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Editorial on the Research Topic


Molecular Biomarkers for Gastric Cancer


Gastric cancer (GC) is one of the leading causes of malignancy and tumor-related death worldwide, especially in Eastern countries (1). Since gastric cancer is often asymptomatic in its early stages, non-invasive methods for early detection are urgently required. The ideal biomarkers should facilitate early diagnosis, accurate prognosis, timely detection of recurrence or metastasis during postoperative surveillance and guidance for individualized treatment. Classical tumor biomarkers such as carcinoembryonic antigen (CEA) and cancer antigen 19-9 (CA19-9), which are commonly used in clinical practice, have limited specificity and sensitivity (2). Moreover, gastric cancer is a highly heterogeneous disease, but there are still many shortcomings in its molecular typing and individualized treatment. HER2 was the first molecular biomarker to be put into clinical use, accompanied by the first molecular targeted drug being included in gastric cancer treatment guidelines, trastuzumab (3). However, the main problems facing trastuzumab are the low proportion of gastric cancer patients overexpressing HER2 and drug resistance. Disappointingly, several subsequent clinical studies of other drugs targeting HER2 have failed to achieve satisfactory results (4, 5).

With the rapid development of bioinformatic technology, we can obtain information on gene expression and gene mutations in gastric cancer from large databases such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and screen out differentially expressed genes that are relevant to diagnosis or prognosis for further analysis. Zhang et al. extracted somatic mutation data from the TCGA Stomach Adenocarcinoma (STAD) cohort and developed a four-gene-based risk score significantly associated with overall survival prognosis, and validated it in the Tianjin cohort. Based on the analysis of TCGA database, Li et al. indicated several possible key genes related to gastric cancer progression and prognosis, including TP53, HRAS, BRCA1, PIK3CA, AKT1, and SMARCA4. Chen et al. constructed and validated a prognostic nomogram model based on 5 DNA methylation-driven genes (CXCL3, F5, GNAI1, GAMT and GHR) for gastric cancer, promising as a valid prognostic assessment tool. Shan et al. detected differentially expressed genes between gastric cancer and adjacent normal tissues using gene expression profiling datasets from the Gene Expression Omnibus (GEO) database, and three genes (CDH3, LEF1 and MMP7) were then screened as possible predictors of gastric cancer prognosis by bioinformatics methods. Based on information from the TCGA database, Xie et al. showed that high PAFAH1B3 (Platelet activating factor acetylhydrolase 1b catalytic subunit 3) expression in gastric cancer was significantly associated with proliferation-related gene sets and with immune cell infiltration, and in vitro experiments verified that its function involves cell proliferation, migration and the activation of oncogenic signaling. Zhang et al. combined data from 5 pairs of gastric cancer samples and TCGA, and found that DDX18 expression correlated with tumor volume, Borrmann classification, degree of tumor differentiation, cancer embolus, lymph node metastasis and TNM stage, suggesting it as a prognostic biomarker. The authors also explored the mechanism of DDX18 in vitro and in vivo, suggesting that it could be a potential therapeutic target as well. Taking advantage of TCGA and GEO databases, Ye et al. constructed A 13-gene metabolic signature (GSTA2, POLD3, GLA, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A and RDH12) that can be used for the prognosis of gastric adenocarcinoma and suggests its relationship with the immune microenvironment. Huo et al. obtained data from the TCGA database, identified seven differentially expressed immune-related genes based on tumor-associated macrophage infiltration, constructed a risk scoring system that predicted gastric cancer prognosis, and validated it in four cohorts of the GEO database. Tan et al. identified five differentially expressed genes (MS4A1, THBS2, VCAN, PDGFRB, and KCNA3), among which VCAN and PDGFRB were associated with poor prognosis and their functions may involve extracellular matrix and receptor ligand activity, based on data of early-stage stomach adenocarcinoma from TCGA. Based on the information obtained from the TCGA database, Li et al. discovered that the GUCY1A2 gene (encoding the soluble guanylyl cyclase α2 subunit) was highly expressed in gastric cancer tissues and was associated with histological grade and T stage, and its high expression predicted a poor prognosis. Ma et al. utilized TCGA and Immport database to derive an immune-related lncRNA signature and validated it in 75 gastric cancer samples, demonstrating its capacity to predict overall survival and immune status of the tumor microenvironment in gastric cancer.

Additionally, some authors have explored and studied biomarkers associated with the diagnosis, treatment efficiency and prognosis of gastric cancer using data of gastric cancer patients from their own institutions. Guo et al. found that combined analysis of large tumor suppressor kinases 1/2 (LATS1/2), CD8, and FOXP3 has a prognostic value for gastric cancer. The effect of LATS1/2 on CD8+ T cells and POXP3+ Treg deserves further investigation and is expected to provide potential targets for immunotherapy. Kim et al. identified a GC-specific radiosensitivity gene signature by analyzing 12 gastric cancer cell lines and screened that the Akt pathway was most associated, suggesting that it could be used as a target for radiotherapy sensitization. Song et al. demonstrated that human hedgehog-interacting protein (HHIP) regulates gastric cancer progression and metastasis by regulating promoter methylation levels, and its lower level is positively correlated with gastric cancer metastasis, which is expected to be a prognostic marker and therapeutic target. Wang et al. analyzed 322 surgical specimens of early gastric cancer that had undergone radical gastrectomy and found that tumor-associated neutrophils (TANs) were associated with tumor volume, depth of invasion, Lauren classification, histological classification, lymphovascular invasion and perineural invasion, and were predictive of lymph node metastasis in early gastric cancer. Tong et al. revealed that high expression of tRF-3017A (derived from tRNA-Val-TAC) in gastric cancer tissues was associated with lymph node metastasis, and mechanistic studies suggested that it could promote migration and invasion of gastric cancer cells by silencing the cancer suppressor genes NELL2. Xu et al. examined 155 gastric cancer specimens and found that high PCSK9 (proprotein convertase subtilisin/kexin type 9) expression was associated with GC progression and poor prognosis. In vitro and in vivo assays validated that PCSK9 could promote GC metastasis and suppress apoptosis by facilitating MAPK signaling pathway through HSP70 up-regulation. Cai et al. analyzed a cohort of patients with stage III gastric cancer and concluded that microsatellite instability-high (MSI-H) had a poorer response to neoadjuvant chemotherapy but better survival compared to microsatellite stability or microsatellite instability-low (MSS/MSI-L), requiring further investigation about the value of neoadjuvant chemotherapy for Stage III GC patients with MSI-H. Ye et al. demonstrated that high US31 expression in gastric cancer patients predicted better overall survival. US31 overexpression inhibited gastric cancer cell proliferation, migration and invasion in vitro, and it was also involved in regulating the tumor immune microenvironment, may playing the dual role as prognostic biomarker and therapeutic target. Zhang et al. showed that lncRNA SNHG12 is highly expressed in gastric cancer cells and tissues, predicting a poor prognosis. The authors also performed in vitro and in vivo experiments to confirm its association with cell proliferation by regulating the YWHAZ/AKT/GSK-3β axis. Wang et al. constructed a novel scoring system called the inflammatory-nutritional prognostic score (INPS) based on data from 513 patients with stage III gastric cancer, which was a valid independent prognostic factor for patients receiving radical gastrectomy followed by adjuvant chemotherapy. Zhang et al. analyzed data of 166 gastric cancer patients and noted that high expression of leukocyte immunoglobulin like receptor subfamily B1 (LILRB1), thought to be an immunosuppressive molecule, was associated with more advanced tumor stage, higher risk of recurrence and poor survival, and that it was positively correlated with M2 tumor-associated macrophages (TAMs) infiltration, which could produce an immunosuppressive microenvironment. Finally, there is a meta-analysis conducted by Wei et al. that included 12 studies with 8,305 patients and showed that a low albumin-to-globulin ratio (AGR) prior to treatment for gastric cancer predicted worse overall survival (OS) and disease-free survival/progression-free survival (DFS/PFS).

In summary, a lot of studies are trying to find effective biomarkers or scoring systems to help early diagnosis, efficacy prediction and evaluation, monitoring of recurrence and metastasis, and individualized treatment for gastric cancer, as well as to deepen our understanding of the pathogenesis of gastric cancer. However, there are several challenges in translating these findings to clinical applications. First, biomarkers for early diagnosis need to be tested in a large population including healthy individuals to clarify sensitivity and specificity. Secondly, most biomarkers need to be tested on tumor specimens, which are somewhat invasive and sometimes inaccessible. Moreover, the specimens obtained by endoscopic biopsy may not be an accurate representation of the overall disease due to the heterogeneity of the tumor. In addition, for biomarkers involved in prognosis and therapeutic efficacy prediction, it would be more convincing if investigators employed prospective studies for validation. Finally, we hope that we can improve the journey of gastric cancer biomarkers from discovery, validation to successful clinical translation based on the close cooperation of multidisciplinary teams, so as to achieve earlier detection and more appropriate individualized treatment (6), thus improving the prognosis of gastric cancer.
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Vestigial-like family (VGLL) members are mammalian orthologs of vestigial gene in Drosophila, and they consist of four homologs (VGLL1–4). VGLL members have TDU motifs that are binding regions to TEA/ATSS-DNA-binding domain transcription factor (TEAD). Through TDU motifs, VGLL members act as transcriptional cofactors for TEAD. VGLL1-3 have single TDU motif, whereas VGLL4 has two tandem TDU motifs, suggesting that VGLL4 has distinct molecular functions among this family. Although molecular and physiological functions of VGLL members are still obscure, emerging evidence has shown that these members are involved in tumor development. Gene alterations and elevated expression of VGLL1-3 were observed in various types of tumors, and VGLL1-3 have been shown to possess tumorigenic functions. In contrast, down-regulation of VGLL4 was detected in various tumors, and the tumor-suppressing role of VGLL4 has been demonstrated. In this review, we summarize the recently identified multiple roles of VGLL members in tumor development and provide important and novel insights regarding tumorigenesis.

