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Editorial on the Research Topic

AI in Biological and Biomedical Imaging

Imaging is the visual representation of structures and functions of objects, such as biological
molecules, biological ultrastructures, tissues, and the spatial organizations of the objects. It is also
an indispensable step towards diagnostics and therapeutics in modern medicine. For example,
during the current pandemic caused by COVID-19, CT-scans have been used, in addition to
nucleic acid detection, as a main criterion for diagnostics. Unlike computers, the human brain has
a remarkably strong ability to understand and interpret the information obtained from imaging
data, more so than from interpreting numerical or textual data. On the other hand, AI methods
may produce more objective and highly reproducible analysis results with increased automation.
Therefore, it is beneficial to develop AI methods to complement manual image analysis.

Imaging is playing an increasingly significant role in both biological and biomedical sciences. With
technologies including optical microscopy, fluorescence microscopy, electron tomography, nuclear
magnetic resonance, single particle cryo-EM, and X-ray crystallography, biological imaging has
provided rich information about biological systems and molecules at various resolutions, all the
way from tissue-level, to cellular-level, to organelle-level, to macromolecular-level, to small-molecular-
level, and to atomic-level. Imaging also has many diagnostic and therapeutic applications in medicine
with different modalities, such as ultrasound, computed tomography (CT), magnetic resonance
imaging (MRI), positron emission tomography (PET), and optical coherence tomography (OCT).
Such technologies can provide fast, non-invasive, painless and direct information to clinicians and
physicians, which is critical to not only diagnosis, but also prognosis and treatment.

With the recent development of AI technologies, especially deep learning, the frontiers on
biological and biomedical imaging have been greatly advanced. In this Research Topic, we have
collected 16 high quality works on developing or applying state-of-the-art AI techniques for
processing, information mining, integrating, diagnosing, comparing, and reviewing biological
and biomedical imaging, with their applications in biology, diagnostics and therapeutics.

There are in total 16 papers accepted by this Research Topic. Each paper was handled by one guest
editor and reviewed by at least two reviewers. We are very grateful to the reviewers in helping us
select these high-quality papers for this Research Topic.

The accepted papers focus on developing AI algorithms and systems to process, analyze, interpret,
and mine from both biomedical and biological imaging data. We begin by providing a thought-
provoking perspective on the future of radiology diagnostic service (Seong et al.). Radiology has been
a leading technology of digital transformation in healthcare, which is again at the crossroad for the
next generation of transformation, possibly evolving as a one-stop integrated diagnostic service. AI
promises to offer radiology new powerful new digital tools to facilitate the next transformation. This
paper proposes three pathways for AI’s role in radiology: (1) improving the performance of CAD, (2)
improving the productivity of radiology service by AI-assisted workflow, and (3) developing
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radiomics that integrate the data from radiology, pathology, and
genomics to facilitate the emergence of a new integrated
diagnostic service.

We then present papers on 2D biomedical imaging data. We
first discuss three papers on pathology imaging. Xu et al.
proposed an effective immunohistochemistry pathology
microscopic image-generation method that can generate
synthetic immunohistochemistry pathology microscopic
images from hematoxylin-eosin stained pathology microscopy
images without any annotation. CycleGAN is adopted as the basic
architecture for the unpaired and unannotated dataset. Moreover,
multiple instances learning algorithms and the idea behind
conditional GAN are considered to improve performance.

Liu et al. selected Ki-67-expression as the representative of
molecular information. They proposed a method that can predict
Ki-67 positive cells directly from H&E stained slides by a deep
convolutional network model. To train this model, they
constructed a dataset containing Ki-67 negative or positive cell
images and background images. These images were all extracted
from H&E stained WSIs and the Ki-67 expression was acquired
from the corresponding IHC stained WSIs. The trained model
was evaluated both on classification performance and the ability
to quantify Ki-67 expression in H&E stained images.

He et al. proposed a hybrid-attention nested UNet (Han-Net),
which consists of two modules: a hybrid nested U-shaped
network (H-part) and a hybrid attention block (A-part).
H-part combines a nested multi-depth U-shaped network and
a dense network with full resolution to capture more effective
features. A-part is used to explore attention information and
build correlations between different pixels. With these two
modules, Han-Net extracts discriminative features, which
effectively segment the boundaries of not only complex and
diverse nuclei but also small and dense nuclei. The
comparison in a publicly available multi-organ dataset shows
that the proposed model achieves the state-of-the-art
performance compared to other models.

We further accepted two papers on X-ray data analysis. Yang
et al. proposed a data-driven diagnostic model for hip dysplasia.
Angles including CE, sharp, and Tonnis angle which are
commonly measured in clinical diagnosis, are automatically
obtained. Samples, each of which consists of these three angle
values, are used for clustering according to their densities in a
descending order. A three-dimensional normal distribution
derived from the cluster is built and regarded as the
parametric model for diagnosis of hip dysplasia.

Li et al. proposed an interpretable method called Deetal-Perio
to predict the severity degree of periodontitis in dental panoramic
radiographs. In their method, alveolar bone loss (ABL), the
clinical hallmark for periodontitis diagnosis, could be
interpreted as the key feature. To calculate ABL, they also
proposed a method for teeth numbering and segmentation.
First, Deetal-Perio segments and indexes the individual tooth
via Mask R-CNN combined with a novel calibration method.
Next, Deetal-Perio segments the contour of the alveolar bone and
calculates a ratio for individual tooth to represent ABL. Finally,
Deetal-Perio predicts the severity degree of periodontitis given
the ratios of all the teeth.

We also accepted one paper on quantifying vascular density in
tissue engineered constructs. Strobel et al. developed a semi-
automated method that leverages machine learning to identify
and quantify vascular metrics in an angiogenesis model imaged
with different modalities. Their software, BioSegment, is designed
to make high throughput vascular density measurements of
fluorescent or phase contrast images.

We then present papers on 3D biomedical imaging data. We
start from two papers on CT data analysis. Dou et al. aimed to test
whether chest CT manifestation of 2019 novel coronavirus
(COVID-19) can be differentiated by a radiologist or a
computer-based CT image analysis system. They conducted a
retrospective case-control study that included 52 laboratory-
confirmed COVID-19 patients and 80 non-COVID-19 viral
pneumonia patients. Their results do not support CT findings
replacing microbiological diagnosis as a critical criterion for
COVID-19 diagnosis.

Cai et al. developed and validated a radiomics-based
nomogram to predict the prognosis of colorectal cancer
(CRC). A total of 381 patients with colorectal cancer were
enrolled and radiomic features were extracted from the vein
phase of preoperative computed tomography. Their results
show that radiomics score derived from the preoperative CT
image was an independent prognostic factor and could be a
complement to the current staging strategies of colorectal cancer.

We further accepted four papers on MRI data analysis. Fan et al.
proposed a framework of a 3D-Mask region-based convolutional
neural network (3D-Mask RCNN) computer-aided diagnosis (CAD)
system for mass detection and segmentation with a comparative
analysis of performance on patient subgroups with different
clinicopathological characteristics. The results suggest that the 3D-
Mask RCNN CAD framework has advantages over 2D-based mass
detection on both the whole data and subgroups with different
characteristics.

Fan et al. predicted responses to NACT in breast cancer by
analyzing early changes in tumor heterogeneity modeled by
longitudinal dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI). Their results suggested that changes in
DCE-MRI features that reflect a reduction in tumor heterogeneity
following NACT could provide early prediction of breast tumor
response.

Wang et al. proposed a novel model structure to capture 3D
MRI images’ essential information and converted them into lower
dimensions. The novel CNN model they proposed could
automatically differentiate the rare NMOSD from MS,
especially, our model showed better performance than
traditional 3D CNN models.

Gu et al. proposed a multi-head self-attentionmodel (MSAM).
By integrating the self-attention mechanism and multilayer
perceptron method, the MSAM offers a promising tool to
enhance the classification of Temporal Lobe Epilepsy (TLE)
subtypes. The robustness of MSAM is extensively assessed
with various ablation tests, which demonstrates the
effectiveness and generalizability of the proposed approach.

We then included a paper on developing diagnostic algorithm
for capsule endoscopy, which is a leading diagnostic tool for small
bowel lesions. Kong et al. proposed a multi-task framework,
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called the multi-task classification and segmentation network
(MTCSN), to achieve joint learning of clearness degree and
tissue semantic segmentation. Extensive experiments and
ablation studies report the significant performance gains of the
MTCSN over state-of-the-art methods.

We further accepted a paper on reviewing tactile perception
technologies on minimally invasive surgery (MIS), which has
been the preferred surgery approach owing to its advantages over
conventional open surgery. As a major limitation, the lack of
tactile perception impairs the ability of surgeons in tissue
distinction and maneuvers. Huang et al. aimed to provide
potential tactile perception methods for MIS by reviewing
literatures on tactile sensing in MIS and literatures on
industrial robotic tactile perception technologies, especially AI
methods on tactile images.

We finish our collection of papers by including one paper on
biological imaging. Zhou et al. developed a one-shot learning
framework, called cryo-ET one-shot network (COS-Net), for
simultaneous classification of macromolecular structure and
generation of the voxel-level 3D segmentation, using only
one training sample per class, from cryo-electron
tomography data. Their experimental results demonstrated
that COS-Net could efficiently classify macromolecular
structures with small amounts of samples and produce
accurate 3D segmentation at the same time.

To conclude, we thank the authors and the reviewers for their
contribution to this Research Topic. We are confident that the
collection of articles in this Research Topic will serve as an
inspiring compendium for future AI advancement and
deployment in biomedical and biological imaging fields.
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Objective: To obtain molecular information in slides directly from H&E staining slides,
which apparently display morphological information, to show that some differences in
molecular level have already encoded in morphology.

Methods: In this paper, we selected Ki-67-expression as the representative of molecular
information. We proposed a method that can predict Ki-67 positive cells directly from
H&E stained slides by a deep convolutional network model. To train this model, we
constructed a dataset containing Ki-67 negative or positive cell images and background
images. These images were all extracted from H&E stained WSIs and the Ki-67
expression was acquired from the corresponding IHC stained WSIs. The trained model
was evaluated both on classification performance and the ability to quantify Ki-67
expression in H&E stained images.

Results: The model achieved an average accuracy of 0.9371 in discrimination of Ki-67
negative cell images, positive cell images and background images. As for evaluation of
quantification performance, the correlation coefficient between the quantification results
of H&E stained images predicted by our model and that of IHC stained images obtained
by color channel filtering is 0.80.

Conclusion and Significance: Our study indicates that the deep learning model has a
good performance both on prediction of Ki-67 positive cells and quantification of Ki-67
expression in cancer samples stained by H&E. More generally, this study shows that
deep learning is a powerful tool in exploring the relationship between morphological
information and molecular information.

Availability and Implementation: The main program is available at https://github.
com/liuyiqing2018/predict_Ki-67_from_HE

Keywords: digital pathology, immunohistochemistry, Ki-67, deep learning, fully convolutional network,
neuroendocrine tumor
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INTRODUCTION

In recent years, deep learning has developed rapidly and has
outperformed humans in some medical data analysis tasks (Li
et al., 2018; Norgeot et al., 2019; von Chamier et al., 2019).
Meanwhile, more and more tissue slides are digitalized by a
scanner and saved as whole slide images (WSIs). Thus, it is
natural to come up with the idea about applying deep learning
algorithms to these WSIs. In fact, many researched tasks have
explored the potential of deep learning on histopathological
image analysis (Komura and Ishikawa, 2018), such as detection
or segmentation of Region of Interest (ROI) (Spanhol et al.,
2016), scoring of immunostaining (Mungle et al., 2017), mitosis
detection (Roux et al., 2013) and so on.

In terms of pathology, hematoxylin and eosin (H&E), as
the gold standard stain in evaluations for many cancer types,
is routinely employed worldwide (Xu et al., 2019). In most
cases, pathologists rely on H&E for their diagnosis and the
majority of algorithms for histopathological image analysis, like
cell detection, tissue segmentation and cancer grading, are based
on H&E imaging (Ghaznavi et al., 2013). It is easy to acquire and
cost effective. However, H&E stained slides only contain basic
morphological information (Wittekind, 2003), such as the shapes
of cells, tissues and tissue blocks. Molecular information like the
expression of antigen (protein) in cells, which is more micro, is
not reflected in H&E stained slides, which makes it difficult for
pathologists and algorithms to analyze and assess.

To obtain molecular information in slides,
immunohistochemistry staining (or IHC staining) is often
employed in clinical practice. It allows the visualization
of specific proteins on the tissue slide by binding targeted
antibodies to corresponding proteins and highlighting the
protein-binded antibodies by using chromogens of different
colors (Ramos-Vara and Miller, 2014; Xu et al., 2019). Hence,
this method can distinguish cells that express particular proteins
from other components and therefore augment pathologist
interpretation and direct therapy.

If a patient needs further diagnosis (such as confirming
tumor subtype) or a targeted treatment plan, then an
immunohistochemical test is often needed although he has
already had H&E stained slides. It is because tumor subtype
classification and making the plan of immunotherapy need some
molecular information, which is not directly reflected in H&E
staining slides. If this information can be inferred from H&E
staining slides by some techniques like deep learning, it will
greatly improve diagnostic efficiency and save costs.

If the assumption holds that the differences between positive
cells (cells that contain a specific protein) and negative cells
(cells that do not contain a specific protein) in IHC-stained
slides have correlation with H&E-stained slides from the same
regions, then there should be a way to model the relationship
between the morphological information of cells in H&E images
and IHC stained conditions of the cells. It is then possible to
predict whether a cell can express specific proteins directly from
a H&E-stained slide, without additional IHC staining process. In
fact, some related works have been done to predict molecular
information from H&E stained images. Coudray et al. (2018)

founded six out of ten most commonly mutated genes in LUAD
can be predicted from pathology images. Kather et al. (2019)
showed that deep residual learning can predict microsatellite
instability directly from H&E histology.

Ki-67 is a cancer antigen that is sometimes considered a
good marker of proliferation, helping doctors determine patients’
cancer prognosis or their chance of recovery (Scholzen and
Gerdes, 2000). However, in clinical practice, not every patient is
tested for Ki-67 since it is time and money-consuming.

In this paper, we proposed a method that can predict
Ki-67 positive cells directly from H&E stained slides by a
deep convolutional network model, which realized a cell-level
transformation. After the training process, the model was
evaluated both on classification and quantification performance.
The classification accuracies for our model on training set
and validation set are 0.9780 and 0.9371. As for evaluation
on quantification performance, the correlation coefficients
of Dpos, Dneg and Rpos between these two different types
of images are 0.60, 0.73, and 0.80. The results reflect the
consistency of Ki-67-expression between real IHC staining
images and the output images of our model using H&E staining
images as the inputs.

MATERIALS AND METHODS

The overview of our method is displayed on Figure 1. first,
Consecutive sections of (formalin-fixed paraffin-embedded)
samples obtained from the neuroendocrine tumor of twelve
patients were cut and stained with H&E and Ki-67 antibody.
Then, the slides were digitalized and a set of Ki-67 positive or
negative cells in H&E stained images were annotated based on the
Ki-67 expression present in the IHC stained images. After that,
these cells along with some background patches were extracted
for training the model. In order to quantify Ki-67 expressions
in a bigger H&E stained image (sized 7,556 × 3,864 for each), a
transformation was applied to our trained convolutional network
to convert all the fully connected layers into convolutional layers.
In this way, the transformed network can take one ROI as the
input and output the classification map of the ROI. In order to
compare real IHC staining images and images predicted by our
model, we use color channel filtering to convert IHC staining
images into three-value colormaps.

Data Preparation
Patient Material
Formalin-fixed paraffin-embedded tumor samples of twelve
patients operated for neuroendocrine tumor within the Peking
university Shenzhen Hospital, China, were used in the study.
The samples were stored in archives of Department of pathology
in Peking university Shenzhen hospital and the Head of the
Department of Pathology approved the use of the samples.
The samples were anonymized and all patient-related data and
unique identifiers were removed. The procedures were performed
under the supervision and approval of the Ethics Committee
in Peking university Shenzhen hospital. Samples represented
different histological types: five cases with neuroendocrine tumor
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FIGURE 1 | The overview of our method. (a) selecting positive/negative regions in H&E stained WSIs with the guidance of IHC stained WSIs, (b) ROIs selection for
positive/negative/background samples extraction, (c) positive/negative/background samples annotation and extraction, (d) training CNN for cell classification, (e)
transforming fully connected layers into convolutional layers, (f) taking a test ROI as the input of the transformed model for positive/negative cell distribution
prediction.

of rectum(G1), two cases of neuroendocrine tumor of colon(G3),
one case of neuroendocrine tumor of small intestine(G1), two
cases of neuroendocrine tumor of duodenum(G3), one case
of gastric tubular adenocarcinoma with neuroendocrine tumor
(G3) and one case of rectal tubular adenocarcinoma with
neuroendocrine tumor (G3).

Staining Protocols
From each Formalin-fixed parafinembedded block, we cut two
consecutive sections (3.5 µm): One for H&E staining and one
for staining with the Anti-Ki67 antibody. For H&E staining,
we used undiluted Mayer’s hematoxylin and 0.5% eosin. For
IHC, we used Anti-Ki67 antibody (Roche, United States),
3,3’-diaminobenzidine as chromogen, and Mayer’s hematoxylin
as a counterstain with a 1:10 dilution.

Sample Digitization
Matched H&E and IHC stained slides were scanned at 40× with
Sqray slide scanner.

Construction of the Dataset
Based on the Ki-67-expression, we selected 300 regions of
interest (ROIs) sized 1,889 × 966 from 5 out of 12 H&E
stained slides. Then we extracted 5,900 images of positive cells,
6,086 images of negative cells and 6,776 images of background
from these ROIs.

The way of selecting positive and negative samples can be
described with Figure 2. As is shown in Figure 2, there are Ki-67

positive regions in Ki-67 stained slides where all cells are Ki-67
positive. We can infer that the corresponding regions in H&E
stained slides are also positive. Therefore, positive samples can
be obtained by the following steps: First, extract images from
the positive regions in H&E stained slides; Then, annotate each
cell in these extracted images with a point label by using a open
source annotation software Labelme. Finally, extract patches with
these annotated points as centers and these patches are what we
need. The way of obtaining negative samples is similar with that
of obtaining positive samples.

The method of extracting background samples is shown in
Figure 3. After the samples of positive cells and negative cells
are selected, the background samples are selected by random
sampling: a series of candidate boxes (shown in blue in Figure 3)
are randomly generated. If the candidate boxes do not overlap
with the boxes of negative cells (shown in green in Figure 3)
or positive cells (shown in red in Figure 3), they will be
retained and selected.

The size of these images was all 64 × 64 without any resize
operation. The reason why we use 64 × 64 as the patch size
is that the distribution of cell size is 40 pixel × 40 pixel ∼70
pixel × 70 pixel so the size of 64 × 64 can cover most situations.
In addition, 64 is integer power of 2 which is convenient for
computing. After that, the dataset consisting of all the images
were split randomly into training set and validation set with
the ratio of 8:2. The procedure of constructing the dataset were
illustrated in Figures 1a–c. Table 1 summarizes information
about the dataset.
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FIGURE 2 | The way of selecting positive and negative samples.

FIGURE 3 | The method of extracting background samples.

FIGURE 4 | The structure of Block.

Classification Using CNN
Deep Learning is a significant area of Machine Learning research.
It uses very deep (in terms of number of layers) neural network

TABLE 1 | Information about the dataset.

Parameters Values

Magnification/number of the H&E-IHC pairs 40×/12

Size/number of the ROIs selected for extracting training and
validation set

1,889 × 966/300

Numbers of positive cell/negative cell background images 5,900/6,086/6,776

Ratio of training set to validation set 8:2

Size/number of the ROIs selected for evaluation of cell
quantification

7,556 × 3,864/32

to solve problems, especially problems which are related to visual
recognition. The key aspect of all the deep learning architectures
is the use of Convolutional Neural Network (CNN) (Krizhevsky
et al., 2012). CNN is a biologically inspired form of the artificial
neural network, that has local connections and shared weights.
It is one of the most important tools of machine learning
when it comes to the current generation, and it has been very
popularly used to solve image recognition tasks, in the field of
Computer Vision. The CNN architecture can be obtained by
exploiting existing famous networks such as VGG (Simonyan and
Zisserman, 2014), Inception (Szegedy et al., 2015) or ResNet (He
et al., 2016), or by designing a new network. Both of them have
their own strengths and weaknesses. Using existing networks can
take advantages of pre-trained weights acquired from training
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TABLE 2 | Detailed information about the modified ResNet18 network.

Layer name Input size/output size Elements/params

conv1 3 × 64 × 64/64 × 32 × 32 Conv/7 × 7, k = 64, s = 2

BN/-

ReLu/-

pool1 64 × 32 × 32/64 × 16 × 16 MaxPool/3 × 3, s = 2

layer1 64 × 16 × 16/64 × 16 × 16 Block/k = 64, s = 1

Block/k = 64, s = 1

layer2 64 × 16 × 16/128 × 8 × 8 Block/k = 128, s = 2

Block/k = 128, s = 1

layer3 128 × 8 × 8/256 × 4 × 4 Block/k = 256, s = 2

Block/k = 256, s = 1

layer4 256 × 4 × 4/512 × 2 × 2 Block/k = 512, s = 2

Block/k = 512, s = 1

FC 512 × 2 × 2 (flattened)/3 fc/out = 3

The structure of Block is shown in Figure 4.

the networks on large scale public datasets such as ImageNet
(Deng et al., 2009) for transfer learning. This can accelerate the
process of training significantly and guarantee the classification
accuracy in the stage of inference, with only a small amount
of training set. However, these pre-trained weights are usually
generated by training the networks on natural images, which
have considerable difference from histopathological images. So,
the pre-trained models for natural image classification may not
entirely appropriate for recognition tasks on histopathological
images. Using self-designed network can be more flexible as we
can devise a more targeted model according to the characteristics

of the dataset. While this approach may not achieve a satisfied
result if the training set is limited. ResNet is a well-known deep
learning network architecture proposed by He et al. (2016).
By using “shortcut connections,” this network are easier to
optimize, and can gain accuracy from considerably increased
depth. In this paper, we adopted a modified ResNet18 as our
CNN classifier by removing the last average pooling layer to
make the network adaptable for locating positive or negative cells
in large-scale H&E stained images (which will be elaborated in
the next subsection) and changing the number of the output
nodes in the last fully connected layer into 3 since it was a
3-value classification problem. Table 2 lists detailed information
about the modified ResNet18 network including layer name,
input and output size, types of elements in each layer and
their parameters. k represents the number of the kernels and s
represents stride.

Figure 1d shows the stage of training CNN. The input to
the first layer is an RGB image containing one positive or
negative cell only or not containing any cell. The last layer
generated labels, showing the probability of the image whether
it represents a positive cell, a negative cell or background. Then
a loss function was calculated and back propagation will be
conducted to adjust the weighting parameters of the network so
as to minimize the loss.

Cell Quantification in ROIs Using Fully
Convolutional Network
We had trained a CNN classifier using the samples of positive
cell, negative cell and background. However, this classifier had a

FIGURE 5 | Description of the transformation method (Long et al., 2015).
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TABLE 3 | Training details of our modified ResNet18 model.

GPU TITAN Xp (12GB) × 1

Framework Pytorch 1.1.0

Data preprocessing Random Horizontal Flip Random
Vertical Flip Normalize (mean
vector = [0.485, 0.456, 0.406],
standard deviation vector = [0.229,
0.224, 0.225])

Batch size 64

Loss function Cross Entropy

Learning rate 1e-3 (epoch 1–10), 1e-4 (epoch 11–20)

Optimizer Adam with weight decay = 1e-5

Training on the pretrained model? Yes (pretrained model from ImageNet.)

Training epochs 20

TABLE 4 | Classification report on training set.

Precision Recall f1-score Support

Negative 0.962 0.976 0.969 4834

Positive 0.973 0.963 0.968 4760

Background 0.996 0.993 0.995 5415

Avg/total 0.978 0.978 0.978 15009

fixed size (64 × 64) of input and can only classify images with
that size. In order to obtain the classification maps of ROIs (sized
7,556 × 3,864 for each), a transformation method proposed in
Long et al. (2015) was applied to our trained CNN to convert all
the fully connected layers into convolutional layers, as is shown
in Figure 1e.

The transformation method can be described in Figure 5.
In training stage, the network learns a classification task. The
input is a fixed size image, and the output is the corresponding
category (cat for example) of the image. In the inference stage,
the fully connected layer of the trained network is rearranged
into a convolutional layer. In this way, the network can take
any size of the image as input and output a probability map,
representing the predicted probability of the target at each pixel
in the input image.

Thus, the transformed CNN can take one ROI as the input
and output the classification map of the ROI. The procedure was
displayed in Figure 1f.

Statistical Methods
To evaluate the classification result, we adopted accuracy,
precision, recall, F1-score and confusion matrix. For illustration
purposes, we will use T and F to indicate whether the network
prediction is correct or not. P and N are used to indicate whether
the sample is negative or positive. Therefore, TP (True Positive)
means positive and correctly predicted, while FN (False Negative)
means negative and wrongly predicted. The same is true for
TN and FP. In this way, accuracy, precision and recall can be
expressed as following:

Accuracy =
TP + TN

TP + FP + FN + TN

Precesion =
TP

TP + FP

Recall =
TP

TP + FN

F1-score is defined as a harmonic mean of precision and recall:

F1 =
2× precision× recall

preicision+ recall

Confusion matrix, which is represented by an n × n matrix,
is a specific table layout that allows visualization of the
performance of an algorithm. Each column of the matrix
represents the instances in a predicted class while each row
represents the instances in an actual class. A value in i
column j row represent how many samples in class j is
predicted to be class i.

To evaluate the quantification result, first we calculated dense
of positive cells (Dpos), proportional area of negative cells (Dneg)

FIGURE 6 | Left: Confusion matrix of training set. Right: Confusion matrix of validation set.
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TABLE 5 | Classification report on validation set.

Precision Recall f1-score Support

Negative 0.908 0.917 0.913 1252

Positive 0.913 0.906 0.909 1140

Background 0.985 0.982 0.983 1361

Avg/total 0.937 0.937 0.937 3753

and positive rate (Rpos) in H&E ROIs and IHC ROIs respectively,
which are defined as: 

Dpos =
Spos
SROI

Dneg =
Sneg
SROI

Rpos =
Spos

Spos+Sneg

where Spos is the area covered by positive cells, Sneg is the area
covered by negative cells, SROI is the area of a whole ROI.

The areas covered by positive cells or negative cells were obtained
simply by color channel filtering. Then we computed pairwise
correlation coefficient (r), as is defined in the equation below, for
measuring correlation between the quantification results of H&E
ROIs and that of IHC ROIs.

r(X, Y) =
Cov(X, Y)

√
Var [X]Var[Y]

where cov(X, Y) is defined as

Cov(X,Y) = E((X − E(X))(Y − E(Y)))

EXPERIMENTS AND RESULTS

Experimental Setup
In this section, we tested the performance of cell classification
and cell quantification of our model. Table 3 shows the training
details of our modified ResNet18 model.

FIGURE 7 | Three typical cases of Ki-67-expression: middle rate of Ki-67 positive cells (a,b), low rate of Ki-67 positive cells (c,d) and high rate of Ki-67 positive cells
(e,f). Each case contains four sub-figures, representing H&E stained ROIs (top left), IHC stained ROIs (top right), quantification results in H&E stained ROIs (bottom
left) and quantification results in IHC stained ROIs (bottom right).
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FIGURE 8 | Frequency histogram of (a) Dpos, (b) Dneg and (c) Rpos of H&E stained images; Frequency histogram of (d) Dpos, (e) Dneg and (f) Rpos of IHC
stained images; Correlation-plots of H&E stained images and IHC stained images of (g) Dpos, (h) Dneg and (i) Rpos.

Evaluation on Single Cell Classification
After the training process, we fed the validation set into our
trained model to evaluate its classification performance. The
classification accuracies for our model on training set and
validation set are 0.9780 and 0.9371. Table 4 and Figure 6 left
show the classification report and confusion matrix of the results
of the train set respectively. Table 5 and Figure 6 right show those
of the validation set. We also performed a 10-fold cross-validation
analysis. We randomly split the training set (15,009 images) in to
10 subsets (nine sets of 1,501 images and one set of 1,500 images).
In 10 training rounds, the average accuracy was 0.9310 (range:
0.9167–0.9427, std = 0.0085). These results are consistent with the
previous results obtained from the validation set of 3,753 images,
which suggest that the performance of our model is robust to how
we split our dataset for training and test.

Evaluation on Cell Quantification in ROIs
To further evaluate our model, we compared the quantification
results in H&E stained ROIs performed by the model and
the results in IHC stained ROIs performed by color channel
filtering. Figure 7 displays three typical cases of Ki-67 expression.
It’s obvious that the quantification results in H&E stained

ROIs are basically consistent with the quantification results in
IHC stained ROIs.

Specifically, the results in middle rate cases and low rate
cases are better than those in high rate cases. It is because in
ROIs with high rate of Ki-67 positive cells, the distribution of
positive and negative cells is more irregular than the other two
types of cases, which makes it difficult to distinguish positive
cells from negative cells in H&E stained ROIs in the process
of annotation. It is because when we label the cells, due to
the lack of correspondence between scattered cells in the H&E
stained regions and Ki-67 stained regions, it was not completely
determined whether a certain cell was a positive cell or a negative
cell in H&E stained ROIs unless all the cells in these regions are
all positive or negative. Though there are a mass of positive cells
in Ki-67 positive regions, a small number of negative cells are
inevitably mixed in with positive cells in this type of ROIs, which
makes labeling more difficult. While the similar situations appear
less in Ki-67 negative regions. In other words, negative cells in
Ki-67 negative regions can be extracted with more confidence
than positive cells in Ki-67 positive regions.

In addition, there are many glandular-like structures in ROIs
with low or medium density of negative cells. If all the cells on a
gland in KI-67 stained ROIs are negative or positive, then all the
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cells in the corresponding gland in H&E stained ROIs are also
marked as negative or positive, according to the correspondence
between glands in H&E stained ROIs and Ki-67 stained ROIs.

For statistical evaluation, we calculated Dpos, Dneg and Rpos
in 32 pairs of H&E-staining ROIs and IHC-staining ROIs.
Figure 8 shows the frequency histograms and correlation
plots of these three indexes in H&E stained images and
IHC stained images. The correlation coefficients of Dpos,
Dneg and Rpos between these two different types of ROIs
are 0.60, 0.73 and 0.80. The results reflect the quantitative
consistency of Ki-67 expression between the two types of
staining images. Moreover, The correlation coefficients of
Rpos has the highest value indicates that the evaluation
indexes considering both positive and negative cells can more
stablely reflect the relationship between H&E stained ROIs and
Ki-67 stained ROIs.

DISCUSSION

In this paper, we made an attempt to build a relationship
between H&E stained slides and Ki-67 antibody stained slides.
We introduced a modified ResNet18 model to predict Ki-67
expression directly from H&E stained images without any
IHC staining process. Our results show that morphological
information has close relation with molecular information,
which are consistent with the opinion proposed in Fuchs and
Buhmann (2011) that tissue and cell morphologies displayed in
histopathological images are a function of underlying molecular
drivers. Once their relationship is established, it should be
possible to faithfully predict the distribution of specific protein
abundance directly in samples only using a basic morphology
staining. However, it’s just the beginning of our research on this
topic. Challenges still exist, including:

1. Performance of the model is highly dependent on the quality
of input images. Low quality images may result in less accurate
results. The quality of images is influenced by many factors,
such as standardization of making slides, quality of stains and
accuracy of scanners.

2. The relationship between morphological information and
molecular information may be very complex, considering the
diversity of different lesions, tissues, cells and antibodies. For
the moment, our research has only focused on one specific
relationship so much work should be done if we want our
model to be more generalized.

3. At present we can only distinguish between positive cells and
negative cells in some certain regions of a H&E stained images

guided by the corresponding IHC stained image. It’s hard to
verify the positive degree of a cell in a H&E stained image even
with the help of IHC staining, which hampers a more precise
inference of the model.

Our future work will mainly focus on the following aspects.
first, Enlarge our dataset to contain more samples. So, the model
trained on the new dataset will have stronger ability of robust and
generalization; Second, Conduct more experiments on samples
with different tissues and stains to promote our conclusion to a
more general situation; Last but not least, Optimize our model.
For example, semi-supervised learning can be adopted to alleviate
the workload of annotation.
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Immunohistochemistry detection technology is able to detect more difficult tumors than
regular pathology detection technology only with hematoxylin-eosin stained pathology
microscopy images, – for example, neuroendocrine tumor detection. However, making
immunohistochemistry pathology microscopy images costs much time and money.
In this paper, we propose an effective immunohistochemistry pathology microscopic
image-generation method that can generate synthetic immunohistochemistry pathology
microscopic images from hematoxylin-eosin stained pathology microscopy images
without any annotation. CycleGAN is adopted as the basic architecture for the unpaired
and unannotated dataset. Moreover, multiple instances learning algorithms and the idea
behind conditional GAN are considered to improve performance. To our knowledge,
this is the first attempt to generate immunohistochemistry pathology microscopic
images, and our method can achieve good performance, which will be very useful for
pathologists and patients when applied in clinical practice.

Keywords: immunohistochemistry pathology microscopy image, medical image generation, CycleGAN,
conditional GAN, multiple instances learning

INTRODUCTION

Immunohistochemistry (IHC) detection technology, such as staining with Ki-67 reagent, plays
an important role in tumor detection. About 5–10% of patients with tumors cannot be detected
accurately only with hematoxylin-eosin (HE) stained pathology microscopic images. Luckily, with
the rapid development of IHC detection technology, many difficult tumors can be detected,
especially undifferentiated or poorly differentiated tumors. Although IHC detection technology
is a more accurate method, making Ki-67 pathology microscopic images costs a large amount
of money and time. Considering the surprising performance of deep learning technology in
medical image analysis region (Wang et al., 2016; Liu et al., 2017; Li and Ping, 2018), especially
generating synthetic medical images using generative adversarial networks (GAN) and its variants
(Goodfellow et al., 2014; Hoffman et al., 2017; Nie et al., 2017; Frid-Adar et al., 2018a,b; Han
et al., 2018; Kazeminia et al., 2018; Mahmood et al., 2018; Shin et al., 2018), generating synthetic
Ki-67 pathology microscopy images from HE pathology microscopy images using GAN would
be a good choice.

However, generating synthetic Ki-67 microscopy images from HE pathology microscopy
images is a challenging task. The first reason is the unpaired dataset. Because a pathology slice
is not usually allowed to be stained twice, in this paper, the HE pathology microscopy image and its
corresponding Ki-67 pathology microscopy image are not pixel-aligned. The second reason is the
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FIGURE 1 | The evaluation process of our method. After patch extraction, the HE pathology patches will be fed into a trained classifier at first. Then the class-related
information will be combined with the HE pathology patches, and they are the input of the trained generator, which will generate synthetic Ki-67 pathology patches.

FIGURE 2 | A representation of two HE pathology microscopy images (top) and their corresponding Ki-67 pathology microscopy images (bottom) in our dataset.

difficulty of achieving professional pathological annotations.
Unlike any other common computer vision tasks, the annotations
of pathology microscopy images can only be completed and
checked by professional pathologists, so it is extremely hard to get
a large fully and accurately annotated microscopy image dataset.
The third reason is the difficulty of considering class-related
information from HE pathology microscopy images to Ki-67
pathology microscopy images. The adversarial training process

will align some feature vectors between different domains (Song
et al., 2019), but the class-related feature vectors are what we need,
and we need to handle them.

In recent years, with the development of deep learning
technology, many researchers have tried their best to address
these drawbacks. CycleGAN was proposed for unpaired image
datasets when generating synthetic images (Zhu et al., 2017). By
introducing cycle loss functions during the adversarial training
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process, the generator finds an accurate mapping between two
different domains with unpaired datasets. In this view, CycleGAN
is the proper way for unpaired pathology microscopy image
datasets. With incomplete or lacking annotations of pathology
microscopy images, semi-supervised learning-based methods,
unsupervised learning-based methods and self-supervised
learning-based methods have been introduced to work on
datasets with partial annotations or without any annotation and
these methods have proven to be useful (Campanella et al., 2019;
Xu G. et al., 2019). Among these methods, multiple instances
learning (MIL) algorithms have been applied successfully
with unannotated pathology microscopy images, so they have
been adopted in this paper (Xu G. et al., 2019). Actually, the
adversarial training process aims to align some feature vectors
extracting from real images or fake images (Nguyen et al., 2017).
When the feature vector that makes the largest contribution
to the discriminator are aligned well, then the discriminator
would neglect other feature vectors. In our work, we found
that when training with small pathology microscopy patches,
morphological feature vectors are selected for alignment during
adversarial training process. However, what we need is to align
class-related feature vectors. The idea behind conditional GAN is
extended to address this problem by treating the class label as the

additional channel of the input patch, and the class label can be
obtained from MIL algorithms (Mirza and Osindero, 2014). By
teaching the generator to focus on class-related information, the
model will achieve better performance.

We show the schematic representation of our method during
the evaluation step in this paper (Figure 1). When we generate
a synthetic Ki-67 pathology microscopy image from a specific
HE pathology microscopy image, the HE pathology microscopy
patch will be fed into a classifier to get its class label. Then
this class-related information will be combined with the HE
pathology microscopy patch, and they are the input of the
generator which will produce a synthetic Ki-67 pathology
microscopy patch.

In this paper, the major contributions are in three phases:
first, we apply CycleGAN to generate synthetic Ki-67 pathology
microscopy images from unpaired HE pathology microscopy
images. By introducing the cycle loss function and adjusting the
architecture of the networks, CycleGAN is able to find an accurate
mapping from the HE domain to the Ki-67 domain. Second, we
apply a MIL algorithm to train two classifiers from unannotated
HE and Ki-67 pathology microscopy images separately. Both
classifiers are used to distinguish tumor patches from normal
patches. Last, we apply the idea behind conditional GAN. By

FIGURE 3 | A schematic representation of our method. Unlike raw CycleGAN, during the adversarial training process, the classifiers will extract class-related
information, which will be introduced into the training process. This strategy will force the class-related feature vectors to be aligned and then improve our
performance.
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TABLE 1 | MIL and CycleGAN dataset.

Training dataset Evaluation dataset

HE Ki-67 HE Ki-67

MIL 307/87 359/78 35/35 46/40

CycleGAN 34121 33293 4396 4031

The table above shows the number of samples used during the MIL training
process. During the MIL training process, they are the number of positive
samples/the number of negative samples. The training data are at the large patch
level (2,240 × 2,240 pixels) during the MIL training process and at small patch level
(2,24 × 2,24 pixels) during the CycleGAN training process.

FIGURE 4 | A representation of our dataset. Because the Ki-67 pathology
slice is the consecutive slice near HE pathology slice, these two pathology
microscopy images are almost same at image level, but they are different at
pixel level or patch level.

treating class-related information as the additional channel of
input patches, class-related feature vectors are forced to be
aligned well and this strategy is essential to our performance.

The remaining sections are organized as following: section
“Materials and Methods” introduces the dataset and our method
in detail. In section “Results,” we conduct experiments and show
our experimental results. Finally, we conclude and discuss our
work in section “Discussion.”

MATERIALS AND METHODS

Dataset
In this paper, we conduct experiments on a neuroendocrine
tumor dataset. Formalin-fixed paraffin-embedded tumor samples
from 10 patients with neuroendocrine tumors in the Peking
University Shenzhen Hospital, China, are used in this work. The

TABLE 2 | CycleGAN configuration.

Generator Discriminator

Conv (in_c = 3, out_c = 64, k = 7,
s = 1, p = 3)

Conv(in_c = 3, out_c = 64, k = 7,
s = 1, p = 3)

InstanceNorm(64) LeakyReLU(0.2)

ReLU() Conv(in_c = 64, out_c = 128, k = 3,
s = 2, p = 1)

Conv(in_c = 64, out_c = 128, k = 3,
s = 2, p = 1)

InstanceNorm(128)

InstanceNorm(128) LeakyReLU(0.2)

ReLU() Conv(in_c = 128, out_c = 256, k = 3,
s = 2, p = 1)

Conv(in_c = 128,out_c = 256, k = 3,
s = 2, p = 1)

InstanceNorm(256)

InstanceNorm(256) LeakyReLU(0.2)

ReLU() Conv(in_c = 256,out_c = 512, k = 3,
s = 2, p = 1)

Conv(in_c = 256, out_c = 256, k = 3,
s = 1, p = 1)

InstanceNorm(512)

InstanceNorm(256) LeakyReLU(0.2)

ReLU() Conv(in_c = 512,out_c = 1, k = 4,
s = 1, p = 1)

Conv(in_c = 256,out_c = 256, k = 3,
s = 1, p = 1)

AveragePool()

InstanceNorm(256)

Conv_transpose(in_c = 256,
out_c = 128, k = 3, s = 2, p = 1,
p_o = 1)

InstanceNorm(128)

ReLU()

Conv_transpose(in_c = 128,
out_c = 64, k = 3, s = 2, p = 1, p_o = 1)

InstanceNorm(64)

ReLU()

Conv(in_c = 64, out_c = 3, k = 7, s = 1,
p = 3)

Tanh()

The table above shows the detailed configuration of generator and discriminator
in CycleGAN framework during CycleGAN training process. Specifically, Conv is
convolution, InstanceNorm is instance normalization, ReLU is ReLU activation
function, Conv_transpose is transposed convolution, Tanh is Tanh activation
function, AveragePool is the average pooling function, in_c is input channel, out_c
is output channel, k is kernel size, s is stride size, p is padding size, and p_o is
output padding size.

samples are stored in the archives of Department of Pathology
in Peking University Shenzhen Hospital, and the head of the
Department of Pathology approved the usage of the samples
in this work. The samples are anonymized. All patient-related
data and unique identifiers are removed. These procedures were
performed under the supervision and approval of the Ethics
Committee in Peking University Shenzhen Hospital.

From each formalin-fixed paraffin-embedded block, we cut
two consecutive sections: one for staining with HE and the other
for staining with the anti-Ki-67 antibody. During the HE staining
process, we used undiluted Mayer’s hematoxylin and 0.5% eosin.
During the IHC staining process, we used anti-Ki-67 antibody
(Roche United States).
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FIGURE 5 | Some training samples during MIL training process.

FIGURE 6 | Some training samples during CycleGAN training process.

In this way, we got 10 HE pathology microscopy images
and 10 corresponding Ki-67 pathology microscopy images of
neuroendocrine tumors. In all, 7 HE pathology microscopy
images and 7 corresponding Ki-67 pathology microscopy images
are used as training data, and the rest are used as evaluating
data. In this paper, we list the representation of 2 HE pathology
microscopy images and their corresponding Ki-67 pathology
microscopy images (Figure 2).

Preprocess
During the MIL training period, for each domain (HE or Ki-
67), we want to train a binary classifier to classify tumor patches
or normal patches. However, our data are unannotated. So
two preprocess steps are necessary. The first step is foreground
extraction. There exist three kinds of patches from HE pathology
microscopy images or Ki-67 pathology microscopy images:
tumor patches including at least one tumor cell, normal patches
including only normal cells, and background patches including
only background. But the MIL algorithm is used to train
a binary classifier to classify two kinds of patches, so the
background patches should be removed. In this paper, an OTSU

algorithm (Xu G. et al., 2019) is used to extract foreground
from HE pathology microscopy images and Ki-67 pathology
microscopy images. The second step is extracting large patches
with weak annotations. In this paper, HE pathology slices and
Ki-67 pathology slices are all positive slices containing tumor
cells. But the MIL algorithm works with positive samples and
negative samples with weak annotations. For this reason, the
foreground of HE pathology microscopy images and Ki-67
pathology microscopy images is cropped into large patches (2,240
× 2,240 pixels), and then we can label these large patches
manually. With this preprocess, we can get two weakly annotated
datasets (one HE large patch dataset and one Ki-67 large patch
dataset), and they can be used to train two classifiers (one is used
in the HE domain, and the other one is used in the Ki-67 domain)
using the MIL algorithm.

During the CycleGAN training period, the background of
pathology microscopy images should not be removed because
the generator is required to generate a synthetic background at
the same time. The extraction of large patches is also removed.
The pathology microscopy images should be cropped into small
patches (224 × 224 pixels) directly.

Method
In this paper, we provide a schematic representation of our
method (Figure 3). At first, we train two binary classifiers
classifying tumor patches or normal patches with unannotated
HE and Ki-67 pathology microscopy images using the MIL
algorithm. During the CycleGAN training period, the input
patches will be fed into the above classifiers in order first to get
its class-related information. Then, following what conditional
GAN does, class-related information will be considered as the
additional channel of the input patch. This strategy will force
class-related feature vectors to be aligned accurately during the
adversarial training process. Note that our method is working
with an unannotated and unpaired dataset, and thus it can be
applied to many other tasks.

MIL for Getting Class-Related
Information
There have been many methods based on deep learning
technology for tumor cell detection in pathology microscopy
images. A dataset with annotations from professional
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FIGURE 7 | The image-level visualization of classification results in HE and Ki-67 domain: (A) is an HE pathology microscopy image, (B) is its heatmap, (C) is a Ki-67
pathology microscopy image, and (D) is its heatmap. Red is for tumor patches, and blue is for normal patches.

pathologists is essential for the models’ feasibility and
performance, but it is too hard to get such a dataset. To
address this drawback, in this paper, we apply the MIL algorithm
to collect class-related information from an unannotated dataset.

During the MIL training period, the HE and Ki-67 pathology
microscopy images are cropped into large patches (2,240 ×

2,240 pixels), and these large patches are manually labeled as
tumor patches or normal patches. A large patch is assigned a
tumor label if it contains at least one tumor cell, while it is
assigned a normal label if it contains only normal cells. After
we have labeled all large patches, small patch extraction is
necessary for low GPU memory, and each small patch is set
at 224 × 224 pixels. Each iteration consists of an evaluation
step and a training step. During the evaluation step, for each

large patch, a classifier evaluates all small patches from this
large patch and then one selected small patch is labeled. The
small patch with the largest predictive probability is the one
selected, and it should be considered the representative small
patch for the large patch. For a large tumor patch, the selected
small patch is assigned the tumor label. For large normal patch,
the selected small patch is assigned the normal label. After the
evaluation step, a training dataset of selected small patches with
labels can be used to train the classifier. The trained classifier
would evaluate all small patches in the next iteration. Finally,
we will achieve two classifiers for classifying tumor patches
or normal patches from HE and Ki-67 pathology microscopy
images. And they can be used to get class-related information
from unannotated data.
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FIGURE 8 | The patch-level visualization of classification results in HE and Ki-67 domain. Here we list six cases in three rows, three HE cases (left), and three Ki-67
cases (right): (a–c) are the HE pathology patches; (d–f) are their heatmaps; (g–i) are the Ki-67 pathology patches; and (j–l) are their heatmaps. Red is for tumor
patches, and blue is for normal patches.

During the MIL training process, the number of training
samples is listed in Table 1. What’s more, the classifiers used are
ResNet34 (He et al., 2016).

CycleGAN for an Unpaired Dataset
In this paper, the corresponding Ki-67 pathology slice is the
consecutive slice near the HE pathology slice. This means they
are same mostly at the image level, but at the pixel level, they
are different and unpaired, just as shown in Figure 4. As a result,
CycleGAN is an appropriate solution for our task.

During the CycleGAN training period, HE and Ki-67
pathology microscopy images are directly cropped into small
patches (224 × 224 pixels), including background. In this
paper, the generator in raw CycleGAN has been replaced by
a more complicated generator because we found that in raw
CycleGAN, the discriminator would learn much faster than the
generator when training with our data, so the generator could
not learn anything and fails to generate synthetic Ki-67 pathology
microscopy images of high quality.

During CycleGAN training process, the number of training
samples is listed in Table 1 and the detailed network
configuration is shown in Table 2.

Conditional GAN for Class-Related
Alignment
In the generation of synthetic images, the adversarial training
process of GAN and its variants can be treated as learning
an accurate mapping of some feature vectors between different
domains. From the viewpoint of domain adaptation, the
discriminator in GAN focuses on some feature vectors while
neglecting other feature vectors that are less important. The
situation is the same with CycleGAN. In our work, we found
that raw CycleGAN would neglect class-related feature vectors
during the adversarial training process. However, we need to
consider the class-related information because Ki-67 pathology
microscopy images are used to detect tumor cells. In order to
align class-related feature vectors, the idea behinds conditional
GAN is introduced to take class-related information into
consideration (Xu Z. et al., 2019). In detail, the input patch of
our CycleGAN is not only the HE microscopy patch or the Ki-
67 microscopy patch, but also their class-related information
generated from the classifier training with the MIL algorithm.

Some training samples during MIL training process and
CycleGAN training process will be listed to better understand the
differences between them. Figure 5 shows some training samples
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FIGURE 9 | The patch-level visualization of image generation results. Here we list five cases in five columns. At each column, the top image is the HE pathology
patch, the middle image is the corresponding Ki-67 pathology patch, and the bottom one is the synthetic Ki-67 pathology patch generated with our proposed
method.

during the MIL training process while Figure 6 shows some
training samples during the CycleGAN training process.

Training Configuration
Our method is implemented in the PyTorch framework on an
Ubuntu platform. All experiments are conducted on a computer
equipped with an NVIDIA GTX 2080 Ti graphic card with 11
GB of memory. During the training stage of our method, the
deep neural networks are trained with Adam stochastic gradient
descent algorithm. We use the learning rate of 0.0001 for 100
training epochs during the MIL training process and CycleGAN
training process, and we will save the models each epoch. Among
these 100 saved models, the one achieving the best result on the
validation set is selected as the final model.

As for the loss function, cross entropy loss is used to train two
classifiers during the MIL training process. During CycleGAN
training process, just as with normal CycleGAN, the loss function
for the discriminator is binary cross-entropy loss, and the loss
function for the generator is mean square error loss.

RESULTS

Metrics
Unlike usual image generation tasks, in this paper, the evaluation
metric is lacking because a pathology slice is not stained twice
usually. It means that there is no way to get the pixel-aligned
Ki-67 pathology microscopy image from a specific HE pathology

microscopy image. To address this question, we have got the
consecutive Ki-67 pathology slice near HE pathology slice.
In this paradigm, the HE pathology microscopy image and
its corresponding Ki-67 pathology microscopy image appear
similar at image level. But they are different at the patch level.
Considering this phenomenon, we evaluate our proposed method
by image-level visualization and patch-level visualization. The
image-level visualization can be used to evaluate the alignment
of global feature vectors, and the patch-level visualization can be
used to evaluate the alignment of class-related feature vectors.
Moreover, we calculate the ratio of positive cells to all cells in a
real Ki-67 pathology microscopy image, and its corresponding
fake Ki-67 pathology microscopy image. These two ratios should
be as close as possible.

Visualization of Patch Classification
In this section, two figures (Figures 7, 8) show the experimental
results of the binary classifiers in the HE domain and the
Ki-67 domain using the MIL algorithm. Figure 7 shows
the classification results in the HE domain and the Ki-
67 domain, and they are at the image level. The image-
level results show the average classification performance.
Figure 8 shows the classification results in the HE domain
and the Ki-67 domain, and they are at the patch level.
The patch-level results show the classification performance
in several regions with different densities of positive cells.
From the visualization results, we can infer that we have
got two classifiers for the tumor patch or the normal patch
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FIGURE 10 | The image-level visualization of image generation results. Here we show two different cases in two rows. In each row, the left image is the HE
pathology microscopy image, the middle image is the corresponding Ki-67 pathology microscopy image, and the right one is the synthetic Ki-67 pathology
microscopy image generated with our proposed method.

classification in the HE domain and the Ki-67 domain based on
unannotated data.

Visualization of Image Generation
In this section, we show the experimental results of our
proposed Ki-67 pathology microscopy images generation method
from HE pathology microscopy images, including patch-level
visualization and image-level visualization. Figures 9, 10 show
the patch-level visualization and the image-level visualization
of our experimental results. Figure 9 shows five cases of our
experimental results, in five columns. In each column, the top
image is the HE patch, the middle image is the corresponding
Ki-67 patch and the bottom image is the synthetic Ki-67 patch

TABLE 3 | Quantification results 1 of our proposed method.

Training dataset Evaluation dataset

Real Ki-67 Synthetic Ki-67 Real Ki-67 Synthetic Ki-67

Ratio 0.3744 0.3850 0.3046 0.2771

Ratio, ratio of the number of positive cells to the number of all cells. The results
above show the potential value of our proposed method in clinical practice.

TABLE 4 | Quantification results 2 of our proposed method.

Example 1 Example 2

Real Ki-67 Synthetic Ki-67 Real Ki-67 Synthetic Ki-67

Ratio 0.2570 0.2518 0.3522 0.3025

Ratio, ratio of the number of positive cells to the number of all cells. The results
above show the potential value of our proposed method in clinical practice.

generated by our proposed method. Our proposed method is
able to generate synthetic Ki-67 patches of high quality. By
comparison with real Ki-67 patches, we can find that normal cells
and tumor cells in HE patches can be transformed into normal
cells and tumor cells in synthetic Ki-67 patches correctly. Figure 8
shows our experimental results at image level. In Figure 10,
we show two different cases, in two rows. In each row, the
left image is the original HE pathology microscopy image, the
middle image is the corresponding Ki-67 pathology microscopy
image, and the right image is the synthetic Ki-67 pathology
microscopy image generated with our proposed method. We
can easily find that our proposed method can work well in
regions including background or a high rate of positive cells or
a medium rate of positive cells. However, this result also shows
that it cannot work well in regions with a low rate of positive
cells. Clinically, when we examine Ki-67 pathology microscopy
images, the color, dark or light, of positive cells is not important
because the doctors are asked to count positive cells to make a
diagnosis. Quantification results taking this clinical usage into
consideration will be listed by illustrating the ratio of positive
cells to all cells.

