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Editorial on the Research Topic

Generating and Sustaining Stable Autoantigen-specific CD4 and CD8 Regulatory T Cells
in Lupus

CD4+ AND CD8+ REGULATORY T CELLS IN LUPUS

Systemic lupus erythematosus (lupus) is a complex autoimmune disease that involves major
components of the immune system. It has heterogeneous clinical manifestations and, at the
earliest stages, it is characterized by a deficiency of IL-2 and TGF-b, (1, 2), and epigenetic
abnormalities that include an abnormal development and stability of CD4+CD25+CD127low T
regulatory (Treg) cells (3). However, merely enumerating the levels of circulating Treg cells in lupus
patients has yielded inconsistent results because some of those Treg cells are functionally inactive (4,
5), and Treg cells directed to major autoantigens of lupus are not detectable in patients with active
disease (6) and Robinson et al. Therefore, generating stable Treg cells that preferentially suppress
pathogenic activity of self-reactive immune cells represents a critical therapeutic goal for the
modulation of lupus disease, as discussed in this Research Topic.

Datta reviews the origins of the first experiments that showed that an endogenous self-antigen,
namely nucleosomes from apoptotic cells, linked self-reactive lupus T helper (Th) and B cell with
cognate interactions leading to the production of class-switched nephritogenic anti-dsDNA
autoantibodies. Subsequently, minute doses of certain histone peptide epitopes from nucleosomes
were found to induce autoantigen-specific CD4+ and CD8+ Treg cells. Surprisingly the epitopes
were also found to render dendritic cells tolerogenic directly, which led to inhibition of multiple
autoreactive cells participating in pathogenic autoimmune response in lupus.

Wei et al. review cellular mechanisms that lead to production of high-affinity autoantibodies in
SLE. The onset of autoantibodies in systemic autoimmunity requires a complex and highly regulated
B-T cell functional crosstalk as well as mature germinal center (GC) formation in B cell follicles of
secondary lymphoid tissues. A key regulator of such events is the T follicular regulatory cell (TFR), a
specialized Treg cell population that protects from hyperactivity of self-reactive T and B cells.
However, recent studies show that TFRs manifest functional plasticity as they can lose Foxp3
expression and convert into disease-promoting “ex-TFRs” that acquire potent effector/
org March 2022 | Volume 13 | Article 83860414
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inflammatory functions. The authors review currently proposed
intrinsic and extrinsic mechanisms of regulation of TFR function
and discuss the roles of TFR plasticity in autoantibody
production in the pathophysiology of SLE.

Singh et al. describe a Treg cell-inducing peptide called pCons
that was derived from V-region sequences of anti-dsDNA
autoantibodies. Singh et al. also describe the gene expression
profiles and immunological markers of pCons-induced CD8+

Treg cells in NZB/W lupus mice, discussing potentially
interesting functional features of those pCons-induced CD8+

Treg cells in the downregulation of lupus autoimmunity.
Kato and Perl critically elaborate on the recent exciting findings

that showed a peripheral expansion of Treg cells in lupus patients
treated with low-dose IL-2. The authors report that although IL-2
does induce CD4+ Treg cells in lupus patients, in the meantime
this cytokine also promotes an expansion of CD8+ T cells that
produce pro-inflammatory IFN-g. This new finding raises
questions on how to optimize treatments with IL-2 in lupus
patients to avoid unwanted side effects while promoting the
Treg cell-mediated beneficial activities on disease manifestations.

Papillion and Ballesteros-Tato point out that although IL-2
normally inhibits T follicular helper cells in SLE, IL-6 blocks this
inhibitory effect, documenting that IL-6 blocked the
upregulation of IL-2Rb (CD122).

Hatzioannou et al. review the two-faced role and plasticity of
Treg cells in autoimmunity and cancer, focusing on the
phenotypic characteristics that Treg cells display in association
with their functional flexibility. The authors elaborate on the
potential therapeutic implications of targeting Treg cell plasticity
either to maintain functional stability in Treg cell control of
immune effector responses that sustain chronic inflammation, or
to favor Treg cell destabilization in the fight against cancer.

Horwitz et al. and Robinson and Thomas review an emerging
approach that avoids the use of corticosteroids and
immunosuppressive drugs to treat SLE. Nanoparticles (NPs)
engineered to target specific cell populations are used to repair
defects in the homeostatic immune regulation, and to restore
immune tolerance to autoantigens. NPs can be targeted to
antigen presenting cells (APCs) to switch them from
supporting pathogenic T cells to favoring the expansion of
therapeutic Treg cells. Alternatively, NPs can be targeted
Frontiers in Immunology | www.frontiersin.org 25
directly to T cells for the induction and expansion of CD4+

and CD8+ Treg cells. Both reviews discuss potential approaches
to induce autoantigen specific Treg cells, without antigen or with
peptide antigens. Attention is given to lupus-specific peptide
autoantigens to induce antigen-specific Treg cells and the use of
NPs to function as artificial APCs (aAPCs) that induce multiple
populations of lymphocytes to become regulatory cells.

Giang et al. demonstrate that aAPCs made of NPs that
provide IL-2 and TGF-b to human cells can induce human
CD4+ and CD8+ FoxP3+ Treg cells both in vitro and in vivo in
immunodeficient mice. These human Treg cells protect the mice
from human anti-mouse graft versus host disease (GvHD). These
studies suggest the possibility that repairing both the IL-2 and
TGF-b defects may be necessary for a sustained disease
remission in SLE.
CONCLUSIONS

This Research Topic provides updates on the influences exerted
by CD4+ and CD8+ Treg cells on the pathogenesis and
modulation of SLE disease manifestations. Among the
possibilities of Treg cell modulation, epigenetic manipulations
that could improve Treg cell stability and function are actively
investigated and expected to be tested in clinical trials (7, 8).
Several immunotherapeutic studies that focused on the numeric
and functional modulation of CD4+ and CD8+ Treg cells, and
have yielded promising laboratory results, are moving to the
patient’s bedside. The restoration and maintenance of Treg cell
predominance over effector cells has the potential to promote
long-term remission of autoimmune disease, and ultimately
prevent autoimmunity in susceptible individuals.
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Interleukin-2 (IL-2) expands the depleted T regulatory (Treg) cell population, and it has
emerged as a potential therapy in systemic lupus erythematosus (SLE). However, IL-2
administration may involve the risk of expanding unwanted pro-inflammatory cells. We
herein studied the effects of IL-2 on pro-inflammatory cytokine production by CD4+ and
CD8+ T cells in parallel with Treg development following CD3/CD28 co-stimulation. While
Treg cells are depleted in SLE patients, their CD4+ T cells were poised to receive and
activate IL-2 signaling as evidenced by upregulation of CD25 and enhanced IL-2-incued
STAT5 phosphorylation during Treg differentiation. In patients with SLE, however, IL-2
also expanded CD8+ T cells capable of producing interleukin-5, interkeukin-13 (IL-13),
and interferon-g (IFN-g) that occurred with enhanced expression of GATA-3 and
phosphorylation of STAT6 but not STAT5. Our data pinpoint a safety signal for
systemic administration of IL-2 and challenges a long-held conceptual platform of type
1 and 2 cytokine antagonism by newly documenting the IL-2-dependent development of
IL-13 and IFN-g double-positive (IL-13+IFNg+) CD8+ T cells in SLE.

Keywords: systemic lupus erythematosus, interleukin-2 (IL-2), interleukin-13 (IL-13), interferon-g (IFN-g),
T regulatory (Treg) cell, CD8+ T cells, STAT6, GATA-3
INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by aberrant T- and B-
cell activation culminating in a production of antinuclear antibodies (1). Among numerous immune
dysregulation pathways implicated in the pathogenesis, the depletion of T regulatory (Treg) cells has
emerged as an important mediator of the disease (2–4). In this respect, interleukin (IL)-2 elicits T
regulatory (Treg) cell differentiation in association with phosphorylation of STAT5 and its binding
org March 2021 | Volume 12 | Article 63553117

https://www.frontiersin.org/articles/10.3389/fimmu.2021.635531/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.635531/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.635531/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.635531/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.635531/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.635531/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.635531/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.635531/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:perla@upstate.edu
https://doi.org/10.3389/fimmu.2021.635531
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.635531
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.635531&domain=pdf&date_stamp=2021-03-02


Kato and Perl IL-2 Induces IL-13+IFN-g+ CD8+ T Cells
to the Foxp3 gene (5). These findings along with IL-2 deficiency
in lupus patients (6) yielded the notion that supplementation of
IL-2 could restore the immune tolerance by expanding the Treg
cell population. Indeed, low dose IL-2 therapy was shown to
expand Treg cells and ameliorate the lupus disease activity (7).

Non-selective administration of IL-2, however, poses a
concern for potential expansion of unwanted pro-
inflammatory cells in view of its pleiotropic functions, in
particular, its role as a T-cell growth factor (8). In fact, IL-2
induces Th1 and Th2 differentiation in a STAT5-dependent
manner (9, 10). In addition, IL-2 elicits the differentiation of
naïve CD8+ T cells into effector and memory cytotoxic T cells
along with the induction of interferon (IFN)-g, perforin, and
granzymes (11).

While extensive evidence underpins the essentiality of CD4+

and CD4-CD8- double-negative T cells in lupus pathogenesis
(12–14), roles for CD8+ T cells have also been increasingly
recognized. CD8+ T cells during a lupus flare exhibit more
prominent cytotoxic phenotype and functions than during
remission, and the frequency of such cells correlates with
the SLE disease activity index (SLEDAI) score (15).
Tubulointerstitial nephritis associated with CD8+ T cell
infiltrates confers an increased risk for progressive lupus
nephritis (16). With regard to the type of immune response
mediated by T cells, it remains controversial whether SLE is
driven by type 1 or type 2 immunity given the various animal
models showing discrepant findings. In humans, some studies
showed increased IL-4, but decreased IFN-g in lupus patients
(17), whereas others indicate the importance of IFN-g in diffuse
proliferative lupus nephritis (18). SLE patients with higher
SLEDAI score have lower IFN-g but higher IL-4 expression
than those with lower SLEDAI score (19). Another type 2
cytokine, IL-13, shares many biological functions with IL-4, as
exemplified by when human IL-13 elicits B-cell proliferation and
its immunoglobulin production (20–22). In addition to the
contribution of IL-13 to asthma and allergic disorders (23, 24),
it is important to note that GATA-3-dependent IL-13
production by CD8+ T cells promotes fibrosis in systemic
sclerosis (25, 26). While our understanding of lupus T cell
biology has been rapidly evolving, it is unknown how IL-2
affects the lineage-specification of lupus T cells, and whether
IL-13 plays a role in immune dysregulation in SLE.

In this study, we evaluated the effects of IL-2 on pro-
inflammatory cytokine expression in SLE CD4+ and CD8+ T
cells in comparison to those on Treg cell development. While
Treg population is depleted in SLE patients, their CD4+ T cells
were primed to receive and activate IL-2 signaling as evidenced
by upregulation of CD25 and enhanced IL-2-induced STAT5
phosphorylation during Treg differentiation. On the other hand,
SLE CD8+ T cells produced greater amount of IL-13 and IFN-g
than CD4+ T cells in an IL-2-dependent manner. In addition, IL-
2 expanded the IL-13-producing lupus CD8+ T cells that also
expressed IL-5 and IFN-g in association with STAT6
phosphorylation and GATA-3 expression, but not with STAT5
phosphorylation. Our data conveys a clear safety signal in further
pursuit of systemic administration of IL-2, and supports the
Frontiers in Immunology | www.frontiersin.org 28
rationale for Treg-cell-targeted delivery of IL-2 in the treatment
of SLE.
MATERIALS AND METHOD

Human Subjects
In total, 33 patients with SLE fulfilling the American College of
Rheumatology diagnostic criteria (27) were studied. In each
experiment, peripheral blood was obtained from SLE patients
(all female) and healthy control (HC) subjects who were matched
to the patients by age (within 10 years), sex, and ethnic
background. Age of study participants was 44.8 ± 2.0 (mean ±
SD) years in SLE, and 44.2 ± 1.9 years in HC subjects. Disease
activity was assessed by the SLEDAI scores (28), which ranged
from 0 to 34 (mean ± SD: 6.24 ± 1.17). Mean daily prednisone
dose was 6.52 ± 1.62 mg. Immunosuppressive drugs taken by the
study subjects included hydroxychloroquine (N=31),
methotrexate (N=1), mycophenolate mofetil (N=10),
mycophenolic acid (N=1), azathioprine (N=5), cyclosporine
(N=1), tacrolimus (N=1), belimumab (N=6), and abatacept
(N=1). The study was approved by the Institutional Review
Board at the SUNY Upstate Medical University.

Isolation of Untouched T Cells and
Cell Culture
Peripheral blood mononuclear cells (PBMCs) were isolated by
using Ficoll Histopaque gradient (GE Health Care Bio-Sciences).
CD3+ T cells were isolated by negative selection using untouched
human T cell isolation kit (Life technologies, Cat# 11344D).
Purity of CD3+ T cells was confirmed to be above 97%. Cells were
cultured in RPMI culture media with 10% FCS, 1% Penicillin/
Streptomycin, and 1% L-glutamine (all from Corning CellGro
except for FCS, which was from Gibco) for 3 days, and stained with
PE Cy7-conjugated anti-CD4 (Clone: SK3, Cat# 557852, RRID :
AB_396897) and phycoerythrine (PE)-conjugated anti-CD25
(Clone: M-A251, Cat# 555432, RRID : AB_395826, both from BD
Biosciences). The cells were permeabilized as per the manufacturer’s
instructions and stained with AF-647-conjugated anti-FoxP3
(Biolegend, Clone: 150D, Cat# 320014, RRID : AB_439750).

Isolation of CD4+ and CD8+ T Cells and
Cell Culture
CD4+ and CD8+ T cells were isolated by negative selection using
human CD4+ T cell enrichment (Cat# 15062) and CD8+ T cell
isolation kits (Cat# 17953, both from STEMCELL), respectively.
Cells were cultured for 3 days in the presence of plate-bound
anti-CD3 (anti TCR ϵ hybridoma from ATCC) and soluble anti-
CD28 (1 mg/ml, BD Biosciences, Clone: CD28.2, Cat# 555725,
RRID : AB_396068) in the presence or absence of IL-2 (100 IU/
ml, Peprotech, Cat# 200-02) or anti-IL-2 (100 or 1000 ng/ml,
R&D Systems, Cat# MAB202, RRID : AB_2264789).

Intracellular Staining
Cells were pre-incubated with PMA (5 ng/ml) and ionomycin
(500 ng/ml) for 6 h, and with brefeldin A for 5 h (10 mg/ml; all
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from Sigma-Aldrich). For cytokine detection, FITC-conjugated
anti–IFN-g (Clone: B27, Cat# 554700, RRID : AB_395517), PE-
conjugated anti-IL-5 (Clone: JES1-39D10, Cat# 559332, RRID :
AB_397229), or IL-17 (Clone: SCPL1362, Cat# 560436, RRID :
AB_1645514), BV711 conjugated anti-IL-13 (Clone: JES10-5A2,
Cat# 564288, RRID : AB_2738731), and allophycocyanin-
conjugated anti-IL-4 (Clone: 8D4-8, Cat# 560671, RRID :
AB_1727546) or IL-21 (Clone: 3A3-N2.1, Cat# 562043, RRID :
AB_10896655, all from BD Biosciences) were used alone or
together. Isotype control Abs included FITC-conjugated mouse
IgG1 k (Clone: MOPC-21, Cat# 551954, RRID : AB_394297),
PE-conjugated rat IgG2a k (Clone: R35-95, Cat# 559317, RRID :
AB_10050484), BV711-conjugated rat IgG1 k (Clone: R3-34,
Cat# 563283, RRID : AB_2869482), and Alexa Fluor (AF)-647-
conjugated mouse IgG1 k (Clone: MOPC-21, Cat# 557732,
RRID : AB_396840, all from BD Biosciences).

T Regulatory Cell Polarization
Naive CD4+ T cells were isolated from SLE and matched HC
subjects by using Human Naive CD4+ T cell Enrichment Kit
(STEMCELL, Cat# 19555). The purity of naive CD4+ T cells as
defined by the proportion of CD4+CD45RA+CD62L+ cells was
above 99%. Cells were cultured for 72 h in the presence of anti-
CD3/CD28 and TGF-b (5 ng/ml, Peprotech, Cat# 100-21) with
IL-2 (50 IU/ml) or anti-IL-2 (100 or 1000 ng/ml). Cells were
stained with FITC-conjugated anti-CD25 (Clone: M-A251, Cat#
555431, RRID : AB_395825) and AF-647-conjugated anti-FoxP3
(Clone: 259D/C7, Cat# 560045, RRID : AB_1645411 both from
BD Biosciences). Frequency of CD4+CD25+FOXP3+ cells was
determined by flow cytometry. In other experiments, CD4+ T
cells isolated from matched SLE and HC subjects were cultured
for 3 days in the presence of anti-CD3/CD28 and TGF-b (20 ng/
ml) with or without IL-2 (100 IU/ml) or anti-IL-2 (100 ng/ml).

Immunoblotting
Using lysates of CD4+ T cells cultured under Treg-polarizing
conditions, total STAT5 (Clone: A-9, Cat# sc-74442, RRID :
AB_1129711) and its phosphorylation at tyrosine 694
(pSTAT5Y694, Clone: C11C5, Cat# 9359, RRID : AB_823649)
were detected by immunoblotting. Using lysates of CD8+ T cells
cultured in the presence or absence of IL-2 or anti-IL-2,
phosphorylation of STAT5 at tyrosine 694, phosphorylation of
STAT6 at tyrosine 641 (pSTAT6Y641, Clone: C11A12, Cat# 9364,
RRID : AB_2271227), and expression of GATA-3 (Clone: HG3-31,
Cat# sc-268, RRID : AB_2108591) were determined by
immunoblotting (anti-STAT5 and anti-GATA-3 were from Santa
CruzBiotechnologywhereas the remainderwas fromCell Signaling
Technology). The signal intensity was normalized to that of actin
(Millipore, Clone: C4, Cat# MAB1501, RRID : AB_2223041).

Statistical Analysis
Student t test was performed for comparison of phenotype
between two groups with two-tailed p values < 0.05 considered
significant. Two-way ANOVA was followed by Bonferroni’s
posttest for multiple comparisons using Prism 8 software
(GraphPad, La Jolla, CA). Association of two variables was
determined by Pearson’s and Spearman’s correlation analyses.
Frontiers in Immunology | www.frontiersin.org 39
RESULTS

Systemic Lupus Erythematosus
CD4+ T Cells Are Poised to Receive
Interleukin-2 Signaling During T
Regulatory Cell Differentiation
To confirm the essentiality of IL-2 signaling in Treg
differentiation in SLE, naïve CD4+ T cells were cultured under
Treg-polarizing conditions in the presence or absence of IL-2 or
anti-IL-2. IL-2 blockade abrogated Treg differentiation both in
SLE and healthy control subjects (Figure 1A). Of note,
supplementation of IL-2 induced STAT5 phosphorylation in
SLE CD4+ T cells, but not in healthy control CD4+ cells
(Figure 1B). Such a heightened sensitivity to IL-2 prompted us
to examine the expression of IL-2 receptor a chain (CD25) on
SLE CD4+ T cells (29). Instead of immunophenotyping cells
immediately after isolation, untouched CD3+ T cells were rested
in culture media without anti-CD3/CD28 stimulation for 3 days
to eliminate the effects of immunosuppressive drugs that the
study subjects had received. Although CD4+CD25+FOXP3+ Treg
population was depleted, CD25 was upregulated on lupus CD4+

T c e l l s , r e s u l t i n g i n d im in i s h ed p ropo r t i on o f
CD4+CD25+FOXP3+ Treg cells among the CD4+CD25+ cells
in SLE (Figure 1C). Collectively, although SLE CD4+ T cells are
primed to receive and activate IL-2 signaling as evidenced by the
upregulation of CD25 and increased IL-2-induced STAT5
phosphorylation under Treg-polarizing conditions, Treg cells
are depleted in SLE patients (Figure 1C). However, it is
corrected once cells are stimulated with anti-CD3/CD28
(Figure 1A (12, 30),) likely because of a large amount of IL-2
produced by T cells (30). These findings point to the IL-2
deficiency underlying the SLE Treg depletion (6).

Interleukin-2 Elicits the Expansion of
Interleukin-13-Producing CD8+ T Cells
That Also Express Interleukin-5
and Interferon-g
To evaluate the roles for IL-2 in pro-inflammatory cytokine
expression in SLE T cells, magnetically isolated CD4+ and CD8+

T cells were cultured in the presence or absence of IL-2 or anti-
IL-2. IL-2 positively controls the expression of IL-5, IL-13, and
IFN-g, but not IL-4, in particular, in CD8+ T cells (Figures 2, 3,
S1). CD4+ T cells appeared to be the predominant source of IL-
21, and it was not IL-2 dependent (Figure S2). No meaningful
IL-17 expression was observed (data not shown). Among these
IL-2-dependennt cytokines, CD8+ T cells produced greater
amount of IL-13 (HC: 30.41 ± 2.36%, 1.51 ± 0.14%, p<0.0001;
SLE: 37.91 ± 2.27%, 1.53 ± 0.22%, p<0.0001) and IFN-g (HC:
46.00 ± 3.22%, 25.07 ± 6.89%, p=ns; SLE: 48.04 ± 4.46%, 29.53 ±
2.83%, p<0.01) than CD4+ T cells (Figures 2 and 3). IL-13
expression in CD8+ T cells was greater than that in CD4+ T cells
on a per cell basis as determined by the mean fluorescence
intensity (MFI) (HC: 396.67 ± 26.54, 165.64 ± 6.10, p<0.0001;
SLE: 470.42 ± 27.39, 158 ± 8.65, p<0.0001). Of note, SLE CD8+ T
cells produced greater amount of IL-13 (% positive cells: SLE:
37.91 ± 2.27%, HC: 30.41 ± 2.36%, p<0.05; MFI: SLE: 470.42 ±
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27.39, HC: 396.67 ± 26.54, p<0.05) than healthy control CD8+ T
cells (Figures 2 and 3A).

We next turned to the correlation analysis of type 1 and 2
cytokine expression. IL-13 expression was greater in IL-5-
expressing cells than IL-5-non-expressing cells both in CD4+

and CD8+ T cells (Figure S3A). Accordingly, the expression of
IL-13 and IL-5 was positively correlated in CD8+ T cells (Figure
S3B), yielding a IL-13+ IL-5+ CD8+ T cell population that
contracted in association with IL-2 blockade (Figure 2). In
contrast, the expression of IL-13 and IL-4 appeared to be
mutually exclusive (Figure S1A), and there was no difference
of IL-13 expression between IL-4-expressing and -non-
expressing cells (Figure S3A). Unexpectedly, IL-13 expression
in IFN-g-expressing CD8+ T cells was greater than that in IFN-g-
non-expressing CD8+ T cells (Figure S3A). Along this line, there
Frontiers in Immunology | www.frontiersin.org 410
was a positive correlation between the expression of IL-13 and
IFN-g (Figure S3B), resulting in the expansion of IL-13+ IFN-g+

double-positive CD8+ T cells in SLE (SLE: 20.53 ± 1.48%, HC:
16.15 ± 1.48%, p<0.05, Figures 3A, B) which contracted in
association with IL-2 blockade. Collectively, IL-2 expanded IL-
13-expressing CD8+ T cells including an IL-13+ IFN-g+ double-
positive subset in SLE.

Interleukin-13 and Interleukin-5
Expression Are Associated with
Interleukin-2-Induced STAT6
Phosphorylation and GATA-3
Expression in CD8+ T Cells
To understand the mechanisms by which IL-2 induces the
expansion of IL-13- and IL-5-producing CD8+ T cells,
A

B

C

FIGURE 1 | SLE CD4+ T cells are poised to activate IL-2 signaling during Treg differentiation. (A) Naïve CD4+ T cells were isolated from a systemic lupus
erythematosus (SLE) patient and matched healthy control (HC) subject, and cultured for 3 days in the presence of anti-CD3/CD28 and TGF-b (5 ng/ml) with IL-2
(50 IU/ml) or anti-IL-2 (100 or 1,000 ng/ml). The frequency of CD4+CD25+FOXP3+ cells was determined by flow cytometry. Numbers below the plots represent the
frequency of CD4+CD25+FOXP3+ Tregs. The dot plots on the left end represent isotype control staining. (B) CD4+ T cells isolated from matched SLE and HC
subjects were cultured for 3 days in the presence of anti-CD3/CD28 and TGF-b (20 ng/ml) with or without IL-2 (100 IU/ml) or anti-IL-2 (100 ng/ml). Total STAT5 and
its phosphorylation at tyrosine 694 were detected by immunoblotting. Representative immunoblot staining (left panel). The signal intensity of phospho-STAT5 and
total STAT5 was normalized to that of actin. The normalized pSTAT5 signal intensity (middle panel) and the ratio of normalized pSTAT5 signal intensity over
normalized STAT5 signal intensity (right panel) from 3 pairs of matched HC and SLE subjects. (C) Untouched T cells from matched SLE and HC subjects were
cultured for 3 days without anti-CD3/CD28 stimulation. Expression of CD25 and FOXP3 in CD4+ cells were determined by flow cytometry. Representative flow
cytometry dot plots are shown (left panel). Cumulative data of frequency of CD4+CD25+FOXP3+ and CD4+CD25+ cells, mean fluorescence intensity (MFI) of CD25
expression in CD4+ T cells, and the proportion of CD4+CD25+FOXP3+ cells among CD4+CD25+ cells from 17 pairs of matched SLE and HC subjects (right panel).
Data were analyzed by a paired two-tailed t-test (*p<0.05, **p<0.01, ****p<0.0001).
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phosphorylation of STAT5 and STAT6 and GATA-3 expression
were determined in the lysates of CD8+ T cells cultured in the
presence or absence of IL-2 or anti-IL-2. Neutralization of IL-2
profoundly diminished the phosphorylation of STAT6 and
GATA-3 expression in SLE CD8+ T cells; however, with regard
to the impact of IL-2 blockade on STAT5 phosphorylation, such
dose-dependent abolishment of phospho-STAT5 was not
observed (Figures 4A, B). Of note, the expression of IL-13 and
IL-5 were positively correlated with STAT6 phosphorylation and
GATA-3 expression, but negatively correlated with STAT5
phosphorylation in CD8+ T cells (Figure 4C). In this respect,
we previously documented increased GATA-3 expression in SLE
CD8+ T cells as compared with healthy control CD8+ T cells (12).
In contrast to these type 2 cytokines, IL-4 expression was not
correlated with STAT5 or STAT6 phosphorylation or GATA-3
expression (data not shown). Unexpectedly, there was a positive
Frontiers in Immunology | www.frontiersin.org 511
correlation between the expression of IFN-g and GATA-3 in
CD8+ T cells (Figure 4C), which may account for the concurrent
expression of IL-13 and IFN-g (Figure 3). Our data collectively
suggests that IL-2 induces IL-13, IL-5, and IFN-g expression in
lupus CD8+ T cells via STAT6-GATA-3 dependent mechanisms
in contrast to the Treg differentiation in which IL-2-STAT5 axis
plays a more essential role (Figure 1).
DISCUSSION

In this study, we documented that IL-2-STAT5 pathway was
more critical to Treg differentiation in SLE than in health control
subjects. On the other hand, IL-2 expanded IL-13-producing
CD8+ T cells that also expressed IL-5 and IFN-g in lupus patients
via a signaling pathway likely involving the activation of STAT6-
A

B

FIGURE 2 | Systemic lupus erythematosus (SLE) CD8+ T cells produce increased IL-13 in an IL-2-dependent manner. (A) CD4+ and CD8+ T cells isolated from
matched SLE and health control (HC) subjects were cultured for 3 days with anti-CD3/CD28 in the presence or absence of IL-2 (100 IU/ml) or anti-IL-2 (100 or
1,000 ng/ml). IL-5 and IL-13 expression was determined by flow cytometry. Representative flow cytometry dot plots are shown. The dot plots on the left end
represent isotype control staining. (B) Cumulative data of MFI and the frequency of expression of individual cytokines from 12 pairs of matched SLE and HC
subjects. Statistical analysis was made by two-way ANOVA followed by Bonferroni’s correction for multiple comparisons (*p<0.05, **p<0.01, ***p<0.001,
****p<0.0001).
March 2021 | Volume 12 | Article 635531

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kato and Perl IL-2 Induces IL-13+IFN-g+ CD8+ T Cells
GATA-3 axis, but not STAT5. It is important to note that lupus
CD4+ T cells were primed to receive and activate IL-2 signaling
as evidenced by the upregulation of CD25 and enhanced IL-2-
induced STAT5 phosphorylation during Treg differentiation
even though the CD4+CD25+FOXP3+ Treg population was
depleted in SLE patients. However, the Treg depletion is
corrected by anti-CD3/CD28 stimulation in vitro (12, 30). A
series of these findings pinpoint the IL-2 deficiency underlying
the Treg depletion in SLE (6).

While it is not clear how IL-2 activates STAT6 and GATA-3
in CD8+ T cells, our data provides compelling evidence that this
pathway is STAT5 independent. The neutralization of IL-2 did
not have a robust impact on STAT5 phosphorylation unlike
STAT6 phosphorylation and GATA-3 expression. In addition,
the expression of IL-13 and IL-5 were negatively correlated with
STAT5 phosphorylation in CD8+ T cells. It is worth noting here
Frontiers in Immunology | www.frontiersin.org 612
that IL-2-dependent STAT5 phosphorylation and GATA-3
expression are essential for IL-4-independent early IL-4
expression in CD4+ T cells (31). These observations suggest
that IL-2 utilizes different signaling pathways in eliciting the
activation and differentiation of CD4+ Treg cells, CD4+ non-Treg
cells, and CD8+ T cells. Unlike the neutralization of IL-2, the
supplementation of IL-2 had no effects on the expression of IL-5
and IL-13 and IFN-g, which is attributed to a large amount of IL-
2 produced by T cells in response to CD3/CD28 stimulation
alone (30).

Although IL-2 activates the mechanistic target of rapamycin
(mTOR), its blockade by sirolimus elicits Treg expansion both in
vitro (30) and in vivo (32). This suggests that mTOR activation is
not essential for IL-2-induced Treg expansion. IL-2 also activates
the Akt-mTOR axis in CD8+ T cells (33). Our previous study
showed that mTOR blockade restrained GATA-3 expression in
A

B

FIGURE 3 | IL-2 expands IL-13+IFN-g+ CD8+ T cells in systemic lupus erythematosus (SLE). (A) CD4+ and CD8+ T cells from matched SLE and health control (HC)
subjects were cultured as described in Figure 2, and IL-13 and IFN-g expression was determined by flow cytometry. (B) Cumulative data of mean fluorescence
intensity (MFI) of IFN-g and the frequency of IFN-g+ and IL-13+IFN-g+ cells. Statistical analysis was made by two-way ANOVA followed by Bonferroni’s correction for
multiple comparisons (*p<0.05, **p<0.01, ****p<0.0001).
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FOXP3-CD4+ T cells (30). These findings suggest that the IL-2-
Akt-mTOR axis may also affect GATA-3 expression in CD8+

T cells.
Among the three type 2 cytokines studied, there was a positive

correlation between the expression of IL-13 and IL-5. IL-2
blockade abolished the expression of IL-13 and IL-5 in
association with diminished STAT6 phosphorylation and
Frontiers in Immunology | www.frontiersin.org 713
GATA-3 expression. Additionally, the expression of these type 2
cytokines was positively correlated with STAT6 phosphorylation
and GATA-3 expression. We previously reported increased
GATA-3 expression in lupus CD8+ T cells (12). A series of these
findings suggest that STAT6-GATA-3 axis drives the expression of
IL-13 and IL-5 in CD8+ T cells. Conversely, the expression of IL-
13 and IL-4 appeared mutually exclusive, and there was no
FIGURE 4 | IL-2 induces STAT6 phosphorylation and GATA3 expression in systemic lupus erythematosus (SLE) CD8+ T cells. (A) CD8+ T cells from matched SLE and
health control (HC) subjects were cultured as described in Figure 2. Expression of GATA-3 and phosphorylation of STAT5 at tyrosine 694 and STAT6 at tyrosine 641
were detected by immunoblotting. Representative immunoblot staining was presented. Lo and Hi concentrations of anti-IL-2 denote 100 and 1,000 ng/ml, respectively.
(B) The signal intensity of phospho-STAT5, phospho-STAT6, and GATA-3 were normalized to that of actin. Cumulative data from 9 pairs of matched HC and SLE
subjects. Data were analyzed by a two-tailed t-test (*p<0.05, **p<0.01, ***p<0.001). (C) Pearson’s and Spearman’s correlation analyses were performed to determine the
association between the expression of cytokines (IL-13, IL-5, and IFN-g) and transcription factors (phospho-STAT5, phospho-STAT6, and GATA-3). The blue and red
plots represent data from HC and SLE patients, respectively. Spearman correlation coefficient was presented for the association between IL-13 and phospho-STAT5,
IL-5 and phospho-STAT-5, and IFN-g and GATA-3. Pearson correlation coefficient was presented for the remainder of associations.
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appreciable size of IL-13+ IL-4+ population. Furthermore, IL-4
expression was resistant to IL-2-blockade-mediated abrogation of
STAT6 phosphorylation and GATA-3 expression, and not
correlated with these transcription factors. While our data does
not exclude the involvement of STAT6-GATA-3 axis in the initial
commitment to IL-4-expressing lineage as the study was not
conducted on naïve CD8+ T cells, it suggests that CD8+ T cells
maintain their IL-4 expression by STAT6-GATA-3-
independent mechanisms.

While concurrent IFN-g and IL-4 expression in CD4+ T cells
has been reported (34), this is the first study documenting a dual
expression of IL-13- and IFN-g in CD8+ T cells. GATA-3 blocks
IFN-g expression (35, 36), whereas T-bet suppresses IL-4 and IL-
5 expression in CD4+ T cells (37). Nonetheless, as such an
antagonism has not been documented in CD8+ T cells, it is
plausible that lupus CD8+ T cells employ a distinct molecular
mechanism that allows for a dual IL-13- and IFN-g expression.
We identified a positive correlation between the expression of
IFN-g and GATA-3 in CD8+ T cells. Instead of proposing
GATA-3 as a driver of IFN-g expression in CD8+ T cells, we
reason that IL-2 signaling activates a transcription factor
upstream of both type 1 and type 2 programs. One such
candidate is Notch as it was shown to concurrently regulate
both Th1 and Th2 programs (38). Whether these cells in lupus
patients are equipped with both helper- and cytotoxic functions
would merit further investigation.

In conclusion, our data suggest that IL-2 supplementation
may be a double-edged sword in the treatment of SLE, and
supports the importance of Treg-cell-targeted delivery of IL-2.
This study also challenged a long-held paradigm of type 1 and 2
cytokine antagonism by newly identifying IL-13+ IFN-g+ CD8+ T
cells that may potentially promote inflammation in SLE.
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Supplementary Figure 1 | IL-2 does not control IL-4 expression. (A) CD4+ and
CD8+ T cells from matched SLE and HC subjects were cultured as described in
Figure 2 and IL-13 and IL-4 expression was determined by flow cytometry.
(B) Cumulative data of MFI and frequency of IL-4+ cells. Statistical analysis was
made by two-way ANOVA followed by Bonferroni’s correction for multiple
comparisons (*p<0.05).

Supplementary Figure 2 | CD4+ T cells produce greater amount of IL-21 than
CD8+ T cells in an IL-2-independent manner. (A) CD4+ and CD8+ T cells from
matched SLE and HC subjects were cultured as described in Figure 2 and IL-13
and IL-21 expression was determined by flow cytometry. (B) Cumulative data of
MFI and frequency of IL-21+ cells. Statistical analysis was made by two-way
ANOVA followed by Bonferroni’s correction for multiple comparisons (*p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001).

Supplementary Figure 3 | Expression of IL-13 positively correlates with that of
IL-5 and IFN-g. (A) CD4+ and CD8+ T cells from matched SLE and HC subjects
were cultured as described in Figure 2. The MFI of IL-13 was compared between
IL-5+ and IL-5- cells, IFN-g+ and IFN-g- cells, and IL-4+ and IL-4- cells. Data were
analyzed by a paired two-tailed t-test (*p<0.05, **p<0.01, ***p<0.001,
****p<0.0001). (B) Pearson’s and Spearman’s correlation analyses were performed
to determine the association between IL-13 and IL-5 or IFN-g. Pearson correlation
coefficient was presented for the association of IL-13 with IL-5. Spearman
correlation coefficient was presented for the association of IL-13 with IFN-g.
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Systemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease
involving the production of a wide range of autoantibodies and complement activation.
The production of these high-affinity autoantibodies requires T cell/B cell collaboration as
well as germinal center (GC) formation. T follicular regulatory cells (TFRs) are functional
specialized T regulatory cells (Tregs) that safeguard against both self-reactive T and B
cells. However, recent evidence suggests that TFRs are not always stable and can lose
Foxp3 expression to become pathogenic “ex-TFRs” that gain potent effector functions. In
this review, we summarize the literature on intrinsic and extrinsic mechanisms of regulation
of TFR stability and discuss the potential role of TFR reprogramming in autoantibody
production and SLE pathogenesis.

Keywords: systemic lupus erythematosus, T regulatory cell, ex-TFRs, Foxp3, stability, autoantibodies
INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease with wide
clinical heterogeneity. The disease can cause injury to many organs, especially the kidneys, joints,
and skin. The pathogenesis of SLE is not fully understood, but increased high-affinity self-antibody
production and dysregulated immune tolerance have been implicated in the progression of the
disease (1, 2). SLE often starts in late childhood or adolescence and predominantly affects females in
their reproductive years, with a female/male ratio of 9:1; the reasons for this skewed sex ratio remain
unclear (3, 4). In the 1950s, only 50% of SLE patients survived for 5 years; now, due to early
diagnosis and better treatment, most patients survive for more than 10 years. There is no effective
treatment for SLE, and only a few drugs have been approved in the past 60 years, emphasizing the
need for a better understanding of its pathogenesis.

A hallmark of SLE is the production of a wide range of autoantibodies by self-reactive B cells.
Anti-nuclear antibodies (ANAs) are detected in >95% of SLE patients, and subsequent deposition of
immune complexes in endogenous tissue results in severe tissue damage and induction of
inflammation (5, 6). The autoantibodies from lupus patients are high affinity, somatic mutated,
and class switched, and their generation requires the formation of germinal centers (GCs) with
assistance from follicular helper T cells (TFHs) (7). In addition to their involvement in GC
formation, TFHs, a unique CD4+ subset of T cells with high expression of Bcl6, PD-1, and CXCR5,
org April 2021 | Volume 12 | Article 662305116
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play a major role in the selection of high-affinity B cells. TFHs
have thus emerged as a critical immunoregulator of antibody
production as well as the pathogenesis of human SLE (8).

Another small population of CD4+ T cells, regulatory T cells
(Tregs), maintain self-tolerance by suppressing both autoreactive
T and B lymphocytes through the production of inhibitory
cytokines such as IL-10, TGF-b, and IL-35 (9, 10). Similar to
conventional T cells, TCR and MHC and peptide engagement
will lead to the activation of Tregs and which contribute to the
further development of functional specialized T follicular
regulatory cells (TFRs). TFRs also express both Bcl6 and
CXCR5 and are capable of traveling to B cell follicles to serve
as gatekeepers controlling autoantibody production (11–13).
Tregs were initially considered a stable lineage, but emerging
evidence suggests that even fully committed Treg cells can lose
their identity and be reprogrammed to effector T cells (14–17).
Interestingly, reprogramming of Tregs has been observed in the
follicular region. TFRs can lose their Foxp3 expression and
become pathogenic “ex-TFRs” (18). Whether the autoreactive
potential of ex-TFRs contributes to autoimmune disease is not
known. In this review, we summarize recent progress in
understanding the roles of signaling pathways and
transcriptional and epigenetic regulation in modulating Treg
and TFR stability. We also discuss the possibility that pathogenic
ex-TFRs contribute to autoantibody production and the
pathogenesis of SLE.
TFRS

In 1995, Sakaguchi et al. identified a small subset of CD4+ T cells
that express the high-affinity IL-2 receptor IL-2Ra (CD25) and are
capable of suppressing autoimmunity upon transfer (19, 20).
Indeed, mice lacking either IL-2Ra or IL-2 develop severe
systemic autoimmunity (21–23). The cells identified by Sakaguchi
et al. are now known as Tregs, and in 2003, the transcription factor
Forkhead Box P3 (Foxp3) was identified as the lineage-defining
regulator of Tregs (24–26). The importance of Foxp3 has been
illustrated by studies of Foxp3 gene mutations, immune
dysregulation, polyendocrinopathy, enteropathy, and X-linked
(IPEX) syndrome in humans, and Scurfy mutant mice bearing
Foxp3 mutations develop lethal multi-organ autoimmunity (27–
30). In addition, ablation of Foxp3 in mature Tregs or depletion of
Foxp3+ cells completely eliminates the suppressive capacity of
Tregs and programs Tregs into pathogenic T cells (31).

Tregs are not a homogenous population. Depending on their
developmental origin, Tregs can be divided into thymic Tregs
(tTregs) and peripheral Tregs (pTregs) (32, 33). tTregs are
induced in the thymus and are characterized by high-affinity
self-antigen engagement (34). By contrast, pTregs are generated
from conventional CD4+ T cells under conditions of high levels
of transforming growth factor b (TGF-b) and retinoic acid in the
environment or in response to metabolites produced by
microbiota in the gut (35). Although the TCR repertoires of
pTregs and tTregs overlap, tTregs mainly recognize self-antigens,
whereas pTregs also express TCRs specific for non–self-
Frontiers in Immunology | www.frontiersin.org 217
infectious antigens or innocuous commensal microbiota
derived antigens; these latter TCRs are important for the
maintenance of mucosal tolerance (36, 37).

Similar to conventional T cells, Treg TCR engagement is the
first step in generating heterogeneous effector Tregs, which are
functionally potent and capable of migrating to local tissue (38).
Effector Tregs can differentiate into specialized subsets by
adapting the same set of transcription factors that control the
differentiation of helper CD4+ T cells. For example, the Th1
transcription factor T-bet drives the expression of CXCR3 in
Tregs, which is important for regulating some Th1-mediated
autoimmune responses (39), and the RORgt-expressing Treg is
involved in the regulation of Th17-mediated experimental
autoimmune encephalomyelitis (EAE) and colitis (40–42).

Bcl6-expressing TFR cells (TFRs) are a particularly important
subset of effector Tregs that express CXCR5 and migrate to B cell
follicles and GCs (11). TFRs are capable of modulating B cell
responses and, given their unique localization, appear to be
major players in controlling autoantibody production (43–48).
Indeed, Treg-specific ablation of Bcl6 results in substantial
increases in multiple autoreactive antibodies, including anti-
dsDNA (49, 50). Sage et al. demonstrated the importance of
TFR in controlling the production of a panel of self-antibodies in
an elegant TFR-DTR model established by crossing Foxp3-Cre
mouse with a CXCR5 floxed stop DTR (diphtheria toxin
receptor) strain (12, 51). In this model, only cells expressing
both Foxp3 and CXCR5 (such as TFRs) express DTR on the cell
surface, making them susceptible to deletion upon
administration of diphtheria toxin (DT).

TFRs differentiate from natural Treg precursors through
interaction with dendritic cells (DCs) and require different
costimulatory activation signals at different stages of
differentiation. Treg cells do not express CXCR5 in the T-cell
zone and only start to upregulate CXCR5 when they migrate to
the border region between the T and B cell zones. These cells are
defined as pre-TFRs (52). The early differentiation of pre-TFRs
requires CD28 and ICOS helper signals from DC cells and is
independent of B cells. Although the initial stage of TFR
differentiation does not rely on B cells, the stable mature TFR
program requires B cell assistance. B cell-deficient mice exhibit a
large decrease in mature TFRs in the lymph nodes (47). In
follicles, CD25 and Blimp-1 expression are downregulated in
CD25+ TFRs, leading to the acquisition of the CXCR5hiBcl6hi

phenotype, which allows these CD25- TFRs to traffic into the GC
(Table 1). Sage and colleagues demonstrated that TFRs prevent
self-reactive B cells from being activated by TFHs, most likely via
attenuated production of cytokines (such as IL-21 and IL-4) and/
or costimulatory signals (53, 54). TFRs also prevent GC formation
caused by foreign antigens (vaccines, microorganisms) by
inhibiting the metabolic flux of B cells and through CTLA-4-
mediated inhibition of B cells. TFRs may physically interrupt
bidirectional costimulation and linked recognition during
immunological synapses between TFHs and B cells (55). A
specific subtype of TFHs, SOSTDC1+ TFHs, promote TFR cell
differentiation by inhibiting the b-catenin pathway through the
secreted protein SOSTDC1 (56).
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Defects in Treg function and/or number, particularly the TFR
subset, are thought to contribute to SLE pathogenesis, but
conflicting results have been reported. Some groups have
found an increase in TFRs in SLE patients compared with
healthy controls (57–59), whereas others have found reduced
numbers or impaired function of circulating TFRs or Tregs in
SLE patients (60, 61). Other groups have observed no
abnormalities (62, 63). These discrepancies are due in part to
the lack of a unique marker or combination of markers for
identifying and isolating bona fide Tregs, the use of different in
vitro stimuli, and the presence or absence of antigen-presenting
cells (APCs) in ex vivo functional assays (64). An important
challenge in the study of the pathogenesis of SLE is the difficulty
of obtaining patient lymphoid tissues to assess TFRs directly; for
this reason, most studies have focused on circulating Tregs in
peripheral blood.
FOXP3 STABILITY OF TFRS

Tregs were initially considered a stable cell lineage committed to
immunosuppressive function, but accumulating evidence
indicates that they can lose Foxp3 expression and undergo
reprogramming to other types of effector T cells. Upon transfer
into CD3e KO mice, Foxp3+CD4+ T cells terminate Foxp3
expression and differentiate into TFHs in Peyer’s patches (14).
CD25-Foxp3+ T cells are likely more unstable than cells
expressing CD25. In a fate-mapping experiment involving
Foxp3 bacterial artificial chromosome (BAC) transgenic mice
expressing GFP-Cre under the control of the Foxp3 promoter,
we demonstrated that a fraction of Tregs are not stable. These
“ex-Tregs”, which no longer express Foxp3, have an activated-
memory T cell phenotype and the ability to produce
inflammatory cytokines such as IFN-g and IL-17. Importantly,
ex-Tregs bearing the BDC2.5 TCR induce autoimmune diabetes
upon adoptive transfer (15). Autoimmune inflammation
exacerbates the instability of Foxp3. By using MOG tetramer
to identify antigen-specific Tregs, we further demonstrated that
Tregs can be converted into pathogenic T helper cells in an EAE
mouse model, suggesting a link between strong TCR signaling
and Treg instability (16).

As a major TGF-b sensor, conserved noncoding sequence 1
(CNS1) in Foxp3 is critical for the generation of induced pTregs
but dispensable for tTreg development. Given the heterogeneity
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of Tregs, we further generated a delta CNS1 Foxp3 BAC
transgenic mouse strain that only traces committed and stable
tTregs (17). We found that resting or naïve tTregs are stable, but
upon development to TFRs, these cells can lose Foxp3 stability
and be reprogrammed into a T helper lineage (17).

Sage et al. recently confirmed that a population of TFRs can
lose Foxp3 expression in experiments using inducible Foxp3 fate-
mapper mice (FoxP3ERT2-Cre-Rosa26 Lox-Stop-Lox-TdTomato).
In this model, Cre–ERT2 is limited to the cytoplasm in the
absence of tamoxifen. Upon administration of tamoxifen, the
tamoxifen metabolite 4-OHT (an analog of estrogen) binds to
ERT, allowing Cre-ERT2 to enter the nucleus and exert Cre
recombinase activity, thus triggering the expression of the
fluorescent protein TdTomato in Foxp3+Treg cells. In contrast
to continuous labeling, inducible labeling of Foxp3+Tregs with
TdTomato during the immunization period avoids cell labeling
due to transient Foxp3 expression and permits the assessment of
bona fide Treg maintenance. Sage et al. immunized these mice
with NP-OVA and 7 d later assessed the frequency of
CXCR5+CD4+TdTomato+Foxp3low “ex-TFR” populations. In
this model, ∽80% of CD4+CXCR5+TdTomato+ cells retained
Foxp3 (TFRs); the remaining ∽20% lost Foxp3 expression
(ex-TFRs).

In summary, although TFRs are a functionally specialized subset
of Tregs that selectively survey the autoreactive antibody response in
the GC, continuous localization of TFRs in the GC might have a
detrimental effect on Treg stability, leading to loss of Foxp3
expression and reprogramming to TFHs (Figure 1) (18).
WHY DO TFRS PREFERENTIALLY
LOSE FOXP3?

The stability of Foxp3 expression is largely determined by the
methylation status of the CNS2 region of the Foxp3 gene locus,
which is also known as the Treg-specific demethylated region
(TSDR) (65, 66). Foxp3 CNS2 contains 11 CpG sites, which are
all methylated in peripheral conventional T cells as well as
thymic DP and CD4 SP cells. Gradual demethylation of CNS2
occurs during tTreg development (67, 68); this process is not
passively cell cycle dependent but is mediated by Tet-dependent
oxidation, which is primarily mediated by Tet2 and Tet3 (69).
Demethylation of CNS2 leads to the recruitment of transcription
TABLE 1 | The markers for the identification of TFR and TFH.

Subtype Foxp3 CD25 Blimp-1 CXCR5 PD-1 ICOS Bcl6 CD44 CD62L Location Autoreactive

Naive Treg + + − − − − − − + Extrafollicle High
Pre-TFR ++ ++ + + + + +/- + – T-B border High
CD25+TFR ++ ++ ++ ++ ++ ++ ++ + − Follicule High
CD25-TFR ++ − − +++ +++ +++ +++ + − GC High
Ex-TFR − − − +++ +++ +++ +++ + − GC High
Naive T − − − − − − − − + Extrafollicle Low
Pre-TFH − − − + + + +/- + – T-B border Low
TFH − − − ++ ++ ++ ++ + – Follicule Low
GC-TFH − − − +++ +++ +++ +++ + – GC Low
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factors such as Cbfb, Runx1, STAT5, and Foxp3 itself, thereby
reinforcing Foxp3 expression on Tregs (65, 70–72). Indeed,
genetically deleting either the CNS2 enhancer of the Foxp3
locus or Tet family proteins leads to a destabilized Treg lineage
and the development of spontaneous autoimmunity and chronic
inflammation (73).

Treg stability is influenced by many intrinsic and extrinsic
factors, particularly cytokines and their downstream signaling
pathways. IL-2 and STAT5 activation maintain Foxp3 stability
by binding directly to CNS2, and the Hippo kinases Mst1 and
Mst2 promote STAT5 activation to further strengthen the Treg
lineage (74, 75). By contrast, IL-4 and IL-6 can have detrimental
effects on the Treg lineage. IL-4 receptor (IL-4R) knock-in mice
in which IL-4R signaling is specifically upregulated exhibit
reduced Treg stability and promotion of the Th2 response
(76). STAT6 and STAT3, which are downstream of IL-4R,
appear to compete with STAT5 at the CNS2 region of Foxp3.
Depletion of SOSC1 (Socs1fl/fl × Foxp3YFP-Cre mice), a natural
inhibitor of STAT proteins, destabilizes the Treg lineage, and
more interestingly, adoptive transfer of SOSC1-deficient Tregs is
sufficient to induce autoimmune colitis (77).
Frontiers in Immunology | www.frontiersin.org 419
Although ablation of TCR in mature Tregs has little impact
on Treg stability, overstimulation of Tregs via dysregulation of
TCR and/or co-stimulation profoundly destabilizes the Treg
lineage. A number of negative regulators of the TCR signaling
pathway, such as PTEN, ITCH, Vhl, and PTPN, play important
roles in maintaining the stability of the Treg lineage (78–80).
Interestingly, Tregs themselves are partially anergic compared
with conventional T cells. Under conditions of homeostasis,
Tregs remain anergic, but TCR signaling upon weak
stimulation confers strong suppressive potential on Tregs
without reducing the stability of the lineage (81, 82). However,
overstimulation causes Treg destabilization and reprogramming
into pathogenic effector cells (17, 80, 83). The detailed molecular
mechanism of the TCR signaling pathway has not been fully
elucidated, but metabolic mechanisms could be very important;
some metabolic pathways may interact with transcriptional and
epigenetic regulation to modulate the Treg lineage.

Another important regulator of Treg lineage maintenance is
the Foxp3 complex itself; roles of EzH2, RelA, and Runx, among
other components of the complex, have been demonstrated (84,
85). Post-translational modification of the Foxp3 protein is part
FIGURE 1 | Ex-TFRs: a missing piece of the SLE puzzle. Naïve Treg cells can interact with dendritic cells (DCs) to become activated and further migrate into the
germinal center (GC) region through upregulation of CXCR5 and BCL6. In the follicle and GC, TFRs play an important role in regulating antigen (Ag)-specific TFHs
and antibody-secreting cells. Since the GC is not favorable to stable Foxp3 expression, some TFRs will lose Foxp3 and develop into pathogenic TFHs (ex-TFRs).
Ex-TFRs tend to recognize self-antigens, which may promote autoreactive humoral immunity.
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of a feedback loop that controls Foxp3 stability. CRISPR-Cas9-
based screening is beginning to reveal a more comprehensive
picture of Treg lineage regulation, and new regulators such as
Usp22, Rnf20, and Brd9 have been identified (86, 87).
Interestingly, Zheng et al. found that non-canonical BAF
(ncBAF) can localize at Foxp3 cis-regulatory elements to
promote Foxp3 binding, whereas another SWI/SNF subunit,
PBAF, seems to exert opposing effects (88).

In addition to its critical role in maintaining Foxp3 stability
(89, 90), the IL-2/STAT5 signaling pathway is a potent negative
regulator of TFH differentiation. IL-2 has been reported to
repress TFR differentiation by a STAT5/Blimp-1 dependent
mechanism (91). Thus, downregulation of the high-affinity
IL-2 receptor CD25 is likely a common strategy for avoiding
excessive STAT5 signaling in TFRs and TFHs. Consistent with
this notion, CD25 expression is typically low or absent on TFHs
and TFRs (92). By contrast, TFRs express high levels of inducible
costimulator (ICOS), a co-stimulation molecule belonging to the
CD28 family. ICOS signaling through the PI3K/AKT pathway is
essential for the initiation of TFH and TFR differentiation and is
also an important survival signal for CD25- effector Tregs (93–
95). However, as mentioned above, such positive signals can
dampen Treg stability; for example, loss of Blimp-1, a strong
transcriptional repressor of Bcl6, boosts TFR differentiation but
has a detrimental effect on Treg stability (96). Together, the
CD25 and ICOS signal switch during TFR cell differentiation is
the driving force for programming TFRs to become TFHs
(96).This notion is also consistent with previous adoptive
transfer experiments showing that CD25-Foxp3+ cells
preferentially differentiate into effector TFHs under
lymphopenic conditions (Table 1).
EX-TFRS: A MISSING PIECE OF THE
SLE PUZZLE?