Keywords: VGLL, vestigial, TEAD, Hippo, YAP, TAZ


INTRODUCTION

Vestigial-like family (VGLL) is composed of four homologous members (VGLL1, 2, 3, and 4) in mammals (1, 2). VGLL genes are orthologs of vestigial (vg) which was primarily identified as a gene required for wing development in Drosophila (3, 4). Vg binds to the product of scalloped (sd), which belongs to a conserved transcription factor family having a TEA/ATSS-DNA-binding domain (TEAD). It lacks DNA-binding domains and binds to DNA as a Vg-Sd protein complex. Vg acts as a cofactor for Sd, and Vg-Sd complex regulates the expression of genes involved in wing development (5). Furthermore, Vg has a short motif comprising ~26 amino acids, which is required and sufficient for its association with Sd. This motif is conserved in mammalian VGLL members (1, 2). VGLL1 was the first isolated mammalian VGLL member with structural and functional similarity to Vg (6). VGLL1 was originally named TONDU (TDU), and therefore the motif in VGLL members required for association with TEAD is known as the TDU motif. VGLL1-3 have a single TDU motif, whereas VGLL4 has two separated TDU motifs (Figure 1A), suggesting that VGLL1-3 and VGLL4 have distinct molecular functions (1, 2).


[image: Figure 1]
FIGURE 1. Multiple roles of VGLL members in tumor development. (A) Schematic representations of VGLL family proteins. Domain architecture is based on (7). CDK1-mediated phosphorylation sites (8) and a p300-mediated acetylation site (9) are shown on the VGLL4 structure. TDU, Tondu motif. (B) Overexpression of VGLL1 promotes anchorage-independent growth of prostate tumor cell lines through the induction of IGFBP5. VGLL1 expression was increased by the PI3K-AKT-β-catenin pathway and induced metastasis via MMP9 expression in gastric tumor. VGLL1 was induced by HPV infection, and VGLL1 contributed to HPV early gene expression. Estrogen receptor (ER) repressed VGLL1 expression in breast tumor. (C) VGLL2 fusion genes (VGLL2-CITED2 and VGLL2-NCOA2) were identified in pediatric spindle and sclerosing rhabdomyosarcoma. Although the tumorigenicity of these genes is obscure, it has been suggested that these genes affect gene expression signatures in tumor. (D) VGLL3 gene amplification was detected in myxoinflammatory fibroblastic sarcoma and soft tissue sarcoma, and VGLL3 was involved in the proliferation of sarcoma cells. VGLL3 expression showed positive correlation with poor prognosis in gastric tumor patients, and the activation of MAPK, JAK-STAT, WNT pathways as well as enhanced immune infiltrates were observed in VGLL3-high tumor. VGLL3 expression was induced by TGF-β-stimulation in a histone-modification dependent manner. (E) VGLL4 as a tumor suppressor through competition with YAP/TAZ for TEAD-binding in various tumors. Inactivation of VGLL4 was caused by microRNA-mediated gene silencing or CDK1-mediated phosphorylation. USP11 stabilized VGLL4 and enhanced its tumor-suppressing role. IRF2BP2 had both positive and negative effects on VGLL4. TCF4, STAT3, β-catenin, and cIAPs are also targets of VGLL4-mediated suppression.


Mammalian TEAD family consist of four homologs (TEAD1, 2, 3, and 4). Studies so far have revealed that the dysregulation of TEAD activity causes tumorigenesis (10–12). TEAD activity is controlled by the Hippo tumor-suppressor pathway. The main targets of the Hippo pathway are two homologous transcriptional cofactors for TEAD: Yes-associated protein (YAP) and transcriptional cofactor with PDZ-binding motif (TAZ) (13, 14). The Hippo pathway promotes protein degradation and nuclear export of YAP/TAZ through phosphorylation by protein kinases large tumor suppressor 1/2 (LATS1/2) (15). YAP/TAZ-TEAD complex promotes the expression of genes involved in cell growth, and disruption in the Hippo pathway causes aberrant activation of this complex and thereby induces tumor development (10–12).

Given that VGLL is a cofactor family for TEAD, VGLL members are likely to be involved in tumorigenesis (16, 17). Emerging evidence has revealed that these proteins have both promoting and suppressive roles in tumor development. The aim of this review is to summarize the multiple roles of VGLL members in tumor development (Table 1).


Table 1. Summary of the involvement of VGLL members in various types of tumors.

[image: Table 1]



VGLL1 IS INVOLVED IN TUMOR PROGRESSION

VGLL1 (TONDU) was the first identified human ortholog of Vg which could substitute for Vg in wing formation in Drosophila (6). The structural analysis of VGLL1-TEAD4 complex revealed that VGLL1 interacts with the surface of TEAD that overlap with YAP/TAZ-binding sites despite having a varied primary sequence and that VGLL1 competes with YAP/TAZ for TEAD binding (22). VGLL1 was detected in human prostate tumor cell lines PC3 and LnCAP, and stable expression of VGLL1 enhanced anchorage-independent growth on soft agar. VGLL1-expressing cells showed enhanced expression of insulin-like growth factor binding protein-5 (IGFBP5), a cell growth-promoting gene, whereas this enhancement was not observed with the overexpression of TAZ. Importantly, anchorage-independent growth or IGFBP5 expression was not induced by stable expression of the VGLL1 mutant lacking TEAD-binding ability, suggesting that VGLL1 depends on TEAD for its oncogenic activity (22).

Recently, EWSR1-VGLL1 fusion genes were found in a soft tissue malignant myoepithelial tumor and a pediatric neuroepithelial neoplasm (21, 23). In each case, the fusion gene encodes a protein where the N-terminal transactivation domain of EWSR1 is fused to the full-length VGLL1. Although the exact oncogenic effect of EWSR1-VGLL1 is still obscure, given the oncogenic roles of EWSR1 fusion genes, such as EWSR1-FLI1 and EWSR1-ERG, in Ewing sarcoma (47), EWSR1-VGLL1 likely has a potential to act as an oncogene.

The expression of VGLL1 was detected in fetal human lung and kidney (6). The analysis of VGLL1 expression in human breast tumor revealed that increased expression of VGLL1 is often detected in malignant types of breast tumor (triple negative and basal-like) and that VGLL1 expression is associated with reduced overall survival. It has been suggested that the modulation of estrogen receptor (ER) is involved in increased VGLL1 expression (18). Increased expression of VGLL1 has also been reported in gastric tumor, and its correlation with phosphatidylinositol-3-phosphate kinases (PI3K)/AKT/β-catenin signaling has also been demonstrated. VGLL1 is required for gastric tumor cell growth and metastasis, and matrix metalloprotease 9 (MMP9) has been suggested to be a target of VGLL1-TEAD4 complex (20).

Because TEAD1 activates the early promoter of human papillomavirus (HPV), a causative agent for cervical tumor, the contribution of VGLL1 to HPV early gene expression was recently investigated (19). The knockdown of VGLL1 reduced viral early gene expression in human cervical keratinocytes and cervical cancer cell lines. VGLL1 bound the HPV16 long control region (LCR) as a VGLL1-TEAD1 complex. The introduction of HPV16 and HPV18 whole-genomes into primary human keratinocytes increased VGLL1 expression. The results of these studies suggested that the VGLL1-TEAD1 complex support efficient transcription of HPV early genes, following cervical tumor development (Figure 1B).



VGLL2 IS A TARGET OF GENE ALTERATION IN SARCOMA

VGLL2, also known as vestigial and TONDU related (VITO)-1, was identified as a VGLL1 homolog specifically expressed in the skeletal muscle lineage (48, 49). VGLL2 association with TEAD1 and VGLL2 overexpression enhanced the induction of myosin heavy chain, a marker of terminal differentiation of muscle. VGLL2-knockout mice showed an increased number of fast-twich type IIb fibers and a down-regulation of slow type I myosin heavy chain gene. These knockout mice exhibited exercise intolerance, suggesting that VGLL2 is involved in the differentiation of the muscle (50, 51).

Two kinds of VGLL2-fusion genes, VGLL2-CITED2 and VGLL2-NCOA2, were identified in pediatric spindle and sclerosing rhabdomyosarcoma (SRMS) (24). SRMS is a type of muscle tumor that occurs in very young children. Each VGLL2-fusion gene encodes a protein where the C-terminal region of VGLL2 was replaced by CITED2 or NCOA2 gene product. Sarcomas harboring VGLL2-fusion genes shared similar gene expression signatures (52), suggesting that the common region of these fusion genes, namely VGLL2, plays an important role in the development of sarcoma. The analyses of the molecular roles of VGLL2-fusion genes are required to evaluate their significance in sarcoma development (Figure 1C).



VGLL3 IS INVOLVED IN BOTH TUMOR DEVELOPMENT AND SUPPRESSION

VGLL3 was found as a VGLL1 homolog predominantly expressed in the placenta (48). VGLL3 was also identified as VITO-2, which shares a high homology with VITO-1 and is mainly expressed in the myogenic lineage during early mouse embryonic development (53). In adult mice, VGLL3 was detected in various tissues, including the skeletal muscle, heart, kidney, liver, and brain (53). Mammalian two-hybrid assays showed the association between VGLL3 and TEAD1 (54). RNA interference-mediated VGLL3 knockdown suppressed myoblast proliferation, and VGLL3 overexpression strongly promoted myogenic differentiation (55). These observations suggested that VGLL3-TEAD1 complex regulates the differentiation of various types of cells, including muscles.

Similarly to VGLL2, VGLL3 gene alterations were identified in sarcoma. VGLL3 gene amplification and overexpression were found in myxoinflammatory fibroblastic sarcoma and soft tissue sarcoma (27, 29). Knockdown experiments showed that VGLL3 is required for proliferation in a soft tissue sarcoma-derived cell line (29). Recent deep sequencing of myxoinflammatory fibroblastic sarcoma demonstrated that VGLL3 amplification is a highly recurrent feature of this type of sarcoma (56).