Quantification Results
In this section, the ratio of positive cells to all cells will be
set as the evaluating metric for our proposed method because
of the clinical usage of Ki-67 pathology microscopy images.
Each test HE pathology microscopy image will be fed into the
well-trained generator to generate a synthetic Ki-67 pathology
microscopy image. For quantification results, we separately count
the ratio above from real Ki-67 pathology microscopy image and
its corresponding synthetic Ki-67 pathology microscopy image,
and the results are listed in Tables 3, 4.
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FIGURE 11 | The representation of image generation results using raw CycleGAN and our proposed method. The top left image is the HE pathology patch, and the
top right one is its corresponding Ki-67 pathology patch. The bottom left image is the result generated with only CycleGAN and the bottom right one is the result
generated with our proposed method.

Ablation Study
In this section, we will list the experimental results of Ki-67
pathology microscopy images generation from HE pathology
microscopy images using only CycleGAN and our method.
Figure 11 shows the visualization of the experimental results
from only CycleGAN and our method at patch level. The top left
one is the real HE patch, the top right one is the corresponding
Ki-67 patch, the bottom left one is the synthetic Ki-67 patch
generated only with CycleGAN, and the bottom right one is
the synthetic Ki-67 patch generated with our method. The
comparison means that our proposed method is effective in Ki-
67 pathology microscopy image generation from HE pathology
microscopy images.

DISCUSSION

This is the first attempt to apply CycleGAN for synthetic Ki-
67 pathology microscopy images generation with an unpaired
dataset. Moreover, the MIL algorithm has been adopted to
extract class-related information from an unannotated dataset.
Importantly, the idea behind conditional GAN is used to force the
class-related feature vectors to be aligned during the adversarial
training process. With all these methods, our proposed method

is able to generate synthetic Ki-67 pathology microscopy images
of high quality. Because our proposed method is working with an
unannotated and unpaired dataset, our method can be applied to
many other regions.

Although we propose a synthetic Ki-67 pathology microscopy
images generation method and the performance is good enough,
there exist many future works for us to address. The first one is
the evaluation metric, which can evaluate its clinical usage. The
second one is a larger dataset, which is essential to performance
improvement. When addressing these problems, we believe we
can obtain a model that can be used in clinical practice.
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Digital breast tomosynthesis (DBT) is an emerging breast cancer screening and
diagnostic modality that uses quasi-three-dimensional breast images to provide detailed
assessments of the dense tissue within the breast. In this study, a framework of
a 3D-Mask region-based convolutional neural network (3D-Mask RCNN) computer-
aided diagnosis (CAD) system was developed for mass detection and segmentation
with a comparative analysis of performance on patient subgroups with different
clinicopathological characteristics. To this end, 364 samples of DBT data were used
and separated into a training dataset (n = 201) and a testing dataset (n = 163).
The detection and segmentation results were evaluated on the testing set and on
subgroups of patients with different characteristics, including different age ranges,
lesion sizes, histological types, lesion shapes and breast densities. The results of our
3D-Mask RCNN framework were compared with those of the 2D-Mask RCNN and
Faster RCNN methods. For lesion-based mass detection, the sensitivity of 3D-Mask
RCNN-based CAD was 90% with 0.8 false positives (FPs) per lesion, whereas the
sensitivity of the 2D-Mask RCNN- and Faster RCNN-based CAD was 90% at 1.3 and
2.37 FPs/lesion, respectively. For breast-based mass detection, the 3D-Mask RCNN
generated a sensitivity of 90% at 0.83 FPs/breast, and this framework is better than the
2D-Mask RCNN and Faster RCNN, which generated a sensitivity of 90% with 1.24 and
2.38 FPs/breast, respectively. Additionally, the 3D-Mask RCNN achieved significantly
(p < 0.05) better performance than the 2D methods on subgroups of samples with
characteristics of ages ranged from 40 to 49 years, malignant tumors, spiculate and
irregular masses and dense breast, respectively. Lesion segmentation using the 3D-
Mask RCNN achieved an average precision (AP) of 0.934 and a false negative rate
(FNR) of 0.053, which are better than those achieved by the 2D methods. The results
suggest that the 3D-Mask RCNN CAD framework has advantages over 2D-based mass
detection on both the whole data and subgroups with different characteristics.
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INTRODUCTION

Breast cancer is the most common malignancy in women.
Full-field digital mammography (FFDM) is commonly used
to screen for breast cancer (Nystrom et al., 2002). However,
mammography has an inherent limitation when tissue overlaps,
especially in dense breasts, which causes mammography to
miss some suspicious cancerous lesions (Carney et al., 2003).
Digital breast tomosynthesis (DBT) is an emerging breast
cancer screening and diagnostic modality that takes quasi-three-
dimensional imaging that can be used to provide a detailed
assessment of the dense tissue within the breast. DBT has
decreased the effect of overlapping tissue on screening, thereby
improving lesion detection, characterization and diagnosis and
making this approach superior to digital mammography (DM)
(Michell et al., 2012; Haas et al., 2013). The integration of DBT
into the diagnostic setting is associated with improved diagnostic
performance of breast cancer due to the increased specificity
(Bahl et al., 2019; Conant et al., 2019). The combination of DBT
and mammography resulted in significant gains in the sensitivity
and specificity of cancer detection compared with DM alone
(Fontaine et al., 2019; Li et al., 2019; Skaane et al., 2019). Due to its
improvements in patient diagnosis efficiency, DBT is becoming
the standard of care in both screening and diagnostic breast
images (Chong et al., 2019).

Early detection of masses on DBT can facilitate improved
treatment and management in breast cancer. Additionally,
segmentation of breast masses from the background tissue is
important for accurate mass characterization and interpretation.
However, the increment of the 3D information of breast tissue
for DBT also increases the image reading workload by 2-fold
(Tagliafico et al., 2017). Manual detection/segmentation of the
breast region is therefore becoming impractical under a large
number of samples/slices. Consequently, there is a need for
computational methods to assist in the evaluation of DBT, both
to address the workload issues and to maximize the performance
of cancer detection and segmentation.

To this end, studies developed computer-aided diagnosis
(CAD) system in DBT to facilitate mass detection and/or
segmentation in a clinical setting. The conventional CAD studies
have focused on 2D analysis of the slices of DBT using a variety
of hand-crafted features (Reiser et al., 2006; Varela et al., 2006).
Previous study used classical seed region growing algorithm to
enhance the contour of a mass from a given region of interest
(ROI) with the ability to adaptively adjust the threshold value
(Berber et al., 2013). A Gaussian mixture models based on
handcrafted intensity and texture measures were developed to
segment breast masses in DBT (Pohlmann et al., 2017).

Compared to the conventional CAD using handcrafted
features, deep learning-based CAD methods, which are based
on end-to-end learning using a large amount of data, have
an important role in DBT (Geras et al., 2019) due to their
accuracy and efficiency. The deep CAD framework is reported
to achieve much better performance than that achieved by
using handcrafted features to detect masses in DBT (Yousefi
et al., 2018). Moreover, a layered pathway evolution method
was proposed to compress a deep convolutional neural network

(DCNN) to classify masses in DBT (Samala et al., 2018). Previous
studies developed a CAD system for mass detection and diagnosis
using a DCNN with transfer learning from mammograms
(Samala et al., 2016, 2019). A U-net based deep architecture was
utilized to automatically segment breast masses on DBT data
(Lai et al., 2020). To improve efficacy and accuracy in deep
learning-based mass detection/segmentation, recent studies used
CAD system based on one of the most successful object detection
method, Faster RCNN [24] on mammograms (Ribli et al., 2018)
and DBT (Fan et al., 2019). The existing studies were mainly
performed using a DCNN based on 2D slices of DBT images for
mass detection/segmentation. Nevertheless, volumetric, higher-
dimensional information are more complicated so as to capture
more sufficient, high-level features from 3D images. However,
whether the 3D deep learning methods are superior to the
traditional mass detection methods remains unknown.

There is also controversy regarding the efficiency of CAD
methods for detecting masses in DBT from patients with different
characteristics. For example, the DBT increases the cancer
detection rate but is less effective for women with extremely dense
breasts (Vourtsis and Berg, 2019). A recent study reported that
DBT enabled the detection of more cancers in all density and
age groups compared with DM, especially cancers classified as
spiculated masses and architectural distortions (Osteras et al.,
2019). DBT and DM screening increased the detection rate of
histologically favorable tumors compared with that attained by
DM screening (Hofvind et al., 2018). Therefore, it is of great
interest to evaluate and compare the performances of deep
learning-based mass detection and segmentation methods using
DBT in patients with various characteristics, including different
age ranges, breast densities, mass shapes and mass sizes.

Here, we proposed a framework for a 3D-MaskRCCN-based
CAD system extended from our previous work of Faster RCNN
on 2D slices of DBT (Fan et al., 2019), for the detection and
segmentation of breast masses. To evaluate the effectiveness of 3D
mask detection, we compared the results of the 3D-Mask RCNN,
2D-Mask RCNN, and Faster RCNN on images from patients with
different characteristics. Our study was performed to enhance
the efficiency and effectiveness mass detection/segmentation
with DBT data and to facilitate an improved understanding
of the 3D deep learning-based methods on different types
of breast cancers.

MATERIALS AND METHODS

Histological Analysis
Malignant and benign tumors were determined by biopsies
using histological analysis. The breast density was determined
according to the Breast Imaging Reporting and Data System (BI-
RADS) ACR categories and/or quantification, which ranged from
1 to 4. Breasts with up to 25% mammary gland parenchyma were
classified as ACR 1 (almost entirely fat), and those with 26–50%
gland parenchyma (average density) were defined as ACR 2. The
breasts with 51–75% gland parenchyma were classified as ACR 3
and those with more than 75% gland parenchyma (high density)
were classified as ACR 4. The ACR type 3 and 4 breasts were
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categorized as dense breasts while ACR type 1 and 2 breasts were
categorized as non-dense breasts.

Dataset
The imaging and clinical data were collected from Fudan
University Affiliated Cancer Center with Institutional Review
Board (IRB) approval. Table 1 shows the characteristics of the
samples used in this study. A total of 364 samples were collected
(the mean age was 52.31 years, the age ranged from 18 to
88 years, and the median age was 51 years). Among samples, 75
were benign and 289 were determined to be malignant tumors
by biopsy. The dense and non-dense breasts represented 75.8
and 24.2% of the total samples, respectively. There were 123
round/oval, 113 spiculate and 128 irregular masses. The data were
randomly separated into the training dataset (n = 201) to train a
deep learning-based CAD system and the testing dataset (n = 163)
to test the effectiveness of the CAD. There were no significant
differences in the ages, histologic types, mass types, and breast
densities of the training and the testing datasets (p> 0.05).

Craniocaudal (CC) and mediolateral oblique (MLO) view
DBT images were acquired by a Selenia Dimensions TM unit
(Hologic, American) using a total tomographic angular range
of 20◦ with a 1◦ increment of rotation and 20 projection views
(PVs). The number of slices ranged from 20 to 124 (mean = 62.70
and median = 62), and the number of slices containing a lesion
ranged from 6 to 111 (mean = 34.85 and median = 32). For
each slice, the in-plane resolution was 106 × 106 µm. The entire
DBT data set included 716 views from 364 breasts with 364
masses. The breast mass sizes ranged from 10.15 to 140.90 mm
(mean = 36.45 mm and median = 33.40 mm).

Image Preprocessing
Digital breast tomosynthesis images were reconstructed into a
unified spacing slice (1.0 mm) using the simultaneous algebraic
reconstruction technique (SART) (Zhang et al., 2006). To save
computational memory and avoid the calculation of large-
scale convolutions for the background pixels in the deep
learning-based CAD system, the skin and the background were
excluded from the breast region using a dynamic multiple
thresholding-based breast boundary method (Wu et al., 2010;
Kus and Karagoz, 2012).

Mask RCNN-Based CAD System
3D-Mask RCNN Architecture
As an extension of the Faster RCNN (Ren et al., 2017) which
performs the object detection of rectangular boxes as both a
regression and classification problem task, Mask RCNN adds an
additional branch that outputs the object mask (He et al., 2020).
We developed a 3D-Mask RCNN-based breast mass detection
and segmentation model, which is shown in Figure 1. Due to the
substantial amount of memory required by the 3D convolution
kernel in the network, we used small regions of the images
(referred to as patches) with sizes of 256 × 256 × 64. The
patches were used for training the 3D-Mask RCNN to obtain
the mass detection model. Then, the model was applied to the
patches in the testing set, which were subsequently recombined to
reconstruct the entire DBT. The prediction probabilities of each
patch are used to obtain the mass probability for the DBT, and the
probable mass region was obtained by a bounding box.

The original Mask RCNN model was modified into the 3D
version (Figure 1). In the network, the Residual Networks

TABLE 1 | Patient clinicopathological characteristics.

Characteristics All (n = 364) Training dataset (n = 201) Testing dataset (n = 163) p

Age (Years) 0.807

<40 47 (12.91%) 22 (6.04%) 25 (6.87%)

40–49 116 (31.87%) 65 (17.86%) 51 (14.01%)

50–59 96 (26.37%) 54 (14.84%) 42 (11.54%)

60–69 76 (20.88%) 43 (11.81%) 33 (9.07%)

>70 29 (7.97%) 17 (4.67%) 12 (3.30%)

Histological type 0.98

Benign 75 (20.60%) 42 (11.54%) 33 (9.07%)

Malignant 289 (79.40%) 159 (43.68%) 130 (35.71%)

Mass type 0.73

Round/oval 123 (33.79%) 69 (18.96%) 54 (14.84%)

Spiculate mass 113 (31.04%) 59 (16.21%) 54 (14.84%)

Irregular 128 (35.16%) 73 (20.05%) 55 (15.11%)

Breast density 0.63

Non-dense1 276 (75.82%) 51 (14.01%) 37 (10.16%)

Dense2 88 (24.18%) 150 (41.21%) 126 (34.62%)

Tumor maximum diameter (mm) 0.38

10 ≤ d < 30 267 154 113

30 ≤ d < 50 337 184 153

50 ≤ d 112 56 56

1ACR 1 and 2.
2ACR 3 and 4.
The differences in the patient characteristics of the groups in the training and testing datasets were compared using a χ2 test.
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FIGURE 1 | 3D Mask RCNN architecture.
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FIGURE 2 | FROCs for the training and testing sets in (A) breast-based and (B) lesion-based mass detection.

(ResNet)-Feature Pyramid Network (ResNet-FPN) backbone was
used to extract different scales of the feature pyramid (He
et al., 2016; Lin et al., 2017). FPN combines bottom-up features
with top-down features in different scale. The ResNet has a
structure of a depth of 50 layers in the 4th stage (ResNet-50-
C4). This ResNet along with the FPN improve both the accuracy
and speed of feature extraction. A region proposal network
(RPN) was used to generate candidate bounding boxes from
the input image. A quantization-free layer, i.e., RoIAlign was
adopted to align the extracted feature maps with the inputs. This
layer reduces misalignments between ROIs and the extracted

features of RoIPool layer. The detection branch conducted mass
detection for each proposed ROIs using a classifier network
and bounding-box regression to obtain the probabilities and
position information for the boxes. The mask branch obtained
probabilities and position information from the feature maps
and predicted a segmentation mask from each ROI using a
fully connected network (FCN) in a pixel-to-pixel manner. The
rectified linear unit (ReLU) were used as activation function in
all the layers. The 3D-Mask RCNN were compared with 2D-
Mask RCNN, Faster RCNN and Spatial Fuzzy C-Means (SFCM)
(Zhang and Li, 2014) methods.
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TABLE 2 | Mean numbers of FPs per lesion and breast at different sensitivities from the FROC curves.

Sen (%) 3D DBT 2D DBT

3D-Mask RCNN 2D-Mask RCNN Faster RCNN 2D-Mask RCNN Faster RCNN

L B L B L B L B L B

60 0.10 0.08 0.22 0.19 0.29 0.17 0.35 0.28 0.83 0.17

70 0.16 0.22 0.38 0.34 0.54 0.33 0.72 0.68 1.63 0.33

80 0.33 0.34 0.69 0.77 1.18 0.97 1.25 1.26 2.99 0.97

85 0.57 0.57 0.91 1.06 1.66 1.49 1.95 2.33 4.26 1.49

90 0.80 0.83 1.30 1.24 2.37 2.38 2.77 3.08 5.36 2.38

95 1.10 1.02 2.38 2.80 4.05 3.30 4.25 4.28 7.04 3.30

Sen, sensitivity; L, lesion-based mass detection; B, breast-based mass detection. The lowest FP values for the mass detection methods are in bold.
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FIGURE 3 | FROC curves for the 3D-Mask RCNN-, Faster RCNN- and 2D-Mask RCNN-based CAD systems in (A) lesion-based and (B) breast-based detection.

3D-Mask RCNN Training
The hyperparameters of the networks including batch size, RPN
train anchors, number of epochs, learning rate, and backbone are
shown in Supplementary Table S1. To train the Mask RCNN, the
network was initialized using the strategy proposed by He et al.
(2015) which has good performance and was trained using the
Adam optimizer (Kingma and Ba, 2014). For mass segmentation,
the mask loss was defined only with the positive ROI. The initial
learning rate was 0.001 and it was reduced by a factor of 0.5
after every 50 epochs. This learning rate was changed during
training to achieve increased performance and faster training.
Each mini-batch had 32 proposed ROIs. A mask branch for
predicting an object mask was added to the RCNN. The same
end-to-end training was performed to jointly train the RPN and
the whole network.

In the training of the Faster RCNN, which was used in
comparison with our framework, the weights were randomly
initialized using a zero-mean Gaussian distribution. The initial
learning rate determined by experiments was set as 0.001 for all
the layers and was reduced by a factor of 0.5 after every 50 epochs.
Each mini-batch had 2 images per GPU with 256 sampled ROIs.
The loss function was divided into two parts: the first part was the
classification loss, and the second part was the bounding box loss,
with the Smooth L1 regularization defined in Ren et al. (2017).

End-to-end training that jointly trains the RPN and Faster RCNN
was performed to train the whole network.

Performance Analysis
The detected target was compared with the true masses marked
by an experienced radiologist. More specifically, an experienced
radiologist manually annotated the 3D bounding boxes, and
the true positive (TP) objects were represented by the ROIs
extracted from the radiologist-marked locations. The background
or non-mass regions were labeled as negative cases. For mass
segmentation, the detection was determined to be a TP if its
intersection over union (IOU) for the true masses was greater
than 50%. The ratio of the positive to negative ROIs was 3 to 2.

We calculated a free-response receiver operating characteristic
(FROC) curve defined as the plot of the sensitivity versus
the average number of false positives per breast/lesion. The
FROC curve was computed by varying the thresholds of
the object prediction confidence (Bandos et al., 2010). The
lesion-based FROC (the same lesion imaged in the CC and
MLO views was regarded as different targets for detection)
and the breast-based curve (the same lesion imaged in two
views of a breast was considered to be one target and
the detection of one or both was regarded as a TP) were
both assessed. The average precision (AP) and false negative
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TABLE 3 | Comparison of the FPs of the 2D-Mask RCNN, 3D-Mask RCNN and the Faster RCNN-based CAD at a sensitivity of 90%.

Characteristic 2D-Mask RCNN1 Faster RCNN1 3D-Mask RCNN1 3D-Mask RCNN vs. 2D-Mask RCNN2 3D-Mask RCNN vs. Faster RCNN2

Age

<40 1.6 2.8 1.00 0.291 0.1

40–49 2.62 2.76 1.21 0.024 0.026

50–59 2.83 2.09 0.69 0.100 0.047

60–69 0.27 1.3 0.48 0.015 0.062

>70 0 0.08 0 0.097 0.192

Histological type

Benign 1.6 4.09 1.36 0.058 0.029

Malignant 1.28 1.76 0.67 0.015 0.019

Mass type

Round/oval 0.78 1.2 0.41 0.061 0.017

Spiculate mass 0.9 1.7 0.75 0.015 0.022

Irregular 3 4.54 1.20 0.023 0.016

Breast density

Non-dense 0.18 1 0.35 0.101 0.064

Dense 2.47 2.82 1.03 0.005 0.010

Maximum diameter (mm)

10 ≤ d < 30 1.3 3.15 0.77 0.007 0.030

30 ≤ d < 50 1.26 2.24 0.60 0.007 0.010

d ≥ 50 1.98 2.71 1.19 0.037 0.039

1False positive (FP) values at a sensitivity of 90%. 2P values are provided for comparisons of differences between the area under the free-response receiver operating
characteristic (FROC). The lowest FP values and significant p values are in bold.

rate (FNR) were used to evaluate the effectiveness of the
segmentation methods.

The comparisons of the performances of the two CAD systems
were conducted by calculating the differences between the area
under the FROC (Bornefalk and Hermansson, 2005; Bandos et al.,
2009) using the Bootstrap test to resample the prediction score
of the detection system under non-parametric assumptions. The
statistical significance of the performance difference between our
3D-Mask RCNN and the other two 2D deep CAD systems was
estimated based on the breast-based FROC curves.

Ten-fold cross-validation (CV) was used for the training
dataset to tune the hyperparameters of the deep learning-based
CAD system. In each CV cycle, the deep learning-based CAD
systems were trained using nine subsets as the training set and
one subset as the testing set. The hyperparameter with the best
performance in the 10-fold CV was used to train the CAD system
using all the samples in the training set. Then, the trained model
was applied to the testing dataset to evaluate its effectiveness on
mass detection/segmentation.

RESULTS

Assessment and Comparison of Mass
Detection Methods
Comparison of the Deep Mass Detection Methods on
All Samples in Testing Set
Mass detection was performed on all the samples in the testing set
using the 3D-Mask RCNN, and the results were compared with
those of the 2D-Mask RCNN and Faster RCNN (Figure 2). The
results of the 3D-Mask RCNN CAD system achieved a sensitivity

of 90% with 0.80 FPs/lesion and 0.83 FPs/breast, respectively.
The mean numbers of FPs per breast at different sensitivities,
which were determined based on the FROC curves, are shown in
Table 2 and Figure 3. Our 3D-Mask RCNN-based CAD system
clearly has better detection performance (in terms of fewer FPs)
than that of the 2D-Mask RCNN or the Faster RCNN at all
the sensitivities.

For these methods, the detection performances were
compared, and statistical tests showed a significant difference
in the areas under the breast-based FROC curves between the
3D-Mask RCNN and 2D-Mask RCNN methods (p = 0.005).
Moreover, the 3D-Mask RCNN method achieved significantly
better detection performance than that of the Faster
RCNN-based system with a p value of 0.007. These results
demonstrated that 3D-Mask RCNN-based CAD outperformed
the 2D methods of the 2D-Mask RCNN and Faster RCNN
(Supplementary Table S2).

In addition to the deep learning-based mass detection using
3D information of DBT data, the effectiveness of these methods is
also examined on 2D slices of DBT. To this end, we evaluated the
detection performances of the 2D-Mask RCNN and Faster RCNN
using the imaging slice that shows the lesion with maximum
diameter among that of all the DBT slices. The results showed
that the Mask RCNN achieved better performance than the Faster
RCNN in terms of fewer FPs/lesion, whereas an inverse result
was observed for the breast-based evaluation, which showed
fewer FPs/breast for the Faster RCNN compared with the Mask
RCNN (Table 2). The two methods for both the lesion- and
breast-based mass detection on 2D slices of DBT showed lower
performance detection compared with that based on 3D volume
of DBT (Table 2).
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FIGURE 4 | FROC curves for the 3D-Mask RCNN-, Faster RCNN- and 2D-Mask RCNN-based CAD systems for (A) benign and (B) malignant tumors.
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FIGURE 5 | FROC curves for the 3D-Mask RCNN-, Faster RCNN- and 2D-Mask RCNN-based CAD systems for patients with (A) non-dense and (B) dense breasts.

Comparison of the Deep Mass Detection Methods on
Patients With Various Characteristics
A comprehensive comparison of the mass detection results of the
3D and 2D deep learning methods was performed on samples
with different patient characteristics. The FPs per breast at a
sensitivity of 90% for the CAD systems are shown in Table 3.
The performances of the 3D-Mask RCNN, 2D-Mask RCNN and
Faster RCNN on patients with different characteristics including
benign/malignant tumors, breast densities and ages are shown in
Figures 4–6, respectively.

The 3D-Mask RCNN achieved fewer FPs/breast for almost all
the age ranges. For the patients with ages from 40 to 49 years,
the 3D-Mask RCNN had significantly better performance than
that of the 2D-Mask RCNN (p = 0.024) and the Faster RCNN
(p = 0.026). Additionally, the mass detection performance

in terms of the fewest FPs/breast was higher for malignant
tumors than benign tumors for all the detection methods
(Figure 4). The 3D-Mask RCNN also achieved significantly
better performance in the detection of malignant tumors than
the 2D-Mask RCNN and the Faster RCNN with p values
of 0.015 and 0.019, respectively. All the methods achieved
lower mass detection performance for irregular tumors than
other mass types with the highest FPs/breast. Among the mass
types, the 3D-Mask RCNN model achieved significantly better
detection performance on spiculate or irregular masses than
either the 2D-Mask RCNN or the Faster RCNN-based CAD
system (p< 0.05).

Furthermore, it was observed that the detection performance
is lower in samples with dense breasts than those with
non-dense breasts in terms of low FPs for all the detection
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FIGURE 6 | FROC curves for the 3D-Mask RCNN-, Faster RCNN- and 2D-Mask RCNN-based CAD systems for patients with ages (A) less than 40 years, (B)
40–49 years, (C) 50–59 years, and (D) 60–69 years.

methods (Figure 5). The 3D-Mask RCNN achieved
significantly better detection performance than the 2D-
Mask RCNN- and the Faster RCNN-based (p = 0.005 and
0.010, respectively) CAD in patients with dense breasts.
Furthermore, deep learning-based mass detection performs
better for larger masses than smaller masses (Figure 6).
Again, our 3D-Mask RCNN method has better mass detection
performance than the other methods for all the diameter
sizes (p< 0.05).

Case Study of the Mass Detection of the Deep
Learning-Based Mass Detection Methods
Figure 7 shows the examples of the mass detection for the
3D-Mask RCNN, 2D-Mask RCNN and Faster RCNN methods.
From this figure, tumors with low densities are easier for the
CAD system to detect (Figures 7A–C). The three methods also
showed high prediction scores on dense breast with characteristic
of malignant, oval and small tumor (Figure 7D). However, the
Faster RCNN method showed a false positive detection result
(Figure 7C) while the 2D Mask RCNN showed lower detection

score than the other methods (Figure 7A). Figure 8 illustrates
the mass detection results in patients with dense breast, but
with different age ranges, mass shapes and histological types.
The results showed that 3D deep mass detection achieved better
performance than those of the other two 2D methods, which
failed to detect masses in patients with dense breasts and
spiculate tumors. However, all three methods failed to detect
the masses of patients with large lesion sizes and dense breasts
(Figure 8C). Additionally, the results showed low detection
scores for all the three methods on patients with large lesion
sizes, dense breasts and irregular shapes (Figure 8D). Figure 9
illustrates the detection results for patients with dense breasts.
Our 3D-Mask RCNN CAD system outperformed the other 2D
methods on the four cases. The 2D-Mask RCNN and Faster
RCNN achieved lower detection performance than the 3D-
Mask RCNN in the detection of large tumors (Figures 9B,C).
Compared with the 3D method, it is more difficult for the
2D or Faster RCNN to discriminate lesions and background
regions in patients with dense breasts with smaller mass
size (Figures 9 A,D).
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FIGURE 7 | Examples of mass detection results using the 3D-Mask RCNN, 2D-Mask RCNN and Faster RCNN on patients with different densities. Four patients are
included (from left to right) with the following characteristics: (A) aged 55 years, low density breast, malignant tumor, spiculate mass, and maximum tumor diameter
of 43.24 mm; (B) aged 54 years, low density breast, malignant tumor, irregular mass, and maximum tumor diameter of 28.36 mm; (C) aged 69 years, low density
breast, malignant tumor, oval mass, and maximum tumor diameter of 28.36 mm; and (D) aged 45 years, dense breast, malignant tumor, oval mass, and maximum
diameter of 41.42 mm (green: ground truth box, yellow and red: detection box).
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FIGURE 8 | Examples of mass detection results for the 3D-Mask RCNN, 2D-Mask RCNN and Faster RCNN in patients with dense breast. Four patients are included
(from left to right) with the following characteristics: (A) aged 60 years, dense breast, benign tumor, oval mass, and maximum tumor diameter of 24.62 mm; (B) aged
30 years, dense breast, malignant tumor, spiculate mass, and maximum tumor diameter of 38.35 mm; (C) aged 43 years, dense breast, malignant tumor, irregular
mass, and maximum tumor diameter of 46 mm; and (D) aged 51 years, dense breast, malignant tumor, irregular mass, and maximum tumor diameter of 59.82 mm
(green: ground truth box, yellow and red: detection box).
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FIGURE 9 | Examples of mass detection results for the 3D-Mask RCNN, 2D-Mask RCNN and Faster RCNN in patients with dense breast. Four patients are included
(from left to right) with the following characteristics: (A) aged 33 years, dense breast, benign tumor, oval mass, and maximum tumor diameter of 24.24 mm. (B) aged
52 years, dense breast, benign tumor, spiculate lesion, and maximum tumor diameter of 50.35 mm; (C) aged 48 years, dense breast, malignant tumor, spiculate
lesion, and maximum tumor diameter of 62.72 mm; and (D) aged 40 years, dense breast, benign tumor, irregular mass, and maximum tumor diameter of 26.58 mm
(green: ground truth box, yellow and red: detection box).
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TABLE 4 | Tumor segmentation results of the 3D-Mask RCNN, 2D-Mask RCNN
and SFCM-based CAD method.

Characteristics 3D-Mask RCNN 2D-Mask RCNN SFCM

AP FNR AP FNR AP FNR

All 0.934 0.053 0.730 0.260 0.674 0.317

Age

<40 0.934 0.055 0.734 0.255 0.684 0.307

40–49 0.934 0.052 0.731 0.259 0.671 0.320

50–59 0.929 0.057 0.756 0.233 0.676 0.315

60–69 0.921 0.065 0.743 0.246 0.689 0.303

>70 0.950 0.036 0.717 0.272 0.623 0.367

Histological type

Benign 0.937 0.049 0.723 0.267 0.654 0.338

Malignant 0.932 0.055 0.735 0.254 0.658 0.332

Mass type

Round/oval 0.933 0.054 0.722 0.267 0.670 0.321

Spiculate mass 0.939 0.049 0.717 0.271 0.687 0.303

Irregular 0.931 0.055 0.727 0.263 0.686 0.306

Breast density

Low1 0.931 0.055 0.743 0.246 0.668 0.323

High2 0.933 0.054 0.727 0.262 0.669 0.322

Maximum diameter (mm)

10 ≤ d < 30 0.931 0.056 0.734 0.255 0.668 0.323

30 ≤ d < 50 0.930 0.056 0.730 0.259 0.674 0.317

d ≥ 50 0.935 0.052 0.726 0.263 0.674 0.317

AP, Average Precision; FNR, False Negative Rate. The highest AP or lowest FNR
values for the mass detection methods are in bold.

Assessment and Comparison of Mass
Segmentation Methods on DBT
Lesion segmentation was performed using the 3D-Mask RCNN-,
2D-Mask RCNN- and SFCM-based clustering methods. Table 4
illustrates the tumor segmentation results for all the samples in
the testing set and, in the subgroups according to the age range,
histological type, mass type, breast density and lesion size. From
the table, the 3D segmentation method clearly achieved superior
performance compared with the 2D-Mask RCNN- and SFCM-
based methods with higher APs and lower FNRs.

Running Time Evaluation and
Comparison
The training and testing of the deep CAD model were performed
on a Linux workstation with 16 CPU cores (2.1 GHz) and 6
NVIDIA 1080Ti GPUs with 11 GB of memory. The execution
time for the 3D-Mask RCNN, the 2D-Mask RCNN and the Faster
RCNN were approximately 350, 260, and 245 h, respectively.
The detailed description of the running times was illustrated in
Table 5.

DISCUSSION

The Mask RCNN framework was developed to detect masses in
breasts. It has been shown that the 3D-Mask RCNN is superior

TABLE 5 | Running time comparison of the deep mass detection networks.

Name Size (MB) Parameters Time per image (ms)

2D-Mask RCNN 244 4.93e + 07 195

3D-Mask RCNN 320 5.27e + 07 100

Faster RCNN 533 1.41e + 08 210

to the other two deep learning-based methods, namely, the 2D-
Mask RCNN and the Faster RCNN. Moreover, we have assessed
the detection performance in various subgroups of patients with
different age ranges, breast densities, histological types and tumor
shapes. The results suggested that the 3D-Mask RCNN achieved
significantly better performances than the 2D deep CNN models
on specific groups according to clinicopathological features.

A previous study used the Faster RCNN model with
VGG16 on the INBreast dataset to detect malignant masses
and calcifications (Ribli et al., 2018). A deep CNN with
multiple instance learning (Yousefi et al., 2018) achieved better
performances than the handcrafted features-based CAD systems
on 2D slices of DBT images. Samala et al. (2016) presented a
DCNN-based approach for mass detection using DBT images.
A recent study used the deep learning (Samala et al., 2019)
method with transfer learning to discriminate between the
malignant and benign masses in DBT images. However, these
studies were performed based on the 2D analysis of a deep
neural network. In this study, we showed that the 3D deep
learning method is superior to the 2D methods in both mass
detection and segmentation. It is interesting to note that the
Mask RCNN has better lesion-based detection performance
while the Faster RCNN achieved better breast-based mass
detection in DBT images.

The systematic analyses of the CAD systems showed that
the mass detection performances are correlated with patient
characteristics, such as age, histological type, mass type, breast
density, and mass size. The breast masses of patients who are 40–
59 years old are more difficult to detect. Moreover, CAD detection
was less accurate with more FPs for the samples with benign
tumors, irregular shapes, and dense breasts. Smaller (10≤ d< 30)
and larger (d ≥ 50) tumors were difficult for the deep learning-
based detection methods to detect (Table 3). We observed that
the 3D-Mask RCNN has significantly better (p < 0.05) mass
detection performance than the other 2D methods, especially for
specific groups that were more difficult to detect (i.e., those aged
40–59, benign tumors, irregular tumors and dense breasts). This
may be explained by the fact that DBT reduces the tissue overlap
and increases the lesion conspicuity, particularly in dense breasts,
which makes it rational that 3D methods have better detection
performance than those of the 2D methods. Moreover, 3D-Mask
RCNN method take advantage of volumetric information of DBT,
which is better than 2D methods in discriminating the masses of
irregular shapes from normal tissues (e.g., fibroglandular) with
fine textures/structures, especially in dense breasts. Since age is
inversely associated with breast density (Checka et al., 2012), it is
reasonable that detection performance is higher in older patients
(aged 60 years and older) than that in the others. The 3D-Mask
RCNN also achieved better segmentation performance than those
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Original Ground truth 3D Mask RCNN Mask RCNN SFCM

FIGURE 10 | Tumor segmentation results for the 3D-Mask RCNN, 2D-Mask RCNN, and SFCM. Five patients are included (from top to bottom).

of the 2D methods in the entire testing set and the subgroups
(Table 4). The case study also illustrates that the 3D-Mask RCNN
had fewer false positives than the other methods (Figure 10).

The limitations of this study should be addressed. First, the
sample size in this study is relatively small, especially when
the subgroup analysis was conducted on patients with different
clinicopathological characteristics. A data cohort with a larger
size should be used in the future to refine the results of our
study. Second, we do not perform transfer learning in this study.
A future study with transfer learning from mammograms might
enhance the accuracy of the mass detection/segmentation in
patients. Third, we used image patches for detection to save
computer memory, and thus, future studies that focus on the
entire image should be conducted.

CONCLUSION

In summary, we proposed a 3D-Mask RCNN-based mass
detection and segmentation framework for detecting and
segmenting tumor masses. A comparison of the 3D- and 2D-
based methods under different subgroups based on age ranges,
lesion sizes, lesion shapes, and breast densities was conducted.
We illustrated that the 3D-Mask RCNN has better performance

than the 2D methods, especially for subgroups with specific
clinicopathologic characteristics that show higher FPs, and the
improvement is significant.
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As a long-standing chronic disease, Temporal Lobe Epilepsy (TLE), resulting from
abnormal discharges of neurons and characterized by recurrent episodic central
nervous system dysfunctions, has affected more than 70% of drug-resistant epilepsy
patients across the world. As the etiology and clinical symptoms are complicated,
differential diagnosis of TLE mainly relies on experienced clinicians, and specific
diagnostic biomarkers remain unclear. Though great effort has been made regarding the
genetics, pathology, and neuroimaging of TLE, an accurate and effective diagnosis of
TLE, especially the TLE subtypes, remains an open problem. It is of a great importance
to explore the brain network of TLE, since it can provide the basis for diagnoses and
treatments of TLE. To this end, in this paper, we proposed a multi-head self-attention
model (MSAM). By integrating the self-attention mechanism and multilayer perceptron
method, the MSAM offers a promising tool to enhance the classification of TLE
subtypes. In comparison with other approaches, including convolutional neural network
(CNN), support vector machine (SVM), and random forest (RF), experimental results
on our collected MEG dataset show that the MSAM achieves a supreme performance
of 83.6% on accuracy, 90.9% on recall, 90.7% on precision, and 83.4% on F1-score,
which outperforms its counterparts. Furthermore, effectiveness of varying head numbers
of multi-head self-attention is assessed, which helps select the optimal number of multi-
head. The self-attention aspect learns the weights of different signal locations which
can effectively improve classification accuracy. In addition, the robustness of MSAM is
extensively assessed with various ablation tests, which demonstrates the effectiveness
and generalizability of the proposed approach.

Keywords: TLE diagnosis, self-attention model, epilepsy classification, temporal lobe epilepsy detection, multi-
head self-attention
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INTRODUCTION

Epilepsy, a chronic central nervous system disease, is typically
caused by the repeated abnormal discharge of neurons and
is characterized by symptoms that are sudden, periodic, and
short-term. According to a recent survey (Beghi and Giussani,
2018), around 70 million people across the world are affected,
of which, 90% are grouped in undeveloped areas. Epilepsy has
a global occurrence rate of 6.38∼7.60% (Jette et al., 2017) and
around 67.77 new cases for every hundred thousand people
are found each year. The ones who fail to take control of
epilepsy after drug treatments are known as drug-resistant
epilepsy (DRE) (Wiebe, 2013), among which, temporal lobe
epilepsy (TLE), a common type of epilepsy widely existing in
young and elderly patients, accounts for around 70% (Mariani
et al., 2019). With the growth of the population and advent
of an aging society, it is inevitable that TLE will be of a
great burden for human beings. Therefore, it is urgent to
identify the subtype, cause, and inducement in the treatment
of TLE. Though progress has been made through subjective
analysis, traditional methods for imaging and clinical symptom
assessment heavily rely on human experts, leading to a long
diagnostic time. Moreover, subjective diagnostic results are often
made from different experts, even for the same patient (Siuly
and Li, 2015). Thus, it is hard to make medical decision
using solely experts. Therefore, it is crucial to develop an
efficient and objective TLE diagnosis method to support the
treatment of TLE.

Typically, TLE can be categorized into three subtypes: simple
partial seizure (SPS), complex partial seizure (), and these two
types coexisting. The key difference between SPS and CPS lies
in the disturbance of consciousness. In comparison with SPS,
CPS is more likely to evolve into drug-resistant epilepsy, which
denotes the ineffectiveness of drug treatments. On the contrary,
taking antiepileptic drugs may result in side effects that affect
the cognition and puberty development of the human brain,
adding great emotional and economic burden to the patients and
their families. An accurate diagnosis in the early stage of disease
outbreak is fundamental to non-drug treatments, which avoids
the dosage of drugs and further ensures a good quality of life
for the patients. To this end, the medical community has put
great effort into exploring the difference between the CPS and SPS
brain networks and studying the treatments for different subtypes
of brain network nodes.

Learning to classify these two subtypes accurately and
objectively will benefit the clinical risk stratification and relieve
the heavy dependency on human experts. In addition, by
predicting the subtypes and taking active measures in advance,
it also keeps the high-risk population with a conscious disorder
from the risk of sudden death that results from the disturbance of
consciousness after epileptic seizures.

In this study, we used collected magnetoencephalography
(MEG) signals to classify the subtypes of temporal lobe epilepsy,
as MEG has emerged as an non-invasive, reliable, fast, and
easy-to-use technique to record functional activities of the
brain (Englot et al., 2016; van Klink and Zijlmans, 2019; Shi
et al., 2020). It has been observed that the spike-wave of

epilepsy is indeed a time-dependent characteristic wave. MEG
shows its great superiorities in acquiring the high-temporal
resolution of data and spatial lateralization and localization
(Liu et al., 2020). Therefore, compared with other tools, such
as electroencephalogram (EEG) (Anastasiadou et al., 2019; Yao
et al., 2019; Serna et al., 2020), MEG has been considered as
an effective tool to diagnose epilepsy and find the location
of cortical pathological activity or damage of epileptic foci
(Burns et al., 2014).

Recent years have witnessed the emerging performance of
deep learning in various research topics, including the study of
epilepsy (Peng et al., 2019, 2020a,b; Niu et al., 2020). For example,
Wu et al., 2018 proposed to deal with TLE lateralization based
on MEG by transferring it into a series of binary classification
problems. To that effect, the resting-state brain network is first
employed to extract features of each participant, upon which
the support vector machine (SVM) is built to achieve the
classification of extracted features. Achilles et al., 2018 developed
a non-invasive automatic system for monitoring epilepsies via
resorting to the convolutional neural network (CNN) to deduce
feature representations to distinctively detect seizures from the
videos. The experimental results from different epileptic seizure
types show a supreme performance of up to 78.33% AUC
value, which demonstrates the promising prospect to utilize deep
learning as a tool for curing epilepsy.

Fang et al., 2015 explored the anatomical connectivity
differences underlying functional variance. Based on the
constructed anatomical networks, multivariate pattern analysis
is applied to extract the anatomical connectivity differences
between the left and right TLE patients. Cantor-Rivera et al.,
2015 derived an accuracy rate of more than 82% by using
clinical parameters and extracting features of MRI and DTI
images to identify TLE. Though a great TLE diagnosis rate of
more than 80% has been made in most studies, a significant
amount of misdiagnosis remains (around 10–20%). Many normal
people are often mistakenly identified with a correct diagnoses
on TLE disease. Moreover, these samples are in a small range
and it is unclear whether they can be directly applied to
other hospitals or not. To solve it, current state-of-the-art
methods consider utilizing the toolbox of machine learning (deep
learning) to achieve a high classification of epilepsy patients
and normal persons (Zafar et al., 2017; Ahmedt-Aristizabal
et al., 2018; Guo et al., 2020), and analyzing the changes
of functional connectivity between enhanced and weakened
brain regions (Rajpoot et al., 2015). Most experimental data
of these methods are collected from EEG, fMRI, EEG fMRI,
etc. (Pedreira et al., 2014; Sarraf and Tofighi, 2016; Vergun
et al., 2016). While the combinations with neural networks
further reduces the possibility of misdiagnoses, the limitation
remains unsolved: Though off-the-shelf approaches can identify
epilepsy patients and normal subjects, they fail to tell the specific
epilepsy subtypes.

In this paper, we investigate the classification of TLE subtypes
by integrating the self-attention mechanism and multilayer
perceptron based method on our collected MEG dataset, aiming
to find out the functional connection and pathogenesis of the
brain network related to the seizure of these two subtypes.
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This research is important to propose a more rapid, more
accurate, and intelligent subtype recognition method. To that
effect, our method, termed MSAM, builds a multi-head self-
attention model to predict epileptic seizures, where the original
MEG signal is fed as its input. The self-attention mechanism
analyzes the influence of the position of the sampled signal, so
as to set different weights for the classification algorithm. The
pre-seizure and interictal periods are separated, and then the
multilayer perceptron model is used to extract the information
of frequency and time domain to realize the feature extraction
and classification. We propose to construct a multi-head self-
attention model and apply it to the temporal lobe epilepsy
subtype recognition algorithm.

To summarize, our main contributions are:

• to investigate the characteristics of TLE subtypes;
• to propose an end-to-end multi-head self-attention model,

called MSAM, that predicts TLE subtypes;
• to evaluate the proposed model on a real-world dataset

with classification task, demonstrating that the MSAM is
superior to all comparative methods.

MATERIALS AND METHODS

In this section, we introduce our multi-head self-attention model
to classify subtypes of epilepsy since the classification of epilepsy
is more important to epilepsy physicians than the position of
epilepsy. On one hand, the same detected discharge location
may cause different symptoms for different patients. On the
other hand, even though the clinical symptoms are the same, the
positioning results may be completely different. Thus, the clinical
symptoms, locations, and subtypes of epilepsy patients are very
complicated. To solve this, in this paper, we propose to make
full use of the self-attention mechanism to distinguish different
symptoms in the same location. Meanwhile, we further adopt
multilayer perceptron to solve the obstacle that the same clinical
symptom possesses varying positions. Figure 1 displays the
framework of our self-attention mechanism based deep learning
network for epilepsy recognition.

We consider a set of N training dataset D= {(ti:li), i= 1,. . .,N}
where ti is the i − th sample and li is its corresponding label.
In our settings, li = 1 if the i − th sample is detected, and
0 if otherwise. Our network takes the i − th sample as its
input and forward it to predict the label li As can be seen
from Figure 1, our framework consists of four components:
data preprocessing level, which processes MEG data; feature
extraction, multilayer perceptron layer, which is a feed forward
neural network; multi-head self-attention layer, which analyzes
the weights of locations; and the last layer, which classifies and
detects TLE subtypes.

Multilayer Perceptron Layer
Multilayer perceptron (MLP) is a feed forward neural network
model. MLP contains one dropout layer and four dense layers.
The MLP module is shown in Figure 1. Each layer of the network
is composed of multiple nodes. Except for the nodes in the output
layer, each node is connected with all nodes in the next layer.

FIGURE 1 | Multi-head self-attention neural networks.

Dropout technology ensures that in the every iteration of
the process for neural network training, dropout technology will
randomly stop a certain number of neurons in the hidden layer,
and use the mask process to set the output of these neurons in
the hidden layer to 0, while the connection weights of the non-
working neurons will not be updated in this iteration process.
When the trained model is used in the test set, all nodes need
to be used, and the neurons in the stopped-working state will
return to work. Dropout technology effectively enhances the
generalization ability of the deep neural network model and
plays an important role in preventing over fitting of the deep
learning model.

In Figure 1, the white nodes represent the neurons that
will stop working according to a certain probability. After the
dropout layer, there are four fully connected layers. The number
of neurons in each hidden layer is 1024, 512, 128, and 32,
respectively, corresponding to the activation functions of ELU,
tanh, tanh, and relu.
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Self-Attention Layer
Self-attention is an attention mechanism relating different
positions of a single input sequence to compute a representation
of the same sequence. In order to obtain these representations,
every input is multiplied with a set of weights for Keys (denoted
as K), a set of weights for queries (denoted as Q), and a set of
weights for values (denoted as V). Then, the self-attention learns
a function mapping query Q to a series of key-value pairs (K, V),
as follows:

AttentionV = QKTV (1)

Attention essentially assigns a weight coefficient to each
element in the sequence, which can also be understood as soft
addressing. If each element is stored, the attention can calculate
the similarity between Q and K. The similarity calculated by Q
and K reflects the importance of the extracted V value, that is, the
weight, and then the weighted summation obtains the attention
value. The special point of the Self Attention mechanism in the K,
Q, V model is that Q= K= V:

Attention (Q, K, V) = softmax

(
QKT
√

dK

)
V. (2)

The multi-head attention mechanism obtains h (i.e., one per
head) different representations of (Q, K, V), computes self-
attention for each representation, and concatenates the results.
This can be expressed in the same notation as Eq. (4):

headi = Attention
(
QWQ

i ,KWk
i ,VW

v
i

)
(3)

MultiHead (Q,K,V) = Contact
(
head1...., headh

)
W0 (4)

where the projections are parameter matrices WQ
i εRd×dk ,

Wk
i ε Rd×dk , Wv

i ε Rd×dv , and Woε Rhdv×d, dk = dv = d/h .

Classification and Detection Layer
To correctly predict if a sample is detected, we further deploy a
softmax layer on top of the neural network. The basic process
of the softmax layer is to map the output representation of the
encoding layer into a probability interval (0, 1). In this paper,
we regard the detection as a binary classification problem. Then,
we forward input samples to the encoding network, outputs of
which are further mapped into the probability interval (0, 1) by
the softmax layer as below:

li = P (ti|Si) =
1

1+ e−(Wcu+bc)
ε (0, 1) (5)

Wc is the weight matrix and bc is the bias term. Finally,
we use cross-entropy between the ground truth visit yi and the
predicted visit

_
Y i to calculate the loss for each patient from all the

timestamps as below:

L (θ) = −
1
N

N∑
i=1

(
yT
i log

(_
y t
)
+
(
1− yt

)T log
(

1−
_
y t
))

(6)

MEG Data
We collected our MEG data by recording 32 epilepsy patients
from Brain Hospital Affiliated to Nanjing Medical University,
China. To ensure the balance of data distribution, half of them
were males and the other half were females. The age range of these
patients varies from 20 to 32. The Institutional Review Board was
approved and written consent was obtained from all subjects.

In more detail, the sampling frequency of our MEG data is
1200 Hz, and the signals have been filtered by the band-pass filter
(0.03∼300 Hz), which is then digitized at 1000 Hz. We collected
at least 20 groups of data for each subject and every group was
observed for 2 min. That is to say, the total duration of the MEG
raw data on each subject was no less than 40 min. The distance
of head movement before and after MEG data collection was
also measured, then those with a distance greater than 5 mm
were discarded and re-measured to ensure the quality of collected
data. In the process of data collection, both audio and video
systems were used to monitor the subjects constantly. Moreover,
the subjects were requested to be in a supine position with their
eyes closed and to keep relaxed, such that the resting-state data
could be observed.

Evaluation Index
To evaluate the performance index, we first built the confusion
matrix, upon which we further calculated the number of true-
positive samples (TP), true-negative samples (TN), false-positive
samples (FP), and false-negative (FN) samples.

To deal with the task of recognizing TLE subtypes, including
CPS and SPS, four evaluation metrics are considered: precision
(denoted as P), accuracy (denoted as ACC), recall (denoted as R),
and the F1 score. In more detail, precision can be defined as:

p =
TP

TP + FP
(7)

Accuracy is expressed as the ratio of the number of correctly
classified samples and the total number of samples on the test
data set:

ACC =
TP + TN

TP + TN + FP + FN
(8)

Recall rate can be formulated as:

R =
TP

TP + FN
(9)

F1 value is the harmonic mean of precision rate and recall rate,
which can be rewritten as:

2
F1
=

1
P
+

1
R

F1 =
2TP

2TP + FP + FN
(10)

As can be seen, a higher accuracy metric will lead to a better
F1 score. Generally, the accuracy indicates the correct number of
positive predictions. Recall represents the number of prediction-
correct positive cases, which is directly related to the true-positive
(TP) samples and false-negative samples (FN).

Compared Methods
To show the effectiveness of our proposed MSAM, we compare
our method with other models including Convolutional Neural
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Network (CNN), Support Vector Machine (SVM), and Random
Forest (RF). CNN is a conventional deep learning model used
to classify TLE subtypes, and SVM and RF are traditional
machine learning algorithms. More details about these models
are provided below:

Convolutional Neural Network (CNN): CNN is a kind of feed
forward neural network with a deep structure using convolution
computation. It is one of the most representative algorithms
in deep learning.

Support Vector Machine (SVM): SVM is a kind of
generalized linear classifier that classifies data using the
supervised labels. Its decision boundary is the maximum margin
hyperplane.

Random Forest (RF): RF is a classifier which contains multiple
decision trees, and the output category is determined by the
category output of individual trees.

RESULTS

Performance Comparison
For fair comparison, all methods, including the proposed MSAM
and the compared CNN, SVM, and RF, are trained with 300
epochs with a batch size of 32 and the results are calculated using
cross-validation across the entire dataset. The head number in the
self-attention of our method is set to 4.

We report the experimental results in Table 1. As can be seen
from the table, the performance of our proposed MSAM takes a
lead position in comparison with others. Specifically, it increases
the performance of CNN by 0.4% on accuracy, 1.1% on recall,
0.7% on precision, and 1.1% on F1-score. Also, it outperforms
SVM by 28.4, 75.5, 35.8, and 15.2% on accuracy, recall, precision,
and F1-score, respectively. Besides, 1.0, 21.9, 13.0, and −1.8%
gains are, respectively, obtained w.r.t accuracy, recall, precision,
and F1-score on the basis of RF. The above experiments well
demonstrate the capacity of our method in dealing with the MEG
data classification.

Effect of Varying Head Number in
Self-Attention
To explore the effect of head number in our self-attention, in
Figure 2 we perform experiments with different head numbers
of 2, 4, 8, and 16. Similarly, the results are calculated using cross-
validation across the entire dataset Figures 2A–D, respectively,
display our performance of accuracy, recall, precision, and F1-
score with different head numbers.

As can be seen, our MSAM obtains its best accuracy and
F1-score performance when the head number is 8, while best

TABLE 1 | Comparison of CNN, SVM, RF, and the proposed MSAM.

Method Accuracy Recall Precision F1-score

CNN 0.832 0.898 0.9 0.823

SVM 0.552 0.154 0.549 0.682

RF 0.826 0.69 0.777 0.852

MSAM 0.836 0.909 0.907 0.834

FIGURE 2 | Performance comparison (A) Accuracy, (B) Recall, (C) Precision,
and (D) F1-score.

recall and precision was obtained with a head number of 4. To
reduce the model complexity, in our implementations we set the
head number to 4.
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TABLE 2 | Comparison of ablated models.

