
structures having ambiguous or wrong SIFTS mapping files were
excluded from the dataset.

Computing Solvent Exposure
The absolute Accessible Surface Area (ASA) of each wild-type
residue undergoing variation has been computed using the
DSSP program (Kabsch and Sander, 1983). Relative Solvent
Accessibility (RSA) values were then obtained dividing absolute
ASA values in Å2 by residue-specificmaximal accessibility values,
as extracted from the Sander and Rost scale (Rost and Sander,
1994). Finally, each residue has been classified as buried (B) if its
RSA was below 20%, and exposed (E) otherwise.

Computing PD, PD|R, PD|B,R, and PD|E,R
In this study, the background probability of a wild-type residue
to be disease associated in a dataset of wild-type residues is
computed as follows:

PD =
nD

N
(1)

1https://www.ebi.ac.uk/pdbe/docs/sifts/.
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where nD andN are the number of wild-type residues undergoing
disease-related variations and the total number of wild-type
residues undergoing variations (disease related or not) in the
dataset, respectively.

The conditional probability of being disease related when
variated, given a wild-type residue R, is computed as follows:

PD|R =
nDR

nR
(2)

where nDR and nR are the number of wild-type residues of a given
R type, which are disease related upon variations, and the total
number of R residues in the whole dataset, respectively.

The conditional probability of a wild-type residue R to be
disease related upon variation when buried is computed as:

PD|B,R =
nDBR

nBR
(3)

where nDBR and nBR are the number of buried wild type R residue
in the set of wild type disease related upon variation and the total
number of buried R wild type residues, respectively.

Similarly, the conditional probability of a wild-type residue
R to be disease related upon variation when exposed is
computed as:

PD|E,R =
nDER

nER
(4)

where nDER and nER are the number of exposed wild type R
residue in the set of wild-type disease related upon variation and
the total number of exposed R wild type residues, respectively.

All the above probabilities are estimated considering the
structural dataset HVAR3D-2.0, and by computing the residue
solvent accessibility with the DSSP program. Moreover, we
extended the analysis to the whole HVARSEQ sequence dataset,
by estimating the residue exposure state (buried and exposed)
with a predictor implemented in-house and described in the
following section.

Predicting Solvent Accessibility From the
Protein Sequence
The method implements a deep-learning architecture processing
an input based on the following descriptors:

• The residue one-hot encoding, representing primary
sequence information;

• Evolutionary information encoded with a protein sequence
profile, as extracted from multiple sequence alignment
generated using the HHblits version 3 program (Steinegger
et al., 2019). We performed two search iterations with default
parameters against the Uniclust30 database (Mirdita et al.,
2017).

Our deep architecture processes the input using three cascading
Bidirectional Long-Short TermMemory (BLSTM) layers (Graves
and Schmidhuber, 2005). BLSTMs belong to the class of LSTM
(Hochreiter and Schmidhuber, 1997), a special recurrent neural
network architecture well-suited for processing protein sequence

data and extracting significant sequential relations between
elements of the sequence. BLSTMs are an extension of LSTMs
performing a double scanning of the input sequence, from
left to right and vice versa, in order to better capture the
sequential relations among sequence positions. The adoption
of the recurrent BLSTM allows the method to take into
consideration the local sequence context without the explicit use
of a fixed-size window centered on each residue.

The output of the third recurrent layer is then provided as
input to a time-distributed fully connected layer adopting a
sigmoid activation function. This layer is responsible for the final,
binary classification of each residue in the sequence into buried or
exposed classes. In particular, the numerical output value in the
range [0, 1] attached to each residue is interpreted as a probability
p of being exposed: all residues with p ≥ 0.5 are predicted as
exposed while those with p < 0.5 are classified as buried.

The dataset adopted to train and test the predictor presented
in this study has been extracted from the Protein Data
Bank (interrogated Oct 15, 2019) (Berman, 2000). Overall,
the dataset comprises 2532 non-redundant, author-declared
functional monomeric PDB structures, obtained with X-ray
crystallography at < 2.5 Å resolution and covering more than
70% of corresponding UniProtKB sequences. All proteins in the
dataset share <30% sequence identity. This dataset was then
randomly split into a training set, comprising 2,352 sequences,
and an independent blind test set including 200 sequences.
Proteins in the training set were further split into 10 equally-
sized sets for setting the values of hyperparameters with a cross-
validation procedure.

Solvent exposure for training/testing data has been computed
using DSSP as detailed in Section: Computing solvent exposure.
The residues were classified into buried and exposed using a
RSA threshold of 20%. Using this threshold, the set of residues
is roughly divided into equally sized subsets comprising 52%
and 48% of buried and exposed residues, respectively, providing
balanced datasets for training and testing.

RESULTS

HVAR3D-2.0: A Dataset of Variations
Covered by 3D Structure
The structural dataset collected in this work, here referred to
as HVAR3D-2.0, is an updated version of the dataset described
in a previous study (Savojardo et al., 2019). The dataset has
been derived by mapping on PDB structures OMIM-related and
neutral SRVs annotated in the HUMSAVAR database2, release
2020_08 (Aug, 2020). Only structures determined with X-ray
crystallography with resolution ≤3Å and covering ≥70% of
the corresponding UniProtKB sequences were selected. After
this stringent filtering, we ended-up with a high-quality dataset
comprising 10,760 human SRVs occurring on 1,255 PDB entries
(corresponding to 1,285 protein chains). The set includes 6,778
and 3,982 disease-related and neutral SRVs, respectively. Table 1
lists a summary of the HVAR3D-2.0 content. The HVAR3D-2.0
dataset is available in Supplementary Table 1 in TSV format.

2https://www.uniprot.org/docs/humasavar
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TABLE 1 | Statistics of HVAR3D 2.0 dataset.

Description Counts (#)

PDB structures 1,255

PDB chains 1,285

Distinct SRV positions 9,379

SRVs 10,760

Disease-related SRVs 6,778

Neutral SRVs 3,982

In the present study, we are interested in investigating the
relation between the pathogenicity of SRVs and the solvent
accessibility of the residue undergoing variation. For this reason,
we firstly computed Accessible Surface Area (ASA) values for
all 1,285 protein chains included in the HVAR3D dataset using
the DSSP program (Kabsch and Sander, 1983). Raw ASAs
were then converted into Relative Solvent Accessibility (RSA)
values using the Rost and Sander maximal accessibility scale
(Rost and Sander, 1994). Finally, all residues with RSA ≥

20% were labeled as exposed (E) or buried (B) otherwise.
This threshold (or similar ones, in the range of 15–25% RSA)
is routinely adopted for computing the protein surfaces and
deriving classification datasets in many studies (Thompson and
Goldstein, 1996; Mucchielli-Giorgi et al., 1999; Pollastri et al.,
2002; Kaleel et al., 2019), since it roughly divides the set of
residues in a protein in two equally-sized subsets. In HVAR3D,
using a 20% RSA threshold, we obtain 55% and 45% of residues
classified as buried and exposed, respectively, corresponding to
a realistic characterization of the protein interior (accounting
for completely and partially buried residues) and surface (Miller
et al., 1987). Preliminary analysis highlighted that the choice of
the RSA threshold (in the reasonable range of 15–25% RSA)
only minorly affects the conclusions drawn in this study (data
not shown). For this reason, all the subsequent analyses were
performed using the aforementioned threshold.

Focusing our attention to structure positions undergoing
SRVs, we firstly computed the different proportions of buried
and exposed wild-type residues associated to disease-related
and neutral SRVs. As shown in Figure 1, 67% of wild-type
residues undergoing disease-related variations are located in
buried positions and about 64% of wild-type residues involved
in neutral variations are exposed. This conclusion corroborates,
on a much larger structural database, results partially reported
in previous studies (Martelli et al., 2016; Savojardo et al., 2019).
The relative abundance of disease-related variations in buried
positions of the protein and of neutral ones in exposed positions
suggests that the solvent accessibility of the variated position is a
further property to consider when determining the pathogenicity
of a variation.

Analyzing Distributions of Variated
Wild-Type Residues in the Structure
Database
We tackle the problem of associating solvent exposure to
a specific wild-type residue as a characteristic feature to be

FIGURE 1 | Pie charts showing the fractions of buried/exposed wild-type

residues undergoing disease-related (left) and neutral (right) SRVs in the

HVAR3D-2.0 dataset, respectively.

FIGURE 2 | Composition of buried (A) and exposed (B) wild-type residues

undergoing disease-related and neutral variations in the HVAR3D-2.0 dataset.

associated to its variation type (neutral or disease related).
We compute the relative frequency of occurrence in the
buried and exposed sets of each residue undergoing a disease
related or neutral variation (Figures 2A,B). It is evident that
while some residue types are more often disease related when
variated in the buried state (Q, H, D, E, K), others (including
G, W, C, and R) are disease related upon variation in
either state.
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FIGURE 3 | Probabilities of the 20 wild-type residues undergoing disease-related variations, depending on the wild type residue and the exposure state in

HVAR3D-2.0. Buried and exposure state of each residue position are estimated with DSSP as described in Section: Analyzing distributions of variated wild-type

residues in the structure database. PD: the probability of a wild-type residue (position) to be disease associated in the HVAR3D-2.0 dataset [see Equation (1)]. PD|R:

the conditional probability of being disease related when variated, given a wild-type residue [see Equation (2)]. PD|B,R: the conditional probability of a wild-type residue

to be disease related upon variation when buried [see Equation (3)]. PD|E,R: the conditional probability of a wild-type residue to be disease related upon variation when

exposed [see Equation (4)].

However, when we compute the conditional probabilities per
residue type, clearly the tendency of the majority of the wild-
type residues is that of being disease-related upon variation when
buried (red squares in Figure 3). Indeed, in Figure 3 we show
to which extent the knowledge of the solvent exposure changes
the a priori probability of a given residue type to be associated
with disease. For each residue type R, we report the conditional
probability of being associated to disease (PD|R, black squares)
and how the two conditional probabilities (PD|B,R and PD|E,R
in red and blue squares, respectively) change, given that the
variated residue is buried or exposed. We contrast these values
to the baseline frequency of disease related variations in the
HVAR3D-2.0 dataset, referred to as PD and equal to 0.62.

In Figure 3, when comparing PD|R of each residue R (black
squares) with the baseline value PD, it is evident that not all the
residues are equally likely to be associated with disease when
variated. Residues like glycine (G), leucine (L) tryptophan (W),
tyrosine (Y), and cysteine (C) show values of PD|R that are higher
than the baseline, indicating that their variations are frequently
associated to disease in the database. Furthermore, for all residues
the relation PD|B,R > PD|R > PD|E,R holds. This means that for all
residue types, the probability that SRVs are related to disease is
higher when the wild-type residue is buried (red squares) than
when it is exposed (blue squares). The extent of this difference
depends on the residue type and it is remarkable for asparagine
(N), glutamine (Q), histidine (H), and lysine (K). All these
residues are polar and abundant on the protein surface (data
not shown). On average, when variated, they are associated to
disease with a frequency comparable or lower than the baseline
0.62. However, when variations of these residue types occur in
buried positions, the frequency of disease related variations raises
to values around 0.8, reaching 0.85 in the case of glutamine (Q)
and lysine (K). Remarkably, for three residues [tryptophan (W),
tyrosine (Y) and cysteine (C)] the frequency of disease-related
variation is higher than the baseline, rather independently of

the exposure state. Conversely, the fraction of disease-related
variations of valine (V) and isoleucine (I) is lower than the
baseline, independently of their accessibility.

Overall, these findings highlight a relation between the
pathogenicity of the variation and the solvent accessibility of the
wild-type residue and show that the extent of the association
depends on the residue type. In all cases, variations occurring
in buried positions are more likely to be disease-related. This is
particularly so for charged residues, for polar residues such as
asparagine (N), glutamine (Q) and histidine (H), and for proline
(P), cysteine (C), and tryptophan (W).

HVARSEQ: A Dataset of Protein Sequences
With Variations
Here we make use of computational prediction of solvent
accessibility to extend our analysis to all the positions
undergoing variations contained in HUMSAVAR. From the
HUMSAVAR database, release 2020_08 (Aug, 2020), we collected
all polymorphisms and all OMIM-related SRVs occurring in
protein sequences. Unclassified SRVs were filtered-out from the
set. Overall, 69,385 SRVs were collected. 29,949 and 39,436 SRVs
are disease-related and neutral, respectively, occurring on 12,494
protein sequences. Here, this extended set of protein sequences
is referred to as HVARSEQ. In Table 2 we summarize the basic
statistics of the dataset. The HVARSEQ dataset is available in
Supplementary Table 2 in TSV format.

Predicting Solvent Accessibility
For computing solvent accessibility from protein sequences,
we implemented an in-house method for predicting solvent
exposure from sequence. The method is based on deep-learning
processing of several input features, which encode the protein
sequence and the sequence profile (seeMaterials andMethods for
more details on the method). Our method classifies each residue
of the sequence into two classes: buried (B), corresponding
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TABLE 2 | Statistics of HVARSEQ dataset.

Description Counts (#)

UniProtKB sequences 12,494

Distinct SRV positions 64,869

SRVs 69,385

Disease-related SRVs 29,949

Neutral SRVs 39,436

TABLE 3 | Performance of our deep learning-based method for predicting solvent

exposure from protein sequence.

Scoring index Dataset

Cross-validation Blind test HVAR3D-2.0

MCC 0.63 0.63 0.60

Q2 (accuracy) 81% 82% 80%

F1 81% 82% 80%

TABLE 4 | Performance of different methods for solvent accessibility prediction on

the blind test set described in this study comprising 200 protein sequences.

Method MCC Q2 % F1 %

PaleAle 5.0 0.65 82 84

NetSurfP-2.0 0.67 83 81

Our method 0.63 82 82

to residues whose RSA is lower than 20%, and exposed (E),
corresponding to residues with RSA ≥ 20%.

Performances are listed in Table 3 and are evaluated adopting
three different testing sets (by adopting a cross validation
procedure (leftmost column); on the blind test (central column);
on our HVAR3D-2.0 dataset, for which solvent exposure can
be directly computed using DSSP). Comparing the first two
columns, it is evident that our method is robust, achieving
generalization performances that are as good and even better
than cross-validation results. Overall, our method is able to
discriminate buried from exposed residues with Q2 (accuracy),
MCC (Matthew Correlation Coefficient) and F1 equal to 82%,
0.63 and 82%, respectively. When scored on the HVAR3D-2.0
dataset, the performance is almost unchanged, suggesting that
our method is quite stable across different datasets.

We also performed a side-by-side comparison between our
method and two state-of-the-art approaches, namely PaleAle5.0
(Kaleel et al., 2019) and NetSurfP-2.0 (Klausen et al., 2019).
Results are reported in Table 4. All methods perform quite well,
with comparable scoring indexes. It is worth mentioning that the
testing set used in this benchmark is non-redundant only with
respect to our training set: this condition is not guaranteed for
the other two methods evaluated, which adopt different training
sets. In general, we can conclude that our method well-compares
with recent tools at the state-of-the-art.

FIGURE 4 | Pie charts showing the fractions of predicted buried/exposed

positions disease-related (left) and neutral (right) upon variations in the

HVARSEQ dataset, respectively.

Analyzing Distributions of Variated
Wild-Type Residues in the Sequence
Dataset
After computing solvent accessibility over HVARSEQ, we
assessed the proportions of buried and exposed predictions
separately on the subsets of residues undergoing disease-related
and neutral variations. Results are in Figure 4.

As to the prediction, 72% of disease related SRVs occurs in
buried positions and 58% of neutral SRVs affect exposed residues.
Interestingly, the proportions of buried/exposed positions for
disease and neutral SRVs are in agreement with those assessed
on the structural dataset (67% and 64.3%, respectively: compare
Figures 1, 4). The result further corroborates the notion that
residues undergoing disease-related variations are mainly in
buried positions.

We then evaluated PD|R, PD|B,R, and PD|E,R for all the
residue types and results are reported in Figure 5. We also
show the baseline probability PD (0.43), which represents the
proportion of positions that undergo disease-related variations
in the HVARSEQ dataset.

The comparison between PD|R and PD, which are both
independent from predictions, confirms the finding obtained
on the HVAR3D-2.0 dataset: residues such as glycine (G),
tryptophan (W), tyrosine (Y), and cysteine (C), when undergoing
variation, are more frequently associated to disease than expected
from the baseline. In the sequence set, this behavior characterizes
also arginine (R) and aspartic acid (D).

Similarly to the structural case, for all residues we have
that PD|B,R > PD|R > PD|E,R, highlighting that for all residue
types, SRVs are more frequently associated to disease when
occurring in buried positions than in exposed ones. The tendency
is remarkable for the majority of residues, already identified
from HVAR3D-2.0 and including asparagine (N), lysine (K), and
histidine (H). The analysis on HVARSEQ highlights a difference
between PD|B,R and PD|E,R for tryptophan (W) and cysteine (C).
However, this discrepancy can be due to prediction errors on
these two less abundant (rare) residues in the database. Similarly,
to what described for HVAR3D-2.0 (Figure 3), the frequency
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FIGURE 5 | Frequency of disease-related SRVs, depending on the wild type residue and the exposure state in HVARSEQ. Here, buried and exposure states of each

residue position have been predicted using the method described in Section Analyzing distributions of variated wild-type residues in the sequence database. PD: the

probability of a wild-type residue (position) to be disease associated in the HVARSEQ dataset [see Equation (1)]. PD|R: the conditional probability of being disease

related when variated, given a wild-type residue [see Equation (2)]. PD|B,R: the conditional probability of a wild-type residue to be disease related upon variation when

buried [see Equation (3)]. PD|E,R: the conditional probability of a wild-type residue R to be disease related upon variation when exposed [see Equation (4)].

FIGURE 6 | Mapping SASA predictions on a protein model. The model is that of human Dimethylaniline monooxygenase 3 (UniProtKB: P31513) derived from the

SWISS-MODEL Repository. Solvent exposure is computed from the available 3D protein model using DSSP. Variation (SVR) positions are highlighted using the

spacefill view. In red, buried positions associated to disease-related SRVs and correctly predicted as buried by our method. In magenta, buried disease-related

positions wrongly predicted as exposed. In orange, exposed disease-related positions wrongly predicted as buried. In blue, exposed neutral SRV positions correctly

predicted as exposed. In yellow, exposed neutral positions wrongly predicted as buried. In green, buried neutral positions correctly predicted as buried.
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of disease-related SRVs occurring at valine (V) and isoleucine
(I) residues is lower than the baseline, independently of the
exposure state.

Case Study
Many human protein sequences, without any associated three-
dimensional (3D) structure, are endowed with models that
can be derived from the SWISS-MODEL Repository3, directly
linked to the protein UniProtKB file. For sake of curiosity, we
took advantage of an example to show the 3D location of our
sequence-based prediction. In particular, in Figure 6 we show
the model of the human Dimethylaniline monooxygenase 3
protein (UniProtKB: P31513)4. This protein has 19 SRVs in
HVARSEQ, eight of which are disease-related and 11 are neutral.
Disease-related SRVs are all associated to Trimethylaminuria
(OMIM:602079)5, a disease condition resulting from the
abnormal presence of large amounts of volatile and malodorous
trimethylamine within the body. In Figure 6, we map all the
solvent exposure predictions for all SRV positions into the
3D model.

It is evident that the vast majority of disease-related SRVs
(6 out of 8) are in buried positions. Of these, five are correctly
predicted as buried by our method (in red) while only one
is wrongly predicted as exposed (in magenta). Neutral SRVs
are mostly exposed (10 out of 11): eight of these are correctly
predicted in exposed regions (in blue).

Results illustrate the general trend of what we observed in the
structural data set and are consistent with the accuracy of the
prediction method.

CONCLUSION AND PERSPECTIVE

In this paper, we focus on the solvent accessible surface area, a
property of protein residues, firstly described and computed in
several biophysical studies, to which Cyrus Chothia contributed
(Chothia, 1976). The property, which nowadays can be computed
with machine learning based methods, is here exploited in

3https://swissmodel.expasy.org/repository
4https://www.uniprot.org/uniprot/P31513.
5https://www.omim.org/entry/60207

relation to another important problem: the annotation of
variations in human proteins as disease related or not. We took
advantage of an ample set of human protein structures to observe
that indeed disease related variations occur more frequently
in buried regions of the proteins than in solvent accessible
surfaces. In turn, neutral polymorphisms are characterized by
a more frequent solvent exposure. We then proved that with
a deep learning method performing at the state of art, the
tendency is observable also in the majority of all the wild-
type residues undergoing variations that are presently listed in
HUMSAVAR. We suggest that the solvent accessible surface
area of wild type residues is a distinguished property to be
included among those necessary to annotate pathogenic from
non-pathogenic variations.
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Assessing the hydropathy properties of molecules, like proteins and chemical compounds,
has a crucial role in many fields of computational biology, such as drug design,
biomolecular interaction, and folding prediction. Over the past decades, many
descriptors were devised to evaluate the hydrophobicity of side chains. In this field,
recently we likewise have developed a computational method, based on molecular
dynamics data, for the investigation of the hydrophilicity and hydrophobicity features of
the 20 natural amino acids, analyzing the changes occurring in the hydrogen bond network
of water molecules surrounding each given compound. The local environment of each
residue is complex and depends on the chemical nature of the side chain and the location
in the protein. Here, we characterize the solvation properties of each amino acid side chain
in the protein environment by considering its spatial reorganization in the protein local
structure, so that the computational evaluation of differences in terms of hydropathy
profiles in different structural and dynamical conditions can be brought to bear. A set of
atomistic molecular dynamics simulations have been used to characterize the dynamic
hydrogen bond network at the interface between protein and solvent, from which we map
out the local hydrophobicity and hydrophilicity of amino acid residues.

Keywords: hydropathy, molecular dynamics simulation, hydrophobicity, local structural environment, water
molecules network

1 INTRODUCTION

Hydration water molecules play a crucial role in living organisms as most biological processes occur
in an aqueous environment (Rothschild and Mancinelli, 2001), which actively influences the
structure and function of biomolecules and their interactions (Levy and Onuchic, 2006; Ball
2008). Compounds immersed in water display different behaviors depending on their chemical
characteristics. In particular, the arrangement of the water molecules that hydrate compounds
changes according to their properties (Vagenende and Trout, 2012; Tomobe et al., 2017). So we can
extract information on the chemical nature and function of the solute by studying the attraction and
repulsion of chemical compounds toward the water (Chothia, 1976). In general, both hydrophobic
and hydrophilic effects are dominant driving forces for several biochemical processes, such as protein
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folding, nucleic acid stability, molecular recognition, and binding
(Tanford, 1972; Brooks et al., 1998; Aftabuddin and Kundu, 2007;
Moret and Zebende, 2007; Miotto et al., 2018).

In light of this, solvation water should be considered an
integral part of biological macromolecules. In particular, water
molecules in solutions are divided into 1) internal water
molecules that occupy cavities in the biomolecule structure
and can be identified in crystallography; 2) water molecules
that interact with the molecular surface and 3) bulk water.
Depending on the category, the organization of the water
molecules is associated with different time scales. The
relaxation times for internal waters range from tens of ns to
ms since they require local rearrangement of the protein to occur.
On the other hand, the motion of bulk water has the time scale of
the picoseconds. In between, there is the motion of surface water
molecules that are characterized by residence times on the order
of tens of picoseconds (Tarek and Tobias, 2000; Qvist et al., 2009;
Mondal et al., 2017).

In general, the investigation of the behavior of water in the
hydration shells of organic compounds is a fundamental analysis
to better understand most biological processes both from a
theoretical and practical point of view (Raschke, 2006).

An effective measure of the interaction between water and
amino acids, the hydropathy index (a number representing the
hydrophobic or hydrophilic properties of its side chain), was
firstly proposed in 1982 by Kyte et al. (Kyte and Doolittle, 1982).
Indeed, in the computational biology field, attributing a single
number, the hydropathy index, to each amino acid is very useful
for studying the chemical-physical and structural properties of
proteins. Over the past few decades, many hydrophobicity and
hydrophilicity scales, based on both experimental and theoretical
approaches, have been defined, and these schematizations have
proven their usefulness in the characterization of protein regions
and the development of computational methods (Chothia, 1974;
Jones, 1975; Kyte and Doolittle, 1982; Sweet and Eisenberg, 1983;
Rose et al., 1985; Wilce et al., 1995). For instance, one of the
typical use of the hydrophobicity and hydrophilicity values for the
20 amino acids is the prediction of transmembrane regions in
protein structure modeling (Deber et al., 2001).

Recently we have developed a new theoretical-computational
method analyzing the orientation of water molecules surrounding
a small organic compound, as computed from molecular
dynamics simulations (Bonella et al., 2014). The procedure is
based on the calculation of the conditional probability density of
finding a water molecule with a specific orientation, given its
distance from the nearest atom of the solute (Babiaczyk et al.,
2010; Bonella et al., 2014).

We thus applied this method to the 20 natural amino acids
defining theWOPHS (Water Orientation Probability Hydropathy
Scale) hydropathy scale, the first scale to be vectorial as it
associates three indices for each amino acid (Bonella et al.,
2014). In fact, we argued that assigning a single number is not
enough to characterize the solvation properties of amino acids, in
particular when both hydrophobic and hydrophilic regions are
present in the same residue. In this respect, our characterization
can be used to understand some of the known ambiguities in the
ranking of amino acids in the current scales available in the

literature. This method presents several advantages over
previously developed computational and experimental
approaches: it is sensitive to the specific environment of the
amino acids and can be applied to unnatural and modified amino
acids, as well as to other small organic molecules (Bonella et al.,
2014; Leopizzi et al., 2017). In particular, analyzing the structural
changes of the dynamic hydrogen bond network, we studied both
the trans-membrane passive permeation properties for a set of
neutral drugs (Milanetti et al., 2016) and the properties of non-
steroidal anti-inflammatory drugs to predict the extraction
recovery of NSAIDs from biological fluids set by solid-phase
extraction (Milanetti et al., 2019). When amino acids solvation
properties are studied, the main limitation of this method relied
on considering a single amino acid in solution instead of inserting
it in a functional protein chain. Moreover, the method was
developed uniquely for the TIP4 water model, limiting its use
to most molecular dynamics simulations (Babiaczyk et al., 2010).

Since the characteristics of the neighboring residues influence
the hydropathy of the examined amino-acid, in this work we
define the hydropathy properties of each amino acid taking into
account the structural environment that surrounds it. In this way,
we incorporate the effects of the own characteristics of each
amino acid, as well as the chemical and structural properties
induced by the surrounding environment.

Furthermore, the method has atomic resolution (Leopizzi
et al., 2017), meaning that, given a protein, it is possible
characterizing not only a single residue or a set of residues,
but we can also quantify the hydrophobic and hydrophilic
properties of a set of atoms that contribute to the formation
of a portion of the molecular surface. This perspective is
particularly important for the improvement of predictive
methods of protein-protein interactions (Nicolau et al., 2014).
In addition, we have also extended the method to other models of
water molecules, especially those typically used for molecular
dynamics simulations of proteins, enabling the application of our
approach also to the trajectories of simulations already
performed.

In particular, we have selected a representative set of
experimentally solved protein structures and for each of them,
we performed an extensive molecular dynamics simulation. We
thus studied the hydropathy profile of the amino acid when they
are in different protein structural environments, underlining that,
especially for some residues, the solvation properties can sensibly
differ according to the characteristics of the different
neighborhoods. The analysis of our results allows us to define
different regions in a plane describing the hydrophobicity and
hydrophilicity properties: each residue belonging to the proteins
in our dataset is a point on this plane and its position is not only
due to its own chemical properties but also to the nature of the
residues closest in structure.

The goodness of the characterization proposed here was
evaluated considering the average positions of the residues on
the two planes, classifying them by amino acids. These results are
in perfect agreement with the hydrophobicity measurement of a
biological experimental scale, which is considered the state of the
art in this field (Hessa et al., 2005). Furthermore, the dispersion of
the residue set for each amino acid was analyzed to underline how
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the nature of the residues belonging to the structural
neighborhood has an important effect on the single residue
characterization.

2 RESULTS AND DISCUSSION

2.1 Hydropathy Profile for Single Residue in
a Specific Protein Environment
In this section we explain the idea we adopted for the calculation
of the amino acid solvation properties, studying the distance and
the orientation of water molecules with respect to a solute
molecule. We investigated the hydropathy of residues in their
natural environment, i.e. inserted in a functional and folded
protein chain.

To do so, we selected 20 proteins of known structure from
the dataset collected by Hensen et al. (Hensen et al., 2012) (see
Methods for details), searching very different proteins in terms
of structural features to make the analysis as general as
possible. In this perspective, we analyzed the SCOP class
(Andreeva et al., 2014; Andreeva et al., 2020; of each of the
selected protein, demonstrating as our dataset covers several
different folds and therefore ensuring the generality of our
findings (See Supplementary Table S1). For each of these
proteins, a molecular dynamics simulation of 60 ns was
performed, studying the behavior of the explicit solvent

molecules around the solute (Figure 1A), after the
equilibration time (Figure 1C). To testify that we sampled
configuration only after the equilibration in all the simulations
we performed, we reported in Supporting Information the
Root Mean Square Deviation and the Solvent Accessible
surface as a function of time for all the proteins (See
Supplementary Figures S1–S2).

We note that the explored time span allows us to well grasp the
organization of surface waters, while much longer simulations
would be needed to consider also the effect of structural water
molecules.

According to our method, each solvent molecule can be
schematized as a tetrahedron, with the water oxygen in the
center and the vertices constituted by the two hydrogen atoms
and the two lone pair electrons (Figure 1B), so as each water
molecule can form up to four hydrogen bonds (HB). In particular,
we associate any water molecule to the closest atoms of the solute
focusing only on the first hydration shells, i.e. water molecules
closer to any solute atoms than 6 Å. Since each water molecule is
assigned to one solute atom, for each water molecule the solvent
behavior is represented by three quantities representing the
position and the orientation with respect to the solute: the
distance R between the oxygen atom and the closest heavy
atom of the solute, the hydrogen bond angle θ and the dipole
angle ϕ. Each hydrogen bond angle is defined as the angle formed
between the R and each vertex of the tetrahedron using the

FIGURE 1 | (A) Snapshot taken from the molecular dynamics simulation of Concanavalin B (PDB id: 1CNV) performed with explicit solvent. The protein structure is
represented in grey, while blue sticks (also zoomed on the right) highlight the position and orientation of an explicate residue, Lys 258, with respect to the surrounding
water molecules (B) The disposition of each water molecule around a given residue is described representing each solvent molecule as a tetrahedron and evaluating the
angles, θ, formed by each vertex of the tetrahedron with the vector, R

→
that joins the nearest heavy atom of the residue with the water oxygen atom. The oxygen

atom is used as both center of the tetrahedron and origin for the angle definition. The water dipole, d
→

is depicted as a red arrow (C) Root mean square deviation (RMSD)
of the protein-heavy atoms as a function of time, using the initial structure as a reference (D) Joined probability distribution, Pj(R, θ), of finding a water molecule at
distance R from the residue with one angle, θ of the corresponding tetrahedron. Top, left and right side plots show the marginal probabilities, P(R), Pj(θ1), and Pj(θ2),
respectively (E) Conditional probability distribution, Pc(θ|R). Left and right side plots show the marginal probabilities, Pc(θ1), and Pc(θ2), respectively.
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oxygen atom as the origin. Similarly, the dipole angle is built
using the vector R and the dipole moment d

→
(see Figure 1B for a

sketch). In this work, we focus on R and θ, since these quantities
allow a complete characterization of the solute hydropathy.
Indeed, a non-polar (hydrophobic) molecule in an aqueous
solution interacts with the solvent only through van der Waals
forces. Since the Coulombic interaction among H2Os is strong,
water molecules privilege their internal HBs contacts.
Alternatively, the interplay between polar or charged
molecules and solvent occurs mainly via Coulombic forces,
attracting one of the hydrogens or one of the lone pair
electrons toward the solvent atom. Therefore, when a
hydrophobic solute is examined, water molecules place one of
the faces of the tetrahedron toward the solute in order to leave all
possible HBs available; on the contrary, a water molecule close to
a polar or a charged solute reorients itself to point toward him one
of its lone pairs or hydrogens.

In a nutshell, given the set of atoms composing an amino acid,
we carry out statistical analysis of the orientations of the water
molecules that hydrate them. In Figure 1D we show a colormap
reporting the joint probability to observe a water molecule with a
given R and θ in the surroundings of the Lys 258 belonging to
Concanavalin B (PDB id: 1CNV). As we can see also from the
marginal distributions on the panel sides, well-defined peaks
reflect the solvation properties of the residue in the protein
environment.

On top of Figure 1D, we report P(R), the probability density
distribution of finding a water molecule at a distance R from the
solute, where j is the subscript indicating that the probability
density is extracted from the joint probability. The curve is
characterized by two maxima (this happens for almost all the
amino acids), and it is, therefore, possible to identify the first and
the second shell of hydration, after which there is the bulk water.
On the right and left part of Figure 1D we show Pj(θ1) and
Pj(θ2), the probability density distribution of finding a water
molecule with a certain HB orientation in first or second shell
respectively, that is having a R in the shells defining interval (see
Methods).

It has been demonstrated that, in order to improve the
resolution of the description of first and second solvation
shells and to achieve a better characterization of the solute
features, the adoption of the conditional probabiliy represent a
powerful tool (Babiaczyk et al., 2010). Indeed in this formalism,
we report the probability of having a certain θ, conditional on the
solvent locating at a distance R from the solute atom (See
Methods for further details). Figure 1E shows the colormap of
the conditional probabilities related to Lys 258 and the
corresponding probability densities will be indicated with the
subscript c.

2.2 Joint and Conditional Probability for
Residue Characterization
For each solvent-exposed residue in our dataset, we built an
hydropathy profile juxtaposing their P(R), Pj(θ1) and Pj(θ2). In
this way, each residue is statically characterized by the positions
and the orientations of the water molecules surrounding it during

the simulation. We obtained a very interesting separation of the
amino acid hydropathy by applying a Principal Component
Analysis (PCA), where the system is rotated to go into the
reference system which maximizes the variance of the data. In
Figure 2A, we show the two principal components (percentage of
explained variance equal to 88%): each point in this plot
represents a given residue explored in its protein environment
at physiological pH, and the 20 natural amino acids are colored
differently. In particular, charged residues are colored in shades of
blue, the non-charged polar residues in red while the
hydrophobic residues are depicted in shades of yellow.
Interestingly, PCA analysis reveals that residues with similar
features are clearly grouped together. In particular, the
negatively charged residues, Glu and Asp, form an isolated
group, underlining their peculiar behavior in solvent
interaction, while in the main cluster of residues each region is
characterized by a preference for a certain type of residues.

We also performed a PCA analysis considering separately
P(R), Pj(θ1) and Pj(θ2). Results are reported in Figures 2B–D
respectively. We can notice that the two PCA analyses gave very
similar results. According to us, this could mean that, when the
joint probability is used to build the profile, the dominating signal
is related to the water molecules position, while the information
about its orientation gets mainly overwhelmed.

To obtain a finer representation of the all water molecule
“signals”, we decided to use the conditional probability to amplify
the angular aspect of the hydropathy profile.

To this aim, we performed the same PCA analysis using the
Pc(θ1) and Pc(θ2) as obtained from the conditional probabilities
together with p(R). The result is reported in Figure 3A. We can
identify four macro-regions: the negatively charged (blue dots)
amino acid region (PC1x1, PC2x0.8), the positively (cyan dots)
charged region ( PC1x − 1, PC2x − 0.5), hydrophobic (red
dots) amino acid portion (PC1x0.8, PC2x − 0.2) and the
polar non charged (yellow dots) residue zone
(PC1x − 0.2, PC2x0).

Next, we performed hierarchical clustering of the residues
based separately on the two angular density distributions (see
Figure 3B). The high values achieved by the silhouette analysis
(see Figure 3C) indicate that different subdivisions of residues are
possible. For different types of groupings of residues, we note that
both Pc(θ1) and Pc(θ2) are able to separate amino acids in several
clusters composed of amino acids with different biochemical
features.

It is worth noting that Pc(θ1) well isolates a group of
hydrophobic (red) residues from the charged residues (both
the positively and negatively charged) but this separation is
even more clear by using the Pc(θ2) parameter.

2.3 Hydrophobic and Hydrophilic Properties
of Amino Acid Side Chains in the Native
Structure
The PCA plane we obtained using conditional probabilities
(Figure 3A), is a schematic and meaningful description of the
solvation properties of the amino acids when they are studied in
the native environment. In fact, it is a clever representation of the
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behavior of the solvent molecules that hydrate protein residues.
In Figure 4 we depicted in the PCA plane the points regarding
each of the 20 natural amino acids of our dataset using different
colors. This way to measure hydropathy characteristics, reporting
them as “explored regions” with different chemico-physical
features by the amino acid rather than single values assumed
by the molecule itself, allowed us to better illustrate the results we
obtained. In fact, we demonstrate in this way that some amino
acids explore peculiar regions in this plane while other amino
acids like Arg, Tyr, Trp, and Thr, clearly populate overlapping
regions of the plane. According to us, this may reflect the
plasticity of some residues, to emphasize differently
hydrophobic or hydrophilic aspects of their atomic structure
in different protein local environments due to different
biological contests. We summarize this concept of
“hydropathy explored regions” in Figure 4 where we defined
four portions of the PCA plane according to the kind of residues
that explores these areas. We identified the explored hydrophobic
area (“Hb” area, depicted in red in Figure 4) in which Ile, Leu,
Phe, Val, Pro, and Met residues are very well focused and in good
qualitative agreement with previous hydrophobic scales. Then we
mapped a clear negative charge explored area (“Neg” area
depicted in cyan) where Asp and Glu clusterize. A third

portion of PCA plane was defined as positive charge explored
area (“Pos” area, depicted in blue in Figure 4) where almost all
Lysines of our dataset well converge and Arginine side chain is
present for half of the observed configurations; according to us,
Lysine explores in few cases the Hb area probably due to the long
aliphatic chain, that in some cases outweighs the hydrophilic
character.

The presence of Arginine even in the Hb area is biologically
very relevant because our result is connecting biological and
biophysical principles of Arginine behavior in native proteins:
this trend may be impossible to explain by using a just single
hydropathy value. In fact, according to us, Arginine hydropathy
can vary drastically within a protein environment and so we could
define it as a Janus-headed side chain. This observation agrees
with experimental data related to this amino acid. In fact,
previous experiments by C. Preston Moon and Karen G.
Fleming et al. (Moon and Fleming, 2011) clearly demonstrated
that a membrane protein can accommodate an Arginine side-
chain placed near the apolar middle of a lipid bilayer with much
less cost in energy than has been previously predicted (Dorairaj
and Allen, 2007; MacCallum et al., 2007). In fact, the guanidino
group of Arginine could interact with non-polar aromatic and
aliphatic side chains above and below the guanidinium plane

FIGURE 2 | (A) Projection along the first two principal components of the residues in the Protein dataset as obtained by a PCA analysis using P(R), Pj(θ1), and
Pj(θ2) as descriptors for each residue. Each dot in the plane represents a residue, with different colors corresponding to different amino acids (B) Same as A) but using
only the P(R)s as descriptors for each residue (C) Same as A) but using only the Pj(θ1)s as descriptors for each residue (D) Same as A) but using only the Pj(θ2)s as
descriptors for each residue.
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FIGURE 3 | (A) Projection along the first two principal components of the residues in the Protein dataset as obtained by a PCA analysis using P(R), Pc(θ1), and
Pc(θ2) as descriptors for each residue. Each dot in the plane represents a residue, with different colors corresponding to different amino acids (B) Cluster of the residue
forming the Protein dataset using the Pc(θ1) (top) or Pc(θ2) (bottom) as descriptors for each residue (C) Average silhouette score as a function of the number of clusters
considered in (B).

FIGURE 4 |Representations in the plane identified by the first and second principal components of all the residues comprising the 20 proteins of the Protein dataset
(grey dots). The PCA analysis has been carried out using for each residue the observed P(R), Pc(θ1), and Pc(θ2) computed as described in the Methods. In each panel,
dots corresponding to the same kind of amino acid are highlighted with different colors.
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while hydrogen bonding with polar side chains is restricted to in-
plane positions. Related to this point we would like to remember
that the first solved structure of a voltage-gated potassium
channel (Schow et al., 2011), gave rise to many discussions
about the energetics of the interactions between Arginines and
lipids, as the structure suggested a gating mechanism in which
charged Arginines were exposed to the hydrophobic bilayer
interior.

We further observed on the left side of the PCA plane and
located between Neg and Pos areas, a region we defined polar
explored region (“Pol” area, depicted in yellow in Figure 4) were
polar, uncharged amino acids, at physiological pH, are
positioned: the location of the area qualitatively agrees with
the residue group features of these amino acids that are more
hydrophilic than those of the Hb area because they contain
functional groups that form hydrogen bonds with water. This
class of amino acids includes Ser, Thr, Cys, Asp, and Gln. The
presence of this polar area agrees with studies of Peters et al. about
the assessment of the most accurate hydrophobicity scale (Peters
and Elofsson, 2014). They demonstrated that better hydrophobic
scales rank the polar amino acids Gln and (in particular) Asn as
less hydrophobic. It is interesting to underline that even this polar
area overlaps with the Hb area, in agreement with the concept of
the ability of amino acids to explore several hydrophilicity-
hydrophobicity regions.

To better point up this concept, we would like to report the
case of the Threonine (Figure 5A) hydropathy analysis in two
different contexts. We selected two Threonine residues, Thr 599
and Thr 302 both belonging to the same proteins (PDB:1xwl),
characterized by different positions on the PCA plane. The reason
for this different behavior in terms of solvent interaction has to be
sought in the neighbor residues. In particular, the Thr within the
polar region is surrounded by three charged residues (RDKK,
reported in blue in the Figure) that inevitably influence his
hydrophilic behavior; on the other hand, the Thr within the
non-polar zone is enclosed in a set of non-polar residues (FLFFL,
in red in the Figure), thus forming an overall hydrophobic region.