The functional role of ex-TFRs is not fully understood. The large
majority of TFRs express Helios, a transcription factor expressed by
tTregs (97), suggesting that TFRs are thymic in origin and biased
toward self-antigens. This notion is further supported by recent
studies indicating a highly diverse TCR repertoire of TFRs (36, 37).
The loss of Foxp3 expression on TFRs generates a population of T
cells with the potential to attack self-tissue. These cells could have a
similar function as autoreactive TFHs. Sage et al. showed that ex-
TFRs lose their suppressive function and have a transcriptional
signature that is more similar to TFHs than TFRs (18). Moreover,
multiple lines of Treg conditional knockout mice exhibit defects in
maintenance of Treg stability, in association with an increased
autoreactive humoral response and even the development of lupus-
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like autoimmune disorders (98–100). For example, mice in which
PTEN is conditionally knocked out in Tregs develop a lupus-like
autoimmune lymphoproliferative disease characterized by excessive
levels of TFHs and B cell activation. These mice also exhibit
increased serum levels of multiple auto-antibodies and creatinine,
indicating renal pathology (80, 101). Tet2/3 conditional knockout
mice develop lethal autoimmunity in association with the
production of numerous self-antibodies (73), and a similar
autoimmune disease is observed in Foxp3CreWT/CreTet2/3fl/fl

heterozygous female mice, which harbor half of the wild type of
Tregs in the same mice (73). These results strongly support the
notion that ex-Tregs are self-recognition biased and have
pathogenic potential (Figure 1).

Treg stability has not been directly tested in mouse models of
lupus or human patients. However, Benoist et al. found that
Foxp3+ Treg cells are unstable in NZW mice, which may explain
the reduced sensitivity of this NZW Tregs to limiting doses of
trophic cytokines, IL-2 and -33 (102). In addition, this instability
may provide a genetic explanation for disease pathogenesis, as
NZW × NZB F1 female mice develop a severe autoimmune
disease that shares many features of SLE in human patients (103).
CONCLUSIONS

SLE is an autoimmune disease characterized by the production of
a wide range of autoantibodies, and its exact pathoetiology
remains elusive. Although TFRs play a critical role in
controlling autoantibody production, the migration of TFRs to
the follicular region and GC does not favor stable Foxp3
expression, and some TFRs even lose Foxp3 and develop into
TFHs with pathogenic potential. These ex-TFRs are likely biased
toward self-recognition and might promote autoreactive
humoral immunity. A better understanding of the role of ex-
TFRs could have important therapeutic implications for SLE and
many other autoimmune diseases.
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Autoantigen-directed tolerance can be induced by certain nucleosomal histone peptide
epitope/s in nanomolar dosage leading to sustained remission of disease in mice with
spontaneous SLE. By contrast, lupus is accelerated by administration of intact (whole)
histones, or whole nucleosomes in microparticles from apoptotic cells, or by post-
translationally acetylated histone-peptides. Low-dose therapy with the histone-peptide
epitopes simultaneously induces TGFb and inhibits IL-6 production by DC in vivo,
especially pDC, which then induce CD4+CD25+ Treg and CD8+ Treg cells that
suppress pathogenic autoimmune response. Both types of induced Treg cells are
FoxP3+ and act by producing TGFb at close cell-to-cell range. No anaphylactic
adverse reactions, or generalized immunosuppression have been detected in mice
injected with the peptides, because the epitopes are derived from evolutionarily
conserved histones in the chromatin; and the peptides are expressed in the thymus
during ontogeny, and their native sequences have not been altered. The peptide-induced
Treg cells can block severe lupus on adoptive transfer reducing inflammatory cell reaction
and infiltration in the kidney. In Humans, similar potent Treg cells are generated by the
histone peptide epitopes in vitro in lupus patients’ PBMC, inhibiting anti-dsDNA
autoantibody and interferon production. Furthermore, the same types of Treg cells are
generated in lupus patients who are in very long-term remission (2-8 years) after
undergoing autologous hematopoietic stem cell transplantation. These Treg cells are
not found in lupus patients treated conventionally into clinical remission (SLEDAI of 0); and
consequently they still harbor pathogenic autoimmune cells, causing subclinical damage.
Although antigen-specific therapy with pinpoint accuracy is suitable for straight-forward
organ-specific autoimmune diseases, Systemic Lupus is much more complex. The
histone peptide epitopes have unique tolerogenic properties for inhibiting Innate
immune cells (DC), T cells and B cell populations that are both antigen-specifically and
cross-reactively involved in the pathogenic autoimmune response in lupus. The histone
peptide tolerance is a natural and non-toxic therapy suitable for treating early lupus, and
org April 2021 | Volume 12 | Article 629807124
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also maintaining lupus patients after toxic drug therapy. The experimental steps,
challenges and possible solutions for successful therapy with these peptide epitopes
are discussed in this highly focused review on Systemic Lupus.
Keywords: autoimmunity, systemic lupus erythematosus, T regulatory cells, T suppressor cells, autoantigen
specific tolerance, autoantigen derived peptide epitopes
INTRODUCTION

This chronicle with historical perspective focuses first on the
early steps of pathogenic autoantibody production in lupus,
especially on the role of Th cells, and then how they can be
regulated. In human lupus, it is now established that the main
genetic risk loci for lupus susceptibility in GWAS are located in
MHC class II and IRF5 regions, which respectively determine
autoantigen presentation and associated activating cytokines
production required to recruit autoreactive T helper (Th) cells
(1–8). Genetic studies in families with rheumatic autoimmune
diseases also support the initiating role of T cells in lupus (9), in
addition to complement genes in the MHC locus (10).
Importantly, augmented Th cell activity which is prevalent in
lupus (11–13), can overcome the need for TLR abnormalities
contributing to lupus (14). B cells and other professional APCs
are activated to present autoantigens as the disease progresses.
However, normally macrophages, such as, tingible body MF and
DCs remain tolerogenic when handling dying (apoptotic) cells
that can provide the autoantigens for lupus if mishandled, as
described below (15–18). The professional APC become
effectively activated in vivo to present these apoptotic
autoantigens after the apoptotic cell derived DNA and/or RNA
containing autoantigens are presented in IgG immune complexes
(IC) that are bound by the APC to dually stimulate their TLR and
FcgR (19, 20). Hence, Th cell mediated class-switched IgG
autoantibodies specific for the DNA or RNA containing
autoantigens have to be made first for IC formation activating
the APC. Moreover, B cells become efficient antigen presenter to
lupus Th cells that have been primed first by other APC, or if the
B cells have developed high affinity receptors after undergoing
somatic mutation and expansion with TFH cell help in germinal
centers (19, 21). However, high level expression of X-linked
TLR7, due to incomplete X-chromosome inactivation (22), can
contribute to lupus development early on, by independently
activating DC and other APC, which in turn causes
widespread T-cell activation (23, 24). To accomplish the above
effect, striking studies have recently shown that IRF5 is first
activated by TLR7 using the adaptor TASL, which interacts with
SLC15A4, an amino acid transporter in endolysosome, to recruit
IRF5 (25). The X-inked gene CXorf21-a encoding TASL and the
gene for SLC15A4 were known to be associated with lupus
susceptibility, as discussed in ref (26). Of course intrinsic
defects in B cells and APC are critically important for lupus
pathogenesis. With disease progression, other pathogenic players
in T cell, B cell and unconventional APC populations evolve and
are recruited to participate in amplifying the autoimmune
inflammatory response, especially in extra-follicular sites, to
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cite a few (27–32), and reviewed elsewhere [Tsokos, 2020
#2492] (33, 34). Those pathogenic contributors might be kept
in check by establishing regulatory mechanisms at the earliest
steps of the disease, which is the focus of this review on Lupus,
and this topic.
IDENTIFYING AND CLONING
PATHOGENIC ANTI-DSDNA
AUTOANTIBODY-INDUCING TH CELLS OF
LUPUS IN PATIENTS AND LUPUS-PRONE
MICE (HISTORICAL PERSPECTIVE)

Step by step experiments and ensuing hypothesis based on their
results at each stage led to cellular and molecular
characterization of the pathogenic Th cells of lupus and how
the Th cells become capable in helping pathogenic
autoantibody production.

Properties of Pathogenic
Anti-DNA Autoantibodies
First of all, certain distinctive properties of pathogenic anti-DNA
autoantibodies were crucial for isolating and characterizing the
Th cells that specifically help them. The pathogenic anti-dsDNA
autoantibodies that are deposited in kidneys with lupus nephritis
have distinct features, as they are complement-fixing IgG in
isotypes, with cationic charge, and clonally restricted by
isoelectric focusing, and are able to cause glomerulonephritis in
vivo (35–41). Moreover, their antigen combining V regions share
recurrent idiotype and fine-specificity patterns for autoantigens
(39, 42). Sequence analysis of the pathogenic autoantibodies
confirmed their clonal expansion, as they shared VH region
CDR3 sequences containing numerous cationic residues
generated by somatic mutation (43–45), a signature of Th cell
drive. Contemporary studies had shown that immune complexes
with cationic charge preferentially bind to anionic residues in
glomerular basement membrane proteoglycans and collagen
(46–48). It was shown later that glomerular binding of these
“anti-DNA” antibodies could also be mediated via histones in
nucleosomes bound in situ (49–52).

Initial Studies to Find the Link Determining
Cognate Interaction Between Autoimmune
T and B Cells of Lupus
As described above, pathogenic anti-dsDNA antibodies in lupus
are class-switched (35, 36) and clonally expanded (43, 44)
suggesting a T helper cell dependent response, but it was
April 2021 | Volume 12 | Article 629807
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mysterious up to 1980s and early 1990s how the Th cells actually
helped Pathogenic anti-dsDNA autoantibody-producing B cells,
because conventional Th cells do not recognize DNA.

In the first step, it was established that special autoimmune T
helper (Th) cell subsets expanded the select population of
pathogenic anti-dsDNA autoantibody producing B cells in
mice with lupus (41, 53). The production of these pathogenic
autoantibodies is also driven by select Th cells that are detectable
in patients with active lupus nephritis (54–56).

In the next step, to define their antigenic specificity, the
autoimmune Th cells were cloned from lupus prone mice, and
also from patients with lupus nephritis (~ 800 clones). Prior to
these studies, isolation of the pathogenic T helper (Th) cells of
lupus was not done, because their antigenic specificities were
unknown. However, using their special functional property of
inducing the pathogenic variety of anti-dsDNA autoantibodies as
a selection marker, the lupus nephritis-inducing Th cells were
isolated. Only 12-15% of activated T cells in lupus patients and
mouse models, could induce the production of pathogenic IgG
anti-DNA autoantibodies (53–57). When administered into
young pre-clinical stage lupus-prone mice, pathogenic
autoantibody-inducing Th clones could rapidly induce
immune-deposit glomerulonephritis (57, 58). Sequences of
antigen-binding CDR loops of the TCRs of these pathogenic
Th clones of lupus show recurrent motifs of anionic residues,
indicating their selection by autoantigens with cationic residues
(56, 57, 59). Indeed, a majority of such pathogenic Th clones
produced IL-2 and IFN-g in response to nucleosomes that
Frontiers in Immunology | www.frontiersin.org 326
contain histone peptides bearing cationic determinants, and
nucleosome-specific T cells are detectable in pre-clinical stage
lupus-prone mice before pathogenic autoantibodies are
detectable in their serum (56, 60, 61). In addition,
immunization of pre-clinical lupus mice, but not normal mice,
with whole nucleosome particles induces accelerated lupus
nephritis indicating the need for pre-existing autoimmune T
and B cells in a lupus-prone background (60).

Thus the relevant autoantigens for pathogenic anti-dsDNA
autoantibody inducing Th cells of lupus were discovered by an
unbiased experimental approach, using pathogenic autoantibody
inducing Th cells as sensors to detect the relevant autoantigen
epitopes. This property provided the lupus Th cells the ability of
“linked recognition” (62) for interaction with pathogenic anti-
DNA autoantibody producing B cells (Figure 1). In this way, for
the first time a true autoantigen for spontaneous SLE; namely
endogenous nucleosomes from host’s apoptotic cells, and not
some speculative component in microbes (63, 64), was found to
be the real text book-like hapten- carrier link between the
pathogenic Th and B cell in lupus for cognate interaction (57,
60),—and from that critical experimental step further studies led
to identification of the histone peptide epitopes in nucleosomes
recognized by those Th cells, and showed how to harness those
particular epitopes for regulatory T cell induction for lupus
therapy, as described below. All this was possible in 1980s and
early 1990s by cloning the select population of pathogenic anti-
dsDNA autoantibody-producing B cells, and then the special
autoimmune T helper cells that drive such B cells in lupus. To
FIGURE 1 | Autoimmune T and B cell interaction in lupus based on Nucleosome-derived autoantigens (based on work done from early 1980s through early1990s;
references in the Text). Figure shows that Th cells that induce the production of pathogenic anti-DNA autoantibodies possess anionic residues in CDR3 of their TCRs
(green). The lupus Th cells recognize peptides with reciprocal cationic charge (red), such as peptides from histones in nucleosomes presented by the pathogenic
anti-DNA autoantibody producing B cells bearing BCRs with cationic residues generated by somatic mutations in CDR3 of their receptors (red). The pathogenic
BCRs bind to anionic residues in DNA (green) that are complexed with cationic histones in nucleosomes, which are then endocytosed and processed for
presentation to the interacting Th cells. Nucleosomes accumulate due to defective clearance of apoptotic cells in lupus, and are processed by activated APC to
prime the pathogenic Th cells; a lupus-specific event initiated early in life. This figure is extensively modified from a figure in J Exp Med (60).
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emphasize again, despite the obstacle that the antigenic
specificities of lupus T cells were then unknown, using the
experimental steps described above, the pathogenic anti-
dsDNA autoantibody-inducing T helper cells were cloned to
define the structure and specificity of their receptor genes in
human and murine lupus. To achieve the ultimate goal of
understanding the cause, and designing a cure for spontaneous
autoimmune diseases like lupus, it was essential at that time to
identify the major autoantigen/s that drives the pathogenic
autoimmune response. In lupus, DNA is a target antigen for
autoantibodies but paradoxically immunization of mice with
DNA does not cause lupus. The studies with the pathogenic
autoantibody-inducing T helper clones in early 1990s led to the
initial identification of one of the major immunogens that drives
the pathogenic T helper cells of lupus (57, 60).

Significance and Relevant Contemporary
Studies by Others
Many studies soon followed that demonstrated or suggested
mechanisms that could initiate or amplify the response of
pathogenic Th cells to nucleosomal peptides in lupus. Briefly, in
lupus, products from apoptotic cells accumulate and become
immunogenic because, scavenging molecules in phagocytic cells,
such as Marco and other scavenger receptors are functionally
deficient in lupus, and so are complement components such as
C1q,which facilitatephagocytosis of apoptotic cellswithout causing
an immune response (65–68). Nucleosomes, HMGB1, DNA or
RNA from apoptotic cell components not being disposed of
properly, act as endogenous TLR ligands, stimulating cells of the
innate and adaptive immune system (19, 23, 60, 69–74). For
example, HMGB1 chromosomal protein from apoptotic cells that
have not been removed properly, forms inflammatory complexes
with other accumulating debris like DNAor nucleosomes particles,
stimulating immune cells via TLR 2, TLR 4, and RAGE on the cell-
surface, or TLR9 in the endosome/lysosome (74–76). Similarly,
accumulating extra-cellular nucleosomes in micro particles
containing DNA, or ribonucleoproteins containing RNA can
stimulate cells of the innate immune system respectively by TLR9
or by TLR 7/8 (29, 31, 77, 78), thus augmenting autoantigen
presentation to pathogenic Th cells by those activated APC. The
case for TLR 9 is actually more complex, because in early stages,
TLR9 actually protects against lupus (79), possibly by promoting
tolerance in APC, B cells and helping Treg generation (80, 81). The
other possible autoantigen-derived epitope with cationic charge,
which could be recognized in a lupus B cell-linked fashion by the
pathogenic autoantibody inducing Th cells possessing reciprocally
charged anionic residues in their CDR3 region, would be derived
from CDR3 region peptides of somatically mutated anti-DNA
autoantibodies, as suggested (57, 60); and this possibility was
independently demonstrated to be true by several laboratories
(82–85). This issue is dealt in other contributions to this
research topic.

How Are the Many Types of Th Cells of
Lupus Linked?
Th1, TFH, TPH, Gamma Delta Th, CD8 Th, CD4-CD8- Th cells
and more, participate in contributing to the pathogenic response
Frontiers in Immunology | www.frontiersin.org 427
in lupus. However, is itmainly Th1→TFH cells initiating/sustaining
pathogenic autoantibody production; whereas the others evolve as
amplifiers at extrafollicular inflammatory sites? First of all as
mentioned above, only particular subclasses of IgG anti-DNA
antibodies are more closely associated with a pathogenic potential
in lupus patients and mice, and these pathogenic IgG antibodies
belong to Th1-induced isotype classes. In lupus patients, Th1-
induced anti-DNA IgG1antibodies are always elevated before the
occurrence of renal relapse, and IgG1 plus IgG2 anti-DNA
antibodies are found in patient’s renal eluates, whereas in lupus
prone mice, murine Th1-induced IgG2a, IgG2b, and IgG3 anti-
DNAaremore frequently eluted fromkidneyswith active nephritis
(39, 42, 86–88). In contrast to TFH cells which conventionally
produce IL-21; Th1 cytokine IFNg not only mediates class switch
for the nephritogenic isotypes, but Th1 derived IFNg signal is also
critical for autoantibody production by germinal center B cells (89,
90). Furthermore, many non-autoantigen specific, bystander TFH

cells expand as a secondary eventwith progressionof disease,which
could amplify (but not initiate) anti-DNAautoantibody production
(91). Indeed, Ig class-switch recombination (CSR), during T and B
cell cognate interaction, which is Th1 IFNg cytokine dependent in
lupus, may occur before the TFH IL-21 driven expansion of
autoantibody producing B cells in germinal center, which comes
later (92). Moreover, Th1-biased GC TFH cells have been reported
(93), and another group reported that the differentiation and
function of a Th1-derived TFH1-like cell population is driven by
IL-12 signaling,which is important for differentiationofTh1 cells in
the first place (94–96).

Therefore, Th1 → TFH1 evolution/transition is a possibility in
pathogenic anti-DNA autoantibody production in lupus.

And then there are the potent TPH cells with TFH like phenotype
but areCXCR5-; theyhelp lupusB cells alsobyproducing IL-21; and
IL-10–producing CCR6+T cells populate lymph nodes of SLE
patients. These Th cells probably evolve after receiving cytokine
and other signals from activated B cells and other APC at extra-
follicular sites, as the disease progresses (27, 97).

In addition, helper activity of CD8+ and CD4-/CD8- ab and gd
TCR+ Th cells, in pathogenic autoantibody production in human
SLE has been reported (54, 55). The subset of T cells in humans that
are CD4-/CD8- and ab TCR+ with pathogenic anti-DNA
autoantibody-inducing ability in SLE is interesting, because such
Th cells were considered to be unique toMRL-lpr mice with lupus.
However, similar pathogenic autoantibody-inducing T cells with
double negative phenotype that express “forbidden”, autoreactive T
cell receptors were described in non-lpr lupus prone mice (41, 53,
98) and then in human lupus (54, 55). Although these double
negative T cellsmight be secondary events in lupus compared to the
CD4+ Th cells, they make an important contribution to
pathogenesis of the disease. The CD4-/CD8- and ab TCR+ T cells
also have important role in target organ inflammation (99, 100).

Nucleosomal Peptide Autoepitopes
Recognized by Pathogenic Th and B Cells
of Lupus
In the next step, the critical peptide autoepitopes recognized by
lupus nephritis-inducing Th cells were localized initially to be in
the core histones of nucleosomes, at amino acid (aa) positions:
April 2021 | Volume 12 | Article 629807
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10-33 of H-2B, 16-39 and 71-94 of H4, and 85-102 of H3 (61).
Altogether 154 overlapping 15-mer peptides spanning the entire
length of all four core histones were tested to find the buried
epitopes in nucleosomal histones that were recognized specifically
autoimmuneThcells that cause lupus inmousemodels. Inaddition,
another dominant epitope was identified in position 22-42 of H1’,
by mass spectrometry analysis of naturally processed peptides
eluted from class II molecules of lupus B cell (APC) lines fed with
chromatin (101). Remarkably, all these epitopes are located in
regions of histones that contact with DNA in the nucleosome,
and they are also targeted by autoantibodies from lupus B cells (B-
cell epitopes), indicating that the epitopes could be protected from
degradation during autoantigen processing and thus preferentially
presented to the Th cells (61, 101–103). Surprisingly, the
nucleosomal peptides have the features of “universal epitopes”
(104), for instance, the peptide epitopes are promiscuously
recognized by pathogenic Th cells derived from lupus-prone
SNF1 mice (MHC I-Ad/q) even when presented by APC bearing I-
Amolecules of all othermouse haplotypes, and humanHLA-DRas
well! Due to reciprocal charge interaction, the lupus TCRs probably
contact the nucleosomal peptide-complexed with MHC
promiscuously to sustain TCR signaling (105, 106). The
promiscuity of lupus TCRs influences their selection in the
thymus of lupus-prone mice and ability to generate Treg cells for
tolerance spreading in the periphery, as described below (80,
107–109).

Nested Epitopes for CD8 T Cells. The tolerogenic nucleosomal
peptide autoepitopes bind to MHC class II as described above, but
CD8+ Treg cells were also induced by injection of the epitopes.
Indeed algorithms showed, MHC class I-binding motifs were nested
in their sequences, as described (108, 110). The rationale being that
the relatively long chain peptides epitopes would be processed
further by APC for cross-presentation to CD8 T cells (111). For
an example, H471–94 nucleosomal epitope has the nested CD8
sequence shown in bold letters TYTEHAKRKTVTAM
DVVYALKRQG, and similarly individually distinct nested CD8
epitopes were detected in each of the longer peptide epitopes from
the nucleosomes with CD4 Treg inducing ability, as detailed (108).
TOLERANCE THERAPY WITH
NUCLEOSOMAL PEPTIDE EPITOPES

Generation of Autoepitope Specific CD4
Treg and CD8 Treg Cell Subsets in Lupus
by Low-Dose Tolerance Therapy With
Nucleosomal Histone Peptides
(Experimental Steps ofMore Recent Publications inMouseModels
and Then in Human Lupus Are Described in Brief Below):

Studies in Lupus Prone Mouse Models
(a). Publication Title: “Very Low Dose Tolerance With
Nucleosomal Peptides Controls Lupus and Induces Potent
Regulatory T Cell Subsets”
The major autoepitopes for lupus nephritis-inducing Th cells
were localized to H1’22-42, H385-102, H416-39 and H471-94, as
Frontiers in Immunology | www.frontiersin.org 528
described above. These peptide epitopes stimulate both
autoimmune Th cells and B cells. In lupus-prone mice,
tolerance therapy at High doses (300mg I.V.) of the peptide
epitopes halted the progression of established lupus nephritis.
However, high-dose may not be suitable in humans. Therefore,
low-dose tolerance therapy was developed with 300 fold lower
doses by injecting lupus-prone mice with 1 µg nucleosomal
histone peptide autoepitopes S.C. every 2 wk (108). This sub-
nanomolar peptide therapy lowered autoantibody levels, blocked
nephritis progression and markedly diminished inflammatory
cell infiltration in kidneys, thus restoring normal life span. H471-
94 was the most effective autoepitope in this study. Low-dose
tolerance therapy induced regulatory cell subsets of CD8+

suppressor Treg, and CD4+CD25+ Treg cells, which contained
autoantigen-specific and cross-reactive autoantigen-directed
Treg cells. The Treg cells suppressed IFN-g production by
pathogenic lupus Th cells in response to nucleosomal epitopes
at up to 1:100 ratio of Treg or Treg : Th cells, and diminished
autoantibody production in vitro by up to 90-100% by inhibiting
nucleosome-stimulated T cell help to nuclear autoantigen-
specific B cells. The induced CD4+CD25+ Treg and CD8+ Treg
cells produced, and required TGF-b1 for immunosuppression;
moreover, they effectively suppressed lupus autoimmunity upon
adoptive transfer in vivo. For their suppressor function, the
CD4+CD25+ Treg cells were partially cell contact-dependent,
but CD8+ Treg cells were contact-independent. Thus, this work
demonstrated that low-dose tolerance with the conserved histone
autoepitopes durably ameliorates the regulatory defect in SLE by
inducing TGF-b producing Treg cells, and without causing
adverse side effects such as, generalized immunosuppression or
allergic/anaphylactic reactions (Figures 2 and 3).

(b). Publication Title: “Low-Dose Peptide Tolerance
Therapy of Lupus Generates Tolerogenic Plasmacytoid
Dendritic Cells That Cause Expansion of Autoantigen-
Specific Treg Cells Along With Contraction of
Inflammatory Th1 and Th17 Cell Populations”
As noted above, low-dose tolerance of mice with lupus using just
a single nucleosomal peptide epitope (H471-94) could halt the
progression of lupus nephritis by generating potent Treg cells
that suppressed autoimmune T and B cells specific for a broad
spectrum of nuclear autoantigens, and markedly inhibited
inflammatory cell reaction and infiltration in kidneys. Next
step was to determine how this therapy with only 0.36 nM of
peptide injected subcutaneously (S.C.) every 2 weeks, induced in
vivo TGFb-producing CD8+Treg, and CD4+25+ Treg cell
subsets containing regulatory cells that were autoantigen-
specific, as established by the following approach (80). In order
to track which APC had captured the histone peptide after
tolerance therapy; DC, macrophages and B cells were isolated
from local lymph nodes and spleens of lupus-prone mice injected
with low-dose H471-94 peptide S.C., and then those APC were
tested for their ability to stimulate cognate H471-94-specific T cell
hybridomas in culture. The T cell hybridomas are highly
sensitive and specific sensors detecting cognate peptide-MHC
II on APCs presenting attomole concentration of the histone
peptide. Only DC and B cells from spleen of histone peptide-
April 2021 | Volume 12 | Article 629807
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FIGURE 2 | (A) Renal histology from lupus prone mice tolerized by histone peptide epitope (left) or age-matched saline-injected control mice (right). H&E
staining; ×100 magnification shown in Upper panels. The saline control shows marked interstitial infiltrate of mononuclear cells with perivascular distribution,
hyalinized and sclerotic glomeruli and tubules engorged with casts. Lower panels (original magnification, ×400) show in further detail the differences between mice
that underwent peptide-epitope therapy (left) and control mice (right). Kidneys from the former group of mice show marked thickening of basement membranes and
advanced sclerosis and crescent formation in glomeruli, and perivascular, interstitial infiltrates of mononuclear cells. (B) Immunohistochemistry (original magnification
was ×200). Brown color shows positive staining for IgG deposits in glomeruli of lupus-prone mice, in both peptide-treated (left upper panel) and control groups (right
upper panel). However, marked cellular infiltrates around blood vessels containing CD4+ T cells (on the right, in upper panel), CD8+ T cells (on left in lower panel), and
CD138+ plasma cells (on right side in lower panel) were found only in kidneys of control mice, although both groups had IgG immune complex deposits.
(C) Immunohistochemistry showing glomerular, and interstitial-perivascular infiltration of Th17 cells in control (PBS)-injected control lupus mice (Right side). This
inflammatory cell infiltration was prevented in age-matched control mice by low-dose tolerance therapy with nucleosomal histone peptide epitope (Left Panel). Figure
partially derived from J Immunol (80, 108), (Originally published in The Journal of Immunology. Kang H-K, Michaels MA, Berner BR, Datta SK. Very low-dose
tolerance with nucleosomal peptides controls lupus and induces potent regulatory T cell subsets. J Immunol (2005) 174:3247-55. And Kang H-K, Liu M, Datta SK.
Low-Dose Peptide Tolerance Therapy of Lupus Generates Plasmacytoid Dendritic Cells That Cause Expansion of Autoantigen-Specific Regulatory T Cells and
Contraction of Inflammatory Th17 Cells J Immunol (2007) 178:7849-58. Copyright © [2005 and 2007] The American Association of Immunologists, Inc.).
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injected mice stimulated the T hybridomas. Thus, during
tolerance therapy, the subcutaneously injected H471-94 peptide,
which is highly soluble and charged, was rapidly absorbed
systemically and captured by APC in the spleen. However,
splenic DC, but not B cells or macrophages was responsible for
the tolerogenic effect of the peptide therapy. Adoptive transfer of
plasmacytoid DC or whole DC, but not B cells from the H471-94
peptide treated mice suppressed responses of autoimmune T
cells to nucleosome peptides up to 80% by Treg cells induced in
the un-manipulated lupus mouse recipients, and blocked
development of nephritis and autoantibody production in a
lupus acceleration assay. The DC from the H471-94 peptide
injected mice expressed a tolerogenic phenotype upon
capturing the S.C. injected H471-94 peptide, expressing
relatively low levels of CD80, CD86, CD40 and MHC class II.
Compared to controls, the peptide epitope treated animal’s DC,
especially plasmacytoid DC (pDC) produced increased amounts
of TGFb but decreased amount of IL-6 on stimulation by
nucleosomes and other TLR-ligands, surprisingly the TLR-9
pathway was important for this tolerogenic effect (80).
Moreover, these H471-94 peptide-tolerized pDC ameliorated
lupus autoimmune disease by simultaneously inducing/
expanding contained autoantigen-specific and cross-reactive
autoantigen-directed Treg, and suppressing effector Th1 and
Th17 cells that infiltrate the kidneys causing lupus nephritis.
As an aside, these studies initially showed that inflammatory
Th17 infiltrate the kidneys of mice with lupus nephritis (80),
Frontiers in Immunology | www.frontiersin.org 730
which was then demonstrated also in human lupus nephritis (99,
112, 113).

Altogether, these studies early on showed the pathogenic
importance of tubulo-interstitial region infiltration in lupus
nephritis kidneys by various inflammatory cells in addition to
monocyte/macrophages; such as extrafollicular germinal center
like accumulation of CD4 and CD8 T cells, and B cells and
plasma cells to set up residence in organized perivascular foci, as
well as Th17 cells; and importantly, this infiltration was inhibited
by the histone peptide epitope tolerance therapy resulting in its
beneficial effect (80, 108) (Figure 2). As discussed below, similar
to these therapeutic results, the role of locally active Treg cells
migrating into the kidney and suppressing lupus nephritis has
been recently demonstrated in other systems (114–116).
Interestingly, Figure 2B, shows that IgG immune complex
deposits were equally present in the kidneys in both peptide-
treated and control lupus-prone mice, but interstitial infiltrates
of interacting T and B cells and APC were prominent only in the
control mice with severe nephritis. This observation is consistent
with the demonstration that lupus B cells can contribute to
nephritis even without autoantibody production, but just by
autoantigen presentation and providing cytokine and other
membrane signals to pathogenic Th cells (117); and that
Belimumab has beneficial effect in patients with active lupus
nephritis (118), which is surprising, but we now know that
mature memory B cells also express BAFFR like immature
transitional B cells (119). All these intricate pathogenic
A B

FIGURE 3 | (A) Percent survival, of age-matched, lupus-diseased mice, injected subcutaneously with different nucleosomal histone peptides in low-doses, or with
saline (PBS) every two week. (B) In a rigorous test for potency of suppression, Treg cells from H471-94 peptide tolerized mice suppressed lupus acceleration upon
adoptive transfer in vivo. Pre-clinical lupus-prone mice were immunized (not tolerized) by another histone peptide at 100 fold higher doses with adjuvant CFA, leading
them to produce augmented levels of autoantibodies and develop severe nephritis rapidly, and this accelerated disease was suppressed by adoptive transfer of
CD4+CD25+ Treg and CD8+Treg cells, but not CD4+CD25- effector T cells from H471–94-treated tolerized mice. Y-axis values are for IgG autoantibody levels in
serum of recipients (mg/dL). *P <0.001. Parts of this Figure are from J Immunol (80, 108). Experimental details are in those references. (Originally published in The
Journal of Immunology. Kang H-K, Michaels MA, Berner BR, Datta SK. Very low-dose tolerance with nucleosomal peptides controls lupus and induces potent
regulatory T cell subsets. J Immunol (2005) 174:3247-55. And Kang H-K, Liu M, Datta SK. Low-Dose Peptide Tolerance Therapy of Lupus Generates Plasmacytoid
Dendritic Cells That Cause Expansion of Autoantigen-Specific Regulatory T Cells and Contraction of Inflammatory Th17 Cells J Immunol (2007) 178:7849-58.
Copyright © [2005 and 2007] The American Association of Immunologists, Inc.)
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interactions were prevented by tolerance therapy with the
histone peptide epitopes (Figure 2).
SIGNIFICANCE OF ABOVE STUDIES IN
LUPUS-PRONE MICE

Cross-Reactive Recognition of Nuclear
Autoantigens of Lupus and
“Tolerance Spreading”
It is noteworthy that the immune response against nuclear
autoantigens is inter-connected by cross-reactive recognition at
the B cell level (38, 39, 42), and importantly at the Th cell level
(61, 101, 102, 105, 109). Thus the same lupus Th clone can help
either a B cell specific for nucleosomes, or a B cell specific for
dsDNA, or for ssDNA, or histone, or HMG, because each B cell
can take up and process the whole chromatin particle by
recognizing its own specific epitope in the chromatin, and then
present the Th clone’s relevant histone peptide epitope derived
from chromatin processing, and that results in linked
intermolecular help (56, 60, 120). Therefore, suppressing the
Th cells of lupus could block spreading of response to multiple
epitopes in chromatin (Figure 4). This hypothesis of “Tolerance
Spreading” was experimentally supported as described above
showing that progression of established lupus nephritis in the
lupus-prone mouse models can be delayed, diminishing
proteinuria and prolonging life by administering the
nucleosomal peptide epitopes singly in high dose IV or low
dose SC in tolerogenic regimens (80, 108, 109).

Indeed, the production of a variety of pathogenic
autoantibodies to nuclear autoantigens was inhibited by
tolerance therapy with any one of the epitopes. Due to
promiscuous recognit ion described above, multiple
autoimmune T cells with different TCRs can respond to the
same peptide from a nucleosomal histone, and on the other
hand, an individual autoimmune T cell can recognize multiple
nucleosome-derived peptides that are distinct in sequence (61,
105). Therefore, when injected in a soluble tolerance-inducing
form, in the absence of adjuvants, even one peptide epitope can
tolerize autoimmune Th cells of diverse specificity for
chromatin-derived autoantigens and conversely suppressing Th
cells with specificty for one nuclear autoantigenic epitope
deprives help for multiple autoimmune B cells of lupus. Thus,
tolerance induced by any one of the dominant peptide epitopes
can suppress autoimmune response to other nucleosome-derived
pathogenic epitopes (“Tolerance Spreading”). Indeed, such
“cross-reactive” suppression directed at the broad spectrum of
pathogenic autoimmune response is more desirable in lupus
therapy rather than pinpoint precision for antigen-specificity,
which is the goal of some studies using modern techniques (121).
Furthermore, the peptide epitopes are very effective in tolerance
induction because, they are simultaneously recognized by
autoimmune T and B cells, and they may inhibit autoimmune
B cells and DC directly in lupus (80, 101, 108, 109).

Despite “Tolerance Spreading to other lupus autoepitopes”,
the histone peptide therapy resulted in autoantigen-specific
Frontiers in Immunology | www.frontiersin.org 831
regulation because, pathogenic autoimmune responses in
lupus-prone subjects were preferentially and selectively
downregulated, without any suppression of immune responses
to foreign antigens, as detailed in these References (80, 108, 109).
Moreover, ability of the treated animals to survive environmental
microbes/pathogens appeared to be intact and robust as
compared to untreated controls and non-autoimmune
“normal” mice housed in the same “dirty” mouse facilities (80,
108, 109). Finally, experiments showed that the Treg cells
generated by the peptide epitope therapy suppressed T cell
response and T cell helper activity specifically directed to the
peptide autoepitopes, but not for a foreign antigen, such as Hen
Egg Lysozyme (80, 108).

Summary of Lessons Derived From Above
Studies in Lupus-Prone Mice and
Comparisons With Findings From
Contemporary Literature
As described above, the nucleosomal histone peptide epitopes
when administered in nanomolar doses (1µg) subcutaneously
(S.C.) every 2 weeks or even every month to lupus-prone mice,
are effective in delaying or even preventing nephritis. This dose is
lower by almost 1000 fold compared to some other peptides
being tried as therapeutic agents. Furthermore, a major histone
peptide epitope, administered singly, can suppress lupus disease
also via nasal tolerance (122, 123). The peptide epitopes are a
constituent of nucleosome, a highly conserved, ubiquitous self-
antigen produced during ongoing apoptosis in generative
lymphoid organs and recognized by developing cells of the
immune system bearing appropriate receptors. Therefore,
anaphylactic reactions were not observed with these self-
peptides when administered in close to 1000 lupus-prone mice
for various studies. The histone peptide epitopes, administered
S.C. in a very low doses, generate Treg cells that suppress by
producing minute amounts of TGFb that act in close range cell to
cell interaction, rather than causing Th2 deviation with
consequent allergic reactions seen in the case of therapy of
other autoimmune diseases, such as, EAE/MS and diabetes in
NOD mice using other peptides. The histone peptide epitopes
induce stable Treg that are autoepitope-specific and cross-
reactive autoantigen-directed Treg cells by simultaneously
decreasing IL-6 and increasing TGF-b production by DCs,
which consequently caused Smad-3 phosphorylation in the
peptide epitope-specific auto-immune CD4+ Th cells, and the
peptide tolerance therapy is effective even at an age when they
manifest clinically active disease. A single dominant epitope such
as H471-94, is capable of inhibiting the diverse autoimmune
process in lupus, because, potent and durable regulatory T cells
(Treg) are generated by low-dose tolerance therapy mediating
“tolerance spreading”. Both sets of regulatory T cells act via
TGFb in close range, and suppress autoimmune Th and B cells
and other autoantigen presenting cells.

Although the phenomenon of low-dose tolerance was well
known (124), most work since then have dealt with tolerance
induction to foreign antigens in non-autoimmune subjects.
However, the histone peptide induced low-dose tolerance was
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achieved in subjects with spontaneous SLE, whose immune
system is already primed for autoimmune response against
ubiquitous nucleosomal self-epitopes. The Autoantigen-specific
and cross-reactive autoantigen-directed Treg cells generated by
the peptide epitope therapy was effective even in the presence of
complex lupus abnormalities, such as hyperactivity of lupus T
and B cells and DC; particularly IFN-a producing pDC.

Unlike the peptide epitopes in low doses, whole (intact)
histones worsen lupus (60) probably by binding to DNA or
reciprocally charged molecules in vivo to make complex
nucleosome like particle structures. Moreover, processing by
APC of intact histones generates altered epitopes by post-
Frontiers in Immunology | www.frontiersin.org 932
translational modifications, such as acetylation or citrulination
(125). Therefore, intact whole (complete) histones should not be
used for tolerance induction.

Another group induced Treg cells by continuous infusion of a
model laboratory antigen using hemagglutinin (HA)-specific
TCR−Tg mouse system, and they also targeted the peptide to a
surface receptor DEC-205 on DC, and administered considerable
quantities of TGFb in vivo (126). However, those approaches for
therapy of diabetes were found to be deleterious (127). Moreover,
in vivo administration of TGF−b as a drug in the presence of high
IL−6 levels in lupus could induce pathogenic Th17 cells and TFH

cells, instead of generating Treg cells (128, 129).
FIGURE 4 | Production of a variety of anti-nuclear autoantibodies by inter-molecular T-cell help in SLE. A lupus Th cell with specificity for an individual nucleosomal
histone peptide can help either a B cell specific for nucleosomes, or a B cell specific for dsDNA, or for ssDNA, or histone, or HMG, because each B cell can take up
and process the whole chromatin particle by recognizing its own specific epitope in the chromatin, and then present to the Th clone its relevant histone peptide
epitope derived from chromatin processing, which results in “inter-molecular help” This principle of linked “inter-molecular help” for a variety of B-cell epitopes in the
complex chromatin particle would also apply to other Th cells of lupus which induce other pathogenic autoantibodies; and forms the basis for “Tolerance-Spreading”
as described in the text. Modified from Ref (109, 120). (Originally published in The Journal of Immunology. Kaliyaperumal A, Michaels MA, Datta SK. Antigen-specific
therapy of murine lupus nephritis using nucleosomal peptides: Tolerance spreading impairs pathogenic function of autoimmune T and B cells. J Immunol (1999)
162:5775-83. Copyright © [1999] The American Association of Immunologists, Inc.).
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RECENT STUDIES IN HUMAN LUPUS
RELEVANT TO THE PEPTIDE EPITOPES

Remarkably, pathogenic anti-DNA autoantibody inducing Th
cells in human lupus recognized the same immunodominant
histone peptide autoepitopes identified in murine lupus (61,
102), and those T cells in lupus patient’s PBMC respond by
producing IFNg. To reiterate, IFNg-dependent IgG autoantibody
subclasses cause lupus nephritis by fixing C’ and binding to
inflammatory Fcg receptors in pathogenic cells (39, 130).
Furthermore, the peptide autoepitopes for Th cells of human
lupus have the property of promiscuous HLA-DR binding, and
as in lupus-prone mice, they are located in the native nucleosome
at sites that contact with DNA, and they reside in histone regions
that are also targeted by lupus B-cells (autoantibodies), thus
being protected during antigen processing. Therefore, these
immunodominant epitopes could probably be used as
“universal” tolerogens in lupus patients despite their diversity
of HLA alleles. The pathogenic role of nucleosome epitope-
specific Th cells in human lupus have been confirmed by other
laboratories (131, 132). Similar principles apply to other
autoantigens in lupus, such as, Sm, RNP (133), but this review
is focused on anti-DNA response whose pathogenic role in
human lupus nephritis is well characterized. Remarkably, very
recent approaches using latest technology to identify
immunodominant epitopes for influenza hemagglutinin-
specific memory T cells (134), showed results that are similar
in outcome to the histone peptide approach performed two
decades ago to identify the recurrent epitopes for pathogenic
anti-DNA inducing memory T cells of lupus (61, 102).

(a). Publication Title: “Regulatory T Cell
(Treg) Subsets Return in Patients With
Refractory Lupus Following Stem Cell
Transplantation and TGF-b Producing
CD8+ Regulatory Treg Cells (CD8TGF-b

Treg) Are Associated With Immunologic
Remission of Lupus”
Unexpectedly, prolonged remission achieved by patients with
refractory lupus after autologous hematopoietic stem cell
transplantation (HSCT) have a different mechanistic basis than
“clinical remission” in conventional drug-treated patients, who do
not achieve true immunologic remission, although they have a
SystemicLupusDiseaseActivity Index (SLEDAI) of0–2 (80%of the
drug induced remission patients were at zero level). In patients with
stem cell transplant induced remission, CD4+CD25highFoxP3+
Treg, and CD8+FoxP3+ Treg cells are generated, accompanied by
almost total suppression of pathogenic T cells that respond to the
histone peptide autoepitopes (135).

Detailed experiments in the above ref (135)., demonstrated that
the post-transplant CD8 Treg cells suppressive activity was
nucleosomal histone peptide-specific, as well as nonspecific, but
directed to cross-reactive autoreactive and activated T cells. Both
types of Treg cell’s suppressive activity was mainly TGF-b-
dependent, but independent of cell-cell contact. The post-
transplant patients’ CD8 Treg cells were stably FoxP3+ and they
Frontiers in Immunology | www.frontiersin.org 1033
expressed markedly increased levels of CTLA-4, CD103, PD-1,
PD-L1 and LAP, when compared to CD8 T cells from the same
patients before undergoing transplantation. By contrast, the pre-
transplant lupus patient’s CD8 T cells have cell-contact dependent
helper activity for autoantibody production. The CD8 Treg found
only in post-transplant patients are considerably more potent in
suppressive activity compared to the CD4+CD25high Treg cells
that appear during clinical “remission” in lupus patients treated by
conventional drugs, in whom autoimmune response of CD4 T
cells to nucleosome-derived autoepitopes persists even during
“clinical remission” (SLEDAI of zero). Therefore, autologous
HSCT leads to the generation of a newly differentiated
population of LAPhighCD103high CD8TGF-b Treg cells that
maintain the lupus patients in “true immunological remission”,
unlike patients with conventional drug therapy. Remarkably, very
similar, highly potent CD8 Treg cells are also generated by low-
dose nucleosomal peptide tolerance therapy that can prevent or
treat lupus disease in mouse models of spontaneous SLE, as
described above.

As stated, autoantibodies in lupus that belong to IFN-g (Th1)
dependent IgG subclasses fix complement and bind to activating
FcgR on inflammatory cells to mediate pathogenicity. A CD4 T
cell population in untreated lupus patients PBMC produces IFN-
g in response to histone peptide autoepitopes, and this
autoimmune IFN-g production response was almost
completely suppressed in fresh PBMC from lupus patients in
remission post-transplant. Removal of CD8 T cells (total) from
the PBMC of post-transplant patients in remission, restored the
IFN-g response of CD4 T cells to nucleosomes and histone
epitopes, much more strongly than removal of CD4+CD25high

cell subset enriched for Treg. Therefore, the latter subset
probably cannot restore immunologic remission in
conventionally treated lupus patients although they are
increased in such patients after “clinical remission” (SLEDAI
of 0–2).

The Post-transplant CD8 T cells suppressed by secreting
mainly TGF-b and they expressed high levels of TGF-b
latency-associated peptide (LAP), but they produced IL-10 to a
much lesser extent; which is desirable because IL-10, by causing
expansion of autoimmune B cells, is deleterious in lupus (136).

Significance of the Above Studies in Lupus Patients
Transplanted With Autologous Stem Cells and
Contemporary Relevant Studies by Others
The return of potent CD8TGF−b Treg cells after HSCT in
refractory lupus patients, or after nucleosomal peptide epitope
tolerance therapy in lupus-prone mice is an important biomarker
for a state of true Immunologic Remission. These CD8+CD103+
FoxP3+ TGFb producing Treg are highly effective in controlling
lupus, as shown in autologous stem cell transplant patients in
remission above; and after corticosteroid pulse therapy induced
remission in patients with lupus nephritis (Tsai YG et al. Plos
One 2014, 9:e81344); as well as in murine models of lupus (108,
137, 138), and graft-versus-host lupus (138–140). And the above
category of CD8+FoxP3+ TGFb producing Treg that are highly
effective in controlling lupus disease, are quite different from
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another variety of CD8+ Treg that are FoxP3-negative, cytotoxic
and contact-dependent, and with varying surface phenotypes
found in organ-specific autoimmune diseases (141–143). Those
FoxP3-Ly49+(CD158e+ in humans)CD122hiHelios+CXCR5+
CD8 Treg cells were decreased as a percentage of total CD8 T
cell population in lupus (144, 145), but such changes in
proportion could be due to many reasons that cause shifts in
various CD8 T cell subsets in lupus (146). Therefore, no cause
and effect relationship of the latter CD8 Treg with spontaneous
lupus disease in humans has been established yet. Anyway, target
organ pathology in lupus nephritis, is inhibited by the TGFb
producing CD4+FoxP3+ Treg and CD8+FoxP3+ Treg cells
induced by histone peptide epitope tolerance therapy (80, 108),
or by targeted nanoparticle therapy (140) induced CD8+ Treg,
which are quite different from the cytotoxic CD8 Treg (144, 145).
Indeed, CD8+CD103+FoxP3+ TGFb producing Treg cells,
which maintain lupus patients in long term immunological
remission after autologous bone marrow transplantation (135),
or that induced in lupus patients’ PBMC by the histone peptide
epitopes in vitro (147), have their highly effective suppressor
counterparts in several models of autoimmune diseases including
lupus (148–151). The role of locally active tissue-resident TGFb
producing Treg cells migrating into the kidney and its lymph
nodes to suppress lupus nephritis pathogenesis, like those
induced by histone peptide epitope therapy, has been recently
demonstrated in other Treg inducing systems (114–116, 152).

(b). Publication Title: “Major Pathogenic
Steps in Human Lupus Can Be Effectively
Suppressed by Nucleosomal Histone
Peptide Epitope-Induced
Regulatory Immunity”
As low-dose tolerance induced by the histone peptide epitopes
effectively inhibited lupus disease in mouse models, the effect of
the epitopes on lupus patients’ PBMC cultures was tested in vitro.
As discussed above, the major Peptide Autoepitopes for
nucleosome-specific T Cells of human lupus were identical in
sequence to the peptide autoepitopes for pathogenic T cells of
lupus-prone mice (61, 102), and they shared similar properties of
promiscuous MHC class II binding and being B cell
autoantibody epitopes as well. Thus the peptide epitopes could
be effective tolerogens for inhibiting both autoimmune T and B
cell populations in lupus patients with diverse HLA alleles (61,
102, 105, 147).

Indeed, in PBMC cultures from inactive lupus patients and
healthy subjects, addition of the histone peptide epitopes induced
CD4+CD25highFoxP3+ or CD4+CD45RA+FoxP3low Treg cells, as
well as CD8+CD25+FoxP3+ Treg cells with stable FoxP3
expression and suppressive activity (147). In the case of PBMC
from patients with active lupus, dexamethasone or
hydroxychloroquine were additionally needed for Treg-
induction by the peptide epitopes in cultures. The peptide-
induced regulatory T cells in lupus PBMC depended on TGFb/
ALK-5/pSmad 2/3 signaling, and TGF-b precursor LAP was
expressed by those Treg cells, indicating that TGFb production
was responsible for their suppressive activity, and a positive
Frontiers in Immunology | www.frontiersin.org 1134
feedback mechanism as well. The peptide epitope-induced Treg
cells also inhibited type I IFN related gene expression in lupus
PBMC. Expression of major members of Type I IFN genes
themselves, as well as type I IFN induced genes (ISG) were
markedly reduced by histone peptide epitopes in TLR9-
stimulated PBMC of lupus patients. As stated above, pDCs in
lupus are the main producers of Type I IFN upon stimulation by
nuclear autoantigens complexed with anti -nuclear
autoantibodies (7, 153, 154), and in lupus-prone mice, histone
peptide epitopes act on pDC rendering them to become
tolerogenic (80). Secondly, expression of 13 ISG genes, which
have been reported to be upregulated in patients with active
lupus (153, 155, 156) were also inhibited by the peptide epitopes.
Moreover, the histone peptide Th cell epitopes, which were also
shared by autoantibody producing B cell epitopes in lupus, could
inhibit production of pathogenic autoantibodies by PBMC from
active lupus patients as potently as an anti-IL6 antibody.
Experimental details are in reference (147). Importantly, a
mixture of the peptide epitopes (cocktail) was more effective in
uniformly suppressing pathogenic activities in Human lupus
PBMC cultures, as compared to single epitopes, because
patients are heterogeneous in contrast to inbred lupus-prone
mice. For example, suppression by a histone peptide cocktail #1
(C1), which is a mixture of H122-42, H3115-135 and H416-39 at a
concentration of 1.5 mM for each peptide or histone peptide
epitope cocktail #2 (C2), which is a mixture of H122-42, H3115-135

and H416-39 at a concentration of 4 mM of each peptide were very
efficient in suppressing pathogenic autoantibody production and
type I IFN related gene expression in lupus PBMC (147). Thus,
low-dose histone peptide epitopes could durably inhibit
pathogenic autoimmune response in human lupus by
diverse pathways.
OVERALL CLINICAL SIGNIFICANCE
AND SUMMARY

Generalized immunosuppression can control manifestations of
active lupus, but despite their toxicity the drugs fail to achieve
true immunological remission. Such drug therapies should be
followed by autoantigen specific suppression of pathogenic
autoimmune cells in lupus to prevent flares and continuing
organ damage. In contrast to lupus patients, normal subjects
have regulatory mechanisms including regulatory T cells that
prevent abnormal pathogenic response to nuclear autoantigens
from cells undergoing apoptosis routinely in the body (135,
147, 157).

The tolerogenic histone peptide epitopes have the potential
for prophylactically repairing the functional deficiency of
regulatory T cells in lupus (135, 147, 157, 158). The above
studies in mouse models in vivo, and with lupus patient’s cells
in vitro, showed that the peptide autoepitopes have the ability to
bring about durable regulatory mechanisms; probably because of
desirable properties mentioned above, and summarized here.
The histone peptide epitopes are derived from nucleosomes of
apoptotic cells produced daily in the body, which are cleared
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silently in the normal host without causing any immune
response (17). Indeed large scale apoptosis occurs daily in
generative organs, such as bone marrow and thymus and the
products are used to “educate” the cells of developing immune
system. The epitopes with their native sequences intact are called
“unaltered peptide ligands (UPL)”; they are derived from
nucleosomes of apoptotic cells that are naturally processed and
displayed to developing lymphocytes during ontogeny (101, 107,
159, 160), and therefore, unlike artificially altered peptide ligands
(APL), or post-translationally acetylated or citrullinated histone
peptides, the unaltered histone peptide epitopes described here
are not associated with anaphylactic/allergic reactions or
worsening of lupus (80, 108, 109). In fact Treg cells are
generated in the thymus, even in lupus-prone mice, in a
natural response to the native unaltered histone peptide
epitopes (107),. Only 1 µg (0.34 nanomolar) of the histone
peptide epitope/s administered biweekly is effective in low-dose
tolerance therapy of lupus-prone mice; that dosage would be
around 0.2 to 2 mg range in humans with lupus. The histone
peptides are rapidly absorbed systemically after S.C. injection,
because they possess numerous charged residues making them
highly soluble. As soon as they reach the lymphoid organs the
peptides render APCs, especially pDC tolerogenic by inducing
TGFb and inhibiting IL-6, and consequently the peptide epitope
presenting DC generate long-lasting Treg containing
autoantigen-specific and cross-reactive autoantigen-directed
Treg and Treg cells that suppress lupus (80, 108). Because the
peptide epitopes operate by being taken up extremely rapidly by
DC in vivo rendering them tolerogenic, short half life due to
decay of the epitopes is not a problem. Moreover, the histone
peptide therapy induced stable autoantigen-specific and cross-
reactive autoantigen-directed regulatory or suppressive T cells
generated in vivo are effective in suppressing disease upon
transfer into lupus-prone mice (80, 108). Both MHC class II,
and nested MHC class I binding determinants are present in the
peptide epitope sequences so that they can genarate both CD4
Treg and CD8 Treg cells (80, 108). The epitopes are recognized
by autoimmune T cells irrespective of the HLA type of lupus
patients (102, 105, 135, 147, 159), similar to “universal epitopes”
(104). Tolerance therapy with the histone peptide epitopes is
effective even in mice with established lupus disease (80, 108,
109). The peptides can generate Treg in lupus patient’s PBMC
even in the presence of other conventional maintenance
medicines such as hydroxychloroquine or corticosteroids (147).
The peptide autoepitopes from histones induce “linked
tolerance” to other nuclear antigen autoepitopes recognized by
pathogenic T and B cell of lupus (cross-reactive, “tolerance
spreading”), but not to foreign antigens or other organ-derived
autoantigens. In addition to generation of Treg cells, the peptides
also exert tolerogenic effect directly on pathogenic lupus B cells
and DC (80, 101, 147); suppressing autoantibody production
irrespective of the degree of Treg induction (135, 147).
Regulatory mechanisms against abnormal autoimmune
response to nuclear autoantigens in asymptomatic subjects
could be enforced by the relatively innocuous tolerance therapy
with histone peptides (147), which suggests that apparently
Frontiers in Immunology | www.frontiersin.org 1235
healthy relatives or ANA positive subjects at risk for
developing lupus as predicted by GWAS bio-markers, could be
protected prophylactically with these peptide epitopes.