In addition to sarcoma, VGLL3 expression was found to be positively correlated with accelerated grade and poor prognosis in gastric tumor (26). VGLL3-high gastric tumor showed the activation of the MAPK, JAK-STAT, and WNT pathways together with enhanced immune infiltrates (57). These features in VGLL3-high tumors may reflect the proinflammatory functions of VGLL3 which were found in VGLL3-overexpressing mice (58). Transforming growth factor-β (TGF-β) induced VGLL3 expression in a histone modification-dependent manner (59). Therefore, VGLL3 may be involved in TGF-β-related cell responses, such as epithelial-to-mesenchymal transition (EMT), in VGLL3-amplified or -high tumor cells (Figure 1D).

Recently, VGLL3 was found to promote proliferation of breast tumor and sarcoma cells by inducing LATS2 expression and Hippo pathway activation, suggesting that the Hippo pathway promotes tumor cell proliferation through inhibition of YAP/TAZ in the presence of VGLL3 (25). Notably, YAP/TAZ are known to function as a tumor suppressor via a cell-autonomous mechanism (60–62) and a non-cell-autonomous mechanism (63). Therefore, relationship between VGLL3-dependent cell growth and the tumor suppressive role of YAP/TAZ needs to be evaluated.

The tumor suppressor role of VGLL3 was also suggested in ovarian tumor. The transfer of a chromosome 3 fragment containing VGLL3 gene suppressed tumor phenotypes in the ovarian tumor cell line OV90 (28). VGLL3 expression in parental OV90 cells was undetectable, and the transfer of the chromosome fragment rescued VGLL3 expression and repressed tumorigenicity, suggesting that VGLL3 is a tumor suppressor gene (64). However, VGLL3 single gene transfer did not cause significant reduction in the proliferation of OV90 cells in vitro and in vivo (65). The concept of the tumor-suppressing role of VGLL3 needs more evaluation.



VGLL4 IS A TUMOR SUPPRESSOR IN VARIOUS TYPES OF TUMOR

VGLL4 is the only member of VGLL expressed in the heart (66). Unlike other members of VGLL that have a single TDU motif, VGLL4 has two tandem TDU motifs in its C-terminal region. VGLL4 association with TEAD1 and the overexpression of VGLL4 in cardiac myocytes repressed TEAD1-dependent skeletal α-actin promoter activity, suggesting that VGLL4 is a negative regulator of TEAD1 (66).

Consistent with this repressive effect of VGLL4 on TEAD activity, VGLL4 is recognized as a tumor suppressor gene (67). The tumor-suppressing role of VGLL4 was first observed in the transposon Sleeping Beauty-mediated mutagenesis in murine Kras-driven pancreatic adenocarcinoma models (46). The reduction in VGLL4 expression was observed in human lung tumor, and VGLL4 expression repressed the proliferation of lung tumor cells via the suppression of TEAD transcriptional activities (42). VGLL4 was down-regulated in esophageal squamous cell carcinoma, which led to increased cell growth and motility through the induction of the expression of connective tissue growth factor (CTGF) (35). Low expression of VGLL4 positively correlated with poor prognosis of gastric tumor patients, and reduction in VGLL4 expression increased YAP-mediated TEAD activity and gastric tumor cell growth (36, 37). Mechanistically, VGLL4 directly competed with YAP for TEAD binding. Structural and biochemical analyses revealed that the tandem TDU motifs in VGLL4 are not only essential but also sufficient for its suppressive role on YAP (36). VGLL4 repressed the proliferation of breast tumor cells via the inhibition of YAP-mediated gene induction, and high expression of VGLL4 correlated with poor prognosis of breast tumor patients (31).

Although the tumor-suppressing roles of VGLL4 mostly depend on competition with YAP for TEAD binding, VGLL4 also acts as a tumor suppressor in a YAP-independent manner. VGLL4 bound and inhibited cellular inhibitor of apoptosis proteins (cIAPs) and consequently promoted apoptotic cell death (32). VGLL4 associates with T-cell factor 4 (TCF4), a transcription factor in WNT/β-catenin signaling, and interferes with the formation of TCF4-TEAD4 complex. This VGLL4-mediated inhibition of TCF4-TEAD4 formation repressed WNT/β-catenin signaling and colorectal cancer progression (34). VGLL4 also suppresses EMT in gastric tumors by inhibiting WNT/β-catenin signaling via repression of the nuclear accumulation of β-catenin and activation of TCF/LEF target genes (37, 67). STAT3, a transcription factor in JAK-STAT signaling, was another target of VGLL4, and binding of VGLL4 to STAT3 repressed its transcriptional activity and cell growth in triple-negative breast cancer (33).

What are the molecular mechanisms of VGLL4 down-regulation in tumor cells? MicroRNAs are involved in VGLL4 repression. MiR-222 repressed VGLL4 expression and in turn activated YAP-TEAD signaling and cell growth in gastric tumor cells (39). MiR-130a, which is a direct target of YAP-TEAD complex, repressed VGLL4 expression and thereby amplified YAP-TEAD activity. This miR-130a-mediated repression of VGLL4 was involved in murine liver tumorigenesis and size control (45). MiR-301a-3p, which repressed VGLL4 expression, was enhanced in human hepatocellular carcinoma tissues and cell lines, and higher miR-301a-3p expression showed positive correlation with poor prognosis in tumor patients (40). MiR-130b was up-regulated in bladder tumor and promoted proliferation, migration, and invasion of bladder tumor cell lines via the repression of VGLL4 (30).

MicroRNA-independent mechanisms of VGLL4 repression in tumor have also been reported. Cyclin-dependent kinase1 (CDK1)-mediated phosphorylation suppressed the tumor-suppressing activity of VGLL4 (8). Serotonin 5-hydroxytryptamine could control YAP/VGLL4 balance and promote hepatocellular carcinoma progression (68). Hypoxic stress, which is a frequently observed characteristic in tumor, caused alternative splicing of VGLL4 gene in human breast tumor cells, and this alternative splicing was suggested to affect its tumor-suppressing role (69). Ubiquitin-specific protease 11 (USP11) deubiquitinated and stabilized VGLL4 proteins, and the inactivation of USP11 was suggested to be involved in the destabilization of VGLL4 in tumor cells (44).

Although interferon regulatory factor 2 binding protein 2 (IRF2BP2) was identified as a VGLL4 binding partner (70), the relationship between these proteins are complicated. IRF2BP2 stabilized VGLL4 protein and repressed tumor progression via the inactivation of YAP-TEAD4 complex in liver cancer (41). In contrast, IRF2BP2 repressed the suppressive role of VGLL4 on YAP-TEAD activation and promoted cell growth by inducing CTGF expression in gastric cancer (38). It has also been reported that IRF2BP2 and VGLL4 promote tumor growth through the induction of the immune checkpoint protein programmed cell death-ligand 1 (PD-L1) and immune evasion of tumor cells (43). Furthermore, VGLL4 was shown to act as a positive regulator for TEADs together with IRF2BP2 and promote expression of the angiogenic factor vascular endothelial growth factor A (VEGFA), suggesting that VGLL4 has a potential to activate TEADs in the presence of IRF2BP2 (70). The relationship between IRF2BP2 and VGLL4 is likely to be determined by cell context, and more detailed analyses are required (Figure 1E).



CONCLUSIONS

VGLL1 dysregulation was detected in various types of tumor; however, gene alterations in VGLL2 and VGLL3 were observed specifically in sarcoma. VGLL2 shares a high homology with VGLL3, and both genes are expressed in the myogenic lineage (53). Recent studies revealed that VGLL2 and VGLL3 are involved in the differentiation of muscle cells (51, 55). Therefore, the alterations of each gene are likely to affect proliferation and differentiation of stem cells in the myogenic lineage. VGLL2 and VGLL3 may be myogenic lineage-specific oncogenes (66), and this hypothesis should be evaluated in the future.

The inactivation of VGLL4 is involved in various types of tumors. VGLL4 expression has been observed in a wide range of tissues (66), and hence, it is likely to be a ubiquitously expressed tumor suppressor. Therefore, the transfer of VGLL4 into tumor cells may be an effective therapeutic method. Actually, adenovirus-mediated transfer of VGLL4 into hepatocellular carcinoma cells selectively killed the tumor cells through cell cycle arrest and apoptosis induction (71). On the basis of the structural and biochemical analyses of VGLL4-TEAD complex, Jiao and colleagues developed a VGLL4-mimicking peptide that acts as a YAP antagonist (36). The administration of this peptide significantly repressed YAP activation and gastric tumor growth, indicating that the targeting of YAP/TAZ-TEAD complex by the VGLL4-mimicking peptide is a promising therapeutic strategy for various tumors.

Because VGLL1-3 are suggested to be involved in tumor progression, its inactivation is required for tumor treatment. However, upstream signal transduction pathways controlling VGLL1-3 remain largely unknown. Post-transcriptional modifications (PTMs), such as protein phosphorylation, are key molecular mechanisms that regulate protein complex formation, subcellular localization, and stability. The PTMs of VGLL4 were reported (Figure 1A): CDK1 phosphorylates VGLL4 and lowers its affinity to TEADs (8), and the histone acetyltransferase p300 acetylates the lysine residue in the first TDU motif of VGLL4 and suppress its association with TEADs (9). Similarly to VGLL4, PTMs is likely to regulate binding of VGLL1-3 to TEADs. Identification of PTMs that control association of VGLL1-3 with TEADs and development of methods that could specifically repress this complex formation is required for tumor treatment.

In Xenopus laevis, VGLL3 binds to ETS-1, a transcription factor other than TEADs, and regulates trigeminal nerve formation and cranial neural crest migration (72). Given that ETS-1 plays an oncogenic role in various tumors (73) and that VGLL4 regulates transcription factors other than TEADs, it is reasonable to hypothesize that VGLL3 cooperates with ETS-1 as well as TEADs to promote tumorigenesis. Understanding of the whole picture of the binding targets of VGLL members might be helpful in understanding the complexity of the role of VGLL members in tumor development.