Another interesting example is represented by Threonine and
Tryptophan. They are straddling the polar and hydrophobic areas
and this behavior confirms that our approach is correct. In fact,
Tryptophan and Tyrosine can be involved in interactions with
ligands that contain aromatic groups via stacking interactions.
However, tryptophan has nitrogen in its side chain and Tyrosine
has oxygen, allowing hydrogen bonding interactions to be made
with other residues or even solvent molecules, commonly seen in
polar amino acids like Serine, which has oxygen in its side chain.
But we should also keep in mind that Tryptophan has an indole
function, but its lone pair of nitrogen is involved in the aromatic
system. Thus, it makes only weal H-bonding, which could be not
good enough to categorize as “polar”. All these observations are in

FIGURE 5 | (A) Projection along the first two principal components of the residues in the Protein dataset as obtained by a PCA analysis using P(R), Pc(θ1), and
Pc(θ2) as descriptors for each residue. Each dot in the plane represents a residue. Blue dots highlight the positions in the plane of all Threonine (Thr). Green dots
correspond to two cases where the surroundings the considered Threonine is composed of hydrophilic (blue) or hydrophobic (red) amino acids. The average value of the
hydrophobicity index (B) and of the hydrophobicity index C) of the WOPHS scale have been calculated for each element of the grid with which the plan is
partitioned.
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agreement with the fact that Tyrosine and Triptophane side
chains are the typical cases for which numerical values
obtained for characterization of the hydrophobicity are
controversial, being identified as hydrophobic in some studies
(Levitt, 1976; Sweet and Eisenberg, 1983) but hydrophilic in
others (Ooi et al., 1987; Oobatake and Ooi, 1988) and our
concept of “explored region” should be the right approach.

At the end of this qualitative analysis, we decided to support
our speculations by introducing also quantitative data relative to
the side chain hydropathy characterization in the native protein
context. Although it was not our aim, as proof of the significance
of our hydrophobicity/hydrophilicity representation, we
developed a mean hydrophobicity measure for each residue
(Hr) (see methods for details). We achieved a very good
agreement with the biological hydrophobicity scale (or the
Hessa scale), which is based on in vitro experiments where the
recognition of artificial helices by the Sec translocon was
measured (Hessa et al., 2005). However, it can be noted that,
in this case, the local microenvironment is not known. For
example, residues in the helical segment might be interacting
with other parts of the protein rather than interacting with lipids
or water. The insertion by the translocon might also be a non-
equilibrium process. In particular, in order to highlight the mean
properties obtainable from this plot, we calculated the centroids
of the points regarding each of the 20 natural residues. Using as
reference the position of Isoleucine, indicated as the most
hydrophobic residue here (Hessa et al., 2005), we calculate the
radial and the angular distance of each centroid with the
Isoleucine centroid (see Methods for details). In this
framework, the higher is the distance with Isoleucine higher is
the hydrophilicity of the residues. Notably, we found a strong

linear correlation (R � 0.84) between the ΔG of amino acids side
chains in the translocon scale and their values of mean
hydrophobicity, Hr of our native-protein scale (Figure 4 and
in Table 1). meaning that our solvation analysis greatly
reproduces one of the best performing hydrophobicity scales
(Peters and Elofsson, 2014).

Indeed, it is interesting to note that even if the mean properties
of the 20 residues can be successfully described using this
representation, looking at the plots in Figure 4 it emerges
clearly that points belonging to the same amino acid category
can spread a lot on this plane, meaning that even the same amino
acid can be characterized by very different hydropathy when it is
inserted in different environments. Quantitatively, as a measure
of the dispersion of the points regarding the various residues, we
calculated the amino acid gyration radius (see Methods). We
report the results in Table 1.

It results that residues with a well known hydrophobic
tendency, such as Proline, Isoleucine, Valine, experience a low
variability since they repel water very strongly. On the other hand,
residues with a less defined solvent preference, such as
Asparagine, Tyrosine, Methionine, are characterized by higher
gyration radius values, meaning that they can modify their
features influenced by the surroundings.

In light of all these considerations, using the hydrophobicity
and hydrophilicity scales presented here (Bonella et al., 2014), we
built two maps of these characteristics on the conditional
probabilities PCA plane reported in Figure 3A. In particular,
by placing a square grid on it we can collect all the points inside
each square pixel: since each of these points represents a residue
with its hydrophobicity and hydrophobicity values, we can
mediate these values obtaining a colormap with the
hydrophobicity and hydrophilicity observed in that region of
the plane. After a smoothing procedure, we obtain the maps
depicted in Figures 5B,C. From this perspective, the evaluation of
the hydropathy properties of a given amino acid, located in a
specific protein sequence and structure, depends on the position
it assumes on this plane, and this position surely depends on their
own chemico-physical features but also on the characteristics of
its structural neighborhood.

An additional analysis showing the correlation between the
secondary structure of a residue and its hydration properties is
reported in Supporting Information (See Supplementary Figures
S3–S5). Using DSSP Touw et al. (2015); Kabsch and Sander.
(1983) we labeled each residue with its secondary structure and
we evaluated how the different secondary structures are located in
the plane reported in Figure 4. It is worth noting that some non-
polar residue, such as ALA and LEU, are usually characterized by
a low value of the Hydrophobicity index, but when they are found
in loops they can exhibit even high value of the index, probably
because of the usual high solvent exposure of this secondary
structure.

3 CONCLUSIONS

Investigating the properties of the hydrogen bond network at the
interface between hydration water molecules and solute plays a

TABLE 1 | Results of the analysis of the essential plane shown in Figure 3A. For
each amino acid, we report the number of cases in which it is found solvent-
exposed in simulation and the percentage with respect to all the solvent exposed
residues (Occurrence); the hydrophobicity values we obtained with our
geometrical characterization and the gyration radius, a measure of the
dispersion of the points regarding each residues.

Res Occurrence Hr Gyration radius

ALA 148 (5.4%) 0.47 0.57
ARG 168 (6.1%) 1.60 0.64
ASN 237 (8.6%) 2.03 0.68
ASP 300 (10.9%) 3.20 0.59
CYS 7 (0.3%) 0.59 0.20
GLN 205 (7.5%) 1.26 0.67
GLU 266 (9.7%) 3.32 0.55
GLY 166 (6.1%) 0.80 0.52
HIS 60 (2.2%) 2.29 0.76
ILE 38 (1.4%) 0.00 0.33
LEU 59 (2.2%) 0.79 0.41
LYS 268 (10.4%) 2.76 0.61
MET 12 (0.4%) 0.38 0.76
PHE 34 (1.2%) 0.24 0.52
PRO 97 (3.5%) 0.55 0.27
SER 254 (9.3%) 1.46 0.67
THR 197 (7.2%) 0.66 0.53
TRP 38 (1.4%) 0.65 0.37
TYR 129 (4.7%) 0.83 0.77
VAL 39 (1.4%) 0.46 0.35
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crucial role in the characterization of the physico-chemical
properties of the latter. Here, we presented a completely in-
silico method capable of analyzing the positions and the
orientations of water molecules around any residue of protein
structures. This allows us to emphasize the contribution to the
solvation properties caused by the local structural environment,
underlining that not only the nature of single amino acid
determines its hydropathy features, but also the types of
residues close to it.

In particular, we analyzed the motion of the water molecules
belonging to the first two hydration shells for a set of proteins,
defining a new description of both the hydrophilicity and
hydrophobicity properties. Studying the probability of water
molecule’s orientation conditional to the distance to the solute,
we built an essential plane of hydrophilicity and hydrophobicity,
through a dimensionality reduction of the probability density
distribution. On average, the location of each amino acid on this
plane is in perfect agreement with its biochemical properties, in
fact, an index defined considering the average position of each
amino acid has an excellent correlation with one of the state-of-
art hydrophobicity scales.

This notwithstanding, the dispersion of each amino acid
(considering all the occurrences of a given residue in the
proteins of our dataset) is a good marker of its variability in
terms of solvation features. Indeed, this dispersion well classifies
amino acids with marked properties, such as strong, from amino
acids with less pronounced or intermediate hydropathy
properties, meaning that the local structural environment in
these cases plays a predominant role in modifying their
interaction with the solvent.

4 MATERIALS AND METHODS

4.1 Protein Dataset and Residue Selection
We consider the dataset proposed by Hensen et al. (Hensen et al.,
2012), where a collection of 112 representative proteins for each
family were reported. From this initial set, we selected the 20
proteins, having 1) longer sequences and 2) no missing or
incomplete residues. Considering all proteins together, we
ended up with a total of 6,745 residues. For each protein, a
molecular dynamics simulation with explicit solvent was
performed. Since we were interested in characterizing
solvation-related features, we consider only residues found in
interaction with more than 50,000 water molecules during the
whole analyzed simulation. An interaction between a residue and
a water molecule is established if the distance between the oxygen
atom of the water and any of the residue heavy atom is smaller
than 6 Å. We ended up with 2,775 residues.

4.2 Molecular Dynamics Simulation
The following protocol was used for each of the 20 simulations.
We used Gromacs 2020 (Spoel et al., 2005) and built the system
topology using the CHARMM-27 force field (Brooks et al., 2009).
The protein was placed in a dodecahedric simulative box, with
periodic boundary conditions, filled with TIP3P water molecules
(Jorgensen et al., 1983). We checked that each atom of the protein

was at least at a distance of 1.1 nm from the box borders. The
system was then minimized with the steepest descent algorithm.
Next, a relaxation of water molecules and thermalization of the
system was run in NVT and NPT environments each for 0.1 ns at
2 fs time-step. The temperature was kept constant at 300K with
v-rescale algorithm (Bussi et al., 2007); the final pressure was fixed
at 1 bar with the Parrinello-Rahman algorithm (Parrinello and
Rahman, 1980). LINCS algorithm Hess et al. (1997) was used to
constraint h-bonds. A cut-off of 12 Å was imposed for the
evaluation of short-range non-bonded interactions and the
Particle Mesh Ewald method Cheatham et al. (1995) for the
long-range electrostatic interactions. Finally, we performed 60 ns
of molecular dynamics with a time step of 2 fs, saving
configurations every 2 ps. We considered the last 20 ns (10,000
frames) for the analyzes.

4.3 Evaluation of Solvent-Residue
Geometrical Descriptors
Molecular dynamics simulation data were used to characterize
the geometrical disposition of the water molecules around protein
residues. In particular, for each protein of the Protein dataset, we
sampled 10,000 configurations (one each 2 ps) from the
corresponding molecular dynamics simulation. For every water
molecule in each frame, we evaluate the minimum distance, R,
between the water oxygen and the heavy atoms of each protein
residue.

Solvent molecules whose oxygen atom had a distance bigger
than 6 Å were discarded from all subsequent analyses. All
remaining water molecules were then assigned to their nearer
residue, again on the basis of the distance R.

Then, for each water molecule, we build the tetrahedron
having the oxygen atom as the center and the two hydrogen
atoms occupying two of the four vertexes. In this way, we ensure
that the tetrahedron is always well defined. We indicate with r→H1

and r→H2 the vectors originating in the tetrahedron center and
pointing to the hydrogen atoms; while we refer to the vectors
linking the center with the other to vertex as r→lp1 and r→lp2 (where
lp stands for lone pairs). Finally, we define also the vector joining
the nearest heavy atom of the residue with the oxygen atom of the
water molecule, R

→
, and the dipole moment vector, d

→
(see

Figure 1 for a sketch).
Once we know the set of six vectors [R→, d

→
, r→H1,

r→H2, r
→

lp1, r
→

lp2], we can compute the five angles that
efficiently summerize the disposition of the water molecule
with respect to the protein residue. In particular,

θHi � arccos⎛⎝R
→ · r→Hi

|R|∣∣∣∣rHi

∣∣∣∣ ⎞⎠, (1)

and

θlpi � arccos⎛⎝R
→ · r→lpi

|R|∣∣∣∣rlpi∣∣∣∣ ⎞⎠, (2)

with i � 1, 2 identify the orientation of the tetrahedron vertexes
with respect to the direction identified by R

→
, while
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ϕ � arccos⎛⎜⎝R
→ · d→
|R||d|

⎞⎟⎠, (3)

measures the orientation of the water dipole.

4.4 Joint and Conditional Probability
For each of the 2,775 residues, we computed the hydrogen joint
probability, P(R, θ), which gives the probability of finding a water
molecule with a given θOH−lp � θ angle at distance R from the
nearest heavy atom of the reside and dipole joint probability,
P(R, ϕ), of finding a water molecule with a given ϕ angle at
distance R. In both cases, the probabilities are computed
discretizing the distance range 0–6 Å with steps of 0.05 Å, and
the angular interval 0 − 180+ with a step of 1+. See Figure 1 for an
example.

From the joint probabilities, we obtained the distance
marginal probability, P(R) as

P(R) � ∫ dθP(R, θ), (4)

while we calculated the conditional probabilities as

P(θ|R) � P(R, θ)
P(R) . (5)

Considering each residue as a reference, P(R) encodes the
overall probability of finding a water molecule at distance R
from the reference. As one can see from Figure 1, the typical
shape of probability is that of a damped sinusoidal function,
showing a series of maxima (and minima) with decreasing
amplitude. This behavior originates from the molecular
interactions between the residue and the water molecules
and those between water molecules. Water molecules tend
to form a shell around the residue with a higher density of
molecules in correspondence of the P(R)maxima and a lower
density in its minima.

Using the P(R) profile, we identified the shells as follows:

• the first shell starts at R0 the first non-null value of P(R);
• the border between the first shell and the second (R1)

coincide with the minimum following the maximum in
the first shell;

• the end of the second shell, R2 coincides with the minimum
following the maximum in the second shell.

When the P(R) profile does not allow us to identify the
minima, we add them according to their average values
calculated on the respective residue.

Once the shells were identified, we calculated P(θ1) and
P(θ2) as

P(θi) � ∫Ri

Ri−1
dRP(θ|R), (6)

where i � 1, 2 and θ can be either the hydrogen angle or the
dipole one. The P(θ) were calculated on both the joint
(Pj(θ1,2)) and conditional (Pj(θ1,2)) probability. Since some
P(R) exhibited an anomalous profile they were discarded

from subsequent analyzes, reducing the dataset to 2,740
residuals. Ultimately, we obtained three descriptors for
the conditional and joint probability histograms of the
OH-lp and dipole angles: P(R), Pj,c(θ1) and Pj,c(θ2).
Analyses were performed using R standard libraries (R
Core Team, 2020).

4.5 Principal Component Analysis and
Clustering
Principal component analysis (PCA) was performed over 1)
the vector obtained by concatenating the discretized (75
points) probability distribution P(R) for each of the 2,740
residues; 2) on the vector obtained by concatenating the
discretized (180 points) probability distribution Pj(θ1) for
each of the 2,740 residues; 3) on the vector obtained by
concatenating Pj(θ2) of all 2,740 residues and 4) using the
vector obtained by concatenating together all the previous
probabilities. We used the “prcomp” function of R software (R
Core Team, 2020). The same procedure has been repeated also
using P(R) and the two conditional probability marginals,
Pc(θ1), and Pc(θ2).

A clustering analysis was performed on the points on the
first two components plane relating to Pc(θ1) and Pc(θ2)
through a hierarchical clustering, using the Euclidean
distance and the Ward method as linkage function (Ward,
1963) via the “hclust” function of the “Stats” package of R (R
Core Team, 2020). Finally, we computed the Silhouette for the
hierarchical cluster via the R package “cluster” (Maechler et al.,
2019).

Finally, to measure the dispersion of the points regarding the
various residues in the PCA plane, we calculated the amino acids
gyration radius as

Rg �










1
N

∑N
i�1

(r2i )
√√

, (7)

where ri are the distances between each of the N points and the
centroid.

4.6 Hydrophobicity Measure in Principal
Component Plane
Starting from the plane shown in Figure 3A, we defined a
measure of hydrophobicity. We take as reference the point C,
the centroid of all the Ile points with coordinates PC1 � 0.75
and PC2 � −0.39. For a generic point in the plane, i, we
calculated the distance di from C. Defining the angle variable
α, like the one starting from the x-axis in an anticlockwise
direction, we thus fixed a reference angle, αref � 2.8rad.
Now it is possible to define, for a generic point i on the
plane with distance di and angle αi, the Hydrophobicity index
as follows:

Hr � di + k
∣∣∣∣αi − αref

∣∣∣∣, (8)

where k � 2.
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G protein-coupled receptors (GPCRs) are the largest family of membrane proteins with
more than 800 members. GPCRs are involved in numerous physiological functions
within the human body and are the target of more than 30% of the United States
Food and Drug Administration (FDA) approved drugs. At present, over 400 experimental
GPCR structures are available in the Protein Data Bank (PDB) representing 76 unique
receptors. The absence of an experimental structure for the majority of GPCRs demand
homology models for structure-based drug discovery workflows. The generation of
good homology models requires appropriate templates. The commonly used methods
for template selection are based on sequence identity. However, there exists low
sequence identity among the GPCRs. Sequences with similar patterns of hydrophobic
residues are often structural homologs, even with low sequence identity. Extending
this, we propose a biophysical approach for template selection based principally on
hydrophobicity correspondence between the target and the template. Our approach
takes into consideration other relevant parameters, including resolution, similarity within
the orthosteric binding pocket of GPCRs, and structure completeness, for template
selection. The proposed method was implemented in the form of a free tool called
Bio-GATS, to provide the user with easy selection of the appropriate template for a
query GPCR sequence. Bio-GATS was successfully validated with recent published
benchmarking datasets. An application to an olfactory receptor to select an appropriate
template has also been provided as a case study.

Keywords: biophysical approach, hydrophobicity correspondence, template selection, homology modeling,
GPCR, olfactory receptor, automated tool

INTRODUCTION

The three-dimensional (3-D) structure of the proteins is important for deciphering its
biological function and gaining mechanistic insights of biological events. Analyzing the
relationship between sequence, structure, and function between proteins might help in
transferring functional annotation between proteins. Cyrus Chothia’s contribution in incorporating
computational approaches for a sequence-structure relationship, such as the development of
Structural Classification of Proteins (SCOP) database (Lo Conte et al., 2000), has opened up
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new avenues for structural bioinformatics. The hierarchical
division of proteins into classes, folds, superfamilies, and families
based on structural and functional similarities by SCOP has
enabled linking of known protein structures with homologous
sequences lacking a known structure. Distant homologies can
also be tracked through the SCOP database (Redfern et al., 2008).
The use of homolog structures for generating the structural
model of a protein lacking experimental structure forms the
basis of homology modeling. The success of the homology
model is greatly determined by the selected template and
the alignment generated between the target and the template
(Wallner and Elofsson, 2005; Haddad et al., 2020). In this
article, we have developed a graphical user interface for selecting
suitable templates for GPCRs. Our biophysical method for
GPCR template selection is based primarily on hydrophobic
correspondence (HC) between the target and the template,
inspired by the work of Cyrus Chothia on the conceptual
methods for hydrophobicity determination (Chothia, 1976).

G protein-coupled receptors, also known as seven
transmembrane (TM) domain receptors, constitute the largest
family of cell surface receptors with above 800 members in
humans. All GPCRs share a common architecture of seven
TM helices connected through three extracellular (ECL 1–3)
and three intracellular (ICL 1–3) loops with an extracellular
amino (N-) terminus and intracellular carboxyl (C-) terminus
(Miyagi et al., 2020). The most common classification system
used for GPCRs is based on sequence and functional similarities.
This schema classifies GPCRs into six classes, viz. class A
(rhodopsin-like family), class B (secretin family), class C
(metabotropic glutamate family), class D (fungal mating
pheromone receptors), class E (cyclic adenosine monophosphate
or cAMP receptors), and class F (frizzled/smoothened receptors).
All classes of GPCRs govern myriad functionalities within the
human body, ranging from sensory perception (smell, taste,
vision) to neurotransmission, metabolism, immune response,
blood pressure regulation, and cognition (Hu et al., 2017).
GPCRs recognize diverse ligands including peptides, hormones,
odorants, tastants, vitamins, photons, ions, and metabolites,
among others (Wacker et al., 2017). The extracellular ligands
bind to the inactive GPCRs and bring about a conformational
change to the helical bundle, which in turn activates intracellular
transducers such as G-proteins, or β-arrestins. The intracellular
transducers are connected to the helical bundle through ICL3.
Therefore, GPCRs exhibit multiple conformational states, with
the active and inactive states being the predominant ones
(Miyagi et al., 2020).

Dysfunction of GPCR signaling leads to pathological
conditions within the human body, making GPCRs the largest
druggable protein family. More than 34% of FDA approved
drugs target GPCRs (Saikia et al., 2019). Currently, only ∼15%
of the GPCRs are targeted. This under-representation is mainly
due to the absence of known ligands for more than 30% of
non-olfactory GPCRs (Insel et al., 2019). Virtual ligand screening
coupled with experimentation has resulted in the discovery of
novel ligands for numerous GPCRs (Congreve et al., 2020). Both
ligand-based virtual screening (LBVS), as well as structure-based
virtual screening (SBVs), have been used in finding novel

ligands for GPCRs. LBVS can only be applied to the receptors
having known ligands. Machine learning-based methods for
LBVS are becoming popular for expanding the ligand set of
the receptor with a large number of known ligands (Butkiewicz
et al., 2019; Jabeen and Ranganathan, 2019). SBVS has also
been used to find novel ligands for GPCRs (Congreve et al.,
2020) but unfortunately, only 91 GPCRs have experimentally
resolved structures to date, according to GPCRdb statistics
(Munk et al., 2019) (as of 05.01.2021) with over 500 structures
deposited in the Protein Data Bank (PDB) (Berman et al.,
2000). This sequence to structure gap is mainly because of
the challenges associated with structure determination of
GPCRs (Baker et al., 2017; Jabeen et al., 2019a). Among the
challenges are difficulties in heterologous expression, lower
stability, maintaining the structural integrity by embedding
into the membrane-like environment, and the existence of
multiple conformations (Miyagi et al., 2020). The booming
period for GPCR structural biology started in 2000 when the first
GPCR structure (bovine rhodopsin) was resolved (Palczewski
et al., 2000). Due to continuous improvement in structural
biology methods, experimentally resolved GPCR structures
are increasing but they are still under-represented compared
to soluble, globular proteins. Experimental structures are now
available for all classes except E (Munk et al., 2019). Most of
the experimentally resolved structures belong to GPCR class A.
Consequently, most of the available drugs in the market target
class A receptors (Basith et al., 2018).

Homology modeling could be used for structure-based
drug design (SBDD), in the absence of an experimental
structure, as it is more reliable than ab initio modeling
(Nikolaev et al., 2018). To assess the accuracy of GPCR
structural model predictions, community-wide GPCR Dock
competitions are conducted. Scientific research groups from
all over the world are given the GPCR target sequences for
blind structure prediction, with undisclosed 3D structures. The
predicted models along with their atomistic interactions with
pharmaceutically important small molecules, are then ranked
based on the experimentally resolved structures (Kufareva
et al., 2014). These competitions have shown that homology
models are able to impart valuable insights into receptor-
ligand interactions, especially when sequence identity between
target and the template exceeds 35% (Alfonso-Prieto et al.,
2019). In fact, ligand screening against dopamine D3 receptor
was conducted initially using a homology model and provided
results comparable to the experimental receptor structure
(Carlsson et al., 2011).

Homology modeling of GPCRs poses several challenges,
with template selection being the most prominent one. This
is due to the unavailability of a close structural template for
many GPCRs and limited representation of structures in active
and intermediate conformations. Active structures are available
for 47 receptors from classes A, B1, C, D, and F, and the
structures for 20 receptors (classes A, C, and B1) are present
in intermediate conformation. Also, 63 receptors are present in
inactive conformation (classes A, B1, C, and F).

The accuracy of homology models is largely dependent on the
choice of the template structure (Rataj et al., 2014). There are
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a number of servers designed specifically for GPCR homology
modeling, such as GPCR-I-TASSER, GPCR Online MOdeling
and DOcking server (GOMoDo) (Sandal et al., 2013), GPCR-
Sequence-Structure-Feature-Extractor (SSFE) (Worth et al.,
2017), GPCR-ModSim (Esguerra et al., 2016), and GPCRM
(Miszta et al., 2018). The process of template selection varies
among each server. GPCR-I-TASSER uses a local meta-threading
server (LOMETS) (Zheng et al., 2019) to select templates for
a particular GPCR. LOMETS uses eleven different threading
programs (CEthreader, FFAS3D, HHpred, HHsearch, MUSTER,
Neff-MUSTER, PPAS, PRC, PROSPECT2, SP3, and SparksX) to
select templates for a GPCR target. GOMoDo uses the HHsearch
protocol to select the template for a query GPCR sequence. The
user can either use the server-generated alignment, supply their
own alignment, or use a previously stored alignment for GPCR
homology model building. GPCR-SSFE selects the template based
on the sequence-structure profile generated by HMMER2. The
webserver provides a TM-wise template suggestion. It uses 27
GPCR structures as templates. The server-generated alignment is
used for model building within GPCR-SSFE. The GPCR-ModSim
server uses a set of 33 structures (22 inactive, eight intermediate,
and three active) and a GPCR query sequence to generate the
profile alignment and then selects the suitable templates. The
templates for a specific region can be also selected by the user.
The server-generated alignment, as well as a manually edited
alignment, can be used for model building. The GPCRM server
uses sequence identity calculated by ClustalW2 for selecting the
template structures. Single or multiple templates may be selected,
depending upon the sequence identity between the query and
the template. The server also provides the feature of selecting
the template based on the user’s choice. The user can also opt
for inactive or active templates. The set of templates include 63
inactive and 31 active GPCR structures.

Numerous benchmarking studies have been conducted by
incorporating global and local similarity measures to select the
appropriate template for GPCRs. Models based on local similarity
measures have produced better results in virtual screening
experiments (Castleman et al., 2019; Szwabowski et al., 2020).
Multiple studies have shown that sequence identity above 30%
could result in good GPCR homology models (within 3 Å)
(Shahaf et al., 2016; Loo et al., 2018; Jaiteh et al., 2020). But
most of the GPCRs share low sequence identity with available
templates. It is also known from the literature that models
based on greater sequence identity are not always the best
ones and models based on distant homologs have performed
well in virtual screening experiments (Rataj et al., 2014; Perry
et al., 2015). Therefore, additional measures other than sequence
identity must be considered for appropriate template selection.
Also, a detailed inspection of all available homolog structures is
essential for finding an optimal template, rather than randomly
selecting a template based on the closest homolog, to generate
better homology models (Kosinski et al., 2013). Sequences with
similar hydrophobic patterns are often homologs, resulting in
hydrophobicity being used in determining even distant homologs
(Lolkema and Slotboom, 1998; Silva, 2008). The consideration of
hydrophobic information for GPCR model building enables the
representation of functional aspects as well (Crasto, 2010).

We proposed a biophysical approach recently for GPCR
template selection (Jabeen and Ranganathan, 2020), which was
applied to an olfactory receptor (OR), based on hydrophobicity
correspondence (HC), the resolution, completeness of structures
(or query coverage), and similarity between the residues within
the orthosteric binding pocket for GPCRs (hotspot residues).
Bio-GATS presents a GUI for template selection of GPCRs,
based on this biophysical approach (Figure 1). Ligand profiles
for selected templates and the target can be compared to get
an optimal template. Further incorporation of mutagenesis data
while refining the binding pocket of the model might help in
improving the overall model.

As a case study, we have selected OR1A1, a human OR, as a
query sequence. ORs are the largest superfamily of GPCRs and
have no known experimental structure. Only 30 of 405 human
ORs are currently known as proteins, with the rest regarded
as “missing” proteins on account of insubstantial proteomic
evidence (Jabeen et al., 2019a). ORs share low sequence identity
with available GPCR structures. Therefore, it is challenging to
get a reliable homology model for any OR. OR1A1 is ectopically
expressed in gut enterochromaffin cells and proposed to be
involved in serotonin release (Braun et al., 2007). Also, OR1A1
is known to be ectopically expressed in HepG2 liver cells where
it is responsible for hepatic triglyceride metabolism modulation
(Wu et al., 2015).

MATERIALS AND METHODS

Bio-GATS is written in Python 3 programming language (Van
Rossum and Drake, 2011). The interface was built using PyQt5.
The computing was performed through pandas. The numPy
library was utilized for mathematical tasks. Biopython (Cock
et al., 2009) was used for running BLAST (Altschul et al., 1990)
locally through the command line, and for aligning the query
sequence with that of the template. The HC plots were visualized
using matplotlib. The hydrophobicity moment was calculated
and plots were visualized using modlAMP package (Müller et al.,
2017). A downloadable result summary file, from which images
and data can be easily extracted, is generated in Microsoft (MS)
Word format, using the docx library.

Bio-GATS requires Python, Biopython and also local BLAST
to be installed locally to align sequences and then calculate the
sequence identity values. Bio-GATS is linked to the GPCR dataset
stored in an MS Excel file, which can be updated locally, as
new GPCR structures are solved. The template selection process
is divided into three steps: TM splitting and alignment, HC
calculation, and finally, sequence similarity calculation among
hotspot residue positions within the target and the template.

Also, a scoring matrix has been defined to rank the
templates. The final score of the template is calculated based on
resolution, the HC score, and binding site (or hotspot) residue
similarity (BRS) score.

GPCR Dataset
The dataset used by Bio-GATS comprises GPCR sequences,
available GPCR structural templates, TM definition of each
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FIGURE 1 | Workflow for GPCR template selection through a biophysical approach, with details of how templates are selected and the alignment is generated.

entry and structure resolution, conformation, and positions
having structural information for each of the available templates
(query coverage). The data for available GPCR structures were
downloaded from GPCRdb. It contains 76 unique receptors and
over 400 PDB entries (as of 05.08.2020). The resolution of GPCR
structures varies from 1.7 to 7.7 Å. Some GPCRs are over-
represented, with 52 different structures of variable resolution
available for bovine rhodopsin (UniProtKB OPSD_BOVIN)
followed by 49 structures for human adenosine receptor A2a
(AA2AR_ HUMAN). The data for 814 GPCR sequences and their
TM definitions were taken from the published GpcR Sequence-
Structure (GRoSS) alignment (Cvicek et al., 2016).

TM Splitting and Alignment
During the first step, the sequence of each TM was retrieved
after splitting the sequence of both target and template according
to the TM definitions taken from the GRoSS alignment. The
corresponding TMs of target and template were then aligned
together by tethering the center residues of each helix, as adopted
by several groups (Wolf et al., 2017; Abaffy et al., 2018). The
center residue for each helix is labeled as X.50 (X being the TM
number), according to Ballesteros–Weinstein numbering scheme
(Ballesteros and Weinstein, 1995).

Hydrophobicity Profile Generation
The hydrophobicity profile for each helix was generated using the
Eisenberg scale (Eisenberg et al., 1984), as detailed in our recent
publication (Jabeen and Ranganathan, 2020) and briefly outlined
here. A moving window of size 11 was set up as suggested for
the identification of putative transmembrane α-helices (Wallace
et al., 2004). The average value over all the residues in a window

was taken and ascribed to the center residue of the window. We
then measured the HC between each aligned helix of the target
and the template. The HC is represented as the sum of squared
differences (SSD) (eq. 1 and eq. 2):

Hn =
n+5∑

i = n−5

hi
/

11 (1)

SSD =

√
N∑

n =1
(Htemplate,n −Htarget,n)2 (2)

where Hn is the calculated hydrophobicity for the aligned
template-target residue in the nth position of the alignment and
hi is the hydrophobicity of the ith residue from the Eisenberg
scale. The value, is normalized by dividing with the total
number of residues in a particular helix, as the SSD value is
length dependent and will only be relevant if a per-residue
value is considered.

Calculating Sequence Similarity Between
Hotspot Residues Known for GPCRs
We have taken the 24 traditional orthosteric ligand binding
positions observed in most of the available GPCR structures.
The positions are labeled according to Ballesteros–Weinstein
numbering scheme and include 3.28, 3.29, 3.32, 3.33, 3.36, 3.37,
4.52, 5.39. 5.40, 5.43, 5.44, 5.47, 5.53, 6.44, 6.48, 6.51, 6.52,
6.55, 6.58, 7.31, 7.34, 7.38, 7.41, 7.42 (Chan et al., 2019). The
similarities between these hotspot residues among the target-
template pairs were computed using GPCRtm scoring matrix,
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designed specifically for GPCRs considering the compositional
bias of hydrophobic TM regions (Rios et al., 2015).

Target-Template Scoring
Each of the selected templates is scored based on two parameters:
the HC-score and the BRS score (Munk et al., 2019). For each
aligned helix, if the SSD per residue is between 0 and 0.1, 2
is added to the HC-score, while for SSD per residue >0.1, 1
is subtracted from the HC-score. This scheme is adapted from
the BLAST match and mismatch scoring scheme and provides
significant weighting for hydrophobicity. The overall HC-score is
computed for each target-template pair using eq. 3,

HC-score = Sh =
7∑

i = 1
si (3)

where Sh is the overall hydrophobicity correspondence score
ranging from helix 1 to 7, and si is the SSD per residue per helix.
Sb is computed through GPCRtm matrix, Sr is the resolution
score. If the resolution is ≤ 2.5 Å, the value for Sr is 1, otherwise
it is 0. The total score St is computed by eq. 4.

St = Sh + Sb + Sr (4)

Sh can attain a maximum value of 14 while Sb may exceed
70, depending upon the score computed by GPCRtm. To avoid
biases, we normalized both Sh and Sb between 0 and 1 and
computed the ranking score, Srank for ranking the top three
templates while searching for templates, using eq. 5,

Srank = Snh + Snb + Sr (5)

where Srank is the total score between the target-template pair, Snh
is the normalized HC-score, Snb is the normalized BRS score and
Sr is the resolution score, retained from eq. 4.

Homology Modeling
Bio-GATS provides a complete alignment that was used to
build a 3-D structural model for SBVS using Modeller 9.18
(Webb and Sali, 2017) by a previously established protocol
for GPCR homology modeling (Jabeen et al., 2019b). The
sequence alignment between the target and the template can
be manually adjusted using MEGA7 (Kumar et al., 2016) by
tethering center residues, class A GPCR conserved motifs, and
cysteine residues forming a disulphide bridge. Bio-GATS uses
predicted transmembrane regions from the GRoSS sequence
alignment of all known GPCRs sequences (Cvicek et al.,
2016). The ligand of each template was initially copied
to the 3-D model and removed later to create an empty
binding pocket within the query model structure for the
OR1A1 case study.

Molecular Docking
For OR1A1, molecular docking of ligands was performed with
ICM software (Abagyan et al., 1994). The binding pocket

was predicted though ICMPocketFinder (An et al., 2005) and
selected based on the available mutagenesis data for all ORs
(Jabeen et al., 2019a).

RESULTS AND DISCUSSION

Bio-GATS has been tested on multiple computers, running
on Linux as well as Windows platforms, and found to
run successfully with the required dependencies installed. To
validate our approach, we applied it to recent target-template
datasets from published benchmarking studies and compared
the results. We also considered representative receptors from
each class (A, B, C, D, and F) with known experimental
structure and built their models on the basis of templates
selected by Bio-GATS. The models were then compared with
the cognate experimental structures by calculating their root
mean square deviation (RMSD) values. Further, we carried
out a case study using an ectopically expressed olfactory
receptor, OR1A1. We used the best templates from our
approach, to build the models for OR1A1, which were
validated by molecular docking with known ligands of the
receptor, to check for retrieval of mutagenesis data important
for ligand binding.

Performance of Bio-GATS on Published
Benchmarking Datasets
To assess the performance of Bio-GATS, we collated the
already published target-template pairs used in benchmarking
studies and/or virtual ligand screening (VLS) runs. The
best benchmarked modeling pair choices, as well as pairs
which did not perform well, were considered for the
analysis. The performance of the templates was ranked as
good or bad, in published studies, on the basis of good
ligand enrichment in VLS (Perry et al., 2015; Loo et al.,
2018; Jaiteh et al., 2020), local and global (RMSD) from
crystal structures (Castleman et al., 2019), and both ligand
enrichment and RMSD from the crystal structure (Shahaf
et al., 2016). Researchers have compared varied parameters
in these studies among the target-template pairs, including
global sequence identity, TM-wise sequence identity, local
sequence identity (identity within the binding pocket), model
refinement through molecular dynamics and/or induced-
fit docking, and the ligand binding site plasticity. These
parameters were applied to classify templates as good or bad in
their publications.

We applied our approach to these selected target-template
pairs and compared the results of published studies and our
approach. A total of 28 target-template pairs for nine different
GPCR targets belonging to class A and published within last
5 years were considered for comparison. We calculated St for each
target-template pair. All target-template pairs rankings in the
benchmarking studies corresponded to the numerical St values
(Table 1 and Supplementary Table 1). The top St scores for each
target was ranked “good” in the benchmarking studies.

It was also evident from the collected dataset that
high sequence identity does not always imply a good HC.
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PAR2_HUMAN shows good HC with both PAR1_HUMAN
and OPRX_HUMAN, in accord with the VLS results (Perry
et al., 2015), although it is closer to PAR1_HUMAN (sequence
identity: 41%) than to OPRX_HUMAN (sequence identity: 28%).
There are many instances where good HC is observed among the
target-template pairs even the sequence identity falls below 30%
(Supplementary Table 1).

Also, sequence-structure correlation is not always implied
according to the published studies, for instance, the model
of P2Y12R based on P2Y12R- PAR1_HUMAN pair (sequence
identity: 23%) was closer to the P2Y12R crystal structure
in comparison with the model based on the P2Y12R-
OPRK_HUMAN pair (sequence identity: 28%) (Castleman
et al., 2019). We note that the St scores reported here correctly
rank PAR1_HUMAN as the best template over the other three
templates (Table 1), without model building and VLS.

In the case of PAR2- PAR1_HUMAN and PAR2-
OPSD_BOVIN pairs, although both have good HC, the hotspot
residues are dissimilar, with Sb(PAR2-OPSD_BOVIN) of −2,
and Sb(PAR2- PAR1_HUMAN) of 51. Thus, BRS comparison
is a useful parameter in selecting the appropriate template for
GPCRs. Overall, the St score is able to identify the best template
for each of the nine target receptors in Table 1.

TABLE 1 | Performance of Bio-GATS on recent published target-template pairs.

Target receptor Template pairs Published ranking St

hPAR2 hPAR1 [36] Good 52

hOPRX [36] Good 31

bOPSD [36] Bad 10

h5HT7 hOPRX [34] Good 41

hPAR1 [34] Bad 30

hPAR1 hOPRK [33] Good 42

hOPRX [33] Good 40

hAA2AR [33] Bad 19

hADRB2 hOPRK [33] Good 31

hAA2AR [33] Good 17

hP2Y12R [33] Bad 9

hP2Y12R hPAR1 [32] Good 26

hOPRK [33] Bad 15

h5HT1B [32] Bad 10

hADRB2 [33] Bad 9

hACM2 hDRD3 [32] Good 44

hOPRK [33] Good 26

hP2Y12R [33] Bad 3

hFFAR1 hAT1R [32] Good 24

hP2Y12R [32] Bad 22

h5-HT2AR h5-HT2CR [35] Good 71

bOPSD [35] Bad 20

hAA2AR [35] Bad 19

hCXCR4 [35] Bad 11

hCNR1 [35] Bad 9

hDRD2 hCXCR4 [35] Good 26

bOPSD [35] Bad 11

hCNR1 [35] Bad 2

Validating Bio-GATS Template Selection
Through Experimentally Resolved GPCR
Structures
To further validate Bio-GATS, we selected 20 class A, 10 class
B, four class C, one class D, and three class F receptors having
experimentally solved structures. In all cases, the experimental
structure was selected as the top ranked target template
by Bio-GATS. Ignoring this top ranked structure, homology
models for 38 receptors were build using Modeller (Webb
and Sali, 2017) based on the second top template selected
through Bio-GATS. The alignment was manually edited within
loop regions through MEGA7 (Kumar et al., 2016). The
generated models were compared with experimental structures
through RMSD calculation for TM regions. For all models
the RMSD of structurally aligned region was in the range
0.5–2.5 Å (Supplementary Table 2) as shown in Figure 2
(mean = 1.38 ± 0.43 Å, median = 1.29 Å). The interquartile
range (IQR) for all classes is 0.60 Å. For individual classes,
class A is showing the IQR from 0.62 Å with sample size of
20. The IQR for class B and C is 0.36 and 0.16 with sample
size of 10 and 4, respectively. To date, as only one structure is
available for class D, this template was selected for this receptor,
although it is phylogenetically distant and therefore showing a
high RMSD value. The IQR for modeled class F receptors 0.1
with sample size 3 although two of three models were built on
the basis of class B templates. The results of this study on 38
representative receptors from each class are showing the utility
of hydrophobicity correspondence as a measure for template
selection. The median for individual classes was under 1.5 Å
except for classes D and F.

Subsequently, three receptors from classes A, B, C, F, and the
single class D receptor was modeled through GPCR modeling
servers such as GPCR-ModSim (Esguerra et al., 2016), GoMoDo
(Sandal et al., 2013), GPCRM (Miszta et al., 2018), and GPCR-
SSFE (Worth et al., 2017). The RMSDs for TM regions of
automated models and models constructed using Bio-GATS

FIGURE 2 | RMSD between modeled structures and experimental structures
for all GPCR classes, class A, B, C, D, and F (presented in Supplementary
Table 2). The boundary of the box closest to zero indicates the 25th
percentile, a black line within the box marks the median, and the boundary of
the box farthest from zero indicates the 75th percentile.
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TABLE 2 | The templates selected by Bio-GATS and the automated servers for representative GPCRs from each class along with RMSD values between the generated
models and experimental structures for TM residues.

