
EDITED BY : Yuhui Zheng, Zexuan Ji, Heye Zhang and Jonathan Wu

PUBLISHED IN : Frontiers in Neuroinformatics

INTELLIGENT DIAGNOSIS WITH ADVERSARIAL 
MACHINE LEARNING IN MULTIMODAL 
BIOMEDICAL BRAIN IMAGES

https://www.frontiersin.org/research-topics/13670/intelligent-diagnosis-with-adversarial-machine-learning-in-multimodal-biomedical-brain-images#articles
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/research-topics/13670/intelligent-diagnosis-with-adversarial-machine-learning-in-multimodal-biomedical-brain-images#articles
https://www.frontiersin.org/research-topics/13670/intelligent-diagnosis-with-adversarial-machine-learning-in-multimodal-biomedical-brain-images#articles
https://www.frontiersin.org/research-topics/13670/intelligent-diagnosis-with-adversarial-machine-learning-in-multimodal-biomedical-brain-images#articles


Frontiers in Neuroinformatics 1 September 2021 | Intelligent Diagnosis With Adversarial Machine Learning

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88971-349-3 

DOI 10.3389/978-2-88971-349-3

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/research-topics/13670/intelligent-diagnosis-with-adversarial-machine-learning-in-multimodal-biomedical-brain-images#articles
https://www.frontiersin.org/about/contact


Frontiers in Neuroinformatics 2 September 2021 | Intelligent Diagnosis With Adversarial Machine Learning

INTELLIGENT DIAGNOSIS WITH ADVERSARIAL 
MACHINE LEARNING IN MULTIMODAL 
BIOMEDICAL BRAIN IMAGES

Topic Editors: 
Yuhui Zheng, Nanjing University of Information Science and Technology, China
Zexuan Ji, Nanjing University of Science and Technology, China 
Heye Zhang, Sun Yat-sen University, China
Jonathan Wu, University of Windsor, Canada

Citation: Zheng, Y., Ji, Z., Zhang, H., Wu, J., eds. (2021). Intelligent Diagnosis With 
Adversarial Machine Learning in Multimodal Biomedical Brain Images. 
Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88971-349-3

https://www.frontiersin.org/research-topics/13670/intelligent-diagnosis-with-adversarial-machine-learning-in-multimodal-biomedical-brain-images#articles
https://www.frontiersin.org/journals/neuroinformatics
http://doi.org/10.3389/978-2-88971-349-3


Frontiers in Neuroinformatics 3 September 2021 | Intelligent Diagnosis With Adversarial Machine Learning

04 Classification of Schizophrenia by Functional Connectivity Strength Using 
Functional Near Infrared Spectroscopy

Jiayi Yang, Xiaoyu Ji, Wenxiang Quan, Yunshan Liu, Bowen Wei  
and Tongning Wu

15 ANSH: Multimodal Neuroimaging Database Including MR Spectroscopic 
Data From Each Continent to Advance Alzheimer’s Disease Research

Pravat K. Mandal, Kanika Sandal, Deepika Shukla, Manjari Tripathi,  
Kuldeep Singh and Saurav Roy

22 Semi-Supervised Learning in Medical Images Through Graph-Embedded 
Random Forest

Lin Gu, Xiaowei Zhang, Shaodi You, Shen Zhao, Zhenzhong Liu  
and Tatsuya Harada

29 Non-invasive Evaluation of Brain Death Caused by Traumatic Brain Injury 
by Ultrasound Imaging

Ningning Niu, Ying Tang, Xiaoye Hao and Jing Wang

36 Review of Deep Learning Approaches for the Segmentation of Multiple 
Sclerosis Lesions on Brain MRI

Chenyi Zeng, Lin Gu, Zhenzhong Liu and Shen Zhao

44 Studying the Factors of Human Carotid Atherosclerotic Plaque  
Rupture, by Calculating Stress/Strain in the Plaque, Based on CEUS 
Images: A Numerical Study

Zhenzhou Li, Yongfeng Wang, Xinyin Wu, Xin Liu, Shanshan Huang, Yi He, 
Shuyu Liu and Lijie Ren

55 SARA-GAN: Self-Attention and Relative Average Discriminator Based 
Generative Adversarial Networks for Fast Compressed Sensing MRI 
Reconstruction

Zhenmou Yuan, Mingfeng Jiang, Yaming Wang, Bo Wei, Yongming Li,  
Pin Wang, Wade Menpes-Smith, Zhangming Niu and Guang Yang

67 A Tensor-Based Framework for rs-fMRI Classification and Functional 
Connectivity Construction

Ali Noroozi and Mansoor Rezghi

80 Validation and Diagnostic Performance of a CFD-Based Non-invasive 
Method for the Diagnosis of Aortic Coarctation

Qiyang Lu, Weiyuan Lin, Ruichen Zhang, Rui Chen, Xiaoyu Wei, Tingyu Li, 
Zhicheng Du, Zhaofeng Xie, Zhuliang Yu, Xinzhou Xie and Hui Liu

89 DarkASDNet: Classification of ASD on Functional MRI Using Deep Neural 
Network

Md Shale Ahammed, Sijie Niu, Md Rishad Ahmed, Jiwen Dong, Xizhan Gao 
and Yuehui Chen

99 Comparative Study of Multi-Delay Pseudo-Continuous Arterial Spin 
Labeling Perfusion MRI and CT Perfusion in Ischemic Stroke Disease

Xi Xu, Zefeng Tan, Meng Fan, Mengjie Ma, Weimin Fang, Jianye Liang,  
Zeyu Xiao, Changzheng Shi and Liangping Luo

Table of Contents

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/research-topics/13670/intelligent-diagnosis-with-adversarial-machine-learning-in-multimodal-biomedical-brain-images#articles


ORIGINAL RESEARCH
published: 07 October 2020

doi: 10.3389/fninf.2020.00040

Edited by:

Heye Zhang,
Sun Yat-sen University, China

Reviewed by:
Zicheng Liu,

Arctic University of Norway, Norway
Xi Cheng,

Télécom ParisTech, France

*Correspondence:
Tongning Wu

wutongning@caict.ac.cn

†These authors have contributed
equally to this work

Received: 02 June 2020
Accepted: 22 July 2020

Published: 07 October 2020

Citation:
Yang J, Ji X, Quan W, Liu Y, Wei B
and Wu T (2020) Classification of

Schizophrenia by Functional
Connectivity Strength Using

Functional Near Infrared
Spectroscopy.

Front. Neuroinform. 14:40.
doi: 10.3389/fninf.2020.00040

Classification of Schizophrenia by
Functional Connectivity Strength
Using Functional Near Infrared
Spectroscopy
Jiayi Yang 1,2†, Xiaoyu Ji 1†, Wenxiang Quan 3†, Yunshan Liu 1,4, Bowen Wei 1,5

and Tongning Wu 1*

1China Academy of Information and Communications Technology, Beijing, China, 2Institute of Electrical Engineering, Chinese
Academy of Sciences, Beijing, China, 3Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key
Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University
Sixth Hospital), Beijing, China, 4School of Computer Science and Technology, Donghua University, Shanghai, China, 5School
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Functional near-infrared spectroscopy (fNIRS) has been widely employed in the objective
diagnosis of patients with schizophrenia during a verbal fluency task (VFT). Most of the
available methods depended on the time-domain features extracted from the data of
single or multiple channels. The present study proposed an alternative method based on
the functional connectivity strength (FCS) derived from an individual channel. The data
measured 100 patients with schizophrenia and 100 healthy controls, who were used to
train the classifiers and to evaluate their performance. Different classifiers were evaluated,
and support machine vector achieved the best performance. In order to reduce the
dimensional complexity of the feature domain, principal component analysis (PCA) was
applied. The classification results by using an individual channel, a combination of
several channels, and 52 ensemble channels with and without the dimensional reduced
technique were compared. It provided a new approach to identify schizophrenia,
improving the objective diagnosis of this mental disorder. FCS from three channels
on the medial prefrontal and left ventrolateral prefrontal cortices rendered accuracy as
high as 84.67%, sensitivity at 92.00%, and specificity at 70%. The neurophysiological
significance of the change at these regions was consistence with the major syndromes
of schizophrenia.

Keywords: functional near infrared spectroscopy (fNIRS), schizophrenia, functional connectivity strength (FCS),
support machine vector, classification

INTRODUCTION

Schizophrenia is a kind of psychiatric disorder characterized by a series of positive/psychotic
(e.g., hallucinations and delusions), negative/deficit (e.g., insufficiency of thought and loss of
motivation), and cognitive (e.g., impairment of memory and attention) symptoms (Buckley
et al., 2009). Conventionally, clinical diagnostic criteria are predominately based on the relative
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subjective approaches, for example, according to the diagnostic
manuals (American Psychiatric Association, 1994). With the
development of neuroimaging, a number of objective methods
to identify schizophrenia patients have emerged, e.g., single
photon emission computed tomography (SPECT; Gordon
et al., 1994), diffusion tensor imaging (DTI; Ohtani et al.,
2014), functional magnetic resonance imaging (fMRI; Weiss
et al., 2004; Deng et al., 2017; Tréhout et al., 2017), and
functional near infrared spectroscopy (fNIRS; Kubota et al., 2005;
Rosenbaum et al., 2017).

fNIRS is a noninvasive hemodynamic imaging technique used
to assess functional activities in the human brain (Hoshi, 2003).
It detects the concentration of oxygenated hemoglobin (Oxy-
Hb) and deoxygenated hemoglobin (Deoxy-Hb) by measuring
the absorption and reflection of specific near infrared spectrums
in the cortices during tasks. Compared to other neuroimaging
instruments, fNIRS has the benefit of being low cost with a
high portability. These advantages have enabled its application
in the diagnosis of schizophrenia, which was mainly based on the
effect of hypofrontality (reduced activation around the bilateral
prefrontal cortex) during various verbal fluency tasks (VFTs;
Suto et al., 2004; Ehlis et al., 2007; Takizawa et al., 2008; Ji
et al., 2020). In practice, the majority of these studies extracted
the time-domain features from single or multiple channels of
healthy subjects and patients with schizophrenia (Suto et al.,
2004; Kanahara et al., 2013; Sugimura et al., 2014; Tian et al.,
2019). As a consequence, diverse machine learning classifiers (Li
et al., 2015) were trained and distinguished the patients with
schizophrenia from the healthy subjects.

In contrast, substantial neuroimaging studies of other
modalities have found abnormal dysconnectivity between the
prefrontal cortex and temporal cortex in schizophrenia patients
(Friston and Frith, 1995; Maguire et al., 2000; Greicius, 2008;
Bullmore and Sporns, 2009; Whitfield-Gabrieli et al., 2009),
and these experiments using EEG and fMRI have proposed
classification methods based on brain network properties
(Demirci et al., 2008; Yang et al., 2010; Arbabshirani et al.,
2013). Nevertheless, the method on whole-brain network
properties cannot be directly applied to fNIRS analysis because
the conventional clinical fNIRS only measures signals from
the frontotemporal cortex. One fNIRS study discriminated
patients with schizophrenia using four global network properties
(Song et al., 2016). The achieved overall accuracy was 85.5%,
but the local changes could not be investigated with the
approach. Hence, the analysis on regional functional connectivity
(FC), integrating both the spatial and temporal relation of
brain activities, is hypothesized to provide new insights on
classifying schizophrenia.

In this article, we provided an FC-based method to identify
schizophrenia patients. Oxy-Hb data from 100 schizophrenia
patients and 100 healthy subjects during VFT were used
in the experiment. functional connectivity strength (FCS)
from single channel, from the ensemble 52 channels, from
the dimensional reduced 52 channels, and from different
combinations of 2–5 channels were used to trained four popular
classifiers (Linear Discriminant Analysis: LDA, k-Nearest
Neighbor: KNN, Gaussian Processes classifier: GPC, and Support

Vector Machine: SVM), respectively. The best accuracy was
85.00% (LOOCV), with sensitivity as 87.00% (LOOCV) and
specificity as 83.00% (LOOCV), by using FCS from three
channels. Theneurophysiological significance was discussed. The
FCS-based method provided a new and effective approach for
schizophrenic identification.

MATERIALS AND METHODS

Subject
The Oxy-Hb dataset included 100 schizophrenic (male/female:
50/50, 33.81 ± 11.52 years old and ranging from 18 to
53 years old) and 100 healthy subjects (male/female: 47/53,
34.43± 12.36 years old and ranging by 18–78 years old) whowere
recruited from Peking University Sixth Hospital. The diagnosis
for schizophrenia was based on DSM-IV and conducted by two
clinical doctors. All subjects were native Chinese speakers and
right-handed. This study was carried out in conformity with
the Declaration of Helsinki and was sustained by the ethics
committee of Peking University Sixth Hospital. All subjects
provided written consent after being fully informed of the
procedures in the study.

VFT Experiment
The experiment was conducted in a quiet room and no entry was
permitted during the experiment. The Chinese VFT (Quan et al.,
2015) was initiated by a 30-s pre-task baseline period, followed by
a 60-s task period and a 30-s post-task baseline period (Figure 1).
There was a screen 1 m in front of the participants. During the
pre-task and post-task baseline periods, the participants were
asked to stare at the center of the screen and count from 1 to
5. During the 60-s task period, three Chinese characters (‘‘ ,’’
‘‘ ,’’ and ‘‘ ,’’ indicating white, sky, and big, respectively) were
displayed on the screen and changed every 20 s. The participants
were instructed to produce as many phrases or four-character
idioms starting with these characters as they could.

fNIRS Measurement and Data
Preprocessing
The measurement was conducted using a 52-channel near
infrared spectrometer (ETG-4000, Hitachi Medical Co., Japan).
The instrument had 33 probes (17 emitters and 16 detectors;
Figure 2). The positioning of the receivers emitters was referred
to an international 10-20 system of Electroencephalography
(Oostenveld and Praamstra, 2001). To specify, the detector
between Channel #5 and #6 was located at Fz, the emitters
close to #43 and #52 were fitted around T4 and T3, and
#46 and #49 were placed in Fp2 and Fp1, respectively. The
measurement area covered the bilateral prefrontal and temporal
cortices (Figure 2). The separation between the channels was
3 cm. In the experiments, each subject was measured with 120 s
(30 s pre-task baseline, 60 s VFT and 30 s post-task baseline)
at a sampling rate of 10 Hz. Hence, there were 1,200 signal
points for each channel per subject. Themeasured Oxy-Hb signal
was organized as a matrix with 300 × 1,200 × 52 (number of
subjects× signal points× amount of channels).
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FIGURE 1 | Experimental flowchart. The experiment has three procedures: 30-s pre-task, 60-s verbal fluency task (VFT) task, and 30-s post-task.

FIGURE 2 | The setting of functional near infrared spectroscopy (fNIRS) probe and channel. Hexagons stand for near-infrared light emitters, diamonds stand for
near-infrared light receptors, and cycles stand for fNIRS channels. T3, T4, Fp1, Fp2, and Fz are the electrode positions in the international 10-20 system. rSFC, right
superior frontal cortex; rSTC, right superior temporal cortex; rDLPFC, right dorsolateral prefrontal cortex; rVLPFC, right ventrolateral prefrontal cortex; mPFC, medial
prefrontal cortex; lDLPFC, left dorsolateral prefrontal cortex; lVLPFC, left ventrolateral prefrontal cortex; lSFC, left superior frontal cortex; lSTC, left superior temporal
cortex. The placement is in line with the configuration of Schecklmann et al. (2010).

The raw Oxy-Hb data were preprocessed through a band-pass
filter of 0.009–0.08 Hz to remove the motion artifacts. The
least square method was used to eliminate and remove
the linear trend from the Oxy-Hb signals. MATLAB toolkit
HomER2 (Huppert et al., 2009) was used to preprocess the
original data.

Feature Extraction for Classification
The conventional classification methods usually utilized the
time-domain features (for example, mean amplitude of Oxy-Hb
during VFT). Frontal functional dysconnectivity is a salient
feature of schizophrenia but it has not yet been applied for

identifying schizophrenia. FCS was selected to characterize
the effect and the following steps were used to obtain
the value:

(1) Pearson’s correlation among the data from 52 channels
was calculated by:

rxy =
∑

xiyi − nxy
(n− 1)SxSY

(1)

where x, y are the mean, and Sx, Sy are the standard deviations
of the measured data xi and yi, respectively; n is the number of
the data.
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(2) FCS was calculated by:

FCS =

∑
y rx,y
51

(2)

As a consequence, 52 FCSs were derived per subject. We
assessed the results from three kinds of approaches to
identify schizophrenia.

- Single-feature: FCS from single channel
- Ensemble 52 FCSs: FCSs from 52 channels with or without
dimensional reduction techniques

- Combine-features: FCS from the combination of several
single-features

Four widely used classifiers in schizophrenic identification,
LDA, GPC, KNN, and SVM, were trained and applied in the
study. Since the details of these classifiers were extensively
discussed previously (Mourão-Miranda et al., 2005; Yoon et al.,
2007; Azechi et al., 2010; Tanaka and Katura, 2011; Dai et al.,
2012; Arbabshirani et al., 2013; Hahn et al., 2013), we will
not repeat them again. The MATLAB toolkits, GPML (v3.41;
Rasmussen and Nickisch, 2010), LIBSVM (v3.1.22, and LDA
(V1.0.0.03) were used in the analysis. KNN was realized by
MATLAB function KNNCLASSIFY.

Note that the major parameters of these toolkits and functions
used default or empirical values, with the exceptions of:

- KNN: k = (100)1/2 = 10; Euclidean distance is adopted to
calculate the distances between the unlabeled sample and the
labeled training samples. Traditionally, the Euclidean distance
is appropriate when the issue included mutually correlated
observations. As such, this distance needs to consider every
variable and does not remove redundancies. The situation
is very similar to our situation: the data from 52 channels
are highly correlated and none can be simply removed. k
is to set k =

√
n The method has been proposed by

Mitra et al. (2002);
- SVM: RBF kennel; C and gamma were optimized by
automated grid search and evaluated via 10-fold cross-
validation. The optimization was conducted per case and the
best RBF factors were provided along with the results.

Evaluation of the Classification
Performance
To evaluate the performance of the individual classifier,
both leave-one-out cross-validation (LOOCV) and 10-fold/
20-fold CV were used to estimate the performance of the
classifier. The subjects involved in the experiments were
schizophrenia patients (positive, P) and the healthy controls
(negative, N). The true positive (TP) and the true negative
(TN) are the number of patients and healthy people being
correctly classified, respectively. The false positive (FP) is the
number of healthy people being classified as patients. The false
negative (FN) is the number of patients being classified as

1http://www.gaussianprocess.org/gpml
2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
3https://ww2.mathworks.cn/matlabcentral/fileexchange/29673-lda-linear-
discriminant-analysis

healthy people. The performance of the classification method
was assessed in terms of accuracy, sensitivity, and specificity
as shown in:

accuracy =
TP + TN

(TP + FP + FN + TN)
(3)

sensitivity =
TP

(TP + FN)
(4)

specificity =
TN

(FP + TN)
(5)

RESULTS

FC Matrices
Figure 3 shows the waveform of Oxy-Hb from 52 channels.
The results were averaged across the healthy control and
schizophrenic group. The reduced Oxy-Hb during VFT was
obvious in patients with schizophrenia, being consistent with
previous literature. The derived FCs were mapped in Figure 4.
It was revealed that functional connections with high intensity
were observed in the healthy controls, indicating dysconnectivity
of schizophrenia.

Classification Results
Single-FCS Results
The overall accuracy from the top five channels to identify
schizophrenia is shown in Figure 5 and is summarized in
Table 1. LDA, KNN, and SVM demonstrated similar overall
levels of accuracy, i.e., LDA: 72.50–81.00% (LOOCV), KNN:
78.00–82.00% (LOOCV), and SVM: 77.50–83.50% (LOOCV).
GPC had the lowest accuracy at 67.00–69.50% (LOOCV). In
terms of spatial distribution of the channels, although LDA,
KNN, and SVM demonstrated laterality (left or right sidedness),
in general, the best channels identified by these three classifiers
were on the ventral part of the frontal cortices. In contrast, GPC
utilized the FCS from the dorsal channels.

52-FCS Results
Figure 6 shows the 52-feature results from different classifiers.
Again, GPC achieved the lowest results (accuracy at 51.00%
(LOOCV), with sensitivity at 55.00% (LOOCV) and specificity
at 47.0% (LOOCV)). The other three classifiers had similar
performances whilst SVM slightly outperformed the other
two. In summary, SVM achieved the best accuracy at 86.50%
(LOOCV), sensitivity at 91.00% (LOOCV), and specificity
at 82% (LOOCV). LDA had the best accuracy at 83.00%
(LOOCV), sensitivity at 85.00% (LOOCV), and specificity
at 81.00% (LOOCV). KNN yielded the best accuracy
at 77.00% (LOOCV), sensitivity at 84.00% (LOOCV),
and specificity at 70.00% (LOOCV). The performance
of the classifiers initially increased with the numbers of
channels but stabilized when more channels were taken into
consideration. It may indicate the existence of redundancy in
this feature space.
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FIGURE 3 | The concentration curve of Oxy-Hb from 52 channels averaged from the healthy controls (blue lines) and the schizophrenic group (red lines). SZ,
schizophrenic patients; HC, healthy controls.

Dimensional Reduced 52-FCS Results
Principal component analysis (PCA) can convert multiple
observations of potentially correlated variables into a set of
linearly independent components. It implemented singular value
decomposition to reduce the dimensionality of a dataset that
consisted of a large number of interrelated variables, while

retaining as much variation present in the dataset as possible
(Abdi and Williams, 2010). For comparison, we also used two
other variants of PCA in the analysis: Kernel PCA and Sparse
PCA. Kernel PCA uses various kernel functions to project
datasets into a higher dimensional feature space, where it is
linearly separable. We selected Gaussian kernel in this case.
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FIGURE 4 | Functional connectivity (FC) matrices averaged over schizophrenia group and healthy controls. SZ, schizophrenic patients (A); HC, healthy controls (B).

FIGURE 5 | Overall accuracy achieved by single-channel feature using four classifiers [LDA (A), KNN (B), GPC (C), SVM (D)]. The top five channels were indicated
by blue (the optimized C and gamma of the top five channels of SVM are shown in the Supplementary Figures 1–5). LDA, Linear Discriminant Analysis; KNN,
k-Nearest Neighbor; GPC, Gaussian Processes classifier.

It was realized by MATLAB function KernelPca.m (Kitayama,
2020). Sparse PCA is implemented on the basis of the inverse
power method for nonlinear eigenproblems, which is introduced
in detail by Hein and Bühler (2010). Moreover, the deflation
scheme proposed by Bühler (2015) is adopted to compute
multiple principal components. It was realized by the free

software sparsePCA developed by Matthias Hein and Thomas
Bühler [Copyright 2010–2020 Thomas Bühler andMatthias Hein
(hein@cs.uni-saarland.de). Machine Learning Group, Saarland
University, Germany4].

4http://www.ml.uni-saarland.de
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FIGURE 6 | Fifty-two functional connectivity strength (FCS) results [accuracy (A), sensitivity (B), specificity (C); the optimized C and gamma of best accuracy as
86.50% of SVM are shown in Supplementary Figure 6].

TABLE 1 | Top five channels with functional connectivity strength (FCS)
representing the best overall accuracy from the four classifiers (the optimized C
and gamma of five channels of Support Vector Machine (SVM) are shown in
Supplementary Figures 1–5).

LDA Channel Brain region Accuracy

#41 lSTC 81.00%
#50 lVLPFC 78.50%
#35 rVLPFC 75.50%
#48 mPFC 74.00%
#36 mPFC 72.50%

KNN
#51 lSTC 82.00%
#35 rVLPFC 81.00%
#38 mPFC 79.50%
#50 lVLPFC 79.00%
#39 lVLPFC 78.00%

GPC
#5 mPFC 69.50%
#24 rDLPFC 68.50%
#39 lVLPFC 66.50%
#25 rDLPFC 67.00%
#19 lDLPFC 67.00%

SVM
#50 lVLPFC 83.50%
#41 lSTC 80.50%
#40 lVLPFC 79.00%
#44 rSTC 79.00%
#52 lSTC 77.50%

We derived the first 21 principal components representing
cumulative rates exceeding 93.4%. Classification based on the
selected principal components is shown in Table 2. The

results of 10-fold and 20-fold cross validation were provided
for comparison.

Combined FCS Results
Further effort was made to assess the capability of schizophrenic
identification using a certain combination of the channels. Since
SVM yielded the best overall accuracy, the experiments were
conducted only using this classifier. FCSs from 2, 3, 4, and
5 channels were selected from the five channels presenting
the top capability on schizophrenic identification (presented
in Figure 5). The results are shown in Table 3. Classification
using FCS from three channels can achieve accuracy at 85.00%
(LOOCV), sensitivity at 87.00% (LOOCV), and specificity at
83.00% (LOOCV).

DISCUSSIONS

Schizophrenia has been considered a disorder of connectivity
between various brain units (Elvevåg and Goldberg, 2000).
The connections were found to be reduced by schizophrenia,
as shown in Figure 4. This finding was consistent with
studies using other imaging modalities (Bellani et al., 2010;
Deng et al., 2017).

FCS measures the connectivity across different brain units,
so as to identify the hubs playing important roles in information
processing and communication during cognitive tasks
(van den Heuvel and Sporns, 2013; Mears and Pollard, 2016). As
shown in Table 1, the capability of discriminating schizophrenia
was evident for the FCS at VLPFC and mPFC. mPFC relates
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TABLE 2 | Classification performance of leave-one-out cross-validation (LOOCV), 10-fold, and 20-fold by using three dimensionality reduction methods (the optimized C
and gamma of SVM are shown in Supplementary Figures 7–15).

LOOCV 10-fold 20-fold

LDA Accuracy (PCA KernelPCA SparsePCA) 80.50% 80.00% 82.00% 79.00% 80.50% 80.50% 81.50% 82.00% 82.50%
Sensitivity (PCA KernelPCA SparsePCA) 82.00% 81.00% 83.00% 81.00% 82.00% 83.00% 83.00% 84.00% 83.00%
Specificity (PCA KernelPCA SparsePCA) 79.00% 79.00% 81.00% 77.00% 79.00% 78.00% 80.00% 80.00% 82.00%

KNN Accuracy (PCA KernelPCA SparsePCA) 79.00% 82.00% 79.50% 80.50% 80.50% 82.00% 80.00% 81.00% 80.50%
Sensitivity (PCA KernelPCA SparsePCA) 82.00% 83.00% 81.00% 81.00% 82.00% 84.00% 82.00% 83.00% 81.00%
Specificity (PCA KernelPCA SparsePCA) 76.00% 81.00% 78.00% 80.00% 79.00% 80.00% 78.00% 79.00% 80.00%

GPC Accuracy (PCA KernelPCA SparsePCA) 72.00% 73.50% 75.00% 68.50% 70.00% 70.50% 70.00% 71.50% 70.50%
Sensitivity (PCA KernelPCA SparsePCA) 73.00% 75.00% 77.00% 70.00% 72.00% 72.00% 72.00% 73.00% 72.00%
Specificity (PCA KernelPCA SparsePCA) 71.00% 72.00% 73.00% 67.00% 68.00% 70.00% 68.00% 70.00% 69.00%

SVM Accuracy (PCA KernelPCA SparsePCA) 87.50% 89.00% 88.00% 85.50% 87.00% 88.50% 87.50% 86.00% 89.50%
Sensitivity (PCA KernelPCA SparsePCA) 89.00% 90.00% 89.00% 86.00% 88.00% 89.00% 86.00% 87.00% 90.00%
Specificity (PCA KernelPCA SparsePCA) 86.00% 88.00% 87.00% 85.00% 86.00% 88.00% 89.00% 85.00% 89.00%

TABLE 3 | Overall accuracy of different combinations of FCS using SVM (the optimized C and gamma are shown in Supplementary Figures 16–41).

Selection of the channels Accuracy Sensitivity Specificity

#40 #41 #44 #50 #52

x x 82.00% 84.00% 80%
x x 81.50% 82.00% 81%
x x 80.50% 82.00% 79%
x x 83.00% 85.00% 81%

x x 78.50% 79.00% 78%
x x 82.00% 83.00% 79%
x x 83.00% 83.00% 83%

x x 79.00% 80.00% 78%
x x 80.50% 81.00% 80%

x x 83.50% 85.00% 82%
x x x 81.50% 83.00% 80%
x x x 85.00% 87.00% 83%
x x x 84.00% 86.00% 82%
x x x 82.00% 82.00% 80%
x x x 84.50% 85.00% 84%
x x x 83.00% 85.00% 81%

x x x 80.00% 82.00% 78%
x x x 79.50% 81.00% 78%
x x x 80.00% 81.00% 79%

x x x 81.00% 84.00% 78%
x x x x 83.50% 86.00% 81%
x x x x 83.00% 84.00% 82%
x x x x 84.50% 85.00% 84%
x x x x 82.00% 85.00% 79%

x x x x 83.00% 84.00% 82%
x x x x x 84.50% 86.00% 83%

to decision making and short- and long-term memory (Euston
et al., 2012), and coordinates VLPFC and DLPFC functions
(Peng et al., 2018). The neurophysiological functions of this
cortex are associated with the symptoms of schizophrenia.
The left VLPFC associates with the production of articulate
language and in nonlinguistic tasks (Hickok and Poeppel,
2004, 2007), while the right VLPFC plays a role in linking
working memory with episodic memory and in a series of
complicated social behaviors (He et al., 2020). The reduced
FCS of VLPFC in patients with schizophrenia may relate to the
impairment of both verbal skills and social functions, which
are the major symptoms of schizophrenia. In contrast, some
channels were at STC, which mediates spatial awareness and

exploration (Karnath, 2001). To summarize, these changes
during VFT corresponded to the perturbed performance of
schizophrenia patients (difficulty or incapability to produce
four-character idioms).

PCA reduced the dimension of the feature space and saved
the computational cost, while achieving satisfactory accuracy.
The disadvantage of PCA was that the principle components
could not be attributed to the data from the specific channel,
thus concealing the regional neurophysiological changes. Using
the FCS from three channels, the achieved performance was
comparable to the current results: accuracy at 70–86%, sensitivity
at 70–84%, and specificity at 65–93% (Arbabshirani et al., 2013;
Chuang et al., 2014; Li et al., 2015; Pina-Camacho et al., 2015;
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Song et al., 2017). The method was not calculated from the
time-domain values on single or multiple channels. It means
that reliable results could be provided when integrated with the
time-domain approaches.

There are some limitations to the present study. First,
the individual schizophrenic episode was not identified and
taken into analysis. However, it may have implications on
the effected sites (Zhu et al., 2010). Second, the patients
receiving medications and physical treatment were not ruled
out from the study. Although previous studies have revealed a
negligible medication effect on fNIRS signals, investigations of
drug-free patients or of those receiving physical treatment (e.g.,
transcranial magnetic stimulation, electroconvulsive therapy,
and neurofeedback) will be needed to allow further clinical
applications of fNIRS (Fujita et al., 2011; Mihara et al.,
2012; Monden et al., 2012). Third, educational background
may have an impact on language ability. In our study,
we did not categorize the subjects into more educational
background groups because the number of subjects in each
group would be sparse. But the two groups matched their
educational backgrounds (the schizophrenia group included
14 graduate degrees, 20 undergraduate degrees, 20 college
degrees, 31 senior high school degrees, and 15 junior high
school degrees, and the healthy group included 15 graduate
degrees, 20 undergraduate degrees, 20 college degrees, 30 high
school degrees, and 15 junior high school degrees). Lastly,
only three machine-learning classifiers, LDA, KNN, and SVM,
were used in the study because they were the most popular
machine-learning classifiers in discriminating patients with
schizophrenia. The comparison of their performance was a
topic being widely discussed while the individual performance
seemed to be signal- and feature-dependent (Mourão-Miranda
et al., 2005; Hahn et al., 2013; Li et al., 2015). In the present
study, we conducted a similar comparison. Other classifiers,
such as artificial neural networking, has not yet been applied
but theoretically could be utilized in the identification of
schizophrenia (Zheng et al., 2019a,b, 2020). We will try it in our
future study.

CONCLUSION

The study proposed an FCS-based method to identify patients
with schizophrenia. 52-channel Oxy-Hb data of fronto-
temporal fNIRS were obtained during VFT from healthy and
schizophrenic subjects. The FCS of each channel was calculated

as features for classification. We investigated the performance
of different classifiers, from FCS of all the 52 channels or from
several channels. The method was in sharp contrast to most
previous studies using the time-average data obtained from
multiple channels. The classification results were comparable
to the existing results. In addition, the method can detect the
changes of hubs during VFT, which was in consistency with the
symptoms of schizophrenia.
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Alzheimer’s disease (AD) is a devastating neurodegenerative disorder affecting millions
of people worldwide. The etiology of AD is not known, and intense research involving
multimodal neuroimaging data (e.g., MRI, functional MRI, PET etc.) is extensively used
to identify the causal molecular process for AD. In this context, various imaging-based
databases accessible to researchers globally, are useful for an independent analysis.
Apart from MRI-based brain imaging data, the neurochemical data using magnetic
resonance spectroscopy (MRS) provide early molecular processes before the structural
or functional changes are manifested. The existing imaging-based databases in AD
lack the integration of MRS modality and, thus, limits the availability of neurochemical
information to the AD research community. This perspective is an initiative to bring
attention to the development of the neuroimaging database, “ANSH,” that includes brain
glutathione (GSH), gamma aminobutyric acid (GABA) levels, and other neurochemicals
along with MRI-based information for AD, mild cognitive impairment (MCI), and
healthy subjects. ANSH is supported by a JAVA-based workflow environment and
python providing a simple, dynamic, and distributed platform with data security. The
platform consists of two-tiered architecture for data collection and management further
supporting quality control, report generation for analyzed data, and data backup with a
dedicated storage system. The ANSH database aims to present a single neuroimaging
data platform incorporating diverse data types from healthy control and patient groups
to provide better insights pertaining to disease progression. This data management
platform provides flexible data sharing across users with continuous project monitoring.
The development of ANSH platform will facilitate collaborative research and multi-site
data sharing across the globe.

Keywords: Alzheimer’s disease, diagnostic marker, neurochemical, glutathione, neuroimaging,
behavioural database
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INTRODUCTION

Alzheimer’s disease (AD) is a major neurodegenerative disorder,
and the number of AD patients is increasing globally with
each passing year, and disease-modifying treatment is not
available. Although pathophysiologic knowledge of AD from
existing hypotheses like amyloid beta deposition (Hardy and
Higgins, 1992) has helped immensely to understand the
disease process, the causal process for AD has not been
identified. Neuroimaging modalities involving MRI, fMRI,
PET, and behavioral studies have provided the associated
structural and behavioral changes in the disease process
(Gorgolewski et al., 2016). The first such database was reported
by the National Alzheimer’s Coordinating Center (NACC),
which mainly involved MRI, and the genetic and behavioral
dataset of healthy old (HO), and AD patients (Cronin-
Stubbs et al., 2000; Beekly et al., 2004). These databases
created an opportune situation for the sharing of imaging-
based data with researchers. There are other databases from
Image Data Archive, Laboratory of NeuroImaging (IDA LONI;
Rex et al., 2003; Neu et al., 2005), Longitudinal Online
Research Imaging System (LORIS; Das et al., 2011), Extensible
Neuroimaging Archive Toolkit (XNAT; Marcus et al., 2007),
Open Access Series of Imaging Study (OASIS; Marcus et al.,
2007), Biomedical Informatics Research Network (BIRN; Keator
et al., 2008), and Collaborative Informatics and Neuroimaging
Suite (COINS; Scott et al., 2011). The list of databases is
expanding, and only a few specific features mainly structural
and functional related to AD are presented in Figure 1.
Subsequently, neurochemical data is added in the present
dataset ‘‘ANSH’’ to bridge the gap (Figure 1). MR spectroscopy
(MRS) is a potent non-invasive modality to identify the
various neurochemicals involved in the early disease process.
MRS-driven outcomes provide information that is critically
involved in the transition of normal healthy person to mild
cognitive impairment (MCI).