Method Accuracy Recall Precision F1-score

attn_1 0.827 0.854 0.864 0.832

attn_2 0.825 0.845 0.859 0.831

MSAM 0.836 0.909 0.907 0.834

Ablation Study
We further conducted experiments to analyze the contributions
of different components in our proposed method, including
the multi-head self-attention layer and the self-attention layer.
By, respectively, removing these two components, we have the
following testing scenarios:

(1) Atten_1: The self-attention layer is removed;
(2) Atten_2: The multi-head self-attention layer is removed;
(3) MSAM: Both components are preserved, which

makes up our method.

Following the above experimental settings, we train all
models with 300 epochs and a batch size of 32. The head
number is set to 4.

Table 2 shows the testing results. We can observe that our
MSAM obtains the best performance, which demonstrates
that both components of multi-head self-attention layer
and the self-attention layer are crucial in boosting our
classification performance.

DISCUSSION

To correctly classify the subtype of TLE, including CPS and
SPS, is very important to the treatment of patients. Most
existing studies focus on distinguishing if one person suffers
from epilepsy while ignoring the importance of which type
of epilepsy the patient is suffering from. To solve this, in
this paper, we developed a deep learning-based classification
model by integrating self-attention mechanism to enhance the
classification of TLE subtypes.

To this end, our proposed MSAM model is performed on
our collected MEG data from 32 patients, made up of 16 males
and 16 females aged from 20 to 32. As shown in Table 1,
the proposed MSAM significantly outperforms its counterparts,
including CNN, SVM, and RF, with a supreme performance of
83.6% in accuracy, 90.9% on recall, 90.7% on precision, and 83.4%
on F1-score. Thus, our method can be well applied to the problem
of classifying the subtypes of TLE.

By setting head numbers to 2, 4, 8, and 16, we analyze
the effect of different head numbers in Figure 2, which shows
that head number of 4 and 8 rewards the best performance.
In the experiments, to reduce the model complexity, we set
it to 4.

We also conducted an ablation study to explore the efficacy
of different components in our method. The experiments in
Table 2 show that the self-attention layer brings gains of 0.9,
5.5, 4.3, and 0.2% on accuracy, recall, precision, and F1-score,
respectively. Besides, the multi-head self-attention layer also

increased the performance by 1.1% on accuracy, 6.4% on recall,
4.8% on precision, and 0.3% on F1-score. Thus, both components
of our MSAM play an important role in the classification
of TLE subtypes.

Though significant contributions were made, limitations
remain in this paper. First, the experiments were conducted
on our collected single data source. More experiments on
other datasets might be necessary to test the ability of the
classification model. Second, epilepsy is a dynamically changed
process. However, our classification focuses on patients from
the same period, which may impede its practical applications.
A long-term tracking experiment is needed. Third, this paper
lacks studies on the prevention and early treatment of temporal
lobe epilepsy. Due to the limited resources, we could not
solve the limitations completely, which would be our focus
in future work.

To summarize, this paper discusses and analyzes the
classification of TLE subtypes. By integrating a self-attention
mechanism, our MSAM is proposed to offer an effective
classification model. The experimental results well demonstrate
the effectiveness of our MSAM in classifying the TLE subtypes
of CPS and SPS. Further works will be done to implement the
limitations of this work as discussed above.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.
Requests to access these datasets should be directed to TW,
lvwu123@163.com.

ETHICS STATEMENT

The Institutional Review Board approved the study with human
subjects and the written consents were obtained from all subjects.

AUTHOR CONTRIBUTIONS

PG, TW, LZ, YP, JG, and JX conceived and designed the
experiments. LZ, YP, JM, XP, MZ, and JG performed the
experiments. LZ, PG, HL, MZ, and JG wrote the manuscript.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was partially supported by the Henan Key Science
Research Project of Colleges and Universities (Grant No.
18B520041), the Nanjing Medical Science and Technique
Development Foundation (Grant Nos. QRX17027 and
YKK18118), Initial Scientific Research Fund of Ph.D. in Hubei
University of Science and Technology (BK201802), Guidance
Project of Hubei Educational Committee of China (B2019166),
and the Undergraduate Innovation and Entrepreneurship
Training Program of Hubei Province (S202010927039).

Frontiers in Physiology | www.frontiersin.org 6 November 2020 | Volume 11 | Article 60476449

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-604764 November 23, 2020 Time: 15:12 # 7

Gu et al. Classification of Temporal Lobe Epilepsy Subtypes

REFERENCES
Achilles, F., Tombari, F., Belagiannis, V., Loesch, A. M., Noachtar, S., and Navab, N.

(2018). Convolutional neural networks for real-time epileptic seizure detection.
Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 6, 264–269. doi: 10.1080/
21681163.2016.1141062

Ahmedt-Aristizabal, D., Fookes, C., Nguyen, K., and Sridharan, S. (2018). “Deep
classification of epileptic signals,” in Proceeding of the 40th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu,
HI, 332–335. doi: 10.1109/embc.2018.8512249

Anastasiadou, M. N., Christodoulakis, M., Papathanasiou, E. S., Papacostas, S. S.,
Hadjipapas, A., and Mitsis, G. D. (2019). Graph theoretical characteristics of
EEG-based functional brain networks in patients with epilepsy: the effect of
reference choice and volume conduction. Front. Neurosci. 13:221. doi: 10.3389/
fnins.2019.00221

Beghi, E., and Giussani, G. (2018). Aging and the epidemiology of epilepsy.
Neuroepidemiology 51, 216–223. doi: 10.1159/000493484

Burns, S. P., Santaniello, S., Yaffe, R. B., Jouny, C. C., Crone, N. E., Bergey, G. K.,
et al. (2014). Network dynamics of the brain and influence of the epileptic
seizure onset zone. Proc. Natl Acad. Sci. U.S.A. 111, E5321–E5330. doi: 10.1073/
pnas.1401752111

Cantor-Rivera, D., Khan, A. R., Goubran, M., Mirsattari, S. M., and Peters, T. M.
(2015). Detection of temporal lobe epilepsy using support vector machines in
multi-parametric quantitative MR imaging. Comput. Med. Imaging Graph. 41,
14–28. doi: 10.1016/j.compmedimag.2014.07.002

Englot, D. J., Nagarajan, S. S., Wang, D. D., Rolston, J. D., Mizuiri, D., Honma,
S. M., et al. (2016). The sensitivity and significance of lateralized interictal slow
activity on magnetoencephalography in focal epilepsy. Epilepsy Res. 121, 21–28.
doi: 10.1016/j.eplepsyres.2016.01.009

Fang, P., An, J., Zeng, L.-L., Shen, H., Chen, F., Wang, W., et al. (2015). Multivariate
pattern analysis reveals anatomical connectivity differences between the left
and right mesial temporal lobe epilepsy. Neuroimage Clin. 7, 555–561. doi:
10.1016/j.nicl.2014.12.018

Guo, J., Li, H., Pan, Y., Gao, Y., Sun, J., Wu, T., et al. (2020). Automatic and
accurate epilepsy ripple and fast ripple detection via virtual sample generation
and attention neural networks. IEEE Trans. Neural Syst. Rehabil. Eng. 28,
1710–1719. doi: 10.1109/tnsre.2020.3004368

Jette, N., Fiest, K. M., Sauro, K. M., Wiebe, S., and Patten, S. B. (2017). Author
response: prevalence and incidence of epilepsy: a systematic review and meta-
analysis of international studies. Neurology 89, 641–642. doi: 10.1212/wnl.
0000000000004206

Liu, J., Sun, S., Liu, Y., Guo, J., Li, H., Gao, Y., et al. (2020). A novel megnet
for classification of high-frequency oscillations in magnetoencephalography of
epileptic patients. Complexity 2020:9237808. doi: 10.1155/2020/9237808

Mariani, V., Revay, M., D’Orio, P., Rizzi, M., Pelliccia, V., Nichelatti, M., et al.
(2019). Prognostic factors of postoperative seizure outcome in patients with
temporal lobe epilepsy and normal magnetic resonance imaging. J. Neurol. 266,
2144–2156. doi: 10.1007/s00415-019-09394-x

Niu, K., Guo, J., Pan, Y., Gao, X., Peng, X., Li, N., et al. (2020). Multichannel deep
attention neural networks for the classification of autism spectrum disorder
using neuroimaging and personal characteristic data. Complexity 2020:1357853.
doi: 10.1155/2020/1357853

Pedreira, C., Vaudano, A. E., Thornton, R. C., Chaudhary, U. J., Vulliemoz, S.,
Laufs, H., et al. (2014). Classification of EEG abnormalities in partial epilepsy
with simultaneous EEG-fMRI recordings. Neuroimage 99, 461–476. doi: 10.
1016/j.neuroimage.2014.05.009

Peng, X., Long, G., Shen, T., Wang, S., and Jiang, J. (2020a). Self-attention enhanced
patient journey understanding in healthcare system. arXiv [Preprint].

Peng, X., Long, G., Shen, T., Wang, S., Jiang, J., and Blumenstein, M.
(2019). “Temporal self-attention network for medical concept embedding,” in
Proceedings of the 19th IEEE International Conference on Data Mining, Beijing,
eds J. Wang, K. Shim, and X. Wu (Piscataway, NJ: IEEE), 498–507.

Peng, X., Long, G., Shen, T., Wang, S., Jiang, J., and Zhang, C. (2020b). BiteNet:
bidirectional temporal encoder network to predict medical outcomes. arXiv
[preprint].

Rajpoot, K., Riaz, A., Majeed, W., and Rajpoot, N. (2015). Functional
connectivity alterations in epilepsy from resting-state functional MRI. PLoSOne
10:e0134944. doi: 10.1371/journal.pone.0134944

Sarraf, S., and Tofighi, G. (2016). “Deep learning-based pipeline to recognize
Alzheimer’s disease using fMRI data,” in Proceedings of the 2016 Future
Technologies Conference (FTC), San Francisco, CA.

Serna, J.A.d.l.O, Arrieta Paternina, M. R., Zamora-Mendez, A., Tripathy, R. K.,
and Pachori, R. B. (2020). EEG-rhythm specific taylor-fourier filter bank
implemented with o-splines for the detection of epilepsy using EEG signals.
IEEE Sens. J. 20, 6542–6551. doi: 10.1109/jsen.2020.2976519

Shi, Q., Zhang, T., Miao, A., Sun, J., Sun, Y., Chen, Q., et al. (2020). Differences
between interictal and ictal generalized spike-wave discharges in childhood
absence epilepsy: a MEG study. Front. Neurol. 10:1359. doi: 10.3389/fneur.2019.
01359

Siuly, S., and Li, Y. (2015). Designing a robust feature extraction method based on
optimum allocation and principal component analysis for epileptic EEG signal
classification. Comput. Methods Programs Biomed. 119, 29–42. doi: 10.1016/j.
cmpb.2015.01.002

van Klink, N., and Zijlmans, M. (2019). High frequency oscillations in MEG: next
steps in source imaging for focal epilepsy. Brain 142, 3318–3320. doi: 10.1093/
brain/awz321

Vergun, S., Gaggle, W., Nair, V. A., Suhonen, J. I., Birn, R. M., Ahmed, A. S., et al.
(2016). Classification and extraction of resting state networks using healthy
and epilepsy fMRI data. Front. Neurosci. 10:440. doi: 10.3389/fnins.2016.
00440

Wiebe, S. (2013). Definition of drug-resistant epilepsy: is it evidence based?
Epilepsia 54, 9–12. doi: 10.1111/epi.12176

Wu, T., Chen, D., Chen, Q., Zhang, R., Zhang, W., Li, Y., et al. (2018). Automatic
lateralization of temporal lobe epilepsy based on MEG network features
using support vector machines. Complexity 2018, 1–10 doi: 10.1155/2018/43
25096

Yao, J., Wang, H., and Xiao, Z. (2019). Correlation between EEG during AED
withdrawal and epilepsy recurrence: a meta-analysis. Neurol. Sci. 40, 1637–
1644. doi: 10.1007/s10072-019-03855-x

Zafar, R., Malik, A. S., Shuaibu, A. N., Rehman, M.J.u, and Dass, S. C. (2017).
“Classification of fMRI data using support vector machine and convolutional
neural network,” in Proceedings of the 2017 IEEE International Conference on
Signal and Image Processing Applications, Kuching, (Piscataway, NJ: IEEE),
324–329.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Gu, Wu, Zou, Pan, Guo, Xiahou, Peng, Li, Ma and Zhang.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Physiology | www.frontiersin.org 7 November 2020 | Volume 11 | Article 60476450

https://doi.org/10.1080/21681163.2016.1141062
https://doi.org/10.1080/21681163.2016.1141062
https://doi.org/10.1109/embc.2018.8512249
https://doi.org/10.3389/fnins.2019.00221
https://doi.org/10.3389/fnins.2019.00221
https://doi.org/10.1159/000493484
https://doi.org/10.1073/pnas.1401752111
https://doi.org/10.1073/pnas.1401752111
https://doi.org/10.1016/j.compmedimag.2014.07.002
https://doi.org/10.1016/j.eplepsyres.2016.01.009
https://doi.org/10.1016/j.nicl.2014.12.018
https://doi.org/10.1016/j.nicl.2014.12.018
https://doi.org/10.1109/tnsre.2020.3004368
https://doi.org/10.1212/wnl.0000000000004206
https://doi.org/10.1212/wnl.0000000000004206
https://doi.org/10.1155/2020/9237808
https://doi.org/10.1007/s00415-019-09394-x
https://doi.org/10.1155/2020/1357853
https://doi.org/10.1016/j.neuroimage.2014.05.009
https://doi.org/10.1016/j.neuroimage.2014.05.009
https://doi.org/10.1371/journal.pone.0134944
https://doi.org/10.1109/jsen.2020.2976519
https://doi.org/10.3389/fneur.2019.01359
https://doi.org/10.3389/fneur.2019.01359
https://doi.org/10.1016/j.cmpb.2015.01.002
https://doi.org/10.1016/j.cmpb.2015.01.002
https://doi.org/10.1093/brain/awz321
https://doi.org/10.1093/brain/awz321
https://doi.org/10.3389/fnins.2016.00440
https://doi.org/10.3389/fnins.2016.00440
https://doi.org/10.1111/epi.12176
https://doi.org/10.1155/2018/4325096
https://doi.org/10.1155/2018/4325096
https://doi.org/10.1007/s10072-019-03855-x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


ORIGINAL RESEARCH
published: 17 December 2020

doi: 10.3389/fmolb.2020.613878

Frontiers in Molecular Biosciences | www.frontiersin.org 1 December 2020 | Volume 7 | Article 613878

Edited by:

Xin Gao,

King Abdullah University of Science

and Technology, Saudi Arabia

Reviewed by:

Xingyu Liao,

Central South University, China

Renmin Han,

Shandong University, China

*Correspondence:

Xudong Zhao

zhaoxudong@nefu.edu.cn

Xiaodan Chang

302647771@qq.com

Zhaowen Qiu

qiuzw@nefu.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Molecular Diagnostics and

Therapeutics,

a section of the journal

Frontiers in Molecular Biosciences

Received: 04 October 2020

Accepted: 25 November 2020

Published: 17 December 2020

Citation:

Yang G, Jiang Y, Liu T, Zhao X,

Chang X and Qiu Z (2020) A

Semi-automatic Diagnosis of Hip

Dysplasia on X-Ray Films.

Front. Mol. Biosci. 7:613878.

doi: 10.3389/fmolb.2020.613878

A Semi-automatic Diagnosis of Hip
Dysplasia on X-Ray Films
Guangyao Yang 1†, Yaoxian Jiang 2†, Tong Liu 1, Xudong Zhao 1*, Xiaodan Chang 2* and

Zhaowen Qiu 1,3*

1Department of Computer Science and Technology, College of Information and Computer Engineering, Northeast Forestry

University, Harbin, China, 2Department of Radiology, Affiliated Zhongshan Hosptial of Dalian University, Dalian, China,
3Heilongjiang Tuomeng Technology Co. Ltd., Harbin, China

Background: Diagnosis of hip joint plays an important role in early screening of hip

diseases such as coxarthritis, heterotopic ossification, osteonecrosis of the femoral head,

etc. Early detection of hip dysplasia on X-ray films may probably conduce to early

treatment of patients, which can help to cure patients or relieve their pain as much as

possible. There has been no method or tool for automatic diagnosis of hip dysplasia

till now.

Results: A semi-automatic method for diagnosis of hip dysplasia is proposed.

Considering the complexity of medical imaging, the contour of acetabulum, femoral

head, and the upper side of thigh-bone are manually marked. Feature points are

extracted according to marked contours. Traditional knowledge-driven diagnostic criteria

is abandoned. Instead, a data-driven diagnostic model for hip dysplasia is presented.

Angles including CE, sharp, and Tonnis angle which are commonly measured in clinical

diagnosis, are automatically obtained. Samples, each of which consists of these three

angle values, are used for clustering according to their densities in a descending order. A

three-dimensional normal distribution derived from the cluster is built and regarded as the

parametric model for diagnosis of hip dysplasia. Experiments on 143 X-ray films including

286 samples (i.e., 143 left and 143 right hip joints) demonstrate the effectiveness of our

method. According to the method, a computer-aided diagnosis tool is developed for

the convenience of clinicians, which can be downloaded at http://www.bio-nefu.com/

HIPindex/. The data used to support the findings of this study are available from the

corresponding authors upon request.

Conclusions: This data-driven method provides a more objective measurement of

the angles. Besides, it provides a new criterion for diagnosis of hip dysplasia other

than doctors’ experience deriving from knowledge-driven clinical manual, which actually

corresponds to very different way for clinical diagnosis of hip dysplasia.

Keywords: hip joint, dysplasia, x-ray, manual segmentation, automatic angle measurement, density descending

clustering
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1. INTRODUCTION

Hip is one of the largest joint in human body. Its normal
structure maintains people’s daily activities. Hip dysplasia, which
is thought to be hereditary (Harsanyi et al., 2020), is the main
cause of hip osteoarthritis (Ganz et al., 2008). If the surface of
acetabular is too small or tilts for a long time, the femoral head
cannot be completely covered. Therefore, it will lead to uneven
pressure, which will develop into irreversible osteoarthritis in the
end (Yasuda et al., 2020). Early screening of hip dysplasia for
adults followed by proper clinical management can not only save
medical resources but also keep patients away from the pain of
operation (Gala et al., 2016).

Although three dimensional structure of hip joint can be
derived from CT and MRI images, it has to be faced with
relatively high fees of medical check and high radiation.
Therefore, the radiograph of pelvis from a X-ray film becomes the
main early diagnosis of hip dysplasia (Kayaalp et al., 2020; Powell
et al., 2020). Inevitably, the ever-growing numbers of X-ray films
increase the burden of radiologists. An automatic method or
tool for them to make auxiliary measurement or even diagnosis
is needed.

As to automatic measurement or diagnosis of hip dysplasia
on X-ray films, there are three problems. Firstly, it is difficult to
segment the hip automatically considering the inhomogeneous
intensity derived from the image superimposition of acetabulum.
Thus, most of the existing methods are aimed at femur
segmentation. Xie et al. (2014) extracted shape features to
segment the proximal femur. Wei et al. (2020) improved deep
convolutional generative adversarial network (DCGAN) for
segmentation of femur. Liu et al. (2020) proposed a Pyramid
Nonlocal UNet (PN-UNet) for automatic misshapen landmark
detection and neighboring patch segmentation. However,
boundaries of acetabulum and femur were not clearly marked.
Secondly, prevailing diagnosis of hip dysplasia mainly depends
on the manual measurement of angles on X-ray films (Simone
and Klaus, 2014). It is difficult to automatically calibrate
feature angles including center-edge (CE) angle, sharp angle,
Tonnis angle, etc., which are commonly measured in clinical
diagnosis (Beltran et al., 2013). Thirdly, a diagnostic manual
is consulted to test whether hip development is normal or
not (Harper et al., 2020; Ömeroglu et al., 2020). Automatic
and objective indicators for clinical diagnosis of hip dysplasia
are needed.

In this paper, we propose an approach for semi-automatic
diagnosis of hip dysplasia on X-ray films. The corresponding
processing framework is shown in Figure 1. Due to the
difficulty of accurate acetabulum segmentation, contours of
hip joint including acetabulum, femoral head, and the upper
side of thigh-bone are manually delineated. Then, feature
angles including CE, sharp, and Tonnis are automatically
extracted from the marked contour. Thereafter, a scatter point
is obtained in three-dimensional space according to these
feature angles. These procedure is repeated using 286 samples
representing either left or right hip joints. Finally, previously
proposed clustering method using density in a descending
order is presented on these scatter points, and a model

representing normal hip development is made for diagnosis of
hip dysplasia.

2. METHOD

The dataset representing either normal development of hip
joint or hip dysplasia is provided, which contains 143 X-ray
films including 286 samples from 143 left and 143 right hip
joints. That is, an X-ray film is considered as two parts, each
of which contains either imaging of left hip joint or the right
one. Manual delineation of acetabulum, femoral head, and the
upper side of thigh-bone is made on each film. Actually, we
follow the framework presented in Figure 1 to establish the
model representing normal hip development for diagnosis of hip
dysplasia. More details can be seen in the following subsections.

2.1. Automatic Extraction of CE
According to the result of manual delineation, some feature
points can be obtained, which help to form feature angles
automatically. Sketch maps of these feature angles are illustrated
in Figure 2. CE angle is commonly considered to be the first
feature angle for clinical diagnosis. As shown in Figure 2A, it
refers to the angle between two lines. One line is derived from
the connection between the central point of femoral head (i.e., a1
or a2) and the external upper edge of acetabulum (i.e., b1 or b2).
The other line refers to the vertical of the line after connecting
the two central points of right and left femoral head which two
are labeled as a1 and a2, respectively.

In order to automatically obtain CE angle, a1, a2, b1, and
b2 have to be determined in advance. According to manual
delineation, the external upper edge of acetabulum, i.e., b1 and
b2, can be apparently labeled. As to the central point of the
femoral head, it is regarded as the center of a circle which can
cover the femoral head. Considering that three points which are
not collinear can determine a circle in a plane, three feature
points have to be automatically labeled. Here, the uppermost
and outermost point on the contour of the femoral head are
selected, as labeled with d1, d2, e1, and e2 shown in Figure 3.
Taking the inflection points of femoral head and femoral neck as
the boundary, e1 and e2 can be simply found. The third feature
point can be obtained by connecting e1,2 and g1,2, which refer
to the lower edge point of right and left acetabulum. That is the
intersection of the connection line and the contour of femoral
head denoted as f1 and f2 in Figure 3. Thus, the central point
of the femoral head are obtained and labeled as a1 and a2 in
Figure 3. Correspondingly, CE angle can be expressed as

θCE = arccos
−−−−→a1,2c1,2 ·

−−−−→
a1,2b1,2

|
−−−−→a1,2c1,2| |

−−−−→
a1,2b1,2|

. (1)

2.2. Automatic Extraction of Sharp
Sharp angle is also regarded as a feature angle for clinical
diagnosis. As shown in Figure 2B, it also refers to the angle
between two lines. One line is derived from the connection
between the lower edge point of the right acetabulum (i.e., a1)
and that of the left acetabulum (i.e., a2). The other line refers to
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FIGURE 1 | A framework of semi-automatic method for diagnosis of hip dysplasia on X-ray films. (A–D) correspond to four steps of the framework. (A) refers to an

original X-ray file of hip joint. (B) represents the manually marked results. (C) corresponds to the automatic angle measurement. (D) shows the corresponding scatter

in the three-dimensional space with its three directions representing CE, sharp, and Tonnis angle.

the connection between the lower edge point of the acetabulum
(i.e., a1 or a2) and the external upper edge of acetabulum (i.e.,
b1 or b2). Correspondingly, sharp angle is expressed as follows.
That is,

θsharp = arccos

−−−−→
a1,2b1,2 ·

−−−−→a2,1a1,2

|
−−−−→
a1,2b1,2| |

−−−−→a2,1a1,2|
. (2)

2.3. Automatic Extraction of Tonnis
Tonnis angle is also considered to be a feature angle for
clinical diagnosis of hip dysplasia. As illustrated in Figure 2C,
it also refers to the angle contained by two lines. One line is
derived from the connection between the external upper edge
of acetabulum (i.e., b1 or b2) and the lower edge of the weight-
bearing area of acetabulum (i.e., a1 or a2). The other line refers
to the connection between the lower edge point of the right
acetabulum (i.e., g1) and that of the left acetabulum (i.e., g2).

In order to automatically obtain Tonnis angle, a1 and a2
have to be pointed out in advance. In fact, the lower edge of
the weight-bearing area of acetabulum can be easily found in
an X-ray film containing hip joint, for the weight-bearing area
of acetabulum keeps an obvious contrast to its surrounding
area (see Figure 1A). Therefore, these two points can be labeled
during manual delineation (see green points in Figure 1B).

Correspondingly, Tonnis angle is expressed as

θTonnis = arccos

−−−−→
a1,2b1,2 ·

−−−→g2,1g1,2

|
−−−−→
a1,2b1,2| |

−−−→g2,1g1,2|
. (3)

2.4. Clustering Using Sample Density in a
Descending Order
As to each sample derived from an X-ray film, its CE,
sharp, and Tonnis angle can be automatically calculated
using Equations (1), (2), and (3). Correspondingly, a three-
dimensional scatter point can be obtained associated with
this sample. This procedure combining manual delineation of
contours with automatic extraction of angles is repeated n times,
where n represents sample size. Thus, we get a three-dimensional
scatter plot as shown in Figure 1D. Using previously proposed
clustering method (Liu et al., 2019), the cluster corresponding to
normal hip development is obtained. If samples within the cluster
are considered to obey three-dimensional normal distribution,
then a statistical model can be established. The corresponding
probability density function is expressed as

p(x) =
1

(2π)(3/2)|6|1/2
e−

1
2 (x−µ)T6−1(x−µ), (4)
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FIGURE 2 | Sketch maps of feature angles. (A–D) correspond to CE, sharp, Tonnis, and caput collum diaphysis (CCD) angle, respectively. Considering that CCD only

measures coxa valga or coxa vara on femoral head, it is discarded in the following study.

FIGURE 3 | Sketch maps of getting the circle representing the femoral head. (A,B) correspond to results from the right and left femoral head. a1,2 refer to the central

point of the right and left femoral head, respectively. d1,2 and e1,2 represent the uppermost and outermost points of the right and left femoral head, respectively. g1,2
correspond to the lower edge points of the right and left acetabulum, respectively. As to f1,2, they are the intersection points of the connection line (i.e., e1,2 and g1,2)

and the contour of right and left femoral head, respectively.

where x represents the vector (θCE, θsharp, θTonnis)
T . µ and 6

denote sample mean and covariance matrix, respectively.

3. RESULTS

Experiments were conducted on 286 samples derived from
143 X-ray films of hip joint which contained 143 left and

143 right hip joint. The data was digital bilateral hip x-rays
retrospectively collected from the Affiliated Zhongshan Hospital
of Dalian University from January 2017 to January 2018. This
study was approved by the hospital’s ethics committee. All patient
information was de-identified before data analysis.

The procedure shown in Figure 1was accomplished using our
own developed graphical user interface (GUI) listed in Figure 4.
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FIGURE 4 | The graphical user interface (GUI) of the semi-automatic method for diagnosis of hip dysplasia on X-ray films. (A–D) correspond to four steps of the GUI.

An X-ray film can be imported, as shown in Figure 4A.
In Figure 4B, contours of acetabulum, femoral head, and the
upper side of thigh-bone can be manually marked, together
with the lower edge of the weight-bearing area of acetabulum.
Then, feature angles including CE, sharp and Tonnis are
automatically extracted, as illustrated in Figure 4C. Thereafter, a
scatter point is projected into a three-dimensional space, which
is composed of CE, sharp and Tonnis angle values calculated
using Equations (1), (2), and (3), respectively. This procedure is
repeated until enough scatter points have been got. Then, one
can push the “Training Model" button shown in Figure 4D to
establish the data-driven model for further clinical diagnosis of
hip dysplasia.

Meanwhile, each CE, sharp, and Tonnis angle of the 286
samples were measured by a radiologist. The reference value
of CE angle was considered as the knowledge-driven diagnostic
criteria. Typically, a diagnosis of hip dysplasia was made, when
θCE < 20◦. On the contrary, it was thought to be normal
development of hip joint, when θCE > 25◦. Besides, it was
considered as borderline dysplasia, when 20◦ ≤ θCE ≤ 25◦.
Therefore, 286 samples were labeled with color red, green
and yellow, corresponding to abnormal, normal and borderline
development of hip joint, respectively. Accordingly, the three-
dimensional scatter plot and its two-dimensional projection
results are listed in turn, as shown in Figures 5A–D. From
these sub-figures, it can be seen that these samples obey normal
distribution. However, plane or lines perpendicular to CE axis
are considered to be the classification boundary using CE angle

as the diagnostic criteria. Besides, it may be inappropriate even
considering CE, sharp, and Tonnis angle at the same time, for
the formed classification boundaries can be only perpendicular to
coordinate axes. In fact, the appropriate classification boundary
should be the plane perpendicular to the long axis of the
ellipsoid derived from the three-dimensional normal distribution
of samples.

Thus, previously proposed clustering method according to
sample’s density in a descending order (Liu et al., 2019) was
utilized. In addition, samples within the cluster keeping the
highest density peak, which represent normal development of
hip joint, are considered to obey three-dimensional normal
distribution. Using Equation (4), a model representing normal
hip development is established for diagnosis of hip dysplasia, as
shown in Figure 5E. Its two-dimensional projections are listed in
turn, as shown in Figures 5F–H.

4. DISCUSSIONS

We intend to make some simple discussions as follows. Firstly,
it needs to be considered whether automatic segmentation can
be made. In fact, we have utilized U-Net (Ronneberger et al.,
2015) for discovering contours of acetabulum, femoral head, and
the upper side of thigh-bone. Due to the limited sample size,
the segmentation results were not good. Besides, it was found
X-ray films from different digital radiography (DR) machines
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FIGURE 5 | Three-dimensional scatter plots and their two-dimensional projection results. (A–D) refer to the traditional diagnosis of hip dysplasia deriving from

knowledge-driven clinical manual in a three-dimensional space and its two-dimensional projection subspaces, respectively. Therefore, θCE is to be considered. That is,

samples labeled with different colors are derived from different θCE scopes. (E–H) correspond to the new data-driven criterion for diagnosis of hip dysplasia in a

three-dimensional space and its two-dimensional projection subspaces, respectively. The ellipsoid and corresponding projection ellipses refer to the parametric model.

were quite different (see Figures 1, 2). That makes automatic
segmentation more hard.

Secondly, it needs to be discussed whether the knowledge-
driven diagnostic criteria is effective or not. CE, sharp and

Tonnis angle are commonly used as the measurements of
hip joint development. The typical thresholds for diagnosis
of dysplasia are θCE < 20◦ and θTonnis > 10◦ (Kosuge
et al., 2013), which empirically represent the over-shallow
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acetabular and over-upward inclination of the weight-bearing
area of acetabulum, respectively. In contrast, we proposed
a data-driven diagnostic model for hip dysplasia, which
took full account of sample distribution. After comparing
the experimental results shown in Figure 5, it can be
concluded that the data-driven criterion for diagnosis of
hip dysplasia is more suitable, because it fits the sample
distribution better.

Thirdly, outliers shown in Figure 5E need to be further
considered. For those with small θCEs but high θsharps and
θTonniss, diagnosis of hip dysplasia can be made. However, other
outliers need to be further discussed. The reason why they are
different from the traditional samples with hip dysplasia and
whether they belong to new subtypes of hip dysplasia or not
needs to be explained. Therefore, these cases should be carefully
selected. Except for X-ray films, other imaging diagnosis and
clinical diagnosis should be provided to test whether these special
outliers belong to hip dysplasia or not.

5. CONCLUSION

Diagnosis of hip dysplasia plays a vital role in early screening of
hip diseases. In this study, we proposed a semi-automatic method
for diagnosis of hip dysplasia on X-ray films. Due to the complex
appearances of hip joint imaging on X-ray films, a manual
delineation was made on contours of acetabulum, femoral
head and the upper side of thigh-bone. Furthermore, feature
points were automatically or semi-automatically extracted. Then,
feature angles were automatically obtained. Samples derived
from three feature angles (i.e., CE, sharp and Tonnis) were
used to accomplish clustering, which helped to establish a
criterion model based on three-dimensional normal distribution
for diagnosis of hip dysplasia. Besides, a GUI was provided

for the convenience of clinicians. In future work, automatic
segmentation of hip joint will be considered.
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Minimally invasive surgery (MIS) has been the preferred surgery approach owing to its 
advantages over conventional open surgery. As a major limitation, the lack of tactile 
perception impairs the ability of surgeons in tissue distinction and maneuvers. Many 
studies have been reported on industrial robots to perceive various tactile information. 
However, only force data are widely used to restore part of the surgeon’s sense of touch 
in MIS. In recent years, inspired by image classification technologies in computer vision, 
tactile data are represented as images, where a tactile element is treated as an image 
pixel. Processing raw data or features extracted from tactile images with artificial intelligence 
(AI) methods, including clustering, support vector machine (SVM), and deep learning, has 
been proven as effective methods in industrial robotic tactile perception tasks. This holds 
great promise for utilizing more tactile information in MIS. This review aims to provide 
potential tactile perception methods for MIS by reviewing literatures on tactile sensing in 
MIS and literatures on industrial robotic tactile perception technologies, especially AI 
methods on tactile images.

Keywords: tactile sensors, tactile perception, tactile images, minimally invasive surgery, robotic surgery, 
artificial intelligence

INTRODUCTION

Minimally invasive surgery (MIS) is a surgery approach that provides indirect access to anatomy 
for surgeons by introducing specially designed surgical instruments or flexible catheters into 
a patient’s body through minimally sized incisions (Verdura et al., 2000). Compared to conventional 
open surgery, MIS offers many advantages including reduced anesthesia and hospitalization 
time, mitigated tissue trauma and risk of postoperative infection, decreased intraoperative 
blood loss, and accelerated recovery (Puangmali et  al., 2008). However, the indirect access to 
the anatomy brings two challenges: low degree of freedom (DOF) during manipulation and 
absence of tactile feedback during tool–tissue interactions (Abushagur et  al., 2014). With the 
development of mechatronics, robot-assisted minimally invasive surgery (RMIS) systems, such 
as the ZEUS Surgical System (Uranues et  al., 2002) and the da Vinci Surgical System (Guthar 
and Salisbury, 2000), have been developed to improve the dexterity of tools during manipulation, 
which partly resolve the motion constrain problem. Despite this, there are still limitations 
existing for MIS, including reduced hand-eye coordination, a narrowed field of vision, and 
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limited workspace of the tools (Bandari et  al., 2020). More 
importantly, surgeons have little tactile information in MIS 
compared to the rich tactile feedback of human hands, which 
severely impairs the surgeon’s ability to control the applied 
forces, thus causing extra tissue trauma or unintentional damage 
to healthy tissue (Ahmadi et  al., 2012).

Tactile feelings, including but not limited to force, distributed 
pressure, temperature, vibrations, and texture, are complicated 
information that a human obtains through cutaneous receptors 
during physical interaction with environment. Depending on 
the sensing modalities, tactile sensors can be  categorized into 
different kinds, including force sensors for measuring contact 
forces, slippage sensors for detecting slippage between tissue, 
and surgical instruments vibration sensors for measuring 
vibrations during contact. The goal of tactile technologies in 
MIS is to restore all the tactile information so that surgeons 
feel they are contacting that patients’ anatomy directly with 
their own hands rather than operating a mechanism. Among 
this tactile information, force data are relatively easy to acquire, 
model, quantify, and display, so it is most widely used in MIS. 
The sensing principles, design requirements, specifications, 
developments of force sensors, and their applications in MIS 
have been thoroughly reviewed (Eltaib and Hewit, 2003; 
Puangmali et  al., 2008; Schostek et  al., 2009; Tiwana et  al., 
2012; Abushagur et  al., 2014; Konstantinova et  al., 2014; 
Saccomandi et  al., 2014; Park et  al., 2018; Al-Handarish et  al., 
2020; Bandari et  al., 2020). In contrast, studies on utilizing 
other tactile information in MIS are very rare. Researchers 
have begun to realize the advantages of various tactile information 
in MIS, but challenges remain. Van der Putten et  al. found 
that slippage and texture information can augment force 
information to prevent tissue trauma during manipulation but 
limited by cost and changes in instability; few studies were 
about texture information (Westebring-van der Putten et  al., 
2008). Okamura found some studies on tactile sensor arrays 
to perceive pressure distribution or deformation over a contact 
area, but it was challenging to acquire and display tactile data 
due to size and weight constraints (Okamura, 2009).

Tactile sensors are often categorized into single-point tactile 
sensor and the tactile array with respect to their spatial resolution. 
The single-point tactile sensor is usually embedded in the tip 
of the equipment to confirm the object-sensor contact and 
detect tactile signals at the contact point. The tactile array is 
composed of several single-point tactile sensors arranged 
according to certain rules. Compared with single-point tactile 
sensors, tactile array sensor can cover a wider area and can 
capture the tactile information of the object from multiple 
dimensions, so it can achieve high spatial resolution of touch.

In the field of industrial robots, tactile perception technologies 
have received considerable attention. Tactile perception is a 
procedure that obtains tactile information from tactile data 
sensed by tactile sensors. Many methods have been proposed 
to accomplish robot tactile perception tasks, including shape 
recognition, texture recognition, stiffness recognition, and sliding 
detection (Liu et  al., 2017). In the early years, single-point 
tactile sensors were used to create point cloud models to finish 
tactile perception tasks. A current trend of tactile perception 

researches is to represent tactile data as images, where a tactile 
element is treated as an image pixel. From tactile images that 
tactile sensor arrays acquired, features are extracted, such as 
statistical features, vision feature descriptors, principal component 
analysis (PCA)-based features, and self-organizing features (Luo 
et al., 2017). These features are usually processed by AI methods 
like clustering, support vector machine (SVM), and deep neural 
networks, to obtain tactile information.

Robotically assisted surgery is a type of surgical procedure 
that is done using robotic systems. It was developed to overcome 
the limitations of pre-existing minimally invasive surgery and 
to enhance the capabilities of surgeons performing open surgery. 
According to their level of autonomy, surgical robotic systems 
are often classified into two categories: autonomous systems, 
which automatically execute tasks without interventions of the 
practitioner, and nonautonomous systems, which reproduce the 
surgeon’s motion in either a master/slave teleoperated 
configuration or a hands-on configuration (Okamura, 2009). 
Due to the technical complications and high demanded reliability, 
most surgical robots belong to the second category. However, 
the development of robot tactile perception is promising for 
autonomous robotic systems. In the last decades, sensors have 
become smaller, cheaper, and more robust. Enormous studies 
on industrial robots aimed to perceive tactile in small areas 
like fingertips, on which sensors are tiny. Some studies accomplish 
tactile perception tasks with sensors made of soft material. In 
MIS, tactile information is usually displayed in the form of 
raw tactile data, which demands extra analysis. These tactile 
perception studies make it possible to provide more intuitive 
tactile information (e.g., stiffness distribution map) for surgeons 
utilizing nonautonomous surgical robotic systems and offer 
potential designs of autonomous surgical robotic systems.

In this paper, we  review literatures on tactile perception 
technologies in industrial robots and MIS in the last decades 
to analyze the advantages and feasibility of applying tactile 
perception methods on MIS, especially the state-of-the-art AI 
methods on tactile images. Similarly, the features and advantages 
of tactile sensors varying in sensing modalities are analyzed, 
together with their applications in MIS.

The remainder of this paper is organized as follows: Tactile 
Sensors and Their Applications in MIS introduced tactile sensors 
and their applications in MIS. In Tactile Perception Algorithms 
in MIS, tactile perception algorithms in MIS are reviewed. In 
Tactile Perception Applications in MIS, the feasibility of applying 
tactile perception methods on MIS is analyzed. In Conclusion, 
a summary of the challenges and perspectives hoped for the 
future with tactile perception in MIS is presented.

TACTILE SENSORS AND THEIR 
APPLICATIONS IN MIS

Tactile sensors are used to collect tactile data at the contact 
point between the surgical equipment and tissues. Depending 
on modalities of tactile signal, various physical properties (e.g., 
softness and roughness) of a tissue can be  extracted from 
tactile data. Tactile feedback is then provided for surgeons 
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based on these detected physical properties. In most of the 
literatures, force feedback is the main form of tactile feedback, 
and force sensors are the most widely used tactile sensors. 
Tactile sensors can be  categorized into the single-point tactile 
sensor and the tactile array sensor. In this section, studies on 
providing force feedback with the above two kinds of tactile 
sensors are reviewed. Except for force sensors and force feedback, 
some novel tactile sensors and tactile feedback methods 
are investigated.

Single-Point Tactile Sensor and Force 
Feedback
A single-point tactile sensor is usually embedded on the tip 
of the surgical equipment to confirm the object–sensor contact 
and detect tactile signals at the contact point. In MIS, force 
feedback is extremely important to doctors in the consideration 
of the various consistency of the tissue. The force feedback 
implies the active force applied to the operators’ hands directly 
where the active force is usually related to the reactive force 
from the tissue to the tools. Many studies investigated the 
different application scenarios of force feedback in MIS. 
We  summarized related cases into knotting, insertion, and 
incision, which will be  described in the later paragraphs. After 
that, we  will expound on the importance of force feedback 
in the abovementioned cases by a series of relevant studies, 
while the comparison with visual force feedback will also 
be  referred to. We  also investigated the development of force 
feedback in a famous minimally invasive surgical robotic system 
named da Vinci robot. Finally, the limitation of force feedback 
in minimally invasive surgery has been given out.

Knotting
In the knotting situation through the laparoscopic procedures, 
the force feedback indicating the tension of the thread from 
the tip of the tools is extremely important to guarantee the 
firmness of the knots but prevent damage to the tissue. To 
sense the point force feedback from tool tips, load cells are 
commonly used, as the case in (Song et  al., 2009). Moreover, 
in (Song et  al., 2011), a load cell with fiber Bragg grating 
(FBG) sensors was applied to measure the tension of the thread, 
where FGB sensors are optical fiber sensors improving the 
accuracy by encoding the wavelength. Richards et  al. utilized 
the force/torque at the grasper-side to calculate the grasping 
force (Richards et  al., 2000). Fazal and Karsiti decomposed 
the reactive force happened during the insertion process into 
three types by a piezoelectric type one-dimensional sensor and 
mathematical statistics, which were the force generated due to 
the stiffness of the tissue, the friction force, and the cutting 
force, thus enabling us to analyze each type of force separately 
(Fazal and Karsiti, 2009). Mohareri et  al. creatively passed the 
reactive force produced by one hand to another hand and 
improved the knotting accuracy to 98% (Mohareri et al., 2014).

Incision
Apart from the suture scenario, the incision situation is  
another indispensable part of minimally invasive surgery. 

Callaghan and McGrath designed a force-feedback scissor 
with button load cells attached to the scissor blades to measure 
the interforce between the blades and the tissue (Callaghan 
and McGrath, 2007). However, a load cell normally could 
only sense force from one axial and two moments; therefore, 
the more complicated design is considered in the later 
researches. In (Valdastri et  al., 2006), an integrated triaxial 
force sensor was developed and attached to the cutting tool 
for fetal surgery. A similar design of 3-DOF sensors could 
be  found in (Berkelman et  al., 2003). In (Kim et  al., 2015), 
a type of surgical instrument with force sensors of 4 DOFs 
was developed, which could be applied to measure the normal 
force and the tangential force from the tip of the tools by 
capacitive transduction principle.

Palpation
Another conspicuous application scenario of force feedback 
in minimally invasive surgery is palpation. Since the tumor 
is always stiffer than the surrounding skin, the pressure intensity 
on the tumor tends to be  obviously larger; therefore, sensors 
with a single point of contact can detect tumors by palpation 
(Talasaz and Patel, 2013). Similarly, to detect abnormal masses 
in the breast, a tactile sensing instrument (TSI) was designed 
in (Hosseini et  al., 2010) and applied in a simulated scenario 
with a certain detecting route, which was the transverse scan 
mode. By combining the stress variation curves of each line, 
users could determine the x‐ and y-axis coordinates of the 
abnormal masses. The stress variations of the sensor in the 
two cases that were operating manually and by a robot showed 
a similar pattern. Besides, a new tactile sensory system was 
developed in (Afshari et al., 2011) by combining the displacement 
sensor and the force sensor to determine the existence and 
detect the location of kidney stones during laparoscopy. Since 
the surface stiffness was proportional to the result of the 
force sensor as well as the displacement sensor, the stiffness 
could be  presented by these two values and depicted by a 
curving line through the path on the surface of model. Besides, 
Yip et  al. first developed a miniature uniaxial force sensor 
to do endocardial measurements (Yip et  al., 2010). In the 
research of (Munawar and Fischer, 2016), an elastic spherical 
proxy regions was designed to sense the forces from 
various directions.

Necessity of Force Feedback
To support the multiple cases in the above paragraphs, we also 
investigated the necessity of force feedback in minimally 
invasive surgery, which was proved and explained in (Morimoto 
et  al., 1997) and (Tholey et  al., 2005). The accuracy of the 
force applied seemed to be  improved with the increasing 
force feedback in (Wagner and Howe, 2007) and (Bell et  al., 
2007). The reasons could be  generalized into two points as 
in (Mohareri et  al., 2014). One is sensing the invisible 
property such as the stiffness and the texture. Another one 
is preventing the undesired damage of tissue. Many studies 
investigated the cases of providing force feedback, visual 
feedback, visual force feedback (force feedback in the forms 
of image, sometimes like color bars), and no feedback. 
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A B

FIGURE 1 | (A) An example of tactile wave diagram, where each waveform indicates voltage sensed by a sensing unit. This diagram shows the sensing result of a 
case that a capacitive stylus touched the surface of a 4 × 4 tactile array sensor along a path: 4 → 7 → 10 → 13 (Wang et al., 2016). (B) An example of tactile image 
sequences, where each sequence represent tactile data over time sensed by an tactile array sensor, and each image pixel represents tactile data sensed by a 
sensing unit in a certain time (Cao et al., 2016).

Mahvash et  al. put forward the result that providing force 
feedback generated less error than other cases in the cardiac 
palpation (Mahvash et  al., 2008). A similar result could 
be  found in (Kitagawa et  al., 2005). Mohareri et  al. found 
out that the tightening degree in the knitting situation tended 
to be  less uniform with visual feedback and summed up 
that the visual feedback could compensate part of the force 
feedback but was entirely not enough while applying the 
needles and thread (Mohareri et  al., 2014). Reiley et  al. 
investigated the practicability of the visual force feedback 
and concluded that operators without robotic experience 
could benefit from visual force feedback while practitioners 
do not as much as their counterparts (Reiley et  al., 2008). 
Similar results were also shown in (Gwilliam et  al., 2009) 
and summarized in (Okamura, 2009). However, visual force 
feedback could be the better solution in knot-tightening tasks 
as demonstrated in (Talasaz et  al., 2012) and (Talasaz et  al., 
2017). Later, after (Talasaz et  al., 2012), Talasaz and Patel 
first operated the system with an MIS tactile sensing probe 
remotely and viewed the feedback through a camera display 
(Talasaz and Patel, 2013). Besides, Guo et  al. applied visual 
force feedback in vascular interventional surgery and showed 
great conformity (Guo et  al., 2012).

Based on the aforementioned techniques, many operation 
platforms for minimally invasive surgery have been developed, 
including Robodoc, Probot, Zeus, and the most recent one 
named da Vinci (Marohn and Hanly, 2004; Puangmali et  al., 
2008; Munawar and Fischer, 2016). The da Vinci operation 
system solved several major limitations in recent minimally 
invasive surgeries, including the need for hand motion feedback, 
hand–eye coordination, feeling hands inside the body, expanding 
the DOF, elimination of surgeon tremor, and variable motion 
scaling (Guthar and Salisbury, 2000). Many pieces of research 
were applying based on the da Vinci operation system; however, 
the force feedback has been added to this system only recently. 
The examples could be  found in (Mahvash et  al., 2008) and 
(Reiley et  al., 2008).

Challenges
Force feedback has been very promising for a long while; 
however, it has also faced some unsolved problems. Although 
the force feedback provides better tumor localization performance 
and more precise suture and incision operation with 
straightforward quantitative measures, it can be  somehow time 
consuming since the measurement from one point to another 
is low effective in the algorithm level as shown in (Talasaz 
and Patel, 2013). Apart from this problem, another problem 
from the force feedback method is the attenuation of the force 
signal since the surgical tools are always long and stiff. To 
solve this problem, force amplification is considered as shown 
in (Song et  al., 2009). However, due to the unpredictable 
disturbance of the tissues, the small disturbing force might 
also be  amplified leading to fatal maloperation. To solve this 
problem, several actions in the laparoscopic cholecystectomy 
procedure are described and modeled in spatial coordinates 
in (Pitakwatchara et al., 2006) to amplify the operation reactive 
force but remain the disturbing force. Nevertheless, the research 
remained on the theoretical level without any real model.

Tactile Array Sensor
A tactile array sensor is composed of several single-point tactile 
sensors arranged according to certain rules. It is usually a flat 
cuboid with M  ×  N tactile sensing units, where M and N 
indicate the number of rows and columns of sensing units. 
In the last decades, tactile data sensed by tactile array sensor 
was generally displayed as a wave diagram with M  ×  N 
waveforms, each of which indicates a time-dependent physical 
quantity obtained by a sensing unit. Recently, with the 
development of computer version, the methods for processing 
images have been faster and more accurate, inspired by which 
tactile data are represented as image sequences, where each 
sequence represent tactile data over time sensed by a tactile 
array sensor, and each image pixel represents tactile data sensed 
by a sensing unit in a certain time. Figure 1 shows a comparison 
between a wave diagram and tactile images.
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For example, Trejos et  al. developed a TSI that uses a 
commercially available pressure pad (Trejos et  al., 2009). The 
TSI is shown in Figure  2A. The TSI industrial TactArray on 
this instrument consists of an array with 15 rows and 4 
columns of electrodes, which are oriented orthogonally to each 
other. Each overlapping area created by the row and column 
electrodes forms a distinct capacitor. The results from the 
tactile sensor as shown in Figure  2B converts the measured 
voltage values from the capacitive sensor to pressure 
measurements and displays these results in a color contour 
map of pressure distributions.

Zapata-Impata et  al. used the BioTac SP tactile sensor 
manufactured by Syntouch (Zapata-Impata et  al., 2019). 
Figure 3A shows a representation of the location of the electrodes 
in the sensor. A tactile image can be  created for this 2D array 
in which the 24 electrodes values ei  are spatially distributed 
to occupy the image pixels at certain coordinates i j,( ) . Basically, 
the tactile image consists of a 12  ×  11 matrix in which the 
24 electrodes are distributed as shown in Figure 3B. Figure 3C 
shows the final tactile image; all the gaps (cells without assigned 
values) are then filled using the mean value of the eight-
closest neighbors.

A

B

FIGURE 2 | (A) A tactile sensor array with 4 × 15 sensing elements. (B) a typical contour map of a tumor obtained from the visualization software (Trejos et al., 2009).

A B C

FIGURE 3 | (A) The BioTac sensor with 24 electrodes distributions, (B) distribution of the BioTac SP electrodes in a 12 × 11 tactile image, (C) result of filling the 
gaps in the tactile image with the mean value of the eight-closest neighbors (Zapata-Impata et al., 2019).
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TABLE 1 | Representative tactile sensors and their applications.

Literature Application Sensor type

Eklund et al., 1999
In vitro tissue hardness 
measurement

Catheter type version of 
piezoelectric vibration 
sensor

Baumann et al., 2001
Measuring mechanical 
tissue impedance

Electromechanic 
vibrotactile sensor

Song et al., 2009
Measuring the tension of 
the thread

Single-point FBG force 
sensor

Trejos et al., 2009

Assessing the feasibility 
of using the tactile 
sensing instrument 
under robotic control to 
locate underlying tumors.

Six-DOF force/torque 
sensor array

Hosseini et al., 2010
Detecting abnormal 
masses in the breast

Tactile probe

Afshari et al., 2011
Detecting the location of 
kidney stones

Force sensor and 
displacement sensor

Mohareri et al., 2014

Passing the reactive 
force produced by one 
hand to another hand for 
bimanual robot-assisted 
surgery

Single-point force sensor

Chuang et al., 2015
Detecting submucosal 
tumors

Piezoelectric hardness 
sensor

Kim et al., 2015

Measuring the normal 
force and the tangential 
force from the tip of the 
tools in the incision 
situation

Four-DOF force sensor

Wang et al., 2016
Real-time tactile 
mapping

Triboelectric sensor array

Li et al., 2018
Detecting and locating 
tissue abnormalities

Optical tactile sensor 
array

Wang et  al. reported a self-powered, high-resolution, and 
pressure-sensitive triboelectric sensor matrix (TESM) based on 
single-electrode triboelectric generators that enable real-time 
tactile mapping (Wang et al., 2016). Figure 4A shows a flexible 
16  ×  16 pixelated TESM with a resolution of 5 dpi can map 
single and multipoint tactile stimuli in real time via the 
multichannel data acquisition method while maintaining an 
excellent pressure sensitivity of 0.06  kPa−1 and long-term 
durability. Figure  4B is a schematic of how the sensor matrix 
images the pressure distribution when a mold in the shape 
of a “6” is pressed against the top of the TESM.