Receptor and
PDBID

Bio-GATS GPCRM GPCR-SSFE GPCR-ModSim GoMoDo

Template and
PDBID

RMSD
(Å)

Template RMSD
(Å)

Template RMSD
(Å)

Template RMSD
(Å)

Template RMSD
(Å)

h5HT2A (6A94) tADRB1 (4BVN) 1.313 tADRB1 (5F8U
and 2VT4)

1.347 Many1 1.717 tADRB1 (2VT4) 1.427 None6 –

hTA2R (6IIU) bOPSD (1U19) 2.248 hCNR1 (5TGZ)
hAA2AR (5UIG)

1.804 Many2 1.975 hOPRX (4EA3) 1.948 hOPRX (4EA3) 1.911

hPE2R3 (6AK3) hOPRM1
(5C1M)

1.623 h5HT2C (6BQG
and 6BQH)

1.484 Many3 1.939 bOPSD (3PQR) 2.013 hOPRX (4EA3) 2.005

hCRFR1 (4K5Y) hGLR (5EE7) 1.626 hCRFR1*
(4Z9G)

0.966* None4 – hP2Y12 (4NTJ) 2.738 h5HT1B (4IAR) 1.853

hPACR (6P9Y) hSCTR (6WZG) 0.645 hCALCR
(5UZ7)

1.273 None4 – bOPSD (3PQR) 2.192 None6 –

hSCTR (6WZG) hCALRL (6UVA) 1.304 hCALCR
(5UZ7)

1.466 None4 – hACM2 (4MQS) 2.174 hCRFR1 (4K5Y) 1.773

hGRM1 (4OR2) hGRM5 (6N52) 1.122 hGRM1*
(4OR2)

0.108* None4 – None5 – None6 –

hGRM5 (6N52) hGRM1 (4OR2) 1.207 hGRM5*
(5CGC, 5CGD)

0.875* None4 – None5 – hOPRM1
(4DKL)

2.369

hGABR1 (6W2Y) hGABR2
(7C7S)

1.057 hGRM1 (4OR2)
hGRM5 (5CGC)

1.537 None4 – None5 – hGRM1 (4OR2) 1.492

ySTE2 (7AD3) hGLP1R (6X19) 2.425 hOPRM1
(5C1M)
h5HT2C
(6BQH)

2.298 None4 – hADRB2
(3SN6)

2.968 hP2Y12 (4PXZ) 2.721

hFZD4 (6BD4) hPTH1R (6FJ3) 1.878 tADRB1 (5F8U,
2VTR)

2.916 None4 – hPAR1 (3VW7) – hPAR1 (3VW7) 2.179

hFZD5 (6WW2) hPTH1R (6FJ3) 1.817 hSMO
(4O9R,4QIN)

1.427 None4 – hADRB2
(2RH1)

– hSMO (4JKV) 1.461

hSMO (5V56) mSMO (6O3C) 1.717 hSMO (5L7I)* 0.745* None4 – None5 – h5HT1B (4IAR) 1.944

The minimum RMSD values are in bold and second best values are in italics. The human GPCRs are prefixed by h, mouse by m, zebra fish by z, common turkey by t,
yeast by y, and bovine by b.
*self template used; RMSD values were therefore not considered.
1GPCR-SSFE templates: hACM4 (5DSG), hHRH1 (3RZE), hDRD3 (3PBL), hPAR2 (5NDD), h ADRB2 (2RH1), hP2Y12 (4NTJ), bOPSD (1U19), hACM3 (4U15).
2GPCR-SSFE templates: hPAR1 (3VW7), zLPA6 (5XSZ), hP2Y12 (4NTJ), hCXCR4 (3ODU), hAA2AR (4EIY), hPAR2 (5NDD).
3GPCR-SSFE templates: mOPRD1 (4EJ4), hP2Y12 (4NTJ), hCXCR4 (3ODU), sOPSD (2Z73), hCCR5 (4MBS), hHRH1 (3RZE), hPAR2 (5NDD).
4GPCR-SSFE does not work on non-Class A GPCRs.
5GPCR-ModSim does not work sequences greater than 600 residues such as hGRM1, hGRM5, hGABR1, and hSMO.
6GOMoDo does not work for h5HT2A, hPACR, and hGRM1.

suggested templates were compared (Table 2). We chose to
compare RMSDs of TM regions only as loop modeling and
refinement within servers is a time taking process. GPCR-SSFE
was only able to generate models for class A GPCRs. While
GPCR-ModSim cannot accept input sequence greater than 600
residues therefore, could not model selected class C GPCRs
and one class F GPCR, i.e., SMO_human. Also, for all the
receptors from class A to F considered for this study, GPCR-
ModSim always selected the template from class A. Of 13 GPCRs,
five models built on the basis of templates selected by Bio-
GATS showed minimum RMSD with experimental structure
of the receptor. The four models constructed by GPCRM
(CRFR1_human, GRM1_human, GRM5_human, SMO_human)
were based on receptor’s own structure as a template therefore,
showing the minimum RMSD (Table 2). The RMSD comparison
shows the utility of our biophysical method to select the
appropriate templates for all classes of GPCRs.

To further extend the application of Bio-GATS we built
three models each for class A and C orphans through servers
as well as on the basis of Bio-GATS suggested templates.
The structural alignment of automated models and manual
model (based on Bio-GATS template) for GPR35_human showed
the differences in modeling TM1 by GPCRSSFE and TM6
by GPCRM. For P2RY10, the model built by GoMoDo was
distorted with disoriented TM1 (Supplementary Figure 1). For
class C orphans, there were significant differences among all
the automated and manual models as shown by structural
superposition (Supplementary Figure 2) and RMSD values
(Supplementary Table 3).

Case Study on OR1A1
Currently, there exists no close homolog for ORs as evident
from the phylogenetic tree between available GPCR templates
and OR1A1 (Figure 3). We used Bio-GATS to search for
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an optimal template for OR1A1. We selected OR1A1 as a
case study because it contains the maximum mutagenesis data
against six ligands among OR superfamily. The selection of
templates was done on the basis of resolution (Insel et al.,
2019), matching hydrophobicity profiles (Sh), and the BRS
score (Munk et al., 2019). We considered inactive structures
having ≤ 2.5 Å resolution, in accord with our earlier study on
OR1A2 (Jabeen and Ranganathan, 2020). The top three templates
selected by Bio-GATS for OR1A1 are human NK-1 or tachykinin
receptor 1, NK1R_HUMAN (PDBID: 6HLP), bovine rhodopsin,
OPSD_BOVIN (PDBID: 1U19) and the human thromboxane A2
receptor, TA2R_Human (PDBID: 6IIU). We also considered one
template (CXCR4_HUMAN, PDBID: 3ODU) that was showing
poor HC and low BRS score with OR1A1, for comparison, from

the downloadable Bio-GATS result summary table (available
from Bio-GATS Github page). All four structures belong to class
A GPCRs. 6HLP and 6IIU show greater than 35% sequence
identity with OR1A1 (Table 3).

Hydrophobic correspondence for each TM of the top two
templates 6HLP and 1U19 compared to OR1A1 are shown
in Supplementary Figures 3, 4, with the other two templates
to OR1A1 shown in Supplementary Figures 5, 6. All OR1A1
TMs have good HC with 6HLP TMs, except TM6. OR1A1
shows good HC with 1U19 from TM1 to TM5 but not for
TM6 and TM7, while it shares good HC with 6IIU in TM1,
2, 3, 5, and 6 but not in TM4 and TM7. The OR1A1 has
poor HC throughout with 3ODU except within TM1, 3, and
5. The hydrophobic moment was calculated for both the target

FIGURE 3 | Phylogenetic tree showing all available GPCR templates are distantly related to OR1A1. The selected templates for OR1A1 are shown in red color,
members having known structures for class A are in black, Class B1 are in green color, Class C are in purple, and Class F are in gold color.
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FIGURE 4 | The helical wheel plots are taken from Bio-GATS for the TM1 of the target sequence (OR1A1) and the templates [NK1R_Human (6HLP), OPSD_BOVIN
(1U19), TA2R_Human (6IIU), and CXCR4_Human (3ODU)]. The hydrophobic moment for OR1A1 and 1U19 are pointing in similar directions.

sequence as well as the template sequences. The hydrophobic
moment plots show the amphiphilic nature of the helices for
the target as well as templates (TM1 in Figure 4, TM2–7 in
Supplementary Figures 7–9). Amphiphilic helices are partly in
the membrane and partly exposed to the aqueous phase. We
used the Eisenberg scale and a window size of 11 as suitable
for membrane proteins (Eisenberg et al., 1984) to calculate the
hydrophobic moment of each helix. The hydrophobic moment
points in the direction of maximum hydrophobicity (shown by an
arrow within the hydrophobic moment plots) and it often faces
the lipid surface (Liu et al., 2004). A large hydrophobic moment
value shows the amphiphilicity of the helix perpendicular to
its axis (Eisenberg et al., 1982). TMs 5, 6, and 7 for OR1A1
are more amphiphilic as compared to the rest of the helices.
The hydrophobic moments for OR1A1 TMs 1, 2, 5, and 6 are
pointing almost in the same direction as 1U19 (Figure 4 and
Supplementary Figures 7–9). The incorporation of hydrophobic
moment information into the structural model building is
essential in the proper positioning of helices within the model
(Crasto, 2010).

An example of the downloadable Bio-GATS summary file,
with details of helix-wise alignment, HC comparison and
hydrophobic moment results, along with the overall GRoSS

TABLE 3 | Parameters used by Bio-GATS to predict top templates for OR1A1.

Rank Template Sequence
identity (%)

Resolution
(Å)

Sh Sb Sr St Srank

1 6HLP 37 2.2 11 6 1 18 2.91

2 1U19 20 2.2 8 8 1 17 2.75

3 6IIU 36 2.5 8 8 1 17 2.75

22 3ODU 25 2.5 2 −9 1 −6 1.54

Sequence identity is listed for comparison.

alignment, is provided for the OR1A1-1U19 target-template pair
in Supplementary Note 1.

For most queries, there best scoring template can be selected
for analysis, and the Bio-GATS alignment can be used directly
for model building and SBVS. For OR1A1, the top three
templates show very similar Srank scores (Table 3), suggesting
that they may all be suitable for the query sequence, due to
the evolutionary distance of OR1A1 (and other ORs in general)
from available templates (Figure 2). Further analysis such as
ligand profiling is required from our previous study on OR1A2
(Jabeen and Ranganathan, 2020), to see if all three templates are
equally suitable or one is better than the other two.
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We calculated the Tanimoto score between the known OR1A1
ligands and the ligand bound to the template structures, based
on PubChem fingerprints computed using Knime (Berthold
et al., 2009). Retinal (PubChem CID: 638015), the ligand for
1U19 (Figure 5 in blue) is more similar to the known ligands
for OR1A1 followed by ramatroban (PubChem CID: 123879,
Figure 4 in green) in 6IIU and netupitant (PubChem CID:
6451149, Figure 5 in gold) in 6HLP. We also compared the ligand
profile for the lower scoring 3ODU and OR1A1. An isothiourea
derivative, ITD (PubChem CID: 25147749, Figure 5 in pink),
the ligand for 3ODU, did not match with any OR1A1 ligand
(Figure 5), listed in listed in Supplementary Table 4 and is clearly
not suitable for OR1A1.

The available structure for 6HLP is not complete, also the
ligand profile for netupitant does not match with OR1A1 ligands.
The 2nd best template 1U19 possesses a complete structure and
contain a hydrophobic ligand that matches with OR1A1 ligand
profile. It has the same resolution as 6HLP and Sb (8) is also
better than that of 6HLP. Therefore, we selected 1U19 as a final
template. To validate the Bio-GATS template selection, we built
the homology model based on the suggested template (1U19)
and performed molecular docking with known OR1A1 ligands
having mutagenesis data and inspected whether we are able to
recover the mutagenesis residues or not. For comparison, we also
built a model with a template showing poor correspondence with
OR1A1 in terms of Sh, Sb and ligand profile.

We built models for OR1A1 based on 1U19 and 3ODU
(template showing low Srank, and mismatched ligand profile),
to differentiate between good and bad templates. We built

FIGURE 5 | Ligand profile for OR1A1 and selected templates. The similarity of
OR1A1 ligands with: retinal (from 1U19) is represented in blue color, netupitant
(from 6HLP) is in gold color, ramatroban (from 6IIU) is represented in green
color, and ITD (from is represented in pink color). OR1A1 ligands from 1 to 51
are listed in Supplementary Table 4. Tanimoto scores between OR1A1
ligands and the template ligands range from 0.1 to 0.7 (in bold).

50 models using each template. The models with minimum
Modeller objective function were selected for mutagenesis data
analysis by molecular docking. Currently, OR1A1 has site-
directed mutagenesis data for 13 sites for six ligands. Five
positions 3.36, 3.37, 3.40, 4.56, and 5.46 are involved in
(S)-(-)-citronellol (PubChem ID: 7793) and (S)-(-)-citronellal
(PubChem ID: 443157) binding, 11 positions 3.34, 3.36, 3.37,
3.39, 4.53, 4.56, 5.46, 6.47, 6.48, 7.41, and 7.42 are important
for (S)-(+)-carvone (PubChem ID: 16724) and (R)-(-)-carvone
(PubChem ID: 439570) binding, and positions 6.48 and 6.55
are crucial for musk tibetene (PubChem ID: 67350) and musk
xylene (PubChem ID: 62329) binding to OR1A1. Overall, seven
positions 3.36, 3.37, 6.48, 6.55, 7.41, and 7.42 are part of the
orthosteric binding site of GPCRs.

We downloaded the structures for these six ligands from
PubChem and docked them to the predicted binding pocket of
OR1A1, selected on available mutagenesis data. After docking
(S)-(-)-citronellol and (S)-(-)-citronellal, we recovered 5/5 sites
with the 1U19-based OR1A1 model but only 2/5 sites with the
3ODU-based OR1A1 model. Upon docking (S)-(+)-carvone and
(R)-(-)-carvone, we were able to recover 6/11 sites with a 1U19-
based model but only 3/11 sites with a 3ODU-based model.
Docking musk xylene and musk tibetene into the binding pockets
of OR1A1 models resulted in the recovery of both sites with a
1U19-based model and just one site using a 3ODU-model. In
summary, we were able to recover maximum mutagenesis sites
with the 1U19-based OR1A1 model (Supplementary Table 5).
Thus, comparing the ligand profile of the target and candidate
templates might be a useful measure in validating an appropriate
template, in addition to the other measures. Mutagenesis data
might also help in refining the predicted binding pocket of the
model and has previously been incorporated to improve GPCR
homology models in the literature (Ivanov et al., 2009; Perry et al.,
2015).

We also used GPCR modeling servers to select the
templates for OR1A1 and downloaded the generated alignment.
Unfortunately, GOMoDo, and GPCR-ModSim servers did not
permit submission of the query sequence therefore, results from
these two servers are not included in the current study. GPCR-
SSFE did not work for OR1A1 as the sequence did not match
with the HMMER2 generated profile. Both GPCRM and GPCR-
I-TASSER suggested AA2AR (PDBID: 3EML, resolution: 2.6 Å)
as the top template. 3EML has resolution >2.5 Å and is not
considered by Bio-GATS, although the high resolution AA2AR
template, 5IU4 was identified as the 5th ranking template (in the
result summary table, available from Bio-GATS Github page).
The alignment generated by the two servers and Bio-GATS
are shown in Supplementary Figures 10–12. The TM6 center
residues were not aligned within the GPCRM and GPCR-I-
TASSER server generated alignments but it was aligned properly
by Bio-GATS. The Bio-GATS generated alignment needs manual
adjustment within loop regions before proceeding to the model
building step (Supplementary Figure 12).

Bio-GATS Features
Bio-GATS is connected to a local data file which contains
manually curated 814 GPCR sequences, their TM definitions,
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PDBIDs of currently available 443 GPCR structures, their
conformation, resolution, and query coverage in terms of
completeness of the structure. Bio-GATS provides three main
features to the users. Firstly, the user can retrieve the top three
templates for the queried sequence by clicking on the search
button (Figure 6).

The top three templates are retrieved on the basis of three
biophysical parameters, namely the resolution, hydrophobicity
profile, and BRS score. The user can navigate among
inactive, active, and intermediate conformational states as
indicated in GPCRdb. The choice for selecting from a list
of high resolution (≤ 2.5 Å) structures is also provided
(Figure 7). For some receptors, there exist multiple PDBs
as in the case of OPSD_BOVIN, with 44 PDBs available.
For such a scenario, only high-quality structures were
shortlisted. The quality of the structure was determined on
the basis of resolution and completeness of the structure

(query coverage >75%). Hence, for the search template
option, high-quality structures for 54 receptors in inactive,
34 receptors in active, and 19 receptors in intermediate
conformations were considered. A detailed report (shown
in Supplementary Note 1) with alignments and helix-wise
HC and hydrophobicity moment of each target-template
pair can be downloaded for comparison and data/figure
extraction. A comprehensive data table with all scoring
parameters for all templates considered is also available
for further analysis (examples available from Bio-GATS
Github page).

For consideration of options other than resolution, HC, and
BRS score for template selection, the browse functionality is
available, as an advanced feature in Bio-GATS. Within this
feature, the expert user might browse for the best template
among the complete list of 76 receptors with 443 available
PDBs. In addition to the parameters considered earlier, the

FIGURE 6 | The main interface of Bio-GATS. Automated selection of templates can be done by clicking on the search template button.
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browse template page provides sequence identity and TM-wise
sequence identity for each template (Supplementary Figure 13).
The sequence identity is calculated through a locally installed
BLAST alignment. Also, all the available PDB entries, their
resolution, and query coverage for each receptor can be displayed
for comparison purposes (Supplementary Figure 14). The
Browse template feature thus lists comprehensive biophysical
parameters comparing the query sequence to all available
templates, which might also help the user in selecting multiple
templates. HC between the target and the template within
the search and browse template features are based on TM
definitions derived from the GRoSS alignment (Cvicek et al.,

2016). For customized TM definition, a third feature, the
SSD calculator, has been added to Bio-GATS, where HC is
calculated based on user-defined TM definitions for both the
target and the template (Supplementary Figure 15). This feature
is also useful for GPCR sequences that are not present within
the curated data.

The hydrophobicity plots can be visualized and downloaded
for each selected target-template pair (Supplementary Figure 3).
The helical wheel plots can also be shown which might help
the user in identifying the helical amphiphilicities (Figure 3).
Also, the center residue-based TM alignment between the
target and the template can be visualized and downloaded

FIGURE 7 | The Search template window with options including GPCR conformation (state) and resolution.
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(Supplementary Figure 16). The full-length alignment between
the target and the selected template can also be downloaded
in FASTA format for editing using available programs such as
MEGA (Kumar et al., 2016), and AliView (Larsson, 2014), or
directly building homology models through online servers such
as GOMoDo (Sandal et al., 2013) or locally installed independent
programs, for instance, Modeller (Webb and Sali, 2017). All
these options are available from the different Bio-GATS windows.
Further, a summary report (Supplementary Note 1) with the
full-length alignment, TM-wise alignment, HC plots, and helical
wheel plots of the target-template pair can be downloaded for
detailed analysis and for use in reports and publications.

CONCLUSION

The existence of low sequence identity among available GPCR
structures and sequences particularly OR sequences demands
additional parameters for template selection. HC, similarities
within the GPCR hotspot residues and matching the target-
template ligand profile might serve as additional local parameters
for GPCR template selection. Further, the incorporation of
mutagenesis data might be helpful in refining GPCR homology
models. Bio-GATS provides a convenient and user interactive
way of selecting an appropriate template for a target GPCR,
based on hydrophobicity profile and hotspot residue similarity
while displaying global sequence identity as well as TM
sequence identity for more advanced usage. The tool provides
a comprehensive biophysical comparison between a target
sequence and all the available templates which might assist in
selecting more than one templates, commemorating Chothia’s
pioneering work in structural bioinformatics.
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An understanding of the forces shaping protein conservation is key, both for the
fundamental knowledge it represents and to allow for optimal use of evolutionary
information in practical applications. Sequence conservation is typically examined at
one of two levels. The first is a residue-level, where intra-protein differences are
analyzed and the second is a protein-level, where inter-protein differences are studied.
At a residue level, we know that solvent-accessibility is a prime determinant of
conservation. By inverting this logic, we inferred that disordered regions are slightly
more solvent-accessible on average than the most exposed surface residues in
domains. By integrating abundance information with evolutionary data within and
across proteins, we confirmed a previously reported strong surface-core association
in the evolution of structured regions, but we found a comparatively weak association
between disordered and structured regions. The facts that disordered and structured
regions experience different structural constraints and evolve independently provide a
unique setup to examine an outstanding question: why is a protein’s abundance the
main determinant of its sequence conservation? Indeed, any structural or biophysical
property linked to the abundance-conservation relationship should increase the relative
conservation of regions concerned with that property (e.g., disordered residues with
mis-interactions, domain residues with misfolding). Surprisingly, however, we found
the conservation of disordered and structured regions to increase in equal proportion
with abundance. This observation implies that either abundance-related constraints are
structure-independent, or multiple constraints apply to different regions and perfectly
balance each other.

Keywords: protein abundance, protein evolution, protein structure, misfolding, intrinsic disorder, contact number,
misinteraction, yeast proteome

INTRODUCTION

During the course of evolution, mutations arise throughout genomes and can impact every protein
at every site. However, contemplating a multiple sequence alignment of orthologous sequences
typically shows widely differing levels of conservation across sites. Additionally, comparing
multiple sequence alignments of different orthogroups shows even larger differences: certain groups
such as those of ribosomal genes can be well conserved despite hundreds of millions of years of
divergence, while others accumulate mutations much faster.
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Amino-acid residues within proteins are subject to functional,
biophysical, and structural constraints that are interconnected.
These constraints result in different degrees of purifying selection
along the sequence (i.e., purging of deleterious mutations by
natural selection), which yields different levels of positional
conservation. We discuss here structural aspects related to
these constraints while placing an emphasis on works of Cyrus
Chothia, to whom this issue is dedicated, and refer the reader
to several reviews for a comprehensive overview (Liberles et al.,
2012; Sikosek and Chan, 2014; Echave et al., 2016; Echave
and Wilke, 2017). Following the characterization of the first
few structures of proteins, their comparative analysis made it
clear that the burial of non-polar residues accompanied with
Van der Waals interactions and hydrogen bonding were the
main contributors to the folding free energy (Chothia, 1974,
1975, 1976; Miller et al., 1987). Confirming the “hydrophobic
bonding” intuition of Kauzmann (Kauzmann, 1959) and relying
on calculations of molecular surfaces based on the algorithm of
Lee and Richards (1971), Chothia estimated that each square
Ångstrom of accessible surface removed from contact with water
provides a free energy gain of 25 cal. Mol−1 (Chothia, 1974,
1975). At the same time, he provided universal relationships
governing protein folding, e.g., on the proportion of the total
accessible surface of a polypeptide chain that becomes buried
upon folding (Chothia, 1975). This simple relationship has
a profound meaning with respect to surface-to-volume ratios
in folded proteins, notably that longer proteins should fold
following a beads-on-a-string model rather than by forming
larger beads (Wetlaufer, 1973) – indeed it was soon realized
that beads (domains) are fundamental units of protein evolution
(Chothia, 1992; Murzin et al., 1995; Bateman et al., 2002;
Gough and Chothia, 2002). On top of hydrophobic bonding
energy, a high degree of steric complementarity creates a well-
packed protein interior (Chothia, 1975), in which mutations are
incrementally accommodated by small structural changes (Lesk
and Chothia, 1980). Ultimately, as sequences diverge, structures
do too, albeit more slowly (Chothia and Lesk, 1986, 1987).
Considering that structures are globally maintained during the
course of evolution, it is intuitive that buried residues, which
contribute to folding and stability more than surface residues
(Creighton and Chothia, 1989; Lim and Sauer, 1989; Tokuriki
et al., 2007), are more conserved (Koshi and Goldstein, 1995;
Goldman et al., 1998; Guo et al., 2004; Bloom et al., 2006;
Sasidharan and Chothia, 2007; Goldstein, 2008; Conant and
Stadler, 2009; Franzosa and Xia, 2009; Liberles et al., 2012;
Yeh et al., 2014; Echave et al., 2015; Shahmoradi and Wilke,
2016; Spielman and Wilke, 2016; Echave and Wilke, 2017;
Liu et al., 2017).

We saw that the structure of a protein could help explain
why certain positions – notably those buried and in contact with
a large number of neighboring residues, are more conserved
than others. Protein structure can also help to rationalize why
certain proteins, e.g., those with more designable folds, evolve
faster than others (Shakhnovich et al., 2005; Bloom et al.,
2006). Globally, however, structural information only explains
a small fraction of the heterogeneity in evolutionary rates seen
across different proteins. Several studies have singled out other

protein-centric properties associated with this heterogeneity
(Zhang and Yang, 2015), including function (Wall et al., 2005;
Lopez-Bigas et al., 2008; Xia et al., 2009), essentiality (Hurst
and Smith, 1999; Hirsh and Fraser, 2001; Jordan et al., 2002;
Liao et al., 2006), the number of interaction partners (Fraser
et al., 2002; Bloom and Adami, 2004; Fraser and Hirsh, 2004;
Hahn and Kern, 2005; Kim et al., 2006; Xia et al., 2009), or
cellular abundance (Pal et al., 2001; Krylov et al., 2003; Rocha
and Danchin, 2004; Subramanian and Kumar, 2004; Drummond
et al., 2005; Bloom et al., 2006; Liao et al., 2006; Popescu
et al., 2006; Pál et al., 2006; Sällström et al., 2006; Drummond
and Wilke, 2008; Xia et al., 2009; Zhang and Yang, 2015).
The latter is, by far, the most significant, in particular among
unicellular organisms where there is no complexity added by
tissue-specific expression. Several mechanistic interpretations of
this abundance-conservation association have been proposed
(Drummond et al., 2005; Drummond and Wilke, 2008; Cherry,
2010; Gout et al., 2010; Plata et al., 2010; Levy et al., 2012; Yang
et al., 2012; Park et al., 2013; Zhang and Yang, 2015) and remain a
matter of active debate (Plata and Vitkup, 2018; Razban, 2019).
We will scrutinize this relationship further in the results and
discussion section, in the context of the results presented.

We have seen how protein structure helped to interpret and
rationalize data on evolutionary conservation. Here, we invert
this logic to characterize structural properties of disordered
regions from data on their evolutionary conservation. First,
we compared the evolutionary rate of disordered regions to
that of surface residues in the same protein and found that
disordered regions are equivalent to super-accessible surface
residues. Second, we know that the divergence of surface and core
residues is interdependent. In other words, a protein’s surface
can hardly diverge without mutations arising in its interior as
well, and vice-versa. We confirmed this finding in showing that
evolutionary rates of surface and interior regions are correlated
within proteins (R > 0.85). In contrast, the evolutionary rates
of disordered and domain regions were poorly coupled (R ∼

0.25), indicating that disordered regions are, for the most part,
structurally independent from domains in the same sequence.
Finally, the structural differences and the lack of interdependence
between disordered and structured regions supports that they
can be influenced differently by biophysical and structural
constraints. For example, an increased purifying selection for
protein stability is expected to impact buried residues more
than disordered ones. This idea led us to examine whether
abundance impacts the relative conservation between these
regions. Surprisingly, however, the relative conservation between
different regions appeared independent from abundance.

RESULTS AND DISCUSSION

Disordered Regions Are Equivalent to
Super-Accessible Surface Residues in
Terms of Their Conservation
Among proteins that need to fold into stable structures to
function, amino-acid residues buried in the protein interior
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contribute the most to stability. Consequently, these residues
are under stronger purifying selection than surface amino-acid
residues, and are, on average, more conserved in the sequence.
Two measures of residue burial have been associated with the
heterogeneity of conservation in sequences: (i) solvent accessible
surface area or ASA (Lee and Richards, 1971; Shrake and Rupley,
1973; Goldman et al., 1998; Bloom et al., 2006; Lin et al.,
2007; Conant and Stadler, 2009; Franzosa and Xia, 2009), which
measures the surface or fractional surface of an amino-acid
residue that is in contact with bulk water, and (ii) the packing
density of an amino-acid residue, which measure the density
of its neighbors. Different metrics capture this information,
including the contact number and the weighted contact number,
with the latter containing longer-range information (Franzosa
and Xia, 2009; Yeh et al., 2014). While not strictly equivalent,
both accessible surface area and packing density correlate
strongly (Echave et al., 2016), and both measures show that
the less buried is a residue, the less conserved it is within a
protein sequence.

This conservation-structure relationship prompts us to infer
structural properties of disordered regions from their pattern
of conservation within proteins. We know that disordered
regions are devoid of a hydrophobic core and therefore
cannot autonomously adopt a stable three-dimensional structure.
However, if we consider the spectrum of solvent accessibility
and packing density found among folded domains, where would
disordered regions position themselves on average? Would
they appear much less conserved than even the most solvent-
exposed regions? Some disordered regions serve purely as
linkers or entropic springs and are expected to show very
weak sequence conservation (Dyson and Wright, 2005; Van der
Lee et al., 2014). At the same time, disordered regions can
also form secondary structure elements and bind to partners
(Tompa, 2005; Vacic et al., 2007; Uversky and Dunker, 2010;
Wright and Dyson, 2015; Banani et al., 2017; Dignon et al.,
2019), thereby burying residues and transiently increasing their
packing density. For example, p27Kip1 can wrap around the
structure of Cdk2 to regulate its function (Russo et al., 1996;
Galea et al., 2008).

To position disordered regions on the solvent accessibility
spectrum observed in structured regions, we compared
the evolutionary rate of residues in both region types.
Specifically, we selected 3,350 proteins from Saccharomyces
cerevisiae, which contain at least 20 residues in both structured
regions and disordered regions. We inferred residue-level
conservation using Rate4Site (Pupko et al., 2002) on multiple
sequence alignments of orthologs from 14 fungal species
(see section “Materials and Methods”). Evolutionary and
structural information were mapped along the reference
sequence from the multiple alignment as illustrated for
STI1, a conserved Hsp90 co-chaperone (Figure 1A). We
calculated a ratio per protein i, corresponding to the
mean evolutionary rate of residues in disordered regions
(Ridiso) divided by the mean rate of residues in a domain
(Ridomain). Overall, considering 2607 proteins with known
orthologs, containing both types of regions, the median
ratio (Ridiso/Ridomain) is equal to 2.2 (Figure 1B). If we

now consider domains of known structure (i.e., present in
PDB, currently ∼670) instead of those predicted, we find
a similar median ratio equal to 2.0. For those proteins,
we compared the conservation of disordered regions to
that of buried and surface residues separately and found
ratios equal to 3.1 and 1.4, respectively. Thus, in an
average protein of this dataset, disordered regions evolve
3.1 and 1.4-fold faster than buried and surface residues,
respectively (Figure 1B).

This result is based on a definition of surface that includes
residues with >25% relative ASA. As higher ASA is associated
with lower conservation, we asked whether increasing the cut-
off progressively from >25 to >80% would yield a point
where surface residues evolve faster than disordered ones
(Figure 1C). We did not reach such a point as the ratio
remained above 1 for all values. However, the ratio did
converge to a value close to 1, highlighting that in an average
protein, disordered residues are almost equivalent in their
conservation to the most exposed residues at the surface of
structured regions.

If we assume that the differential conservation of sites
within protein sequences largely reflects different structural
constraints, we can infer that disordered regions are, on
average, highly solvent-exposed and under weak structural
constraints. In sum, our results place disordered regions in
the continuum of protein structure, at the end of the solvent-
accessibility spectrum. It will be interesting to refine this
relationship in the future. For example, by comparing additional
properties such as hydrophobicity (Kyte and Doolittle, 1982)
or stickiness (Levy, 2010), by considering where disordered
segments fall in the sequence (e.g., N/C-ter and inside
domains), or by breaking down disorder into different types
(Bellay et al., 2011).

Conservation of Disorder Versus
Domains Is Poorly Correlated Among
Low Abundance Proteins and the
Correlation Increases With Abundance
Individual residues within a structure contribute to stability
together. As a result, we can expect the evolutionary
conservation of residues within a structure to be uniform.
To examine this idea, we compared the average evolutionary
rate of surface and buried amino-acid residues within
structures. Importantly, we know that protein abundance
imposes global constraints on the conservation of proteins,
which may also result in a uniform evolutionary pressure
across the sequence, independently of the structure. Thus,
we initially focused on low abundance proteins in which
such global constraints are minimized. We observed the
conservation of surface and buried regions to correlate
strongly (R > 0.83, Figure 2A), which is reminiscent
of the surface-core association described previously
(Tóth-Petróczy and Tawfik, 2011).

We next compared the association in evolutionary
conservation between disordered regions and domains found
in the same protein. In this case, the correlation was reduced
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FIGURE 1 | The evolutionary rate of disordered regions is comparable to that of super-exposed regions in folded proteins. (A) Evolutionary information and structural
features are mapped onto protein sequences from S. cerevisiae. The minimap represents the multiple sequence alignment of orthologous sequences to STI1. The
amino acids are colored using CLUSTAL’s color scale (Thompson et al., 1994) depending on residue type and conservation. The zoomed-in panel illustrates
residue-level conservation, which we calculated with Rate4Site (Pupko et al., 2002). We mapped the positions of PFAM (Bateman et al., 2002) and SUPERFAMILY
(Gough and Chothia, 2002) domains (gray box), and of disordered regions predicted by IUPRED (Dosztányi, 2018) (cyan ribbon). We also mapped structural
information available from PDB (Rose et al., 2017; Armstrong et al., 2019) and 3DComplex (Levy et al., 2006) on sequences. For this particular sequence, structural
information was partially available based on PDB code 3UQ3 (Schmid et al., 2012). (B) Within proteins, the evolutionary rate of residues in different regions are
averaged, and we compare the ratio of these averages. We show the median of ratios with error bars corresponding to the median absolute deviation. Surface and
buried residues are defined based on relative ASA of >25 and ≤25%, respectively (Levy, 2010). (C) We calculate the same ratio as in panel (B), between disordered
regions and surface regions, using an increasingly stringent relative ASA cut-off to define surface residues. As we increase the cutoff, the median ratio tends toward
1, which highlights that disordered residues evolve only slightly faster than the most exposed residues at protein surfaces.

greatly (R = 0.25), indicating that the structural connectivity
and interdependence between disordered regions and domains
are globally weak. These results are consistent with those
of the previous section, which depict disordered regions as
being highly solvent-accessible and structurally independent

from domains. However, proteins expressed at higher levels
show increasing correlation, from R = 0.40 among medium
abundance proteins, to R = 0.63 in the class of proteins with
the highest abundance (Figure 2B, lower row). This apparent
coupling in evolutionary rates is unlikely to have a structural
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FIGURE 2 | The correlation in the conservation of disorder vs domain regions is poor among low abundance proteins and increases with abundance. (A) The top
row shows the average evolutionary rate (ER) of surface residues (x-axis) vs buried residues (y-axis) per protein, for two classes of abundance (0–3 and 3–18 ppm or
parts per millions). The lower row shows the average ER of disordered residues (x-axis) vs residues in domains (y-axis) per protein, for the same two classes of
abundance. A protein falling on the diagonal (dashed line) means that residues in the two regions being compared have equal evolutionary rates (i.e., a ratio of 1). The
Spearman rank correlation coefficient (r), the associated p-value (p, two-sided Spearman’s rank correlation test), and the number of proteins (n) within each class of
abundance are given above each scatterplot. (B) Same as in panel (A), for three classes of abundance (18–59, 59–352, and 352–21,866 ppm or parts per million).

FIGURE 3 | The relative evolutionary rates of different protein regions are steady with abundance. Distribution of evolutionary rates ratio between different regions in
the sequence (y-axis), across five classes of protein abundance (x-axis). A ratio is calculated by dividing the average evolutionary rate of residues found in two
regions panel (A) surface vs. buried, panel (B) disorder vs. domain. The white dashed line highlights the median ratio across bins of abundance. Overlaid box plots
show the interquartile range (IQR = 25 to 75% quantiles) with their whiskers extending to 1.58 × IQR. Beyond this interval, the three most extreme outlier values are
annotated. The number of proteins contributing to each distribution is given. We also highlight the relative rates for a pair of proteins, one with low and one with high
abundance (STI1 and DBF4). These two proteins show comparable structural features, different evolutionary rates (respectively, 0.575 and 1.34 for their full
sequence), and similar ratios.

origin. Rather, it probably results from global constraints linked
to abundance and exerted on the whole protein sequence.
This apparent coupling also implies that different regions
in a sequence all experience increasingly strong purifying

selection with increasing abundance. This observation led
us to quantify whether such negative selection increases
equally in all regions, or whether some regions become more
constrained than others.
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FIGURE 4 | Evolutionary rates of different regions and their ratio as a function of abundance. (A) Evolutionary rates (y-axis) as a function of protein abundance
(x-axis) for surface regions, full-length structures, and buried regions. The ratio of evolutionary rate for surface vs buried regions is also shown as a function of
abundance. Contour lines show the density of points. The median evolutionary rate and median protein abundance are shown by a vertical and horizontal line,
respectively. The Spearman rank correlation coefficient and p-value are given with the number of proteins in each dataset. A black line shows the fitted sigmoidal
regression for each plot. We highlight two proteins, one with a low and one with a high abundance (DBF4 and STI1). Both have comparable structural features but
different evolutionary rates. (B) Same representation as in panel (A), now considering disordered versus domain regions.

Evolutionary Constraints Imparted by
Protein Abundance Scale Similarly
Among Surface, Buried, and Disordered
Regions
We saw that surface residues in a protein evolve twice as
fast as buried residues on average. This difference, which
has long been recognized, is mainly explained by solvent-
accessibility/packing density and reflects that protein structures
are more likely to be destabilized by mutations at buried positions
than by mutations at the surface (Koshi and Goldstein, 1995;
Goldman et al., 1998; Guo et al., 2004; Bloom et al., 2006;
Sasidharan and Chothia, 2007; Goldstein, 2008; Conant and
Stadler, 2009; Franzosa and Xia, 2009; Liberles et al., 2012; Yeh
et al., 2014; Echave et al., 2015; Shahmoradi and Wilke, 2016;
Spielman and Wilke, 2016; Echave and Wilke, 2017; Liu et al.,
2017). Similarly, residues in disordered regions evolve faster than
those in domains. Interestingly, this reflects that surface, buried,
and disordered residues experience different structural and
biophysical constraints. Thus, we propose to examine whether
the ratio of their conservation is changing as a function of
abundance. For example, observing that buried residues are twice
more conserved than surface residues among low abundance

proteins, and become four-times more conserved among high
abundance proteins would suggest that stability is increasingly
constrained with higher abundance.

We analyzed the ratio of conservation (Figures 3A, 4A) of
surface and buried residues as a function of abundance. The
distribution of these ratios showed comparable median values of
about ∼2. In the highest abundance class, this ratio reached ∼2.2
(Figure 3A) creating a significant albeit weak (R = 0.2) correlation
(Figure 4A). Overall, the ratio is relatively stable, implying that
both regions are constrained to a similar extent with increasing
abundance. Alternatively, a relatively constant ratio could be
favored by the coupling we observed between interior and surface
regions (Figure 2, top row). Accordingly, constraints placed on
the protein surface could percolate to interior regions and vice
versa (Tóth-Petróczy and Tawfik, 2011). To control for this effect,
we next compared disordered and domain regions, which show
minimal structural coupling. We also observed a stable ratio of
∼2 across the five same abundance classes (Figure 3B), and we
observed no dependence of the ratio with abundance even at the
highest levels (R = −0.02, Figure 4B). Additionally, focusing on
disorder and domain regions increased the size of the dataset
as we were not limited by the availability of atomic-resolution
structures, so this observation applies to the yeast proteome.
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By definition, disordered regions and domains should
experience distinct structural and biophysical constraints.
Thus, the fact that these two regions appear equally
constrained with increasing abundance is puzzling and can
be interpreted in different ways. One possible explanation is
that constraints associated with abundance apply to entire
sequences independently of structure. Such constraints could
include translational selection (Akashi, 2003), although region-
specific codon-bias constraints may exist as well (Tuller et al.,
2010; Pechmann and Frydman, 2013), cost of expression
(Dekel and Alon, 2005; Wagner, 2005; Cherry, 2010; Gout
et al., 2010; Plata et al., 2010), as well as other functional
elements and sequence properties that may impact transcription
or translation (Stergachis et al., 2013; Zhou et al., 2016).
Alternatively or in addition, region-specific structural and
biophysical constraints associated with protein concentration
could increase in similar proportions with abundance, resulting
in a stable ratio. In this case, two primary constraints have
been characterized: a first on protein stability (Serohijos
et al., 2012, 2013) leading to selection against misfolding
(Drummond et al., 2005; Drummond and Wilke, 2008),
would dominate among interior residues. A second, on
protein solubility (Knowles et al., 2014; Garcia-Seisdedos et al.,
2017, 2018; Dubreuil et al., 2019; Foy et al., 2019; Macossay-
Castillo et al., 2019; Vecchi et al., 2020), with selection against
promiscuous interactions (Deeds et al., 2007; Levy et al.,
2009, 2012; Liberles et al., 2011; Yang et al., 2012), would
dominate among solvent-exposed residues. However, the fact
that constraints on different regions scale proportionally with
abundance may appear surprising and will need to be explored
in future works.

CONCLUSION

We analyzed the evolutionary conservation of sites within
proteins, and of proteins within proteomes. We found that
disordered regions evolve about three-fold faster than buried
regions, and 1.4-fold faster than surface regions. Additionally,
disordered regions evolve about as fast as the most solvent-
exposed surface regions, highlighting that they extend the
continuum of protein structure as a “super-accessible” surface.
Unlike regular surface residues, however, disordered regions
evolve more independently from domains in the same sequence.
This independence allowed us to examine how abundance
constrains different regions that are not structurally connected
in sequences. Notably, the evolution of disordered regions and
domains changed in a similar proportion with abundance: on
average, disordered regions evolved twice as fast as domains
across the entire range of abundance. Since different regions
are subject to different structural and biophysical constraints,
we foresee that such comparative analyses of conservation-
ratios as a function of abundance will help identify mechanisms
underlying the abundance-conservation relationship. It is likely
that multiple mechanisms are at play (Mehlhoff et al., 2020) and
may be captured by targeted analyses of specific regions and
protein subsets.

FIGURE 5 | Pairwise sequence identity across orthologs pairs. For each
orthogroup we calculate the average percent sequence-identity using all
ortholog pairs or only pairs that include the S. cerevisiae protein. The
distribution for these two measures are shown with dark and light blue,
respectively. Vertical lines highlight the median. The number of orthogroups is
3,798.