Various neurochemicals [e.g., N-acetyl aspartate (NAA),
myo-Inositol (mI), creatine (Cr), choline (Cho), etc.;
Doraiswamy et al., 1998; Mandal et al., 2015], neurotransmitter
[e.g., gamma aminobutyric acid (GABA), glutamate, glutamine,
etc.; Bai et al., 2015), antioxidant, and glutathione (GSH) level
(Mandal et al., 2012, 2015; Shukla et al., 2020] can be quantified
in AD brain using MRS. The NAA/mI ratio and the GSH levels
from the hippocampus are correlated to cognitive decline in
various behavioral studies (Doraiswamy et al., 1998; Mandal
et al., 2015). In MRS studies, the depletion of GSH in the
hippocampus, frontal cortices, and anterior cingulate cortices
(Mandal et al., 2012, 2015; Shukla et al., 2020) has been validated
from various independent postmortem studies (Gu et al., 1998;
Sultana et al., 2008; Ansari and Scheff, 2010).

Hence, the inclusion of neurochemical data is required
and will play a profound role in AD research for identifying
a causal molecular process for AD, possible therapeutic
development, and monitoring disease progression. ANSH is
the first platform where antioxidant, neurotransmitter, and
energy metabolites are discussed and will be available to the
research community.

A CHRONOLOGICAL DEVELOPMENT OF
VARIOUS AD-BASED DATABASE

Database and associated data-processing platforms are powerful
tools for supporting medical data mining and discovery from
the wealth of routinely acquired clinical and imaging data.
This facilitates better information, individualized and optimized
patient care (Bui et al., 2013).

Since then, many initiatives progressed toward the open
sharing and reusability of the original data. This section
briefly describes more details of these databases. The University
of Washington School of Public Health supported by the
National Institute of Health (NIH) started the Alzheimer’s
Disease Research Center (ADRC) with a mandate to provide
a comprehensive advanced AD research and related disorders
from 39 ADRCs at various medical schools across the United
States. NACC started with a behavioral and genetic dataset
platform and then gradually incorporated MR imaging (Cronin-
Stubbs et al., 2000; Beekly et al., 2004). Subsequently, an
increasing number of experiments led to the generation of
heterogeneous datasets, with an urgent need for standardization
and distribution of this information. This initiative resulted in the
creation of IDA-LONI for data sharing concerning the disease
progression from various research sites globally1. IDA-LONI is a
hub comprising approximately 138 studies from various disease
datasets with new studies added overtime (Petersen et al., 2010).
LONI is fortified with upload, download, quality check (QC),
processing, and various other user-level sharing features. The
Alzheimer’s disease neuroimaging initiative (ADNI; Petersen
et al., 2010) and the human connectome projects are associated
with this platform (Rex et al., 2003). LORIS is a web-based
platform for neuroimaging studies (Das et al., 2011). LORIS
consists of a wide range of datasets including neurological,
behavioral, and imaging data from anatomical, functional maps,
atlases, and MRI models. LORIS streamlined a framework for
storing and processing behavioral, clinical, neuroimaging, and
genetic data. The combination of the software platform and
web-based approach for data management, throughput task,
and data sharing to the approved users was supported by the
Neuroimaging Archive Toolkit (XNAT; Marcus et al., 2007),
Analysis of Functional Neuroimages (AFNI; Cox, 1996), Human
Imaging Database (HID; Marcus et al., 2011), and Brain Imaging
Data Structure (BIDS; Gorgolewski et al., 2016), which provide
the user with the data management tools for a better analysis
of data across a diverse number of neuroimaging datasets. The
Neuro-Imaging Tools and Resource Collaboratory (NITRC) has
played a vital role in hosting all the neuroimaging software
repository, data, and toolboxes under one platform2.

OASIS (Marcus et al., 2007) is a dedicated project
involving brain MRI and PET longitudinal data available
to the scientific community. The BIRN package offers
an amalgamated and distributed infrastructure for the
storage, retrieval, analysis, and documentation of biomedical
imaging datasets (Keator et al., 2008). BIRN uses XNAT and

1https://ida.loni.usc.edu
2https://www.nitrc.org
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FIGURE 1 | The chronological development of various neuroimage-based database pertaining to Alzheimer’s disease (AD) research with a variety of modalities.
(1) National Alzheimer’s Coordinating Center (NACC; Cronin-Stubbs et al., 2000; Beekly et al., 2004). (2) IDA-LONI (Rex et al., 2003; Neu et al., 2005).
(3) Longitudinal Online Research Imaging System (LORIS; Das et al., 2011). (4) Neuroimaging Archive Toolkit (XNAT; Marcus et al., 2007). (5) Open Access Series of
Imaging Study (OASIS; Marcus et al., 2007). (6) Biomedical Informatics Research Network (BIRN; Keator et al., 2008). (7) Collaborative Informatics and Neuroimaging
Suite (COINS; Scott et al., 2011). (8) ANSH: a dynamic comprehensive database management system. Abbreviations: DTI, diffusion tensor imaging; ECoG,
electrocorticography; EEG, electroencephalogram; fMRI, functional magnetic resonance imaging; MEG, magnetoencephalography; MRS, magnetic resonance
spectroscopy; PET, positron emission tomography; QSM, quantitative susceptibility mapping; SPECT, single-photon emission computerized tomography. MRS data
specifically critical antioxidant, receptors, and brain energy metabolites will be available through the ANSH.
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HID for data acquisition and management (Keator et al.,
2008). In progression, COINS is comprised of 300 studies
consisting of 19,000 MRI, magnetoencephalography (MEG),
and electroencephalogram (EEG) scans with more than
180,000 clinical assessments (Bockholt et al., 2010). The COINS
database provides an optimized platform for data mining from
multiorganization sources shared with added security and
data tracking portal with Public Health Information (PHI;
Bockholt et al., 2010).

IMPORTANCE OF MR SPECTROSCOPY
DATA AND APPLICATION

MRS data can be generated from any part of the brain
using single-voxel mode or multivoxel mode (Mandal, 2007).
MRS data is generally smaller in size and easy to handle
compared to MRI-based data. Various advanced packages are
available to process MRS data, and absolute quantitation of
various neurochemicals is also possible (Mandal and Shukla,
2020). These MRS-processing packages can be added with a
suitable plugin so that processed MRS data can be utilized in
multimodel big data analytics (Sharma et al., 2019). Various
MRS pulse sequences are now available to detect specific
neurochemicals (GABA, GSH, glutamate/glutamine) without
any ambiguity (Terpstra et al., 2003). Figure 2A represents the
MRS spectra from the left hippocampus by placing the single-
voxel (25 × 25 × 25 mm3), MRS data was acquired using a
3T MRI (Achieva, Philips) scanner, and processed using the
KALPANA software (Mandal and Shukla, 2020). Figure 2B
represents absolute quantitation of GSH in relevant amount
(mM) from the left hippocampus of HO, MCI, and AD patients
(Mandal et al., 2015). Significant depletion of GSH level from
the left hippocampus, as detected by in vivo MRS, is sensitive
for comparing HO, MCI, and AD patients. MRS is also the
only technique that can be used to detect the GSH conformers
in vivo, and these conformers are likely to play an important
role in the AD disease process (Mandal et al., 2017, 2019; Shukla
et al., 2020). The changes in the GSH level are susceptible to
AD pathology only. Data indicated that, GSH level in the left
cerebellum of AD and HO did not alter significantly (p = 0.536);
however, the specific change in GSH in the hippocampal regions
in the same AD and HO groups was found to be significant
(p < 0.001; Mandal et al., 2015). The database involving 31P
MRS is critical to understand the impaired energy metabolism
process (e.g., increased hippocampal pH) in the AD brain in
contrast to the age-matched normal brain (Mandal et al., 2012;
Rijpma et al., 2018).

This perspective will bridge the gap providing the unique
neurochemical data in AD research.

TECHNICAL DETAILS OF THE ANSH
DATABASE IN BRIEF

Key Features
ANSH, a dynamic and distributed data management platform,
follows a two-tired architecture that includes a graphical

user interface, processing pipeline, and database server.
The ANSH supports a JAVA-based workflow environment
and python for storage with flexible data access and data
sharing among users. In addition, QC ensures an improved
database management. The ANSH also provides a report
generation feature with the additional functionality of
continuous project monitoring using data visualization and
statistical analysis.

Some key features of the ANSH are: (1) distributive platform;
(2) user login with privacy implementations; (3) quality
check; (4) image viewer; (5) centralized approach to fetch
data; (6) real-time tracking and backup of the database;
(7) heterogeneous data; (8) effortless import/export of
data with the use of data-processing pipelines; and (9)
report generation.

Data Types and Quality Control
ANSH provides a dynamic and comprehensive database
management system for the heterogeneous neuroimaging
datasets, specifically MRI and multinuclear MRS for HO, MCI,
and AD categories along with the neuropsychological test scores.
The MRI data consist of diverse 3D T1, T2-weighted, Flair,
and QSM images for different age groups of healthy young as
well as HO subjects. Other imaging modalities such as PET,
fMRI, and DTI will also be added to the ANSH database. MRS
data for GSH and GABA are provided for age-matched HO,
MCI, and AD groups along with T1, T2-weighted, and Flair
MRI dataset. The neuropsychological score broadly constitutes
from the mini-mental state examination, clock drawing test, trail
making tests. The flow diagram of the ANSH is presented in
Figure 2C.

ANSH User-Flow Schematic
The ANSH incorporates three levels of users including
administrator, write/read privileged, and read privileged only.
The administrator is the top-level user, responsible for assigning
other user’s rights as well as creating and managing the
new and existing project information. The administrator only
holds the right to completely remove the specific project
data from the database. Users with the read and write
privileges can read and write the specific data according to
the permission given to them by the administrator, whereas
the user with the read privileges will only be able to read a
selective database for the specific projects as permitted by the
administrator. Each user can export the selected data from the
specified project.

Dataset Handling
Data entry in the ANSH database can be accomplished
individually using data entry forms or imported in bulk. Data
insertion and updation rights are held by the administrator
and given to the write-privileged users for the specified
projects. Data retrieval rights are entitled to all users. The
ANSH also provides detailed data report, data visualization
plots (i.e., bar and pie charts) as image files and statistical
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FIGURE 2 | (A) 1H-MRS MEGA-PRESS edited spectra for in vivo glutathione (GSH) estimation in the left hippocampus of a HO brain. (B) Box–whisker plot showing
significant GSH concentration depletion in the mild cognitive impairment (MCI) and AD groups compared to the HO group. ∗∗∗The significance level was set at
p < 0.001 (Mandal et al., 2015). (C) This workflow illustrates the conventions for the construction of database and management of data. The access of data is
provided by the user authentication. The privileged user is provided with two main segments, i.e., data insertion and updation, where the user can review data and
can make appropriate changes. Both segments follow the raw image quality control (QC) before putting the data in the backup servers. It will also keep a track of the
data usage and generate logs for the changes. Read-only privileged users are enriched with the segment for data retrieval to export image data and the data reports
using various search filters and data selection parameters. All segments are interconnected by the backend server and the rack system of the ANSH.
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information in the form of pdf and excel which can be
exported afterwards.

Data Processing, Storage, and Security
In the ANSH database management system, the user can
access the database through a secure desktop application. Data
imported or entered, undergoes a rigorous quality assurance
process with a quality flag level. This quality tagged data
is sent to the server for storage and subsequently history
logs are maintained and stored in the ANSH server tracking
associated changes.

Data security is provided in multiple steps: (1) authorized
users will be granted access to the database, (2) quarantine
of sensitive files (e.g., user password file), where files are
encrypted and hashed, (3) tracking user behavior against data,
(4) successful/failed attempts to establish connection are logged
to track intruders, (5) restricting user access by designing and
granting appropriate user with limited administrative privileges,
and (6) database backups are taken as a part of security protocol,
where these backups allow to recover the lost data that may
have resulted from hardware failure, data corruption, theft, or
natural disasters.

CONCLUSION AND FUTURE DIRECTIONS

The ANSH database construction is a sincere attempt to bring
the critical neurochemical information from HO, MCI, and
AD patients to the global researchers for comparative analysis.
WE will also add Parkinson disease data and other mental
disorders data in ANSH database. This novel program is in
an expanding stage and needs further infrastructure support to
build a robust system to cater to the Indian and global brain
research community.
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One major challenge in medical imaging analysis is the lack of label and annotation which

usually requires medical knowledge and training. This issue is particularly serious in the

brain image analysis such as the analysis of retinal vasculature, which directly reflects

the vascular condition of Central Nervous System (CNS). In this paper, we present a

novel semi-supervised learning algorithm to boost the performance of random forest

under limited labeled data by exploiting the local structure of unlabeled data. We identify

the key bottleneck of random forest to be the information gain calculation and replace

it with a graph-embedded entropy which is more reliable for insufficient labeled data

scenario. By properly modifying the training process of standard random forest, our

algorithm significantly improves the performance while preserving the virtue of random

forest such as low computational burden and robustness over over-fitting. Our method

has shown a superior performance on both medical imaging analysis and machine

learning benchmarks.

Keywords: vessel segmentation, semi-supervised learning, manifold learning, central nervous system (CNS),

retinal image

1. INTRODUCTION

Machine learning has been widely applied to analyze medical images such as an image of the
brain. For example, the automatic segmentation of brain tumor (Soltaninejad et al., 2018) could
help predict Patient Survival from MRI data. However, traditional methods usually require a large
number of diagnosed examples. Collecting raw data during routine screening is possible butmaking
annotations and diagnoses for them is costly and time-consuming for medical experts. To deal with
this challenge, we propose a novel graph-embedded semi-supervised algorithm that makes use of
the unlabeled data to boost the performance of the random forest. We specifically evaluate the
proposed method on both a neuronal image and the retinal image analysis that is highly related to
diabetic retinopathy (DR) (Niu et al., 2019) and Alzheimer’s Disease (AD) (Liao et al., 2018), and
make the following specific contributions:
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1. We empirically validate that the performance bottleneck of
random forest under limited training samples is the biased
information gain calculation.

2. We propose a new semi-supervised entropy calculation by
incorporating local structure of unlabeled data.

3. We propose a novel semi-supervised random forest
which shows advantage performance of the state-of-
the-art in both medical imaging analysis and machine
learning benchmarks.

Among various supervised algorithms, random forest or random
decision trees (Breiman et al., 1984; Criminisi et al., 2012) are one
of the state-of-the-art machine learning algorithms for medical
imaging applications. Despite its robustness and efficiency, its
performance relies heavily on sufficiently labeled training data.
However, annotating a large amount of medical data is time-
consuming and requires domain knowledge. To alleviate the
challenge of having enough labeled data, a class of learning
methods named semi-supervised learning (SSL) (Joachims, 1999;
Zhu et al., 2003; Belkin and Niyogi, 2004; Zhou et al., 2004;
Chapelle et al., 2006; Zhu, 2006) were proposed to leverage
unlabeled data to improve the performance. Leistner et al. (2009)
proposed a semi-supervised random forest which maximizes
the data margin via deterministic annealing (DA). Liu et al.
(2015) showed that the splitting strategy appears to be the
bottleneck of performance in a random forest. The authors
estimate the unlabeled data through kernel density estimation
(KDE) on the projected subspace, and when constructing the
internal node, they progressively refine the splitting function with
the acquired labels through KDE until it converges. Without
explicit affinity relation, CoForest (Li and Zhou, 2007) iteratively
guesses the unlabeled data with the rest of the trees in the forest
and then uses the new labeled data to refine the tree. Semi-
supervised based super-pixel (Gu et al., 2017) has proved to
be effective in the segmentation of both a retinal image and a
neuronal image.

Following the research line of a previous semi-supervised
random forest (RF), we identify that RF’s performance
bottleneck, under insufficient data, is the biased information
gain calculation when selecting an optimal splitting parameter
(shown as blue in Figure 1). Therefore, as illustrated in red
in Figure 1, we slightly modified the training procedure of
RF to relieve this bias. We replace the original information
gain with our novel graph-embedded entropy which exploits
the data structure of unlabeled data. Specifically, we first
use both labeled and unlabeled data to construct a graph
whose weights measure local similarity among data and
then minimize a loss function that sums the supervised loss
over labeled data and a graph Laplacian regularization term.
From the optimal solution, we can get label information of
unlabeled data which is utilized to estimate a more accurate
information gain for node splitting. Since a major part of
training and the whole testing remains unchanged, our graph-
embedded random forest could significantly improve the
performance without losing the virtue of a standard random
forest such as low computational burden and robustness
over over-fitting.

2. ANALYSIS OF PERFORMANCE
BOTTLENECK

Let us first review the construction of the random forest (Breiman
et al., 1984) to figure out why random forest fails under limited
training data. A random forest is an ensemble of decision trees:
{t1, t2, ..., tT}, of which an individual tree is independently trained
and tested.

Training Procedure: Each decision tree t, as illustrated in
Figure 1, learns to classify a training sample x ∈ X to the
corresponding label y by recursively branching it to the left or
right child until reaching a leaf node. In particular, each node
is associated with a binary split function h(xi,w, τ ), e.g., oblique
linear split function

h(xi,w, τ ) = [〈w, xi〉 < τ ], (1)

where [.] is an indicative function and τ is a scaler threshold.
w ∈ Rd serves as a feature weight parameter that projects the
high dimension data x ∈ Rd to a one dimensional subspace.

Given a candidate splitting function h(x,wj, τj), its splitting
quality is measured by information gain G(wj, τj). In practice,
given the training data X and their labels Y , the construction
of the splitting node, as illustrated in the left side of Figure 1,
comprises the following three stages:

Algorithm 1 : Training of node splitting.

1: Randomly generates a set of feature subspace candidates {wj}
2: For each wj, find the optimal τ ∗j = arg max

τ

G(wj, τ ,X,Y)

that best splits the data.
3: Among all {wj, τ ∗j }, pick the one with largest information

gain: j∗ = arg max
j

G(wj, τ ∗j ,X,Y)

Through the above stages, each split node is associated with a
splitting function h(x,w, τ ) that best splits the training data.

Testing Procedure: When testing data x, the trained random
forest predicts the probability of its label by averaging the
ensemble prediction as p̂(y|x) =

∑

t pt(y|x), where pt(y|x)
denotes the empirical label distribution of the training samples
that reach leaf note of tree t.

2.1. Performance Bottleneck Under
Insufficient Data
According to the study of Liu et al. (2015), insufficient training
data would impact the performance of RF in three ways (Liu et al.,
2015): (1) limited forest depth; (2) inaccurate predictionmodel of
leaf nodes; (3) sub-optimal splitting strategy. Among them, Liu
et al. (2015) identified that (1) is inevitable, and (2) is solvable
with their proposed strategy. In this paper, we further improve
the method by tackling (3).

We claim that the performance bottleneck of random forest is
its sub-optimal splitting strategy in Algorithm 1. To empirically
support this claim, we build three random forests, similar to Liu
et al. (2015), for comparison: the first one, the Control is trained
with a small size of a training set S1 as control; the second one, the
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FIGURE 1 | Difference between our method and standard random forest. Noting that the performance bottleneck (shown in blue) is the biased information gain

G(τj ,wj ,Xl ,Yl ) calculation based on limited labeled data Xl ,Yl in Stage 3, we replace G(.) with our novel graph-embedded Gm(.,Xu) which considers unlabeled data Xu
(shown in red).

FIGURE 2 | Empirical validation of performance Bottleneck.

Perfect Stage 3 is constructed with the same training set S1 but
its node splitting uses a large training set S2 to select the optimal
parameter in stage 3 of Algorithm 1, to simulate the case that
random forest selects the optimal parameter of stage 3 with full
information; the third one, the Perfect Splitting is constructed
with S1 while S2 was used for both Stage 2 and 3 of Algorithm 1.

Following the protocol of Liu et al. (2015), each random forest
comprises 100 trees and the same entropy gain is adopted as the
splitting criterion. We evaluate three random forests on Madelon
(Guyon et al., 2004), a widely used machine learning benchmark.
As shown in Figure 2, Perfect Stage 3, which only uses the
full information to select the best parameter set, significantly
improves the performance compared to the control group.
Interestingly, the Perfect Splitting one, which utilizes the full
information for both optimal parameter proposing (Stage 2)

and optimal parameter decision (Stage 3), only makes a subtle
improvement compared to Perfect Stage 3.

From Figure 2, we found that Stage 3, optimal parameter
selection, is the performance bottleneck of the splitting node
construction, which is also the keystone of random forest
construction (Liu et al., 2015). When deciding the optimal
parameter, random forest often fails to find the best one as its
information gain calculation g(w, τ ) is biased under insufficient
training data. Interestingly, insufficient data has a smaller
effect on the Stage 2, parameter proposal. Motivated by this
observation, we propose a new information calculation which
exploits unlabeled data to make a better parameter selection in
Stage 3 of Algorithm 1.

3. GRAPH-EMBEDDED REPRESENTATION
OF INFORMATION GAIN

In the previous section, we show that gain estimation appears to
be the performance bottleneck of random forests. Empirically, we
show that more label information helps to obtain more accurate
gain estimation. This encourages us to consider the possibility of
mining label information from unlabeled data through structural
connections between labeled and unlabeled data. In particular,
we perform a graph-based semi-supervised learning to get label
information of unlabeled data, and compute information gain
from both labeled and unlabeled data. To achieve a better gain
estimation, we embed all data into a graph. Moreover, we assume
the underlying structure of all data form amanifold, and compute
data similarity based on the assumption.

Let l and u be the number of labeled and unlabeled
instances, respectively. Let Xl = [x1, · · · , xl]⊤ ∈ R

d×l be
the matrix of feature vectors of labeled instances, and Xu =
[xl+1, · · · , xl+u]

⊤ ∈ R
d×u be the matrix of unlabeled instances.

To accommodate label information, we define a label matrix
Y ∈ R

(l+u)×K (assuming there are K class labels available), with
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each entry Yik containing 1 provided the i-th data belongs to Xl
and is labeled with class k, and 0 otherwise. Besides, we define Yl
as a submatrix of Y corresponding to the labeled data, yi ∈ R

K as
the i-th row of Y corresponding to xl, and yl ∈ R

l as the vector of
class labels for Xl.

Based on both labeled and unlabeled instances, our purpose
is to learn a mapping f :Rd → R

K and predict the label
of instance x as k∗ : = argmaxk fk(x). Many semi-supervised
learning algorithms use the following regularized framework

l
∑

i=1

loss(yi, f (xi))+ λ

l+u
∑

i,j=l+1,i6=j

s(xi, xj)‖f (xi)− f (xj)‖22,

where loss() is a loss function and s(xi, xj) is a similarity function.
In this paper, we apply the idea of graph embedding to learn f .We
construct a graph G = (V ,E,W), where each node in V denotes
a training instance and W ∈ R

(l+u)×(l+u) denotes a symmetric
weight matrix. W is computed as follows: for each point find
t nearest neighbors, and Wij = exp(−‖xi − xj‖22/σ 2) if (xi, xj)
are neighbors, 0 otherwise. Such construction of graph implicitly
assumes that all data resides on some manifold and exploits
local structure. Based on the graph embedding, we propose
to minimize

L({fi}) =
1

2





l+u
∑

i=1

‖fi − yi‖22 + λ

l+u
∑

i,j=1

Wij‖
fi√
Dii

−
fj

√

Djj
‖22



 ,

(2)
where D is a diagonal matrix with its Dii equal to the sum of the
i-th row of W. Let F∗ = [f ∗1 , · · · , f ∗l+u] = argmin

{fi}
L({fi}) be the

optimal solution, it has been shown in Zhou et al. (2004) that

F∗ = ((1+ λ)I − λD−1/2WD−1/2)−1Y . (3)

Based on the learned functions F∗, we can predict the label
information of Xu and then utilize such information to estimate
more accurate information gain. Specifically, we let ŷu denotes
the predicted label of Xu, and for node S we compute Gini index
Gm(S) =

∑K
k=1 pk(1− pk), where

pk =
1

|S| (
∑

xi∈S,1≤i≤l

1{(yl)i=k} +
∑

xi∈S,l+1≤i≤l+u

1{(ŷu)i=k})

is the proportion of data from class k. Note that we utilize
information from both labeled and unlabeled data to compute
the Gini index. For each node, we estimate information gain as

Gm(w, τ ,Xl,Yl,Xu) = Gm(S)−
(

|Sl|Gm(Sl)+ |Su|Gm(Su)
)

/|S|,
(4)

where Sl and Su are left and right child nodes, respectively.

4. CONSTRUCTION OF SEMI-SUPERVISED
RANDOM FOREST

In our framework, we preserve the major structure of the
standard random forest where the testing stage is exactly the same
as the standard one. As illustrated in the right part of Figure 1,
we only make a small modification in stage 3 of Algorithm
1 where the splitting efficiency is now evaluated by our novel
graph-embedded based information gain Gm(τj,wj,Xl,Yl,Xu)
from Equation (4). Specifically, we leave stage 2 unchanged that
the threshold τ of each subspace candidate w is still based on
standard information gain such as the Gini index. Now with
a set of parameter candidates w, τ , the stage 3 calculates the
corresponding manifold based information score ĝ(w, τ ) instead
and select the optimal one through max

wj ,τj
ĝ(wj, τj).

FIGURE 3 | Exemplar estimation of vessel on the DRIVE dataset with 800 labeled samples. From left to right: Input images; Ground-truth; Estimation of our method;

Estimation of Standard RF; Estimation of Optimal RF.
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5. EXPERIMENTS

We evaluate our method on both 2D, and 3D brain related
medical image segmentation tasks as well as two machine
learning benchmarks.

The retinal vessel, a part of the Central Nervous System (CNS),
directly reflects the vascular condition of CNS. The accurate
segmentation of vessels is important for this analysis. Much
progress has been made based on either random forest (Gu
et al., 2017) or deep learning (Liu et al., 2019). The DRIVE
dataset (Staal et al., 2004) is a widely used 2D retinal vessel
segmentation dataset that comprises of 20 training images and
20 testing ones. Each image is a 768 × 584 color image along
with manual segmentation. For the image, we extract two types
of widely used features: 1, local patch x1 ∈ R15×15×3 of target.
2, x2 ∈ R4×7×3 Gabor wavelets (Soares et al., 2006). We also
investigate the single neuron segmentation in a brain image.
BigNeuron project1 (Peng et al., 2015) is a 3D neuronal dataset

1https://www.alleninstitute.org/bigneuron/about/

with ground truth annotation from experts. For BigNeuron data,
we manually picked 13 images among which a random 10 were
used for training while the rest were left for testing, because
this dataset is designed for tracing rather than segmentation.
For example, some annotation is visibly thinner than the actual
neuron. Furthermore, the image may contain multiple neurons
but only one is properly annotated. For both datasets, we
randomly collected 40,000 (20,000 positive and 20,000 negative)
samples from the training and testing sets, respectively. For 3D
data, our feature is x1 ∈ R15×15×7 local cube similar to the setting
of Gu et al. (2017).

Apart from the medical imaging, we also demonstrate the
generality of our method on two binary machine learning
benchmark, IJCNN1 (Prokhorov, 2001) and Madelon (Guyon
et al., 2004), in Libsvm Repository (Chang and Lin, 2011).

During the evaluation, we randomly selected a certain number
n of labeled samples from the whole training set while leaving
the rest unlabeled. Standard Random Forest (RF) is trained with
n labeled training data only. Our method and RobustNode (Liu
et al., 2015) are trained with both labeled data and unlabeled

FIGURE 4 | Classification accuracy vs. number of labeled samples.

Frontiers in Neuroinformatics | www.frontiersin.org 5 November 2020 | Volume 14 | Article 60182926

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Gu et al. Semi-Supervised Learning in Medical Images

TABLE 1 | Classification accuracy (represented in percentage %) on different

dataset.

Drive Big neuron IJCNN1 Madelon

Our method 79.42 74.16 89.36 59.57

Standard RF 60.90 70.93 79.89 51.33

Robust node RF 63.79 70.99 78.92 50.53

Optimal RF 85.53 75.55 91.29 67.10

We show the accuracy on the training sample of 400 (DRIVE), 1,500 (Big Neuron), 300

(IJCNN1), and 400 (Madelon).

data. For reference, we also compared it with Optimal RF which
is trained with labeled data as a standard RF. However, its node
splitting is supervised with the whole training samples and their
label. Optimal RF indicates the upper bound for all of semi-
supervised learning algorithms.

5.1. Medical Imaging Segmentation
First, we illustrate the visual performance of segmentation in
Figure 3. The estimated score is the possibility of the vessel
given by the individual method. Our algorithm has consistently
improved the estimation compared to the standard RF.

5.2. Quantitative Analysis
We also report the classification accuracy with respect to the
number of labeled data in Figure 4, Table 1. We compared
our method with alternatives on both medical imaging
segmentation and machine learning benchmarks. Figure 4

shows that our algorithm significantly outperformed alternative
methods. Specifically, in the DRIVE dataset, our algorithm
approaches the upper bound at 1,000 labeled samples. In the
IJCNN1 dataset, our method quickly approaches the optimal one
while the alternatives take 400 samples to approach.

6. CONCLUSION

In this paper, we propose a novel semi-supervised random forest
to tackle the challenging problem of the lacking annotation
in the analysis of medical imaging such as a brain image.
Observing that the bottleneck of the standard random forest
is the biased information gain estimation, we replaced it
with a novel graph-embedded entropy which incorporates
information from both labeled and unlabeled data. Empirical
results show that our information gain is more reliable than
the one used in traditional random forest under insufficient
labeled data. By slightly modifying the training process of the
standard random forest, our algorithm significantly improves
the performance while preserving the virtue of the random
forest. Our method has shown a superior performance with
very limited data in both brain imaging analysis and machine
learning benchmarks.
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Non-invasive Evaluation of Brain
Death Caused by Traumatic Brain
Injury by Ultrasound Imaging
Ningning Niu, Ying Tang* , Xiaoye Hao and Jing Wang

Department of Ultrasound, Tianjin First Center Hospital, Tianjin, China

Objectives: To investigate the clinical value of non-invasive ultrasound imaging in the
evaluation of brain death caused by traumatic brain injury.

Methods: Thirty-four patients with acute severe traumatic brain injury were admitted
to hospital within 48 h after injury. All patients were monitored intracranial
pressure, transcranial Doppler, echocardiography examination, collection intracranial
pressure, MCA-Vs, MCA-Vd, MCA-Vm, EF, LVMPI, RVMPI and other indicators, and
combined with clinical conditions and other related data for comparative study and
statistical analysis.

Results: The blood flow spectrum was characterized by diastolic retrograde blood flow
spectrum pattern and nail waveform spectrum shape when the patient had clinical brain
death. For the parameters of transcranial Doppler, there were significant differences
in MCA-Vm and PI between clinical brain death group and normal control group
(P < 0.05). For the parameters of echocardiography, there were statistically significant
differences in EF, LVMPI, and RVMPI between clinical brain death group and normal
control group (P < 0.05).

Conclusion: Non-invasive dynamic monitoring of cerebral hemodynamics and cardiac
function parameters in patients with severe craniocerebral injury can provide a high
accuracy and reliability for the preliminary diagnosis of brain death in patients with severe
craniocerebral injury. It is helpful for early evaluation of prognosis and provides effective
monitoring methods and guidance for clinical treatment.

Keywords: brain death, ultrasound, echocardiography, intracranial pressure, transcranial Doppler

INTRODUCTION

With the rapid development of economic construction, urbanization and transportation, the
incidence of traumatic brain injury increasing gradually and the number of patients who died
due to craniocerebral trauma are also increasing gradually. However, the mortality rate of patients
with severe traumatic brain injury is extremely high. In clinical work, we found that many patients
with severe traumatic brain injury have been in the state of spontaneous breathing arrest, deep
coma, dilation and fixation of double pupil due to intracranial hypertension or other reasons, and
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they are completely dependent on the ventilator to maintain
breathing, that is, the brain function has been completely
irreversible damage. In this case, the maintenance of respiration
and drug circulation by ventilator often can maintain the heart
rate and circulation for a long time until the organs of the
whole body fail. This not only wastes valuable medical resources,
but also limits the development of organ transplantation. Brain
death will produce a series of pathophysiological changes
including hemodynamics, endocrine, metabolism, inflammatory
reaction, among which the most prominent manifestation is
hemodynamic disorder. Non-invasive dynamic monitoring of
cerebral hemodynamics and cardiac function parameters in
patients with severe traumatic brain injury by ultrasound imaging
is conducive to early evaluation of the prognosis of patients,
providing effective monitoring means and guiding methods for
clinical treatment, so as to provide a favorable opportunity for
organ transplantation.

MATERIALS AND METHODS

Subjects
Thirty-four patients with acute severe traumatic brain injury
were admitted to hospital within 48 hours after injury. There
were 30 males and 4 females, aged 26–53 years old. The injury
mechanism included 17 cases of accelerated injury, 13 cases
of deceleration injury and 4 cases of mixed injury. Among
them, 18 cases were injured by traffic accidents, 8 cases were
caused by falling, 5 cases were injured by striking, and 3 cases
were injured by other reasons. All cases were diagnosed by
CT examination before or after admission. According to CT
diagnosis, brain injury was classified. The main injury types
included: 15 cases of cerebral contusion and laceration combined
with acute subdural hematoma, 11 cases of cerebral contusion
and laceration with intracerebral hematoma, 6 cases of acute
epidural hematoma, and 2 cases of extensive brain contusion
and brain swelling. According to the state of consciousness, 19
patients with GCS score of 6-8 and 15 patients with GCS score less
than 6. Among them, 9 patients with multiple injuries, 5 patients
with closed fractures of extremities (early manual reduction
and plaster fixation in orthopedics department, and then open
reduction and internal fixation according to the condition of
neurosurgery) and 4 patients with pulmonary contusion were
treated conservatively (Figure 1).

All the patients were monitored intracranial pressure and
dynamic cerebral hemodynamic indexes of transcranial Doppler
after admission. According to the prognosis of the patients, they
were divided into clinical brain death group (see the following
clinical brain death diagnostic criteria) and survival group.
Another 20 healthy subjects were selected as the control group,
and laboratory, transcranial Doppler and echocardiography were
performed respectively. All measurements were performed by a
physician with 5 years of experience in ultrasonography.

Inclusive Criteria and Exclusion Criteria
Inclusive criteria: Admission within 48 h after injury; age
20–60 years old; GCS ≤ 8 points at admission.

FIGURE 1 | The CT examination of one patient with cerebral contusion and
laceration with intracerebral hematoma.