Thus the peptide epitope therapy might be most suitable for
maintaining lupus patients in true immunological remission
after clinical remission has been induced by more toxic
immunosuppressive agents. To summarize, unlike pinpoint
antigen-specific therapy suitable for straight-forward organ-
specific autoimmune diseases, the histone peptide epitopes
directly or indirectly (through Treg cells they induce) suppress
Innate immune cells (DC), T cells and B cells involved in the
pathogenic autoimmune response in the complex systemic
autoimmune disease, Lupus.

The histone peptide epitopes could also be used to develop
sensitive diagnostic and/or prognostic tools (peptide-MHC
tetramers) or assays (intracellular cytokine response) for
tracking pathogenic Th cells that may appear prior to
manifestation of the disease and elevation of autoantibodies.
Indeed, understanding mechanism/s for generation of unusual
and potent CD8+ Treg cells by the peptide therapy will be of
therapeutic value in a broad spectrum of immune mediated
diseases, and Immunologic Monitoring with the peptide epitopes
may serve as biomarkers for true immunologic remission
(supplementing conventional measures of clinical remission,
such as, SLEDAI SLAM, BILAG).
FUTURE –PERSPECTIVE, PROBLEMS
THAT MAY ARISE, AND
POSSIBLE ANSWERS

Early phase clinical trials have shown promising outcome with
autoantigen peptide therapy for inducing antigen-specific
tolerance in several autoimmune diseases, such as Multiple
Sclerosis and Type 1 Diabetes (161–167). These results are
encouraging for clinical trials with histone peptides for lupus
in the near future, but several distinct features of this lupus
therapy need to be addressed to reach that goal. Unlike pinpoint
antigen-specific therapy suitable for straight-forward organ-
specific autoimmune diseases, the histone peptide epitopes
have unique tolerogenic properties with broad autoreactivity-
specific inhibitory effect. By rendering Innate immune cells (DC)
tolerogenic, the histone peptides induce Treg cells that suppress
T and B cell populations which are both antigen-specifically and
cross-reactively involved in the pathogenic autoimmune
response in the complex systemic autoimmune disease, Lupus:

a) Low-Dose IL-2 and Corticosteroid
Supplementation
Multiple laboratories have shown that histone peptide epitope/s
or other peptide epitopes administered without IL-2 injection,
can induce generation of effective Treg in vivo, which inhibit
disease in various lupus-prone mice (80, 82–85, 108, 122, 168).
Although lupus T cells are deficient in IL-2 production (169,
170), that situation is relative not absolute, as lupus patients do
not succumb to recurrent infections found in IL-2 knockout
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Immunodeficiency. A possibility in the case of these peptide
epitopes is that in low doses, they could transiently activate
autoreactive T cells, which could then provide small amounts of
IL-2 for generating the regulatory T cells. Indeed this proposed
mechanism (171), has actually been demonstrated by a similar
situation occurring in the thymuswhere IL-2 is produced by a small
population of self-reactive CD4 single positive (CD4SP)
thymocytes, which then stimulates Treg precursor cells to
differentiate (172). Those regulatory T cells induced in vivo may
then be sustained also by other signals such as from ICOS, or
TNFR2 (Tseng WY et al. Proc Natnl Acad Sci USA 2019,
116:21666-21672) (173). Still in view of the benefits of low dose
IL-2 therapy in all autoimmune diseases, whether deficient in IL-2
or not (129, 169, 170, 174–177); adjunct therapywith low-dose IL-2
will bebeneficial in the peptide-epitope therapyof lupus, as stated in
the theme of this Topic. Moreover, Low dose IL-2 and
corticosteroids in maintenance dose, actually were necessary for
the peptide epitopes’ induction of Treg cells in ACTIVE lupus
patients’ PBMC in vitro (147). Indeed, corticosteroids themselves
induce Treg cells by various mechanisms to some extent (Tsai YG
et al. PlosOne 2014, 9:e81344) (178, 179), and thus could potentiate
the autoantigen-specific and cross-reactive autoantigen-directed
Treg response by the peptide epitopes (147).

b) Durable Treg Induction in the Midst of
Inflammation; and Intrinsic Tolerogenic
Properties of the Histone Peptide Epitopes
How can durable immunoregulatory mechanisms be established
in the inflammatory environment of lupus? In lupus patients,
tolerance therapy with histone peptide epitope would be optimal
after inflammatory burden is reduced by drugs. Nevertheless, in
animal models, the peptides alone are effective in ameliorating
established lupus nephritis (80, 108, 109). The regulatory T cells
are more stable in inflammatory environment because they were
induced by the peptide epitopes in vivo, in contrast to Treg cells
induced/expanded in vitro. Furthermore, dexamethasone or
hydroxychloroquine in maintenance doses actually supported
Treg-induction by the peptides in lupus patients’ PBMC
cultures, indicating that drugs that counter the increased activity
of IRF5 andTLRpathways in lupusAPCwould be of addedbenefit
(147). The histone peptide epitopes also can directly regulate
autoimmune B cells and DC in lupus, in addition to generating
Treg cells (80, 101, 109); and indeed the peptides could suppress
autoantibody production to baseline levels in lupus patient’s
PBMC even before significantly increasing Treg cell numbers in
culture (147). The select histone peptide epitopes, which are
tolerogenic, can directly reduce IL-6 and increase TGFb
production by DC (80), a situation which renders the DC not
only be able to induce Treg, but also become susceptible to
suppression by Treg (180). This property of inducing TGFb
production and simultaneously decreasing IL-6 production by
DC, especially pDC, in turn induces TGF-b signal (Smad-3
phosphorylation) in target auto-immune CD4+ T cells
converting them to stable Treg cells; a property highly beneficial
for lupus therapy (80, 147), also because TFH cell differentiation is
inhibited in germinal centers under such conditions (128).
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Since apoptotic cells have immunosuppressive properties (17,
181); the unaltered histone peptide epitopes derived from
apoptotic platform may have intrinsic tolerogenic property (80,
147). In very low doses, without immunostimulatory adjuvants,
the histone peptide epitopes could possibly activate latent TGFb,
by inducing expression of the integrin avb8 in resting pDC, as
shown in other systems (182).

c) Peptide Delivery
Treg cells require continued antigen-specific stimulation from
DC to maintain lineage stability and high affinity regulatory cell
function (183, 184). In lupus-prone mice, regulatory T cells
induced by the peptide epitopes are detectable up to six weeks
after S.C. injection. Subcutaneous injection route works for the
highly soluble and charged histone peptide epitopes which are
very rapidly absorbed systemically (80). In humans many protein
drugs, and mAb biologics, insulin, IVIg etc., are administered
S.C. without causing local/systemic inflammatory response.

However, despite the promising beneficial effects in animal
models of established lupus disease, there is always the possibility
of adverse autoreactive response to the peptide epitopes in
patients with lupus, although they might be selected at the
earliest, pre-clinical stage of disease. Another issue is that
peptide epitope cocktails in low doses were more effective than
a single peptide epitope in suppressing lupus manifestations in
human lupus PBMC, but cocktails may be more immunogenic
when injected in the skin (147).

Therefore, peptide delivery should be considered in fail-safe
tolerogenic vehicles, such as Nanoparticles (NP), which are
described in detail by experts in this field in other articles as part
of this research topic. Just as a brief synopsis, the peptide epitopes
may be delivered within the nanoparticles, or administered around
the same time, but separately from tolerogenic nanoparticles (185).
There are many issues in choosing the right nanoparticles for such
therapy, specifically for lupus; for instance, liposome derived NP
can activate complement, and rapamycin containing NP may
interfere with initial Treg generation (186, 187), although
rapamycin is effective in maintaining Treg, once they are induced
(188). It is noteworthy that injected nanoparticles might be
nonspecifically immunosuppressive, like silica particles, by
overloading the immune system’s APCs, which phagocytose and
engorge themselveswith any foreignparticles (189, 190). Therefore,
targeted nanoparticles designed to be directed against potentially
autoreactive T cells are much more promising (140, 191), as
addressed by articles from experts in this research topic.

Finally, emerging studies on epigenetic or metabolic
mechanisms for Treg cell stability (192–194), and correcting
other abnormalities in lupus T cells, such as, metabolic (12, 13),
could be potentiated by utilizing the benefits of peptide epitope
therapy, in the near future.
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Immunosuppressive drugs can partially control Antibody (Ab)-dependent pathology.
However, these therapeutic regimens must be maintained for the patient’s lifetime, which
is often associated with severe side effects. As research advances, our understanding of the
cellular and molecular mechanisms underlying the development and maintenance of auto-
reactive B cell responses has significantly advanced. As a result, novel immunotherapies
aimed to restore immune tolerance and prevent disease progression in autoimmune
patients are underway. In this regard, encouraging results from clinical and preclinical
studies demonstrate that subcutaneous administration of low-doses of recombinant
Interleukin-2 (r-IL2) has potent immunosuppressive effects in patients with autoimmune
pathologies. Although the exact mechanism by which IL-2 induces immunosuppression
remains unclear, the clinical benefits of the current IL-2-based immunotherapies are
attributed to its effect on bolstering T regulatory (Treg) cells, which are known to
suppress overactive immune responses. In addition to Tregs, however, rIL-2 also directly
prevent the T follicular helper cells (Tfh), T helper 17 cells (Th17), and Double Negative (DN) T
cell responses, which play critical roles in the development of autoimmune disorders and
have the ability to help pathogenic B cells. Here we discuss the broader effects of rIL-2
immunotherapy and the potential of combining rIL-2 with other cytokine-based therapies to
more efficiently target Tfh cells, Th17, and DN T cells and subsequently inhibit auto-antibody
(ab) production in autoimmune patients.

Keywords: IL-2 (interleukin-2), Tfh and immunity, autoimmune disease, Th17 & Tregs cells, auto-antibodies
INTRODUCTION

Self-reactive auto-antibodies (auto-Abs) against nuclear and cytoplasmic antigens play critical roles in
autoimmune disease development and severity (1, 2). Auto-Abs contribute to disease pathogenesis by
direct and indirect mechanisms. On the one hand, immune complexes (IC) formed by Auto-Abs and
self-antigens activate antigens presenting cells and innate cells through the activation of Fc receptors
(FCRs), thereby initiating a feedback loop of immune activation that ultimately leads to unwarranted
inflammation and tolerance breakdown (3–5). Auto-Abs also engage the complement system, which
org April 2021 | Volume 12 | Article 667342143
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mediates tissue damage and further contributes to triggering
systemic inflammation. Deposition of IC in the blood vessels,
kidney, joints, and lungs amplifies the local inflammatory response
and enhance tissue damage. In agreement with their pathogenic
roles, the serum levels of auto-Abs strongly correlate with disease
activity and severity in multiple forms of autoimmune disease,
including systemic lupus erythematosus (SLE), type 1 diabetes
(T1D), or rheumatoid arthritis (RA), among others. Furthermore,
Auto-Abs can be detected years before the onset of clinical
manifestations (6), thus suggesting that loss of B cell tolerance
and production of Auto-Abs is a critical step that precedes the
development of the autoimmune disease. While Ab-dependent
pathology can be partially controlled by immunosuppression,
there is currently no cure for systemic autoimmune disorders.

Auto-Abs are produced by autoreactive-plasma cells (PCs), a
subset of terminally differentiated B cells that secrete large
amounts of Abs (7). PCs can be originated in the germinal
centers (GCs), the site of B cell maturation, where B cells
undergo rapid rounds of proliferation, somatic hypermutation,
and affinity maturation leading to the generation of high-affinity
antibodies (8–10). Autoreactive PCs can also be generated
outside the GCs via the extrafollicular pathway (11–13). Recent
studies demonstrate a critical role for the extrafollicular PCs in
the development of pathogenic Ab responses (11, 13, 14).

In the last decade, B cell depleting therapies were designed
based on the rationale that depletion of self-reactive B cells would
reduce the production of auto-Ab and subsequent Auto-Ab-
mediated immunopathology (15, 16). However, the clinical
Frontiers in Immunology | www.frontiersin.org 244
efficacy of these therapies is lower than initially anticipated
(17–19). The inability of B cell depleting agents to eliminate
self-reactive PCs efficiently has been suggested as a plausible
explanation for the relatively low effectiveness of these
approaches (17). The life-threatening side effects of sustained
immunosuppression and the failure of new therapies, such as B
cell depletion, vindicate looking for new therapeutic alternatives
to treat Ab-mediated pathologies. In this manuscript, we review
the potential of low-dose IL-2-based immunotherapies to target
T cell populations with B cell helper activity, mainly T follicular
helper cells (Tfh), T helper 17 (Th17) cells, and Double-negative
(DN) CD3+CD4-CD8- T cells (Figure 1). While IL-2 also induces
immunosuppression by Treg-dependent mechanisms, more
extensive reviews on this topic are available elsewhere. Hence,
the role of IL-2 in promoting Treg-mediated immunosuppression
will be only briefly discussed in this review.
PATHOGENIC B CELL HELPER
T CELL SUBSETS

Tfh Cells
T follicular helper (Tfh) cells are a subset of CD4+ T cells that
provide co-stimulatory signals and cytokines that are required
for the development and maintenance of GCs (20–22) and
extrafollicular PC differentiation (23, 24) (Figure 2). In the
absence of pathogen-specific Tfh cells, GCs do not develop, and
FIGURE 1 | The different effects of low dose rIL-2 therapy in autoimmunity. Low dose rIL-2 stabilizes FoxP3 program in Treg cells which increases both the size of
the population and enhances immunosuppression. Low dose rIL-2 therapy can both inhibit the generation of new self-reactive Tfh cells and decrease already present
self-reactive Tfh cells by blocking Bcl6. IL-6 blockade will make Tfh cells more suspectable to IL-2 signaling. Low dose rIL-2 can inhibit Th17 cells by diminishing
expression of RORgt and inhibiting IL17a expression. Low dose rIL2 can also inhibit IL-17 production by DN T cells by directly inhibiting IL17a.
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pathogen-specific PC responses are impaired. Phenotypically, Tfh
cells are characterized by the expression of CXCR5, PD1, ICOS,
and Bcl6, among other markers (25). CXCR5 is a chemokine
receptor that allows Tfh cells to localize in the proximity of the B/T
cell border in response to CXCL13. The inhibitory receptor PD-1
and the co-stimulatory receptor ICOS ultimately direct Tfh cells
into the B cell follicles (26–28), where they provide CD40L (22, 29)
and IL-21 (30–32) to the responding B cells. Bcl6 is a transcription
factor that promotes the expression of genes required for Tfh cell
development and function while preventing the up-regulation of
transcription factors implicated in T effector (Teff) cell
differentiation (33–35). Bcl6 is critical for the differentiation of
Tfh cells (33–35). Thus, it is considered themaster regulator of Tfh
differentiation. While Bcl6 promotes Tfh formation, the
transcription factor Blimp-1 represses it (33–35). Importantly,
Blimp-1 and Bcl6 are mutually antagonistic transcription factors
that directly repress one another in CD4+ T cells. Thus, the
balance between the relative expression of Bcl6 and Blimp-1,
rather than the expression of Bcl6 alone, fine-tunes the
commitment into the Tfh cell pathway (20).

Under homeostatic conditions, Tfh cells help germinal center
B cells to facilitate somatic hypermutation and class switch to
generate long-term Ab protection to pathogens (25). However,
when there is a break in intolerance, self-reactive Tfh cells are not
Frontiers in Immunology | www.frontiersin.org 345
depleted from the repertoire and provide co-stimulatory signals
and cytokines to self-reactive B cells, leading to pathogenic auto-
Ab responses (36, 37). In agreement, the presence of Tfh cells
correlates with elevated levels of Auto-Ab and disease activity in
preclinical animal models and autoimmune patients (37–41).
When Tfh cells are depleted or decreased, autoimmune disease
pathogenesis and auto-Ab responses are reduced (40, 42, 43).
Based on these findings, Tfh cells are considered a potential
target for autoimmune disorders (44). However, to date, there
are no therapeutic agents approved to selectively deplete Tfh cells
in vivo.

Th17 Cells
Th17 cells are a specialized subset of CD4+ T cells that play an
essential role in aiding host defense by recruiting neutrophils and
macrophages. Th17 cells differentiate in response to TGFb and
IL-6, and their development is driven by the transcription factor
RORgt (45). Excessive Th17 cell responses are implicated in the
pathogenesis of multiple forms of autoimmune diseases. As such,
the expansion of self-reactive Th17 cells correlates with disease
activity in common autoimmune diseases, including RA,
psoriasis, asthma, and lupus (46–48). Due to its characteristic
pro-inflammatory properties, it is generally believed that Th17
cells contribute to autoimmune disease pathogenesis by inducing
FIGURE 2 | Both follicular and extra-follicular pathways contribute to auto-antibody production. Within the B cell follicles, Tfh cells maintain auto-reactive germinal
center reactions which generate self-reactive plasma cells. Tfh cells can also provide help in to extra-follicular PCs in the B cell border. Reports have demonstrated
that IL-21 produced by Th17 cells can also contribute to the production of self-reactive plasma cells in the follicle. Besides, in the extra-follicular space, IL-17
produced by Th17 recruits BAFF producing neutrophils. The combination of IL-17, BAFF, and Tfh cells promotes the generation of self-reactive plasma cells.
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tissue inflammation. However, recent studies demonstrate that
Th17 cells can also help the development of auto-reactive GC B
cells (48–51) and extrafollicular PCs (52). In agreement with this
idea, IL-17 deficiency prevents auto-Ab production and disease
progression in lupus-prone mice (53–55). In addition, the self-
reactive GC responses were reduced by IL-17 deficiency in
autoimmune Roquinsan/san mice, thereby suggesting a cause-
effect relationship between IL-17 and pathogenic GC B cell
responses. Collectively, these studies suggest an important role
for IL-17 producing cells in promoting pathogenic-B cell
responses in the context of autoimmune disorders.

The capacity of Th17 cells to help B cell responses is not entirely
surprising since, like Tfh cells, Th17 characteristically produce large
amounts of IL-21 (56), a cytokine that promotes GC and PC
differentiation. Furthermore, IL-17 synergizes with the B cell-
activating factor belonging to the TNF family, BAFF, to protect
responding cells from BCR-induced apoptosis (57), demonstrating
an intrinsic effect of IL-17 in promoting B cell survival. Besides, IL-
17 promotes the recruitment of neutrophils (58, 59), which secrete
both BAFF and APRIL and can facilitate the survival and
devolvement of extrafollicular PCs (60, 61). Collectively, these
studies suggest that IL-17-producing cells can, directly and
indirectly, help auto-reactive B cells responses, thereby
contributing to Ab-mediated pathology in autoimmune patients
(Figure 2). However, whether IL-17-producing cells promote rather
than merely correlate with self-reactive B cell responses in
autoimmune patients has not yet been formally demonstrated.

Hybrid IL-17+Tfh Cells?
An additional important question remaining is how the putative
“IL-17+ helper” cells gain access to the B cell follicles to provide B
cell help. One exciting possibility is that pathogenic “IL-17+ helper”
cells are indeed Tfh cells that secrete IL-17. In agreement with this
possibility, studies suggest the presence of hybrid IL-17-producing
cells with “Tfh-like” characteristics in autoimmune prone BXD2
mice (48) and human tonsils (45). Furthermore, the culture of
human CD4+ T cells with a combination of TGFb and IL-23,
which is frequently used for the in vitro differentiation of Th17
cells (45), triggers the acquisition of a Tfh-like transcriptional
signature characterized by the up-regulation of Bcl6, c-Maf, and
CXCR5, and the down-regulation of Blimp-1, thereby resulting in
the acquisition of a hybrid Bcl6+RORgt+ Tfh/Th17 signature (62).
Whether hybrid Tfh/Th17 cells are Tfh cells that secondary
acquire the capacity of secrete IL-17 or represent a separate
lineage of Tfh cells is still unclear. Further investigations are
needed in order to clarify the potential relationship between
these two lineages.

Interestingly, the ‘pro-Tfh” effect of TGF-b is restricted to
humans, as TGF-b does not significantly affect Tfh cell
differentiation in mice (62, 63). Nevertheless, the commonality
between the Tfh and Th17 differentiation requirements extends
beyond TGF-b. For example, ICOS, which is required for the
survival and the migration of Tfh cells into the B cell follicles (26,
28, 64), is also critical for the differentiation and maintenance of
Th17 cells (65, 66). Besides, similar to Tfh cells, the IL-6/STAT3
pathway is also a key positive regulator of Th17 differentiation
(67). Thus, critical signaling pathways implicated in Tfh cell
Frontiers in Immunology | www.frontiersin.org 446
differentiation also critically regulate the Th17 program.
Therefore, it is reasonable to speculate that the same
inflammatory conditions that promote Tfh differentiation in
autoimmune patients also favor the development of Th17 cells
and/or the generation of hybrid IL-17-producing Tfh cells.

The concept of a highly pathogenic hybrid Tfh/IL-17
population with superior helper activity is, however, at odds
with early studies suggesting that Bcl6 functions as a direct
transcriptional repressor that prevents the acquisition of Teff
programs, including the Th17 program (33–35). Indeed,
Bcl6hiCXCR5hiPD-1hi Tfh cells present in the B cell follicles
(we will refer to these cells as GC-Tfh cells) do not normally
produce IL-17, which is consistent with studies showing that
high-expression of Bcl6 in GC-Tfh cells directly represses RORgt
and Th17 differentiation (33, 34). Nevertheless, the role of Bcl6 in
controlling alternative differentiation programs in Tfh cells is
puzzling. As such, while studies suggest that Bcl6 binds to the
Rorc promoter and inhibits its expression (33), other studies
show no evidence of Bcl6 binding (34, 68). Furthermore, while
Bcl6-expressing cells do not normally express Teff cytokines,
some studies indicate that Tfh cells can produce effector
cytokines in the context of high inflammatory conditions, such
as viral infections (69–72) or autoimmune diseases (48). In
addition, extrafollicular-Tfh cells (which express medium levels
of Bcl6) have a more heterogeneous transcriptional signature
than Bcl6hi GC-Tfh cells (which express high levels of Bcl6) (73–
75). These results suggest that the ability of Bcl6 to inhibit the
initiation of secondary Teff differentiation programs in
developing Tfh cells is dose-dependent and can be partially
overcome in highly reactive environments, such as in
autoimmune diseases, thereby leading to the acquisition of
hybrid Tfh/Teff phenotypes, such as IL-17+ Tfh cells, with
enhanced pathogenic functions.

Double-Negative T Cells
Double-negative (DN) CD3+CD4-CD8- T cells are a rare
population of TCR-ab+ T cells that lack CD4 and CD8
expression and express high levels of B220 (76, 77). While DN
T cells are relatively scarce in healthy individuals, they
abnormally expand in lupus patients and children with
autoimmune diseases, such as mixed connective tissue disease
or juvenile idiopathic arthritis (78). Aberrant accumulation of
DN T cells is also a clinical hallmark of the Autoimmune
Lymphoproliferative Syndrome (ALPS, also known as Canale-
Smith syndrome), a genetic disorder caused by defective FAS-
mediated apoptosis that is characterized by the development of
autoimmune disease, splenomegaly, lymphadenopathy, and an
increased risk of secondary lymphomas during childhood (79,
80). In aged MRL/lpr mice, DN T cells represent nearly 70% of
the total cells in the enlarged lymph nodes, accounting for the
characteristic lymphadenopathy observed in these mice.

The exact origin of DN T cells remains controversial (76, 77).
Early studies suggest they derive from activated CD4 T cells that
fail to undergo apoptosis (81). However, a more detailed
examination of the DN T cell origin in vivo indicates that DN
T cells derive from CD8+ T cells that down-regulate their co-
receptor after continuous stimulation by self-antigens derived
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from apoptotic cells (82, 83). Thus, it is generally believed that
DN T cells derive from CD8+ T cells.

Expansion of DN T cells correlates with disease activity in
lupus-prone mice (83, 84) and systemic SLE patients (85), leading
to the idea that these cells play an important pathogenic role in
autoimmune disease development. Despite the evidence
supporting a pathogenic role for DN T cells, their exact function
remains largely elusive (76, 77). Interestingly, DN T cells express
high levels of CXCR5, localize in the B cells follicles (86), and
stimulate Ab production in vitro (85, 87). Moreover, similar to Tfh
cells, the presence of DN T cells correlates with disease activity and
autoantibody production in SLE patients and MRL.lpr mice (76,
77, 83–85, 88). Moreover, new studies show that DN T cells
produce large amounts of IL-17 (54, 83, 88). Given the putative
role of IL-17 in helping B cell responses (48–52, 56, 89), it is
tempting to speculate that CXCR5+DN T cells contribute to
autoimmune pathology by promoting auto-reactive B cell
responses in an IL-17-dependent manner. Corresponding with
this idea, a recent study demonstrated that DN T cells are sufficient
to promote autoantibody production and renal immune complex
deposition after adoptive transfer into B6 Rag1−/− mice that also
received B cells from 12-month-old B6.lpr mice (83). These
findings provide evidence that DN T cells can contribute to
pathogenic Ab responses in vivo. Further investigations will be
required to compare the capacity of DN T cells, Tfh cells, and bona
fide Th17 to help self-reactive B cell responses and determine how
each of these subsets relatively contribute to sustaining
pathogenic-Ab responses.
IL-2 AND IMMUNOSUPPRESSION

IL-2 Signaling
IL-2 is a member of the common g-chain family of cytokines that
was initially characterized and as a growth factor for T and NK T
cells (90–92). IL-2 signaling is transmitted through the IL-2
receptor (IL-2R), which can exist in two conformations (93).
The high-affinity receptor is a heterotrimeric receptor that
consists of the a chain (CD25), the b chain (CD122), and the
common g chain (CD132) (94, 95). The high-affinity receptor is
constitutively expressed by FoxP3-expressing CD4+ regulatory
T-cells (Tregs), which require IL-2 signaling for their
differentiation and function (96–99). In contrast, NK T cells,
naïve and memory T cells express the intermediate-affinity
IL-2R, a heterodimer composed of the b and g chain. Following
TCR activation, however, they transiently up-regulate CD25 and
temporarily express the high-affinity IL-2R. The differential
expression of CD25 by regulatory T cells and conventional T
cells has important therapeutic consequences. When administered
at high doses, IL-2 can help conventional T cells and NK T cells,
hence favoring effector responses. In contrast, because Tregs
express high levels of CD25 and better compete for IL-2 than
other cells, low IL-2 regimes preferentially target IL-2 to Tregs,
thus promoting immunosuppression (100).

The binding of IL-2 to the IL-2R triggers the phosphorylation
of the Janus-Activated Kinase 1 (JAK1) and 3 (JAK3), leading to
the activation of the transcription factor STAT5 (101). In addition,
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phosphorylation of the adaptor Shc in response to IL-2 activates the
Ras-Raf MAP Kinase and PI-3K pathways. The combined effects of
STAT5, Ras-Raf MAP Kinase, and PI-3K signaling pathways results
in the regulation of the transcription of a broad range of IL-2-target
genes, including the forkhead box P3 (FOXP3) (102–104),
eomesodermin (Eomes) (105), the B Lymphocyte Induced
Maturation Protein 1 (BLIMP1) (105), the T-box transcription
factor TBX21 (T-bet) (106, 107), Retinoic acid-related Orphan
Receptor (ROR)g (108–110) and B cell lymphoma (Bcl6) (107,
111–114). Due to its pleiotropic transcriptional effects, IL-2 has been
implicated in regulating multiple, and often contradictory, critical
immunoregulatory pathways. For example, IL-2–STAT5 signaling
positively regulates IL-4R and GATA-3 expression and subsequent
Th2 differentiation (106). On the other hand, IL-2 induces
IL-12Rb2, Blimp-1, and IFN-g up-regulation, which are required
for Th1 cell polarization (106).

Importantly, while IL-2 signaling can help effector responses,
the development of a lethal multiorgan autoimmune syndrome
in the IL-2 and IL-2R deficient mice revealed that the critical
non-redundant function of IL-2 is to promote immunosuppression
(115–118). Rather than immunodeficiency, diminished IL-2
production is associated with autoimmune disease development
in mice and humans (119–123), highlighting the critical role of this
cytokine in maintaining immunological tolerance. Given that Treg
cells fail to normally develop in the absence of IL-2 signaling (98,
124–126) and that they are essential for maintaining immune
tolerance (127–130), it is generally accepted that the principal
mechanism by which IL-2 contributes to preserving immune
tolerance is by supporting the development and function of
Tregs. Supporting this view, early transfer of Tregs into neonatal
CD122 deficient mice prevents autoimmune pathology (96).

Low-Dose IL-2 Therapy
Work done over the last fifteen years demonstrate the potential of
leveraging the immunosuppressive properties of IL-2 to treat
autoimmune disorders. Early studies show that exogenous IL-2
supplementation prevents disease progression and contributes to
inducing immunosuppression in mice with established
autoimmune diseases, including Type I diabetes, EA, experimental
myasthenia, and lupus (131–138). More recently, a novel
immunotherapy based on subcutaneous administration of low-
dose recombinant human IL-2 (r-IL2, (Aldesleukin/Proleukin) has
shown potent immunosuppressive effects in patients with
autoimmune pathologies (139), including Type I diabetes (140),
hepatitis C-associated vasculitis (141), SLE (142–145), and chronic
graft-versus-host disease (146–148). The recent TRANSREG
clinical trial further demonstrated that the same dose of rIL-2
selectively expands Tregs and clinical benefits across eleven
selected autoimmune diseases (149). Collectively these studies
demonstrate that low-dose rIL-2 regimes have therapeutic effects
across a broad range of heterogonous autoimmune disorders.

Current low-dose rIL-2 treatment schemes consist of 3-4
cycles of 7-10 million IU of rIL-2 per cycle administered over
1-2 weeks separated by resting periods of 9-16 days. Importantly,
low-dose rIL-2 can be safely administered to humans. Thus
numerous clinical trials to further explore the potential benefits
of low-dose IL-2 in SLE are now underway.
April 2021 | Volume 12 | Article 667342

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Papillion and Ballesteros-Tato The Broader Effects of rIL-2 Immunotherapy
Based on the critical functional relationship between IL-2 and
Treg-mediated immunosuppression, the current paradigm
suggests that low-dose rIL-2 regimes contribute to restoring
immune homeostasis in autoimmune patients by a Treg-
dependent mechanism (139, 150). In agreement with this view,
low-dose rIL-2 supplementation induces Treg cell expansion in
vivo (139). Hence considerable effort has been invested in
developing new therapeutic approaches to selectively target
IL-2 to Tregs.

Intriguingly, though the frequency of Tregs increases after low-
dose rIL-2 administration, the changes in Treg cell numbers are
transient and drop to placebo control levels quickly after the last
rIL-2 cycle (142, 143). Nevertheless, despite a nearly normal
frequency of Tregs, the improved clinical outcomes persist for
weeks after the last cycle of rIL-2 (142, 143). Thus, while it is clear
that Treg-mediated immunosuppression is critical for achieving
the clinical benefits observed after rIL-2 treatment, additional
underlying mechanisms might synergize with Treg-mediated
effects to provide long-lasting immunosuppression after low-
dose rIL-2 immunotherapy. In this regard, recent studies
demonstrate that prolonged IL-2 signaling prevents the
expression of (RORgt) (110) and Bcl6 (107, 111–114), thereby
repressing Th17 and Tfh cell development, respectively.
Correspondingly, low-dose rIL-2 treatment significantly reduced
the frequency of Tfh and Th17 in humans and preclinical animal
models (71, 114, 138, 143, 151, 152). Similarly, CD3+CD4-CD8-

DN T cells are depleted after rIL-2 administration (138). Based on
the inhibitory role of IL-2 in Tfh, Th17, and DN T cells and their
putative roles in promoting self-reactive B cell responses, targeting
IL-2 to these T cell populations could represent a good therapeutic
strategy to prevented Ab-mediated pathology in autoimmune
patients without inducing profound immunosuppression.
TARGETING B CELL HELPERS WITH IL-2

IL-2 and Tfh Cells
Studies by us and others demonstrate that IL-2 signaling inhibits
Tfh cell differentiation (107, 111, 113, 114, 152). Mechanistically,
IL-2 indirectly inhibits Tfh cells by inducing BLIMP, which in
turn represses Bcl6 expression and Tfh cell differentiation (111,
113). Besides, STAT5 in response to IL-2 binds to the Bcl6
promoter and directly prevents Bcl6 transcription (107, 112),
thereby inhibiting the initiation of the Tfh cell program. In
support of these findings, the lack of IL-2/STAT5 signaling
during T cell differentiation skews the CD4+ T cell response
towards the Tfh cell differentiation pathway (111, 113, 114). Data
from the Weinmann’s laboratory also suggest that, in addition to
directly repressing Bcl6 expression, IL-2 signaling favors the
formation of T-bet/Bcl6 complexes that block Bcl6 activity (107).

Corresponding with the inhibitory role of IL-2 in Tfh cell
development, Tfh cell differentiation can be fine-tuned in vivo by
altering the environmental levels of IL-2. As such, limiting IL-2
signaling in vivo results in enhanced Tfh cell responses (111, 113,
114, 151–153). Contrariwise, treatment with rIL-2 prevents Tfh
cell differentiation and ensuing GC responses in mice infected with
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influenza virus (71, 114, 151). Importantly, in these studies, the
ability of IL-2 to suppress Tfh cell responses is independent of the
presence of Tregs (114, 152). Hence, these studies demonstrate
that lL-2 intrinsically inhibits Tfh cell development by repressing
Bcl6 expression and activity in a Treg-independent manner.

Notably, there are significant differences between human and
mouse Tfh cell developmental requirements (154, 155).
However, recent studies demonstrate that IL-2 is also a potent
inhibitor of human Tfh cell responses. Corresponding with this,
while IL-2 blockade increases human Tfh cell differentiation in
vitro (156), treatment with low-dose rIL-2 reduces the frequency
of Tfh cells in SLE patients (143). These results provide evidence
to support the potential of IL-2-based therapies to deplete Tfh
cells in vivo. Furthermore, these studies offer a new interpretation
for how impaired IL-2 production by T cells (120–123) and
single nucleotide polymorphisms in the IL-2 and IL-2 receptor
genes (122, 157, 158), which are associated with various
autoimmune diseases, affects autoimmune disease development.
In this regard, one would predict that a low IL-2 environment
favors self-reactive Tfh cell differentiation and subsequent Auto-Ab
production in autoimmune patients.

Synergistic Low-Dose rIL-2 Therapies
Recent studies suggest that in addition to secreting a low amount
of IL-2, T cells from SLE patients poorly respond to exogenous
IL-2 (159). Thus, the lack of IL-2 responsiveness could be a
potential limitation when designing low-IL-2-based therapies to
efficiently deplete Tfh cells in vivo. Importantly, data from our
laboratory demonstrate that the IL-6/STAT3 pathway is an
important regulator of the IL-2 responsiveness of Tfh cells.
Briefly, using a combination of in vivo and genetic studies, we
found that STAT3 in response to IL-6 binds to the Il2rb locus
and prevents CD122 up-regulation in Tfh cells, thereby limiting
the capacity of these cells to respond to IL-2 (151). Hence,
blockade of IL-6 signaling renders Tfh cells hyperresponsive to
IL-2, thus lowering the threshold of IL-2 required to deplete Tfh
cells (Figure 3). As a consequence, the frequency of Tfh cells was
dramatically reduced in influenza-infected mice treated with an
anti-IL-6 blockade in combination with rIL-2 compared to mice
treated with rIL-2 alone, even when rIL-2 was administered at
ultra-low doses.

These findings have important therapeutic and conceptual
implications. In this regard, one would predict that Tocilizumab,
a humanized anti-IL-6 receptor monoclonal antibody,
administered together with rIL-2 will synergize to target the
Tfh cell population more efficiently than rIL-2 administered
alone. In this scenario, an IL-6 blockade would increase the
expression of CD122 on the surface of Tfh cells, making them
more susceptible to rIL-2 signaling and subsequent depletion.
This combination therapy will likely achieve the same biological
effect using a lower dose of rIL-2. In addition, IL-2 consumption
by CD25+Tregs limits the amount of available IL-2 (152, 160).
Thus, it is likely that, in the presence of high numbers of
CD25+Tregs, the environmental levels of IL-2 are scarce, and
only cells with a relatively low response threshold will be able to
respond to IL-2. Hence, another significant advantage of this
approach is that, by increasing IL-2 responsiveness, this
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synergistic therapy will allow Tfh cells to react to rIL-2 even in
the presence of IL-2-consuming Tregs, thereby simultaneously
targeting Tregs and Tfh cells.

Importantly, similar to IL-6 (161, 162), the serum levels of the
STAT3-activating cytokines IL-23 and IL-27 are increased in
autoimmune patients (163–167). Thus, IL-6 signaling blockade
alone might not be sufficient to enhance IL-2 responsiveness of
Tfh cells due to the capacity of additional STAT3-activating
cytokines to compensate for the lack of IL-6. Furthermore, IL-6,
IL-23, and IL-27 all induce STAT3 activation via JAK2. In
contrast, JAK2 is not required for IL-2 signaling. Notably, a
recent study shows that the specific JAK2 inhibitor CEP-33779
can be safely administered to MRL.lpr mice, which show
significant improvement in disease pathogenesis and reduced
pSTAT3 levels after treatment (168). Given that JAK2 is required
for STAT3 but not STAT5 activation, it is tempting to speculate
that “non-cytokine specific” STAT3 inhibition after treatment
with a JAK2 inhibitor will lower the threshold of IL-2 required
for suppressing Tfh cells regardless of the presence of redundant
STAT3-activating cytokines. In any case, altogether, these studies
suggest a model in which STAT3 activation in response to
STAT3-activating cytokines counterbalances IL-2-mediated
suppression of Tfh cells by limiting IL-2 responsiveness of Tfh
cells. A better knowledge of how the crosstalk between different
cytokine pathways regulates Tfh cell development will allow us to
design more efficient therapeutic strategies to prevent self-
reactive Tfh cell responses in autoimmune patients, thereby
precluding ensuing pathogenic B cells responses and Ab-
mediated pathology.
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IL-2 and Th17 Cells
The clinical benefits of targeting Th17 cells to prevent
autoimmune manifestations have been explored in preclinical
and clinical settings, and additional clinical trials are being
conducted. The results, however, are conflicting (169–171).
Independent randomized clinical trials demonstrate the clinical
efficacy of targeting IL-17 to treat moderate to severe psoriasis.
As a result, two monoclonal anti-IL-17A antibodies (secukinumab
and ixekizumab) and one antibody targeting the IL-17 receptor
(brodalumab) are now FDA approved for the treatment of this
disease. However, the studies assessing the clinical benefits of anti-
IL-17 biologics for the treatment of systemic rheumatologic
disorders, such as RA or SLE, have yielded mixed results. While
some preclinical studies and clinical trials show promising results
after IL-17 blockade (169), the therapeutic effect of anti-IL-17 anti-
IL-17A Abs is lower than anticipated.

The relatively low efficacy of these treatments is, to some
extent, surprising, given the abundance of publications showing
reduced pathology and severity after IL-17 blockade in
preclinical animal models (172). One potential explanation for
this discrepancy is patient sample heterogeneity. In this regard,
while most of the studies show that elevated levels of IL-17 and
high frequency of Th17 cells correlate with disease activity in SLE
patients, some found no significant differences between patients
and healthy controls (172). Since anti-IL-17 biological-based
treatments will likely only be effective in patients with a “high
IL-17” profile, the lack of proper patient stratification based on their
IL-17 profile could explain the lack of consistency in the results. An
alternative, but mutually complementary, explanation is the
FIGURE 3 | IL-6 mediates the IL-2 responsiveness of Tfh cells. In the presence of IL-6 signaling, Tfh cells activate STAT3 which directly binds to the Il2rb promoter
preventing expression of CD122. Low expression of CD122 limits IL-2 signaling in Tfh cells. In the absence of IL-6 signaling, there is increased expression of CD122
on the surface of Tfh cells leading to increased responsiveness to IL-2. The increased IL-2 signaling activates STAT5 which binds to the promoter region of Bcl6 and
suppresses the Tfh cell program.
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inability of the current anti-IL-17 biologics to sufficiently block the
aberrantly increased IL-17 pathway in these patients. Besides, IL-17/
IL-17A blockade alone might not be sufficient to effectively disrupt
the inflammatory cycle leading to disease pathogenesis once this has
already been initiated.

As aforementioned, IL-2 signaling inhibits Th17 differentiation
(106, 108, 110). As a consequence of this inhibitory effect, Th17
cells fail to differentiate in relatively high IL-2 environments.
Contrariwise, IL-2 quenching facilitates Th17 cell development
(109). Mechanistically, IL-2 antagonizes IL-17 differentiation via
STAT5, which outcompetes STAT3 binding at the IL-17 locus,
hence preventing binding of STAT3 and its enhancer elements in
response to IL-6 (108). IL-2 signaling also represses IL-6R
expression and recruits the histone deacetylator adaptor protein
NCoR2 to the Il17 locus, thereby contributing to further inhibiting
IL-17 production (108). In agreement with the suppressor role of
IL-2 in Th17 cell differentiation, the regulatory mechanisms that
control IL-2 production also indirectly control IL-17 production.
For example, the cAMP-responsive element modulator alpha
(CREMa) negatively regulates IL-2 transcription by binding to
the Il2 locus (121, 173–175). IL-2 shortage after CREMa
overexpression in T cells contributes to enhancing IL-17
differentiation, a phenomenon that can be reserved after IL-2
supplementation (175). Similarly, by suppressing IL-2 production,
the phosphatase and tensin homologue (PTEN) indirectly favors
Th17 differentiation (176). At a cellular level, IL-2 consumption by
Treg cells favors Th17 development by creating a low IL-2
environment permissive for Th17 differentiation (160).
Collectively, these studies demonstrate that Th17 cells preferably
differentiate in “low-IL-2” environments.

Importantly, works from multiple laboratories demonstrate a
causative relationship between IL-2 deficiency, subsequent
excessive IL-17 responses, and autoimmune pathology
development. For example, elegant work has shown that a lack
of STAT3 activation prevents the accumulation of Th17 cells in
IL-2-deficient mice, resulting in prolonged lifespan and reduced
autoimmunity associated with IL-2 deficiency (108). Additional
studies have shown that MRL/Fas(lpr/lpr) mice treated with rIL-
2 have reduced frequency of IL-17 producing cells, which
correlated with diminished disease manifestations (138).
Moreover, in SLE patients, low-dose rIL-2 treatment resulted
in reduced frequencies of Th17 cells, which correlated with the
induction of remission in a recent open-labeled trial (143).
Collectively, these results provide strong evidence for the
therapeutic potential of rIL-2 to prevent unwanted Th17
responses in vivo. Importantly, current anti-IL-17 biologics target
the product of Th17 cells (i.e., IL-17). In contrast, low-dose rIL-2
precludes the development of these cells, which has the potential to
more effectively prevent IL-17-dependent immunopathology by
preventing the continuous replenishment of Th17 cells from their
precursors, thereby inducing long-lasting effects. Besides, anti-IL-17
biologics are limited in that their effect is restricted to limiting IL-17
responses. In contrast, rIL-2 therapy has broader effects beyond
dampening IL-17, such as bolstering the Treg–mediated
immunosuppression and/or decreasing autoreactive Tfh cells,
which are likely to synergize with Th17 suppression to further
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prevent immunopathology. In this regard, given that Tfh and Th17
cells are similarly regulated by the IL-2/STA5 and IL-6/STAT3
pathways, the aforementioned combinational therapy with STAT3
blocking agents and rIL-2 is likely to simultaneously target Tfh and
Th17 cells efficiently. In summary, the inhibitory effects of IL-2 in
Th17 cells, and its subsequent effects on Auto-Ab responses and
systemic inflammation, need to be evaluated when considering IL-
2-based therapies for the treatment of autoimmune disorders.

IL-2 and DN T Cells
Despite the accumulating evidence supporting a pathogenic role
for DN T cells, the exact mechanisms that regulate DN T cell
homeostasis are unknown, and there are currently no therapies
to selectively deplete DN T cells in vivo. Importantly, however,
work from George Tsokos’s group demonstrates that treatment
with an inducible recombinant adeno-associated virus vector
encoding IL-2 significantly reduced the frequency of IL-17+ DN
T cells in MRL/lpr mice, which was accompanied by reduced
pathology and kidney infiltration (138). The effect of IL-2 on DN
T cells is likely independent of the role of IL-2 in Treg cells, as
treatment with IL-2 is complexed with the anti-IL-2 monoclonal
JES6-1, which selectively target CD25-expressing Tregs did not
affect DN T cells. Nevertheless, because DN T cells express
neglectable levels of CD25 and CD122 and poorly phosphorylate
STAT5 in response to IL-2, the authors suggest that the effect of IL-2
on DN T cells is indirect. In any case, whereas the exact mechanism
by which IL-2 prevents DN T cell accumulation remains elusive,
these studies demonstrate a critical role for IL-2 in preventing DN T
cell expansion in vivo. Given the potential pathological role of these
cells and their contribution to sustaining pathogenic Ab responses,
the effects of low-dose rIL-2 immunotherapies on DNT cells should
be carefully examined in future low-dose rIL-2 clinical trials.
CONCLUDING REMARKS

In conclusion, we present here the rationale for using new
therapeutic regimens based on the combination of low-dose
rIL-2 with other biologics to achieve ideal immunosuppression
and improved disease scores. Since the original observation that
in the absence of IL-2 signaling mice develop catastrophic
autoimmune disease, our knowledge of the complex
intersection of multiple underlining conditions contributing to
autoimmunity has grown to include multiple T cell populations
in addition to Treg cells. Armed with the understanding that Tfh,
Th17, and DN T cells play critical roles in autoimmune disease
progression and that they are efficiently depleted after rIL-2
treatment, it is time to consider how to leverage the broad-
ranging effects of rIL-2 therapy to synergistically induce Treg cell
immunosuppression along with the Tfh/Th17/DN T cells axis to
efficiently prevent inflammation and auto-Ab-mediated
pathology in autoimmune patients without the undesired side
effects associated to systemic immunosuppression.

While some studies suggest that B cells do not express CD25
and STAT5 signaling is dispensable for B cell maturation and
function (177), IL-2 favors B cell survival and PC differentiation
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in vitro (178–180). These potential “positive” effects of IL-2 in
B cells could, to some extent, compensate for the absence of T cell
help and be detrimental in the context of B-cell mediated
pathologies, particularly when administered for short periods of
time. Therefore, though it is clear that low-dose rIL-2 therapies
promote immunosuppression, the potential intrinsic effects of
low-dose rIL-2 treatment in B cells should be carefully
examined. Similarly, IL-2 inhibits the development of T
follicular regulatory (TFR) cells (181–183), a particular subset of
Tregs that express Bcl6 and CXCR5 and localize into the B cell
follicles where they suppress Tfh and GC B cell responses (184–
186). Mechanistically, IL-2 signaling induces Blimp-1 expression
in conventional Tregs cells, thereby preventing them from up-
regulating Bcl6 and becoming TFR cells. Given that TFR cells have
a suppressive function in Tfh and GCs, the lack of these cells after
low-dose rIL-2 could enhance pathogenic B cell responses.
Corresponding with this idea, the absence of TFR cells favors
the outgrowth of self-reactive B cell clones in some models (181,
185). Nevertheless, the role of TFR cells is more complex than
initially expected, as, rather than inhibit, they promote GC and Ab
responses in some models (187, 188). Besides, TFR cells express
low levels of CD25 (181, 182). Thus, it is unlikely that rIL2 therapy
will have a preferential impact on TFR cells. In any case, despite
the putative adverse effects of IL-2, treatment with low-dose rIL-2
and IL-2/anti-IL-2 Ab complexes efficiently decreases anti-DNA
Frontiers in Immunology | www.frontiersin.org 951
Ab titers in NZB/W F1 mice (189) and hinders influenza-specific
B cell responses in influenza-infected mice (114). These data
support the view that, when used in vivo, the dominant effect of
IL-2 in the B cell response is immunosuppression.
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The regulation of autoimmunity and the molecular mechanisms by which different immune
cells, including T cells, polymorphonuclear leukocytes (PMN-granulocytes), and B cells
suppress autoimmune diseases is complex. We have shown previously that BWF1 lupus
mice are protected from autoimmunity after i.v. injection or oral administration of
tolerogenic doses of pCons, an artificial synthetic peptide based on sequences
containing MHC class I and MHC class II determinants in the VH region of a J558-
encoded BWF1 anti-DNA Ab. Several T cell subsets can transfer this tolerance. In this
study, we determined the potential roles of granulocytes, B cells and regulatory T cells
altered by pCons treatment in the BWF1 (NZB/NZW) mouse model of lupus.
Immunophenotyping studies indicated that pCons treatment of BWF1 mice significantly
increased CD4+FoxP3+ T cells, reduced the percent of B cells expressing CD19+CD5+

but increased the percent of CD19+CD1d+ regulatory B cells and increased the ability of
the whole B cell population to suppress IgG anti-DNA production in vitro. pCons treatment
significantly decreased the expression of CTLA-4 (cytotoxic T-lymphocyte-associated
protein-4) in CD8+ T cells. In addition, peptide administration modified granulocytes so
they became suppressive. We co-cultured sorted naïve B cells from mice making anti-
DNA Ab (supported by addition of sorted naive CD4+ and CD8+ T cells from young auto-
antibody-negative BWF1 mice) with sorted B cells or granulocytes from tolerized mice.
Both tolerized granulocytes and tolerized B cells significantly suppressed the production
of anti-DNA in vitro. In granulocytes from tolerized mice compared to saline-treated
littermate controls, real-time PCR analysis indicated that expression of interferon-induced
TNFAIP2 increased more than 2-fold while Ptdss2 and GATA1 mRNA were up-regulated
more than 10-fold. In contrast, expression of these genes was significantly down-
regulated in tolerized B cells. Further, another IFN-induced protein, Bcl2, was reduced
in tolerized B cells as determined by Western blot analyses. In contrast, expression of
FoxP3 was significantly increased in tolerized B cells. Together, these data suggest that B
cells and granulocytes are altered toward suppressive functions by in vivo tolerization of
BWF1 mice with pCons and it is possible these cell types participate in the clinical benefits
seen in vivo.

Keywords: regulatory B cells, immune tolerance and regulation, pConsensus peptide (pCons), systemic lupus
erythematosus, Anti-DNA Ab, polymorphonuclear cells (PMNs), granulocytes
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INTRODUCTION

Regulatory B cells and regulatory polymorphonuclear leukocytes
(PMNs-granulocytes) influence immunity but are not well
understood in systemic autoimmunity. Lupus causes significant
morbidity, mortality, and economic loss. Systemic lupus
erythematosus (SLE) is probably initiated by autoantibodies
(e.g. anti-DNA) and immune complexes that induced
inflammation and organ damage (1). One of the organs
affected in some patients with SLE is the kidney and lupus
nephritis is a leading cause of end stage kidney disease and
death. Approximately two million people suffer from this disease,
with the majority of cases being women of childbearing age.
Lupus is a gender-biased disease with a female to male ratio of
9:1. African-American women are three times more likely to get
lupus than Caucasian women. Lupus is also more common in
Hispanic, Asian, and Native American women than in
Caucasians. In the last 50 years, there have been only two new
lupus-specific therapy approved by the FDA, Benlysta (anti-
BAFF, and voclosporin (a calcineurin inhibitor). Current
treatments, including the newer ones, rarely induce sustained
disease remission. Therefore, additional treatment strategies are
urgently needed. The modulation of abnormal immune
regulation is an object of intense investigation in several
experimental autoimmune diseases with the goal to limit the
numbers of abnormal pathogenic cells and autoantibodies, and
to achieve restoration of immune system self-tolerance by the
administration of peptides that induce regulatory cells.

We have focused studies in a mouse model of SLE, the BWF1-
New Zealand Black/New Zealand White (NZB/NZW) mouse,
which has several characteristics in common with human SLE (2,
3). These mice spontaneously develop fatal immune mediated
glomerulonephritis with high titers of anti-nuclear antibodies
including high affinity IgG antibodies to dsDNA and show
female to male bias. In this model, we used a peptide, pCons,
to induce regulatory cells which are protective in SLE. We
studied gene expression in splenocytes using Affymetrix
microarray analysis (448 genes were differentially regulated one
week after tolerance induction), followed by validation studies
with quantitative real-time RT-PCR in CD4+ and CD8+ T cell
subsets. In the current study, we test for potential molecular
mechanisms that govern the function of tolerized B cells
(including Bregs) and PMNs-granulocytes in this model.

Regulatory B cells (Bregs), a novel subpopulation of B cells, are
a significant area of research due to their therapeutic relevance,
immune regulatory function, and ability to sustain self-tolerance
(4–6). Evidence suggesting a role for (Bregs) in the immune
system has been described since the 1970s. These studies suggest
that there is a potential role for Bregs in reducing T cell activity and
inducing immune tolerance (7–10). Over the past decade, Bregs have
been identified in many autoimmune diseases (11–17). Approaches
to manipulate B cells in a manner that is beneficial in attenuating
inflammatory and autoimmune conditions, including SLE, are not
clear. The mechanisms by which Bregs influence the functions of
CD4+ and CD8+ Tregs are not known. Additionally, genes expressed
in Breg cells (other than IL-10) that offer protective responses and
their molecular mechanisms of function remain to be defined.
Frontiers in Immunology | www.frontiersin.org 258
Polymorphonuclear neutrophils (PMN-granulocytes) have
been shown to play a role in a variety of autoimmune diseases
including Rheumatoid Arthritis (18), Inflammatory Bowel
Disease (19, 20), and Experimental Autoimmune Encephalomyelitis
(EAE) (21). Studies have shown that PMNs-granulocytes are capable
of interacting with T cells by presenting class I and class II restricted
antigens on their surface (22–26) as well as in a non-MHC restricted
fashion (22). PMNs-granulocytes have also been shown to express the
costimulatory molecules CD80 and CD86 (27), the regulation of
which is important in autoimmunity and immune tolerance. In
patients with SLE, granulocytes undergoing NETosis are increased,
and the nets contain DNA/nucleosome/proteins that promote
autoreactivity and production of type 1 IFNs (28). The exact
mechanisms of PMNs-granulocytes and Bregs interaction with other
regulatory cells and their cross-talk are currently poorly defined. In
this report, we provide novel evidence that pCons tolerance induces
CD4+FoxP3+ T cells and potent regulatory B cells and granulocytes
capable of suppressing autoimmunity in vitro in a murine model of
SLE. Understanding the role of regulatory T cells, B cells and
granulocytes may provide novel mechanistic insight for SLE and
expand our knowledge of immune tolerance and can identify
potential new targets for SLE.
MATERIALS AND METHODS

Mice
NZB (H-2d/d), NZW (H-2z/z) and NZB/NZW F1 (H-2d/z) mice
were purchased from the Jackson Laboratories (Bar Harbor, ME,
USA) or bred at the University of California Los Angeles (UCLA).
All mice were treated in accordance with the guidelines of the
University of California Los Angeles Animal Research Committee,
an Institution accredited by the Association for Assessment and
Accreditation of Laboratory Animal Care (AAALAC). Mice were
housed in pathogen-free conditions. Female mice were used for
all experiments.
Peptides
The peptides used in this study and the MHC molecules they
bind have been described earl ier (29, 30) . pCons
(FIEWNKLRFRQGLEW), the artificial tolerizing peptide, contains
T-cell determinants based on the J558 VH regions of several murine
anti-dsDNA Ab from BWF1 mice (29, 31–35). Peptides were
synthesized at Chiron Biochemicals (San Diego, CA, USA), purified
to a single peak on high-performance liquid chromatography, and
analyzed by mass spectroscopy for expected amino acid content.
Treatment of Mice
Ten- to twelve-week-old BWF1 mice received a single i.v. dose of
1 mg of pCons, dissolved in saline, as reported previously (29, 31,
36) for tolerance induction. For immunophenotyping of
regulatory B cells, female 35-wk-old BWF1 mice were used and
injected with pCons (1 mg i.v.). After 3 days, blood was obtained,
RBC lysed, and cells were stained with CD19, CD1d and CD5
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antibodies and FACS performed. Control mice received either a
similar amount of pNeg (negative control peptide) or saline.