MATERIALS AND METHODS

Reference Proteome Sequences
The sequences were taken from the reference S. cerevisiae
proteome maintained by SGD (Cherry et al., 2012). To facilitate
data integration, we also mapped those reference sequences
against the UniprotKB complete proteome for S. cerevisiae (Stutz
et al., 2006; UniProt Consortium, 2019).

Crystallographic Structures
We relied on the 3DComplex database (Levy et al., 2006) to
map UNIPROT sequences onto atomic coordinates of protein
structures. For each yeast protein, the structures matching the
UNIPROT sequence with the largest sequence overlap (minimum
20%) and identity above 90% were retained. Only experimentally
determined crystallographic structures with resolutions below 3.0
Ångtrsoms were considered.

Cellular Abundance
Protein abundances were obtained from Pax-Db (v4.0, May 2015)
(Wang et al., 2012, 2015), which provides relative abundances for
unicellular and multicellular organisms including tissue-specific
data. We use overall abundance inferred from all available data
sets (integrated data set).

Orthologs Alignment and
Position-Specific Evolutionary Rate
The orthologs’ alignments were obtained from the original
work by Wapinski et al. (2007). Briefly, genes sharing
significant sequence similarity were clustered into putative
orthogroups and their phylogeny was constructed by a modified
neighbor-joining procedure based on pre-computed residues
similarities and shared synteny scores. This process was
repeated and optimized until each orthogroup consisted
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of genes that shared a single common ancestor. Here,
we used 3798 groups of orthologous proteins along with
their multiple sequence alignment encompassing 14 fungal
species (S.cerevisiae, Saccharomyces paradoxus, Saccharomyces
mikatae, Saccharomyces bayanus, Naumovozyma castellii
(Saccharomyces castellii), Candida glabrata, Kluyveromyces
lactis, Debaryomyces hansenii, Yarrowia lipolytica, Eremothecium
gossypii (Ashbya gossypii), Lachancea waltii (Kluyveromyces
waltii), Candida albicans, Aspergillus nidulans, Fusarium
graminearum, Magnaporthe grisea, Neurospora crassa,
Cryptococcus neoformans, Schizosaccharomyces pombe) were
used. Only 6 orthogroups had one sequence missing
and these were replaced by indels. The median pairwise
sequence identity within these 3,798 orthogroups is
58.3% (Figure 5).

All alignments were computed using MUSCLE (Edgar, 2004)
and then concatenated to estimate residue-level evolutionary rate
using the software Rate4Site (Pupko et al., 2002). Additional
details on how evolutionary rates were estimated are available in
Landry et al. (2009).

Intrinsic Disorder Predictions
We predicted disordered regions in the yeast proteome by
combining short and long disorder segments predicted by IUPred
(Mészáros et al., 2009; Dosztányi, 2018). We considered the
20% amino-acid residues with the highest disorder probabilities
among all proteins. In all analyses, we required a minimum
number of 20 residues in a particular region to calculate an
average evolutionary rate. When fewer residues were available,
the average rate of the region was considered undefined.

Domains Assignment
To assign domains, we aligned profiles from Pfam-A (v27.0, May
2013) (Bateman et al., 2002; Finn et al., 2014) and SUPERFAMILY
(v1.75, March 2013) (Gough, 2002; Oates et al., 2015) to reference
proteome sequences, filtering the hits with an E-value score above

10−3. Finally, domain residues are those that were identified as
part of a hit from either Pfam, SUPERFAMILY, or both.
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What is the architectural “basis set” of the observed universe of protein structures? Using
information-theoretic inference, we answer this question with a dictionary of 1,493
substructures—called concepts—typically at a subdomain level, based on an unbiased
subset of known protein structures. Each concept represents a topologically conserved
assembly of helices and strands that make contact. Any protein structure can be dissected
into instances of concepts from this dictionary. We dissected the Protein Data Bank and
completely inventoried all the concept instances. This yields many insights, including correlations
between concepts and catalytic activities or binding sites, useful for rational drug design; local
amino-acid sequence–structure correlations, useful for ab initio structure predictionmethods; and
information supporting the recognition and exploration of evolutionary relationships, useful for
structural studies. An interactive site, PROÇODIC, at http://lcb.infotech.monash.edu.au/prosodic
(click), provides access to and navigation of the entire dictionary of concepts and their usages,
and all associated information. This report is part of a continuing programme with the goal of
elucidating fundamental principlesof protein architecture, in the spirit of thework ofCyrusChothia.

Keywords: architectural concepts, protein-building blocks, structural motifs, lossless compression, information
theory, folding pattern

1 INTRODUCTION

The polypeptide chains of amino acids (primary structure) contain, in most proteins, regions that
fold into helices and strands of sheets (secondary structure), which in turn assemble to give proteins
their intricate three-dimensional shapes and folding patterns (tertiary and quaternary structures). As
of April 2021, experimental methods have already provided more than 167,000 entries in the Protein
Data Bank (PDB) (Berman et al., 2003), containing the three-dimensional coordinates of proteins
and protein–nucleic acid complexes from a wide range of species.

Unraveling protein architecture and discovering the relationship among these major levels of
structural description provide the key to understanding how proteins function, how their 3D folding
patterns form, and how they evolve (Lesk, 2016). Investigations of protein folding patterns have
revealed recurrent themes (Pauling and Corey, 1951; Pauling et al., 1951; Levitt and Chothia, 1976;
Lesk and Rose, 1981; Chothia and Lesk, 1986; Richards and Kundrot, 1988), which form the basis for
widely used hierarchical classifications of protein structures (Murzin et al., 1995; Orengo et al., 1997;
Andreeva et al., 2013; Schaeffer et al., 2016). Nevertheless, many aspects of the relationships across
structural levels remain unresolved. Further, François Jacob observed that proteins evolve by
“bricolage,” that is, through evolutionary tinkering by reusing “pieces” from other proteins
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(Jacob, 1977; Duboule and Wilkins, 1998). Despite much
previous work to unravel these “pieces,” the problem of
precisely characterizing them has remained open.

Chothia and Lesk (1986) introduced the idea of a core of the
folding patterns of homologous proteins. This core comprises a
maximal set of secondary structural elements (SSEs) that
assemble in a common 3D topology, while withstanding a
certain amount of distortion. The parts outside the core are
structurally more variable.

Many related proteins share some but not all of the
substructures that form their cores. Therefore, it is of great
interest to discover the nature of the substructures that
contribute to the cores of protein families. Some of these are
supersecondary structures—small recurrent combinations of
successive elements of secondary structure, such as the β-α-β
subunit. Supersecondary structures recur within many protein
folds and can be shared even by unrelated proteins. For example,
the β-α-β subunit appears in NAD-binding domains, in TIM
barrels, and in many other proteins.

Early definitions of supersecondary structures relied strongly
on experts’ spotting and naming them (Rao and Rossmann, 1973;
Kister, 2013). With the steady growth of the PDB, several
methods have been developed to identify automatically, with
varying operational definitions, a library of substructures that
form what can be considered as the 3D building blocks of protein
structures (Unger et al., 1989; Rooman et al., 1990; Unger and
Sussman, 1993; Camproux et al., 1999; Micheletti et al., 2000;
Kolodny et al., 2002; Friedberg and Godzik, 2005; Joseph et al.,
2010; Chitturi et al., 2016; Dybas and Fiser, 2016;Mackenzie et al.,
2016; Nepomnyachiy et al., 2017; de Oliveira et al., 2018; Joshi,
2018). However, these approaches have yielded limited libraries
containing mostly short oligopeptide fragments, or assemblies of
typically 2–4 secondary structural elements. It has been a
challenge so far to go further than that and dissect protein
structures into a more complete set that includes larger
conserved substructures. (A more detailed exploration of key
prior work on this topic is provided under “Comparison with
previous work” within the “Results” section.) Apart from the
enormous computational challenge this problem poses, the
attempts made so far have lacked a rigorous framework in
which to describe, compute, identify, and resolve a dictionary
of conserved assemblies of secondary structures.

Thus, the key focus of this work is to go beyond definitions of
recurring substructural patterns that are identified using ad hoc
formulations and adjustments. This work utilizes new statistical
models to describe all observed protein folding patterns in terms of
their substructural constituents. It provides an attempt toward a
systematic description of recurrent substructures of protein folding
patterns usingmethodological devices never previously explored in
the literature on this topic. Finally, this work is broadly analogous
(in scope and application) to finding a formalized description of
“syntactic structures” that now underpins linguistic analyses of
natural languages (Chomsky, 1957).

Specifically, this work unravels observed protein folding
patterns into a dictionary of architectural building blocks
(concepts) containing topologically conserved assemblies of
helices and strands that make contact. We note that several

databases such as SCOP (Murzin et al., 1995; Andreeva et al.,
2013; Chandonia et al., 2017), CATH (Orengo et al., 1997), and
ECOD (Schaeffer et al., 2016) classify protein structures at the
level of domains, and include multiple instances of domains with
very similar structures. Concepts, in contrast, provide a dictionary
of independent structural patterns, into which full domains can
be dissected.

We distinguish concepts both from motifs and from domains
as follows:

•We understand the term motifs to mean recurrent structural
patterns in proteins that can—in their entirety or
partially—be superposed with low root-mean-square
deviation of the backbone (or at least of the Cα) atoms.
The idea of a concept focuses instead on conservation of the
topology of secondary structure assembly, but instances of the
same concept in different proteins can less-rigidly preserve
structure and have varying lengths.

• Domains in proteins are individual compact units. Although
some concepts do correspond to domains, some are not in
themselves entirely compact, some are subdomains, and
others comprise portions or even all of multiple domains.

The determination of the dictionary was completely automatic
(i.e., unsupervised), and unbiased by any previously known
sequence or structural patterns. Our framework to infer this
dictionary can be best understood as an imaginary
communication between a transmitter and receiver pair over a
communication (Shannon) channel. The transmitter has a
collection of protein shapes she wants to share with the
receiver. The transmitter has two possible methods of
communication. The first involves communicating the collection
as is—this constitutes the null or baseline model. But another
approach is to communicate the whole collection more efficiently
using a dictionary of concepts, followed by the details of the
collection specified with the aid of that stated dictionary. Here,
the role of the dictionary is to illuminate common patterns
observed in the collection and is stated one-off over all shapes
in the collection. It is intuitive to observe that the better a
dictionary, in terms of its ability to describe (i.e., fit) the shapes
in the collection, themore economical will be the description of the
source collection. An optimal dictionary in this framework is the
one that yields the most economical one-off statement of the
dictionary and the collection using that dictionary.

Our approach relies on an information-theoretic framework
that allows the inference of a dictionary that a) avoids overfitting
(i.e., avoiding inferring a dictionary that is more complex than
necessary to explain the observed folding patterns) and b)
achieves an objective trade-off between the descriptive
complexity of concepts in the dictionary and their fidelity
(i.e., the amount of compression) gained when explaining the
observed protein folding patterns. This dictionary of concepts
advances the current knowledge of conserved subdomain
structural patterns significantly beyond the classical
supersecondary structures and other known patterns. Thus,
this work presents a “basis set” of substructural concepts
underlying all observed protein folding patterns, and allows
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any protein chain to be decomposed optimally into parts
corresponding to substructures from this set. It thereby
contributes a plethora of useful biological insights, such as the
following:

1. Understanding the fundamental components of protein
folding patterns. Our dictionary of concepts will support
innovative projects aimed at the analysis of protein
structures.

2. Correlation, in many cases, of concepts with functions
directly, or indirectly via ligand-binding sites. This
provides useful predictions in the case of proteins with
known structure but unknown function.

3. Many concepts show amino-acid sequence correlation;
that is, some conservation of sequence patterns. These
results are applicable to protein structure prediction by
suggesting conformations of local regions.

The results of dissecting all the structures in the current PDB,
or of dissecting a user-supplied set of protein coordinates, are
accessible from the PROÇODIC website: http://lcb.infotech.monash.
edu.au/prosodic (click). This site supports the interactive
exploration of protein structures and their relationships.

2 RESULTS

2.1 Automatic Inference of a Dictionary of
Substructural Concepts
This work uses the concise tableau representation of protein
folding patterns introduced by Lesk (1995), which is based on the

idea that the essence of a protein folding topology is captured by
the order, patterns of contacts, and geometry of the assembly of
secondary structural elements along the amino-acid chain. A
tableau corresponds to the 3D structure of a single-protein
domain (or sometimes chain), and has the form of a
symmetric matrix (Figures 1A,C). Importantly, in this
representation supersecondary structures can be defined in a
compact and computable way as subtableaux containing two or
more successive secondary structure elements in contact
(Figures 1D,E).

We have constructed the dictionary reported here using our
recently developed method to infer, automatically, conserved
assemblies of secondary structural elements within any given
source collection of tableaux (Subramanian et al., 2017). We call
these substructures concepts. This idea of a concept is constrained
by the requirement that every secondary structural element in the
concept must be in contact with at least one other secondary-
structure element in that concept. Our concept inference
approach (Subramanian et al., 2017) is based on the minimum
message length criterion for statistical inference (Wallace and
Boulton, 1968; Wallace, 2005; Allison, 2018) and lossless data
compression. We have applied this method to compress the
source collection of tableaux corresponding to ASTRAL SCOP

domains (Murzin et al., 1995; Andreeva et al., 2013;
Chandonia et al., 2017). This has allowed us to infer a
dictionary of 1,493 substructural concepts that most concisely
and losslessly describes the entire source collection, and does so
without any prior knowledge or preconceived notions regarding
these recurrent substructures.

The total computational effort required to identify this
dictionary is equivalent to about 7 years of runtime on a

FIGURE 1 | Example dissection of an actin-binding protein into “concepts” from the inferred dictionary. (A) Secondary-structural cartoon representation of the
crystal structure of the actin-binding protein actophorin from Acanthamoeba (1AHQ) (Leonard et al., 1997). (B) Secondary structural assignment [using SST (Konagurthu
et al., 2012); H � helix, E � strand of sheet] and the optimal dissection of the protein chain into nonoverlapping regions, using the inferred concept dictionary. This
information is shown with reference to the amino-acid sequence information in a marked-up format: the dissection of 1AHQ uses concepts (see the text) c_0823
(highlighted in yellow) and c_1021 (highlighted in blue). (C) Tableau representation of the folding pattern of 1AHQ. The highlighted subtableaux corresponds to concepts
c_0823 and c_1021. Here, only the lower-triangle part of the tableau information is shown because the full tableau is a symmetric matrix. The rows and columns are
indexed by secondary structure elements in order of appearance in the polypeptide chain. Off-diagonal elements record the angles between the pairs of secondary
structural elements; boldface indicates that there is a contact between the corresponding pair of secondary structural elements. (D, E) The concepts c_0823 and
c_1021 are shown, together with their archetypal tableaux and corresponding secondary structural representation.
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modern computer. Therefore, we parallelized our method and
ran it on a high-performance computing cluster using 240 cores
to identify the PROÇODIC dictionary in 14 days (see Section 4).

2.2 PROÇODIC: The Dictionary of Inferred
Concepts
Each of the 1,493 concepts in the dictionary is designated by an
identifier of the form “c_” followed by 4 digits: c_0001—c_1493.
This order follows 1) the decreasing length in the number of
secondary structural elements (nSSEs) defining each concept, and
2) for concepts containing the same number of SSEs, the
lexicographic order of their secondary structural strings, where
we represent any helix by “H” and any strand by “E.”

Figure 2 shows the top 100 concepts in the dictionary, ordered
by number of SSEs included. The largest concept (c_0001)
contains 28 secondary structural elements. The smallest
concepts (c_1441—c_1493)—not shown in Figure 2—contain
only two elements. (Note that a single-helix or a single-strand/
extended region is not considered here as a concept.) The
distribution of inferred concept sizes is shown in Figure 3A: 9

concepts (c_0001—c_0009) are composed of an assembly of ≥ 20
secondary structural elements, 48 concepts (c_0010—c_0057)
have between 15 and 19 SSEs, 217 concepts (c_0058—c_0274)
contain between 10 and 14 SSEs, 217 concepts (c_0058—c_0274)
contain between 10 and 14 SSEs, and 368 concepts
(c_0275—c_0642) contain between 9 and 6 SSEs. The
remaining concepts contain between 5 and 2 SSEs. The
median concept size is 5 SSEs.

On average, a concept archetype is significantly smaller (with
47.6% of the number of SSEs) than its source protein domain. Yet,
there are several concepts inferred in our dictionary that describe
conserved folding patterns at the level of domains. These include:
NAD-binding domain (c_0173), β-grasp fold (e.g., c_729),
β-propeller (c_0382), Swiss/Jelly roll fold (c_0406), Ferredoxin
(plait) fold (c_0581), TIM barrel (c_0008), Immunoglobulin fold
(c_0118, c_0121), Ubiquitin roll (c_0737), and large β-barrel
(c_0061). This shows that our dictionary encompasses a broader
set of substructural invariants than previous studies (see Section
2.5). This advantage is due to our use of tableaux to capture
concisely the essence of protein folding patterns, together with
the information-theoretic criterion of minimum message length

FIGURE 2 | Top 100 concepts from the inferred dictionary. The representative structural cartoons of the top 100 concepts from the inferred dictionary containing
1,493 concepts, ranked in a decreasing order of number of secondary-structure elements (row-wise top-left to bottom-right: c_0001 to c_0100). Strands of sheet are
shown in Red; helices in Blue. (See the website for the full interactive listing.) The inference of the whole dictionary was automatic without any prior knowledge or
preconceived notions of these recurrent themes. The inferred concepts subsume known patterns; for example, shown in the figure are: “α-β Barrel” (c_0005),
“Armadillo repeat” (c_0083), “β Barrel” (c_0061), “β Propeller” (c_0004), “Icosahedral virus coat protein” (c_0067), Immunoglobulin (c_0062), “Jellyroll architecture”
(c_0084), “Left-handed β-Helix” (c_0001), “Leucine-rich repeat” (c_0076), “Right-handed quadrilateral β-Helix” (c_0058) “NAD-binding domain” (c_0002), “TIM barrel”
(c_0008), etc. Other classical supersecondary structures not shown in this figure such as β-hairpin (c_1442), α-hairpin (c_1484), β-α-β unit (c_1240) appear lower down
in the dictionary of concepts, ordered from largest to smallest.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 7 | Article 6129204

Konagurthu et al. Universal Architectural Concepts Underlying Proteins

67

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


to yield an objective dictionary complexity-versus-fidelity
trade-off.

The null model encoding length of our source collection is
33,352,380 bits. The encoding length after compressing the same
collection using the inferred dictionary is 31,927,340 bits. The
resultant compression is 1,425,040 bits (or 4.3%) over the null
model. We emphasize that this compression gain is over the null
model encodings of the tableaux representations which are
themselves compact 2D representations of 3D structural
information.

The complete inferred dictionary is available via the
interactive website PROÇODIC (for Protein Concept
dictionary—the cedilla allows the pronunciation as “prosodic”)
at http://lcb.infotech.monash.edu.au/prosodic. As discussed later,
this site allows the exploration of any structure that the user
provides as input, or of specific concepts that are of motivating
focus for the user, including: the usages of concepts in other
structures, both homologous and nonhomologous; or the
inspection of frequently occurring keywords within the
“KEYWDS” records and the ligand-binding information from
the “HETATM” records extracted from the source PDB
coordinate files (see Section 3).

2.3 Our Dictionary Subsumes Known
Supersecondary Structural Motifs
Our dictionary includes many concepts that match the known
repertoire of supersecondary structural motifs (Efimov, 2013).
Matched motifs involving assemblies of a small number of helices
and strands include: antiparallel (c_1442) and parallel (c_1443)
β-β assemblies, α-α hairpin (c_1484) α-β/β-α assembly, (c_1459/
c_1472), basic helix–loop–helix (c_1351), β-α-β motif (c_1240),
EF-Hand (c_1342, c_1491), ϕ-motif (c_1178), helix–turn–helix
motifs (c_0826 –winged type I, c_0870 –winged type II, c_1373 –
plain), four-helix bundle (c_1101 – type I, c_1117 – type II),

β-meander (c_1187), Greek key (c_0964), Zinc finger (c_1230),
helix–hairpin–helix motif (c_1068), β-sandwich (c_0390), and
αβ-sandwich (c_0603), among others.

Our dictionary also includes larger assemblies of helices and
strands that match known repeating structural motifs. These
include three-sided left-handed β-helix (c_0001, c_0380),
three-sided right-handed β-helix (c_0388), right-handed
quadrilateral β-helix (c_0058), ankyrin repeat (c_0370,
c_0632), armadillo repeat (c_0083, c_0888), kelch repeat
(c_0395), α-solenoid (c_0270, c_0271), and leucine-rich repeat
(c_0076), among others.

PROÇODIC yields a flat (nonhierarchical) dictionary of 1,493
concepts. The inference of these concepts is unsupervised, driven
by information-theoretic trade-off between the dictionary
complexity and its fidelity to explain the source collection of
tableaux. Visual inspection reveals shared topological
relationships between certain subsets of concepts (e.g., c_0001
and c_0006; see Figure 2). Therefore, to explore the topological
relationships between the inferred concepts, we undertake an
agglomerative clustering exercise to construct a hierarchy from
that otherwise flat dictionary of concepts. We emphasize that this
exercise is not meant to suggest any structural pathways [cf.
Efimov structural trees (Efimov, 2013)] or evolutionary
relationships between concepts, but merely provides a device
to explore their topological relationships. (We also emphasize
that a systematic approach to finding hierarchical relationships
and structural pathways requires the unsupervised Bayesian
inference of a hierarchical dictionary of concepts, which is
beyond the scope of the current work.)

To undertake this agglomerative clustering, since each concept
archetype defines a (sub)tableau derived from a tableau of the
domain in the source collection, we can infer the dictionary of
meta-concepts (i.e., concepts of “concepts”) that best explains all
the PROÇODIC concept tableaux. This is achieved by using exactly
the same unsupervised (flat dictionary) inference methodology

FIGURE 3 | Distributions of concept length and amino-acid coverage. (A) Distribution of concept lengths in terms of the number of secondary structural elements
(nSSEs) they contain. The smallest concepts have 2 secondary structural elements; the largest has 28. (B) Individual concept amino-acid coverage (as a percentage of
the total 74,246,836 residues) in the serial order of concept identifiers (with some concepts highlighted).
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that was used to infer PROÇODIC concepts. That is, we now treat the
tableaux representing 1,493 archetypes from our inferred
PROÇODIC concept dictionary as the source collection, and
rerun our inference method (see Section 4). This in turn
yielded 34 meta-concepts that dissect (i.e., best explain) the
inferred 1,493 concepts. The text file containing these meta-
concepts, along with the corresponding list of PROÇODIC

concepts that use each meta-concept within their dissections,
is available in the supporting data file:
metaConceptsAndUsageList.txt (click).

This permits the decomposition of each PROÇODIC concept in
terms of these 34 meta-concepts. Thus, each PROÇODIC concept
can be represented as a 34-dimensional feature vector in the
meta-concept space, where each vector component denotes the
number of times the corresponding meta-concept is used in that
concept dissection. We note that this representation is similar to
the bag-of-words model (Harris, 1954) used in information
retrieval and natural language processing. Using this feature
vector representation, the 1,493 PROÇODIC concepts are
clustered hierarchically using the following method:

1. A 1, 493 × 1, 493 similarity matrix between PROÇODIC

concepts is constructed using the cosine similarity measure
(Singhal, 2001) between all the pairs of these 34-
dimensional vectors.

2. Using the resultant similarity matrix, we cluster all the
PROÇODIC concepts hierarchically, based on the unweighted
pair-groups method using arithmetic averages (Sokal,
1958).

This procedure yields a hierarchical tree of concept
relationships, available in an interactive format from:
prosodicConceptClustering.html (click). This tree reveals
similarities that are also detectable by comparing the concept
archetypes, their usages, and keywords. For example, c_0009
and c_0018 are both helical bundles related to the architecture
of Annexin proteins, with c_0009 having one extra helix compared
to c_0018. Another example is the cluster containing c_0001, c_
0006, c_0113, and c_0380, where all represent left-handed β-helical
motifs composed of 28, 20, 12, and 7 β-strands, respectively.

2.4 Dissection of PDB and Coverage of
Concepts Across the Protein Folding Space
The methods used for this work also permit the optimal
dissection, within seconds (on a single processor), of any
protein chain into nonoverlapping regions that are explained
(compressed) using the concepts from the inferred dictionary.
Figure 1 shows an example of the dissection of the crystal
structure of the actin-binding protein actophorin from
Acanthamoeba (1AHQ) (see the PROÇODIC website to dissect any
protein structure of interest; either a PDB entry or a user-supplied
coordinate set). We note that regions not assigned to any
dictionary concept (notionally designated to the null concept,
c_0000) remain uncompressed. These include the small set of
proteins that have no secondary structure, for instance wheat-
germ agglutinin (9WGA).

We have dissected the entire PDB, which at the time of
calculation resulted in tableaux corresponding to 275,014
protein chains containing 74,246,839 amino-acid residues
overall. (Note that the dictionary was constructed using an
unbiased set of domains from ASTRAL, but the subsequent
dissection of the entire PDB reflects the biases in the
distribution of protein folding patterns in the full database.)
The usages of the resulting concepts cover regions within
proteins that account for 66.35% (49,262,577) of the total
(74,246,839) amino acids in the PDB protein chains we
dissected (Supplementary Figure S3A). The remaining 33.65%
is dominated by single secondary structural elements, plus loops
between successive concept assignments along a dissected chain.
Figure 3B shows the distributions of amino-acid coverage of
concept usages within the PDB. Concept c_0060 has the largest
coverage in terms of the number of amino acids its usages cover.
This concept is composed of 14 secondary structural elements
(SSE string: EEEEHHEEEEHHEE) assembling into a four-layer
architecture, with its core containing two layers of closely packed
five-stranded β-sheets (Chothia et al., 1977) that are sandwiched
between two outer layers, containing two α-helices each (see
Figure 2, the rightmost structure on the sixth row). In total, this
concept was used within 3,892 protein chains, with a median
value of amino-acid coverage equal to 194 residues
(Supplementary Figures S3A,B). Examination of these
usages reveals that they all come from the protein chains of
285 proteasome complexes. At the other extreme is concept
c_0568, which has the smallest amino-acid coverage: 561
residues over 13 protein chains related to plant and bacterial
Ferredoxins (Tagawa and Arnon, 1962). This concept is
composed of 6 secondary structural elements (SSE string:
EEHEEE).

Insights about the concepts can be gained from their usage
information. For example, consider the concepts c_0060 and
c_0568 mentioned earlier: the concept c_0060 covers the β5
subunit of a recently solved structure of the native human 20S
proteasome at 1.8 Å resolution (5LE5) (Schrader et al., 2016). This
landmark study revealed a number of functionally important
differences with respect to what was known from the previously
published 20S proteasome structures. In particular, it identified
chloride ions within all active sites, thus significantly revising the
description of the proteasome active site, and providing new
insights into peptide hydrolysis that underpin the “development
of next-generation proteasome-based cancer therapeutics”
(Schrader et al., 2016). The examination of the usages of
c_0060 within the dissection of 5LE5 (chain Y – β5 subunit)
reveals that this concept is directly linked to proteolytic active
sites (Figure 4A). Analyses of the human-annotated keywords
used in the PDB coordinate files from these usages showed among
its top 10 frequently used phrases terms such as “Cancer
(therapy),” “Drug resistance,” and “Bortezomib”—an
anticancer drug and the first therapeutic proteasome inhibitor
to be used in humans. This is strong evidence of the concept’s link
to a proteolytic active site. A similar examination of the usage
instances of the concept c_0568 directly links it to the
Fe2S2-cluster binding ferredoxins (see Figure 4B), which
mediate electron transfer (Nechushtai et al., 2011).
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As another example, consider the dissection of the main
protease 5R84 (Figure 5) of the SARS-CoV-2 virus. This virus
is the cause of the coronavirus disease (COVID-19). 5R84 is a
cysteine protease that is responsible for cleaving the SARS-CoV-2
polyprotein chain that prepares the molecular machinery

responsible for viral replication and infection. The dissection
involves, among others, the following two concepts: c_0818 and
c_0904. (For a full list of concepts in the dissection, see Figure 5.)
Studying the usages of these concepts, it becomes clear that they
are composed of highly conserved substructures that are specific

FIGURE 4 | Usages of concepts c_0060 and c_0568. (A) Transparent surface rendering of the native human 20S proteasome at 1.8 Å (5LE5), with the usage of
concept c_0060 in the β5 subunit (chain Y in the amino-acid region THR1 to ASN191) shown in cartoon. The closeup of this region reveals a chloride ion in all active sites.
Chloride ions are known to facilitate a proton shuttle catalytic mechanism (Schrader et al., 2016). (B) Similar rendering as above for the usage of concept c_0568 in the
2.3 Å Ferredoxin structure from Mastigocladus laminosus (3P63 chain A in the amino acid region THR48 to GLU90). The closeup shows the region linked to the
Fe2S2-cluster binding.

FIGURE 5 | Dissection of the main protease of SARS-CoV-2 virus. The left frame shows the 1.8 Å crystal structure of the main protease of SARS-CoV-2 (5R84). The
right frame gives the dissection of this protein as markup under 5R84’s amino-acid sequence (chain A). The successive regions of 5R84 chain A are explained using the
following concepts (in that order): c_0818, c_0667, c_0904, c_1173, c_1429, and c_1435, respectively. Their corresponding substructural regions of the protease are
shown with varying colors (left frame). Cysteine 145 (CYS145) and Histidine 41 (HIS41) residues form the catalytic dyad of this protease, and are associated with
concepts c_0904 and c_0818, respectively.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2021 | Volume 7 | Article 6129207

Konagurthu et al. Universal Architectural Concepts Underlying Proteins

70

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


to viral proteases, mainly coronaviruses (SARS and MERS).
Concept c_0904 explains the region of 5R84 containing the
catalytic cysteine-145 residue (CYS145) of this main protease,
whereas c_0814 explains the other residue in the catalytic-dyad,
histidine-41 (HIS41). Therefore, these concepts are directly
linked to the catalytic function of the protease.

2.5 Comparison With Previous Work
Many previous studies have attempted to identify a canonical
set of recurrent patterns that encompass the structures of
proteins.

Dissection of protein folding patterns into substructures began
with the recognition of recurrent patterns. The first of these were
the canonical secondary structures (α-helix and β-sheet) followed
by descriptions of supersecondary structures (α-hairpin,
β-hairpin, and β-α-β unit). At this point the approach was
observation and intuition-based rather than systematic, and
the field lacked attempts to determine a set of substructures
from which complete domain structures could be assembled. The
earliest attempts to generate a roster of supersecondary structures
automatically, with varying motivations, include those of Lesk
and Rose (1981), Jones and Thirup (1986), and Richards and
Kundrot (1988).

To identify a set of building blocks that cover protein
structures, Unger et al. (1989) analyzed protein main chain
conformations in terms of hexamers (oligopeptides of six
amino-acid residues). Their analysis involved a refined set of
82 proteins in the (then) known structures, which contributed to
a total of 12,973 hexamers. Using a normalized root-mean-
square-deviation (RMSD)–based membership function (with
an RMSD threshold of 1 Å) and a variant of K-nearest-
neighbor clustering, they demonstrated that most hexamers
grouped into 55 disjoint clusters.

Much subsequent work followed along similar lines of
clustering short oligopeptide fragments using variations of
clustering heuristics and membership-deciding thresholds to
produce different local fragment libraries (Tramontano et al.
1989; Rooman et al., 1990; Hutchinson and Thornton, 1996;
Micheletti et al., 2000; Kolodny et al., 2002; Kihara and Skolnick,
2003; Friedberg and Godzik, 2005; Joseph et al., 2010). For
instance, Micheletti et al. (2000) sought a minimal set of
“oligons” that can represent protein structures, by clustering
oligopeptide conformations extracted from known structures.
They considered oligopeptide lengths from 4 to 7 and created
libraries containing 8, 202, 932, and 2561 elements—within
which they recognized redundancies. They were able to fit a
set of test structures to within an RMSD of approximately 1 Å.

The main limitations of these approaches are at least two-fold:
1) The nature of the covering substructures is imposed—in these
cases, short oligopeptide fragments—rather than allowing their
method to identify more general possibilities, and 2) the
definition of cluster membership of various oligopeptide
fragments remains extremely sensitive to the chosen RMSD
threshold values and clustering heuristic.

Complementing the above strategies that rely on clustering
local 3D fragments, Bystroff et al. (1996) and Bystroff and Baker
(1998) proposed a fully automated method to cluster short 1D

sequence segments into a library (I-sites) of amino-acid patterns
that correlate strongly with their 3D (local) structure. These
sequence segments were clustered using a weighted amino-
acid frequency profile (Vingron and Argos, 1989) over a
K-means clustering approach. Subsequently, over an iterative
procedure, pairs of peptide segments within each cluster are
evaluated based on their structural characteristics (Cα–Cα

distance profiles and backbone torsion angles) to select a
“paradigm” local structure for their sequence cluster. Latest
I-sites library (v5.3) reports 128 clusters containing motifs of
length ranging from 3 to 15 amino acids. This popular library,
together with the inferred local sequence–structure relationships,
now underpins successful and popular ab initio structure
prediction methods (Rohl et al., 2004). Despite being a
noteworthy milestone in the literature, this library is not
geared toward identifying topologically conserved assemblies
of SSEs, which is the main focus of the work presented here.

Camproux et al. (1999) used an a priori method based on
hidden Markov models (HMM) to identify a recurrent 3D
structural alphabet. In their work, proteins are described using
a sequence of overlapping tetrapeptide states on which a HMM is
used to infer libraries of fragments together with their local
conformational dependencies. This work mainly yielded 12
distinct tetrapeptide states derived from a data set of about
100 proteins. These states correspond predominantly to
conformations of classical helices, strands, and turns, plus a
few others. Further extension of this work (Camproux et al.,
2004) gathered 27 tetrapeptide states. This work also examined
the restrictions on the sequences of such states that appear in
proteins. The inferred 27 tetrapeptide states correspond to α, 310,
and π helices, extended strands, turns of various descriptions and
coil, respectively. Using different models, Pandini et al. (2010)
also clustered tetrapeptide fragments (using the internal angles
between the Cα coordinates) from known proteins to determine
another structural alphabet. Nevertheless, similar to the other
libraries, these structural alphabets remain extremely short and
limited in scope.

Going beyond the clustering of oligopeptide fragments, some
key studies have iteratively assembled SSEs under specific rules to
explore structural “pathways” of observed protein folds.
Specifically, Efimov (1997) used a constructive approach to
introduce the notion of “structural trees.” These trees reveal
how folding patterns can be constructed from root structural
motifs via addition of helices and strands in a stepwise fashion,
subject to a restricted set of growth-rules. Efimov examined five
types of structural trees corresponding to five protein
superfamilies. The key outcome of this work was the
demonstration that the structural trees give pathways of
growth that lead to known protein folding patterns. Murzin
and Finkelstein (1988) presented a model for the possible
arrangements of α-helices in globular proteins. Subsequently,
Taylor (2002) also explored a similar idea. Taylor’s work
constructed idealized topologies of protein structures by
applying SSE packing rules that build on a set of basic
“forms.” These forms are represented using stick models of
SSEs in different layered arrangements, where the spacing
between idealized helices (of arbitrary lengths) within a layer
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is fixed to 10 Å, whereas that between idealized strands is set to
5 Å. To match any protein to the sets of idealized forms, a protein
structure is converted to a stick representation and then a fast
filtering step is applied to find potential matches (using a bipartite
matching algorithm), followed by a more exhaustive pairwise
comparison between the filtered stick forms and the proteins
(based on a double-dynamic programming algorithm and RMSD
threshold for match set to 6 Å.)

By demonstrating the limitation on the number of realizable
folding patterns, arising due to the restrictions imposed by the
growth rules on feasible spatial assemblies of SSEs, the studies by
Efimov (1997) and Taylor (2002) confirm the observations of
Finkelstein and Ptitsyn (1987) and Chothia (1992). Moreover,
these works inform new schemes to classify the observed protein
folds (Gordeev et al., 2010).

Grishin and colleagues (Chitturi et al., 2016) recently proposed
a method to enumerate constructively all idealized parallel/
antiparallel arrangements of up to 5 SSEs. This work proposed
a systematic enumeration of all possible parallel/antiparallel
arrangements using a 3D lattice model. This allowed them to
model theoretical arrangements of SSEs and use them to search
for observed occurrences of each arrangement within the PDB.
However, their idealized models are limited to parallel/
antiparallel orientations, which poses a severe restriction in
exploring the full set of SSE arrangements observed in the PDB.

Alva et al. (2015) sought regions of proteins that might
comprise a set of ancestral fragments, conceivably vestiges of a
pre-cellular “RNA-peptide world.” They identify 40 fragments,
typically containing few secondary structure elements, that recur
in many protein structures, including in sets of proteins not
recognized as homologous. Some of these are similar to certain of
our concepts; for instance, their set includes the standard
supersecondary structures α-α hairpin, β-hairpin, and β–α–β
unit. However, comprehensive coverage of observed protein
folding patterns was not a goal of that work.

Other motif libraries have also been recently proposed: the
Smotif library of Dybas and Fiser (2016) and the TERMs library
of Mackenzie et al. (2016). An Smotif is designated by the
arrangement of a pair of SSEs (of one of the following types:
EE, EH, HE, and HH). A library of Smotifs is a collection of such
SSE-pairs with different geometries. Their work utilizes an RMSD
threshold of 2.5Å to cluster 11,068 observed pairs of SSEs from a
collection of 1,200 protein structures (i.e., one randomly chosen
protein domain per SCOP fold). These fragments serve in their
work as the representatives of the protein structural space. Thus,
any consecutive pair of secondary structures within a protein
chain is assigned to the closest (based on RMSD) representative
Smotif.

The tertiary motif (TERMs) library (Mackenzie et al., 2016)
was able to find bigger assemblies of short oligopeptide fragments
using the following approach. For each amino-acid residue i in
the nonredundant collection of 29,000 residues, a candidate
TERM is defined using one or more oligopeptide fragments
formed by the union of the residues i − 2, . . . , i + 2 together
with all penta-peptide regions around residues that form a
“potential contact” with the residue i. For each candidate
TERM, the method finds matching tertiary fragments using an

RMSD-based search method. A subset of candidate TERMs is
realized by posing it as the classical set cover problem and
realizing the minimal cover using a greedy approximation
method that iteratively identifies the TERMs (based on their
coverage) that match proteins in the considered set. This iterative
procedure yields about half a million (458,251) TERMs. The
minimum TERM has 1 oligopeptide fragment containing 5 amino
acids, whereas the maximum TERM has 10 fragments with 52
amino acids. Importantly, an average TERM in their library is
composed of 3 oligopeptide fragments covering 19 amino acids
(i.e., 6 amino acids per fragment). Furthermore, inspecting the
TERMs that cover 50% of their proteins in their considered
collection of 29,000 protein structures, we find that each TERM
averages 2 fragments with 12 amino acids. Moreover, inspecting
the top 24 TERMs [see Figure 2A of Mackenzie et al. (2016)], we
find many repetitions of short helices and antiparallel strands.

Nepomnyachiy et al. (2017) recently proposed a pipeline to
explore “reuse” of regions in proteins based on their amino acid
sequence relationships. This work reported repeated occurrences
of sequence segments between 35 and 200 amino acids in length.
However, relying on amino-acid sequence relationships is rather
limiting because sequences diverge more drastically than
structures in evolution.

In comparison, our work results in only 1,493 architectural
concepts (two orders of magnitude more concise than TERMs),
where our smallest concepts contain 2 SSEs covering, on average,
19 amino acids—this is the median length of the regions where
concepts with 2 SSEs are used, in the dissections of the structures
from the PDB. The biggest concept is composed of 28 SSEs
covering 171 amino acids. An average PROÇODIC concept in our
dictionary is composed of 6 SSEs covering 75 amino acids.
Considering the PROÇODIC concepts that cover 50% of the
PDB, an average concept has 5 SSEs covering 66 amino acids.
Thus, using this framework, our dictionary yields concepts that
are a substantially larger than TERMs, and define a significantly
more economical dictionary that explains the entire PDB.
Moreover, the methodology we use defines a direct and
efficient (dynamic-programming based) way to dissect any
given protein structure using the inferred PROÇODIC dictionary.

These results are achieved due to the expressive power of
tableaux to represent compactly the essence of protein folding
patterns. This tableau representation, together with the minimum
message length inference methodology, provides a reliable
framework to compress without loss and identify relationships
in the protein folding space.

3 DISCUSSION

3.1 Many Concepts Are Linked to
Ligand-Binding Sites
The molecular function of proteins is often mediated via
interactions with chemical components such as metal ions,
coenzymes, metabolic substrates, and nucleic acids, amongst
others. Knowledge of such interactions is central to annotate
protein function (Whisstock and Lesk, 2003; Goldstein, 2008),
engineer new proteins (Gutteridge and Thornton, 2005), and
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design drugs (Rognan, 2007; Kinjo and Nakamura, 2009). These
functionally critical interactions impose structural constraints on
protein structures, as their domains evolve from a common
ancestor. As noted by Lesk and Chothia (1980), in many cases
active sites are the best-conserved regions within a family of
protein structures (as seen in Figures 4, 5).

We have analyzed our dictionary and systematically identified
concepts directly related to protein–ligand interactions. To
achieve this, we mined and catalogued frequent ligand
information (from “HETATM” records) derived from the
source PDB entries of each concept usage (i.e., each instance
in the PDB where the concept appears in the dissection of that
protein’s tableau). Our definition of a ligand comes from the
inventory of 23,258 chemical components specified by the
LigandExpo (Feng et al., 2004) database. We note that this
inventory does not exclude simple monovalent ions (such as
Na+, K+, and Cl−) or those that are often not biologically
functional (such as sulfate SO2−

4 ions). To complement this
information, we also mined and cataloged keywords (from
“KEYWDS” records) derived again from the source PDB
entries of these concept usages. We used the observed
frequencies of the bound ligands within the regions of concept
usages, to narrow the initial set down to the 463 (31%) concepts
that stand out in terms of recurrent patterns of interactions with
the same set of ligand(s). These encompass interactions with

monovalent ions, di-/tri-/tetra-valent ionic species, small
molecules (including nucleotides), and macromolecular
compounds, among others.