To estimate side-effects of molecular targeted therapies, understanding of the phenotypes of knockout mice is useful. Because VGLL4 knockout mice show severe defects in heart valve development and homeostasis (74), VGLL4-tageted drugs may have a risk to affect the development and homeostasis of heart. In contrast, VGLL2 or VGLL3 single knockout mice show only slight abnormalities in skeletal muscle (50, 51, 55). Therefore, VGLL2- or VGLL3-targeted drugs may be preferable medications for tumors with low risk of side-effects.
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Background: Deregulation of HER2 expression could affect the biological characteristics of gastric cancer cells and treatment option for gastric cancer patients. This research aims to investigate the impact of HER2 on biological characteristics of gastric cancer stem cells (GCSCs) and prognosis of gastric cancer patients.

Methods: HER2 knockdown in GCSCs were constructed by lentivirus transfection. Alterations of proliferation, self-renewal, invasion, migration, colony formation, and tumorigenicity of GCSCs were examined. The changes of gene expressions after HER2 interference in GCSCs were detected by gene microarray. The impact of concentration of serum HER2 and expression of HER2 in tumor tissues on survival of 213 gastric cancer patients was also analyzed.

Results: Down-regulation of HER2 decreased the self-renewal, colony formation, migration, invasion, proliferation, and chemotherapy resistance of GCSCs. However, the tumorigenicity of GCSCs in vivo was increased after down-regulation of HER2. The results of gene microarray showed that HER2 gene might regulate the signal transduction of mTOR, Jak-STAT, and other signal pathways and affect the biological characteristics of GCSCs. Furthermore, survival analyses indicated that patients with high concentration of HER2 in serum had a favorable overall survival. However, there was no significant correlation between expression of HER2 in tumor tissue and overall survival.

Conclusion: Interference of HER2 in GCSCs decreased the capacity of self-renewal, proliferation, colony formation, chemotherapy resistance, invasion, and migration but might increase the tumorigenicity in vivo. Patients with high concentration of HER2 in serum seemed to have a favorable prognosis.

Keywords: gastric cancer, cancer stem cells, HER2, tumorigenicity, invasiveness


INTRODUCTION

Gastric cancer (GC) is one of the most common malignant tumors in the world, with high incidence and mortality, particularly in Asian countries (1). The long-term survival rates of GC patients, especially when diagnosed with advanced disease, are still not satisfactory, although they have improved with the increase of proportion of early GC detection, the implementation of standard D2 lymphadenectomy, the development of chemotherapy, and new targeted drugs in recent years (2–4). Therefore, exploring the tumorigenic, recurrent, and metastatic mechanisms of GC is always the core of related researches and attracts great attentions. In recent years, cancer stem cells (CSCs) are considered responsible for the origin, recurrence, and metastasis of cancers because of their self-renewal, tumorigenicity, and multiple differentiation potential (5, 6). Our previous research had successfully identified and separated the gastric cancer stem cells (GCSCs) and found that GCSCs are closely involved in tumorigenesis and metastasis of GC (7). Theoretically, GCSCs are the most promising treatment candidate target for GC in the future. Investigating the alterations of signal pathways in GCSCs will be helpful to elucidate the mechanism of tumorigenesis and progress of GC and find out new effective molecular targets.

Human epidermal growth factor receptor-2 (HER2; ERBB2) plays an important role on signal transduction, proliferation, differentiation, invasion, and metastasis of cancer cells (8, 9). Studies found that overexpression of HER2 was associated with the invasion, metastasis, and poor prognosis of GC patients (10, 11). The results of the ToGA trial had further confirmed the important role of HER2 in the target therapy of GC (4).

Therefore, this research aims to investigate the impact of HER2 on proliferation, chemotherapy resistance, invasion, and tumorigenicity of GCSCs, which might shed a light on further elucidating the mechanism on how GCSCs regulate self-renewal, invasion, and tumorigenicity and show the theoretic basis of anti-tumor comprehensive therapies targeting HER2 signal pathway of GCSCs.



MATERIALS AND METHODS


Patients and Specimens

This study collected tumor tissue samples from GC patients undergoing gastrectomy in the Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, from April 2014 to December 2015. Inclusion criteria of patients were the following: diagnosis of gastric adenocarcinoma confirmed by gastric endoscopy and biopsy, and complete clinicopathological characteristics. The exclusion criteria were as follows: patients with preoperative chemotherapy or radiotherapy, patients with severe disease of other organs, and patients with any previous malignancies or synchronous malignancies. All the samples were tested by immunohistochemistry for HER2 in the Department of Pathology, West China Hospital. The blood samples of these patients were also collected before surgery in order to detect the concentration of serum HER2. Clinicopathological characteristics were retrieved from the databases and analyzed retrospectively. All the patients were followed up through outpatient service, telephone, and mail. Clinicopathologic terminology was based on the Japanese Classification of Gastric Carcinoma (3rd English version) (12). The relationships among HER2 expression level in tumor tissues, the concentration of HER2 in serum, tumor stage, and prognosis of patients were investigated.



Cell Culture

Our previous study had identified GCSCs from tumor tissues and peripheral blood from GC patients (7). The resulting CSCs were cultured in serum-free DMEM/F12 medium (Hyclone, United States) supplemented with 20 ng/ml EGF (Peprotech, United States), 10 ng/ml b-FGF (Peprotech, United States), non-essential amino acids (Hyclone, United States), sodium pyruvate (Hyclone, United States), Glutamax (Life Technologies, United States), ITS (Sigma, United States), and B-27 supplements (Life Technologies, United States). GCSCs were cultured in ultra-low attachment dishes and incubated at 37°C in a humidified environment with 5% CO2. The origins of three GSCSs are described in Supplementary Table S1.



Generation of Stable Transformants

The lentivirus target on HER2 that carried puromycin resistance gene and reporter gene was constructed by GenePharma Co. (Shanghai, China), and GCSCs were transfected with lentivirus at MOI of 20. Then, targeted cells were cultured with 5 μg/ml puromycin for 14 days or more. Efficiency of transformants was confirmed by qPCR and Western blot.



Western Blot

The total protein of target cells was extracted by General protein extraction reagent (Bioteke Corporation, China) supplemented with protease and phosphatase inhibitor (Thermo Scientific, United States). BCA protein assay kit (Thermo Scientific, United States) was used to detect protein concentration. Proteins were loaded on 10% SDS-PAGE, transferred to 0.2-μm polyvinylidene difluoride membranes (Millipore, United States), blocked with 5% non-fat milk in TBS-T for 1 h at room temperature, and incubated with primary antibody (HER2 primary antibody: 1:1000, Cell Signaling Technology; GAPDH primary antibody: 1:5000, Sungene Biotech) at 4°C overnight and then incubated with specific secondary antibody (1:5000, Sungene Biotech). The membranes were exposed with Super Signal West Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific, United States) in ChemiDoc MP Imaging System (Bio-Rad, United States).



RT-qPCR

Total RNA was extracted by using TRI Reagent (Molecular Research Center, United States). All the instruments were RNase free. The PrimeScript RT Reagent Kit with gDNA Eraser [TAKARA Biotechnology (Dalian) Co., China] was used to degrade the genomic DNA and proceed the reverse transcription reaction and then real-time PCR reaction was conducted by using TB Green Premix Ex Taq II kit [TAKARA Biotechnology (Dalian) Co., China] through the Bio-Rad CFX Connect Real-Time PCR Detection System according to the manufacturer’s instruction. The sequences of primers were designed as follows: HER2 forward, 5′-GGCTCAGTGACCTGTTTTGG-3′, HER2 reverse, 5′-CAACCACCGCAGAGATGATG-3′; GAPDH forward, 5′-GGTGAAGGTCGGTGTGACCG-3′, GAPDH reverse, 5′-CTCGCTCCTGGAAGATGGTG-3′.



Sphere Formation Assay

Limiting dilution assay was used to evaluate the self-renewal ability. Single-cell suspensions were diluted and seeded into a 96-well plate (100 μl per well) at a concentration of 10 cells per milliliter. Wells that contain more than one cell or those without cells were excluded. After incubation for 7–10 days, tumor spheres were observed and counted with a minimum diameter of 40 μm; sphere formation efficiency was calculated as the symbol of self-renewal ability.



Soft Agarose Colony Formation Assay

Gastric cancer stem cells were digested to single-cell suspensions; a 300-μl suspension that contained 400 cells was mixed with equal volume of 0.7% soft agarose, and the mixture was added into a 12-well plate that was coated with 0.7% soft agarose. The plate was incubated for 2–3 weeks, and CSC medium was added every 4 days. Three replications were set for each group. The formation of colonies was observed and calculated through microscopy. Each colony should contain more than 50 cells with a minimum diameter of 40 μm for the GCSC sphere.



Migration and Invasion Assay

The invasion assay was performed using a Transwell chamber (Corning, United States) that contained Matrigel Matrix (Corning, United States). Cells were resuspended in 100 μl of serum-free DMEM medium at a density of 3 × 104 cells per well and seeded into the upper chamber that was coated with Matrigel Matrix, while the lower chamber was filled with 600 μl of DMEM medium that contained 10% FBS. After incubation for 18 h, cells on the upper surface of the membrane were removed by cotton swabs. Then, the cells on the lower surface were stained with Wright-Giemsa Stain Kit (Nanjing Jiancheng Bioengineering Institute, China), observed, and counted under a microscope. Three replications were set for each group. The migration assay was similar to the invasion assay, except that there was no Matrigel Matrix.



CCK-8 Assay

Cell Counting Kit-8 (CCK-8, Dojindo, Japan) was used to detect the level of cell proliferation between the control group and the HER2-interfered group. GCSCs were seeded into 96-well plates (100 μl, 2000 cells per well) and five replications were set for each group. An equal volume of cell-free medium was set as a blank control group. At the indicated time point, 10 μl of CCK-8 solution was added into each well and then cells were cultured at a 37°C incubator for 120 min. The OD value was measured at 450 nm for each well.