Exclusion criteria: Patients with severe multiple trauma,
combined injury and shock; those who have been transferred
to our hospital after craniotomy in another hospital; patients
with heart, lung, liver, and kidney dysfunction; patients with
stenosis of internal carotid artery system and vertebrobasilar
artery system; patients whose temporal window was completely
closed and could not detect blood flow signals; patients whose
family members gave up treatment.

Clinical Diagnostic Criteria for Brain
Death
The patients were clinically diagnosed as brain death. The criteria
for brain death were referred to the criteria for brain death (adult)
(Revised Version) drafted by the drafting group of the Ministry
of Health in 2003 and the criteria and technical specifications
for brain death (adult quality control version) in 2013. (i)
Deep shock; (ii) disappearance of the papillary light reflex and
corneal reflection; (iii) absence of spontaneous respiration; (iv)
electroencephalogram displaying resting potential; (v) negative
atropine test; (vi) no change in all of these conditions for
12 h after initial observation, then brain death was determined
(Su et al., 2018).

Intracranial Pressure Detection
Monitoring
Intracranial pressure detection monitoring was carried out by
intracranial pressure monitor (Canimo MPM-1, United States),
with an intracerebral probe, and the patients who needed outdoor
drainage used intraventricular probe. ICP monitoring lasted for
1 week, and some patients were slightly prolonged according to
their needs. Head wounds should be cleaned and disinfected daily
to prevent intracranial infection. If the baseline of intracranial
pressure monitor is shifted due to the patient’s turning over
or other nursing work, the baseline should be adjusted to zero
according to the situation.
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Transcranial Doppler Examination
The cerebral hemodynamics was detected by transcranial
Doppler (TCD) (DWL Multi-Dop X2, Germany). The middle
cerebral artery was examined from the temporal window with
a 2 MHz probe at a sampling depth of 45–60 mm. When
the spectrum shape is smooth and the sound in the frequency
window is loud was taken as the parameter index. All patients
were placed in supine position with the head of bed raised
30 degrees. The detection time was 9:00 a.m. (before mannitol)
and 4:00 p.m. (1 h after mannitol) for 7 days. After reaching
the standard of clinical brain death, the patients were checked
every 2–6 h according to their circulatory system. In order to
exclude the influence of human subjective factors and technical
factors on the experimental value, the cerebral blood flow
detector was relatively fixed. The indexes included pulsatility
index (PI), resistance index (RI), systolic blood flow velocity
(MCA-Vs), diastolic blood flow velocity (MCA-Vd), and mean
middle cerebral artery velocity (MCA-Vm).

Echocardiography
Echocardiography was detected by ultrasound diagnostic system
(Mindray M7, China) with a S4 probe at a frequency of 1–4 MHz.
The patient was in supine position. The weight, height and blood
pressure were recorded and BSA was calculated. The indexes
of echocardiographic parameters included left ventricular end
diastolic diameter (LVDd), left ventricular end systolic diameter
(LVDs), and ejection fraction (EF). The myocardial performance
index (MPI) was calculated by the ratio of the sum of isovolumic
systolic (ICT) and isovolumic diastolic (IRT) to ejection time
(ET), MPI = (ICT+ IRT)/ET. The blood flow spectrum of mitral
valve, tricuspid valve, aortic valve, and pulmonary valve was
clearly displayed to calculate left ventricular (LVMPI) and right
ventricular (RVMPI) according to the formula. In order to reduce
the error of echocardiography as much as possible, the average
value of three consecutive cardiac cycles was taken for each index.
All examinations were completed by one doctor and the images
were stored at the same time.

Statistical Analysis
Statistical analysis was performed using SPSS Version 19.0 (IBM,
Armonk, NY, United States). Continuous variables (normally
distributed) were expressed as the mean ± standard deviation
(SD). The differences between the two groups were compared by
independent sample t test. The correlations were analyzed using
Spearman’s correlation analysis, and the correlation coefficients
(r) were calculated. A two-sided P-value < 0.05 was considered
to indicate statistical significance.

RESULTS

Changes of ICP and Cerebral Blood Flow
Spectrum During Clinical Brain Death
In the control group, the cerebral blood flow spectrum was
characterized by high flow velocity and low resistance, the
spectrum pattern was smooth, and the sound of blood flow

signal was loud (Figure 2). In the acute stage of traumatic
brain injury, the spectrum of cerebral blood flow in this group
showed high peak in systolic phase, low and high in diastolic
phase, which was the characteristic spectrum manifestation of
increased intracranial pressure, ICP was positively correlated
with PI (r = 0.872, P < 0.001) and MCA-Vm (r = 0.562,
P = 0.003). With the increase of ICP, the amplitude of cerebral
blood flow spectrum gradually decreased, and the MCA-Vm
gradually decreased, showing a low flow rate and high resistance
spectrum morphology. When the patient had clinical brain death,
the blood flow spectrum was characterized by diastolic retrograde
blood flow spectrum pattern and nail waveform spectrum shape
(Figure 3). At this time, ICP of intracranial pressure monitoring
was more than 70 mmHg, which exceeded the average arterial
pressure of the patient. The ICP of some patients fluctuate at
about 100 mmHg before clinical death.

Comparisons of TCD Parameters
In this series of data, 15 patients with severe cerebral trauma has
the characteristic performance of sum or nail spectrum by TDI
before clinical brain death, and 14 patients were confirmed to
have clinical brain death. The characteristic spectrum changes
of cerebral perfusion arrest appeared earlier than clinical brain
death. After the diagnosis of clinical brain death was established,
the spectrum pattern of cerebral blood flow showed the spectrum
pattern of nail spectrum or characteristic cerebral perfusion stop
without blood flow signal. There were significant differences in
MCA-Vm and PI between clinical brain death group and normal
control group. The cerebral blood flow index was significantly
lower after severe traumatic brain injury, than that of the normal
control group, and PI was significantly higher than that of the
normal control group (P < 0.05) (Table 1).

Comparisons of Echocardiography
Parameters
Echocardiography parameters were performed in brain death
group and normal control group (Figures 4–5). There were
statistically significant differences in EF, LVMPI, and RVMPI
between clinical brain death group and normal control group.
LVMPI and RVMPI were higher in clinical brain death group
than those in normal control group, and EF was lower than that
in normal control group (P < 0.05) (Table 2).

DISCUSSION

Severe craniocerebral trauma patients die because of the
sharp increase of intracranial pressure and the formation of
cerebral hernia, which is the difficulty of clinical treatment
in neurosurgery. With the continuous development of
Neurosurgery, the effect of rescue treatment has been improved,
but the effect is not satisfactory (Shrestha et al., 2018). The
maintenance of cerebral perfusion and cerebral circulation
depends on reasonable intracranial pressure and mean arterial
blood pressure. The cerebral hemodynamic state changes with the
increase of intracranial pressure. The main pathophysiological
manifestations are insufficient cerebral perfusion, ischemia and
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FIGURE 2 | The cerebral blood flow spectrum in the control group.

FIGURE 3 | The diastolic retrograde blood flow spectrum pattern when patient had clinical brain death.

hypoxia of brain tissue, aggravation of brain edema, even cerebral
circulation stop, resulting in clinical brain death.

Brain death refers to the irreversible stop of whole brain
function due to persistent and severe cerebral ischemia, hypoxia
or other reasons (Tang et al., 2019). The diagnosis of brain
death requires comprehensive clinical conditions and a variety

of examination methods (Mullaguri et al., 2018). At present,
there are a variety of detection methods to help confirm brain
death, including radionuclide scanning, cerebral angiography
and so on. These examination methods have important value
for the diagnosis of brain death. However, the instruments
and equipment for these examinations are expensive, and
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TABLE 1 | Parameters of TCD in brain death group and normal group.

Group N MCA-Vm PI ICP

(cm/s) (mmHg)

Normal 20 58.55 ± 7.05 0.81 ± 0.16

Brain death 14 15.82 ± 7.99 3.56 ± 1.13 68.18 ± 19.62

t 18.89 2.46

P 0.001 0.001

Statistically significant difference compared with control group (P-value < 0.05).
TCD, transcranial Doppler; MCA-Vm, mean middle cerebral artery velocity; PI,
pulsatility index; ICP, intracranial pressure detection.

most of them are invasive examinations, which need to be
transported to specific examination rooms. There are many
inconveniences in clinical application, which limit these methods
as routine examination methods. Electroencephalogram (EEG)
can continuously monitor patients with craniocerebral injury,
but EEG detection is based on EEG resting as the diagnostic
criteria of brain death, and there are still many problems in EEG
resting as the diagnostic criteria, which has been controversial
in clinical practice (Kasapoglu et al., 2019). In recent years,
some scholars have found that not all patients with clinical brain
death have EEG resting state, but some patients have extensive
EEG activities.

Transcranial Doppler can monitor the cerebral hemodynamic
status of patients with severe traumatic brain injury, describe the
cerebral hemodynamic state combined with mean arterial blood

pressure, and evaluate the cerebral perfusion and intracranial
pressure (Cacciatori et al., 2018; Berthoud et al., 2019). Invasive
intracranial pressure monitoring is the most direct and accurate
detection method for patients with intracranial pressure, which
is currently recognized as the gold standard for intracranial
pressure detection (Roth et al., 2019). In this study, we
continuously monitored the changes of intracranial pressure in
patients with severe traumatic brain injury, combined with the
monitoring of mean arterial blood pressure. At the same time, the
relevant parameters of cerebral hemodynamics were dynamically
detected by TCD.

The results showed that, with the slight increase of intracranial
pressure, the condition was aggravated, MCA-Vd decreased in
the early stage, while MCA-Vs increased slightly, and MCA-
Vm was normal; with the moderate and severe increase of
intracranial pressure, the condition was further aggravated,
MCA-Vd and MCA-Vs decreased, MCA-Vd decreased more
significantly, and PI increased gradually. When the blood
pressure reaches the mean arterial blood pressure level and
continues, diastolic regurgitation or nail spectrum may appear
finally. The changes of parameters of cerebral blood flow state
were significantly corresponding to the changes of intracranial
pressure and disease condition. When patients with complete
diastolic reverse blood flow or nail waveform, clinical brain death
will occur in a short period of time. This indicates that the brain
function of the patients has undergone serious and completely
irreversible changes when the above-mentioned manifestations

FIGURE 4 | The blood flow spectrum of mitral valve in patient with clinical brain death.
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FIGURE 5 | The blood flow spectrum of tricuspid valve in patient with clinical brain death.

of cerebral blood flow state detected by non-invasive detection,
indicating that the patient is about to or has suffered from
clinical brain death.

Therefore, in the process of clinical treatment, before
the typical spectrum of complete diastolic reverse blood
flow or nail spectrum appears in TCD detection, active
treatment should be taken as soon as possible to effectively
control and reduce the improvement of cerebral perfusion
and cerebral ischemia and hypoxia, which is of great
significance for improving the prognosis and reducing the
mortality of patients.

TABLE 2 | Parameters of echocardiography in brain death group and normal
group.

Group LVDd LVDs EF LVMPI RVMPI

(cm) (cm)

Normal 45.61 ± 10.37 30.64 ± 10.15 61.57 ± 3.27 0.56 ± 0.13 0.25 ± 0.11

Brain death 46.33 ± 11.25 32.16 ± 10.82 59.38 ± 3.54 0.66 ± 0.16 0.41 ± 0.12

t 0.893 2.048 −2.667 1.507 3.902

P 0.377 0.084 0.01 0.05 0.008

Statistically significant difference compared with control group (P-value < 0.05).
LVDd, left ventricular end diastolic diameter; LVDs, left ventricular end systolic
diameter; EF, ejection fraction; LVMPI, the myocardial performance index of left
ventricular; RVMPI, the myocardial performance index of right ventricular.

As an important organ to maintain hemodynamics, the heart
can cause secondary heart injury in severe brain injury, especially
in brain death (El-Battrawy et al., 2018). The lower the Lasco
score is, the greater the decrease of EF would be. Brain death
can lead to decreased cardiac systolic function, left ventricular
ejection fraction, and ventricular wall motion.

As a non-invasive and rapid technique, ultrasound can
dynamically monitor the structure and function of the heart.
Myocardial performance index (MPI) as a comprehensive index
to evaluate the overall systolic and diastolic function of the
heart can be used to evaluate the overall ventricular function
(Askin et al., 2018; Maria et al., 2019). When left ventricular
systolic or diastolic dysfunction occurs, the isovolumic systolic
period (ICT), isovolumic diastolic period (IRT), and ejection
time (ET) change accordingly. Therefore, the measured value of
MPI will also change accordingly, but it is not affected by many
conditions such as age, heart rate, valve regurgitation, preload
and afterload, cardiac geometry, two-dimensional image quality
and angle between sampling line and blood flow direction. For
patients with no change in left ventricular configuration, the
change of global ventricular function can be evaluated only when
diastolic function changes. In this study, the results showed that
EF was lower in clinical brain death group than that in normal
control group, LVESD, LVMPI, and RVMPI were higher than
those in normal control group. There were significant differences
in LVESD, EF, LVMPI, and RVMPI between clinical brain death
group and normal control group.

Frontiers in Neuroinformatics | www.frontiersin.org 6 November 2020 | Volume 14 | Article 60736534

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-14-607365 November 16, 2020 Time: 11:48 # 7

Niu et al. Non-invasive Evaluation of Brain Death

Therefore, once the typical spectrum of complete diastolic
reverse blood flow or nail spectrum appear in TCD detection, EF
decreases and LVMPI, RVMPI increased in Echocardiography,
that the patient has entered the state of brain death, and it is of no
medical significance to continue treatment. With the informed
consent of patients’ families, we should improve the systematic
examination methods of brain death as soon as possible, such
as EEG and brainstem evoked potential, to further diagnose
brain death and save limited medical resources. Whether the
patients who died of non-traumatic brain injury also have the
characteristic blood flow changes of the above mentioned brain
death needs further data collection and research. Non-invasive
dynamic monitoring of cerebral hemodynamics and cardiac
function parameters in patients with severe craniocerebral injury
can provide a high accuracy and reliability for the preliminary
diagnosis of brain death in patients with severe craniocerebral
injury. It is helpful for early evaluation of prognosis and
provides effective monitoring methods and guidance for clinical
treatment. With the development of medical image data, it is
helpful to further dig out the biometrics and other information in
the image, which will further improve the accuracy of prediction
(Zheng et al., 2020a,b).
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In recent years, there have been multiple works of literature reviewing methods for

automatically segmenting multiple sclerosis (MS) lesions. However, there is no literature

systematically and individually review deep learning-based MS lesion segmentation

methods. Although the previous review also included methods based on deep learning,

there are some methods based on deep learning that they did not review. In addition,

their review of deep learning methods did not go deep into the specific categories of

Convolutional Neural Network (CNN). They only reviewed these methods in a generalized

form, such as supervision strategy, input data handling strategy, etc. This paper presents

a systematic review of the literature in automated multiple sclerosis lesion segmentation

based on deep learning. Algorithms based on deep learning reviewed are classified into

two categories through their CNN style, and their strengths and weaknesses will also be

given through our investigation and analysis. We give a quantitative comparison of the

methods reviewed through two metrics: Dice Similarity Coefficient (DSC) and Positive

Predictive Value (PPV). Finally, the future direction of the application of deep learning in

MS lesion segmentation will be discussed.

Keywords: deep learning, multiple sclerosis, brain MRI, review, segmentation

1. INTRODUCTION

Multiple sclerosis (MS) is a chronic, autoimmune, and demyelinating disease with great clinical
significance that affects the central nervous system (CNS). MS is a chronic disease that changes the
morphology and structure of the brain due to the harm to the myelin sheath (Zhao et al., 2018).
More importantly, MS can cause disability in young adults (Lladó et al., 2012). MS is relatively
common in Europe, New Zealand, the United States, and parts of Australia. It has a major impact
on the quality of life of the patients and their families due to its pathological characteristics.

The automatic segmentation of MS lesions through Magnetic Resonance Imaging (MRI) is of
great clinical and engineering significance. Automatic segmentation ofMS lesions is very important
to help to detect diagnostic criteria for the disease which contains the spatial pattern of MS
lesions in MRI (dissemination in space) and the emergence of new MS lesions(dissemination in
time) (Polman et al., 2011). Besides, the automatic segmentation of MS lesions is essential for the
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quantitative analysis of the disease which is of great value
in analyzing the progression of the disease and treatment
options. Therefore, identifying and segmenting MS lesions is
an indispensable step to characterize the disease and calculate
and interpret more professional damage metrics. Before the
emergence of the automatic segmentation of MS lesions,
segmentation of the MS lesions were finished by experienced
neuroradiologists. However, manual segmentation is a time-
consuming and tedious process, and more importantly, it is poor
efficiency due to intra-observer and inter-observer variability.
Therefore, designing an excellent method for automatically
segmenting MS lesions has great engineering significance.
Figure 1 shows the morphology of MS lesions in MRI.

Although many methods for automatically segmenting MS
lesions have been proposed in recent years, none of them are
widely used in clinical practice. This is because this task still
encounters many technical problems and challenges. The crucial
difficulty is that the intensity distribution of MS and brain gray
matter overlap in MRI (Sahraian and Radue, 2007). This is due
to the limited resolution of the image, the heterogeneity of the
lesion, and the complex shape of the brain tissue, which affects
a large number of voxels located at the boundary of different
tissues (Mortazavi et al., 2012). In addition, the variability of
the appearance of the lesion and the magnetic resonance (MR)
acquisitions are also a major challenge (García-Lorenzo et al.,
2013). For example, MS lesions present hypointensities in T1-
w MRI sequences, and hyperintensities in T2-w, Proton Density
weighted(PD-w), and Fluid Attenuated Inversion Recovery
T2(T2-FLAIR)MRI sequences, with respect to normal intensities
(Hashemi et al., 2012). Due to these severe challenges, the
performance of manual segmentation performed by experts
outperforms automatic segmentation in most cases. Thus, there
is still a demand for a better automatic segmentation method to
be proposed to meet the requirements of clinical practice.

A comprehensive review is very important to help future
generations design better automatic segmentation models based
on the predecessors. In the past few years, there have also
been related reviews (Danelakis et al., 2018; Kaur et al., 2020;
Shanmuganathan et al., 2020) published. Danelakis et al. (2018)
reviews the methods of automatically segmenting MS lesions and
pointed out that MRI data acquisition and the injection of the
contrast medium during data acquisition are great challenges
in the future. Kaur et al. (2020) reviews the state-of-the-art
methods by 2019 and lists the future directions obtained from
these methods for future reference. Shanmuganathan et al.
(2020) reviews the classification and segmentation methods of
MS lesions and compares the classification and segmentation
methods separately. Their comparison of various strategies shows
that the segmentation methods based on deep learning achieve
better performance.

Although the previous reviews (Danelakis et al., 2018; Kaur
et al., 2020; Shanmuganathan et al., 2020) have done a great job,
there are still no reviews that give a comprehensive overview
of the deep learning-based automatic segmentation methods
individually which achieve excellent performance. Although the
previous review also included methods based on deep learning,
there are some methods based on deep learning that they did not

review. In addition, their review of deep learningmethods did not
go deep into the specific categories of CNN. They only reviewed
thesemethods in a generalized form, such as supervision strategy,
input data handling strategy, etc. In this paper, we focus on
reviewing the deep learning-based MS lesion segmentation
methods. Compared to previous reviews that categorize these
methods based on supervision strategy, we divided thesemethods
into two categories according to their CNN style: patch-wise
segmentation and semantic-wise segmentation. The strengths
and weaknesses of these two classifications are also given through
our investigation and analysis. The fundamental goal of this
survey is to help determine themost promising research direction
of deep learning in this field.

The rest of this review is organized as follows: In section 2,
public datasets andmetrics for evaluating algorithm performance
will be elucidated. Section 3 reviews various segmentation
methods by classifying them into two different categories and
presents a qualitative comparison of the algorithms reviewed. A
discussion of the future directions is given in section 4.

2. DATASETS AND METRICS

In this section, we will introduce the datasets and metrics used by
the methods we reviewed.

2.1. Datasets
The public datasets used by the deep learning-based MS lesion
segmentation method has three: MICCAI 2008 (Styner et al.,
2008), MICCAI 2016 (Commowick et al., 2018), ISBI 2015
(Carass et al., 2017). In Table 1, we illustrate these three
public datasets.

2.2. Metrics
There are many evaluation measures used in the literature to
quantify the performance of their methods. These evaluation
measures are generally obtained by comparing the results of
automatic segmentation with ground truth, and most of them are
calculated by four basic terms (Goldberg-Zimring et al., 1998):

• TP(True Positive): The prediction is the MS lesion area, and
the prediction is correct.

• TN(True Negative): The prediction is not the MS lesion area,
and the prediction is not correct.

• FP(False Positive): The prediction is the MS lesion area, and
the prediction is not correct.

• FN(False Negative): The prediction is not the MS lesion area,
and the prediction is not correct.

We list the commonly used metrics in Table 2. In this review, we
use DSC and PPV to compare various methods.

3. METHOD

In this section, we first discuss the classification methods of
all algorithms, and then we review the MS lesion segmentation
methods based on deep learning and analyze their strengths and
weaknesses according to the categorizations. Finally, we make a
quantitative comparison of the methods we reviewed.
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FIGURE 1 | FLAIR axial MRIs of brain slices with MS lesions (white area) The figure comes from the public data set MICCAI2016 (Commowick et al., 2018).

TABLE 1 | Public datasets used by the deep learning-based MS lesion segmentation.

Dataset Num of subjects Training set:Test set MRI sequence MRI scan

MICCAI 2008 (Styner et al., 2008) 45 20:25
T1-w, T2-w

FLARE

3T Siemens Allegra

3T Siemens

MICCAI 2016 (Commowick et al.,

2018)

53 15:38

T1-w

T2-w

PD-w

T1-w Gd

FLARE

Siemens Aera 1.5T

Siemens Verio 3T

Philips Ingenia 3T

General Electric Discovery 3T

ISBI 2015 (Carass et al., 2017) 19 5:14
T1-w, T2-w

FLARE, PD-w
3T Philips

TABLE 2 | Metrics for the reviewed methods.

Metrics Calculation Substitute name

Sensitivity (SEN)

(Goldberg-Zimring et al., 1998)

SEN = TP
TP+FN True positive rate

Specificity (SPE)

(Goldberg-Zimring et al., 1998)

SPE = TN
TN+FP True negative rate

Accuracy (ACC) (Wu et al.,

2006)

ACC = TN+TP
TN+FP+TP+FN

Dice similarity coefficient (DSC)

(Dice, 1945)

DSC = 2TP
FP+2TP+FN F1 Score

Positive predictive value (PPV)

(Altman and Bland, 1994)

PPV = TP
TP+FP Precision

Fallout (FALL) (Udupa et al.,

2006)

FALL = FP
TN+FP False positive rate

3.1. Categorization
The MS lesion segmentation task can be regarded as a semantic
segmentation task, and each pixel (or voxel in 3D) of the input
image needs to be classified as lesion or non-lesion. The methods
we reviewed fall into two categories: patch-wise segmentation,
semantic-wise segmentation. Patch-wise segmentation trains a
CNN classifier to use the information of the pixel-centered
patch to classify the pixel into two categories (lesions or

non-lesions). Semantic segmentation trains a fully convolutional
network to directly predict the lesion mask of the input image,
so as to classify each pixel of the input image in a single
forward propagation.

Patch-wise segmentation is the simplest segmentation
strategy used when deep learning is just beginning to be applied
to the segmentation of MS lesions. The segmentation strategy
takes the pixel as the center and extracts a small patch of size
N × N as the classifier input, and then they use the classifier
to traverse the entire image. This strategy can make better use
of contextual information around pixels. For example, Valverde
et al. (2016) extracts 15×15×15 patches around each voxel from
the MRI as input and then processes the input through two
3D convolutional layers. Then it output the probability of two
possible classes(lesion and not lesion) through a fully connected
layer and a softmax layer. In the patch-wise segmentation, a large
number of redundant calculations are caused by overlapping
patches, which decreases the calculation efficiency greatly.
Semantic-wise segmentation is first proposed by Brosch et al.
(2015). The input of semantic-wise segmentation can be the
entire MRI volume or a relatively large patch. In semantic-wise
segmentation, there will be no redundant calculations caused
by overlapping patches. In Brosch et al. (2015), it takes the
entire MRI volumes as input. Then feed the input into the
network consists of a convolutional layer (LeCun et al., 1998)
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and a deconvolution layer (Zeiler et al., 2011) to predict the
lesion mask.

3.2. Patch-Wise Segmentation
Patch-wise segmentation potentially converges faster when
training the model because it randomly samples the patches
over the dataset (LeCun et al., 1998). Besides, it is easier to
deal with the problem of class imbalance. However, the time
required to train a complicated patch-wise method can make
the method infeasible when the number and size of patches are
large. In addition, it has a lot of redundant calculations due to
patch overlap.

Yoo et al. (2014) uses deep learning for feature learning and
random forest for classification. They first train a model on a
large amount of unlabeled data to recognize common patterns
and then add labels to the training subset so that both features
and labels can be used for segmentation tasks. Vaidya et al. (2015)
uses 3D patches as input, via 3D convolutional network to classify
each patch into two categories. Havaei et al. (2016) proposed
a CNN network that can segment images from systematic
multi-modal datasets. The method maps the input image to
an embedding space. In this embedding space, arithmetic
calculations (such as computing moments of a collection of
vectors) are well-defined and can be used for different modalities
available during inference time. These calculated moments can
be further used to predict the final segmentation. This algorithm
improves the robustness against missing input data modalities.
Method in Birenbaum and Greenspan (2016) takes patches from
multiple images, multiple views and multiple time points as
input. It can be divided into two stages. The first stage uses
FLARE andwhitematter (WM) prior to calculating the candidate
voxel, and the second stage usesmulti-viewCNN to predict lesion
probability for each voxel in MRI. It is the first deep learning
method that uses longitudinal data for segmentation. Valverde
et al. (2017) proposed a cascade structure consisting of two stages
to segment MS lesions. When training the model, they manually
select the training data to solve the problem of imbalance between
positive and negative samples. The first stage is used to output
voxels with a large probability of being a lesion, and the second
stage further infers whether the voxels output by the first stage
are lesions, and finally via set threshold to get binary output
masks. On the basis of the previous work, Valverde et al. (2017,
2019) studied the influence of intensity domain adaptation on
model performance. Alshayeji et al. (2018) proposed an effective
method to simplify the pre-processing steps and reduce the
processing time using heterogeneous single-channel MRI. They
extract the features of the lesion use mathematical operations and
morphological operations, and train an Multilayer Perceptron
(MLP) for classification to reduce processing time. Essa et al.
(2020) performs patch-wise R-CNN on the input image of each
modality to generate a probabilistic output of locations of MS
lesion, they input the extracted patches as the proposed regions
into the RCNN output probabilistic output of lesion existence.
They propose an adaptive neuro-fuzzy inference system to show
how different MRI modalities are integrated, and they use this
system to fuse the output of each MRI modality to get the final
segmentation result.

3.3. Semantic-Wise Segmentation
Compared with patch-wise segmentation, semantic-wise
segmentation requires only one forward propagation to classify
all pixels of the input image and it has higher computational
efficiency. But for the task of MS lesion segmentation, semantic-
wise segmentation is prone to overfitting during training due to
class imbalance, because in the MRI of MS lesions, the area of
the lesion area is much smaller than the non-lesion area.

Brosch et al. (2016) combines the advantages of Brosch et al.
(2015) and U-net (Ronneberger et al., 2015). It contains two
paths: one is an encoding path composed of convolutional layers
and pooling layers, and the other is a decoding path composed
of deconvolutional layers and unpooling layers. A shortcut
connection is built between the two paths. Compared with U-net
(Ronneberger et al., 2015), it uses a deconvolution layer instead of
upsampling, so there is no need to specially process the boundary
regions. McKinley et al. (2016) introduces the nabla net, which
combines the low-level features learned by the fully convolutional
network and the high-level features learned by the encoder-
decoder network to output a probability map. Zhang et al. (2018)
uses LinkNet (Chaurasia and Culurciello, 2017) as their base
segmentation network. LinkNet is an encoder-decoder network
with an additional link between encoder and decoder. They add a
loss function related to classification to the conditional generative
adversarial network (cGAN) to achieve semantic segmentation
more efficiently. Roy et al. (2018) uses parallel pathways to
process different MRI image patches, and then concatenate the
outputs of these pathways to predict the membership function of
the patch through another convolution filter. It does not have a
fully connected layer, it replaces the fully connected layer with
a fully convolutional layer to get less false positives. In order to
solve the problem of MS lesions have huge variability in size and
DSC is not differentiable which result in can not be used directly
for gradient descent, Wang et al. (2018) segments large and
small lesions separately and propose a new activation function
to facilitate network training. Aslani et al. (2018)uses 2D slices as
input and a 2D encoder-decoder network to segment MS lesions
to avoid the problems like the oversight of global information of
patch-wise methods and the overfitting of 3D segmentation due
to the problem of class imbalance. Kumar et al. (2018) combines
the advantages of SegNet (Badrinarayanan et al., 2017) and U-
net (Ronneberger et al., 2015) that U-net captures multi-scale
information more effectively and SegNet has fewer parameters
and faster training. Aslani et al. (2019) focuses on whole-brain
slice-based segmentation in order to prevent the overfitting
problem of 3D-based segmentation and the problem that patch-
based segmentation cannot use global information. In addition,
it also uses multi-level feature fusion to better use contextual
information for segmentation. Zhang et al. (2019a) uses fully
convolutional densely connected networks (Jégou et al., 2017) for
MS lesion segmentation, and uses 2.5D stacked slices as input to
improve segmentation performance. The term 2.5D is defined as
slices stacked along three orthogonal planes (axial, sagittal, and
coronal). Zhang et al. (2019b) proposes a recurrent slice-wise
attention network by repeatedly using the contextual information
of MS lesions to respond to the problem that Recurrent
Neural Network (RNN) and long short-term memory (LSTM)
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have inherent flaws to capture long-term dependencies. Aslani
et al. (2020) proposed a regularized network with an auxiliary
loss function which makes the model ignore domain-specific
information to handle the problem of domain shift. Gessert et al.
(2020a) proposes a 4D deep learning network to improve the
activity segmentation performance of MS lesions. It adds a 3D
volume of historical time point to the input of the network
and designs a new multi-encoder-decoder architecture that uses
convolutional-recurrent units for time aggregation. In addition,
they also explored whether adding an additional past time point
to the input can improve segmentation performance. La Rosa
et al. (2020) usesmagnetization-prepared 2 rapid acquisition with
gradient echo(MP2RAGE)MRI to segment cortical lesions(CLs).
Compared to this method, other methods just segment white
matter lesions(WMLs). Its network structure is based on 3D
U-net (Çiçek et al., 2016). For the domain shift problem in
MS lesion segmentation, Ackaouy et al. (2020) proposes an
unsupervised method that learns a shared representation of
the source and target domains. Gessert et al. (2020b) segment
the newly emerging MS lesions by attention mechanism with
two paths network while the general method only considers
MS lesions segmentation in a single MRI volume. This task is
particularly challenging because new lesions are minute, changes
are subtle. Gabr et al. (2020) study how deep learning based
on full convolutional neural networks (FCNN) performs when
there is more data. They train, verify, and test on a dataset
containing 1,000MRI and got great results(DSC:0.95). Coronado
et al. (2020) evaluates the performance of deep learning in
segmenting gadolinium-enhancing lesions using a large cohort
of MS patients.

3.4. Quantitative Comparation
In this subsection, reviewed MS lesion segmentation methods
based on deep learning will be compared. Table 3 shows the main
performance comparison of various methods. Each method is
analyzed through the dataset used, the input data dimension, the
CNN style, and the performance (DSC Dice, 1945, PPV Altman
and Bland, 1994).

It can be seen from Table 3 that there are many methods that
still use their private datasets which is not convenient to compare
the performance of the methods quantitatively.

4. FUTURE DIRECTION

Although deep learning has achieved great performance in MS
lesion segmentation tasks compared with traditional methods
(Danelakis et al., 2018), there are still some problems that limit
the potential of deep learning in this field: dataset scale, data
imbalance, domain shift. Deep learning has also achieved great
performance in other fields of medical images (Zhao et al., 2017,
2019a,b; Xu et al., 2018).We believe that borrowing deep learning
methods from other fields into MS automatic segmentation can
help design better segmentation methods. In the later part of this
section, we will discuss some possible solutions to these problems
as well as some new research problems in this field.

Transfer learning can be a future direction to deal with the
problem of small data sets. This problem not only exists in

TABLE 3 | Comparison of reviewed methods.

Methods Database Dim CNN style DSC PPV

Roy et al. (2018) ISBI 2015 3D Semantic-wise 0.524 0.866

Birenbaum and Greenspan

(2016)

ISBI 2015 3D Patch-wise 0.627 0.789

Valverde et al. (2019) ISBI 2015 3D Patch-wise 0.63 0.840

Aslani et al. (2019) ISBI 2015 2D Semantic-wise 0.61 0.899

Aslani et al. (2018) ISBI 2015 2D Semantic-wise 0.698 0.74

Zhang et al. (2019a) ISBI 2015 2.5D Semantic-wise 0.693 0.908

Havaei et al. (2016) MICCAI 2008 2D Patch-wise 0.832 N/A

Valverde et al. (2017) MICCAI 2008 3D Patch-wise 0.871 0.786

Brosch et al. (2016) MICCAI 2008 3D Semantic-wise 0.840 N/A

Valverde et al. (2016) MICCAI 2016 3D Patch-wise 0.541 N/A

McKinley et al. (2016) MICCAI 2016 3D Semantic-wise 0.591 N/A

Kazancli et al. (2018) Proprietary 3D Patch-wise 0.575 N/A

La Rosa et al. (2020) Proprietary 3D Semantic-wise 0.60 0.64

Brosch et al. (2015) Proprietary 3D Semantic-wise 0.355 0.414

Gabr et al. (2020) Proprietary 3D Semantic-wise 0.95 N/A

Coronado et al. (2020) Proprietary 3D Semantic-wise 0.77 N/A

Zhang et al. (2018) Proprietary 2D Semantic-wise 0.672 0.724

Aslani et al. (2020) Proprietary 3D Semantic-wise 0.50 0.519

Gessert et al. (2020a) Proprietary 4D Semantic-wise 0.64 N/A

Gessert et al. (2020b) Proprietary 3D Semantic-wise 0.656 N/A

Zhang et al. (2019b) Proprietary 2D Semantic-wise 0.660 N/A

the study of MS lesion segmentation, but it is also a coexisting
problem in medical image processing due to the difficulty of
medical image acquisition and labeling. To solve the problem
of a small dataset scale, it can be achieved through transfer
learning (Pan et al., 2011). Transfer learning is a learning method
for small datasets. First, a deep learning network with great
performance is trained on a large dataset, and then the network
is fine-tuned on a smaller dataset for specific problems. For
example, Shin et al. (2016) reported that they performed transfer
learning from pre-trained models on the ImageNet dataset and
then fine-tuned on lymph node and interstitial lung diseases
instead of training from scratch to achieve great performance.
But we believe that directly transferring from natural images to
medical images may not be the best transfer learning solution,
because natural images and medical images are very different.
We think it is possible to perform transfer learning from
large medical image data sets, such as DeepLesion (Yan et al.,
2018).