The fully annotated list of concepts with observed interactions
with ligands/chemical components is available in the supporting
data file: conceptsWithLigandInteractions.txt (click).

Figures 6A–G show examples of concept usages for a random
selection of 8 concepts associated with metal-binding activity.
Table 1 shows a partial list of concepts for which all (100%) of
their usages show binding to the specified ligand/chemical
components. Also shown are the extracted high-frequency
keywords associated with usages of that concept, providing
useful insights to impute functional roles. Among the
shortlisted set of 463 concepts are those that demonstrably
show binding specificity linked with target recognition,
reception, and signaling (see Table 2).

The full list of inferred concepts putatively linked to molecular
reception, recognition, and signaling is available in the supporting
data file: receptorConcepts.pdf (click).

3.2 Inferring Biological Function From
Concept Usage Information
Many proteins are deposited into the PDB with unspecified
functional annotation, especially those coming from structural

FIGURE 6 | Metal-binding activity examples. Exemplars of usages of eight concepts linked to metal-binding activity. The region of concept usage is shown in
cartoon in the context of the surface rendering of the source protein chain. (A) Usage of concept c_1099 within the calcium-bound calmodulin [1CDL (Meador et al.,
1992)]. (B) Usage of concept c_432 within the copper-bound electron transfer protein [1A4B (Messerschmidt et al., 1998)]. (C) Usage of concept c_885 within the iron-
bound oxidoreductase (2VUX). (D) Usage of concept c_139 within the magnesium-bound lyase (3TTE). (E) Usage of concept c_186 within the manganese-bound
hydrolase [1K23 (Ahn et al., 2001)]. (F) Usage of concept c_133 within the sodium-bound Kainate and AMPA receptors [3G3G (Chaudhry et al., 2009)]. (G) Usage of
concept c_280 within the nickel-bound peptide deformylase (2AIA). (H) Usage of concept c_624 within the zinc-bound melanoma-inhibiting anti-apoptotic protein [1OY7
(Franklin et al., 2003)].
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genomic initiatives. Functional characterization of such proteins
is of crucial importance to the structural biology community. Its
importance can be evidenced by the community-wide Critical
Assessment of protein Function Annotation program (CAFA,
biofunctionprediction.org/cafa/), which assesses methods
dedicated to predicting protein function from an amino-acid
sequence.

As previously shown (Figure 4A), the rich source of
information within this concept dictionary is useful to
investigate and impute biological function. More evidence of
this is shown by another case study involving the haze-
forming thaumatin-like protein in white wines made from
Vitis vinifera (4JRU containing 201 residues). Figure 7 gives the
dissection of 4JRU composed of two concepts c_0111 and c_1442.

Concept c_1442 is of less functional interest as it defines a
common β-hairpin unit consisting of two antiparallel β-strands.
On the other hand, c_0111 contains 12 strands that assemble to
formmainly two face-to-face packed antiparallel β-sheets with an
extended β-ribbon connected by an Ω-loop (Leszczynski and

Rose, 1986). This multistranded motif is characteristic of
thaumatin-like proteins (Ogata et al., 1992). Examining the
usages of this concept within the PDB via our PROÇODIC web
site, we find it is used at 15 other loci, most of them thaumatin/
osmatin-like proteins, with their top two keywords displaying
“antifungal protein (53.3%)” and “plant protein (46.7%),”
respectively. Figures 7B,C show the structural alignment of
4JRU with the usage in the pathogenesis-related PR-5D protein
of tobacco (Nicotiana tabacum; 1AUN with 208 residues) that
results in a superposition with 1.47 Å root-mean-square deviation
over 201 amino-acid residues between the Cα coordinates of the
two structures. This specific PR-5D protein is classified
functionally as an antifungal protein, and, in general, proteins
of this class have known pathogenesis-related antifungal activity.
This suggests that the haze-forming protein might exhibit the
same biological function.

In some cases, the information provided by this dictionary can
lead to a reliable but less-specific functional classification
prediction, for example putatively identifying a general type of

TABLE 1 | A partial list of concepts for which all (100% of) their usages show interactions with ligands or chemical components. This is derived by inspecting the ligand
(“HETATM”) records within the source coordinate files of each concept usage. The bound ligands are shown (in the second column) using their standardized
abbreviations, along with their observed frequency within the usages in parentheses. Also shown (in the third column) are the top keyword terms (from “KEYWDS” records
specified by the structures’ authors) recurring within the usage coordinate files with their associated frequencies. (Note: CA � calcium ion).

Concept ID Ligand/chemical component (freq) Keyword (freq)

c_0011 PQQ (100%), CA (100%) OXIDOREDUCTASE (90%), QUINOPROTEIN (27%)
c_0036 ZN (100%) HYDROLASE (85%), EXOPEPTIDASE (46%), CARBOXYPEPTIDASE B (46%)
c_0065 FES (100%) OXIDOREDUCTASE (96%), XANTHINE OXIDASE (32%), IRON SULFUR (30%)
c_0096 FMN (100%) OXIDOREDUCTASE (100%), ROSSMANN FOLD (55%)
c_0108 HEM (100%), CA (100%) OXIDOREDUCTASE (85%), PEROXIDASE (63%)
c_0110 HEM (100%) OXIDOREDUCTASE (82%), MONOOXYGENASE (43%), CYTOCHROME P450 (34%)
c_0124 SF4 (100%), MG (100%) OXIDOREDUCTASE (91%), [NIFE]HYDROGENASE (26%)
c_0144 CA (100%) TRANSFERASE (81%), CGTASE (36%), ACARBOSE (33%)
c_0156 ZN (100%) TRANSFERASE (90%), SET DOMAIN (39%), EPIGENETICS (28%)
c_0159 SF4 (100%) OXIDOREDUCTASE (96%), NIFE HYDROGENASE (17%)
c_0208 CU (100%) OXIDOREDUCTASE (97%), BETA BARREL (34%), LACCASE (32%)
c_0374 HEM (100%) OXYGEN TRANSPORT (56%), HEMOGLOBIN (26%)
c_0397 ZN (100%) OXIDOREDUCTASE (94%), SUPEROXIDE DISMUTASE (27%)
c_0424 PCA (100%) HYDROLASE (95%), GLYCOSIDASE (35%), CELLULOSE DEGRADATION (32%)
c_0546 ZN (100%) HYDROLASE (88%), PHOSPHODIESTERASE (32%), PDE (28%)
c_0568 FES (100%) ELECTRON TRANSPORT (77%), FERREDOXIN (38%)
c_0604 HEM (100%) ELECTRON TRANSPORT (100%), HEME (57%), CYTOCHROME B5 (40%)
c_0624 ZN (100%) APOPTOSIS (47%), ZINC FINGER (44%), METAL BINDING (30%)
c_0714 NAG (100%) VIRAL PROTEIN (84%), HEMAGGLUTININ (39%), GLYCOPROTEIN (22%)

TABLE 2 | A partial list of concepts putatively linked to molecular reception, recognition, and signaling.

Concept ID Ligand/chemical component (freq) Frequent keywords (freq)

c_0062 NAG (96%), BMA (70%) IMMUNE RECOGNITION (21%)
c_0133 ZN (35%) AMPA RECEPTOR (26%), NEUROTRANSMITTER RECEPTOR (20%)
c_0205 GAL (36%) CARBOHYDRATE RECOGNITION (11%)
c_0252 MYR (40%) RHINOVIRUS COAT PROTEIN (20%), RECEPTOR (17%), ANTIVIRAL COMPOUND (10%)
c_0304 CA (60%) ANTIBODY RECEPTOR (18%), CARBOHYDRATE RECOGNITION DOMAIN (15%)
c_0335 NAG (34%) CELL ADHESION (29%), RECEPTOR (16%), GLYCOPROTEIN (11%)
c_0352 GOL (67%) PEPTIDOGLYCAN RECOGNITION PROTEIN (10%)
c_0423 NAG (63%) IMMUNE SYSTEM (87%), ANTIGEN PRESENTATION (26%), T CELL RECEPTOR (12%)
c_0572 FMN (67%) PHOTORECEPTOR (36%), LIGHT-INDUCED SIGNAL TRANSDUCTION (13%)
c_0819 ZN (58%) SIGNALING PROTEIN (19%), PHOTORECEPTOR (13%)
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function such as “oxidoreductase” or “lyase.” Such generic
functional classification can be useful, as it may provide
guidance for laboratory experiments aimed at defining the
function more precisely, especially if clues about a ligand-
binding site are available. For example, consider the crystal
structure of dihydrodipicolinate synthase (DapA) from
Agrobacterium tumefaciens (2HMC). The dissection of this
DapA structure shows the usage of concept c_0008 covering
its entire chain A. About 90% of c_0008’s 118 usages show the
functional classification as “lyase.” DapA belong to the family of
amine-lyases that catalyze the cleaving of carbon–nitrogen bonds,
playing an important role in lysine biosynthesis in prokaryotes,
phycomycetes, and plants (Mirwaldt et al., 1995).

3.3 Local Sequence–Structure Correlation
Within Concept Usages
The identification of structural features that have strong amino-
acid sequence preferences is central to structure prediction
(Bystroff and Baker, 1998). Therefore, we studied the concept
usages within the PDB to explore the conformational preferences
of local sequences. To achieve this, for each concept, the amino-
acid sequences in the regions of concept usages within the PDB
were extracted, and the sequences in each set were aligned and
clustered (Sievers and Higgins, 2014).

Almost 20% of the concepts in our dictionary (288 out of
1,493) have associated amino-acid sequence patterns that cluster
into a single group (Supplementary Figure S4A). When

considering the (normalized) ratio of clusters over the number
of nonidentical amino-acid sequences of concept usages
(Supplementary Figure S4B), almost 30% of the concepts
(441) have a ratio smaller than 0.05, whereas almost 50%
(738) have a ratio between 0.05 and 0.1. Together, this
indicates that for almost 80% of the concepts in our
dictionary, their usages of amino-acid sequences cluster into a
small number of groups (<10% of their total unique amino-acid
sequences).

This strong sequence dependence is expected, particularly
for concepts linked to ligand binding or other functional
units. For example, Figure 8 shows the sequence logo
obtained from the multiple sequence alignment of the
usage sequences of the concept c_0397. This concept is
related to the Cu-Zn type I (SODI) superoxide dismutase,
which has a β−barrel-like subunit with copper and zinc ions
bound at the active site. This is common in many Gram-
negative bacterial pathogens (amongst others) to counteract a
burst of toxic superoxide radicals under oxidative stress
(Forest et al., 2000).

There is a potential application of the observed
sequence–structure correlations to structure prediction. We
downloaded the coordinate files of 33 PDB structures specified
in the description field of the CASP12 target list available at
http://predictioncenter.org/casp12/targetlist.cgi. Each chain from
these 33 structures was independently dissected using the
PROÇODIC dictionary of concepts. The dissection of protein
chains defines nonoverlapping regions assigned either to one

FIGURE 7 | Dissection case-study on the haze-forming thaumatin-like protein, 4JRU. (A) Dissection output from PROÇODIC of the haze-forming thaumatin-like protein
in white wines from Vitis vinifera (4JRU). (B) Superposition of this haze-forming protein and the pathogenesis-related PR-5d protein of tobacco (Nicotiana tabacum; 1AUN).
4JRU is shown in blue; 1AUN is shown in red. This superposition was based on the structural alignment produced by MMLigner (Collier et al., 2017), which is shown in (C).
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of the dictionary concepts (c_0001 – c_1493), or a null concept
(c_0000). For each region assigned to a dictionary concept, we
extracted the associated target amino-acid sequence and
performed a pairwise sequence alignment with each of the
local amino-acid sequences defined by the concept usages.
This exercise identified a subset of concept usages in the PDB
whose local amino-acid sequences have a detectable similarity
with the target. Table 3 quantifies the extent of coverage of these
regions for each of the 33 CASP12 targets. This table shows that in
26 of 33 cases, more than 50% of the target amino-acid chain has
detectable sequence similarity that can be derived from the usage
information.

It should be noted that we used the structural information
of CASP12 targets to dissect the protein chains, before
identifying the sequence relationships of the target
sequence and those within the concept usages. However,
for the proper application to structure prediction, the
identification of sequence hits with concept usages should
be carried out using only the target sequence. In principle,
this can be done by sliding along the target sequence with
varying window sizes, and exploring the sequence similarity
with the sequences across all usages of every concept in the
dictionary. Nevertheless, this preliminary analysis can be
used to hypothesize reasonably that these local
sequence–structure relationships provide a strong potential
to support structure prediction efforts, especially since an
average concept usage spans significantly longer stretches
along the protein chain than the currently considered
oligopeptide-fragment libraries used by fragment-based ab
initio protein modeling approaches. Thus, this information
can be potentially utilized to model several nonoverlapping

regions in the target protein chains by the structure-
prediction servers (Kim et al., 2004; Källberg et al., 2012;
Waterhouse et al., 2018; Zheng et al., 2019; Senior et al.,
2020).

As a note on the latest breakthrough in the field of structure
prediction, convolutional neural network-based prediction
architectures [especially AlphaFold (Senior et al., 2020)] have
seen groundbreaking success in the CASP13 and CASP14 rounds.
These neural network methods train on multiple sequence
alignments as inputs, involving either whole or part of the
target sequence whose structure is being predicted. At the time
of writing this article, the technical details of the AlphaFold
system used in CASP14 remain unpublished. When these
details become open, it would be useful to explore whether
sequence–structure correlations at the level of concepts can be
incorporated into training the neural networks more
efficiently—as per the information disclosed by Google
Deepmind the current architecture requires in the order of
128 Tensor Processing Units and over a few weeks to predict
structure from sequence, but with groundbreaking accuracy.

The amino-acid subsequences of nonoverlapping regions
dissected using the PROÇODIC dictionary of concepts are
available at: casp12_prosodic_dissections.tgz (click). The
information of dissected target region followed by other
subsequences in the usages of the corresponding (assigned)
concept with demonstrable sequence similarity (under pairwise
sequence alignment with the target subsequence) is available at:
casp12_concept_usage_hits.tgz (click). The multiple sequence
alignments [using MUSCLE (Edgar, 2004) with default
options] of the identified sequence hits are available at:
casp12_concept_usage_hits_msa.tgz (click).

FIGURE 8 | Sequence consensus across the usages of concept c_0397. amino-acid sequence logo (in two parts: columns 1-55 and 56-111) showing the
sequence consensus across the usages of a randomly chosen concept c_0397 directly related to the Cu-Zn binding superoxide dismutase. Of the 111 columns in the
multiple sequence alignment (of the c_0397’s 33 usage sequences) corresponding to this logo, 46 aligned columns show a consensus of 100%.
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3.4 Exploration of Substructures and
Structural Relationships
In addition to the applications explored above, the dictionary can
be used to complement standard protein structural studies.
Researchers can approach the dictionary with a particular
structure or family of structures in mind. For example,
dissecting the human hemoglobin (1HHO, chain A) at the
PROÇODIC website identifies the concepts c_0375, c_0894, and
c_1410. Choosing one of the concepts, for example, c_0894, its
archetype is found in d1x9fd, a globin from the annelid
Lumbricus terrestris. Note that related proteins can present
dissections into different concepts. However, these concepts
may still be related (see Section 3 on hierarchical clustering of
concepts). Our dictionary subsumes known supersecondary
structural motifs. For example, c_0375 and c_0894 are related

concepts linked to globins, with the former being more elaborate
(with three extra helices) than the latter. Examining the
corresponding concept “usages” link on the PROÇODIC website
reveals that many usages of these related concepts appear in other
globins. SupplementaryMaterial S1 contains several examples of
use of PROÇODIC to explore protein substructural similarities.

4 MATERIALS AND METHODS

4.1 Tableau Representation
Tableaux are concise two-dimensional representations of protein
folding patterns (Lesk, 1995). A tableau represents a protein
folding pattern in terms of a) the order of secondary structural
elements that appear along the polypeptide chain, and b) the
geometry of interactions of pairs of SSEs in contact. This provides
a computable definition for protein folding patterns, useful to
study many aspects of protein architecture (Kamat and Lesk,
2007; Konagurthu et al., 2008; Konagurthu and Lesk, 2010).

For a protein of known 3D structure, the construction of a
tableau involves first assigning the SSEs from the set of
coordinates. In this work, we assign the secondary structure
using the program SST (Konagurthu et al., 2012). This
identifies the order in which helices (H) and strands of sheet
(E) appear along the polypeptide chain. The succession of SSEs in
any protein therefore appears as a string of characters H or E. The
relative orientation of each pair of SSEs is computed as a dihedral
angle between two planes formed by the least-squares vectors
fitting the Cα coordinates of each SSE (directed from N- to
C-terminus) and their mutual perpendicular.

The geometry of pairs of SSEs is represented as a square-
symmetric matrix of orientation angles, with rows and columns
indexed by successive SSEs. A corresponding contact matrix
stores the contact patterns between pairs of SSEs. Two SSEs
are said to be in contact if there exists at least a pair of residues
(one from each SSE) that are in contact. Two residues are in
contact if there is at least one pair of atoms (one from each
residue) the distance between which is less than the sum of their
Van der Waals radii plus a small constant (1 Å).

The idea is that the essence of a protein folding pattern is
contained in the SSEs, their contact patterns, and the relative
orientations of pairs of SSEs in contact.

4.2 Source Collection Used for the Inference
of PROÇODIC Dictionary of Concepts
A source collection is a collection of (source) tableaux T . Since the
full PDB has redundancy and bias in terms of entries with similar
structures, to infer the dictionary of concepts we use the ASTRAL

SCOP-95 (Murzin et al., 1995; Andreeva et al., 2013; Chandonia
et al., 2017) (v2.05) dataset that has been produced to remove bias
due to over-represented structures, while explicitly incorporating
structure quality at each step of the domain selection (Brenner
et al., 2000). This data set is composed of 26,949 domains,
representing only 12% of the full SCOPe (v2.05) domain
dataset. Of these, 13,365 domains have < 40% sequence
similarity to its closest neighbor. Although the maximum

TABLE 3 | Statistics showing the extent of detectable sequence similarity on each
of the 33 CASP12 targets with their PDBIDs specified at http://
predictioncenter.org/casp12/targetlist.cgi. First column: PDBID of the 3D
experimental structure of each CASP12 target. Second column: The coverage
statistics in terms of the total number of amino acids (#a.a.) within the amino
acid (sub-)sequences defined by the dissected regions of the target protein
with detectable sequence similarity with amino acid (sub-)sequences of their
corresponding concept usage instances (see the main text). Third column:
The total number of amino acids in the target protein, cumulative over all
chains. Fourth column: Percentage coverage � Second column*100/Third
column.

Target’s #a.a.’s in regions Total #a.a.’s

PDBID with usage seq hits in all chains %Covered

3JB5 1046 2076 50.4
4YMP 202 215 94.0
5A7D 4468 5065 88.2
5AOT 91 102 89.2
5AOZ 125 141 88.7
5D9G 154 502 30.7
5ERE 417 540 77.2
5FHY 155 458 33.8
5FJL 88 136 64.7
5G3Q 100 168 59.5
5G5N 580 1022 56.8
5HKQ 160 263 60.8
5IDJ 63 242 26.0
5J4A 339 440 77.0
5J5V 815 1065 76.5
5JMB 103 182 56.6
5JMU 172 219 78.5
5JO9 215 239 90.0
5JZR 203 262 77.5
5KKP 166 509 32.6
5KO9 73 253 28.9
5LEV 323 375 86.1
5M2O 171 211 81.0
5MQP 2674 4801 55.7
5NSJ 150 284 52.8
5NV4 713 1377 51.8
5SY1 786 1458 53.9
5T87 444 745 59.6
5TF2 331 338 97.9
5TJ4 2640 5462 48.3
5UNB 378 681 55.5
5UVN 954 2496 38.2
5UW2 211 332 63.6
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sequence similarity two proteins can share is 95%, the average
sequence similarity is significantly lower (< 53%). The full list of
ASTRAL SCOP-95 domains used to infer the reported dictionary is
available in the supporting data file: prosodicInferenceList.txt
(click). Further, the inferred PROÇODIC dictionary was used to
dissect the PDB (Berman et al., 2003). Analysis presented here
includes the dissections of 113,724 protein coordinates files:
prosodicDissectedWWPDBList.txt (click). In addition to these
dissections, the PROÇODIC website allows users interactively to
dissect any protein structure on demand.

4.3 Definitions of a Concept and a
Dictionary of Concepts
Any subtableau comprising ≥ 2 consecutive rows and columns is
potentially a concept, provided that the graph defined by the
corresponding contact matrix is connected. (An undirected
graph is said to be connected if there exists a path between
any pair of vertices.) The rationale for this definition is
supported by the analysis by Kamat and Lesk (2007) who
demonstrated that almost all the information required to
identify a folding pattern is inherent in the local structure,
which can be captured using successive diagonals of a tableau.
We also note that relaxing the concept definition to general
subtableaux with nonconsecutive SSEs would render the
problem of finding an optimal set of concepts
computationally intractable.

A candidate dictionary C is a set of concepts. Any possible
dictionary is a set of substructures, each satisfying the definition
of a concept, that appear in the source collection. Our goal is to
determine the optimal concept dictionary to explain the entire
source collection as efficiently as possible. Technically, this is the
dictionary that gives the most (lossless) compression of the source
collection.

Associated with each concept c ∈ C is a concentration
parameter, κ, corresponding to a von Mises circular (angular)
probability distribution (Mardia and Jupp, 2009). This parameter
controls the assignment of probabilities used to estimate the
encoding length of entries in Ω when compressing regions of the
source tableaux. That is, κ controls the flexibility of an inferred
concept. A smaller/larger κy yields greater/lesser flexibility of the
concept’s usages for compressing source tableaux regions. These
values are inferred as a part of the dictionary search (see
Algorithm 1).

4.4 Inference of Dictionary of Concepts
We recently described a lossless compression-based methodology
to infer recurrent subtableaux on any source collection of
tableaux using the Minimum Message Length (MML) criterion
(Subramanian et al., 2017). The dictionary we report here has
been subsequently inferred using the methodology described in
that work. For convenience of the reader, the overview of our
methodology is summarized later, and we refer the reader to our
published methodology (Subramanian et al., 2017) for formal
details.

The main goal here is to learn a flat (nonhierarchical)
dictionary of concepts C that yields the best lossless

compression of the source collection of tableaux T . The
inference of C was undertaken using the Bayesian criterion of
minimum message length (MML) (Wallace, 2005). MML
provides a statistical inference framework to learn propositions
from any observed data set. A proposition can be made as a
hypothesis, model, explanation, or theory (Allison, 2018). The
MML framework combines ideas from the field of information
theory developed by Shannon (Shannon, 1948) and Bayesian
inference. Using MML, the descriptive complexity of any stated
hypothesis (model, theory, etc.) and its fidelity to explain the
observed data can be accurately quantified in terms of Shannon
information content (measured in bits). This allows the MML
framework to provide a reliable complexity-versus-fidelity trade-
off, and overcome the well-known problem of over-fitting that is
observed in many statistical inference problems. Thus, the best
hypothesis is chosen to be the one that yields the most succinct
two-part encoding, where the first part encodes the hypothesis,
whereas the second encodes the observed data given the stated
hypothesis. From the Bayesian standpoint (Bayes and Price,
1763), this translates to finding the hypothesis on the data
that maximizes their joint probability. Applying MML to this
work, the best concept-dictionary C that explains a source
collection of tableaux T is the one that minimizes the length
of the two-part encoding of the form: I(C&T ) � I(C) + I(T |C),
where I(·) � −log2(Pr(·)) measures the Shannon information
content (Shannon, 1948) of each of the two parts.

The MML framework provides a natural null-hypothesis test.
A dictionary C explaining T is accepted if and only if its two-part
lossless encoding length is shorter than the encoding length of the
observed data communicated independently (without the
support of any dictionary). The latter is termed the null model
message length and denoted as Inull(·). Further, the quality of an
inferred dictionary can be measured by the amount of lossless
compression gained with respect to the null model:
Inull(T ) − I(C&T ). Thus, using MML, the best dictionary can
be equivalently chosen using the following objective:
arg max

C
Inull(T ) − I(C&T ). Formal details of the search

methodology for the best dictionary and MML methods to
estimate the lossless encoding lengths given by the terms
Inull(T ) and I(C&T ) appear in (Subramanian et al., 2017).

Broadly speaking, central to the inference of the dictionary is
the procedure to generate the optimal encoding of any single
tableau using a given concept-dictionary C. This involves: 1) the
optimal partitioning of the tableau into subtableaux, 2) the
optimal assignment of those regions to concepts in the
dictionary (or to a null concept), and 3) the encoding of
information within the whole tableau using the assignment of
regions to their respective concepts. This optimal partitioning
and encoding is chosen as the one that yields the minimum
encoding length, and can be derived using an efficient dynamic
programming algorithm. Therefore, using MML, the best
dictionary for any source collection of tableaux is defined as
the one that yields the shortest overall encoding of stating the
dictionary, plus the optimal encodings for each tableau in the
collection given that dictionary.

Finally, the search for the best dictionary is carried out using
simulated annealing (see Algorithm 1). Starting from the initial
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state of an empty dictionary, the search involves iterative and
stochastic explorations of local neighborhood of the solution-
space using the following perturbation primitives: 1) Add
concept: randomly choose a subtableau (candidate concept)
from the source collection and add it to the current
dictionary. 2) Remove concept: randomly choose and delete an
existing concept from the current dictionary. 3) Perturb concept
length: randomly choose an existing concept from the dictionary
and extend/shorten it by one SSE, with reference to the concept’s
original source (in the source collection). 4) Perturb kappa:
randomly choose a concept and perturb its statistical

parameter (κ) that controls its flexibility. 5) Swap concept with
usage: randomly choose a concept from the current dictionary,
and swap it with a region in the collection that is currently
encoded by it.
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Structural Profiling of Bacterial
Effectors Reveals Enrichment of
Host-Interacting Domains and Motifs
Yangchun Frank Chen and Yu Xia*

Department of Bioengineering, McGill University, Montreal, QC, Canada

Effector proteins are bacterial virulence factors secreted directly into host cells and,
through extensive interactions with host proteins, rewire host signaling pathways to the
advantage of the pathogen. Despite the crucial role of globular domains as mediators of
protein-protein interactions (PPIs), previous structural studies of bacterial effectors are
primarily focused on individual domains, rather than domain-mediated PPIs, which limits
their ability to uncover systems-level molecular recognition principles governing host-
bacteria interactions. Here, we took an interaction-centric approach and systematically
examined the potential of structural components within bacterial proteins to engage in or
target eukaryote-specific domain-domain interactions (DDIs). Our results indicate that: 1)
effectors are about six times as likely as non-effectors to contain host-like domains that
mediate DDIs exclusively in eukaryotes; 2) the average domain in effectors is about seven
times as likely as that in non-effectors to co-occur with DDI partners in eukaryotes rather
than in bacteria; and 3) effectors are about nine times as likely as non-effectors to contain
bacteria-exclusive domains that target host domains mediating DDIs exclusively in
eukaryotes. Moreover, in the absence of host-like domains or among pathogen
proteins without domain assignment, effectors harbor a higher variety and density of
short linear motifs targeting host domains that mediate DDIs exclusively in eukaryotes. Our
study lends novel quantitative insight into the structural basis of effector-induced
perturbation of host-endogenous PPIs and may aid in the design of selective inhibitors
of host-pathogen interactions.

Keywords: structural biology, bacterial effector, host-pathogen interaction, protein-protein interaction, globular
domains, short linear motifs, structural homology, convergent evolution

INTRODUCTION

An important goal of systems microbiology is to understand how host-pathogen protein-protein
interactions (PPIs) impact host-endogenous signaling networks. Effector proteins are virulence
factors secreted by pathogenic bacteria and injected directly into the host cytoplasm via specialized
secretion systems (Galan, 2009). Effectors are key mediators of host-pathogen interactions
throughout the infection cycle, from initial host attachment and pathogen internalization, to
migration and proliferation in the host. Among the diverse biochemical activities of effectors
discovered so far are guanine nucleotide exchange factors and dissociation inhibitors, GTPase-
activating proteins, kinases and phosphatases, ubiquitin ligases, and so on (Fu and Galan, 1998;
Steele-Mortimer et al., 2000; Janjusevic et al., 2006). A common virulence mechanism of effectors is
functional mimicry of host activities, whereby effectors compete with host proteins for control of
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host signaling pathways. This functional mimicry can be achieved
in one of two ways: horizontal acquisition of eukaryotic globular
domains, or convergent evolution of domains and short linear
motifs in bacteria that bear little sequence or structural similarity
to eukaryotic proteins (Stebbins and Galan, 2001; Popa et al.,
2016; Scott and Hartland, 2017). These structural modules allow
effectors to interact seamlessly with host-endogenous factors
involved in actin remodelling, protein degradation and cell
cycle regulation, helping the pathogen to survive and thrive in
the host while bypassing immune surveillance. Previous studies
have uncovered a large repertoire of bacterial effectors that are
structural homologs of eukaryotic proteins, giving rise to models
for predicting effectors based on the premise that whereas most
domains are uniformly distributed among all species of bacteria,
eukaryotic-like domains are overrepresented in the genomes of
pathogenic and symbiotic species (Jehl et al., 2011; Marchesini
et al., 2011). Although useful for identifying candidate effectors in
metagenomic analyses, a main caveat of these models is their
treatment of domains as individual, rather than interacting,
entities that contribute to protein-protein interactions.
Eukaryotic domains and their domain-domain interaction
(DDI) partners are of special interest to the study of host-
pathogen interactions, as they are often mimicked or targeted
by pathogens to subvert host signaling pathways (Arnold et al.,
2012). Despite studies pointing to the presence of many
eukaryotic-like domains in bacterial effectors, there has yet to
be a comprehensive, quantitative analysis of the relevance of such
domains to host-endogenous PPIs, which is crucial to
understanding systems-level changes in the host upon
infection with pathogens.

Past studies on host-bacteria protein-protein interactions
(PPIs) have examined either individual interactions at the
domain level (Cazalet et al., 2004), or interactome networks at
the whole protein level (Schweppe et al., 2015), but never both at
the domain level and on an interactome scale. In this work, we ask
the following new question: how do host-bacteria PPIs mimic and
modulate host-endogenous PPIs at the protein domain level on
an interactome scale? To answer this question, we carried out two
analyses of host-interacting bacterial proteins: the first on
mimicry of host-endogenous binding sites by bacterial
effectors, and the second on enrichment of host-interacting
domains and short linear motifs in bacterial effectors. In the
first analysis, we examined the mechanism of host binding site
mimicry by bacterial proteins where, rather than creating new
binding sites, bacteria recruit existing binding sites involved in
host-endogenous PPIs for host-bacteria PPIs (Cazalet et al.,
2004). Previous studies on host-virus interactions found that
while two human proteins sharing binding sites on a common
target tend to be structurally similar, a viral protein and a human
protein sharing binding sites on a common target tend to be
structurally distinct (Franzosa and Xia, 2011; Garamszegi et al.,
2013). In other words, binding site sharing among human
proteins is largely attributable to divergent evolution through
gene duplication, whereas binding site mimicry by viral proteins
tends to involve convergent evolution of unique host-interacting
modules in viruses. To our knowledge, similar analyses have yet
to be performed for host-bacteria interactions. In the second

analysis, we tested the hypothesis that compared to non-effector
proteins, bacterial effectors are enriched for domains that either
mimic or target host domains involved in eukaryote-specific
domain-domain interactions (DDIs). In addition to domains,
we also tested whether effectors tend to contain a higher variety
and density of short linear motifs that interact with host domains
mediating DDIs exclusively in eukaryotes.

RESULTS

Mechanism of Binding Site Sharing in
Host-Endogenous vs. Host-Bacteria
Protein-Protein Interaction Network
Previous studies have established binding site mimicry via
convergent evolution as a key feature of human-virus PPIs
where, rather than securing new binding sites, viruses have
evolved unique, non-host-like structural domains and short
linear motifs to compete with host proteins for the same
binding sites on a common host target (Franzosa and Xia,
2011; Garamszegi et al., 2013). As bacteria and viruses are
both known to hijack host molecular machinery through
interacting with host proteins, we performed similar analyses
on a domain-resolved host-bacteria PPI network with regard to
binding site mimicry and its evolutionary mechanism. To this
end, we acquired eukaryote-endogenous (within animals/plants/
fungi), bacteria-endogenous and host-bacteria (between animals/
plants and pathogenic bacteria) PPI data, and resolved each PPI
into domain-domain interactions (DDIs) between interacting
proteins, based on DDI templates previously derived from 3D
structures of protein complexes (Materials and Methods). The
resulting domain-resolved, eukaryote-bacteria PPI network
consists of: 1) 57,019 PPIs among 22,110 eukaryotic proteins,
resolved into 4,953 DDIs among 2,859 eukaryotic domains; 2)
3,362 PPIs among 3,000 bacterial proteins, resolved into 1,434
DDIs among 1,120 bacterial domains; and 3) 173 PPIs between
107 host proteins and 103 bacterial proteins, resolved into 87
DDIs between 53 host domains and 63 bacterial domains. The
entire list of domain-resolved host-bacteria, bacteria-
endogenous, and eukaryote-endogenous PPIs can be found in
Supplementary File S1.

We found that of the 103 host-targeting bacterial proteins, 95
(92%) bind to the same domains on their host target that are
otherwise bound by host-endogenous proteins, suggesting that
like viruses, bacteria also tend to recruit domains involved in
host-endogenous PPIs for host-pathogen PPIs (Cazalet et al.,
2004). We then determined whether bacterial and host proteins
binding to the same domain on another host protein are
structurally similar. We found that of 18,331 cases where two
host proteins A and B bind to the same domain on a common
target, 13,139 (72%) cases involve domains which are conserved
between A and B, while in the remaining 5,192 (28%) cases there
is no domain conserved between A and B. Conversely, among 95
cases where host protein X and bacterial protein Y bind to the
same domain on another host protein, only 8 cases (8%) involve
domains which are conserved between X and Y, while in the
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remaining 87 (92%) cases there is no domain conserved between
X and Y. In other words, compared to binding site sharing among
host proteins, binding site mimicry by bacterial proteins appears
significantly more likely to involve convergent evolution (or
extreme divergent evolution) of bacteria-exclusive domains,
rather than horizontal acquisition of host domains (Fisher’s
exact test, two-tailed p < 2.2 * 10−16). Figure 1 shows the
contrast in dominant evolutionary mechanisms behind
binding site sharing in the host-endogenous vs. host-bacteria
PPI network.

Effectors Structurally Mimic Host Domains
Involved in Eukaryote-Specific
Protein-Protein Interactions
Having examined the mechanism of binding site mimicry in the
host-bacteria PPI network, we then asked whether bacterial
effectors tend to mimic or target host domains that mediate
DDIs predominantly in eukaryotes, as opposed to domains that
mediate DDIs in eukaryotes and bacteria with similar likelihood -
the rationale being that the former are involved in eukaryote-
specific processes such as protein ubiquitination (Grau-Bove
et al., 2015), which are prime targets for pathogens to
manipulate, whereas the latter are involved in highly
conserved, essential cellular processes (Walhout et al., 2000;
Matthews et al., 2001), which are unlikely to be perturbed in
host-pathogen interactions. We found that of the 63 host-binding
bacterial domains in our dataset, 12 have homologs in eukaryotes,
among which 7 mediate DDIs exclusively in eukaryotes
(PF12796, PF00092, PF12799, PF02205, PF04564, PF00646,
PF13676), 3 mediate DDIs primarily in eukaryotes (PF00069,

PF00583, PF00183), and 2 have similar numbers of DDI partners
in eukaryotes and bacteria (PF13472, PF00085) (Supplementary
File S2). Meanwhile, of the 31 host domains targeted by bacteria-
exclusive domains, 28 otherwise mediate DDIs exclusively in
eukaryotes, 2 mediate DDIs primarily in eukaryotes, and 1 has
similar numbers of DDI partners in eukaryotes and bacteria
(Supplementary File S3). In summary, effectors tend to
mimic or target host domains that mediate DDIs
predominantly in eukaryotes. Given that effectors comprise
nearly half (43/103) of the host-targeting bacterial proteins in
our PPI dataset, we hypothesized that compared to the rest of the
pathogen proteome, effectors are generally enriched for: 1)
eukaryotic-like domains that mediate DDIs predominantly in
eukaryotes; and 2) bacteria-exclusive domains that target host
domains which, when not involved in host-pathogen DDIs,
mediate DDIs exclusively in eukaryotes. To test this
hypothesis, we systematically compared 238 effectors and
3,921 non-effectors with unique domain signatures, encoded
by 84 bacterial species of verified pathogenicity (Urban et al.,
2020). Effectors encoded by the 84 pathogenic species are selected
from PHI-base, if a pathogen gene’s “Gene Function” or “Mutant
Phenotype” column contains the keyword “effector”, as well as
from the UniProt database if the gene name or cellular location
contains keywords such as “type * effector”, “t*ss effector”, or
“secreted effector”. To ensure the same selection criteria are
applied to all proteins, non-effectors encoded by the 84
pathogenic species include proteins not already in the effector
set, whose cellular location is any one of cytoplasmic, membrane
or secreted (Materials and Methods).

We first tested the hypothesis that effectors are enriched for
domains that mediate DDIs exclusively in eukaryotes. We found

FIGURE 1 | Different evolutionary mechanisms for binding site sharing in the host-endogenous vs. host-bacteria PPI network. Two host proteins are more likely to
use the same type of domain to bind to the same domain of a common target, suggesting divergent evolution followed by gene duplication. A host protein and a bacterial
protein are more likely to use different types of domain to bind to the same domain of a common host target, suggesting convergent evolution (or extreme divergent
evolution) of non-host-like domains in bacteria. The difference in dominant evolutionary mechanisms is statistically significant (Fisher’s exact test, two-tailed
p < 2.2 * 10−16).
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that among 41 effectors and 1,478 non-effectors containing
domains that mediate experimentally verified PPIs in
eukaryotes, 8 effectors (20%) and 55 non-effectors (4%)
contain domains that mediate PPIs exclusively in eukaryotes,
suggesting that effectors are six times as likely as non-effectors to
repurpose eukaryote-specific processes via eukaryotic-like

domains (Fisher’s exact test, two-tailed p � 2 * 10−4)
(Figure 2). Table 1 is a list of effectors containing domains
involved in interprotein DDIs in eukaryotes, but neither
interprotein nor intraprotein DDIs in bacteria. Next, we tested
the hypothesis that effectors are enriched for domains that
mediate DDIs primarily in eukaryotes. For domains having

FIGURE 2 | Effectors are enriched for eukaryotic-like domains that mediate PPIs exclusively in eukaryotes. Among pathogen proteins containing domains that
mediate experimentally verified PPIs in eukaryotes, 20% effectors and 4% non-effectors contain domains that mediate PPIs exclusively in eukaryotes, suggesting that
effectors are six times as likely as non-effectors to repurpose eukaryote-specific processes via eukaryotic-like domains (Fisher’s exact test, two-tailed p � 2 * 10−4).

TABLE 1 | Effectors containing domains that mediate PPIs exclusively in eukaryotes.

UniProt accession Representative species Domain(s) # Pathogenic spp. encoding proteins with domain(s)

B0RMF9 Xanthomonas campestris PF00560 14
A0A0A8VF40 Yersinia ruckeri PF00560; PF13855 12
A0A199P7E1 Xanthomonas translucens PF00646 11
A0A0S4VGA6 Ralstonia solanacearum PF00646; PF13516 4
F6G106 Ralstonia solanacearum PF00646; PF13516; PF13855 4
A0A1Y0FB05 Ralstonia solanacearum PF00665; PF13276 74
A0A286NT26 Vibrio parahaemolyticus PF02205 3
D8NFZ7 Ralstonia solanacearum PF01535; PF12854; PF13812 1

Domains mediating PPIs exclusively in eukaryotes are marked in bold.

TABLE 2 | Weighted average host-interacting potential of a multi-domain bacterial protein.

DDI Eukaryotic species
encoding both

interacting domains

Eukaryotic species
encoding either one or

both interacting domains

Bacterial species
encoding both

interacting domains

Bacterial species
encoding either one or

both interacting domains

Odds ratio of domain
mediating DDIs in

eukaryotes vs. in bacteria

Weight

A_B m H1 n B1 OR1 � mp(B1−n)
np(H1−m) w1 � mp(B1−n)

H1+B1

A_C p H2 q B2 OR2 � pp(B2−q)
qp(H2−p) w2 � pp(B2−q)

H2+B2

D_E x H3 y B3 OR3 � xp(B3−y)
yp(H3−x) w3 � xp(B3−y)

H3+B3

Host-interacting potential � log(∑3

i�1ORipwi∑3

i�1wi
)

The host-interacting potential of a bacterial protein containing domains A and D, where A and D have DDI partners (domains B, C, E) in both eukaryotes and bacteria, is computed as the Mantel-
Haenszel weighted average log odds ratio of domains A andD co-occurringwith interacting domains in eukaryotes vs. in bacteria. The odds of domain co-occurringwith DDI partners are the number
of species encoding both interacting domains (i.e. DDI is possible) divided by the number of species encoding either one, but not both, of the interacting domains (i.e. DDI is not possible).
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FIGURE 3 | Effectors are enriched for eukaryotic-like domains that mediate PPIs primarily in eukaryotes. Among pathogen proteins containing domains that have
DDI partners in both eukaryotes and bacteria, the average domain in effectors is seven times as likely as that in non-effectors to co-occur with DDI partners in eukaryotes
rather than in bacteria (Wilcoxon test, two-tailed p � 4 * 10−7).

TABLE 3 | Effectors containing domains that mediate PPIs primarily in eukaryotes.