Chemotherapy Resistance Assay

5-fluorouracil (5-FU; Sigma, United States) and oxaliplatin (OXA; Sigma, United States) were used to evaluate the chemotherapy resistance of target cells. Cells were seeded into 96-well plates (100 μl, 2000 cells per well) and five replications were set for each groups and then cells were treated with 2.5 × 105, 2.5 × 104, 2500, 250, and 25 ng/ml of 5-FU and OXA for 4 days, respectively. CCK-8 assay was used to evaluate the OD value of each well.



Xenotransplanted Tumor Models

Four-week old BALB/c nude mice were purchased from Dashuo Biotechnology Co. (Chengdu, China) and fed in a specific pathogen–free environment. HER2-interfered cells and control cells were mixed with Matrigel Matrix at a ratio of 1:1, and 100 μl of mixture that contained 106 cells was subcutaneously injected to the flank regions of mice (n = 6 mice per group). After 3–4 weeks, the mice were sacrificed by cervical dislocation and then the tumors were removed and measured.



Microarray Analysis

We had provided our original microarray data for further validation. It could be found on the website1. Changes in gene expression in HER2-interfered cells and control cells were analyzed with the GeneChip Human Transcriptome Array 2.0 (Affymetrix, United States). The microarray analysis was entrusted by Gminix (Shanghai, China).



Statistical Analyses

The SPSS 22.0 (IBM, United States) and GraphPad Prism 5 (GraphPad Software, United States) were used to conduct the results of statistical analyses. Student’s t test and rank sum test were applied for continuous data analysis. The chi-square test was used for categorical data. The optimal cutoff value for serum concentration of HER2 was produced by X-tile software (version 3.6.1, Yale University). The results were treated as statistically significant only when the two-sided p value is less than 0.05.



RESULTS


Successful Construction of Stable Transformants

Our study used GCSCs from three individual GC patients (GCSC1, GCSC2, and GCSC3) to detect the efficiency of HER2 knockdown by lentivirus transfection. Baseline of HER2 expression in three GCSCs is shown in Figure 1. Figure 1A shows that the protein expression level of HER2 in shHER2 was significantly lower than shCtrl in GCSC1, GCSC2, and GCSC3, while GCSC3 had the highest efficiency that would be used for subsequent experiments. The result of RT-qPCR also showed that the mRNA expression level of HER2 in GCSC3-shHER2 was significantly lower than that in GCSC3-shCtrl (p < 0.01, Figure 1B). Figure 1C shows that the expression of green fluorescent protein (GFP), as the product of reporter gene, was observed in GCSC3-shCtrl and GCSC3-shHER2 through a fluorescent microscope.
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FIGURE 1. Construction of stable transformants. (A) Transfection efficiency detected by Western blot; GCSC3 had the highest efficiency of HER2 knockdown. (B) Transfection efficiency of GCSC3 detected by RT-qPCR (p < 0.01), **p < 0.01. (C) GCSC3-shCtrl and GCSC3-shHER2 under a fluorescent microscope; representative pictures were taken at ×100 magnification, and scale bars represent 200 μm.




Impact of HER2 on Self-Renewal, Colony Formation, Migration, and Invasion of GCSCs

By sphere formation assay, we found that the sphere formation efficiency was inhibited in GCSC3-shHER2 (35/62), compared with the control group (41/53), and the difference was statistically significant (p = 0.0291, Figure 2). In the soft agarose colony formation assay, the number of counted colonies was 27.33 ± 1.76 in the HER2-interfered group, compared with 79.33 ± 4.63 in the control group (p < 0.001, Figures 3A,B), which showed that inhibition of HER2 could decrease the ability of colony formation in GCSCs. In the migration assay, the Transwell model showed that the number of migrated cells in the control group and the HER2-interfered group was 47.93 ± 3.38 and 20.27 ± 2.13, respectively (p < 0.001, Figures 3C,D). For invasion assay, we found that the number of invaded cells in the control group and the HER2-interfered group was 61.87 ± 3.71 and 19.67 ± 1.71, respectively (p < 0.001, Figures 3E,F). Therefore, the inhibition of HER2 could significantly decrease the self-renewal, colony formation, invasion, and migration abilities of GCSCs.
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FIGURE 2. The influence of HER2 on self-renewal ability in GCSCs was examined by sphere formation assay. Representative pictures were taken at ×400 magnification, and scale bars represent 40 μm. Pictures (A,C) are GCSC sphere of GCSC3-shHER2 and GCSC3-shCtrl, respectively. Pictures (B,D) are non-sphere formation GCSC of GCSC3-shHER2 and GCSC3-shCtrl, respectively. The results showed that down-regulation of HER2 could decrease the self-renewal ability in GCSCs (77.36% vs. 56.45%, p = 0.029), *p < 0.05.
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FIGURE 3. Ability of colony formation, invasion, and migration in GCSCs was detected after down-regulation of HER2. Pictures (A,B) show the colonies of GCSC3-shCtrl and GCSC3-shHER2, respectively. Representative pictures were taken at ×40 magnification, and scale bars represent 200 μm. The result showed GCSC3-shCtrl had a higher colony formation rate than GCSC3-shHER2 (79.33 ± 4.63 vs. 27.33 ± 1.76, p < 0.001); data were expressed as mean ± SEM, ***p < 0.001. Pictures (C,D) show that GCSC3-shCtrl had a higher capacity of migration than GCSC3-shHER2 (47.93 ± 3.38 vs. 20.27 ± 2.13, p < 0.001); and pictures (E,F) show that GCSC3-shCtrl had a higher capacity of invasion than GCSC3-shHER2 (61.87 ± 3.71 vs. 19.67 ± 1.71, p < 0.001). Representative pictures were taken at ×200 magnification. Data were expressed as mean ± SEM, ***p < 0.001.




Impact of HER2 on Proliferation, Chemotherapy Sensitivity, and Tumorigenicity of GCSCs

In the CCK-8 assay, the growth curve showed that proliferation ability of GCSC3-shHER2 decreased significantly (p = 0.0338, Figure 4A). According to the chemotherapy resistance assay, the results indicated that the value of IC50 for OXA in the HER2-interfered group was significantly lower than that of the control group (1282 ng/ml vs. 1609 ng/ml, p < 0.0001, and Figure 4B). The value of IC50 for 5-FU in the HER2-interfered group was also significantly lower than that of the control group (1323 ng/ml vs. 2087 ng/ml, p < 0.0001, and Figure 4C). For the model of xenograft tumor in nude mice, the tumor weight in the control group and the HER2-interfered group was 0.12 ± 0.04 g and 0.32 ± 0.06 g, respectively (p = 0.0192, Figures 4D,E), which demonstrated that the GCSCs have a relatively higher tumorigenicity in nude mice when the expression of HER2 was down-regulated.
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FIGURE 4. The results of CCK-8 assay, chemotherapy sensitivity, and xenograft models of GCSCs. Picture (A) shows that down-regulation of HER2 could decrease the proliferation of GCSCs (p = 0.0338). Data were expressed as mean ± SEM. Pictures (B,C) show that the chemotherapy sensitivity for oxaliplatin and 5-fluorouracil was increased after HER2 interference (p < 0.0001). Pictures (D,E) show that tumor weight in the GCSC3-shCtrl group was significantly lower than that in the GCSC3-shHER2 group (0.12 ± 0.04 g vs. 0.32 ± 0.06 g, p = 0.0192), *p < 0.05.




Impact of HER2 on the Prognosis of GC Patients

According to the inclusion and exclusion criteria, 213 GC patients were enrolled in the study. As of January 2018, the overall follow-up rate was 87.79% (187/213). The level of HER2 expression was detected in tumor samples and blood samples. The percentages of negative expression, HER2 1+, HER2 2+, and HER2 3+ were 42.72% (91/213), 38.50% (82/213), 16.43% (35/213), and 2.35% (5/213), respectively. For the serum concentration of HER2, the cutoff value was set as 11.6 ng/ml based on the results of X-tile software (Figure 5A), and the percentages of the high-concentration group and the low-concentration group were 29.11% (62/213) and 70.89% (151/213), respectively. We found that there was no significant correlation between the expression level of HER2 in tumor tissues and blood samples (p = 0.195). The high concentration of HER2 was more common in male (p = 0.012), and the high-concentration group had a smaller tumor size and better tumor differentiation compared with the low-concentration group (p = 0.021 and p = 0.014, respectively). This group also had a lower T stage (p = 0.008); however, the expression level of HER2 in tumor tissue was not correlated with tumor stage. There were only five patients with HER2 3+, so we set the subgroup that contained HER2 2+ and 3+ as HER2 high expression in tumor tissue. Clinicopathological characteristics are shown in Tables 1, 2. Furthermore, the results of survival analyses revealed that patients with a high concentration of HER2 in serum had a better prognosis compared with the low-concentration group; the hazard ratio for death in the high concentration group was 0.5028 [95% confidence interval (CI) 0.2667–0.9481; p = 0.0336; Figure 5B]. Nevertheless, the survival analyses showed that there was no significant difference between the different expression levels of HER2 in tumor tissues. Although the hazard ratio for death in the high expression group was 0.7379 (95% CI 0.3586–1.518; p = 0.4091; Figure 5C), it seemed that the prognoses of patients with 2+ and 3+ HER2 expression in tumor tissues were relatively better when compared with their counterparts.
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FIGURE 5. Survival analyses and results of gene microarray and signaling pathway analysis. Picture (A) X-tile plots for serum concentration of HER2 in our study; the red spot shows the cutoff value (11.6 ng/ml) that separates the cohort into two groups. Picture (B) Survival analyses of patients with different serum concentrations of HER2; the result indicated that patients with high concentration of HER2 in serum had a favorable prognosis (p = 0.0336). Picture (C) Survival analyses of patients with different expression levels of HER2 in tumor tissue (p = 0.4091). Picture (D) Heatmap representation of the gene expression profiles of HER2-interfered GCSCs and control cells. Up-regulated expressions are marked in red; down-regulations are colored green; black reflects no difference in expression levels. Picture (E) The volcano plot of the gene microarray is used to evaluate the overall distribution of the differential gene between the HER2-interfered GCSCs and control cells. Green plots represent down-regulation mRNA genes while red plots represent up-regulation mRNA genes with a fold change > 1.2 and p value < 0.05. Picture (F) Signaling pathway analysis revealed that HER2 gene might regulate the signal transduction of mTOR, Jak-STAT, and other signal pathways. Yellow circles represent pathways with up-regulation and down-regulation mRNA genes. Pathways that only contain up-regulation mRNA genes were marked with a red circle, while the blue one represents pathway that involves down-regulation mRNA genes. The size of circles shows the value of degree.