Designing a specific loss function may be a direction to solve
the problem of data imbalance in the future. The pattern of
manifestation of data imbalance in MS lesion segmentation is
class imbalance. In a single MRI volume, the number of voxels
with lesions is much smaller than the number of voxels without
lesions, which will bring problems such as overfitting to the
network training (Li et al., 2019). The impact of this problem
on the patch-wise CNN style is less than that of the semantic-
wise CNN style because the patch-wise CNN style classifies each
voxel separately. In the patch-wise CNN style, the ratio of positive
samples and negative samples of training data can be adjusted
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artificially to balance the class (Valverde et al., 2017). However,
for the semantic-wise CNN style, all voxels are classified in a
forward propagation, which makes it difficult to artificially adjust
the ratio of positive and negative samples in the training data.
Therefore, the class imbalance problem of the semantic-wise
CNN style requires to be solved from another aspect. Through
our investigation of imbalance problems in other fields, we
found that the current mainstream method to solve this problem
is to design a loss function carefully (e.g., Sudre et al., 2017;
Wong et al., 2018; Kervadec et al., 2019; Li et al., 2019). They
have achieved great results in other segmentation tasks such as
ischemic stroke injury by proposing a loss function for class
imbalance. We believe that this will also help reduce the impact
of overfitting caused by the data imbalance in the segmentation
of MS lesions.

Collaborative image and feature adaptation can improve
the performance of the domain adaptive model to a certain
extent. The domain shift refers to the problem that the model
performs well on the source domain, but performs much
worse on the target domain. Although there are some methods
(Valverde et al., 2019; Ackaouy et al., 2020) in MS lesion
segmentation that proposes domain adaptation models to solve
the problem of domain shift, they only implement domain
adaptation from the perspective of feature adaptation. Chen
et al. (2019) proposes a domain adaptive method from two
perspectives of image and feature, and verified their method on a
cross-modal heart structure segmentation challenge. They choose
the source domain as MRI modal data and the target domain
as computed tomography(CT) modal data. They restored the
performance degradation from 17.2 to 73.0%. We think that
improving the performance of the domain adaptive model
from both image and feature aspects is a future direction in
MS segmentation.

Through our research, we found that some recent work began
to introducing the sequence model (Gessert et al., 2020a,b) to
segment the activity of MS lesions. The task of segmentation of
multiple sclerosis lesion activity is to detect the appearance of new
and enlarged lesions between the baseline and subsequent brain
MRI scans (Gessert et al., 2020b). We think this is also a future
direction for the segmentation task. More sequence models can
be used to analyze the improvement and deterioration of patient
lesions (e.g., LSTM). Cai et al. (2017) applies contextual LSTM
(CLSTM) to the output layer of deep CNN and achieves sharper

pancreas segmentation by capturing the context information
of adjacent slices. Spatiotemporal regularization (Zheng et al.,
2019)may improve the performance of activity segmentation and
structure tensor (Zheng et al., 2020) can help more accurately
capture the changes in the edge of the lesion.

5. CONCLUSION

In this review, we have done a detailed survey on the method of
MS lesion segmentation based on deep learning, and we reviewed
the commonly used public datasets and evaluation metrics of this
segmentation task. We categorize these methods according to the
CNN style they use. It is difficult to compare various methods
because the datasets they use are not only public datasets but
also their own proprietary data sets. We use DSC and PPV for
quantitative comparisons including those that use proprietary
datasets. The future direction and some potential problems are
also illustrated.

Although deep learning greatly improves the performance
of automatic segmentation methods, it is still challenging
to directly use in clinical analysis. Collecting large-scale
data sets to tap the potential of deep learning can help
accelerate its application in clinical medicine, and there is
still a lot of room for improvement for deep learning-
based methods. The automatic segmentation method with
better performance and stronger robustness is undoubtedly
beneficial to the doctor’s pre-diagnosis and post-treatment of the
patient’s condition.
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Carotid plaque neovascularization is one of the major factors for the classification of

vulnerable plaque, but the axial force effects of the pulsatile blood flow on the plaque

with neovessel and intraplaque hemorrhage was unclear. Together with the severity of

stenosis, the fibrous cap thickness, large lipid core, and the neovascularization followed

by intraplaque hemorrhage (IPH) have been regarded as high-risk features of plaque

rupture. In this work, the effects of these factors were evaluated on the progression

and rupture of the carotid atherosclerotic plaques. Five geometries of carotid artery

plaque were developed based on contrast-enhanced ultrasound (CEUS) images, which

contain two types of neovessel and IPH, and geometry without neovessel and IPH. A

one-way fluid-structure interactionmodel was applied to compute themaximum principal

stress and strain in the plaque. For that hyper-elastic and non-linear material, Yeoh

3rd Order strain energy density function was used for components of the plaque. The

simulation results indicated that the maximum principal stress of plaque in the carotid

artery was higher when the degree of the luminal stenosis increased and the thickness

of the fibrous cap decreased. The neovessels within the plaque could introduce a 2.5%

increments of deformation in the plaque under the pulsatile blood flow pressure. The

IPH also contributed to the increased risk of plaque rupture that a gain of stress was

8.983, 14.526, and 34.47 kPa for the plaque with 50, 65, and 75%, respectively, when

comparing stress in the plaque with IPH distributed at the middle to the shoulder of

the plaque. In conclusion, neovascularization in the plaque could reduce the stability of

the plaque by increasing the stress within the plaque. Also, the risk of plaque rupture

increased when large luminal stenosis, thin fibrous cap, and IPH were observed.

Keywords: carotid atherosclerotic plaque, vulnerable plaque, cardiovascular diseases, neovascularization,

intraplaque hemorrhage, contrast-enhanced ultrasound, computational simulation
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1. INTRODUCTION

Carotid atherosclerotic plaque is one of the most common causes
of stroke (Rossi et al., 2002; Murata et al., 2020), based on
the fibrous cap, lipid core, and endothelial denudation with
superficial platelet aggregation being closely associated with the
incident (Sadat et al., 2009). Thin fibrous cap and large lipid core
are the major factors of the vulnerable plaque and high risk of
the plaque rupture (Falk et al., 1995; Naghavi et al., 2003; Finn
et al., 2010), as rupture is commonly found in the plaque with
the thickness of the fibrous cap <0.065 mm and the volume of
the lipid core accounting for 40% of the total plaque volume
(Kolodgie et al., 2001). Additionally, intraplaque hemorrhage
(IPH) is also considered as a risk factor for the occurrence of
future cardiovascular events based on previous investigations
(Takaya et al., 2006; Crombag et al., 2019; Saba et al., 2019a).

Neovascularization in the carotid atherosclerotic plaque is
the maker of a high risk of the vulnerable plaque (Moreno
et al., 2004; Dunmore et al., 2006; Huang et al., 2008; Van
der Veken et al., 2016; Demeure et al., 2017). As early as
1999, McCarthy et al. (1999) made a histological examination
of 28 patients with carotid arteries, and found that neovessels
were commonly found in the fibrous cap of atherosclerotic
plaque and most of them existed in the medial and lateral
corners of the plaque, but rarely at the bottom. Neovessels can
become leakage sites of blood vessels through the aggregation
of the inflammatory cells that increase the vulnerability of
the plaque, and even lead to IPH (Dunmore et al., 2006;
Moreno et al., 2006). Contrast-enhanced ultrasound (CEUS)
imaging has been applied to assess the neovascularization in
carotid atherosclerosis plaques, for additional evaluation of the
vulnerable plaque during the screening procedure for stroke in
clinical practice (Feinstein, 2006; Vicenzini et al., 2007; Schinkel
et al., 2020; Zamani et al., 2020). Xiong et al. (2009) reported that
symptomatic patients had more intense contrast agent within the
plaque than asymptomatic patients. Denmark andMarcin (2011)
reported that the increased density of the neovascularization was
associated with the increasing vulnerability degree of the carotid
atherosclerosis plaque.

Hemodynamic blood flow plays an important role in
determining plaque progression and ruptures (Radwa and
Eldosoky, 2020). Computational fluid dynamics (CFD) analysis
of the carotid atherosclerotic plaque has been used to assess the
distribution of the superficial dynamic stress and strain of the
plaque (Tang et al., 2003; Woorak et al., 2017). Li Z. et al. (2006)
have performed stress analysis of the carotid plaque with various
fibrous cap thickness in the geometry derived from in vivo
magnetic resonance imaging (MRI) by using CFD, showing that
the morphology and component of the plaque were significantly
related to the stability of the plaque (Li Z. Y. et al., 2006). Impacts
of the plaque eccentricity and hemodynamics environment were
also related to the stress distribution in the plaque and rupture
site, according to the study of Tang et al. (2003). These studies
have taken into account the geometric and structural factors,
including luminal stenotic degree, thin fibrous cap, large lipid
core, and so on. Previous studies reported that the density of
neovessels was positively associated with destabilization of the

plaque based on the 2D transverse simulation (Lu et al., 2015;
Guo et al., 2018, 2019). Teng et al. (2012) established a 2D
transverse CFD model based on carotid artery endarterectomy
slices, and four carotid plaque samples were used to analyze the
local mechanical environment of the neovessels. Their results
indicate that the local mechanical environment of the neovessel
could lead to the occurrence of the IPH. Nevertheless, in their
investigation, the effect of the carotid artery blood flow was not
included, and the impact of axial force from pulsatile blood flow
on the stability of the plaque was ignored.

In this study, numerical simulation with one-
way fluid–structure interaction was conducted on the
theoretical geometries of carotid atherosclerotic plaque
with neovascularization and IPH. The stress and strain
distribution in the plaque were evaluated regarding various
plaque formations. The 2-dimensional axial plaque geometries
were established based on the findings from the CEUS imaging.
The thickness of the fibrous cap and the degrees of lumen
stenosis were taken into account to study the impacts of
neovessels and IPH on the destabilization of the carotid
atherosclerotic plaque.

2. METHODS

2.1. Geometries
In this study, a one-way fluid–structure interaction model was
performed to explore how neovessel and IPH affected carotid
atherosclerotic plaque. Considering the structures of the plaque
and neovessel occurring variation in different patients and even
in the same one [see Figure 1: (a) is the carotid plaque with one
neovessel, (b) is the one with three neovessels], 2D geometries
based on CEUS images were taken into account in this study
[see Figure 2: (a) is geometry with no neovessel, (b) is geometry
with one neovessel, and (c) is one with three neovessels]. The
structures of these geometries included carotid lumen, fibrous
cap, lipid core, and different neovessels (Naghavi et al., 2003).
For analysis, one inlet and outlet were necessary. The shapes of
the fibrous cap and lipid core were designed by using a sinusoidal
function (Li Z. Y. et al., 2006):

y1 = D− Dt

2
· cos(x) (1)

y2 = D− Dt

2
· (1+ cos(x))− d (2)

S = D

Dt
· 100% (3)

where (i) D and Dt represent the diameter of the carotid lumen
and the distance between the carotid artery wall and the top of
the plaque, and (ii) S represents the degree of the carotid artery
stenosis. The thickness of the fibrous cap, represented by d, plays
a critical influence factor in the vulnerable plaque development
(Cicha et al., 2011); different d values were used (d = 0.2, 0.5,
and 0.0065 mm), which is critical to plaque vulnerability. In this
paper, we set the stenosis degree S at 50, 65, and 75% (Avci
et al., 2016). Moreover, the carotid artery lumen diameter of the
geometry was assumed to be 10 mm. The lengths of the carotid
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FIGURE 1 | The contrast-enhanced ultrasound (CEUS) image with carotid artery lumen, atherosclerotic plaque, and neovessel: (A) is the CEUS image with one

neovessel, and (B) is the CEUS image with three neovessels. Inlet and outlet: The carotid artery blood flow inlet and outlet, respectively; Shoulder: the area at the

periphery of the plaque adjacent to the normal intima beneath the fibrous cap of the plaque (Pasterkamp et al., 1998).

FIGURE 2 | The 2D geometries of the idealized carotid artery with plaque and neovessel: (A) is the geometry with no neovessel, (B) is the geometry with one

neovessel, and (C) is the geometry with three neovessels.

artery and the plaque are set to 100 and 20 mm, respectively.
The distance between the inlet boundary and the plaque structure
was set to be 32 mm, and the outlet boundary was set to be
48 mm away from the plaque structure (Belzacq et al., 2012).
Additionally, the diameter of the neovessel with 0.1mm thickness
was set at 0.4 mm. For the IPH, it was assumed to be a half-
moon shape (Teng et al., 2014, 2015). Two types of IPHwere used
in this paper with the position of one IPH set in the shoulder

of plaque, and another one in the middle of the plaque (see
Supplementary Figure 1).

2.2. Computational Models, Materials, and
Boundary Conditions
In this study, the components of the plaque were assumed to be
hyper-elastic and non-linear because the ideal human tissue is
hyper-elastic. The Yeoh 3rd Order strain energy density function
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was used to describe the material of the plaque in the carotid
artery (Teng et al., 2015).

W =
3

∑

i

Ci(Ii − 3)i + k(J − 1), i = 1, 2, 3 (4)

I1 = λ1
2 + λ2

2 + λ3
2 (5)

where (i) Ii represents the first invariant of the unimodular
component of the Cauchy–Green deformation tensor, (ii) Ci is
the material constants, (iii) λi is the principal stretch, (iv) J =
def (F) and F is the deformation gradient, (v) k is the Lagrangian
multiplier for incompressibility, and (vi) J is equal to 0 for
material incompressibility. The parameter values were chose to
describe the material models (see Table 1): (i) fibrous cap: C1 =
53.724 kPa, C2 = 2201.011 kPa, C3 = 42.551 kpa, (ii) lipid core:
C1= 18.548 kPa, C2= 207.371 kPa, C3= 422.652 kPa, (iii) IPH:
C1 = 11.225 kPa, C2 = 69,214 kPa, and C3 = 781.546 kPa, (iv)
neovessel: C1= 5.656 kPa, C2= 1816.773 kPa, C3= 162.037 kPa.
The density and viscosity are the fundamental blood parameters.
Generally, the range of blood density is 1,030–1.070 kg/m3. In
our study, the constant density 1.050 kg/m3 was used, and the
value of the blood viscosity is 3.400Ns/m2 (Marshall et al., 2004).

TABLE 1 | The parameter values of the Yeoh model used in this paper.

C1 (kPa) C2 (kPa) C3 (kPa)

Fibrous cap 53.724 2201.011 42.551

Lipid core 18.548 207.371 422.652

Neovessel 5.656 1816.773 162.037

IPH 11.225 69.214 781.546

The blood was assumed to be an incompressible, laminar, and
Newtonian fluid.

Additionally, the inlet boundary condition was transient with
time (see Figure 3). This trend of the velocity changed over time,
and it was close to the experimental curves (Viedma et al., 1997).
After one cardiac cycle, the blood flow of the carotid outlet tended
to be stable, and the relative pressure of the outlet was set as 0 Pa.
For simulating the blood flow, the conditions of no-slip and non-
deformation were considered at the carotid artery wall. The 2D
computational models were solved by using ANSYS2019 R1. The
one-way fluid–structure interaction was operated. The pressure
of the fluid was loaded in the whole plaque, and an approximate
blood pressure of 0.00133 MPa in the microvessel was exerted on
the neovessel and IPH.

3. RESULTS

Quantification parameters were evaluated in the present
study. These parameters included total deformation, maximum
principal stress, and maximum principal strain. The detail of the
parameters was summarized in Table 2. The deformation of the
plaques was negatively related to the thickness of the fibrous
cap. The largest deformation was found in the geometry with a
thin fibrous cap (thickness was 0.0065 mm), and it was 0.14619
(see Figure 4C). Also, the deformation of the neovessel was in
line with the observation in the CEUS images that the shape
of neovessel changes along with the pulsatile blood flow, which
suggested that the stress on the plaque could further induce
the stress on the neovessel. Moreover, the neovessel mainly
consisted of endothelial cells without smooth muscle cells, which
makes the neovessel vulnerable to the stress. Additionally, the
deformation of the plaque with three neovessels (50% luminal
stenosis, different thickness of fibrous cap) showed that the

FIGURE 3 | The velocity condition specified at the inlet boundary.
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TABLE 2 | Comparison of maximum principal strain [MP strain (mm\mm)] and stress [MP stress (kPa)] of plaque during one cardiac cycle among no neovessel, one

neovessel, three neovessels, and intraplaque hemorrhage (IPH).

Degree of plaque stenosis (%) Thickness of fibrous cap (mm) Plaque geometry MP strain (mm/mm) MP stress (kPa)

50

2

No neovessel and IPH 0.00116 11.6

One neovessel 0.020946 11.625

Three neovessels 0.019249 11.565

IPH in plaque shoulder 0.016795 11.54

IPH in plaque middle 0.017509 11.826

0.5

No neovessel and IPH 0.015697 21.276

One neovessel 0.021508 21.391

Three neovessels 0.018977 21.398

IPH in plaque shoulder 0.048537 74.321

IPH in plaque middle 0.078302 71.435

0.0065

No neovessel and IPH 0.058363 276.99

One neovessel 0.06425 272.81

Three neovessels 0.059618 269.89

IPH in plaque shoulder 0.052972 296.63

IPH in plaque middle 0.058464 272.28

65

2

No neovessel and IPH 0.019593 36.25

One neovessel 0.021154 36.389

Three neovessels 0.020147 36.178

IPH in plaque shoulder 0.019791 36.673

IPH in plaque middle 0.032817 37.965

0.5

No neovessel and IPH 0.016165 54.49

One neovessel 0.02203 54.871

Three neovessels 0.018698 54.393

IPH in plaque shoulder 0.015754 56.731

IPH in plaque middle 0.015987 54.19

0.0065

No neovessel and IPH 0.066529 563.67

One neovessel 0.066929 575.43

Three neovessels 0.066642 569.73

IPH in plaque shoulder 0.068731 608.05

IPH in plaque middle 0.06663 565.72

75

2

No neovessel and IPH 0.054892 225.72

One neovessel 0.057081 226.87

Three neovessels 0.056651 225.66

IPH in plaque shoulder 0.055234 231.15

IPH in plaque middle 0.053922 226.95

0.5

No neovessel and IPH 0.050985 336.36

One neovessel 0.051242 335.89

Three neovessels 0.051038 333.86

IPH in plaque shoulder 0.052625 350.08

IPH in plaque middle 0.051274 336.18

0.0065

No neovessel and IPH 0.10114 1242.6

One neovessel 0.10223 1270.3

Three neovessels 0.10125 1250.3

IPH in plaque shoulder 0.10643 1358.8

IPH in plaque middle 0.10206 1261.5

diameter of the neovessels was further suppressed when the
fibrous cap was thin (see Figure 5). The largest deformation
occurred in the plaque with 0.0065 mm fibrous cap thickness
and the value of deformation is 0.14988 (see Figure 5C). It

can be found that there was a relatively large deformation
difference between the plaque with one neovessel and with
three neovessels. The reason may be that the neovessel located
closed to the plaque shoulder suffered from a larger pressure
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FIGURE 4 | Deformation results of plaque with 50% luminal stenosis, one neovessel, and different thickness of the fibrous cap. The fibrous cap thicknesses of

subfigures (A–C) were 2, 0.5, and 0.0065 mm, respectively.

than the other three neovessels located in the plaque middle-
lower stream.

The deformation results of plaque with 65 and 75% luminal
stenoses were illustrated in the Supplementary Figures 2–5. The
maximum principal stress and strain in plaque with different
degrees of luminal stenosis and fibrous cap thickness are
summarized in Table 2. The maximum principal stresses are
recorded in the thin fibrous cap geometry that it was 276.99,
563.67, and 1242.6 kPa for 50, 65, and 75% luminal stenosis,
respectively. A higher degree of luminal stenosis was subjected
to a higher maximum principal stress and strain in all the
geometries with 0.0065 mm fibrous cap thickness (see Figure 6).
And the maximum principal stress grows along with the thinning
of the fibrous cap in the geometry with 75% luminal stenosis
(see Figure 7). As shown in Table 2, the largest maximum
principal stress was recorded in the geometries with 75% stenosis
and the thickness of fibrous cap varied from 2 to 0.0065
mm. The maximum principal strain of plaque with 0.0065mm
fibrous ca thickness increased significantly with the degree of
the luminal stenosis. Consequently, The plaques observed, with
(i) 65% stenosis, 0.0065 mm thickness, and (ii) 75% stenosis,
0.5 and 0.0065 mm thickness, were unstable and vulnerable.
Moreover, for an artery with high degree of luminal stenosis
and a plaque with thin fibrous cap thickness, a higher maximum
principal stress was observed when neovascularization or IPH

was presented compared to those without neovascularization or
IPH in most cases. And, a relatively higher maximum principal
stress was observed when IPH existed in plaque shoulder than in
plaque middle.

4. DISCUSSION

Vulnerable plaque in the carotid artery is a critical cause of
many cardiovascular diseases like stroke and ischemic attacks
(Schinkel et al., 2020). Neovascularization and IPH contribute
significantly to the rupture of atherosclerotic plaques (Van der
Veken et al., 2016; Demeure et al., 2017; Yang et al., 2020). Wang
et al. (2020) found that increased carotid neovascularization
was significantly related to aggravated cerebral white matter
lesions in 269 participants based on CEUS. Camps-Renom et al.
(2020) demonstrated that neovascularization was an independent
predictor of ischemic stroke recurrence, based on 78 patients with
carotid atherosclerosis. Literatures (Mark et al., 2020a,b; Yang
et al., 2020) discovered that IPH had a close connection with
a high risk of cardiovascular diseases. In addition, Teng et al.
(2012) found that the computed parameters of stress and strain
in a carotid artery plaque increased as the distance between the
neovessel and the artery lumen decreased. There is a big potential
for large deformation and high mechanical loading variation
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FIGURE 5 | Deformation results of plaque with 50% luminal stenosis, three neovessel, and different thickness of fibrous cap. The fibrous cap thicknesses of

subfigures (A–C) were 2, 0.5, and 0.0065, respectively.

FIGURE 6 | Plaque maximum principal stress within 0.0065 mm fibrous cap thickness when changing luminal stenosis.

in an intraplaque neovessel. Huang et al. (2012) quantified
the effect of IPH on plaque wall stress by using a 3D fluid–
structure interaction model based on the magnetic resonance
image; the authors found that the critical plaque wall stress and
strain increased in geometries with IPH, relative to geometries
without IPH. Additionally, fibrous cap thickness and luminal
stenosis have also been demonstrated as two critical parameters

that could induce plaque rupture (Li Z. Y. et al., 2006; Alegre-
Marténez et al., 2019; Zareh et al., 2019). A plaque with thinner
fibrous cap thickness and larger lipid core was more likely to
rupture and cause stroke. Huang et al. (2012) have indicated that
there was a connection between fibrous cap thickness and IPH
occurrence based on the analysis by fluid–structure interaction.
Therefore, to be consideration of fibrous cap thickness and
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FIGURE 7 | Plaque maximum principal stress variation within 75% stenosis luminal stenosis when changing fibrous cap thickness.

luminal stenosis are necessary for analyzing the stress and strain
effect of neovascularization and IPH of plaque.

In this paper, we have constructed an idealized geometry
of the carotid artery with atherosclerotic plaque based on
the CEUS image. The four factors of plaque rupture, namely
neovascularization, IPH, fibrous cap thickness, and luminal
stenosis, were evaluated. A one-way fluid–structure interaction
model was employed to calculate the structural stress and strain
in the carotid atherosclerotic plaque. The simulation results
validated the conclusion mentioned above that the two factors
of fibrous cap thickness and luminal stenosis degree play a
significant role in the progression of carotid atherosclerotic
plaque. The results of the one-way fluid–structure interaction
model in this paper were consistent with the current literature
(Li Z. Y. et al., 2006; Teng et al., 2012). Therefore, it is reasonable
to assume the role of IPH and neovascularization distributions
in the formation of carotid atherosclerotic plaque. IPH is one of
the important factors of carotid atherosclerotic plaque, especially
in vulnerable plaque (Saba et al., 2019b). It can accelerate the
enlargement of the lipid core that can increase the risk of the
plaque rupture.

In our work, two types of IPHs have been evaluated, and
stress and strain were determined within the plaque were
observed. It was a critical indication that IPH distributed at
the shoulder of the plaque showed a higher risk to rupture
compared to the plaque with IPH distributed in the middle area
regardless of the fibrous cap thickness and the luminal stenosis
degree (see Table 2). For the plaque with IPH in the plaque
shoulder, 75% stenosis, and thin fibrous cap thicknesses, the
maximum principal stress increased on an average to 34.47 kPa
compared to the plaque with IPH in the plaque middle. In the
plaque with 50 and 65% stenosis, the maximum principal stress
increased on an average to 8.983 and 14.526 kPa, respectively.
Besides, the plaque with IPH in the plaque shoulder had a
116.3 kPa higher maximum principal stress than the plaque

without IPH, especially for the plaque with 75% stenosis and
0.0065 mm fibrous cap thickness. Therefore, the location of
the plaque shoulder was a high-risk site for plaque rupture
frequently. Additionally, IPH was not a negligible factor for
assessing plaque vulnerability, and there was guidance by B-
model ultrasonography to distinguish IPH (Gao et al., 2017;
Zheng et al., 2020a,b).

Previous studies had (Huang et al., 2008; Hoogi et al.,
2011; Van der Veken et al., 2016; Demeure et al., 2017)
demonstrated that the feature of neovascularization also played
an important role in the progression of plaque, and it
may be associated with the possibility of stroke occurrence.
Therefore, neovascularization within the plaque is important.
The neovascularization can be visualized by CEUS imaging, and
then help the cardiologist to observe the deformation of the
neovascularization. However, the effect of the neovascularization
on plaque risk only depended on the cardiologist’s subjective
diagnosis, according to the distribution and density of the IPH.
Therefore, in this paper, the neovascularization was studied by
modeling the neovessel geometry within the plaque. Figures 4, 5
show the deformation of the neovessel in 50% luminal stenosis
in conjunction with different fibrous cap thickness. The larger
deformation of the neovessel was found with a thinner fibrous
cap. The deformation of the neovessel was in line with the
discovery carotid artery plaque in CEUS images.Table 2 indicates
that the maximum principal stress and strain was similar
between geometries with neovessel and without neovessel as a
result of the similar distribution and density of the neovessels.
However, Figures 4, 5 and Supplementary Figures 1–5 show the
occurrence of neovessel deformation. That is to say, the neovessel
underwent the loading of mechanical stress and had the potential
to rupture and then lead to IPH.

Additionally, according to experimental results of fluid flow,
the distribution of plaque stress and strain mainly focused
on the proximal surface of the plaque, regardless of luminal
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stenosis and fibrous cap thickness. Choi et al. (2015) have found
that axial plaque stress and wall shear stress in the upstream
were higher than in downstream. These findings demonstrated
that the site of plaque shoulder was more likely to tend to
rupture because it is undergoing shear stress induced by the
blood flow (Malek, 1999). The variation of shear stress could
alter the characteristics of the endothelial cell, including its
morphology, function, proliferation, and even vascular injury
(Malek, 1999; Chatzizisis et al., 2009). Therefore, the stress and
strain distribution in the proximal surface of plaque fluid flow
has an important role in adjudging plaque rupture. Additionally,
the neovessel was only made up of little endothelial cells and the
vulnerability of neovessel was poor. Therefore, it is of significance
to improve the assessment of vulnerable plaque by analyzing
the effect of hemodynamic stress and strain on the plaque with
neovascularization and IPH.

There are some limitations to this study. First, it was a
theoretical research, and the geometry of the carotid artery was
idealized. The carotid bifurcation was not taken into account,
as the neovessel and the IPH were the focus of this paper.
Second, only two types of neovessels were analyzed. The shape
in conjunction with the location of the neovessel was flexible
and variable. McCarthy et al. (1999) found that the neovessel
within a plaque may exist in the medial, the lateral corners,
and the bottom of the plaque. Third, the material properties
of the neovessel were assumed from literatures, and this may
have resulted in the parameters of maximum principal stress
and strain levels being below or over the actual value. There
is a small difference in the value of the maximum principal
stress between the plaque with neovessel and without neovessel.
The material properties, shape, and location of the neovessel
may be the most likely reason for it. Another limitation is that
this idealized geometry was two-dimensional. Previous studies
have illustrated the histology image of the transversal slice of
the plaque, indicating the distribution of microvasculature could
either axial or transversal (Lu et al., 2015; Guo et al., 2018,
2019). These neovessels were with significant variation of the size
of the neovessels. While previous studies focus on the axially
distributed neovessel, our results suggested that the mechanical
effects of transversal distributed neovessel was also important
to the vulnerability of the plaque. Also, in comparison to the
previous study (Teng et al., 2015), the morphology of IPH used
in the present study was generally consistent with it, even if the
CEUS imaging is less applicable for detecting IPH. However,
as the neovessel was more complex with branches pointing
toward different directions and dimensions, further study was
required to establish a more realistic geometry of the plaque
with 3-dimensional distribution of the microenvironment for a

more comprehensive understanding of the mechanics property
of the plaque.

5. CONCLUSION

In conclusion, a numerical analysis of the stress and strain
within carotid artery plaque was conducted. We verified that the
plaque with thin fibrous cap and serious luminal stenosis has a
high risk of rupture. At the same time, neovascularization and
IPH were also studied. Pulsatile blood flow was related to the
deformation phenomenon of neovessel occurrence in intraplaque
observed in CEUS image. Also, the IPH has the potential to
increase the possibility of plaque rupture. Therefore, IPH and
neovascularization may also be considered to be the features for
plaque progression and even rupture, besides the two key factors
of fibrous cap thickness and the degree of luminal stenosis.
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Research on undersampled magnetic resonance image (MRI) reconstruction can

increase the speed of MRI imaging and reduce patient suffering. In this paper, an

undersampled MRI reconstruction method based on Generative Adversarial Networks

with the Self-Attention mechanism and the Relative Average discriminator (SARA-GAN)

is proposed. In our SARA-GAN, the relative average discriminator theory is applied

to make full use of the prior knowledge, in which half of the input data of the

discriminator is true and half is fake. At the same time, a self-attention mechanism is

incorporated into the high-layer of the generator to build long-range dependence of the

image, which can overcome the problem of limited convolution kernel size. Besides,

spectral normalization is employed to stabilize the training process. Compared with

three widely used GAN-based MRI reconstruction methods, i.e., DAGAN, DAWGAN,

and DAWGAN-GP, the proposed method can obtain a higher peak signal-to-noise ratio

(PSNR) and structural similarity indexmeasure(SSIM), and the details of the reconstructed

image are more abundant and more realistic for further clinical scrutinization and

diagnostic tasks.

Keywords: MRI, reconstruction, deep learning, compressive sensing, neuroinformatics, artificial intelligence, GAN

INTRODUCTION

MRI can carry out the non-invasive examination of the internal tissues of the human body, so
it is widely used in clinical pathological examination and diagnosis (Liang and Lauterbur, 2000;
Kabasawa, 2012). However, the excessive scanning time of MRI limits its clinical application, and
this problem is particularly prominent for high-resolution imaging. Therefore, how to reduce k-
space sampling (Duyn et al., 1998) and shortenMRI acquisition time has become a research focus in
this field. Compressed sensing (CS) (Lustig et al., 2008, 2010) is a conventional method for solving
this problem, it uses the compressibility and sparsity of the signal to reduce k-space sampling and
achieve fast imaging. At present, the methods surrounding compressed sensing for fast MRI mainly
include non-Cartesian CS (Haldar et al., 2011; Wang et al., 2012), combination parallel imaging
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with CS (Murphy et al., 2012; El Gueddari et al., 2019; Shimron
et al., 2020), and CS-based on dictionary learning (Ravishankar
and Bresler, 2010; Huang et al., 2014; Du et al., 2019; Cao
et al., 2020). Although the above-mentioned methods based on
compressed sensing have achieved good results, they all rely on
the prior knowledge extracted from the image, which limits the
use of the above methods to a certain extent.

In recent years, deep learning (LeCun et al., 2015) methods
have been successfully applied in many fields. In particular,
with the emergence of convolutional neural networks, made
it show great performance in computer vision. At present,
many MRI reconstruction methods based on deep learning
have been proposed (Boyd et al., 2011; Sun et al., 2016; Wang
et al., 2016; Aggarwal et al., 2018; Zhu et al., 2018; Akçakaya
et al., 2019; Lee et al., 2020). In 2016, Wang et al. (2016)
first applied deep learning methods to the acceleration of
MRI imaging. They employed an offline CNN to realize the
mapping of undersampled zero-filled MRI and fully sampled k-
space data and achieved good reconstruction effectively. Deep
learning based MRI reconstruction methods can be roughly
divided into unrolling-based approaches and those not based on
unrolling (Liang et al., 2020). Among them, the unrolling-based
method usually expands the CS-based iterative reconstruction
algorithm into a deep network, so that the parameters in
the reconstruction algorithm can be learned by the network.
Sun et al. (2016) proposed the ADMM-Net defined over data
flow graphs, which were derived from the iterative procedures
in the Alternating Direction Method of Multipliers (ADMM)
algorithm (Boyd et al., 2011) for optimizing a general CS-
based MRI mode, and it significantly improved the baseline
ADMM algorithm and achieved high reconstruction accuracies
with fast computational speed. The framework proposed by
Aggarwal et al. (2018), termed as MOdel-based reconstruction
using Deep Learned priors (MODL), merged the power ofmodel-
based reconstruction schemes with deep learning. Their model
provided improved results, despite the relatively smaller number
of trainable parameters. Themethods not unrolling-basedmainly
uses deep networks to learn themapping between under-sampled
data and fully sampled data to achieve reconstruction. Zhu et al.
(2018) proposed a unified framework—automated transform
by manifold approximation (AUTOMAP), it constructed a
supervised learning task to learn the mapping between sensor
domain and image domain from training data. Besides, Robust
artificial-neural-networks for k-space interpolation (RAKI)
(Akçakaya et al., 2019) was proposed for image reconstruction by
training convolutional neural networks on ACS data. Compared
with the traditional linear k-space interpolation-based method,
this method had better anti-noise performance.

The Generative Adversarial Networks (GAN) (Goodfellow
et al., 2014) proposed by Goodfellow was a novel deep generative
model, which introduced the idea of game theory and improved
the fitting ability of the network through the competitive
learning of generator and discriminator. In 2016, Radford
et al. proposed Deep Convolutional Generative Adversarial
Networks (DCGAN) to apply convolutional neural networks
to unsupervised learning (Radford et al., 2016). By applying
convolutional neural networks to generators and discriminators,

the network could learn a hierarchy of representations from
object parts to scenes. At present, GAN and its variants have
achieved excellent performance in image-to-image translation
(Zhu et al., 2017), image super-resolution (Ledig et al., 2017),
and others. In recent years, since its good data representation
capabilities, GAN have also been used for MRI fast imaging
(Arjovsky et al., 2017; Yang et al., 2017; Jiang et al., 2019;
Kwon et al., 2019) and super-resolution (Chen et al., 2018;
Lyu et al., 2019; Mahapatra et al., 2019). Yang et al. (2017)
applied conditional GAN to MRI reconstruction and proposed
the De-Aliasing Generative Adversarial Networks (DAGAN)
model. Compared with conventional methods, the DAGAN
model achieved a better reconstruction effect and retained more
perceptible details. Wasserstein GAN (Arjovsky et al., 2017) is a
variant of the original GAN, by replacing the Jensen-Shannon
divergence in the original GAN with Wasserstein distance, it
stabilizes the learning process and solves the problem of mode
collapse. Jiang et al. (2019) proposed a de-aliasing fine-tuning
Wasserstein generative adversarial network (DA-FWGAN) for
MR imaging reconstruction. The DA-FWGAN could provide
reconstruction with improved peak signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM).