UniProt
accession

Species Domain(s) # Pathogenic spp. encoding
proteins with domain(s)

Log odds ratio of domains co-occurring with DDI
partners in eukaryotes vs. in bacteria

Q5ZRQ0 Legionella
pneumophila

PF04564 1 7.1

O84875 Chlamydia
trachomatis

PF02902 13 6.2

P74873 Salmonella enterica PF00102; PF03545;
PF09119

2 4.4

Q9KS43 Vibrio cholerae PF01764 40 3.9
Q3BQY9 Xanthomonas

euvesicatoria
PF13202; PF13499 19 3.8

D8P6Z5 Ralstonia
solanacearum

PF13516 14 3.7

Q8XT98 Ralstonia
solanacearum

PF00069 69 3.5

D2TI55 Citrobacter rodentium PF00557 84 2.8
Q8XZN9 Ralstonia

solanacearum
PF13516; PF13855 13 2.2

A0A6C9X110 Escherichia coli PF00805; PF01391;
PF13599

27 2

Domains with DDI partners in both eukaryotes and bacteria are marked in bold.
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DDI partners in both eukaryotes and bacteria, we estimated their
propensity for mediating eukaryote-specific DDIs by computing
the odds ratio of the domain’s co-occurrence with DDI partners
in eukaryotes vs. in bacteria. If a bacterial protein contains
multiple such domains, we computed a weighted average odds
ratio (Table 2). We found that among 26 effectors and 635 non-
effectors containing domains that have DDI partners in both
eukaryotes and bacteria, the average domain in effectors is seven
times as likely as that in non-effectors to co-occur with DDI
partners in eukaryotes rather than in bacteria (Wilcoxon test,
two-tailed p � 4 * 10−7) (Figure 3). Table 3 lists effectors with the
top 10 highest odds ratios of their component domains co-
occurring with DDI partners in eukaryotes rather than in
bacteria.

Effectors Convergently Target Host
Domains Involved in Eukaryote-Specific
Protein-Protein Interactions
We then tested the hypothesis that effectors are enriched for
bacteria-exclusive domains that target host domains which, when
not involved in host-pathogen DDIs, mediate DDIs exclusively in
eukaryotes. Given that experimental PPI data often suffer from
limitations such as false negatives and investigator bias in
pathogen selection, we supplemented host-interacting bacteria-
exclusive domains supported by PPI data with host-interacting
bacteria-exclusive domains supported by interprotein DDI
templates (Mosca et al., 2014). In this manner, we identified a
total of 207 bacteria-exclusive domains with the potential to
target host domains that mediate DDIs in eukaryotes, 52 of
which target host domains that mediate DDIs exclusively in
eukaryotes. We found that among 30 effectors and 41 non-

effectors containing bacteria-exclusive domains with the
potential to target host domains that mediate DDIs in
eukaryotes, 23 effectors (77%) and 11 non-effectors (27%)
target host domains that mediate DDIs exclusively in
eukaryotes, suggesting that effectors are nine times as likely as
non-effectors to disrupt eukaryote-specific processes via bacteria-
exclusive domains (Fisher’s exact test, two-tailed p � 4 * 10−5)
(Figure 4). Supplementary File S4 is a list of effectors with
bacteria-exclusive domains targeting host domains that otherwise
mediate DDIs exclusively in eukaryotes.

In addition to encoding globular domains that either mimic
or target host domains, effectors also encode short linear
motifs that bind to host domains with similar specificities
as host-endogenous proteins, albeit sharing little homology
with the latter (Samano-Sanchez and Gibson, 2020). These
short linear motifs follow particular sequence patterns and are
predominantly located in intrinsically disordered regions of
proteins that are accessible to interacting partners (Davey
et al., 2012). To determine whether effectors are enriched
for host-interacting motifs, we counted the number of
unique classes and instances of eukaryotic linear motifs
(ELMs) (Kumar et al., 2020) in long disordered regions of
bacterial proteins as annotated by the MobiDB database
(Piovesan et al., 2018). When comparing 162 effectors and
8,414 non-effectors with unique ELM compositions and
containing eukaryotic-like domains, we found that effectors
and non-effectors encode 9 and 8 ELM classes per protein
(Figure 5, Left), along with 0.30 and 0.28 ELM instances per
disordered residue (Figure 6, Left), respectively. In other
words, in the presence of eukaryotic-like domains, effectors
encode a slightly higher variety (Wilcoxon test, two-tailed p �
3 * 10−3), but similar density of ELMs (Wilcoxon test, two-

FIGURE 4 | Effectors are enriched for bacteria-exclusive domains targeting host domains that otherwise mediate DDIs exclusively in eukaryotes. Among pathogen
proteins containing bacteria-exclusive domains with the potential to target host domains that mediate DDIs in eukaryotes, 77% effectors and 27% non-effectors target
host domains that mediate DDIs exclusively in eukaryotes, suggesting that effectors are nine times as likely as non-effectors to disrupt eukaryote-specific processes via
bacteria-exclusive domains (Fisher’s exact test, two-tailed p � 4 * 10−5).
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tailed p � 0.3) compared to non-effectors. When comparing
521 effectors and 794 non-effectors with unique ELM
compositions and not containing eukaryotic-like domains or
any Pfam domains, however, we found that effectors and non-
effectors encode 12 and 8 ELM classes per protein (Figure 5,
Right), along with 0.31 and 0.27 ELM instances per disordered

residue (Figure 6, Right), respectively. In other words, in the
absence of eukaryotic-like domains or among pathogen
proteins without Pfam domains, effectors encode a higher
variety (Wilcoxon test, two-tailed p < 2.2 * 10−16) as well as
higher density of ELMs (Wilcoxon test, two-tailed p � 2 * 10−8)
compared to non-effectors.

FIGURE 5 | In the absence of eukaryotic-like domains or domains in general, effectors contain a higher variety of eukaryotic linear motifs compared to non-
effectors. Left: In the presence of eukaryotic-like domains, effectors encode 9 ELM classes per protein, a slightly higher variety (Wilcoxon test, two-tailed p � 3 * 10−3)
compared to 8 ELM classes per non-effector protein. Right: In the absence of eukaryotic-like domains or among proteins without Pfam domains, effectors encode 12
ELM classes per protein, a much higher variety (Wilcoxon test, two-tailed p < 2.2 * 10−16) compared to 8 ELM classes per non-effector protein. ELM � eukaryotic
linear motif.

FIGURE 6 | In the absence of eukaryotic-like domains or domains in general, effectors contain a higher density of eukaryotic linear motifs compared to non-
effectors. Left: In the presence of eukaryotic-like domains, effectors encode 0.30 ELM instances per disordered residue, a slightly higher density that is not statistically
significant (Wilcoxon test, two-tailed p � 0.3) compared to 0.28 ELM instances per disordered residue in non-effectors.Right: In the absence of eukaryotic-like domains
or among proteins without Pfam domains, effectors encode 0.31 ELM instances per disordered residue, a higher density that is statistically significant (Wilcoxon
test, two-tailed p � 2 * 10−8) compared to 0.27 ELM instances per disordered residue in non-effectors. ELM � eukaryotic linear motif.
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DISCUSSION

Pathogenic bacteria have evolved a plethora of strategies to
survive and thrive in eukaryotic hosts. A key strategy is
functional mimicry of host activities, which is achieved
through one of two orthogonal evolutionary mechanisms:
horizontal acquisition of eukaryotic domains or convergent
evolution of bacteria-exclusive domains (Stebbins and Galan,
2001; Popa et al., 2016; Scott and Hartland, 2017). Current
literature contains many case studies of bacterial effectors
targeting host domains involved in host-endogenous PPIs via
eukaryotic-like domains or bacteria-exclusive domains. For
instance, Ralstonia solanacearum have acquired a host-like
F-box domain (PF00646) that competes with host-endogenous
F-box protein for binding to SKP1, thus hijacking the ubiquitin-
proteasome pathway in Arabidopsis thaliana (Angot et al., 2006),
while Shigella flexneri have convergently evolved a GEF domain
(PF03278) that competes with host Rho GEF, thus activating the
Rho GTPase signaling pathway in humans (Huang et al., 2009).
In addition to mechanistic studies on individual host-targeting
domains in bacteria, databases of eukaryotic-like domains and
short linear motifs provide a snapshot of the extent to which
bacterial pathogens mimic host structural modules. For instance,
EffectiveDB, a database for predicting bacterial effectors based on
several criteria including the presence of eukaryotic-like domains,
currently reports 2,636 eukaryotic-like domains as being
significantly enriched (Z-score ≥ 4) in the genomes of
pathogenic vs. non-pathogenic bacteria (Eichinger et al., 2016).
Meanwhile, the Eukaryotic Linear Motif Resource currently
contains ∼100 instances of bacteria-mimicked eukaryotic short
linear motifs from a small number of extensively studied
pathogenic species (Samano-Sanchez and Gibson, 2020).

Here, we constructed a domain-resolved network consisting of
eukaryote-endogenous, bacteria-endogenous and host-bacteria
protein-protein interactions (PPIs), based on which we studied

the mechanism of host binding site mimicry by bacterial proteins,
and systematically probed the proteomes of pathogenic bacteria
for domains that mimic or target host domains engaging in
domain-domain interactions (DDIs) that are specific to
eukaryotes, as opposed to DDIs that are conserved between
eukaryotes and bacteria. Our comprehensive and quantitative
profiling of bacterial proteomes reveals statistically significant
enrichment of domains and short linear motifs in bacterial
effectors that interact with host domains engaged in
eukaryote-specific DDIs, which allows host-bacteria PPIs to
mimic host-endogenous PPIs on an interactome scale
(Figure 7). We found that consistent with previous results for
host-virus interactions, binding site sharing among host proteins
largely results from gene duplication followed by divergent
evolution, whereas binding site mimicry by bacterial proteins
seems to largely result from convergent evolution (or extreme
divergent evolution) of structural modules in bacteria that bear
little resemblance to those in host. Our results indicate that: 1)
effectors are six times as likely as non-effectors to contain host-
like domains that mediate DDIs exclusively in eukaryotes
(Figure 2); 2) the average domain in effectors is seven times
as likely as that in non-effectors to co-occur with DDI partners in
eukaryotes rather than in bacteria (Figure 3); and 3) effectors are
nine times as likely as non-effectors to contain bacteria-exclusive
domains that target host domains mediating DDIs exclusively in
eukaryotes (Figure 4). Moreover, in the absence of host-like
domains or among pathogen proteins without domain
assignment, effectors harbor a higher variety and density of
short linear motifs targeting host domains that mediate DDIs
exclusively in eukaryotes.

While our dataset does contain more host-endogenous than
bacteria-endogenous or host-bacteria PPIs and DDIs, this
imbalance should not confound our results, as domain
assignment and DDI templates are not taxonomy-specific, but
rather are used to resolve all PPIs, regardless of the species

FIGURE 7 | Effectors are enriched for structural modules that either mimic or target host domains mediating eukaryote-specific domain-domain interactions. Using
a domain-resolved eukaryote-bacteria protein-protein interaction network, we identified domains that mediate PPIs exclusively in eukaryotes (Left: deep purple arc), as
well as domains that are more likely to co-occur with domain-domain interaction partners in eukaryotes rather than in bacteria (Middle: light purple arc). We found that
compared to generic proteins encoded by pathogenic bacteria, effector proteins are significantly enriched for domains and short linear motifs that either mimic or
target host domains mediating DDIs either exclusively or primarily in eukaryotes. Left: Effectors mimic host domains that mediate DDIs exclusively in eukaryotes;Middle:
Effectors mimic host domains that mediate DDIs primarily in eukaryotes;Right: Effectors convergently evolve domains and short linear motifs to target host domains that
mediate DDIs exclusively in eukaryotes. H � host protein; B � generic bacterial protein; BE � bacterial effector protein. Domains are represented as blue (eukaryotic), red
(bacterial), purple (eukaryotic-like and host-targeting), and black (convergently evolved and host-targeting) arcs. Short linear motifs are represented as rectangles.
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involved. In fact, our estimation of domain’s relevance to eukaryote-
specific DDIs anticipates and accounts for DDIs that are exclusive to
host species, by giving more weight to domains engaging in such
DDIs. In Tables 1,3 showing examples of effectors containing
domains mediating DDIs either exclusively or primarily in
eukaryotes, the fact that many domains can be traced to a few
species is a technical consequence of proteins containing the same
domains being merged into UniRef50 clusters, and only the species
of the representative member of each cluster being retained. It is also
a testament to extensive domain sharing among diverse pathogenic
species. Taxonomic information may be useful when comparing
effectors that are indistinguishable at the domain level but exhibit
more variations at the residue level. Pooled analysis of proteins with
identical domain compositions across different species can reveal
general patterns in the host-bacteria PPI network that may not be
obvious on a species-by-species or protein-by-protein basis. On the
one hand, host domains targeted by multiple effector domains can
reveal convergent evolution of common virulence mechanisms
among different pathogenic species, which may prove useful in
developing broad spectrum antibiotics. For instance, the human Ras
domain (PF00071) is targeted by structurally distinct domains in
Legionella (PF14860, PF18172, PF18641), Pseudomonas (PF03496),
Salmonella (PF03545, PF05925, PF07487), Shigella (PF03278) and
Yersinia (PF00069, PF09632) effectors. On the other hand, effector
domains targeting multiple host domains and thus potentially
perturbing multiple host pathways represent targets for
multipronged therapeutic intervention. Of the 103 host-targeting
bacterial proteins in our PPI dataset, 71 interact with a single host
protein, while 32 interact with multiple host proteins. For instance,
the Pseudomonas effector ExoS contains the ADP ribosyltransferase
domain (PF03496), which it uses to target host proteins containing
either a 14-3-3 domain (PF00244) or Ras small GTPase domain
(PF00071). These host domains participate in a wide array of
signaling pathways (Xiao et al., 1995; Stenmark and Olkkonen,
2001). While experimentally determined protein-protein
interactions (PPIs) may be biased towards well-studied species,
and domain-domain interaction templates may be biased towards
well-studied protein structures, our survey of the proteomes of 84
pathogenic bacterial species is nonethelessmore comprehensive than
case studies of bacterial effectors in uncovering general molecular
recognition principles underlying the host-bacteria PPI network. To
increase coverage of the structurally-resolved host-bacteria PPI
network, future efforts should focus on emerging pathogenic
strains of bacteria, more systematic mapping of host-bacteria
interactomes, as well as new molecular modelling methods to
predict structures of proteins and protein-protein interactions
which do not have homologs with known structure (Wu and
Zhang, 2008).

To identify domains in bacteria that are most likely involved in
mimicking host-endogenous protein-protein interactions (PPIs),
we excluded eukaryotic-like domains which engage in either
interchain or intrachain domain-domain interactions (DDIs)
in bacteria. Previous studies suggest that intrachain DDIs
often occur between adjacent domains within the same protein
(Littler and Hubbard, 2005); however, PPIs are much less likely
attributable to DDIs derived solely from intrachain interactions,
compared to DDIs derived from interchain interactions (Itzhaki

et al., 2006). Although distinguishing biologically relevant
interfaces from artifactual crystal contacts is beyond the scope
of this work, several interface classification algorithms have been
developed to address this specific issue, based on various criteria
such as contact size and evolutionary conservation of interface
residues (Valdar and Thornton, 2001; Duarte et al., 2012),
thermodynamic prediction of interface stability (Krissinel and
Henrick, 2007), and interface conservation across multiple crystal
forms of a protein (Xu et al., 2008). Here, we take a conservative
approach and exclude all eukaryotic-like domains engaging in
intraprotein DDIs in bacteria, because while conserved
eukaryotic-like DDIs may not contribute to homologous PPIs
in bacteria, they may function in maintaining protein stability or
metabolic processes in bacteria (Tsoka and Ouzounis, 2000),
rather than mediate host-bacteria PPIs. One example of a
domain mediating PPIs in eukaryotes but serving a structural
function in bacteria is the Fibronectin type III domain (PF00041),
which in animals is involved in cell adhesion, migration and
differentiation, and whose interaction with 44 domains leads to
1,156 interactions among 738 proteins in eukaryotes. While
PF00041 does not mediate PPIs between bacterial proteins, it
forms crystal contacts with the domain PF00704 within the
Bacillus thuringiensis chitinase protein (PDB: 6BT9), and likely
acts as a linker in the multi-domain chitinase (Juarez-Hernandez
et al., 2019), rather than mediating host-pathogen PPIs.

In conclusion, our demonstration of binding site mimicry and
its mechanisms at the domain level in the host-bacteria PPI
network provides novel insight into the evolution of host-
interacting domains in bacterial effectors. In particular, we
showed that convergent evolution (or extreme divergent
evolution) appears to be the more dominant mechanism
behind binding site mimicry in host-bacteria interactions. To
date, similar analysis has only been done for viral proteins. In
addition, our estimation of domain’s relevance to eukaryote-
specific DDIs provides quantitative, interaction-based criteria
for identifying novel effectors, based on: 1) domains that
exclusively or primarily mediate DDIs in eukaryotes; and 2)
variety and density of short linear motifs targeting host
domains that exclusively mediate DDIs in eukaryotes.
Although predicting new effector-host interactions is beyond
the scope of this paper, our study presents a first step toward
resolving PPI interfaces in effector-host interactions: once the
domains involved in effector-host PPIs are identified by our
method, interface residues inside such domains can be
predicted using machine learning methods (Meyer et al.,
2018). By mapping the interface residues involved in host-
effector PPIs, it may be possible to develop antibiotics that
precisely inhibit host-pathogen PPIs, with minimal disruption
to host-endogenous PPIs (Voter and Keck, 2018). Given the
scarcity of host-bacteria PPI data and the rapidly increasing
number of completely sequenced pathogen genomes, our
framework for assessing the functional impact of structural
modules within pathogen proteins, without needing direct
experimental evidence of their interaction with host proteins,
may help accelerate the discovery and mechanistic study of novel
virulence factors, as well as the development of selective
inhibitors of pathogen-subverted host signaling pathways.
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MATERIALS AND METHODS

Domain-Resolved Eukaryote-Bacteria
Protein-Protein Interaction Network
Eukaryote-endogenous, bacteria-endogenous, and host-bacteria
protein-protein interaction (PPI) data were obtained from
IntAct and HPIDB 3.0 (Orchard et al., 2014; Ammari et al.,
2016). Domain-domain interaction (DDI) templates were
obtained from 3did and Pfam (Mosca et al., 2014; El-Gebali
et al., 2019). IntAct is one of the largest and most cited databases
of literature-curated, high quality molecular interactions in
multiple organisms (615,015 unique binary protein-protein
interactions in 1,572 organisms). 3did is a comprehensive,
regularly maintained resource for domain-domain and
domain-motif interaction templates derived from PDB
structures (14,278 domain-domain and 920 domain-motif
interaction templates).

To resolve protein-protein interactions into domain-domain
interactions, we first predicted the occurrence of domains in
proteins with InterProScan, using Pfam’s gathering threshold
(Jones et al., 2014). We then considered all 14,278 unique types of
DDI templates involving 8,048 interacting Pfam domains in the
3did database, which corresponds to ∼1.77 DDIs per domain. The
resulting integrated eukaryote-bacteria DDI network consists of
5,950 unique types of DDIs involving 3,558 interacting domains,
which corresponds to ∼1.67 DDIs per domain. In other words,
the DDI-to-domain ratio is roughly preserved in the construction
of domain-resolved eukaryote-bacteria interactome. Possible
reasons for the absence of certain domains and DDIs in our
interactome are: 1) they only occur in organisms not considered
in our study, such as archaea and viruses; and 2) the DDI only
occurs between domains within the same protein, rather than
mediating PPIs between different proteins. When a PPI can be
attributed to several possible DDIs, priority was given to
interchain DDIs (derived from PDB structures consisting of at
least two distinct protein entities), followed by intrachain DDIs.

Selection Criteria for Effector and
Non-Effector Proteins
We included proteins encoded by pathogenic bacterial species
catalogued in PHI-base (Urban et al., 2020). PHI-base contains
expert curated, regularly updated data on pathogen genes with
experimentally verified impact on host-pathogen interactions (216
host species, 274 pathogenic species, 7,681 pathogen genes). Effector
protein IDs were retrieved from the PHI-base annotation file “phi-
base_current.csv”, by searching for genes whose “Gene Function” or
“Mutant Phenotype” column contains the keyword “effector”. In
addition, effector protein IDs were also retrieved from UniProt
(UniProt, 2019) using two sets of keywords. By gene name:
taxonomy:“Bacteria [2]” name:effector (name:“type 1” OR name:
“type 2”OR name:“type 3”OR name:“type 4”OR name:“type 5”OR
name:“type 6”OR name:“type 7”OR name:“type 8”OR name:“type
9”OR name:t*ss OR name:“secretion system”) By cellular location:
taxonomy:“Bacteria [2]” (annotation(type:function effector) OR
locations: (note:“type 1”) OR locations(note:“type 2”) OR
locations: (note:“type 3”) OR locations: (note:“type 4”) OR

locations: (note:“type 5”) OR locations(note:“type 6”) OR
locations: (note:“type 7”) OR locations: (note:“type 8”) OR
locations: (note:“type 9”) OR locations: (note:t*ss) OR locations:
(note:“secretion system”)) (locations: (location:“Secreted [SL-
0243]”) OR locations: (location:“Host [SL-0431]”)) Non-effectors
consist of cytoplasmic, membrane as well as other secreted proteins
encoded by the same pathogen species considered for effector
proteins. Cytoplasmic: taxonomy:“Bacteria [2]” locations:
(location:“Cytoplasm [SL-0086]”) Membrane: taxonomy:“Bacteria
[2]” (locations: (location:“Cell envelope [SL-0036]”) OR locations:
(location:“Membrane [SL-0162]”)) Secreted: taxonomy:“Bacteria
[2]” (locations: (location:“Secreted [SL-0243]”) OR locations:
(location:“Host [SL-0431]”))

Merging Bacterial Proteins With Identical
Domain Compositions
Taxonomy and Pfam domain annotations of proteins were
obtained from UniProt and InterPro (Mitchell et al., 2019).
For each domain, we counted the number of eukaryotic and
bacterial species encoding at least one protein containing that
domain. To minimize the impact of spurious domains, such as
arising from contaminated genomes or misannotated proteins,
we required that each domain be found in at least three eukaryotic
or bacterial proteomes–at least one of which must be a reference
proteome or belong to a pan proteome. Bacterial proteins with
identical domain compositions were merged into a single entry,
as they are indistinguishable from one another at the domain
resolution. To further reduce redundancy among highly related
protein sequences (e.g. orthologs or fragments of the same
protein) while also maintaining sufficient resolution, sequences
belonging to the same UniRef50 cluster were ranked based on
whether they are: 1) representative for the cluster, as assigned by
UniRef50; 2) manually reviewed; 3) assigned high annotation
score by UniProt; 4) from UniProt reference proteomes; and 5)
longest. Only the top-ranking sequence was retained for each
UniRef50 cluster. For domain compositions that are common to
effectors and non-effectors, we assessed their relative frequency in
effectors vs. non-effectors. Domain compositions that are
significantly enriched (q-value < 0.1) in effectors were assigned
to effectors, and domain compositions that are significantly
depleted (q-value < 0.1) in effectors were assigned to non-
effectors. Our final dataset thus contains 238 effectors and
3,921 non-effectors with unique domain signatures.

Statistical Tests Performed
Fisher’s exact test was used for analyses based on odds ratios, and
Wilcoxon test was used for analyses based on difference in means.
To control the false discovery rate in multiple hypothesis testing,
we calculated the positive false discovery rate, or q-values (Storey,
2003). All statistical analyses were conducted in R (Team, 2018).
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Tracing Evolution Through Protein
Structures: Nature Captured in a Few
Thousand Folds
Nicola Bordin1, Ian Sillitoe1, Jonathan G. Lees2 and Christine Orengo1*

1Institute of Structural and Molecular Biology, University College London, London, United Kingdom, 2Department of Biological
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This article is dedicated to the memory of Cyrus Chothia, who was a leading light in the
world of protein structure evolution. His elegant analyses of protein families and their
mechanisms of structural and functional evolution provided important evolutionary and
biological insights and firmly established the value of structural perspectives. He was a
mentor and supervisor to many other leading scientists who continued his quest to
characterise structure and function space. He was also a generous and supportive
colleague to those applying different approaches. In this article we review some of his
accomplishments and the history of protein structure classifications, particularly SCOP
and CATH. We also highlight some of the evolutionary insights these two classifications
have brought. Finally, we discuss how the expansion and integration of protein sequence
data into these structural families helps reveal the dark matter of function space and can
inform the emergence of novel functions in Metazoa. Since we cover 25 years of structural
classification, it has not been feasible to review all structure based evolutionary studies and
hence we focus mainly on those undertaken by the SCOP and CATH groups and their
collaborators.

Keywords: bioinformatics and computational biology, protein structural and functional analysis, structural
bioinformatics, protein evolution, protein structure classification

THE EARLY DAYS–CHOTHIA THE PIONEER

Protein structures have helped us see more clearly into the evolutionary past. Cyrus Chothia, to whom
this special issue is dedicated, was an early pioneer on these journeys and remained a leading figure
throughout his life. As structures accumulated in the Protein Data Bank (PDB) from the early 1970s
onwards, he was one of the first to realise the value of comparing them to capture their differences and
thereby understand themechanisms by which proteins evolve. In a similar timeframe i.e. the late 70s and
early 80s, another early pioneer in the protein world, Margaret Dayhoff, was also cataloging evolutionary
changes by considering the substitutions, insertions and deletions in the amino acid residues that can
occur in the protein’s polypeptide chain. By linking these data, we can see how genetic variations
translate to structural and ultimately functional impacts. Over the last two decades the explosion in
sequence data arising from increasingly sophisticated sequencing technologies, including sequences
from thousands of completed genomes, have sharpened these insights. In parallel, structure prediction
has seen some quantum leaps over the last decade including from exploitation of AI and deep learning
strategies that may bring structural annotations to many mysterious regions of sequence space currently
uncharacterised. In this review we highlight some of the major shifts in technology and data that have
enabled better exploration of protein structure space and brought functional insights.
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Early Identification of Protein Families
The technical challenges of determining 3D structures of proteins
has meant that the sequence data has always outstripped
structural data–currently more than 300-fold. There are
approximately 170,000 protein structures in the PDB
(Armstrong et al., 2019) but more than 200 million sequences
in UniProt (The UniProt Consortium, 2019), and metagenomic
data adds billions more sequences (Mitchell et al., 2019). In the
late 70s and early 80s, Dayhoff pioneered the comparison of
protein sequences, designing residue substitution matrices which
enabled the alignment of even relatively distant relatives diverged
from a common ancestor. Many other approaches have been
explored since then (e.g. BLOSUM (Henikoff and Henikoff,
1992)), see review for others (Jones et al., 1992)). These
approaches and the dynamic programming algorithms (e.g.
developed by Needleman and Wunsch (Needleman and
Wunsch, 1970), Smith and Waterman (Smith and Waterman,
1981)) developed to align protein sequences started the
identification of protein evolutionary families by Dayhoff and
others.

How Constrained Are Protein Structures?
Adding structural data can help probe functional mechanisms
more deeply and as the Protein Databank grew from the 1970s
onwards (see Figure 1), algorithms for comparing structures
emerged e.g. the still widely used rigid body approaches
developed by Rossman and Argos (Rossmann and Argos,
1976) amongst others 9). As the PDB data grew it became
clear that in some evolutionary superfamilies considerable
divergence outside the structural core could occur.

One of the earliest and most important insights into structural
divergence was captured by Cyrus Chothia and Arthur Lesk in
their comparison of more than 32 pairs of protein homologues
(Chothia and Lesk, 1986). This analysis showed the exponential
relationship between sequence change and structural change and
many of the characteristics captured in that study still hold when
much larger datasets are examined. Figure 2 shows the
relationship detected for current data using the SSAP structure

comparison algorithm (see below and (Orengo and Taylor,
1996)). For relatives having similar functional properties, the
structure is highly conserved even at low sequence similarity.
Extreme divergence occurs for relatives with different functional
properties, likely to be paralogues, having different structural
constraints imposed by these functions.

To expand on these insights, Chothia and Lesk published some
detailed and beautifully described expositions of the sequence
structure relationships for two important protein families the
globins (Lesk and Chothia, 1980) and the immunoglobulins
(Chothia and Lesk, 1982; Lesk and Chothia, 1982).

To capture structural properties between very diverse
homologues, many new methods emerged to better cope with
the extensive residue mutations, insertions and deletions
occurring between them. These methods have continued to
evolve since the late 1980s. Many built on the dynamic
programming strategies successfully exploited in sequence
comparison. In some, dynamic programming was applied at
two levels to fully exploit the 3D data. First at a low level (i.e.
residue views) and then to an upper summary level to obtain the
final alignment (e.g. see SSAP (Orengo and Taylor, 1996)). Other
approaches combined rigid body superposition with dynamic
programming (see for example early approaches STAMP (Russell
and Barton, 1992), STRUCTAL (Subbiah et al., 1993), CE
(Shindyalov and Bourne, 1998)). One of the most popular
algorithms with crystallographers and other structural
biologists, DALI (Holm and Sander, 1993), effectively
“chopped” the structures into hexapeptide fragments and used
Monte Carlo optimization to determine the optimal order for
concatenating matched fragments between the structures. Other
approaches commonly used by structural biologists include
MAMMOTH (Ortiz et al., 2002) and GESAMT (Krissinel,
2012). Fast approaches (e.g. CATHedral (Redfern et al., 2007))
were also developed that explicitly compared secondary structure
elements between proteins giving up to 1000-fold speedups in the
alignments but at the cost of accurate residue alignments. These
approaches were driven by the exponential increase in the
number of structures in the PDB and the need for rapid scans

FIGURE 1 | Growth of domains, folds and chains deposited in the Protein Data Bank from 1972 onwards. Data sources: PDB, CATH.
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with newly solved structures to identify novel folds. More recent
approaches (e.g. FATCAT (Ye and Godzik, 2003)) have been
explicitly designed to optimize the alignments between loops,
typically the most diverse regions, but often containing key
functional residues.

Domain Based Structural Families
Chothia’s examination of the globins and immunoglobulins was the
first step toward a more comprehensive analysis of structure space
and analyses performed in the following decade culminated in the
establishment of one of the most widely used resources capturing
protein domain structure superfamilies–SCOP (Murzin et al., 1995)
in 1994. SCOP was co-founded by Alexey Murzin, who joined
Chothia’s team at the LMB and has remained a leading structure
based evolutionary resource. Its first release contained 366
superfamilies, 866 non-redundant domain structures and 1182
protein domains from different species. As well as classifying
domains by their superfamily, the superfamilies were also
organized by class (determined by secondary structure
composition) and fold group (determined by the order and
orientation of those secondary structure elements in 3D space)
in a hierarchical manner. Superfamilies in which relatives adopted
regular arrangements in 3D were also annotated with architecture
descriptions e.g. barrel, sandwich. Significant manual curation
ensured very high quality in the assignments and annotations.
SCOP has been expanded recently by inclusion of additional
resources in SCOPe, managed by Steven Brenner and co-
workers (Fox et al., 2014).

Continued expansion of the PDB has led to nearly a 10-fold
increase in the number of superfamilies but the growth in new
folds has been much slower (see Figure 1 for numbers from a
related resource). In parallel, Janet Thornton’s group used a
more automated approach by applying the SSAP structure
comparison method (Orengo and Taylor, 1996), developed
by Orengo and Taylor, to recognise homologues, including
very distant homologues, and structures with similar folds.
For extremely distant relatives, manual curation was also
required but overall was not applied to the same extent as in
SCOP. The CATH resource, set up by Orengo and Thornton,
included a more formal architecture level within the hierarchy
(see Figure 3).

As a result of the comparative ease of acquiring experimental
data, the sequence databases (e.g. UniProt) expanded even more
rapidly than the structure databank (PDB) and the increase in this
information and more powerful profile based sequence
comparison strategies to harness it e.g. PSI-BLAST (Altschul
et al., 1997), HMMer (Eddy, 1998), HHsearch (Söding, 2005)
aided in the confirmation of homologues in which structures
had diverged considerably (see Figure 4). By capturing these
extremely remote homologies, it became clear that sometimes
only the structural core was conserved (see also Figure 5)
(Dessailly et al., 2010). The variation in size across some
superfamilies suggested a structural continuum and was also
referred to as the “Russian Doll Effect” (Swindells et al., 1998).
Furthermore, it was clear that some folding arrangements consisted
of multiple repeat motifs e. g alpha-beta, beta-beta, alpha-alpha.
Andrei Lupas and other groups highlighted primitive motifs
appearing in early life that seeded the emergence of more
complex folds through duplication and gene fusion (Lupas
et al., 2001). In fact, a large scale application of the DALI
algorithm on all known structures in the PDB, by Liisa Holm,
identified a small set of very highly populated so-called “attractor”
motifs (e.g. αβ, β−β, αβ) that link structural superfamilies (Holm
and Sander, 1996).

More detailed SCOP and CATH-based analyses have suggested
the need for a less rigid hierarchy and recent structural
classifications, such as the ECOD resource developed by Nick
Grishin (Cheng et al., 2014), have adopted this approach. In
ECOD, domain structures are grouped into superfamilies
annotated by class and architecture information but relatives
within the superfamilies can be described as adopting different folds.

Both SCOP and CATH have also changed since their
inception to reflect these phenomena. In 2014, SCOP2 was
released (Andreeva et al., 2014, 2) providing many valuable
links between superfamilies sharing common structural motifs.
Rare structural motifs are also identified, and biochemical
features highlighted. CATH now describes the topology
annotations (fold or T-level) for each superfamily as reflecting
“core structural motifs” since large scale comparisons of relatives
show that for the majority of homologous pairs at least 50% of the
structure is conserved and the core topological motif is a helpful
structural fossil revealing even the most distant relationships.

FIGURE 2 | Structural similarity measured by SSAP score (left) or normalised RMSD (right) vs % of sequence identity.
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FIGURE 3 | Overview of the CATH classification scheme for protein domains.

FIGURE 4 | Highly divergent structural homologues within the HUPs SuperFamily (CATH ID 3.40.50.620). Six diverse structural clusters (also called structurally
similar groups, SSGs) are identified using SSAP to compare structures all against all (see tree top left and figures on the right). However, representatives from each SSG
can be superposed to reveal the highly conserved structural core common to all (see central black region in the bottom left figure).
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Unique Fold and Superfolds
Although structural classifications were clearly a valuable means of
organising proteins and capturing evolutionary changes, a key
question was the extent to which they reflected Nature or
reflected bias in the Protein Data Bank. By using the more
powerful profile-based sequence search strategies (e.g. PSI-
BLAST) to map proteins with 3D-structures to all sequence
relatives in UniProt, Chothia was able to show that even with
the sparse structural data available at that time, a large proportion of
sequences could be mapped to the SCOP families suggesting that
these families were reasonably representative, though clearly they
lacked many membrane associated proteins and disordered
proteins (Chothia, 1992). That deficit still holds to some extent,

although the PSI structural genomics initiatives which focused on
membrane proteins helped to increase their representation in the
structural classifications (Chandonia and Brenner, 2006). Current
mapping done for some selected model organisms annotated in the
integrated Genome3D resource ((Sillitoe et al., 2020) described
below), shows that structural predictions based on SCOP or CATH
superfamilies can be made for nearly 80% of proteins in many of
these organisms, suggesting that a significant proportion of protein
superfamilies in Nature are now represented in the protein structure
classifications. In 1994, Cyrus Chothia made a prediction of fewer
than 1000 folds in Nature (Chothia, 1992), an amazingly prescient
estimation as 25 years later we possibly have as few as
1300–although there is still some controversy around the

FIGURE 5 | Conservation of the structural core (highlighted in green) within the HUPs superfamily.

FIGURE 6 | Top 9 “super-folds” in CATH v4.3. The inner wheel shows the proportion of structures that fall into each class, architecture, fold group and superfamily
respectively.
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definition of fold! Furthermore, the dominance of some folding
arrangements in Nature is still clear, with the top nine “superfolds”
still accounting for more than 30% of all classified domain
structures (see Figure 6). Of the current superfolds, five were
detected in 1994 using CATH data (Orengo et al., 1994) and the
remaining four superfolds (1.20.120, 1.10.490, 2.80.10, 3.10.20) were
superseded by others (3.60.20, 2.40.10, 3.30.200, 1.10.510) that were
less well populated in the original CATH release.

MAPPING SEQUENCE SPACE TO THE
STRUCTURAL FAMILIES

While sequence to structure mapping has demonstrated that we
have fold representatives for a large proportion of protein
superfamilies in Nature, large parts of superfamily space are not
yet covered by detailed structural and functional characterisation.
This becomes even more apparent when metagenome sequence
data is added e.g. from MGnify (Mitchell et al., 2019). Most
structure classification resources make use of powerful tools like
HMMer, developed by Sean Eddy and co-workers (Eddy, 1998)
and HH-suite, developed by Johannes Soding to identify sequence
relatives (Söding, 2005).

MGnify is 10-fold bigger than UniProt, currently comprising
mostly prokaryotic data but the Earth Biome and Tree of Life
sequencing projects (Lewin et al., 2018) will expand the data for
eukaryotes too. The alpha-beta hydrolase superfamily, the 9th most
populated superfamily in CATH (by number of non-redundant
representatives at 90% sequence identity) is massively expanded

(10-fold) bymetagenome sequences extracted froma range of bacterial
environments. Some of these e.g. from wastewater environments and
oceans have changed in response to recent selection pressure leading to
divergence in the binding site to accommodate PET and other plastics,
which these enzymes can now degrade.

The second phase of the PSI structural genomics in the States
(2005–2010) explicitly targeted structurally uncharacterised protein
sequencesmapping to SCOP, CATHor Pfam superfamilies to extend
structural knowledge of these dark regions of sequence space (Norvell
and Berg, 2007). These analyses further confirmed early expositions
of the power law in structure-sequence space whereby some
superfamilies had been massively expanded through extensive
gene duplication throughout evolution. Many of these very highly
populated superfamilies (described as “Megafamilies” by the
structural genomic initiatives), are universal to all kingdoms of life
and contain domains performing essential generic functions, like the
many Rossman superfamilies which bind nucleotide cofactors e.g.
NAD or NADP, in a common cleft in the structure formed by a
crossover in the polypeptide chain. Figure 7 shows that currently the
top 100 superfamilies account for nearly 50% of all protein domain
sequences mapped to CATH structure superfamilies.

PROTEIN DOMAINS ARE COMBINED IN
MILLIONS OF DIFFERENT WAYS IN
NATURE
Analyses of the SCOP and CATH superfamilies confirmed the
generic functional role of many domain relatives (see further

FIGURE 7 | Top 100most populated CATH SuperFamilies (CATH v4.3) with additional details regarding sequence counts and unique EC and GO terms for the top
10 most populated SuperFamilies.
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discussion below) and the commonly used description of
domains as independently folding functional units in
evolution. The incredible enhancements in sequencing
technologies at the turn of the millenium, allowing sequencing
of whole genomes starting with human, meant that comparative
genomics studies became possible exploring the different
distribution of domain families and domain combinations
within and between different kingdoms of life. There are now
more than 300 complete and nearly complete genomes in
ENSEMBL (Yates et al., 2020). This genomic data showed the
extent of gene duplications, gene fusions and fissions occurring
during evolution, with the former being more common
(Björklund et al., 2005). Changes in these multidomain
combinations or multidomain architectures (MDAs) result in
expansions and divergence in the functional repertoires between
species in response to selective pressures imposed by novel
environmental contexts.

Studies inspired by Chothia’s vision of domain units taken
forward by various researchers he mentored, notably Sarah
Teichmann and Mark Gerstein, characterised the “mosaic”
nature of proteins and confirmed domains as the fundamental
building blocks of life (Teichmann et al., 1999; Teichmann et al.,
2001). Analyses of CATH-Gene3D which contains domain
sequences from UniProt mapped to CATH and Pfam
superfamilies using HMMer-based protocols currently reveal
311,575 different domain combinations. This is probably an
underestimate since many proteins have regions of sequence
that are still uncharacterized and may correspond to novel
families that are unlikely to be common to multiple species.
Unsurprisingly the more sequence sub-families found within a
superfamily the more multidomain architectures identified (see
Figure 8, below) and the power law is apparent again with the top
100 superfamilies occurring in the most MDA contexts occurring
in a very large number of different MDA contexts (51% of all).
Changes in domain context can modify the active site or binding
pockets (discussed more below) and inevitably alter the surface
features of the protein enabling diversity in protein interactions
for paralogs expressed in different tissues. In addition,

Teichmann and co-workers showed that some combinations of
domains, described as supradomains, are particularly prevalent,
probably corresponding to useful functional units (Vogel et al.,
2004).

Comparative genome studies enabled by this vast sequence
data could probe deep evolutionary relationships by using the
structural families identified for different species. For example,
CATH-based studies showed essential pathways populated by
universal superfamilies that can be traced back to the Last
universal Common Ancestor (LUCA) (Ranea et al., 2006).

STRUCTURE FAMILIES BRING DETAILED
INSIGHTS INTO PROTEIN FUNCTION
EVOLUTION
Chothia’s eloquent reviews of domain structure families and
evolutionary changes in protein structures were inspiring and
played a key role in framing the questions around protein
function evolution. In particular, he sought to elaborate on a
“domain grammar of function” that would allow translation of a
multi-domain “sentence” based on the functional roles of the
constituent domains.

Other complementary studies added to the emerging picture.
For example, Thornton’s group analysed 31 highly populated and
well structurally characterised superfamilies in CATH revealing
the extent to which functions could diverge in particular in the
megafamilies (Todd et al., 2001). A number of phenomena can
drive this. Clearly the existence of multiple relatives in a genome
means that extra copies (i.e. paralogues) will be more tolerant of
mutations and these can drive functional shifts if they occur on or
near key sites. In addition, as mentioned already, domain fusions
can reshape functional sites or surfaces. Furthermore, relatives
can oligomerise in different ways again driving structural
modifications in the active site or functional surfaces and the
creation of new surfaces capable of evolving functional roles.

However, dramatic changes in functional class or in the
chemistry performed by an enzyme, for example, appear to be
rare (Todd et al., 2001; Bashton and Chothia, 2007). It’s hard to
engineer the geometry and exquisite stereospecificity needed to
perform an enzyme reaction and perhaps not surprising that
these analyses revealed a significant tendency for chemical
intermediates to be conserved along the reaction pathways of
different relatives in the superfamily. More frequently,
evolutionary changes (particularly residue insertions) cause
changes in the geometry of the active site and binding pocket
enabling relatives to perform the same or similar chemistry on a
different substrate (Todd et al., 2001).