TABLE 1. Clinicopathological characteristics of all patients separated by serum concentration of HER2.
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TABLE 2. Clinicopathological characteristics of all patients separated by pathological level of HER2.

[image: Table 2]


The Variations of mRNA Expressions Detected by Gene Microarray After HER2 Interference in GCSCs

Considering the inconsistent results between in vitro and in vivo experiments, gene microarray analysis was used to verify the reason for the difference. We found that a total of 86 mRNAs were significantly differentially expressed in the two groups (fold change > 1.2; p < 0.05). According to the results of gene microarray analysis, the down-regulation genes in the control group contained tumor growth-related genes, protein phosphorylation-related genes, drug transmembrane transportation-related genes, and signal transduction-related genes (Figures 5D,E). Signaling pathway analysis revealed that HER2 gene might regulate the signal transduction of mTOR, Jak-STAT, and other signal pathways, and affect the biological characteristics of GCSCs (Figure 5F).



DISCUSSION

Nowadays, CSCs were identified and considered as one of the most important reason for tumor occurrence, development, metastasis, and recurrence. CSCs might also serve as a detection, therapy target for malignant tumor patients (13, 14). HER2 is a member of the ERBB family; activation of the HER2 can induce the self-tyrosine phosphorylation and subsequently activate several signal transduction pathways, including the Ras/MAP kinase cascade, phosphatidylinositol 3-kinase, and phospholipase C pathways, which can ultimately influence the proliferation, adhesion, differentiation, and metastasis of tumor cells (15). However, the impact of HER2 on biological characteristics of GCSCs is still unclear.

In the present study, we conducted a series of assays to investigate the role of HER2 in GCSCs. Through the CCK-8 assay, soft agarose colony formation assay, and Transwell model, we found that tumor cells with HER2 interference have a low capacity of proliferation, colony formation, invasion, and migration, which was consistent with previous studies (16, 17). We have repeated our in vitro researches in another primary tumor sample and found similar results (Supplementary Figure S1). Qi et al. also showed that Cullin 4B could up-regulate HER2 expression and promote invasion, clonogenicity, and proliferation in GC cells (18).

Furthermore, we found that the down-regulation of HER2 could reduce the chemotherapy resistance of GCSCs. Tomioka et al. found that inhibition of the HER2-mTOR signal might enhance fluorouracil-induced apoptosis in GC cells with HER2 amplification (19). Liu et al. demonstrated that Trastuzumab, the monoclonal antibody against HER2, increased the sensitivity of HER2-amplified human GC cells to OXA and cisplatin by affecting the expression of telomere-associated proteins (20). In ovarian cancer, overexpression of HER2 was considered to be correlated with chemotherapy resistance and stemness (21, 22).

Interestingly, the result of xenotransplanted animal tumor models showed that the interference of HER2 in GCSCs could increase the tumorigenicity in vivo. In addition, we found that GC patients with high concentration of HER2 in serum had a favorable overall survival. Although the survival analyses showed that there was no significant differences between the different expression levels of HER2 in tumor tissues, which is in accordance with other studies (23, 24), it seemed that the prognoses of patients with 2+/3+ HER2 expression in tumor tissues were relatively better when compared with their counterparts, which corresponded to the result of xenotransplanted animal tumor models.

Several reasons may explain the discrepancy between the results in vivo and in vitro. Firstly, the results of microarray analysis demonstrated that HER2 could function in cell growth regulation as well as protein phosphorylation; meanwhile, the mTOR signal transduction pathway may play a regulation role in it, which reveals that the different biological features between the HER2-interfered group and the control group may be associated with the HER2-mTOR signal pathway. From the literature review, we know that the HER2-mTOR signal pathway participates in the regulation of cell proliferation, tumorigenesis, invasion, and autophagy, especially for the regulation of autophagy in GC (25–27). Moreover, our unpublished data have shown that the autophagy of GCSC was associated with its tumorigenicity, rather than invasion and migration. Accordingly, the HER2-mTOR signal pathway-mediated autophagy might be one of the possible reasons why HER2 had different effects on the tumorigenicity and invasion as well as self-renewal in GCSCs. HER2 heterogeneity in GCSCs might be another possible explanation. Heterogeneous expression of HER2 within the primary tumor and between primary tumor and metastases has now been reported widely in GC (28), while the prognostic value of HER2 and HER2 heterogeneity also generated controversial results in GC (29–32). Although the mechanisms are still largely unknown, this morphologic and prognostic heterogeneity represents an intrinsic molecular complexity and heterogeneity (29). Therefore, possible explanations for discrepancies of the results in vivo and in vitro might be a consequence of intratumor heterogeneity of HER2, or genetic drift or clonal selection of HER2 during tumor progression (28).

There are also some limitations of this research. Firstly, the cases showing 2 + expression of HER2 by immunohistochemistry were not additionally examined by fluorescence in situ hybridization routinely because of the economic factor. Secondly, the isomers of HER2 were not considered in the study. Finally, the mechanism about how the HER2-mTOR signal pathway-mediated autophagy regulates the tumorigenicity of GCSCs will be investigated in the following researches. In this manuscript, although others have demonstrated that co-overexpression of ErbB1 and ErbB3 can be used as a prognostic factor in GC (33), we did not examine the correlation among the expression of ErbB1 and ErbB3 of gastric stem cells because some published studies have demonstrated that adding the agents targeting the ErbB1 or ErbB3 to chemotherapy does not improve overall survival or disease control rate compared with chemotherapy alone in clinical practice (34, 35), while Trastuzumab targeting the HER2 in combination with chemotherapy could improve the overall survival of patients with advanced GC (4). Therefore, we focused on investigating the role of HER2 in self-renewal, invasion, and tumorigenicity of GCSCs. Finally, the clinical significance of serum HER2 as a predictive marker for tissue HER2 and a prognostic factor should be investigated further in large sample size researches, since there were inconsistent published results. Some researches indicated that it could be a potential biomarker and used as a diagnostic marker for tissue HER2 status in GC (36, 37). However, our results has shown that there was no significant correlation between the expression level of HER2 in tumor tissues and blood samples. Also, some researches found that serum HER2 cannot be substituted for tissue HER2 or only demonstrated moderate diagnostic performance in GC (38, 39). Regarding the survival analyses, our results revealed that patients with high concentration of HER2 in serum had a better prognosis compared with the low-concentration group. However, Shi et al. reported that high serum HER2 had a negative impact on overall survival of the patients (37). Therefore, the clinical application of serum HER2 is yet to be warranted.



CONCLUSION

In conclusion, our study demonstrated that down-regulation of HER2 in GCSCs could inhibit the proliferation, colony formation, self-renewal, migration, and invasion of GCSCs and chemotherapy resistance. However, the tumorigenicity of GCSCs in vivo was increased. GC patients with high concentration of HER2 in serum might have a favorable prognosis.



DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.



ETHICS STATEMENT

This study was approved by The West China Hospital research ethics committee. Written informed consent was waived per the committee approval because of the retrospective nature of the analysis.



AUTHOR CONTRIBUTIONS

J-KH, Z-GZ, X-MM, L-FS, KY, and Y-GW made substantial contributions to conception and design of this study. L-FS, KY, and Y-GW conducted all the experiments. X-LC, W-HZ, Y-XL, and P-XH acquired and analyzed data. L-FS and Y-GW drafted the article. L-FS, KY, Y-GW, J-KH, and X-MM gave critical revision for important intellectual content. W-HZ, X-LC, Z-HL, Z-GZ, and J-KH critically revised the manuscript for important intellectual content. J-KH, X-MM, and KY gave the final approval of the version to be published. All authors contributed to the article and approved the submitted version.



FUNDING

Domestic support for this work came from (1) the National Natural Science Foundation of China (Nos. 81301867, 81772547, 81372344, and 81702366); (2) the 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (ZY2017304); and (3) the Sichuan Province Cadre Health Care Research Project (No. 2017-114).



ACKNOWLEDGMENTS

The authors thank the substantial work of Volunteer Team of Gastric Cancer Surgery (VOLTGA) West China Hospital, Sichuan University, China, for data collection, and the continual follow-up.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2020.01608/full#supplementary-material

FIGURE S1 | Ability of colony formation, invasion and migration in another GCSCs were detected after down-regulation of HER2. Picture (a,b) showed the colonies of GCSC1-shCtrl and GCSC1-shHER2, respectively. Representative pictures were taken at ×40 magnification. The result showed GCSC1-shCtrl had a higher colony formation rate than GCSC1-shHER2 (p < 0.005). Picture (c,d) showed that GCSC1-shCtrl had a higher capacity of migration than GCSC1-shHER2 (p < 0.005); picture (e,f) showed that GCSC1-shCtrl had a higher capacity of invasion than GCSC1-shHER2 (p < 0.005). Representative pictures were taken at ×200 magnification. In addition, the analyses of CCK-8 assay and chemotherapy sensitivity were also re-performed in GCSC1, and the similar results to the GCSC3 was found.

TABLE S1 | Case characteristics of three gastric cancer stem cells.


ABBREVIATIONS

 5-FU, 5-fluorouracil; CSCs, cancer stem cells; GC, gastric cancer; GCSCs, gastric cancer stem cells; HER2, Human epidermal growth factor receptor-2; OXA, oxaliplatin.
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Background: Gastric cancer (GC) remains a refractory cancer particularly in Eastern Asia. Large tumor suppressor kinases 1/2 (LATS1/2) are core members of the Hippo pathway. The role of LATS1/2 in the prognosis of different subtypes of advanced gastric cancer and its relationship with the tumor immune microenvironment in GC remain unknown. Exploring the role of LATS1/2 in GC might provide potential immunotherapeutic approaches for treating GC.