Cell Isolation, Preparation,
Immunophenotyping, and Flow cytometry
Spleen cells were isolated ~1 week after administration of the
pCons peptide from tolerized, saline-treated, or naïve BWF1
mice. Single cell suspensions of splenocytes were prepared by
passing cells through cell strainers (Fisher). ACK lysing buffer,
(Sigma, St Louis, MO, USA) was used to lyse red blood cells. Cells
were washed and re-suspended in RPMI complete media. Cell
subsets were further enriched following incubation with anti-
CD4 (L3T4), anti-B (CD45R/B220), anti-CD8 (CD8a Ly-2), anti-
NK1.1 (CD95b), anti-DX5, anti-CD11C, and anti-Gr-1 microbeads
from Miltenyi Biotech (Auburn, CA, USA). Purity of cells was
determined to bemore than 90% pure as assessed by flow cytometry
(FACS). For immunophenotyping, isolated cells were washed with
FACS buffer and 1–2 million cells were used for surface staining.
Before staining, cells were incubated with rat anti-mouse CD16/
CD32 (FC III/II receptor) Ab to block nonspecific binding.

For regulatory B cell immunophenotyping, female 35 wk-old
BWF1 mice were treated with pCons 1 mg i.v. and blood was
obtained after (3-5 days). Splenocytes were depleted of red blood
cells (RBCs) and then stained with CD19, CD1d, and CD5
antibodies for FACS analysis. Antibodies for cell surface
staining and isotype controls were from BD Biosciences, BD
Pharmingen, eBiosciences, or BioLegend. CD4 (L3T4), CD25
(PC61.5) and CTLA-4 (UC10-4F10-11) staining was performed
with antibodies from BD Pharmingen. FoxP3 (FJK-16s) staining
was performed with an eBiosciences intracellular kit. Data were
collected using FACSCalibur (BD Biosciences) and analyzed by
BD Cell Quest software (Becton-Dickinson, Mountain View,
CA) or FCS De Nova software (Thornhill, Ontario, Canada).

Western Blot Analysis
Western blot analyses were performed as described earlier (37).
In brief, cell lysates were prepared from the naïve and tolerized B
cells from the splenocytes of naïve and pCons-treated BWF1
mice. Cells were lysed with RIPA buffer (150 nMNaCl, 1.0% NP-
40, 0.5% sodium deoxycholate, 0.1% SDS, 10 mM Tris, pH 7.3)
supplemented with Protease Arrest protease inhibitor cocktail
solution (G Biosciences, Maryland Heights, MO, USA). Protein
was measured from each sample using the Bradford assay (Bio-
Rad Laboratories, Hercules, CA, USA) and an equal amount of
protein was loaded in each well. The lysates were resolved on a
4–12% NuPage gel (Invitrogen, Carlsbad, CA, USA) in reducing
conditions. Proteins were electro-transferred onto a polyvinylidene
fluoride membrane (Invitrogen). The membranes were blocked
with 3% BSA and immunoblotted with a specific antibody, bcl2
(50E3), (1:200 dilution; Cell Signaling Technology, Inc.) or b-actin
(1:100 000 dilution; Sigma, Inc.). Following washing, the
membranes were incubated in secondary antibodies (1:2500
dilution; Santa Cruz Inc, Santa Cruz, CA, USA). All blocking,
incubation and washing steps were performed in TBST (TBS and
0.1% Tween 20). Proteins were visualized using ECL (GE
Healthcare, Buckinghamshire, UK).
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RNA Isolation and Real-Time PCR
Total cellular RNA was isolated from purified cell subsets or total
splenocytes from saline-treated or pCons-tolerized BWF1 mice with
TRIzol (Invitrogen, Carlsbad, CA, USA) as per manufacturer’s
protocols. Real-time PCR was performed as described earlier (29,
33–35). Each experimental group consists of the pooled spleen cells of
3–4 mice from each group. 100 ng of total RNA was used with one-
step RT-PCR reagents (Applied Biosystems, Foster City, CA, USA).
Quantitative real-time reverse transcription was performed using
TaqMan technology on an ABI Prism 7900 HT Sequence Detection
System (Applied Biosystems). Primers and probes of IFI205,GATA1,
Ptdss2, TNFip2, FoxP3 and GAPDH were obtained from Applied
Biosystems, Foster City, CA, USA. The oligonucleotide sequences
used for the primers and TaqMan probes (Applied Biosystem, Foster
City, CA) are described (29, 33–35). GAPDH was used as an
endogenous control in each experimental set.

Cell Culture and Measurement of
Anti-DNA Antibodies
Assays were performed to measure anti-DNA Ab as described
earlier (29, 31, 34, 35, 37). For optimal Ab production, B cells
(1x105 cells) from keep old (40-50-wk-old) naïve BWF1 females
with 3+ proteinuria or higher, CD4+CD25- T cells (1x106) from
young 10–12-wk-old naive BWF1 females without proteinuria,
naïve CD8+ T cells (1x106), and irradiated APC (1x105) cells were
isolated and cultured with granulocytes or B cells (1x106) from
tolerized mice or controls. Cell cultures were performed in RPMI
1640 supplemented with L-glutamine (2 mM), penicillin (100
units/ml), streptomycin (0.1 mg/ml), 2-mercaptoethanol (Gibco)
and 10% fetal bovine serum (FBS). For tolerized B cells analysis, we
cultured, as indicated above pCons-tolerized B cells (1x 106) with
naïve CD4+CD25- T cells (1x 106), naïve B (1x 105) and/or naïve
CD8+ T cells (1x106) cells. After 72-96 hours, culture supernatants
were obtained and anti-DNA IgG was measured by ELISA.

Statistical Analyses
Data were analyzed using Prism 4.0 (GraphPad Software, San
Diego, CA). Comparisons were performed using paired one- or
two-tailed test. Nonparametric testing among more than two
groups was performed by one-way ANOVA. Results are
expressed as mean ± SEM. p<0.05 was considered significant.
RESULTS

pCons-Induced Tolerized B Cells and
Granulocytes Suppressed Anti-DNA Ab
Production by BWF1 Cells
To our knowledge, no studies have been performed to address
the role of regulatory B cells and granulocytes in the immune
tolerance and BWF1 lupus. To address this, we harvested B cells
and granulocytes from the spleens of naïve and tolerized BWF1
mice 7 days after the induction of tolerance (peptide treatment
1 mg i.v. once a week). We used in vitro assays to test the effects
of each cell type on anti-DNA Ab production with the addition
of naïve CD4+ helper cells (CD4+CD25- T cells) plus naïve B cells
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(from old BWF1 nephritic mice) and naïve CD8+ T cells to each
cultured subset either separately or in combination with tolerized
B cells (Bregs) and granulocytes. Anti-DNA Ab was analyzed as
described previously (29, 31, 34, 35, 37). Briefly, purified
populations of different spleen effector cell subsets including B
cells, naïve CD4+T cells (CD4+CD25-Tcells), naïve CD8+ T cells,
and tolerized granulocytes and B cells were harvested (using the
appropriate Miltenyi Biotec microbeads via AutoMACS) one
week after pCons treatment of BWF1 mice. Naïve CD4+ T cells
from young mice (10-12-weeks-old) and B cells from old
nephritic BWF1 mice (40-50-weeks-old with 3+ proteinuria)
were co-cultured in complete medium with tolerized/regulatory
B cells and granulocytes and other effector cell types such as
(naïve CD8+ T cells) from spleens of tolerized mice. Our previous
cell-dose response study with CD8+ Treg showed that 1×106 cells
are optimum in mixed cell culture experiments (29) therefore, we
used the same number of cells in these experiments. In addition
previously, we had found that a ratio of B cells to helper T cells
(CD4+CD25-T cells) to regulatory/suppressor T cells of 1:10:10
are needed to observe optimal suppression of anti-DNA
antibodies (29, 32, 35). Therefore, we used this same ratio with
each effector cell type. We found that both tolerized B cells and
granulocytes suppressed the production of anti-DNA Ab
(Figures 1 and 2). Although we did not determine whether
this suppressive effect was direct or indirect on autoreactive B
cells through CD4+ or CD8+ T cells or by synergistic effect by
those cells with tolerized B cells and granulocytes, this data
clearly suggests that pCons-induced regulatory B cells and
granulocytes suppress the anti-DNA Ab production and thus
play a significant role in autoimmunity.
Microarray Analysis Showed Altered
Regulation of Genes in Non-T Cells
Since our previous published microarray data showed that
pCons treatment induces major changes in white blood cells
(WBC) subsets of BWF1 spleen cells [448 genes differentially-
regulated in whole splenocytes of tolerized compared to control
mice (33)], we were interested to see the potential role of
regulatory B cells and granulocytes. Thus, in this report, we
characterized expression of selected genes (highly upregulated)
in different cell populations in non-T cells (tolerized B cells and
tolerized granulocytes cells) and further tested the ability of these
cell subsets to suppress production of anti-DNA Ab in lupus.
Our data suggests that cell types other than T cells may play
major roles in this model of immune tolerance.

B cells and Granulocytes Produced
Significantly Increased/Decreased
Amounts of mRNA for Several Genes of
Interest Including Interferon Genes After
pCons Treatment in BWF1 Lupus Mice
To address the role of tolerized non-T cell subsets after pCons
treatment in BWF1 mice, B cells and granulocytes were obtained
from the spleen of BWF1 mice 1 weeks after pCons treatment.
RNA was isolated from these cell subsets and real-time PCR was
performed as described earlier (33). Real-time PCR analyses
Frontiers in Immunology | www.frontiersin.org 460
FIGURE 1 | Anti-DNA Ab was significantly decreased in the presence of
tolerized B cells. Naïve CD4+ T cells, CD8+ T cells and CD45R/B220+B cells
were isolated from BWF1 mice spleen cells using microbeads from Miltenyi
Biotech (Auburn, CA, USA). Cells were cultured in RPMI 1640 supplemented
with L-glutamine (2 mM), penicillin (100 units/ml), streptomycin (0.1 mg/ml),
2-mercaptoethanol (Gibco) and 10% fetal bovine serum (FBS). Cells were co-
cultured in the presence of tolerized B cells (1x106 cells). Different immune cell
subsets (naïve B cells, 1x105 cells from old nephritic mice; CD4+CD25- T cells,
1x106; naïve CD8+ T cells, 1x105) were isolated from splenocytes and cultured
with tolerized B cells (1x106 cells). After the 72-96 hours range, culture
supernatants were obtained. Anti-DNA Ab levels were measured from culture
supernatants by ELISA. *p < 0.05.
FIGURE 2 | Anti-DNA Ab was significantly decreased in the presence of
tolerized PMNs-granulocytes. Different immune cell subsets (naïve B cells, 1x 105

cells from old nephritic mice; CD4+CD25- T cells, 1x106; naïve CD8+ T cells,
1x105) were isolated and cultured with tolerized granulocytes (GR, 1x106). Cell
subsets were isolated from total spleen cells of BWF1 mice. Cells were cultured in
RPMI 1640 supplemented with L-glutamine (2 mM), penicillin (100 units/ml),
streptomycin (0.1 mg/ml), 2-mercaptoethanol (Gibco) and 10% fetal bovine serum
(FBS). After the 72- 96 hours range, culture supernatants were obtained. Anti-
DNA Ab levels were measured from culture supernatants by ELISA. *p < 0.05.
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indicate that TNFAIP2 (Tumor necrosis factor alpha-induced
protein 2) was increased ~2-fold (Figure 3A), and Ptdss2
(Phosphatidylserine synthase 2 and GATA1 (GATA-binding
factor 1) mRNA were upregulated more than 10-fold in
tolerized granulocytes compared to naïve granulocytes (Figures
3B, C). In contrast, the mRNA of all the above genes (Figures
3D–F) and those of IFN-induced genes including IFI203 and
IFI205 (Figures 3G, H) were down regulated in tolerized B cells.
Although, the decreased level of IFI203 and IFI205 did not reach
to the significance. However, other IFNs genes were significantly
decreased. Thus, this data displays dynamic interplay and
suggests that pCons has differential effects on different
interferon genes in our tolerance model. Collectively these data
demonstrate that pCons treatment modify the interferon’s gene
signature differentially in tolerized B cells and granulocytes.

pCons-Tolerized B Cells From Lupus Mice
Have Increased FoxP3 mRNA and Bcl2
Protein Levels
The transcription factor forkhead box P3 (FoxP3), also known as
scurfin, plays an important role in themaintenance of immunological
homeostasis and restoration of self-tolerance. Dysfunction and
mutations of the FoxP3 gene causes immunodysregulation
polyendocrinopathy enteropathy X-linked (or IPEX) syndrome.
FoxP3 also participates in maintaining the immune system
response (38) and in the development and function of regulatory T
cells (39–42). In the present study, we evaluated the expression of
FoxP3 in pCons-tolerized B cells of lupus (BWF1 mice) compared
with naïve B cells. Surprisingly, we found significantly increased
expression of FoxP3 in tolerized B cells compared to naïve B cells
(Figure 3I). Next, we investigated the protein expression of bcl2 from
cell lysates of tolerized B cells and naïve B cells with Western blot
assay. We found that tolerized B cells have decreased levels of Bcl2
protein compared to naïve B cells (Figure 3J). Bcl-2 regulates cell
death (apoptosis) by promoting or inhibiting apoptosis (43, 44). We
have shown previously that CD4+ and CD8+ T cells from tolerized
mice have significantly reduced apoptosis. Thus our data suggest that
pCons tolerance may also affect apoptosis of B cells in our tolerance
model and may play a significant role in survival of these cells by
regulating immune tolerance.

pCons Treatment Induced and Modified
the Cell Surface Expression Markers for
Regulatory B Cells
Our previous study showed that pCons treatment induces both
CD4+ and CD8+ regulatory T cells (29, 32, 36). Based on these
data and our gene expression study (33), we hypothesize that
pCons treatment may induce suppressor/regulatory B cells
(Bregs) and granulocyte cells with the potential to suppress the
proliferation of naïve CD4+CD25- cells and naïve B cells as well
as the production of anti-DNA Ab. To address this, we isolated
spleen cells from female BWF1 mice after one week of pCons
treatment (1 mg i.v) and performed immunophenotyping studies
with flow cytometry from naïve and pCons-treated mice
(Figures 4A, F live gating scheme). We found that pCons
treatment of BWF1 mice increases percent expression of
Frontiers in Immunology | www.frontiersin.org 561
CD19+CD1d+ regulatory B cells including median fluorescence
intensity (Figures 4B, G, D, E). This is an important finding
because two previous studies have revealed similar phenotype of
Bregs in SLE patients (45, 46). Further, we found that pCons
treatment reduces the percent expression of CD19+CD5+ B cells
(Figures 4C, H, I). The median fluorescence intensity (MFI) of
CD19+ CD5+ cells were significantly decreased in pCons treated
mice (Figure 4J). These data show that pCons treatment
modified the B cells expression markers CD1d and CD5, and
since we have also shown that CD4+ and CD8+ T cells from
tolerized mice suppress autoreactive B cells and could account
for their reduced numbers, this suggests that pCons treatment
induces regulatory B cells.

pCons Treatment Increased CD4+FoxP3+

Regulatory T Cells and Significantly
Reduced Percent Expression and Median
Fluorescence Intensity of CTLA-4
(Cytotoxic T-Lymphocyte-Associated
Proten-4) in CD8+ T Cells of BWF1
Lupus Mice
We were interested to see whether pCons treatment induces
regulatory T cells and whether it affects CTLA-4 expression.
CTLA-4 plays an important role in immune tolerance and T-cell
activation. We found that pCons treatment significantly
increased the number of CD4+FoxP3+ T cells in BWF1 mice
compared to naïve and/or saline-treated mice (Figures 5A–D,
F–H). We also measured the CTLA-4 expression on T cells
(CD8+T cells) and found that percent expression of CTLA-4 was
significantly decreased in pCons treated mice (Figure 5E)
Further, we found that pCons treatment significantly reduced
the median fluorescence intensity (MFI) of CTLA-4 expression
in CD8+ T cells compared to naïve mice (Figures 5I, J). Thus, the
data shows the immunomodulatory role of pCons in BWF1
mice. However, future study is warranted to pinpoint the exact
mechanism of pCons activity in Lupus.
DISCUSSION

In the present study, we have added to previous work showing
that pCons induces CD8+ and CD4+ suppressive cells and shown
that B cells and granulocytes from tolerized mice suppress anti-
DNA Ab production in vitro. Several suppressive mechanisms/
factors may be involved including IL-10, TGFb, IL-35, and
combinations of TLR9, CD40, and/or B cell receptor (BCR)
and engagement of CD80/CD86 on Bregs (45, 47). pCons
treatment significantly increased the number of CD4+FoxP3+ T
cells. In earlier studies, we showed that these FoxP3+ T cells (both
CD4+ and CD8+ Treg) suppressed autoimmunity in vivo and anti-
DNA production in vitro (29, 32, 36). Immune tolerance induced
by pCons prolonged survival of BWF1 lupus mice (NZB/NZW)
F1 and delayed the appearance of glomerulonephritis (29, 31,
35). The pCons-induced regulatory T cells suppressed
proliferation of naïve CD4+ T cells and naïve CD19+/B220+ B
cells and the production of anti-DNA antibodies (29, 32, 34–36).
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T cell suppressive capacity correlated with modulation of
Mitogen-Activated Protein kinase (p38 MAP kinase) activity
and FoxP3 expression in CD4+ Tregs (48). In the current study
we found that CTLA-4 median fluorescence intensity was
Frontiers in Immunology | www.frontiersin.org 662
significantly decreased in the CD8+ T cells of pCons-treated
BWF1mice. This is a significant finding as CTLA-4 is involved in
negative signaling and plays a pivotal inhibitory role in T cell
anergy and prevention of autoimmunity. In addition, recent
D E

G H

I J

F

A B C

FIGURE 3 | Tolerized B cells have reduced IFNs gene mRNA and Bcl2 protein level and increased FoxP3 mRNA expression. RNA was isolated from naïve and
tolerized B cells and granulocytes. Real time PCR was performed with 100 ng of RNA with gene specific primers and probes. Data was normalized with GAPDH
mRNA levels. *p < 0.05. TNFAIP2, Ptdss2, and GATA1 mRNA was increased (A–C) in tolerized granulocytes (GR) but reduced in tolerized B cells (D–F). IFI203 and
IFI205 was decreased in tolerized B cells (G, H). (I) FoxP3 expression was increased in tolerized B cells. (J) Quantification of Western blot analysis of Bcl2 protein
levels in cell lysates from naïve and tolerized sorted B (CD45R/B220) cells.
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studies show that CTLA-4 controls follicular helper T cells and
regulatory T cells, thereby controlling the B cells responses and
humoral immunity (49–51). CTLA-4 also downregulates CD80
Frontiers in Immunology | www.frontiersin.org 763
and CD86 on antigen presenting cells (APC); thus, altering the
level of CD28 engagement on follicular helper T cells (51).
However, its precise mechanism of action has not been fully
A B C D E

F G H I J

FIGURE 4 | pCons treatment modified the cell surface expression markers for regulatory B cells. Female 35-wk old BWF1 mice were treated with pCons (1 mg i.v.).
After 3 days, blood was obtained, RBC lysed, and cells were stained with CD19, CD1d and CD5 antibodies and FACS performed. Representative live cell gating
strategy (A, F) and FACS analysis of CD1d (B, G) and CD5 (C, H) expression levels from representative naïve (A–C) and pCons treated (F–H) mice. Percent
expression of CD19+ CD1d+ cells in naïve vs pCons treated mice (D). Percent expression of CD19+CD5+cells in naïve vs pCons treated mice (I). Quantification of
Median Fluorescent Intensity of naïve and pCons-treated mice for CD1d (E) (from B and G Gate 3 and 4) and CD5 (J) (from C and H Gate 3 and 4). CD1d increased
and CD5 cells decreased with pCons treatment. *p < 0.05, **p < 0.001, ***p < 0.0001.
A B C D E

F G H I J

FIGURE 5 | pCons treatment increased CD4+FoxP3+ regulatory T cells and significantly reduced Median Fluorescence Intensity of CTLA-4 (Cytotoxic T-lymphocyte-
Associated Proten-4) in CD8+ T cells of BWF1 lupus mice. Female 12-20 wk-old BWF1 mice were treated with pCons (1mg i.v.). After 1-2 weeks, splenocytes were
obtained, RBC lysed, and cells were stained with CD4, CD8, CD25, CTLA-4 and FoxP3 antibodies and FACS performed. 10,000 minimum cells were gated.
Representative gating strategy (A, F) and FACS analyses of CD4+CD25+ (B, C), CD4+FoxP3+ (G, H) and cumulative two-three experiments data for CD4+FoxP3+

cells (D) are shown. Cumulative data of CD8+ CTLA-4+ T cells experiments (two-three) is shown (E). CTLA-4 staining (MFI) on CD8+ T cells is shown (I, J).
CD4+FoxP3+T cells are significantly increased. CTLA-4 MFI is significantly decreased. *p < 0.05, **p < 0.001, ***p < 0.0001.
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resolved. Recently abnormal CTLA-4 gene polymorphisms and
function has been reported in SLE patients (52, 53).

For the first time to our knowledge, in this system we found that
B cells and granulocytes also can be “tolerized” and subsequently
function as regulatory/suppressor cells to prevent production of
autoantibodies. In the current experiments, we used whole tolerized
B cells and granulocytes for the suppression assay. We acknowledge
the next step is to test the specific Bregs subsets to determine cell
specificity and their mode of action and mechanism. Therefore,
detailed molecular and cellular mechanisms of regulatory B cells
and granulocytes are not completely clear and future study will be
required to address this shortcoming.

Regulatory B cells and regulatory granulocytes are not well
characterized in this SLE tolerance model and this study provided
first novel mechanistic insight. We showed that 1) pCons tolerance
altered expression of several candidate genes (see below) including
interferon genes in tolerized B cells and granulocytes compared to
naïve cells; 2) pCons tolerance modified the cell surface expression of
regulatory B cells (and/or deleted the CD19+CD5+ subset); 3) pCons
tolerance increased the percent expression of (CD19+CD1d+) cells;
and 4) pCons-tolerized B cells and granulocytes significantly reduced
the production of anti-DNA antibody in cell culture experiments of
lupus mouse cells.

pCons tolerance has been shown to affect various genes and
markers, cell surface molecules, cytokines and different cell types
including regulatory T cells (both CD4 and CD8) (29–35, 37). In
the present study, we showed that pCons induced B cells
enriched in markers identifying suppressor B cells and these
cells have significantly reduced interferon-induced genes (IFN)
such as, ptdss2, GATA1, and TNFip2 (Figure 3) compared to
naïve mice. In contrast, we also found that these genes were
significantly increased in tolerized granulocytes, with the
exception of TNFip2 which was upregulated but did not reach
the significance level (Figure 3) demonstrating differential effect
of pCons. Thus, our data indicate dynamic interplay of these
genes or their gene products in different immune cell subsets in
our pCons-induced tolerance model. How this interplay affects
the overall immune response in lupus mice is not clear. However,
recent studies have shown the importance of interferon genes in
lupus (54–58). Lupus is characterized by the dysregulation of
both the innate and the adaptive immune systems. An increased
expression of type I IFN-regulated genes, termed IFN signature,
has been reported in the majority of patients with SLE (59–61).
In agreement with our findings, another study found that a
tolerogenic peptide of the light chain complementarity-
determining region 1 (hCDR1) down-regulates the expression
of interferon-alpha (IFN-a) in murine and human SLE (62).
IFN-a plays a major role in SLE pathogenesis and the levels of
IFN-a were increased and correlated with SLE disease activity in
the sera of mice and humans (63–65). Administration of
exogenous IFN-a leads to worsening of disease in various
mouse models (66). Type 1 IFN contributes to loss of tolerance
and increases production of autoantibodies (67), induces
differentiation of monocytes to myeloid-derived dendritic cells
(mDC) (56), and plays a vital role in the activation of
autoreactive T and B cells (68). Activation of TLR7 and TLR9
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is thought to be central to induction of the type 1 IFN response
(69, 70). Indeed, a recent therapeutic option in patients with
lupus is through inhibition of type IFN–a and several recent
clinical trial data suggest therapeutic benefit (71–73). Thus, our
findings that pCons tolerance reduces the IFN genes in our lupus
model has direct clinical and translational significance.

We have shown earlier that pCons peptide delayed the onset of
autoimmunity in lupus mouse model by inducing immune
tolerance and up-regulating FoxP3 in T cells which are
suppressive (31, 34, 74). Other studies have reported that peptides
from CDRs of pathogenic anti-DNA Ab could also prevent
autoantibody production and down-regulate autoreactive T cell
responses (75, 76). Similar to our results, these studies showed
that a peptide derived from the CDR1 of a human anti-DNA Ab
(hCDR1) could ameliorate lupus by inducing Tregs and suppressing
the activation of autoreactive T cells through mechanisms including
downregulation of transcription factors responsible for negative
regulation of T-cell activation in lupus animal models (62, 76–79).
Furthermore, clinical trial data has indicated safety and efficacy of
hCDR1 (edratide) in SLE patients (80).

Wedemonstratedwithflowcytometry (FACS) immunophenotyping
that after pCons treatment the CD19+CD1d+ regulatory B cell
subset was significantly increased in BWF1 lupus mice compared
to naïve mice (Figures 4B, G, D). However, the CD19+CD5+ B cell
subset was significantly decreased (Figures 4C, H, I). This is a
significant finding and the next step will be to decipher the
mechanisms with future functional studies including testing B
cells from anti-CD5 treated control mice. In agreement with our
experiments, a previous study showed that anti-CD5 therapy
decreases severity of established disease in collagen-induced
arthritis in DBA/1 mice (81). Thus, our data with pCons therapy
has clinical and therapeutic relevance in peptide induced immune
tolerance. We also found that tolerized B cells have significant
increased FoxP3mRNA. Another study reported that the expansion
of CD25+hiCD5+ and FoxP3+ regulatory B cells is associated with
SLE disease activity in humans (82). Similarly, the presence of
FoxP3+ CD19+CD5+ B cells in human peripheral blood
mononuclear cells has also been reported (83). The diverse
suppressive mechanisms of these regulatory B cells are through
IL-10, TGFb, and IL-35. Previously we have demonstrated that
pCons-induced splenocytes have significantly increased amount of
TGFb, smad2, and smad3 expression and tolerized total CD8+ T
cells have increased amount of IL-10 (37). Although, we did not
measure the expression of IL-10, TGFb and IL-35 in the regulatory
B cells in our model, it is tempting to speculate that these molecules
will play important role in our system based on our previous data.
Thus, our findings may suggest that pCons tolerance promotes
tolerized B cells that can suppress the autoimmune responses.
Similar to our study, hCDR1 tolerance has effects on B cell
activating factor (BAFF) and B-cell CD74 macrophage inhibitory
factor in murine lupus (84, 85). The reduced levels of BAFF
correlated with reduced rate of maturation and differentiation of
B cells and decrease in integrin expression. Recent studies provided
further evidence of targeting of BAFF/BLys and APRIL in the
management of lupus (86–88); and another study reported the effect
of hCDR1 on IL-7 and apoptosis (89) and showed the rate of
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apoptosis is reduced with hCDR1 treatment in lupus mice. Bcl2 and
Bcl-XL levels were further reduced, and this was associated with
reduced activation of T and B cells (90). We demonstrated earlier
that pCons-induced CD8+ Tregs are resistant to apoptosis (29, 34). In
the present study, we found that bcl2 protein level was significantly
decreased in tolerized B cells compared to naïve B cells thus affecting
the survival of these cells in BWF1 mice. This is in agreement with
another study that revealed increased expression of Bcl2 leads to
development of SLE like symptoms in Bcl2 transgenic mice (91).
Thus, altogether, our data suggests that pCons’ effect on tolerized B
cells and down-regulation of IFNs and bcl2 may play overall
therapeutic beneficial effects in our tolerance model.
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Artificial antigen-presenting cells (aAPCs) are synthetic versions of naturally occurring
antigen-presenting cells (APCs) that, similar to natural APCs, promote efficient T effector
cell responses in vitro. This report describes a method to produce acellular tolerogenic
aAPCs made of biodegradable poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs)
and encapsulating IL-2 and TGF-b for a paracrine release to T cells. We document that
these aAPCs can induce both human CD4+ and CD8+ T cells to become FoxP3+ T
regulatory cells (Tregs). The aAPC NP-expanded human Tregs are functional in vitro and
can modulate systemic autoimmunity in vivo in humanized NSG mice. These findings
establish a proof-of-concept to use PLGA NPs as aAPCs for the induction of human Tregs
in vitro and in vivo, highlighting the immunotherapeutic potential of this targeted approach
to repair IL-2 and/or TGF-b defects documented in certain autoimmune diseases such as
systemic lupus erythematosus.

Keywords: autoimmunity, T cells, T regulatory cells, immune tolerance, systemic lupus erythematosus,
graft-versus-host disease, nanoparticles, humanized mice
INTRODUCTION

In natural conditions, the fate of activated T cells is determined by interaction between antigen-
presenting cells (APCs) and T cells. This involves the engagement of the MHC/peptide complex on
the APC and the T-cell receptor (TCR) on the T cell, and the complementary costimulatory
molecules on the APC and the T cell. The modulation of this critical step of the adaptive immune
response can have very important immunotherapeutic implications in the clinic for the generation
of effector and regulatory immune responses. However, the fine tuning of APCs interactions with T
cells for therapeutic purposes has been difficult to achieve. The natural sources of APCs are scarce.
Large amounts of starting cells are required for enrichment and/or sorting, and technical procedures
for their preparation are costly and time-intensive. For these reasons, alternative procedures have
been developed that include engineering cellular and acellular artificial APCs (aAPCs) (1). Cellular
aAPCs are engineered from primary cells or from transformed (human or xenogeneic) cells using
org May 2021 | Volume 12 | Article 628059168
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retroviral or lentiviral vectors to express the desired
costimulatory molecules and adhesion molecules for the
expansion and/or long-term growth of functional T cells (2).
Other cellular aAPCs may also express human HLA molecules to
generate antigen-specific cells for patients with a given HLA (3).
Those cellular aAPCs that carry the necessary components for
interaction and engagement of the cell surface ligands on T cells
for activation and proliferation (4, 5) have been used in cancer
immunotherapy and immunization in infection because of their
ability to generate effector T cell responses. However, their pro-
inflammatory activity makes them unsuitable in settings where
effector immune responses are deleterious to the host, such as
in autoimmunity.

We report here the development of acellular aAPCs that target
T cells and induce them to become functional Tregs in vitro
and in vivo. We had previously shown that nanoparticle
(NP)-mediated delivery of IL-2 and TGF-b (two cytokines that
are deficient in SLE) to mouse CD2+ and CD4+ cells induced
tolerogenic immune responses that protected mice from a
lupus-like syndrome (6, 7). Here we extend those results and
show that we can induce human functional CD4+ and CD8+

Tregs that suppress xenogenic graft-versus-host disease (GvHD)
in humanized mice using aAPC NPs, providing a proof-
of-principle of immunotherapeutic restoration of immune
homeostasis in conditions of immune dysregulation associated
with chronic inflammation.
METHODS

Preparation of PLGA Nanoparticles
Poly lactic-co-glycolic acid (PLGA) NPs were prepared as
described elsewhere (6). After preparation, the NPs were
characterized through examination of physical properties,
encapsulation metrics, and release kinetics according to
standard procedures (6). By dynamic light scattering, NPs were
found to have a mean ± SD hydrodynamic diameter of 245 ± 2
nm with a low polydispersity index indicative of a uniform NP
population with a relatively tight size distribution. Cytokine
encapsulation was measured by ELISA after NPs were
disrupted using DMSO, and standard curves were generated
using cytokine standards with all wells supplemented to contain
5% volume/volume DMSO and the appropriate concentration of
empty NPs. NPs contained a mean ± SD of 7.4 ± 0.4 ng TGF-b
and 1.9 ± 0.1 ng IL‐2 per mg of NP. For cell targeting, NPs
diluted in PBS were incubated 10 minutes prior to use with the
relevant biotinylated targeting antibody (anti-CD4, -CD8 or
-CD3) at a concentration ratio of 2 mg antibody/mg NP.

Preparation of Human PBMCs
Human peripheral blood mononuclear cells (PBMCs) were
prepared from heparinized venous blood of healthy adult
volunteers by Ficoll-Hypaque density gradient centrifugation
and used fresh (for transfer experiments) or cultured for 5
days in U-bottom well plates at a concentration of 0.5 x 106/
well in complete AIM V™ medium (Thermo Fisher Scientific,
Waltham, MA). All protocols that involved human blood donors
Frontiers in Immunology | www.frontiersin.org 269
were approved by the IRB at the University of California Los
Angeles. In some experiments, PBMCs were cultured with anti-
human CD3/CD28 Dynabeads (Thermo Fisher Scientific) or
with IL-2 (100 U/ml) and TGF-b (5 ng/ml) or anti-TGF-b
(1D11) (all from R&D Systems, Minneapolis, MN). In vitro
suppression assays were performed according to standard
protocols (6). CD4+CD25- T cells isolated by negative selection
to a pu r i t y o f >95% us ing the Mi l t eny i B i o t e c
CD4+CD25+CD127dim/- Regulatory T Cell Isolation kit II
served as responder cells in cocultures for 3 days with
autologous Tregs (positive fraction) isolated with the same kit,
following the manufacturer’s instructions. Culture supernatants
were analyzed for IFN-g content by ELISA (R&D Systems).
Proliferation was evaluated by a liquid scintillation counter
following addition of 3H‐thymidine (1 mCi/well) 16 hours
before analysis.

Flow Cytometry
Human PBMCs or magnetic-bead sorted cells were stained
following standard procedures with the following FITC-, PE-,
PerCP- or APC-conjugated anti-human antibodies: CD4
(RPA-T4), CD8 (RPA-T8), CD25 (MEM-181), CD127
(eBioRDR5), FoxP3 (PCH101), CD122 (TU27), CD45RA
(HI100), or isotype controls. All antibodies were from Thermo
Fisher Scientific. Data were acquired on a FACSCalibur™ flow
cytometer (BD Biosciences, San Jose, CA) and analyzed using
FlowJo™ software (BD, Franklin Lakes, NJ).

Mice
To assess the functional properties of the human Tregs induced
by aAPCs, we used the human-anti-mouse xenogeneic GvHD
model. The disease develops in recipient NOD/scid/IL2r
common g chain−/− (NSG) mice following the transfer of
human PBMCs (8) and, like human lupus, these mice develop
B cell hyperactivity and increased IgG production. NSG mice
were purchased from the Jackson Laboratory (Bar Harbor, ME)
and housed under specific pathogen-free conditions in
microisolator cages with unrestricted access to autoclaved food
and sterile water. 107 fresh human PBMCs were resuspended in
200 µl of PBS in insulin syringes and injected i.v. via the tail vein
into individual unconditioned NSG mice of 8-12 weeks of age.
The mice also received i.v. (individually) 1.5 mg IL-2/TGF-b-
loaded NPs decorated with anti-CD3 (OKT3, Thermo Fisher
Scientific), starting on the day of transfer of human PBMCs,
according to a previously described protocol (6): day 0, 3, 6, 9, 12.
Control mice received empty uncoated NPs or PBS under
identical conditions as the above NP-treated mice. The
experiments were performed according to the guidelines of the
Institutional Animal Committee of the University of California
Los Angeles. Animals that developed hunched posture combined
with lethargy and/or lack of grooming, reduced mobility or
tachypnea, were euthanized and an end-point of survival was
recorded at the time of sacrifice. Disease was monitored using a
validated scoring system (9) that evaluates each of the five
following parameters as 0 if absent or 1 if present: 1) weight
loss >10% of initial weight; 2) hunching posture; 3) skin lesions
(patchy alopecia); 4) dull fur; 5) diarrhea. Dead mice received a
May 2021 | Volume 12 | Article 628059
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total score of 5 until the end of experiment. Peripheral blood (to
separate PBMCs for flow cytometry) and plasma were collected
on days 0, 4, 14, 21 and 50. Plasma concentrations of human IgG
were measured by ELISA (Thermo Fisher Scientific). For
histologic evaluations, lung, liver and colon were collected on
day 50 after the transfer of PBMCs. Tissues were fixed in
formalin, paraffin embedded, and sections stained with
hematoxylin/eosin.

Statistical Analyses
Assessment for normal distribution was done by Shapiro-Wilks
test. Comparisons between two groups were evaluated using
(post-hoc) Student’s t test; comparisons among multiple groups
used one-way ANOVA with Bonferroni’s correction. Differences
in Kaplan-Meier survival curves were analyzed by the log-rank
test. Data were analyzed using GraphPad Prism software;
P values of <0.05 were considered significant.
RESULTS

Use of NPs as Acellular aAPCs to Induce
CD4+CD25hiFoxP3+CD127- and
CD8+FoxP3+ T Cells
We recently reported that NPs loaded with IL-2 and TGF-b and
targeted to T cells inhibited the production of anti-DNA
autoantibodies in (C57BL/6 × DBA/2)F1 (BDF1) hybrid mice that
develop lupus-like disease following the transfer of splenocytes from
parental DBA/2mice (6). Specifically, the NPs promoted a switch to
tolerogenic responses with an induction of CD4+ and CD8+ Tregs
that were responsible for the mitigation of disease manifestations
and prolonged the survival of BDF1 lupus mice.
Frontiers in Immunology | www.frontiersin.org 370
To extend those findings to humans, PBMCs from healthy
donors were incubated with PLGA NPs loaded with IL-2 and
TGF-b and targeted to CD4+ and CD8+ T cells. The observed
expansion in vitro of CD4+CD25hiFoxP3+CD127- (Figure 1A)
and CD8+FoxP3+ T cells (Figure 1B) after NP-mediated delivery
of tolerogenic cytokines to human CD4+ and CD8+ T cells
suggested the induction of immunoregulatory cells (10–14).

Paracrine Delivery of Cytokines to Human
T Cells by aAPC NPs Leads to the
Induction and Expansion of Functional
Tregs
These findings led us to wonder whether the NPs could induce a
tolerogenic T-cell program by acting as acellular aAPCs that
delivered engage the TCR rather than CD4 or CD8 and deliver
IL-2 and TGF-b. We found that the NPs loaded with tolerogenic
cytokines and coated with anti-CD3/28 antibodies to trigger TCR
stimulation efficiently expanded CD4+CD25hiFoxP3+CD127-

(Figure 1A) and CD8+FoxP3+ (Figure 1B) T cells in vitro,
indicating the ability of NPs to operate as acellular aAPCs capable
to induce human T cells with an immunoregulatory phenotype.

Having found that the delivery of IL-2 and TGF-b to T cells
by the NPs allowed human T cell differentiation into
CD4+CD25hiFoxP3+CD127- and CD8+FoxP3+ T cells, we
investigated the temporal contribution of TGF-b to the
process. The presence of TGF-b was required for the induction
of CD4+ and CD8+ Tregs but was dispensable for their expansion
since its blockade did not influence expansion (Figure 2A). Both
IL-2 and TGF-b were required for the induction but IL-2 alone
could promote expansion (Figure 2B). Thus, the IL-2 and TGF-
b delivered by the aAPC NPs play different roles in the
generation of the human Tregs, being both required for
induction but being only IL-2 required for expansion.
A B

FIGURE 1 | Nanoparticles (NPs) loaded with tolerogenic cytokines and targeted to human T cells induce CD4+ and CD8+ Tregs in vitro. PBMCs from healthy
volunteers (n = 5) were cultured for 5 days in the presence of 100 µg/ml NPs loaded with IL-2 and TGF-b that had been either left uncoated or decorated with
antibodies to T cells (anti-CD4/CD8 or anti-CD3/28). Cultures with medium only and either no NPs (unstimulated) or NPs kept unloaded (empty) served as negative
controls; cultures with anti-CD3/28 beads at a ratio of 0.2 beads/cell in the presence of soluble IL-2 and TGF-b served as positive control. Results show increased
numbers of CD4+CD25hiCD127-FoxP3+ (A) and CD8+FoxP3+ T cells (B) in the presence of NPs decorated with anti-CD4/CD8 Ab or anti-CD3/CD28 Ab. *P < 0.05
by the Student’s t test in the comparison with unstimulated cells.
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The activity of the aAPC NP-induced cells was confirmed by
assays of in vitro suppression that indicated that the aAPC NP-
induced CD4+ Tregs efficiently suppressed proliferation and
production of proinflammatory cytokines from T effector cells
(Figure 2C). Of note, aAPC NPs induced similar numbers of
both CD4+ and CD8+ Tregs (10–14) as compared to those
standardly induced by incubation with IL-2 and TGF-b (6, 15)
(Figure 2D). Moreover, the incubation with aAPCNPs increased
the expression of CD122 on CD8+FoxP3+ cells and CD45RA on
CD4+FoxP3+ cells (Figure 2D). The interest of this finding lies in
the fact that CD122 is a classical CD8+ Treg marker (15), while
CD45RA+ CD4+ Tregs are valuable for adoptive transfer of CD4+

Tregs in immune-mediated disorders since they maintain FoxP3
expression and retain homing receptors (CD62 and CCR7) after
extensive proliferation (16).
Frontiers in Immunology | www.frontiersin.org 471
Induction of Tregs In Vivo by aAPC NPs
AssociatesWith the Protection of Humanized
NSGMice From Lupus-Like Disease
Since the suppressive activity of the Tregs in vitro might not
necessarily correlate with a suppressive activity in vivo (17), we
evaluated the relevance of the above in vitro findings to in vivo
settings. Taking advantage of the known protective effects of
Tregs in allograft rejection, we tested the immunotherapeutic
potential of the aAPC NPs in a mouse model of human-anti-
mouse GvHD (which reproduces manifestations of lupus-like
disease in vivo) (8). Individual NSG mice received i.v. 107 human
PBMCs to develop GvHD. One group concomitantly received
(anti-CD3 Ab-) T-cell targeted NPs encapsulating IL-2/TG-b,
one control group received empty uncoated NPs, and another
control group only received vehicle (PBS). The results showed
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FIGURE 2 | Paracrine delivery of cytokines by aAPC NPs to human T cells favors the induction and expansion of functional Tregs in vitro. To induce Tregs, human
PBMCs from healthy donors (n = 6) were cultured with IL-2/TGF-b-loaded NPs targeted to T cells (decorated with anti-CD3/28) for 5 days. To study the expansion of the
induced Tregs, the cultured cells were then washed twice before incubation with IL-2-encapsulating NPs or empty NPs for 5 more days with or without anti-TGF-b
antibody (10 µg/ml). (A) The expansion of aAPC NP-induced CD4+ and CD8+ Tregs is not influenced significantly by the blockade of TGF-b. P not significant in the
presence or absence of anti-TGF-b. (B) T-cell-targeted NPs that only encapsulate IL-2 promote the expansion of CD4+ and CD8+ Tregs; *P < 0.05 by the Student’s
t test. (C) CD4+ Tregs induced by aAPC NPs targeted to T cells suppress in vitro the proliferation (left) and IFN-g production (right) of cocultured CD4+CD25- T cells.
*P < 0.05 in the comparison with Treg : Teff at the 0:1 ratio (only stimulated T effector cells). (D) Comparison of induction of CD4+ (top) and CD8+ (bottom) Tregs by
aAPC NPs decorated with anti-CD3/28 vs. anti-CD3/28 beads in the presence of soluble IL-2/TGF-b. Control cultures had medium only. Percentage numbers and
representative histograms (grey, medium only; green, IL-2/TGF-b; blue, aAPC NPs) for the expression of CD45RA by CD4+ Tregs and CD122 by CD8+ Tregs (n = 4
donors). *P < 0.05 by the Student’s t test in the comparison vs. medium only; not significant between cultures with IL-2/TGF-b and aAPC NPs.
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that the mice that received T-cell targeted NPs encapsulating IL-
2/TG-b had an in vivo expansion of both CD4+ and CD8+ Tregs
that was absent in mice that had received empty NPs or no NPs
(Figure 3A) and that associated with a reduction in the levels of
circulating human IgG (Figure 3B). Of note, the expansion of
the Tregs remained above baseline levels throughout the
experiment until its termination at day 50 (Figure 3A).

Importantly, the NSG mice that received T-cell targeted NPs
loaded with IL-2/TGF-b had significantly reduced disease
manifestations. The aAPC NP-protected mice did not lose
weight after the transfer of human PBMCs (Figure 4A) and
had an extended survival (Figure 4B) as compared to the mice
that had not received NPs or that had received empty NPs
(Figures 4A, B). Mice treated with NPs also had reduced human
IgG levels (Figure 4C) and improved skin morphology (Figure
4D). Finally, the histopathology of lung, liver and colon of the
NSG mice receiving aAPC NPs showed a significant protection
as compared to the control mice (Figure 4E). These results
provide evidence that the aAPC NPs induced therapeutic Tregs.
DISCUSSION

Weshow that PLGANPs can beused as acellular aAPCs for in vitro
and in vivo expansion of functional human Tregs that suppress
xenogeneic graft-versus-host disease. In the in vitro experiments
with human cells, the aAPC NPs containing IL-2 and TGF-b were
decorated with anti-CD3/CD28. In the in vivo experiments, the
NPs were decorated with anti-CD3 Ab only since human T cells
were activated by the mouse MHC antigens. In both cases
CD4+CD25hiCD127loFoxP3+ and CD8+FoxP3+ Tregs were
generated and expanded. While IL-2 and TGF-b were required
for Treg induction, only IL-2 was required for Tregs expansion.

When APCs engage the TCR through the MHC/antigen
complex and provide costimulatory signals to T lymphocytes,
cell differentiation and functional activation ensue. The
replication of this process by aAPCs - used as synthetic
Frontiers in Immunology | www.frontiersin.org 572
platforms - can recapitulate the natural interaction between
APCs and T cells, allowing the delivery of signals to T cells
and the initiation of adaptive immune responses (5, 18) that
include a paracrine delivery of IL-2 to T cells (as in our aAPCs).
Our strategy of employing aAPCs that encapsulated a payload
for the promotion of tolerogenic immune responses could
represent a new tool with immunotherapeutic potential, being
effective in humanized mice. The fact that PLGA is
biocompatible and has a favorable safety profile in clinical
settings envisions the possibility of a rapid translational
potential of this approach to the clinic (19).

The expansion of human Tregs with aAPC NPs has the
advantage of limiting the deleterious effects associated with an in
vivo induction of Tregs achievable through systemic treatments
with cytokines that carry non-targeted actions. We acknowledge
that our NPs did not include components of antigen specificity,
differently from the paramagnetic iron-dextran NPs that expressed
peptide/MHC and anti-CD28 antibodies and were used in organ-
specific autoimmune diseases (20, 21). We believe that the
induction of polyclonal Tregs might be advantageous in
conditions such as SLE, where the chronic systemic
autoimmune response to multiple self-antigens (22) benefits
from polyclonal Tregs (23). We also think that the expansion of
both CD4+ and CD8+ Tregs in vivo in SLE will have more
beneficial effects than that of each subset alone because of the
protective activity of CD8+ Tregs in the disease (15). However, a
limitation of our study is that it does not distinguish the relative
contribution of the CD4+ and CD8+ Tregs in the observed in vivo
protective effects. Since in previous work with CD4+ and CD8+

Tregs induced ex vivo the CD8+ Tregs were major contributors to
the protection of immunodeficient mice from human anti-mouse
GvHD through non-cytotoxic suppressive effects on allogeneic
cells (24), we suggest that the CD8+ Tregs in our current study did
contribute to the protective effects on the human anti-mouse
GvHD. The extent needs to be investigated directly.

Multiple possible therapeutic applications can benefit from
the utilization of Tregs yet several problems hamper practical
A B

FIGURE 3 | Humanized NSG mice treated with aAPC NPs have increased numbers of circulating CD4+ and CD8+ Tregs and reduced levels of human IgG.
Individual NSG mice (n = 12) that received i.v. 107 human PBMCs each for the induction of lupus-like disease were divided into two groups of 6 mice each. One
group received IL-2/TGF-b-loaded NPs targeted to T cells (decorated with anti-CD3 Ab), the other group that served as control received empty, untargeted NPs
according to the protocol detailed in the Methods. (A) PBMCs were analyzed ex vivo by flow cytometry at the time points indicated. Relative frequency of peripheral
CD4+ and CD8+ Tregs was derived from counts of CD4+ and CD8+ T cells. (B) Human IgG antibodies in plasma were measured by ELISA. *P < 0.05 by the
Student’s t test.
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use. In general, the small number of Tregs that circulate in the
peripheral blood requires Tregs expansion ex vivo before
infusion in sufficient numbers. This associates with significant
costs and specific technical requirements (25). Additionally,
repeated treatments for the patient are often required, since ex
vivo-expanded Tregs can become instable over time (26). Finally,
chronic inflammation in autoimmune patients promotes the
reversal of the phenotype of the transferred Tregs into T
effector cells (27), and Treg potency may decrease over time (28).

Here we report that aAPC NPs can sustain Treg activity with
prolonged efficacy in humanized mice, providing rational
grounds for an immunotherapeutic expansion in vivo of
human Tregs for the suppression of proinflammatory
responses. Future investigations will address whether the
inclusion of antigen-specificity in the aAPC NPs can further
improve their tolerogenic benefits.
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Autoimmune diseases are disorders of immune regulation where the mechanisms
responsible for self-tolerance break down and pathologic T cells overcome the protective
effects of T regulatory cells (Tregs) that normally control them. The result can be the initiation of
chronic inflammatory diseases. Systemic lupus erythematosus (SLE) and other autoimmune
diseases are generally treated with pharmacologic or biological agents that have broad
suppressive effects. These agents can halt disease progression, yet rarely cure while carrying
serious adverse side effects. Recently, nanoparticles have been engineered to correct
homeostatic regulatory defects and regenerate therapeutic antigen-specific Tregs. Some
approaches have used nanoparticles targeted to antigen presenting cells to switch their
support from pathogenic T cells to protective Tregs. Others have used nanoparticles targeted
directly to T cells for the induction and expansion of CD4+ and CD8+ Tregs. Some of these T
cell targeted nanoparticles have been formulated to act as tolerogenic artificial antigen
presenting cells. This article discusses the properties of these various nanoparticle
formulations and the strategies to use them in the treatment of autoimmune diseases. The
restoration and maintenance of Treg predominance over effector cells should promote long-
term autoimmune disease remission and ultimately prevent them in susceptible individuals.

Keywords: nanoparticles, regulatory T cells, systemic lupus erythematosus, autoimmunity, treatment, antigen-
presenting cell, dendritic cell
INTRODUCTION

Amajor unmet need in chronic immune-mediated inflammatory diseases that include autoimmune
diseases, graft versus host disease and allograft graft rejection is to achieve long-term remission.
Most current approaches use agents that are only partially effective because they not only suppress
pathologic cells but also the cells that are required to control those pathologic cells. Moreover, the
broad immunosuppressive effects of pharmacological and/or biological agents are often
accompanied by toxic side effects. Fortunately, novel strategies with more selective cellular
targets (and thus more effective and less toxic) are being developed.
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Autoimmune diseases are generally T cell-dependent
disorders of the immune regulation. The immune system is
constitutively highly active with a rapid turnover of T
regulatory cells (Tregs) and antigen-presenting dendritic cells
(DCs). Homeostatic regulatory mechanisms control immune
cells with dual functions: 1) they fight infectious agents and
2) also prevent the emergence of potentially pathologic self-
reactive cells not eliminated at birth. In health, regulatory
populations of CD4+ and CD8+ Tregs keep these cells
dormant, and interactions between tolerogenic DCs and Tregs
maintain immune tolerance. In autoimmune diseases, instead,
homeostasis becomes dysregulated and immunogenic DCs enable
pathogenic T effector cells to predominate over the Tregs (1). A
prototypical disorder of immune regulation is systemic lupus
erythematosus (SLE), a multisystem autoimmune disease (2). In
SLE both CD4+ and CD8+ Treg function is decreased (3).

Several therapeutic approaches have been developed to
restore normal numbers and/or function of Tregs when
abnormal. One approach that has reached clinical trials has
been to isolate and expand the small numbers of Tregs present
in the peripheral blood. The adoptive transfer of expanded
autologous CD4 Tregs has been used to treat various
autoimmune diseases, graft versus host disease and to prevent
solid organ graft rejection (4). Adoptive CD4+ T cell therapy in
one case of lupus with skin disease revealed evidence of T reg
activation (5). Although the adoptive transfer of expanded
polyclonal CD4 Tregs appears to be safe, the cost and technical
complexity to expand autologous Tregs have limited this
approach (6). An alternative strategy has been the induction/
expansion of Tregs ex vivo. The cytokines interleukin (IL)-2 and
transforming factor-beta (TGF-b) are essential for the
generation, function and survival of CD4 Tregs (7, 8). In SLE,
the production of IL-2 and TGF-b is decreased (9, 10). To treat
SLE and other autoimmune diseases with low IL-2 production,
one could induce and expand autologous SLE CD4 Tregs ex vivo
with IL-2 and TGF-b for subsequent adoptive transfer of these
cells back to the donor (11). Although this Treg-based
therapeutic approach has been successful in mouse models, it
has not yet reached the clinic. The possibility to induce and
expand in vivo Tregs has recently been considered through the
use of nanoparticles (NPs). Formulated NPs with the potential to
reset the homeostatic mechanisms restoring Treg predominance
are discussed here. Since DCs control T cell differentiation, one
approach is to switch disease-associated immunogenic DCs to
tolerogenic DCs (which induce and expand Tregs). Another
approach directly targets T cells and increases functional CD4+
and CD8+ Tregs. We discuss how the immunotherapeutic use of
NPs could lead to the reversal, long-term remission, and
ultimately, prevention of autoimmune diseases.
NANOPARTICLES IN IMMUNOTHERAPY

Nanoparticles engineered to target specific cells or tissues with a
high drug loading capacity represent a new generation of drug
delivery systems for many biomedical indications. Nanoparticles
Frontiers in Immunology | www.frontiersin.org 276
are constructed using natural or synthetic materials with well-
established safety record and have a typical diameter ranging from
0.1 to 1000x10-9 m (1 nanometer, which is 10x the size of an
atom). The motivation for using such systems derive from the fact
that viruses and pathogens that elicit or subvert immune responses
are, in essence, small particles endowed with the ability to interact
with - or avoid - immune cells in a variety of ways. Nanoparticles
currently used consist of both organic or colloidal NPs that can be
taken up by cells of the reticuloendothelial system. These include
the phagocytic cells of the innate immune system such as
macrophages, DCs and neutrophils. Other NPs can be surface-
modified to target specific lymphocyte populations.