These evolutionary changes, which can sometimes be quite
subtle involving just a handful of residues, combined with the
expansion of paralogs through gene duplication give an effective
mechanism for expanding the functional repertoire of an
organism. For example, the kinase superfamily has been
significantly expanded in eukaryotes where relatives perform
essential functions in cell-cell communication and intracellular
signaling. Most paralogs are involved in phosphorylation of
protein targets, but these targets can vary and relatives may be

FIGURE 8 | Number of MDAs vs Number of sequence subfamilies
(FunFams) for each SuperFamily in CATH v4.3.
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expressed in different tissues having diverse interaction
opportunities.

Bashton and Chothia (Bashton and Chothia, 2007) undertook
a very detailed analysis of the extent to which key functional roles
were conserved across domain superfamilies allowing domains to
be used as “words” within a protein “functional sentence”. This is
a challenging task, and the challenges increasingly apparent as
more experimentally characterised sequence relatives are
classified within SCOP and CATH. In SCOP these predicted
structural relatives are classified in the sister resource,
SUPERFAMILY, managed by Julian Gough (Wilson et al.,
2009). In CATH, sequences are directly integrated in
superfamilies as well as being captured in the Gene3D sister
resource (Lewis et al., 2018). Currently, the sequence data from
UniProt expands the structural superfamilies 500-fold on average
(up to 49 thousand-fold), depending on the superfamily allowing
a deeper analysis of functional diversity. The correlation between
sequence diversity and the number of sequence subfamilies and
functional diversity can be seen for all types of superfamilies in
Figure 9.

Chothia’s analyses supported earlier hypotheses of
conservation of function within a broad functional class
(Bashton and Chothia, 2007). For example, the amino-acyl
tRNA synthase superfamily is amongst the top 2% largest
superfamiles and relatives perform multiple functions covering
at least 31 EC3 categories (i.e. having different EC classifications
at the third EC level associated with change in chemistry).
Nevertheless, many relatives exploit the same co-factor
pyridoxal 5-pyrophosphate binding to the same site and
substrates tend to share a similar chemical moiety.

Another functionally diverse superfamily, the HUP
superfamily, currently contains more than 640 thousand
sequences from UniProt and 39,505 sequence subfamilies (at
50% sequence identity). This threshold is used because various
studies have suggested 50% or 60% sequence identity for inferring
functional similarity between homologues, provided there is

reasonable overlap in sequence length (60% or more) (Rost,
2002; Rentzsch and Orengo, 2009). CATH identifies at least
55 EC terms and 594 diverse Gene Ontology (GO) terms for
experimentally characterized relatives within this superfamily
and like many other megafamilies less than 6% of relatives
have experimental characterization. In addition, it’s possible to
characterize the structural diversity across this superfamily by
clustering relatives according to structural similarity (e.g. < 5 A
RMSD). There are currently 31 such structural clusters. Despite
this structural and functional diversity the structural core is
highly conserved (see Figure 5 above), as also observed in
other megafamilies. However, as seen in Figure 4, there can
be considerable structural decorations or embellishments outside
this core.

Phylogenetic Insights
The vast sequence data available for many species has allowed
phylogenetic forays into protein superfamilies. For example, by
combining both structural and sequence data as in CATH-
Gene3D we can trace further back and explore the order of
functional shifts within these superfamilies. The FunTree
classification studies of Thornton and co-workers allowed
tracing of shifts in enzyme chemistry (changes in the third
number of the EC classification code) between homologues in
all highly populated superfamilies in CATH (Furnham et al.,
2012).

Similarly expansion in the structural data available for the
superfamilies, thanks partly to targeted activities of the PSI
structural genomics initiatives, provided insights into shifts in
catalytic residues within enzyme superfamilies (Todd et al.,
2005), confirming trends detected by early studies of
Thornton and co-workers using much sparser data. As in the
previous analysis interesting cases of convergence of catalytic
machinery within superfamilies or “residue hopping” were
detected (Todd et al., 2002). This was caused by divergence
of functionally distinct homologues which then converged to
the same chemistry via different mutational routes giving
catalytic residues in different places in the active site pocket,
but with the same chemical properties and necessary orientation
to perform the chemistry.

FUNCTIONAL SUB-CLASSIFICATION OF
PROTEIN REVEALS THE DARKMATTEROF
FUNCTION SPACE
With <1% of protein sequences in UniProt having experimental
characterisation, interest has grown in understanding the likely
functional divergence across superfamilies, especially those with
industrial value. Organising the sequence data to reveal highly
conserved residues between putative functional relatives can
give clues to possible changes in substrate specificity or enzyme
chemistry. Because the structural data is so sparse, our approach
to identifying functional families (FunFams) in CATH
superfamilies has been to use sequence data and cluster
relatives using an entropy-based method that segregates sets
of relatives with differentially conserved residues (Das et al.,

FIGURE 9 | Functional diversity (captured by number of functional
families - FunFams) vs. sequence diversity (number of Gene3D s90 clusters
i.e. in which relatives share 90% or more sequence identity) for CATH
superfamilies. Each dot represents an individual superfamily.
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2015b). Residues that are conserved across all relatives in a
superfamily are likely to be important for folding or stability but
residues that are conserved in different ways e.g. residues with
different chemical properties, between different sets of relatives,
are likely to be associated with the functional roles of the
proteins. Some endorsement of this functional clustering is
given by performance of CATH functional families in the
independent CAFA Critical Assessment of Functional
Annotations (Jiang et al., 2016; Zhou et al., 2019).
Furthermore, residue sites conserved in FunFams are
significantly enriched in known functional residues e.g.
catalytic residues, protein interface residues, ligand binding
residues etc (Das et al., 2015b).

Structural data, whether known or predicted, can then be
exploited to determine where these putative functional
determinants co-locate on the protein surface to glean further
insights into functional properties. This clustering into functional
families reveals the most promiscuous, highly diverse
superfamilies. Figure 10 shows that the top 65 most
functionally diverse enzyme superfamilies have more than 20
different chemistries exhibited by relatives.

FunFams are only identified for sets of sequences where at
least one relative has been experimentally characterized and has
a GO functional annotation. On that basis, only about 36% of
the 150 million domain sequences classified in CATH can be
assigned to a functional family suggesting that there is still a
large proportion of functional space to characterize. However,
some superfamilies, particularly those containing important
eukaryotic organisms (e.g. human, model organisms) tend to
have a higher proportion of functional characterization. It’s also
important to remember that this is a domain based functional
classification, but function is generally annotated at the protein
level. However, analyses of selected superfamilies, namely the
enolases, TPPs and HUPs suggest that by segregating on
functional discriminants domain relatives occurring in
different multidomain contexts are indeed clustered into
separate functional groups (Das et al., 2015a).

FUNCTIONAL FAMILIES GIVE FINER
INSIGHTS INTO THE EMERGENCE OF
NOVEL FUNCTIONS IN METAZOA
As mentioned already above, globular domains are one of the key
functional units of proteins, often with a specific functional role
and with the ability to fold independently. Some globular
domains have catalytic functions, facilitating enzymatic
reactions, providing much of the complex chemistry that cells
need to function. Other domains are responsible for detecting
signals, by interacting with other protein domains and ligands, as
part of signaling processes.

During the history of life on Earth there have been a number of
major evolutionary events each requiring their own unique
functional innovations. For example, early life-forms needed to
establish much of the initial basic chemistry, energy production,
metabolism etc. A number of domain superfamilies date back to
the last universal common ancestor (LUCA) of cellular life, and
these domain superfamilies provide much of the catalytic
processes required by cells, such as the TIM-barrel domain
superfamily, which provides the basic structural core for
hundreds of different catalytic functions. Another major
transition was the emergence of animals (Metazoans), which
appeared several hundred million years ago, from single-celled
ancestors (Figure 11). The emergence of Metazoans required
many different functional innovations relating to cell
communication, differentiation and migration. To support
cellular complexity, coordinated regulation of gene expression
was needed together with many other protein innovations such as
the establishment of various signal transduction pathways that
connect extracellular signals to transcriptional regulation.

As already mentioned, gene duplication and fusion can give
proteins with novel domain combinations leading to new
functions. For example, changing the multi-domain
architecture, can give a novel protein that operates in a new
cellular micro-environment. However, a change in multi-domain
architecture is not a prerequisite for domain-based innovations
and domains may gain novel functions with no change in domain
partners. We can use a change in CATH FunFams, as a proxy for
a change in domain function, allowing a preliminary exploration
of various aspects of Metazoan evolution from a FunFam domain
perspective.

For example, by examining the expansion in the number of
FunFams within a domain superfamily we can track the
expansion of functional diversity across that superfamily at
different stages in evolution. By counting the number of
FunFams for a given superfamily and clustering organisms
using TreeFam (Ruan et al., 2007) we can show the FunFam
expansions in CATH superfamilies at different evolutionary
stages.

A large number (of domain superfamilies) show strong
expansions (in the number of their FunFams) specifically at
the emergence of Metazoans. Many of these expanded
superfamilies are associated with signaling and regulatory
processes, such as the SH2 domain family which undergoes
significant expansion in Metazoans corresponding to its newly
acquired role of phosphotyrosine binding domain in cell

FIGURE 10 | Enzyme Commission terms distributions for each CATH
v4.3 SuperFamilies, showing that 65 superfamilies havemore than 20 different
chemistries (i.e. EC3s).

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6681849

Bordin et al. Tracing Evolution Through Protein Structures

103

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


signaling processes. Transcription factors are known to have a key
role in Metazoan evolution/development. Many Transcription
factor FunFams appear early in Metazoan evolution, prior to the
separation of extant metazoan phyla but after the divergence of
Choanoflagellates and Metazoans. There is also further lineage
specific expansions in transcription factors, for example along the
vertebrate lineage.

CONCLUSION

The pioneering work of Cyrus Chothia in characterising the
relationship between sequence and structure and his
subsequent analyses of specific families, namely the globins
and immunoglobulins, together with structural and functional
analyses by Janet Thornton amongst others, inspired algorithms
and analytic protocols for detecting evolutionary relationships
and the mechanisms by which genetic variations translate into
structural and functional changes during evolution. These
frameworks provided impetus for the establishment of
comprehensive structural classifications which have been
exploited in many analyses shedding light on divergence,
particularly for enzyme superfamilies, but which also
established general principles regarding functional shifts in all
protein classes. To some extent the SCOP and CATH
classifications have provided complementary perspectives as
the former involved detailed manual curation and explicitly
recognised domains found in diverse multi-domain contexts.
In contrast, CATH aimed to exploit computational strategies

that searched for globular domains and then classified them based
on structural similarities in the core. Unlike many fields of science
where competition often clouds judgment, Cyrus was a man of
huge intellect and integrity who valued competition and the
opportunities that diverse perspectives give in maximising the
exploration and understanding of complex phenomena. He was
one of the most supportive scientists in the Genome3D
consortium which established formal collaborations between
SCOP and CATH and which is currently enhancing the
structural coverage of genome sequences in human, model
organisms and Pfam families (Sillitoe et al., 2020). This
collaboration is being continued in the new 3D-SCAfold
initiative, being led by PDBe, which will ensure closer
integration and disseminate the family data more widely to
enable deeper studies of evolution.
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Recent Advances in Protein Homology
Detection Propelled by Inter-Residue
Interaction Map Threading
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Debswapna Bhattacharya1,2*

1Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States, 2Department of
Biological Sciences, Auburn University, Auburn, AL, United States

Sequence-based protein homology detection has emerged as one of the most sensitive
and accurate approaches to protein structure prediction. Despite the success, homology
detection remains very challenging for weakly homologous proteins with divergent
evolutionary profile. Very recently, deep neural network architectures have shown
promising progress in mining the coevolutionary signal encoded in multiple sequence
alignments, leading to reasonably accurate estimation of inter-residue interaction maps,
which serve as a rich source of additional information for improved homology detection.
Here, we summarize the latest developments in protein homology detection driven by
inter-residue interaction map threading. We highlight the emerging trends in distant-
homology protein threading through the alignment of predicted interaction maps at various
granularities ranging from binary contact maps to finer-grained distance and orientation
maps as well as their combination. We also discuss some of the current limitations and
possible future avenues to further enhance the sensitivity of protein homology detection.

Keywords: protein homology, inter-residue interaction map, protein threading, homology modeling, protein
structure prediction

INTRODUCTION

The development of computational approaches for accurately predicting the protein three-
dimensional (3D) structure directly from the sequence information is of central importance in
structural biology (Jones et al., 1992; Baker and Sali, 2001; Dill and MacCallum, 2012). While ab
initiomodeling aims to predict the 3D structure purely from the sequence information (Marks et al.,
2011; Adhikari et al., 2015; Wang et al., 2016; Adhikari and Cheng, 2018; Greener et al., 2019; Senior
et al., 2019; Xu, 2019; Yang et al., 2020; Roche et al., 2021), many protein targets have evolutionary-
related (homologous) structures, also known as homologous templates, already available in the
Protein Data Bank (PDB) (Berman et al., 2000). Correctly identifying these templates given the
sequence of a query protein and building 3D models by performing query–template alignment, a
technique broadly known as homology modeling (Altschul et al., 1997; Xu et al., 2003; Wu and
Zhang, 2008; Lobley et al., 2009; Wu and Zhang, 2010; Källberg et al., 2012; Ma et al., 2014) often
results in highly accurate predicted structural models (Abeln et al., 2017). As such, the success of
homology modeling critically depends on the ability to identify the closely homologous template on
the basis of sequence similarity and generate accurate query–template alignment. Intuitively, the
performance of these methods sharply deteriorates when the direct evolutionary relationship
between the query and templates becomes very low, typically when the sequence similarity falls
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below 30%, the so-called distant-homology modeling scenarios
(Bowie et al., 1991; Petrey and Honig, 2005). Protein threading,
the most widely used distant-homology modeling technique,
aims to address the challenge by leveraging multiple sources of
information by mining the evolutionary profile of the query and
templates to reveal potential distant homology and perform
distant-homology modeling to predict the 3D structure of the
query protein.

Existing threading methods exploit a wide range of techniques
ranging from dynamic programming to profile-based
comparison to machine learning (Jones, 1999; Rychlewski
et al., 2000; Xu and Xu, 2000; Skolnick and Kihara, 2001;
Ginalski et al., 2003; Marti et al., 2004; Jaroszewski et al.,
2005; Söding, 2005; Zhou and Zhou, 2005; Cheng and Baldi,
2006; Peng and Xu, 2009; Lee and Skolnick, 2010; Peng and Xu,
2010; Yang et al., 2011; Ma et al., 2012; Ma et al., 2013; Gniewek
et al., 2014). The recent advancement in predicting the inter-
residue interaction maps using sequence coevolution and deep
learning (Morcos et al., 2011; He et al., 2017; Wang et al., 2017;
Adhikari et al., 2018; Hanson et al., 2018; Kandathil et al., 2019;
Yang et al., 2020) has opened new possibilities to further improve
the sensitivity of distant-homology protein threading by
incorporating the predicted inter-residue interaction
information. Fueled by this, several efforts have been made in
the recent past to integrate interaction maps into threading. For
instance, EigenTHREADER (Buchan and Jones, 2017),
map_align (Ovchinnikov et al., 2017), CEthreader (Zheng
et al., 2019a), CATHER (Du et al., 2020), and ThreaderAI
(Zhang and Shen, 2020) have utilized predicted contact maps
in protein threading. DeepThreader (Zhu et al., 2018) has
exploited finer-grained distance maps for query proteins
instead of using binary contacts to improve threading
template selection and alignment. DisCovER (Bhattacharya
et al., 2020) goes one step further by incorporating inter-
residue orientation along with distance information together
with topological network neighborhood (Chen et al., 2019) of
query–template alignment to further improve threading
performance. Here, we provide an overview of the latest
advances in protein homology detection propelled by inter-
residue interaction map threading.

GRANULARITIES OF PROTEIN
INTER-RESIDUE INTERACTION MAPS

Protein inter-residue interaction maps are predicted at various
resolutions ranging from binary contact maps to finer-grained
distance and orientation maps as well as their combination. A
low-resolution version of inter-residue interaction is a contact
map, which is a square, symmetric matrix with binary entries,
where a contact indicates the spatial proximity of a residue pair
at a given cutoff distance, typically set to 8Å between the Cα or
Cβ carbons of the interacting residue pairs. Inter-residue
distance map is finer-grained in that it captures the
distribution of real-valued inter-residue spatial proximity
information rather than the binary contacts at a fixed cutoff
distance. Recent studies (Xu and Wang, 2019; Xu, 2019) have

demonstrated the advantage of using distance maps in protein
structure prediction over binary contacts as distances carry
more physical constraint information of protein structures
than contacts. The granularities of predicted distance maps
vary from distance histograms to real-valued distances
(Greener et al., 2019; Adhikari, 2020; Ding and Gong, 2020;
Li and Xu, 2020; Wu et al., 2021; Yang et al., 2020). Very
recently, trRosetta (Yang et al., 2020) has introduced inter-
residue orientations in addition to distances to capture not only
the spatial proximity information of the interacting pairs but
also their relative angles and dihedrals. Collectively, inter-
residue distances and orientations encapsulate the spatial
positioning of the interacting pairs much better than only
distances let alone binary contacts.

INTER-RESIDUE INTERACTION MAP
THREADING

Figure 1 shows an overview of an interaction map threading of a
query protein. Generally, threading has four components: (1) an
effective scoring function to evaluate the fitness of
query–template alignment; (2) efficient template searching or
homology detection strategy; (3) optimal query–template
alignments; and (4) building 3D models of query proteins
based on alignments. One of the most important components
of threading approaches is the scoring function, which is
composed of standard threading features ranging from
sequential features such as secondary structures, solvent
accessibility, and sequence profiles to nonlinear features such
as pairwise potentials (Bienkowska and Lathrop, 2005; Brylinski
and Skolnick, 2010). Weights control the relative importance of
different terms. An efficient scoring function should reliably
differentiate a homologous template from the alternatives
because the accuracy of the predicted model significantly
depends on the evolutionary relatedness of the identified
template. The inter-residue interaction map helps to improve
the sensitivity of the threading scoring function by augmenting
the standard scoring terms with additional contributions from the
predicted interactions. Specifically, the score to align the i th
residue of the query protein to the j th residue of the template can
be defined as:

E(i, j) � w1E
interaction
map (i, j) + ∑

k ∈ standard

threading features

wkE
feature
k (i, j)

where the first term accounts for the contribution of the
interaction map and the second term accounts for the
standard threading features with wi being their relative
weights. Typically, the similarity between the predicted inter-
residue interaction map of the query protein and that derived
from the template structure informs the interaction map term in
the threading scoring function. It is worth noting here that the
raw alignment score is biased to protein length (Xu et al., 2003).
As such, most threading methods use a normalized alignment
score in standard deviation units relative to the mean score of all
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templates in the template library for homology
detection—detecting best-fit templates from the PDB.

EMERGING TRENDS IN PROTEIN
HOMOLOGY DETECTION BY
INTERACTION MAP THREADING
With the recent advancement in contact prediction mediated by
sequence coevolution and deep learning, significant research
efforts have been made in the recent past to incorporate
contact information as an additional scoring term into the
threading scoring function for protein homology detection.
For instance, Jones and coworkers developed
EigenTHREADER (Buchan and Jones, 2017) that uses eigen-
decomposition (Di Lena et al., 2010) of contact maps predicted
using classical neural network–based predictor MetaPSICOV
(Jones et al., 2015) to search a library of template contact
maps for contact map threading. Baker and coworkers
developed map_align (Ovchinnikov et al., 2017) that employs

an iterative double dynamic programming framework (Taylor,
1999) for homology detection. map_align takes advantage of
metagenomics sequence databases of microbial DNA (Söding,
2017) and uses contact maps predicted by coevolutionary contact
predictor GREMLIN (Balakrishnan et al., 2011; Kamisetty et al.,
2013) to perform contact map threading by maximizing the
number of overlapping contacts and minimizing the number
of gaps. Recently, Zhang and coworkers developed CEthreader
(Zheng et al., 2019a) using contact maps predicted by deep
learning–based contact map predictor ResPRE (Li et al., 2019).
CEthreader also relies on eigen-decomposition and performs
contact map threading through dynamic programming using a
dot-product scoring function by integrating contacts as well as
secondary structures and sequence profiles. Alongside, we
developed a contact-assisted threading method (Bhattacharya
and Bhattacharya, 2019) that incorporates contact information,
predicted by deep learning–based predictor RaptorX (Wang et al.,
2017), into threading using a two-stage approach. After selecting
a subset of top templates from the template library using a
standard profile-based threading technique in the first stage,

FIGURE 1 | Illustration of protein interaction map threading.
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our method subsequently uses eigen-decomposition of the
contact information along with the profile-based alignment
score to select the best-fit template. We further analyze the
impact of contact map quality on threading performance
(Bhattacharya and Bhattacharya, 2020), which reveals that
incorporating high-quality contact maps having the Matthews
correlation coefficient (MCC) ≥ 0.5 improves the threading
performance for ∼ 30% cases in comparison to a baseline
contact-free threading used as a control, while incorporating
low-quality contacts with MCC <0.35 deteriorates the
performance for 50% cases. Yang and coworkers developed
CATHER (Du et al., 2020) by incorporating contact maps
predicted by deep learning–based predictor MapPred (Wu
et al., 2020) along with standard sequential information in the
threading scoring function. Very recently, Shen and coworkers
have developed ThreaderAI (Zhang and Shen, 2020) that
implements a neural network for predicting alignments by
incorporating deep learning–based contact information with
conventional sequential and structural features into the scoring
function.

Building on the successes of contact-assisted threading
methods, Xu and coworkers developed a distance-based
threading method called DeepThreader (Zhu et al., 2018). The
method predicts distance maps by employing deep learning and
then incorporates the predicted inter-residue distance
information along with sequential features into threading
through alternating direction method of multipliers (ADMM)
algorithm. The inter-residue distance is binned into 12 bins: <5Å,
5–6Å, .., 14–15Å, and >15Å. Based on their reported results as

well as the performance evaluation in the 13th Critical
Assessment of protein Structure Prediction (CASP13),
incorporating distance information boosts threading
performance, particularly for distant-homology targets,
outperforming contact-assisted threading methods by a large
margin (Xu and Wang, 2019, 13). Zhang and coworkers have
recently extended CEthreader to develop a distance-assisted
threading method DEthreader introduced during the recently
concluded CASP14 experiment by incorporating a distance-
based scoring term into the scoring function. The method uses
the Cα–Cα and Cβ–Cβ distance distribution, both are binned into
38 bins: 1 bin of <2Å, 36 bins of 2–20Åwith a width of 0.5Å, and 1
bin of ≥20Å. Similarly, Yang and coworkers have extended
CATHER into a distance-based threading approach by
replacing contacts with distances in CASP14.

Powered by the development of the recent deep
learning–based trRosetta method (Yang et al., 2020) for the
prediction of inter-residue orientations and distances, our
recent method DisCovER (Bhattacharya et al., 2020) goes one
step further by incorporating predicted inter-residue orientations
in addition to distances together with the neighborhood effect of
the query–template alignment using an iterative double dynamic
programming framework. The predicted distances are binned
into 9 bins with a bin size of 1Å: <6Å to <14Å by summing up the
likelihoods for distance bins below a distance threshold. The two
orientation dihedrals (ω, θ) are binned into 24 bins with a
width of 15°, and the orientation angle (ϕ) is binned into 12
bins with a width of 15°. Experimental results demonstrate the
improved threading performance of DisCovER over the other

FIGURE 2 | Structural superposition between predicted models using various threading methods (in violet) and the corresponding experimental structures (in gray)
for representative CAMEO targets 6D2S_A of length 289 residues and 6CP8_D of length 164 residues.
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state-of-the-art threading approaches on multiple benchmark
datasets across various target categories, especially for distantly
homologous proteins. Representative examples on CAMEO
targets 6D2S_A and 6CP8_D provide some insights into the
origin of the improved performance. Figure 2 shows our recent
method DisCovER predicts correct folds (TM-score > 0.5) for
both the targets 6D2S_A and 6CP8_D with a TM-score of 0.76
and 0.69, respectively, significantly better than the others.
While the pure profile-based threading method CNFpred
(Ma et al., 2012; Ma et al., 2013) and the recent contact-
assisted threading method CEthreader fail to predict the
correct fold for the target 6D2S_A, DisCovER and the
CAMEO server RaptorX (Källberg et al., 2012; Zhu et al.,
2018), employing the distance-based threading method
DeepThreader (Haas et al., 2019), effectively predict the
correct fold, with noticeably better performance by
DisCovER (an improvement of 0.2 TM-score points) than
the next best RaptorX. We also notice the superior
performance of DisCovER for the target 6CP8_D where
DisCovER significantly outperforms the other competing
methods including the next best CEthreader by 0.18 TM-
score points. It is worth mentioning both the targets are
officially classified as “hard” by CAMEO (Haas et al., 2019),
which warrants a distantly homologous nature in which current
threading methods have limitations. Overall, the results show
that the integration of the orientation information and the
neighborhood effect in DisCovER results in improved
threading, attaining state-of-the-art performance in (distant)
homology detection.

THE ROLE OF SEQUENCE DATABASES IN
INTERACTION MAP THREADING

The prediction of inter-residue interaction maps depends heavily
on the availability of homologous sequences. As such, the role of
the sequence databases is becoming increasingly important in
protein homology detection via interaction map threading. In
addition to the well-established whole-genome sequence
databases such as the nr database from the National Center
for Biotechnology Information (NCBI), UniRef (Suzek et al.,
2015), UniProt (The UniProt Consortium, 2019), and Uniclust
(Mirdita et al., 2017); emerging metagenome sequence databases
from the European Bioinformatics Institute (EBI) Metagenomics
(Markowitz et al., 2014; Mitchell et al., 2018) and Metaclust
(Steinegger and Söding, 2018) are playing a prominent role. For
example, Wang et al. (2019) have demonstrated the applications
of marine metagenomics for improved protein structure
prediction. map_align uses the Integrated Microbial Genomes
(IMG) database (Markowitz et al., 2014), containing around 4
million unique protein sequences, to reliably predict high-quality
models for distant-homology Pfam families of unknown
structures. Another recent method for generating protein
multiple sequence alignments, DeepMSA (Zhang et al., 2020),
combines whole-genome and metagenome sequence databases
and reports improved threading performance, particularly for
distant-homology proteins. Newer sequence databases are getting

larger and diverse. For example, BFD (Steinegger et al., 2019), a
recent sequence database, is one of the largest sequence databases
containing 2 billion protein sequences from soil samples and 292
million sequences of marine samples. Another very recent
sequence database MGnify (Mitchell et al., 2020) contains
around 1 billion nonredundant protein sequences. As such,
the availability of evolutionary information of distant-
homology proteins is getting enriched, likely leading to
improved prediction accuracy of inter-residue interaction
maps and hence more accurate interaction map threading for
distant-homology protein modeling.

DISCUSSION

While the use of interaction maps is the main driving force
behind the improved threading performance, the optimal
granularity and information content of the predicted
interaction maps remain elusive. Existing works consider
various distance bins (Zhu et al., 2018; Bhattacharya et al.,
2020) and subsets of predicted interactions either based on top
predicted pairs sorted based on their likelihood values or using
arbitrary likelihood cutoffs (Bhattacharya and Bhattacharya,
2019; Zheng et al., 2019a). A robust mechanism for defining
and selecting interacting residue pairs can be beneficial to
existing threading methods. Another challenge is how to
integrate heterogeneous sources of available information
from multiple interaction map predictors and/or sequence
databases in a singular framework for unified interaction
map threading. Finally, the use of multiple templates
(Cheng, 2008; Peng and Xu, 2011; Meier and Söding, 2015)
and meta-approaches (Wu and Zhang, 2007; Zheng et al.,
2019b) possibly coupled with model quality assessment
methods (Ray et al., 2012; Uziela et al., 2016; Uziela et al.,
2017; 3; Alapati and Bhattacharya, 2018; Karasikov et al., 2019;
Baldassarre et al., 2020; Eismann et al., 2020; Shuvo et al., 2020)
and potentially aided by structure refinement (Bhattacharya
and Cheng, 2013a; Bhattacharya and Cheng, 2013b;
Bhattacharya and Cheng, 2013c; Bhattacharya et al., 2016;
Bhattacharya, 2019; Wang et al., 2020; Heo and Feig, 2020)
can collectively improve the accuracy of distant-homology
protein modeling.

Recent CASP experiments have witnessed dramatic recent
advances by DeepMind’s AlphaFold series (Senior et al., 2019;
Senior et al., 2020) in ab initio protein structure prediction,
significantly outperforming the other groups. The success of
AlphaFold series is primarily attributed to the successful
application of deep neural networks for accurately predicting
inter-residue spatial proximity information coupled with end-to-
end training, significantly improving the accuracy of protein
structure prediction (Pearce and Zhang, 2021). The integration
of deep learning into various stages of protein modeling
represents an exciting future direction that shall have a
transformative impact on distant-homology protein modeling
via interaction map threading, complementing and
supplementing ab initio protein structure prediction methods
developed by DeepMind.
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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder associated to
deteriorating motor and cognitive functions, and short survival. The disease is caused
by neuronal death which results in progressive muscle wasting and weakness, ultimately
leading to lethal respiratory failure. The misbehaviour of a specific protein, TDP-43, which
aggregates and becomes toxic in ALS patient’s neurons, is supposed to be one of the
causes. TDP-43 is a DNA/RNA-binding protein involved in several functions related to
nucleic acid metabolism. Sequestration of TDP-43 aggregates is a possible therapeutic
strategy that could alleviate or block pathology. Here, we describe the selection and
characterization of a new intracellular antibody (intrabody) against TDP-43 from a llama
nanobody library. The structure of the selected intrabody was predicted in silico and the
model was used to suggest mutations that enabled to improve its expression yield,
facilitating its experimental validation. We showed how coupling experimental
methodologies with in silico design may allow us to obtain an antibody able to
recognize the RNA binding regions of TDP-43. Our findings illustrate a strategy for the
mitigation of TDP-43 proteinopathy in ALS and provide a potential new tool for diagnostics.

Keywords: antibody selection, hypervariable loops, intrabodies, modelling, misfolding proteins, ALS

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) and Frontotemporal dementia (FTD) are distinct but genetically
correlated fatal neurodegenerative diseases. ALS is characterized by the selective degeneration of
motor neurons that typically appears in middle-aged patients (average age 55 years) and progresses
to muscle atrophy followed by complete paralysis. Death is caused by respiratory failure and typically
intervenes within 3–5 years from diagnosis. The disease is predominantly (90%) sporadic, but
familial cases (fALS) are found in ca. 10% of the cases (Prasad et al., 2019). FTD is also amidlife-onset
disease that is clinically heterogeneous and characterized by changes in behaviour, personality, and/
or speech (Mackenzie and Neumann, 2016). Because of a remarkable overlap in manifestations, the
two diseases are now considered a disease continuum, with 50% of ALS patients presenting cognitive
impairment (15–20% recognized as FTD), and 15% of FTD patients having motor impairments
(Devenney et al., 2015; Burrell et al., 2016).

Several proteins have been implicated in these diseases. Among them is the TAR DNA-binding
protein 43 (TDP-43), a DNA/RNA-binding protein ubiquitously expressed, and predominantly
localized in the nucleus (Ayala et al., 2008; Prasad et al., 2019). TDP-43 is a modular protein that is
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involved in different aspects of RNA metabolism including
transcription, splicing, transport, and scaffolding (Buratti and
Baralle, 2008; Cohen et al., 2011; Liu et al., 2017). The architecture
of TDP-43 comprises a partially folded N-terminal domain, two
RNA-binding RRM tandem domains (RRM1 and 2), and an
unstructured C-terminus that contains a so-called prion-like
motif (Buratti and Baralle, 2001; Winton et al., 2008; Lukavsky
et al., 2013; Mompeán et al., 2016). An hallmark of the TDP-43
related pathologies is the mislocalization, accumulation and
consequent aberrant aggregation of TDP-43 in the cytoplasm
where the protein is heavily post-translationally modified (Suk
and Rousseaux, 2020). TDP-43 aggregates are also associated to
other diseases, such as Alzheimer’s disease (AD), Parkinson’s
disease (PD), and Huntington’s disease (HD) (Buratti and
Baralle, 2009; Gao et al., 2018).

Clinical mutations of TDP-43 are rare and seem to occur
mainly, but not exclusively, in the C-terminus of the protein
(Pesiridis et al., 2009; Barmada et al., 2010). This observation had
originally suggested that this region is the main cause of protein
aggregation and misfolding. More recently TDP-43 fragments
containing only the RRM domains or the whole region from the
N-terminus to the end of RRM2 have been demonstrated to
aggregate and misfold also in the absence of the C-terminus
(Budini et al., 2015; Chen et al., 2019; Zacco et al., 2019)
indicating that TDP-43 contains multiple aggregation-prone
hotspots. Accordingly, clinically relevant mutations occurring
in the two RRM domains have been described (Chen et al., 2019).

Despite the advancements made in understanding TDP-43
aggregation, too many details of the mechanism remain unclear.
Lack of information partially arises from a lack of adequate
research tools able to accurately probe aggregation. In this
regard, antibodies constitute a ductile means widely used in
research and in clinics, thanks to their high binding affinity
and specificity. Antibody applications extend from quantitative
in vitro measurements to in vivo studies. When expressed as
intrabodies inside cells (Biocca et al., 1990; Cattaneo and
Chirichella, 2019), they can for instance be used to sequester
protein aggregates reducing cell toxicity (Meli et al., 2014). They
are also great assets in diagnostics and basic science as they may
be used in super-resolution microscopy, allowing visualization of
protein aggregates at the nanoscale as in the recently developed
DNA-PAINT methodology (Schermelleh et al., 2019; Sograte-
Idrissi et al., 2019; Oi et al., 2020).

Among the natural antibody scaffolds, variable domains of the
heavy chain antibody (VHHs) (also named nanobodies) offer
specific advantages over normal antibodies but also respect to
single chain Fv (scFv) fragments (Bird et al., 1988) or domain
antibodies (dAbs) (Ward et al., 1989) or other antibody mimetics.
Natural VHHs were first identified in camelids (Saerens et al.,
2005) which are typically single variable heavy chain domains of
ca. 110 amino acids that are derived from heavy-chain-only
antibodies (VH), devoid of the light chain partners. A major
advantage of camelid VHHs, with respect to immunoglobulin-
derived dAbs (24), is their ability to specifically recognize antigens
with affinities similar to those obtained by whole antibodies
despite their smaller size, and the absence of the hydrophobic
VH-VL interface. VHHs are also usually more stable, with

melting temperatures as high as 90°C, and higher resilience to
detergents and denaturants. Given their small size, good tissue
penetration, and low immunogenicity, VHHs have been
developed for different neurodegenerative disorders such as
AD, Lewy body disease, PD, and HD, and in the attempt to
block or prevent aggregation (Harmsen and De Haard, 2007;
Khodabakhsh et al., 2018; Hoey et al., 2019; Messer and Butler,
2020).

Here, we describe a new naïve library of llama VHHs, and
exploit it to select directly from TDP-43 cDNA a new anti-TDP-
43 VHH, which we named VHH5. Usually, VHH libraries are
obtained from immunized animals, and are used in different
display platforms (phage, yeast, and ribosomal, etc.), that require
the immunizing protein for antibody detection from the library.
We constructed instead a llama glaba naïve VHH library in the
SPLINT (Single Pot Library of Intracellular Antibodies) format in
yeast, followed by antibody selection with the two-hybrid-based
Intracellular Antibody Capture Technology (IACT) (Visintin
et al., 1999; Visintin et al., 2002; Visintin et al., 2004). This
approach allows direct selection of antibodies from antigen
cDNA, with no need to express and purify the protein antigen
(Meli et al., 2009). Based on the amino acid sequence deducted
from the DNA sequence of the selected VHH5 intrabody, we
performed an in silico prediction of the antibody structure. The
resulting model was used to suggest mutations that optimized the
expression of VHH5 in bacterial cells, enabling the experimental
biochemical validation of the intrabody. We demonstrate that
structure prediction is a powerful tool to guide carefully planned
mutagenesis that can facilitate soluble intrabody production. To
the best of our knowledge, this is the first detailed description of
an anti-TDP-43 intrabody. This newVHH opens new avenues for
diagnostic, to interfere with protein aggregation and for imaging
applications by super-resolution microscopy (Messer and Joshi,
2013; Schermelleh et al., 2019).

MATERIALS AND METHODS

Llama Glaba VHH Library Construction
Naïve blood samples (40 ml) from two non immunized female
llamas were kindly provided by the Biopark Zoom (Cumiana,
Turin, and Italy) which is an approved public husbandry Zoo,
which operates under the following law: legislative decree 21
March 2005, n. 73 (Gazzetta Ufficiale n. 100, 2 May 2005). The
blood samples were taken from the two llama animals as part of
the normal periodic blood testing of these animals. Periferal blood
lymphocytes were separated by Ficoll-Histopaque-1077 (Sigma-
Aldrich) discontinuous gradient centrifugation followed by
washing with the phosphate buffered saline (PBS) solution and
stored at −70°C. Total RNA was isolated from 107 leucocytes by
acid guanidinium thiocyanate-phenol chloroform extraction
(using TRIzol RNA Isolation Reagents, Thermo Fisher
Scientific). RNA integrity was assayed by agarose gel
electrophoresis. The total RNA (5 µg) was retrotranscribed in
cDNA using the Reverse Transcriptase Core Kit (Eurogentec RT-
RTCK-03), with the following thermocycles: 25°C for 10 min,
48°C for 30 min, 95°C for 5 min. The VHH sequences were
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amplified from cDNA using previously described primers (van
der Linden et al., 2000). We used a degenerate forward primer
(VH1-Back BssHII) annealing to the hinge region of each heavy
chain-only IgG isotype corresponding to the amino acid sequence
(E/Q/K/*)V (Q/K)LQ (E/Q)SG), with the BssHII restriction site
(underlined) VH1-Back BssHII: GC GCG CAT GCC VAG GTS
MAR YTR GTN SAG TCWGG and two reverse primers Lam-07
NheI and Lam-08 NheI that respectively anneal the llama long-
hinge heavy chain antibody (cIgG2), and the short-hinge
antibody (cIgG3) (Hamers-Casterman et al., 1993) with the
NheI restriction site (underlined) Lam-07 NheI: GCTAGC
GGA GCT GGG GTC TTC GCT GTG GTG CG; Lam-08
NheI GCTAGC TGG TTG TGG TTT TGG TGT CTT GGG TT.

The PCR protocol consisted of an initial denaturation step at
98°C for 1 min followed by 10 cycles of 98°C for 10 s, 55°C for 30 s,
and 72°C for 30 s, followed by 10 cycles of 98°C for 10 s, 60°C for
30 s, and 72°C for 30 s, followed by 10 cycles of 98°C for 10 s, 65°C
for 30 s, and 72°C for 30 s, and a final extension step at 72°C for
3 min. The resulting unique ∼450 bp PCR fragment was purified
from 1.5% highly pure agarose gel using the Wizard® SV Gel and
the PCR Clean-Up System (Promega), digested with BssHII and
NheI (New England Biolabs), re-purified and ligated (T4 DNA
Ligase, NewEngland Biolabs) into BssHII, and NheI digested
pLinker220 IACT plasmid (Visintin et al., 2004). This plasmid
carries the LEU2 gene, involved in the synthesis of Leucine (L),
the 2 μm origin of replication for transformation in yeast, and the
selectionmarker (Ampicillin) and the origin of replication (ColE1
ori) for selection in bacteria. Ligation of the library (∼1 μg) was
transformed by electroporation into Max Efficiency E. coli DH5α
cells (Invitrogen). Transformation efficiency was estimated by
plating serial dilution aliquots on Luria Broth (LB)/ampicillin
(100 μg/ml) agar plates, incubated overnight at 37°C, and assessed
by colony count. ∼1 million cells were inoculated the next day
into 1 l of LB, Sea Prep Agar and ampicillin for library
amplification (Elsaesser and Paysan, 2004). An aliquot of the
inoculated mixture was plated on LB/ampicillin (100 μg/ml) agar
plates to determine the effective colony count. The inoculated Sea
Prep Agar was then poured in a pre-chilled sterile stainless-steel
container (∼200 × 300 × 50 mm3; Neolab, Heidelberg, and
Germany) on wet ice in a cold room and left on ice at 4°C for
1.5 h, and transferred to an incubator at 37°C for 40 h. The visible
spherical bacterial colonies embedded in the semi-liquid gel were
collected by centrifugation at 8,000 g for 20 min at room
temperature. The pellet was washed with 100 ml of LB
medium and centrifuged again at 8,000 g for 20 min at room
temperature. Plasmid DNA from the pellet was extracted using a
Qiagen GIGAprep kit, following the manufacturer’s instructions.

NGS Llama Library Sequencing
The obtained llama library was sequenced as previously described
(Fantini et al., 2017). To attach sequencing adapters to the VHH
sequences, a ligation-based approach was designed. DNA
adapters were synthesized harbouring overhangs
complementary to the cleavage product of the restriction
enzymes BssHII and NheI, used for excising the scFv fragment
from the plasmid. The forward and reverse strands of the adapters
were synthesized independently and annealed in vitro (1:1 ratio,

95°C 5 min, and 95→25°C in 5°C steps 1 min/step). Before
annealing the reverse strand was phosphorylated (0.2 nmol of
oligos, 10U PNK (NEB) at 37°C for 1 h, and at 65°C for 20 min) to
allow ligation. The VHHs were excised from the library plasmid
(∼2 μg of the library were digested for 3 h at 37°C with 4U of NheI
(NEB), and for 3 h at 50°C with 4U of BssHII (NEB)) and ligated
to the adapters (forward adapter:VHH:reverse adapter in 10:1:10
ratio, ∼200 ng library 400 U T4 ligase (NEB), and overnight at
16°C). Ligation was run on an agarose gel and the band
corresponding to the single insert with the 5′ and 3′ adapters
was resolved and purified with the MinElute Gel Extraction Kit
(Qiagen).