Compared with single-point tactile sensors, a tactile array 
sensor can cover a wider area and can capture the tactile 
information of the target from multiple dimensions, so it can 
achieve high spatial resolution of touch. Therefore, it is applied 
to minimally invasive surgery now. For vascular interventional 
surgery, Guo et  al. reported a novel catheter sidewall force 
tactile sensor array, which is based on a developed robotic 
catheter operating system with a master–slave structure (Guo 
et  al., 2013). It can detect the force information between the 
sidewall of the catheter and the blood vessel in detail and 
transmit the detected force information to the surgeon through 
the robot catheter system. Besides, to reduce the postoperative 
pains, Li et al. proposed an original miniature three-dimensional 
force sensor that can detect the interaction forces during tissue 
palpation in minimally invasive surgery (Li et  al., 2015). In 
addition, to detect and locate tissue abnormalities, Li et  al. 
presented a novel and high-sensitivity optical tactile sensor 
array based on fiber Bragg grating (FBG) (Li et  al., 2018). 
Each tactile unit is mainly composed of a spiral elastomer, a 
suspended optical fiber engraved with an FBG element, and 
a contact connected with elastomers with threads. Moreover, 
for tissue palpation, Xie et  al. proposed a new type of optical 
fiber tactile probe, which consists of 3  ×  4 tactile sensors (Xie 
et  al., 2013). In this paper, one single camera is employed to 
capture and detect the light intensity changes of all sensing 
elements and convert to force information. Finally, for tissue 
palpation, Roesthuis et  al. proposed an experimental bench, 
which includes a tendon-driven manipulator. A kind of nitinol 
FBG wire is fabricated, on which 12 FBG sensor arrays are 
integrated and distributed over four different groups. In closed-
loop control, the minimum average tracking error of circular 
trajectory is 0.67  mm (Roesthuis et  al., 2013).

Novel Tactile Sensor and Tactile Feedback
Novel Tactile Sensor
In conventional open surgery, surgeons make ample use of 
their cutaneous senses to differentiate tissue qualities, which 
can hardly be  achieved with force sensors alone, motivating 
some researchers to expend effort on enabling other sensing 
modality in MIS. In the last decades, researchers have made 
an attempt to use other tactile signals to measure properties 
of tissues. Eklund et  al. developed an in vitro tissue hardness 
measurement method using a catheter-type version of piezoelectric 
vibration sensors (Eklund et al., 1999). Eltaib and Hewit proposed 
a tactile sensor by attaching a pressure sensor to the end of 
a sinusoidally driven rod of the tactile probe. The sensor measured 
both vibration and contact force to detect differences between 
soft and hard tissues and assist surgeons in detecting abnormal 
tissues (Eltaib and Hewit, 2000). Baumann et  al. presented a 
method of measuring mechanical tissue impedance by determining 
resonance frequency with an electromechanic vibrotactile sensor 
integrated into an operating instrument (Baumann et al., 2001). 
Chuang et al. reported a miniature piezoelectric hardness sensor 
mounting on an endoscope to detect submucosal tumors (Chuang 
et  al., 2015). Kim et  al. fabricated sensorized surgical forceps 
with five-degree-of-freedom (5-DOF) force/torque (FIT) sensing 
capability (Kim et  al., 2018). A summary of the representative 
tactile sensors and their applications is presented in Table  1.

A B

FIGURE 4 | (A) Photograph of a fabricated 16 × 16 TESM with good flexibility. 
(B) Demonstration of the mapping output voltage of the sensor matrix under 
the pressure of a module in the shape of a “6” (Wang et al., 2016).
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Tactile Feedback
Some novel tactile display systems were developed to provide 
feedback for surgeons based on various tactile information. 
Schostek et  al. proposed a tactile sensor, integrated into a 
laparoscopic grasper jaw, to obtain information about shape and 
consistency of tissue structures (Schostek et al., 2006). The tactile 
data were wirelessly transferred via Bluetooth and graphically 
displayed to the surgeon. However, tissue exploration time was 
longer compared to a conventional grasper. Prasad et al. presented 
an audio display system to relay force information to the surgeon, 
but continual noise in an operating room setting remained a 
problem (Prasad et  al., 2003). Fischer et  al. developed a system 
that displayed oxygenation values to surgeons. They simultaneously 
used force sensors and oxygenation sensors to measure tissue 
interaction forces and tissue oxygenation next to translational 
forces, when tissue oxygenation decreases below a certain value, 
trauma will occur (Fischer et al., 2006). Pacchierotti et al. reported 
a cutaneous feedback solution on an da Vinci surgical robot. 
They proposed a model-free algorithm based on look-up tables 
to map the contact deformations, dc pressure, and vibrations to 
input commands for the cutaneous device’s motors. A custom 
cutaneous display was attached to the master controller to reproduce 
the tactile sensations by continually moving, tilting, and vibrating 
a flat plate at the operator’s fingertip (Pacchierotti et  al., 2016).

TACTILE PERCEPTION ALGORITHMS IN 
MIS

Recent researches on tactile perception algorithms are focused 
on the tactile array sensor. With the tactile array sensor, we can 
collect an M  ×  N tactile image, where each tactile element is 
treated as an image pixel. From tactile images that tactile 
sensor arrays acquired, features are extracted, such as statistical 
features, vision feature descriptors, PCA-based features, and 
self-organizing features. These features are usually processed 
by AI methods like clustering, SVM, and deep neural networks 
to obtain tactile information. After training the algorithm, 
we  can use it to assist doctors in minimally invasive surgery. 
There are a lot of scenarios where the algorithm can be  used. 
We  summarized related cases into wall following, shape 
recognition, stable scraping, and hardness detection.

Wall Following
To perform wall following, Fagogenis et  al. designed an image 
classifier, which is based on machine learning and can distinguish 
between blood (no contact) or ventricular wall tissue and the 
bioprosthetic aortic valve (Fagogenis et al., 2019). The algorithm 
used the bag-of-words method to group tactile images, which 
is based on the number of occurrences of specific features of 
interest. During training, the algorithm can select features that 
were of interest and the relationship between their number and 
the tactile image class. For training, they used OpenCV to detect 
features in a set of training images based on manually labeled. 
Then, the detected features are mathematically encoded with 
LUCID descriptors to achieve efficient online computation.  

In order to reduce the number of features, they used clustering 
(k-mean) to identify the optimal feature representatives. The 
resulting cluster centers were the representative features used 
for the rest of the training and for runtime image classification. 
After determining the representative feature set, they traversed 
the training data for the second time and constructed the feature 
histogram for each image by calculating the number of times 
each representative feature appeared in the image. The last step 
was to train an SVM classifier, which learned the relationship 
between the feature histogram and the corresponding classes. 
Using the trained algorithm, we  first detected the features and 
calculated the corresponding LUCID descriptors and then classified 
the images. Then, these features were matched to the nearest 
representative features, and the resulting feature histogram was 
constructed. Based on the histogram, the SVM classifier is used 
to predict the tissue-based contact state. They used a small 
group of training tactile images (~2,000 images) with training 
taking just a few minutes (~4  min) and achieved good results. 
Because image classification took 1 ms, our haptic vision system 
estimated contact state based on the camera’s frame rate (~45 
frames/s). The accuracy of contact classification algorithm is 
97% (tested on 7,000 images not used for training) with type 
I error (false positive) of 3.7% and type II (false negative) of 2.3%.

Shape Recognition
To recognize the shape of an object, Liu et  al. proposed a 
new algorithm to identify the shape of an object by tactile 
pressure images, which can distinguish the contact shapes 
between a group of low-resolution pressure maps (Liu et  al., 
2012). The algorithm can be  divided into four steps. The first 
step of the algorithm is “Data extraction.” Data extraction 
normalizes the strongly correlated tactile images sequence into 
a single map to save computational cost and reduce the 
disturbances from signal noise. The second step is “Preprocessing.” 
It consists of several subalgorithms to prepare the information 
for its latter “Feature extraction.” Preprocessing is essential not 
only to prepare the information for further steps but also to 
enhance the interests of tactile images. The third step is “Feature 
extraction.” In this step, the tactile image is transformed into 
a 512-feature vector, and the extracted features are used to 
train the developed neural network for object shape recognition. 
These features are not affected by occlusion, position, or scale, 
as well as image size, resolution, and number of frames. All 
these characteristics make the algorithm robust and effective. 
Finally, a three-layer neural network is developed to train, 
validate, and test the efficiency and success rate of the algorithm. 
It is trained to use the features extracted at the previous stage 
as a classifier. Figure  5 shows a diagram of the three-layer 
neural network for object classification. Through the experimental 
study, it was found that using four different contact shapes 
to test, the average classification accuracy reached 91.07%. The 
shape recognition algorithm based on the feature extraction 
has strong robustness and effectiveness in distinguishing different 
target shapes. It can be  directly applied to minimally invasive 
surgery to identify the shape of the contact site and determine 
whether the tissue is abnormal, which is convenient for doctors 
to detect abnormal tissues with abnormal shapes in time.
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FIGURE 6 | Architecture of the ConvLSTM network tested in the experimentation (Zapata-Impata et al., 2019).

Stable Scraping
To judge the stability of the grip, Zapata-Impata et  al. proposed 
a spatiotemporal tactile features learning method based on 
convolutional long short-term memory (ConvLSTM) (Zapata-
Impata et al., 2019). This method preprocessed the tactile readings 
and fed to a ConvLSTM that learns to detect multiple types of 
slip directions with just 50  ms of data. The architecture of the 
ConvLSTM network is shown in Figure  6. For preprocessing 
data, this method used a sensor with 24-electrode distributions 
to obtain tactile images. In more detail, the sensor uses these 
electrodes to record signals from four emitters and measure the 
impedance in the fluid between them and the elastic skin of 
the sensor. The fluid moves while contact is experienced by 
these sensors, thus affecting the measurements made by the 
electrodes. The whole method used four object sets, containing 
a total of 11 different objects, and was used to capture a new 
tactile dataset, recording seven different types of slip directions: 
north, slip south, slip east, slip west, slip clockwise, slip anticlockwise, 

or touch. Basically, the method created the ConvLSTM learns 
spatial features from pictures while simultaneously learning temporal 
ones. In the process of creating ConvLSTM, this method studied 
how the performance of the ConvLSTM changes depending on 
several parameters: the number of ConvLSTM layers, the size 
of the convolutional filters, and the number of filters inside each 
ConvLSTM layer. Finally, according to the experimental results, 
the network structures of five ConvLSTM layers, 3  ×  3 filters, 
and ConvLSTM layers with 32 filters are selected to focus more 
attention on the low-level details in the tactile image and get 
better accuracy. For feature learning in time series, this method 
only needs three to five continuous tactile images, and the network 
can accurately learn to detect the sliding direction. In the task 
of detecting these seven states on seen objects, the system achieved 
an accuracy rate of 99%. Even if the ConvLSTM network was 
sensitive to new objects, during the robustness experiments, its 
performance dropped to an accuracy rate of 82.56% in the case 
of new objects with familiar properties (solids set) and an accuracy 
rate of 73.54 and 70.94% for stranger sets like the textures and 
small sets. The spatiotemporal tactile features learning method 
can be directly applied to minimally invasive surgery to improve 
the stability of tissue detect/mass grasp. However, at present, the 
single-point sensor is used to judge the grasping stability, and 
the judgment of the slip direction is only based on the single-
point tactile characteristics. If the array tactile map is used, the 
regional feature information can be  considered in the process 
of judgment to improve the stability of grasping. Therefore, it 
is very promising to apply this algorithm to minimally 
invasive surgery.

Hardness Detection
To detect hardness, Yuan et al. designed a deep learning method 
that can estimate shape-independent hardness (Yuan et al., 2017). 
The algorithm, the convolutional neural network (CNN) feature 
layer of VGG network, is used to extract the physical signs of 
the tactile image, and a feature sequence is generated and input 
to LSTM to evaluate the softness and hardness of the sample. 
The algorithm can estimate the hardness of objects with different 
shapes and hardness ranging from 8 to 87  in Shore 00 scale. FIGURE 5 | The three-layer neural network for object classification (Liu et al., 2012).
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In minimally invasive surgery, tissue hardness detection is very 
important. Tumor detection is a very good example: some solid 
tumors are harder than the surrounding tissue, and their existence 
can also be  obtained through tactile feedback to determine the 
location of resection and increase the success rate of surgery. 
Xie et  al. proposed a method based on pixel calculation to 
measure the normal force and its distribution in the sensor 
area, to judge the hardness range of the area and determine 
the abnormal structure (Xie et al., 2013). As shown in Figure 7, 
in this method, the tactile image data of different brightness 
under different forces are captured by an optical fiber tactile 
sensor containing 3 ´  4 sensing elements, and the tactile image 
is divided into 12 different regions in turn. By calculating the 
pixel values of each sensing region, and according to the 
predetermined linear relationship, the magnitude of the force 
applied in the region is obtained. The sensor outputs responses 
after palpation in two different areas; Figure  7C shows areas 
including the nodule, while Figure  7D shows areas that do 
not. From the result, outputs of each sensing element in the 
nodule-free area vary mostly in the range of 0–0.4  N. while 
in the nodule-embedded area, outputs of the sensing elements 
in contact with the nodule exceed the value of 0.8  N. The 
location of the nodules can be  seen more clearly by subtracting 
Figure 7C of Figure 7D from Figure 7E. This method determines 
the tissue lump according to the pressure distribution map; 
although it is effective in some ways, the method based on 
linear fitting has a risk of producing large errors, and the 

definition range of hardness is single. If the image processing 
algorithm is used, the above two defects can be  improved. 
Therefore, in the tissue hardness detection method, the method 
based on array tactile image processing is worth studying.

TACTILE PERCEPTION APPLICATIONS 
IN MIS

In the minimally invasive surgery, given the very small holes 
for the tools to operate, the capacity to feel tends to be  limited 
as discussed in (Eltaib and Hewit, 2003). In line with that, 
Dargahi and Najarian summarized four categories of properties 
that were usually considered to be  important in minimally 
invasive surgery including the force, position and size, hardness/
softness, and roughness and texture (Dargahi and Najarian, 
2004). However, with the help of tactile perception, the general 
performance is liable to be  improved. To show the feasibility 
of the assistance provided by the tactile perception in the 
minimally invasive surgery, we  will discuss the assistance 
provided by tactile perception catering for each property, 
respectively, after which the general discussion will be  given.

Obtaining Tactile Properties of Tissues
Measuring the acting and reactive force from tissues could 
be  applied in many cases such as controlling the surgical knife 
on the liver tissue (Chanthasopeephan et  al., 2003), measuring 

A

C D E

B

FIGURE 7 | (A) Schematic design of proposed tactile sensor using camera, (B) measured output responses of sensing element 1 to the normal force applied, 
(C) test results on nodule area, (D) test results on nodule-free area, and (E) effective stiffness distribution map by compare test result on two areas (Xie et al., 2013).
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the tension of the thread while knotting (Song et  al., 2009), 
modeling needle insertion force (Fazal and Karsiti, 2009), and 
differentiating between tissue samples in the scissoring process 
(Callaghan and McGrath, 2007). The doctors usually rely on 
the magnitude of force feedback to estimate when to stop every 
single shearing or insertion operation. For example, He  et al. 
designed a 3-DOF force sensing pick instrument applied in the 
retinal microsurgery with fiber optic sensors placed at the distal 
tip of the surgical instrument. To realize multiple degrees of 
freedom, a linear model and second-order Bernstein polynomial 
were used to distinct forces in different directions (He et  al., 
2014). Besides, many previous studies like (Mohareri et al., 2014) 
show that, with the force-feedback data, doctors tend to make 
each separate operation more uniform, such as knots with similar 
thread tension. Nevertheless, the sensing directions and the 
accuracy are still of the top concern when researchers strive 
to improve the overall performance of the assistance of force.

The assistance in position and size is usually for tumor 
localization (Hosseini et al., 2006; Perri et al., 2010). For example, 
Liu et al. measured the indentation depth to detect the abnormal 
part of the tissue (Liu et  al., 2010). Lederman et  al. used rigid 
fingertip sheaths to locate the 3D mass (Lederman and Klatzky, 
1999). Afshari et al. utilized the stress distribution to determine 
the stone inside the kidney (Afshari et  al., 2010). Most of the 
time, the position and size of mass are reflected by the surging 
magnitude of rigidity sensed from the tools during palpation 
or the image constructed by an array of force sensors. In (Xie 
et  al., 2013), a 3  ×  4 sensing array was designed to detect 
the force distribution, and the doctors could be  provided with 
the visualized data on which area tended to be  stiffer. In the 
evaluation test on a lamb kidney with nodules embedded, the 
design presented a very effective performance. The doctors are 
more likely to rely on their experience to estimate the position 
and size based on the force feedback. Figure  8 shows an 
example of the mass localization utilizing an array of force sensors.

When calculating the hardness/softness, the sensors are usually 
placed on endoscopic graspers (Najarian et  al., 2006). In many 
cases, tissue hardness could also be  utilized to locate the mass 
in palpation. For instance, Ju et  al. relied on the sensors on 
the catheter robot to locate the mass (Ju et  al., 2018, 2019). 
Moreover, Kalantari et al. measured the relative hardness/softness 
of the tissue to sense various types of cardiac tissues while 
performing mitral valve annuloplasty (Kalantari et  al., 2011). 
In (Yip et  al., 2010), a creative uniaxial force sensor based on 
fiber optic transduction was developed, which could detect very 
small forces but show few root mean square (RMS) errors. In 
the designing process, properties of waterproof, electrical passivity, 
and material constraints were especially considered so that the 
instrument could perfectly meet the requirement of operating 
in the cardiac environment. However, there is no certain threshold 
to determine hard or soft by machine, which means the subjective 
judgment from doctors is indispensable.

Roughness and texture are the fourth groups of properties 
that can assist doctors in MIS. To measure roughness and 
texture, the sensors are usually placed on endoscopic graspers 
(Bonakdar and Narayanan, 2010), like laparoscopic graspers 
(Dargahi and Payandeh, 1998; Dargahi, 2002; Zemiti et al., 2006; 

Lee et  al., 2016), which could be  applied to cholecystectomy 
(Richards et al., 2000) and Nissen fundoplication (Rosen et al., 
2001), and could also measure viscoelastic properties of tissues 
(Narayanan et  al., 2006). In (Bicchi et  al., 1996), tissue elastic 
properties were measured. For instance, in (Dargahi, 2002), a 
polyvinylidene fluoride tactile sensor was designed to measure 
the compliance and roughness of tissues. The principle was 
to measure the relative deformation when the tissue contacted 
with the sensor surface. However, it is never the best choice 
to detect all the tissue surface points by point, which indicates 
the large time consumed. For wiser utilization, subjective 
judgment by humans should also be  taken into account.

AI-Based Tactile Perception Applications 
in MIS
In line with the aforementioned cases, some researchers have 
devoted to the intelligent algorithms that can diminish the 
participation of subjectivity. Many of them have been described 
in Tactile Perception Algorithms in MIS. In this subsection, 
we will introduce more AI-based tactile perception technologies 
that were proven to be  effective in MIS. Beasley and Howe 
used the pulsatile pressure variation from force sensors to 
find the artery through a signal processing algorithm and 
applied an adaptive extrapolation algorithm to generate the 
ultimate position prediction. The rough idea of adaptive 
extrapolation was applying 15 sensing samples and linear 
regression to fit the predicted arteries. It has been tested on 
the ZEUS Surgical Robot System and resulted in a  <  2-nm 
mean error (Beasley and Howe, 2002).

Sadeghi-Goughari et al. introduced a new minimally invasive 
diagnosis technique named intraoperative thermal imaging (ITT) 
based on artificial tactile sensing (ATS) technology and artificial 
neural networks (ANNs) (Sadeghi-Goughari et  al., 2016). In 
this study, a forward analysis and an inverse analysis based 
on ANN were proposed to estimate features including temperature 
and depth of a tumor using a brain thermogram. The brain 
thermogram is shown in Figure  9A. This work involved the 
forward analysis of heat conduction in cancerous brain tissue 
by employing a finite element method (FEM). Then, a 

A B

FIGURE 8 | (A) A kidney with invisible nodule buried in area B. (B) The 
sensing result by palpating on three areas. Various color blocks indicating 
different force values (Xie et al., 2013).
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three-layer feed-forward neural network (FFNN) with back 
propagation learning algorithm was developed to estimate related 
features of a tumor. Parameters of the proposed FFNN are 
shown in Figure 9B. The inputs of FFNN are thermal parameters 
extracted from tissue surface temperature profiles. Training of 
the ANN was performed by a backpropagation algorithm. By 
comparing estimated values of tumor features and expected 
values, potential brain tissue abnormalities were detected, which 
greatly facilitate the task of the neurosurgeon during MIS.

Zhao et  al. proposed a tracking-by-detection framework of 
surgical instruments in MIS (Zhao et  al., 2017). As shown in 
Figure  10A, the operation of conventional MIS instruments 
can be  subdivided into shaft portions and end effector. In the 
proposed method, the shaft portion was described by line 
features through the random sample consensus (RANSAC) 
scheme, and the end effector was depicted by some special 
image features based on deep learning through a well-trained 
CNN. With camera parameters and insertion points, a tracking 
method was proposed to estimate the 3D position and orientation 
of the instruments. As shown in Figure  10B, the scanning 
range was restricted to a sector area with the symmetry axis 
L i−( )1 , where I  is the image and s  is an arbitrary scale. 

For the current frame i , the bounding box p s,( )  slid along 
the symmetry axis L i( )  obtained by shaft detection. The 
parameter p  is the center of the bounding box. The image 
in the bounding box at every sliding step with scale s  was 
resized to 101 × 101 and then used as an input for the trained 
CNN. The highest score of the CNN positive output corresponds 
to the bounding box 

p si i,( ) , where pi  is treated as the imaged 

tip position direction of the current frame i . Figure  10C 
shows the selected frames from the tracking procedure of the 
proposed method. However, compared with those in the ex 
vivo test, the 2D measurement error in the in vivo test was 
at least 2.5 pixels. When the respective 2D tracking by the 
proposed method was applied to each frame with the CNN-based 
detection of instruments, the insufficient illumination of the 
image part (end effector) accounted for drifted tracking results 
in some frames (see Figure  10D), which is the main reason 
why the in vivo test has higher 2D measurement errors. This 
issue can be  resolved by adding samples of in vivo sequences 
into the training database.

Lee and Won presented a novel method to estimate the stiffness 
and geometric information of a tissue inclusion (Lee and Won, 
2013). The estimation was performed based on the tactile data 
obtained on the tissue surface. To obtain the tactile data, the 
author developed an optical tactile sensation imaging system (TSIS). 
The TSIS obtained tactile images with maximum pixel values, 
total pixel values, and deformation areas. These parameters were 
used to estimate the size, depth, and elasticity of the embedded 
lesions. The proposed method consisted of a forward algorithm 
and an inversion algorithm. The forward algorithm was designed 
to predict maximum deformation, total deformation, and deformation 
areas based on the parameters including size, depth, and modulus 
of the tissue inclusion. In the inversion algorithm, tactile parameters 
obtained from the TSIS and simulated values from the forward 
algorithm were used to estimate the size, depth, and modulus of 
the embedded lesion. Figure  11A describes a cross-section of an 
idealized breast mode. Figure  11B shows the sensing probe of 
TSIS modeled on top of the breast tissue. When the TSIS compressed 
against the tissue surface containing a stiff tissue inclusion, it 
produced different parameters: size d , depth h , and Young’s 
modulus E . The FEM in the forward algorithm quantified 
deformation as the maximum deformation OFEM1  (the largest 
vertical displacement of FEM elements of sensing probe from the 
nondeformed position), the total deformation OFEM2  (displacement 
summation of FEM elements of sensing probe from the nondeformed 
position), and the deformation area OFEM3  (the projected area of 
the deformed surface of the sensing probe), as shown in Figure 11C. 
The tactile data are necessary to relate FEM tactile data 
O O OFEM FEM FEM, ,
1 2 3( )  and TSIS tactile data O O OTSIS TSIS TSIS, ,

1 2 3( ).  
The definitions of TSIS tactile data are as follows: The maximum 
pixel value OTSIS1  is defined as the pixel value in the centroid 

of the tactile data. The total pixel value OTSIS2  is defined as the 
summation of pixel values in the tactile data. The deformation 
area of pixel OTSIS3  is defined as the number of pixels greater 

than the specific threshold value in the tactile data. The inversion 
algorithm was used to estimate 

d h E
  

, ,










 using the determined 

O O OTSIS TSIS TSIS, ,
1 2 3( ) . In this method, the multilayered ANN was 

considered as an inversion algorithm, as shown in Figure  11D.

A

B

FIGURE 9 | (A) Examples of the brain thermogram. (B) Parameters of artificial neural network (ANN; Sadeghi-Goughari et al., 2016).
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A B

C D

FIGURE 11 | (A) A cross-section of an idealized breast model for estimating inclusion parameters. The tissue inclusion has three parameters: size d, depth h, and 
Young’s modulus E. (B) Finite element method (FEM) model of an idealized breast tissue model. The sensing probe of tactile sensation imaging system (TSIS) is 
modeled on top of the breast tissue model. (C) The forward algorithm. (D) The inversion algorithm (Lee and Won, 2013).

A

D

C

B

FIGURE 10 | (A) The operation part of minimally invasive surgery (MIS) instrument: end effector and shaft portion; (B) line scanner application for detection of shaft 
edge lines and shaft image direction estimation; (C) selected frames of the instrument tracking and detection: the red circles are the tracked end-effector tip position, 
and the green dashed line is the shaft symmetry axis; (D) example frames of in vivo sequences with the end-effector positions shown by squares (Zhao et al., 2017).
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Despite these methods, algorithms design of tactile 
perception in the minimally invasive surgery is still a new 
subject, with related little research, although we  hold the 
opinion that this field could be  considerably promising due 
to the application need.

CONCLUSION

Minimally invasive surgery has been the preferred surgery 
approach owing to its advantages over conventional open 
surgery. Tactile information has been proven effective to 
improve surgeons’ performance, while most reviews for MIS 
were only focusing on force sensors and force feedback, 
neglecting other tactile information. In this paper, we reported 
tactile sensors, tactile perception algorithms, and tactile 
perception applications for MIS. These include a description 
of various tactile sensors and feedbacks not limited to force 
sensors and force feedback, the state-of-the-art and novel 
machine learning algorithms in tactile images for tactile 
perception in MIS, and potential tactile perception applications 
for MIS, especially for detecting tissue properties. Finally, 
this review contains some of the limitations and challenges 
of each technical aspect.

An emerging research and development trend in the literature 
is the fusion of various tactile information. Utilizing force 
information alone has met challenges, including low effectiveness 
in the algorithm level, the attenuation of the force signal, and 
amplified disturbing force. Therefore, some studies aimed to 
develop hybrid sensors employing more than merely one sensing 
principle to measure one or multiple physical stimuli (e.g., 
force, slippage, stiffness, etc.) to obtain more robust measurements 
of physical stimuli and cover wider working environments. 

With the development of tactile sensors of various sensing 
modalities, some novel tactile feedback systems were reported 
(e.g., graphical display system, audio display system, etc.). Some 
researchers attempted to obtain more tactile information at 
the algorithm level. Inspired by computer vision technologies, 
some researchers reported machine learning algorithms for 
obtaining more than merely one kind of tactile information 
from tactile images, where a tactile element is treated as an 
image pixel. Tactile perception algorithms design in MIS is 
still a new subject, with related little research; while considering 
the high accuracy, high robustness, and excellent real-time 
performance of machine learning algorithms, we  hold the 
opinion that this field could be  considerably promising due 
to the application need.
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Background: Magnetic resonance imaging (MRI) has a wide range of applications
in medical imaging. Recently, studies based on deep learning algorithms have
demonstrated powerful processing capabilities for medical imaging data. Previous
studies have mostly focused on common diseases that usually have large scales of
datasets and centralized the lesions in the brain. In this paper, we used deep learning
models to process MRI images to differentiate the rare neuromyelitis optical spectrum
disorder (NMOSD) from multiple sclerosis (MS) automatically, which are characterized
by scattered and overlapping lesions.

Methods: We proposed a novel model structure to capture 3D MRI images’ essential
information and converted them into lower dimensions. To empirically prove the
efficiency of our model, firstly, we used a conventional 3-dimensional (3D) model to
classify the T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) images and
proved that the traditional 3D convolutional neural network (CNN) models lack the
learning capacity to distinguish between NMOSD and MS. Then, we compressed the
3D T2-FLAIR images by a two-view compression block to apply two different depths
(18 and 34 layers) of 2D models for disease diagnosis and also applied transfer learning
by pre-training our model on ImageNet dataset.

Results: We found that our models possess superior performance when our models
were pre-trained on ImageNet dataset, in which the models’ average accuracies of 34
layers model and 18 layers model were 0.75 and 0.725, sensitivities were 0.707 and
0.708, and specificities were 0.759 and 0.719, respectively. Meanwhile, the traditional
3D CNN models lacked the learning capacity to distinguish between NMOSD and MS.
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Conclusion: The novel CNN model we proposed could automatically differentiate
the rare NMOSD from MS, especially, our model showed better performance than
traditional3D CNN models. It indicated that our 3D compressed CNN models are
applicable in handling diseases with small-scale datasets and possess overlapping and
scattered lesions.

Keywords: Neuromyelitis optical spectrum disorder (NMOSD), multiple sclerosis (MS), magnetic resonance
imaging (MRI), deep learning, convolutional neural networks (CNNs)

INTRODUCTION

Neuromyelitis optical spectrum disorder (NMOSD) is a rare
aquaporin-4 immunoglobin G antibody (AQP4-IgG) mediated
chronic disorder of the brain and spinal cord (Wingerchuk
et al., 2007, 2015). Traditionally considered a subtype of multiple
sclerosis (MS), NMOSD has been recognized as a distinct clinical
entity based on unique immunologic features in recent years
(Wingerchuk et al., 2015). Up to 70% of NMOSD patients have
brain lesions visible on magnetic resonance imaging (MRI) (Kim
et al., 2015). But only about half of NMOSD patients have typical
brain lesions, and their distributions of NMOSD and MS are
overlapped (Cacciaguerra et al., 2019). Furthermore, compared
to MS and stroke, it is challenging to segment and quantify
white matter lesions (WMLs) on T2-weighted fluid-attenuated
inversion recovery (T2-FLAIR) images in NMOSD, as its lesions
are often located very close to the ventricles. However, it is vital
to differentiate NMOSD from MS. Some MS treatments such
as β-interferon can worsen NMOSD (Jacob et al., 2012; Kim
et al., 2012), but distinguishing between the two disease entities
is challenging. Studies based on machine learning to discriminate
NMOSD from MS are limited.

Machine learning algorithms that precede human observation
have shown application potential in medical image processing
(Wernick et al., 2010). These algorithms handle a large number
of features extracted from patients and lack inconsistencies
(Eshaghi et al., 2016). Therefore, machine learning algorithms
can build decision systems to support the diagnostic process.
Previous studies have proved the efficiency and robustness of
machine learning algorithms for many common diseases, such
as breast cancer (Rastghalam and Pourghassem, 2016), brain
tumors (Zacharaki et al., 2009), etc. However, NMOSD is a rare
disease, which is a lack of large-scale public datasets for scientific
research, and its similar phenotypes with MS bring challenges
to build high-performance machine learning models. Laura
Cacciaguerra et al. used typical/atypical brain and spinal cord
lesions to construct a possible evidence-based diagnostic machine
learning algorithm to discriminate NMOSD from MS with the
sensitivity of 0.92, 0.82, and specificity of 0.91,0.91 in training
and validation samples separately. However, the blinded machine
learning approaches were not conducted yet (Cacciaguerra et al.,
2019). Eshaghi et al. built a machine learning classifier using brain
gray matter (GM) imaging measures to distinguish patients with
MS from those with NMOSD with an average accuracy of 74%.
When they used thalamic volume together with the white matter
lesion volume, the classifier achieved an average accuracy of 80%
(Eshaghi et al., 2016). Machine learning-based models indeed

show applicational potential for medical image processing;
however, there are some issues to resolve. First, medical images
can’t be the model’s input directly; all features have to be extracted
from the raw images by radiologists, which means the radiologists
have already studied the raw data’s intrinsic information. Feature
extraction processing, which is the bottleneck of the models’
performances, is highly influenced by the radiologists’ subjective
judgments. Second, manual intervention is indispensable for
both the training and testing phases, which means radiologists
must process all images.

As a subfield of machine learning, deep learning can solve
the problems as mentioned above. Deep learning algorithms can
efficiently extract raw images’ features through convolutional
neural networks (CNNs), and they are also widely applied to
the medical images’ classification, segmentation, and detection
tasks (Litjens et al., 2017). Researchers have conducted on
the deep CNNs and have achieved better results than with
other machine learning algorithms. Shen et al. (2015) proposed
M-CNN to distinguish between malignant and benign nodules
without nodule segmentation. Nie et al. (2016) proposed a three-
dimensional (3D) CNN model to predict the overall survival
(OS) for brain glioma patients. Payan et al. used 3D-CNN to
process brain MRI data of Alzheimer’s disease (AD), and the
classification of AD reached an accuracy rate of 89.47% (Payan
and Montana, 2015). Wang et al. built an ensemble 3D-DenseNet
to predict AD (Wang H. et al., 2019). U-net, proposed by
Ronneberger et al. (2015), had a good effect on two-dimensional
(2D) medical image segmentation. Based on this, Milletari et al.
(2016) combined U-net and ResNet to propose V-net to solve the
image segmentation problems of 3D data. Previous work based
on 3D deep learning models focused on diseases with large data
sets and concentrated lesions, such as AD and tumors. Multiple
3D-CNNs were used to extract the features and demonstrated the
effectiveness of dealing with 3D images. 3D medical images are
the input of 3D CNN models, which can reflect the whole lesion.
However, there is still a lack of 3D CNN models to handle rare
diseases with small-scale datasets, such as NMOSD. Significantly,
the lesion distributions of NMOSD and MS are overlapped,
which brings more challenges to build a high-performance 3D
CNN model. 2D CNN model with less learnable parameters is
more easily trained with small-scale datasets. Our experiment
created a new model combining the advantages of 3D and 2D
CNN models to differentiate NMOSD from MS in terms of
WMLs segmentation with less learnable parameters and achieved
better performance than the 3D ResNet baseline.

In this paper, we (i) investigated the traditional 3D CNN
model for a 3D MRI data classification task and found that the
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conventional approach lacks generalization ability for NMOSD
and MS classification; (ii) presented a two-view 2D model to
boost the classification performance, comparing models that were
pre-trained on an ImageNet dataset with models not pre-trained;
(iii) set up experiments to analyze the primary factors influencing
the experiments’ results.

MATERIALS AND METHODS

Data Description
Participants
A retrospective sample of 41 NMOSD patients diagnosed
according to the revised 2015 diagnostic criteria (Wingerchuk
et al., 2015) was recruited in this work. 47 MS patients who
had received their diagnosis according to the 2010 McDonald
Criteria (Polman et al., 2011) were enrolled, and they also
fulfilled the recently revised diagnostic criteria (Thompson et al.,
2018). The MS group matched for age, sex, disease duration,
and Expanded Disability Status Scale (EDSS) (Kurtzke, 1983)
scores to the NMOSD group. All patients in the acute disease
phase with brain MRI lesions were included in this study.
Clinical characteristics, including EDSS scores of all patients,
were performed within 48 hours from the MRI acquisition
(Table 1). All the patients undergoing high-dose corticosteroid
treatment or with a medical condition that could result in
hyperintensity on T2-weighted and T2-FLAIR images were
excluded. Besides, neurological comorbidities, a history of head
trauma or surgery, and low-quality images or severe motion
artifacts were excluded. This study was approved by the local
ethics committee, and written informed consent was obtained
from all participants.

MRI Acquisition
The MRI protocol included 3D T2-FLAIR and 3D T1-weighted
(T1W) fast field echo (FFE) sequences were obtained from
the same 3.0T Philips Ingenia scanner (Philips Healthcare,
Best, Netherland) between July 2015 and April 2018. There
were some acquisition parameter variations over the years,
where images were acquired axially or sagittally with parameter
ranges. Sagittal/Axial T2-FLAIR: repetition time (TR) = 4800 m
sec, echo time (TE) = 279–324 m sec, flip angle = 90◦,
number of slices = 160–192, field of view (FOV) = 220 mm,
acquisition matrix = 224∗224, section thickness = 2 mm.

TABLE 1 | Demographic, clinical characteristics and brain WMH volume
measurement.

MS (n = 47) NMOSD (n = 41) P-value

Age (years) 40.0 ± 11.1 44 ± 13 0.0865

Gender 14 M/33F 8 M/33 F 0.2720

Disease Duration (months) 57.1 ± 73.4 35.0 ± 42.9 0.1133

EDSS 3.6 ± 1.8 4.2 ± 2.4 0.1949

ICV (ml) 1407.2 ± 171.2 1367.3 ± 120.3 0.2165

WMH (ml) 9.0 ± 8.8 3.5 ± 4.8 0.0007

Normalized WMH (% of ICV) 0.66 ± 0.65 0.26 ± 0.37 0.0008

Sagittal T1W: repetition time (TR) = 7.0–7.8 m sec, echo time
(TE) = 3.2–3.6 m sec, flip angle = 7◦, number of sections = 160–
192, field of view (FOV) = 220 mm, acquisition matrix = 240∗240,
section thickness = 1 mm.

Automated Segmentation
The automated segmentation software, AccuBrain IV1.0 R© (Luo,
2017; Abrigo et al., 2019; Guo et al., 2019; Wang C. et al.,
2019) (BrainNow Medical Technology Limited, Hong Kong,
China), was used in the WML segmentation. Using AccuBrain,
WML segmentation was automatically performed on T1W
and T2-FLAIR images. Segmentation was first performed
on T1 images, where brain structure masks and tissue
masks were generated. Then, T1W and T2-FLAIR images
were co-registered, and the structure and tissue masks were
transformed into the T2-FLAIR space. Using a coarse-to-fine
white matter hyperintensities (WMH) segmentation process,
which utilizes mathematical morphological operations including
binary dilation, grayscale closing, binary reconstruction, and
grayscale reconstruction (Shi et al., 2013), WMH is extracted
on T2-FLAIR images and is refined using the transformed
brain structure mask from T1WI. The intracranial volume
(ICV) is also calculated automatically, then the normalized
WMH (% of ICV) is available. Figure 1 shows examples of the
results of automated segmentation. The performance of WMH
has been validated to have good accuracy and reproducibility
(Guo et al., 2019).

Data Processing
Since NMOSD is a rare disease, it hard to find large-scale MRI
datasets for research. We have collected the MRI datasets with
a wide time range, so there are small differences in the size of
images. Hence, we unified and centralized the raw images for
the first time. The diagram of our data preprocessing procedure
is shown in Figure 2. The method is carried out in three
steps: i) we crop the raw MRI T2-FLAIR images to remove the
black background and get the fixed crop kernel; ii) we crop
the WMH brain lesion image with the fixed crop kernel that
obtained at pervious step. iii) we use the OpenCV package to
resize each section of peer MRI data to unify the data shape
to 100∗100∗100 pixels; (iv) we apply data augmentation by
shifting and flipping.

Data and Code Availability Statement
The reconstruction algorithms to support the findings of this
study are still under early-stage development. For the datasets, we
do not share them directly due to the ethics of clinical research.
Both the codes and data can only be acquired via a special request
to the corresponding author.

MODEL STRUCTURE

Previous studies have pointed out that the deeper the network,
the stronger its learning ability (Bengio and Lecun, 2007;
Bianchini and Scarselli, 2014; Montufar et al., 2014). But
information loss as a common problem of traditional
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FIGURE 1 | Brain 3D T2-FLAIR MR images of (a) one 33-year-old female MS patient and (b) one 61-year-old female NMOSD patient.

deep networks often appears in the process of information
transmission. At the same time, the model is hard to train
because of the gradient vanishing and the gradient explosion.
He K. et al. proposed the idea of residual learning to solve this
problem: To maintain the integrity of the information, He K.
et al. proposed a model structure to bypass the input information
to the output, which makes the model deeper (He et al., 2016).
Formally, we consider a ResNet block defined as:

y = F (x, θ)+ x (1)

where x and y are the input and output of the ResNet blocks
considered. θ is a set of learning parameters of function F(x).

Batch normalization (BN) is added to help the
network increase generalization ability and accelerate
the training process (Ioffe and Szegedy, 2015). ReLU
is added to the network as a non-linear activation
function.

3D ResNet for Image Classification
In this section, inspired by the work of Hara, K. et al. and ResNet
(He et al., 2016), and compared with the previous studies of 3D
CNN models (Payan and Montana, 2015; Hara et al., 2017, 2018;
Liang et al., 2018; Wang H. et al., 2019), we used 3D ResNet as
baseline models to solve the classification problem of NMOSD
and MS MRI T2-FLAIR images. For grayscale MRI T2-FLAIR
images, the shape of input data for the network is (1, h,w, l),
and (h,w, l) representing the shape size (height, width, length) of
each MRI T2-FLAIR image. The 3d convolution layer with input
size(Cin, hin, win, lin) and output (Cout, hout, wout, lout)
can be precisely described as:

out (Cout) =

Cin−1∑
k=0

weight
(
k
)
input(k)+ bais (2)
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FIGURE 2 | (i) cropping the raw MRI T2-FLAIR images to remove the background. (ii) cropping the brain lesion image with the same shape as the resized brain MRI
T2-FLAIR images. (iii) resizing each slice of peer MRI T2-FLAIR images to 100*100*100 pixels. (iv) data augmentation.

where is the valid 3D cross-correlation operator, and 2d
convolution calculates similarly.

2D ResNet for Image Classification
The large sample space and small data sets bring challenges
to the 3D deep learning model’s training. Transfer learning
can improve the model (Pan and Yang, 2010; Tajbakhsh et al.,
2016), but there is no available 3D pre-training model for image
classification. On the other hand, it’s impossible to distinguish
NMOSD from MS by a single 2D slice because of the highly
overlapping brain lesions. A compression block proposed to
extract the most critical features each 2D slice by one view
and map the 3D input (1, h,w, l) to a 2D form (c, h′,w′),
where c represents the image’s channel. The convolutional kernels
calculate each channel and sum them up to new channels that
merge each 2D slice’s internal relationship, making the mapping
operation lose structural information. Therefore, we proposed
a two-view structure to extract the essential features from two
different axes. The internal structure information is retained by
concatenating the compression blocks’ output, which effectively
reduces the sample space and can apply the compressed data to
transfer learning. Figure 3 shows our model architecture, and the
compression block used in our model. In the compression block,
the first convolution layer is designed to extract information from
input image. After many attempts with different parameters, we
set the convolution layer with a kernel size of 7 and stride of 3,
and the output channel of this layer is 32, which may get the
best performance. The compression operation can be precisely
described as:

x(h,w, l) h→c
⇒ x1(c,w, l) (3)

x(h,w, l) w→c
⇒ x2(h, c, l) (4)

y1 = σ(BN
(
conv2d (x1)+ b1

)
) (5)

y2 = σ(BN
(
conv2d (x2)+ b2

)
) (6)

y = concatenate
(
y1, y2

)
(7)

where BN is the batch normalization layer, and σ denotes ReLU.
Equation (3), (4) demonstrates that we change one axis of 3D
data to a channel, which means the compression block extract
features from one view.

Implementation Details
Our model is based on python and PyTorch. The optimizer
used in training is SGD, the initial learning rate is 0.01, and
the learning rate is reduced by 10% every ten steps. We added
dropout before the final fully connected layer (Srivastava et al.,
2014) to prevent model overfitting on the training data, with a
dropout rate of 0.15. We trained our model on a server with
one NVIDIA 1080ti. We also applied data augmentation for
T2-FLAIR MRI images by shifting. To reduce the accidental
factors, we conducted five-fold cross-validations to ensure that
each image was tested at least once and also repeated the cross-
validations process for 15 times to average the results. T2-FLAIR
MRI images of 41 NMOSD subjects and 47 MS subjects were used
for the experiments. The original data set was randomly divided
into five equal-sized groups to utilize a five-fold cross-validation
method to evaluate the model’s performance, which means four
groups were used for model training, and one group was regarded
as the validation dataset.

RESULTS

3D and 2D ResNet Model for Image
Classification
In this experiment, we applied a 3D RseNet model to process
NMOSD and MS MRI T2-FLAIR images. The 3D model we
used was based on the models proposed by Payan and Montana
(2015), Hara et al. (2017, 2018), Wang H. et al. (2019), which
were applied traditional 3D ResNet for classification tasks and
achieved desired results. However, the overlapping lesions and
the limited data set’s size of NMOSD and MS restrict the learning
efficiency of 3D ResNet. Considering the above problems, we
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FIGURE 3 | 2D model architecture for classification of NMOSD and MS.

FIGURE 4 | Comparison of accuracy between different models.

proposed a compression block to map the high dimensional 3D
data into a lower dimension. It can also extract the information
from the overlapping lesion locations by learning each single
MRI section and building long-range dependence at the same
time. After compressing the 3D data, we applied 2D ResNet
for model processing and used transfer learning to improve
the model’s generalization ability effectively. Figure 4 shows the
accuracy of different models. We set 3D ResNet-18 (18 layers)
and 3D ResNet-34 (34 layers) to the baseline models (Payan and
Montana, 2015; Hara et al., 2017, 2018; Wang H. et al., 2019).
This experiment demonstrates the limitations of traditional 3D
CNN models’ learning capacity on NMOSD and MS datasets.
The resulting diagram also showed that the accuracy of models
changed rapidly, indicating the convergences in the training
phase. In contrast, the validation phase’s unsatisfactory validation
performances of baseline model showed that the generalization
ability of the 3D ResNet was not ideal.

Overall, the experimental results indicated that our models
have higher prediction performance, as embodied in higher
validation accuracy. It also reflected that our model needs less
time to train. The best performance was achieved when the model
was pretrained on ImageNet datasets.

Comparing Different Models
To compare the differences in performance between different
models, we repeated the experiment 15 times. Table 2
shows the statistical test results. Table 3 shows the model
complexity statistics.

The experimental results show that our model was better
than traditional 3D CNNs and non-pretrained models, as the
best accuracy, sensitivity and specificity of our models on the
validation dataset was 0.75, 0.707 and 0.759 when the depth of
our model was 18 layers. The performance of our pretrained
model was improved comparing with the 3D baseline and
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TABLE 2 | Average performance comparison between different models.

Model Accuracy (mean ± std) Sensitivity (mean ± std) Specificity (mean ± std)

Pretrained ResNet-18(ours) 0.750 ± 0.02 0.707 ± 0.09 0.759 ± 0.06

Pretrained ResNet-34(ours) 0.725 ± 0.01 0.708 ± 0.08 0.719 ± 0.11

No-pretrained ResNet-18 0.696 ± 0.01 0.689 ± 0.09 0.707 ± 0.07

No-pretrained ResNet-34 0.690 ± 0.04 0.653 ± 0.15 0.706 ± 0.09

3D ResNet-18 0.669 ± 0.02 0.694 ± 0.06 0.661 ± 0.06

3D ResNet-34 0.689 ± 0.04 0.701 ± 0.07 0.657 ± 0.07

no-pretrained models, it indicates that both the compression
block and pretrained datasets were beneficial for performance
and generalization ability improvement. When we applied the
compression block, the sample space of the image was effectively
reduced, and the intrinsic features of images were easier to
extract. Table 2 demonstrates that our model needs fewer
parameters and less training time.

DISCUSSION

In this paper, we used deep learning models to automatically
process WMH segmentation T2-FLAIR images to distinguish
NMOSD from MS automatically, and none of the approaches
had manual interventions. Previous studies based on 3D deep
learning models focused on diseases with large data sets and
concentrated lesions, for example, AD and tumors. Using 3D-
CNN to process 3D T2-FLAIR images is indeed in line with
people’s intuition. However, since 3D-CNN increases the number
of parameters, the model will be low learning efficiency on
the training data when the data sets is limited. Especially,
the overlapping lesion increase the difficulty for training the
model, which makes the generalization ability of the traditional
3D models is weak. The experimental result also shows that
the traditional 3D CNN model lacks the learning capacity for
NMOSD and MS MRI T2-FLAIR images. There are some reasons
for those results:i) The data set size was limited because of
the disease’s rareness, which means the model did not feed in
abundant data to be generalized. ii) The sample space was too
large due to the wide distribution of lesions. iii) Only about
half of the NMOSD patients have typical brain lesions, and the
brain lesion distribution of NMOSD and MS have overlap in
lesion localization (Cacciaguerra et al., 2019). Transfer learning
is a widely used technique that allows the model to have a
better initial parameter, which will enhance the performance
of the model, especially for dealing with small sample data.
Currently, there is no 3D pre-trained model available to apply to

TABLE 3 | Complexity comparison between different models.

Model Parameters Training Time(s/epoch)

ResNet-18(ours) 11,475,330 5

ResNet-34(ours) 21,583,490 6

3D ResNet-18 33,161,986 16

3D ResNet-34 63,471,618 23

NMOSD and MS T2-FLAIR images. In Experiment 2, our model
compressed the 3D data and then did fine-tuning to effectively
improve the performance, which also proved that models pre-
trained on ImageNet datasets have better generalization ability
for medical images. Our model effectively reduced the sample
space dimension and reduced parameter amount, making the
model much more easily to train and increase the generalization
ability of our model.

This study has some limitations. First, distinguishing NMOSD
from MS by automatic WMLs segmentation is a great challenge
because of their variability and scattered spatial distribution.
In this study, three high error rate cases disagreed with the
necessary diagnostic categories due to imprecise segmentation.
The outliers had lesions that were part of a confluence of lesions
or were located very close to the ventricles, which are extremely
difficult for automatic quantification, and semimanual lesion
outline correction will be conducted in our next study. Second,
the AQP4-IgG seronegative NMOSD patients were not excluded
from this study to avoid introducing demographic information
bias. However, it is a clinical challenge to distinguish AQP4-IgG
seronegative NMOSD from atypical MS. The mean proportion of
agreement for diagnosing the two diseases was low among expert
clinicians (Po = 0.5) (Wingerchuk et al., 2015), which means
the AQP4-IgG seronegative NMOSD subjects might increase the
difficulties in the classification of these two diseases. Besides,
MS subjects with lesions mimicking stroke were also likely to
be mistaken as NMOSD. Third, the prevalence of NMOSD is
approximately 0.52–4.4 per 100,000 individuals (Wingerchuk
et al., 2007); thus, only a small sample size was recruited in this
pilot study, bringing challenges for deep learning models.
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Background: Radiomics refers to the extraction of a large amount of image information

from medical images, which can provide decision support for clinicians. In this study,

we developed and validated a radiomics-based nomogram to predict the prognosis of

colorectal cancer (CRC).

Methods: A total of 381 patients with colorectal cancer (primary cohort: n = 242;

validation cohort: n = 139) were enrolled and radiomic features were extracted from

the vein phase of preoperative computed tomography (CT). The radiomics score was

generated by using the least absolute shrinkage and selection operator algorithm

(LASSO). A nomogram was constructed by combining the radiomics score with

clinicopathological risk factors for predicting the prognosis of CRC patients. The

performance of the nomogram was evaluated by the calibration curve, receiver operating

characteristic (ROC) curve and C-index statistics. Functional analysis and correlation

analysis were used to explore the underlying association between radiomic feature and

the gene-expression patterns.

Results: Five radiomic features were selected to calculate the radiomics score by using

theLASSOregressionmodel. TheKaplan-Meieranalysis showed that radiomicsscorewas

significantly associated with disease-free survival (DFS) [primary cohort: hazard ratio (HR):

5.65, 95%CI: 2.26–14.13,P< 0.001; validation cohort: HR: 8.49, 95%CI: 2.05–35.17,P

< 0.001]. Multivariable analysis confirmed the independent prognostic value of radiomics

score (primary cohort: HR: 5.35, 95% CI: 2.14–13.39, P < 0.001; validation cohort: HR:

5.19, 95% CI: 1.22–22.00, P = 0.026). We incorporated radiomics signature with the

TNM stage to build a nomogram, which performed better than TNM stage alone. The

C-index of the nomogram achieved 0.74 (0.69–0.80) in the primary cohort and 0.82

(0.77–0.87) in the validation cohort. Functional analysis and correlation analysis found

that the radiomic signatures were mainly associated with metabolism related pathways.

Conclusions: The radiomics score derived from the preoperative CT image was

an independent prognostic factor and could be a complement to the current staging

strategies of colorectal cancer.

Keywords: radiomics, colorectal cancer, prognosis, nomogram, metabolism
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INTRODUCTION

Colorectal cancer (CRC) is one of the most common cancers
and ranks as the third cause of cancer-related mortality
worldwide (Siegel et al., 2020). Even with the recent progress in
cancer treatment, the 5 years overall survival of CRC remains
<60% (Moghimi-Dehkordi and Safaee, 2012). Traditionally, the
treatment regime of colorectal cancer was mainly determined
according to clinicopathological factors, such as the TNM stage,
tumor size, differentiated grade, which didn’t fully consider the
heterogeneity of tumors. The emergence of gene expression-
based molecular biomarkers has brought hope for the precision
treatment of colorectal cancer in the past decade, but the high
cost and long detection time limited its clinical application. In
recent years, the medical images, which were routinely detected
in clinical practice, have emerged to be promising biomarkers for
cancer treatment and management.

Radiomic is a multidisciplinary approach concerning the
quantification of medical images, like CT and magnetic
resonance imaging (MRI). By transforming medical images into
high-dimensional quantitative feature data, radiomics have been
successfully used in some medical researches, such as tumor
genetic analysis, lesions qualitative, curative effect evaluation
and prognosis prediction (Kumar et al., 2012; Lambin et al.,
2017; Limkin et al., 2017). Typical radiomic features describe
the tissue or lesion characteristics, such as tumor shape,
tumor texture, which can provide abundant information for
tumor assessment. Compared with traditional clinical diagnosis
methods, radiomics has the advantages of cheap, non-invasive,
and quantifiable.