Methods: Four hundred and ninety surgically resected primary GC samples were assessed for LATS1/2, CD8, FOXP3, and CD163. Correlations between LATS1/2 expression and immune-related markers were investigated and the prognoses of patients with different GC subtypes were analyzed.

Results: CD8 and CD163 appeared to be favorable and adverse prognostic factors, respectively. LATS1/2 and FOXP3 did not predict patients' overall survival. However, in microsatellite-stable GC patients, high LATS1/2 and FOXP3 expression and low CD8 expression predicted poor prognoses. Furthermore, high LATS1/2 expression was significantly correlated with decreased CD8 and increased FOXP3. Combined analysis of LATS1/2, CD8, and FOXP3 had better prognostic accuracy than did each marker individually.

Conclusions: Different biological molecules can predict the prognoses of different types of GC patients. LATS1/2, core kinases in the Hippo pathway, are closely related to CD8 and FOXP3. Further understanding the mechanisms of LATS1/2 in CD8+ T cells and FOXP3+ Treg cells provides further theoretical basis and potential targets for GC immunotherapy.

Keywords: gastric cancer, prognosis, LATS1/2, CD8, FOXP3, CD163, microsatellite stability


INTRODUCTION

Gastric cancer (GC) is a serious malignant tumor with the fifth highest global incidence rate and the third highest mortality rate (1). Asian countries have high incidences of GC. The 5–year survival rate of GC patients in China is only 35.9% (2). GC patients are often diagnosed at advanced stages because of the lack of early characteristic symptoms and frequent recurrence and distant metastasis that occurs after surgical resection (3, 4). According to the Cancer Genome Atlas database, Bass et al. established a new molecular classification of GC (5). Cristescu et al. found that the prognoses of microsatellite-stable (MSS) and microsatellite-instable (MSI) GC patients differed in which patients with MSS GC had worse prognoses (6); however, the reason for this remains unclear. Therefore, using biological markers to analyze the prognoses of patients with different GC subtypes may provide clues for exploring the pathogenesis and clinical treatment of GC.

The Hippo pathway is a tumor-suppressive pathway, and its inactivation is associated with the progression and metastasis of various cancers (7, 8). Large tumor suppressor kinases 1/2 (LATS1/2) are core members of the Hippo pathway, and their activation is the major functional output of this pathway. LATS1 and LATS2 have the same function and are both expressed in GC (9, 10). Although LATS1/2 are traditionally believed to inhibit tumor growth (11, 12), Pan et al. found that LATS1/2 deletion inhibits the growth of murine MC38 colon cancer cells (13). Moreover, LATS1/2 inhibit antitumor immunity by suppressing CD8 cytotoxicity. Mechanistically, LATS1/2-null tumor cells secrete nucleic acid-rich extracellular vesicles, which induce a type I interferon response via the Toll-like receptor-MYD88/TRIF pathway (14). Therefore, the role of LATS1/2 in a tumor microenvironment remains controversial. To explore the relationship between LATS1/2 and a tumor microenvironment in advanced GC, we used tumor immune-related markers including CD8, FOXP3, and CD163, representing CD8+ T cells, FOXP3+ Treg cells, and CD163+ M2 macrophages, respectively, and all played important roles in a tumor immune microenvironment (15–20). We sought to identify novel strategies to obtain more accurate prognoses in advanced GC patients by analyzing different biological marker combinations.

We found that different biological markers predicted the prognoses of patients with different types of advanced GC. LATS1/2, important kinases in the Hippo pathway, were closely related to CD8 and FOXP3. Furthermore, we identified novel strategies for obtaining more accurate prognoses in GC patients by analyzing LATS1/2 in combination with immune-related markers including CD8 and FOXP3.



MATERIALS AND METHODS


Patients

This study was conducted on a cohort of 490 patients with advanced GC [American Joint Committee on Cancer (AJCC) stages T2–T4]. All samples were retrieved from patients who underwent primary tumor resection between June 2006 and December 2016 at the Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University. All samples were definitively diagnosed as advanced GC by the Department of Pathology. The clinical criteria for patient recruitment were as follows: (i) patients had complete clinical information, postoperative pathological diagnoses, and follow-up data; (ii) patients had not received preoperative radiotherapy, chemotherapy, hormonal therapy, or any other anticancer therapy before surgery; (iii) patients had undergone non-neoplastic resection such as laparotomy or palliative gastrointestinal bypass surgery; (iv) patients had non-adenocarcinoma (gastrointestinal stromal tumors); and (v) the primary tumor involved only one regional site at the site of occurrence (21, 22).

Overall survival time was defined as the interval between gastrectomy and either patient death or the last follow-up. The final follow–up date was February 25, 2020. All patients received standard treatments such as D2 radical resection and adjuvant chemotherapy or palliative tumor resection for patients with stage IV GC according to the National Comprehensive Cancer Network (NCCN) guidelines. Patients' tumors were staged in accordance with the AJCC 8th edition staging system. Two senior pathologists confirmed the diagnosis in each case from the hematoxylin and eosin-stained slides.



Immunohistochemistry

Formalin-fixed, paraffin-embedded (FFPE) tissue samples were sliced in consecutive 3.0-μm-thick sections, which were dewaxed in xylene and rehydrated in graded ethanol. Immunohistochemical staining was then performed as per the Dako REAL EnVision Detection System (K5007, Dako) manual. The following primary antibodies were used:

Anti-LATS1/2 (1:100; ab111344, Abcam), Anti-CD163 (1:100, ab87099, Abcam), Anti-CD8 (1:100, ab4055, Abcam), Anti-FOXP3 (1:100, ab20034, Abcam), Anti-MLH1 (1:50, clone ES05, DAKO), Anti-PMS2 (1:40, clone EP51, DAKO), Anti-MSH2 (1:50, clone FE11, DAKO), and Anti-MSH6 (1:50, clone EP49, DAKO).

Paraffin-embedded sections (3.0 μm) were prepared for immunohistochemical analyses. After deparaffinization, all antigens except nestin were retrieved at 120°C for 15 min in a sodium citrate buffer solution (pH 6.0). Tissues were incubated with 0.3% hydrogen peroxide for 30 min and then blocked with 1% bovine serum albumin (Sangon, Shanghai, China) overnight at 4°C. The peroxidase reaction was developed using a 3,3-diaminobenzidine (DAB) chromogen solution in a DAB buffer substrate and then counterstained with hematoxylin.



Histological Scoring

Five random fields per section were viewed under a light microscope (Axioskop 40; Zeiss GmbH, Jena, Germany) at 400× magnification. Three investigators, who were blinded to the clinical features and outcomes, independently examined and scored the sections. After counting the cells, the cell density was calculated as mm2 for further analysis.

In a two-category immunoscore analysis, patients were dichotomized into the high- and low-density groups according to the median number of stained cells. The cutoffs were as follows: 17/mm2 for CD8, 25/mm2 for FOXP3, and 20/mm2 for CD163 (23, 24). LATS1/2 expressions in the samples were considered high when they were expressed in at least 10% of the samples (25).



Statistical Analyses

All statistical analyses were performed using SPSS 23.0 and GraphPad Prism 8.0. The Spearman's correlation coefficient was calculated to examine associations between continuous variables. Chi-square tests were performed to analyze relationships between categorical variables. Kaplan–Meier univariate and multivariate prognostic analyses of the Cox proportional hazards regression model were performed to assess the influence of each variable on survival. Hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated as correlation estimates. A two-tailed P < 0.05 was considered statistically significant.




RESULTS


Patients' Clinicopathologic Characteristics

Four hundred ninety surgically resected FFPE primary advanced GC samples were assessed for LATS1/2, CD8, FOXP3, and CD163 via tissue microarrays. The patients included 337 men (68.78%) and 153 women (31.22%). The median age at diagnosis was 62 years old (range: 22–88 years). One hundred seventy-two patients (35.10%) were <60 years old, and 318 (64.90%) were >60 years old. The median overall survival time was 43 months (range: 0–123 months). One hundred seventeen GC lesions (23.88%) occurred in the upper stomach, 157 (32.04%) occurred in the middle stomach, and 216 (44.08%) occurred in the lower stomach. The tumors were classified based on the 8th AJCC gastric cancer staging manual: 150 were stage II (30.61%), 266 were stage III (54.29%), and 74 were stage IV (15.10%) (26). According to the 8th AJCC staging, lymph node metastasis occurred in 366 cases (74.69%), while distant metastasis occurred in 74 cases (15.10%). The tissue samples comprised 200 cases (40.82%) of intestinal type carcinoma and 290 cases (59.18%) of diffused gastric carcinoma. According to the microsatellite stability classification, 364 cases were MSI (74.29%) and 126 were MSS (25.71%; Table 1).


Table 1. Characteristics of 490 advanced gastric cancer (GC) patients.
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Association Between LATS1/2, CD8, FOXP3, CD163, and Clinical Characteristics

We classified biomarkers according to the expression level via microscopic observation. Figures S1, S2 show the LATS1/2, CD8, FOXP3, and CD163 expression profiles. LATS1/2 were highly expressed in 226 cases (46.12%) and lowly expressed in 264 cases (53.88%). CD8 was highly expressed in 245 cases (50%) and lowly expressed in 245 cases (50%). CD163 was lowly expressed in 257 cases (52.44%) and highly expressed in 233 cases (47.55%). FOXP3 was highly expressed in 213 cases (43.46%) and lowly expressed in 277 cases (56.54%; Table S1).