The library was quantified by Qubit dsDNA HS Assay Kit
(ThermoFisher Scientific), diluted to 4 nM, and denatured
with 0.1 N NaOH (5 min at room temperature), neutralized
and diluted again in buffer HT-1 (Illumina) to a final
concentration of 12.5 pM. Equimolar denatured Phi-X
Control V3 DNA (Illumina) was spiked-in 20% volume as
an internal quality control and to increase the sample diversity
according to Illumina guidelines. Sequencing was performed
on the MiSeq system with the Reagent Kit v3 (Illumina), using
350 and 250 cycles for the forward,1 and reverse reads
respectively.

Raw data were demultiplexed from. bcl files into separate. fastq
files with bcl2fastq-1.8.4 (Illumina), using the following barcodes as
indexes: i1 � TCAGCG, i2 � GATCAC, i3 � CTGAGA, and i4 �
AGCTTT. To take into account the different lengths of shifter
sequences introduced with the sequencing adapters, a specific
number of nucleotides was discarded from the start of the reads
(R1 index i1 � 0, i2 � 1, i3 � 7, and i4 � 8; R2 index i1 � 13, i2 � 12,
i3 � 11, and i4 � 10). Reads were purged from adapter dimers,
quality-filtered (Phred Score 32), and trimmed in sequences of the
same length (R1: 320bp; R2: 220bp) with trimmomatic-0.32 (Bolger
et al., 2014). All the sequences whose forward and reverse reads both
survived from the previous step were selected, taking advantage of
the Perl script fastq-remove-orphans.pl, and which is part of the
fastq-factory suite (https://github.com/phe-bioinformatics/fastq-
factory). The VHH nanobody library reads were merged using
PEAR (van der Linden et al., 2000), a pair-end readmerger available
at http://sco.h-its.org/exelixis/web/software/pear/.

Intrabody Selection
The TDP-43 gene (residues 1–414) was cloned in pMicBD1
plasmid (pMicBD1-TDP-43 bait plasmid) and transformed in
L40 yeast. The strain was grown in 1% Yeast Extract, 2% Bacto
Peptone, 2% Glucose, and at pH 5.8 to an OD600 of 0.6. Cells were
washed in 1xTE (10mM Tris, 1 mM EDTA, and pH 7.5), and
resuspended in 0.5 ml of 1xTE/1xLiAC (10mMTris, 1 mMEDTA,
and 0.1 M Lithium acetate dehydrate pH 7.5). Cells (100 µl) were
added to 100 µg of salmon tested DNA (STD) and 200 ng of
pMicBD1-TDP-43 plasmid with 600 µl of 50% PEG/1xTE/1xLiAC
(40% (w/v) PEG 4000, 10mM Tris-HCl, 1 mM EDTA, and 0.1 M
lithium acetate dehydrate pH 7.5) and spun at 150 rpm for 30min
at 30°C. DMSO (70 µl) was added and the cells were heat shocked
at 42°C for 15min, put in ice for 2 min, centrifuged, resuspended in
100 µl of 1 × TE and plated on Synthetic Designed liquid minimal
medium lacking tryptophan (SD-W) plates.
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For IACT screening, the strain expressing the LexA-TDP-
43 bait was grown overnight at 30°C in SD-W media. The
overnight culture was diluted in 1 l of pre-warmed rich
medium YPAD (1% Yeast Extract, 2% Bacto Peptone,
0.01% Adenine, 2% Glucose, and pH 5.8) and cultured
from OD600 0.3–0.6. Cells were centrifuged, washed in
150 ml of 1 × TE, and resuspended in 15 ml of 1 × TE/1 ×
LiAC. Salmon tested DNA (STD) (10 mg), and the VHH llama
DNA library (250 µg) cloned in the pLinker220 prey plasmid
were added. The mixture was transferred in a flask with 140 ml
of 50% PEG/1xTE/1xLiAC and incubated at 150 rpm for
30 min at 30°C. DMSO (17.6 ml) was added and the cells
were heat shocked at 42°C for 15 min under gentle mixing. The
flask was then put in ice for 5 min and the cells were washed
three times with YPA (1% Yeast Extract, 2% Bacto Peptone,
0.01% Adenine, and at pH 5.8), and recovered in 1 l of YPAD
for 1 h at 30°C. A quarter of the cells were washed three times
with SD-WHL (SD without, Tryptophan, Histidine, and
Leucine), resuspended in 5 ml of SD-WHL, and plated on
SD-WHL Petri dishes. The remaining cells were washed in
SD-WL (same of SD-WHL but with 0.05% Histidine),
resuspended in 200 ml SD-WL and grown overnight at
30°C. The next morning the cells were washed and
resuspended in SD-WHL, plated on SD-WHL Petri dishes,
and incubated at 30°C for 4–5 days. Ninety nine clones were
picked and re-streaked onto a SD-WHL and SD-WL plates. A
liquid β-galactosidase (β-gal) assay, adapted from (Möckli and
Auerbach, 2004), was performed using a 96-well plate. A small
amount of the biomass from single colonies was resuspended
in 50 µl of lysis buffer (20 mM Tris HCL pH 7.5, 333 U/ml
lyticase) and incubated for 2 h at 37°C. 50 µl of a solution made
of 60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM
MgSO4, pH 7.0, X-gal at 20 mg/ml (170 µl), and
β-mercaptoethanol (30 µl), was added to each well and
incubated for 2 h at 37°C. Strong prey–bait interactions
were identified by the development of blue color.

Colony PCR and Fingerprint Analysis
Colony PCR and fingerprint analysis were performed only on
double positive colonies (His+/LacZ+). The clones were lysed
using 10 µl of buffer (20 mM Tris HCl pH 7.5, 300 U/ml lyticase).
The VHH of each clone was amplified by PCR using primers
located at the 5′ and 3′ of the VHH in the pLinker220 plasmid.
The primers were pL220 Fw (5′-AAG CTT ATT TAG GTG ACA
CTA TAG-3′) and pL220 Rev (5′- CTT CTT CTT GGG TGC
CAT G-3′). The PCR reaction was performed as follows: 3 min at
95°C, followed by 30 cycles at 95°C for 30 s, 50°C for 30 s and 72 °C
for 40 s, 5 min at 72°C, and then 4°C to store. The PCR mixture
(8 µl/20 µl) was digested with the restriction enzymes NlaIV and
AluI, for 2 h at 37°C, to identify a specific pattern for each isolated
VHH. Digested fragments were resolved using 8%
polyacrylamide gel electrophoresis, followed by ethidium
bromide staining. Once the different patterns were highlighted,
six individual clones were selected to extract the prey DNA from
yeast. Each plasmid was transformed by electroporation, using
DH5α Emax cells into bacteria to obtain a pure and monoclonal
preparation.

In vivo Epitope Mapping of the anti-TDP-43
VHH5
To characterize the epitope recognized by the anti-TDP-43
VHH5 the original LexA-TDP-43 bait was truncated in two
fragments named LexA-N-term + RRM1-2 (residues 1–258)
and LexA-C-term (residues 259–414) and transformed in L40
yeast as described above. These strains were then transformed
with the pLinker220 plasmid carrying the VHH5 with the same
protocol and plating the cells on SD-WL or SD-WHL. To further
narrow down the region carrying the epitope a second cycle was
done, splitting the region found positive (1–258) into four smaller
baits, the N-terminus (1–105), RRM1 (106–176), RRM2
(192–258), and a fragment of RRMs (160–208) which contains
the linker between RRM1, and 2 (not to be confused with RRM1-
2 which is represents a construct comprising the tandem
domains). The anti-TDP-43 VHH5 was transformed in L40
yeast strains individually carrying one of the smaller baits.

Initial Model Generation
The most suitable template was identified by submitting the
sequence of the target protein to the BLAST search (https://
blast.ncbi.nlm.nih.gov/Blast.cgi) against the PDB database.
Models were built both by the SWISS-MODEL (Waterhouse
et al., 2018) and the ABodyBuilder (Leem et al., 2016) servers.
The semi-automated procedure was used in SWISS-MODEL
where alignment between the template and the target was fed
manually.

Loop Generation
Modelling of the complementarity-determining region (CDR)H3
loop was carried out using the Sphinx algorithm (Marks et al.,
2017). The input to Sphinx is a protein structure or a model (in
PDB format) and the location and sequence of the loop to be
modelled. We used the best SWISS-MODEL structure to model
the loop region comprising residues 94–114. Once a complete set
of decoys was generated, a statistical potential was used to reduce
the set to only 500 structures, which were then scored using
SOAP-Loop (Dong et al., 2013) to produce a ranking. SOAP-
Loop was assessed by the average global root mean square
deviation (RMSD) of the top ranked model for each loop.
From the ranking that was generated based on the frequency
of how often similar conformations were selected and the energy
of single conformations, we selected ten models for the loop
which we used as a mould to perform the docking between the
nanobody and TDP-43.

Model Refinement
Molecular dynamics (MD) simulations were performed using the
NAMD 2.13 package (Phillips et al., 2020) with the
CHARMM36m force field. Input files were generated by
CHARMM-GUI (Jo et al., 2008; Lee et al., 2016). The
structures were solvated with the TIP3P water model in a
rectangular box such that the minimum distance to the edge
of the box was 10 Å under periodic boundary conditions. An
appropriate number of Cl− counterions were added to neutralize
the protein charge. The time step was set to 2 fs throughout the
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simulations. A cutoff distance of 12 Å for Coulomb and van der
Waals interactions was used. Long-range electrostatics was
evaluated through the Particle Mesh Ewald method. The two
energetically best models—one provided by the SWISS-MODEL
server homology modelling pipeline and one by the
ABodyBuilder antibody modelling pipeline—were refined by
energy minimization. 20,000 steps of conjugated gradient
energy minimization were carried out 1) without constraints,
2) with positional constraints on the backbone heavy atoms of
residues 1–70 and 77–135, and 3) with positional constraints on
all heavy atoms of residues 1–70 and 77–135. Throughout these
minimizations—providing replicas 1, 2, and 3 for each
model—the applied force constant was 1.0 kcal mol−1Å−2. The
energy minimization resulted in six models that after additional
10,000 steps of energy minimization were subjected to 1 ns of
equilibration at 303.15 K and 1 atm. The production runs
(100 ns) were performed under the same conditions except
that all positional constraints were removed. A similar
procedure was adopted on the energetically best model
obtained after the H3 loop generation as ranked according to
SOAP-Loop ranking. The model was subjected to 10,000 steps of
energy minimization and 1 ns of equilibrations at 303.15 K and
1 atm. This was followed by an 80 ns production run.

Trajectories were visualized and analysed with the VMD
program (Humphrey et al., 1996). Every tenth frame of each
trajectory was loaded, for a total of 500 structures. Structural
alignment was achieved on the whole molecule for the
ABodyBuilder structures and on the region 1–121 for the
SWISS-MODEL structures. Coordinates were extracted with a
stride value of 10, resulting in 50 structures, and visualized in
PyMOL.

ClusPro
Antigen-antibody binding was carried out based on the NMR
structure of human TDP-43 tandem RRM1-2 in a complex with a
UG-rich RNA (PDB code 4bs2) from which the RNA molecule
was removed. Molecular docking was performed by using the
ClusPro software (Kozakov et al., 2017). The standard inputs of
ClusPro are two PDB files, one denoted as the ligand, and the
other one as the receptor. To influence docking, an attractive
force was set on the residues of H3 using default parameters. The
calculations were repeated on each of the ten best structures
obtained by Sphinx. Cluster selection was made to exclude
solutions that did not show any contact between the CDR
loops and the TDP-43 ligand. An additional filtering step was
included to remove all the solutions in which less than ten CDR
residues were involved in molecular interactions with the antigen.
A residue was defined as interacting if any of its atoms was at less
than 4 Å distance from any antigen atom. Similarly, each solution
was annotated based on the number of contacts with the first, and
second domain in the TDP-43 structure. All the representative
structures from then ten ClusPro runs were then pooled together
and analysed to identify conserved interaction patterns with the
antigen. The interface RMSD (iRMSD) between each pair of
solutions was then computed, by superimposing the antigen
structure, and measuring the RMSD of the Cα atoms in the
CDR regions of the respective interacting antibody. Clustering of

the solution was then performed on the complete distance matrix,
by using the DBScan algorithm from the Python package SciKit-
Learn (https://scikit-learn.org/stable/modules/generated/sklearn.
cluster.DBSCAN.html), using the parameters eps � 9, and min_
clust � 3 (Pedregosa et al., 2011). The clustering results were then
visualised by transforming the distance matrix to a two-
dimensional space using the t-SNE algorithm in SciKit-Learn
(Van Der Maaten and Hinton, 2008) (https://scikit-learn.org/
stable/auto_examples/index.html). The models were visualised
by the Pymol software.

Sequence Analysis
AGGRESCAN (Conchillo-Solé et al., 2007) was used to predict
the aggregation properties of VHH5. The standard input for
AGGRESCAN is the polypeptide sequence(s) consistent with
FASTA format. In the output, the regions of the sequence
with the highest predicted aggregation propensity are
highlighted in red in the peptide sequence column and appear
as peaks in the profile graphs. The position of the CDR loops was
obtained by the http://cao.labshare.cn/AbRSA/abrsa.php server
(Li et al., 2019).

VHH5 Production
Preliminary attempts to produce the protein in E. coli were done
using a pET-17b which encoded a fusion protein with an
N-terminal PelB leader sequence and a C-terminal (His)7-tag.
Since this strategy proved unsuccessful, VHH5 was recloned by
PCR into a pET-SUMO plasmid, and expressed in BL21 (DE3)
pLysS cells as a fusion protein with an N-terminal SUMO
solubilization domain and a (His)6-tag. Cells transformed
with the plasmid were grown overnight at 37°C in LB
medium containing 50 μg/ml kanamycin. Cell cultures were
diluted 1:50 in fresh LB with 50 μg/ml kanamycin and grown
to an OD600 of 0.6, before adding 0.5 mM IPTG to induce
protein expression for 4 h at 37°C. The cells were collected by
centrifugation at 4,000 rpm for 20 min at 4°C, resuspended in
lysis buffer (10 mM potassium phosphate buffer at pH 7.2,
150 mM KCl, 5 mM imidazole, 5% v/v glycerol, 1 mg/ml
lysozyme, a cOmplete™ EDTA-free Protease Inhibitor tablet
(Roche), and 1 μg/ml DNase I), and lysed by sonication. The
soluble protein was recovered in the supernatant by
centrifugation at 20,000 rpm for 50 min at 4°C, and purified
by nickel affinity chromatography (Super Ni-NTA agarose
resin, Generon) at 4°C, eluting the (His)6-SUMO tag with
10 mM potassium phosphate buffer at pH 7.2, 150 mM KCl
with 250 mM imidazole. The tag was cleaved by incubating the
construct with tobacco etch virus protease (1:5 protein
construct/tobacco etch virus molar ratio) overnight at 4°C,
while dialyzing the mixture with 10 mM potassium
phosphate at pH 7.2, 1 M KCl. A second nickel column at
4°C was applied. The flow-through was collected and dialyzed at
4°C against 10 mM potassium phosphate buffer at pH 7.2 and
15 mM KCl. Pure VHH5 was obtained after a further step of
size-exclusion chromatography on an Äkta pure system
(HiLoad 16/60 Superdex 75 prep grade column, GE
Healthcare). The protein was eluted in 10 mM potassium
phosphate buffer at pH 7.2 and 15 mM KCl, aliquoted, and
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flash-frozen and stored at −20°C. The protein purity was
assessed by SDS-PAGE and size-exclusion chromatography.

Circular Dichroism and NMR
Measurements
Far-UV CD spectra of VHH5 (50 μM) was acquired at 25°C in
10 mM potassium phosphate buffer at pH 7.2 and 15 mM KCl.
CD spectra were recorded on a JASCO-1100 spectropolarimeter
equipped with a temperature control system, and averaged over
10 scans. Measurements were carried out in 1 mm path-length
quartz cuvettes (type S3/Q/1; Starna Scientific), applying a
constant N2 flush at 4.0 l/min. NMR experiments were carried
out at 800 MHz on an Avance Bruker spectrometer equipped
with a cryogenic probe. The sample (160 μM) was in 10 mM
potassium phosphate at pH 7.2 with 15 mM KCl and 10% D2O.
1D spectra were acquired at 25°C.

ELISA Assays
For the Sandwich ELISA, purified VHH5 were coated in
triplicates onto a 96-well plate at concentrations of 1 μM,
3 μM, 5 μM, and 10 µM (corresponding to 15–150 μg/ml), left
overnight at 4°C, and in carbonate buffer at pH 9.6. After coating,
2 h blocking at room temperature was performed in PBS/BSA at
1% and pH 7.4. Purified RRM1-2, RRM1, and RRM2 (10 μg/ml)
were used to capture the VHH5 prey. The solution was incubated
for 2 h at room temperature, followed by a further 2 h incubation
in the presence of rabbit anti-TDP-43 polyclonal antibodies
(Proteintech) at a 1:2000 dilution. Detection of the retained
antigen was performed with goat anti-rIgG [HRP] antibody
(Cell Signaling) at a 1:2000 dilution. After a 2 h incubation at
room temperature in PBS/BSA 1%, with
3,3′,5,5′Tetramethylbenzidine (TMB) (ThermoFisher, cat. No.
34021) the absorbance was read at 450 nm. Antibody dilutions
were in PBS/BSA 1%, pH 7.4. The wells were washed three times
between steps with PBST at 0.05% and pH 7.4. Wells that did not
contain VHH5 but all the other components were used as
negative controls.

For the indirect Elisa, purified RRM1-2, RRM1, and RRM2
were coated in triplicates in a 96-well plate at a concentration of
1 µM (corresponding to 10 μg/μl), left overnight at 4°C in
carbonate buffer at pH 9.6. After coating, the reaction was
blocked for 2 h at room temperature by PBS/BSA at 1%, and
pH 7.4. Purified VHH5 (1 μM, 3 μM, 5 µM, and 10 μM,
corresponding to 15–150 μg/ml) was used to capture the
antigen by a 2 h incubation at room temperature. Detection of
VHH5 was performed with rabbit anti-camelid VHH [HRP]
antibody (GenScript) at a 1:5,000 dilution. After 2 h
incubation at room temperature in PBS/BSA 1%, with
3,3′,5,5′Tetramethylbenzidine (TMB) (ThermoFisher, cat.
No.34021) the absorbance at 450 nm was detected. The
antibody dilutions were in PBS/BSA 1%, pH 7.4. The wells
were washed three times between steps with PBST at 0.05%
and pH 7.4. Wells that did not contain the antigen (TDP-43
fragments) but all the other components were used as negative
controls.

RESULTS

Naïve Llama VHH SPLINT Library
Construction
A VHH library was created from cDNA derived from peripheral
blood lymphocyte RNA isolated from two not immunized (naïve)
llama glaba animals and cloned in SPLINT format (Visintin et al.,
2004) for further use. In this format, the VHH antibody domains
are fused in frame to the activation domain of the transcription
factor VP16. The VHH DNA library was amplified in bacteria
obtaining a complexity of 1.7 × 107, defined as the number of total
transformants, determined through colony forming unit (CFU)
count. The library was sequenced by Next Generation
Sequencing. From a total number of 6,322,129 sequences the
sequence diversity resulted to be 1.15 × 106. The library
complexity was estimated by the truncated Negative Binomial
distribution (Fantini et al., 2017) to fit the number of sequences as
a function of sequence cardinality (Figure 1A). Most of the
sequences (93%) were full-length and did not contain
premature stop codons or frameshifts. The VHH lengths fit a
normal Gaussian distribution centered on 120.7725 amino acids
with a standard deviation of 4.8723 (Figure 1B). The diversity of
the SPLINT library is in line with our previous mouse or human
libraries, which were shown to contain antibody domains able to
effectively bind their corresponding protein antigen
intracellularly.

Intrabody Selection
The yeast two hybrid based IACT system was used to select
intracellular specific intrabodies against TDP-43 from the
VHH SPLINT library (Visintin et al., 2002; Visintin et al.,
1999). IACT screening works by exploiting yeast L40 strains
co-transformed with antigen-bait/antibody-prey pairs, in
which the antigen-bait is fused to a DNA binding domain
(LexA-DBD) that is challenged with a library of natural
recombinant antibody domains fused to the VP16
activation domain (the prey). The TDP-43 gene (amino
acids 1–414) was cloned in fusion with LexA and used to
challenge the llama antibody library (Visintin et al., 2004). A
positive interaction between a prey and the bait activates
transcription of the HIS3 gene, allowing survival on
selective media (SD-WHL), and of the LacZ gene as a
second marker of interaction. After a primary selection, a
second round of selection pointed to a lead candidate (VHH5)
as a positive TDP-43 interactor. The specificity of VHH5 was
analysed for survival on selective media (SD-WHL) using
either the screening bait (LexA-TDP-43) or an unrelated
bait (LexA-Synuclein) to exclude interactions between
VHH5 and the LexA domain of the fusion protein bait
(Figure 2A). Activation of the second reporter marker
LacZ was assessed in a liquid β-gal assay. VHH5
interaction with LexA-TDP-43 gave positive β-gal assay as
compared to the positive control of the assay (interaction of
LexA-TDP-43 with the Y1 anti Lex A nanobody) and the
negative control (interaction of LexA-TDP-43 with a scFv anti
p-Tau) (Figure 2B). Analysis of the intrabody sequence
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revealed a short charged H1 loop, a shorter H2 loop
containing a Trp, and a rather long H3 loop, comprising
17 residues according to Chothia, and Lesk numbering system
(Chothia et al., 1989). This loop is circa ten residues longer

than the average of the H3 in antibodies, but within average
for intrabodies (Figure 2C). It does however contain many
degrees of freedom, making prediction of its structure not
straightforward.

FIGURE 1 | Characterization of the SPLINT library. (A) Cardinality plot of the sequenced library. Log-log plot showing the number of time a group of identical n
sequences (n � cardinality) was found in the sequencing. (B) VHH proteins length distribution. Distribution of the number of residues observed in the peptide chains of the
of translated llama VHHs (amino acid sequence length) and gaussian fit.

FIGURE 2 | Selection of VHH5. (A) Growth on selective plate SD-WHL of the VHH5 co-transformed with the LexA-TDP-43 bait and the unrelated LexA-Synuclein
bait. The images of growth on plates were acquired using Chemidoc XRS (Biorad). (B) Liquid β-gal assay of yeast co-expressing the LexA-TDP-43 bait and the VHH5
intrabody, C+: LexA-TDP-43+ Y1, an anti-LexA intrabody, and C−: LexA-TDP-43+ scFv anti-pTau. The images were acquired using HUAWEI Mate 10 lite. (C) Amino
acid sequence of VHH5 and schematic representation of VHH5 with the position of the CDRs, as defined using the Chothia and Lesk numbering scheme (Chothia
et al., 1989) in the http://cao.labshare.cn/AbRSA/abrsa.php server (Li et al., 2019).
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Attempts to Characterise Recombinant
VHH5 by E. Coli Overexpression
In the attempt to characterize the anti-TDP-43 VHH5, we tried to
express and purify the protein in E. coli. VHH5 was first inserted
into a pET-17b expression vector fused with the PelB leader
sequence that directs proteins to the periplasmic space allowing
disulfide bridge formation. The construct was transformed in E.
Coli BL21 (DE3) cells but resulted poorly overexpressed
(Supplementary Figure S1A). We then re-cloned the protein in
a pET-17b plasmid as fusion protein with an N-terminal SUMO
solubilization domain and a (His)6-tag to enhance protein
solubility. We also changed the E. coli strain and expressed it in
BL21 (DE3) pLysS cells. The expression yield appreciably increased
but the highly expressed protein accumulated in the cytoplasm as
inclusion bodies (data not shown). All attempts to avoid
precipitation failed, including changes of the induction
temperature. Inclusion body formation has been proven to
result from the conflict between aggregation and protein fold
and it is a well-known impediment particularly in antibody
production (Ventura and Villaverde, 2006).

To predict which residues/regions of the protein could
contribute to aggregation, we analysed the sequence by
AGGRESCAN (Conchillo-Solé et al., 2007). This is a web-
based software that allows prediction of the aggregation
properties of a protein on the basis of its sequence. We found
several regions predicted to be aggregation prone, some of which
in the CDR loops (Supplementary Figure S1B). As an alternative
strategy, we resorted to model the structure of the intrabody by
comparative modelling to have an independent insight based on a
3D model of the structure of VHH5 and a more solid idea of the
expected structural features.

Modelling the Antibody Scaffold
The structure of the antibody main scaffold, that is the
β-sandwich that holds the antigen recognizing CDR loops,
can be easily predicted as this region is highly conserved
amongst antibodies, and their derivatives (Narciso et al.,
2011). A BLAST search over the PDB database identified
5wcc as the closest sequence-wise template for comparative
modelling. This is the crystal structure of the broadly
neutralizing Influenza A antibody VRC 315 02-1F07 Fab.
We used in parallel both the SWISS-MODEL (Waterhouse
et al., 2018) and the ABodyBuilder (Leem et al., 2016) servers
for the prediction. SWISS-MODEL relies on ProMod3, an in-
house comparative modelling engine based on OpenStructure
(Biasini et al., 2013). The ABodyBuilder algorithm also
follows template selection, orientation prediction, and
CDR loop modelling and side chain prediction.
ABodyBuilder then annotates the “confidence” of the
model as the probability that a component of the antibody
(e.g., a loop or a strand) is modelled within a RMSD
threshold. We obtained models that were closely evaluated.
The two energetically best structures from each of the two
programs could be superposed with a RMSD of 0.45 Å
(Supplementary Figure S2). The template and target
structures were of similar lengths with two one-residue

insertions in the H2 and H3 CDR loops and a deletion in
another loop.

The two energetically best structures from each of the two
programs were then refined by energy minimization using the
CHARMM36m force field that has extensively been shown to be
robust in simulations of globular proteins. Twenty thousand steps
of conjugated gradient energy minimization were applied using
no constraints or with positional constraints on the backbone
heavy atoms and on the heavy atoms of the solute in the regions
1–70 and 77–135 for both the SWISS-MODEL and ABodyBuilder
VHH5 structures 1, 2, and 3. The resulting models were then used
as the input to model the CDR loops of VHH5.

H3 Modelling and Structure Refinement
The challenge in antibody structure prediction is the design of the
CDR loops. Of the three loops, H1 and H2 can easily be classified
according to the canonical structures first described in 1987 by
Chothia and Lesk, and their structures can confidently be predicted
(Al-Lazikani et al., 1997). The problematic loop is H3 because of
the high variability of its sequence, length, and conformation that
makes difficult to build a high-quality structure with ordinary
modelling techniques. Modelling of the H3 loop (residues 94–114)
was carried out using the Sphinx algorithm, a combination of the
FREAD knowledge-based method (Deane and Blundell, 2001;
Choi and Deane, 2010) and an ab initio algorithm. Given the
overall similarity between the two structural bundle and to reduce
the number of structures to analyse, we restricted the prediction
only to the best structure from SWISS-MODEL. We obtained a
bundle of 500 structures from which we selected 10 energetically
best structures. In most of the solutions the loop turned out not to
contain any regular structural element with the loop mostly
protruding out from the rest of the molecule (Supplementary
Figure S3). Only in one model, the loop contains a short 1-turn
helical element in the middle of the loop. In seven out of ten
structures, and the first two residues of the loop pair with a close-by
strand.

We then refined the energetically most favourable structure
from the H3 loopmodelling (Model 1) byMD simulations, also to
obtain information on the conformational space covered by the
long H3 loop. Throughout the 80 ns production run, this loop
adopted two significantly different conformations: protruding out
from the rest of the molecule (open form, 1.4–39.8 ns) or bending
closer to the beta strands encompassing residues 33–38 and
46–52 (closed form, 43.2–80.0 ns) (Figure 3). This potential
variability was also reflected in the time evolution of the total
RMSD calculated for the N, CA, and C backbone atoms
(Supplementary Figure S4). When the RMSD of the
individual residues was separately calculated along the
trajectory for each of the open and closed forms (Figure 4),
variability was noticed at the three CDR loops, and especially at
H3. The C-terminus (residues 122–135) is completely disordered.

The predicted models were validated by PROCHECK
(PDBSum) (Laskowski et al., 1996; Laskowski, 2001).
According to this analyser, the Ramachandran plot contained
90% of the residues in the most favoured regions, and 10% in
additional/generously allowed regions (Supplementary Figure
S6). Gly and Pro residues were also located in allowed regions.
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The G-factors on dihedral angles, that provide a measure of how
unusual, or out-of-the-ordinary, a property is, were all above the
−0.5 threshold or positive, and indicating good quality. The
overall average value was −0.14.

Structure-Guided Optimization of VHH5
Expression
We used the predicted structures to analyse the protein surface
and identify exposed hydrophobic residues not contributing to

the hydrophobic cores or to the CDR loops that could be mutated
to reduce the risk of the proteins to be in inclusion bodies. We
both visually inspected the models and analysed the coordinates
with the DSSP software which provides per residue accessible
surface areas. As the result of this analysis, we found that the
regions that could mostly promote aggregation could be H3
which is indeed rather hydrophobic with four bulky
hydrophobic residues and two uncharged aromatics. This
region cannot however be mutated as it may be essential for
epitope recognition. Additionally, we found a few exposed

FIGURE 3 | Comparison of the MD derived ensembles of VHH5 Model 1 from the H3 loop generation. (A) Twenty structures from 1.4 to 39.8 ns; (B) Nineteen
structures from 43.2 to 80.0 ns of the simulation time. The H3 loop conformations obtained from the MD simulations; (C) open conformation; (D) closed conformation.
The H3 loop is colored in purple.

FIGURE 4 |RMSD values of VHH5Model 1 after the H3 loop generation for the two loop conformations. The RMSDwas calculated for the CA, C′, and N backbone
atoms of each residue. Blue rectangles: open conformation, 1.4–39.8 ns; Red dots: closed conformation, 43.2–80.0 ns. RMSD values for the residues in the H3 loop
region are shown in the insert.
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hydrophobic residues such as I15 and M74 that could potentially
interfere with protein folding leading to inclusion bodies
(Figure 5A). We thus decided to mutate I15 to alanine and
M75 to lysine creating the double mutant VHH5-I15A_M75K
and attempted to express this mutant in E. coli.

We found that protein production switched from being all in
the inclusion bodies to being mostly soluble (Figure 5B). This
strategy allowed us to obtain suitable quantities of VHH5-
I15A_M75K. After purification, we managed to typically
obtain ca. 13 ml (1.96 mg/ml or 132 µM) of >98% pure
protein after cleaving it from the tag. The protein identity
was confirmed by mass spectrometry which also confirmed
disulfide formation (data not shown). We also confirmed the
state of fold by far-UV circular dichroism (CD), a technique able
to detect the secondary structure of proteins. The CD spectrum
of VHH5- I15A_M75K recorded at room temperature has a
maximum at 205 nm and a single minimum around 215 nm
which are features typical of the β-sheet conformation expected
for an antibody (Figure 5C). The positive contribution at
225–235 nm is usually diagnostic of the presence of stacking
interactions between aromatic residues (Budyak et al., 2013).
The mono-dimensional NMR spectrum of the unlabelled
protein presented well dispersed resonances as expected for a

folded monomeric protein of the size of VHH5 (Figure 5D). We
thus concluded that the protein obtained was folded and well-
behaved.

Epitope Mapping
To characterize the epitope of TDP-43 recognized by VHH5,
we first performed In Vivo Epitope Mapping (IVEM) in yeast
(Visintin et al., 2002) by truncating the original LexA-TDP-
43 bait into two fragments, LexA-N-term + RRM1-2 (residues
1–258) and LexA-C-term (residues 259–414). The epitope
recognized by the VHH5 resulted to be located in the
N-terminal half of the protein. To further narrow the
region carrying the epitope, a second IVEM was carried
out by splitting this region into four smaller baits
containing the N-terminus (1–105), RRM1 (106–176),
RRM2 (192–258), and a fragment of RRMs (160–208). The
epitope seemed to be mainly located in RRM2, since growth
on SD-WHL plates was detected both with the LexA-RRM2
and the RRMs baits (Figure 6A). To substantiate these results
with further evidence, we used the purified recombinant
VHH5- I15A_M75K for ELISA experiments. We
performed both sandwich and indirect ELISA assay using a
rabbit anti-TDP-43 polyclonal antibody (Proteintech) and a

FIGURE 5 | Structural analysis, production, and characterization of VHH5. (A) VHH5 structure. The disulfide bond is highlighted in yellow and the side chain of the
tryptophan is in orange. The two hydrophobic residues, I15 andM74, that were hypothesized to help inclusion body formation are highlighted in blue. (B)Overexpression
of VHH5 in E. Coli BL21 (DE3)pLysS cells as a soluble protein. SDS-PAGE analysis of SUMO + VHH5 (29 kDa) shows the soluble protein and a high overexpression. The
columns correspond to: lane 1, pre-induction; lane 2, after induction with IPTG; lane 3, pre-lysis supernatant; lane 4, pre-lysis pellet; lane 5, post-lysis supernatant;
lane 6, post-lysis pellet. (C) CD and (D) 1H NMR spectra of VHH5 recorded at room temperature.
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rabbit anti-camelid VHH [HRP] antibody (GenScript)
respectively. In both cases, we observed response to RRM1,
RRM2, and RRM1-2, indicating that the epitope involves
both domains (Figures 6B,C). This result could mean that
VHH5 recognises each of the repeats which share some

homology. However, while the homology is fairly high, and
the sequence identity is only 26%. It is thus fairly unlikely that
there are two independent epitopes one in each repeat. It is
more likely that the epitope is conformational and involves
both domains. We also noticed that only the indirect ELISA

FIGURE 6 | Epitope mapping of VHH5 on TDP-43. (A) In vivo Epitope Mapping. The VHH5 was transfected in L40 yeast strain expressing the baits LexA-TDP-43
full length (residues 1–414), LexA- N-Term + RRM1-2 (1–258), N-term short (1–105), RRM1 (106–176), RRM2 (192–258), and RRM1-2 (160–208). Interaction is
detected by growth on–WHL plates. (B) Sandwich ELISA assay. Coating antibody: VHH5 (final molar ratio coating antibody: binding antigen 1:1, 1:3, 1:5, and 1:10);
Binding antigen: RRMs, RRM1, and RRM2 (1 µM); Detection: anti-TARDBP and then anti-hIgG-HRP. The assay shows an interaction of VHH5 with all the TDP-43
fragments. (C) Indirect ELISA assay. Coating antigen: RRM1-2, RRM1, and RRM2 (1 µM); Binding antibody: VHH5 (molar ratio 1:1, 1:3, 1:5, and 1:10); Detection: anti-
VHH-HRP. The assay shows an interaction of VHH5 with all the TDP-43 fragments. The interaction increases as the molar ratio increases.

FIGURE 7 | Clustering and structure of the docking solutions. (A) Clustering is represented as a 2D map that preserves local similarity. Each dot corresponds to a
docking solution, and is coloured according to the cluster it belongs to. Dots depicted as upward triangles, downward triangles, and circles represent solutionswhere the
antibody interacts with the first (RRM1), second (RRM2), and or both antigen domains (RRM1-2), respectively. Solutions depicted in black are considered outliers by the
clustering algorithm, small dots, and large dots are core and reachable elements, respectively. (B) Representative solutions from clusters with more than five
elements, excluding cluster 1. The antibody is represented in red, and the first and second antigen domains in dark grey and white, respectively.
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showed a dependence on the antibody to protein ratios. This
could be explained by considering that the difference between
the two assays is that in the indirect ELISA, the target protein
is fixed and the intrabody is added at increasing
concentrations. No concentration dependence in the latter
assay could easily be explained by the assumption that when
the intrabody is fixed it could adopt a conformation that
makes it more competent for binding. Viceversa, when the
target protein is fixed, the epitope may be partially masked.
This means that the detected affinity can be different in the
two cases. Thus, the signal can appear saturated in Figure 6B
but not in the indirect ELISA done with the intrabody in
solution.

Using this information, we then performed molecular
docking. Although docking carried out on low resolution
structures and without experimental restraints has only very
limited reliability, we reasoned that it could provide a visual
impression of epitope binding and inform future studies.
Models of the antigen-antibody complexes were generated
by the ClusPro software using each of the ten energetically
best Sphinx structures and the NMR structure of the putative
antigen (PDB 4bs2). This calculation resulted in 228 models
which were further analysed. After the filtering procedure
described in the Materials and Methods section, a total of 14
clusters were identified (Figure 7A). The complex structures
with the lowest score and binding free energy were selected
and analysed (Figure 7B). Cluster 1 contains the vast
majority of the solutions, in which the antibody only
interacts with a single domain of the antigen. However,
upon closer inspections, we realised that these solutions
were likely the result of an artefact of the docking
procedure: the H3 loop of the antibody would encircle the
C-terminus of the antigen, in a configuration that would
result in a knot or a lasso in the complete antigen.
Excluding these solutions, cluster 0, 2, 5, 6, 8, 9, 11, 12,
and 13 mainly contained solutions in which the interaction
involved both domains. In total, 51 out of the 61 solutions
that were not outliers nor part of cluster 1, and contained
interactions to both domains (Figure 7B). These models, that
are only indicative and low resolution, will need experimental
validation through fine epitope-mapping at the level of the
individual residues.

DISCUSSION

The use of antibodies in misfolding diseases is in principle a
flexible and ductile strategy to control protein aggregation,
because, by binding to a monomeric protein, they prevent self-
assembly by steric hindrance. There are now several different
strategies that allow screening (Hanes and Pluckthun, 1997;
Smith and Petrenko, 1997; Ho and Pastan, 2009; Uchanski
et al., 2019), ab initio design (Hardin et al., 2002; Zhu and
Day, 2013) or evolutionary selection of antibodies, and smaller
derivatives (Visintin et al., 2002). A problem remains however the
production of the antibody by bacterial expression once a
potentially effective sequence has been identified.

Unfortunately, the large molecular weight (typically ∼150,000)
and hetero-tetrameric composition of antibodies with two
different polypeptides (a heavy and a light chain) and a total
of up to 15 disulfide bridges make difficult when not prohibitive
their production in bacteria or in the cytoplasm of eukaryotic
cells. This is why scFv fragments, that contain only one copy of
the variable domains of immunoglobulin motif, offer
undiscussable advantages. However, also in this case, it is
difficult to predict a priori whether an intrabody obtained by
library screening can easily be produced in E. coli, and problems
in successfully refolding the intrabody from inclusion bodies have
been described (Vaks and Benhar, 2014; Bao et al., 2016).

In the present study, we used a composite approach in which
we screened an intrabody for TDP-43 recognition, and produced
it in bacteria and characterised it for epitope recognition. We first
described a new naïve library of llama VHHs, and exploited it to
select a new anti-TDP-43 VHH directly from the TDP-43 cDNA.
A significant advantage of SPLINT-derived antibodies, as the
anti-TDP-43 VHH5 described here, is that the genes coding for
the antibody domains are by definition well validated as
intrabodies, since the IACT selection is performed under
conditions of intracellular expression in yeast cells. SPLINT-
derived antibody domains are well suited to be used as
intrabodies (Biocca et al., 1990), possibly coupled to effector
domains for targeted degradation (Melchionna and Cattaneo,
2007; Schapira et al., 2019) or for imaging purposes.

We then modelled the structure of the intrabody to get a visual
impression of its structure. The model suggested exposed
hydrophobic residues that could be mutated to reduce the risk of
inclusion body formation. We found that it was sufficient to mutate
two exposed hydrophobic residues to have a soluble protein that could
be purified in suitable amounts for proper direct characterization.We
demonstrated by CD and NMR studies that the protein is folded and
monomeric and that has all the features expected for the expected
β-rich structure. We then demonstrated by ELISA experiments that
the double mutant is still able to recognise the TDP-43 epitope. This
conclusion was far from being obvious, since it is known that regions
outside the CDR loops can contribute to epitope recognition of
intrabodies (Sela-Culang et al., 2013). We mapped the epitope
binding regions first coarsely by in vivo epitope mapping and
then, more specifically, and by ELISA experiments with individual
or tandem domains of TDP-43. We found that the anti-TDP-43
VHH5 intrabody binds both RRM1 and RRM2. This is in agreement
with structural studies that have revealed that VHHs often tend to
recognize concave surfaces of their antigens with high shape-
complementarity. Based on these experimental findings, we
modelled the interaction by in silico docking. Despite their overall
diversity, in most of the solution we found the long H3 of VHH5
protruding out from the body of the antibody and docks into the cleft
formed by the interface between the two domains. This arrangement
would permit recognition of the antigen with high shape
complementarity. A similar type of recognition has been described
in a structural study that compared the binding mode of VHH with
that of Fvs using hen egg lysozyme (HEL) as a model antigen (Akiba
et al., 2019). Several more studies have also revealed that VHHs
usually target concave surfaces on the antigen molecule (Kromann-
Hansen et al., 2016; Rossey et al., 2017; Gulati et al., 2018). It is believed
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that in this way, VHHs compensate for the limitations of their small
size, while maintaining the high affinity and specificity that constitute
the hallmarks of antibodies.

It is interesting to compare our intrabody with previously
developed anti-TDP-43 antibodies. A systematic survey in 2015
revealed the existence of 29 antibodies, many of which were
generated in house (Goossens et al., 2015). Amongst the ten
highest-ranking primary antibodies, one has two distinct
epitopes, that recognize TDP-43 N-terminus and RRM2. Two
other antibodies are directed at RRM2, and three have epitopes in
the C-terminus of TDP-43. The remaining four antibodies also
map in the C-terminus but are specific for phosphorylated serine
residues. The majority of these antibodies are polyclonal and
therefore their genes cannot be available for further downstream
engineering. A single chain antibody against RRM1 was
generated in 2019 (Pozzi et al., 2019). Two more monoclonal
antibodies were recently described that were raised against an
epitope within the RRM2 domain of TDP-43 (residues 198–216)
(Trejo-Lopez et al., 2020).

The novel intrabody will aid in diagnostic and research efforts
within the context of TDP-43 proteinopathies. Availability of this
intrabody opens new avenues to the diagnosis and treatment of ALS.
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