Several studies have demonstrated that radiomics analysis
combined with clinicopathological information can largely
contribute to guiding treatment decisions. Huang Y. Q.
et al. (2016) developed a radiomic nomogram incorporating
clinical risk factors for preoperative prediction of lymph
node metastasis in patients with colorectal cancer. Similarly,
CT-based radiomics signature in colorectal cancer shows
considerable potential discrimination in preoperative staging
(Liang et al., 2016). Kim et al. (2015) reported that some
distinct features extracted from CT images can significantly
discriminate differentiated grades on colorectal adenocarcinoma.
In terms of prognostic evaluation, radiomic features are
regarded as independent biomarkers for assessing disease-
free survival in patients with early NSCLC. By combining
with traditional staging systems and other clinicopathological
risk factors, the radiomics signature achieved more effective
performance (Huang Y. et al., 2016). Farhidzadeh et al. (2016)
found that the radiomic features extracted from MRI images
in patients with nasopharyngeal carcinoma (NPC) embody
the heterogeneity of the tumor, showing high recurrence
prediction in two groups patients. In addition, it has been
reported that radiomic features based on CT images may
correlate with genomics data underlying clinical outcomes
(Segal et al., 2007; Aerts et al., 2014). Therefore, analyzing
image radiomic features and excavating the hidden biological
information have become a promising direction of image
biomarkers research.

In this study, we aimed to develop and validate a radiomics-
based nomogram to predict the postoperative outcome of
colorectal cancer patients. RNA-seq data from the colorectal
cancer subproject (COCC, Clinical Omics Study of Colorectal
Cancer in China) of the ICGC-ARGO project (The International
Cancer Genome Consortium-Accelerating Research in Genomic
Oncology) were used to explore the underlying biological
interpretation of the radiomic signature.

MATERIALS AND METHODS

Data Collection
A total of 381 patients with colorectal cancer from The Sixth
Affiliated Hospital of Sun Yat-sen University were enrolled in
this study. Our study was approved by the Medical Ethics
Committee of the Sixth Affiliated Hospital of Sun Yat-sen
University. Patients admitted during 2007–2011 were assigned to
the primary cohort (n = 242), while patients admitted during
2012–2015 were assigned to the validation cohort (n = 139).
Fifty three patients of 381 patients were enrolled in the COCC
project, so they have paired image data and RNA sequencing
data. All the CT images are DICOM (Digital Imaging and
Communications in Medicine) format from the image archiving
and storage system of the Six Affiliated Hospital of Sun Yat-sen
University. Baseline clinicopathological information containing
age, gender, differentiated grade, lymph node metastasis and
carcinoembryonic antigen (CEA, normal < 5 ng/ml, abnormal
> 5 ng/ml) were also derived from the hospital archives. Region
of interest (ROI) was manually delineated on the tumor outline
by skilled doctors using the ITK-snap (Version 3.2). A total of
107 radiomic features were generated using pyradiomics (van
Griethuysen et al., 2017) package in python 2.7 platform.

Model Construction
Z-score normalization for radiomic features was used to increase
comparability. Only features with high intensity were retained for
the following analyses. The least absolute shrinkage and selection
operator (LASSO) with cox regression was used to construct the
radiomic signature and calculate the radiomics score (Rad-score).
A nomogram was constructed by incorporating the radiomics
score with clinicopathological risk factors. The performance of
the nomogram was evaluated by the calibration curve, receiver
operating characteristic (ROC) curve and C-index statistics.

Correlating the Radiomic Features With
Gene Expression Data
To explore the association between the radiomic features and
the underlying biological mechanism, we conducted a correlation
analysis between radiomic features and cancer-related hallmarks.
DeepCC (Gao F. et al., 2019) was used to calculate the
enrichment score of hallmarks of cancer for each patient. The
Pearson’s correlation coefficient between each hallmark and
radiomic feature was calculated. Hallmarks that have a significant
correlation with at least one radiomic feature were displayed in
the heatmap.
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Statistical Analysis
All statistical analyses were performed by R software (version
3.6.1). Time-dependent ROC curve was used to determine the
optimal cut-off value of the radiomics score by “survivalROC”
(Heagerty et al., 2000), which can divide patients into different
risk groups. The R package “glmnet” was used to perform
the LASSO-cox regression analysis (Friedman et al., 2010).
Kaplan-Meier curves and log-rank tests were used to perform
survival analysis. The primary outcome is disease-free survival
(DFS). Univariable and multivariable analyses were performed
by the cox proportional hazards regression model. Nomogram
incorporating Rad-score with clinicopathologic factors was built
by the “rms” packages (Harrell, 2016). The two-sided value of P
< 0.05 was considered statistical significance in all analyses.

RESULT

Features Selection and Model
Construction
In the preprocessing step, radiomic features were first scaled
with z-score normalization in the primary and validation cohort.
The average signal values of each feature in different patients
were calculated and compared. We only retained 85 features
(80% of 107 features) with higher signal intensity for subsequent
modeling. Further, LASSO-cox regression was applied to select
5 features with non-zero coefficients (Figure 1A). Radiomics
score was calculated by a linear combination of non-zero
coefficients, which was multiplied by the 5 features vectors in
the primary and validation cohort, respectively. The radiomics
scores of all patients were displayed in Supplementary Table 1.

FIGURE 1 | Selecting the radiomic features and the optimal cut-off point. (A) 5 radiomic features with non-zero coefficients were selected by using the LASSO

algorithm. (B) The optimal cut-off point was determined by the time-dependent ROC curve.

TABLE 1 | Baseline characteristic of patients in the primary and validation cohort.

Primary cohort (n = 242) Validation cohort (n = 139)

Level Low risk High risk P Low risk High risk P

n 73 169 35 104

Patients with

survival data (n)

73 168 35 103

Sex (%) F 46 (63.0) 61 (36.1) <0.001 19 (54.3) 40 (38.5) 0.15

M 27 (37.0) 108 (63.9) 16 (45.7) 64 (61.5)

Age [mean (SD)] 71.6 (13.2) 68.8 (14.8) 0.16 65.3 (14.8) 64.0 (12.6) 0.63

Differentiation

grade (%)

High 18 (25.0) 45 (31.2) 0.15 10 (28.6) 27 (27.3) 0.54

Moderate 50 (69.4) 82 (56.9) 19 (54.3) 46 (46.5)

Low 4 (5.6) 17 (11.8) 6 (17.1) 26 (26.3)

TNM stage (%) I 9 (12.3) 8 (4.7) 0.02 9 (25.7) 7 (6.9) <0.01

II 23 (31.5) 68 (40.2) 14 (40.0) 33 (32.4)

III 32 (43.8) 54 (32.0) 10 (28.6) 34 (33.3)

IV 9 (12.3) 39 (23.1) 2 (5.7) 28 (27.5)

CEA (%) Low (<5 ng/ml) 52 (71.2) 110 (65.1) 0.43 27 (79.4) 59 (57.3) 0.04

High (>5 ng/ml) 21 (28.8) 59 (34.9) 7 (20.6) 44 (42.7)

Lymph node

metastasis (%)

No 34 (46.6) 82 (48.5) 0.89 23 (65.7) 48 (46.2) 0.07

Yes 39 (53.4) 87 (51.5) 12 (34.3) 56 (53.8)
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The calculation process was presented in the following formula:

Rad − score = original_shape_Maximum2DDiameterRow× 0.075

+original_firstorder_RobustMeanAbsoluteDeviation × (−0.070)

+original_glrlm_LongRunLowGrayLevelEmphasis× 0.029

+original_glrlm_RunVariance× 0.028

+original_glszm_SizeZoneNonUniformityNormalized× 0.116

High Radiomics Score Was Associated
With Poor Outcome in Colorectal Cancer
Patients
The optimal cut-off of Rad-score was determined by the time-
dependent ROC curve. Based on the threshold, the patients
were divided into the high-risk (>-0.077) and low-risk (<-
0.077) groups (Figure 1B). Patients’ clinical characteristics in
the primary and validation cohort were presented in Table 1.
Survival analysis revealed a significant association between

radiomics score and DFS in the primary cohort (HR: 5.65, 95%
CI: 2.26–14.13, P < 0.001) and validation cohort (HR: 8.49, 95%
CI: 2.05–35.17, P < 0.001) (Figure 2). Patients with a high Rad-
score showed a significantly poor outcome. To adjust for the
confounding effect of clinicopathological factors, the Rad-score,
sex, age, carcinoembryonic antigen (CEA) level, differentiation
grade, and TNM stage were added into the multivariable analysis
(Table 2). Multivariable analysis demonstrated that Rad-score
was an independent prognostic predictor of recurrence in the
primary cohort (HR: 5.35, 95% CI: 2.14–13.39, P < 0.001) and
validation cohort (HR: 5.19, 95% CI: 1.22–22.00, P = 0.026).

Construction and Performance of the
Radiomics Nomogram
Subsequently, based on the results of the multivariable analysis,
a nomogram was developed combining the Rad-score and
TNM stage (Figure 3A). To illustrate the performance of the
nomogram prediction, calibration curves were used to evaluate
the degree of fitting between the nomogram and the actual

FIGURE 2 | Survival analysis for radiomics score. The distribution of radiomics score in colorectal cancer and its correlation with recurrence status in the primary (A)

and validation cohort (C). Kaplan-Meier curves showed a significant association between Rad-score groups and disease-free survival (DFS) in the primary cohort (B)

and validation cohort (D).
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TABLE 2 | Univariable and multivariable analysis of clinical factors in the primary and validation cohort.

Primary cohort Validation cohort

Univariable analysis Multivariable analysis Univariable analysis Multivariable analysis

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

Rad-score 5.65 (2.26–14.13) <0.001 5.35 (2.14–13.39) <0.001 8.49 (2.05–35.17) <0.001 5.19 (1.22–22.00) 0.03

Sex 1.26 (0.74–2.12) 0.39 1.41 (0.75–2.67) 0.28

Age 1.00 (0.98–1.02) 0.76 0.99 (0.96–1.01) 0.27

CEA 2.01 (1.20–3.36) <0.01 1.25 (0.72–2.16) 0.43 2.55 (1.37–4.76) <0.01 0.96 (0.49–1.86) 0.90

Differentiated grade 1.12 (0.69–1.79) 0.65 1.87 (1.20–2.92) <0.01 1.80 (1.12–2.89) 0.02

TNM stage 2.51 (1.79–3.52) < 0.001 2.30 (1.62–3.28) <0.001 4.82 (3.04–7.63) <0.001 4.82 (2.86–8.13) <0.001

FIGURE 3 | The developed nomogram incorporated Rad-score with TNM stage in the primary cohort. (A) The length of the coordinates for the prognostic factor was

determined by the coefficient in the regression model. For every patient, the total score was calculated by summing every variable score. The probability of

disease-free survival was derived from the mapping relationship between the evaluation results and total score on specified patient survival time. (B–E) Calibration

curves of Rad-score based nomogram for 3 year DFS and 5 year DFS in the primary (B,C) and validation cohort (D,E). The blue dot line is on the diagonal of the

figure, indicating a complete fitting between the prognostic model and the actual data. The solid line illustrated the degree of fitting between model prediction and

actual survival probability.
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FIGURE 4 | Comparison of the survival discriminative ability between Rad-score based nomogram and clinicopathological factor in the primary cohort (A) and

validation cohort (B).

FIGURE 5 | The association between radiomic features and gene expression profiles. For every patient, the enrichment scores of cancer related hallmarks were

calculated by DeepCC package. The color block in the heatmap represent the value of Pearson’s correlation coefficient between each hallmark and radiomic

signature. The hallmarks significantly associated with radiomic features (P < 0.05) are marked with “*” in the heatmap.
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outcome of patients. The results showed that our nomogram
showed good concordance between the predictive and actual
survival probability in the primary (Figures 3B,C) and the
validation cohort (Figures 3D,E). The C-index of the nomogram
achieved 0.74 (0.69–0.80) in the primary cohort and 0.82
(0.77–0.87) in the validation cohort. To further confirm the
effectiveness of the nomogram, we applied the receiver operating
characteristic (ROC) to evaluate the discriminative ability of the
nomogram for the 5 year DFS. The results showed that the
area under curve (AUC) values of Rad-score incorporating the
TNM stage reached 0.734 and 0.86 in the primary and validation
cohort, respectively, outperforming the result of using the TNM
stage alone (Figure 4).

Radiomics Features Were Mainly
Associated Metabolism-Related Pathway
To explore the association between radiomic features and the
underlying biology mechanism, we performed the correlation
analysis between the enrichment score of hallmarks and the 5
radiomics features. Gene expression data from 53 patients who
have paired image data and RNA sequencing data were used to
calculate the enrichment score of hallmarks by DeepCC. The
pathways were selected according to the significant association
with the radiomics signatures (Figure 5). Typically, the radiomics
signatures showed significant enrichment in some metabolic
pathways, such as protein secretion, glycolysis, hememetabolism,
xenobiotic metabolism, adipogenesis.

DISCUSSION

Medical image analysis is a popular issue for precision therapy,
which provides non-invasive information for clinical practice
and treatment guidance. However, traditional medical image
analysis can only find low throughput features or qualitative
information manually by radiologists. Recent progress in
machine learning enables researchers to extract high dimensional
data quickly and quantitatively by radiomics. In this study,
we used the radiomic features extracted from the CT image
to predict the outcome of CRC patients. Survival analysis
showed that high radiomics score was significantly associated
with poor outcomes. Univariable and multivariable analyses
confirmed the independent prognostic value of radiomic
signature. Subsequently, the radiomics based nomogram was
developed to predict the DFS, which showed better performance
than using the TNM stage alone. Correlation analysis with
gene expression profiles revealed that radiomic signature was
mainly associated with metabolism-related pathways. Taken
together, our results suggested that radiomic signature could
be a supplement to the TNM stage for risk stratification of
CRC patients.

Although the traditional gene expression-based molecular
biomarkers have achieved good performance in many risks
predicting tasks of colorectal cancer, there are still some
difficulties that limit its clinical application (Walther et al.,
2009; Kandimalla et al., 2018, 2019). Genetic test not only
requires additional cost and time but also depend on the

postoperative detection on pathological samples, whichmay limit
the preoperative treatment intervention. These problems can
be avoided by using medical image-based biomarkers. Recent
progress in deep learning has generated a series of the image-
based model with high accuracy and good performance (Kather
et al., 2019; Lu et al., 2020; Skrede et al., 2020). However,
a tricky problem of deep learning-based image model is the
insufficiency of interpretation, which may raise concerns about
its safety and limit its clinical application (Gordon et al.,
2019). In contrast, radiomics is more interpretable and less
dependent on sample size, which makes it easier to transform
into clinical practice. Several studies have successfully use
radiomics for individualized risk prediction of colorectal cancer
(Liu et al., 2017, 2020). Furthermore, integration analysis of
radiomics and gene expression profiles can provide deeper
biological interpretation. Our results showed that the radiomics
signatures showed significant enrichment in some metabolic
pathways, which is an importantmechanism for colorectal cancer
initiation and progression (Satoh et al., 2017; Gao X. et al.,
2019; Tang et al., 2019; La Vecchia and Sebastián, 2020). This
indicated that the change of tumor metabolic status may cause
morphological change on the image, which could be captured by
radiomics features.

Our study not only established a robust radiomics-based
nomogram for prognosis prediction of CRC, but also provided
biological interpretation by correlation with gene expression
profiles. However, there are still some limitations in our study.
For example, the image and clinical data are collected from a
single center, which may challenge the generalization of our
model. Besides, as a retrospective study, the evidence level might
be not enough. Prospective multicenter validation would be
needed in future studies.

In conclusion, we proposed the Rad-score extracted from
CT images as an independent prognostic factor for colorectal
cancer. We incorporated Rad-score with the TNM stage to
build a nomogram, which outperformed than TNM stage alone,
indicating that the Rad-score can be complementary to the
current staging strategies of CRC patients. As a non-invasive
biomarker, our radiomics-based model can also provide a way of
preoperative evaluation, which is helpful for clinical intervention.
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Cryo-electron Tomography (cryo-ET) generates 3D visualization of cellular organization

that allows biologists to analyze cellular structures in a near-native state with nano

resolution. Recently, deep learning methods have demonstrated promising performance

in classification and segmentation of macromolecule structures captured by cryo-ET,

but training individual deep learning models requires large amounts of manually labeled

and segmented data from previously observed classes. To perform classification and

segmentation in the wild (i.e., with limited training data and with unseen classes),

novel deep learning model needs to be developed to classify and segment unseen

macromolecules captured by cryo-ET. In this paper, we develop a one-shot learning

framework, called cryo-ET one-shot network (COS-Net), for simultaneous classification

of macromolecular structure and generation of the voxel-level 3D segmentation, using

only one training sample per class. Our experimental results on 22 macromolecule

classes demonstrated that our COS-Net could efficiently classify macromolecular

structures with small amounts of samples and produce accurate 3D segmentation at

the same time.

Keywords: one shot learning, cryo-ET, macromolecule classification, macromolecular segmentation, attention

1. INTRODUCTION

Cryo-Electron Tomography (cryo-ET) has made possible the observation of cellular organelles and
macromolecular structures at nano-meter resolution with native conformations (Lučić et al., 2013).
Without disrupting the cell, cryo-ET can visualize both known and unknown cellular structures
in situ1 and reveals their spatial and organizational relationships (Oikonomou and Jensen, 2017).
Using cryo-ET, it is possible to capture 3D structural information of diverse macromolecular
structures inside a given scanned sample.

To analyze the macromolecular structures in cryo-ET, two major subsequent steps need to
occur. First, we need to extract the subtomograms2 and average those that belong to the same
macromolecular class, in order to generate a high Signal-to-Noise Ratio (SNR) subtomogram for
clear visualization (Zhang, 2019). Second, it is desirable to obtain the macromolecule segmentation
in subtomograms to analyze the macromolecular structure parameters such as size distribution and

1At their original locations.
2Small cubic subvolumes containing one macromolecular structure.
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shape. However, the macromolecular structures are highly
heterogeneous and contain large quantities of subtomograms. In
the past, biologists would spend large amounts of time on a set
of tomograms to manually classify and segment subtomograms,
but manual annotation is time-consuming and susceptible to
the biases of individual biologists. Therefore, it is desirable to
automatically classify the extracted subtomograms into subset
of macromolecule with similar structure, and automatically
generate the macromolecular segmentation.

To automate the process as well as to achieve objective
analysis, deep learning methods for classification (Che et al.,
2017; Xu et al., 2017; Guo et al., 2018; Zhao et al., 2018;
Li et al., 2019, 2020) and segmentation (Chen et al., 2017;
Liu et al., 2018; Zhou et al., 2018) have been developed
for cryo-ET. Xu et al. (2017) proposed to use Inception3D
network and DSRF3D network for cryo-ET subtomogram
classification. Then, Chen et al. (2017) further improved the
DSRF3D network with residual connection design. Guo et al.
(2018) developed a cryo-ET classification model compression
technique to reduce the model size while maintaining the
classification performance. Zhao et al. (2018) developed a
classification model visualization technique for explaining the
model’s attention on the classified subtomograms. For cryo-
ET segmentation, Che et al. (2017) utilized independent
2D CNNs for cryo-ET tomogram components segmentation.
Liu et al. (2018) built a SSN3D net for subtomogram
segmentation via supervised training with large amounts of
segmentation data. While previous deep learning models on
cryo-ET improved the accuracy and efficiency on classification
and segmentation, there are still two major bottlenecks:
(1) as supervised classification methods, previous algorithms
still require large amount of manually annotated training
data for deep model’s training, and (2) previous algorithms
need to be trained again to apply to a new dataset of
different classes. The open question is: Is it possible to design
a generalizable cryo-ET subtomogram classification model
that requires only a small reference dataset (such as one
manually picked sample in each class) and match the given
subtomogram to a reference class, while performing generalizable
subtomogram segmentation?

Inspired by one-shot learning models which aim to learn
information about object categories from one, or only a few
training images (Fe-Fei et al., 2003; Koch et al., 2015), In this
work, we develop a Cryo-ET One-Shot Network (COS-Net)
that is able to (1) classify macromolecular structure using only
a very small amount of samples, (2) simultaneously segment
structural regions in a subtomogram based on the classification
network, and (3) be readily and directly applied to classify and
segment novel structures without needing to be re-trained. Using
our COS-Net, biologists can classify and segment thousands of
subtomograms by only manually picking a few representative
subtomograms as support classes.When there is a need to classify
new subtomogram datasets with novel structures, the support
classes can be readily changed to accommodate without the need
to train the model again. Moreover, unlike previous one-shot
learning and few-shot learning algorithms that only address the
classification task, our COS-Net can generate both classification

and 3D segmentation with application in 3D imaging data
of cryo-ET.

Our COS-Net is a Siamese network with pairs of volume
encoders, volume decoders, and feature encoders. Given a
support set of subtomograms and a target subtomogram,
volume encoders first extract the volume’s feature presentations.
Then, the feature encoders transform the feature presentations
for the next stage: one-shot learning. In the meantime, the
volume decoders decode the feature presentations to generate
the coarse attention/segmentation of the subtomograms. Our
COS-Net with additional attention guidance from segmentation
information allows better feature embedding for one-shot
learning, and thus could provide better one-shot classification
performance. During the test stage, we also developed a
customized subtomogram processing pipeline to refine the coarse
attention/segmentation from COS-Net based on 3D Conditional
Random Field (3D-CRF) (Krähenbühl and Koltun, 2011).
Our experimental results demonstrated that our method can
effectively classify observed or novel macromolecular structures
and produce accurate segmentation mask.

2. METHODS

The general structure of our COS-Net is shown in Figure 1.
The COS-Net is a Siamese network with two encoding-decoding
streams. First, each stream consists of one volume encoder, one
volume decoder, and one feature encoder. The volume encoders,
volume decoders, and feature encoders shared weights between
the dual streams. The design of our volume encoders, volume
decoders, and feature encoders are illustrated in Figure 2 and are
discussed in detail in our next section. Denoting the input for the
upper stream as XS that is our support set with dimensions of
N × K, where N is the number of classes and K is sample per
class, support set XS consists ofN classes of macromolecules with
K samples per class. In our one-shot learning scheme, K = 1.
The upper volume encoder takes the support set XS as input and
generates the latent representation of the support set with:

FS1 = PVE(XS) (1)

where FS1 is the latent representation of the support set XS and
PVE is the volume encoder function. Then, the support set’s
latent representations FS1 are simultaneously fed into the volume
decoder PVD and feature encoder PFE:

MS = PVD(FS1 ) (2)

FS2 = PFE(FS1 ) (3)

where MS is the predicted segmentation of the support set, and
FS2 is the feature for next stage one-shot learning. Similarly,
denoting the input for the lower stream as XT that is our target
set with dimensions of 1 × K, target set XT consists of 1 classes
of macromolecules with K samples per class. In our one-shot
learning scheme, K = 1. Similarly, the same volume encoder
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FIGURE 1 | Illustration of our Cryo-ET One-Shot Network (COS-Net) structure. The data input consists of subtomogram support set and target subtomogram. The

network consists of pairs of volume encoders PVE , volume decoder PVD, and feature encoder PFE with details illustrated in Figure 2.

PVE takes the target set XT as input and generates the latent
representation of the target set with:

FT1 = PVE(XT) (4)

where FT1 is the latent representation of the target set XT . Then,
the target set’s latent representations FT1 are simultaneously fed
into the shared weights volume decoderPVD and feature encoder
PFE:

MT = PVD(FT1 ) (5)

FT2 = PFE(FT1 ) (6)

whereMT is the predicted segmentation of the target set, and FT2
is the feature for next stage one-shot learning. Given the features
FS2 from support set and the features FT2 from target set, we
compute the L1 distance between the features to calculate the
similarity between the support set features FS2 and the target set
features FT2 with:

Fdis = |FS2 − FT2 | (7)

where Fdis is the feature distance. Fdis is then input into a fully
connected layer followed by a softmax function:

Fout = softmax(Pfinal(Fdis)) (8)

where Fout is the final output with one-shot prediction indicating
that the target data matches with which specific class in the
support set.

Sub-networks Design: We use a 512 × 512 fully connected
layer as our feature encoder. The volume encoder and decoder
design are shown in Figure 2. Our volume encoder and
volume decoder consist of three level of 3D convolution
layers. Unlike conventional convolutional encoder and decoder,
we concatenate a Dual Squeeze-and-Excitation (DuSE) block
at each level’s output in order to re-calibrate the features
channel-wise and spatial-wise. More specifically, as illustrated
in Figure 2 bottom right, our DuSE block contains two 3D
Squeeze-and-Excitation branches for spatial-Squeeze-channel-
Excitation (scSE) and channel-Squeeze-spatial-Excitation (csSE),
respectively (Hu et al., 2018; Roy et al., 2018).

For scSE, we spatial-wise squeeze the input feature map using
global average pooling, where the feature map is formulated
as F = [f1, f2, . . . , fC] here with fn ∈ R

H×W×D denoting the
individual feature channel. We flatten the global average pooling
output, generating v ∈ R

C with its z-th element:

vz =
1

H ×W × D

H
∑

i

W
∑

j

D
∑

k

fz(i, j, k) (9)
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FIGURE 2 | Architectures of our volume encoder and volume decoder in Figure 1. The Dual Squeeze-and-Excitation (DuSE) block is illustrated on the bottom right.

where vector v embeds the spatial-wise global information.
Then, v is feed into two fully connected layers with weights of

w1 ∈ R
C
2 ×C and w2 ∈ R

C× C
2 , producing the channel-wise

calibration vector:

v̂ = σ (w2η(w1v)) (10)

where η and σ are the ReLU and Sigmoid activation
function, respectively. The calibration vector is applied to
the input feature map using channel-wise multiplication,
namely channel-Excitation:

F̂sc = [f1v̂1, f2v̂2, . . . , fCv̂C] (11)

where v̂i indicates the importance of the i-th feature channel
and lies in [0, 1]. With scSE embedded into our network, the
calibration vector adaptively learns to emphasize the important
feature channels while playing down the others.

In csSE, we formulate our feature map as F =

[f 1,1,1, . . . , f i,j,k, . . . , fH,W,D], where f i,j,k ∈ R
C indicates

the feature at spatial location (i, j, k) with i ∈ {1, . . . ,H},
j ∈ {1, . . . ,W}, and k ∈ {1, . . . ,D}. We channel-wise squeeze
the input feature map using a convolutional kernel with weights
of w3 ∈ R

1×1×1×C×1, generating a volume tensor m = w3 ⊛ F
with m ∈ R

H×W×D. Each f i,j,k is a linear combination of all
feature channel at spatial location (i, j, k). Then, the spatial-wise
calibration volume that lies in [0, 1] and can be written as:

m̂ = σ (m) = σ (w3 ⊛ F) (12)

where σ is the Sigmoid activation function. Applying the
calibration volume to the input feature map, we have:

F̂cs = [f 1,1,1m̂1,1,1, . . . , f i,j,km̂i,j,k, . . . , fH,W,Dm̂H,W,D] (13)

where calibration parameter of m̂i,j,k provides the relative
importance of a spatial information of a given feature map.
Similarly, with csSE embedded into our network, the calibration
volume learns to stress the most important spatial locations while
ignores the irrelevant ones.
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Finally, channel-wise calibration and spatial-wise calibration
are combined via element-wise addition: FDuSE = F̂sc + F̂cs.
With the two SE branch fusion, feature at (i, j, k, c) possess high
activation only when it receives high activation from both scSE
and csSE. Our DuSE encourages the networks to re-calibrate the
feature map such that more accurate and relevant feature map
can be learned.
Training Strategy and Losses: We design a customized training
strategy to train our COS-Net, such that the training procedure
matches the inference at test time. Specifically, two support set
are randomly generated during the training procedure. Within
N classes, the same n classes are randomly sampled for each
support set. 1 subtomogram is randomly sampled from these
classes to form a n-way-1-shot scheme. The ground-truth one-
shot classification label is generated by matching the class labels
from the two support set, i.e., 1 for matched class label and 0 for
unmatched class label.

Our training loss consists of two parts, including a Binary
Cross Entropy (BCE) loss for one-shot classification learning
and a Dice Similarity Coefficient (DSC) loss for one-shot
segmentation. Denoting the ground-truth one-shot classification
label as Fgt , the BCE loss can be written as:

Lbce = −Fgt log(Fout)− (1− Fgt)log(1− Fout) (14)

Denoting the ground-truth subtomogram segmentation for the
two support set as Mgt1 and Mgt2, the segmentation loss can be
written as:

Ldsc = 2−
2× |Mgt1

∩MS1 |

|Mgt1
| + |MS1 |

−
2× |Mgt2

∩MS2 |

|Mgt2
| + |MS2 |

(15)

where MS1 and MS2 are the predicted segmentation from COS-
Net. The total loss thus can be formulated as:

Ltot = Ldsc + Lbce (16)

In testing, one of the support sets during training can be replaced
with the target subtomogram for direct inference.
Attention-guided Segmentation: The segmentation predicted
from COS-Net is a probability distribution, which is used for
guiding our final segmentation. Specifically, the volume decoder’s
output is a probability distribution ranging between 0 and 1.
We use a 3D Conditional Random Field (CRF) to refine and
generate the final 3D subtomogram segmentation. The CRF aims
to optimize the following objective function:

E(x) =
∑

i

ψu(xi)+
∑

i,j

ψp(xi, xj) (17)

where ψu is the unary potential that encourages the CRF output
to be loyal to the probability distribution from the COS-Net. ψp

is the pairwise potential between label on voxel i and j and can be
expanded as:

ψp = µ(xi, xj)

[

w1exp

(

−
|pi − pj|

2

2σ 2
α

−
|Ii − Ij|

2

2σ 2
β

)

+w2exp

(

−
|pi − pj|

2

2σ 2
γ

)]

(18)

where µ(xi, xj) is the compatibility transformation and depends
on the labels xi and xj such that µ(xi, xj) = 1 if xi 6= xj, and
0 otherwise. Ii and Ij are the intensity value at voxel location i
and j. pi and pj are the spatial coordinates of voxel i and j. w1,
w2, σα , σβ , and σγ are learnable parameters for CRF. This term
penalizes pixels with similar position p and intensity x but with
different label.

3. EXPERIMENTS AND RESULTS

3.1. Data Preparation
We prepared a realistically simulated dataset with known
macromolecular structures by reconstructing the tomographic
image using the projection images (Pei et al., 2016). The limiting
factors of cryo-ET, such as noise, missing wedge, and electron
optical factors (Modulation Transfer Function, Contrast Transfer
Function) were all properly included. The simulation process
mimicked the experimental cellular sample imaging condition
and tomographic reconstruction process. We took into account
the randomness of macromolecule structural poses. The packed
volume containing macromolecular structures were projected to
a series of 2D projection images with specified tilt angle steps. The
resulting projection images were convolved to include optical
factors and then back-projected to obtain the reconstructed 3D
simulated tomogram. 22 distinct macromolecular structures are
chosen from the Proterin Databank (PDB) with their PDB ID
information (Berman et al., 2000) of atomic coordinates and
connectivity, and secondary structure assignments. We choose
very representative macromolecules such as ribosome (4V4Q),
proteasome (3DY4), and RNA polymerase (2GHO), which are
well-studied due to their abundance and importance in cellular
functions. Each simulated tomogram of 600 × 600 × 300 voxels
contains 10,000 randomly distributedmacromolecules. Given the
true position of these macromolecules inside tomograms, we
collected 5,835 subtomograms of size 32 × 32 × 32, belonging
to 22 structural classes. The dataset with 22 distinct classes was
split into a training set with 14 classes and a test set with 8 classes.
Three datasets with different levels of signal-to-noise ratio (SNR)
were used, including SNR =∞, SNR = 1, 000, and SNR = 0.5.

3.2. Classification Results
Table 1 summarizes the one-shot classification performance
with different sub-network setup. We evaluated the one-shot
classification accuracy under different noise level and various
one-shot training schemes. First, comparing the COS-Net
with and without volume decoder for guiding the one-shot
classification, with volume decoder can significantly improve the
classification accuracy for sub-networks with or without DuSE
block. For example, using the SNR = 1, 000 dataset, the 2way-
1shot COS-Net with DuSE improve the accuracy from 0.928 to
0.939 by adding the volume decoder. Second, comparing the
COS-Net with and without DuSE block, adding DuSE block
to volume encoder/decoder can also improve the classification
accuracy. However, the classification accuracy decreases as the
SNR decreases, due to the structural details being degraded by
noise. Meanwhile, the classification accuracy also decreases as the
number of classes (way) increase.
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TABLE 1 | The one-shot classification accuracy on three dataset with three different SNR levels.

Data Networks 2way-1shot 4way-1shot 6way-1shot 8way-1shot

SNR:∞

SCNN w/o Decoder 0.931 0.763 0.613 0.595

SCNN w Decoder 0.945 0.798 0.663 0.636

DuSE-SCNN w/o Decoder 0.934 0.772 0.618 0.603

DuSE-SCNN w Decoder 0.957 0.831 0.672 0.646

SNR:1000

SCNN w/o Decoder 0.923 0.698 0.493 0.473

SCNN w Decoder 0.935 0.706 0.493 0.473

DuSE-SCNN w/o Decoder 0.928 0.701 0.504 0.479

DuSE-SCNN w Decoder 0.939 0.718 0.534 0.513

SNR:0.5

SCNN w/o Decoder 0.812 0.599 0.501 0.387

SCNN w Decoder 0.824 0.616 0.502 0.399

DuSE-SCNN w/o Decoder 0.821 0.614 0.510 0.391

DuSE-SCNN w Decoder 0.829 0.628 0.513 0.403

2way-1shot, 4way-1shot, 6way-1shot, and 8way-1shot learning scenarios are included. The highest accuracy for each learning scenario is marked in blue.

TABLE 2 | The segmentation results for all eight test classes on SNR = 1,000 dataset.

SCNN 1A1S 1BXR 1EQR 1F1B 1FNT 1GYT 1KPB 1LB3

2way-1shot 0.84± 0.07 0.85± 0.02 0.86± 0.02 0.87± 0.01 0.89± 0.01 0.84± 0.01 0.88± 0.01 0.83± 0.01

4way-1shot 0.84± 0.07 0.85± 0.02 0.86± 0.02 0.87± 0.01 0.90± 0.01 0.85± 0.01 0.88± 0.01 0.84± 0.02

6way-1shot 0.85± 0.08 0.85± 0.02 0.85± 0.02 0.87± 0.01 0.89± 0.01 0.84± 0.01 0.87± 0.01 0.84± 0.01

8way-1shot 0.85± 0.07 0.84± 0.02 0.86± 0.02 0.87± 0.01 0.90± 0.01 0.85± 0.01 0.88± 0.01 0.83± 0.01

DuSE-SCNN 1A1S 1BXR 1EQR 1F1B 1FNT 1GYT 1KPB 1LB3

2way-1shot 0.85± 0.08 0.85± 0.02 0.86± 0.02 0.87± 0.01 0.90± 0.01 0.85± 0.01 0.88± 0.01 0.85± 0.01

4way-1shot 0.85± 0.07 0.85± 0.02 0.85± 0.02 0.87± 0.01 0.90± 0.01 0.85± 0.01 0.88± 0.01 0.85± 0.01

6way-1shot 0.85± 0.08 0.85± 0.02 0.86± 0.02 0.87± 0.01 0.90± 0.01 0.85± 0.01 0.88± 0.01 0.85± 0.02

8way-1shot 0.84± 0.08 0.85± 0.01 0.86± 0.02 0.87± 0.01 0.90± 0.01 0.85± 0.01 0.88± 0.01 0.85± 0.02

The mean±standard deviation DSC are reported in the table. 2way-1shot, 4way-1shot, 6way-1shot, and 8way-1shot learning scenarios are reported at different rows. The

macromolecular PDB ID is indicated for each classes.

TABLE 3 | The segmentation results for all eight test classes on SNR = ∞ dataset.

SCNN 1A1S 1BXR 1EQR 1F1B 1FNT 1GYT 1KPB 1LB3

2way-1shot 0.92± 0.08 0.94± 0.03 0.98± 0.02 0.97± 0.02 0.97± 0.03 0.95± 0.03 0.96± 0.01 0.97± 0.02

4way-1shot 0.92± 0.08 0.95± 0.03 0.98± 0.02 0.97± 0.02 0.97± 0.02 0.95± 0.03 0.96± 0.03 0.97± 0.03

6way-1shot 0.92± 0.08 0.94± 0.04 0.98± 0.01 0.96± 0.02 0.97± 0.02 0.95± 0.03 0.96± 0.01 0.96± 0.02

8way-1shot 0.92± 0.08 0.94± 0.03 0.98± 0.02 0.96± 0.02 0.97± 0.02 0.95± 0.02 0.96± 0.02 0.96± 0.02

DuSE-SCNN 1A1S 1BXR 1EQR 1F1B 1FNT 1GYT 1KPB 1LB3

2way-1shot 0.92± 0.08 0.94± 0.03 0.98± 0.02 0.97± 0.02 0.97± 0.02 0.95± 0.03 0.96± 0.02 0.97± 0.02

4way-1shot 0.93± 0.07 0.96± 0.02 0.98± 0.01 0.97± 0.02 0.97± 0.02 0.95± 0.03 0.96± 0.02 0.97± 0.02

6way-1shot 0.92± 0.08 0.95± 0.03 0.98± 0.02 0.97± 0.02 0.97± 0.02 0.95± 0.02 0.96± 0.02 0.96± 0.02

8way-1shot 0.92± 0.07 0.94± 0.03 0.98± 0.02 0.96± 0.02 0.97± 0.02 0.95± 0.02 0.96± 0.02 0.96± 0.03

The mean±standard deviation DSC are reported in the table. 2way-1shot, 4way-1shot, 6way-1shot, and 8way-1shot learning scenarios are reported at different rows. The

macromolecular PDB ID is indicated for each classes.

3.3. Segmentation Results
The segmentation performance of our attention-guided
segmentation is evaluated using the same test set as in the
classification section based on DSC:

DSC =
2× |Mgt ∩Mpred|

|Mgt| + |Mpred|
(19)

where Mpred is our generated segmentation, and Mgt is the
ground-truth segmentation. Segmentation results with different
training schemes on SNR = 1, 000 dataset are visualized in
Figure 3. As we can see, our method can generate accurate
3D segmentation that does not rely on unseen classes’ pixel-
level or image-level training data. It is also worth notice that
our method can achieve robust and consistent segmentation
performance over different way one shot learning schemes.
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FIGURE 3 | Illustration of segmentation results on all three test classes using COS-Net with DuSESCNN. The macromolecule PDB ID is indicated for each classes on

the left. The ground truth segmentation (second column) is compared against COS-Net with 2way-1shot, 4way-1shot, 6way-1shot scenarios from second to fifth

column. The enlarged images on selected 2D slices are visualized at the bottom.

Besides, a comparison of segmentation results with and
without DuSE block on eight different macromolecule classes
is visualized in Figure 4. While segmentation with DuSE
block does not significantly outperforms segmentation without
DuSE block, they both produce reasonable segmentation of
macromolecules.

The quantitative results using SNR = 1, 000 and SNR = ∞

datasets are summarized in Tables 2, 3, respectively. As we
can observe, for all 8 unseen classes, our COS-Net is able
to generate reasonable 3D segmentation. For SNR = ∞ data,
the DSC of our COS-Net with DuSE are all > 0.92 for all
classes, indicating accurate 3D macromolecule segmentation.

For SNR = 1, 000, the DSC of COS-Net with DuSE are >
0.84. The decrease in segmentation performance is due to
the increased noise level that degrades the macromolecule
structure details. However, as illustrated in Figure 3, our
COS-Net can still generate reasonable 3D segmentation for
unseen classes.

4. DISCUSSION AND CONCLUSION

In this work, we developed a one-shot learning framework for
cryo-ET where simultaneous classification and segmentation
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FIGURE 4 | Illustration of segmentation results on all eight test classes using 2way-1shot. The macromolecular PDB ID is indicated for each classes on the top. The

ground truth segmentation (second row) is compared against COS-Net with SCNN (third row) and COS-Net with DuSESCNN (fourth row). The enlarged images on

selected 2D slices are visualized at the bottom.

can be performed for seen or unseen macromolecule
subtomograms. Specifically, we developed a COS-Net to
learn the class matching between a support set consisting
of multiple classes with only 1 sample per class and a target
subtomogram. In COS-Net, the segmentation attention
is utilized to better guide the one-shot classification.
In the mean time, the volume decoder of COS-Net
allows us to generate the coarse segmentation of the
macromolecule in the subtomogram. Then, 3D CRF is
utilized to refine the 3D macromolecule segmentation
from COS-Net.

We demonstrated the successful application of our COS-Net
on a cryo-ET dataset consisting of 22 macromolecule classes.
First, our method demonstrated accurate one-shot classification
performance over dataset with different noise levels. Even with
SNR as low as 0.5, the classification accuracy is over 0.8 in a 2way-
1shot classification scheme. As compared to previous supervised
cryo-ET classification methods with classification accuracy of
about 0.9, our method is able to achieve comparable performance

without using large-scale high-quality labeled data (Liu et al.,
2018; Che et al., 2019). Second, our method can produce high-
quality 3D segmentation for unseen macromolecules under
different one-shot classification schemes. As we can observe
in Table 3, our COS-Net can produce 3D segmentation with
DSC> 0.84 on all test macromolecules over all one-shot
schemes. As compared to previous supervised segmentation
methods, our segmentation performance is comparable to
these supervised cryo-ET segmentation models with DSC of
about 0.88, which require segmentation ground truth on
seen macromolecule classes for training (Liu et al., 2018;
Che et al., 2019). Therefore, our method provides a solution
of both accurate classification and segmentation for unseen
macromolecule classes.

The presented work can potentially be further improved
from the following perspectives. First of all, the classification
accuracy decreases as the number of classes in the support
set increases. As more classes are involved in the class
matching procedure and only one sample is used for each
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classes, the classification difficulty will naturally increase.
However, our COS-Net can be extended from one-shot
to few-shot if more samples are available for each class,
and this strategy could potentially improve the classification
accuracy. Moreover, the macromolecule alignment is not
considered in the current one-shot classification pipeline.
The macromolecule in the support set and target set may
not be aligned, i.e., they have different orientations before
feeding into our network, which could potentially decrease
the classification accuracy. Subtomogram pre-processing by
alignment of macromolecule in subtomograms could potentially
further improve our classification accuracy and will be a focus
in our future work (Lü et al., 2019; Zeng and Xu, 2020).
Second, the cryo-ET imaging data is reconstructed from limited
angle conditions. The subtomogram image quality could be
degraded by the limited angle reconstruction artifacts and
potentially impact the downstream COS-Net’s performance.
Deep learning based limited angle reconstruction algorithms
could be incorporated to mitigate these artifacts and potentially
further improve our performance (Zhou et al., 2019, 2020).
Third, our study is performed based on realistically simulated
cryo-ET dataset with sufficient amounts of macromolecule
classes for one-shot learning studies. Currently, real cryo-
ET data does not provide sufficient amounts of classes for
one-shot learning studies, and we will include it in our
future studies.

In summary, we developed a COS-Net for one-shot
classification and segmentation in cryo-ET, which enables the
classification and segmentation for unseen macromolecules in
the wild. We believe our algorithm is an important step toward
the large-scale and systematic in situ analysis of macromolecular
structure in single cells captured by cryo-ET.
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Artificial Intelligence for the Future
Radiology Diagnostic Service
Seong K. Mun*, Kenneth H. Wong, Shih-Chung B. Lo, Yanni Li and Shijir Bayarsaikhan

Arlington Innovation Center:Health Research, Virginia Tech-Washington DC Area, Arlington, VA, United States

Radiology historically has been a leader of digital transformation in healthcare. The
introduction of digital imaging systems, picture archiving and communication systems
(PACS), and teleradiology transformed radiology services over the past 30 years.
Radiology is again at the crossroad for the next generation of transformation, possibly
evolving as a one-stop integrated diagnostic service. Artificial intelligence and machine
learning promise to offer radiology new powerful new digital tools to facilitate the next
transformation. The radiology community has been developing computer-aided diagnosis
(CAD) tools based on machine learning (ML) over the past 20 years. Among various AI
techniques, deep-learning convolutional neural networks (CNN) and its variants have been
widely used in medical image pattern recognition. Since the 1990s, many CAD tools and
products have been developed. However, clinical adoption has been slow due to a lack of
substantial clinical advantages, difficulties integrating into existing workflow, and uncertain
business models. This paper proposes three pathways for AI’s role in radiology beyond
current CNN based capabilities 1) improve the performance of CAD, 2) improve the
productivity of radiology service by AI-assisted workflow, and 3) develop radiomics that
integrate the data from radiology, pathology, and genomics to facilitate the emergence of a
new integrated diagnostic service.

Keywords: artificial intelligence, radiology, CNN, productivity, integrated diagnostics, workflow

INTRODUCTION

Radiology was one of the first specialty in healthcare to adopt digital technology. Since the 1970s,
radiology has adopted many new digital imaging modalities such as Computed Tomography (CT),
Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Computed
Radiography (CR), Single Photon Emission Computed Tomography (SPECT), Digital
Ultrasound, Digital Mammography and many others. These digital images were initially
printed on films for interpretation, sharing, and archiving. As digital technologies for data
capture, data storage, image display, and transmission improved, radiology operations began
to convert to a filmless digital environment in the late ’90s (Mun et al., 1993; Mun et al., 2007).
Today, x-ray films are gone, and the PACS manages all radiological images (Alhajeri et al., 2017).
This massive investment in digital technology transformed the radiology service and made
radiology images ubiquitous throughout all aspects of healthcare (Hricak, 2018). Digital
radiological images enabled the development of many new image-guided surgeries and
radiation oncology. Radiology became global as teleradiology was the first successful
telemedicine application globally (Mun et al., 1998; Mun and Turner, 1999). Teleradiology,
often globally, is a significant portion of radiology operations in the US. Radiology services
accumulate massive digital images in their archives, some in the cloud, that laid a technological and
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human infrastructure for the next digital transformation based
on machine learning (ML) and artificial intelligence (AI).

During the mid-’80s, the radiology community began to
explore computer aided diagnosis (CAD) as a possible to aid
radiologists (Doi, 2007). Since the mid-2010s, there has an
overwhelming interest in machine learning techniques in
almost all fields involving data classification or analysis. The
number of publications using ML has been exponentially
increasing from a few thousand per year in the early 2000s to
about 35,000 per year in 2018; and nearly 85% were in neural
networks, based on Scopus data (Perrault et al., 2019). Several
versions of the neural network technique also were used for drug
discovery, computational biology, quantum chemistry,
autonomous cars, geology, astronomy, and many others.

Many CAD tools were developed in radiology community,
with good performance in terms of sensitivity and specificity.
However, most of them remained in research labs, and they did
not become an integral part of the radiology service. An earlier
success in the use of CAD in digital mammography for breast
cancer screening generated much excitement in the community
for wider clinical adoption of CAD tools. Some speculated that
these intelligent systems would soon replace radiologists.

The National Science and Technology Council of the US
published a research and development roadmap for medical
imaging (Interagency Working Group on Medical Imaging,
Committee on Science, and National Science and Technology
Council, 2017). The report envisions changes in medical imaging
in 4 general areas; 1) patient referral to imaging service, 2)
development and use of high-value imaging capability, 3) use
of advanced computation and machine learning, and 4)
promoting best practice in medical imaging including
reorganizing workflows to improve productivity.

In the article, we discuss AI research in medical imaging from
a clinical adoption perspective for patient care and suggest several
pathways through which AI will be demanded by radiology as it
undergoes the next generation digital transformation toward
integrated diagnostic service.

Operational Description of Radiology
Service
Radiology service is a very complex operation that includes many
inefficiencies. There is a great need to improve overall workflow
and productivity. The radiology department provides clinical
services to referring physicians and patients by managing a
complex workflow involving many layers of people, various
technology, many types of time-sensitive information. On any
given day, a typical radiology department will conduct more than
50 different types of imaging studies covering all body parts using
dozens of imaging modalities, including CT, MRI, ultrasound,
nuclear medicine, positron emission tomography, and various
conventional radiography systems. The acquired images are
managed by a picture archiving and communication system
(PACS) and radiology information system (RIS) (Boochever,
2004). Orders for imaging studies from the referring
physicians are placed by referring physicians based on the
patient’s medical history and symptoms. A radiologist

determines imaging protocol suitable to address the clinical
question. When an imaging study is completed at the imaging
system, the PACS will collect all images and generate a worklist
for each radiologist based on departmental policies/procedures
and the radiologist’s specialization (Hricak, 2018).

The radiologist’s work has three parts: interpreting and
analyzing images, generating reports, and providing further
consultation for referring physicians and patients (Halsted and
Froehle, 2008). In academic departments, training residents and
fellows is also a significant responsibility. The interpretation
(reading) time varies greatly depending on the types of study.
The radiologists are highly skilled and very fast at detecting
abnormalities in the image (Forsberg et al., 2017). The reading
times in radiology has been steadily increasing. The imaging
devices have improved, and they generate increasingly more
images per study. For example, the average number of images
for a CT exam increased from 82 images in 1999 to 679 images in
2010. For MRI, the numbers increased from 164 images to 570
images, respectively (McDonald et al., 2015). The image
interpretation often requires examining previous studies and
comparing them to the current study to determine if the
patient has gotten better or worse. These comparison analyses
are carried out manually by a radiologist, which can be very time-
consuming (Schemmel et al., 2016; Doshi et al., 2018).

Once the radiologist has completed their interpretation of the
study, the results are generally recorded on a voice recognition
system (a component of the PACS/RIS) to generate written
reports that become part of the patient record (Boochever,
2004). In some cases, the report is sufficient by itself. In other
cases, the report becomes part of a more complex analysis (Kahn
et al., 2009). For example, a patient might have multiple radiology
exams, blood chemistry analysis, and tissue sampling, all of which
need to be combined to create a comprehensive diagnosis.

Most of the previous efforts to apply AI to radiology in terms
of CAD so far have focused exclusively on the interpretation of
single images or a single series of images. In comparison, this is an
important task, only a fraction of how a typical radiologist spends
their time. When the image’s reading/analysis can become a part
of subsequent decision-making, radiologists would participate in
the decision making beyond the reports (Brady, 2017). In essence,
AI in radiology has historically tackled challenging yet narrow
problems (Schemmel et al., 2016; Hosny et al., 2018). We argue
that a refocusing of AI onto different aspects of the radiology
workflow and medical error reduction will generated more
demand and adoption by radiology community. (Dikici et al.,
2020; Montagnon et al., 2020).

Clinical Adoption Case Study: Breast
Cancer Screening and Diabetic Retinopathy
One has to distinguish between CAD, CADx, and CADe, a family
of AI tools based on convolution neural network (CNN). The
concept of computed diagnosis (CAD) research in medical
imaging has evolved into two distinct clinical applications;
computer aided diagnosis (CADx) and computer aided
detection (CADe). CADx means the computer provides a
diagnosis for physician review. On the other hand, CADe
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means the computer highlights the area of concern (i.e., cancer)
for further diagnostic evaluation without providing a diagnosis.
The CADe is used to screen cancers such as lung cancer or breast
cancer for the asymptomatic but higher risk population. If cancer
is suspected from the screening study, the patients will undergo a
higher precision diagnostic study. The CADe is a much more
challenging problem compared with CADx.

We will review the clinical adoption experience of two
different use of AI, breast cancer screening and diabetic
retinopathy screening to highlight that clinical adoption is a
multifaceted issue beyond technical success in laboratories.

CADe in Screening Mammography for
Cancer Detection
Screening mammography is an ideal application for CADe
because it has to review many cases by a limited number of
radiologists trained in mammography. It is a single type of exam,
and the most basic output is a simple yes (disease present) or no
(disease absent). FDA approved the first CADe for
mammography in 1998, but its adoption rate was initially less
than 5% (Lehman et al., 2015). However, as breast cancer
screening became more popular as part of a government
policy to promote women’s health, there was a shortage of
skilled radiologists for mammography. To address the
shortage, which resulted from low reimbursement rates for
reading mammograms, the Center for Medicare and Medicaid
Services (CMS) allowed higher reimbursement rates for using
CADe in screening mammography (Gold et al., 2012). This
financial incentive has dramatically increased the adoption of
CADe for mammography. In fact, in the US today, most breast
cancer screening mammograms are interpreted by radiologists
with CADe assistance. It is highly unlikely that additional
reimbursements would be allowed to use AI tools in radiology
in the future.

The widespread use of mammography CADe and the large
number of exams performed each year allowed assessment of
CADe’s impact on mammographic interpretations’ accuracy.
One of the largest, a study involving 271 radiologists and
323,973 women between Jan 2003 and Dec 2009, compared
reading mammograms with and without CADe. The study
concluded that CADe does not improve mammography’s
diagnostic accuracy (Lehman et al., 2015).

A more recent study by Schaffter and colleagues conducted a
crowd-sourced trial on the use of deep learning in digital
mammography involving 300,000 mammograms from the US
and Sweden. The project had 126 teams from 44 countries to see if
they could meet or beat the radiologist’s performances. They
concluded that AI tools again did not perform better than
radiologists (Schaffter et al., 2020).

CADe Use to Screen Diabetic Retinopathy
to Prevent Blindness
Diabetic retinopathy is an eye disease when high blood sugar
levels of a diabetic patient can cause damage to blood vessels in
the retina. Undetected and untreated the patient can become

blind. Screening for diabetic retinopathy is an effective way to
prevent the blindness. A special camera takes images of the blood
vessels in retina. Interpretation of these images requires special
expertise, thus it has been a interests of AI community to develop
CAD systems.