Advantages of NPs over traditional drugs include: 1) markedly
decrease the amount of a biological agent delivered by 100 to 1000-
fold when targeted to specific cells (by increasing the local
concentration following release). This reduces the side effects
as well as the cost. 2) improve the delivery of insoluble drugs
and maximize bioavailability; 3) combine therapeutic agents with
a diagnostic, resulting in “theranostic” agents. The durability
of the concept is an indication of its appeal in developing
immunomodulatory strategy technologies. The potential to
assemble such materials on nanoscale dimension facilitates
circulation in the blood, biodistribution to lymph nodes,
interaction with extracellular receptors (if targeted appropriately)
and intracellular accumulation without compromising normal
physiologic functions. We focus here on the application of
nanoparticles in the size range 100-500 nm (Figure 1).

Nanoparticles are currently being tested for the treatment of
autoimmune disease because they can be engineered for three
distinct uses: 1) they can function as carriers of biologic agents
and small molecule drugs, 2) they can be anti-inflammatory, or
3) tolerogenic (12, 13). Taking advantage of the fact that they are
phagocytosed by macrophages, NPs can encapsulate agents that
polarize those cells to become anti-inflammatory. These agents
include cytokines such as IL-10, statins, angiotensin receptor
blockers, or peroxisome proliferator-activated receptor-g
(PPARg) agonists (14). Nanoparticles loaded with biological
agents such as tumor necrosis factor antagonists ameliorate
inflammatory arthritis (15). Here we concentrate on the use of
NPs to induce and expand Tregs.

The effects of NPs are determined by their size,
biodistribution and route of administration. Particles smaller
than 6 nm drain to the blood while particles larger than 9 nm
drain preferentially to lymphatics. Particles 20 to 100 nm are
taken up by liver sinusoidal cells or macrophages. Particles 100 to
200 nm traffic to the spleen and liver, and those up to 5 µm will
accumulate in the spleen. NPs delivered by intravenous injection
target APCs in the spleen and liver. Those delivered by
subcutaneous injection are preferentially taken up by DCs in
draining lymph nodes.

The materials used for the preparation of NPs can include
metals, liposomes and synthetic and natural polymers (16–19).
Specifically, polymers fabricated from polylactides (PLA) and
copolymers of lactide and glycolide (poly-lactic-co-glycolic acid,
PLGA) have established commercial use in humans and have a
long safety record (20, 21). These systems have several features
June 2021 | Volume 12 | Article 681062
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that make them ideal materials for the fabrication of anti-
inflammatory or tolerogenic nanosystems: 1) control over the
size range of fabrication, down to 100 nm and potentially even
lower (an important feature for passing through biological
barriers); 2) reproducible biodegradability without the addition
of enzymes or cofactors; 3) capability for sustained release of
encapsulated, protected cytokines or other agents that may be
tuned in the range of days to months by varying factors such as
the PLA to polymers of glycolic acid (PGA) copolymer ratios,
potentially abrogating repetitive administrations, 4) well-
understood fabrication methodologies that offer flexibility over
the range of parameters that can be used for fabrication,
including choices over the polymer material, solvent, stabilizer,
and scale of production and 5) control over surface properties
facilitating the introduction of targeting ligands on the surface
(18, 22).

While other materials can be considered such as metal oxide
NPs - which can be conjugated with antigens, targeting ligands
and immunomodulators on the cell surface - these do not
facilitate sustained release and are limited to applications that
do require biodegradability. Renal clearance is the major
clearance pathway with such systems and requires them to be
ultra-small (<50 nm). Given the potential safety issues with long-
term use, liposomes that carry antigen, NF-kB inhibitors, or
immunosuppressive drugs are often safer options and do not
require stringent size engineering criteria. They have been used
to suppress arthritis and lupus (23, 24) and variants of liposomes
with a hydrogel interior (to facilitate sustained release) have been
developed and utilized for the delivery of biologics and small
molecule drugs in lupus therapy (24).

The appeal of biodegradability of NPs for controlled release of
encapsulant together with safety requirements have led to the
wide use of synthetic biopolymers as materials for construction
of biodegradable NPs. The most widely used NPs are synthetic
polymers, such as PLA or PLGA. Unlike liposomes, which burst
release unless lipids are cross-linked or the interior is modified
Frontiers in Immunology | www.frontiersin.org 377
with a hydrogel (12), these solid biodegradable polymer particles
are stable over time in aqueous media, releasing encapsulant
slowly and, in addition, they can be manufactured by a number
of methodologies and facilitate encapsulation of hydrophobic
moieties such as rapamycin, mycophenolic acid, vitamin D3 and
dexamethasone (25) through an entanglement with the
hydrophobic polymer core (24, 26–28). One group compared
the tolerogenic effects of PLGA NPs with TMC-TPP (N-
trimethyl chitosan tripolyphosphate) NPs. They found that
PLGA NPs enhanced production of retinal dehydrogenase by
APCs. This enzyme increases retinoic acid which enhanced
CD4+Foxp3+ Tregs induced by TGF-b (29). Clinically, this is
of interest because IL-2 and TGF-b induce human naïve CD4
cells to express FoxP3 but, unlike mice, these cells lack strong
suppressive effects. Adding all-trans retinoic acid to IL-2 and
TGF-bmarkedly increased the protective properties of the Tregs
to levels equivalent to mouse Tregs (30). PLGA NPs also increase
the stability of induced CD4 Tregs. As will be discussed below,
mouse CD4+ cells induced to become CD25+Foxp3+ Tregs with
IL-2- and TGF-b-loaded PLGA NPs were more stable than Tregs
induced with soluble IL-2 and TGF-b (31).
RATIONALE FOR THE USE
OF NANOPARTICLES

In the steady state, rapidly turning over immature DCs become
tolerogenic and induce Tregs that maintain immune tolerance.
In autoimmune diseases, instead, immature DCs become
immunogenic and support pathogenic effector cells, with
resulting predominant pathogenic T cells over the regulatory
cells that should control them. The therapeutic objective, then, is
to formulate NPs that can reset a dysregulated immune system
back to normal and restore autoantigen specific Treg
predominance. Since in some autoimmune diseases such as
FIGURE 1 | Nanoparticle carriers offer a unique set of characteristics that have inspired significant interest in their use in engineering novel immunotherapies in the
field of tolerance induction.
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SLE, type 1 diabetes (T1D) and multiple sclerosis, specific
autoantigen peptides have been identified, the goal is to induce
antigen-specific Tregs. However, in diseases such as rheumatoid
arthritis and inflammatory bowel disease where specific
autoantigens are unclear, the goal is to target NPs to disease
sites to switch immunogenic DCs to tolerogenic DCs and
switch local macrophages from inflammatory to anti-
inflammatory cells.

To restore Treg predominance, two approaches are possible:
1) NPs targeted to DCs or other antigen-presenting cells (APCs),
to induce them to become tolerogenic, or 2) NPs targeted directly
to T cells for the induction and expansion of Tregs. Figures 2
and 3 summarizes these approaches. It has been established that
CD4 Tregs require IL-2, TGF-b, and continuous T cell receptor
stimulation for function and survival (7, 32, 33). Nanoparticles
can provide these agents and, where possible, the antigen for the
generation of antigen-specific Tregs. Also, although most
investigators have focused on CD4 Tregs, CD8 Tregs have as
Frontiers in Immunology | www.frontiersin.org 478
well important tolerogenic roles (34, 35). In human SLE, like
CD4 Tregs, CD8 Tregs can inhibit anti-DNA autoantibodies
(36, 37). Therefore, attention should be given to inducing CD8
as well as CD4 Tregs.
NANOPARTICLES THAT GENERATE
TOLERANCE THROUGH MODULATION OF
ANTIGEN PRESENTING CELLS (APCs)

Delivering Pharmacological Agents to
Promote Tolerogenic APCs
The liver and the intestinal immune system are enriched in APCs
with high tolerogenic potential (38, 39). It is well known that
oral administration of protein antigens can result in non-
responsiveness to those antigens. Oral tolerance can prevent
certain autoimmune diseases in animals but, unfortunately,
A

B

FIGURE 2 | Nanoparticles targeted to antigen-presenting cells can switch immunogenic dendritic cells to tolerogenic. (A). While immature dendritic cells (DCs)
normally mature to tolerogenic in the steady state, in untreated autoimmune disease these cells can become immunogenic and induce pathogenic T cell effector
cells (CD4+ Th1, Th2 and Th17, and CD8+ T cells). (B). Different formulations of nanoparticles (antigen non-specific, peptide-containing, or peptide plus drug) have
been designed to switch the maturation of DCs from immunogenic back to tolerogenic. These DCs expand one or more populations of regulatory cells (antigen-
specific and non-specific CD4+ and CD8+ Tregs, Tr1 cells, and B regulatory cells) and reset the immune system to restore a predominance of regulatory cells over
pathogenic effector cells.
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multiple attempts to translate that to human therapeutics has not
been successful (39). Nanoparticles have been used to amplify
tolerogenic effects (40). Repeated oral delivery of chitosan-DNA
NPs can prevent antibodies blocking functional FVIII in mice
with hemophilia A (41). Oral gene application using chitosan-
DNA NPs induce transferable tolerance (42). Orally delivered
nanoparticle-curcumin has been reported to ameliorate
experimental colitis via modulation of gut microbiota and
the induction of Tregs (43, 44). Curcumin is a hydrophobic
polyphenol prepared from the root of the perennial herb
Curcuma longa, a member of the ginger family. Curcumin
possesses a wide variety of biological functions, such as anti-
inflammatory, anti-cancer, antioxidant, antimicrobial, wound-
healing and hypoglycemic activities. Curcumin inhibits cell
signaling pathways that include nuclear factor k light-chain-
enhancer of activated B cells (NF-kB), signal transducer and
activator of transcription proteins (STAT)3, nuclear factor
erythroid 2-related factor 2 (Nrf2), reactive oxygen species
(ROS), cyclooxygenase (COX)-2, and phosphatidylinositol 3-
kinase (PI3K) (43). Strong cell signaling through NF-kB and the
PI3K/Akt/mTOR pathway generates inflammatory cells or T
effector cells, respectively, while weaker signals induce anti-
inflammatory cells or Tregs. It is likely that modulating signaling
from strong to weaker contribute to the many effects of curcumin
(44). A recent breakthrough in the development of NPs capable of
delivering biologicals orally will be described below.

Delivering Disease-Relevant Antigens
to APCs Through Naturally
Tolerogenic Mechanisms
In the steady state, a variety of APCs in the liver are in a
tolerogenic state and maintain local and systemic immune
tolerance to self and foreign antigens. These APCs include DCs,
macrophage-like Kupffer cells (KCs), liver sinusoidal endothelial
cells (LSECs), and hepatic stellate cells (HSCs). Even hepatocytes
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can express low levels of major histocompatibility complex
(MHC)-I/MHC-II and co-stimulatory molecules that maintain
tolerance (38). Investigators have taken advantage of NPs that
accumulate in tolerogenic liver APCs to treat autoimmune
diseases (45–47). One group has used PLGA NPs targeted to
the liver to induce antigen-specific immune tolerance in a
pulmonary allergen sensitization model (48). Others have used
nanoparticle-based autoantigen delivery to Treg-inducing liver
sinusoidal endothelial cells to control autoimmunity in mice (49).

Various approaches have been investigated that combine
antigen delivery with a strong tolerogenic signal. The objective
is to induce rapidly turning-over immature dendritic cells (DCs)
to differentiate into tolerogenic APCs. In subjects with
autoimmune diseases, immature DCs become immunogenic
cells which perpetuate the disease. Here one must switch their
differentiation of immunogenic cells to tolerogenic. One
approach is to take advantage of the tolerogenic effects of
clearing cells that died of apoptosis. Macrophages and
immature APCs that phagocytose apoptotic cells produce
TGF-b, which has tolerogenic effects (50–52). One group
used the tolerogenic effects of apoptotic cells as a starting
point for immunotherapy using the experimental allergic
encephalomyelitis (EAE) mouse model of multiple sclerosis,
characterized by T helper type 1 (Th1) and/or Th17 effector
cells. The authors found that intravenous administration of
peptides crosslinked to syngeneic splenic leukocytes safely and
efficiently induced antigen-specific immune responses, and that
the tolerance by apoptotic antigen-coupled leukocytes was
induced by PD-L1+ and IL-10-producing splenic macrophages
and maintained by Tregs (53). The same group then switched
from antigen-labeled cells to antigen-bearing NPs. They
observed that intravenous delivery of negatively charged PLGA
NPs were taken up by splenic macrophages that express the
scavenger receptor MARCO. These NPs prevented/treated EAE
and T1D (54, 55), and the apoptotic effect of NPs carrying
FIGURE 3 | Nanoparticles can be formulated as tolerogenic artificial antigen-presenting cells that directly target specific lymphocyte subpopulations to become
regulatory cells. Three examples are shown that induce one or more subsets of regulatory cells.
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antigen taken up by phagocytic immature APCs led to the
production of and TGF-b and IL-10. These cytokines matured
the APCs into tolerogenic, with the ability to induce Tregs. Most
recently, it has been shown that PLGA NPs carrying single or
multiple peptides could induce CD4+Foxp3+ Tregs that
suppressed CD4 and CD8 cells (56).

Macrophage recognition of phosphatidylserine, a component
of the cell membrane, is another strong apoptotic signal that can
increase tolerogenic IL-10 and TGF-b. Liposomes containing
peptide antigen and phosphatidylserine were given to patients
with T1D to determine their tolerogenic effects on DCs. These
liposomes decreased the autologous T cell proliferation.
However, likely because of variability of the DC responses,
liposomes did not affect the profile of pro-inflammatory or
anti-inflammatory cytokines released by the cells (57).

Delivering Drug-Antigen Combinations
to Drive Antigen Specific
Tolerogenic Skewing
Nanoparticles that carry antigen-peptides and pharmacological
agents have been studied for their capacity to generate Tregs.
These agents attached to the surface or encapsulated in the PLGA
NPs include TGF-b (58) and dexamethasone (59). Various
immunomodulators have been used together with antigen-
peptides to induce Tregs. Colloidal gold NPs have been
engineered to deliver both a tolerogenic aryl hydrocarbon
receptor (AHR) ligand and a proinsulin peptide to induce
tolerogenic DCs that promote CD4+Foxp3+ Treg generation
in vivo and prevent T1D in mice (60). These NPs induce
monocyte-derived DCs to develop a tolerogenic phenotype by
inhibiting NFkB signaling. The strength of cell signaling plays an
important role in cell differentiation. The development of mature
immunogenic DCs requires strong NFkB pathway signaling (61).
By contrast, weaker NF-kB signaling is important in the
establishment of immune tolerance, including both central
tolerance and the peripheral function of Tregs (62). This AHR
effect depends upon the induction of the suppressor of cell
cytokine-2 (SOCS2) protein (60). These AHR-ligand
containing NPs have been previously shown to induce Type 1
(Tr-1) Tregs and B regulatory cells (63). More recently this group
has used nanoliposomes carrying an AHR ligand to treat
EAE (64).

PLGA NPs containing antigen and an inhibitor of the PI3K/
AKT/mTOR pathway have also been extensively studied for their
tolerogenic effects. The PI3K pathway is the chief signaling
pathway that T cells use to transmit antigen stimuli from the
TCR to the nucleus (65). Similar to NFkB, strong TCR signals
result in T effector cell differentiation, whereas weaker signals
results in Treg differentiation (66). Rapamycin (rapa) inhibits
signaling through mTOR. Although rapa has immunosuppressive
effects, the combination of this agent and IL-2 promotes the
induction of CD4+CD25+Foxp3+ cells (65). Rapa packaged in
PLGA NPs has much stronger immunomodulatory properties
than its soluble form (67). Nanoparticles containing antigen and
rapamycin induce CD4+Foxp3+ Tregs and prevent EAE (67, 68).
Many of the biological agents now in use for the treatment of
human autoimmune diseases are antigen and can elicit antibodies
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that block their therapeutic effects. Tolerogenic polylactide NPs
that block the production of these antibodies can have useful
beneficial effects and are in clinical trials (69).

It is desirable to have antigen in the NP, yet antigen non-
specific microparticles can also be useful. Blocking the positive
co-stimulatory effects immunogenic DCs can be therapeutic. In
T1D, three antisense oligonucleotides contained in microspheres
were targeted to the primary transcripts of CD40, CD80 and
CD86 co-stimulatory molecules. The result was attenuated T cell
signaling that induced CD4+Foxp3+ Tregs which reversed
hyperglycemia (70). In a lupus-like disease model resulting
from a CD4 helper cell-driven chronic graft versus host
disease, NPs induced CD4 and CD8 polyclonal Tregs that
prevented the disease (31) Here the antigen source was non-
self MHC peptides. Thus, with persistent endogenous antigen
stimulation, polyclonal Tregs can have therapeutic effects.
NANOPARTICLES WITH DIRECT
TOLEROGENIC EFFECTS ON
LYMPHOCYTE SUBSETS

Delivering Small-Molecule Drugs or
miRNA to T Cells
Nanoparticles can have direct effects on T cells and B cells. NPs
have been used to correct decreased T cell production of IL-2 and
increased production of IL-17 in SLE (2). Calcium/calmodulin
protein kinase IV has a role in both abnormalities. KN93, a small
molecule inhibitor of this kinase, was encapsulated in a
nanolipogel that was targeted to CD4+ cells. Previously, this
group had reported that the soluble form of this inhibitor
increased CD4+ Foxp3+ Tregs (71). Here the NPs markedly
reduced murine EAE and SLE (72). T cells were not depleted, but
Th17 cells were effectively blocked. In SLE lupus prone mice,
targeted delivery of a CaMK4 inhibitor to podocytes preserved
their ultrastructure, prevented immune complex deposition and
crescent formation, and suppressed proteinuria. In animals
exposed to adriamycin, podocyte-specific delivery of a CaMK4
inhibitor prevented and reversed podocyte injury and renal
disease (73).

Aberrant DNA demethylation in T cells leads to T cell
abnormalities in SLE and correlates with disease activity (74). 5-
azacytidine, (5-azaC) a DNAmethyltransferase inhibitor can correct
these abnormalities. However, generalized hypomethylation can
have many adverse side effects. Therefore, 5-azaC was packaged in
liposomes that were targeted to either CD4 or CD8 cells. Each of
these liposomes markedly improved nephritis in a mouse model of
lupus. The mechanism of action on each T cell subset was different.
The CD4-targeted liposomes increased Foxp3 expression,
expanded CD4 Treg numbers and enhanced function. The CD8-
targeted liposomes enhanced cytotoxicity of these cells and
restrained the expansion of pathogenic TCR-ab+CD4–CD8–

double-negative T cells. Importantly, systemic azaC delivery did
not have these positive therapeutic effects (75). Thus, established
disease could be reversed in a mouse model, underlining the
importance of targeting NPs to specific cells.
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In addition to T cells, liposome NPs have been used to target
antigen directly to B cells. Antigenic liposomes displaying CD22
ligands induce antigen-specific B cell tolerance (76) and
apoptosis (77).

Nanoparticles packaged with microRNA-125a (miR-125)
have been reported to ameliorate a mouse model of lupus by
restoring the balance between effector and Tregs. A miRNA is a
small non-coding RNAmolecule that functions in RNA silencing
and post-transcriptional regulation of gene expression. miRNAs
regulate approximately 90% of protein-coding genes (78). MiR-
125 may have an important role in immune tolerance. One group
reported that miR-125 is decreased in SLE patients (79). To
repair this defect and increase stability of this RNA, miR-125 was
packaged into ~150 nM NPs consisting of polyethylene glycol,
PGLA, and poly (L-lysine). These NPs were endocytosed into
activated T cells that became Tregs when cultured with TGF-b.
Comparative in vivo studies in lupus mice with free miR-125
revealed that the NPs increased RNA concentration in the spleen
and prevented splenomegaly and renal disease. This was
accompanied by increased percentages of CD4 Tregs and
decreased percentages of CD4 Th17 cells. Thus, in SLE, these
NPs appear to have major effects on restoring normal immune
regulation (80). However, miR-125 may have different properties
in other diseases. In rheumatoid arthritis, levels of miR-125a are
high and correlate with other inflammatory markers (81). In
bacterial sepsis, high levels of this miRNA correlate with acute
respiratory distress syndrome (82).
NANOPARTICLES THAT FUNCTION
AS TOLEROGENIC ARTIFICIAL
ANTIGEN-PRESENTING CELLS (aAPCs)
THAT PROVIDE ACTIVATING,
COSTIMULATORY, AND
CYTOKINE SIGNALS

Several groups have tried to substitute DCs or other APCs with
NPs to make artificial antigen presenting cells (aAPCs). While
previously immunogenic aAPCS had been formulated to
enhance immunization (83), two approaches were undertaken
to generate tolerogenic aAPCs. One provided both CD4+ and
CD8+ cells the T cell receptor stimulation and cytokines to
become Tregs. The other used NPs to present peptide-MHC
complexes directly to T cells to induce CD8+ and CD4+ Tregs.

In 2011, it was shown that PLGA NPs coated with anti-CD4
antibodies and loaded with Leukemia Inhibitory Factor (LIF)
induced mouse CD4+ cells to become CD4+ Foxp3+ Tregs
(84). These NPs blocked the ability of IL-6 to induce CD4+
cells to become pro-inflammatory IL-17-producing cells. NPs
encapsulated with LIF have used as neuroprotective in multiple
sclerosis to repair myelin in vivo (85, 86). This work was followed
up in 2015 by loading CD4-targeted PLGA NPs with IL-2 and
TGF-b, the cytokines that induce Foxp3 Tregs. These NPs
induced mouse CD4+ cells to become Tregs that, unlike those
induced with soluble IL-2 and TGF-b, were stable in the presence
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of IL-6. The percentage of nanoparticle-induced CD4 Tregs and
their suppressive activity in vitro was much greater than those
induced ex vivo by soluble IL-2 and TGF-b. Since CD4 Tregs
need continuous IL-2 exposure to maintain Foxp3 expression
(87), a single dose of NPs sustained Foxp3 expression for 10 days.
By contrast, those CD4 cells stimulated with soluble IL-2 and
TGF-b had completely lost Foxp3 expression by this time (13).
At present, clinical trials are underway with low dose IL-2 to treat
SLE. One has been completed: NCT 02084238. Ongoing trials
include: NCT02955615, NCT03312335, NCT03451422,
NCT03782636, and NCT02411253. While increases in Foxp3
quickly fall after each dose of IL-2, one might anticipate that NPs
targeted to CD4+ cells that are loaded with this cytokine will
sustain Foxp3 expression longer.

PLGA NPs targeted to both CD4 and CD8 cells and
encapsulated with IL-2 and TGF-b have been used to prevent a
lupus-like syndrome (chronic graft versus host disease) (31). In
their studies with Tregs induced ex-vivo, this group had
documented that the combination of CD4 and CD8 Tregs was
more effective than CD4 Tregs alone in preventing this lupus-like
syndrome (88). Their objective, therefore, was to expand CD4 and
CD8 Tregs in vivo. To do so, they coated the NPs with both anti-
CD2 and anti-CD4 antibodies. Anti-CD2 antibody was chosen
since it had been reported that these antibodies can also target
natural killer (NK) cells (89). This model was chosen because of
its rapid read-out. It involves the transfer of mouse DBA/2 T cells
into (C57BL/6 × DBA/2) F1 (BDF1) mice. Unlike most mouse
strains, DBA/2 mice lack T cells that can kill CD8 cells and the
ensuing graft versus host disease, therefore, is characterized by
unopposed T cell help for antibody production. The result is a
rapid onset of anti-DNA autoantibody production and a rapidly
lethal immune complex-induced glomerulonephritis. In this
model, the administration of these T cell and NK cell-targeted
NPs containing IL-2 and TGF-b markedly suppressed disease.

In addition to mouse cells, tolerogenic aAPC NPs containing
IL-2 and TGF-b have induced human CD4+ and CD8+ cells
become Foxp3+ Tregs that were functional both in vitro and
modulated systemic autoimmunity in humanized NOD/SCID
immunodeficient mice. For the in vitro studies, the NPs were
coated with anti-CD3 and anti-CD28 antibodies. For the in vivo
studies, the NPs were anti-CD3 antibody-coated NPs containing
IL-2 and TGF-b. After the transfer of human PBMC to the
immunodeficient mice, treatment with aAPC NPs for three
weeks resulted in increased CD4+ and CD8+ Foxp3+ cells that
persisted until the termination of experiment. This was
accompanied by increased survival of the human anti-mouse
GVHD (90).

Another approach to use NPs as aAPCs is to present peptide-
MHC complexes directly to T cells. In 2010 one group used NPs
that carried peptide-MHC class I complexes to delete a subset of
diabetogenic CD8+ cells in NOD mice. Although these NPs did
restore blood sugar to normal levels in mice with new-onset
diabetes, they unexpectedly expanded a subset of CD8+ cells that
were autoregulatory cytotoxic cells that suppressed polyclonal
autoimmune responses by killing autoantigen-loaded APCs in
target tissue and draining lymph nodes (91). These workers then
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turned their attention to disease-relevant peptide-MHC class II
complexes to expand therapeutic CD4 Tregs. They identified
pMHC complexes that reversed diabetes, EAE and collagen
arthritis in mice (92). The NPs targeted antigen-experienced
pathogenic IFN-g producing T helper 1 (Th1) cells and switched
these cells into T regulatory type 1-like (Tr1-like) cells that
produce predominantly anti-inflammatory IL-10. The Tr1 cells
induced B cells to become IL-10-producing B regulatory cells.
They documented ten pMHC class II complexes that had similar
effects. Subsequently, they have identified complexes of non-
organ peptides from mitochondria, nuclear or cytoplasmic
proteins with MHCII have that induced therapeutic Tr1 cells
in mouse models of liver diseases. These included primary biliary
cirrhosis, primary sclerosing cholangitis and autoimmune
hepatitis (93).

Another group engineered tolerogenic NPs co-coupling a
myelin peptide-MHC complex, anti-Fas antibody, PD-L1-Fc
and encapsulated with TGF-b These NPs decreased Th1, Th17,
and Tc17 cells and increased Tregs. In EAE, mice that were
treated early after disease onset responded well, but those treated
with more advanced disease did less well (94). In addition to
EAE, a study in skin transplantation with similar NPs co-
coupling MHC class I dimers, CD47 and regulatory molecules
showed that the NPs bound and induced apoptosis of CD8 cells,
induced Tregs and improved transplant survival (95). Like the
aAPC study described above, the work was conducted on mice
with a C57/BL background. Since human autoimmune diseases
occur in subjects with a much more diverse genetic background,
obstacles remain for clinical translation as well as for
manufacturing challenges.
NANOPARTICLES THAT INDUCE
TOLEROGENIC TGF-b-DEPENDENT
REGULATORY NK CELLS

Nanoparticles coated with anti-CD2 antibodies target NK cells as
well as T cells. Studies were, therefore, undertaken to determine
whether NK cells had a role in the protective effects of anti-CD2
antibody-coated NPs loaded with IL-2 and TGF-b in the lupus-
like disease discussed above (96). Surprisingly, depletion of NK
cells attenuated the NP-mediated increase in CD4+ and CD8+
Foxp3+ Tregs and exacerbated the resulting renal disease above
the baseline of untreated mice (96).

Previously, anti-CD2 antibodies had been reported to induce
NK cells to produce TGF-b (10, 97). This finding raised the
possibility that TGF-b produced by NK cells could eliminate the
need for this cytokine encapsulated in the anti-CD2 antibody-
coated NPs. Additional studies were conducted with anti-CD2
antibody-coated NPs loaded with only IL-2 revealed that these
NPs had equivalent protective effects on the renal disease as NPs
containing both IL-2 and TGF-b. However, antagonizing TGF-b
in the NP-treated mice by anti-TGF-b antibodies or with an Alk5
TGF-b signaling inhibitor abolished the protective effects. Thus,
the protective effects of NPs loaded with only IL-2 were TGF-
b-dependent.
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Interestingly, NK cells harvested from the spleens of anti-CD2
antibody-coated NPs treated mice had equivalent protective
effects on the lupus-like glomerulonephritis as the anti-CD2
antibody-coated NPs loaded with IL-2. Moreover, transfecting
these NK cells with a silent RNA (sRNA) to inhibit TGF-b
production completely abolished their protective effects. These
studies provide evidence that the TGF-b produced by the NK
cells may help in the maintenance and function of the CD4
and CD8 Tregs and, therefore, may play a major role in their
protective effects (96).
NANOPARTICLES DELIVERED ORALLY
WITH INHERENT ANTI-INFLAMMATORY
AND TOLEROGENIC PROPERTIES

Orally delivered NPs have been used to treat T1D in nonobese
diabetic (NOD) mice. Oral polyethylene glycol (PEG)-PLGA
loaded with insulin lowered glucose in T1D rodent models (98,
99). Orally delivered PLGA NPs with al-trans retinoic acid and
TGF-b induced therapeutic Tregs in T1D (increased PD-1 and
CTLA4 but not Foxp3) (100). However, the oral bioavailability of
these NPs is only 1-2% because of intestinal degradation (101).

Recently, it has been reported that NP polymerization of
ursodeoxycholic acid (pUDCA), a bile acid with well-known
anti-inflammatory and immunomodulatory effects, markedly
enhanced its therapeutic properties. In addition, pUDCA NPs
had the capability to deliver insulin orally without intestinal
degradation. These NPs were rapidly absorbed intact and taken
up by monocytes and intestinal macrophages that highly express
bile acid TGR5 receptors. This interaction results in their
differentiation to M2 anti-inflammatory macrophages, an effect
which had important therapeutic consequences. Two different
mouse models of Type 1 diabetes were successfully treated with
pUDCA NPs. Cyclophosphamide-induced diabetes was
prevented with pUDCA NPs containing rapamycin. Treatment
of hyperglycemic NOD mice with PUDCA NPs containing
insulin lowered blood glucose, reversed inflammation, and
increased survival. In both models the ratio of cytotoxic CD8
cells and CD4 Tregs in draining lymph nodes was reversed, a
finding suggesting that immunogenic dendritic cells had been
switched to tolerogenic. Thus, pUDCANPs appear to be a first in
class orally ingestible carrier with remarkable therapeutic
properties applicable to a wide variety of immune-mediated
inflammatory diseases (102).
DISCUSSION AND CONCLUDING
REMARKS

We have reviewed various approaches that use NPs to generate
and expand Tregs by targeting APCs or directly targeting T cells
and these approaches are summarized in Table 1. To induce and
expand therapeutic polyclonal Tregs, NPs can be targeted to the
large numbers of tolerogenic APCs present in the liver and in the
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intestinal immune system. Antigen-specific Tregs can be induced
by including peptide antigens carried by the NPs. In
autoimmune diseases approaches are directed to switch the
differentiation of rapidly turning-over immature dendritic cells
from immunogenic to tolerogenic. These include peptide-loaded
NPs formulated to mimic the tolerogenic effects of particle
apoptosis. A pharmacologic agent can be attached to or
encapsulated in these NPs to enhance their tolerogenic
properties. Alternatively, tolerogenic NPs can be formulated
that directly target T cells or NK cells. NPs coating with
peptide/MHC complexes target Th1 T cells and can switch
Frontiers in Immunology | www.frontiersin.org 983
them to become Treg1 cells in MHC compatible subjects. NPs
coated with anti-CD2 or anti-CD3 antibodies can act as artificial
APCs that target CD4 and CD8 cells that provide the T cell
receptor stimulation, IL-2 and TGF-b that induce and/or expand
polyclonal Tregs. These NPs have the potential to repair defects
in IL-2 and/or TGF-b production associated with SLE and other
autoimmune diseases and, thus, normalize Treg function. Since
these anti-CD2 and anti-CD3 antibody-coated NPs have the
additional property to induce their targeted lymphocytes to
provide TGF-b in the local environment. These NPs therefore,
contain only IL-2 (96). Because of the pleotropic activities of
TABLE 1 | Different approaches employing nanoparticles therapies for tolerance induction.

Tolerogenic action through modulation of antigen-presenting cells

Category NP Description Mechanism References

Delivery of
pharmacological agents
to promote tolerogenic
APCs

Multiple polymer- (PLGA) or lipid-based (liposome) NP
formulations encapsulating immunomodulatory agents such as
rapamycin, dexamethasone, vitamin D3 and curcumin

Induction of tolerogenic dendritic cell phenotype that can
promote tolerance through a variety of mechanisms
including Treg expansion and anti-inflammatory cytokine
production. No antigen-specificity

40, 43, 44,
70

Delivery of disease-
relevant antigen to APCs
through naturally
tolerogenic mechanisms

PLGA or chitosan NPs with encapsulated antigen Oral delivery ! Oral Tolerance 41, 42,
98–101

Antigen-loaded pUDCA NPs (additional immunosuppressive
property of polymer material)

102

Antigen-loaded NPs designed to display signatures of
apoptotic cells to exterior; examples include surface-bound
phosphatidylserine and negative surface charge to promote
internalization by MARCO receptor

Mimicry of apoptotic cells/bodies 53–57

Antigen-loaded PLGA coated with ligands for mannose/
scavenger receptors on LSEC

Targeting of naturally tolerogenic environments (liver
sinusoidal endothelial cells, LSEC)

48

Polymer-coated iron oxide nanocrystals or quantum dots with
conjugated peptide antigen

49

Delivery of drug-antigen
combination to APCs

PLGA NPs with co-encapsulated rapamycin and antigen or
rapamycin only (delivered with free antigen)

Antigen delivery to APCs which are skewed tolerogenic by
codelivery of immunomodulatory agents.

15, 67–69

Gold NPs with conjugated peptide antigen and tolerogenic aryl
hydrocarbon receptor agonist (later work with liposomes)

60, 63, 64

Direct tolerogenic action on lymphocyte subsets

Category NP Description Mechanism References

Delivery of small
molecules to T cells

Nanolipogel system encapsulating CaMK4 inhibitor, KN93 Selective inhibition of CaMK4 in targeted CD4 T cells blocks
Th17 differentiation

72, 73

Nanolipogel system encapsulating DNA methyltransferase
inhibitor, 5-aqzacytidine

Targeted demethylation leads to expansion and enhanced
function of Tregs (CD4) cells and restrains expansion of
pathogenic double-negative T cells (CD8)

75

Delivery of miRNA to T
cells

Pegylated PLGA-b-poly(l-lysine) NP encapsulating miR-125a Corrects imbalance of effector/regulatory T cells present in
model of SLE

80

Delivery of cytokines to T
cells

PLGA NPs encapsulating Leukemia Inhibitory Factor Targeted delivery to CD4 T cells blocks IL-6 induced Th17
differentiation and favors upregulation of Tregs

84–86

CD4/8-targeted PLGA NPs encapsulating TGF-b and IL-2 Paracrine delivery of cytokines promotes the induction and
sustained expansion of CD4/8 Tregs with stable Foxp3
expression

13, 31, 90

CD2-targeted PLGA NPs encapsulating TGF-b and IL-2 Targeted delivery of IL-2 to NK cells via anti-CD2 promotes
expansion and upregulation of native TGF-b production

96

Peptide-MHC
presentation to T cell
receptors

pMHC complexes bound to surface of metal-oxide NPs pMHC signal in the absence of costimulation promotes
differentiation of IL-10 producing Tr1 cells and triggers
deletion of pathogenic effector populations

91–93

Antigen delivery to B cells Liposomes displaying both antigen and glycan ligands of CD22 Antigen exposure in the presence of CD22 engagement
initiates tolerogenic programming that promotes antigen
specific B cell tolerance as measured by decreased
autoantibody formation

76, 77

Combination of multiple
approaches

PLGA NPs decorated with pMHC, CD47, and multiple
regulatory molecules with encapsulated TGFb

Inhibition of T cell proliferation with selective decreases in
effector Th1/Th17. Upregulation of regulatory T cells.
Increased TGF-b and IL-10 in CNS and spleen.
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TGF-b, the possible adverse side effects of NPs containing TGF-b
can be avoided. As indicated above, coating the NPs with anti-
CD2 antibodies has recently been reported to induce NK cells to
produce the TGF-b needed for the maintenance of Tregs.

There are significant challenges to be confronted in
developing NN-based therapies for autoimmune diseases. First,
the translation of laboratory formulations of therapeutic NPs up
to large scale clinical grade numbers will be formidable (103).
There are manufacturing challenges in standardization and
quality control of large batches of NPs. Secondly, not only
autoimmune diseases diverse in type, but the individual
presentation of a given disease can vary considerably. The
therapeutic effects can vary between the initial time of onset
and the chronic phase of the disease. We believe the optimal time
to treat these diseases will be early before organ damage occurs.
We are also optimistic that NP treatment of highly susceptible
subjects before the onset of clinical disease may be beneficial. For
example, treatment of rheumatoid arthritis early with tumor
necrosis factor antagonists had the best likelihood of achieving
remission (104). Thirdly, the dose, timing and frequency of
administration of the therapeutic NP must be carefully
evaluated. Fourthly, in achieving the objective to induce
antigen-specific Tregs, the causal peptide can differ in that
patients affected. Finally, in clinical trials the concurrent use of
other immunosuppressive drugs can greatly influence the
therapeutic outcome.

Clinical trials using tolerogenic nanoparticle formulations
have begun. The first indication has been to prevent the
emergence of antibodies to biological agents that can interfere
with their beneficial effects. Human proof-of concept for the
mitigation of anti-drug antibodies has been demonstrated in a
phase II study in patients with refractory gout with NPs that are
that loaded with pegadricase, a pegylated formulation of uricase,
an enzyme that breaks down uric acid. Since pegadricase is
strongly immunogenic, the NPs also contain rapamycin which
converts strong immunogenic signals mediated by the PI3K/Akt/
mTOR pathway to weaker tolerogenic signals (69). In addition,
Frontiers in Immunology | www.frontiersin.org 1084
clinical trials using low dose IL-2 to repair and enhance Treg
function are in progress for the treatment SLE and other
autoimmune diseases. In one of these studies patients with SLE
and other chronic immune-mediated diseases were treated with
intermittent doses of low dose IL-2 for 6 months with persistent
increases in CD4 Tregs and clinical improvement of disease
activity and severity (105).

Although the results with low dose IL-2 have been
encouraging, it is likely that NPs directly targeted to T cells
which are able to provide them the stimulation and small
amounts of both IL-2 and TGF-b in the local environment for
them to become Tregs can have even more beneficial therapeutic
effects with additional safety. The judicious use of these NPs can
possibly achieve long-term remission and, ultimately, prevent
SLE and other chronic immune-mediated inflammatory diseases
in highly susceptible individuals.
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Systemic lupus erythematosus (SLE) is a chronic complex systemic autoimmune disease
characterized by multiple autoantibodies and clinical manifestations, with the potential to
affect nearly every organ. SLE treatments, including corticosteroids and
immunosuppressive drugs, have greatly increased survival rates, but there is no
curative therapy and SLE management is limited by drug complications and toxicities.
There is an obvious clinical need for safe, effective SLE treatments. A promising treatment
avenue is to restore immunological tolerance to reduce inflammatory clinical
manifestations of SLE. Indeed, recent clinical trials of low-dose IL-2 supplementation in
SLE patients showed that in vivo expansion of regulatory T cells (Treg cells) is associated
with dramatic but transient improvement in SLE disease markers and clinical
manifestations. However, the Treg cells that expanded were short-lived and unstable.
Alternatively, antigen-specific tolerance (ASIT) approaches that establish long-lived
immunological tolerance could be deployed in the context of SLE. In this review, we
discuss the potential benefits and challenges of nanoparticle ASIT approaches to induce
prolonged immunological tolerance in SLE.

Keywords: systemic lupus erythematosis, tolerance, dendritic cells, antigen (Ag), immunotherapies and vaccines
INTRODUCTION

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune inflammatory disease that affects
multiple organ systems. Clinical symptoms are heterogenous and range from mild to life
threatening. SLE has a significant disease burden worldwide. Mortality in SLE has decreased
significantly in the past 50 years (1), attributed to the use of immunosuppressive drugs, better
supportive treatments and earlier diagnosis. Acute SLE-related mortality is usually due to
uncontrolled inflammation and acute renal failure, while late mortality is linked to
cardiovascular complications (2). Since the 1990’s late-phase clinical trials from more than 40
agents have failed in SLE. However, improvement in outcome measures, the efficacy of B cell
activating factor (BAFF) and type 1 interferon (IFN) receptor 1 inhibition, and the promise of
tolerance restoration, through drugs such as low-dose (LD) IL-2, underpin new optimism for future
drug development (3–5). Tolerizing immunotherapies have the potential to revolutionize the
treatment of autoimmune diseases by directly impacting adaptive immunity and restricting
org July 2021 | Volume 12 | Article 654701188
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autoinflammatory responses by inducing peripheral
immunological tolerance, either by expanding pre‐existing
regulatory T cells (Treg) or by reprogramming autoreactive
CD4+ T cells into Treg. While not extensively trialed in SLE
yet, promising data in other autoimmune diseases provide
learnings that may be applicable in SLE and patients at high-
risk. In this review we examine the potential for antigen-specific
immunotherapy to restore tolerance in lupus autoimmunity and
discuss the advantages and challenges of immunotherapies and
tolerizing approaches in SLE.
CLINICAL AND ETIOLOGICAL
CONSIDERATIONS

SLE is 43.9% heritable, and the relative risk for siblings is 23.7.
Shared environmental factors - such as infections - account for
25.8% of risk: the relative risk for spouses is 4.4 (6). Although the
pathogenesis of SLE is not fully understood, the key elements are:
dysregulated immune tolerance towards autologous nucleic
acids with concurrent production of autoantibodies and
autoreactive T-cells, disrupted clearance of apoptotic debris
with increased self-antigen load and presentation to T cells,
and interferon-driven inflammatory responses (7). Tissue
damage – to skin, respiratory, renal, cardiovascular, central
nervous and musculoskeletal systems – results from pathogenic
autoantibodies, immune complex deposition and inflammation.
SLE-associated environmental stressors, including UV light and
infections may increase apoptotic load. With inadequate
clearance, Toll Like Receptors (TLRs) recognize cellular debris
(through damage associated molecular patterns, DAMPs) and
initiate the inflammatory cascade, with pro inflammatory
cytokine and type 1 interferon (IFN) production (8, 9).
Presentation of nuclear self-antigens, such as dsDNA, chromatin,
and RNA-containing antigens, to T and B cells induces the
production of nuclear antigen-specific autoantibodies and
autoreactive T-cells. There are multiple autoantibodies in SLE,
including those directed towards nuclear antigen (ANA),
double-stranded DNA (dsDNA), Smith (Sm), Ro, La,
antiphospholipid (APL), and ribonucleoproteins (RNP) (10).
Multiple lines of enquiry demonstrate loss of T and B cell
tolerance in lupus. For example, the study of rare genetic
variants associated with familial aggregation of lupus with other
rheumatic autoimmune diseases identified regulation of T cell
activation and T cell receptor (TCR) signaling as key underlying
pathways (11). Furthermore, single cell transcriptomic analysis of
peripheral blood (PB) identified antigen presenting cell, B cell and
T cell dysregulation (12).
OPPORTUNITIES FOR INTERVENTION
WITH TOLERIZING APPROACHES

SLE is classified (EULAR/ACR 2019 criteria) by the presence of
ANA >1:80 and weighted scores for clinical and serological
Frontiers in Immunology | www.frontiersin.org 289
parameters (13). Some ANA+ individuals with very early
disease or disease in evolution may fall below classification
threshold. They may progress, to be re-classified as SLE, or
may follow a milder and more stable clinical course. By the time
of diagnosis, the majority of patients that meet SLE criteria will
have some type of irreversible organ damage with clinical
complications. The lupus disease course is characterized by
flares and ongoing organ damage (14). Therapeutic
intervention to a target of low disease activity (LLDAS) or
clinical and serological remission reduces lupus-associated
flares and organ damage, even when only achieved transiently
(15). Typically, phase 3 trials of novel agents in SLE have
struggled with small effect sizes due to disease heterogeneity,
trial design issues, use of concomitant immunosuppression and
endpoint validation (15). Instigation of trials in early disease and
high-risk subjects not yet classified as SLE may improve the
capacity to discriminate responses in patients with minimal
organ damage. In a landmark phase 2 trial, a short course of T
cell tolerizing immunotherapy Teplizumab, halved the
progression of high-risk individuals to type 1 diabetes (16),
while it had failed to meet its primary end-point in a phase 3
trial in recent-onset diabetes (17). Thus, T cell immunotherapy
in people at risk (18) may be more effective before substantial
organ damage.

SLE is associated with more autoantibodies than any other
autoimmune disorder (19). Even before the development of
disease pathology and symptoms, the pre-clinical phase is
characterized by increased levels of autoantibodies, followed by
a shift to multiple pathogenic autoantibodies associated with
kidney, joint, heart, brain, skin and hematopoietic damage,
including ANA, anti-dsDNA, anti-Sm, anti RNP, anti-APL,
anti-Ro and anti-La (10). In general, anti-Ro, anti-La, and APL
appear several years before the diagnosis of SLE, even in
otherwise healthy individuals (20). In contrast, anti-dsDNA,
anti-Sm, and anti–nuclear RNP antibodies usually appear only
months before the clinical manifestations of SLE and are rarely
present in healthy individuals (21, 22). In a retrospective study of
130 military personnel, use of hydroxychloroquine prior to SLE
diagnosis delayed the onset of classified SLE and reduced the
number of autoantibody specificities at and after diagnosis (23).
At least 80% of individuals in this group met at least one SLE
criterion prior to diagnosis. These results support a case for
earlier therapeutic intervention with treatments of low toxicity
before SLE classification and stratification of patients based on
likelihood to respond. For example, current smoking was
associated with elevated BAFF and reduced IL-10, particularly
in ANA+ women (24). T cell expansion and type 1 IFN
signatures were associated with a diagnosis of SLE in ANA+
individuals (25). Longitudinal cohort studies mapping the
progression of SLE in auto-antibody positive healthy at-risk
subjects will help identify early biomarkers of progression from
autoantibodies to SLE, such as markers of functional loss of
immune tolerance (26). Furthermore certain immune
phenotypes might also be useful response biomarkers in
mechanistic trials of immune tolerizing immunotherapies in
individuals at high risk or with early disease.
July 2021 | Volume 12 | Article 654701
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Alternatively tolerizing approaches could be used to increase
the likelihood that immunosuppressive drugs can be safely
withdrawn without flare. In the BOLD clinical trial, standard
immunosuppressive drugs were withdrawn and steroids
substituted until flare, followed by reinstatement of standard
therapy. During each phase cytokines and gene expression were
analyzed to assess drug mechanism of action relative to baseline
type 1 IFN transcriptomic signature. The authors identified that
IL-17, IL-23 and BLyS pathways were changing with disease state
and that IFN signature influenced the response of these pathways
to individual drugs (27). This study provides an interesting
proof-of-concept for a mechanistic trial of agents, such as
tolerizing therapies, that could be introduced to reduce flare
upon drug withdrawal. Although no cellular markers were
included in this study, it demonstrates the utility of baseline
IFN signature to stratify immune biomarker response outcomes.
Future trials might also include Treg or T cell proliferation
biomarkers. In this regard, a PB single cell transcriptomic
resource shows co-clustering of a Treg T cell signature with
dendritic cells (DC) lacking IFN-stimulated genes in lupus
patients and healthy donors (12).

Mechanisms of Immune Tolerance
Immunological tolerance is a vital aspect of a healthy immune
system as it allows for appropriate immune responses to
infectious and tumor antigens while containing potentially
damaging immune responses to self-antigen and healthy tissue.
Reviews of B and T cell antigen recognition and maturation can
be found here (28, 29). During development, highly self-reactive
T cells in the thymus are controlled by deletion (negative
selection) of T cells with the highest affinity TCR for self-
peptides, and by differentiation into CD4+ CD25+ FOXP3+
Treg cells (for non-deleted autoreactive CD4+ T cells), known
as central tolerance. As negative selection depends on a TCR
affinity threshold, weakly autoreactive T cells circulate in the
periphery (30). Peripheral T cell tolerance mechanisms control
autoreactive T cells through anergy (chronic antigen exposure
deactivating T cell function), deletion, and regulation by Treg
(derived from thymus or generated in the periphery). Antigen-
specific Treg cells can suppress activation, proliferation and
cytokine production of CD4+ T cells and CD8+ T cells through
interaction with APCs, including B cells and dendritic cells (DCs),
presenting cognate antigen. Functional antigen-specific
peripheral Treg are key to restoration of immunological
tolerance with immunotherapy as they can be induced from
diverse T cell precursors, and their autoantigen specificity
avoids generalized immune suppression (31).

Peripherally derived Treg cells, including IL-10+ type 1
regulatory T (Tr1) cel ls , are promising targets for
immunotherapy to counteract established autoimmune
diseases. Tr1 cells are induced in the periphery, predominantly
from memory CD4 T cells, and are thus an important potential
target for antigen-specific tolerance approaches (32–34). They
are characterized by expression of IL-10, IFN-g and TGF-b, lack
of FOXP3 expression, expression of surface markers LAG3 and
CD49b, and transcription factors EOMES and Tbet (35–37).
With ongoing signaling by tolerogenic APCs presenting cognate
Frontiers in Immunology | www.frontiersin.org 390
peptide. Tr1 cells are long-lived, and associated with prolonged
tolerance in multiple human autoimmune conditions (38–41).

DCs comprise a heterogeneous group of phagocytic APCs
that sample soluble or apoptotic antigen at skin and mucosal
surfaces, and process and present antigenic peptides to T cells in
draining lymph nodes in context of MHC molecules. During an
inflammatory episode, e.g. driven by infection, adjuvants, or
damage, pathogen- or damage-associated molecular patterns
(PAMPs, DAMPs) trigger the activation of the NF-kB pathway
in DCs, enhancing their capacity to stimulate naïve T cells (42).
DCs presenting antigens in the presence of regulatory signals
that inhibit NF-kB, such as TGF-b or immunomodulatory drugs,
skew antigen-specific T-cells towards regulation (43).

DC subsets developing from hematopoietic progenitors in
bone marrow include plasmacytoid DC (pDCs), myeloid/
conventional DC1 (cDC1) and myeloid/conventional DC2
(cDC2), based on surface markers and immune functions (44,
45). cDC1 and moDCs can cross-present antigens derived from
tissues – including viral, tumor and self-antigens – to CD8 and
CD4 T cells in context of MHC I and II (46, 47). cDC2 are potent
activators of naïve T cells and induce CD4+ Th1, Th2, and Th17
responses (48, 49). pDCs produce high levels of type 1 IFN in
response to nucleic acids via TLR7 and TLR9 signaling (50, 51).
In SLE, pDCs produce high levels of type 1 IFN in response to
nucleic acid and nuclear antigen (52). DCs are potential targets
for immunotherapies to restore the dysregulated SLE immune
system. For example, crosstalk between Treg cells and DCs
through cell and cytokine signaling, controls DC activation
and effector T cell activation. The signaling pathways for DC
development and activation are crucial when considering drug
cargo in the development of novel therapies in lupus.

Pathogenesis of SLE
A basic understanding of the pathogenesis of SLE underpins a
discussion on the development and effectiveness of novel
immunotherapeutic agents. Here we highlight a few important
factors that point to the underlying causes of SLE and that could
be targeted in a therapeutic approach. For further reading please
refer to the following reviews (53, 54).

SLE has been extensively studied using mouse models, which
has helped illuminate pathogenesis. Some mouse models are
genetically predisposed to the development of a lupus-like
disease. Alternatively, a lupus-like disease may be induced in
previously healthy mice. However, although spontaneous SLE
models have been used to test potential therapeutics, successes in
mouse models have not translated well in human trials. The
NZB/NZWF1 (BW) mice and related strains develop
spontaneous immune complex-mediated glomerulonephritis
and mild vasculitis, with autoantibodies (anti-nuclear
antibodies (ANA) and anti-dsDNA predominantly) (55). The
MRL/lprmouse is a unique spontaneous lupus mouse model that
produces a variety of autoantibodies (ANA, anti-dsDNA, anti-
Sm, anti-Ro and anti-La) and develops arthritis, cerebritis,
dermatitis, vasculitis, and glomerulonephritis (56, 57). In
induced mouse models of SLE, exogenous irritants or antigens
are administered to replicate an environmental trigger (58, 59).
Knock-out and knock-in mice backcrossed to lupus-susceptible
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backgrounds has expanded understanding of signaling cascades
crucial for the development of SLE (60). Few antigens have been
described in lupus mouse models, hampering the testing of
antigen-specific approaches for lupus in general. However,
antigen non-specific tolerizing approaches have been
demonstrated to improve SLE disease manifestations in mouse
models (61).

Hormones, smoking, ultraviolet light, and viral/bacterial
infections are classic examples of exposures triggering SLE (62,
63). Estrogen and prolactin have been shown to drive immune
responses underpin in part preponderance of women with
SLE (64). Viral infection such as Epstein-Barr virus and
cytomegalovirus have been suspected to play a triggering role
in SLE pathogenesis whereas some pathogens have been linked to
a protective role in SLE (65–67). Circulating levels of
lipopolysaccharides have been shown to be elevated in SLE
patients and to be correlated with disease severity, presumably
through cytokine production (68, 69). Recently, alterations in gut
microbiome have been linked to SLE disease status (70–72).
This review will not thoroughly cover these environmental
factors of but we note that they are important considerations
when developing therapeutic trials for potential interventions.

Apoptotic Clearance, TLRs, Nucleic Acid Sensors
and Cytokines
Abnormal apoptotic clearance can trigger TLRs and nucleic acid
sensors on immune and non-immune cells and produce an
immune response with cytokine production (7). Rare
hereditary genetic mutations e.g. in DNASE1L3 and PRKCD
that lead to abnormal apoptotic pathways provide crucial insight
into the role of apoptotic breakdown and debris clearance in SLE
(73, 74). DNase I activity degrades chromatin in the apoptotic
process and mice with a mutation in this enzyme had increased
levels of anti-DNA antibody production (75). Smoking induces
cellular damage and promotes cytokine production, and UV light
enhances apoptotic turnover, and thus may increase self-antigen
burden in susceptible individuals (76, 77)

Nucleic acid sensors are important surveyors of the
environment and are specifically able to recognize viral
infections and induce type I IFN production. Toll-Like
receptors 3, 7, 8, and 9 shape the immune response by sensing
cellular debris (78). In a pristane-induced lupus mouse model,
TLR7, which senses single stranded RNA, was required for RNA-
reactive autoantibodies (8). TLR9 senses unmethylated CpG
sequence motifs. SLE patients with active disease have higher
level of TLR9+ B cells and monocytes than healthy controls, and
TLR9 levels correlated with antibodies to dsDNA (79, 80).

Type I and Type II IFN contribute a large role to the
pathogenesis of SLE and become elevated prior to development
of autoantibodies (81). Rare single gene disorders, grouped
together as Aicardi-Goutiere’s syndrome, display gene
defects that cause an overproduction of type I IFN (82).
These patients display similar phenotypes to classic SLE,
including autoantibodies.

There is a marked imbalance of T cell cytokines in SLE, with
low levels of IL-2 accompanied by elevated IL-17 and IL-6 (83).
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IL-2 is a key cytokine in Treg development, survival and
maintenance. It restricts Th17 cell development (84, 85).
Elevated levels of IL-17 are thought to induce tissue
inflammation and recruitment of immune cells. B cell
activating factor (BAFF or BLyS), expressed by stromal and
immune cells, promotes B cell activation in SLE and its levels
positively correlate with antibody levels (86, 87).