Although the current MRI reconstruction methods based on
deep learning can better learn the mapping relationship between
undersampling MRI and full sampling MRI, the reconstruction
effect still has a lot of room for improvement. Firstly, most
GANs use convolutional layers to build their generators. Due
to the limited size of the convolution kernel, the network
can only focus on the dependencies of the information in the
local receptive field (Luo et al., 2016), but it cannot establish
the long-range dependencies of the image, which leads to the
inaccurate reconstruction of the image details and texture. Self-
Attention Generative Adversarial Networks (SA-GAN) (Zhang
et al., 2019) proposed by Zhang et al. solved this problem by
introducing a self-attention mechanism and constructing long-
range dependency modeling. The self-attention mechanism was
used for establishing the long-range dependence relationship
between the image regions. To enhance the image details and
improve the quality of reconstructed MRI, the local dependence,
and the global dependence of the image were combined.
Secondly, the discriminator did not make full use of the prior
knowledge that half of the input data is true and half is fake
(Jolicoeur-Martineau, 2018). When the generated data is real
enough, the discriminator can directly distinguish the generated
data into real data, which results in the insufficient performance
of the discriminator and the training of the generator cannot be
continued. Alexia Jolicoeur-Martineau used the prior knowledge
to induce a “relative discriminator” (Jolicoeur-Martineau, 2018),
which estimated the probability that the given real data was more
realistic than a randomly sampled fake date.

In this paper, we propose a novel MRI reconstruction method,
termed as SARA-GAN, which combines the self-attention
mechanism and the relative discriminator. The generator is
designed as a structure, composing of down-sampling block,
residual block, and up-sampling block. Among them, in the
up-sampling block, we add a self-attention layer to capture
the global information of the image. Besides, the discriminator
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FIGURE 1 | The overall structure of the proposed SARA-GAN method.

uses the CNN structure and introduces the idea of relative
discrimination to construct a relative average discriminator. At
the same time, we also apply spectral normalization on the
generator and discriminator to stabilize the training process.
The novelties of our proposed SARA-GAN model have been
summarized as follows

(a) Given the traditional convolutional structure that can only
focus on the local dependency of the image, we add
a self-attention layer to the high-layer of the generator
network. The self-attention mechanism can calculate the
correlation degree between image pixels and build long-
range dependencies so that the reconstructed image can
demonstrate more details.

(b) The theoretical formula of the original GAN-based methods
ignores the prior information of the discriminator’s
input data. In our SARA-GAN model, we use relative
average discriminator to transform the absolute true
or false discrimination into relative true or false. In
doing so, our SARA-GAN model can make full use of
the prior information, and therefore can improve the
discriminator performance.

(c) In our SARA-GAN, the generator adopts a residual network
structure, in which multiple residual blocks are cascaded and
multiple skip connections are incorporated to reduce the loss
of original features in the convolution calculation. At the
same time, this can avoid poor performance of the generator
in the initial training stage; therefore, the training procedure
can be more efficient.

(d) We also apply the spectral normalization to the network
parameters of the generator and the discriminator to satisfy
the Lipschitz constraint, thereby stabilizing the training of
our GAN-based SARA-GANmodel.

METHODS

Figure 1 shows the overall structure of our proposed SARA-
GAN. We obtain the k-space data of the fully sampled MRI
through Fourier transform, then undersampled the k-space data,
and perform inverse Fourier transform to obtain the image-
domain undersampled MRI. The generator is used to learn

the mapping relationship between undersampled MRI and full-
sampled MRI. The discriminator is a binary classifier, used to
judge whether the reconstructed image is true or false. The
combined loss function incorporates the pixel loss, the perceptual
loss, and the frequency-domain loss based on the adversarial loss.
The pixel loss and the perceptual loss can constrain GAN training
on the image content. The frequency-domain loss provides
additional constraints for the data consistency in the k-space. The
pre-trained VGG16 network is used to extract features from the
fully sampled MRI and the reconstructed MRI respectively, and
the two sets of features are compared to obtain the perception
loss. The discriminator and the combined loss function guide the
training of the generator together.

Network Structure
Generator Model

The generator model is composed of a down-sampling block,
residual block, and up-sampling block. The three convolutional
layers in the down-sampling block are used to extract image
features. The residual block contains 7 residual blocks, and
each residual block contains two convolutional layers. The
up-sampling block consists of three transposed convolutional
layers, which are used to expand the feature map and generate
reconstructed MRI. We use spectral normalization on the
generator network and choose the PReLU (He et al., 2015)
function as the activation function. Besides, we introduce the
self-attention module in the up-sampling block to build the
long-range dependency of the image, as shown in Figure 2.

Discriminator Model

The discriminator model is an 11-layer CNN network, which
uses leaky ReLU as the activation function. The last layer is the
dense layer, and the sigmoid function is used as the activation
function to output the discriminatory results of the discriminator,
as shown in Figure 3. We also use spectral normalization in
the discriminator.

Self-Attention Module
To overcome the problem that the network cannot learn long-
range global dependencies caused by the limited size of the
convolution kernel, we add the self-attention (Zhang et al.,
2019) into the up-sampling block of the generator, as shown in
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FIGURE 2 | The generator model.

FIGURE 3 | Discriminator model.

Figure 2. In the self-attention module, the output feature map
of the last residual block x with the channel number C of the
previous convolution layer is input to three convolution layers
with a kernel of 1× 1 and the channel numbers of C/8, C/8 and
C respectively, to obtain the feature space f (x),g(x) and h(x)

f (x) = Wf x, (1)

g(x) = Wgx, (2)

h(x) = Whx. (3)

Then the transpose of f (xi) is multiplied by g(xj), and the weight
is normalized by the Softmax function to obtain βj,i

sij = f (xi)
Tg(xj), (4)

βj,i =
exp

(

sij
)

N
∑

i=1
exp

(

sij
)

, (5)

whereβj,i is an attention map that indicates the extent to which

the model attends to the ith location when synthesizing the jth

region. The output of the self-attention layer is defined as

oj = v

[

N
∑

i=1

βj,ih(xi)

]

, v(xi) = Wvxi (6)

In the above formula, Wf , Wg ,Wh, and Wv are the weight
matrices of the 1× 1 convolutional layer. To allow the generator
learns the local dependence of the image as well as the long-range
global dependence, we multiply the output of the self-attention
layer oj by a weight coefficient γ and add it to the input feature
map xi to obtain the final output of the self-attention module yi

yi = γ oi + xi. (7)

Among them, γ is a learnable parameter and is initialized to 0. Its
function is to enable the network to learn the proportion of the
global dependency on the feature map.

Relative Average Discriminator
In the original GAN model, the generator accepts random
noise, and then generates a false image and inputs it to the
discriminator. The discriminator gives the probability that the
input image belongs to the real image. The two compete with
each other and learn together. Finally, the generator learns
the probability distribution of the real image, making the
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discriminator unable to distinguish between the real image and
the generated image, and then achieves Nash equilibrium.

Specifically, in the problem of MRI image reconstruction,
x is defined as the fully sampled MRI image, and z is the
undersampled zero-filled MRI image. The theoretical formula of
the original GAN is:

maxLD = Ex∼ Pdata(x)
[

logD(x)
]

+Ez∼ Pz(z)
[

log
(

1− D(G(z))
)]

, (8)

minLG = Ez∼ Pz(z)
[

log
(

1− D(G(z))
)]

, (9)

where Pdata(x) is the fully sampled MRI image distribution, Pz(z)
is the undersampled zero-filled MRI image distribution. The
optimization process of the original GAN is essentially to reduce
the Jensen–Shannon divergence (JSD) between Pdata(x) and Pz(z)

JSD(Pdata||Pz) = 1

2
(log(4)+max

D
Ex∼Pdata(x)[logD(x)]

+Ez∼Pz(z)[log(1− D(G(z)))]). (10)

When D(x)=D(G(z))= 1
2 , JSD(Pdata||Pz) gets the minimum value

0. Therefore, ideally, when the generator generates sufficiently
real samples, the discriminator cannot distinguish between true
and false samples and should output a probability value of 0.5.
However, in actual training, the above formula may cause the
expected output of the discriminator D to be 1. This is because
the original GAN theoretical formula ignores a priori knowledge,
for instance, in a minibatch, half of the samples’ input to the
discriminator are real data and the other half are generated data.

We use the relative average discriminator (Jolicoeur-
Martineau, 2018) and believe that the discriminator should
estimate the probability that the given full sampling MRI is more
realistic than the reconstruction MRI, on average, by making
full use of the above prior knowledge. Therefore, the theoretical
formula after using the relative average discriminator in our
work is

minLD = −Ex∼Pdata

[

log
(

D(x)
)]

−Ez∼Pz

[

log
(

1− D(G(z)
)]

, (11)

minLG = −Ez∼Pz

[

log
(

D(G(z))
)]

−Ex∼Pdata

[

log
(

1− D(x)
)]

, (12)

D(x) = sigmoid(C(x)− Ez∼PzC(G(z)))

D(G(z)) = sigmoid(C(G(z))− Ex∼PdataC(x)), (13)

where C(·) is the output of the discriminator network.

Spectral Normalization
Miyato et al. (2018) proposed to apply spectral normalization
(SN) to the discriminator network to stabilize GAN training. In
this study, we also use spectral normalization in the weights of
the generator network and discriminator network. The spectral
normalization method uses the spectral norm on the parameter
matrix of the discriminator and generator network, so that the
network satisfies the Lipschitz constraint, thereby smoothing the
network parameter to stabilize training.

Loss Function
The loss function is used to evaluate the gap between the
reconstructed image and the fully sampled image, which is
the optimization object of the GAN. The smaller the loss
function value, the smaller the gap between the reconstructed
image and the fully sampled image, and the better the
reconstruction effect. A reasonable loss function can provide
accurate gradient information for network training, thereby
improving reconstruction performance. We use a combined loss
function that combines perceptual loss, pixel loss, frequency
domain loss, and adversarial loss to comprehensively evaluate the
fitting ability of the network.

The pixel loss Lpixel and frequency domain loss Lfrequency are
based on Mean Square Error(MSE), can be defined as follows

min
G

Lpixel(G) = 1

2
‖xt − xu‖22 , (14)

min
G

Lfrequency(G) = 1

2

∥

∥yt − yu
∥

∥

2
2 , (15)

where xt and xu are fully sampled and reconstructed MR images
in the image domain, respectively. yt and yu correspond to the
frequency domain data of xt and xu, respectively. The perceptual
loss and adversarial loss are defined as

min
G

Lperceptual(G) = 1

2

∥

∥fVGG16(xt)− fVGG16(xu)
∥

∥

2
2 , (16)

min
G

L
adversarial

= −Ez∼pz

[

log
(

D(G(z))
)]

−Ex∼pdata

[

log
(

1− D(x)
)]

, (17)

where fVGG16 represents the VGG16 network (Russakovsky et al.,
2015), D(·) represents the relative average discriminator.

Therefore, the final total loss function can be expressed as

Ltotal = αLpixel + βLfrequncy + γ Lperceptual + Ladversarial, (18)

where α, β and γ are the weight parameter of each loss function.

EXPERIMENTS

Experimental Setup
The datasets used in this article are downloaded from the
Diencephalon Challenge (https://www.synapse.org/#!Synapse:
syn3193805/wiki/217780) in the public repository of the
MICCAI 2013 grand challenge. The MRI data acquisition
method is MPRAGE, the scanning matrix size is 256 × 256
× 287, and the resolution is 1 × 1 × 1mm. We randomly
selected 130 3D neuro-MRI images from the data set to verify
the proposed SARA-GANmodel. In the experiments, 70 samples
(15,816 effective 2D MRIs) were used as the training set, 30
samples (5,073 effective 2D MRIs) were used as the validation
set, and 30 samples (5,198 effective 2D MRIs) were used as
the test set. In order to enhance the network performance, we
applied data augmentation to the training dataset, including
flipping (left to right), rotating ±20 degrees, shifting 10% along
the x-axis and y-axis, random zooming between 0.9 times and
1.1 times, random brightness changes, and the random elastic
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FIGURE 4 | The two different under sampling masks. (A) 1D Gaussian mask and (B) 2D Gaussian mask.

transformation with alpha of 255 × 3 and sigma of 255 ×
0.10. We use TensorFlow 1.12.0 and Python framework to
program, and train the proposed model on a TeslaV100-SXM2
GPU under a CentOS system environment. Two undersampling
modes, including 1-dimensional Gaussian distribution and 2-
dimensional Gaussian distribution, three sampling rates of 10,
20, and 30% (Corresponding to 10×, 5×, and 3.3× acceleration
factors respectively) were used for obtaining undersampling
MRI.We train the model separately for each sampling mode. The
samplingmodes are shown in Figure 4. The contrast experiments
were carried out under the above conditions.

The input and output image size of the generator is 256 ×
256, batch size set to 16. We set the learning rate of the generator
and the discriminator to 0.0001 and 0.0002, respectively, so that
the generator and the discriminator can learn simultaneously.
Since loss items in the combined loss are inconsistent on the
number scale; therefore, we use hyperparameters α, β and γ to
balance them into a similar scale to make the final loss function
more accurate. The hyperparameters α, β , and γ in the combined
loss function are set to 15, 0.1, and 0.0025, respectively. The
choice of these hyperparameters were tuned empirically for better
reconstruction performance.

We use the Adam optimizer with Gradient Centralization
(Yong et al., 2020) to optimize the loss function, and set the
exponential decay rate for the 1st moment estimates (β1) to 0.5,
and the exponential decay rate for the 2nd moment estimates
(β2) to 0.999. To prevent over-fitting, we use the normalized
mean square error (NMES) as an indicator to evaluate the
fitting effect of the network on the validation set every epoch.
After the network is trained for 30 epochs, the training is
terminated, and the optimal model with the smallest NMSE
is saved.

Reconstruction Quality Evaluation
In our experiment, the peak signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM) were used as
evaluation indexes of the reconstructed image. PSNR and SSIM
are defined as following

PSNR = 10log10











2552

MN
M
∑

i=1

N
∑

j=1

(

yi,j − xi,j
)2











, (19)

where x represents the full sampling MRI, y represents the
network reconstructed MRI, i and j represent the coordinates of
image pixels, andM,N represents the size of the image.

SSIM =
(

2µxµy + C1
) (

2σxy + C2
)

(

µ2
x + µ2

y + C1

) (

σ 2
x + σ 2

y + C2

) (20)

whereµx andµy represent the means of image x and y, σx and σy
represent the variances of image x and y, respectively.

RESULTS

We compared three GAN-based MRI reconstruction models,
i.e., DAGAN, DAWGAN, DAWGAN-GP, and the compared
methods all used the best parameter settings. Figures 5, 6

show the reconstruction effect of a typical MRI for the 10-fold
accelerated k-space data masked with the Gaussian distribution
using a different method. We chose to zoom in on a specific
area of the MRI to compare the reconstruction details. From
the local enlarged image, we can conclude that the reconstructed
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FIGURE 5 | The reconstructed MRI for the 10-fold accelerated k-space data masked with the 1D Gaussian distribution by using different GAN-based methods.

(A) Fully-sampled MRI, (B) DAGAN, (C) DAWGAN, (D) DAWGAN-GP, (E) SARA-GAN, (F) 1D mask, (G) DAGAN(error), (H) DAWGAN(error), (I) DAWGAN-GP(error),

and (J) SARA-GAN(error).

FIGURE 6 | The reconstructed MRI for the 10-fold accelerated k-space data masked with the 2D Gaussian distribution by using different GAN-based methods.

(A) Fully-sampled MRI, (B) DAGAN, (C) DAWGAN, (D) DAWGAN-GP, (E) SARA-GAN, (F) 2D mask, (G) DAGAN(error), (H) DAWGAN(error), (I) DAWGAN-GP(error),

and (J) SARA-GAN(error).

image obtained by the DAGANmethod loses most of the texture
information. DAWGAN and DAWGAN-GP perform slightly
better than DAGAN, but there is still a big gap compared with

full sampling MRI. Compared with the other three GAN-based
methods, our method can restore more texture details, and the
texture edge is clearer. The second line of Figures 5, 6 shows the
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reconstruction error map of different algorithms, and the color
of pixels indicates the reconstruction error of the corresponding
position. It can be seen that the reconstruction error of our
method is less than that of other methods, indicating that the
reconstructed MRI is closer to the full sampling MRI. Table 1
shows the quantitative comparison of the reconstruction effects
of different methods. We calculate the average PSNR and SSIM
of each method on the test set to evaluate the reconstruction
performance of the model. Except for the first row in the table,
our results are close to the DAWGAN-GP method. In the other
undersampling modes, our method obtains higher PSNR and
SSIM. The average PSNR is improved 0.04 dB ∼ 0.96 dB over
the DAWGAN-GP and the corresponding SSIM improvements
are 0.0003 ∼ 0.0008. In order to illustrate the performance of
the proposed method, we estimate the statistical significancy
using the Wilcoxon rank sum test (p < 0.05 indicates the
significant difference). We find that except for 10% 2D Gaussian
sampling experiment we have a similar performance between
DAWGAN-GP and SARA-GAN (p= 0.1849), other experiments
have demonstrated that our SARA-GAN has outperformed other
methods significantly (most p-values are <0.001).

With the increase of the acceleration factor, the reconstruction
effect of either method becomes worse. At the same time,
the reconstruction effect of 2-dimensional Gaussian sampling
mode is obviously better than that of 1-dimensional Gaussian
sampling. This is because the brain MRI has fewer texture
details than natural images. The main information of brain MRI
is concentrated in the low-frequency part of k-space, and the
Gaussian samplingmode happens to also mainly collects the low-
frequency part. Therefore, with the increase of sampling rate and
sampling dimension, the information of the low-frequency part
is more collected, so the reconstruction effect is also improved.

The real MRI sampling process often contains random noise.
To simulate the real scene and evaluate the anti-noise ability of
themodel, we added 30 and 40 dBGaussian white noise to the test
set MRI and retested the above methods. Tables 2, 3 respectively
show the reconstruction results of different algorithms on the
test set with 30 and 40 dB Gaussian white noise. It can be seen
from the table that, the average PSNR is improved by 0.004
∼ 0.841 dB over the DAWGAN-GP and the corresponding
SSIM improvements are about 0.0004 ∼ 0.0008. Despite the
addition of a certain intensity of noise, our method still obtains
a good reconstruction effect and is better than other GAN-
based methods. This shows that our method has good anti-noise
performance and the potential for practical application.

DISCUSSION

The main purpose of this study is to accurately reconstruct
clear MR images from under-sampled MRI k-space data,
thereby accelerating MR imaging. The experimental results
have demonstrated that the proposed SARA-GAN method can
obtain high-quality reconstructed MRI, even in the presence
of noise. In the SARA-GAN method, we propose to use
the relative average discriminator instead of the original
discriminator, and the self-attention mechanism to achieve
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TABLE 2 | The average reconstruction performances of different methods on the test set with 30dB noise.

DAGAN DAWGAN DAWGAN-GP Proposed

Mask: 1D Gaussian PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Sample rate: 10% 33.4169 0.9364 34.8801 0.9582 35.0774 0.9450 35.3201 0.9535

Sample rate: 20% 38.9860 0.9742 39.2584 0.9600 40.5054 0.9805 41.4684 0.9878

Sample rate: 30% 38.0020 0.9279 39.4411 0.9579 40.7167 0.9825 41.5242 0.9886

Mask: 2D Gaussian PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Sample rate: 10% 39.1818 0.9775 39.5594 0.9827 40.5227 0.9859 40.5901 0.9861

Sample rate: 20% 40.3423 0.9807 40.1344 0.9843 41.6388 0.9890 41.7555 0.9895

Sample rate: 30% 42.5157 0.9907 42.3948 0.9901 42.6534 0.9919 43.0708 0.9922

The bold value means that the experimental result value is the best.

TABLE 3 | The average reconstruction performances of different methods on the test set with 40dB noise.

DAGAN DAWGAN DAWGAN-GP Proposed

Mask: 1D Gaussian PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Sample rate: 10% 33.9782 0.9527 35.3805 0.9648 36.2549 0.9711 36.2590 0.9703

Sample rate: 20% 40.0935 0.9849 41.3256 0.9880 42.3872 0.9918 42.9586 0.9926

Sample rate: 30% 40.3222 0.9828 41.6212 0.9878 42.6548 0.9924 43.1355 0.9928

Mask: 2D Gaussian PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Sample rate: 10% 39.6494 0.9797 40.2391 0.9843 41.1332 0.9874 41.5031 0.9879

Sample rate: 20% 41.4073 0.9852 41.0897 0.9866 42.8114 0.9910 43.2453 0.9918

Sample rate: 30% 44.1260 0.9931 44.0760 0.9929 44.5119 0.9944 45.3533 0.9949

The bold value means that the experimental result value is the best.

TABLE 4 | The influence of self-attention mechanism and SN on PSNR and SSIM of the reconstructed image.

RA-GAN SARA-GAN(NoSN) SARA-GAN

Mask: 1D Gaussian PSNR SSIM PSNR SSIM PSNR SSIM

Sample rate: 10% 35.9669 0.9686 35.6708 0.9669 36.3926 0.9713

Sample rate: 20% 42.8805 0.9924 42.9769 0.9925 43.2054 0.9929

Sample rate: 30% 42.7548 0.9920 43.1507 0.9927 43.3522 0.9931

Mask: 2D Gaussian PSNR SSIM PSNR SSIM PSNR SSIM

Sample rate: 10% 41.1679 0.9867 40.5628 0.9848 41.6323 0.9881

Sample rate: 20% 43.0552 0.9912 42.1689 0.9894 43.4991 0.9920

Sample rate: 30% 44.7239 0.9940 44.3378 0.9932 45.7536 0.9951

The bold value means that the experimental result value is the best.

global reference. Compared with the other state-of-the-art
GAN-based MRI reconstruction methods, such as DAGAN,
DAWGAN, DAWGAN-GP, our SARA-GAN method can
provide outstanding reconstruction performance and generate
MRI images with a stronger integrity, more details, and higher
evaluation indices.

The convolution operation on CNN can only work in the
local domain of the convolution kernel, whichmakes the network
miss a lot of global information. The self-attention mechanism
is proposed to solve the above problem by capturing long-
range interactions. In this study, we apply the self-attention

mechanism in the up-sampling block of the generator to combine
local and global spatial information. To evaluate the impact
of the self-attention mechanism on network reconstruction, we
removed the self-attention layer in the up-sampling block of the
generator and conducted training and testing under the same
experimental conditions. The average PSNR and SSIM of the
test set are shown in Table 4. As can be seen from the table, in
all under-sampling modes, the self-attention mechanism affects
improving the quality of reconstructed MRI images. The average
PSNR is improved 0.32 ∼ 1.03 dB and the corresponding SSIM
improvements are 0.0005∼ 0.0027.

Frontiers in Neuroinformatics | www.frontiersin.org 9 November 2020 | Volume 14 | Article 61166663

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Yuan et al. Fast MRI Reconstruction Using SARA-GAN

FIGURE 7 | The visual influence of self-attention mechanism on the reconstructed image. Proposed RASA-GAN (PSNR: 33.5931) and Proposed (NoSA) RA-GAN

(PSNR: 32.9152).

FIGURE 8 | The convergence curve of the PSNR vs. the Epoch number in the case of a 30% sampling rate with the 1D Gaussian mask. Training and validation.

In order to verify the visual effect of the long-range
dependence constructed by the self-attention mechanism on the
reconstructed MRI, we selected a typical MRI and enlarged the
texture-rich regions locally, as shown in Figure 7. Observation
shows that the brain texture in the left picture is rich in detail
and structural information is relatively complete. Comparing
the enlarged image of the same area, the left image has a
clear texture boundary and relatively complete color blocks,
while the right image has blurry borders, and the color blocks
are somewhat broken. Therefore, under the action of the self-
attention mechanism, the integrity of reconstructed MRI is
stronger and the visual effect is improved.

We also apply spectral normalization to the parameter matrix
of the generator and discriminator.

Spectral normalization makes the parameter matrix meet 1-
Lipschitz continuity by applying the spectral norm to the network
parameters, which limits the network gradient change, thereby
making the training process more stable. We have conducted
the convergence analyses in every epoch by using SARA-GAN
and SARA-GAN without SN methods in the case of the 30%
sampling rate with a 1D Gaussian mask. As shown in Figure 8,
the convergence of SARA-GAN method is more stable than
SARA-GAN without the SN method. Table 4 also shows the
experimental results of SARA-GAN without the SN method on
the test set. It can be seen that SN significantly improves the
quality of network reconstruction MRI. Under the same number
of iterations, due to the improvement of training stability, the
method with SN can achieve a more optimized state.
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CONCLUSION

In this study, a new MRI reconstruction method, named SARA-
GAN, was proposed to reduce k-space sampling and accelerate
MRI imaging. Our method combines the self-attention
mechanism with relative average discriminator. Compared with
other GAN-based methods, such as DAGAN, DAWGAN, and
DAWGAN-GP, the experimental results show that our method
can obtain more accurate reconstructedMRI with a higher PSNR
and SSIM. Especially through the long-range global dependence
constructed by the self-attention mechanism, the proposed
method can reconstruct images with more realistic details and
stronger integrity. At the same time, the proposed method has
a certain ability of noise tolerance and short reconstruction
time. It provides a promising approach to speed up
the MRI.
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Recently, machine learning methods have gained lots of attention from researchers

seeking to analyze brain images such as Resting-State Functional Magnetic Resonance

Imaging (rs-fMRI) to obtain a deeper understanding of the brain and such related

diseases, for example, Alzheimer’s disease. Finding the common patterns caused by

a brain disorder through analysis of the functional connectivity (FC) network along with

discriminating brain diseases from normal controls have long been the two principal

goals in studying rs-fMRI data. The majority of FC extraction methods calculate the FC

matrix for each subject and then use simple techniques to combine them and obtain a

general FC matrix. In addition, the state-of-the-art classification techniques for finding

subjects with brain disorders also rely on calculating an FC for each subject, vectorizing,

and feeding them to the classifier. Considering these problems and based on multi-

dimensional nature of the data, we have come up with a novel tensor framework in

which a general FC matrix is obtained without the need to construct an FC matrix for

each sample. This framework also allows us to reduce the dimensionality and create a

novel discriminant function that rather than using FCs works directly with each sample,

avoids vectorization in any step, and uses the test data in the training process without

forcing any prior knowledge of its label into the classifier. Extensive experiments using

the ADNI dataset demonstrate that our proposed framework effectively boosts the fMRI

classification performance and reveals novel connectivity patterns in Alzheimer’s disease

at its early stages.

Keywords: Alzheimer’s disease (AD) classification, functional connectivity, tensor, high order singular value

decomposition, dimension reduction

1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with a long pre-morbid
asymptomatic period, which affects millions of elderly individuals worldwide (Caselli et al.,
2004). It is predicted that the number of affected people will double in the next 20 years, and
1 in 85 people will be affected by 2050 (Brookmeyer et al., 2007). The predominant clinical
symptoms of AD include a decline in some important brain cognitive and intellectual abilities
such as memory, thinking, and reasoning. Early detection is important for possible delay of
the progression of mild MCI to moderate and severe stages (Folch et al., 2016). However,
diagnosis of MCI is difficult due to its mild symptoms of cognitive impairment, causing most
computer-aided diagnosis to achieve lower-than-desired performance (Musha et al., 2013; Li
R. et al., 2018). Precise diagnosis of AD, especially in its early warning stage, that is, early
Mild Cognitive Impairment (eMCI), enables treatments to delay or even avoid such disorders.
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In recent years, medical imaging techniques such as
positron emission tomography (PET) (Chandra et al., 2019),
electroencephalography (EEG) (Bi and Wang, 2019), computed
tomography (CT) scan (Ozdemir et al., 2019; van de Leemput
et al., 2019), intracoronary imaging (Gao et al., 2019), and
functional magnetic resonance imaging, which is a non-invasive
brain imaging technique (fMRI) (Golby et al., 2005), have been
used in order to analyze and detect disorders within body and
brain (Zhang et al., 2012; Han et al., 2013). Due to high spatial
resolution, fMRI is vastly used among researchers in order to
monitor brain activities, especially in AD and all its stages
in which detecting abnormalities within small brain regions is
essential (Dennis and Thompson, 2014). An fMRI sample is
naturally a 4D tensor consisting of 3D time-varying voxels, and
each voxel contains an intensity value that is proportional to the
strength of the Blood Oxygenation Level Dependent (BOLD)
signal, which is ameasure of the changes in blood flow to estimate
the activity of different brain regions. Resting-state fMRI (rs-
fMRI) is an fMRI technique in which the patient is asked to
rest during the whole scan and it focuses on the low-frequency
(< 0.1Hz) oscillations of BOLD signal presenting the underlying
neuronal activation patterns of brain regions. rs-fMRI is usually
used in order to analyze brain diseases like AD or Autism
(Leonardi et al., 2013; Kazeminejad and Sotero, 2019; Nguyen
et al., 2019). Different toolboxes such as GraphVar (Waller et al.,
2018), GraphCNN (Zhang et al., 2019), and BrainNetClass (Zhou
et al., 2020) are also developed to aid this cause.

Since each fMRI series consists of hundreds of thousands of
voxels, which are often highly correlated with the surrounding
voxels in the brain volume, parcellation of the brain for further
analysis has moved toward the use of anatomical atlases. These
atlases are strictly defined using anatomical features of the brain
like locations of common gyri and do not rely on any functional
information. To generate data using an atlas-based approach, the
BOLD signal from all voxels is averaged within each brain region
called region of interest (ROI) (Stanley et al., 2013). By putting
together the average time series for all the ROIs, the ith series
becomes Xi ∈ R

T×R, i = {1, 2, · · · , S}, in which R, T, and S are
the number of ROIs, time points, and samples, respectively. This
process is illustrated in Figure 1

There are two major studies associated with rs-fMRI data:
finding common brain disorders caused by diseases such as AD,
autism, schizophrenia, and so on, and more recently detecting
patients with brain disorders using classification techniques
(de Vos et al., 2018; Du et al., 2018). Due to the high
dimensionality of data along with the nature of diseases such
as eMCI, which does not show any reliable clinical symptoms,
researchers have moved toward advanced machine learning
techniques in order to achieve more reliable analysis (Cuingnet
et al., 2011).

A powerful tool that is commonly used in order to
achieve aforementioned goals is the functional connectivity (FC)
network. Let Xi be the ith sample, its corresponding FC, and
X̄ is a region × region matrix in which x̄ij represents the FC
between the ith and jth ROI. Functional connectivity is an
observable phenomenon quantifiable with measures of statistical
dependencies such as correlations, coherence, or transfer entropy

(Friston, 2011). Recent studies have shown that some brain
disorders such as AD could alter the way some brain regions
interact with each other. For example, compared with healthy
subjects, AD patients have been found with decreased FC
between the hippocampus and other brain regions, and MCI
patients have been observed with increased FC between the
frontal lobe and other brain regions (Dennis and Thompson,
2014).

FCs are also used as features in classification. So, instead of
using Xi as the ith sample, its corresponding FC, that is, X̄i, is
used as a feature. Common techniques for calculating FC, that
is, simple statistical measures such as coherence and Pearson
correlation, allow for different ambiguities (Smith, 2012; Reid
et al., 2019). And since brain alterations in early MCI are tiny,
more sophisticated and computationally expensive methods such
as partial correlation (Li Y. et al., 2018; Pervaiz et al., 2020),
high-order networks (Chen et al., 2016), and spectral clustering
(Liu et al., 2018) are required in order to achieve a better FC.
The computational cost of a sophisticated FC is usually high and
also its quality affects the performance of the learning process
massively. Also, since the conventional classifiers like Support
VectorMachine (SVM) or k-NN works on data in vector format,
these matrix features should be vectorized in order be fed to
these classifiers. This vectorization leads to high-dimensional
vectors that produce poor performance due to the phenomenon
known as the curse of dimensionality. Alongside the curse of
dimensionality, vectorization also destroys potential information
embedded in the structure of data. This problem has been studied
especially in image data in which vectorization destroys the
spatial relations within an image (Ahmadi and Rezghi, 2020).

In this paper, based on high-order tensor decomposition,
we have created a framework in which the aforementioned
goals, that is finding a general FC and detecting a disorder
through classification, could be achieved via a single High-
Order Singular Value Decomposition (HOSVD) of each class.
Here based on latent variables obtained by HOSVD, a general
representative pattern of FC for eMCI and normal controls are
obtained. As it was mentioned before, finding a proper FC is
a challenging task. Obtaining an FC via the proposed method
is not only fast and straightforward, but also very accurate.
The majority of connectivity patterns detected by this method
have been observed and studied in several separated types of
research (cited in the experimental studies section), which show
the reliability and power of the proposed method. Along with
these connections, we have also detected novel connectivities
especially regarding the cerebellum, which is usually discarded
in the analysis of AD.

The proposed classifier is also much faster than the state-
of-the art classifiers, and also uses the obtained rs-fMRI data
directly in the classification process rather than calculating its
corresponding FC matrix. Being able to feed Xis directly to the
classifier saves us from a lot of problems related to calculating
the proper FC. It also shows that the proposed classifier is strong
enough to detect tiny alterations, which other state-of-the-art
methods rely on finding FC to highlight.

To verify our approach, we conducted an extensive
experimental study on rs-fMRI data from the benchmark
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FIGURE 1 | The process of obtaining Xi ∈ R
T×R, i = {1, 2, · · · ,S}.

dataset ADNI. As will be seen, the results demonstrate the
effectiveness and advantages of our method. Specifically, the
proposed framework not only grants us superior classification
accuracy to that from other methods, but it is also much faster
and more stable against different data selection schemes. We
have also confirmed our achieved general FC matrix using
empirical data on the eMCI and normal FC patterns.

2. RELATED WORKS

As it was mentioned previously, obtaining and classifying
FC matrices have become the dominant approach toward
eMCI analysis. Variety of methods such as pairwise Pearson’s
correlation coefficient, sparse representation (Jie et al., 2013),
and Sparse Inverse Covariance Estimation (SICE) (Huang et al.,
2010) exist to obtain an FC. While the first two are easy to
understand and can capture pairwise functional relationship
based on a pair of ROIs, the latter can account for more complex
interactions among multiple ROIs, but the estimation of partial
correlation involves an inversion of a covariance matrix, which
may be ill posed due to the singularity of the covariance matrix.
These methods result in vastly different networks (Du et al.,
2018). On the other hand, computing the correlations, based
on the entire time series of fMRI data simply measures the FC
between ROIs with a scalar value, which is fixed across time.
This actually implicitly hypothesizes the Stationary interaction
patterns among ROIs, which will result in a static functional
connectivity (sFC). As a result, this method may overlook the
complex and dynamic interaction patterns among ROIs, which
are essentially time-varying (since the phase is not locked for
every subject). In order to overcome this issue, Non-stationary
methods have been proposed, which result in more complex
networks and also known as dynamic functional connectivity
(dFC) (Leonardi and Van De Ville, 2015; Kam et al., 2019). The
most common and straightforward way to investigate dFC is
using windowed FC, which consists of calculating a given FC
measure, for example, the Pearson correlation coefficient, over
consecutive windowed segments of the data (Zalesky et al., 2014).
Although such an analysis seems straightforward, there are also
pitfalls associated with it, which may cause in a non-accurate FC
network (Hindriks et al., 2016).