Recently Google Corporation deployed its AI tool to detect
diabetic retinopathy in Thailand. Initial development and testing
involved 3,049 patients. In 2018, they deployed the system at 11
clinics in Thailand, involving 7,600 patients (Beede et al., 2020).
This large-scale prospective study was halted mainly because of
persistent image quality problems. The system performed poorly,
mainly due to the variability of retinal scan images obtained at
different nurses’ different settings (Beede et al., 2020). The success
in the lab did not translate well in real-life situations. Initial
deployment of an AI system for lung cancer screening
experienced a similar situation in dealing with a considerable
variability of image quality of real-life clinical cases (Worrell,
2020). Pre-processing of image normalizing before AI application
may be an essential step for scalable clinical deployment.

Currently, 46 AI algorithms have approvals from Food and
Drug Administrations and Conformité Européenne (CE)
(Tadavarthi et al., 2020). The approval process consists of
clinical trial demonstration clinical safety and efficacy, often
involving receiver operating curve analysis of sensitivity and
specificity. The approval, however, does not guarantee
successful clinical adoption. Global adoption of these tools is
still a few years away. Since there are no insurance
reimbursements, except digital mammography in the US, for
the use of AI software, return on investment must be assessed
based on significant quality improvement or efficiency
improvements. AI tools have not shown significant
improvements in the quality of diagnosis and operational
efficiency for cost savings. Such improvement may require
significant changes in the radiology department functions and
possible re-configurations of PACS often owned by vendors other
than current AI vendors.

The Technology of CNN and
Computer-Aided Diagnosis
Artificial intelligence (AI) is the capability of the machine to
imitate intelligent human behavior. In contrast, machine learning
(ML) is a subfield of AI that allows the machine to learn from data
without being explicitly programmed (Soffer et al., 2019). The
concept of neural networks emerged from the biologic neuron
system. A neural network in the visual cortex can detect the edges
of an object seen by the retina. When the receptors’ inner parts
are activated simultaneously, the cell neutron integrates the
signals and transmits an edge detection signal. An artificial
neural network (ANN) is composed of interconnected artificial
neurons. Each artificial neuron implements a simple classifier
model, which outputs a decision signal based on a weighted sum
of evidence, and an activation function integrates signals from the
neurons. An ANN system can be built with thousands of these
basic computing units. The system can be trained by computing
these weights using a learning algorithm where pairs of input
signals and desired output decisions are presented, mimicking
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brain functions. An individual artificial neuron is a simple neural
network; however, multilayer perceptron can model complex
nonlinear functions. The deep learning (DL) concept is based
on the use of multilayer architecture of multilayer perceptron. In
medical imaging, the number of layers tends to be in the range
of dozen.

The convolution neural network (CNN) consists of a series of
convolution layers equivalent to compositional convolution
layers with a set of large kernels. In effect, a CNN acts as a
feature learning based on spatial features with multiple channels
(Lo et al., 1995; Lo et al., 2018b; Lo et al., 2018c). However,
common difficulties in traditional CNN approaches for medical
imaging can be grouped into three categories; 1) inability to
separate normal from ill-defined abnormal structures, 2) inability
to differentiate disease patterns, particularly in subtle cases from a
broad spectrum of normal structures, and 3) inability to establish
an integrated system between compositional and divide-and-
conquer models.

Limitation of Current Generic CNN
Many ML open-source packages such as Tensorflow, Keras,
Caffe, and others featuring CNN have been widely used. The
core algorithms of CNN in all these packages were designed for
general image pattern recognition. They were initially developed
for the recognition of alphanumerical handwriting. General
image pattern recognition relied on essential graphic pattern
features (e.g., edges) and orientation-dependent but size-
independent in many situations. On the other hand, medical
image pattern recognition should rely more on gray intensity
distribution and is orientation independent but size-dependent.
Also, some users have experienced inconsistent results from the
current CNNs and have tried to use many versions converted
from the same input as a part of the augmentation strategy to
increase the training samples and stability (Lo et al., 1998).

Improving CNN for Medical Imaging
An ordinary CNN using unconstrained kernel weights entirely
based on the backpropagation training (Lo et al., 2018d). The use
of rotational and translational versions of each input vector as
data augmentation was developed by the authors (Lo et al., 1993).
However, many investigators reported that the current method
requires a long training time and produces unstable results (Lo
et al., 2018b; Lo et al., 2018c).

The current CNN software should be redesigned for medical
imaging pattern recognition by (i) the use of an activation
function without suppression of the composed signal and (ii)
the use of symmetric kernels. This is because current activation
functions (Relu, Leaky Relu, sigmoid, and Tanh) used in general
CNN tools are signal suppression functions (i.e., df/dx < 1).
When using them multiple times through multiple convolutional
layers, only edge patterns with very few gray value features
remained in the feature maps at the end of convolution/
activation processing for final classification. These are not
acceptable intermediate outcomes for many medical images
where subtle gray value differences are used for discerning
possible disease characteristics (Lo et al., 1995; Lo et al., 1998).

The symmetric kernels within CNN should be used to stabilize
the CNN output consistency. The use of kernels with dihedral
symmetry of order 8 (Dih4) is an example with a minimum
number of free parameters as element coefficients are symmetric
with respect to each corner wedges. In other words, elements on
other wedges corresponding to the Dih4 symmetric element
positions in the wedge would share the same value. The use of
symmetric kernels can be expanded to wavelet decomposition.
Though it is different from an ordinary convolution process, each
compartment’s biorthogonal kernels may be different. However, t
the absolute value in each element of the kernel is the same. The
multi-dimensional wavelet decomposition is made by a one-
dimensional convolution process and down sampling one half
at a time. The total number of free parameters is much less (the
number of elements in 1D kernel plus 1, divided by 2). In effect,
kernels to produce low-low (LL) and high-high (HH)
compartments are Dih4 transformation-identical (TI) kernels.
Kernels to produce low-high (LH) and high-low (HL)
compartments are Dih4 TI with an odd number of elements
but are anti-symmetric (i.e., 180o rotation TI) with an even
number of elements. Since each compartment is processed
through an independent pipeline in the neural network
process, for the latter situation, there is still room to make
signals from LH and HL be Dih4 TI, if desired. This can be
done by inserting a reflective symmetry kernel in each of these
two compartment pipelines (Lo et al., 2018d).

With symmetric kernels, such as the dihedral symmetry of
order 8, the intermediate results throughout all convolutional
layers would be equivariant for original input and 90o rotation
increment as the flipping version. With this equivariant property
on all convolutional layers, the CNN would produce identical
output for all eight input image versions. In summary, the CNN
can be treated as a whole function of an input vector Vi (i.e., a 2D
image or 3D volume), and the output vector can be expressed as
Vo � CNN(T[Vi]) � CNN(Vi) as long as T[K] � K within each of
the CNN convolutional processes, where Vi and Vo are input and
output vectors, respectively. K denotes the convolution kernel
and T[.] is a transformation function. This equivariant property
at all convolutional layers can be extended for the CNN to
produce identical output results for any arbitrarily rotated
images by merging the convolution processing before the
classification section in the CNN. The use of symmetric
kernels in the convolutional layers in the CNN would be a
more appropriate tool to systematically produce highly stable
results (Lo et al., 2018d).

Open Source CNN
There have been increasing concerns about the ethics, ability to
explain and transparency of AI technology (Tang et al., 2018;
ESR, 2019), especially in healthcare. These concerns are partly
due to difficulties in understanding underlying theories, methods,
and assumptions used to generate systematic bias results. In this
scenario, the use of open-source software (OSS) strategy could
help address some of these concerns because, by definition, OSS
offers greater transparency of the technology and opportunities
for community-based collaboration.
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The OSS concept started in the 1980s as a social movement
and a philosophy for software development and distribution
(Levine and Prietula, 2014). OSS is defined as a software code
made available under a legal license in which the copyright holder
provides (depending upon the specific terms) various rights to the
licensees to study, change, improve and re-distribute the code
without any fees. Today there are many different types of OSS
licenses depending on the copyright holders’ interests and
intentions (Fosfuri et al., 2008; Opensource.org, 2020). These
licenses range from permissive licenses such as Apache-2.0 to
strongly protective licenses such as general public license (GPL).
OSS is typically available as-is; however, it can be made into
commercial products with additional services such as warranty,
training, documentation, and maintenance under various
commercial contracts.

Some of the more popular packages include TensorFlow,
Keras, PyTorch, Caffe2, and many others. They all have
varying strengths and weaknesses, depending on users’ needs.
Keras and TensorFlow have a common or similar core, but Keras
is much easier to use with limited options than TensorFlow.
PyTorch is fast and flexible for experimentation, and it is tightly
integrated with the Python language. An extensive table of
available software with detail comparison can be found at
Wikipedia (Multiple-Editor, 2020).

These OSS packages are developed and sponsored by various
organizations and individuals for their use cases and applications
other than medical imaging. However, the packages are initial
starting platforms for imaging research. These open source
packages should be optimized to be suitable for meaningful
medical imaging research as discussed in the earlier section.
Additionally, these open source codes’ users should form or
join collaborative communities based on shared medical
imaging interests.

Application of CNN in Medical Imaging:
For research in supervised learning such as CNN, the success
depends on three technical factors: 1) underlying science and
technology of the code, 2) learning supervised by subject matter
experts, and 3) the quantity/quality of data.

Another crucially important factor in CNN research is
imaging expertise, both clinical and physic of imaging (Giger
et al., 2008). Unlike common everyday objects in AI research, the
research team in medical imaging AI has to understand the
clinical significance of images and imaging physic.

Availability of Data and Realistic Mix of Data
There are two data issues: access to a sufficient volume of data and
enough data diversity representing a realistic case mix of the
clinical operational environment (Yamashita et al., 2018).

The imaging data requirement in radiology is relatively
modest, less than 10,000 cases per disease category. In the case
of the recent AI tool development for lung cancer screening with
CT images, approximately 2,000 cases consisting of 300,000 CT
images were sufficient for training, and approximately 300 cases
of 45,000 images with about 20% subtle cases tested by more than
10 radiologists were sufficient for an FDA specified clinical trial
(Lo et al., 2018a). For different disease types and imaging

modalities, these numbers would be different. If the clinical
problem to be addressed has many subtle features, the data
volume required would be much higher.

For an AI algorithm to be clinically useful, it must be trained
on data that appropriately represent the patient population’s
variance and diseases’ presentation. In a routine data
collection effort, the majority of available cases show disease
patterns, which are considered relatively easy cases. The cases of
subtle disease patterns are relatively rare and thus challenging to
collect. It is essential to have a mix of subtle cases in the image
archive. If one has a disproportionately large number of similar or
easy cases, the system will show bias (Lo et al., 1995; Hosny et al.,
2018). In supervised learning, algorithms such as CNN learn from
labeled data. When the number of categories and/or patterns to
be differentiated increases, the required data volumes would
increase. The problem of having more dimensions, yet small
data volume, can result in overfitting contributing to low
generalizability and scalability (Yamashita et al., 2018; Mutasa
et al., 2020).

Quality of Data: Image Quality
The performance of current CNN is fragile, dealing with varying
image quality. In fact, in any data science project, one can spend a
significant amount of effort to "clean" the data. The same is true in
imaging. The data must be of sufficient quality and acquired with
uniform parameters to make certain that conclusions can be
validated. The image quality can vary depending on the time and
day of imaging, image protocol, imaging system set up, patient
conditions, and clinical practice standards in different
departments (Worrell, 2020). While human vision is good at
reading through the images of varying qualities, AI tools are
generally not (Tang et al., 2018). One important task to produce a
systematic image AI performance is image pre-processing,
including optimization of image quality, noise reduction,
clutter removal, and enhancement of essential features for
differentiation. Various AI tools are used to standardize image
quality (Zhu et al., 2017; Mazurowski et al., 2019).

A radiology AI tool for screening or diagnosis of a disease is
usually comprised of several components: 1) pre-processing such
as image normalization, 2) image segmentation or region of
interest (ROI) extraction, and 3) potential disease pattern
identification and classification. Various algorithms have been
applied to each of these AI sub-components. However, there is a
trend to use a fully CNN-based algorithm such as U-net for image
segmentation and use a classification CNN- based algorithm for
identification and classification of the disease aiming at the ROI.
Alternatively, radiomics based classification can be employed on
the ROI.

Data Labeling
In radiological imaging, the supervised learning approach is the
most popular tool, and it requires labeled data for training and
validation. The labeling of images must be done manually by
expert radiologists. This process is very labor-intensive and very
costly. The truth panel for images is established by having 2 out of
3 radiologists agreeing on the diagnoses and clinical
determinations (Lo et al., 2018a).
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Research Environment - Access to
Research Resources
The role of AI will be different in different parts of the world. The
AI tools developed for one region of the world using data from
that region may not be useful in other regions with different
disease prevalence, limited infrastructure, and different
healthcare systems.

Collection and curation of images and related data could face
several obstacles such as management of privacy, confidentiality,
and the question of ownership. In recent years, the realization of
clinical images’ possible commercial values makes access more
costly and difficult. When images need to be collected from
multiple organizations, the data sharing process can become
more complicated. International collaboration can be difficult
when certain countries do not allow clinical data movement
beyond their national borders (Prior et al., 2020). One technical
solution for such a situation can be a federated learning system
where data remains in place while processing code and processed
results can move around (Konečný et al., 2016)

Government agencies and various consortia have established a
growing number of open access data repositories to facilitate
better access to clinical image data for research. One of the best-
known such repositories is the Cancer Imaging Archive (TCIA)
(Prior et al., 2013; The Cancer Imaging Archive (TCIA), 2020). It
is a publicly available information repository for data about
cancer, mostly radiology and pathology data acquired by the
lung cancer screening project involving 26,722 participants from
2002 through 2004. It contains 22.3 TB of data. The types and
volume of data in the archive are increasing rapidly.

Research and Development Environment in
Resource-Limited Regions
The research and development and eventual adoption of AI for
medical decision making in global health and low-resource
settings are hampered by insufficient infrastructure (Mollura
et al., 2020).However, it is essential that local radiology and
clinical community, resource-poor or not, have to develop and
validate AI tools suitable for their environment. In the resource-
poor regions with limited infrastructure, technical and human,
such participation could be difficult. However, the research
communities in the world’s resource-limited regions can access
many global imaging AI research resources. The Radiological
Society of North America website has a vast amount of
information. Many of the AI software is freely available as
open-source at no cost to the users. The cancer imaging
archive (TCIA) of the National Cancer Institute of the US has
many curated radiological images to support imaging research.
Most of the CADe products for lung cancer screen started using
the openly available images in TCIA, which holds the CT images
from the national lung cancer screening trial.

Future of Radiology Service and Radiomics
The digital transformation of radiology services will continue and
accelerate. Analog film is gone, and modern imaging systems
have evolved far beyond the slow and primitive early MRI and CT

systems. PET was only a research tool at a few centers but is now
becoming available at small community hospitals. Hybrid
scanners that combine multiple modalities and can operate in
different healthcare settings will become readily available. The
whole-body scanner that could do MRI or CT or PET will be
available where the patients receive care (Pichler et al., 2008;
Nensa et al., 2018). PACS, teleradiology, and Radiology
Information Systems all changed the radiology practice.

Nevertheless, the radiology department structure has not
fundamentally changed in 30 years (Kim and Mansfield,
2014). The radiology department continues to operate as a
centralized resource to which patients come to complete the
study, and radiologists dictate and distribute the reports
(Ondategui-Parra et al., 2004). This operational model may
soon see some changes.

For the next 30 years of radiology in the future, the pace of
change will accelerate. The cost of computing will continue to
decrease, and connectivity will be fast and ubiquitous. Radiology
and the field of diagnosis will evolve together with pathology.
Diagnostic imaging, clinical pathology, and genomics could
merge as an integrated diagnostic service that can integrate the
various reports from these subspecialty sections and synthesize a
coherent diagnosis that is communicated to the appropriate
physicians with more actionable specifics. Such an integrated
system will allow a rapid on-site point of care diagnosis, rather
than the serial process of today involving multiple appointments
over many days and weeks.

Some expect that a new profession of clinical diagnosticians, who
integrate the work of radiologists and pathologists with other
specialists with increasing reliance on AI assistance, will begin to
grow (Lundström et al., 2017). Pathologists are already doing
biopsies under image guidance. There are movements toward the
integration of professional service. Simultaneously, there are parallel
significant scientific and technical developments underway in
radiomics and pathomics that can facilitate this historical evolution.

Radiomics and pathomics are part of quantitative imaging that
attempts to extract additional information from radiology and
pathology images that may not be visible via visual inspection
(Saltz et al., 2017). Radiomics attempts to extract features from
radiological images that quantify its phenotype characteristics in
an automated high-throughput manner (Fan et al., 2020).
Pathomics attempts to extract similar information from
pathology images. These two approaches will meet at a shared
space to support personalized medicine. It has been hypothesized
that such analysis may help prognosticate, predict treatment
outcomes, and assess cancer tissue malignancy.

The value of AI in radiomics is two-fold. First, AI can be used for
automated image analysis at scale, enabling rapid evaluation of
hypothetical radiomic features. Whereas comparison studies
involving human radiologists should take into account for a
wide range of ergonomic and perception factors (such as the
required number of readers or the need to provide time between
different readings of the same image), a comparison of radiomics
algorithms is only limited by computational speed and power.
Similarly, new features can easily be tested against existing data
sets. Secondly, unsupervised learningmethods can be used to search
for new radiomic features that might be very different from what
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would be noticed by a human observer. The AI can take on the
discovery and find new and useful patterns within the existing
imaging data (Miles, 2020; Prior et al., 2020).

One fundamental issue in radiomics has to address is the
standardization of the factors and processing involved in the
quantitative analysis. The Image Biomarker Standardization
Initiative (IBSI) is a new organization to address many
challenges in 4 different specific areas, 1) standard
nomenclature and common radiomic features, 2) radiomics
image processing schemes, 3) provide data sets for validation
and calibration, and 4) set of reporting guidelines (Zwanenburg
et al., 2020). This group defined 174 radiomics features commonly
used to quantify the morphologic characteristics and numerous
others needed to define the quantitative information. The group
tries to standardize the image processing steps of data conversion,
post-acquisition processing, segmentation, interpolation, masking,
and others (Zwanenburg et al., 2020)(Zwanenburg et al., 2020).
Such standardization is expected tomake radiomics and pathomics
clinically useful and scalable for the integrated diagnosis service
(Kuhl and Truhn, 2020).

CONCLUSION

The clinical adoption of AI can be driven by either technology push
or market pull (Chidamber and Kon, 1994; Di Stefano et al., 2012).

Technology push arises when a new idea or new tool creates a
capability that did not previously exist. The market pull is defined
by the need to address pain points, inefficiencies, and problems
with the current way of doing business. Ideally, these two forces
synergistically combine to accelerate technology development and
deployment. Over the last 30 years, radiology has benefited from
this combination to develop teleradiology, PACS/RIS, and
advanced imaging modalities. However, much of CAD’s early
development has been a technology push; it was usually not
well aligned with clinical needs. We have proposed that a better
alignment could arise from focusing on the radiology workflow –
which includes many tasks beyond image interpretation – and the
need to create an integrated diagnostics service combining
radiological images, pathological data, and genomics (Santos
et al., 2019).

We envision three AI trajectories in radiology, as shown
in Figure 1. First, AI will undergo advances in CADe and
CADx to make image interpretation better and faster.
Despite the significant progress in developing CNN
algorithms, there are still many areas for improvement as
proposed in this paper. Second, a variety of AI tools,
supervised learning and unsupervised learning, will be
needed to improve workflow and increase productivity,
and, at the same time, reduce the cost of operation. This
operationally focused research will require a holistic
understanding of radiology operations. Third, quantitative
imaging, including radiomics, pathomics, and genomics, will
emerge and become a standardized approach for integrated
diagnostics. In summary, we predict that AIs will facilitate
the merging of disparate medical and scientific domains into
an integrated diagnostic service for personalized precision
medicine.
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Tang, A., Tam, R., Cadrin-Chênevert, A., Guest, W., Chong, J., Barfett, J., et al.
(2018). Canadian association of radiologists white paper on artificial

intelligence in radiology. Can. Assoc. Radiol. J. 69 (2), 120–135. doi:10.1016/
j.carj.2018.02.002

The Cancer Imaging Archive (TCIA) (2020). The Cancer Imaging Archive
[Online]. Available at: https://www.cancerimagingarchive.net/.

Worrell, S. (2020). Making AI Tools Clinically Relevant- Sustainability and
Scalability. (Central VA Health Care System Artificial Intelligence for
Medical Imaging Virtual Workshop: Virginia Tech-AIC). Available at:
https://aic.ncr.vt.edu/aic-workshops-and-meetings/aimiworkshophome/
aimirecording.html

Yamashita, R., Nishio, M., Do, R. K. G., and Togashi, K. (2018). Convolutional
neural networks: an overview and application in radiology. Insights Imaging 9
(4), 611–629. doi:10.1007/s13244-018-0639-9

Zhu, Q., Du, B., Turkbey, B., Choyke, P. L., and Yan, P. (2017). Deeply-supervised
CNN for prostate segmentation”, in 2017 International Joint Conference on
Neural Networks (Ijcnn), Anchorage, AK, May 14–19, 2017 (IEEE) doi:10.
1109/IJCNN.2017.7965852

Zwanenburg, A., Vallières, M., Abdalah, M. A., Aerts, H. J. W. L., Andrearczyk, V.,
Apte, A., et al. (2020). The image biomarker standardization initiative:
standardized quantitative radiomics for high-throughput image-based
phenotyping. Radiology 295 (2), 328–338. doi:10.1148/radiol.2020191145

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Mun, Wong, Lo, Li and Bayarsaikhan. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org January 2021 | Volume 7 | Article 6142589

Mun et al. AI and Future Radiology Service

110

https://doi.org/10.1016/j.crad.2019.04.002
https://doi.org/10.1109/EMBC.2013.6609742
https://doi.org/10.1590/0100-3984.2019.0049
https://doi.org/10.1590/0100-3984.2019.0049
https://doi.org/10.1001/jamanetworkopen.2020.0265
https://doi.org/10.1001/jamanetworkopen.2020.0265
https://doi.org/10.1016/j.jacr.2016.04.009
https://doi.org/10.1148/radiol.2018180547
https://doi.org/10.1148/radiol.2018180547
https://doi.org/10.1148/ryai.2020200004
https://doi.org/10.1148/ryai.2020200004
https://doi.org/10.1016/j.carj.2018.02.002
https://doi.org/10.1016/j.carj.2018.02.002
https://www.cancerimagingarchive.net/
https://aic.ncr.vt.edu/aic-workshops-and-meetings/aimiworkshophome/aimirecording.html
https://aic.ncr.vt.edu/aic-workshops-and-meetings/aimiworkshophome/aimirecording.html
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1109/IJCNN.2017.7965852
https://doi.org/10.1109/IJCNN.2017.7965852
https://doi.org/10.1148/radiol.2020191145
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/moleculariosciences
www.frontiersin.org
https://www.frontiersin.org/journals/moleculariosciences#articles


A Hybrid-Attention Nested UNet
for Nuclear Segmentation in
Histopathological Images
Hongliang He1,2, Chi Zhang1,2, Jie Chen1,2, Ruizhe Geng1, Luyang Chen3, Yongsheng Liang4,
Yanchang Lu5, Jihua Wu6 and Yongjie Xu6*

1School of Electronic and Computer Engineering, Peking University, Shenzhen, China, 2Peng Cheng Laboratory, Shenzhen,
China, 3College of Engineering, Pennsylvania State University, State College, PA, United States, 4Harbin Institute of Technology,
Shenzhen, China, 5Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China, 6PLA
Strategic Support Force Characteristic Medical Center, Beijing, China

Nuclear segmentation of histopathological images is a crucial step in computer-aided
image analysis. There are complex, diverse, dense, and even overlapping nuclei in these
histopathological images, leading to a challenging task of nuclear segmentation. To
overcome this challenge, this paper proposes a hybrid-attention nested UNet (Han-
Net), which consists of two modules: a hybrid nested U-shaped network (H-part) and
a hybrid attention block (A-part). H-part combines a nested multi-depth U-shaped network
and a dense network with full resolution to capture more effective features. A-part is used
to explore attention information and build correlations between different pixels. With these
two modules, Han-Net extracts discriminative features, which effectively segment the
boundaries of not only complex and diverse nuclei but also small and dense nuclei. The
comparison in a publicly available multi-organ dataset shows that the proposed model
achieves the state-of-the-art performance compared to other models.

Keywords: Histopathological image, Nuclear segmentation, Nested UNet, Hybrid attention, Dilated convolution

1 INTRODUCTION

Histopathological imaging diagnosis is an important significance of cancer diagnosis, known as the
“gold standard” of clinical tumors. Nuclear segmentation of histopathological images is a crucial step
in computer-aided image analysis. Accurately segmenting the nucleus in pathological tissue sections
provides powerful support for disease diagnosis, cancer staging, and postoperative treatment.
However, the task of nuclear segmentation in histopathological images is still challenging, for
which 1) the types of histopathological structures are complex and diverse, and there are many types
and complex appearances of nuclei; 2) the nuclei are usually small and dense, leading to an
overlapping challenge for nuclear segmentation.

Traditional nuclear segmentation methods have contributed to some extent, such as Otsu (Otsu,
1979), the watershed method (Yang et al., 2006), K-mean clustering (Filipczuk et al., 2011), and Grab
Cut (Rother et al., 2004). However, some specific parameters or thresholds are required to set while
using these methods for nuclear segmentation. Besides, the lack of generalization ability makes these
methods only effective for a few types of histopathological images. With the application and
development of deep learning technology in image segmentation, these traditional nuclear
segmentation methods are only used as pre/post-processing steps.

In recent years, some models based on convolutional neural networks have been proposed for
histopathological image analysis (Ronneberger et al., 2015), (Zhou et al., 2018), (Wollmann et al.,
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2019), (Qu et al., 2019). UNet (Ronneberger et al., 2015) is
successfully applied to segmentation tasks in medical image
analysis. The network adopts encode-decode design and has
skip connections to combine low-level and high-level feature
information. This framework effectively captures the contextual
information of image features and has become a basic framework of
the current mainstream model for segmentation tasks. However,
only using the UNet framework cannot efficiently separate dense or
overlapping instances. Therefore, somemodels have been proposed
to improve the performance of UNet. Zhou et al. (2018) proposed
UNet++, which reduces the semantic gap between feature maps of
encoder and decoder subnets through a series of nested, dense skip
pathways. Wollmann et al. (2019) proposed GRUU-Net, which
integrates convolutional neural networks and gated recurrent
neural networks on multiple image scales to combine the
advantages of both types of networks. In addition to encode-
decode architecture, dilated convolution has also been proposed
and applied to segmentation tasks. Yu and Koltun first proposed a
new convolutional network module specifically for dense
prediction, which uses dilated convolution to systematically
aggregate multi-scale context information without loss of
resolution (Yu and Koltun, 2016). Qu et al. introduced the idea
of dilated convolution into nuclear segmentation and proposed
FullNet (Qu et al., 2019). FullNet uses several densely connected
layers with different dilation factors to replace the encoding-
decoding operation, thereby avoiding the loss of feature
information. Experiments show that the performance of FullNet
in cell nuclear segmentation is better than other comparison
models. In general, although some latest models have turned
their attention to the gaps of the UNet model and achieved
competitive performance to some extent, they still have
limitations. For example, 1) they fail to effectively identify small
or dense objects; 2) they treat each pixel as a separate classification
task, failing to fully consider global feature information and the
relevance between different pixels.

To address the issues mentioned above, the main
contributions of this paper are 1) We propose a hybrid-
attention nested UNet (Han-Net), which consists of two
modules: a hybrid nested U-shaped network (H-part) and
hybrid attention block (A-part). 2) In H-part, we integrate a
nested multi-depth U-shaped network and a dense network with
full resolution to capture more effective feature information. The
excellent feature extraction capability of H-part can effectively
segment the boundaries of complex and diverse nuclei. 3) We
propose a novel hybrid attention block (A-part) to boost attention
information and explore the correlation between different pixels,
thereby to effectively capture some small or dense nuclei. 4) Han-
Net is compared with some recently proposed models in a multi-
organ segmentation dataset. The comparison results show that
the proposed model has the state-of-the-art performance.

2 METHOD

Figure 1 shows an overview of the proposed Han-Net, which
consists of the backbone module (H-part) and hybrid attention
module (A-part). H-part is proposed to obtain multi-scale feature
information and improve the capability for exploring effective
features. A-part is proposed to boost attention information and
capture the correlation between features. In Figure 1, each
different block and process is represented by different icons
and arrows. The detailed information of H-part and A-part is
described in the following sub-sections.

2.1 Hybrid Nested U-Shaped Network
(H-part)
The framework of H-part is similar to a multilayer regular
triangle structure, which is composed of multiple encoders and
decoders. The framework of the proposed H-part is shown in

FIGURE 1 | Overview of the proposed Han-Net.
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Figure 2. Inspired by UNet++ (Zhou et al., 2018), we have nested
multiple conv blocks in UNet to bridge the possible semantic gap
between the corresponding levels of encoder-decoder in
classic UNet.

In the top layer, we added a dense network using dilated
convolution to make it obtain more global feature information at
full resolution. Further, we unify the channel number of the
output feature map obtained from up-sampling and previous
dense block, so that feature map fusion can be carried out by
adding and acting as the input of next dense block. Except the top
layer, we set up shortcut connections to prevent losing feature
information, and use concatenate operation for the fusion of
feature maps. A dense block contains Ln convolutional layers, and
a conv block contains two convolutional layers.

Moreover, we explain the calculation relationship between
each block: let xi,j denote the output of block Xi,j, where i
represents the index of the encoder, and j represents the index
of dense block at the top layer. The formula for calculating the
output xi,j of each block is shown in Eq. 1.

xi,j �
⎧⎪⎪⎨⎪⎪⎩

M(A(xi,j−1 + xi+1,j−1)), i � 0, j> 0
C([D(xi−1,j)]), i> 0, j � 0

C([[xi,k]j−1
k�0,D(xi−1,j), (xi+1,j− 1)]) i> 0, j> 0

(1)

where M(·) represents the convolution operation in dense block,
C(·) represents the convolution operation in conv block, (·)
represents the addition layer, and [·] represents the concatenate
layer. D(·) and (·) refer to the down-sampling layer and the up-
sampling layer, respectively. x0,0 has only one input and serves as
the starting position for other blocks. When j> 0, each dense block
has two inputs and each conv block has three or more inputs.

2.2 Hybrid Attention Block (A-Part)
To highlight effective features and explore the correlation
between different pixels, we propose a hybrid attention block

(A-part). Its structure is shown in Figure 3. In A-part, channel
attention and spatial attention constitute a series of attention
module and parallel attention module through series and
parallel operations, respectively. Assume that the input
feature map are X ∈ RH×W×C . Here H and W are spatial
height and width, respectively, and C represents the input
channel. Series attention module and parallel attention
module are used in convolutions of different kernel sizes,
and the results obtained from these attention modules are
added to obtain the output X′ ∈ RH×W×C′ , where C′

represents the output channel.
Channel attention captures the importance of different

channels in feature maps, thereby enhancing or suppressing
different channels. The operation is as follows: a branch is
separated after a normal convolution operation. Squeeze
operation is first performed on the branch (i.e., Fsq(·) in
Figure 3). It uses a global pooling operation to compress
the spatial dimensions; that is, each two-dimensional feature
map becomes a real number, and the number of feature
channels does not change. Then, Excitation operation is
performed to generate a corresponding weight for each
channel through parameter w (i.e., Fex(·) in Figure 3). In
other words, w is learned to represent the correlation
between feature channels.

Spatial attention aims at exploring the relative importance of
each pixel on feature map. It emphasizes related spatial locations
and ignores unrelated locations. The operation flow is as follows:
First, a 1-channel kernel size of 1 × 1 convolution is performed on
the input feature map, and then a sigmoid operation is
performed. Then, the attention rate corresponding to each
pixel is multiplied with the original feature map to obtain new
feature map.

In this paper, A-part is added after each dense block in H-part
to strengthen the effective information while controlling the
number of channels. In the nested U-shape network of H-part,

FIGURE 2 | The framework of the proposed H-part.
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we replace the original conv block with A-part to improve
extraction capability for effective feature information.

3 EXPERIMENTAL AND RESULTS

3.1 Dataset and Evaluation Metrics
We validate the performance of our proposed model in the
Multi-Organ nuclear segmentation (MoNuSeg) dataset (Kumar
et al., 2017). The dataset consists of 30 hematoxylin and eosin
(H & E) stained histopathology images of size 1000 × 1000 from
seven different organs. Following (Kumar et al., 2017), the data
division mode is as follows. We extract the first three images
from four organs (six images per organ) as the training set (12
images in total), the 4th image as the validation set (four images
in total), and the remaining two as the Test 1 (eight images in
total). six images of the remaining three organs are used as the
Test 2.

In this paper, four evaluation metrics are used to
comprehensively evaluate the performance of the proposed
model, namely F1-score (F1), Dice coefficient (Dice), average
Hausdorff distance (H), and Aggregated Jaccard Index (AJI).

Among them, F1 and Dice are evaluated from pixel-level, and
Hausdorff and AJI are evaluated from object-level.

3.2 Implementation Details
We implemented the proposed model with PyTorch 1.0. One
NVIDIA Tesla V100 with CUDA 10.1 is used for computation.
We treat the nuclear segmentation task as a three-class classification
problem, including nucleoli, nuclear boundary, and background.
During training, we use Adam as the optimizer. The initial learning

FIGURE 3 | The structure of the hybrid attention block (A-part).

TABLE 1 | Ablation study for the Han-Net.

Method Test 1 Test 2

F1 Dice AJI H F1 Dice AJI H

UNet 0.8651 0.7987 0.5923 6.2683 0.8286 0.7701 0.5442 7.6555
NUNet 0.8765 0.7962 0.5993 6.2063 0.8422 0.7959 0.6004 6.9937
NUNet + A-part 0.8847 0.7992 0.6043 6.1121 0.8632 0.7990 0.6169 6.9149
NUNet + Dense-top 0.8777 0.7977 0.5999 6.1287 0.8688 0.8123 0.6321 6.3849
Ours (Han-Net) 0.8875 0.8021 0.6091 6.0157 0.8802 0.8185 0.6419 5.9524

The bold numbers show the best performance.

TABLE 2 | The performance comparison of different methods on the MoNuSeg
dataset.

Method Test 1 Test 2

F1 AJI F1 AJI
DCAN Chen et al. (2017) 0.8265 0.6082 0.8214 0.5449
BES-Net Oda et al. (2018) 0.8118 0.5906 0.7952 0.5823
CIA-Net Zhou et al. (2019) 0.8244 0.6129 0.8458 0.6306
Spa-Net Koohbanani et al. (2019) 0.8281 0.6239 0.8451 0.6340
FullNet Qu et al. (2019) 0.8552 0.5946 0.8639 0.6164
Ours (Han-Net) 0.8875 0.6091 0.8802 0.6419

The bold numbers show the best performance.

Frontiers in Molecular Biosciences | www.frontiersin.org February 2021 | Volume 8 | Article 6141744

He et al. Han-Net for Nuclear Segmentation

114

https://www.frontiersin.org/journals/moleculariosciences
www.frontiersin.org
https://www.frontiersin.org/journals/moleculariosciences#articles


rate is set as 0.001 and drop rate is set as 0.1. The dilation factors are
d � (2, 4, 8, 4, 2) for the dense net in the top layer of Han-Net. The
training epoch for all models in the experiment is set to be 300. In
the proposedmodel, the number of dense layers in each dense block
is 6 (i.e. Ln � 6), and the number of output features maps for each
layer is 16. Due to the limited size of data in the MoNuSeg dataset,
we use data augmentation strategies to expand the training set to
improve robustness and reduce overfitting. Data augmentations
include random color transformation, random crop, horizontal flip,
random elastic transformation, and random rotation
transformation.

Although the model predicts three-class results during testing,
we use inside class area to retrieve the boundary class area and
distinguish different nuclei instances according to the boundary
class area in the post-processing process. The final boundary area
is obtained according to the following steps: 1) Perform dilation
and erosion operations in the inside class area; 2) Subtract the
area obtained by erosion from the area obtained by dilation to
obtain the boundary class area.

3.3 Evaluation and Comparison
3.3.1 Ablation Study
In the experiments, we perform several ablation studies to prove
the effectiveness of the proposed method and block. We use
UNet as a benchmark and compare the following strategies

respectively: 1) Our nested UNet (NUNet): nested U-shaped
network, that is, UNet with multiple depths, and skip
connections are added to the remaining layers except for the
top layer; 2) NUNet + A-part: on the basis of (1), A-part is added
without dense network; 3) NUNet +Dense-top: on the basis of
(1), dense network is added in the top layer; 4) Ours (Han-Net):
both H-part and A-part are adopted. The performance
comparison results are shown in Table 1.

Comparing the performance in Table 1, some conclusions can
be drawn: (1) In terms of UNet, our nested UNet performs better
in the following aspects: In Test 1, F1 improves 1.14%, and other
metrics also improve slightly. In Test 2, the performance of each
metric gains a significant improvement. Among them, AJI shows
an improvement of 5.62%. These comparison results prove that
nested multi-depth U-shaped network can effectively improve
segmentation performance. (2) Comparing the performance
before and after using A-part, F1 achieves an improvement of
0.82%, Dice achieves 0.30%, and AJI achieves 0.50% in Test 1. In
Test 2, F1 improves 2.10%, Dice improves 0.31%, and AJI
improves 1.65%, respectively. The Hausdorff distance is
reduced in both test sets. This shows that adding the A-part
can indeed improve the segmentation performance. (3) Similarly,
replacing the original conv block with dense network in the top
layer effectively improves the model segmentation performance.
Among them, the improvement of AJI is 3.17% in Test 2. These

FIGURE 4 | Segmentation results of UNet and Han-Net in MoNuSeg dataset.
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results prove the effectiveness of the dense network in H-part. (4)
In Han-Net, which combines H-part and A-part, the
segmentation performance gains more significant
improvement basis of our nested UNet. Achieving F1 of
0.8875 and AJI of 0.6091 in Test 1, F1 of 0.8802, and AJI of
0.6419 in Test 2 shows an improvement of 1.10% for F1 and
0.98% for AJI in Test 1, 3.80% for F1 and 4.15% for AJI in Test 2,
respectively. Dice and Hausdorff distance also have the same
trend. The above results show that the several modules we
proposed are effective. Further, compared with the
performance improvement in Test 1, the performance
improvement in Test 2 is more obvious, which reflects that
after adopting the above modules, the Han-Net shows better
robustness for the nuclear segmentation of different organs.

Moreover, we compare Han-Net with the novel methods
proposed in previous studies. These methods include: DCAN
(Chen et al., 2017), BES-Net (Oda et al., 2018), CIA-Net (Zhou
et al., 2019), Spa-Net (Koohbanani et al., 2019), FullNet (Qu et al.,
2019). They achieved competitive segmentation performance in
the MoNuSeg dataset, respectively. Under the two evaluation
metrics of F1 and AJI, the performance comparison between
different methods is shown in Table 2.

The number of parameters and inference time are two
important aspects to assess the utility of a new method. In
order to further illustrate the effectiveness of the proposed
Han-Net, we compared the number of parameters and
inference time between Han-Net and vanilla UNet. In our
experiment, Han-Net and vanilla UNet have same number of
channels in each feature layer Xi (i.e. Xi, i = {0, 1, 2, 3, 4}). The
channel numbers in each feature layer Xi are 64, 128, 256, 512,
and 1024 respectively. The experimental results show that the
parameters of Han-Net and vanilla UNet are 31.04 MB and 30.58
MB, respectively. In the experiment, we replaced the original
‘TransposeConv’ upsampling approach in UNet with ‘bilinear
interpolation’ to reduce the parameters. In other words, the
increase in parameters brought by the proposed modules is
close to the decrease in parameters brought by the above
operation. On the other hand, the experimental results show
that the inference time required by Han-Net and vanilla UNet is
basically the same, which means that Han-Net does not require
additional inference time. These two comparative experiments
also reflect the effectiveness of our proposed Han-Net.

From the performance comparison in Table 2, our proposed
Han-Net achieves the state-of-the-art performance under F1 in
Test 1, Test 2, and AJI in Test 2. It achieves 0.8875 of F1 in Test 1,
0.8802 of F1 and 0.6419 of AJI in Test 2 respectively, which shows
an improvement of 3.23% for F1 in Test 1, 1.63% of F1 and 0.79%
of AJI in Test 2. The performance of Han-Net’s AJI in Test 1 is
almost the same as the optimal CIA-Net. Therefore, Han-Net can
be considered to reach the state-of-the-art performance in
MoNuSeg dataset.

3.3.2 Qualitative analysis
Figure 4 shows several representative examples with challenging
cases from the MoNuSeg dataset, which includes nuclei with
irregular and densely distributed nuclei. That is, the relevant cases

in Figure 4 are shown by a white dotted circle. It can be obtained
from these images that compared with UNet, our proposedHan-Net
achieves better segmentation results in some challenging regions.

4 DISCUSSION

In this paper, we propose a hybrid nested attention UNet (Han-
Net) for nuclear segmentation in histopathological images, which
consists of H-part and A-part. Among them, H-part combines
nested U-shaped network and dense network with full-resolution
to obtain more effective multi-scale feature information. The
A-part is proposed to enhance the effective features and suppress
the invalid features, so that the proposed model can learn the
morphological information of the nuclei. The experiment results
prove that the Han-Net achieves state-of-the-art segmentation
performance in the MoNuSeg dataset. In future work, we will
consider pruning Han-Net to make it a lightweight network, and
try to integrate other methods to decouple the boundary and
inside.
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Oda, H., Roth, H. R., Chiba, K., Sokolić, J., Kitasaka, T., Oda, M., et al. (2018).
“Besnet: boundary-enhanced segmentation of cells in histopathological
images”. in International Conference on Medical Image Computing and
Computer-Assisted Intervention (Springer), 228–236

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Trans. Syst., Man, Cybern.. 9, 62–66. doi:10.1109/tsmc.1979.4310076

Qu, H., Yan, Z., Riedlinger, G. M., De, S., and Metaxas, D. N. (2019). “Improving
nuclei/gland instance segmentation in histopathology images by full resolution
neural network and spatial constrained loss”. in International Conference on
Medical Image Computing and Computer-Assisted Intervention Shenzhen,
China, 13–17 October, (Cham: Springer), 378–386

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical
image computing and computer-assisted intervention, Munich, Germany, 5–9
October (Cham: Springer), 234–241

Rother, C., Kolmogorov, V., and Blake, A. (2004). "GrabCut" interactive
foreground extraction using iterated graph cuts. ACM Trans. Graph.. 23,
309–314. doi:10.1145/1015706.1015720

Wollmann, T, Gunkel, M, Chung, I, Erfle, H, Rippe, K, and Rohr, K (2019).
Gruu-net: Integrated convolutional and gated recurrent neural network for
cell segmentation. Med Image Anal. 56, 68–79. doi:10.1016/j.media.2019.
04.011

Yang, X., Li, H., and Zhou, X. (2006). Nuclei segmentation using marker-controlled
watershed, tracking using mean-shift, and kalman filter in time-lapse
microscopy. IEEE Trans. Circuits Syst. I. 53, 2405–2414. doi:10.1109/tcsi.
2006.884469

Yu, F., and Koltun, V. (2016). “Multi-scale context aggregation by dilated
convolutions”. in International Conference on Learning Representations
(ICLR)

Zhou, Y., Onder, O. F., Dou, Q., Tsougenis, E., Chen, H., and Heng, P.-A. (2019).
“Cia-net: Robust nuclei instance segmentation with contour-aware information
aggregation”. in International Conference on Information Processing in
Medical Imaging (Cham: Springer), 682–693

Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., and Liang, J. (2018). “Unet++: A
nested u-net architecture for medical image segmentation”. in Deep Learning in
Medical Image Analysis and Multimodal Learning for Clinical Decision Support.
Editors D. Stoyanov, et al. (Cham: Springer). 3–11

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 He, Zhang, Chen, Geng, Chen, Liang, Lu, Wu and Xu. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org February 2021 | Volume 8 | Article 6141747

He et al. Han-Net for Nuclear Segmentation

117

https://doi.org/10.1016/j.media.2016.11.004
https://doi.org/10.1109/TMI.2017.2677499
https://doi.org/10.1109/TMI.2017.2677499
https://doi.org/10.1109/tsmc.1979.4310076
https://doi.org/10.1145/1015706.1015720
https://doi.org/10.1016/j.media.2019.04.011
https://doi.org/10.1016/j.media.2019.04.011
https://doi.org/10.1109/tcsi.2006.884469
https://doi.org/10.1109/tcsi.2006.884469
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/moleculariosciences
www.frontiersin.org
https://www.frontiersin.org/journals/moleculariosciences#articles
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Longitudinal Dynamic Contrast-
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Breast tumor morphological and vascular characteristics can be changed during
neoadjuvant chemotherapy (NACT). The early changes in tumor heterogeneity can be
quantitatively modeled by longitudinal dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI), which is useful in predicting responses to NACT in breast cancer. In
this retrospective analysis, 114 female patients with unilateral unifocal primary breast
cancer who received NACT were included in a development (n � 61) dataset and a testing
dataset (n � 53). DCE-MRI was performed for each patient before and after treatment (two
cycles of NACT) to generate baseline and early follow-up images, respectively. Feature-
level changes (delta) of the entire tumor were evaluated by calculating the relative net
feature change (deltaRAD) between baseline and follow-up images. The voxel-level
change inside the tumor was evaluated, which yielded a Jacobian map by registering
the follow-up image to the baseline image. Clinical information and the radiomic features
were fused to enhance the predictive performance. The area under the curve (AUC) values
were assessed to evaluate the prediction performance. Predictive models using radiomics
based on pre- and post-treatment images, Jacobian maps and deltaRAD showed AUC
values of 0.568, 0.767, 0.630 and 0.726, respectively. When features from these images
were fused, the predictive model generated an AUC value of 0.771. After adding the
molecular subtype information in the fused model, the performance was increased to an
AUC of 0.809 (sensitivity of 0.826 and specificity of 0.800), which is significantly higher than
that of the baseline imaging- and Jacobian map-based predictive models (p � 0.028 and
0.019, respectively). The level of tumor heterogeneity reduction (evaluated by texture
feature) is higher in the NACT responders than in the nonresponders. The results
suggested that changes in DCE-MRI features that reflect a reduction in tumor
heterogeneity following NACT could provide early prediction of breast tumor response.
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The prediction was improved when the molecular subtype information was combined into
the model.

Keywords: dynamic contrast-enhanced magnetic resonance imaging, breast cancer, neoadjuvant chemotherapy,
volumetric change, feature change

INTRODUCTION

Neoadjuvant chemotherapy (NACT) is commonly used in
treatment of locally advanced or large operable breast cancers
with the aim of downstaging before surgery (Taghian et al., 2004;
Kaufmann et al., 2007). The achievement of a pathologic
complete response (pCR) is associated with improved survival
in patients with breast cancer (Cortazar et al., 2014). Despite the
benefit, a subset of patients may experience a failure of treatment
and suffer from the side effects of NACT. Therefore, accurate
determination of the outcome of NACT is of vital importance for
tailored treatment of patients with breast cancer.

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI), which is routinely used in clinical practice, provides
morphological tumor characteristics and functional information
about the blood flow, vascular status and angiogenesis (Pinker et al.,
2017; Mann et al., 2019). A systematic review demonstrated that
MRI-based radiomics achieved overall promising performance in
NACT response prediction (Granzier et al., 2019) and residual
tumor size evaluation (Kim et al., 2018a), while a DCE-MRI-based
predictive model achieved better accuracy than a model using other
parametric images (Fowler et al., 2017). Radiomics features derived
from the pretreatment MRI have been used for predicting response
to NACT for breast cancer (Uematsu et al., 2010; Braman et al.,
2017; Santamaría et al., 2017; Reig et al., 2020). Our previous study
used DCE-MRI to identify and validate predictive imaging
biomarkers for NACT using two datasets with different imaging
protocols for training and testing (Fan et al., 2017). These studies
were performed using radiomics of preoperative breast MRI
without considering the imaging features of longitudinal changes
in MRI features that could be promising in predicting tumor
responses to NACT.

The NACT regimen usually takes six to eight cycles to finish
the whole treatment procedure. Longitudinal imaging is usually
performed during the procedure to monitor and evaluate
treatment response. The changes of tumor heterogeneity in
DCE-MRI between the preoperative and early NACT (e.g.,
two cycles of treatment) may provide information for early
prediction of the eventual treatment outcome. Previous studies
have demonstrated evidence of longitudinal changes in
pharmacokinetic parameters (Dogan et al., 2019), tumor sizes
(Tudorica et al., 2016), and tumor MRI texture parameters
(Parikh et al., 2014; Henderson et al., 2017; Eun et al., 2020;
Nadrljanski and Milosevic, 2020) being correlated with responses
to NACT in breast cancer patients. These studies mainly analyzed
the feature-level changes of the heterogeneity by evaluating
longitudinal images within a tumor. Despite the advances of
these methods, the voxelwise changes inside a tumor between
baseline and post-NACT MRI scans may not be captured by
feature analysis of the entire tumor.

To this end, attempts have been conducted by aligning
intermediate MRI to baseline images to evaluate changes in
tumor heterogeneity in a voxel-by-voxel manner. A previous
study implemented an accurate image registration technique
using a parametric response map (PRM), which can provide
quantitative voxel-based information regarding heterogeneous
changes within the tumor during treatment (Galban et al., 2011;
Galban et al., 2012; Cho et al., 2014). The nonrigid nature of the
human breast requires methods using deformable registration of
longitudinal tumor changes during NACT (Li et al., 2009; Ou et al.,
2015). A recent study uses deformable methods to capture tumor
heterogeneity for early prediction of response to NACT (Jahani
et al., 2019). However, whether the quantitative evaluation of
longitudinal tumor changes by radiomic analysis is associated
with tumor responses is still unclear.

To predict NACT responses in breast cancer, changes in
tumor heterogeneity were evaluated both in voxel-by-voxel
and feature-level manners using longitudinal DCE-MR images.
Radiomic features were extracted at baseline and post-treatment
images and the voxel-level map of volumetric change before and
after early NACT. Additionally, feature-level changes in tumor
heterogeneity were evaluated by calculating the relative net
radiomic feature change between baseline and follow-up
images (deltaRAD). Predictive models were then established
using the radiomic features derived from these images. Our
comprehensive analyses demonstrated how the heterogeneity
changes in DCE-MRI before and after early NACT could
affect the accuracy of prediction of the response to NACT.

MATERIALS AND METHODS

Framework Overview
The framework of this study is illustrated in Figure 1. The voxelwise
volumetric changes during treatment were evaluated to generate a
Jacobian map by aligning the post-treatment MRI scans to the
baseline ones. Radiomic analysis was performed on the pre-and
post-NACT images and the Jacobian map. Feature-level changes in
tumor heterogeneity were obtained by calculating the relative net
change (the percent change) in features between baseline and post-
NACT scans. Predictive models were established using radiomics
based on the evaluation of these longitudinal images to discriminate
tumors that responded to NACT from those that did not.

Patient Selection
This study was approved by the Institutional Review Board of
Fudan University Shanghai Cancer Center. Due to the
retrospective nature of this study, use of a consent form was
waived. The data collection and selection procedure in these
two cohorts are illustrated in Figure 2. The original dataset
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collected from the hospital included 174 samples with paired
images acquired at the baseline and post-treatment (after two
cycles of NACT). Dataset 1 (the development set) initially
included 96 samples. After excluding eight samples with
missing imaging sequences at baseline or after early NACT,
eight samples with no available treatment outcome data
evaluated by the Miler-Payne (MP) score, and 19 samples with
no available clinical information, 61 samples were retained in this

study. Dataset 2 (the testing set) initially included 78 samples, of
which 25 were excluded: 11 with no clinical information, five with
incomplete imaging sequences, and nine with no available MP
data. The remaining data included 53 samples for testing.

Data Analysis
Pathological response was assessed after the whole cycle of NACT
according to the surgical specimen-determined MP grading

FIGURE 1 | Study framework. A Jacobian map for each tumor was derived based on aligning the post-treatment images to the preoperative ones. Radiomics were
calculated using the pre- and the follow-up images, the Jacobian map and the feature changes using longitudinal images (deltaRAD).

FIGURE 2 | Data selection procedure.
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system by comparing with the preoperative core biopsy (Ogston
et al., 2003). This grading system includes five grades. According to
a previous study, tumors withMP scores four and five (total cell loss
of more than 90%), also termed almost pCR and pCR, respectively,
were grouped as responders, while the others (grades 1, 2 or 3 with a
total cell loss of up to 90%) were grouped as nonresponders (Zhu
et al., 2014). Estrogen receptor (ER), progesterone receptor (PR)
and Ki-67 status were defined according to immunohistochemistry
(IHC) with streptavidin-peroxidase (SP) detection (Hammond
et al., 2010; Wolff et al., 2013). Hormone receptor (HR)
positivity was defined as HR and/or ER positive. HER2 positivity
was defined as IHC score of 3+ or 2+ with confirmation of gene
amplification by fluorescence in situ hybridization (FISH) (Wolff
et al., 2013). Tumor subtypes were categorized as follows: luminal A
(HR-positive and HER2-negative), luminal B (HR-positive and
HER2-positive), HER2-enriched (HR-negative and HER2-
positive) and triple-negative (HR-negative and HER2-negative)
subtypes. The HR-positive and HER2-negative tumors with a
Ki-67 expression level higher than 14% were specifically
determined to be luminal B subtype tumors.

Imaging Protocols
Imaging was performed following the specific requirements of the
hospital. For the development dataset (n � 61), the images were
acquired using a 3.0-T scanner (Siemens Healthcare, Erlangen,
Germany). DCE-MRI was acquired with a fat-suppressed T1-
weighted imaging sequence, which generated one precontrast (S0)
followed by five or eight sequential postcontrast image series after
injection of a gadobutrol-based contrast agent. The time interval
between the first postcontrast image and S0 was 90 s, while the time
intervals between the subsequent image series were 43 or 44 s.