Loss of Immune Tolerance
The process of autoimmune disease development can be roughly
categorized into three stages: 1) a priming phase that includes an
inciting event or accumulation of events in individuals at genetic
and environmental risk; 2) the onset of clinical symptoms
marked by organ-specific inflammation; and 3) a chronic
inflammatory tissue-destructive phase (88). During the
transition to clinically significant symptoms, regulatory
processes, including Treg cells, fail to control pathological
autoreactive B and T cells. This imbalance perpetuates the
processes of bystander activation, epitope spreading and
uncontrolled cytokine and antibody production. Epitope
spreading involves the diversification of epitope specificity
from the initial dominant epitope-specific immune response
(89). The specificity of the autoimmune response spreads to
include additional self-epitopes besides the initiating self-
antigens. Chronic inflammation promotes tissue damage and
cascading self-antigen presentation, expanding autoreactive T-
cell specificities, including cryptic or sequestered epitopes (90).
For example, late-stage SLE is characterized by an explosion of
autoantibodies, apparently the result of chronic inflammation
and epitope spreading (19). Bystander activation occurs with
stress, infection or trauma-induced activation of tissue APCs,
activating T cells of additional specificities, which further
promote inflammation and tissue damage. Bystander T cells
can provide help to B cells for autoantibody production, or to
cross-presenting DCs presenting tissue-derived self-antigen (91).
Treg cells may control bystander T cells and epitope spreading
through interaction with cross-presenting DCs. In a rheumatoid
arthritis mouse model Treg cell depletion promoted the
expansion of pathogenic autoreactive T cells, an increase in
inflammatory cytokines, and B‐cell epitope spreading (92).

SLE is marked by abnormal B and T cell interactions and
spontaneous germinal centers in secondary lymphoid organs
(93–95). In SLE there is loss of functional Treg and induction
of effector T cells that produce proinflammatory cytokines and
BAFF, which is not normally observed in healthy people (96, 97)
(98). Multiple lines of evidence demonstrate the importance of
Treg in lupus pre-clinical models. In the NZB/NZWF1
spontaneous model, Treg cell adoptive transfer delayed SLE
progression, reduced renal pathology, and improved survival
(61), while Treg depletion accelerated disease development (99).
In human SLE, most but not all studies demonstrate a reduced
frequency of Treg cells (100, 101). Targeted depletion of pDCs
decreased SLE-associated glomerulonephritis in mice (102, 103).
In human SLE, while pDC are decreased in the blood, they are
increased in lupus-affected organs, suggesting their chemo-
attraction and possible expansion at these sites (104–106).
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IMMUNOLOGICAL TOLERANCE
THERAPEUTICS IN SLE

Current Tolerizing Strategies for SLE
There are multiple potential targeted immunotherapies
undergoing research and development and early phase clinical
trials for SLE (107, 108). Most techniques exploit antigen‐
presentation pathways of APCs or attempt to deliver antigenic
cargos to locations thought to be involved in regulatory T‐cell
formation (109). Other strategies target antigen‐specific T‐cells
to re‐program pathogenic autoreactivity into disease‐suppressing
autoregulation (110, 111). Table 1 outlines some promising
therapeutic directions aiming to enhance immune tolerance by
targeting DCs and Treg cells.

Expanded Treg Cell Transfer
Several groups have developed methods to expand Treg cells ex
vivo for reintroduction as an autologous cell therapy product.
Treg cells can be isolated from peripheral blood or umbilical cord
blood, but must be expanded due to their low frequency. In vitro
expansion strategies include anti-CD3/CD28-coated beads, with
addition of IL-2 and/or TGF-b and rapamycin (121). Proof of
concept experiments in lupus-prone mice showed that ex vivo-
expanded Treg cells suppressed glomerulonephritis and
prolonged survival (61, 122). Ex vivo-expansion of Treg cells in
the presence of immunosuppressive drugs or Treg transfer into
patients on immunosuppressants can be challenging, as the
drugs may hinder expansion or change function (112).
Furthermore, the process requires a good manufacturing
practice (GMP) environment, which is challenging and
expensive. A clinical trial using ex vivo-expanded autologous
polyclonal Treg cells in patients with autoimmune disease was
terminated in November 2019 due to screen failures and low
enrolment. In a case report, the treatment was shown to be safe
and clinical disease activity to be stable in a single SLE patient.
Infused labeled Treg cells were transiently observed in PB then in
diseased SLE skin, accompanied by skewing from Th1 to Th17
immunity locally (123). Treg are highly plastic and may
differentiate to Th17 in inflammatory settings and where IL-2
is limiting (124). Larger studies are needed to understand the
impact of Treg therapy on disease severity.

HSCT/MSCT
Hematopoietic and/or mesenchymal stem cell transfer (HSCT
and MSCT, respectively) have been trialed in patients with severe
autoimmune diseases, including SLE, who have failed standard
therapy. In SLE patients, HSCT has successfully induced long-
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term remission (125). In 15 patients with severe SLE evaluated
up to 8 years after HSCT, CD4+CD25highFoxp3+ Treg and
LAPhighTGF-b+CD8+Foxp3+ cells were restored to levels and
function similar to healthy subjects (117). These promising
results suggest that HSCT may reestablish immune tolerance
by replenishing multiple types of Treg cells. However, as HSCT is
associated with significant risks, treatment complications and
cost, it is currently reserved for treatment-refractory patients. A
4-year follow-up of an open-label trial of MSCT in 87 treatment-
refractory SLE patients found a 28% remission rate post-infusion
(118). While double-blind placebo-controlled trials are needed to
understand the true benefits of MSCT, these trials provide
evidence that tolerance may be successfully re-established in SLE.

Low-Dose IL-2
IL-2 levels and CD25 expression by Treg are reduced in SLE
patients and murine lupus models (126–128). IL-2 plays a
pleiomorphic role in the immune system. One of its functions
is to expand and promote survival of Treg cells (129, 130).
Reduced IL-2 favors the differentiation of IFN-g-producing Th1
and IL-17 producing Th17 cells and their accumulation in skin
and kidneys (131, 132), and is associated with inflammation. In
lupus-prone mice, IL-2 treatment increased levels of Treg cells in
lymphoid and peripheral organs and protected them from SLE-
related organ damage (99, 133). There have been several trials in
lupus showing safety and Treg expansion (128, 134). In a recent
double-blind placebo-controlled clinical trial in patients with
suboptimally controlled SLE, LD IL-2 for 12 weeks (s.c. alternate
days for three 2-week cycles), the SLE Responder Index (SRI)-4
response rates at week 12 were 55.17% and 30.00% in LD IL-2
and placebo groups respectively (p=0.052). Although the
primary end point was not met, the significantly greater lupus
nephritis complete remission rate in the LD IL-2 arm was
notable. Immunologically, IL-2 supplementation significantly
increased Tregs and NK cells but did not change total CD4+
or CD8+ T cells and there was no increase in viral load of pre-
existing viruses (3). While promising, LD IL-2 dosing may be
complicated by concomitant expansion of regulatory and
cytotoxic cells. Furthermore, development of neutralizing
autoantibodies with continued treatment is a potential risk
(135). Targeted IL-2 therapies may allow more precise
manipulation of the immune response and longer duration of
action. For example, anti-CD4 and anti-CD2-coated poly(lactic-
co-glycolic) acid (PLGA) nanoparticles loaded with IL-2 and
TGFb expanded Treg cells in vitro and in vivo in the BDF1 lupus
pre-clinical model (136). In a recent phase 1b clinical trial of a
polyethylene glycol (PEG) conjugate of IL-2 (NKTR-358) in
TABLE 1 | Treg and DC based Therapies without Autoantigen.

Therapy Mechanism Clinical trial for SLE References

Adoptive Treg cell or DC transfer Non antigen-specific increase Treg cells,
Antigen-specific tolerogenic DC immunotherapy to induce Treg cells

Yes for Tregs, No for DCs (112–116)

HSCT/MSCT Non antigen-specific immune tolerance Yes (117, 118)
Low-dose IL-2 Non antigen-specific increased survival, proliferation and/or function of Treg cells Yes (3)
Targeted DC immunotherapy Induce tolerance through tolerogenic antigen delivery to DCs No (119, 120)
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patients with mild to moderate SLE, dose-dependent increases in
Tregs (up to 11 fold) were observed, which returned to baseline
20-30 days post-dose (137). Anti-IL-2 antibodies were
not reported.

Tolerogenic DCs
DCs play a critical role in maintaining self-tolerance. Indeed,
targeting steady-state skin migratory DC with antigen coupled to
DC-selective antibodies induced antigen-specific tolerance (138).
Tolerogenic DCs can also be generated in vitro from monocytes
or murine bone marrow precursors in the presence of NF-kB
inhibitors 1,25 (OH)2 vitamin D3 (calcitriol), rapamycin or
glucocorticoids. After proof-of-concept studies in experimental
animal models (139, 140), several groups translated antigen-
specific immunotherapy using modified or tolerogenic
autologous DCs and autoantigenic peptides to clinical trials for
MS (113) and RA (114, 115). These trials demonstrate the
feasibility and safety of this approach, with preliminary
evidence of an immunomodulatory effect in RA. In two pre-
clinical lupus models, histone antigen-loaded tolerogenic DCs
improved clinical scores, increased Treg in affected skin and
reduced anti-histone autoantibodies (141). Tolerogenic DCs
exposed to apoptotic cells were generated from PB monocytes
derived from lupus patients (142). Other approaches have been
developed to target DCs directly in situ, including a PLGA
nanogel to deliver the immunomodulator mycophenolic acid
(MPA) to DCs (119, 120). DCs took up the PLGA-lipid-MPA
nanogel more efficiently and with better DC suppression than a
PLGA nanogel. In a murine lupus model, PLGA-MPA nanogel
increased median survival by 3 months when given
prophylactically and by 2 months when given to mice with
advanced renal damage. Consistent with the local effects of
MPA on DCs, treated mice had a substantial reduction in
DC-derived inflammatory cytokines such as IFN-g and IL-12.
Although not strictly immune tolerance, this approach achieves
sustained delivery of MPA to induce a prolonged anti-
inflammatory effect.

Lupuzor
Lupuzor (rigerimod or IPP-201101) is a 21aa peptide
representing residues 131–151 of the 70K spliceosomal protein
within the U1 small nuclear RNP, phosphorylated at Ser140.
This promiscuous peptide sequence was identified using ex vivo
peptide screening techniques (143). This epitope is recognized by
IgG antibodies and CD4+ T cells from H‐2k MRL/lpr and H‐2d/z

(NZB × NZW)F1 lupus‐prone mice (143, 144). With i.v. delivery,
the peptide inhibits chaperone-mediated autophagy and reduces
B cell MHC class II expression (145). Two trials of IPP-201101
immunotherapy in SLE demonstrated safety and potential
efficacy (146, 147). However, IPP-201101 failed to meet its
primary end point of superiority over standard care in phase
III clinical trials (148). The peptide seemed to have non antigen-
specific immunomodulatory properties, rather than inducing
antigen-specific regulation, and this may be why it was not
superior to standard care. Standard of care high dose
glucocorticoids and immunosuppressive drugs are likely more
bioavailable than an immunosuppressive peptide.
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These treatment strategies are antigen non-specific and use
nanoparticles (NP) to deliver biologics or immunosuppressive
drugs. In the following sections we consider antigen-specific
tolerizing approaches using NP in SLE.

Potential Antigen-Specific Tolerizing
Platforms for SLE
Antigen-specific therapies for autoimmune diseases involve the
delivery of autoantigen in a regulatory context, with or without a
delivery vehicle that reprograms APCs by modulating NF-kB, or
by antigen delivery to a naturally tolerogenic site e.g. by targeting
steady-state skin-draining APCs or the liver tolerogenic
environment. Some approaches may directly differentiate Tr1
cells from memory T cells.

Peptide alone, delivered s.c., can be tolerogenic. For example,
an islet proinsulin epitope returned promising results in phase 1
trials in T1D (149). Peptides that associate with MHC class II
molecules expressed by APCs, without the need for antigen
processing, can directly target steady-state DC in vivo. Such
antigen processing independent epitopes (“apitopes”) selectively
bind steady-state DCs in vivo because steady-state DCs bear
peptide receptive/empty MHC II at the cell surface, which is lost
upon DC activation (150, 151). Apitopes induce tolerance
through induction of anergy and generation of Tr1 cells (152).
Tr1 cells selectively express a tolerance-associated set of genes
(153, 154). Phase 1 and 2 clinical trials of multiple low dose
apitope delivery have been undertaken in Graves’ disease and MS
respectively. While low-dose soluble antigen administered s.c. is
non-immunogenic, high dose peptide, aggregates or protein
complexes can induce an immune response through immune
complex formation, macrophage or DC activation and
development of autoantibodies.

NPs Delivering Antigens and Immunomodulators
Liposome formulations loaded with peptide or protein antigens
and various NF-kB inhibitors, including curcumin, quecertin and
BAY11-7082 induced antigen-specific tolerance in mice
with antigen-induced arthritis (155). We also developed and
undertook pre-clinical studies of liposomes co-encapsulating
calcitriol and peptide. Calcitriol/peptide liposomes promoted the
differentiation of antigen-specific Foxp3+ Treg, anergy of Tmem,
and IL-10 production upon restimulation with antigen ex vivo
(156). Notably, liposomes were preferentially taken up by activated
PD-L1+ migratory DCs, and regulation was PD-L1-dependent. We
translated this to a phase 1b clinical trial in RA. Other groups have
co-encapsulated antigens in NPs with either rapamycin (157) or
aryl hydrocarbon receptor (AhR) ligands (158) for in vivo uptake
by DC. With substitution of suitable lupus antigenic peptides, these
liposome or NP approaches could be adapted to lupus patients.

Nanoparticles Leveraging Natural
Tolerogenic Processes
Other research groups have developed NPs that resemble
apoptotic bodies, to promote a tolerogenic response to
encapsulated antigen. Specifically, i.v. administration of 500nm
PLGA particles encapsulating antigen induced antigen specific
tolerance (159, 160). These relatively large, negatively-charged
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particles are preferentially taken up by DCs and macrophages
expressing MARCO, and induce antigen-specific suppression in
the absence of an immunomodulatory drug (161). Another
strategy to mimic signals from apoptotic bodies uses
phosphatidylserine (PS) liposomes. During apoptosis, the PS
phospholipid translocates from the inner leaflet to the outer
leaflet of the lipid bilayer of the dying cell. PS liposomes
suppressed pre-clinical models of T1D and acute EAE in a
non-antigen-specific manner (162, 163). It is unclear whether
this technique would succeed in SLE, which is characterized by
impaired clearance of apoptotic cells.

Peptide-MHC NPs
The TCR may also be directly targeted with NPs coated with
peptide loaded onto MHC class I or II, without co-stimulation.
After i.v. delivery of iron oxide nanoparticles coated with
peptide-MHC class I complexes (pMHC-I) they suppressed
autoreactive CD8+ memory T cells and converted them to a
regulatory, anergic phenotype (110). Nanoparticles coated with
pMHC-II differentiated cognate autoreactive CD4 memory T
cells into Tr1 cells producing IL-10 (111, 164). Nanoparticles
coated with pMHC-II suppressed autoimmune symptoms in
several pre-clinical models in an antigen-specific manner,
without compromising systemic immunity (111). To date, this
approach has not been translated to clinical trials.
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Thus, a wide array of nanoparticle technologies has been
developed. Figure 1 describes some of the technologies
incorporating autoantigens, immunomodulatory drugs, or
targeting strategies, or a combination of strategies. In
summary, approaches that promote the expansion of antigen-
specific Treg cells, particularly Tr1 cells derived from
autoreactive memory T cells, will be required to control
bystander cytokine production and epitope spreading in multi-
system autoimmune diseases, such as SLE.
AUTOANTIGENS IN SLE

Many autoantigens potentially contribute to the development of
SLE and it is unclear which antigen(s) should be targeted in
antigen-specific immunotherapy. Several promiscuous epitopes
have been described across mice and humans. Choosing an
antigen is challenging because there are many different pre-
clinical lupus models, the disease is highly heterogeneous in
humans, and translation of antigen discovery from mouse to
human is difficult. However, assays of T cell responses in organ-
dominant lupus “endotypes” may offer opportunities to identify
relevant skin, joint, renal, neurological and hematologic
antigenic epitopes that are suitable for clinical trials with
focused outcomes.
FIGURE 1 | Potential Nanoparticle Therapies in SLE. A representation of potential immunotherapies for SLE and a simplified schematic of their mechanisms of action. This
figure was created in BioRender.com.
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Despite these hurdles, antigen-specific immunotherapies with
a single strong autoantigen that also promote bystander tolerance
could leverage the expansion of antigen-specific Treg cells and the
suppression of cross-presenting DCs carrying relevant epitopes
from diseased tissue to draining lymph nodes. Bystander
tolerance has been demonstrated for several immunotherapies
in pre-clinical models, including apitopes, peptide/calcitriol
liposomes, and pMHC-NP, associated with the modulation of
immune responses other than the epitope included in the
immunotherapy (111, 165). For example, in a type 1 diabetes
mouse model, calcitriol liposomes encapsulating a single islet
CD4 epitope suppressed the disease and bystander islet-reactive
CD8+ cytotoxic T cells (166). The advantages of harnessing
bystander tolerance mediated by Treg cells, compared to
generalized immunosuppression, is that bystander suppression is
tissue-restricted, and Treg develop from autoreactive memory T
cells. However, suitable antigenic epitopes must be identified.

Haplotypes containing DR2/DQ6, and DR3/DQ2 alleles are
associated with SLE (167). DR2/DR3 heterozygosity is associated
with anti-Ro, anti-La, anti-Sm, anti-ribosomal-P or anti-
ribonuclear protein antibodies, while HLA-DR homozyosity is
associated with anti-Sm and anti-dsDNA (167). HLA-restriction
poses a potential hurdle for the applicability of peptide-specific
immunotherapies, as peptides need to be identified and matched
to patient MHC class II. Long antigenic sequences or mixtures of
epitopes that cover a large percentage of the diseased population
provide potential solutions. HLA-restricted soluble or NP-
associated peptide immunotherapy may be a good way to
achieve some early positive immune outcomes of antigen-
specific immunotherapies, including bystander tolerance in
proof-of-concept clinical trials. Subsequently, tolerizing
immunotherapies with multiple autoantigens or proteins could
be further tested.

Strategies to identify potential self-peptides include: screening
autoreactive T cell proliferation or cytokine production ex vivo,
peptide elution from MHC II molecules, and autoantibody
binding epitopes. Immunization studies in DR3 transgenic mice
have been used to map DR3-restricted SmD T cell epitopes (168).
Studies investigating apoptotic cell-derived self-epitopes
recognized by pathogenic T cells in human and lupus-prone
mouse models identified potential histone epitopes, including
histone H1’22-42, H416–39, H471–94 and H382–105 (169, 170).
These extended epitopes bind multiple HLA-DR allomorphs.
Most also bound anti-histone autoantibodies (171, 172). In
human PB cultures, these peptides promoted TGF-b secretion
and expanded Foxp3+Treg cells in the presence of IL-2 in vitro
(170). In SVF1 lupus-prone mice, s.c. administration of H471–94
every 2 weeks induced TGF-b-producing pDCs and Treg cells and
protected mice from renal disease (173, 174). A 70K-U1RNP131-
151 T helper epitope was identified in NZBxNZW F1 and MRL/
Fas(lpr) mice, which led to further identification of SmD1 and
hnRNP A2/B1 epitopes in each strain. Of interest the SmD95-119

epitope recognized by anti-Sm antibodies is homologous to an
Epstein-Barr virus EBNA I peptide, suggesting a mechanism for
epitope spreading through bystander T helper cells (144, 175).
Certain nuclear antigens tend to induce epitope spreading to
related other nuclear antigens in mouse models (Table 2).
Frontiers in Immunology | www.frontiersin.org 895
If administered as antigen-specific tolerizing immunotherapy,
one would therefore predict induction of bystander tolerance (183).

Further research into SLE immunotherapy would benefit
greatly from a humanized model that could better represent
the human immune system (184, 185).
CONCLUSION

SLE is a devastating autoimmune disease with a large unmet need
for better therapies. Promising work has identified some
immunological markers of immune tolerance in individuals at
risk who have not progressed to a diagnosis of SLE, and some
nuclear-derived antigenic epitopes that may be presented by
multiple MHC II molecules. More work is needed to carefully
map the autoantigen specificity and HLA restriction of expanded
T cells in patients with recent-onset SLE. The pre-clinical phase
and milder organ-specific endotypes of SLE provide potential
opportunities to intervene in individuals with a less aggressive or
more focused disease processes, associated with lower levels of
organ damage. Technological platforms showing promise in
early-phase clinical trials or preclinical models in other
autoimmune diseases could be adapted for trials in SLE. Given
the clinical complexity, sensible beginning strategies would
comprise small mechanistic studies with immune biomarker
and safety outcomes in well-defined limited disease settings.
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TABLE 2 | Epitope spreading in mouse models after autoantigen immunization.

Antigen Autoimmune Epitope Spread Reference

Ro 60 (aa 316–335) Ro60, La, Sm, U1RNP (176)
SmD1 protein A-RNP, SmD (176)
SmB protein A-RNP, SmD (176)
SmD183–119 SmD, dsDNA (177)
SmB′/B aa PPPGMRPP SmD, 70k-/A-U1RNP (178)
Murine La (aa 13–30) Ro52 (179)
A2/B1 hnRNP (aa 50–70) hnRNP (180)
Nucleosome (lupus-prone
mice)

dsDNA, nucleosome, histone (181)

La (aa 13–30) La, Ro (179)
Histone H1 H2, ssDNA (182)
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Regulatory T (Treg) cells, possess a strategic role in the maintenance of immune
homeostasis, and their function has been closely linked to development of diverse
pathologies including autoimmunity and cancer. Comprehensive studies in various
disease contexts revealed an increased plasticity as a characteristic of Treg cells.
Although Treg cell plasticity comes in various flavors, the major categories enclose the
loss of Foxp3 expression, which is the master regulator of Treg cell lineage, giving rise to
“ex-Treg” cells and the “fragile” Treg cells in which FOXP3 expression is retained but
accompanied by the engagement of an inflammatory program and attenuation of the
suppressive activity. Treg cell plasticity possess a tremendous therapeutic potential either
by inducing Treg cell de-stabilization to promote anti-tumor immunity, or re-enforcing Treg
cell stability to attenuate chronic inflammation. Herein, we review the literature on the Treg
cell plasticity with lessons learned in autoimmunity and cancer and discuss challenges and
open questions with potential therapeutic implications.

Keywords: regulatory T cell, autoimmune disease, cancer, tolerance, immunotherapy
INTRODUCTION

Over the last decades T regulatory (Treg) cells have emerged as a novel regulator of the immune
system and several approaches have been proposed for their therapeutic targeting in autoimmune
diseases, transplantation and cancer. For example, daily administration of low doses interleukin 2
(IL-2) has been linked to expansion of Treg cells and amelioration of graft-vs-host disease as well as
induction of remission in systemic lupus erythematosus (SLE) and type I diabetes. On the other
hand, immune checkpoint immunotherapy (ICI) in cancer is based on targeting molecules that are
abundantly expressed by Treg cells, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
and program cell death protein 1 (PD-1), suggesting that therapeutic efficacy may depend on this
powerful suppressive cell subset. Accumulating knowledge however, points to an increased
plasticity of the Treg cell compartment expressed with multiple “faces” including loss of
suppressive function, expression of inflammatory cytokines and re-programming of their
transcription program. Although it remains unclear which factors dictate Treg cell plasticity it is
possible that specific microenvironments imprint on Treg cell fate. Therefore, understanding the
mechanisms that mediate Treg cell plasticity is of paramount importance and should be considered
org September 2021 | Volume 12 | Article 7319471101
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during the design of Treg cell therapeutic protocols as well as
other treatments that directly or indirectly influence Treg cell
homeostasis. In this review we discuss current knowledge on
Treg cell plasticity with emphasis in autoimmunity and cancer.
TREG CELL IDENTITY CARD

Treg cells constitute the immunosuppressive subpopulation of
CD4+ T cells, representing approximately 5-10% of peripheral
CD4+ T cells in blood of healthy individuals (1, 2). They are
characterized by the expression of the transcription factor
forkhead P3 (FOXP3) (3, 4), a transcription factor
instrumental for the development and function of these cells.
To this end, individuals, and specifically men, bearing loss-of
function mutation in their FOXP3 gene, have been reported to
develop severe systemic multi-organ inflammation and
autoimmune disorder, known as immune dysregulation,
polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome
(5, 6). Similar to human, murine hemizygous males with an X-
linked frame shift mutation in their Foxp3 gene manifest a scurfy
phenotype, characterized by hyperactivation and expansion of
autoreactive CD4+ T cells leading to a lethal inflammatory multi-
organ failure (3, 7, 8). In accordance, ectopic expression of Foxp3
confers suppressor function on T effector cells proving the
importance of this transcription factor as a critical regulator of
Treg development and function (3). Specifically, Foxp3 binds to
many genes and acts as both a transcriptional activator and
repressor regulating the expression of genes encoding nuclear
factors that control gene expression and chromatin remodeling
(9). The capacity of Foxp3 to both activate and repress
transcription is content and partner-dependent. Thus, it acts as
an activator when complexed with the transcriptional factors
RELA, IKZF2 and KAT5 and as a repressor when complexed
with histone methyltransferase EZH2 and transcription factors
YY1 and IKZF3 (10). Moreover, Foxp3 facilitates the formation
of repressive chromatin in Treg cells upon their activation in
response to inflammatory cues (11). For instance Foxp3
represses cyclic nucleotide phosphodiesterase 3B, affecting
genes responsible for Treg cell homeostasis and amplifies
molecular features of Treg cells, such as anergy and
dependence on paracrine IL-2 (12). On the other hand other
studies have demonstrated that Foxp3 defines Treg cell identity
indirectly by fine-tuning the activity of other major chromatin
remodeling TFs such as TCF1 (13). Up to date two subsets of
Foxp3-expressing Tregs have been described: those emerging
de novo in the thymus (“thymic” or tTregs) and those induced
in the periphery (“peripheral” or pTregs).

Apart from FOXP3 expression, Treg cells abundantly express
CD25 (IL-2Ra), which is the low-avidity IL-2 receptor and is
crucial for the development and the maintenance of Treg cells
(14–16). They also express co-inhibitory molecules such as PD-1,
CTLA-4, T cell immunoreceptor with Ig and ITIM domains
(TIGIT), V-domain Ig suppressor of T cell activation (VISTA), T
cell immunoglobulin mucin 3 (TIM-3) and lymphocyte
activation gene-3 (LAG-3) as well as co-stimulatory molecules,
Frontiers in Immunology | www.frontiersin.org 2102
such as glucocorticoid-induced TNFR-related protein (GITR), 4-
1BB (CD137), inducible T cell co-stimulator (ICOS) and OX-40
(CD134). These molecules are responsible for Treg cell
suppressive function and/or act ivat ion while their
manipulation has been closely linked to Treg cell functional
instability in diverse disease settings (17).

Multiple mechanisms have been described via which Tregs
exert their suppressive activity and can be broadly classified into
four distinct categories: 1) secretion of immunosuppressive
cytokines, 2) cytolysis, 3) metabolic disruption, 4) suppression
of dendritic cells (DC) maturation and function. In more details:

Immunosuppressive Cytokine Secretion
Inhibitory cytokines, including IL-10, tumor growth factor b
(TGF-b), IL-35, are abundantly secreted by Treg cells,
orchestrating their function. For instance, IL-10 production by
Treg cells decreases the interferon (IFN)-g-dependent activation
of antigen presenting cells (APCs), suppresses IFN-g production
in CD8+ cells and induces downregulation of major
histocompatibility complex (MHC) II and CD86 in tumor-
associated macrophages (18, 19). Similarly, IL-10-producing
Treg cells control autoimmunity (20, 21). TGF-b secretion by
Treg cells exerts a plethora of immunosuppressive effects,
including blockade of DC priming and lymphocyte survival,
favoring an anti-inflammatory phenotype in macrophages and
inhibiting natural killer (NK) cell effector function in the context
of both autoimmunity and cancer (22–24). Lastly, IL-35
secretion has been described to induce cell cycle arrest in T
cells through the janus kinases (JAK) - signal transducer and
activator of transcription proteins (STAT) pathway, thus
potentiating inhibition of T cell proliferation in the tumor
microenvironment (TME) and suppression of autoimmune
diseases, such as colitis (25).

Cytolysis
Cytolysis is a Treg cell suppressive mechanism described mainly
in cancer and in vitro studies. Targeted cells (CD4+, CD8+

effector T cells, B cells, and NK cells) are driven to apoptosis
by Treg cell secreted granzymes in either perforin-dependent or
independent manner. Mechanistically, activated Treg cells,
through the expression of tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL), bind to death receptor (1)
on target cells leading to apoptotic-mediated cytolysis (26–28).
This is the mechanism exploited by tumor-infiltrating Treg cells
to trigger apoptosis in NK cells (29), B cells, DC and cytotoxic
T cells of the TME (26, 30, 31).

“Metabolic Disruption”
Treg cells have the ability to modulate effector cell function by
interfering with cell metabolism in an antigen-non-specific
manner. To this end, IL2R-expressing Treg cells consume the
surrounding IL-2, negatively affecting CD4+ and CD8+ cell
proliferative response (32). In cancer, Treg cells express high
levels of CD25, actively consuming IL-2, suppressing the
activation and proliferation of effector T cells (33) and
promoting their apoptosis (34). Induction of apoptosis in
September 2021 | Volume 12 | Article 731947
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autoreactive T cells due to Treg cell-induced IL-2 deprivation has
also been described in the T cell adoptive transfer model of
inflammatory bowel disease (35). Another well-described
suppressive Treg cell mechanism is the production of
adenosine from the conversion of extracellular adenosine
triphosphate (ATP) by the ectonucleotidases CD39 and CD73
expressed on the cell surface of Treg cells. CD39 expression is
driven by Foxp3 and its catalytic activity is strongly enhanced by
T-cell receptor (TCR) ligation (36). Interestingly, in the TME,
apoptotic Treg cells are the source of extracellular ATP, which is
subsequently metabolized into adenosine by live Treg cells (37).
Adenosine is a metabolite, which suppresses T cell, DC and pro-
inflammatory macrophage maturation and function (17, 33, 38,
39). In support, patients with the remitting/relapsing form of
multiple sclerosis (5) have strikingly reduced numbers of CD39+

Treg cells in the blood (40).

Suppression of DC Maturation
and Function
A major mechanism of Treg cell-mediated immunosuppression
is the inhibition of the immunological synapse between effector T
cells and APCs, resulting in impaired APC maturation and T cell
anergy. Treg cells, through expression of inhibitory receptors
(e.g., CTLA-4), engage the co-stimulatory molecules CD80/
CD86 on DC with a higher affinity than CD28, impeding DC
maturation and function (41, 42). Furthermore, through CTLA-
4, Treg cells capture co-stimulatory molecules on DC by the
process of transendocytosis (43), while in vitro assays have
shown that Tregs down-regulate CD80 and CD86 expression
in DC in a CTLA-4 and lymphocyte function-associated antigen
(LFA)-1 dependent manner, highly blocking or weakening the
signaling between APCs and anti-tumor specific T cells (44).
Additionally, Treg-CTLA-4 increases Indoleamine-pyrrole 2,3-
dioxygenase (IDO) expression in the DC, which lowers the
concentration of tryptophan necessary for T effector cells to
proliferate (45). In accordance, our group recently demonstrated
that Foxp3+ Treg cells potently suppress autoimmune responses
in vivo through inhibition of the autophagic machinery in DC in
a CTLA-4-dependent manner (46). Moreover, Treg cells have
been demonstrated to accomplish prolonged interactions with
DC in an neuropilin (Nrp)-1/MHC II dependent fashion, a
process able to further limit the access of effector T cells (47).
Finally, through expression of LAG-3, which is a homolog for
CD4, Treg cells have been reported to suppress DC function by
LAG-3/MHC II interactions (48).
TREG CELL METABOLISM

Cellular metabolism has emerged as a crucial parameter to
influence Treg cell lineage stability, survival, proliferation and
function in immune homeostasis but also during pathological
situations (23, 33, 45, 49–52). Treg cells exhibit a unique
metabolic signature compared with conventional effector T
cells. Specifically, meeting of the energy needs of Treg cells
suppressive activity, is based on mitochondria metabolism and
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mainly on elevated levels of fatty acid oxidation (32, 53, 54). As
an example, Treg cells are characterized by a metabolic
advantage in the nutrient-deprived, lactate-rich, highly hypoxic
TME, compared to CD4+ T effector and CD8+ cytotoxic T cells,
which rely primarily on anabolism and glycolysis to support their
bioenergetic needs (23). Transcriptomic analysis has shown that
human intra-tumoral Treg cells upregulate genes related to lipid
synthesis, while in tumor mouse models Treg cells display
increased fatty acid synthesis (55); in fact, Foxp3 expression in
T cells has been shown to induce oxidative phosphorylation and
suppress glycolysis in mouse models (33). Overall, metabolic
signaling has emerged as a main component in defining
Treg cell function and fate. Thus, understanding how the
microenvironment affects the metabolic decisions of Treg cells
may help in the delineation of pathogenic mechanisms and can
pave the way for novel immunotherapeutic approaches.
GENETIC AND EPIGENETIC PROGRAM
OF THE FOXP3 LOCUS

Regulatory Elements of the Foxp3 Locus
The human FOXP3 gene is located in the p-arm of the X
chromosome and is one of the most intensively studied genes
in recent years. The FOXP3 promoter, positioned in the 1st
intron, relies on other cis-regulatory elements. Comparative
genomic approaches discovered four conserved non-coding
sequences (CNSs) on Foxp3 locus: 1) regulatory CSN0, located
on an intron of the neighbouring gene 5′ of the Foxp3 locus,
2) intronic enhancer CNS1, located in the 1st intron, along with,
3) CNS2, known as Treg cell-specific demethylated region,
4) CNS3, located directly after exon 1 (56). CNS0 is the most
recently discovered regulatory element/super-enhancer,
contributing to tTReg cells generation; also regulated by CNS3
(51, 53, 57). On the other hand, CNS1 is redundant for nTreg cell
development, while also related to the development of iTreg cells.
CNS2 contains highly conserved CpG motifs, known as Treg cell
specific demethylated regions (TSDR) that represent the most
definitive marker of commitment to the Treg cell lineage (58–
61). Importantly, it has been demonstrated that CNS2 deletion
affects the stability of Foxp3 expression during proliferation (56,
57, 62–65).

Transcription Factors Binding to FOXP3
Regulatory Elements
Several transcription factors have been described to bind either
to the FOXP3 promoter or to the CNS regions to induce or
maintain FOXP3 expression. The FOXO family of transcription
factors directly binds to CNS1, CNS3 areas and indirectly
regulates Treg cell-specific genes, SMAD3 and nuclear factor of
activated T-cells (NFAT) (66, 67). NFAT binds to CNS1 upon
TCR-signalling, while SMAD3 after TGF-b binding (65).
Furthermore, Stat5, which is activated upon IL-2 signalling,
binds to CNS2, protecting Treg cell identity from other
cytokine signals and maintaining heritable transcription of
Foxp3 (68).
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Epigenetic Regulation
Post-translational mechanisms regulate Foxp3 expression
positively and negatively through methylation, acetylation,
phosphorylation, and ubiquitination. Transcription factors
cAMP response element-binding protein (CREB)/activating
transcription factor (ATF), nuclear factor ‘kappa-light-chain-
enhancer’ of activated B-cells (NF-kB), Ets-1 and the Runx-
Foxp3 complex, all Foxp3-inducers, cannot bind to CNS2
without demethylation (56, 59, 69). Environmental factors,
such as Vitamin C, induces CNS2 demethylation in Treg cells
in a ten-eleven-translocation 2 (Tet-2)-dependent manner (70).
Additionally, TSDR demethylation is facilitated by superagonist
CD28, high expression of CD45RA or CD39, and IL-2/CD25 (10,
71, 72). Histone modification also contributes to Foxp3
expression, with trimethylation of H3K4 on the promoter and
CNS1 regions being strongly correlated with Foxp3 expression in
fully differentiated Treg cells (73, 74). Opposingly, TDSR
methylation destabilizes Foxp3 expression and impairs Treg
cells suppressive activity. Acetylation is also associated with
Treg cells stability and function either by Foxp3 or histone
acetylation. TGF-surface signalling assists Foxp3 acetylation
(75, 76), while methyl-CpG binding protein two and galectin-
9/CD44 pathway promote respectively CNS2-Histone 3 and
CNS1-H4 acetylation (77, 78). In contrast, phosphorylation
and ubiquitination weaken of their suppressive capacity with
respective representative mediators Pim-2 kinase and E3 ligase
Stub-1 (79, 80).
TREG CELL HETEROGENEITY,
PLASTICITY, AND FUNCTIONAL
INSTABILITY

It is evident that Foxp3, CD25, co-inhibitory and co-stimulatory
molecules, immunosuppressive cytokines, death receptors and
fatty-acid oxidation define Treg cell identity and suppressive
function. Nevertheless, in recent years it is appreciated that Treg
cells present a great phenotypic and functional heterogeneity
resulting in distinct Treg cell subsets. These subsets seem not to
be terminally differentiated since Treg cells may convert from
one subset to another under specific stimuli, in accordance to the
notion of plasticity that has been described for T helper (78) cells.
Specifically, Treg cells can adopt the transcriptional program and
functional characteristics of lineage specific T effector cells under
inflammatory conditions (81). Multiple subsets of TH-like Tregs
have been reported in cancer and autoimmunity settings
expressing transcription factors and characteristic cytokines
specific for T effector lineage, such as IFNg+Tbet+CXCR3+

Th1-like Tregs, IL4+IL5+IL13+GATA3+ Th2-like Tregs,
IL17A+RORt+ Th17-like Tregs, and CXCR5+Bcl6+ICOS+PD1+
follicular Tregs (TFR) (82–88). However, the function of the Th-
like Treg cells remains controversial (81) since it has been shown
that some of these Th-like Treg cells lose their suppressive ability,
while others become even more suppressive. For instance, Tbet+

Treg cells colocalized and inhibited Th1 and CD8 T cell activation
and elimination of Tbet-expressing Treg cells resulted in severe
Frontiers in Immunology | www.frontiersin.org 4104
Th1 autoimmunity. Conversely, in cancer models Tbet+ INFg+

Tregs lose their suppressive function and promote anti-tumor
immune responses (89, 90). Th2-like Tregs were the main Treg
subset found in tissues and peripheral blood from patients with
colorectal cancer and melanoma compared to healthy individuals
displaying high viability, activation and suppressive ability
conferring to the tumorigenic environment (87). RORgt+ Treg
cells were derived from Foxp3+ thymic Treg cells in an antigen-
specific, displayed increased suppressive capacity and efficiently
inhibited myelin-specific Th17-cells in a passive experimental
autoimmune encephalomyelitis model (91). The main function
described for TFR is the suppression of T follicular helper (TFH)
cells that support antibody affinity maturation in germinal center
reactions and humoral memory formation. Patients with
autoimmune rheumatic diseases presented altered numbers of
TFR with reduced suppressive function concomitant with a
hyperactive phenotype of TFH cells (92). In cancer TFR cells
have been found to infiltrate tumors exhibiting superior
suppressive capacity and in vivo persistence compared to
regulatory T cells and their depletion improves tumor control
in mice (93). Thus, if the adoption of a Th-like phenotype by Treg
cells is a matter of instability or a matter of plasticity remains to be
defined. Th-like Treg cells have been characterized as plastic Treg
cells in the field of autoimmunity while in cancer they are referred
to as fragile Tregs. The common nominator of plastic and fragile
Tregs is the production of inflammatory cytokines. In this review
we propose the classification of Treg cells into four
subpopulations: 1. Treg cells expressing Foxp3, suppressive
cytokines and exerting suppressive function, 2. Treg cells
expressing Foxp3, producing inflammatory cytokines and
retaining their suppressive function, 3. Treg cells expressing
Foxp3, producing inflammatory cytokines without exhibiting
suppressive function, called from now on fragile Treg cells and
4. the ex-Treg cells that lose Foxp3 expression, produce
inflammatory cytokines and do not possess a suppressive
function. Both fragile and ex-Treg cells are important players in
the pathophysiology of autoimmunity and cancer and will be
further reviewed herein (Figure 1 and Table 1).
TREG CELL FUNCTIONAL INSTABILITY
IN CANCER

Treg cells highly infiltrate tumors, mediating the formation of an
immunosuppressive milieu and thus promoting tumor immune
evasion (125). The first evidence regarding their function in
inhibiting the anti-tumor immunity emerged 20 years ago, when
two independent groups demonstrated that elimination of
CD25+CD4+ T cells in mice is associated with enhanced anti-
tumor immune responsiveness and tumor regression (126, 127).
Several reports demonstrate that an enhanced Treg cell presence
in tumor site and peripheral blood of cancer patients was
associated with reduced survival and increased metastatic
potential in diverse tumor settings (128). On the same line,
Treg cell frequencies among tumor infiltrating lymphocytes
(TILs) and peripheral blood have been reported to be
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significantly elevated in nearly all malignancies both in humans
and mice, including melanoma, colorectal carcinoma, renal cell
carcinoma, pancreatic ductal adenocarcinoma, non-small-cell
lung, ovarian epithelial cancer (22, 129–131), gastrointestinal
cancer (132), esophageal cancer (133) and breast cancer (134).
The accumulation of Treg cells into the tumor niche may involve
both the homing of tTreg cells (135), as well as the generation of
pTregs (135, 136). The preferential recognition of tumor-specific
antigens by the high-affinity TCRs results to clonal expansion,
activation and proliferation of Treg cells inside the TME (137).

Many intrinsic and extrinsic factors have been described to
induce Treg cell functional instability in the TME. Treg cell
lineage specific molecules, TCR/CD28 signaling, metabolism and
inflammatory cytokines are factors that have been implicated in
the induction of both fragile and ex-Treg cells in cancer resulting
in the abolition of the highly immunosuppressive TME and
successful control of tumor growth by the immune system.
Surprisingly, the same mechanisms that are responsible for the
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induction of Treg fragility in TME are also those described for
the development of ex-Tregs cells (Figure 1). The exact
mechanisms fine-tuning the decision between the fragile
phenotype or the ex-Treg phenotype in the TME are ill defined.

Treg Cell Lineage-Specific Molecules
One of the aforementioned leading mechanisms safeguarding
Foxp3 stability is FOXP3-TSDR demethylation, which showed
significantly higher rates in tumor sites versus normal sites in
patients with colorectal cancer. Increased FOXP3-TSDR
demethylation in combination with a significant upregulation
of STAT5, which is an important transcription factor for
regulating FOXP3 expression, resulted in significantly more
FOXP3 mRNA expression and higher protein synthesis in
tumor tissues, serving in the pathogenesis of colorectal cancer.
FOXP3-TSDR demethylation in tumor-infiltrating CD4+ T cells
of colorectal cancer patients was mediated by the increase of
TET-2 that catalyzed 5-methylcytosine (5mC) conversion to 5-
FIGURE 1 | Mechanisms of Treg functional instability constrain cancer while promote autoimmunity and the development of immune related adverse events after
immunotherapy. Treg cells exert a strategic role in the maintenance of immune homeostasis. Foxp3 is the hallmark transcription factor of Treg cells orchestrating their
function. A complex network of transcription factors such as HELIOS, HIF1a and Foxo1, transcription regulators such as IL33, histone deacetylases, histone
methylotransferases, signalosome proteins (CARMA) maintain the transcriptional identity of Tregs and contribute significantly Treg cell stability. Exposure of Tregs to
inflammatory stimuli such as inflammatory cytokines (IL1b, IL6, IFNg, IFNb, IL12), NAD, ATP and Retinoic Acid results in the alteration of their transcriptional program,
in the expression of transcription factors and cytokines that are characteristic of T helper cells and at the end in the attenuation of Treg suppressive function. This
may be accompanied by the loss of Foxp3 expression and the generation of ex-Tregs or the generation of fragile Tregs that retain Foxp3 expression. The strength of
TCR signaling together with costimulatory and coinhibitory molecules (CD28, GITR, NRP1, CTLA4, PD1) influence downstream pathways such as PI3K/AKT, PTEN,
NFkB and the production of ROS by the mitochondria that are critical nominators of the maintenance of Treg transcriptional program and Treg suppressive identity.
Oxidative phosphorylation and fatty acid oxidation are metabolic hallmarks of Tregs suppressive function. Any perturbations in the metabolic program of Tregs result
in their transformation into non suppressive fragile or ex-Tregs. In autoimmunity the presence of fragile/ex-Tregs burdens the inflammatory response while in cancer
stability of Tregs supports the immunosuppressed tumor microenvironment. Immune-checkpoint immunotherapy (ICI) applied in cancer seems to be the
destabilization of Tregs and their conversion to fragile or ex-Tregs that may cause the immune-related adverse events (irAEs). Created with BioRender.com.
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hydroxymethylcytosine (5hmC) (94). Histone modifications are
important regulators of chromatin condensation and FOXP3
stability. Pharmacologically or genetically disruption of enhancer
of zeste 2 polycomb repressive complex 2 subunit (EZH2)
Frontiers in Immunology | www.frontiersin.org 6106
activity, which is a histone H3K27 methyltransferase of the
polycomb repressor complex 2 (PRC2) in Treg cells, resulted
in the loss of FOXP3 expression and conversion to ex-Tregs cells
producing high amounts of pro-inflammatory cytokines, such as
TABLE 1 | Molecules and mechanisms involved in Treg cell stability in cancer and autoimmunity.

Molecules/Procedures
responsible for Treg
stability

Mechanism Disease Type of instable Treg Reference

CANCER
Treg cell lineage-specific
molecules
FOXP3-TSDR methylation TET-2 MEDIATED 5mC conversion to 5hmC colorectal cancer Ex-Tregs (94)
histone H3K27
methyltransferase of PRC2

EZH2 Colon adenocarcinoma,
melanoma, prostate cancer

Ex-Tregs (95)

bromodomain-containing
proteins

interactions of histone acetyl transferases and
(HDACs) with transcription factors and proteins
involved in gene expression,

Lung adenocarcinoma Ex-Tregs (96)

Helios zinc-finger transcription factors Melanoma Ex-Tregs (97)
Inflammatory cytokines
IL1b, IL6 Transcription regulator Id2 melanoma Ex-Tregs (98)
IFNg Melanoma Fragile Th1-like Tregs (89)
TCR/CD28 signaling
pathway
NF-KB Melanoma Ex-Tregs (96)
IL33 NF-KB-TBET Melanoma Fragile Th1-like Tregs (90)
ROS BACH2 SUMOylation Colon carcinoma,

melanoma
Ex-Tregs (99)

Mir-126 PI3K/Akt/mTOR Breast cancer Ex-tergs (100)
Nrp-1 Pten/PI3K/Akt melanoma Fragile Th1-like Tregs (89)
PD-1 Pten/PI3K/Akt Lung tumor Fragile Th17-like Tregs (101)
CARMA-1 AP-1, mTOR, NF-kB Melanoma, colon carcinoma Fragile Th1-like Tregs (102)
Metabolism
Lactic acid MCT-1 Melanoma Tregs with reduced expression of

Nrp-1 and elevated levels of PD1
(103)

Autophagy Atg5, Atg7 Colon adenocarcinoma Ex-Tregs (104)
Glycolysis Traf3ip3 Colon adenocarcinoma Ex-Tregs (105)
TLR8 mTOR/glucose metabolism Melanoma Tregs with reduced suppressive

function
(106)

IDO GCN2- kinase dependent production of IL-6 by
plasmacytoid DC

Melanoma Fragile Th17-like Tregs (107)

AUTOIMMUNITY
Treg cell lineage-specific
molecules
CNS2 Multiple autoimmune

diseases
Ex-Tregs (68, 108)

Stub1/USP7/TIP60/Sirtuin1/
HDAC7

Proteasomal degradation of Foxp3 Multiple autoimmune
diseases

Ex-Tregs (109–112)

Inflammatory cytokines
IFNb / IL12 / IFNg Multiple sclerosis Fragile Th1-like Tregs (113–115)
TCR/CD28 signaling
pathway
PI3K/AKT/Foxo1/3 Multiple sclerosis Multiple

autoimmune diseases
Fragile Th1-like Tregs (116, 117)

PTEN/PI3K/AKT Glycolysis, Foxo, TSDR methylation Multiple autoimmune
diseases, Multiple sclerosis

Th1-like fragile Tregs (67, 116–
118)

ROS DNA damage response Experimental autoimmune
encephalomyelitis

Dysfunctional Tregs (119)

Metabolism
Extracellular ATP/NAD+ CD39, CD73 ExTregs (120, 121)
Glut1 Intenstinal inflammation,

lupus
ExTregs (122, 123)

Ubiquitin ligase E3VHL Glycolysis/ HIF-1a Multiple autoimmune
diseases, Colitis

Th1-like fragile Tregs (124)
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TNF-a, IFN-g, and IL-2 in the tumor tissues but not in lymphoid
organs. The lower Treg cell numbers as well as the acquisition of
pro-inflammatory functions of tumor-infiltrating FOXP3+ Treg
cells drove to the remodeling of the TME by enhancing the
recruitment and function of CD8+ and CD4+ effector T cells and
protected mice from colon adenocarcinoma (MC-38), melanoma
(B16-F10) and prostate cancer (TRAMP-C2) (95). In accordance
with Wang D. et al. (95) results on the role of histone
modifications in Treg cells stabilization in the TME Xiong Y.
et al. showed that prevention of the recognition of histone
modifications by the transcriptional machinery ensued ex-
Tregs formation, hindering tumor growth in a genetically
engineered mouse model of aggressive lung adenocarcinoma
(Kras+/LSL-G12DTrp53L/L – KP mice). Specifically, treatment of
KP mice with JQ1, a well-characterized inhibitor of the
bromodomain-containing proteins that modulates the
interactions of histone acetyl transferases (96) and histone
deacetylases (HDACs) with transcription factors and proteins
involved in gene expression, led to a significant downregulation
of Foxp3, CTLA-4, and PD-1 only in lung tumor–infiltrated Treg
cells accompanied by decreased suppressive function (138).
Nevertheless, JQ1 monotherapy led to minimal or moderate
delay in tumor growth, but combination treatment with
eitherHDACs inhibitor Ricolinostat (138) or anti-PD-1
immunotherapy (139) significantly delayed tumor growth and
improved survival of KP mice. Since JQ1 could also induce
functional changes to tumor cells the direct and specific role of
bromodomains in Treg cell stability in the TME is still debatable.

Helios, which is a member of the Ikaros family of zinc-finger
transcription factors and considered as marker of tTreg cells has
been shown to play an essential role in the maintenance of Treg
cell program. Accordingly, selective depletion of Helios in Treg
cells led to enhanced anti-tumor immunity in the B16F10
melanoma model through induction of an unstable Treg cell
phenotype in the TME. Helios-deficient tumor-infiltrating Treg
cells produced significant amounts of proinflammatory cytokines
(TNF-a, IFN-g), displayed a nonanergic phenotype, reduced
immunosuppressive activity and profoundly restrained Foxp3
and CD25 expression (97).

Inflammatory Cytokines
Both pro- and anti- tumorigenic effects have been reported for
inflammatory cytokines. These contradictory results may be
attributed to the divergent role of cytokines on different cells
forming the TME as well as to different effects of cytokines
depending on tumor stage. Specifically, for Treg cells it has been
shown that exposure to inflammatory cytokines such as IL-1b and
IL-6 substantially reduced Treg cell stability and enhanced the
conversion of Treg cells to ex-Treg Th17 cells via the upregulation
of the transcription regulator Id2 (98, 140). Treg cell-specific
ectopic expression of Id2 (TetRId2EmGFPFoxp3YFP−Cre)
resulted in reduced Foxp3+ Treg cell infiltration within tumor
tissue as well as in tumor-draining lymph nodes, increased the
expression of IL-17A within the CD4+Foxp3− tumor TILs and
arrested tumor growth in B16F10 melanoma-bearing mice (98).
These results implied that the presence of inflammatory cytokines
Frontiers in Immunology | www.frontiersin.org 7107
in the immunosuppressed TME further potentiates Treg cells
stability and function. Interestingly, Overacre-Delgoffe et al.
demonstrated that IFN-g produced by fragile Treg cells could
destabilize the suppressive Treg cells infiltrating tumors, a process
named by the authors as “infectious fragility”. IFN-g substantially
limited the suppressive capacity of both mouse and human tumor
infiltrating Treg cells and not that of peripheral Treg cells (89).

TCR/CD28 Signaling Pathway
TCR and CD28 stimulation facilitates the activation of Treg cell
and is indispensable for the preservation of the activated Treg cell
transcriptional signature. Nevertheless, the fine-tuning of the
strength of TCR stimulation seems to be pivotal for the
maintenance of Treg cells. Treg cells possess a plethora of
mechanism to attenuate TCR/CD28 signaling including
diminished calcium flux, retained activation of Akt, Foxp3-
mediated suppression of Zap70 transcription and expression of
inhibitory receptors such as CTLA-4 and CD5 (141). In the TME
TCR/CD28 signaling seems also to denominate Treg stability
and promote tumor growth.

NF-kB activation is a key downstream event of TCR/CD28
signaling. Activation of NF-kB occurs through the canonical
pathway leading to the activation of NF-kB heterodimers
consisting of p50 and p65 or p50 and c-Rel and through the
non-canonical pathway leading to nuclear translocation of p52-
RelB heterodimers. Genetic ablation or chemical inhibition of c-
Rel with an FDA-approved drug, Pentoxfylline (PTXF) but not
p65 in melanoma-bearing mice modified the transcriptional
landscape of activated Treg cells. Specifically, it caused
significantly decreased expression of Treg cell markers such as
Foxp3, CD25 and Helios and genes required for optimal Treg cell
function and immunosuppression in the TME, such as Tgfb1 or
Gzmb. Thus, c-Rel inhibition reduced Treg cell activity in the
TME resulting in reinforcement of anti-tumor immunity,
attenuation of tumor growth and potentiation of anti-PD-1
therapy without causing autoimmunity (96). Nevertheless, we
have recently demonstrated that NF-kB pathway is also
responsible for the induction of fragile Treg cells in the TME.
In detail, specific genetic depletion of IL-33 in Treg cells, which
binds to NF-kB and restricts its transcriptional activity,
attenuated Treg suppressive properties in vivo and facilitated
tumor regression in the B16F10 melanoma model. Absence of
IL-33, epigenetically reprogrammed Treg cells to express IFN-g,
consistent with a fragile phenotype, dependent on NF-kB–T-bet
axis, while maintaining Foxp3 expression. Importantly, genetic
ablation of Il33 potentiated the therapeutic efficacy of
immunotherapy (90).