In the following, we briefly discuss two state-of-the-art eMCI
classification techniques belonging to these two paradigms:

Kernel compact SICE (K−SIEC): SICE matrix have proven
itself to be one of the best sFC models (Huang et al., 2010; Ng
et al., 2013; Colclough et al., 2018; Foti and Fox, 2019), which is
extracted via the following optimization:

S∗ = argmax
S≻0

log
(

det(S)
)

− tr(CS)− λ ‖S‖1 (1)

where C is the sample-based covariance matrix; det(1), tr(1),
and ‖.‖1 denote the determinant, trace, and the sum of the
absolute values of the entries of a matrix, respectively. In
classification with FC features, the vectorized SICE of each
sample is used (Leonardi et al., 2013). The occurrence of the
curse of dimensionality and losing useful information contained
in the SICE matrices [like symmetric positive definite (SPD)
property] are twomain drawbacks of this vectorization approach.
As an inverse covariance matrix, an SICE matrix is SPD. This
inherent property restricts SICE matrices to a lower dimensional
Riemannian manifold rather than the full dimensional Euclidean
space. This property allows some SPD manifold-based distances,
like log-Euclidean distance (Arsigny et al., 2006) and Root Stein
divergence (Sra, 2012) to be employed in kernel-based PCA to
extract a compact representation of brain network (Zhang et al.,
2015). The power of this method resides in a massive dimension
reduction of SICE using its SPD property. The performance of
this method also heavily relies on the choice of sparsity parameter
λ for SICE calculations and the number of top eigenvectorsm.

High−order networks (HON): This method which is
proposed in Chen et al. (2016) belongs to non-stationary
paradigm and uses the so-called high-order networks as features
for classification purposes. It uses the sliding-window technique
in order to split the time series into smaller pieces and then
find the relation between them (Chang and Glover, 2010;

Handwerker et al., 2012; Allen et al., 2014). Let x(l)i (k) ∈ R
N

denotes the kth segment of the ith region in the lth sample. For

each sample, a network with nodes x(l)i (k) could be constructed,
in which its edge weights are obtained as

C(l)
ij (k) = corr

(

x(l)i (k), x(l)j (k).
)
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Here, the weight C(l)
ij (k) represents the pairwise Pearson’s

correlation coefficients between the ith and the jth ROIs of the
lth subject using the kth segment of subseries. Now

y(l)ij =
[

C(l)
ij (1),C

(l)
ij (2), · · · ,C

(K)
ij (1)

]

∈ R
K

represents the similarity of the ith and jth ROIs of the lth sample

in all segments. For each l by considering y(l)ij as nodes of a
networks with weights

H(l)
ij,pq = corr

(

y(l)ij , y
(l)
pq

)

a higher-order network is obtained for each sample. Here for

each pair of correlation time series yij and ypq, H
(l)
ij,pq indicates

how the correlation between the ith and the jth ROIs influences
the correlation between the pth and the qth ROIs. So for each

sample its higher-order networks {H(l)
ij,pq} will be a matrix with

size R4 × R4(R is the number of regions), which will lead to a
large-scale high-order FC network, containing at least thousands
of vertices and millions of edges. In order to overcome this
issue, the correlation time series within each subject are grouped
into different clusters. Then, the correlation computations are
carried out between the means of clusters. After reducing the
network size, the weighted-graph local clustering coefficients is
used to select the key features for each network and then an
SVM classifier is trained in order to classify the obtained features.
As a result of constructing a high-order network, the notion of
a physical ROI become vague and thus such networks are not
preferable choices in order to analyze functional connectivities.

Our method overcomes the dynamic-stationary problem of
FC construction by working in HOSVD-based domain, which
considers the dynamic nature of data and is much more
sophisticated than using a windowed FC. The obtained FC
also considers all subjects within a class simultaneously, rather
than calculating FC for each subject separately that highlights
common patterns in a class and eliminates possible outliers
within data. The proposed framework also does not require any
FC calculations for classification, which is a major advantage
since finding a proper FC for each subject might be a very
challenging task.

Multilinear approaches have been used before in order to
analyze fMRI data. For example, Park (2011) uses multilinear
PCA to classify fMRI data by Subject and Motor Task. Ozdemir
et al. (2017) and Al-sharoa et al. (2018) use tensor decomposition
and clustering techniques for analyzing brain connectivity
networks and proves the dynamic nature of rs-fMRI. Recently,
Ma et al. (2016) and He et al. (2017) proposed a multilinear
method for voxel-wise analysis of rs-fMRI, which is used in order
to detect late AD and some other diseases. Leonardi and Van
De Ville (2013) considers dynamic whole-brain FC estimated
from fMRI data acquired during alternating epochs of resting
and watching of movie excerpts, and uses HOSVD in order
to retrieve connectivity maps with associated time courses and
subject loadings. This method uses the sliding-window technique
in order to estimate the dynamic connectivity matrix for each

subject, and then it constructs a 3-way tensor R ∈ RC×T×T ,
by stacking the dynamic correlation matrices R of all subjects.
Considering the HOSVD of R, this method obtains a matrix
columns of which could be interpreted as group connectivity
maps. There are similarities between this method and ours
since they both take advantage of HOSVD. But our framework
introduces major advantages such as (1) our framework does not
require any FC calculations for its classifier. And (2), it is able to
work with rs-fMRI, which is harder due to less constraint status
of subjects.

3. NOTATION AND PRELIMINARIES

Tensors can be considered as a generalization of vectors and
matrices of high dimensions.We use calligraphic letters to denote
the tensors, for example, (A,B). Let A ∈ R

I1×I2×I3 denote an
order-3 tensor. Different “dimensions” of tensors are referred to
as modes. We will use both standard subscripts and “MATLAB-
like” notation to show tensor elements as follows:

A(i, j, k) = aijk.

A fiber is a subtensor, where all indices but one are fixed. For
example, mode-2 fibers ofA have the following form:

A(i, :, j) ∈ R
I2 .

The mode-n product of an order-M tensor A ∈ R
I1×···×IM by a

matrix X ∈ R
K×In is defined as:

R
I1×···×In−1×K×In+1×···×IM ∋ B = (X)n · A, (2)

where,

bi1 ,··· ,iM =
In

∑

l=1

xin,l , ai1 ,...,in−1 ,l,in+1 ,...,iM .

This means that all mode-n fibers of A are multiplied by the
matrix X. The notation (2) was suggested by De Silva and Lim
(2008). An alternative notation was earlier given in De Lathauwer
et al. (2000). (X)n · A is the same as A ×n X in that system.
The Frobenius norm of the order-M tensor A can be defined as
‖A‖ =

∑

i1 ,··· ,iM a2i1 ,··· ,iM .

3.1. Higher-Order Singular Value
Decomposition
HOSVD is one common extension of singular value
decomposition to the tensors (De Lathauwer et al., 2000).
Using HOSVD, every order-M tensor A ∈ R

I1×···×IM can be
decomposed as:

A =
(

U(1), · · · ,U(M)
)

· S (3)

where orthogonal matricesU(i) are singular matrices of tensorA.
Here, U(i) is the left singular matrix of A(i), in which its column
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vectors are the mode-n fibers of A. The core tensor S is a real
tensor of the same dimensions asA and

S =
(

U(1)T , · · · ,U(M)T
)

· A

Although this core tensor is not diagonal as in the case of SVD of
matrices, it satisfies the following conditions:

• All orthogonality property:Any two different slices along the
same mode are orthogonal. This property of core tensor S is
named as all orthogonality.

• The ordering property: The values skj =
∥

∥S(:, · · · , :, j, :, · · · , :)
∥

∥, where j is in the kth mode of S,
are named mode-k singular values of A. It can be shown that
for every k

sk1 ≥ sk2 ≥ · · · ≥ skn ≥ 0, k = 0, · · · ,M, (4)

are equal to the singular values of the matrix A(k). This means
that the norms of the slices along every mode are ordered.

• Oscillation: It can be shown that as the indices increase, the
singular vectors of each mode shows more oscillation. Based
on this property, it can be shown that noises and outliers
within the data are transferred into these high oscillation
parts (Rezghi, 2017). Based on this fact and also the ordering
property, the truncated version of HOSVD can be deployed as
a noise reduction and compression tool (Lv and Wang, 2019).

The ordering property (4) demonstrates that, in the same way
as matrices, singular values measure the energy of the tensor.
So, it is easy to see that the energy of core tensor S focused on
the elements of S with small indices. This property of HOSVD
(similar to SVD) is very useful in the applications that encounter
denoising problems. So, ifU l

kl
contains the first kl singular matrix

and Ŝ = S(1 : k1, · · · , 1 : kM), the following truncated HOSVD:

Â =
(

U(1)
k1

, · · · ,U(M)
kM

)

1 :M
· Ŝ,

is a rank-(k1, · · · .kM) approximation of A. Although this is not
an optimal rank-(k1, · · · .kM) approximation ofA, it is still a good
approximation and we have:

∥

∥

∥
A− Â

∥

∥

∥
=

M
∑

i=1

ri
∑

j=ki+1

s(i)
2

j ,

where ri is the rank of Ai (De Lathauwer et al., 2000).

4. PROPOSED FMRI ANALYSIS
FRAMEWORK BASED ON HOSVD

In this section, which is divided into three subsections we
first tackle the problem of classification, that is, designing a
discriminant function that could predict the label of an unknown
test subject. The second part describes a technique, which would
enhance the designed classifier and the third part is allocated to
find a general connectivity network for each class (e.g., eMCI

subjects). All three aforementioned goals, that is, classification
and its enhancement and finding a general FC for each class,
evolve around a single HOSVD of each class, which provides us
with basis for each mode (time, region, and sample) and enables
us to capture the essence of each feature in a few low dimensional
slices. We will use the obtained low-dimensional bases along the
sample and region mode in order to design our discriminant
function and obtain the general FC. The enhancement technique
also comes from HOSVD characteristics, which enables us to
involve test samples in the training process without forcing any
a priori knowledge into the classifier.

4.1. eMCI Classification
Let tensors X(i) ∈ R

T×R×Si consists of normal and eMCI data for
i = 1,2, respectively. Here S1, S2 are the number of normal and
eMCI samples. For tensor X(i), the decomposition

X
(i) =

(

U(i),V(i),W(i)
)

· S
(i), (5)

is known as HOSVD, where orthogonal matrices U(i) ∈
R
T×T ,V(i) ∈ R

R×R, andW(i) ∈ R
Si×Si are known as modes-1,2,3

singular matrices ofX(i), and S(i) is the corresponding core tensor
(Rezghi, 2017). Here,U(i) is a base of all mode-1 fibersX(i)(:, l, k),
which indicates the behavior of lth region of the kth sample of
the ith class in all time points. Also V(i) is a base of all mode-2
fibers X(l, :, k), which indicates the behavior of all regions of lth
sample of the ith class in the kth time. Due to the properties of
HOSVD inherited from svd, the first columns of the kth singular
matrix (k = 1, 2, 3) have more ability in construction of main
parts of kth fibers (Rezghi, 2017). Therefore, a suitable dimension
reduction would be to project the mode-1 and mode-2 fibers into
space spanned by the first ki1 and ki2 singular vectors of modes-

1,2, which will be denoted by U(i)
ki1

and V(i)
ki2
, respectively. This

dimension reduction could be done as:

R
k1×k2×Si ∋ X̄

(i) =
(

U(i)T
ki1

,VT
ki2

)

1,2
· X

(i) (6)

It is clear that this reduction could be done separately on each
mode without the need to fold any of them. This means that
the structural integrity of data is preserved during the dimension
reduction process, which is a key aspect in our work. It has been
shown that even choosing relatively small values for k11 and ki2
would result in a very good reconstruction error (Ahmadi and
Rezghi, 2020).

Inspired by the structure of this reduction, in the following
we present a tensor-based discriminant function. By HOSVD

decomposition of X(i), the projected data X
(i)

in Equation (6)
becomes

X̄
(i) =

([

Iki1
0
]

,
[

Iki2
0
]

,W(i)
)

· S
(i)

=
(

W(i)
)

3
· S

(i)(1 : k1, 1 : k2, :)
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So, each sample of the ith class in the reduced space has the
following form:

X̄
(i)
(:, :, k) =

(

W(i)(k, :)
)

3
· S

(i)(1 : ki1, 1 : k
i
2, :)

=
Si

∑

k′=1

W(i)(k, k′) · S
(i)(1 : ki1, 1 : k

i
2, k

′).

This means that each sample in the ith class could be represented

as linear combination of the slices of the tensor S
(i) =

S(i)(1 : ki1, 1 : k
i
2, :). So if a test data like X ∈ R

T×R belongs to
the ith class, it is natural to expect that its projected version into
principle region and times spaces, spanned by Uki1

,Vki2
, that is,

Z(i) =
(

U(i)T
ki1

,V(i)T
ki2

)

1,2
· X

could be approximated well as a linear combination of the slices

of the tensor S
(i)

as follows:

Z(i) ≈
Si

∑

k=1

λikS
(i)
(:, :, k). (7)

Based on this viewpoint, each test data X could be assigned to
a class that its projected version has the best approximation in
the form (7). Due to the importance of core tensor elements with
small indices in the reconstruction of the signal part of data in
comparison with its last parts, the small number ki3 < Si of slices

S
(i)
(:, :, k) could be used in (7). In this viewpoint, each test data X

would be assigned to the lth class, if rl = mini=1,2 ri, where

ri = min
λi

‖Z(i) −
ki3

∑

k=1

λikS
(i)
(:, :, k)‖, λi =







λi1
...

λsi






(8)

ri shows the reconstruction error of the projected version of X in
the ith class.

4.2. Enhancing the Classifier
Consider that the test data X is added to dataset X(i) of the ith
class. So the new dataset will be˜X∈ R

T×R×(Si+1):

˜X
(i)
(:, :, 1 : Si) = X

(i),

˜X
(i)
(:, :, Si + 1) = X.

If X belongs to the ith class, then in the decomposition of ˜X
(i)
, X

would be able to reinforce all slices of the core tensor and singular
matrices. And thus enhances the reconstruction ability of (8) that
would lead into a lower reconstruction error for the test subjectX.
On the other hand, if X does not belong to the ith class, HOSVD
would naturally consider it as noise [based on ordering property
(4)], sinceX is not similar to other samples and thus does not play
a key role in reconstructing them, so its effect would be on the last
slices of the core tensor and singular matrices, that is, slices with
higher indices that are ignored in reconstruction (8).

In order to better demonstrate this effect, we conducted
the following experiment: we randomly chose a test subject
Xn from the class of normal subjects in ADNI dataset (this
dataset is explained in detail in the experimental study section).
The remaining normal samples are then gathered in a tensor
X(1) ∈ R

130×116×37. By adding Xn to this tensor, we obtained

the incremented tensor ˜X
(1) ∈ R

130×116×38. We compute the
HOSVD of these two tensors and plot the absolute mode-3
differences in Figure 2. As can be seen in this figure, since
Xn belongs to the normal class, it effectively changes almost
all singular values and so could improve the approximation in
Equation (8). Then we randomly select an eMCI sample Xe and
add it to X(1) to construct another incremented version of it. The
orange line in equation (Figure 2) shows the absolute mode-3
differences between these two tensors. It can be observed that
adding an eMCI subject to the class of normal subjects only
affected the last singular values and have a very low impact on
the first singular values.

It can be concluded that adding unknown labeled test data
to all classes before the basis extraction process would heavily
impact the true class bases, and it has a rather negligible or
in ideal case zero impact on the bases of other classes. As a
result, after extracting the basis for each class in this manner, the
reconstruction error (Equation 8) would be lower for the true
class. Note that in the training process, the test data are added
to all classes and they are uninformed of its label. Thus, no a
priori knowledge is sneaked into the decision-making process.
Algorithm (1) summarizes the proposed classification method.

Algorithm 1: Tensor-based classification method

1) Input: Normal train data X(1), eMCI train data, X(2)

kij, i, j = 1, 2.
Test data X

2) Construct˜X
(i)

for i = 1, 2, by adding X to both tensors.

3) Compute Uki1
,Vki2

and S(1 : ki1, 1 : k
i
2, :) of˜X

(i)
, for i= 1,2.

4) Compute Z(i) =
(

U(i)T
ki1

,V(i)T
ki2

)

1,2
· X, i = 1, 2.

5) Comput r1, r2 from (8)
6) Assign X to class l, if l = argmini{ri}

4.3. General Functional Connectivity
In the ith class, which is represented by X(i), the slice X(i)(:, l, :)
denotes the behavior of lth region of all samples in all times.
This slice could be considered as a feature for the lth region of
the ith class, so each region is represented as a Times-sample
feature matrix. By the properties of singular matrices in modes-
1,3, and for appropriate values ki1, k

i
3, each region X(:, l, :) could

be reduced in both time and sample features separately based on

mode-1 and mode-3 truncated singular matrices U(i)
ki1

and W(i)
k3

as follows:

Y
(i)(:, l, :) =

(

U(i)
ki1

T
,W(i)

k3

T
)

1,3
· X

(i)(:, l, :). (9)
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FIGURE 2 | The absolute value difference of the third mode singular values of normal and eMCI data with and without involving test data in construction of HOSVD.

Here Y(i)(:, l, :) denotes a reduced version of X(i)(:, l, :) into space

spanned by U(i)
ki1

andW(i)
k3

in modes-1,3. So,

R
ki1×R×ki3 ∋ Y

(i) =
(

U(i)
ki1

T
,W(i)

ki3

T
)

1,3
· X

(i) (10)

denotes all reduced regions of the ith class. By this structure and
substituting the HOSVD decomposition ofX(i) in (10), we obtain

Y
(i) =

([

Iki1
0
]

,V ,
[

Iki3
0
])

· S
(i)

= (V)2 · S
(i)(1 : ki1, :, 1 : k

i
3)

thus

Y
(i)(:, k, :) =

R
∑

k′
V(i)(k, k′)C̄

(i)
(:, k′, :)

=
(

V(i)(k, :)
)

2
· C

(i) (11)

in which

R
ki1×R×ki3 ∋ C

(i) = S(1 : ki1, :, 1 : k
i
3).

Equation (11) shows that the reduced version of each region
in the ith class could be written as the linear combinations
of mode-2 slices of C(i). So the coefficients of slices in this
linear combination could be considered as a new feature for
the lth region of the ith class. Also as we mentioned before, the
first slices are better than the last ones to reflect the principle
properties of the data. So for appropriate ki3 we could select only

the first coefficients in (11) as new features for the lth region.
Mathematically, this means each region in the ith class could be

represented by a new feature vector V(l, 1; ki3) ∈ R
ki3 .

This approach has two main benefits: (1) each region could be
represented only by a vector with size ki3 instead of a large time-
sample matrix, and (2) the bases for each region is obtained in
an HOSVD-based domain that is similar to Fourier frequency
domain; but unlike Fourier, this transformation to HOSVD-
domain is data dependent and hence the time-varying nature
of rs-fMRI signals (2) would be taken into consideration (Rövid
et al., 2013; Ozdemir et al., 2017). After representing each region
with a single low dimensional vector, variety of methods such as
SICE and othermentioned similaritymeasures could be deployed
in order to construct a general FC for each class.

5. EXPERIMENTAL STUDY

5.1. Data Acquisition and Experimental
Settings
RS-fMRI data of early MCI and NC patients were downloaded
from ADNI website1. After removing subjects that had problems
in the preprocessing steps, 44 eMCI and 38 NC subjects
remained. The IDs of the 82 (38 NC and 44 early MCI) subjects
are provided in the Supplementary Material.

The data are acquired on a 3-T (Philips) scanner with
TR/TE set as 3,000/30 ms and flip angle of 80. Each series
has 140 volumes, and each volume consists of 48 slices of
image matrices with dimensions 64 × 64 with voxel size of
3.31 × 3.31 × 3.31 mm3. The preprocessing is carried out using

1http://adni.loni.usc.edu
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SPM12 and DPARSFA (Chao-Gan and Yu-Feng, 2010). The
first 10 acquired rs-fMRI volumes of each subject were initially
discarded before any further processing to ensure magnetization
equilibrium. The remaining 130 volumes were then corrected
for the staggered order of slice acquisition that was used during
echoplanar scanning. The correction ensures the data on each
slice correspond to the same point in time. To further reduce the
effects of nuisance signals, regression of ventricle andWM signals
as well as six head-motion profiles was performed. rs-fMRI
images were then normalized to the MNI space with resolution
of 3.31 × 3.31 × 3.31 mm3 (Wee et al., 2016). Participants
with too much head motion are excluded. The normalized brain
images are warped into automatic anatomical labeling (AAL)
(Tzourio-Mazoyer et al., 2002) atlas to obtain 116 ROIs as nodes.
By following common practice (Park, 2011; Leonardi and Van
De Ville, 2013; Al-sharoa et al., 2018), the ROI mean time series
are extracted by averaging the time series from all voxels within
each ROI and then bandpass filtered to obtainmultiple sub-bands
as in Al-sharoa et al. (2018). After the preprocessing steps, we
obtained the normal samples X(1) ∈ R

130×116×38 and eMCI
samples X(2) ∈ R

130×116×44.

5.2. Classification
Almost every subject in ADNI dataset has several (≈ 6)
individual rs-fMRI data series, that is, a patient might be scanned
several times during a period of time. Usually, a random rs-
fMRI data are selected and enters the processing step (Zhang
et al., 2015). This random selection may cause several problems.
Since the number of train data is very low, a small alteration in
the samples could drastically change the set of input parameters
in order to achieve the highest accuracy. Also achieving high-
quality results with a classifier does not guarantee its effectiveness
on other datasets even with fine-tuning the parameters, since
the training set may contain outliers and unidentified corrupted
data. In order to show that the proposed framework is less
sensitive against the choice of different permutations of data,
we have selected 18 different random permutations (i.e., each
permutation contains a different rs-fMRI series, for each subject)
and tested two state of the art eMCI classification methods on
them: HON (Chen et al., 2016) and k−SICE (Zhang et al.,
2015). We have used five evaluation measures: accuracy (ACC),
sensitivity (SEN), Youden’s index (YI), F-score, and balanced
accuracy (BAC). The detailed definitions of these five statistical
measures are provided in equation (Table 1), where TP, TN, FP,
and FN denote the true positive, true negative, false positive, and
false negative, respectively, and precision = TP

TP+FP and recall =
TP

TP+FN . In this article, we treat the eMCI samples as positive class
and the NC samples as negative class.

5.2.1. Classification Performance

After fine-tuning the input parameter set for each method, the
classification accuracy measure (ACC) shows that for 16 out of 18
different random selected datasets, our approach performs better
than k-SICE the same also holds for 15 datasets comparing to
HON, that is, in 88.8% of datasets the proposed method works
better than k-SICE, and in 83.3% of datasets, it works better than
FON. The highest classification accuracy (86.59%) is achieved

TABLE 1 | Definitions of five statistical measurement indices.

Measurement Definition

Acc
TP+ TN

TP+ FP+ TN + FN

SEN
TP

TP+ FN

YI SEN + SPE − 1

F-Score 2× precession× recall

precesion+ recall

BAC
1

2
(SEN+ SPE)

TABLE 2 | The average of different classification measurements in all dataset

permutations in percent.

Method ACC F-Score SEN YI BAC

k-SICE 75.57 77.36 78.50 50.69 75.34

HON 75.66 77.44 78.40 50.89 75.44

Proposed 80.43 82.20 84.60 60.20 80.09

Higher values are indicated by bold numbers.

with the proposed method in the 15th sample data. The highest
accuracy for the HON (84.15%) is achieved in the 14th, and the
highest accuracy for the SICE method (85.37%) is achieved in
the 6th sample data. As it was mentioned before, being stable
when the input dataset changes is a very important aspect for a
classifier, in order to measure the stability, the standard deviation
of accuracy along with other measures is calculated. The standard
of accuracy for the proposed method is 0.64 times less than HON
and 1.73 times less than k-SICE method. Similar results hold for
other classification measures as well.

Figure 3 shows the performance of these three methods in all
five measurements. For a better demonstration, Table 2 provides
the average of several classification measurements scores for all
dataset permutations. As it can be seen in this table, the average
accuracy of proposed method, which is 80.43%, is 4.77% higher
than the next method HON and 4.86% better than k-SICE. It
is noteworthy that the other two methods, that is, HON and
SICE, show similar results in average. The average F-score of the
proposed method is also higher than other two, which shows a
balanced prediction for both classes. Having a higher sensitivity
(SEN) score, which measures the proportion of actual positives
that are correctly identified as such, shows that the proposed
method works better in detecting eMCI subjects. The YI is a
measure for evaluating the biomarker effectiveness and having
a higher YI yields a more informative decision (Youden, 1950).
Our YI score is roughly 1.2 times better that other two methods.
Similar to F-score, having a higher Balanced Accuracy Score
(BAC) yields more balanced predictions. It is also noteworthy
that the proposed method have much less standard deviation
in all five measurements, which indicates its effectiveness and
robustness toward different datasets.

One other key aspect of the proposed classifier is that it
works significantly faster that the other two, especially in the
training process. Our method is more than 600 times faster than
HON and 20 times faster than SICE. Having a huge execution
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FIGURE 3 | Comparison of proposed method (Prop) with K-SICE and HON applied on 18 different dataset permutations in five different classification evaluation

measures. (A–E) show accuracy, F-Score, balanced accuracy, sensitivity, and Youden Index, respectively, along with the maximum, minimum, and standard deviation

of each one presented in the embedded table (F).

time especially affects the parameter selection scheme since all
these methods use cross-validation procedure in order to find
the optimal parameters, which itself requires several runs of
the algorithm.

5.3. Functional Connectivity Network
The vector features for both normal and eMCI classes were
obtained via the proposedmethod as it is described in section 4.3.
Due to the aforementioned qualities of partial correlation, SICE
is deployed in order to obtain the final FC. In order to better
highlight the differences between normal and eMCI subjects,
a difference graph D is constructed by subtracting the normal
FC from the eMCI FC. This graph could be seen in Figure 4.
The nodes of D show the ROIs according to the AAL atlas.
The size of each node is proportional to its graph clustering
coefficient, that is, the bigger node demonstrates higher activity
in eMCI subjects in the corresponding ROI. Similar to nodes,
the size of each edge is also proportional to the correlation
between two ROIs. In addition, the edges are also color coded
in a way that the green edges show the positive edges in D and
the red edges show the negative edges in D. In this manner,
the green edges demonstrate a decrease in activity between

the corresponding nodes in eMCI subjects, and the red edges
show increasing activity between corresponding ROIs in the
eMCI subjects.

As it can be seen in the difference graph, the big nodes,
that is, ROIs with higher activities, do not necessarily establish
strong connections with the other nodes. As an obvious example,
higher activities in lingual gyrus (ROI index: 47, 48) (He et al.,
2007), calcarine sulcus (ROI index: 43, 44) (Bakkour et al.,
2013; Brewer and Barton, 2014), supplementary motor area (ROI
index: 19, 20) (Brewer and Barton, 2014; Jacobsen et al., 2015),
and temporal_mid_L (ROI index: 85) (Kosicek and Hecimovic,
2013) are easily detectable. The majority of ROIs located in
frontal lobe also show rather high activities compared to normal
subjects (Dennis and Thompson, 2014; Salvatore et al., 2015).

Similar to the nodes, the strong edge between two ROIs does
not necessarily require the nodes to be highly active in eMCI,
although a strong edge does indicate high activities and FC
between the two corresponding ROIs. The difference in graph
shows a significant increase in connectivity between Rectus (ROI
index: 28, 27 in frontal lobe) and Parietal_Sup_R (ROI index:
60 in parietal lobe) (Brickman et al., 2015; De Reuck et al.,
2015), Frontal_Inf_Orb_R (ROI index: 16 in frontal lobe) and
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FIGURE 4 | The difference graph. This graph is obtained via subtracting the functional connectivity of eMCI subjects from normal subjects. Each circle represents an

ROI in AAL atlas, and the color and size of each circle are proportional to the graph clustering coefficient of the difference graph. Red: more activity in EMCI, green:

less activity in EMCI.

Cingulum_Ant (ROI index: 31, 32 in limbic lobe) (Perani et al.,
2017), Insula_L, Temporal_Pole_Sup_L (ROI index: 29, 83 in
limbic lobe) and Pallidum_R, Caudate_R (ROI index: 29, 83 in
sub-cortical gray nuclei) (Watson et al., 2016). It can also be
seen that within activities, frontal lobe also increased in patients
with eMCI (Cai et al., 2015). There is a decrease in connectivity
between Amygdala_L (ROI index: 41 in sub-cortical gray nuclei)
with Frontal_Mid_Orb_R (ROI index: 10 in sub-frontal lobe)
and ParaHippocampal_L (ROI index: 39 in sub-limbic lobe)
(Ortner et al., 2016). The connectivity between Heschl_L (ROI
index: 79 in temporal lobe) and two ROIs Temporal_Mid_R
(ROI index: 86 also in temporal lobe) and Occipital_Inf_R
(ROI index: 54 in occipital lobe) also decreased in eMCI
(Steketee et al., 2016).

5.3.1. Regarding the Cerebellum and Vermis
In fMRI data analysis and especially in AD studies, ROIs within
the cerebellum and vermis are usually excluded since their role
was regarded as insignificant (Sanz-Arigita et al., 2010; Zhang
et al., 2011). Recent studies have shown that the traditional
assumption that cerebral area is essential only to the coordination
of voluntary motor activity and motor learning is not valid and
indicates the significant role of the cerebellum in nervous system
function, cognition, and emotion (Jacobs et al., 2017).

As it can be seen in the difference graph that we
obtained, ROIs within cerebellum and vermis are highly active
and both their Intra and interconnections are noticeable.
There is increased FC between the limbic lobe, especially
Hippocampus_R, Temporal_Pole_Mid (ROI index: 38, 87, 88)
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and cerebral areas in eMCI patients. Also, the connectivity
between occipital lobe, especially occipital_mid_R (ROI index:
52), the frontal lobe, especially in frontal_mid_orb (ROI
index: 9,10), and cerebral areas seems to decrease in patients
with eMCI.

6. CONCLUSION

In this article, we proposed a tensor framework for eMCI
diagnosis and FC construction. There are two main issues
associated with rs-fMRI analysis and in particular eMCI
diagnosis. The first is that the majority of state-of-the-art fMRI
classification techniques use the FC matrix as the feature for
their discriminant function; hence, they have to deal with many
challenges that are associated with FC calculations. The second
comes from the fact that FC networks are among the best tools
for studying brain activities, but the stationary and dynamic FC
conflict and the fact that the majority of methods belonging
to these paradigms work only with one sample would lead
to vastly different brain networks. Therefore, we developed a
tensor framework, which is able to directly use the samples
in classification without the need for any FC calculations and
is also able to calculate a general FC network that considers
the time-varying nature of rs-fMRI signals since it works in
the data-dependent HOSVD-domain and is able to consider all
subjects within a class in order to obtain these connectivities.
The proposed method is not only fast, but it also outperforms
state-of-the-art techniques.

One possible drawback of this framework is the need for
HOSVD calculation for both classes in each test phase. Although
this problem is negligible in eMCI classification (since the
number of samples is not high), it could be time consuming
for larger datasets. In order to resolve this issue, incremental
HOSVD calculations may be deployed that will accelerate
the calculations.
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Purpose: The clinical diagnosis of aorta coarctation (CoA) constitutes a challenge, which

is usually tackled by applying the peak systolic pressure gradient (PSPG) method. Recent

advances in computational fluid dynamics (CFD) have suggested that multi-detector

computed tomography angiography (MDCTA)-based CFD can serve as a non-invasive

PSPG measurement. The aim of this study was to validate a new CFD method that does

not require any medical examination data other than MDCTA images for the diagnosis

of CoA.

Materials and methods: Our study included 65 pediatric patients (38 with CoA,

and 27 without CoA). All patients underwent cardiac catheterization to confirm if they

were suffering from CoA or any other congenital heart disease (CHD). A series of

boundary conditions were specified and the simulated results were combined to obtain

a stenosis pressure-flow curve. Subsequently, we built a prediction model and evaluated

its predictive performance by considering the AUC of the ROC by 5-fold cross-validation.

Results: The proposed MDCTA-based CFD method exhibited a good predictive

performance in both the training and test sets (average AUC: 0.948 vs. 0.958; average

accuracies: 0.881 vs. 0.877). It also had a higher predictive accuracy compared with the

non-invasive criteria presented in the European Society of Cardiology (ESC) guidelines

(average accuracies: 0.877 vs. 0.539).

Conclusion: The new non-invasive CFD-based method presented in this work

is a promising approach for the accurate diagnosis of CoA, and will likely benefit

clinical decision-making.

Keywords: hydrodynamics, multidetector computed tomography angiography, non-invasive assessment, aortic

coarctation, congenital heart disease
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INTRODUCTION

The coarctation of the aorta (CoA) is a common congenital
condition encountered in 6 − 10% of live births with congenital
heart diseases (CHD) (Reller et al., 2008). Although CoA can
occur as a solitary lesion, it is often associated with premature
death and substantial late morbidity, including hypertension,
heart failure, and premature coronary artery diseases (Toro-
Salazar et al., 2002). Therefore, accurate diagnoses of CoA
are important. In addition to anatomic evaluations, CoA can
be clinically diagnosed by hemodynamic evaluations through
cardiac catheterization (presently considered the standard
method for its diagnosis and relative clinical decision-making).
The specific diagnostic criterion of CoA is the occurrence of a
peak systolic pressure gradient (PSPG) ≥20 mmHg (Rosenthal,
2001; Nielsen et al., 2005; Vogt et al., 2005; Menon et al., 2012a).
Multi-detector computed tomography angiography (MDCTA)
cannot be used to directly determine the occurrence of a PSPG;
however, MDCTA-based computational fluid dynamics (CFD)
can be employed to acquire hemodynamic information (e.g.,
pressure gradient) from coronary and cerebral arteries (Castro
et al., 2006; Knight et al., 2010; Taylor et al., 2013). Still, the
simulated pressure gradient depends on the applied boundary
conditions, which cannot be directly determined from MDCTA
images. Obtaining accurate boundary conditions is a persistent
challenge for the clinical application of CFD-based methods,
and should be overcome in order to perform unbiased CFD
simulations. One approach to solve this problem would be
to derive the boundary conditions from additional tests [e.g.,
transthoracic echocardiography (TTE) and 4D flow magnetic
resonance imaging (MRI)] (Liu et al., 2016a; Xu et al., 2018; Zhu
et al., 2018). Since CoA is a common CHD among pediatric
patients, however, the need for additional tests is particularly
inconvenient. Another approach would be to estimate the
boundary conditions from several physiological models. This is
similar to what is done when calculating coronary computed
tomography angiography-derived fractional flow reserves (FFR-
CT): several physiological models are used to estimate the
approximate maximal hyperemia condition and obtain the
correspondent boundary conditions. These physiological models
reflect average behaviors and ignore the significant differences
typically observed between pediatric patients, further degrading
the accuracy of the CFD simulation results and limiting their
real-life applicability.