For the testing dataset (n � 53), DCE-MRI was acquired using a
dedicated 1.5-T breast magnetic resonance imaging system
(Aurora Dedicated Breast MRI Systems, United States). The
imaging system generated one precontrast image and three
postcontrast images at 120, 245, and 371 s after beginning the
intravenous administration of gadobutrol injection. The detailed
imaging parameters for these two datasets are shown as in Table 1.

Image Preprocessing
Nonuniform intensity normalization (N4) bias correction was
implemented to reduce the effect of MR imaging artifacts. Images
from the patients were resampled to the same spatial resolution
for feature extraction. The tumor region-of-interest (ROI) was
identified by using a spatial Fuzzy C-means method on the third

postcontrast image series where the highest enhancement valuate
were usually achieved (Yang et al., 2014; Fan et al., 2020).

Analysis of Volumetric Change in
Longitudinal MRI Scans
Voxelwise volumetric changes were evaluated by aligning the follow-
up images to preoperative scans by finding an optimal and
deformable transformation for image registration (Ou et al.,
2015). Based on this approach, the aligned image along with a
Jacobian map was generated, in which each pixel of the Jacobian
map represented a volumetric shrink/expansion pattern. Specifically,
Jacobian values for each voxel greater than one indicate volume
expansion, while those less than one indicate volume shrinkage, and
those equal to one indicate volume preservation. The Jacobian value
is calculated using the following equation (Eq. 1):

Jacobian value � vfollow−up
vbaseline

(1)

where v2 denotes the resisted voxel volume in follow-up image,
and v1 denotes the voxel volume in the baseline image.

Radiomic Features
Features were extracted from the tumor ROI using a publicly available
radiomics analysis software, Pyradiomics (van Griethuysen et al.,
2017). For each ROI, 102 features were calculated, including the shape
(n � 14), first-order statistics (n � 18), texture features using gray level
cooccurrence matrix (GLCM) (n � 24), gray-level run-length matrix
(GLRLM) (n � 16), gray-level size-zone matrix (GLSZM) (n � 16)
and gray-level dependence matrix (GLDM) (n � 14). The imaging
heterogeneity of the entire tumor was evaluated based on the
subtraction images between the intermediate image series that
unusually exhibited the maximum enhancement signal and the
precontrast image. Radiomics features were calculated on the pre-
and post-treatment images and the Jacobian map.

Feature-Level Changes in Tumor
Heterogeneity
Feature-level changes were calculated by the relative net change
between the features derived from the baseline and the follow-up
image. For the ith radiomics feature (f i) calculated from the tumor
ROI, the feature change f iΔ is illustrated as shown in the following
equation (Eq. 2):

f iΔ � f ibaseline − f ifollow−up
f ibaseline

(2)

where f ibaseline stands for the feature i obtained from the baseline
image, and f ifollow−up indicates the feature i from the follow-up image.

Statistical Analysis and Machine Learning
Methods
The distributions of the histopathological information of the
molecular subtypes, menopausal status, family history between
the development and testing groups were compared by using the χ2

TABLE 1 | Imaging parameters in the development and testing datasets.

Parameter Development dataset Testing dataset

Repetition time (TR) [ms] 4.5 29
Echo time (TE) [ms] 1.56 4.8
Flip angle (FA) [°] 10 90

Field of view (FOV) [mm] 360 × 360 360 × 360
Matrix 384 × 384 512 × 512

Slice thickness (mm) 2.2 1.48
In-plane resolution (mm) 0.9375 × 0.9375 0.7031 × 0.7031
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test or Fisher’s exact test when the expected frequency in any tablet
was less than five. Analysis of variance (ANOVA) was performed
to compare continuous variables between the development and the
testing groups. The area under the receiver operating characteristic
(ROC) curve (AUC) was calculated to assess the performance of
the predictive model. The sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV) were calculated.
The sensitivity and specificity were determined at the operation
point at ROC curve by using the Youden index by the maximum
sum of the specificity and the sensitivity. Statistical tests with p
values less than 0.05 were considered significant.

A support vector machine (SVM) with a Gaussian kernel was
used as a base classifier for prediction. Predictive model
establishment and model tuning were performed on the
development set and were tested on the testing set. SVM-
recursive feature elimination (RFE) was used to rank the features
that weremost relevant to the target, and these were then sequentially
added into the predictive model. The feature sets were fed into the
predictive model, in which the SVM parameters α and c were tuned
using a grid search method in each iteration with a 10-fold cross-
validation framework. An optimized model with the selected feature
subset and the tuned model parameters was established using all the
samples in the development set and was applied to the testing set to
evaluate the model performance. Statistical analysis and machine
learning methods were performed using R (version 4.0) and Matlab
(MathWorks, Natick, Massachusetts, version 2018 b).

RESULTS

Patient
Patient characteristics including age, menopausal status, family
history, molecular subtypes and MP grade are illustrated in

Table 2. The development dataset included 61 samples (mean
age 49, ranges from 27 to 66°years), while the testing dataset
included 53 samples (mean age 47, range from 29 to 79°years).
There were 44 (38.6%) patients who had an MP grade larger
than three (i.e., 4, 5), and they were categorized as the
responders, while the others (n � 70, 61.4%) who had an MP
grade of no more than three (i.e., 1, 2 or 3) were defined as the
nonresponders. No significant differences in histological
information were observed between the development and
testing datasets (p > 0.05, Table 2).

Voxelwise Changes in Tumor Heterogeneity
Associated With the Response to NACT
After registering the follow-up images to the baseline ones, a
Jacobian map was obtained for each tumor that reflects the level
of voxelwise volumetric shrink/expansion. An example of a
statistical feature (e.g., mean value) calculated on the Jacobian
map of tumors is illustrated in Figure 3. Tumor volume was
reduced in both the nonresponse (Figures 3A−C) and the
response (Figures 3D−F) groups after NACT. The mean
Jacobian value inside the tumor was significantly higher in the
nonresponders than in the responders, with a p value of 4.9e−5

(Figure 3G). This result indicated that a high Jacobian value that
represents a lower level of voxelwise shrink inside a tumor is
associated with a failure of treatment.

In addition to statistical features, examples of texture
features derived from tumor Jacobian maps are illustrated
in Figure 4. A low MP grade (nonresponder) patient
showed a lower level of volume shrinkage (Figures 4A,B)
after early NACT than a patient with a higher MP grade
(responder) (Figures 4D,E); this pattern is illustrated in the
Jacobian map (Figures 4C,F). The texture feature (large
dependence high gray-level emphasis) obtained from the
Jacobian map were significantly higher in the
nonresponders than in the responders (Figure 4G, p �
2.45e−4). This result suggested that a higher level of this
texture feature, which reflects a higher voxelwise spatial
rearrangement heterogeneity of the shrinkage/expansion
pattern inside a tumor during NACT, is more likely to be
associated with a worse response to NACT.

Feature-Level Changes in Tumor
Heterogeneity Associated With Response
to NACT
To assess how the tumor heterogeneity changed during
treatment, radiomics analysis was conducted on the baseline
and the follow-up images. It should be noted that the relative
net change in volume size for the entire tumor between pre- and
post-treatment images showed no significant (p � 0.09)
differences between the responders and nonresponders
(Supplementary Figure S1). This result suggests that
volumetric changes in the entire tumor after early NACT may
not be significantly related to the eventual treatment outcomes.

A more significant (p � 0.001) decrease in a statistical
feature (energy) after early NACT was observed in the

TABLE 2 | Patient characteristics.

All Development set Testing set p-value

Number 114 61 (54%) 53 (46%)
Age 48 (27–79) 49 (27–66) 47 (29–79) 0.407a

Menopausal status 0.670b

Pre 46 (40%) 23 (38%) 23 (43%)
Post 68 (60%) 38 (62%) 30 (57%)

Family history 0.642b

No 87 (76%) 45 (74%) 42 (79%)
Yes 27 (24%) 16 (26%) 11 (21%)

Miller Payne 0.706c

1 9 (8%) 6 (10%) 3 (6%)
2 21 (18%) 10 (16%) 11 (21%)
3 40 (35%) 24 (40%) 16 (30%)
4 10 (9%) 5 (8%) 5 (9%)
5 34 (30%) 16 (26%) 18 (34%)

Molecular subtypes 0.409b

Luminal A 12 (10%) 9 (15%) 3 (5%)
Luminal B 58 (51%) 30 (49%) 28 (53%)
Basal-like 20 (18%) 9 (15%) 11 (21%)
HER-2 24 (21%) 13 (21%) 11 (21%)

aAnalysis of variance.
bχ2 test with Yates’ continuity correction.
cFisher’s exact test.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 8 | Article 6222195

Fan et al. DCE-MRI on Neoadjuvant Chemotherapy

122

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


responders than in the nonresponders (Figure 5). This
feature measures the magnitude of voxel values, and a
higher value suggests a greater sum of the squares of these
values. The result suggests that a decrease in the
enhancement level of tumors is associated with NACT
response in breast cancer.

An example of a texture feature (i.e., autocorrelation) is also
illustrated in Figure 6. This feature value was significantly
reduced after early NACT in the responders (p � 0.006), while
the difference was not significant in the nonresponders (p �
0.241). This feature measures the level of the fineness and
coarseness of the texture of an object, in which a high value is
correlated with high gray-level heterogeneity within the tumor.
The results suggest that the level of tumor heterogeneity

reduction is higher in the NACT responders than in the
nonresponders.

Fusion of Longitudinal MRI Features for
Predicting Response to NACT
To evaluate the collective effect of longitudinal radiomics, the
features from different images were combined and evaluated. The
individual features from the images at baseline, post-treatment,
Jacobian map and deltaRAD features were evaluated, and the
results showed that features from the follow-up image have the
highest performance (in terms of AUC values), while the
deltaRAD features and Jacobian map-based features showed
intermediate performance (Supplementary Figure S2).

FIGURE 3 | Example images and distribution of mean Jacobian values in nonresponders and responders. Images from a breast cancer patient (aged 45 years old)
with a low MP (nonresponder) (A) pre- and (B) post-treatment and (C) a Jacobian map of the ROI (mean Jacobian value � 0.746). Images from a breast cancer patient
(aged 41 years old) with a high MP (responder) (D) pre- and (E) post-treatment and (F) a Jacobian map of the ROI (mean Jacobian value � 0.449). (G) Boxplot
representing the feature distribution between nonresponders and responders.

FIGURE 4 | Examples feature of large dependence high gray-level emphasis (LDHGLE) in nonresponders and responders. Images from a nonresponder breast
cancer patient (aged 59 years old) (A) pre- and (B) post-treatment and (C) a Jacobian map of the tumor ROI (LDHGLE � 1654). Images from a responder breast cancer
patient [aged 43 years old) (D)] pre- and (E) post-treatment and (F) a Jacobian map of the tumor ROI (LDHGLE � 768). (G) Boxplot representing the feature distributions
in nonresponders and responders.
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Radiomic features from these images were used separately to
establish predictive models in the development set and was tested
on the testing set (Table 3; Figure 7). Among these, the predictive
model based on the baseline image generated lowest performance
with an AUC of 0.568 (sensitivity of 0.913 at a specificity of
0.367). Radiomic features based on Jacobian map, follow-up
image and deltaRAD showed a higher prediction performance

with AUC of 0.628, 0.757 and 0.718, respectively. When the
features from these images were fused, the classifier generated an
AUC of 0.771 with sensitivity of 0.522 and specificity of 0.967.
Finally, imaging features were combined with the clinical and
histologic information for prediction to facilitate a more accurate
prediction. The results showed an improved performance with an
AUC value of 0.809 (sensitivity of 0.826 at a specificity of 0.800),

FIGURE 5 | Feature (energy) change between baseline and early NACT images. Images from a 58 year-old woman with a deltaRAD value of 0.876 in the
responders at (A) baseline and (B) early NACT. Images from a 49 year-old woman with a deltaRAD value of 0.618 in the nonresponders at (C) baseline and (D) early
NACT. (E) The distribution of the change in the energy value is shown in the boxplot, in which the feature value is significantly higher in responders than in nonresponders.

FIGURE 6 | Images representing feature (autocorrelation) changes between pre- and post-treatment images. Images from a 47 year-old woman who responded
to NACT (high MP grade) at (A) baseline (autocorrelation � 65.5) and (B) follow-up (autocorrelation � 42.3). Images from a 36 year-old woman who did not respond to
NACT (lowMP grade) at (C) baseline (autocorrelation � 54.0) and (D) follow-up (autocorrelation � 14.4). (E)Boxplot showing that the feature value is significantly reduced
in responders (p � 0.006) but is not significantly changed in nonresponders (p � 0.241).
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which is significantly better than the baseline image (p � 0.028)
and the Jacobian map (p � 0.019) based predictive model.

DISCUSSION

During NACT, the breast tumor size and morphological and
functional changes are associated with the eventual treatment
outcomes. In this study, the pattern of the changes in tumor
heterogeneity during NACT was evaluated using baseline and
post-treatment images to predict responses to NACT in breast
cancer. The voxelwise shrinkage/expansion inside the tumor and
the feature-level changes of the entire tumor were both obtained.
Radiomics features from longitudinal images and the changes in
tumor heterogeneity were fused for the prediction. The molecular

subtype information was combined with radiomics features,
which generated an increased prediction performance.

Previous studies have conducted radiomic analysis using
features derived from tumors for NACT response prediction.
Jahani et al. analyzed voxelwise changes in DCE-MRI features to
characterize heterogeneous changes within the tumor and to
predict pCR and recurrence free survivals (Jahani et al., 2019).
An earlier study evaluated image feature-level changes in tumor
heterogeneity to assess for pCR to NACT (Parikh et al., 2014). In
our study, radiomic features based on changes in tumor
heterogeneity were evaluated in both feature- and voxel-level
to facilitate a quantitative analysis of longitudinal heterogeneity
during treatment in breast cancer. A recent study extracted
texture and statistical features and identified that tumor
kurtosis in T2-weighted MR images was independently

TABLE 3 | Performance of predictive model based on images at longitudinal times.

Images AUC (±SE) SD p value Sensitivity Specificity PPV NPV

Baseline image 0.568 ± 0.155 0.079 0.028 0.913 0.367 0.525 0.846
Follow-up image 0.767 ± 0.128 0.065 0.508 0.565 0.900 0.813 0.730
DeltaRAD 0.726 ± 0.137 0.070 0.301 0.913 0.533 0.600 0.889
Jacobian map 0.630 ± 0.154 0.079 0.019 0.609 0.700 0.609 0.700
Feature fusion 0.771 ± 0.136 0.069 0.356 0.522 0.967 0.923 0.725
Feature + MS 0.809 ± 0.131 0.067 — 0.826 0.800 0.760 0.857

SE, standard error; SD, standard derivation; deltaRAD, relative net feature change between baseline and follow-up images; MS, molecular subtype. p value indicates significance of the
comparison between baseline imaging- and the other image-based predictive models.

FIGURE 7 | ROC curves for the predictive models using longitudinal images. The ROC curves for the predictive model using deltaRAD and radiomics derived from
pre- and post-treatment images, the Jacobian map and the fused imaging features are shown. The ROC curve of the predictive model combining imaging features and
molecular subtype information is also shown.
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associated with pCR in non-triple-negative breast cancer
(Chamming’s et al., 2018). Additionally, the molecular
subtypes were associated with the prediction accuracy of
NACT response (Drisis et al., 2016; Liu et al., 2019). In this
study, we have incorporated molecular subtype information in
the predictive model and observed the highest performance,
which is partly consistent with previous study.

In this study, radiomics analysis of Jacobian maps showed that
statistical features (e.g., mean) and texture features (e.g., large
dependence high gray level emphasis) decreased after early
NACT, while the level of feature reduction was lower in the
responders than in the nonresponders. On the other hand, the
voxelwise volumetric reduction inside tumors was significantly
associated with the responders. Additionally, texture features
(e.g., large dependence high gray-level emphasis) were reduced
after early NACT, and the level of the reduction was higher in
patients who responded to NACT than in those who did not. In
our results, tumor heterogeneity was decreased after early NACT,
and more importantly, the high level of reduction in
heterogeneity was associated with good response to NACT.
This indicated that decreased heterogeneity within a tumor
may likely be exhibit in the patients who benefitted from
the NACT.

In addition to the evaluation of voxel-vize volumetric changes
by image registration, longitudinal feature-level changes between
the baseline and follow-up images were also evaluated for their
associations with tumor response to NACT. In our study, the
performance of the model based on vascular characteristics
measured by DCE-MRI was higher than that of the model
based on morphologic features, which is partly consistent with
the findings of a previous study that dynamic features have better
accuracy in response prediction than tumor size (Marinovich
et al., 2012). Our results indicated that tumor heterogeneity-
related features are decreased after treatment, and the extent is
higher in responders than in nonresponders. Therefore,
longitudinal feature changes in tumor heterogeneity, rather
than size changes of the entire tumor, might be more
correlated with tumor response to NACT.

We observed a relatively lower performance in terms of AUC
for features from the baseline images. A related study identified
significant change in the tumor maximum diameter between the
responders and nonresponders (Minarikova et al., 2017). In our
study, changes in tumor heterogeneity at the feature level and
voxel level were both evaluated, and predictive performance was
improved after fusing the features from different images at varied
times. The results suggested that multiple levels of features and
different stages of features at treatment may be complementary,
and altogether, these contributed to enhanced model
performance.

Despite the potential significance of tumor radiomics using
longitudinal images in this study, several limitations should also
be addressed. First, only the tumor region was analyzed for
image feature extraction. It would also be interesting to analyze
the peritumoral tissues that surrounds the tumor (Kim et al.,
2018b) to conduct a comprehensively analysis of the pattern of
heterogeneity on baseline and post-treatment images. Second,
this was a retrospective study, and the sample size was relatively

small to conduct a fair statistical analysis. Further studies with
more samples and refined analyses should be conducted to
confirm the findings of this study. Third, features were
derived from two datasets with different magnetic field
strengths (3.0 and 1.5 T for the development and testing
datasets, respectively), which may have affected the feature
calculations and induced bias. Despite this limitation, the
features were calculated based on the relative differences in
the feature/voxel values between baseline and follow-up images,
which may have partly reduced the bias between different
protocols. In our study, radiomics features were calculated
using publicly available Pyradiomics software, with the aim
of ensuring the repeatability of this study (van Griethuysen
et al., 2017).

In conclusion, longitudinal changes in tumor heterogeneity at
the voxel and feature levels were examined to determine their
contribution to the prediction of tumor response. It was found
that molecular subtypes add more predictive power in assessing
the response to NACT.
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Background: Characteristic chest computed tomography (CT) manifestation of 2019
novel coronavirus (COVID-19) was added as a diagnostic criterion in the Chinese
National COVID-19 management guideline. Whether the characteristic findings of Chest
CT could differentiate confirmed COVID-19 cases from other positive nucleic acid test
(NAT)-negative patients has not been rigorously evaluated.

Purpose: We aim to test whether chest CT manifestation of 2019 novel coronavirus
(COVID-19) can be differentiated by a radiologist or a computer-based CT image
analysis system.

Methods: We conducted a retrospective case-control study that included 52
laboratory-confirmed COVID-19 patients and 80 non-COVID-19 viral pneumonia
patients between 20 December, 2019 and 10 February, 2020. The chest CT images
were evaluated by radiologists in a double blind fashion. A computer-based image
analysis system (uAI System, Lianying Inc., Shanghai, China) detected the lesions in
18 lung segments defined by Boyden classification system and calculated the infected
volume in each segment. The number and volume of lesions detected by radiologist
and computer system was compared with Chi-square test or Mann-Whitney U test as
appropriate.

Results: The main CT manifestations of COVID-19 were multi-lobar/segmental
peripheral ground-glass opacities and patchy air space infiltrates. The case and control
groups were similar in demographics, comorbidity, and clinical manifestations. There
was no significant difference in eight radiologist identified CT image features between
the two groups of patients. There was also no difference in the absolute and relative
volume of infected regions in each lung segment.

Conclusion: We documented the non-differentiating nature of initial
chest CT image between COVID-19 and other viral pneumonia with
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suspected symptoms. Our results do not support CT findings replacing
microbiological diagnosis as a critical criterion for COVID-19 diagnosis. Our
findings may prompt re-evaluation of isolated patients without laboratory
confirmation.

Keywords: COVID-19, 2019-nCoV, chest computed tomography, computer-aided detection, computer-based
detection

INTRODUCTION

Due to high transmissibility and so far lack of proven treatment,
the 2019 novel coronavirus disease, 2019-nCoV, has quickly
disseminated worldwide (Bogoch et al., 2020; Dong et al.,
2020). As symptoms of COVID-19 are similar to other acute
respiratory infections, diagnosis relies on positive nucleic acid
test (NAT). Given the long turnaround time and suboptimal
sensitivity of NAT, chest computed tomography (CT) was
proposed as a first line diagnostic tool by the Chinese national
guideline (trial version 5) (Ai et al., 2020). This however, created
problems, particularly resulting isolating patients with COVID-
19 with patients with similar respiratory symptoms due to other
infections, as well as delaying appropriate treatment for other
treatable infections. We believe findings on CT might not be
specific enough to differentiate infection from COVID-19 from
non-COVID-19 etiology. It is not a coincidence that after the
new definition implementation, 14,840 new cases with 242 deaths
were reported on February 13th, which was the record by far
reported in a single day since the outbreak (Coronavirus COVID-
19 Global Cases by John Hopkins, 2020).

Several case series have reported characteristic CT findings
of COVID-19, including ground glass opacities in bilateral
peripheral lung, crazy-paving changes, reticular thickening, or
consolidations (Fang et al., 2020b; Lei et al., 2020). Given that
clinically it is difficult to distinguish COVID-19 from other
infective causes for patients with respiratory symptoms, we aim
to evaluate whether radiologists or a computer-based image
analysis system can reliably differentiate COVID-19 cases from
non-COVID-19 but suspected patients.

MATERIALS AND METHODS

Study Population
From 20 December, 2019 to 10 February, 2020, 52 laboratory-
confirmed COVID-19 patients in Shenzhen were identified that
fulfilled the diagnostic criteria of Chinese national guideline
(Lin and Li, 2020). The criteria for a confirmed case include
documented laboratory evidence, compatible clinical symptoms,
and exposure history. Documented laboratory evidence is
defined by positive NAT result either from respiratory tract,
bronchoalveolar lavage fluid, or blood sample. Compatible
clinical symptoms refer to fever, cough, imaging characteristics
of pneumonia, and/or normal or decreased white blood cells
count or decreased lymphocyte count. Exposure history includes
travel/residence history in Wuhan city, contact history with
laboratory-confirmed patients, or contact history with patients

with fever or respiratory symptoms from Wuhan and its
surrounding areas or endemic communities, within 14 days
before the onset of illness. We randomly selected 80 laboratory-
confirmed non-COVID-19 viral pneumonia patients as controls.
These presented with suspected symptoms and exposure history
and underwent NAT and chest CT exams in the same period.
To be eligible for inclusion as a control, patients must have at
least two negative NAT results from two respiratory specimens
and laboratory evidence of other respiratory viruses including
positive antigen or NAT test results for influenza A, influenza B,
parainfluenza, respiratory syntactical virus, or adenovirus.

Chest CT Evaluation by Radiologists
All CT images were independently retrospectively analyzed
using a structured form by two experienced radiologists
in a double blinded fashion without knowing the clinical
diagnosis. A third senior radiologist was consulted to solve
any discrepancy by consensus. Evaluation was focused on the
presence of ground glass opacities, patchy infiltration, patchy
consolidation, pleural effusion, mediastinal lymphadenopathy,
air bronchogram, pleural thickening, and interstitial change.

Machine-Learning Based CT Lesion
Detection and Quantification System
We used the uAI image analysis system (Lianying Intelligent
Medical Technology Co., Ltd., Shanghai, China) for detection
and quantification of chest CT lesions (Computer-based
detection in Supplementary Appendix). The system classifies
the lung fields into five lung lobes and 18 lung segments
based on Boyden classification, detects infected regions in each
anatomical region, and quantifies the cumulative and relative
infected volume. The infected volumes between the two groups
were also compared in four different CT windows. Different
CT windows refer to different status of brightness and contrast
of a CT image manipulated via the CT numbers in order to
highlight particular structures. This study was approved by the
Institutional Review Board of the Second Affiliated Hospital of
Shenzhen University.

Statistical Analysis
Categorical variables were expressed as number and proportion
and compared with a Chi-square test. Continuous variables were
presented with mean ± standard deviation for data with a normal
distribution and tested by Student t-test. Data with non-normal
distribution were presented with median with interquartile
range and compared with independent sample Mann-Whitney
U test. All tests in this study were two-sided, and P < 0.05
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was deemed statistically significant. Data was analyzed using
SPSS 23.0 software.

RESULTS

Study Patients
Of the 52 included case patients, 32 (61.54%) were male
with a mean age of 45.61 ± 14.19 years. The duration of
the disease course ranged from 1 to 10 days, with a mean
of 5.61 ± 2.19 days. Chest CT examination was performed
within 10 days of disease onset. Among patients with COVID-
19, fever, fatigue, and dry cough were the major presenting
symptoms; hypertension, chronic heart failure, and diabetes
were the leading comorbidities, and lymphopenia with elevated
CRP or lactate levels were the main laboratory findings. There

TABLE 1 | Patients characteristics between case and control patients [n(%)].

Characteristic COVID-19
(N = 52)

Non-COVID-19 viral
pneumonia (N = 80)

P-value

Age 45.61 ± 14.19 48.69 ± 14.62 0.12

Sex

Female 32 (61.54%) 58 (72.50%) 0.44

Male 20 (38.46%) 22 (27.50%) 0.73

Course of
disease

5.61 ± 2.19 8.32 ± 1.82 0.61

Onset of
symptom to CT
examination

4.32 ± 0.82 6.87 ± 1.89 0.06

Symptoms

Fever 47 (90.38) 71 (88.75) 0.24

Fatigue 44 (84.61) 68 (85.00) 0.08

Dry cough 31 (59.62) 48 (60.00) 0.16

Dyspnea 15 (28.85) 27 (33.75) 0.67

Sore throat 28 (53.85) 49 (61.25) 0.48

Comorbidities

Hypertension 24 (46.15) 39 (48.75) 0.89

Chronic heart
failure

10 (19.23) 17 (21.25) 0.85

Diabetes 14 (26.92) 20 (25.00) 0.52

Cerebrovascular
disease

9 (17.31) 19 (23.75) 0.37

COPD 11 (21.15) 16 (20.00) 0.94

Chronic kidney
disease

4 (7.69) 8 (10.00) 0.30

Laboratory
results

White blood cell
count (109/L)

13.60 ± 5.38 11.35 ± 5.88 0.39

Neutrophil
percentage (%)

20.43 ± 5.86 18.20 ± 5.05 0.59

Lymphocyte
percentage (%)

82.45 ± 14.54 85.69 ± 10.08 0.20

C-reactive
protein (mg/dL)

93.20 ± 24.01 106.59 ± 29.29 0.10

Lactate
(mmol/L)

2.71 ± 1.38 2.58 ± 1.20 0.16

was no significant difference between case and control in
demographic, disease course, clinical symptoms, and laboratory
findings (Table 1).

Comparison of CT Interpretation by
Radiologists
In both COVID-19 and non-COVID-19 viral pneumonia
patients, ground-glass opacity (Supplementary Figures 1A,B)
and patchy airspace infiltrates (Supplementary Figures 2A,B)
were the major findings. The lesions could be found in multiple
lobes or segments, more often bilateral. There was no statistical
significance between the distribution of lesions identified by
radiologists in the two groups. The majority of both categories
of patients have ground glass opacities and patchy infiltration,
followed by patchy consolidation. There is no statistically
significant difference in any of the CT manifestations between the
two groups (Table 2).

Comparison of Computer System
Detected Infected Lung Volume
Compared between COVID-19 and non-COVID-19 viral
pneumonia patients, there was no significant difference in the
computer system detected infected lung volume/percentage in 5
lung lobes and in different lung segments (Table 3). Similarly,
there was no significant difference in the absolute or relative
infected lung volume between the two groups of patients
(Supplementary Table 1).

Sensitivity Analysis Under Different
Radiodensity Ranges for Machine
Detection
The lesions’ infection volume/percentage for COVID-19 and
non-COVID-19 patients were stratified by four different CT
number ranges (Supplementary Table 2). Lesions in the (−750,
−300) Hounsfield units (HU) range were arbitrarily chosen to
reflect ground-glass opacity, while those with CT numbers in the

TABLE 2 | Radiologist interpretation of chest CT before NAT results [n(%)].

COVID-19
(N = 52)

Non-COVID-19 viral
pneumonia (N = 80)

P-value

Ground glass
opacities

38 (73.07) 57 (71.25) 0.27

Patchy
infiltration

30 (57.69) 48 (60.00) 0.08

Patchy
consolidation

15 (28.84) 28 (35.00) 0.15

Pleural effusion 4 (7.69) 9 (11.25) 0.54

Mediastinal
lymphadenopathy

3 (5.78) 5 (6.25) 0.71

Air
bronchogram

11 (21.15) 15 (18.75) 0.19

Pleural
thickening

4 (7.69) 6 (7.50) 0.57

Interstitial
change

10 (19.23) 16 (20.00) 0.29

Frontiers in Molecular Biosciences | www.frontiersin.org 3 March 2021 | Volume 8 | Article 614207131

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-614207 March 24, 2021 Time: 18:37 # 4

Dou et al. Chest CT Images for COVID-19

TABLE 3 | Difference in lesions distribution between COVID-19 and non-COVID-19 viral pneumonia patients.

Affected Lung field COVID-19 Non-COVID-19 viral pneumonia Pa Pb

Infection volume (cm3) Percentage of infection (%) Infection volume (cm3) Percentage of infection (%)

Right upper lobe 29.55 ± 10.41 3.93 ± 1.11 40.76 ± 13.24 11.66 ± 3.67 0.70 0.71

Right middle lobe 11.61 ± 6.64 0.63 ± 0.20 25.35 ± 7.51 4.57 ± 1.90 0.22 0.20

Right lower lobe 45.93 ± 18.40 7.19 ± 3.41 80.61 ± 41.47 15.56 ± 7.38 0.37 0.93

Left upper lobe 22.17 ± 8.54 1.19 ± 0.11 34.60 ± 10.41 8.67 ± 2.00 0.90 0.79

Left lower lobe 48.42 ± 22.98 8.67 ± 1.45 105.76 ± 32.03 22.15 ± 8.02 0.52 0.75

aComparison of the infection volume in COVID-19 group and non-COVID-19 viral pneumonia.
bComparison of the infection ratio of the affected sites in COVID-19 group and non-COVID-19 viral pneumonia group.

(−300, 50) range were considered as denser airspace infiltrates
and consolidation. Anything less than −750 becomes harder to
differentiate from normal lung tissue. An extreme number 50
was chosen, beyond which infection becomes unlikely, though
not impossible, as the number starts to get into the soft
tissue mass range. No statistically significant difference in the
infected volumes between the two groups was found in any of
the four ranges.

DISCUSSION

In our case-control study, we selected controls in the real
world settings, used both radiologist and computer system
to evaluate the CT image difference between two groups of
patients. We confirmed the main CT manifestations of patients
with COVID-19 were multi-lobar/segmental peripheral ground-
glass opacities and patchy airspace infiltrates. There was no
significant difference between the two groups in radiologists’
interpretation and the volume of software system detected
lesions.

The Severe Acute Respiratory Syndrome Coronavirus-2
(SARS-CoV-2) primarily invades the lung parenchyma (Lin and
Li, 2020). Because of the long turnaround time and suboptimal
sensitivity of NAT for SARS-CoV-2, whether chest CT can be
used as a first line diagnostic rule to differentiate COVID-19
from other viral pneumonia is of critical importance in both
clinical and public health perspectives. Chen et al. (2020) studied
29 patients with COVID-19 showed that the chest image lesions
were mostly bilateral and multiple with patchy shadows and
ground glass opacities (Chan et al., 2020; Fang et al., 2020a). Pan
et al., reported CT images of COVID-19 are diverse in the early
stages, which may present ground-glass opacities, pulmonary
consolidation and nodules (Pan and Guan, 2020). These studies
were case series without suitable control groups (Chen et al.,
2020; Fang et al., 2020b; Kanne, 2020; Lei et al., 2020; Pan and
Guan, 2020). We found Radiologists’ interpretation alone or
computer-based lesion detection cannot differentiate COVID-19
form other viral pneumonia. Such findings were robust under
different anatomic sites or CT density ranges.

There are pros and cons using clinical diagnosis as a
case definition. Clinical diagnosis allows early isolation with
initial false negative NAT, slows transmission, and implements
treatment early. However, the use of chest CT as a first line

diagnostic method may miss early/mild disease, promote cross-
infection in the CT room, increase radiation exposure, and
consume enormous resources of disinfection.

Our findings have multiple implications. First, clinicians
should not rely on initial chest CT findings to diagnose
COVID-19 in the absence of laboratory confirmation. Second,
patients who had been diagnosed with COVID-19 based
on the clinical grounds should be re-evaluated with serum
antibody tests. Third, patients who were isolated and cohorted
with laboratory-confirmed cases in the temporary COVID-19
hospitals of Hubei province may need to be reevaluated aiming
for further laboratory evidence including repeated NAT or
serum antibody test.

Results of study should be interpreted in light of its shortfalls.
Due to the constraints in time and patient number, we could
not perform independent validation with an external sample.
Comparison between radiologists and Artificial intelligence
interpretations was not made as this was not within our study
scope, but could be a point of interest for future study. We
did not compare serial imaging changes. We used a commercial
image analysis system based on deep learning. The system does
not provide flexibility in adjustment of machine-learning model
or hyperparameters selection. We do not exclude future tailor
trained machine learning systems that can differentiate chest CT
of COVID-19 from other suspected patients. Lastly, the sample
size we collected could provide a mere statistical power of 70%
to differentiate a 20% difference between two proportions. The
calculation of the power is based on the Z-test with a statistical
significance level of 0.0.5 and a sample size of 130 patients.

CONCLUSION

We documented the non-differentiating nature of initial chest CT
between COVID-19 and other viral pneumonia with suspected
symptoms. Our results do not support CT findings replacing
microbiological diagnosis as a critical criterion for COVID-
19 diagnosis.
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Given the considerable research efforts in understanding and manipulating the
vasculature in tissue health and function, making effective measurements of vascular
density is critical for a variety of biomedical applications. However, because the
vasculature is a heterogeneous collection of vessel segments, arranged in a complex
three-dimensional architecture, which is dynamic in form and function, it is difficult
to effectively measure. Here, we developed a semi-automated method that leverages
machine learning to identify and quantify vascular metrics in an angiogenesis model
imaged with different modalities. This software, BioSegment, is designed to make high
throughput vascular density measurements of fluorescent or phase contrast images.
Furthermore, the rapidity of assessments makes it an ideal tool for incorporation in tissue
manufacturing workflows, where engineered tissue constructs may require frequent
monitoring, to ensure that vascular growth benchmarks are met.

Keywords: angiogenesis, machine learning, vascularity, neovessel growth, vessel quantification

INTRODUCTION

A mature vascular network is essential for the viability of tissues, native or fabricated. Thus, making
informative, quantitative measurements of a vascular network is important. This is especially
relevant for a maturing, vascularized engineered tissue, which needs to meet certain vascular
density benchmarks to remain viable. Making accurate vessel density measurements, particularly
during angiogenesis, can be challenging due to the irregular features of both the individual vessels
and the complex networks they form, and the surrounding tissue environments. Vasculatures
exist in three dimensional environments with vessels extending across all dimensions, may vary
in density, and can resemble other non-vascular tissue elements (e.g., ducts, cell bundles, etc.).
A variety of imaging modalities are employed to visualize the vasculature in both the laboratory and
the clinic (Spaide et al., 2015; Grüneboom et al., 2019; Bautista et al., 2020). Usually, a contrast agent
that fills the blood space and/or labels vessel cells directly is involved, as inherent contrast between
the vessel and the surrounding tissue is often low. Segmentation and quantification from these
images is subsequently performed to assess the vasculature. While effective at visualizing vessel
elements, non-uniform labeling of vessels by these agents can confound segmentation and feature
detection. All of this complicates computer-based image analyses. Additionally, many labeling
methods rely on contrast agents flowing through the vasculature and are, therefore, not useable
for neovascular systems in which intravascular perfusion is not yet established.
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Other pixel-based computational systems for quantifying
do exist, designed to analyze images of vasculatures stained
with fluorescent labels, but are often intended for very specific
applications. The ImageJ plugin Angiogenesis Analyzer, for
example, has been widely published for use in 2D endothelial cell
assays (Yamamoto et al., 2014; Yang et al., 2016) and a handful of
3D tissues where the vasculature was very distinct and uniform
(Samarelli et al., 2014). Rarely, however, in tissues, fabricated or
native, is the vasculature so clear. Often clumps of cells or tissue,
or irregularly shaped immature vessels, present challenges for
computational methods of identifying blood vessels, even with
highly specific stains.

Artificial intelligence and machine learning (AI/ML) are
increasingly employed to make measurements in biomedical
research that can be challenging for more traditional
computational systems biological systems. With AI/ML, a
software program can be “trained” to distinguish certain features.
A handful of AI/ML programs exist that have been used to
quantify the vasculature, although none have been designed
specifically for high throughput analyses, especially involving
phase contrast imaging. Additionally, all of these programs
have only been tested on clearly defined, mature vasculatures,
that lack the feature noise visible in growing and remodeling
neovasculatures in a tissue space. For example, the program
VesSAP has been used to map the vasculature in a whole mouse
brain following the use of a perfused tag. While the program was
able to accurately map the vasculature and produce an impressive
amount of data, extensive clearing and staining protocols were
needed to obtain clean, high resolution 3D images, which took
an additional 24 h to segment (Todorov et al., 2020). While
this may be ideal for some applications, it may not be as useful
for high throughput analysis or as a routine-use tool in the
laboratory. VesSAP also requires a background in computer
software to operate. Another program, REAVER, has been used
in similar applications, but also requires a MATLAB license and
an understanding of software coding in order to use (Corliss
et al., 2020). The open source software Ilastik has been used
to quantify vascular density using ML (Bochner et al., 2020).
However, it also can be challenging to use by the non-expert and
requires more computing power to run than is available to a
typical biomedical laboratory.

Perhaps because existing programs can be challenging to use,
and are designed for very specific applications, the most common
approach for measuring vessel density is still having an expert
user manually trace vessels in each individual image (Holley et al.,
2010; Top et al., 2011; Da et al., 2015; Cossutta et al., 2019). While
manual annotations are an easy way to accurately quantify vessel
density, it can be very tedious and time consuming, and is not a
practical way to analyze large amounts of data.

Here, we leveraged modern ML to develop an easy-to-
use analysis tool specifically designed to make measurements
of vascularity in in vitro tissue environments. The focus of
this application is assessing angiogenesis (new vessel growth)
in which vessel morphology and network topology is highly
variable. We focused on reporting vessel length density
measurements from our experiments, although it may be
possible for the tool to be trained to identify other features

and corresponding metrics, as well. Ultimately, BioSegment
will be incorporated into high-throughput tissue manufacturing
workflows to monitor vascular growth within fabricated, tissue
engineered products. Here, we demonstrate the application of
this tool, the BioSegment software, in assessments of vascularity
from confocal fluorescence and phase contrast images.

METHODS

Microvessel Culture
Whole, intact, microvessel fragments were isolated from adipose
tissue, from either discarded human lipoaspirates or epididymal
fat from male retired breeder Sprague Dawley rats (all animal
procedures were approved by the Dartmouth College IACUC)
and assembled into angiogenesis assays as previously described
(Nunes et al., 2013; Strobel et al., 2020). Rat vessels were cultured
at 60 k/ml in DMEM (Gibco) containing 20% fetal bovine serum
(FBS; Thermo Fisher), 1% penicillin-streptomycin (Fisher), and
1% amphotericin B (Fisher). Human microvessels were cultured
at 100 k/ml in RPMI (Corning) containing B27 (Gibco) and
50 ng/ml vascular-endothelial growth factor (VEGF; Peprotech).
Assessments were made of four different treatments (Groups
1–4) promoting differing levels of angiogenesis. Experimental
setups are reported in detail in Strobel et al. (2020). Briefly, for
fluorescent 4× images, Group 1 contained microvessels with no
additional stimuli, Group 2 was treated with vascular endothelial
growth factor (VEGF), stromal cells were incorporated in Groups
3 and 4, and Group 4 was treated with a VEGF trap [R&D
systems, described in Strobel et al. (2020)]. For 10× images,
Group 1 contained microvessels alone, Group 2 contained
stromal cells in a separate region of collagen surrounding the
microvessels, Group 3 contained stromal cells mixed in with
the microvessels, and Group 4 contained stromal cells both
around and within microvessel containing regions [described
in detail in Strobel et al. (2020)]. Phase contrast images were
experiments comparing different microvessel donors or different
culture medium types. The variation in treatment groups was
intended to demonstrate the utility of the BioSegment software.
The data presented and discussed in this manuscript pertains
to the accuracy of BioSegment measurements, not the scientific
findings of these experiments, which are already published
(Strobel et al., 2020).

Lectin Staining and Imaging
Constructs were fixed overnight in 10% neutral buffered
formalin. Rat microvessels were further processed by staining
with a fluorescently labeled lectin. After rinsing in phosphate
buffered saline (PBS), constructs were permeabilized for 20 min
in 0.25% Triton X-100 and blocked for 4 h at RT in 5%
bovine serum albumin. They were incubated overnight at 4◦C
in lectin stain at a dilution of 1:50 in blocking solution
[Griffonia (Bandeiraea) Simplicifolia Lectin I (GSL I, BSL I),
Vector Laboratories]. Constructs were rinsed multiple times, with
one overnight wash, before imaging. Human constructs were
imaged using a phase contrast filter on a standard benchtop
upright microscope (Olympus). Lectin-stained rat constructs
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were imaged with a confocal Olympus FV3000 or an INCell 6500
scanner (Cytiva, formerly GE Life Sciences), depending on the
dataset. Confocal images were processed to create maximum z
projections and saved as .png files before analysis.

Application of the BioSegment Software
BioSegment utilizes YOLOv4, a machine learning deep
convolutional neural network (CNN) to detect and localize
user-defined classes within images (Girshick et al., 2014). It’s
end-user facing front-end is desktop application written in C#
and is used for image processing and annotation. Annotations
and images are stored in the AWS cloud. Training is performed
using AWS SageMaker. Trained models are retrieved from AWS
cloud storage and transferred to the local storage for desktop
inferencing via subordinate python process.

Prior to training, confocal images are transformed into a
maximum projection if necessary and saved as a .png file using
an ImageJ macro. After import into BioSegment, images can
be further pre-processed through a histogram equalization to
intensify features (Supplementary Figure 1). This can make the
geometry easier for the algorithm to identify if the image has low
contrast, and is done by selecting a “pre-process” option prior to
training. Phase contrast images were converted to .png files and
pre-processed with the same pre-processing function.

During implementation, a neural network was “trained” via
expert annotation using polygonal chains (polylines) identifying
user-defined features or classes of raw images within the
BioSegment software environment (Figure 1). Polylines are
generated by manually stepping over each vessel, and these
lines are in turn bounded by a series of overlapping rectangles.
These rectangles are the input regions for the model. Because
a large number of rectangles are generated, YOLOv4 gains a
large number (typically hundreds) of input regions from each
image. Beyond this we utilized a set of pre-trained weights,
thereby leveraging transfer learning to allow for generalization
from a smaller data set. For the purposes of this application the
YOLOv4-tiny.weights set of weights (trained on the MS-COCO
dataset) were utilized.

When training is performed on a new dataset, training data is
divided or “partitioned” into 3 sets (or groups): training, testing,
and holdout. The “training partition” is the training group set
for a specific fold. The “holdout” refers to the partition that
was entirely segregated from the training process, to be used for
later validation. After images were annotated (“train” data), the
model was trained and then used to perform inference on new
data (“test” data). With the BioSegment approach, images were
annotated via the BioSegment interface by manually tracing each
vessel to provide training sets for the machine learning engine,
which then generated vessel measurements. For phase contrast
images, the user also annotated “out of plane” vessels, which were
too blurry for the user to tell if they were vessels or not, and
“debris” (undigested pieces of tissue or other objects that are
not microvessels). For confocal lectin-stained images, these extra
parameters were not necessary, as confocal does not pick up out
of plane objects, and the lectin stain will not label most debris.

When a trained model is used for object detection, YOLOv4
produces output detection regions (“raw ML detections”) which

are processed into polylines through a BioSegment specific
process (Figure 2). First, the object detection regions are
connected using a neighbor detection algorithm. Then, a contour
detection algorithm is used to eliminate “false” connections
that are suggested by proximity, but do not represent actual
vessels (Figure 3A). Finally, a minimum spanning tree algorithm
removes cycles that are generated through the neighbor detection
region and allowed by contour detection but not representative
of vessel structures (Figure 3B). The most up to date version of
BioSegment includes a feature that enables users to correct false
segmentations, although this was not available at the time the
present data was analyzed.

The BioSegment models were compared to two existing
measurement protocols. First, we compared BioSegment data to
manual tracings of the vessels, an approach widely considered
the gold standard. Other programs for vascular quantification
do exist, but these are designed for very specific applications.
Our target users, who are scientists looking for quick assessments
of vascular density in in vitro tissues, are still using manual
annotations, by an overwhelming majority. Thus, manual
annotations were our primary validation method. In addition,
we compared the BioSegment measurements to our in-house
pixel-based protocol in which images are processed to improve
contrast, thresholded, filtered to remove small cells and large
clumps, and skeletonized to measure vessel lengths (Strobel et al.,
2020). The data reported are from either combined train and test
datasets, or test-only datasets.

Total vessel length was calculated for each image and used
to calculate vessel length density. Measurements from 4 images
per sample were averaged to obtain the length density for each
sample. Then, samples within each of the four experimental
groups were averaged to determine the average vessel length
density within each treatment group. These average vessel length
densities, calculated using both measurement methods, was used
to calculate percent error for each experimental group. Percent
accuracy was calculated by subtracting percent error (below)
from 100.

Percent Error =
|Manually annotated length− BioSegment calculated length|

Manually annotated lengths
∗100

Accuracy is reported for each group of each experiment,
as different groups sometimes had different densities and
morphologies, which affect overall accuracy. An accuracy of
“N/A” is assigned to any group where the percent error was
greater than 100.

Machine Learning Methodology and
Validation
The primary metric of concern related to vessel growth is
vessel length density. Vessel lengths are measured manually by
estimating the linear extents of visible vessels within a projected
image (that is, one that is composed my merging images across
a range of focal lengths), and then divided by image area to
calculate density.
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FIGURE 1 | Vessel length density measurement. Fluorescent (A) and phase contrast (B) images taken at a 10× magnification. Annotations are manually added to
images to mark vessels (C,D). After training, the BioSegment software automatically identifies vessels and calculates vessel pixel length (E,F), which is used to
calculate vascular length density. Scale = 0.2 mm.

FIGURE 2 | Polyline generation workflow. Raw images are subject to ML detections by YOLOv4. Then, BioSegment generates polylines from these detections.

The approach presented here performs vessel length
measurements through an application of object detection. The
annotation process involves tracing the linear extents of vessels
using polylines (joined line segments). Input object regions
are programmatically constructed along the polylines and
then used to train an YOLOv4 object detection model1. The
input and output of object detection models such as YOLOv4
are rectangular bounding regions within a 2D image, which
contain an object of interest along with bordering pixels. In most
YOLOv4 applications, each input image within a training set
will typically contain only 1 or a few examples of an object or
objects which are the target of training, thus many images are
required to produce enough input regions. In our case, there

1https://github.com/AlexeyAB/darknet

were often many microvessels in a given image. Thus, relatively
small numbers of images (50–100 images) were used in a given
training set.

The underlying model is an object-detection model and, as
such, explanation algorithms such as Lime were not of value
in performing feature importance/interpretability studies. Visual
inspection was used to validate that both raw detections and
constructed detection polylines represented vessels sufficiently
well to produce valid linear extent measurements. This
inspection showed that variance that is introduced by the
process used to connect detection regions, that is, detection
polylines have “kinks” or branches that would not be present
in manual annotations, but such deviations tend to offset
one another, and thus have a minimal impact on the final
length measures.
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FIGURE 3 | Polyline segmentation and cycle removal. A neighbor detection algorithm is used to create polylines from ML detections (A). This can result in “false”
connections between vessel segments, which are then removed using a spanning tree algorithm (B).

A five-fold cross-validation was performed to evaluate
the consistency of the vessel measurement algorithm. Two
datasets were constructed using lectin-stained images at different
magnification levels (referred to as “lectin 4×” and “lectin 10×”).
The lectin 4× dataset was comprised of 108 total images from 35
samples. Samples were included from 4 experimental groups. The
lectin 10× dataset was comprised of 24 samples, with 2–10 images
per sample and 172 total images. Images within each dataset and
within each image groups were assigned to training, validation,
and holdout partitions. Training partitions were used to train
each fold. Validation partitions were utilized by the training
process to report training metrics. Image groups assigned to
holdout partitions were entirely excluded from the data passed
to the model during the training process. Error for a partition
overall was calculated by averaging the percent error, as calculated
above, for the partition. Overall, data was validated using 2
experiments for the lectin 10×model, 3 for the lectin 4×model,
and 3 for phase contrast.

Overall, the cross-validation shows that the vessel-
measurement algorithm sufficiently generalized across each
fold such that any set of trained weights can be used reliably
(Tables 1, 2). Error can be minimized by performing a cross-
validation for a specific data set and selecting the best resultant
weights for detection.

RESULTS

BioSegment Accurately Measured
Multiple Types of Images
Here, we created a program that leverages artificial intelligence
and machine learning to identify tissue components, specifically
microvessels. The interface was, subjectively, easy to use, and
enabled users to upload and annotate images needed for training.
Figure 1 shows images of fluorescent (A) and phase contrast
(B) images prior to processing. After manual annotation (C, D),

TABLE 1 | Cross validation results for the model trained to analyze
4× lectin images.

Fold Partition % Error

Lectin

1 holdout 0.0845

1 validation 0.5605

1 train 2.7385

2 holdout 5.8329

2 validation 2.1858

2 train 4.619

3 holdout 12.8576

3 validation 7.2046

3 train 2.8441

4 holdout 0.8912

4 validation 3.6903

4 train 0.4749

5 holdout 1.5407

5 validation 5.5789

5 train 0.4428

the model is trained and then “learns” to identify vessels
(E, F). Representative datasets show vessel length density as
calculated by manual annotation, our previously published pixel-
based method, and by BioSegment (Figure 4). The percent
accuracy was calculated for each group within each dataset,
as BioSegment compared to either manual annotations or the
pixel-based method (Figure 4D). The fluorescent 10× images
had the highest accuracies, with percentages ranging from 82.79
to 98.74% accurate. Most accuracies were above 90%. On the
same images, the pixel-based measurements had an accuracy of
0–76%, though all but one point was above 44%. With lower
magnification images (4×), BioSegment had accuracies of 53.4–
99.74% (Figure 4D). In these images, subjectively, the lower
accuracies occur in images with the highest vessel densities.
For the 4× images, pixel-based accuracies were comparable to
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TABLE 2 | Cross validation results for the model trained to analyze
10× lectin images.

Fold Partition % Error

Lectin 10×

1 holdout 19.351

1 validation 11.3737

1 train 16.1774

2 holdout 11.0625

2 validation 15.2432

2 train 15.6101

3 holdout 13.4747

3 validation 14.6666

3 train 16.2374

4 holdout 14.8235

4 validation 11.2876

4 train 16.1631

5 holdout 23.9069

5 validation 16.7967

5 train 12.9337

BioSegment, ranging from 62.2 to 96.95% (Figure 4D). For
phase contrast images, which were taken at a 10×magnification,
accuracy ranged from 56.4 to 98.48% (Figure 4D).

Accuracy of BioSegment Improved With
Time
Due to differences in vascular morphology from experiment to
experiment, sometimes a model trained on a dataset from a
single experiment failed to yield satisfactory results when tested
on a different experiment. In these cases, another training set,
from an additional experiment, was added, to add more variety
in terms of vascular morphology to the model. After multiple
training sets, the model demonstrated increased accuracy across
subsequent datasets from multiple experiments, regardless of
vascular morphology. Accuracies improved after 2 training sets
for the 4× images (81 images total, Figure 5A). Here, black
bars are annotated controls, gray bars are the BioSegment output
after one round of training (Bio 1), and white bars are after 2
rounds of training (Bio 2). In groups 2, 3, and 4, one round
of training resulted in inaccurate measurements compared to
annotated controls. When a second training dataset was added,
accuracy was improved and white BioSegment bars are similar
in magnitude to black annotation bars. The exception to this
is group one, where both rounds had different magnitudes
compared to controls. For phase contrast images, 3 different
training datasets were needed (155 images total; Figure 5B).
Here, the software was highly accurate after a third round of
training across all groups (dark gray bars compared to black
bars). The 10× fluorescent images had a high accuracy after
one large training set (79 images; Figure 5C). Statistics were
performed using SigmaPlot 11.0 (Systat). A two-way ANOVA
test was performed where applicable with Holm-Sidak post hoc
analysis. Bars are mean ± standard deviation. A significant
level of α = 0.05 was used for all comparisons to determine
statistical significance.

Use of BioSegment Saves Considerable
Amounts of Time
It took an experienced scientist 7.26, 4.33, and 2.78 min
to annotate a single 4× fluorescence, 10× fluorescence, and
10× phase contrast images (averaged over 3 images of
varying density), respectively. The pixel-based method takes an
experienced user approximately 80 s per image. Meanwhile, the
BioSegment analyzed 45 images in 52 s, for an average of 1.15 s
per image. For a single dataset of 45 images, the BioSegment
therefore saves from 124 to 325 min of time (2–5.4 h), compared
to manual annotations.