Several studies have suggested that excessive reactive oxygen
species (1, 26) levels are associated with tumor-induced
immunosuppression and that ROS can participate in Treg cell-
mediated immunosuppression. Likewise, ROS that is induced
upon TCR and CD28 activation was found to be increased in
tumor-infiltrating Treg cells compared to their splenic
counterparts. A recent paper in Nature Communications by
Yu X. et al. (99) unraveled the molecular mechanism
underlying the cross-talk between ROS and Treg cell-mediated
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tumor immunosuppression. TCR/CD28 induced ROS led to the
accumulation and stabilization of small ubiquitin-related
modifier (SUMO)-specific protease 3 (SENP3) in Treg cells
repressing T effector cell-specific transcriptional programs and
maintaining Treg cell-specific gene signatures by triggering
BACH2 deSUMOylation. In detail, genetic deletion of Senp3
specifically in Treg cells led to the expression of T effector-related
genes such as Ifng, Il4, Il13, Il17a, Il22, and Il9 and loss of Treg
cell-specific genes, such as Foxp3 and Pdcd1. Senp3-induced Treg
destabilization resulted in increased frequencies and effector
function of CD4+ and CD8+ T effector cells infiltrating the
tumors and reduction of tumor growth in MC38 colon
carcinoma model and B16F10 melanoma model. These
findings suggested that targeting ROS in Treg cells may be an
effective approach to ameliorate tumor immune tolerance (99).

It is well accepted that TCR signaling activates the
phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/
mechanistic target of rapamycin (mTOR) pathway in Treg
cells but limited activation of this pathway is crucial for Treg
cell suppressive function. Micro-RNAs can regulate these
pathways, stabilize Treg cells and thus be potential targets of
cancer immunotherapy. For instance, silencing of miR-126 on
Treg cells enhanced the expression of its target p85b and
subsequently altered the activation of PI3K/Akt pathway
leading in reduced expression of Foxp3, CTLA-4, GITR, IL-10
and TGF-b on Treg cells. Mir-126KO Treg cells presented
impaired suppressive function and promoted a robust anti-
tumor immune response that resulted in a diminished tumor
growth in a murine breast cancer model (100). PI3K/Akt/mTOR
pathway has been also implicated in the induction of fragile Treg
cells in the TME. Specifically, it has been demonstrated that Nrp-
1, which is constantly expressed by Treg cells reduced Akt
signaling following ligation with semaphorin (Sema)4a and
Nrp1-Sema4a interaction promoted Treg cell survival, stability
transcriptional program with downregulation of the lineage
defining transcription factors Eomes, IRF4 and RORgt. Indeed,
specific deletion of Nrp-1 in Treg cells (Nrp1f/fFoxp3Cre mice) or
blockade of Nrp-1 with Sema4a mAb, Nrp-1 mAb and Sema4a-
Ig significantly decreased tumor growth in the B16F10
melanoma mouse model (29, 89). Nrp1KO Treg cells
presented a fragile phenotype characterized by expression of
IFN-g, elevated phospho-Akt, reduced ICOS expression and lack
of suppressive activity in vitro although retaining Foxp3
expression (89). Mechanistically, Nrp-1 recruited the
Phosphatase and tensin homolog (PTEN) to the immunologic
synapse, which inhibited PI3K and thus limited phosphorylation
of Akt (29). PD-1 which is expressed by tumor activated Treg
cells is also an upstream regulator of PTEN restricting Akt
activation. The in vitro blockade of PD-1 pathway in Treg cells
rapidly increased Akt phosphorylation, FoxO3a was lost, and
suppression activity was abrogated. Thus, it seems that PTEN
played an important role in Treg cell function and stability.
Indeed, aggressive melanoma and lung tumors implanted in
PTEN-Treg-KO hosts grew much slower accompanied by a
robust anti-tumor immunity. The tumor-infiltrating PTENKO
Frontiers in Immunology | www.frontiersin.org 8108
Treg cells lost the expression of PD-1 but not Foxp3, expressed
proinflammatory cytokines such as IL-2 and IL-17 (101).

Finally, the dominant role of TCR/CD28 and downstream
molecules regulation in Treg cell functional stability was further
confirmed by Di Pilato et al. who studied how the function of
TME Treg cells is altered by CARMA1, which is a scaffold
protein of the caspase recruitment domain-containing
membrane-associated guanylate kinase protein-1 (CARMA1)–
B cell lymphoma (BCL)10–Mucosa-associated lymphoid tissue
lymphoma translocation protein 1 (MALT1) (CBM)
signalosome complex implicated in activation of AP-1, mTOR,
NF-kB and mRNA stabilization in response to TCR. Carma1-/-

Treg cells retained expression of Foxp3 but secreted IFN-g and at
lower frequencies IL-4, IL-17 and TNF. Production of IFN-g by
Treg cells induced the activation of the intra-tumoral myeloid
cells and increased the antigen presenting capacity of tumor cells,
resulting in restrained tumor growth. Importantly, blockade of
PD-1 in absence of CARMA1 caused rejection of tumors that
otherwise do not respond to anti-PD-1 monotherapy (102).

Metabolism
Recent studies have revealed that metabolic programs play
pivotal roles in controlling Treg cells stability. Treg cells
require predominantly fatty-acid oxidation in contrast to
effector T cells that are glycolytic. Interestingly, it has recently
been demonstrated that inhibition of lipid synthesis in intra-
tumoral Tregs of mouse models diminishes tumor progression,
enhancing anti-tumor immune responses (142). Thus, in the
harsh TME that it is poor of glucose and high in lactic acid, Treg
cells possess a survival and functional advantage promoting
immunosuppression. Intratumoral Treg cells are adapted to the
lactic-enriched TME by the upregulation of CD36 via a
peroxisome proliferator-activated receptor-b (PPAR-b)
signaling (36). Lactic acid was an additional energy source for
Treg cells in the TME, up-taken through transporter
monocarboxylate transporter (MCT) 4 and converted to
pyruvate and NADH (23). In accordance, glycolysis by tumor
cells correlated with the suppressive function of intratumoral
Treg cells. Sequencing of tumor-draining lymph node and tumor
Treg cells that present high glucose avidity from B16F10
melanoma-bearing mice revealed reduced expression of Treg
cell signature genes, while retaining Foxp3 expression.
Subsequently, tumor-infiltrating Treg cells that are deficient for
MCT1, which catalyzes the intake of lactic acid, upregulated
glucose consumption. The MCT1KO Treg cells that present a
reduced suppressive function ex vivo, decreased expression of
Nrp-1 and elevated PD-1 levels lost their suppressive function
and allowed the control of B16F10 tumor growth. Treg-specific
deletion of the lactate transporter resulted in decreased tumor
growth and response to ICI (103).

Autophagy and lysosomal function regulate Treg cell
metabolic fitness in the TME. Specifically, Treg cell-specific
deletion of the autophagy gene Atg7 or Atg5 increased
glycolytic metabolism, broke Treg cell stability and facilitated
tumor clearance (104). On the other hand, Treg cell–specific
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deletion of lysosomal Traf3ip3 potentiated mTORC1 signaling,
mediated hyper-glycolytic metabolism and impaired Treg cell
function. Traf3ip3KO Tregs induced a strong anti-tumor T cell
response and a profound reduction in tumor size in the MC38
colon carcinoma model. Interestingly, both Traf3ip3 and Atg7/
Atg5 deficient Treg cells upregulated the expression of
inflammatory cytokines genes, such as Ifng, Il4, Il13, Il17a,
Il17f, and Il21 and presented impaired transcription of the
Treg cell signature gene Foxp3 (105).

Despite the fact that data on mouse tumor Treg cells strongly
suggest the use of lipid oxidation as a primary metabolic pathway
the same is not true for human Treg cells. The suppressive
function of human tumor-associated Treg cells is predominant
dependent on glucose metabolism triggering cell senescence and
DNA damage in responder T cells. Disruption of glucose
metabolism by toll-like receptor (TLR) 8 signaling in human
Treg cells reversed Treg inhibitory functions, enhanced anti-
tumor immunity and tumor immunotherapy efficacy in a mouse
model of melanoma (106).

The consumption of specific nutrients in the TME is another
mechanism for the maintenance of immunosuppression and
Treg stability. For instance, IDO (19), an enzyme implicated in
tryptophan metabolism, was upregulated in murine
plasmacytoid DC in tumor-draining lymph nodes, where it
potently activated Treg cells. Pharmacological inhibition of
IDO in the B16F10 melanoma model released the GCN2-
kinase dependent production of IL-6 by plasmacytoid DC and
promoted conversion of Treg cells to the Th17-like phenotype.
Th17-like Tregs that expressed IL-17, IL-22, IL-2, TNF and
RORgt but in parallel maintained Foxp3 expression markedly
enhanced anti-tumor immunity (107).

Exhaustion
Another important barely studied category of Treg functional
instability in the TME is exhaustion. Treg cells in the peripheral
blood and tumor of glioblastoma multiform patients,
upregulated the PD-1 concomitantly with IFN-g and molecular
signatures of exhaustion. PD-1 Treg cells presented reduced
suppression capacity in vitro and a partial demethylation at the
TSDR locus while they preserved the FoxP3 expression. These
data are in contrast to the aforementioned data about the role of
PD-1/PD-L1 axis in promoting Treg induction through
inhibition of the Akt/mTOR pathway. Nevertheless, human
Treg cells presented a different biology compared to murine
Treg cells and also the expression of PD-1 in human Treg cells
may be induced as a compensatory mechanism to stabilize the
PI3K/Akt pathway and repress IFN-g (143).
TREG CELL FUNCTIONAL INSTABILITY
IN AUTOIMMUNITY

Autoimmune diseases comprise a heterogeneous group of poorly
understood long-term disorders that affect approximately 5-8%
of the population (144). While each autoimmune disorder is
unique, they are all caused by a breakdown of tolerance against
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endogenous proteins. This leads to auto-inflammatory events
that promote the destruction of organs in a humoral and cellular
immune mediated manner. Immune suppression by Foxp3+

Treg cells is essential and indispensable for maintenance of
tolerance and prevention of autoimmunity, as illustrated by
spontaneous autoimmune disease development when Treg cells
are rendered deficient. Consistently recent studies have
highlighted that Treg dysfunction is a common denominator
in autoimmunity, with reduced Treg cell frequencies and
impaired suppressive function identified in a wide range of
autoimmune diseases, including multiple sclerosis (5), SLE,
type 1 diabetes, thyroiditis, and inflammatory bowel disease
(145–150). Thus, it is becoming apparent that Treg cells
possess a unique power in supervising autoimmune reactions
and the re-establishment of self-tolerance. Treg cells during
autoimmunity may receive ques from the inflammatory
environment that imprint on their phenotype and function,
leading to acquisition of an unstable phenotype due to either
loss of Foxp3 expression or fragility with maintenance of Foxp3
expression (Figure 1). An in-depth characterization of the
mechanisms underlying Treg cell dysfunction in autoimmunity
would enable new strategies for managing autoimmune diseases.
In this section we will focus on recent literature exploring Treg
cell stability and plasticity and their implications for the
pathogenesis of autoimmune diseases.

Ex-Treg Cells in Autoimmunity
Loss of Foxp3 expression has been shown to contribute to
autoimmunity and inflammation in various in vivo settings
(151–158). Under autoimmune conditions of diabetes, a
substantial percentage of cells had unstable expression of
Foxp3 in inflamed tissues. These ‘exFoxp3’ T cells, secreted
inflammatory cytokines, acquired an activated-memory
phenotype and were able to induce rapid onset of diabetes
upon adoptive transfer (155). In a different autoimmune
setting, experimental autoimmune encephalitis, immune
activation and inflammation driven by self-antigens in the
central nervous system, promoted Foxp3 instability exclusively
in autoreactive Treg cells during the induction phase of the
response, a process that was reversed during the resolution phase
of inflammation or upon IL-2-anti-IL-2 complex treatment
(158). Furthermore, data from human studies, highlight the
importance of the imbalance of Th17/Treg cell ratio as a
pathological feature in multiple sclerosis (5), positively
correlating with disease severity (159, 160). In this notion,
impaired Foxp3 and Helios expression along with increased
numbers of CD161+Th17 like CD45RA-Foxp3lo Treg cells was
an early hallmark of multiple sclerosis (161), whereas epigenetic
modification of Foxp3 through histone deacetylase mediated by
TLR-2 stimulation induced IL-17 production in Treg cells
isolated from multiple sclerosis patients (162). Similarly,
Komatsu N. and colleagues demonstrated the pathogenic
conversion of Treg cells that lost their Foxp3 expression into
Th17 cells during autoimmune arthritis. Fate mapping analysis
showed that IL-17-expressing exFoxp3 T cells accumulated in
inflamed joints, expressed Sox4, chemokine (C-C motif) receptor
6 (CCR6), chemokine (C-C motif) ligand 20 (CCL20), IL-23
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receptor (IL-23R) and receptor activator of NF-kB ligand
(RANKL, also called TNFSF11), in a process mediated by
synovial fibroblast-derived IL-6 (153). Among the four CNSs
described for the initiation and maintenance of Foxp3
transcription, CNS2 containing Runx1-CBFb binding sites, is
the only one preventing autoimmunity. In this context, CNS2-
deficient mice succumb to development of autoimmunity due to
loss of Foxp3 and instability in Treg compartment (68, 108).

Post translational or epigenetic modifications, affect Foxp3
protein expression and thus regulate Treg cell function and
development of autoimmunity. Diverse inflammatory stimuli
have been shown to promote Lys48-linked ubiquitination
mediated by Stub1 ubiquitinase binding to Foxp3, thus
targeting it for proteasomal degradation (109). In contrast,
under similar inflammatory conditions, USP7 deubiquitinating
enzyme expressed in Treg cells, is downregulated resulting in
Foxp3 degradation (110), while its conditional deletion in Treg
cells leads to lethal autoimmunity (76). Additionally, disruption
of the association of other proteins known to mediate Foxp3
acetylation, such as TIP60, Sirtuin 1 or HDAC7, leads to
increased polyubiquitination of Foxp3 and development of
autoimmune responses (111, 112).

Fragile Treg Cells in Autoimmunity
Fragility of Treg cells has recently arisen as a hallmark of
autoimmune diseases, with Treg cells rendered dysfunctional
in their suppressive features whilst expressing pro-inflammatory
cytokines, maintaining Foxp3 expression and acquiring Th cell-
like phenotypes, with identical transcription factors used by Treg
cells to inhibit specific types of immune response (84, 113, 116,
117, 163–165).

Up to date, the best characterized Th-like Treg subset in
autoimmunity is the Th1-like Treg cells, with upregulated
expression of transcription factor Tbet, chemokines CCR5 and
CXCR3, stable Foxp3 expression due to highly demethylated
TSDR region and increased production of IFN-g cytokine.
Increased frequency of these Th1-like Tregs has been observed in
periphery of mouse models and patients with autoimmune diseases,
such as type1 diabetes (113, 166), multiple sclerosis (116, 163),
autoimmune hepatitis (165) and Sjogren syndrome (167). Following
treatment with IFN-b, numbers of IFN-g secreting Th1-like Treg
cells are downregulated to physiological levels in individuals with
multiple sclerosis (114). Moreover, blocking IFN-g is capable of re-
establishing Th1-like Treg cells suppressive function during
multiple sclerosis in humans and animal models, whereas
neutralization of IL-12 resulted in restraining their generation
(113, 115). Mechanistically, using a genome wide gene expression
approach Kitz et al. demonstrated that PI3K/AKT/Foxo1/3 pathway
was responsible for IFN-g secretion by human Treg cells. Blockade
of this pathway, using multiple sclerosis as their in vivo model,
inhibited IFN-g secretion and restored the immune suppressive
function of Treg cells (116). In the same path, Ouyang W. and
colleagues, demonstrated that mice with depleted Foxo1 expression
specifically in Treg cells, developed a fatal auto-inflammatory
syndrome without the loss of Foxp3 expression and Treg cells
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displayed a Th1-like phenotype with loss of in vivo suppressive
activity (117). Importantly, the same study was able to identify
approximately 300 Foxo1-bound target genes, including IFN-g, that
were not directly regulated by Foxp3, implying that separate and
autonomous signaling pathways may operate simultaneously
driving Treg function in autoimmunity.

The second Th-like Treg subset operating in autoimmune
diseases is Th17-like Treg cells. Specifically, identification of
increased numbers of IL-17+Foxp3+ Treg cells in the synovium
of individuals with active rheumatoid arthritis (5), suggests that
plastic Foxp3+ Treg cells contribute to the pathogenesis of
rheumatoid arthritis (153). Moreover, IL-17A+Foxp3+CD4+

cells have been observed in skin lesions of patients with severe
psoriasis (84) and in experimental models of autoimmunity
(168). However, observations concerning Th17-like Treg
suppressive function isolated from rheumatoid arthritis
patients have been rather contradictory depending on the site
of Treg cell isolation. To this end, although high frequencies of
IL-17-producing Treg cells were present in the peripheral blood
of rheumatoid arthritis patients, these cells were able to suppress
T cell proliferation in vitro. In contrary, Treg cells isolated from
rheumatoid arthritis synovial fluid lost their suppressive
function (169).

Metabolic Cues in Treg Cell Functional
Stability During Autoimmunity
Deficiencies in metabolites such as retinoic acid or vitamin D are
prevalent in multiple autoimmune syndromes and are established
as a risk factor for development of diseases such as multiple
sclerosis, rheumatoid arthritis, SLE and type 1 diabetes (170, 171).
The same metabolites, however, have been shown to increase
stability of Treg cells in diverse experimental settings. To this end
retinoic acid can prevent loss of Foxp3 expression during human
Treg expansion and in inflammation (172), it directly increases the
expression of ERK signaling to promote Foxp3 expression as well
as increases histone methylation and acetylation of the promoter
and CNS region of Foxp3 (173). In a similar manner, Vitamin D
metabolites such as 1,25-dihydroxyvitamin D3, promote FOXP3
expression by binding to newly identified vitamin D response
elements in the intronic CNS region of human FOXP3 gene (174,
175). From the above-mentioned studies a solid hypothesis is that
the lack of essential metabolites from vitamins that is
characterizing autoimmune diseases can be detrimental to Treg
stability and immunosuppressive function.

Other metabolites derived from tryptophan catabolism,
initiated by enzyme IDO, are known to promote Foxp3
expression, through inhibition of IL-6 production by DC (107,
176), whereas altered tryptophan distribution has been identified
in a variety of autoimmune settings (177). Moreover, Foxp3
stability can be also regulated by metabolites deriving from
extracellular purine metabolism. Thus, during cell damage
and inflammation ATP and NAD+ molecules are released
extracellularly due to enhanced cell lysis and are able to activate
P2x7 receptor on Treg surface that in terms limits Foxp3
expression and induces their conversion to TH17 cells (120).
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To counterbalance this effect Treg cells are known to express
CD39 and CD73 ectonucleotidases on their surface, responsible
for converting excess extracellular ATP to adenosine that is
immunosuppressive (40). Nevertheless, during autoimmune
diseases CD39 and CD73 expression on Treg cells is
downregulated possibly providing a link to adenosine and Treg
instability in autoimmunity (121).

Cellular metabolism is also closely linked to Treg cell stability
and plasticity. As mentioned above Treg cells rely more on
mitochondrial metabolism compared to glycolysis to maintain
their energy production and suppressive function and Foxp3
expression orchestrates Treg cell metabolism by suppressing
glycolysis and enhancing OXPHOS through mTORC1 (45,
121). In favour of this concept deletion of hypoxia inducible
factor (HIF)-1a known to promote glycolysis, leads to increased
Foxp3 stability and Treg cell induction (178). In addition, mice
overexpressing Glut1 have reduced Foxp3 expression during
intestinal inflammation (122), while pharmacologic inhibition
of Glut1 ameliorates lupus autoimmune phenotype in mice by
targeting T cell activation (123). Furthermore, ubiquitin ligase
E3VHL deficient Treg cells become IFN-g secreting Th1-like cells
through a shift in glycolysis and increased binding of HIF-1a to
Ifng promoter (124). Bridging Treg cellular metabolic function to
autoimmune pathogenicity, our group found a Treg dysfunction
recapitulating the features of autoimmune Treg cells, with a
prominent mitochondrial ROS signature and importantly,
scavenging of Treg mitochondrial ROS production was able to
ameliorate experimental encephalomyelitis in mice (119).

Intracellular signalling pathways involved in Treg cell
metabolism also play a crucial role in maintaining their
stability and controlling their plasticity. PTEN deletion in Treg
cells increases PI3K/AKT pathway activation driving enhanced
glycolysis, reduced FoxO presence in the nucleus and promoter
regions of Foxp3 and increased methylation of its TSDR region
(67, 117, 118). In parallel, enhanced AKT activation in Treg cells
has been demonstrated during autoimmune diseases (116, 179,
180), whereas blockade of this pathway in Treg cells isolated
from multiple sclerosis patients inhibits IFN-g secretion and
restores the immune suppressive function of Treg cells (116).
TREG CELL FUNCTIONAL INSTABILITY
IN CANCER IMMUNOTHERAPY AND
AUTOIMMUNE RELATED ADVERSE
EVENTS

Despite of the promising results of cancer immunotherapy, its
clinical efficacy is limited to the minority of patients, whereas it is
usually accompanied by the development of immune related
adverse event (irAEs), due to the excessive activation of the
immune system, with the underlying mechanisms remaining
unknown. Accumulating evidence suggests that the prevalence of
Treg cells inside the TME is associated with tumor progression,
as well as the development of acquired resistance to cancer
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immunotherapy and irAEs development (130, 181).
Considering the above, recent therapeutic attempts have been
focused on the manipulation of Treg cell-mediated
immunosuppression in order to enhance anti-tumor immune
responses and improve the clinical outcome of cancer patients.
Several strategies for targeting tumor associated Treg cells may
involve either direct or indirect approaches, that have been tested
clinically or/and preclinically, such as: a. the CD25 targeting for
Treg cell depletion with either blocking antibodies or a
recombinant protein composed of IL-2 and the active domain
of the diphtheria toxin (127, 182–187), b. the targeting of Treg-
specific co-inhibitory molecules (CTLA-4, PD-1, TIGIT, VISTA,
TIM-3, LAG-3) (188–191), with blocking antibodies to
specifically deplete or diminish the suppressive function of
Treg cells in the TME (143, 192–196), c. The usage of agonists
against GITR (197–199), OX-40 (200, 201) and ICOS (202) can
drive the attenuation of Treg cell immunosuppressive activity
(203), d. targeting of PI3K signaling (204) or molecules like
CD39 and CD73- critical regulators of adenosine pathway (205)-
which are definitive of Treg cells behavior in the TME, e.
inhibition of vascular endothelial growth factor (VEGF)-VEGF
receptor 2 (VEGF-VEFGFR2) pathway, which is implicated in
the accumulation of Treg cells, reduced their infiltration to the
TME (206, 207), f. inhibition of TGF-b pathway, a major
mediator of Treg presence in the TME, can diminish the
induction of Treg cells (208, 209).

The ultimate goal would be to specifically deplete Treg cells
infiltrating tumors without affecting tumor-reactive effector T
cells, while suppressing autoimmunity. Getting a better insight
into the mechanisms that induce functional destabilization of
Treg cells may allow their exploitation as therapeutic tools.
Induction of Treg functional instability may prove a more
redundant approach in cancer immunotherapy compared to
the targeting of one specific Treg suppressive mechanism and
with less autoimmune side effects compared to depletion of
Treg cells.

There are several pieces of evidence showing that ICI,
specifically, anti-PD-1 and anti-CTLA-4 that are currently used
in clinical practice may induce a destabilized phenotype in tumor
Treg cells. Specifically, peripheral Tregs from patients suffering
from glioblastoma multiform presented an exhausted phenotype
and increased expression of IFN-g following treatment with anti-
PD-1 (143). Moreover, PD-1 blockade increased IFN-g production
in the TME and as a consequence drove intratumoral Treg fragility
(89). Anti-CTLA-4 also induced fragility in intratumoral Treg
cells. Anti-CTLA-4 treated Treg cells promoted CD28 co-
stimulation leading to decreased Treg cells suppression and
increased glucose consumption. Inhibition of tumor glycolysis
elevated available glucose levels in the TME and promoted the
ability of CTLA-4 blockade to induce Treg cell fragility associated
with IFN-g production and development of anti-tumor immunity
(210). Among several new immunotherapy targets, GITR
activation can promote effector T cell function and inhibit Treg
cell function. In line, therapeutic application of the agonist anti-
GITR monoclonal antibody DTA-1 in B16F10 melanoma-bearing
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mice induced regression of tumors accompanied by decreased
accumulation of intra-tumor Treg cells due both to loss of Foxp3
expression and impaired infiltration (211). Complete Foxp3 loss in
intra-tumoral Treg cells correlated with a dramatic decrease in
Helios expression and was associated with the upregulation of
Tbet, Eomes and INF-g. Interestingly, tumor preconditioning and
the TME were essential for GITR dependent modulation of Foxp3
expression since Treg cells not exposed to the TME did not lose
Foxp3 expression following treatment with DTA-1. Therefore,
agonist GITR antibodies are promising immunotherapeutic tools
since they may abolish the immunosuppressive TME without
ensuing the autoimmune side effects (97, 212).

As thoroughly described in the previous paragraphs of this
review Treg functional instability results on the one hand in
tumor eradication but on the other hand in autoimmune
manifestations. Whether and when ICI-induced Treg
functional instability participates in the development of irAEs
remains unexplored. In line with this notion our group has
recently identified a Th-like inflammatory signature in Treg
cells isolated from peripheral blood of individuals with diverse
cancer types developing irAEs following immunotherapy with
anti-PD-1. This intense transcriptional reprogramming of Treg
cells was characterized by enhanced enrichment in transcripts
such as Ifng, Stat1, Rorc and Stat3, supporting the notion of a
breakdown in mechanisms of self-tolerance in individuals with
solid tumors developing irAEs upon ICI immunotherapy (213).
Moreover, human Treg cells isolated from individuals with
irAEs experience a robust metabolic reprogramming, enriched
in signatures associated with mitochondrial dysfunction and
oxidative stress-induced cell death (119, 213).
CONCLUSIONS, CHALLENGES, AND
OPEN QUESTIONS

It is well established that Treg cells play a pivotal role in
maintenance of immune homeostasis and also appear to
regulate the outcome of diverse pathological situations. At the
same time, Treg cells can be characterized by an increased
plasticity influenced by several parameters such as the cytokine
microenvironment, the strength of antigen recognition, the
anatomical site that Treg cells reside etc. Shedding light on the
mechanisms that underlie the induction of Treg cell plasticity
holds tremendous therapeutic potential in cancer in which Treg
suppressive function dominates the tumor immune evasion
mechanisms, but also in diseases with aberrancy in Treg cell
activity such as autoimmunity and transplantation. A major
caveat in performing this task, remains the lack of specific
markers to precisely distinguish not only Treg cells from T
effectors, but also the different subsets of Treg cells. As we
discussed above, Treg cells come in various flavors and adopt a
different transcriptional program tailored to the specific
microenvironment. Thus, single cell (34) genetic (i.e. RNAseq)
and epigenetic (i.e. ATACseq) approaches should provide a
comprehensive profiling of Treg cells in each context, which
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may guide the therapeutic decisions and may reveal unique
markers to assist the isolation, functional characterization and
targeting of these cells. In addition, particular emphasis should
be placed on the metabolic profile of the Treg cells, since over the
last decade elegant studies highlight that, metabolic cues
determine the functional properties of Treg cells. Therefore,
identification of metabolites and pathways that interfere with
the Treg cells stability program in a disease setting should
be determined.

The fact that Treg cells express major checkpoint inhibitors,
which constitute therapeutic targets in both solid tumors and
hematologic malignancies with impressive results, proposes that
Treg cell manipulation could lead to tumor regression. The goal
here should be to induce Treg cell fragility or to interfere with
Treg cell suppressive function, preferably in an antigen-specific
manner, which will allow the re-start of anti-tumor immunity.
To achieve this, we should understand the mechanisms that
mediate Treg cell fragility and to identify novel molecules/
pathways that could be targeted in order to induce fragile or
ex-Treg cells. A major challenge, which still remains is the
precise targeting of clonal Treg cells to promote tumor
regression without disturbing immune homeostasis. One could
hypothesize that ICI give rise to the development of the wide
spectrum of irAEs since they also imprint on the peripheral pool
of Treg cells impairing their suppressive activity. Although,
direct proof is still missing, generated data from our group
discussed above, favor the hypothesis and highlight the
necessity to unravel the in vivo mechanisms of Treg cell-
mediated suppression and how immunotherapy interferes with
them in specific pathogenic contexts.

Characterization of Treg cell fragile program, may also assist in
the development of Treg cell therapies in autoimmunity and
transplantation. Various clinical trials and preclinical studies
highlight the potential of Treg cell adoptive therapies to treat
autoimmune pathologies such as type 1 diabetes, SLE and
autoimmune central nervous system disease as well as to induce
tolerance during solid organ and bone marrow transplantation.
One of the major challenges that have impeded the adoption of
Treg cell therapies in the clinic is the lack of knowledge on Treg
cell stability in the highly inflammatory environments of the
aforementioned pathologic conditions. Considering the advances
on the genome editing techniques and the success of engineered
chimeric antigen receptor T cell therapies, generation of CAR Treg
cell-based therapies has been envisioned, aiming to dampen
inflammation and to restore immune tolerance. To this end, the
ability to introduce multiple editing events per single cells with the
CRISPR technologies, set the stage for generation of Treg cells
carrying suicide genes which mediate their fragility, along with
genes empowering their function, mediate their trafficking and
delivering suppressive mediators. Combined with expression of
antigen specific receptors, these engineered Treg cells should hold
a tremendous therapeutic potential for inflammatory diseases.

Finally, over the last years the appreciation of the Treg cell
residency in non-lymphoid tissues (nltTregs) like skin, adipose
tissue, lung and bone marrow, with the ability to control local
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inflammatory responses and to express diverse transcriptional
programs compared to lymphoid tissue Treg cells, have
generated new challenges and questions on the Treg cell
biology field. In regards to Treg cell stability, it is of interest to
be determined whether and how nltTregs respond to local
inflammatory and metabolic cues and if this signals imprint on
their stability and on Foxp3 expression. As an example, Treg cells
that reside in adipose tissue have been shown to play an
important role in controlling adipose tissue inflammation,
while their defects are involved in the pathogenesis of obesity-
related metabolic disorders. Towards this, inflammatory
cytokines and engagement of major metabolic pathways such
mTOR/AKT have been shown to drive Treg cell defects in
adipose tissues, however the precise mechanisms leading to
Treg cell lose and whether this involves induction of fragility
and/or ex-Treg development remain to be determined. Overall,
addressing such questions may provide novel strategies for
combating chronic inflammation and metabolic disorders but
also will aid to the design of rational treatments in cancer.
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Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with widespread
inflammation, immune dysregulation, and is associated with the generation of destructive
anti-DNA autoantibodies. We have shown previously the immune modulatory properties
of pCons peptide in the induction of both CD4+ and CD8+ regulatory T cells which can in
turn suppress development of the autoimmune disease in (NZB/NZW) F1 (BWF1) mice, an
established model of lupus. In the present study, we add novel protein information and
further demonstrate the molecular and cellular phenotypes of pCons-induced CD4+ and
CD8+ Treg subsets. Flow cytometry analyses revealed that pCons induced CD8+ Treg cells
with the following cell surface molecules: CD25highCD28high and low subsets (shown earlier),
CD62Lhigh, CD122low, PD1low, CTLA4low, CCR7low and 41BBhigh. Quantitative real-time
PCR (qRT-PCR) gene expression analyses revealed that pCons-induced CD8+ Treg cells
downregulated the following several genes: Regulator of G protein signaling (RGS2),
RGS16, RGS17, BAX, GPT2, PDE3b, GADD45b and programmed cell death 1 (PD1).
Further, we confirmed the down regulation of these genes by Western blot analyses at the
protein level. To our translational significance, we showed herein that pCons significantly
increased the percentage of CD8+FoxP3+ T cells and further increased the mean
fluorescence intensity (MFI) of FoxP3 when healthy peripheral blood mononuclear cells
(PBMCs) are treated with pCons (10 mg/ml, for 24-48 hours). In addition, we found that
pCons reduced apoptosis in CD4+ and CD8+ T cells and B220+ B cells of BWF1 lupus
mice. These data suggest that pCons stimulates cellular, immunological, and molecular
changes in regulatory T cells which in turn protect against SLE autoimmunity.

Keywords: pCons, regulatory T cells, systemic lupus erythematosus, anti-DNA Ab, immune tolerance,
immune regulation
INTRODUCTION

SLE is an autoimmune disease characterized by widespread inflammation, autoantibody
production, and immune complex deposition. Regulatory T cells (Treg) are protective in many
inflammatory and autoimmune diseases including SLE. The modulation of abnormal immune
regulation is an object of intense investigation in autoimmune diseases. A therapeutic goal is to limit
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the number and activity of abnormal pathogenic cells and
autoantibodies through restoration of immune system self-
tolerance. One way to achieve that is by administrating
peptides (such as pConsensus peptide, edratide and
nucleosomal peptides) that induce regulatory T cells (1–11).
Another approach used recently utilized nanoparticles for
expanding regulatory T cells to treat autoimmune diseases
including lupus (12–15). Whereas a decrease in the number
and/or function of regulatory CD4+ T cells has been extensively
studied in SLE (16–24), the role and characterization of the CD8+

Treg subset is less clear. Investigating the genes, regulatory
networks, and signaling pathways that regulate the functional
activity and survival of CD8+ Treg cells is important for
development of therapies for restoring immune homeostasis in
SLE and other autoimmune diseases. However, in order to
rationally intervene to restore immune homeostasis, there is
much that remains to be understood about the molecular
phenotypes, mechanisms and pathways that govern the
differentiation, expansion, maintenance, and regulatory
function of CD8+ Treg. We have developed a unique model in
which CD8+ regulatory T cells can be induced to suppress the
development of autoimmune disease in an animal model of
lupus, the (NZB/NZW) F1 (BWF1) mouse (3, 5, 25, 26). In this
model, we have demonstrated that synthetic peptides (pCons)
based on T cell determinants in the VH region of IgG which
encode murine antibodies to DNA that bind to MHC Class I/II
regions can activate CD8+ T cells in vitro, which can result in the
suppression of co-cultured CD4+ T helper cells and B cell
activities (26, 27). In addition, when pCons is administered
in vivo, we can demonstrate the suppression of anti-DNA
antibody production, and subsequent nephritis. However, the
cellular and molecular phenotypes of pCons-induced CD8+

regulatory T cells are not yet completely clear. In this study,
we have further provided novel information and defined the
immunological and molecular phenotypes of pCons-induced
CD8+ T regulatory cells and CD4+ regulatory T cells. We also
showed that pCons treatment reduces apoptosis in CD4+ T cells,
and CD8+ T cells and B220+ B cells. To the translational
significance, we showed herein that pCons also induces
CD8+FoxP3+ Treg cells in healthy human peripheral blood
mononuclear cells (PBMCs).
MATERIALS AND METHODS

Mice
NZB (H-2d/d), NZW (H-2z/z) and NZB/NZW F1 (H-2d/z) mice
were purchased from the Jackson Laboratories (Bar Harbor, ME,
USA) or bred at the University of California Los Angeles
(UCLA). All mice were treated in accordance with the
guidelines of the University of California Los Angeles Animal
Research Committee, an Institution accredited by the
Association for Assessment and Accreditation of Laboratory
Animal Care (AAALAC). Mice were housed in pathogen-free
conditions according to the National Institutes of Health (NIH)
guidelines for the use of experimental animals. Female mice were
used for all experiments.
Frontiers in Immunology | www.frontiersin.org 2121
Subjects
We enrolled 6 healthy female donors (19-70 years of age) with no
history of autoimmune disease. Subjects had regular menstrual
cycles and were not taking any contraceptives or sex hormones.
Written informed consent was obtained from each subject who
participated in the study. The study was approved by the
Institutional Review Board (# 11-000907) of the University of
California Los Angeles.
Peptides
The pCons peptide used in this study and the MHC molecules
they bind have been described earlier (26, 28). pCons
(FIEWNKLRFRQGLEW), the artificial tolerizing peptide,
contains T-cell determinants based on the J558 VH regions of
several murine anti-dsDNA Ab from BWF1 mice (3, 5, 23, 26, 27,
29). Peptides were synthesized at Chiron Biochemicals (San
Diego, CA, USA), purified to a single peak on high-
performance liquid chromatography, and analyzed by mass
spectroscopy for expected amino acid content.
Treatment of Mice
Ten- to twelve-week-old female BWF1 mice received a single i.v.
dose of 1 mg of pCons, dissolved in saline, as reported previously
(26, 27, 30) for tolerance induction. For immunophenotyping of
regulatory T cells, female BWF1 mice were used and injected
with pCons. Control mice received either a similar amount of
pNeg (negative control peptide) or saline.
Cell Isolation, Preparation,
Immunophenotyping, and Flow Cytometry
Spleen cells were isolated ~1 week after administration of the
pCons peptide from tolerized, saline-treated, or naïve BWF1
mice. Single cell suspensions of splenocytes were prepared by
passing cells through cell strainers (40µm) (Fisher). ACK lysing
buffer, (Sigma, St Louis, MO, USA) was used to lyse red blood
cells. Cells were washed and re-suspended in RPMI complete
media. RPMI 1640-complete media was supplemented with L-
glutamine (2 mM), penicillin (100 units/ml), streptomycin (0.1
mg/ml), 2-mercaptoethanol (Gibco) and 10% fetal bovine serum
(FBS). FACS staining buffer was obtained from eBiosciences, BD
Pharmingen, and/or BioLegend Inc. Cell subsets were further
enriched following incubation with anti-CD4 (L3T4), anti-B
(CD45R/B220), anti-CD8 (CD8a Ly-2), and microbeads from
Miltenyi Biotech (Auburn, CA, USA). Purity of cells was
determined to be more than 90% pure as assessed by flow
cytometry (FACS). For immunophenotyping, isolated cells
were washed with FACS buffer and 1–2 million cells were used
for cell surface staining. Before staining, cells were incubated
with rat anti-mouse CD16/CD32 (FC III/II receptor) Ab to block
nonspecific binding.

For regulatory T cell immunophenotyping, spleen cells were
stained with CD4 (L3T4), (RPA-T4), CD8 (Ly-2), CD25 (PC61),
CD28 (37.51), CD62L (MEL-14), CD122 (TM-b1), PD1(RMP1),
CCR7(4B12), GITR (DTA-1, AITR, TNFRSF18), CTLA-4
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(UC10-4F10-11) and 4IBB(1AH2) antibodies for FACS analysis.
Antibodies for cell surface staining and isotype controls were
from BD Biosciences, BD Pharmingen, eBiosciences, or
BioLegend. FoxP3 (PCH101) staining was performed with an
eBiosciences intracellular kit (Cat #12-4776). Before intracellular
FoxP3 staining, cells were stained with cell surface molecules
(CD4, CD8, CD25, CD28, CD62L, CD122) as per manufacturer’s
protocol. Cells were fixed and permeabilized, washed with
permeabilization buffer, and then stained with anti-human
FoxP3 (PCH101) antibody in 1X permeabilization buffer
(eBiosciences), washed again with permeabilization buffer, and
then the samples analyzed by FACS at the UCLA flow Core
facility. Data was collected using an FACSCalibur (BD
Biosciences) and analyzed with BD Cell Quest software
(Becton-Dickinson, Mountain View, CA) or De Novo FCS
Express Ver. 7 software (Ontario, Canada).

Human Peripheral Blood Mononuclear
Cells (PBMCs) Isolation and Preparation
For human studies, peripheral blood mononuclear cells
(PBMCs) were isolated on a density gradient (Histopaque-
1077, Sigma-Aldrich, St. Louis, MO, USA) from blood samples
of healthy volunteers. Lymphocytes were washed twice in RPMI
complete media. Red blood cells (RBC) were lysed with RBC
lysing solution (Sigma-Aldrich, St. Louis, MO, USA). After
washing cells were stained with fluorochrome -labeled
monoclonal antibodies (mAbs) and analyzed by FACS.

Western Blot Analysis
Western blot analyses were performed as described earlier (31).
In brief, cell lysates were prepared from the CD8+ T cells of naïve
and pCons-treated BWF1 mice. Cells were lysed with RIPA
buffer (150 nM NaCl, 1.0% NP-40, 0.5% sodium deoxycholate,
0.1% SDS, 10 mM Tris, pH 7.3) supplemented with Protease
Arrest protease inhibitor cocktail solution (G Biosciences,
Maryland Heights, MO, USA). Protein was measured from
each sample using the Bradford assay (Bio-Rad Laboratories,
Hercules, CA, USA) and an equal amount of protein was loaded
in each well. The lysates were resolved on a 4–12% NuPage gel
(Invitrogen, Carlsbad, CA, USA) under reducing conditions.
Proteins were electro-transferred onto a polyvinylidene fluoride
membrane (Invitrogen). The membranes were blocked with 3%
BSA and immunoblotted with a protein-specific antibodies
[GPT2 (ab80947), Abcam; PD1 (DO-1), sc-126 Santa Cruz
Biotechnology, Inc; PD1 (ab58811) Abcam; GADD45b (K-12),
sc-133606, Santa Cruz Biotechnologies, Inc; p53 (DO-1) sc-126,
Santa Cruz Biotechnologies, Inc, Santa Cruz, CA, USA, (1: 200 -
1:1000 dilution range); Bax (1:1000 dilution) Cat # #2772, Cell
Signaling Technology, Danvers, MA; PDE3b, H-300, sc-20793
(1:1000 dilution); RGS16 (H-100), sc-30218 (1:1000 dilution) or
b-actin (1:100 000 dilution; Sigma, Inc]. Following washing, the
membranes were incubated in secondary antibodies (1:2500
dilution; Santa Cruz Inc, Santa Cruz, CA, USA). All blocking,
incubation and washing steps were performed in TBST (TBS and
0.1% Tween-20). Proteins were visualized using ECL (GE
Healthcare, Buckinghamshire, UK).
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RNA Isolation and Real-Time PCR
Total cellular RNA was isolated from purified cell subsets from
saline-treated or pCons-tolerized BWF1 mice with TRIzol
(Invitrogen, Carlsbad, CA, USA) as per manufacturer’s
protocols. One-step-real time PCR was analyzed as described
earlier (3, 5, 26, 29). Each experimental group consists of the
pooled spleen cells of 3–4 mice from each group, naïve CD8+ T
cells or tolerized CD8+ T cells. One-step RT-PCR was performed
(Applied Biosystems, Foster City, CA, USA) using 100 ng of total
RNA. Quantitative real-time reverse transcription was
performed using TaqMan technology on an ABI Prism 7900
HT Sequence Detection System (Applied Biosystems). Primers
and probes of regulator of G protein signaling genes (RGS2,
RGS16, and RGS17), glutamic pyruvate transaminase 2 (GPT2),
BAX (Bcl-2-associated X protein), programmed cell death-1
(PD1), growth arrest and DNA damage inducible 45 beta
(GADD45b), and phosphodiesterase 3b (PDE3b), and GAPDH
were obtained from Applied Biosystems (Foster City, CA, USA).
The other oligonucleotide sequences used for the primers and
TaqMan probes (Applied Biosystem, Foster City, CA) are
described (3, 5, 26, 29). GAPDH was used as an endogenous
control in each experimental set.

Measurement of Apoptosis
Assays were performed to measure apoptosis as described earlier
(5, 26). In brief, splenocytes were obtained from both naïve and
pCons-treated BWF1 mice. RBC were lysed, cells washed, and
stained with fluorochrome-labeled specific antibodies [CD4
(PerCP), CD8 (PE), B220 (APC), and Annexin V (FITC)] and
flow cytometry performed.

Statistical Analyses
Data was analyzed using GraphPad Prism 4.0 Software (San
Diego, CA). Comparisons between the two groups were
performed using paired one- or two-tailed Student’s t-test.
Nonparametric testing among more than two groups was
performed by one-way ANOVA. Results are expressed as
mean ± SEM. p<0.05 was considered significant.
RESULTS

pCons Treatment Alters Cell Surface
Expression of CD25, CD122, and
Increased Intracellular FoxP3 Expression
in CD4+ T Cells and Further Modifies Cell
Surface Expression of CD25, CD28, CTLA-
4 and 41BB in CD8+ T Cells in BWF1 Mice
To explore the tolerogenic immune responses of pCons peptide
in the present study, we determined the various cell surface
expression markers by flow cytometry in both CD4+ and CD8+ T
cells in pCons-treated and negative control peptide and or saline-
treated BWF1 mice. We found that pCons treatment increased
the cell surface expression of CD25 and CD122 in CD4+ T cells
compared to naïve CD4+ T cells (Figure 1A Panels A, C, E, H, J,
L). We also found that pCons treatment increased the
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intracellular FoxP3 expression in pCons-treated CD4+ T cells
(Figure 1A Panels B, D, F, G, I, K). Next, we investigated the
effect of pCons on CD8+ T cells. Our data demonstrate that
pCons treatment modified the cell surface expression of CD25
(increased), CD28 (increased), CTLA-4 (decreased) and 41BB
(no changed) in CD8+ T cells (Figure 1B Panels A–L). Gating
Frontiers in Immunology | www.frontiersin.org 4123
strategy is shown in (Supplementary Figure 1A and Figure 1B
Panels A–H). Previously, we have demonstrated that pCons
treatment increased the FoxP3 expression in CD8+ T cells (3,
26). In this study, we re-validated our previous findings of FoxP3
and added novel information for additional cell surface
phenotypes including FoxP3 with cumulative data of 4-6
A

B

FIGURE 1 | pCons treatment alters cell surface expression of CD25, CD122, and increased intracellular FoxP3 expression in CD4+ T cells and further modifies cell surface
expression of CD25, CD28, CTLA-4 and 41BB in CD8+ T cells in BWF1 mice. Female 10-12-wk old BWF1 mice were treated with pCons (1 mg i.v.). After one-two week
treatment, splenocytes were obtained both from naïve and pCons-treated BWF1 mice. RBC were lysed, cells washed, and stained with fluorochrome-labeled specific antibodies

(CD4, CD8, CD25, CD28, CD122, CTLA-4, and 41BB). FACS analysis was performed on a FACSCalibur™ with cell Quest™ software (BD Biosciences, San Jose, CA) and
analyzed using De Novo FCS Express software (Ontario, Canada). Intracellular FoxP3 expression was analyzed after cell fixation and permeabilization as per manufacturer’s
protocol (eBiosciences, San Diego, CA, USA). (A) CD4+ T cells, and (B) CD8+ T cells data, two experiments each. (A) Exp 1. Panel (A) Naïve CD4+CD25+ T cells; (B) Naïve
CD4+FoxP3+ T cells; (C) pCons CD4+CD25+ T cells; (D) pCons CD4+FoxP3+ T cells. (E) Cumulative data of CD4+CD25+T cells (4-5 experiments of two/three mice); (F)
Cumulative data of CD4+FoxP3+ T cells (4-5 experiments of two/three mice). Exp 2. (G) Naïve CD4+FoxP3+ T cells; (H) Naïve CD4+CD122+ T cells; (I) pCons CD4+FoxP3+ T
cells., (J) pCons CD4+CD122+ T cells. (K) Cumulative data (6 experiments) of CD8+FoxP3+ T cells. (L) Cumulative data of CD4+CD122+ T cells (4 experiments of two/three mice).
(B) Exp 3. (A) Naïve CD8+CD28+ T cells; (B) Naïve CD8+CTLA-4+ T cells; (C) pCons CD8+CD28+ T cells; (D) pCons CD8+CTLA-4+ T cells. (E) Cumulative data of CD8+CD28+ T
cells (5-6 experiments). (F) Cumulative data of CD8+CTLA-4+ T cells (5-6 experiments). Exp.4. (G) Naïve CD8+CD25+ T cells; (H) Naïve CD8+41BB+ T cells, (I) pCons CD8+CD25+

T cells; (J) pCons CD8+41BB+ T cells. (K) Cumulative (6-7 experiments data) of CD8+CD25+ T cells, (L) Cumulative (4 experiments data) of CD8+41BB+ T cells. Minimum 10,000
cells were gated, and only live cells were used for data analyses. Dead cells were excluded from the analyses. *p < 0.05. **p < 0. 001. ns, not significant.
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experiments (Figure1A Panel K). Altogether, these data indicate
that pCons treatment induced the various cell surface markers
including intracellular FoxP3 in both CD4+ and CD8+T cells.

pCons Treatment Induces and Modifies
Cell Surface Expression of CD62L, CD122,
and CCR7 in CD8+ T Cells in BWF1 Mice
Previously we showed that pCons treatment increased the
number of regulatory CD4+ and CD8+ T cells and modulated
their functions including the ability for the suppression of anti-
DNA antibody in BWF1 mice (3, 5, 23, 26). In the present study,
we were interested to see whether pCons treatment of BWF1
mice changes the cell surface expression of CD122, CD62L, PD1,
and CCR7 in CD8+ T cells since these markers have been
implicated in the regulatory phenotypes of CD8+ T cells (32–
36). We found two-fold increase in cell surface expression of
CD62L and further increase in percent expression of CD8+

CD62L+ T cells and a decrease in the CD122 and CCR7 mean
fluorescence intensity in pCons-treated CD8+ T cells compared
to negative control peptide or saline-treated CD8+ T cells
(Figures 2A–E). PD1 cell surface expression was decreased in
pCons-treated CD8+ T cells (Figure 2D). Further, Western blot
analysis demonstrated that protein levels of CCR7 are decreased
Frontiers in Immunology | www.frontiersin.org 5124
in CD8+ T cells after pCons tolerance (Figure 2F). Taken
together, these data suggest that pCons treatment has
differential immune-regulatory effects on CD8+ T cells and on
CD62L, CD122, PD1, and CCR7.

pCons Treatment Modifies Expression of
Regulator of G-Protein Signaling Genes
(RGS2, RGS16, RGS17), Interferon-
Induced, and Apoptotic Genes in
CD8+ T Cells
To determine whether there is cross-regulation of regulator of G
protein signaling and interferon genes and whether pCons affect
this cross-regulation in CD8+ T cells, we tested the expression of
RGS and IFNs genes in pCons-treated CD8+ T cells. We have
shown previously that pCons-induced CD8+ T regulatory cells
are genetically reprogrammed following pCons induction (26,
29, 31). These pCons-induced CD8+ Treg cells display i) resist to
apoptosis; ii) have immunosuppressive programs; and iii) traffic
to sites of inflammation to inhibit the development of
autoantibody formation. Our previous gene chip array analyses
demonstrated that pCons-induced CD8+ Treg cells have
upregulated genes including; interferon inducible 202b
(Ifi202b), FoxP3, Bcl2, transformation related protein 53 (TP53)
A B E

C D F

FIGURE 2 | pCons treatment modified the cell surface expression of CD122, CD62L, CCR7, and PD1 in CD8+ T cells in BWF1 mice. Female 10-12-wk old BWF1
mice were treated with pCons (1 mg i.v.). After one-two week treatment, splenocytes were obtained both from naïve and pCons-treated BWF1 mice (2-3 mice in
each group). RBC lysed, cells washed and stained with specific antibodies (CD8, CD62L, CD122, CCR7), and flow cytometry performed. (A) CD122 (PE) cell surface
expression of naïve vs tolerized CD8+ T cells treated with pCons; (B) CD62L (FITC) cell surface expression of naïve vs tolerized CD8+ T cells pCons; (C) PD1 (PE) cell
surface expression of naïve vs tolerized CD8+ (pCons); (D) Percent expression of naïve CD8+CD62L+ vs tolerized CD8+CD62L+ T cells (pCons); (E) CCR7 (APC) cell
surface expression of naïve CD8+ vs tolerized CD8+ T cells (pCons-treated group). Minimum 10,000 cells were gated, and live cells were used for data analyses.
Dead cells were excluded from the analyses. Data were analyzed with FCS Express Ver. 7 (De Novo, Ontario, Canada). *p < 0.05. (F) Naïve CD8+ and tolerized
CD8+ T cells were obtained, lysed, and Western Blot analysis performed with CCR7 and b-actin antibodies. CCR7 value normalized to those of b−actin. *p < 0.05.
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and interferon receptor IFNAR1 (29). In the present study, we
showed herein that pCons treatment significantly downregulated
and decreased (~2-5 fold) the expression of 6 genes: RGS2,
RGS16, RGS17, BAX, GPT2, GADD45b (Figures 3A–D). We
further confirmed the downregulation of GPT2, RGS16,
GADD45b, and BAX proteins by Western blot analyses
(Figures 3E–H). The downregulated BAX expression (37) in
pCons-induced CD8+ T cells may contribute to the survival of
these cells in vitro/vivo. Overall, these data indicate that pCons
regulates RGS, IFNs, and apoptotic genes.

pCons Treatment Reduces Apoptosis of
CD4+ and CD8+ T Cells, and of B220+

B Cells in BWF1 Lupus Mice
Since earlier studies demonstrated that apoptosis affects immune
tolerance, we were interested to investigate whether pCons
influences apoptosis in various immune cell subsets including T
cells which play an important role in lupus. To address this, we
treated BWF1 lupus mice with pCons. After 1-2 weeks,
splenocytes were obtained, stained with Annexin V FITC, and
then stained with fluorochrome-labeled CD4+, CD8+ and B cells
specific monoclonal antibodies, and analyzed by FACS. We found
that pCons treatment significantly decreased (~5 fold) apoptosis
in CD4+ T cells, CD8+ T cells (8-10-fold) and B220+B cells (~2.5-
fold) compared to naïve or saline treated cells (Figures 4A–K).
These data clearly demonstrate that pCons reduces apoptosis in
both T and B cells.

pCons Increases CD8+FoxP3+ T Cells in
Healthy Human Subjects
Having examined the immunomodulatory properties of pCons in
murine cells, we investigated whether pCons induces
CD8+FoxP3+ T regulatory cells in healthy human subjects. To
determine this, we isolated PBMCs from healthy subjects and
cultured them with negative control peptide (pNeg) and pCons
peptide (10 mg/ml) for 24-48 hours. After culture, cells were
washed, stained with CD4, CD8, CD25 and FoxP3 fluorochrome-
labeled monoclonal antibodies and analyzed by flow cytometry.
As shown in Figure 5, pCons significantly increases the mean
fluorescence intensity of cells expressing FoxP3 (Figure 5A) and
the percentage of CD8+FoxP3+ T cells are significantly increased
(~5 fold) (Figure 5B). These data suggest that pCons induces
CD8+FoxP3+ Treg cells and has translational significance
in humans.
DISCUSSION

Regulatory T cells play a key role in the regulation of immune
responses and maintaining immune homeostasis. Impairment in
the development and function of regulatory T cells is a major
contributing factor in the development of autoimmune diseases,
including SLE (17, 19, 38–40). Thus, inducing and regulating the
function of Treg is currently one of the prime goals not only in the
Frontiers in Immunology | www.frontiersin.org 6125
study of autoimmune diseases, but graft versus host disease, organ
transplantation, and neoplastic disease (41–43). In this study, we
provided novel information for the immunological, cellular, and
molecular phenotypes of regulatory T cells especially CD8+ Treg

cells induced by the pCons treatment in BWF1 lupusmice. pCons-
induced CD8+ T cells express high levels of CD62L, and low levels
of CD122, PD1, CTLA4, and CCR7. We did not find major
changes in the expression of 41BB. Further, pCons modulated the
expression of CD25, CD28, CD122, and FoxP3 in both CD4+ and
CD8+ Treg cells. The molecular phenotypes of suppressive CD8+

Treg cells include low level of regulator of G protein signaling
(RGS2, RGS16, RGS17), BAX, GPT2, GADD45b, PDE3b, and PD1
(programmed cell death 1). The downregulation of these genes in
pCons-tolerized CD8+ T cells was confirmed with Western blot
analyses (Figure 3). Thus, our data revealed a molecular signature
phenotype in CD8+ T cells induced by pCons peptide in BWF1
lupus mice that has clinical and functional importance in the
immune tolerance and their immunoregulation. For example, L-
selectin (CD62L) is a type-I transmembrane glycoprotein and
adhesionmolecule that plays an important role in T cell activation.
A recent study revealed that CD62L expression on blood basophils
may predict future response to standard induction therapy for
patients with lupus nephritis (44). In addition, another study
found that the expression levels of CD62L decreased on T cells
during the inflammatory state and levels of CD8+CD62L+ T cells
negatively correlated with disease severity (45). Previously
glucocorticoids have been shown to increase the CD62L
expression in patients with lupus (46). In agreement with our
study, a recent study also showed an increase in expression of
CD62L on CD8+ regulatory T cells in lupus mice (47). Thus,
altogether, our finding of increased CD62L expression levels on
CD8+ T cells after induction by pCons treatment in BWF1 lupus
mice points to a therapeutic beneficial effect.