The pressure drop occurring in correspondence of a
coarctation can be approximate determined by using a common
fluid dynamic equation (Gould, 1978; Banerjee et al., 2007):

1p = f Q+ sQ
2

(1)

where 1p is the mean pressure drop, f the viscous friction, s
the expansion loss, and Q the mean flow rate. Aortic coarctation
increases the viscous friction and causes the expansion loss of
the stenosis section, enhancing the pressure drop: possibly, the
first two parameters can be used to assess the hemodynamic
severity of aortic coarctation. The proposed method can be used
to obtain those two parameters by setting a series of boundary

conditions comprised within a normal physiological range, and
then performing a CFD simulation. Since the values of f and
s in Equation 1 are almost independent of the flow rate and
pressure, the results of the proposed method will not be affected
with same parameter as boundary conditions. Compared to the
general CFD method, the one proposed here does not require
anymedical examination data other thanMDCTA images; hence,
it represents a promising approach to achieve a non-invasive
diagnosis of CoA.

The overall objective of the present study was to evaluate
and validate the diagnostic performance of a novel CFD model
developed fromMDCTA imaging data for the diagnosis of CoA.

METHODS AND METHODS

Ethic Approval
This retrospective study was approved by the local institutional
review board following the ethical guidelines of the Declaration
of Helsinki, and written informed consents were waived.

Study Population
This study included a total of 65 subjects: patients with CoA (n=
38, median age = 9 months, ages ranging between 1 month and
14 years; 50% male) and others suspected of having CHD, but
without evidence of CoA (n= 27; median age= 18 months, ages
ranging between 2 months and 10 years; 59% male). All patients
included in this study: (1) underwent MDCTA between February
2012 and September 2019; (2) underwent cardiac catheterization
with recording of the aortic isthmus’ PSPG <2 weeks before
the time of the MDCTA; (3) were not subjected to any surgery
or intervention before MDCTA. Patients with lesions in the
branches of the aorta, or for whom we obtained poor-quality
images, were excluded. More details about the study cohorts are
presented in Table 1 and in the Supplementary Material of this
paper (Supplementary Figure 1).

MDCTA and Cardiac Catheterization
Protocol
MDCTA imaging was performed using an electrocardiographic-
gated “step and shoot protocol” using a second-generation
dual-source CT scanner (Somatom Definition Flash, Siemens
Healthcare, Forchheim, Germany). A short-term sedation of the

TABLE 1 | Patients’ information.

Patients with CoA Patients without CoA P-value

Number 38 27

Age 0.183

Median 9 months 18 months

Range 1 months−14 years 2 months−10 years

Gender 0.614

Male 19 (50%) 16 (59%)

BSA 0.462 0.569 0.193

CoA, coarctation of the aorta; BSA, body surface area.
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FIGURE 1 | Boundary conditions. Geometry of the aorta with one inlet and

four outlet boundaries.

patients was achieved when necessary by administering them a
0.1 mg/ml oral chloral hydrate solution. Scans were performed
in the cranio-caudal direction, from the thoracic inlet to the
bottom of the heart. TheMDCTA involved a gantry rotation time
of 0.28 s, the use of a detector collimation (dimensions = 2 ×
64 × 0.6mm), and that of a CARE kV (with a weight-adapted
grouping for the tube voltage and tube current). The acquisition
window was grouped in the sequential mode at 35%−45% of the
R-R interval. SAFIRE (Strength 3) was adopted as the iterative
reconstruction algorithm, with I26 kernel, a slice thickness of
0.75mm, and an increment of 0.5mm. An iodinated contrast
medium (Iopamidol, 300mg I/ml, BRACCO, Italy) was injected
intravenously (volume to body weight ratio of 1.5–2.0ml/kg)
for imaging, followed by 1.0 ml/kg body weight of a saline

FIGURE 2 | Scheme of the LPM. Outlet boundary condition: a lumped

parameter model with only one resistance is coupled to each outlet.

chaser injected at a rate of 1–2 ml/s. The acquisition delay was
determined based on the time at which the contrast medium
entered both ventricles.

The cardiac catheterization was performed using a Philips
Allura Xper FD10 system (Philips Medical System, Best, the
Netherlands). The PSPG was measured across the coarctation
using the standard procedure, which inserted the catheter probe
into the aortic isthmus of the patients, and recorded the peak
systolic blood pressure of ascending and descending aorta.

Boundary Conditions
The inflow and outflow boundaries are defined in Figure 1.
The wall boundary was considered as a rigid vessel, and the
flow domain was defined as a cavity of the reconstructed
geometry. In the proposed method, a static pressure in the
normal physiological range (80 mmHg) was mapped to the inlet
of the CFDmodels. A lumped parameter model (LPM) with only
one resistance was applied for each outlet, in order to confirm
the outlet boundaries (Figure 2). A total resistance was allocated
to each outlet according to their inverse diameters; then, the
pressure value of each outlet was obtained by the LPM model
(Murray, 1926; Taylor et al., 2013; Xie et al., 2018). The resistance
was initially set to 9.6 mmHg·s /cm3, and subsequently reduced
to 1/2, 1/3, 1/4, 1/5, and 1/6: the steady flow was simulated six
times under six different total resistances for each case.

Post-processing
The CFD simulation process is displayed in the Supplementary

Material (method section, Supplementary Figure 2). The results
of the CFD simulation were elaborated using CFD-Post 19.2
(ANSYS, Inc., Canonsburg, Pennsylvania, USA) and MATLAB
(R2016a, the Math Works, Natick, MA). Only the stenosis
sections with nearby branches are retained for further CFD
analysis (as show in Figure 1), and the start and end of each
lesion were defined by an experienced observer; then, the mean
pressure in correspondence of the start and end sections and
the mean flow rate across the coarctation were obtained from
the simulation results. The pressure drop was defined as the
pressure difference between the start and the end sections of
the coarctation. After substituting the six steady flow simulation
results into Equation 1, we obtained f and s through an iterative
least squares estimation of the non-linear regression (George
and Seber, 2003). Furthermore, the predictive parameters f and s
obtained from the CFD simulation results were used to establish
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FIGURE 3 | Cross-validation pathway. Five equally-sized groups were stratified so to have approximately the same proportion of genders, ages, and patients with

CoA. One of them (20% of the data) was holdout for testing, while the others (80% of the data) were used as the training set. To estimate the CFD performance, we

applied a 5-fold cross-validation procedure on all groups: each time, the CFD simulation was performed on a different training set. The parameters f and s, obtained

from the simulation results, were used to build a prediction equation by using logistic regression, before testing the prediction model on the unseen test set.

a combined diagnosis model by logistic regression.

P = 1

1+ e−(af+bs+c)
(2)

where P is the probability of the patients suffered CoA, f
the viscous friction, s the expansion loss, and a, b, c are
the coefficients obtained by logistic regression analysis using
MedCalc Statistical Software version 19.0.7 (MedCalc Software
bvba, Ostend, Belgium).The predictive performance of this
model was evaluated on the AUC of the ROC curve by 5-
fold cross-validation.

Cross-Validation
To investigate and validate the diagnostic performance of the
proposed method for CoA diagnosis, we randomly divided
the study population into five non-overlapping groups having
the same size. These five groups were stratified so to have
approximately the same proportion of genders, ages, and patients
with CoA. The diagnostic performance was then assessed by
stratified 5-fold cross-validation (Figure 3). Compared to the
conventional sample division method, the main advantages of
the new approach are that: (1) it decreases the variance of the
prediction error, (2) it maximizes the utilization of data from
both the training and test groups, and (3) it avoids the testing
of hypotheses suggested by arbitrarily split data. Overall, the
proposed approach allows an unbiased estimate of the CFD
performance in the diagnosis of CoA, removing uncertainties
linked to the random division of one training group and one
test group (Molinaro et al., 2005; Betancur et al., 2007; Kanamori
et al., 2007; Motwani et al., 2010).

FIGURE 4 | Rank correlation matrix among PSPG, f, and s. PSPG, f, and s

were all positively correlated (p < 0.05). Lighter shades of blue correspond to

lower correlation coefficients that the darker shades. PSPG, peak systolic

pressure gradient; f, viscous friction in Equation 1; s, expansion loss in

Equation 1.

Statistical Analysis
The continuous variables were expressed in the form of mean
± standard deviation (M ± SD). Normality was tested by the
Kolmogorov-Smirnov method, and the variance homogeneity
through the Levene test. The patient gender was analyzed using
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FIGURE 5 | CFD performance for the diagnosis of CoA. (A) ROC for CoA diagnosis in the training set. (B) ROC for CoA diagnosis in the test set.

the Chi-square test, while the age and body surface area (BSA)
data were analyzed through an independent samples t-test. The
accuracy of the aorta reconstruction was validated by comparing
the anatomic information with the Bland-Altman method. The
correlations among the PSPG and CFD simulation results were
evaluated based on a Spearman’s rank correlation analysis. The
diagnosis performance of the CFD method in training sets
and test sets was evaluated using a ROC analysis and pairwise
comparisons of the AUC according to DeLong et al. (Er et al.,
1988). The diagnostic reference standard of the CoA is PSPG >

20 mmHg; therefore, we considered a cut-off value of 20 mmHg.
The statistical analyses were performed using the MedCalc

Statistical Software version 19.0.7 (MedCalc Software bvba,
Ostend, Belgium). All the tests were two-sided, and the results
were considered statistically significant for p < 0.05.

RESULTS

No statistically significant differences we observed in terms of
gender, age, and BSA (p = 0.183, p = 0.614, and p = 0.193,
respectively) between patients with CoA and without CoA.
Excellent agreement was observed between the diameters of the
aorta measured through the CT workstation and those in the
reconstructed models: the bias between the different datasets
were of −0.024 ± 0.134mm, −0.025 ± 0.141mm, and −0.039
± 0.129mm, respectively (Supplementary Figure 3). A good
correlation (rho= 0.861, p < 0.001) was noted between f and s, a
moderate correlation (rho= 0.519, p< 0.001) was noted between
PSPG and s, and a relatively low correlation (rho = 0.292, p <

0.005) was noted between PSPG and f (Figure 4).

Performance of the CFD Method With
Respect to the Training Set
The parameters f and s in Equation 1 were obtained
from the CFD simulation results; then, combined diagnosis

models were established by logistic regression. The CoA
diagnosis performances of these combined diagnosis models
are shown in Figure 5A: all the training sets exhibited
high AUCs (95.2, 96.0, 96.1, 93.4, 93.5%, respectively). The
sensitivities, specificities, accuracy, and other details about
these measurements are presented in Table 2. The sensitivities
and specificities of the training sets exhibited high values
(average values of 84.7 and 92.6%, respectively). The combined
diagnosis models highlighted how 5, 4, 7, 7, and 8 out of
52 patients (in the case of 4, 3, 5, 5, and 6 false-negative
patients, respectively) were misclassified in the five training
sets. The average percentage of correctly classified patients
was 88.1%.

Performance of the CFD Method With
Respect to the Test Sets
To estimate the performance of the CFD method, 5-fold cross-
validation procedure was conducted on the five groups of
data previously established. One combined diagnosis model was
established for each training set, and then tested on the unseen
test set. The performance of the combined diagnosis models
with respect to the test sets is shown in Figure 5B. The five
combined diagnosis models exhibited high AUCs (89.6, 91.7,
79.2, 97.9, 88.9%, respectively). The corresponding prediction
models suggest that 12, 10, 10, 12, and 13 out of 13 patients were
diagnosed correctly for each test set, respectively. Notably, 2, 3,
and 1 patient(s) with CoA were misclassified (i.e., false negative)
in the second, third, and fourth test sets, while no false negative
cases were noted in first and fifth test sets. The performance of f
and s in test sets are presented in Table 3.

Comparison With the ESC Guidelines
Criteria
The European Society of Cardiology (ESC) guidelines indicate
some non-invasive criteria for the determination of CoA.
In particular, the Class II ESC recommends interventions
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TABLE 2 | Diagnostic capacity of the CFD method in the training and testing sets.

AUC (95% CI) Specificities Sensitivities Accuracy

Training set (n = 52)

Train-1 0.952 (0.853–0.992) 0.95 0.875 0.904

Train-2 0.960 (0.866–0.995) 0.952 0.903 0.923

Train-3 0.961 (0.868–0.995) 0.92 0.815 0.865

Train-4 0.934 (0.830–0.984) 0.9 0.844 0.865

Train-5 0.935 (0.830–0.985) 0.909 0.8 0.846

Average value 0.948 0.926 0.847 0.881

Testing set (n = 13)

Test-1 0.976 (0.715–1) 0.857 1 0.923

Test-2 0.881 (0.587–0.991) 0.833 0.714 0.769

Test-3 0.955 (0.683–1) 1 0.727 0.769

Test-4 0.976 (0.715–1) 1 0.833 0.923

Test-5 1 (0.753–1) 1 1 1

Average value 0.958 0.938 0.855 0.877

The whole population was randomly divided into 5 equally-sized groups; then, the

performance of the CFD method was assessed by a stratified 5-fold cross-validation.

AUC, area under the curve; CI, confidence interval; accuracy, % of cases

correctly classified.

TABLE 3 | Diagnostic capacity of the f and s in the testing sets.

AUC (95% CI) Specificities Sensitivities Accuracy

Test-1 f 0.786 (0.479–0.957) 0.857 0.833 0.846

s 0.881(0.587–0.991) 0.857 0.833 0.846

Test−2 f 0.714 (0.407–0.921) 0.833 0.571 0.692

s 0.810(0.505–0.967) 0.833 0.714 0.769

Test-3 f 0.545 (0.257–0.813) 0.500 0.909 0.846

s 0.773(0.465–0.951) 1 0.636 0.692

Test-4 f 0.571 (0.278–0.831) 0.429 0.833 0.615

s 0.833(0.531–0.976) 0.857 0.833 0.846

Test-5 f 0.900 (0.610–0.995) 1 0.750 0.846

s 1(0.753-1) 1 1 1

Average value f 0.703 0.724 0.779 0.769

s 0.859 0.909 0.803 0.831

AUC, area under the curve; CI, confidence interval; accuracy, % of cases correctly

classified; f, viscous friction in Equation 1; s, expansion loss in Equation 1.

on patients with a ≥50% aortic narrowing relative to the
aortic diameter at the diaphragm level (observed by CMR,
CT, or invasive angiography) (Kanamori et al., 2007). The
narrowing rate (from the Class II ESC) and the results of
the CFD method were compared to determine the occurrence
of CoA (Figure 6). The narrowing rate is able to diagnose
CoA with an average sensitivity of 0.213, an average specificity
of one, and an average accuracy of 0.539 for the five
test sets. Although the narrowing rate criteria exhibited
excellent specificities in our test sets, the correspondent
sensitivities were poor (average = 0.213). Remarkably, all
patients with CoA in the second and fourth test sets were
misclassified (false-negative) by applying the Class II ESC
recommendation criteria.

DISCUSSION

CoA is associated with premature death and substantial late
morbidity, including hypertension, heart failure, and premature
coronary artery disease (Toro-Salazar et al., 2002). Therefore,
accurate diagnoses of CoA are important. The observations
conducted during the present study are relevant to the
management of patients with suspected CoA. The viscous friction
and the expansion loss of the aorta can be effectively used
to classify pediatric patients with CoA, since they reflect the
flow resistances causes by a given stenosis. Notably, these two
parameters can be obtained by combined CFD simulations. The
main advantages of the proposed method are that: 1) it allows a
non-invasive diagnosis of CoA, 2) does not require extra medical
examination data to establish boundary conditions, 3) is able to
fully describe the pressure-flow relationship in a stenosis within
a normal physiological range.

Current guidelines indicate that cardiac catheterization
should be used to address specific anatomical and physiological
questions, or before intervention. The reference standard for
the diagnosis of CoA is a PSPG > 20 mmHg (Baumgartner
et al., 2010). However, the standard procedure is invasive and
costly; therefore, its clinical application should be limited to
patients whose diagnosis is difficult or who need to be evaluated
for subsequent intervention. TTE and 4D flow MRI can be
applied to obtain the blood flow velocity; afterwards, the PSPG
across the coarctation can be obtained by combining them in a
simplified pressure estimation formula, which may result in an
overestimation of the PSPG (Sakthi, 2010). Another approach
is to apply the velocity values as boundary conditions, and
then utilize the CFD method to acquire the PSPG across the
coarctation. This method, however, needs additional tests (e.g.,
TTE or 4D flow MRI) and the process is complex: additional,
non-contrast enhanced MRI, including 4D flow MRI, can be
technically challenging, easily influenced by environmental noise
and also limited by a relatively lower temporal resolution
(Cibis et al., 2014; Khodarahmi, 2015). Meanwhile, the proposed
method provides additional hemodynamic information and only
requires the collection of MDCTA images.

The calculation of the hemodynamic parameters using
CFD models developed from MDCTA imaging data is an
attractive concept and potentially obviates the need for invasive
angiography in pediatric patients suspected to have CoA (LaDisa
et al., 2011). The present study focused on evaluating the
diagnostic performance of a new MDCTA-based CFD model
for the diagnosis of CoA. The results revealed that, in both the
training and test sets, patients showed high AUCs and only a
small number of them were misclassified. This indicates that
the MDCTA-based CFD model has a high level of diagnostic
efficiency. The misclassification of some patients in both the
training and test sets could have derived from the use of
actual simulation conditions in the present study. To reduce
the computing time, we simulated a steady flow state and
defined the pressure-flow relationship of a stenosis. A real
pulsating blood flow, however, is inconsistent with the steady
state flow assumption. To implement the pressure at the outlet
boundary, previous studies have applied a lumped parameter
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FIGURE 6 | Comparison between the diagnostic capacity of the CFD method and of the ESC guidelines criteria. Sensitivities (A), specificities (B), and accuracies (C)

of CoA diagnoses conducted by the CFD (gray-blue bars) and the narrowing rate (pink bars) methods. The latter method was applied according to current guidelines.

model (Menon et al., 2012b; Liu et al., 2016b); still, the modeling
of the aorta hemodynamics based on such model is inconsistent
with real conditions (Kim et al., 2009, 2010), resulting in further
biases during the CFD simulation.

A set of non-invasive criteria for the identification of
patients with significant CoA and requiring intervention
have been provided in the ESC Guidelines. Figure 6 shows
how those non-invasive criteria performed poorly in our
dataset and in that of another study (Astengo et al., 2017).
Thus, relying on ESC recommendations for the identification
of CoA patients might lead to under-diagnosis and the
conservative treatment of many patients actually needing
intervention. In fact, the narrowing rate criteria rely on simple
morphological measurements, not taking into account any
hemodynamical information (which may play a greater role
in the development of a significant pressure gradient across
the CoA). The proposed MDCTA-based CFD method can
provide additional hemodynamic information and compared
to the narrowing rate criteria, it shows an overall better
diagnosis performance.

The present study has several limitations. First, we considered
a relatively small sample size: we suggest to increase that in
further studies. Moreover, the boundary conditions used for
the CFD simulation were derived from the LPM model, which
is inconsistent with real conditions. Still, the correspondent
validation results suggest that the simulation error was negligible

compared to that observed in another study (Kilner et al., 1993;
Dwyer et al., 2009).

The results of the present study show that the proposed
CFD model developed from MDCTA imaging data represents
an accurate non-invasive method for the diagnosis of CoA, and
which can be beneficial for clinical decision-making.
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Non-invasive whole-brain scans aid the diagnosis of neuropsychiatric disorder diseases

such as autism, dementia, and brain cancer. The assessable analysis for autism spectrum

disorders (ASD) is rationally challenging due to the limitations of publicly available

datasets. For diagnostic or prognostic tools, functional Magnetic Resonance Imaging

(fMRI) exposed affirmation to the biomarkers in neuroimaging research because of fMRI

pickup inherent connectivity between the brain and regions. There are profound studies

in ASD with introducing machine learning or deep learning methods that have manifested

advanced steps for ASD predictions based on fMRI data. However, utmost antecedent

models have an inadequacy in their capacity to manipulate performance metrics such as

accuracy, precision, recall, and F1-score. To overcome these problems, we proposed

an avant-garde DarkASDNet, which has the competence to extract features from a

lower level to a higher level and bring out promising results. In this work, we considered

3D fMRI data to predict binary classification between ASD and typical control (TC).

Firstly, we pre-processed the 3D fMRI data by adopting proper slice time correction

and normalization. Then, we introduced a novel DarkASDNet which surpassed the

benchmark accuracy for the classification of ASD. Our model’s outcomes unveil that

our proposed method established state-of-the-art accuracy of 94.70% to classify ASD

vs. TC in ABIDE-I, NYU dataset. Finally, we contemplated our model by performing

evaluation metrics including precision, recall, F1-score, ROC curve, and AUC score, and

legitimize by distinguishing with recent literature descriptions to vindicate our outcomes.

The proposed DarkASDNet architecture provides a novel benchmark approach for ASD

classification using fMRI processed data.

Keywords: autism spectrum disorder, fMRI, neuroimaging, image processing, deep learning, DarkASDNet, ABIDE

1. INTRODUCTION

Autism spectrum disorder (ASD) is also familiar as a “spectrum” disorder that can cause different
abnormalities such as social deficits, repetitive behaviors, speech, and nonverbal communication
(Baio et al., 2018; Noriega, 2019). The fact-finding for the frequency of ASD is estimated at about 1%
or higher (1 subject in 54, Figure 1) by the Center for Disease Control and Prevention in the United
States (Senn, 2020). Previous treatments are based on the behavior observations of the patients,
and the doctor asks a lot of psychological questions to the patient or their parents or guardians
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FIGURE 1 | Estimated ASD prevalence of 2020 by CDC.

(Höfer et al., 2017; Hyman et al., 2020). These questionnaires
often produce a false positive rate. The principal goal of
neuroscience research is to sort out brain disorder treatment
in an effective way (Yahata et al., 2016; Ahmed et al., 2018).
Nevertheless, when patients seek a doctor for their treatment,
sometimes the diagnosis of ASD is burdensome due to a lack
of proper symptoms and the process requiring too much time
(Mandell et al., 2007; Nylander et al., 2013). In consequence,
it is indispensable to come up with conscientious techniques
that can easily get make the diagnosis ASD more meticulous
and efficient in an assessable way beyond depending utterly on
behavioral questions.

The increasing investigation of neuroimaging research using
up-to-date technologies in the last few years led to the
classification of ASD, resulting in more effective performance
in treatment (Bi et al., 2018). With the help of fMRIs,
we can inspect the abnormalities between ASD vs. TC by
analyzing functional connectivity (Kaiser et al., 2010; Lee
et al., 2018). After introducing machine learning (ML) in
neuroimaging, it becomes a legitimate means to obtain
information from the raw data to illustrate the pattern of the
disease (Klöppel et al., 2012). Amongst the ML approaches, in
the area of neuroimaging research, support vector machines
(SVM) is a powerful classifier to classify the problems
(Sundermann et al., 2014; Chen et al., 2016).

Region of interest (ROI) bestows the structural medium,
quantifying connectivities within the individual brain’s
active functional patterns. Many researchers investigate ASD
individuals based on data-driven strategies or brain parcelation,
such as independent component analysis (ICA), clustering,
and dictionary learning by adopting ROI techniques (Cociu
et al., 2018; Bi et al., 2019). Although the ROI strategy has some
limitations regarding the arbitrary decision and standardization,
considering the special regions can be biased for the subjects
(Thirion et al., 2014). To overcome these challenges, support
vector machines (SVM) have been extensively utilized to
manipulate individual brain functional connectivity variation
and classify ASD (Yao et al., 2016; Wang et al., 2019). Recently,

DL (Deep Learning) approaches have been successfully deployed
in neuroimaging research to identify ASD disorder (Li et al.,
2018b). Although most of the DL methods used functional
connectivity, time-series data analysis, ROI analysis, and spatial
or temporal information of fMRI data (Iidaka, 2015; Zhao et al.,
2018a), some have issues such as clinical application, lack of
model comprehensibility.

As we observed from the recent findings, there are still some
drawbacks to overcome in ASD classification using deep learning
knowledge, such as lack of data mining techniques from the
heterogeneous, complex fMRI data and model interpretation to
classify ASD. Besides, a large group of scientists adopted ROIs,
or functional connectivity (FC) features to classify ASD. As
ASD is heterogeneous, a more pertinent approach is required to
classify ASD patients from a typical control. In this paper, we
consider a novel DL algorithm for ASD classification to overcome
these challenges. The pivotal contributions in this experiment are
as follows:

• We preprocessed 3D fMRI data according to the model
input requirement through slice-time correction and min-
max normalization. We preferred min-max scaling so that
data variables can contribute equally and overcome the model
biases during training of the classification model.

• We improved the original DarkNet and proposed a novel
framework named DarkASDNet for ASD classification. Our
proposed framework’s main advantage is that it has a fast
operating speed and is easily interpretable to weigh against
other state-of-the-art methods.

• Finally, to evaluate DarkASDNet performances using the
preprocessed fMRI data, we contemplated metrics functioning
such as recall, precision, F1-score, and accuracy with ROC
curve and AUC score and legitimized our outcomes by
distinguishing with recent literature descriptions.

The designed DarkASDNet framework with fMRI processing
steps provides a novel benchmark approach for ASD
classification on the Autism Brain Imaging Data Exchange
(ABIDE) dataset.
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2. RELATED WORK

The coalescence of brain imaging andmachine learning approach
concession of ASD classification can alleviate the critical affliction
and give precautions to the patient’s day-by-day prosperity.
Research for brain networks using functional connectivity is
a robust method for understanding the neurological bases of
various brain disorders, for example, autism (Pascual-Belda et al.,
2018). Abraham et al. used a support vector classifier (SVC) in
871 resting-state fMRI data to classify ASD vs. TC and got an
accuracy of about 67% (Abraham et al., 2017). According to work
in Jin et al. (2015), they proposed the SVM to classify ASD and
got the highest accuracy of 76% during testing results with the
original multi-kernel.

In Parikh et al. (2019), k-fold cross-validation was
promulgated to measure classification performance using
specificity, sensitivity, accuracy, and area under the curve (AUC).
In Yu et al. (2020), a reverse mapping system was anticipated to
further learn reversemapping to assist mining and representation
of task dependencies. Then, an adversarial assumption training
approach combined a multi-tasking learning network with a
reverse mapping network. Finally, an MRI of the two network
parameters learned from the source was shared with target
imaging CT (computed tomography). In Zhang et al. (2018),
their method treated data at various points in time as different
perspectives and built an overarching representation to collect
complementary data from the entire time period. The potential
representation investigates the complementarity between various
time points in order to increase prediction accuracy. The
problem is solved using the Alternate Direction Method of
Multiplier (ADMM).

For the classification and identification of the regions of
interest (ROIs) of functional connectivity magnetic resonance
imaging (FC-MRI), Yang et al. (2019) deal with different ML
algorithms, including SVM, ridge, and logistic regression where
the highest accuracy of 71.98% obtained by ridge classifier.
Multiple stacked auto-encoder (SAE) was considered by Guo
et al. (2017) as a feature selection technique by ROIs from whole-
brain FC. They obtained a classification accuracy of 86.36%
utilizing only one data site named UM (University of Michigan)
fromABIDE.However, ROIs for the time series data can illustrate
and classify ASD from the whole brain. Usually, ROI figures out
the functional connectivity pattern and activation of the brain
(Eickhoff et al., 2015; Cociu et al., 2018). Dvornek et al. integrated
rs-fMRI phenotypic data and obtained an accuracy of 70.1% by
deploying LSTM (Long short-term memory) (Dvornek et al.,
2018). Without the cross-validation and global signal regression
system, they used CCS pipeline data.

In particular, maintaining the 3D and 2D data with the
Convolutional Neural Network (CNN) from the DL methods,
opens a new era for the classification and segmentation tasks
(Parisot et al., 2017; Li et al., 2018a). In order to classify and
distinguish ASD from healthy controls, Zhao et al. (2018b)
assessed a satisfactory 3D CNN to unite the distinctiveness
of functional and spatial brain networks. They integrated
only two hundred rs-fMRI (ASD-100, HC-100) data. For the
neuropathological biomarker, another way to recognize the

brain’s patterns is graph convolutional neural networks (G-
CNN). Ktena et al. (2017) introduced the connectome-based
classification model by applying CNN. Anirudh and Thiagarajan
(2019) investigated ensemble learning and G-CNN to classify the
problems and achieved 70.86% testing accuracy. Khosla et al.
(2018) employed the connectivity fingerprint as a voxel input for
the 3D convolutional neural network (CNN) with an accuracy of
73.3% and with ensemble CNN of 75.8%. Wutao et al. learned
the features from the raw features by using an autoencoder (AE;
Yin et al., 2020). Finally, they amalgamated the pretrained AE
and DNN, which leads to an AUC of 82.4% and an accuracy of
79.2%. According to Ahmed et al. (2020), this was performed per
site classification to see the data variability. The ABIDE-NYU
dataset achieved the highest accuracy of 86 and 88% for stat
map and glass brain images, using improved CNN architecture.
On the other hand, in Kong et al. (2019), the authors extracted
the ROI connectivity features for ASD classification using deep
neural network (DNN). They used ABIDE-I, NYU dataset with
10-fold cross-validation. Using the softmax classifier and the
stacked autoencoder (SAE) to get the most promising results
for the ABIDE-NYU site of 90.39% accuracy according to our
best knowledge.

The contemporary scientific knowledge for ASD classification
is summarized in Table 1. According to Table 1, it is evident that
most of the researcher goes through for classification purposes
with functional connectivity (FC) or ROIs data for their work.
We noticed there had been an inclination to use machine or
deep learning approaches to solve classification problems. In
the meantime, with the ABIDE dataset, a preponderance of
works focused on a particular atlas, site, or pipeline image to
overcome the classification problems. Medical image data are
practically preferable to convalesce concrete contributions in
the field of brain disorder research like ASD for treatment
and reliability (Ravì et al., 2016; Phinyomark et al., 2017). To
overcome these challenges, we preprocess every single slice from
the whole brain images for each ABIDE-NYU dataset subject.
We build DarkASDNet to extract features for the classification
problems and check the stability of our model. We executed
confusion metrics for precision, recall, F1-score, ROC curve, and
AUC value.

3. MATERIALS AND METHODOLOGY

3.1. Dataset
In our experiments, we used ABIDE-I data processed through
the Connectome Computation System (CCS) (Craddock et al.,
2013). The raw 3D NIFTI fMRI data has been downloaded
from ABIDE-I through the CCS pipeline, a publicly available
dataset for ASD and TC. Among the 17 sites, we endeavor with
the CCS-NYU (New York University Langone Medical Center)
site. The publicly available CCS was preprocessed, including a
register of the anatomical brain mask to functional image: FLIRT,
slice time correction: 3dTshift, Skull-strip: AFNI’s 3dAutomask,
motion correction: 3dvolreg, voxel intensity normalization,
nuisance signal removal, band-pass filtering (0.01–0.1 Hz)
[http://preprocessed-connectomes-project.org/abide/ccs.html].
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TABLE 1 | A concise representation of the erstwhile deep learning algorithms in autism classification.

References Method Pattern Purpose Accuracy (%)

Leming et al. (2020) Ensemble learning FC and structural Classification 67

Lu et al. (2020) Auto-encoder Atlases Classification 61(ABIDE)

Niu et al. (2020) DANN FC/ROI Classification 73.2

Byeon et al. (2020) RNN FC Classification 74.54

Thomas et al. (2020) 3DCNN, SVM FC Classification 66

Jiao et al. (2020) CapsNets FC Classification 71

Yin et al. (2020) DNN, AE ROI Classification 79.2

Anirudh and Thiagarajan (2019) GCNN ROI Classification 70.86

Zhao et al. (2018b) 3D CNN ICN Differentiation 70.5

Zhao et al. (2018a) 3D CNN ROI Classification 70.1

Guo et al. (2017) DNN FC Classification 86.36

Dvornek et al. (2017) LSTMs ROI Identification 68.5

Ktena et al. (2017) GCNN ROI Classification 62.9

Abraham et al. (2017) SVM ROI Prediction 67

TABLE 2 | NYU phenotypic data information for ABIDE-I database.

Total subjects ASD TC Female Male
Age range (Years)

Average age (SD) ADOS score (SD)

ASD TC

184 79 105 35 149 7.1–39.1 6.5–31.8 15.25 (6.58) 11.30 (4.08)

TABLE 3 | Overview of the basic parameters and steps of used by CCS.

Basic processing Nuisance Signal Regressor Removal

Steps

Slice timing correction

(Yes) Motion (24 param)

Tissue signals (mean

WM and CSF)

Motion realignment

(Yes)

Motion realignment

(Yes)

Intensity normalization

(Yes)

Low frequency drifts

The phenotypic information of the CCS-NYU dataset is shown
in Table 2.

3.2. Data Preprocessing
The CCS ABIDE data preprocessing pipelines are analogous
due to the parameters and software used for each of the steps.
The CCS parameters and steps are presented in Table 3. In
this work, data are selected from the filt_global preprocessing
stratagem, which is band-pass filtered (0.01–0.1Hz) and spatially
registered using a nonlinear method to MNI152 template space
for each of four pipelines. The overall 3D fMRI data processing
procedure is shown in Figure 2. For data processing, firstly, we
loaded the 3D fMRI data and saved it as 2D images. To pursue
this process, we proceeded with the slice time corrections and
normalizations. The whole steps are explained briefly in the
following section.

3.2.1. Slice-Time Correction

The original 3D fMRI data has 73 slices per volume according to
the data description of ABIDE-I. In our experiments, from the 73
slices, we contemplated the last 50 slices because of the precise
sketches of the brain images.

3.2.2. Normalization

Normalization is a process wherein the database is reoriented
in such a way that users can suitably handle that for further
interrogation and analysis. We used the Min-Max normalization
technique to overcome the image inappropriateness, which
transformed the images into numerical values from 0 to 1.

Yi = [Xi −min(X)]/[max(X)−min(X)] (1)

Where Xi is the ith data point, min and max stands for minimum
and maximum, and Yi is the converted output.

3.3. Proposed DarkASDNet Model
The appositeness of the deep learning approach has
to be remolded in artificial intelligence, helping to find
neuropsychiatric brain disorders such as ASD. Deep learning
is designated with the increasing number of layers as well as
the network. An exemplary CNN performed for the feature
extraction by the convolution layer, and reduced the size of
the computational operation and a fully connected layer before
the classification. The overall demonstration of our conceptual
DarkASDNet architecture is presented in Figure 3. Here,
DN represents the set-up for the convolutional layer, batch
normalization layer, and max-pooling layer in sequential order.
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FIGURE 2 | The overview of the 3D fMRI data processing for both ASD and TC.

FIGURE 3 | The proposed DarkASDNet framework for ASD classification.