“Training and Test” Combined Data Are
Comparable to “Test Only” Data
In all datasets used to train the BioSegment models, some
images were used for training, while some were used to “test”
the model. Whenever possible, the data is reported using “test”
images only (Figure 4C, and 2 additional experiments plotted
in Figure 4D). However, in some cases, data is presented as
a combination of the training and test images in a dataset, to
enable comparison of multiple groups within an experiment,
as there were not quite enough “test” samples for meaningful
comparisons (Figures 4A,B, and 3 additional experiments
plotted in Figure 4D). To test the validity of the combined test
and training data, the accuracy of combined data (compared to
manual annotations) was compared to the “test only” images
pulled from the same combined dataset. In all cases, average
accuracy measurements of test only vs. combined test and train
were within 2 percentage points (Figure 6). Thus, we can
conclude that including training images in our datasets did not
skew the calculated accuracy of the results.

DISCUSSION

A variety of applications benefit from or require quantitative
assessments of vascularity. Whether in an experimental
model of angiogenesis or vascularizing a tissue construct or
organoid, knowing the extent and character of the vascular
dynamics can be critical to successful outcomes. Furthermore,
as tissue fabrication solutions continue to evolve matched by
concomitant development of tissue manufacturing processes,
real-time assessments of vascularity (perfused or otherwise)
are critical. Yet, most methods of quantifying vascular growth
are challenging to use without prior experience in computer
programming, not conducive to high-throughput applications,
or cannot accurately detect complex neovasculatures. Here, we
describe a novel machine learning-based software program for
semi-automatic quantification of microvessel length density
that is simple to use yet leverages the power of machine
learning. While directed at assessing vascularity, reflecting
our research focus, BioSegment could be adapted to identify
other cellular and tissue features as well. In addition to
facilitating research investigations, we envision integrating
BioSegment as part of a quality assurance program in a tissue
manufacturing workflow.
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FIGURE 4 | Accuracy of BioSegment vessel measurements. BioSegment calculated vessel length densities (Bio) were compared to manual annotations (Annotated)
and pixel-based (PB) measurements. Representative datasets are shown for 10× fluorescent confocal projections (A), phase contrast images (B), and 4× confocal
stacks (C). The percent accuracy of the BioSegment (circles) and PB (squares) compared to manual annotations is shown in (D), across all groups from all
experiments analyzed. Bars are mean ± SD. A Two-Way ANOVA with Holm Sidak post hoc analysis was performed on (A–C). ∗P < 0.05 with compared to all other
quantification methods (Annotated, Bio 1, PB) within that group; #P < 0.05 compared to all other groups, regardless of quantification method.

FIGURE 5 | Increasing the number of training datasets improves model accuracy. Representative datasets for 4× fluorescent images (A) and phase contrast images
(B) after each iteration of the respective model. Annotated images are compared to multiple versions of the BioSegment model (Bio 1, Bio 2, Bio 3). Later versions,
which contain more training sets, are more accurate. In (A), additional training data increased overall accuracy from 58.5 to 82.13%. In (B), Bio 3 (model version 3)
improved to 83% accurate, compared to 0% in Bio 1 and Bio 2 (model versions 1 and 2). Bars are mean ± SD. A Two-Way ANOVA with Holm Sidak post hoc
analysis was performed. *P < 0.05 compared to all other quantification methods (Annotated, Bio 1, Bio 2, Bio 3) within that group; #P < 0.05 compared to all other
groups, regardless of quantification method. @P < 0.05 compared to groups 2 and 4, within that quantification method. ˆP < 0.05 compared to other methods
within that group.

Here, we compared measurements of vessel length density
made by BioSegment to manual annotations made “by hand,”
and a pixel-based computational method previously developed
by our lab. The BioSegment-based measurements of vessel
length density from 10× fluorescent confocal images were
overall highly accurate compared to manual assessments, both
in overall vessel length density magnitude and the trends
measured between groups (Figure 4). On the same images, the
pixel-based approach was considerably less accurate (Figure 4).

Pixel-based measurements tended to overestimate vessel density.
This is because it cannot distinguish between microvessels and
other objects with similar dimensions to microvessels, such
as elongated endothelial cells and some pieces of undigested
tissue. Both 4× fluorescent confocal images and 10× phase
contrast images produced a broader range of accuracies across
the different treatment groups, although most were above 80%
accurate (Figure 4D). With 4× fluorescent images, the accuracy
of both the pixel-based and BioSegment approaches both had
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FIGURE 6 | Accuracy of “test and train” combined data compared to “test
only” data. Percent accuracy of the BioSegment compared to manual
annotations is shown for image sets containing both test and train images
(combined; squares), compared to test only images (test; circles) from the
same dataset. Individual experiments are shaded, while the average of all
experiments is shown in white.

slightly lower reported accuracies (Figure 4D). The pixel-
based approach was not able to derive vascular length density
measurements from phase images due to the lower contrast.
In all cases, data produced by the BioSegment within each
experiment followed the same trends as annotated controls.
For example, in Figure 4C Group 2 was highest regardless of
quantification method. Thus, even though there is a small degree
of error in the magnitude, the user is able to draw the same
conclusions. Additionally, while this 20% error seems high, it is
comparable to what others have observed in cases where machine
learning was applied to biological systems (Liang et al., 2017;
Tourlomousis et al., 2019). The observed error may improve
with additional training, as is true of all machine-learning based
applications. With our data, we observed that more training
datasets improved performance (Figure 5). It should also be
noted that, images contained a substantial amount of noise in
the form of non-vessel elements, such as elongated endothelial
cells and clumps of undigested tissue. Additionally, there were
slight differences in vascular morphology from experiment
to experiment. The reported accuracies reflect the ability of
BioSegment to distinguish microvessels from this other noise,
which further supports the robustness of the program. Cleaner
images would likely produce better results.

It was not surprising that the higher magnification images
yielded a high percent accuracy, as individual vessel features
are more discreet, thereby making it easier both for the
user to annotate and BioSegment to segment. For the low
magnification confocal images, and particularly those with dense
vasculatures, identifying individual vessel segments by both
the user and the BioSegment model is relatively challenging.
This is largely due to non-distinct boundaries between two or
more vessel segments and the intrinsic variation in fluorescence
intensities of different vessels, all of which are highly overlapping
in the projections. In the future, magnifying images for
annotating, in the absence of taking higher magnification images,

may improve user annotations and thus BioSegment training.
Additionally, extending the analysis to work with 3D image
sets, as opposed to the 2D projections used in this study, might
facilitate identification of discreet features. Future iterations of
BioSegment will include the ability to measure vascular density
and other parameters, such as branch points, directly from a 3D
confocal image stack. This would enable measurements in Z, as
well as X and Y. However, the ability to assess 2D projections
makes the program more amenable to rapid, high-throughput
screening. From past experience, microvessels in our models
grow largely in the X and Y plane, rather than in the Z direction
(due to collagen fibril orientation). Thus, the amount of data lost
by eliminating growth in Z is minimal and the ability to analyze
3D confocal stacks is not necessary for our current application.
Accuracies were determined by comparing BioSegment and
pixel-based measurements to those values obtained by manual
annotation, which we consider the “gold standard.” However,
measurements made by manual annotations, even by the most
experienced user, can be inaccurate for a variety of reasons
(Rudyanto et al., 2014), including subconscious bias, mood, etc.
As mentioned above, overlapping vessels, and varying fluorescent
intensities, can make it challenging to accurately annotate. Phase
contrast images are even more challenging to annotate, as
contrast between feature edges and background is often low
creating ambiguity in object identification. If the software is
trained with inaccurately annotated training sets, it may also have
reduced accuracy. One potential way to overcome this challenge
is to include training sets from multiple users, which may negate
potential user bias and differences in mood/attentive states.
Providing sufficient training to the BioSegment model in this way
could potentially make it more accurate than a single human user.
Furthermore, the ability to identify features from phase contrast
images, which can be taken of live cultures quickly and easily
without the risks associated with staining, presents an enormous
advantage, even if there is some risk of quantitative error.

The amount of time saved by using the BioSegment was
considerable, with potential to save users hours of time per
experiment. This effect is magnified if users have multiple
datasets. The rapid measurements possible with the BioSegment
platform have implications for use in high throughput and high
content screens and cell/tissue manufacturing efforts. Here, there
may be hundreds of samples in culture that require imaging at
frequent time points to assess tissue quality and maturation. This
could generate thousands of images, which will be impossible to
quantify without automated analysis.

Overall, we have demonstrated an innovative software system
that utilizes machine learning to quantify microvessel length.
It can rapidly and accurately measure vascular features from
both fluorescent and phase contrast images. Such a tool saves
users an enormous amount of time and has potential to be
incorporated into automated processes such as assay screens or
quality control in tissue manufacturing. While we focused on
training the program to identify microvessels, it could potentially
be used to identify any tissue element, including but not limited
to cellular density, subcellular features, or contaminants. This
could be done following the same procedures for identifying
microvessels. The ability to make varied, accurate, and rapid
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measurements via a customizable and flexible package may prove
invaluable for automation of tissue fabrication, quality control,
and real-time monitoring in an automated workflow.
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Periodontitis is a prevalent and irreversible chronic inflammatory disease both in
developed and developing countries, and affects about 20–50% of the global
population. The tool for automatically diagnosing periodontitis is highly demanded to
screen at-risk people for periodontitis and its early detection could prevent the onset
of tooth loss, especially in local communities and health care settings with limited
dental professionals. In the medical field, doctors need to understand and trust the
decisions made by computational models and developing interpretable models is crucial
for disease diagnosis. Based on these considerations, we propose an interpretable
method called Deetal-Perio to predict the severity degree of periodontitis in dental
panoramic radiographs. In our method, alveolar bone loss (ABL), the clinical hallmark
for periodontitis diagnosis, could be interpreted as the key feature. To calculate ABL,
we also propose a method for teeth numbering and segmentation. First, Deetal-Perio
segments and indexes the individual tooth via Mask R-CNN combined with a novel
calibration method. Next, Deetal-Perio segments the contour of the alveolar bone and
calculates a ratio for individual tooth to represent ABL. Finally, Deetal-Perio predicts the
severity degree of periodontitis given the ratios of all the teeth. The Macro F1-score
and accuracy of the periodontitis prediction task in our method reach 0.894 and 0.896,
respectively, on Suzhou data set, and 0.820 and 0.824, respectively on Zhongshan
data set. The entire architecture could not only outperform state-of-the-art methods and
show robustness on two data sets in both periodontitis prediction, and teeth numbering
and segmentation tasks, but also be interpretable for doctors to understand the reason
why Deetal-Perio works so well.

Keywords: teeth segmentation and numbering, periodontitis diagnosis, panoramic radiograph, computer-aided
diagnostics, interpretable model
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INTRODUCTION

Periodontitis is a chronic inflammatory disease of periodontium
resulting in inflammation within the supporting tissues of the
teeth, progressive attachment, and bone loss (Lindhe et al., 1999).
Periodontitis is prevalent in both developed and developing
countries, and affects about 20–50% of the global population
which makes it a public health concern (Nazir, 2017). Thus,
the tool for automatically diagnosing periodontitis is highly
demanded to provide the invaluable opportunity to screen at-
risk people for periodontitis and its early detection could prevent
the onset of tooth loss, especially in local community and health
care settings where dentists are not easily accessible (Balaei et al.,
2017). The form of periodontitis is characterized by periodontal
ligament loss and resorption of the surrounding alveolar bone
caused by severe inflammatory events (de Pablo et al., 2009).
Cumulative alveolar bone loss (ABL) results in weakening of the
supporting structures of the teeth, and predisposes the patient to
tooth mobility and loss (Brunton, 2008; Figure 1B). Thus ABL
is a hallmark of the periodontal disease (Yang et al., 2018). To
calculate ABL of all teeth, it is necessary to gather the contours of
the individual tooth and the alveolar bone. In this situation, teeth
numbering and segmentation are essential and fundamental tasks
for periodontitis diagnosis. In addition, dentists usually need to
serve numerous patients and read a large number of panoramic
radiographs daily. Thus an automatic tool for teeth numbering
and segmentation to enhance efficiency and improve the quality
of dental care is timely needed (Chen et al., 2019).

Several methods have been proposed to tackle the
periodontitis prediction or teeth numbering and segmentation
tasks. Joo et al. (2019) proposed a classification method for
the periodontal disease based on convolutional neural network
(CNN) by using periodontal tissue images. This method
classified four states of periodontitis and the accuracy on
validation data was 0.81. Ozden et al. (2015) tested three
classification algorithms, artificial neural networks (ANN),
support vector machine (SVM), and decision tree (DT) to
diagnose periodontal diseases by using 11 measured variables of
each patient as raw data. The results showed that DT and SVM
were best to classify the periodontal diseases with high accuracy
(0.98 of precision). It revealed that SVM and DT appeared
to be practical as a decision-making aid for the prediction of
periodontal disease. Lee et al. (2018) proposed a periodontitis
prediction method using periapical radiographic images via deep
CNN. The diagnostic accuracy for periodontally compromised
teeth was 81.0% for premolars and 76.7% for molars. Li et al.
(unpublished) proposed a method which could screen the
existence of gingivitis and its irritants, i.e., dental calculus and
soft deposits, from oral photos with a novel multi-task learning
model. With 625 patients included in this study, the classification
area under the curve for detecting gingivitis, dental calculus and
soft deposits were 87.11, 80.11, and 78.57%, respectively.

As for the teeth numbering and segmentation, Wirtz et al.
(2018) proposed a coupled shape model in conjunction with a
neural network by using panoramic radiographs. The network
provided a preliminary segmentation of the teeth region which is
used to initialize the coupled shape model. Then the 28 individual

teeth (excluding wisdom teeth) were segmented and labeled
using gradient image features in combination with the model’s
statistical knowledge. The experimental result showed an average
dice of 0.744. Chen et al. (2019) used faster regions with CNN
features to detect and number teeth in dental periapical films.
They proposed three post-processing techniques to improve the
numbering performance. Results revealed that mean average
precision (mAP) was 0.80 and the performance of this method
was close to the level of junior dentists. Cui et al. (2019) used
deep CNN to achieve automatic and accurate tooth instance
segmentation and identification from cone-beam CT (CBCT)
images. They extracted the edge map from the CBCT image
to enhance image contrast along shape boundaries. Next, the
edge map and input images were passed through 3D Mask
R-CNN with encoded teeth spatial relationships. Their method
produced accurate instance segmentation and identification
results automatically.

The main limitations of methods mentioned above are as
follows: (1) the bias of detecting and numbering teeth in some
cases with severe periodontitis due to the disturbance of a
large number of missing teeth, (2) the lacking capability of
their methods on predicting the number of missing teeth in
the shortage data volume of some individual classes, and (3)
the lack of interpretability of predicting the severity degree
of periodontitis.

In this paper, we try to overcome these limitations through
the following contributions. (1) We propose an automatic and
interpretable method called Deetal-Perio to predict the severity
degree of periodontitis from dental panoramic radiographs. (2)
As a subroutine of Deetal-Perio, we further propose a method
for teeth numbering and segmentation which consists of a novel
calibration algorithm. (3) Deetal-Perio outperforms state-of-the-
art methods and shows the robustness on the two data sets
from two hospitals. (4) Deetal-Perio uses ABL as the feature for
periodontitis diagnosis and is thus fully interpretable.

We note that a shorter conference version of this paper
appeared (Li et al., 2020b). This manuscript added more
comprehensive details of data annotation, the calibration method
for teeth numbering, implementations of experiments and
measurements. We also collected more in-house data from the
cooperative hospital to enhance the performance of our method.

MATERIALS AND METHODS

Data Sets
The Affiliated Stomatological Hospital of Soochow University
supplied a total of 302 digitized panoramic radiographs
(hereinafter referred to as the Suzhou data set). Each radiograph
has a high resolution of 1,480 ∗ 2,776 pixels and was
annotated following the Fédération Dentaire Internationale
(FDI) numbering system to get the contours of teeth and their
labels as the ground truth (GT). FDI numbering system divides all
teeth into four quadrants where teeth are labeled as 11–18, 21–28,
31–38, 41–48, respectively (Figure 1A). Among all radiographs,
298 were labeled with the severity degree of periodontitis by
dentists, including four categories: 52 of no periodontitis, 189
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FIGURE 1 | (A) FDI numbering system. It divides all teeth into four quadrants where teeth are labeled as 11–18, 21–28, 31–38, 41–48, respectively. (B) The left of
tooth shows the appearance of periodontitis and the representation of ABL. dc represents the ABL and dc + dr is used for normalize the ABL. Thus, each tooth has
its ABL representation calculated as dc/(dc + dr ). The right of tooth shows the appearance of a normal tooth. Different severities of alveolar bone loss reflect the
severities of periodontitis (normal, mild, moderate and severe periodontitis).

of mild periodontitis, 43 of moderate periodontitis, and 14 of
severe periodontitis. The 4 missing images contain the mislabeled
images and unlabeled images.

We also collected another data set from the Sixth Affiliated
Hospital, Sun Yat-sen University (hereinafter referred to
as the Zhongshan data set). This data set includes 204
panoramic radiographs with high and various resolution which
are categorized by four classes mentioned above (69 of
no periodontitis, 54 of mild periodontitis, 42 of moderate
periodontitis, and 39 of severe periodontitis).

These two data sets are both in-house data sets which are
created by the machines called SOREDEX DIGORA Optime
from KaVo Dental (North Carolina, United States) and GiANO
from NewTom (Bologna, Itlay), respectively. Each data set was
labeled by one expert dentist with more than 10 years of
clinical experience, respectively. The pixel value in the radiograph
reflected by the density (the quantity of darkness). The procedure
of annotation is as follows. Given a panoramic radiograph, the
dentist would draw a contour along with the boundary of each
existing tooth and assign a corresponding tooth number to each
existing tooth by following the FDI numbering system. Next, the
dentist assigned the stage of periodontitis for each radiograph
according to the visualizing of radiograph and the recognized
standard from previous study (Papapanou et al., 2018). Here
we also define a ratio c for each tooth, which is defined as the
distance between cemento-enamel junction (CEJ) and alveolar
bone divided by the distance between CEJ and the dental root,
to indicate the level of bone loss for each tooth. No periodontitis
is defined that none of teeth has bone loss. Mild periodontitis is
defined that at least the c of one tooth is less than 15%. Moderate
periodontitis is defined that at least the c of one tooth is less than
33% and larger than 15%. Severe periodontitis is defined that at
least the c of one tooth is larger than 33%.

Methods
The architecture of Deetal-Perio is as follows. First, Deetal-
Perio segments and numbers individual tooth via Mask R-CNN

combined with a novel calibration method. Next, Deetal-Perio
segments the contour of the alveolar bone and calculates the ratio
for individual tooth which could represent ABL as the key feature
to predict periodontitis. Finally, Deetal-Perio uses XGBoost to
predict the severity degree of periodontitis by given a vector of
ratios from all the numbered teeth. The entire architecture is
shown in Figure 2.

Teeth Segmentation and Numbering
Inspired by the state-of-the-art architecture in object
classification and segmentation called Mask R-CNN (Abdulla,
2017; He et al., 2017), we tried to segment the teeth with
binary classification via Mask R-CNN. That was, we wanted
to differentiate teeth from the background image. The result
revealed that Mask R-CNN could detect almost all of the teeth
given a radiograph. Then, we tried to segment and number
the teeth with multi-class classification via Mask R-CNN and
this time, we wanted to identify the labels of these teeth. The
result showed that only a minority of teeth could be detected
and numbered due to the limitation of data from individual
classes, but compared with the GT, most detected teeth were
numbered correctly. Figure 3 shows these two results, which
provide complementary information to each other. Thus, we
proposed to combine the results from the binary and multi-class
Mask R-CNN models together. We extracted the bounding boxes
and masks from the binary classification results, and the labels
of numbered teeth from the multi-class classification results. We
further proposed a calibration method to integrate the results
from the two classifiers, refine the labels of numbered teeth, and
infer the labels of unnumbered teeth.

The calibration method is designed as follows: first,
B={B1, B2, ..., Bm} and M={M1, M2, ..., Mm} represent m
and n of center points of teeth’ bounding boxes from the
results of binary and multi-class classification Mask R-CNN,
respectively. Then, we found the closest tooth to each tooth of M
in B by calculating the Euclidean distance and assigned the labels
of teeth from M to B. Next, we iterated each tooth in B to judge
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FIGURE 2 | The workflow of Deetal-Perio.

FIGURE 3 | (A) The result of binary classification Mask R-CNN. (B) The result of multi-class classification Mask R-CNN. Each color in these two results represents
different instances.

whether neighboring teeth are labeled and calibrated its own label
until all the teeth in B satisfied three conditions: 1. each tooth had
been labeled; 2. no repeatedly labeled tooth; 3. all labeled teeth
followed the rules of FDI numbering system. During the iteration
of unlabeled teeth, there would be three circumstances. First,
if neither of the neighboring teeth was labeled, we would skip.
Second, if one of the neighboring teeth was labeled, we would
use the ratio of distances between adjacent teeth to inference the
label of selected tooth. For example, we selected tooth Bi after
several iterations and the right neighboring of Bi, called Bi+1,
had been numbered. We defined Dr as the horizontal distance
from Bi to Bi+1, Drr as the horizontal distance from Bi+1 to the
right neighboring tooth of Bi+1. Next, we calculated the rounded
ratio Dr

/
Drr which indicates the number of teeth between Bi and

Bi+1. Then, this rounded ratio could be utilized to inference the
label of Bi according to Bi+1. Third, when both of neighboring
teeth were labeled, it is similar to the previous circumstance that
we used the nearer neighbor of selected tooth and its adjacent
tooth to inference the label of selected tooth. For example, we
also defined the selected tooth as Bi, the nearer neighboring
tooth of Bi as Bj, and the neighboring tooth of Bj as Bk (not Bi).
Similarly, we utilized the rounded ratio, the distance from Bi to
Bj divided by the distance from Bj to Bk, to indicate the number
of teeth between Bi and Bj, which could be used to inference the
label of Bi. The details of algorithm are given in Figure 4. Finally,

all teeth are labeled in B which are considered as the results of
teeth segmentation and numbering step.

The Representation of ABL
As previously introduced, ABL results in weakening of the
supporting structures of the teeth, which makes it the hallmark
of periodontal disease (Brunton, 2008; Figure 1B) and the
annotation of degrees of periodontitis also depends on the
severities of ABL from all of teeth. Thus, we were going to
use the contours of individual teeth and their labels we have
obtained and the contour of the alveolar bone to calculate
the severity of ABL for each individual tooth. We used
binary classification Mask R-CNN to segment the contour of
alveolar bone and the confidence scores of detected boxes are
high in the results. Crown-to-Root Ratio (CRR) is a kind of
prognostic parameter in periodontology, which could be defined
as,CRR=dc/dr where dc denotes the vertical distance from the
alveolar bone to the top of the dental crown and denotes the
vertical distance from the bottom of the dental root to the
alveolar bone (Figure 1B). We also defined the severity of
ABL as the ratio d=CRR/(1+CRR) for each individual tooth.
Due to the smoothness of the contour of the alveolar bone,
we randomly selected two points on this contour to draw a
line. Then, we randomly chose 50% points on the contour of
the dental crown to calculate the vertical distance from these
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FIGURE 4 | The calibration algorithm for teeth numbering.

points to this line, respectively, and defined the largest vertical
distance as dc. We estimated dr in a similar way. In our case,
dc could be a good estimation to represent ABL showing the
level of destruction of the alveolar bone and to normalize
dc, we divided it by dc + dr which is the estimation of the
perpendicular height of the tooth. Thus, d could represent the
ABL of each tooth.

Periodontitis Prediction
After acquiring the ratio d of individual tooth, each radiograph
would output a vector of ratios D={d1, d2..., d32} where each
radio corresponds to a label of tooth. Apparently, some

radiographs do not have all the 32 teeth. In such cases, the
ratios of teeth which do not exist in the radiograph are set
to be the mean value of its neighboring teeth’ ratios. We
then solved the periodontitis classification task by XGBoost
(Chen and Guestrin, 2016) which has gained attention as
the algorithm of choice for many winning teams of machine
learning competitions (Volkovs et al., 2017). To tackle the
class imbalance problem, we used Synthetic Minority Over-
sampling Technique (SMOTE) (Chawla et al., 2002) for over-
sampling the minority classes. After over-sampling, D was
inputted as the feature to classify the four-class severity degree
of periodontitis by XGBoost.
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RESULTS

Experimental Setup
The binary and multi-class classification of Mask R-CNN were
trained starting from pre-trained COCO weight and fine-tuned
on our panoramic radiographs. We used ResNet-101 as the
backbone network to extract features and Mask R-CNN was
implemented for 30 epochs with a learning rate of 0.001 to
avoid making the learning jump over minima and the batch
size was set to 1. We also configured the minimum confidence
score of detection as 0.7, because there were several teeth
with abnormal shapes and we did not want to eliminate them.
The threshold of non-maximum suppression was set to 0.3 to
guarantee enough proposals retained and allow the existence of
an overlap between teeth. During the data pre-processing, we
resized all the panoramic radiographs to 1,024 ∗ 1,024 pixels.
We preserved the previous ratio, which means if an image was
not square, we would pad it with zeros. All experiments were
conducted by 2 NVIDIA QUADRO M6000 24GB GPU. The
methods were running backend on TensorFlow version 1.9.0 and
operating system was Ubuntu 16.04.

We randomly extracted 80% (i.e., 241) and 80% (i.e., 163) of
Suzhou and Zhongshan data sets, respectively, as two training

sets and the rest 20% (i.e., 61) and 20% (i.e., 41) were two
testing sets, respectively. The reason why we didn’t choose the
validation test is to take full advantage of our collected data. We
trained Mask R-CNN starting from pre-trained COCO weight
on Suzhou training set and then we fine-tuned this model on
Zhongshan training set. Finally, we tested the performance of our
model on two testing sets, respectively. All training and testing
processes have been repeated three times, and the final results
were averaged from these three experiments. For comparison
with other methods, we applied the same training and testing
procedure on our dataset as we did with our method.

Performance
Figures 5A,B shows eight examples of teeth segmentation and
numbering, the two panels include the results of four kinds of
periodontitis from the Suzhou data set and Zhongshan data set,
respectively, showing good performance and robustness in both
datasets. Table 1 shows the comparison of our teeth segmentation
and numbering method with the baseline Mask R-CNN method
and those proposed by Wirtz et al. (2018) and Chen et al. (2019)
on our two datasets. The comparison is quantified by three
metrics: (1) Dice (all) denotes the overall dice coefficient of teeth
segmentation, which represents the capability of our method to

FIGURE 5 | Teeth numbering and segmentation results tested on Suzhou and Zhongshan data set are shown in subplot (A,B), respectively. From top to bottom
cases for each panel, they are no periodontitis, mild periodontitis, moderate periodontitis and severe periodontitis.

TABLE 1 | Performance comparison tested on the Suzhou data set and Zhongshan data set between Deetal-Perio and other methods on teeth
numbering/segmentation task, by mAP, Dice (all) and Dice (single).

Suzhou data set Zhongshan data set

Methods mAP Dice (all) Dice (single) mAP Dice (all) Dice (single)

Deetal-Perio 0.863 0.892 0.809 0.927 0.903 0.819

Multi-class Mask R-CNN 0.834 0.830 0.781 0.881 0.869 0.801

Wirtz et al. (2018) 0.435 0.765 0.502 0.409 0.648 0.428

Chen et al. (2019) 0.680 – – 0.559 – –

The method of Chen et al. (2019) only has tooth numbering, but not segmentation function. The best performance in each category is in bold.
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TABLE 2 | Performance comparison tested on the Suzhou data set and
Zhongshan data set between Deetal-Perio and five methods by F1-score and
accuracy on the periodontitis prediction task.

Suzhou data set Zhongshan data set

Methods Macro F1-score Accuracy Macro F1-score Accuracy

Deetal-Perio 0.889 0.892 0.812 0.819

SVM 0.693 0.711 0.449 0.590

Decision tree 0.745 0.758 0.643 0.665

Adaboost 0.701 0.742 0.670 0.688

CNN 0.591 0.611 0.669 0.729

Joo et al. (2019) 0.331 0.408 0.318 0.367

The best performance in each category is in bold.

detect and segment the teeth. We evaluated Dice (all) after the
implementation of binary classification Mask R-CNN, thus Dice
(all) could be defined as:

Dice(all) =
2|X ∩ Y|
|X| + |Y|

(1)

X represents the binary mask of prediction for all the teeth
and the Y denotes the binary mask of GT for all the teeth.
(2) The mAP denotes the capability of whether our method
detects all numbers of teeth correctly, which is calculated as
follows. First, we choose the proposal, whose intersection over
union (IoU) with GT of a specific class is higher than the
pre-defined threshold (normally set to 0.5) and the confidence

score is the highest, as the true positive and the other proposals
corresponding the same GT would be defined as false positive.
Thus, we could calculate the precision, recall, and precision-
recall curve for a particular class. The area under the precision-
recall curve is the average precision (AP) of this specific class
and the mAP could be calculated as the mean value of the
APs for all object classes. (3) Dice (single) denotes the mean
value of all dice coefficients from all labeled teeth, respectively,
which could evaluate the performance of our method to
segment each specific tooth. Dice (single) could be defined
as:

Dice(single) =
n∑

i=0

Dice(Pi, Gi)

/
n (2)

where n represents the number of teeth in the GT, Pi and Gi
represent the i-th mask of a specific tooth from prediction and
GT, respectively. Thanks to the calibration method in Deetal-
Perio, we could number teeth much more correctly than other
compared methods. Thus, the performance of Deetal-Perio in
the segmentation of individual tooth is also better than other
methods. In the compared methods, Chen et al. (2019) focus on
the teeth numbering task, which output the mAP only. Their
method is not trained on panoramic radiographs like ours, but
the dental periapical films. Thus, their post-processing method
may not work well on our data sets, which causes a worse
performance than ours. The method of Wirtz et al. (2018)
requires the fixed image size to inference the contour for each
tooth which could not work on our data sets, which includes

FIGURE 6 | This case missed the filled tooth between number 17 and 16. Actually, the missing tooth should be number 17 and the tooth which is wrongly numbered
as 17 should be 18. Considering about the filled teeth could enhance the performance of teeth numbering and segmentation tasks.
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various sizes of panoramic radiographs. Less of robustness of
their method for image size causes a worse performance than
ours. Comparing the two datasets, we could also find that the
results from Zhongshan data set are a little better than the
results from Suzhou data set, and this could be caused by the
different quality of the radiographs from the two hospitals. The
radiographs from Zhongshan data set are more enhanced than
Suzhou’s, including the darker background and the brighter
foreground, which could make it easier for the network to extract
dental features.

We then evaluated the performance of periodontitis
prediction. Table 2 compares our method with several baseline
machine learning methods and the method proposed by Joo et al.
(2019) on our two data sets. The input of Joo et al. (2019) is the
resized panoramic radiograph and the other compared methods
accept the ABL vector as the input. The metrics include Macro
F1 score and accuracy over the four classes, which are defined as
following equations:

Macro F1 score =
3∑

i=0

2× (Pi × Ri)

Pi + Ri

/
4 (3)

Accuracy =
ncorrect

ntotal
(4)

where Pi and Ri denote the precision and recall of the i-th class,
ncorrect indicates the number of prediction classified correctly,
and ntotal denotes the number of total data. Because the class-
imbalanced issue has been solved by SMOTE, the usage of
accuracy makes sense to evaluate the performance of our method.
Considering the balance between precision and recall of each
class, we use Macro F1 score to evaluate our method. The reason
why we choose XGBoost as our classifier is that the boosting
algorithm of XGBoost made it a strong learner to enhance the
performance compared with the simple decision trees, and the
regularization of XGBoost made it robust against the noise and
thus outperforming Adaboost. The reason why CNN does not
have great performance is that CNN may bring the overfitting
issue when handling such low dimension input data. Compared
to Joo et al. (2019), our method greatly reduces the feature
dimension from a radiograph to a 1× 32 vector instead of simply
implementing a CNN for image classification with a large number
of disturbing redundant features. In addition, the intermediate
results of teeth segmentation and numbering as well as the
geometrically calculated ABL provide dentists completely refined
and interpretable information, so that they not only know that
our method works, but also understand how it works.

DISCUSSION AND CONCLUSION

In this paper, we proposed a fully automatic and completely
interpretable method, Deetal-Perio, for diagnosing the severity
degrees of periodontitis from panoramic radiographs using
ABL as the key feature. As the intermediate results, our
method also accomplished teeth numbering and segmentation

tasks. Comprehensive experiments on two data sets show that
Deetal-Perio not only dramatically outperforms other compared
methods in both teeth segmentation and numbering, and
periodontitis prediction, but is also robust and generalizable
on independent data sets, which makes Deetal-Perio a suitable
method for periodontitis screening and diagnostics.

Despite the success of Deetal-Perio, the performance of teeth
numbering relies on the numbering results from the multi-class
classification Mask R-CNN model in Deetal-Perio. This can cause
issues when there are radiographs with severe periodontitis which
have only few or abnormal shapes of teeth. To overcome this
limitation, more data, similar to these special cases, is needed to
further improve the performance, employing few-shot learning
might be a helpful way to deal with such special situations (Li
et al., 2019, 2020a). We also found that there are filler materials
in some teeth which could not be detected (Figure 6). Although
these are a minority of cases, we need to focus on them in
order to enhance the performance of teeth segmentation and
numbering results in our model. We also plan to develop some
functions, such as detecting the filled teeth automatically based
on our model, which could assist the dentists during diagnosis
at a higher level.

From the clinical perspective, the comprehensive process of
periodontitis diagnosis should be also based on the measures like
clinical attachment loss (CAL) which is costly for us to collect.
For better performance and applicability of our method, we plan
to collect this kind of data and integrate them with our method to
make it more convincing for clinicians.
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Endoscopy Diagnostics
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Capsule endoscopy is a leading diagnostic tool for small bowel lesions which faces certain
challenges such as time-consuming interpretation and harsh optical environment inside
the small intestine. Specialists unavoidably waste lots of time on searching for a high
clearness degree image for accurate diagnostics. However, current clearness degree
classification methods are based on either traditional attributes or an unexplainable deep
neural network. In this paper, we propose a multi-task framework, called the multi-task
classification and segmentation network (MTCSN), to achieve joint learning of clearness
degree (CD) and tissue semantic segmentation (TSS) for the first time. In the MTCSN, the
CD helps to generate better refined TSS, while TSS provides an explicable semantic map
to better classify the CD. In addition, we present a new benchmark, named the Capsule-
Endoscopy Crohn’s Disease dataset, which introduces the challenges faced in the real
world including motion blur, excreta occlusion, reflection, and various complex alimentary
scenes that are widely acknowledged in endoscopy examination. Extensive experiments
and ablation studies report the significant performance gains of the MTCSN over state-of-
the-art methods.

Keywords: Capsule endoscopy, Multi-task learning, Explicable, Crohn’s disease, Auxiliary diagnosis

1 INTRODUCTION

Deep learning and convolutional neural networks have recently shown outstanding performances for
visual recognition and semantic understanding [Krizhevsky et al. (2012); Simonyan and Zisserman
(2014); He et al. (2016); Huang et al. (2017); Long et al. (2015)]. The representation learning capacity of
convolutional neural networks has also been successfully applied to medical image analysis and
recognition in gastrointestinal endoscopy [Ronneberger et al. (2015); Le et al. (2019); Hwang et al.
(2020)]. Crohn’s disease [Podolsky (1991); Baumgart and Sandborn (2012)] is an inflammatory bowel
disease (IBD), and its signs and symptoms range frommild to severe. It usually develops gradually but
sometimes will come on suddenly, without warning. While there is not a known cure for Crohn’s
disease, early detection and preventative therapies will greatly reduce its signs and symptoms and even
bring about long-term remission. Because the small intestine and colon can be affected by Crohn’s
disease, capsule endoscopy is the gold standard to examine the midsection of the gastrointestinal tract.

A major challenge in capsule gastroscopy is that the procedure will output a video of several hours
which suffers from complicated gastrointestinal environmental challenges, such as excreta occlusion,
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motion blur, and light scattering, wasting plenty of time for
professional gastroenterologists to find out the location of lesions
[Min et al. (2019)]. Although several software enhancements,
including Quick-View (Medtronic, Minneapolis, MN,
United States) and Express View (CapsoVision, Inc., Saratoga,
CA, United States), attempt to overcome these drawbacks, their
performance is insufficient for use in clinical practice because of
their limited accuracy and unexplicable output [Hwang et al.
(2020)]. To assist gastroenterologists to locate Crohn’s lesions
explicably and precisely, we introduce a dataset named the
Capsule-Endoscopy Crohn’s Disease dataset, a large-scale
Crohn’s gastrointestinal image dataset for clearness degree
(CD) and tissue semantic segmentation (TSS) which will
greatly help doctors understand the classification results. The
proposed dataset covers 467 images in real-world scenarios.

In the meanwhile, we propose a multi-task learning (MTL)
scheme, which combines pixel-level segmentation and global
image-level category classification. The proposed architecture
is based on a fully convolutional image-to-image translation
scheme, which enables efficient feature sharing between image
regions, and fast prediction. A novel cross fusion module is
proposed to mitigate the gap between different foci of
classification and segmentation tasks. We evaluate our model
on the proposed dataset, with clearness degree classification and
tissue segmentation with eight classes. We show that through
joint training, the model is able to learn shared representations
that are beneficial for both tasks. Our method can be seen as a
generalization of approaches relying on detection annotations to
pre-train the deep model for classification purposes. We show
that our joint training of classification and segmentation enables a
better cooperation between tasks.

2 RELATED WORK

2.1 Image Classification
Since AlexNet [Krizhevsky et al. (2012)], deep convolutional neural
networks have dominated image classification. With this trend,
research has shifted from engineering handcrafted features to
engineering network architectures. VGG-Net [Simonyan and
Zisserman (2014)] proposes a modular network design strategy,
stacking the same type of network blocks repeatedly, which
simplifies the workflow of network design and transfer learning for
downstream applications. Built on the success of this pioneeringwork,
He et al. (2016) introduced an identity skip connection which
alleviates the difficulty of vanishing gradient in the deep neural
network and allows for network learning deeper feature
representations. Reformulations of the connections between
network layers [Huang et al. (2017)] have been shown by
DenseNet to further improve the learning and representational
properties of deep networks. DenseNet has become one of the
most successful CNN architectures which has been adopted in
various computer vision applications.

2.2 Semantic Segmentation
With the great success of deep learning in high-level vision tasks,
numerous semantic segmentation approaches [Long et al. (2015);

Ronneberger et al. (2015); Zhao et al. (2017); Chen et al. (2018)]
are beneficial for CNNs. Long et al. (2015) first introduced fully
convolutional networks (FCNs) for semantic segmentation which
conduct pixel-wise classification in an end-to-end fashion. While
U-Net was introduced by Ronneberger et al. (2015), which
concatenates the up-sampled feature maps with feature maps
skipped from the encoder.

Due to the precise pixel-level representation, deep
learning–based semantic segmentation has been widely
adopted in lesion and tumor segmentation, helping doctors get
an accurate and explicable diagnosis. Li et al. (2018) proposed
H-DenseUNet for liver and liver tumor segmentation. A
modification to U-Net was proposed by Zhou et al. (2019),
named UNet++, which is applied to a variety of medical
datasets for segmentation tasks.

2.3 Multi-Task Learning
Multi-task learning [MTL, Caruana (1997)] is often applied when
related tasks can be performed simultaneously. Many MTL methods
[Jalali et al. (2010); Misra et al. (2016); Gebru et al. (2017); Strezoski
et al. (2019)] have achieved great success in a variety of computer
vision tasks. In the medical domain, some recent works also focus on
combining classification and segmentation into a joint framework.
Yang et al. (2017) proposed amulti-task DCNNmodel for skin lesion
analysis. Multi-task classification and segmentation was proposed by
Le et al. (2019) for diagnostic mammography. In the recent COVID-
19 pandemic, multi-task learning was applied in CT imaging analysis
by Amyar et al. (2020). MTL schemes are based on the assumption
that the difficulty of classification and segmentation tasks is the same.
But in the real scenes, especially in the small intestine, classification is
much simpler than segmentation tasks. Some pioneers have proposed
a weighted loss design [Kendall et al. (2018)] and attention module
[Liu et al. (2019)] to balance different types of tasks. As shown in
Figure 1, the evolution ofMTL tends to bringmore precise control on
fusion between different tasks. We dive into this problem and
introduce our solution to it.

3 PROPOSED METHOD

To assist the gastroenterologists in capsule endoscopy
examination, both precision and interpretability are necessary.
Following the previous methods [Le et al. (2019)], we model the
precision and interpretability tasks into classification and
segmentation tasks. Our proposed multi-task framework shows
that joint training of classification and segmentation enables a
better cooperation between tasks.

In the following, we first describe the overall framework of our
proposed multi-task classification and segmentation network
(MTCSN), shown in Figure 2. Specifically, a backbone is
adopted to extract the representations of the input image
which are further used to generate the class label and
segmentation map. Next, we introduce the cross fusion
module, the key elements of the MTCSN, to alleviate the
misalignment between classification and segmentation. Finally,
we dive into the inherent problem in the multi-task learning
training strategy and introduce our object function.
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3.1 Network Architecture
As shown in Figure 2, the proposed multi-task classification and
segmentation network first utilizes a backbone to extract local
features. The backbone we adopted includes different depths of
ResNet or DenseNet. Following feature extraction, we design two
multi-task branches which are the classification branch for image
clearness degree measuring usability and the segmentation branch
for tissue segmentation producing explicable visualization to help
doctors understand the whole image. The classification branch is
mainly constructed by fully connected layers, and the segmentation
branch is based on an image-to-image scheme enabling efficient
feature computation in each region but also sharing computation
from all regions in the whole image in a single forward pass. In
addition, we can still process input images with high spatial
resolution.

3.2 Cross Fusion Module
Our network mainly focuses on two tasks, classification and
segmentation. In the prevailing pattern of MTL, two branches

have been trained separately for these tasks following the shared
backbone for feature extraction [Figure 1]. Because the
classification task and segmentation task place different
emphasis on feature extraction, performance degeneration is
foreseeable and needs to be resolved.

Instead of designing two parallel backbones [Misra et al.
(2016)], we set our sights on efficiently exploiting the
interaction between the two tasks’ branches. We introduce a
novel non-linearity cross fusion module which learns the extent
of sharing, as illustrated in Figure 3.

After global average pooling, the classification branch feature’s
usual shape is [C1, 1, 1], where C1 denotes the number of
channels. While the segmentation branch feature’s shape is
[C2, H, W], C2 is usually not the same as C1. First, we mold
the classification feature into the same shape of segmentation.
Then, we utilize a sharing parameter non-linearity
transformation matrix M to learn the joint representations and
extent of fusion automatically. In our experiment setting, M is
formulated as a parameter matrix of the convolution layer. More

FIGURE 1 | Evolution routing map of the multi-task network structure. Blue rectangles represent the shared layers, like the backbone. Green and yellow ones
denote the different task branches. The orange block is the cross fusion module introduced by us in this work.

FIGURE 2 | Multi-task classification and segmentation network (MTCSN) architecture.
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precisely, the process of the cross fusion module can be
formulated as

̃Xcls � Xcls + Pool M Xseg( )( ),
̃Xseg � Xseg +MT Pad Xcls( )( ),{ (1)

where Xcls and Xseg denote the classification and segmentation
feature inputs to cross fusion. M denotes the non-linearity
transformation matrix, and MT’s dimension order is
different. The output of cross fusion is ̃Xcls and ̃Xseg . The
network can automatically decide to make certain layers
task-specific by setting a lower weight to the matrix or
choosing a more shared representation by assigning a higher
value to it.

3.3 Object Functions
In general multi-task learning with K tasks, input X, and task-
specific labels Yi, i � 1, 2, . . . , K, the loss function is defined as

Lall � ∑K
i�1

λiLi(X,Yi). (2)

With task weightings λi, Lall is the linear combination of task-
specific losses Lall . We study the effect of different weighting

methods on our multi-task learning approaches. The overall
object function of the MTCSN is composed of two parts:

• For the classification task, we apply a class-wise cross-entropy
loss for each predicted class label from a softmax classifier:

Lcls � ΦCE Xcls′ ,Xcls( ) + αLconsistency, (3)

where

Lconsistency � ∑ΦMSE Xi′ ,Xi( ). (4)

Here, Xcls′ is the predicted classification category. Xi′ and Xi are the
features before and after cross fusion in the classification branch.
ΦCE and ΦMSE are the cross-entropy loss and MSE loss functions,
respectively. We empirically set the weight α � 0.1 in network
training.

• For the segmentation task, we apply a pixel-wise cross-
entropy loss for each predicted class label from a softmax
classifier:

Lseg � ΦCE Xseg′ ,Xseg( ), (5)

where Xseg′ represents the predicted segmentation maps.

4 EXPERIMENTS AND DISCUSSION

4.1 Datasets and Tasks
Though Crohn’s disease diagnosis is reliable using capsule endoscopy,
there is no such open-sourced image dataset for further study so far.
So, we build the first Capsule-Endoscopy Crohn’s Disease dataset
which includes 15 patients and 164 video clips. The dataset will
improve the efficiency and accuracy of gastrointestinal endoscopy and
help gain a better understanding of this disease.

We divide the annotation process into three stages, and the
gastroenterologists are divided into three teams corresponding to
these three stages, as shown in Figure 4.

In the first stage, gastroenterologists collect the source capsule
endoscopy videos from the database center of the hospital, and all
the 15 patients’ capsule endoscopy videos are filmed by MOMO

FIGURE 4 | Labeling pipeline we adopted. (A) In stage I, we invite several senior gastroenterologists to pick up the video clips of interest, and then we transform
them into frames. (B) In stage II, we further invite another two gastroenterologists to label the clearness degree of the frames and semantic masks for each part. Cross
validation is performed at the same time. (C) In stage III, a senior expert checks the labeling and makes the final decision on the annotations.

FIGURE 3 | Details of the cross fusion module.
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Wireless Capsule Endoscopy JS-ME-I. Then, we invite several
gastroenterologists to pick up the video clip of interest from the
full examined videos whose length normally lasts 3–4 h. Finally,
we take screenshots from these video clips by a fixed frame rate
and get images for follow-up stages.

In the second stage, two gastroenterologists are introduced to
label the previous screenshots, respectively, at the pixel level and
image level. They first classify the image into three clearness
degrees according to adequacy assessment [Brotz et al. (2009)]
and then segment the scenes into given categories. In the
meantime, one gastroenterologist’s annotations will be
annotated by another doctor without knowing it, and
divergence will be handed over to the third stage’s chief to decide.

In the third stage, all revised images are submitted to the chief
and expert gastroenterologist in stage III for final-checking. All
the data are anonymized for privacy protection.

Here are the statics of the two tasks in our dataset:

1) Task 1: Clearness degree classification
2) Task 2: Tissue segmentation for precise understanding of

the image

The total number of annotation images is 467, and we split the
dataset into training, validation, and testing datasets strictly by
stratifying the sampling in the clearness categories. There are 372
images in the training dataset, 47 images in the validation dataset,
and 47 images in the testing dataset. The statistic of basic attribute
of our proposed datasets have been shown in Tables 1, 2.

4.2 Evaluation Metrics
The classification results are evaluated by accuracy, precision,
recall, and F1 score. A classic classification problem has four
possible outcomes, true positive (TP), false positive (FP), false
negative (FN), and true negative (TN). Accuracy is the fraction of
predictions our model got right. Precision measures the
proportion of actually correct positive identifications, and
recall answers the proportion of actual positives identified
correctly. F1 is an overall measure of a model’s accuracy that
combines precision and recall:

Accuracy � TP + TN
TP + TN + FP + FN

,

Precision � TP
TP + FP

,

Recall � TP
TP + FN

,

F1 � 2 × Precision∗Recall
Precision + Recall

.

(6)

The segmentation results are evaluated using the Jaccard
index, also known as Intersection-over-Union (IoU). The IoU
is a measure of overlap between the area of the automatically
segmented region and that of the manually segmented region.
The value of IoU ranges from 0 to 1, with a higher value implying
a better match between the two regions. Pixel-wise accuracy is
also used for evaluation.

4.3 Experimental Results
In this section, we first evaluate several baselines in our Capsule-
Endoscopy Crohn’s Disease dataset, respectively, on classification
and segmentation tasks. Then, we evaluate our proposed method
on two types of tasks. The implementation of our method was
done using PyTorch. The model was performed on an Nvidia
RTX 2080Ti GPU with 11 gb. The batch size is set to 8, and all
images are resized to 240 p 240 to speed up training.

4.3.1 Baselines Results
• Single Task, Classification Task. We evaluate two different
types of models on our classification problem. Table 3 shows
that existing CNN-based classification models already have
an acceptable accuracy, precision, and recall score. On account
of the scale of datasets and shape of the input image, a simpler
and shallower classification model is preferred.

• Single Task, Segmentation Task. We evaluate four different
models on our segmentation problem. Under the same
backbone, Table 4 shows that the state-of-the-art
segmentation model can achieve competitive results on
the CECD dataset. But as shown in Figure 5, the

TABLE 1 | Details about the classification category distribution.

Category Number

Clearness 323
Blur 101
Invisible 42

TABLE 2 | Statistics of segmentation annotation in the dataset.

Category Number Category Number

Clear tissue 361 Invisible by bubble 196
Blur tissue 128 Invisible by excreta 212
Lesion 91 Clear bubble 46
Hole 153

TABLE 3 | Three-class clearness degree baseline classification results in the
CECD dataset.

Classification method Accuracy Precision Recall

ResNet-50 84.0 72.57 72.81
ResNet-101 81.9 69.67 71.41
DenseNet-121 86.7 73.48 73.72

TABLE 4 | Benchmark results in our dataset for the segmentation task.

Segmentation method Backbone Iteration mACC mIoU

FCN ResNet-50 30 k 59.5 49.29
PSPNet ResNet-50 30 k 65.37 54.11
GCNet ResNet-50 30 k 62.96 53.29
DeepLabv3 ResNet-50 30 k 67.17 54.98
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prediction of DeepLabv3 which performs best among them
still has huge room for improvement.

4.3.2 Multi-Task Results
We employ the method described in Section 3.1 and compare it
with two widely used multi-task learning methods, and the results
are shown in Table 5. Besides, we discuss some structure details
when constructing the cross fusion module. We can see from
Table 6 that the GAP pooling method in the cross fusion module
performs better than GMP. The reason is that the global max
pooling may introduce outliers while emphasizing the maximum
in cross features.

Table 6 shows that our proposed multi-task classification and
segmentation network, described in Section 3, achieved the highest
performance in both tasks. Because of the imbalance between the two
tasks, if we simply apply a multi-task framework, the promotion of
segmentation capacity is at the cost of classification performance. Our
proposed cross fusion module elegantly fixes the imbalance between
them. The qualitative segmentation can also be seen from Figure 5,
and the proposed method achieved the best performance.

To the best of our knowledge, no one has previously attempted to
utilize segmentation at the pixel level to assist the image-level clearness
degree and provide explicable visual results for specialists in clinical
practice. In practice, our proposedmethodwill have inference on every

FIGURE 5 | Visualization of the segmentation result in our proposed Capsule-Endoscopy Crohn’s Disease dataset.

TABLE 5 | Detailed analysis of our proposed MTCSN in comparison with others.

Our multi-task method Backbone Iteration Accuracy Precision Recall mACC mIoU

Hard parameter sharing ResNet-50 30 k 88.41 80.96 78.93 84.92 77.55
Hard parameter sharing ResNet-101 30 k 83.3 77.43 77.31 83.08 77.46
Hard parameter sharing DenseNet-121 30 k 87.5 77.66 78.12 82.08 73.79
Cross stitch ResNet-50 30 k 80.21 68.92 67.71 81.22 73.33
Cross stitch ResNet-101 30 k 78.13 73.32 72.51 77.94 69.98
Cross stitch DenseNet-121 30 k 83.3 72.8 73.09 81.31 74.5
MTCSN ResNet-101 30 k 84.75 77.78 77.91 83.27 75.43
MTCSN DenseNet-121 30 k 88.3 78.7 79.64 84.49 73.75
MTCSN ResNet-50 30 k 89.23 81.54 80.14 85.50 77.62

Bold values represents our experiment results suppress all the previous methods.

TABLE 6 | Ablation studies of the cross fusion module. The global max pooling (GMP) and global average pooling (GAP) denote the different implementation of the cross
fusion module on the class fusion branch.

Segmentation method Accuracy Precision Recall mACC mIoU

Global max pooling 85.1 73.52 76.1 84.04 72.9
Global average pooling 88.3 78.7 79.64 84.49 73.75
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frame of the entire output video of capsule endoscopy. The high
clearness frames or frames mostly occupied by tissue or lesions will be
marked by our framework. In fact, themarked frames only account for
10% of all frames which significantly reduces the heavy work of
gastroenterologists. Our pixel-level semantic segmentation results
also provide an explicable reference for gastroenterologists to
determine the confidence of the output.

5 CONCLUSION

In this work, we propose a multi-task learning framework named
the multi-task classification and segmentation network (MTCSN).
This framework combines tissue semantic segmentation and
clearness degree classification for capsule endoscopy diagnosis.
Our MTCSN achieves high performances on both clearness
classification tasks and explicable tissue segmentation offering
gastroenterologists visualization to understand the whole image.
With explicable tissue segmentation, our framework significantly
reduces the workload of gastroenterologists and provides steps
forward for deep learning–based methods assisting
gastroenterologists in clinical practice.
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