Recent evidence suggest that both CD8+CD122+ and
CD8+C122- T cells are regulatory and can suppress autoimmunity
(7, 48). Importantly, these cells express CD122 (IL-2Rb),
CD62Lhigh, PD1low and CCR7low (32, 49). Further, our data
showed that pCons-induced CD8+ T cells in BWF1 mice have
less cytotoxic-T lymphocyte-antigen-4 (CTLA-4) expression as
compared to naïve CD8+ T cells. This is an important finding,
since CTLA-4 (CD152) is an inhibitory cell-surface molecule that
plays an important role in the promotion of anergy, immune
regulation, and the prevention of autoimmunity. Abnormal
function and susceptibility of CTLA-4 gene expression has been
reported in SLE patients (50, 51). Further, it was demonstrated that
CTLA-4 modulates regulatory and follicular helper T cells, thus
controlling humoral immunity (52–54). CTLA-4 has been shown to
downregulates CD80 and CD86 on antigen presenting cells (APC)
(54). However, its precise mechanism of action has not been fully
understood. Thus, our data supports the notion that pCons-induced
CD8+ T cells are regulatory in nature and possess all the cellular and
immunological phenotypes to induce immune tolerance.

Recent reports suggest that CCR7 was involved in the
progression of lupus and its expression was increased in SLE
patients (55, 56). Additionally, CCR7-CCL19 couples interaction
of T helper, and B cells, and dendritic cell migration (56);
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thus CCR7 helps in immune complex deposition and
autoantibody production. Our findings of reduction of cell
surface expression of CCR7 in CD8+ T cells is important
because CCR7, a G protein-coupled receptor may also help in
production of TGFb. We have previously shown that pCons-
induced CD8+ T cells increase TGFb mRNA and protein levels
(3, 5, 26, 31); therefore, it is possible that TGFb may be released
via exosomes in CD8+ T cells in a CCR7-dependent manner.
Exosomes are important in immunity (57), and we envision that
they may play a role in CD8+ Treg-mediated suppression to
establish and maintain self-tolerance. Earlier, we found that the
mRNA of CCR7 was increased in pCons-tolerized CD8+ T cells
(29). These differences may be due to cell surface trafficking and
or differences in transcription/translational or “half-life” of
CCR7 after pCons treatment in our model system. It is also
conceivable that upregulated genes and cell surface receptors,
e.g., IFNAR, IFI202b, may facilitate the expression, packaging,
and release of TGFb. In contrast, downregulation of CCR7
signaling may halt the inflammatory signals in pathogenic
effectors CD4+ T cells, dendritic cells, antigen presenting cells
(APCs), and B cells. Thus, CCR7 plays an important synergistic
Frontiers in Immunology | www.frontiersin.org 7126
role in our model of immune tolerance. However, detailed
mechanistic studies will be needed to address this issue.

Our findings that pCons-induced CD8+ T cells have decreased
level of RGS proteins are important because reduction of RGS2
signaling increases Ca2+ mobilization and ERK1/2 activation in
response to GPCR stimulation (58) which may be contributory to
the observed CD8+ Treg expansion and maintenance. RGS
proteins are potent GTPase-activating proteins (GAP) for
heterotrimeric G protein (Gq, Gi, and Go family) alpha subunits
acting as multifunctional inhibitors of signal transduction in
many cells (59, 60), including “fine-tuning” GPCR signaling in
lymphocytes (61). In particular, RGS2, also known as growth-
inhibitory protein, plays a role in leukemogenesis (62). Thus, our
finding that multiple RGS proteins are downregulated in tolerized
CD8+ T cells (Figure 3) reinforces the positive effect on GPCR
signaling pathways, together with reduced PDE3b, that may
enhance cAMP signaling and plays an important role in the
suppression of T cell function (63). The downregulation of
PDE3b has been associated with enhanced insulin secretion,
suggesting that secretion of other factors could also be
positively modulated. Consistent with the notion that reversal
A B C D
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FIGURE 3 | pCons treatment downregulated the expression of Regulator of G protein signaling (RGS2, RGS16, and RGS17) and Bax (Bcl2-associated X protein) in
pCons-induced CD8+ T cells. Female 10-12-wk old BWF1 mice (n=3-5 mice) were treated with pCons (1 mg i.v.). After one-two week, splenocytes were obtained
both from naïve and pCons-treated BWF1 mice. Naïve CD8+ T cells and pCons-treated CD8+ T cells were isolated from BWF1 mice spleen cells using microbeads
from (Miltenyi Biotech (Auburn, CA, USA). Splenocytes were labelled with CD8-specific antibody, and naïve and pCons-treated CD8+ T cells sorted by FACS. Cells
were lysed with RNA lysis solution (Trizol) and total cellular RNA obtained. Murine primers and probes (RGS2, RGS16, RGS17, BAX, and GAPDH) were obtained
from Applied Biosystems (Foster City CA, USA). Real time PCR was performed with 100 ng of RNA with gene specific primers and probes comparing naïve and
pCons-treated CD8+ T cells for each protein. (A) RGS2 normalized to GAPDH in naïve CD8+ T cells vs pCons-treated CD8+ T cells. (B) RGS16. (C) RGS17.
(D) BAX. Data was normalized with GAPDH mRNA levels. (E–H). Western blot analyses. (E) GPT2 protein level normalized to b-actin in naïve CD8+ T cells vs
pCons-treated CD8+ T cells. (F) RGS16. (G) GADD45b. (H) BAX. Data was normalized to b actin protein levels. *p < 0.05, **p < 0.001. ns, not significant.
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of its cAMP-degrading activity is important for maintenance of
CD8+ T regulatory cells. However, future studies will be required
to address these possibilities.

In the current study, we found that GPT2 protein level was
significantly decreased following pCons treatment in CD8+ T cells
in BWF1 mice. GPT2 (glutamic-pyruvic transaminase 2) also
known as alanine aminotransferase (ALT) plays an important role
in gluconeogenesis and amino acid homeostasis, and is an hepatic
enzyme/biomarker (64) that is upregulated in disease states. GPT2
has been shown to exacerbating autoimmune disease (65), and its
levels were shown to be increased in NZB/NZW F1 mice (66).
Increased serum alanine aminotransferases have been reported to be
associated with anti-mitochondrial antibodies in SLE patients with
autoimmune liver disease (67). Further Liu et al. found that liver
injury including increased level of ALT correlates with biomarkers
of autoimmunity and disease activity in patients with SLE (68).
Thus, our finding that pCons treatment reduces GPT2 protein level
has both clinical and translational significance in immune tolerance
of our model and in SLE.
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Previously, we demonstrated that pCons-induced CD8+

regulatory cells have upregulated genes including interferon
inducible 202b (Ifi202b), FoxP3, Bcl2, transformation related
protein 53 (TP53) and interferon receptor IFNAR1 (29). We
showed previously utilizing gene silencing studies that these
genes are important in the suppression of anti-DNA ab in the
BWF1 lupus mice (3, 5, 26, 31). In the current study, we added
novel information of candidate’s downregulated genes in CD8+ T
cells. For example, the Bax gene has been implicated in lupus
nephritis and in apoptosis (37) suggesting that apoptosis
dysregulation in SLE was affected by polymorphic variants in
apoptotic-related genes including Fas, FasL, Bcl2, and Bax. While
high expression of FasL expression contributes to increased
apoptosis and to the breakdown of immune tolerance favoring
autoantibody production and inflammation, low expression of
the Bax protein was found to be protective in the SLE patients
(69). In general, apoptotic T cells and neutrophils are increased
in SLE patients and have positive correlation with SLE disease
activity index (70, 71). Earlier, we showed that apoptosis was
A B C D

E F G H

I J K

FIGURE 4 | pCons treatment alters and reduces apoptosis in both T and B cells of BWF1 mice. Female 10-12-wk old BWF1 mice were treated with pCons (1 mg
i.v.). After one-two week treatment, splenocytes were obtained from both naïve and pCons-treated BWF1 mice (two/three mice in each group). RBC were lysed,
cells washed, and stained with fluorochrome-labeled specific antibodies [CD4 (PerCP), CD8 (PE), B220 (APC), and Annexin V (FITC)] and flow cytometry performed.
(A) Naïve unstained splenocytes; (B) Naïve CD8+ T cells; (C) Naïve CD4+ T cells; (D) Naïve B220+ B cells; (E) pCons-treated unstained splenocytes; (F) pCons-
treated CD8+ T cells, (G) pCons-treated CD4+ T cells; (H) pCons-treated B220+ B cells; (I) Combined data of experiments (n=3-4) of naïve vs pCons-treated
CD8+Annexin V+ T cells; (J) Combined data of experiments (n=3-4) of naïve vs pCons-treated CD4+Annexin V+ T cells; (K) Combined data of experiments (n=3-4) of
naïve vs pCons-treated B220+Annexin V+ B cells. Minimum of 10,000 live cells were gated for data analyses. Dead cells were excluded from the analyses. Data was
analyzed with FCS Express Ver. 7 (De Novo, Ontario, Canada). Statistical differences were determined by paired two-tailed Student’s t-test. *p < 0.05, ***p < 0.0001.
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decreased in pCons-induced CD8+ T cells (26). In this study, we
also found decreased percent of annexin V+ T cells and B cells in
pCons-treated BWF1 mice (Figure 4). We postulate that pCons
treatment has direct effect on both T and B cells. In addition,
pCons might have an indirect effect through CD8+ Tregs. This
would require additional experiments to pinpoint the exact role.
Thus, our finding of reduced Bax and annexin V in pCons-
induced CD8+ T cells agrees with previous studies and suggests
clinical significance. Similarly, GADD45b is a critical regulator of
autoimmunity (72) that plays an important role in B cell
apoptosis in response to Fas stimulation through activation of
NF-kB (73). A recent report suggests that ablation of GADD45b
ameliorates the inflammation and renal fibrosis caused by
unilateral ureteral obstruction (UUO) in a chronic kidney
disease mouse model (74). Previously it was shown that
GADD45b was also induced in CD4+ T cells by inflammatory
cytokines, such as IL-12 and IL-18 (75, 76). Furthermore, mRNA
expression of GADD45b was associated with cytokine
production and T helper cell differentiation (77, 78) and a
genetic polymorphism study indicated a role for GADD45b in
rheumatoid arthritis and lupus (79). Based on all these data, its
plausible to hypothesize that some of the downregulated genes in
pCons-induced CD8+ Treg cells may be regulated by specific
miRNAs as these molecules have been identified with important
roles in immune regulation (80). How these genes or their gene
products cross-regulate in the overall suppression mechanism in
our immune tolerance model has not been fully elucidated.
Future detailed mechanistic studies are warranted to pinpoint
the exact role.

In addition, we have shown herein that pCons peptide
induces CD8+FoxP3+Treg cells in healthy human subjects
suggesting translational significance. This finding is significant
since patients with SLE have circulating T cells that can be
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activated by various peptides isolated from the variable regions of
human anti-DNA antibodies (81, 82). Although, we were not
able to study the modulation of CD8+FoxP3+Tregs in SLE patients
with pCons, it may be possible that the pCons-modulation of
CD8+ Tregs can be employed to reset the regulatory function of
CD8+ regulatory T cells in lupus patients. Future study will be
required to address this issue.

In summary, we found that pCons treatment promoted
tolerogenic immune responses and modified the various
cellular and molecular phenotypes in both CD8+ and CD4+ T
regulatory cells in BWF1 mice. The data further demonstrate that
CD8+FoxP3+ T cells can be modulated by pCons peptide in
human cells indicating clinical and translational significance
in SLE.
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Supplementary Figure 1 | (A, B) Splenocytes were obtained both from naïve
and pCons-treated BWF1 mice. RBC were lysed, cells washed, and stained with
fluorochrome-labeled specific antibodies (CD4, CD8, CD25, CD28, CD122, CTLA-4,
and 41BB). Live cell gating strategy is shown in (A) (panels A–D) for CD4+ T cells and
(B) (panels E-H) for CD8+ T cells. Lymphocytes were first identified by a low forward
scatter (FSC) and low side scatter (SSC) gate, and then further phenotyped for
CD4 (CD4), CD8 (CD8a) and B (B220) cells, followed by gating for CD25, CD28,
CTLA-4, 41BB, CD122. Intracellular FoxP3 expression was analyzed after cell fixation
and permeabilization as per manufacturer’s protocol (eBiosciences, San Diego, CA,
USA).
REFERENCES

1. Filaci G, Bacilieri S, Fravega M, Monetti M, Contini P, Ghio M, et al.
Impairment of CD8+ T Suppressor Cell Function in Patients With Active
Systemic Lupus Erythematosus. J Immunol (2001) 166:6452–7. doi: 10.4049/
jimmunol.166.10.6452

2. Karpouzas GA, La Cava A, Ebling FM, Singh RR, Hahn BH. Differences
Between CD8+ T Cells in Lupus-Prone (NZB X NZW) F1 Mice and Healthy
(BALB/c X NZW) F1Mice may Influence Autoimmunity in the Lupus Model.
Eur J Immunol (2004) 34:2489–99. doi: 10.1002/eji.200424978

3. Singh RP, La Cava A, Wong M, Ebling F, Hahn BH. CD8+ T Cell-Mediated
Suppression of Autoimmunity in a Murine Lupus Model of Peptide-Induced
Immune Tolerance Depends on Foxp3 Expression. J Immunol (2007)
178:7649–57. doi: 10.4049/jimmunol.178.12.7649

4. Singh RP, Hahn BH, La Cava A. Tuning Immune Suppression in Systemic
Autoimmunity With Self-Derived Peptides. Inflammation Allergy Drug
Targets (2008) 7:253–9. doi: 10.2174/187152808786848423

5. Singh RP, La Cava A, Hahn BH. Pconsensus Peptide Induces Tolerogenic
CD8+ T Cells in Lupus-Prone (NZB X NZW)F1 Mice by Differentially
Regulating Foxp3 and PD1 Molecules. J Immunol (2008) 180:2069–80. doi:
10.4049/jimmunol.180.4.2069

6. Skaggs BJ, Singh RP, Hahn BH. Induction of Immune Tolerance by
Activation of CD8+ T Suppressor/Regulatory Cells in Lupus-Prone Mice.
Hum Immunol (2008) 69:790–6. doi: 10.1016/j.humimm.2008.08.284

7. Suzuki M, Konya C, Goronzy JJ, Weyand CM. Inhibitory CD8+ T Cells in
Autoimmune Disease. Hum Immunol (2008) 69:781–9. doi: 10.1016/
j.humimm.2008.08.283

8. Kang HK, Michaels MA, Berner BR, Datta SK. Very Low-Dose Tolerance
With Nucleosomal Peptides Controls Lupus and Induces Potent Regulatory T
Cell Subsets. J Immunol (2005) 174:3247–55. doi: 10.4049/jimmunol.
174.6.3247

9. Sharabi A, Azulai H, Sthoeger ZM, Mozes E. Clinical Amelioration of Murine
Lupus by a Peptide Based on the Complementarity Determining Region-1 of
an Autoantibody and by Cyclophosphamide: Similarities and Differences in
the Mechanisms of Action. Immunology (2007) 121:248–57. doi: 10.1111/
j.1365-2567.2007.02565.x

10. Sharabi A, Zinger H, Zborowsky M, Sthoeger ZM, Mozes E. A Peptide Based
on the Complementarity-Determining Region 1 of an Autoantibody
Ameliorates Lupus by Up-Regulating CD4+CD25+ Cells and TGF-Beta.
Proc Natl Acad Sci USA (2006) 103:8810–5. doi: 10.1073/pnas.0603201103

11. Urowitz MB, Isenberg DA, Wallace DJ. Safety and Efficacy of Hcdr1 (Edratide)
in Patients With Active Systemic Lupus Erythematosus: Results of Phase II
Study. Lupus Sci Med (2015) 2:e000104. doi: 10.1136/lupus-2015-000104

12. Clemente-Casares X, Blanco J, Ambalavanan P, Yamanouchi J, Singha S,
Fandos C, et al. Expanding Antigen-Specific Regulatory Networks to Treat
Autoimmunity. Nature (2016) 530:434–40. doi: 10.1038/nature16962

13. Serra P, Santamaria P. Nanoparticle-Based Approaches to Immune Tolerance
for the Treatment of Autoimmune Diseases. Eur J Immunol (2018) 48:751–6.
doi: 10.1002/eji.201747059
14. Horwitz DA, Bickerton S, Koss M, Fahmy TM, La Cava A. Suppression of
Murine Lupus by CD4+ and CD8+ Treg Cells Induced by T Cell-Targeted
Nanoparticles Loaded With Interleukin-2 and Transforming Growth Factor
Beta. Arthritis Rheumatol (2019) 71:632–40. doi: 10.1002/art.40773

15. Giang S, Horwitz DA, Bickerton S, La Cava A. Nanoparticles Engineered as
Artificial Antigen-Presenting Cells Induce Human CD4(+) and CD8(+) Tregs
That Are Functional in Humanized Mice. Front Immunol (2021) 12:628059.
doi: 10.3389/fimmu.2021.628059

16. Crispin JC, Alcocer-Varela J, de Pablo P, Martinez A, Richaud-Patin Y,
Alarcon-Segovia D. Immunoregulatory Defects in Patients With Systemic
Lupus Erythematosus in Clinical Remission. Lupus (2003) 12:386–93. doi:
10.1191/0961203303lu368oa

17. Crispin JC, Martinez A, Alcocer-Varela J. Quantification of Regulatory T Cells
in Patients With Systemic Lupus Erythematosus. J Autoimmun (2003)
21:273–6. doi: 10.1016/S0896-8411(03)00121-5

18. Liu MF, Wang CR, Fung LL, Wu CR. Decreased CD4+CD25+ T Cells in
Peripheral Blood of Patients With Systemic Lupus Erythematosus. Scand J
Immunol (2004) 59:198–202. doi: 10.1111/j.0300-9475.2004.01370.x

19. Miyara M, Amoura Z, Parizot C, Badoual C, Dorgham K, Trad S, et al. Global
Natural Regulatory T Cell Depletion in Active Systemic Lupus Erythematosus.
J Immunol (2005) 175:8392–400. doi: 10.4049/jimmunol.175.12.8392

20. Valencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4+CD25high T
Regulatory Cell Function in Patients With Active Systemic Lupus
Erythematosus. J Immunol (2007) 178:2579–88. doi: 10.4049/jimmunol.
178.4.2579

21. Scalapino KJ, Tang Q, Bluestone JA, Bonyhadi ML, Daikh DI. Suppression of
Disease in New Zealand Black/New Zealand White Lupus-Prone Mice by
Adoptive Transfer of Ex Vivo Expanded Regulatory T Cells. J Immunol (2006)
177:1451–9. doi: 10.4049/jimmunol.177.3.1451

22. Horwitz DA, Gray JD, Zheng SG. The Potential of Human Regulatory T Cells
Generated Ex Vivo as a Treatment for Lupus and Other Chronic
Inflammatory Diseases. Arthritis Res (2002) 4:241–6. doi: 10.1186/ar414

23. La Cava A, Ebling FM, Hahn BH. Ig-Reactive CD4+CD25+ T Cells From
Tolerized (New Zealand Black X New Zealand White)F1 Mice Suppress
In Vitro Production of Antibodies to DNA. J Immunol (2004) 173:3542–8. doi:
10.4049/jimmunol.173.5.3542

24. Horwitz DA, Zheng SG, Gray JD, Wang JH, Ohtsuka K, Yamagiwa S.
Regulatory T Cells Generated Ex Vivo as an Approach for the Therapy of
Autoimmune Disease. Semin Immunol (2004) 16:135–43. doi: 10.1016/
j.smim.2003.12.009

25. Dinesh RK, Skaggs BJ, La Cava A, Hahn BH, Singh RP. CD8+ Tregs in Lupus,
Autoimmunity, and Beyond. Autoimmun Rev (2010) 9:560–8. doi: 10.1016/
j.autrev.2010.03.006

26. Hahn BH, Singh RP, La Cava A, Ebling FM. Tolerogenic Treatment of Lupus
Mice With Consensus Peptide Induces Foxp3-Expressing, Apoptosis-
Resistant, TGFbeta-Secreting CD8+ T Cell Suppressors. J Immunol (2005)
175:7728–37. doi: 10.4049/jimmunol.175.11.7728

27. Hahn BH, Singh RR, Wong WK, Tsao BP, Bulpitt K, Ebling FM. Treatment
With a Consensus Peptide Based on Amino Acid Sequences in Autoantibodies
November 2021 | Volume 12 | Article 718359

https://www.frontiersin.org/articles/10.3389/fimmu.2021.718359/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.718359/full#supplementary-material
https://doi.org/10.4049/jimmunol.166.10.6452
https://doi.org/10.4049/jimmunol.166.10.6452
https://doi.org/10.1002/eji.200424978
https://doi.org/10.4049/jimmunol.178.12.7649
https://doi.org/10.2174/187152808786848423
https://doi.org/10.4049/jimmunol.180.4.2069
https://doi.org/10.1016/j.humimm.2008.08.284
https://doi.org/10.1016/j.humimm.2008.08.283
https://doi.org/10.1016/j.humimm.2008.08.283
https://doi.org/10.4049/jimmunol.174.6.3247
https://doi.org/10.4049/jimmunol.174.6.3247
https://doi.org/10.1111/j.1365-2567.2007.02565.x
https://doi.org/10.1111/j.1365-2567.2007.02565.x
https://doi.org/10.1073/pnas.0603201103
https://doi.org/10.1136/lupus-2015-000104
https://doi.org/10.1038/nature16962
https://doi.org/10.1002/eji.201747059
https://doi.org/10.1002/art.40773
https://doi.org/10.3389/fimmu.2021.628059
https://doi.org/10.1191/0961203303lu368oa
https://doi.org/10.1016/S0896-8411(03)00121-5
https://doi.org/10.1111/j.0300-9475.2004.01370.x
https://doi.org/10.4049/jimmunol.175.12.8392
https://doi.org/10.4049/jimmunol.178.4.2579
https://doi.org/10.4049/jimmunol.178.4.2579
https://doi.org/10.4049/jimmunol.177.3.1451
https://doi.org/10.1186/ar414
https://doi.org/10.4049/jimmunol.173.5.3542
https://doi.org/10.1016/j.smim.2003.12.009
https://doi.org/10.1016/j.smim.2003.12.009
https://doi.org/10.1016/j.autrev.2010.03.006
https://doi.org/10.1016/j.autrev.2010.03.006
https://doi.org/10.4049/jimmunol.175.11.7728
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Singh et al. pCons-Induced Regulatory T Cells in SLE
Prevents T Cell Activation by Autoantigens and Delays Disease Onset in
Murine Lupus. Arthritis Rheum (2001) 44:432–41. doi: 10.1002/1529-0131
(200102)44:2<432::AID-ANR62>3.0.CO;2-S

28. Hahn BHA, Anderson M, La Cava A. The Anti-DNA Ig Consensus Peptide
pCONS Facilitates Regulatory T Cell Activity in SLE Patients. Arthritis
Rheumatism (2007) 56:S546–547.

29. Singh RP, Dinesh R, Elashoff D, de Vos S, Rooney RJ, Patel D, et al. Distinct
Gene Signature Revealed inWhite Blood Cells, CD4(+) and CD8(+) T Cells in
(NZBx NZW) F1 Lupus Mice After Tolerization With Anti-DNA Ig Peptide.
Genes Immun (2010) 11:294–309. doi: 10.1038/gene.2010.6

30. Hahn BH, Anderson M, Le E, La Cava A. Anti-DNA Ig Peptides Promote
Treg Cell Activity in Systemic Lupus Erythematosus Patients. Arthritis Rheum
(2008) 58:2488–97. doi: 10.1002/art.23609

31. Dinesh R, Hahn BH, La Cava A, Singh RP. Interferon-Inducible Gene 202b
Controls CD8(+) T Cell-Mediated Suppression in Anti-DNA Ig Peptide-
Treated (NZB X NZW) F1 Lupus Mice. Genes Immun (2011) 12:360–9. doi:
10.1038/gene.2011.4

32. Liu J, Chen D, Nie GD, Dai Z. CD8(+)CD122(+) T-Cells: A Newly Emerging
Regulator With Central Memory Cell Phenotypes. Front Immunol (2015)
6:494. doi: 10.3389/fimmu.2015.00494

33. Dai Z, Zhang S, Xie Q, Wu S, Su J, Li S, et al. Natural CD8+CD122+ T Cells
are More Potent in Suppression of Allograft Rejection Than CD4+CD25+
Regulatory T Cells. Am J Transplant (2014) 14:39–48. doi: 10.1111/ajt.12515

34. Smigiel KS, Richards E, Srivastava S, Thomas KR, Dudda JC, Klonowski KD,
et al. CCR7 Provides Localized Access to IL-2 and Defines Homeostatically
Distinct Regulatory T Cell Subsets. J Exp Med (2014) 211:121–36. doi:
10.1084/jem.20131142

35. Suzuki M, Jagger AL, Konya C, Shimojima Y, Pryshchep S, Goronzy JJ, et al.
CD8+CD45RA+CCR7+FOXP3+ T Cells With Immunosuppressive
Properties: A Novel Subset of Inducible Human Regulatory T Cells.
J Immunol (2012) 189:2118–30. doi: 10.4049/jimmunol.1200122

36. Rifa’i M, Kawamoto Y, Nakashima I, Suzuki H. Essential Roles of CD8+CD122+
Regulatory T Cells in the Maintenance of T Cell Homeostasis. J Exp Med (2004)
200:1123–34. doi: 10.1084/jem.20040395

37. Badillo-Almaraz I, Daza L, Avalos-Diaz E, Herrera-Esparza R. Glomerular
Expression of Fas Ligand and Bax mRNA in Lupus Nephritis. Autoimmunity
(2001) 34:283–9. doi: 10.3109/08916930109014697

38. Buckner JH. Mechanisms of Impaired Regulation by CD4(+)CD25(+)FOXP3
(+) Regulatory T Cells in Human Autoimmune Diseases. Nat Rev Immunol
(2010) 10:849–59. doi: 10.1038/nri2889

39. Mellor-Pita S, Citores MJ, Castejon R, Tutor-Ureta P, Yebra-Bango M, Andreu
JL, et al. Decrease of Regulatory T Cells in Patients With Systemic Lupus
Erythematosus. Ann Rheum Dis (2006) 65:553–4. doi: 10.1136/ard.2005.044974

40. Singh RP, Bischoff DS. Sex Hormones and Gender Influence the Expression of
Markers of Regulatory T Cells in SLE Patients. Front Immunol (2021)
12:619268. doi: 10.3389/fimmu.2021.619268

41. Flippe L, Bezie S, Anegon I, Guillonneau C. Future Prospects for CD8(+)
Regulatory T Cells in Immune Tolerance. Immunol Rev (2019) 292:209–24.
doi: 10.1111/imr.12812

42. Tsai YG, Lee CY, Lin TY, Lin CY. CD8(+) Treg Cells Associated With
Decreasing Disease Activity After Intravenous Methylprednisolone Pulse
Therapy in Lupus Nephritis With Heavy Proteinuria. PloS One (2014) 9:
e81344. doi: 10.1371/journal.pone.0081344

43. Deng Q, Luo Y, Chang C, Wu H, Ding Y, Xiao R. The Emerging Epigenetic
Role of CD8+T Cells in Autoimmune Diseases: A Systematic Review. Front
Immunol (2019) 10:856. doi: 10.3389/fimmu.2019.00856

44. Halfon M, Bachelet D, Hanouna G, Dema B, Pellefigues C, Manchon P, et al.
CD62L on Blood Basophils: A First Pre-Treatment Predictor of Remission in
Severe Lupus Nephritis. Nephrol Dial Transplant (2020) 14:gfaa263. doi:
10.1093/ndt/gfaa263

45. Liu Y, Hoang TK, Wang T, He B, Tran DQ, Zhou J, et al. Circulating L-
Selectin Expressing-T Cell Subsets Correlate With the Severity of Foxp3
Deficiency Autoimmune Disease. Int J Clin Exp Pathol (2016) 9:899–909.

46. Tan G-z, Mao Y-p, Zeng F-q. Glucocorticoids Treatment Upregulates the
Expression of CD62L in CD4+CD25+T Cells in Peripheral Blood Monocytes
of Patients With Systemic Lupus Erythematosus. Chin J Dermatol (2007)
40:362–4.
Frontiers in Immunology | www.frontiersin.org 11130
47. Indriyanti N, Soeroso J, Khotib J. T-Cell Activation Controlling Effects of
Ethyl Acetate Fraction of Kalanchoe Pinnata (Lmk) Pers on Tmpd-Treated
Lupus Mice. Int J Pharm Sci Res (2018) 9:475–82. doi: 10.13040/IJPSR.0975-
8232.9(2).475-82

48. Suzuki H, Shi Z, Okuno Y, Isobe K. Are CD8+CD122+ Cells Regulatory T
Cells or Memory T Cells? Hum Immunol (2008) 69:751–4. doi: 10.1016/
j.humimm.2008.08.285

49. Okuno Y, Murakoshi A, Negita M, Akane K, Kojima S, Suzuki H. CD8+
CD122+ Regulatory T Cells Contain Clonally Expanded Cells With Identical
CDR3 Sequences of the T-Cell Receptor Beta-Chain. Immunology (2013)
139:309–17. doi: 10.1111/imm.12067

50. Barreto M, Santos E, Ferreira R, Fesel C, Fontes MF, Pereira C, et al. Evidence
for CTLA4 as a Susceptibility Gene for Systemic Lupus Erythematosus. Eur J
Hum Genet (2004) 12:620–6. doi: 10.1038/sj.ejhg.5201214

51. Jury EC, Flores-Borja F, Kalsi HS, Lazarus M, Isenberg DA, Mauri C, et al.
Abnormal CTLA-4 Function in T Cells From Patients With Systemic Lupus
Erythematosus. Eur J Immunol (2010) 40:569–78. doi: 10.1002/eji.200939781

52. Sage PT, Paterson AM, Lovitch SB, Sharpe AH. The Coinhibitory Receptor
CTLA-4 Controls B Cell Responses by Modulating T Follicular Helper, T
Follicular Regulatory, and T Regulatory Cells. Immunity (2014) 41:1026–39.
doi: 10.1016/j.immuni.2014.12.005

53. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z,
et al. CTLA-4 Control Over Foxp3+ Regulatory T Cell Function. Science
(2008) 322:271–5. doi: 10.1126/science.1160062

54. Wang CJ, Heuts F, Ovcinnikovs V, Wardzinski L, Bowers C, Schmidt EM,
et al. CTLA-4 Controls Follicular Helper T-Cell Differentiation by Regulating
the Strength of CD28 Engagement. Proc Natl Acad Sci USA (2015) 112:524–9.
doi: 10.1073/pnas.1414576112

55. Yin S, Mao Y, Li X, Yue C, Zhou C, Huang L, et al. Hyperactivation and in Situ
Recruitment of Inflammatory Vdelta2 T Cells Contributes to Disease
Pathogenesis in Systemic Lupus Erythematosus. Sci Rep (2015) 5:14432. doi:
10.1038/srep14432

56. Clatworthy MR, Aronin CE, Mathews RJ, Morgan NY, Smith KG, Germain
RN. Immune Complexes Stimulate CCR7-Dependent Dendritic Cell
Migration to Lymph Nodes. Nat Med (2014) 20:1458–63. doi: 10.1038/
nm.3709

57. Thery C, Zitvogel L, Amigorena S. Exosomes: Composition, Biogenesis and
Function. Nat Rev Immunol (2002) 2:569–79. doi: 10.1038/nri855

58. Semplicini A, Lenzini L, Sartori M, Papparella I, Calo LA, Pagnin E, et al.
Reduced Expression of Regulator of G-Protein Signaling 2 (RGS2) in
Hypertensive Patients Increases Calcium Mobilization and ERK1/2
Phosphorylation Induced by Angiotensin II. J Hypertens (2006) 24:1115–24.
doi: 10.1097/01.hjh.0000226202.80689.8f

59. Druey KM, Blumer KJ, Kang VH, Kehrl JH. Inhibition of G-Protein-Mediated
MAP Kinase Activation by a New Mammalian Gene Family. Nature (1996)
379:742–6. doi: 10.1038/379742a0

60. Heximer SP, Blumer KJ. RGS Proteins: Swiss Army Knives in Seven-
Transmembrane Domain Receptor Signaling Networks. Sci STKE (2007)
2007:pe2. doi: 10.1126/stke.3702007pe2

61. Kehrl JH. G-Protein-Coupled Receptor Signaling, RGS Proteins, and
Lymphocyte Function. Crit Rev Immunol (2004) 24:409–23. doi: 10.1615/
CritRevImmunol.v24.i6.20

62. Schwable J, Choudhary C, Thiede C, Tickenbrock L, Sargin B, Steur C, et al.
RGS2 Is an Important Target Gene of Flt3-ITD Mutations in AML and
Functions in Myeloid Differentiation and Leukemic Transformation. Blood
(2005) 105:2107–14. doi: 10.1182/blood-2004-03-0940

63. Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA,
et al. Foxp3-Dependent Programme of Regulatory T-Cell Differentiation.
Nature (2007) 445:771–5. doi: 10.1038/nature05543

64. Yang RZ, Blaileanu G, Hansen BC, Shuldiner AR, Gong DW. cDNA Cloning,
Genomic Structure, Chromosomal Mapping, and Functional Expression of a
Novel Human Alanine Aminotransferase. Genomics (2002) 79:445–50. doi:
10.1006/geno.2002.6722

65. Sundrud MS, Koralov SB, Feuerer M, Calado DP, Kozhaya AE, Rhule-Smith
A, et al. Halofuginone Inhibits TH17 Cell Differentiation by Activating the
Amino Acid Starvation Response. Science (2009) 324:1334–8. doi: 10.1126/
science.1172638
November 2021 | Volume 12 | Article 718359

https://doi.org/10.1002/1529-0131(200102)44:2%3C432::AID-ANR62%3E3.0.CO;2-S
https://doi.org/10.1002/1529-0131(200102)44:2%3C432::AID-ANR62%3E3.0.CO;2-S
https://doi.org/10.1038/gene.2010.6
https://doi.org/10.1002/art.23609
https://doi.org/10.1038/gene.2011.4
https://doi.org/10.3389/fimmu.2015.00494
https://doi.org/10.1111/ajt.12515
https://doi.org/10.1084/jem.20131142
https://doi.org/10.4049/jimmunol.1200122
https://doi.org/10.1084/jem.20040395
https://doi.org/10.3109/08916930109014697
https://doi.org/10.1038/nri2889
https://doi.org/10.1136/ard.2005.044974
https://doi.org/10.3389/fimmu.2021.619268
https://doi.org/10.1111/imr.12812
https://doi.org/10.1371/journal.pone.0081344
https://doi.org/10.3389/fimmu.2019.00856
https://doi.org/10.1093/ndt/gfaa263
https://doi.org/10.13040/IJPSR.0975-8232.9(2).475-82
https://doi.org/10.13040/IJPSR.0975-8232.9(2).475-82
https://doi.org/10.1016/j.humimm.2008.08.285
https://doi.org/10.1016/j.humimm.2008.08.285
https://doi.org/10.1111/imm.12067
https://doi.org/10.1038/sj.ejhg.5201214
https://doi.org/10.1002/eji.200939781
https://doi.org/10.1016/j.immuni.2014.12.005
https://doi.org/10.1126/science.1160062
https://doi.org/10.1073/pnas.1414576112
https://doi.org/10.1038/srep14432
https://doi.org/10.1038/nm.3709
https://doi.org/10.1038/nm.3709
https://doi.org/10.1038/nri855
https://doi.org/10.1097/01.hjh.0000226202.80689.8f
https://doi.org/10.1038/379742a0
https://doi.org/10.1126/stke.3702007pe2
https://doi.org/10.1615/CritRevImmunol.v24.i6.20
https://doi.org/10.1615/CritRevImmunol.v24.i6.20
https://doi.org/10.1182/blood-2004-03-0940
https://doi.org/10.1038/nature05543
https://doi.org/10.1006/geno.2002.6722
https://doi.org/10.1126/science.1172638
https://doi.org/10.1126/science.1172638
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Singh et al. pCons-Induced Regulatory T Cells in SLE
66. Hsu TC, Huang CY, Chiang SY, Lai WX, Tsai CH, Tzang BS.
Transglutaminase Inhibitor Cystamine Alleviates the Abnormality in Liver
From NZB/W F1 Mice. Eur J Pharmacol (2008) 579:382–9. doi: 10.1016/
j.ejphar.2007.10.059

67. Li CH, Xu PS, Wang CY, Zhang Y, Zou GL. The Presence of Anti-
Mitochondrial Antibodies in Chinese Patients With Liver Involvement in
Systemic Lupus Erythematosus. Rheumatol Int (2006) 26:697–703. doi:
10.1007/s00296-005-0034-y

68. Liu Y, Yu J, Oaks Z, Marchena-Mendez I, Francis L, Bonilla E, et al. Liver
Injury Correlates With Biomarkers of Autoimmunity and Disease Activity
and Represents an Organ System Involvement in Patients With Systemic
Lupus Erythematosus. Clin Immunol (2015) 160:319–27. doi: 10.1016/
j.clim.2015.07.001

69. Glesse N, Vianna P, Paim LMG, Matte MCC, Aguiar AKK, Palhano PL, et al.
Evaluation of Polymorphic Variants in Apoptotic Genes and Their Role in
Susceptibility and Clinical Progression to Systemic Lupus Erythematosus.
Lupus (2017) 26:746–55. doi: 10.1177/0961203316678671

70. Yang X, Sun B, Wang H, Yin C, Wang X, Ji X. Increased Serum IL-10 in Lupus
Patients Promotes Apoptosis of T Cell Subsets via the Caspase 8 Pathway
Initiated by Fas Signaling. J BioMed Res (2015) 29:232–40. doi: 10.7555/
JBR.29.20130037

71. Courtney PA, Crockard AD, Williamson K, Irvine AE, Kennedy RJ, Bell AL.
Increased Apoptotic Peripheral Blood Neutrophils in Systemic Lupus
Erythematosus: Relations With Disease Activity, Antibodies to Double
Stranded DNA, and Neutropenia. Ann Rheum Dis (1999) 58:309–14. doi:
10.1136/ard.58.5.309

72. Liu L, Tran E, Zhao Y, Huang Y, Flavell R, Lu B. Gadd45 Beta and Gadd45
Gamma Are Critical for Regulating Autoimmunity. J Exp Med (2005)
202:1341–7. doi: 10.1084/jem.20051359

73. Zazzeroni F, Papa S, Algeciras-Schimnich A, Alvarez K, Melis T, Bubici C,
et al. Gadd45 Beta Mediates the Protective Effects of CD40 Costimulation
Against Fas-Induced Apoptosis. Blood (2003) 102:3270–9. doi: 10.1182/blood-
2003-03-0689

74. Moon SJ, Kim JH, Choi YK, Lee CH, Hwang JH. Ablation of Gadd45beta
Ameliorates the Inflammation and Renal Fibrosis Caused by Unilateral
Ureteral Obstruction. J Cell Mol Med (2020) 24:8814–25. doi: 10.1111/
jcmm.15519

75. Lu B, Ferrandino AF, Flavell RA. Gadd45beta Is Important for Perpetuating
Cognate and Inflammatory Signals in T Cells. Nat Immunol (2004) 5:38–44.
doi: 10.1038/ni1020
Frontiers in Immunology | www.frontiersin.org 12131
76. Yang J, Zhu H, Murphy TL, Ouyang W, Murphy KM. IL-18-Stimulated
GADD45 Beta Required in Cytokine-Induced, But Not TCR-Induced, IFN-
Gamma Production. Nat Immunol (2001) 2:157–64. doi: 10.1038/84264

77. Luo Y, Boyle DL, Hammaker D, Edgar M, Franzoso G, Firestein GS.
Suppression of Collagen-Induced Arthritis in Growth Arrest and DNA
Damage-Inducible Protein 45beta-Deficient Mice. Arthritis Rheum (2011)
63:2949–55. doi: 10.1002/art.30497

78. Du F, Wang L, Zhang Y, Jiang W, Sheng H, Cao Q, et al. Role of GADD45
Beta in the Regulation of Synovial Fluid T Cell Apoptosis in Rheumatoid
Arthritis. Clin Immunol (2008) 128:238–47. doi: 10.1016/j.clim.2008.03.523

79. Li RN, Lin YZ, Pan YC, Lin CH, Tseng CC, Sung WY, et al. GADD45a and
GADD45b Genes in Rheumatoid Arthritis and Systemic Lupus
Erythematosus Patients. J Clin Med (2019) 8(6):801. doi: 10.3390/jcm8060801

80. Vinuesa CG, Rigby RJ, Yu D. Logic and Extent of miRNA-Mediated Control
of Autoimmune Gene Expression. Int Rev Immunol (2009) 28:112–38. doi:
10.1080/08830180902934909

81. Kalsi JK, Ravirajan CT,Wiloch-Winska H, Blanco F, Longhurst CM,Williams
W, et al. Analysis of Three New Idiotypes on Human Monoclonal
Autoantibodies. Lupus (1995) 4:375–89. doi: 10.1177/096120339500400508

82. Williams WM, Staines NA, Muller S, Isenberg DA. Human T Cell Responses
to Autoantibody Variable Region Peptides. Lupus (1995) 4:464–71. doi:
10.1177/096120339500400608
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Singh, Hahn and Bischoff. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.
November 2021 | Volume 12 | Article 718359

https://doi.org/10.1016/j.ejphar.2007.10.059
https://doi.org/10.1016/j.ejphar.2007.10.059
https://doi.org/10.1007/s00296-005-0034-y
https://doi.org/10.1016/j.clim.2015.07.001
https://doi.org/10.1016/j.clim.2015.07.001
https://doi.org/10.1177/0961203316678671
https://doi.org/10.7555/JBR.29.20130037
https://doi.org/10.7555/JBR.29.20130037
https://doi.org/10.1136/ard.58.5.309
https://doi.org/10.1084/jem.20051359
https://doi.org/10.1182/blood-2003-03-0689
https://doi.org/10.1182/blood-2003-03-0689
https://doi.org/10.1111/jcmm.15519
https://doi.org/10.1111/jcmm.15519
https://doi.org/10.1038/ni1020
https://doi.org/10.1038/84264
https://doi.org/10.1002/art.30497
https://doi.org/10.1016/j.clim.2008.03.523
https://doi.org/10.3390/jcm8060801
https://doi.org/10.1080/08830180902934909
https://doi.org/10.1177/096120339500400508
https://doi.org/10.1177/096120339500400608
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Generating and Sustaining Stable Autoantigen-specific CD4 and CD8 Regulatory T Cells in Lupus
	Table of Contents
	Editorial: Generating and Sustaining Stable Autoantigen-Specific CD4 and CD8 Regulatory T Cells in Lupus
	CD4+ and CD8+ Regulatory T Cells in Lupus
	Conclusions
	Author Contributions
	References

	Double-Edged Sword: Interleukin-2 Promotes T Regulatory Cell Differentiation but Also Expands Interleukin-13- and Interferon-&gamma;-Producing CD8+ T Cells via STAT6-GATA-3 Axis in Systemic Lupus Erythematosus
	Introduction
	Materials and Method
	Human Subjects
	Isolation of Untouched T Cells and Cell Culture
	Isolation of CD4+ and CD8+ T Cells and Cell Culture
	Intracellular Staining
	T Regulatory Cell Polarization
	Immunoblotting
	Statistical Analysis

	Results
	Systemic Lupus Erythematosus CD4+ T Cells Are Poised to Receive Interleukin-2 Signaling During T Regulatory Cell Differentiation
	Interleukin-2 Elicits the Expansion of Interleukin-13-Producing CD8+ T Cells That Also Express Interleukin-5 and Interferon-&gamma;
	Interleukin-13 and Interleukin-5 Expression Are Associated with Interleukin-2-Induced STAT6 Phosphorylation and GATA-3 Expression in CD8+ T Cells

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Ex-TFRs: A Missing Piece of the SLE Puzzle?
	Introduction
	TFRs
	Foxp3 Stability of TFRs
	WHY DO TFRs PREFERENTIALLY LOSE FOXP3?
	EX-TFRs: A MISSING PIECE OF THE SLE PUZZLE?
	Conclusions
	Author Contributions
	Funding
	References

	Harnessing Tolerogenic Histone Peptide Epitopes From Nucleosomes for Selective Down-Regulation of Pathogenic Autoimmune Response in Lupus (Past, Present, and Future)
	Introduction
	Identifying and Cloning Pathogenic Anti-DSDNA Autoantibody-Inducing TH Cells of Lupus in Patients and Lupus-Prone Mice (Historical Perspective)
	Properties of Pathogenic Anti-DNA Autoantibodies
	Initial Studies to Find the Link Determining Cognate Interaction Between Autoimmune T and B Cells of Lupus
	Significance and Relevant Contemporary Studies by Others
	How Are the Many Types of Th Cells of Lupus Linked?
	Nucleosomal Peptide Autoepitopes Recognized by Pathogenic Th and B Cells of Lupus

	Tolerance Therapy With Nucleosomal Peptide Epitopes
	Generation of Autoepitope Specific CD4 Treg and CD8 Treg Cell Subsets in Lupus by Low-Dose Tolerance Therapy With Nucleosomal Histone Peptides
	Studies in Lupus Prone Mouse Models
	(a). Publication Title: “Very Low Dose Tolerance With Nucleosomal Peptides Controls Lupus and Induces Potent Regulatory T Cell Subsets”
	(b). Publication Title: “Low-Dose Peptide Tolerance Therapy of Lupus Generates Tolerogenic Plasmacytoid Dendritic Cells That Cause Expansion of Autoantigen-Specific Treg Cells Along With Contraction of Inflammatory Th1 and Th17 Cell Populations”



	Significance of Above Studies in Lupus-Prone Mice
	Cross-Reactive Recognition of Nuclear Autoantigens of Lupus and “Tolerance Spreading”
	Summary of Lessons Derived From Above Studies in Lupus-Prone Mice and Comparisons With Findings From Contemporary Literature

	Recent Studies in Human Lupus Relevant to the Peptide Epitopes
	(a). Publication Title: “Regulatory T Cell (Treg) Subsets Return in Patients With Refractory Lupus Following Stem Cell Transplantation and TGF-β Producing CD8+ Regulatory Treg Cells (CD8TGF-β Treg) Are Associated With Immunologic Remission of Lupus”
	Significance of the Above Studies in Lupus Patients Transplanted With Autologous Stem Cells and Contemporary Relevant Studies by Others

	(b). Publication Title: “Major Pathogenic Steps in Human Lupus Can Be Effectively Suppressed by Nucleosomal Histone Peptide Epitope-Induced Regulatory Immunity”

	Overall Clinical Significance and Summary
	Future –Perspective, Problems that may Arise, and Possible Answers
	a) Low-Dose IL-2 and Corticosteroid Supplementation
	c) Peptide Delivery

	Author Contributions
	Funding
	Acknowledgments
	References

	The Potential of Harnessing IL-2-Mediated Immunosuppression to Prevent Pathogenic B Cell Responses
	Introduction
	Pathogenic B Cell Helper T Cell Subsets
	Tfh Cells
	Th17 Cells
	Hybrid IL-17+Tfh Cells?
	Double-Negative T Cells

	IL-2 and Immunosuppression
	IL-2 Signaling
	Low-Dose&nbsp;IL-2 Therapy

	Targeting B Cell Helpers with IL-2
	IL-2 and Tfh Cells
	Synergistic Low-Dose rIL-2 Therapies
	IL-2 and Th17 Cells
	IL-2 and DN T Cells

	Concluding Remarks
	Author Contributions
	Funding
	Acknowledgments
	References

	Effects of Peptide-Induced Immune Tolerance on Murine Lupus
	Introduction
	Materials and Methods
	Mice
	Peptides
	Treatment of Mice
	Cell Isolation, Preparation, Immunophenotyping, and Flow cytometry
	Western Blot Analysis
	RNA Isolation and Real-Time PCR
	Cell Culture and Measurement of Anti-DNA Antibodies
	Statistical Analyses

	Results
	pCons-Induced Tolerized B Cells and Granulocytes Suppressed Anti-DNA Ab Production by BWF1 Cells
	Microarray Analysis Showed Altered Regulation of Genes in Non-T Cells
	B cells and Granulocytes Produced Significantly Increased/Decreased Amounts of mRNA for Several Genes of Interest Including Interferon Genes After pCons Treatment in BWF1 Lupus Mice
	pCons-Tolerized B Cells From Lupus Mice Have Increased FoxP3 mRNA and Bcl2 Protein Levels
	pCons Treatment Induced and Modified the Cell Surface Expression Markers for Regulatory B Cells
	pCons Treatment Increased CD4+FoxP3+ Regulatory T Cells and Significantly Reduced Percent Expression and Median Fluorescence Intensity of CTLA-4 (Cytotoxic T-Lymphocyte-Associated Proten-4) in CD8+ T Cells of BWF1 Lupus Mice

	Discussion
	Data Availability Statement
	Ethics Statement 
	Author Contributions
	Funding
	Acknowledgments
	References

	Nanoparticles Engineered as Artificial Antigen-Presenting Cells Induce Human CD4+ and CD8+ Tregs That Are Functional in Humanized Mice
	Introduction
	Methods
	Preparation of PLGA Nanoparticles
	Preparation of Human PBMCs
	Flow Cytometry
	Mice
	Statistical Analyses

	Results
	Use of NPs as Acellular aAPCs to Induce CD4+CD25hiFoxP3+CD127- and CD8+FoxP3+ T Cells
	Paracrine Delivery of Cytokines to Human T Cells by aAPC NPs Leads to the Induction and Expansion of Functional Tregs
	Induction of Tregs In Vivo by aAPC NPs Associates With the Protection of Humanized NSG Mice From Lupus-Like Disease

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Strategies to Use Nanoparticles to Generate CD4 and CD8 Regulatory T Cells for the Treatment of SLE and Other Autoimmune Diseases
	Introduction
	Nanoparticles in Immunotherapy
	Rationale for the Use of Nanoparticles
	Nanoparticles That Generate Tolerance Through Modulation of Antigen Presenting Cells (APCs)
	Delivering Pharmacological Agents to Promote Tolerogenic APCs
	Delivering Disease-Relevant Antigens to APCs Through Naturally Tolerogenic Mechanisms
	Delivering Drug-Antigen Combinations to Drive Antigen Specific Tolerogenic Skewing

	Nanoparticles With Direct Tolerogenic Effects on Lymphocyte Subsets
	Delivering Small-Molecule Drugs or miRNA to T Cells

	Nanoparticles That Function as Tolerogenic Artificial Antigen-Presenting Cells (aAPCs) That Provide Activating, Costimulatory, and Cytokine Signals
	Nanoparticles That Induce Tolerogenic TGF-β-Dependent Regulatory NK Cells
	Nanoparticles Delivered Orally With Inherent Anti-Inflammatory and Tolerogenic Properties
	Discussion and Concluding Remarks
	Author Contributions
	Funding
	Acknowledgments
	References

	Potential for Antigen-Specific Tolerizing Immunotherapy in Systematic Lupus Erythematosus
	Introduction
	Clinical and Etiological Considerations
	Opportunities for Intervention With Tolerizing Approaches
	Mechanisms of Immune Tolerance
	Pathogenesis of SLE
	Apoptotic Clearance, TLRs, Nucleic Acid Sensors and Cytokines
	Loss of Immune Tolerance


	Immunological Tolerance Therapeutics in SLE
	Current Tolerizing Strategies for SLE
	Expanded Treg Cell Transfer
	HSCT/MSCT
	Low-Dose IL-2
	Tolerogenic DCs
	Lupuzor

	Potential Antigen-Specific Tolerizing Platforms for SLE
	NPs Delivering Antigens and Immunomodulators
	Nanoparticles Leveraging Natural Tolerogenic Processes
	Peptide-MHC NPs


	Autoantigens in SLE
	Conclusion
	Author Contributions
	Funding
	References

	Regulatory T Cells in Autoimmunity and Cancer: A Duplicitous Lifestyle
	Introduction
	Treg Cell Identity Card
	Immunosuppressive Cytokine Secretion
	Cytolysis
	“Metabolic Disruption”
	Suppression of DC Maturation and Function

	Treg Cell Metabolism
	Genetic and Epigenetic Program of the Foxp3 Locus
	Regulatory Elements of the Foxp3 Locus
	Transcription Factors Binding to FOXP3 Regulatory Elements
	Epigenetic Regulation

	Treg Cell Heterogeneity, Plasticity, and Functional Instability
	Treg Cell Functional Instability in Cancer
	Treg Cell Lineage-Specific Molecules
	Inflammatory Cytokines
	TCR/CD28 Signaling Pathway
	Metabolism
	Exhaustion

	Treg Cell Functional Instability in Autoimmunity
	Ex-Treg Cells in Autoimmunity
	Fragile Treg Cells in Autoimmunity
	Metabolic Cues in Treg Cell Functional Stability During Autoimmunity

	Treg Cell Functional Instability in Cancer Immunotherapy and Autoimmune Related Adverse Events
	Conclusions, Challenges, and Open Questions
	Author Contributions
	Funding
	References

	Cellular and Molecular Phenotypes of pConsensus Peptide (pCons) Induced CD8+ and CD4+ Regulatory T Cells in Lupus
	Introduction
	Materials and Methods
	Mice
	Subjects
	Peptides
	Treatment of Mice
	Cell Isolation, Preparation, Immunophenotyping, and Flow Cytometry
	Human Peripheral Blood Mononuclear Cells (PBMCs) Isolation and Preparation
	Western Blot Analysis
	RNA Isolation and Real-Time PCR
	Measurement of Apoptosis
	Statistical Analyses

	Results
	pCons Treatment Alters Cell Surface Expression of CD25, CD122, and Increased Intracellular FoxP3 Expression in CD4+ T Cells and Further Modifies Cell Surface Expression of CD25, CD28, CTLA-4 and 41BB in CD8+ T Cells in BWF1 Mice
	pCons Treatment Induces and Modifies Cell Surface Expression of CD62L, CD122, and CCR7 in CD8+ T Cells in BWF1 Mice
	pCons Treatment Modifies Expression of Regulator of G-Protein Signaling Genes (RGS2, RGS16, RGS17), Interferon-Induced, and Apoptotic Genes in CD8+ T Cells
	pCons Treatment Reduces Apoptosis of CD4+ and CD8+ T Cells, and of B220+ B Cells in BWF1 Lupus Mice
	pCons Increases CD8+FoxP3+ T Cells in Healthy Human Subjects

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Back cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