For the time being, 3∗DN is betoken for the three times of DN
ensuing one after another DN block. There are a considerable
number of deep learning algorithms. In this work, we have
followed the Darknet-19 model (Redmon and Farhadi, 2017)
for our experiment and updated this model to get the utmost
accuracy. The Darknet-19 preeminently builds for classifier
object detection where they used 19 convolutional layers, 5
Maxpooling layers, and disparate stride values, sizes, and filter
numbers. In this work, we proposed DarkASDNet for classifying
the autism brain images between ASD vs. TC. For this reason,
we have originated 20 Convolutional layers and six Max pooling
layers.

Where Convol represents the 2D Convolution, and MP stand
for Max pooling layers. Each Convolutional layer come out with
Batch Normalization (BN) and LeakyReLU operations. There has
been the same set-up when we are using three Convolutional
layers in successive order. For the two-dimensional convolution
operation, kernel is epitomized as K and input images as X, while

∗ is symbolized as discrete convolution operation, as given in the
following Equation (2).

(X ∗ K)(i,j) =
∑

m

∑

n

K(m,n)X(i−m,j−n) (2)

The superiority of adopting batch normalization is increased
learning rate, improved gradient flow, reduced dependency on
initialization, standardized inputs, and reduced training time
to overcome the overfitting problem. Although ReLu (Rectified
Linear Unit) or Sigmoid activation functions are prominent
in deep learning, we used LeakyReLU as our activation
function. Unlike ReLu, LeakyReLU has the biggest advantages in
calculating the negative part which forestalls dying neurons. The
mathematical formula for LeakyRelu is shown in Equation (3).

f (x) =
{

0.01x, for x < 0

x, forx > 0
(3)
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TABLE 4 | The number of layers and layer parameters of the proposed

DarkASDNet model.

Layer

(type) Output shape Parameters

Convol2d [8, 256, 256] 216

Convol2d [16, 128, 128] 1,152

Convol2d [32, 64, 64] 4,608

Convol2d [16, 66, 66] 512

Convol2d [32, 66, 66] 4,608

Convol2d [64, 33, 33] 18,432

Convol2d [32, 35, 35] 2,048

Convol2d [64, 35, 35] 18,432

Convol2d [128, 17, 17] 73,728

Convol2d [64, 19, 19] 8,192

Convol2d [128, 19, 19] 73,728

Convol2d [256, 9, 9] 294,912

Convol2d [128, 11, 11] 32,768

Convol2d [256, 11, 11] 294,912

Convol2d [512, 5, 5] 1,179,648

Convol2d [256, 7, 7] 131,072

Convol2d [512, 7, 7] 1,179,648

Convol2d [256, 9, 9] 131,072

Convol2d [512, 9, 9] 1,179,648

Convol2d [2, 9, 9] 9,216

Flatten [162] 0

Linear [2] 326

Resembling the DarkNet-19, Maxpool has the same operation
in our model. It has several advantages, such as reducing the
number of parameters to get prime information, diminishing
the computational cost, and preventing over-fitting by fixing
up with an abstracted form of the depiction. To classify the
binary classification problem, we inked the loss function called
Cross-Entropy Loss, and for the optimization, we set the Adam
optimizer. The main ascendancy of using the Cross-Entropy loss
function in binary classification problems is that it can reduce
the distance between predicted and actual. The equation for
the binary classification of the Cross-Entropy Loss function as
follows.

CE = −
C′=2
∑

i=1

tilog(si) = −t1log(s1)− (1− t1)log(1− s1) (4)

where C′ = 2 (for two classes C1 and C2), t1[0, 1] and s1 are the
ground truth and score for C1, s2 = 1− s1 and t2 = 1− t1 for C2.
Finally, the layers and layers parameter are described in Table 4.

We utilized the Cross-Entropy loss function with the Linear
classifier because they are best fitted to our proposed binary
ASD classification instead of preserving the original DarkNet’s
loss calculation strategy. In the meantime, we change the
average pooling layer to maxpooling layer and add one more
convolutional layer than DarkNet. Moreover, the trainable

FIGURE 4 | The visualization of single sliced ASD and TC images.

parameters of the proposed DarkASDNet model are about 4.5
million compared to the underlying DarkNet model, which
contains around 25 million. Therefore, our model is six
times lighter than the original DarkNet, ensuring our model’s
computational efficiency.

4. DATA VISUALIZATION AND
PERFORMANCE METRICS

4.1. Visualization of the Sliced fMRI Data
For the outrun treatment, reinforcement with prior diagnosis is
important for ASD patients in order to delay deterioration and
retain quality of life The visualization of the neuroimaging data
can outrun perceptible biomarkers to illustrate prognosis and
particular pathology for ASD patients. In our proposed work,
we preprocess the 3D fMRI data into 2D images with slice time
correction and normalization. Figure 4 represents the perfect
visualization of our preprocessed images, and the manifestation
of our per slice images are easily depicted for both ASD and TC.
In the meantime, we disclosed only the first eight images for ASD
and TC.

4.2. Evaluation Metrics
To ensure the performance of our proposed model, we
consummate an in-depth search to learn hyperparameters and
investigate the average accuracy, f1-score, precision, and recall.
True positive (TP) can correctly predict the ASD class and true
negative (TN) for TC. False positive (FP) is the outcome of
incorrect prediction of ASD and false negative (FN) for TC. The
corresponding formula for the evaluation metrics is given below.

Accuracy = Total correct prediction

Total number of labels
× 100 (5)

Precision = True Positive

True Positive+ False Positive
(6)

Recall = True Positive

True Positive+ False Negative
(7)

F1−score = 2× (Precision ∗ Recall)
(Precision+ Recall)

(8)
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FIGURE 5 | Training loss vs. accuracy curve for DarkASDNet.

FIGURE 6 | Accuracy comparison of DarkASDNet with state-of-the-art methods used in ASD classification.

5. EXPERIMENTAL RESULTS AND
DISCUSSION

Deep learning approaches have been successfully employed in
ASD classification using ABIDE data based on fMRI images.
In this work, we have proposed DarkASDNet to classify ASD
showing different measurement metrics in the same manner
with recall, precision, F1-score, and accuracy with ROC curve
and AUC score to legitimize the performance of the proposed
method. The training loss and accuracy comparison curve of the
proposed DarkASDNet is shown in Figure 5. From Figure 5, it is
depicting that the training accuracy is increasing with decreasing
the training loss. The highest accuracy of 94.7% we have obtained
while testing the DarkASDNet model. Figure 6 shows the
performance values for different evaluation metrics, including
precision, recall, f1-score, and AUC for ASD classification

using proposed DarkASDNet. After testing our model for ASD
classification, we have achieved the highest accuracy of 94.7%, the
precision of 94.5%, recall of 92.5%, f1-score of 95%, and the AUC
score 94.703%.

Furthermore, to evaluate our proposed DarkASDNet, we
have implemented the VGG16 (Simonyan and Zisserman, 2015),
MobileNetV2 (Sandler et al., 2018), and SVM (Jebapriya et al.,
2019) algorithms as competence methods to classify ASD using
the same dataset. We have also implemented two most recent
works preferably using CNN in Ahmed et al. (2020), and
2CC3D in Li et al. (2018a). Figure 6 represents the performance
comparison for the competence method with our proposed
DarkASDNet model. Using SVM, MobileNetV2, and VGG16
models for ASD classification, we get an accuracy of 72.6, 76.5,
and 78.43%, respectively. Comparing with the performance of
competitive methods, in DarkASDNet, we get state-of-the-art
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FIGURE 7 | The evaluation performances of confusion metrics.

FIGURE 8 | Receiver operating characteristic curve for ASD.

accuracy during classification. As we know, deep learning
techniques are nowadays performing very satisfactorily in ASD
classification using ABIDE data. For example, in Ahmed et al.
(2020), authors adopted the CNN model for single site (NYU)
classification, where they got the highest accuracy of 88% for
glass brain images. On the other hand, using extracted ROIs
connectivity features and NYU dataset with 10-fold cross-
validation, Kong et al. (2019) achieved the highest accuracy of
90.39% by considering stacked autoencoder (SAE) and softmax
as a classifier. Furthermore, Auto-ASD-Network proposed by
Eslami and Saeed (2019) based on the multilayer perceptron
(MLP) with two hidden layers, and SVM got the highest accuracy
of 80% for ASD classification using the NYU dataset. The
accuracy comparison curve of our proposed DarkASDNet and
other state-of-the-art methods for ASD classification using the
ABIDE-NYU dataset is shown in Figure 6. From the bar diagram
in Figure 6, the nearest model has a mean accuracy difference of
about 3.4% with our method (Kong et al., 2019). Therefore, based
on the results, our proposed DarkASDNet method outperforms
other methods on average for classifying ASD.

Besides the matrices explained above, we have also described
the confusion matrix table for DarkASDNet in Figure 7. It is
clear from Figure 7 that there are two predicted classes: ASD and
TC, a binary classification problem. The proposed DarkASDNet
classifier made 472 subjective predictions, and out of these
subjects, the classifier predicts 243 times as ASD patients and 229
times as the TC subjects. However, in the original dataset, there
were 236 subjects for ASD patients and 236 subjects as TC. From
the confusionmatrix, we see that the overall misclassification rate
is ∼5.3%, with a true positive and false positive rate of 0.96 and
0.93, respectively, which is comparatively highly acceptable. The
corresponding ROC curve is shown in Figure 8.

6. CONCLUSION AND FUTURE WORK

It is challenging to find the proficient classifier for ASD,
while most of the classifier depends on functional connectivity
and brain ROIs analysis. In this work, we proposed a novel
DarkASDNet model for ASD classification using 3D fMRI data.
Different from the conventional machine learning method in
which the extraction of the image features for the training set is
done manually, our method handles the extraction of the image
features automatically during the computation. We processed
the fMRI data according to the DarkASDNet requirement
through proper slice-time correction and normalization. We
assessed the DarkASDNet performances using the generated
fMRI data and utilized metrics functioning as recall, precision,
F1-score, and accuracy with ROC curve and AUC value. Finally,
we validated our outcomes by comparing with five other
recent competency methods, including three leading benchmark
approaches showing state-of-the-art results. To the end, the
proposed framework provides a new benchmarkmethod for ASD
classification.

Future work will increase the number of subjects, such as the
whole ABIDE database, considering each subject’s phenotypic
information. Although our model has presented outstanding
results for ASD classification, improvements still need to bemade
to the model to handle the 3D fMRI data directly. We will
solve these issues in our future work by employing the sample
demographic information.
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With the aging population, stroke has gradually become the leading cause of death and
disability among adults. It is necessary to verify whether multi-delay pseudo-continuous
arterial spin labeling (pCASL) MRI can be used as a standard neuroimaging protocol
in the patients with ischemic stroke. We aimed to investigate the clinical utility of multi-
delay pCASL for evaluating cerebral perfusion in ischemic stroke disease. Twenty-one
ischemic stroke patients [18 men and 3 women; median age, 62 years (age range, 37–
84 years)] were enrolled in this study. All patients underwent examinations, including
the multi-delay pCASL protocol (using 6 PLDs between 1,000 and 3,500 ms) and
computed tomography perfusion (CTP). The cerebral blood flow (CBF) and arterial
transit time (ATT) maps were obtained by the multi-delay pCASL protocol, while CBF
and mean transit time (MTT) maps were derived by CTP measurements. Based on
the voxel level analysis, Pearson correlation coefficients were used to estimate the
associations between the two modalities in the gray matter, white matter, and whole
brain of each subject. Moderate to high positive associations between ASL-CBF and
CTP-CBF were acquired by voxel-level-wise analysis in the gray matter, white matter,
and whole brain of the enrolled patients (all P < 0.005), and the average Pearson
correlation coefficients were 0.647, 0.585, and 0.646, respectively. Highly significant
positive correlations between ASL-ATT and CTP-MTT were obtained by voxel-level-wise
associations in the gray matter, white matter, and whole brain (all P < 0.005), and the
average Pearson correlation coefficients were 0.787, 0.707, and 0.799, respectively. In
addition, significant associations between ASL and CT perfusion were obtained in the
gray, white matter and whole brain, according to the subgroup analyses of patient’s age
and disease stage. There is a correlation between perfusion parameters from multi-delay
pCASL and CT perfusion imaging in patients with ischemic stroke. Multi-delay pCASL
is radiation-free and non-invasive, and could be an alternative method to CT scans for
assessing perfusion in ischemic stroke disease.

Keywords: ischemic stroke, pseudo-continuous arterial spin labeling, CT perfusion, cerebral blood flow, arterial
transit time, mean transit time

Frontiers in Neuroinformatics | www.frontiersin.org 1 August 2021 | Volume 15 | Article 71971999

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.719719
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fninf.2021.719719
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.719719&domain=pdf&date_stamp=2021-08-11
https://www.frontiersin.org/articles/10.3389/fninf.2021.719719/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-719719 August 11, 2021 Time: 12:53 # 2

Xu et al. pCASL in Ischemic Patients

INTRODUCTION

The Global Burden of Disease Study in 2015 provided a
comprehensive assessment of 249 all-cause and cause-specific
deaths across 195 countries and regions from 1980 to 2015;
stroke was determined to be the second-leading cause of death
worldwide (Wang et al., 2016). The 2019 statistical report from
the American Heart Association on heart disease and stroke
revealed that approximately 795,000 people experience a new or
recurrent stroke each year (Benjamin et al., 2019). With the aging
of the population, stroke has gradually become a leading cause of
death and disability among adults in China. The social burden of
stroke has gradually increased because of the increased morbidity
and mortality (Vilela and Rowley, 2017).

Stroke is a type of cerebrovascular disease characterized by
the symptoms of cerebral ischemia or cerebral hemorrhage,
and cerebral ischemia is the main cause of stroke (Benjamin
et al., 2019). Early diagnosis and appropriate treatment of the
disease can effectively improve the prognosis of patients. MRI
and CT are routine imaging modalities that play important roles
in evaluating the brain condition of patients. Because of the
pathophysiological changes in stroke patients, the assessment
of microcirculation and cerebral perfusion is of great value for
diagnosis and treatment.

The development of CT image analysis to assess the function
of different organs (e.g., brain, heart, carotid artery, etc.)
constitutes a promising strategy for evaluating normal and
abnormal physiology (Xu et al., 2018; Zhang et al., 2018).
As known errors are associated with bolus-based perfusion
measurements (Wintermark et al., 2005), CT perfusion (CTP) is
not regarded as the gold standard for calculating hemodynamic
parameters. However, it is routinely used in clinical practice
for perfusion evaluation, because it provides relatively accurate
hemodynamic parameters, such as cerebral blood flow (CBF) and
mean transit time (MTT). It’s noting that the radiation damage
and contrast medium may not be suitable for some individuals.
Arterial spin labeling (ASL) perfusion MRI has gradually applied
in the clinic without radiation damage. Previously studies
have generally adopted a single post-labeling delay (PLD) time
(Wang et al., 2014), typically between 1.5 and 2 s, which may
underestimate perfusion due to prolonged arterial transit time
(ATT) in ischemic stroke (MacIntosh et al., 2010). In recent
years, multi-delay ASL sequences have been used to overcome
this limitation. Wang et al. (2014) concluded the correlations
between multi-delay pCASL and CTP in moyamoya disease,
and indicated ASL could be a part of neuroimaging protocols
in the moyamoya disease. They advised warranted studies of
ischemic stroke, as the radiation-free and non-invasive ASL can
provide perfusion information without the use of contrast agent.
MacIntosh et al. (2010) adopted multi-delay pCASL (PLD times
were set between 500 ms and 2,500 ms, a total of 9 intervals)
in patients with acute ischemic stroke in a recent research.
Wang et al. (2013) made a comparison between multi-delay
ASL perfusion MRI and dynamic susceptibility contrast (DSC)
enhanced perfusion imaging in acute ischemic stroke disease. The
results showed highly correlations between pCASL and DSC CBF
measurements. In our study, a wider range of PLD times was
adopted, totally 6 PLD times between 1,000 and 3,500 ms were

FIGURE 1 | Flowchart of the comparison between ASL and CT perfusion.

used to investigate the accuracy of multi-delay pCASL perfusion
MRI for estimating cerebral perfusion in ischemic stroke patients,
using CTP as the reference standard. In this study, we aimed to
explore the feasibility and clinical utility of multi-delay pCASL by
comparison with CTP imaging in ischemic stroke.

MATERIALS AND METHODS

Patients
The study was conducted in accordance with the principles of
the Declaration of Helsinki, and the study protocol was approved
by the institutional review board of our hospital. A total of 21
patients with ischemic stroke [18 men and 3 women; median age,
62 years (age range, 37–84 years)] were enrolled between June
2017 and March 2018. All patients underwent multi-delay pCASL
and CTP examinations (Figure 1).

The inclusion criteria were as follows: (1) All patients were
confirmed as ischemic stroke according to clinical symptoms and
imaging diagnosis (MRI or CT images); (2) To reduce additional
CT-associated radiation damage, patients who required CTP
examination based on their condition were enrolled in the study;
(3) Both CTP and ASL examinations were performed within 24 h.

The exclusion criteria were as follows: (1) Patients complicated
with severe parenchymal organ disease (heart, lung, liver and
kidney); (2) Patients complicated with brain trauma, brain
tumor, intracranial hemorrhages, craniocerebral infection and
other mixed factors; (3) Patients with a cardiac pacemaker, non-
titanium alloy stent or internal plate fixation in vivo; (4) Unable
to complete the examination due to claustrophobia.

Image Acquisition
All included patients underwent CTP on a Toshiba Aquilion One
scanner, which was set at 112∼187 mA and 80 kV. And the
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minimum section thickness was 0.5 mm. CTP scan was initiated
after injection of non-ionic iodinated contrast agent (Ultravist,
370 mg I/L; 50 ml at a rate of 6 ml/s) and physiological saline
(30 ml at rate of 6 ml/s), using a power injector. The dynamic
volume scan mode was turned on immediately after a delay of
7 s following the intravenous injection of contrast agent. The first
period was used as a mask; 11–36 s was used for the arterial phase,
and continuous scanning was performed at intervals of 2 s; 40–
60 s was used for the venous phase for continuous scanning at
intervals of 5 s. In total, 19 image acquisitions were performed
with a total scan time of 60 s.

All enrolled patients underwent MRI on a GE Discovery
MR750 3.0T System, using an 8-channel phased array head coil.
The MRI protocol included T1-weighted imaging (T1WI), T2-
weighted imaging (T2WI), fluid attenuated inversion recovery
(FLAIR), diffusion weighted imaging (DWI), and multi-delay
pCASL. For multi-delay pCASL, the imaging parameters
were as follows: the delay time was between 1,000 and
3,500 ms, for a total of 6 PLDs. Filp angle (FA) = 111◦,
repetition time (TR) = 5,436 ms, echo time (TE) = 24.2 ms,
slice thickness = 5 mm, spacing between slices = 0 mm,
FOV = 220 mm × 220 mm, acquisition matrix = 550 × 6, number
of excitations (NEX) = 1.

Processing of ASL and CTP
The post-processing of CTP data was performed on Vitrea Fx
6.3 image post-processing workstation by a senior radiologist.
CTP-CBF and CTP-MTT perfusion maps derived from CT
perfusion images using delay-insensitive blockcirculant singular-
value decomposition (bSVD) post-processing method referring
to existing described procedures (Wintermark et al., 2001).

Mean perfusion difference images were generated for each
PLD. Both ASL-ATT and ASL-CBF perfusion maps were
computed online. The ASL-ATT map was converted using the
weighted delay method as previously described (Dai et al., 2012;
Wang et al., 2014).

Pre-processing was performed using Data Processing and
Analysis of Brain Imaging (DPABI_V2.3)1, which is based
on Statistical Parametric Mapping (SPM8)2. DPABI was
developed in MATLAB 2013 (The MathWorks Inc., Natick, MA,
United States). ASL-CBF, ASL-ATT, CTP-CBF, and CTP-MTT
images were further normalized into the Montreal Neurological
Institute template space using SPM8. Based on the registered
3D T1W images, the gray matter (GM) and white matter (WM)
masks were extracted. ASL-CBF, ASL-ATT, CTP-CBF, and
CTP-MTT images were segmented into GM and WM maps
using the Segment program in SPM8.

Statistical Analysis
Voxel-wise analysis of the gray matter, white matter, and whole
brain was conducted by DPABI: Pearson correlation coefficients
were calculated across voxels between the two modalities in
the gray matter, white matter and whole brain of each subject
as previously described (Wang et al., 2014). Subgroup analyses

1http://restfmri.net/forum/DPABI
2http://www.fil.ion.ucl.ac.uk/spm/

TABLE 1 | clinical characteristics of patients at admission (n = 21).

Variable Patients (n = 21)

Patient demographics

Median age, years (range) 62 (37–84)

Male (n,%) 18 (86)

Female (n,%) 3 (14)

Disease stage

Acute stage (n,%) 5 (24)

Subacute stage (n,%) 8 (38)

Chronic stage (n,%) 8 (38)

Laboratory test

Blood pressure, mmHg

Median systolic pressure (range) 143 (111–160)

Median diastolic pressure (range) 80 (68–107)

Hypertension (n,%) 15 (71)

Median fasting glucose, mmol/L (range) 4.97 (3.96–9.49)

Diabetes (n,%) 3 (14)

Median triglyceride, mmol/L (range) 1.64 (0.64–4.85)

Elevated triglyceride (≥1.70 mmol/L, n,%) 10 (48)

based on age of patient and disease stage were performed to study
the associations between ASL and CT perfusion.

RESULTS

Clinical Characteristics of Enrolled
Patients
In total, 21 patients [18 men and 3 women; median age, 62 years
(age range, 37–84 years)] with confirmed ischemic stroke were
enrolled in this study. Of 21 patients, fifteen (71.4%) had
hypertension, 3 (14.3%) patients had diabetes, and 10 (47.6%)
patients had elevated triglyceride levels (Table 1).

The Correlations Between Multi-Delay
pCASL and CTP in Patients With
Ischemic Stroke
The Pearson correlation coefficients of hemodynamic parameters
between two modalities were obtained based on voxel levels in
the gray matter, white matter, and whole brain (Table 2; all
P < 0.005). Moderate to high positive associations between ASL-
CBF and CTP-CBF were acquired in the gray matter, white matter
and whole brain of the enrolled patients, and the mean Pearson
correlation coefficients were 0.647, 0.585, and 0.646, respectively.
Highly significant positive correlations between ASL-ATT and
CTP-MTT were obtained in the gray matter, white matter and
whole brain, and the mean Pearson correlation coefficients were
0.787, 0.707, and 0.799, respectively (Table 3). The box plots
showed the same results (Figure 2).

Subgroup Analyses Based on Patient’s
Age and Disease Stage
We divided the ages into 30–49, 50–69, and over 70 for a
subgroup analysis. The Pearson correlation coefficients exceed
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TABLE 2 | Pearson correlation coefficients between the two modalities in gray, white matter and whole brain of each subject.

ASL-ATT vs. CTP-MTT ASL-CBF vs. CTP-CBF

Patient No. Gray matter White matter Whole brain Gray matter White matter Whole brain

P1 0.781* 0.695* 0.806* 0.604* 0.581* 0.589*

P2 0.803* 0.683* 0.793* 0.779* 0.714* 0.781*

P3 0.743* 0.617* 0.788* 0.730* 0.651* 0.736*

P4 0.757* 0.609* 0.750* 0.736* 0.721* 0.737*

P5 0.767* 0.710* 0.797* 0.600* 0.497* 0.601*

P6 0.783* 0.658* 0.801* 0.802* 0.671* 0.809*

P7 0.788* 0.674* 0.790* 0.569* 0.513* 0.566*

P8 0.792* 0.727* 0.787* 0.662* 0.616* 0.683*

P9 0.787* 0.699* 0.801* 0.612* 0.497* 0.597*

P10 0.825* 0.753* 0.812* 0.705* 0.641* 0.705*

P11 0.801* 0.723* 0.840* 0.718* 0.629* 0.719*

P12 0.754* 0.708* 0.818* 0.748* 0.711* 0.766*

P13 0.757* 0.666* 0.770* 0.475* 0.391* 0.493*

P14 0.742* 0.700* 0.703* 0.427* 0.459* 0.394*

P15 0.814* 0.797* 0.834* 0.574* 0.645* 0.569*

P16 0.799* 0.744* 0.811* 0.650* 0.655* 0.646*

P17 0.789* 0.691* 0.794* 0.522* 0.499* 0.518*

P18 0.834* 0.783* 0.846* 0.582* 0.539* 0.574*

P19 0.822* 0.741* 0.829* 0.637* 0.453* 0.623*

P20 0.790* 0.722* 0.800* 0.765* 0.674* 0.765*

P21 0.807* 0.739* 0.817* 0.697* 0.532* 0.689*

*P<0.005.

TABLE 3 | Mean Pearson correlation coefficients between the two modalities in gray, white matter and whole brain of 21 patients.

Gray matter White matter Whole brain

ASL-ATT vs. CTP-MTT 0.787 ± 0.026 0.707 ± 0.047 0.799 ± 0.032

ASL-CBF vs. CTP-CBF 0.647 ± 0.102 0.585 ± 0.097 0.646 ± 0.107

FIGURE 2 | The box-plots of mean Pearson correlation coefficients between the two modalities in gray, white matter and whole brain.

0.5 in each subgroup (Table 4). The results showed a moderate
to high positive correlation of different age groups between
the two modalities.

The comparison of patients at the acute phase, subacute
phase, and chronic phase was conducted. The results exhibited

a moderate to high correlation in different periods of ischemic
stroke patients under the two modalities, indicating the little
effect of disease stage.

Figure 3 shows a representative patient of ischemic stroke
disease with ASL and CTP images. CTP shows hypoperfused
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TABLE 4 | Mean Pearson correlation coefficients of different subgroups between the two modalities in gray, white matter and whole brain.

ASL-ATT vs. CTP-MTT ASL-CBF vs. CTP-CBF

Gray matter White matter Whole brain Gray matter White matter Whole brain

Age (years)

30–49 (n = 5) 0.799 ± 0.018 0.732 ± 0.041 0.811 ± 0.020 0.618 ± 0.033 0.558 ± 0.081 0.612 ± 0.044

50–69 (n = 9) 0.792 ± 0.030 0.716 ± 0.039 0.802 ± 0.041 0.659 ± 0.126 0.613 ± 0.092 0.657 ± 0.138

>70 (n = 7) 0.773 ± 0.023 0.677 ± 0.051 0.787 ± 0.217 0.653 ± 0.107 0.568 ± 0.117 0.655 ± 0.103

Disease stage

Acute (n = 5) 0.788 ± 0.027 0.703 ± 0.066 0.799 ± 0.020 0.653 ± 0.106 0.625 ± 0.079 0.657 ± 0.111

Subacute (n = 8) 0.784 ± 0.025 0.699 ± 0.046 0.805 ± 0.026 0.701 ± 0.069 0.623 ± 0.081 0.702 ± 0.076

Chronic (n = 8) 0.790 ± 0.030 0.716 ± 0.039 0.794 ± 0.043 0.590 ± 0.105 0.523 ± 0.098 0.582 ± 0.109

FIGURE 3 | A patient admitted to the hospital with weakness in the right
upper limb for 1 day, and he had a history of ischemic stroke last year. T1WI
demonstrates an obsolete infarct in the left frontal lobe. ASL-ATT, CTP-MTT,
ASL-CBF, and CTP-CBF are normalized images and present consistent
results. CTP shows hypoperfused regions in the left frontal lobe. CTP-CBF of
the left frontal lobe is lower than the contralateral side, and ASL shows
decreased ASL-CBF of the left frontal lobe. CTP-MTT is higher in the infarcted
area but not in the surrounding regions, whereas the ASL-ATT is decreased
(probably no signal) in the infarcted region and increased in the surrounding
regions/territories (fitting with the atrophy patterns).

regions in the left frontal lobe. By visual appearance, ASL
images present similar perfusion lesion as CTP. However, CTP-
MTT is higher in the infarcted area, whereas the ASL-ATT
is decreased (probably no signal) in the infarcted region and
increased in the surrounding regions/territories (fitting with the
atrophy patterns).

Figure 4 shows another representative case with ischemic
stroke disease, and ASL images are in substantial agreement
with the results of CTP. Besides, ASL-CBF shows focal
intravascular signals and low tissue perfusion in the right frontal,
temporal and occipital lobes, which may indicate the status of
collateral perfusion.

ASL-CBF, ASL-ATT, CTP-CBF, and CTP-MTT images
were segmented into gray matter maps in Figure 5. ASL
shows hypoperfusion area of the left frontal, temporal and

occipital lobes and basal ganglia. The ASL-CBF of the infarct
regions decreases and the ASL-ATT increases compare to the
contralateral side. CTP is in concordance with the result of ASL.

DISCUSSION

The correlations between pCASL and CT perfusion were
analyzed in 21 patients with ischemic stroke in this study.
Moderate to high positive associations between ASL-CBF and
CTP-CBF were acquired in the gray matter, white matter, and
whole brain of the enrolled patients. Wang et al. (2014) also
found significant correlations between multi-delay pCASL and
CTP in patients with moyamoya disease. CTP scan was initiated
after injection of non-ionic iodinated contrast agent. The time
concentration curves can be obtained by serially detecting the
dynamic CT values of the interest regions (Konstas et al., 2009).
In addition, a dynamic assessment of capillary level blood flow
through different mathematical models was obtained. ASL adopts
magnetically labeled arterial blood water as an endogenous
tracer (Wu et al., 2007). When the labeled blood reaches the
scanning level, it causes changes in the focal tissue magnetization
vector and longitudinal relaxation time. Although the imaging
mechanisms of the two modalities are different, they can both
reflect blood perfusion of brain. Continuously dynamic scanning
is necessary to calculate the CT perfusion parameters; therefore,
the required radiation dose increases. Despite the application
of low-dose CT scans, radiation damage is still inevitable.
Multi-delay pCASL is non-radiative and non-invasive, and can
be performed in patients with iodine contrast agent allergies,
hyperthyroidism, and renal insufficiency.

The CBF and ATT maps were simultaneously derived using
multi-delay pCASL protocol in this study. ATT refers to the
time needed for the inverted spins to reach the acquisition
region (Chen et al., 2012). The blood flow of ischemic stroke
patients is slowed because of stenosis or the collateral pathway
of the cerebral arteries, and the arterial transit time is prolonged
(Lin et al., 2016). All patients enrolled in this study presented
increased ATT in the infarct region, which can be used to
detect focal cerebral ischemia. MacIntosh et al. (2010) adopted
multi-delay pCASL in patients with acute ischemic stroke. They
reported a representative patient with minor lacunar infarcts, and
the patient showed obviously high signals on ATT images, which
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FIGURE 4 | A patient with left limb weakness for 9 days at admission. ASL-ATT, CTP-MTT, ASL-CBF, and CTP-CBF are normalized images and presented
consistent results. CTP shows decreased CTP-CBF and increased CTP-MTT in the right frontal, temporal and occipital lobes; ASL shows decreased ASL-CBF and
increased ASL-ATT of the right frontal, temporal and occipital lobes compare with the contralateral side. However, ASL-CBF shows focal intravascular signals and
low tissue perfusion in the right frontal, temporal and occipital lobes, which may indicate the status of collateral perfusion.

FIGURE 5 | A patient with 6 days of weakness in the right limb at admission.
The images demonstrate the gray matter of ASL-ATT, ASL-CBF, CTP-MTT,
and CTP-CBF. ASL shows hypoperfusion area of the left frontal, temporal and
occipital lobes and basal ganglia. The ASL-CBF of the infarct regions
decreases and the ASL-ATT increases compare to the contralateral side. CTP
is in concordance with the result of ASL.

was consistent with our findings. Consequently, we suggest that
the measurement of ATT helps to detect subtle ischemic lesions
in patients with stroke.

In patients with ischemic stroke, ATT can be prolonged due
to intracranial artery stenosis. PLD is defined as the interval

time between blood labeling and image acquisition (van der
Thiel et al., 2018). When the PLD is closer to the ATT, the CBF
value is closer to the cerebral blood flow under physiological
conditions. If the PLD cannot be adjusted in a timely manner,
some of the labeled blood fails to reach the acquisition level
due to delayed arrival, which may lead to underestimation of
the perfusion (Ferré et al., 2013). The International Society for
Magnetic Resonance in Medicine and the European Consortium
ASL in Dementia recommends that the PLD of adults with
cerebrovascular disease should be set to 2 s (Alsop et al.,
2015). When patients have severe cerebrovascular stenosis, the
ATT will be significantly prolonged because of flow deficits.
Therefore, 2 s may still result in underestimation of the CBF.
In recent years, a single PLD was generally employed in
most ASL studies, and the delay time was usually between
1.5 and 2 s (Chen et al., 2018; Jezzard et al., 2018). In
our study, a total of 6 PLDs between 1,000 and 3,500 ms
were adopted to improve the accuracy of cerebral perfusion
quantitative measurement in ischemic patients. However, the
multi-delay pCASL also has some limitations. As the delay
time increases, the scanning time will also increase, as will the
possibility of motion artifacts. Therefore, this imaging protocol
is suitable only for patients in a stable condition and with high
levels of cooperation.

In our study, we found a patient that presented focal
intravascular signals and low tissue perfusion in the infarct
regions. Recent clinical evaluations of ASL in cerebrovascular
disease have shown that focal intravascular signals and the
delayed arterial transmission of tissue hypoperfusion may
indicate the status of collateral perfusion (Chen et al., 2009;
Zaharchuk, 2011; Lou et al., 2017). Therefore, we speculate
that another potential ability of multi-delay pCASL could be
evaluating collateral flow through dynamic perfusion images.

Evaluating cerebral perfusion plays an important role in
determining treatment options for patients with ischemic stroke.
Some patients also need regular follow-up brain perfusion
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examinations to assess the treatment efficacy and make timely
adjustments. Up to present, few studies on multi-delay ASL have
been reported (Wang et al., 2013). Compared with traditional
single PLD ASL, multi-delay pCASL allows for non-invasive
perfusion imaging and can provide more relevant clinical
information. Besides, we have increased the comparison of
patients at the acute phase, subacute phase, and chronic phase.
The results showed a moderate to high correlation in different
periods of ischemic stroke patients between ASL and CTP,
indicating the little effect of disease stage. In addition, a moderate
to high correlation of different age groups under the two
modalities was obtained. Therefore, we speculated multi-pCASL
could be used as an alternative imaging method for CTP.

In this study, a total of 3 female patients were included,
far fewer than men. However, we calculated the correlation
coefficients of each subject under the two modalities. The results
of the three ischemic female patients were basically consistent
with the overall trend. Multi-delay pCASL is non-radiative and
non-invasive, and can be combined with other MRI sequences,
such as anatomical imaging, vascular imaging, and diffusion
weighted imaging; thus, more imaging information can be
obtained during one examination.

There are some limitations in our study. First, only 21
patients were enrolled in this study, but presented a relatively
representative cohort of patients with ischemic stroke. Second,
gender bias should be excluded, as the female patients were
far fewer than male patients. Despite we calculated the
correlation coefficients of each subject under the two modalities,
we will continue to include more female patients to verify
this conclusion.

CONCLUSION

In conclusion, the present study showed moderate to high
significant correlations between perfusion parameters from
multi-delay pCASL and CTP imaging in patients with ischemic

stroke. Due to the clinical feasibility and utility of multi-
delay pCASL, it could potentially be used as part of a
standard neuroimaging protocol for the management of
ischemic stroke disease.
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