Table S1 shows the association between LATS1/2, CD8, FOXP3, CD163, and the pathological features. LATS1/2 were significantly positively correlated with AJCC stage (P = 0.049) and microsatellite stability (P = 0.041). CD8 expression was significantly negatively associated with the AJCC stage (P = 0.039), the advanced tumor stage (P = 0.035), distant metastasis (P = 0.023), the Lauren classification (P = 0.043), and microsatellite stability (P = 0.032). FOXP3 was significantly correlated with microsatellite stability (P = 0.042). CD163 was not correlated with any of the pathological features.



Survival Analysis of Clinicopathological Features and LATS1/2, CD8, FOXP3, and CD163 Expressions in Advanced GC

We analyzed the relationship between prognosis and clinical features in patients with GC via Cox regression analysis. The tumor node metastasis (TNM) stage (HR = 1.353, 95% CI: 1.116–1.640, P = 0.002), lymph node metastasis (HR = 1.827, 95% CI: 1.363–2.451, P = 0.000), distance metastasis (HR = 3.377, 95% CI: 2.546–4.480, P = 0.000), Lauren classification (HR = 1.530, 95% CI: 1.324–1.885, P = 0.000), and microsatellite classification (HR = 1.336, 95% CI: 1.083–1.729, P = 0.009) were significantly associated with the overall survival (Table S2). Cox regression analysis was performed to evaluate the prognostic roles of LATS1/2, CD8, FOXP3, and CD163. Univariate analysis showed that CD8 (HR = 0.706, 95% CI: 0.559–0.893, P = 0.004) and CD163 (HR = 1.222, 95% CI: 1.089–1.417, P = 0.033) predicted patients' prognoses. However, LATS1/2 (HR = 1.157, 95% CI: 0.917–1.461, P = 0.219) and FOXP3 (HR = 1.110, 95% CI: 0.878–1.402, P = 0.384) expressions did not significantly affect the overall survival.

Variables with P < 0.05 in the univariate analysis were included in multivariate analyses. Because TNM staging included both lymph node metastasis and distant metastasis, they were excluded. The TNM stage (HR = 1.316, 95% CI: 1.087–1.599, P = 0.046) and CD8 (HR = 0.705, 95% CI: 0.556–0.893, P = 0.004) were independent factors for predicting the overall survival in the multivariate analysis. LATS1/2 and FOXP3 did not predict patient prognoses (Figure 1A, Table S2).
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FIGURE 1. Correlation between LATS1/2, CD8, FOXP3, and CD163 and GC patients' overall survival (Kaplan–Meier survival curves): (A) patients with advanced GC, (B) patients with advanced MSS GC, (C) patients with advanced MSI GC, and (D) combination of LATS1/2, CD8, and FOXP3 in all patients with advanced GC.


Patients were then divided into MSS and MSI subgroups according to MLH1, MSH2, MSH6, and PMS2 expressions (27, 28). FOXP3 and CD163 expressions were significantly higher in MSS GC patients than in MSI GC patients while CD8 expression was significantly lower in MSS GC patients (Table S1). Although LATS1/2 and FOXP3 expressions did not predict advanced GC, high LATS1/2 (HR = 1.304, 95% CI: 1.035–1.643, P = 0.024) and FOXP3 (HR = 1.320, 95% CI: 1.047–1.665, P = 0.019) expressions predicted shorter overall survival in patients with MSS GC. In patients with MSI GC, LATS1/2, CD8, FOX3, and CD163 expressions did not significantly affect the overall survival (Figures 1B,C, Table S3).



Prognostic Value of the Combination of LATS1/2, FOXP3, and CD163 in Advanced GC

To evaluate LATS1/2 expression in cells in the immune microenvironment and the relationship between LATS1/2 and immune cells, we first analyzed the relationship between LATS1/2, FOXP3, CD163, and CD8 (Table S4). High LATS1/2 expression was significantly correlated with low CD8 expression (P = 0.008) and high FOXP3 expression (P = 0.012), but LATS1/2 and CD163 were not correlated. Thus, we combined LATS1/2 with CD8 and FOXP3 for prognostic analysis and divided them into four subtypes: subtype 1 with LATS1/2 and CD8; subtype 2 with LATS1/2 and FOXP3; subtype 3 with CD8 and FOXP3; and subtype 4 with LATS1/2, CD8, and FOXP3. The survival curve revealed that the LATS1/2highCD8low, LATS1/2highFOXP3high, CD8lowFOXP3high, and LATS1/2highCD8lowFOXP3high subgroups in each subtype have the worst overall survival (Figures S3A–D). We then compared them with other subgroups (Figure 1D, Table S5). Combined analysis of the three indicators, LATS1/2, CD8, and FOXP3, had better prognostic accuracy than did the combination of any two indicators (HR = 2.207, 95% CI: 1.653–2.959, P = 0.001). Thus, the combined analysis of LATS1/2, CD8, and FOXP3 may be a good prognostic factor for patients with advanced GC.




DISCUSSIONS

LATS1/2 are key kinases in the Hippo signaling pathway. LATS1/2 activation can inhibit tumor growth (29, 30); however, Toshiro et al. recently reported that suppressing LATS1/2 exhibited antitumor immunity (14); therefore, the roles of LATS1/2 in the tumor microenvironment remain controversial. Here, we selected tumor immunity-related biological markers, including CD8, FOXP3, and CD163, which, respectively, represented CD8+ T cells, FOXP3+ Treg cells, and CD163+ M2 macrophages to analyze different advanced GC types. We focused on the relationship between LATS1/2 and these tumor immunity-related biological markers in a tumor immune microenvironment by analyzing 490 immunohistochemically stained samples from advanced GC patients.

First, we analyzed the correlation between LATS1/2, CD8, FOXP3, CD163, and clinicopathological features and prognosis of patients with advanced GC. CD8 and CD163 represented favorable and adverse prognostic factors, respectively. High LATS1/2 expression in GC has been reported to yield better prognoses (9). However, LATS1/2 and FOXP3 expressions did not predict the overall survival in patients with advanced GC in this study. The results revealed that high LATS1/2 expression was related to TNM stage progression. Different GC types may have different prognosis-related biological indicators (24). Therefore, LATS1/2 may differently predict the prognosis in different GC subtypes. Because LATS1/2 is significantly related to GC microsatellite stability, we then analyzed LATS1/2 expressions in MSS and MSI patients.

Molecular classification is essential for subtyping GC (5, 6). The prognoses differ among patients with different molecular subtypes, but the reason remains unclear (6). Therefore, we defined patients with MSS GC and MSI GC according to the immunohistochemical expressions of MLH1, MSH2, MSH6, and PMS2 (28, 29). Patients with MSS GC had poor prognoses, which is consistent with previous reports (29). In addition, LATS1/2 and FOXP3 expressions were increased while CD8 expression was decreased in patients with MSS GC. CD163 expression did not significantly differ between MSS GC and MSI GC patients. Next, we separately analyzed the prognoses of MSS and MSI GC patients according to LATS1/2, CD8, FOXP3, and CD163 expressions. High CD163 expression indicated a poor prognosis for GC patients. Subgroup analysis revealed that CD163 did not predict the prognoses of MSS and MSI patients, but the results revealed that its survival prognosis trend was consistent with that of the overall analysis and is likely because the decreased sample sizes resulted in no statistical differences after grouping. Therefore, in future studies, we should further analyze the role of CD163 in different GC subgroups by increasing the sample size and continuing to follow the patients. Furthermore, in MSS GC patients, high LATS1/2 and FOXP3 expressions and low CD8 expression predicted adverse patient prognoses, whereas in MSI GC, only CD8 predicted patient prognoses. In patients with MSS GC, LATS1/2 signaling pathway activation was also correlated with an adverse prognosis, indicating that LATS1/2 activation might suppress the antitumor effect of CD8+ T cells and activate immunosuppressive effects in FOXP3+ Treg cells. However, its deep mechanism remains unclear. Ma et al. reported that PD-L1 was always expressed in MSI and EBV(+) GC. Kim et al. found that anti-PD1 treatment was more effective against MSI and EBV(+) GC (31, 32), but less attention was paid to MSS GC. Of note, we found that LATS1/2 were more highly expressed in MSS GC than in MSI GC and could be regarded as adverse prognostic factors in MSS GC, suggesting that LATS1/2 might be a new target for MSS GC treatment.

Recent evidence revealed that combined analysis of multiple biological markers has a superior prognostic value compared with that of analyzing individual biological markers (23). We found that LATS1/2 were negatively correlated with CD8 and positively correlated with FOXP3. We combined LATS1/2, CD8, and FOXP3 to analyze the prognoses of advanced GC patients and found that combined analysis of LATS1/2, CD8, and FOXP3 predicted patient prognoses, and the HR of the combined analysis of the three indicators was better than the combination of any two indicators, suggesting that LATS1/2 might play an important role in CD8+ T cells and FOXP3+ Treg cells in a tumor immune microenvironment. CD8+ T cells and FOXP3+ Treg cells are reported to be closely related and play important roles in tumor development and immune escape in breast, ovarian, and gastric cancers (33–35). In a tumor immune microenvironment, LATS1/2 knockout in tumor cells weakened the CD8+T cell functions, leading to tumor immune escape (13). In GC, a previous report indicated that LATS2 was positively correlated with FOXP3 (36), but the function of LATS1/2 in FOXP3+ Treg cells is unreported and may represent a future research direction. Thus, combined analysis of LATS1/2, CD8, and FOXP3 might be a good strategy for obtaining an accurate prognosis in advanced GC patients.

This study has several limitations. First, the data in our analysis was from a single center without an external validation cohort and needs to be jointly verified by multiple centers. Second, this was a retrospective study and thus was inherently subject to selection bias.

In summary, LATS1/2, CD8, and FOXP3 expressions may be used as prognostic markers in advanced GC patients. Our study identified the novel individual marker— LATS1/2, for obtaining a prognosis in MSS GC, and combining LATS1/2, CD8, and FOXP3 may serve as a prognostic marker in advanced GC. These findings contribute to better understand advanced GC, and further investigation is needed to elucidate the underlying mechanisms of these markers.
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Background: Despite the important role of radiotherapy in cancer treatment, a subset of patients responds poorly to treatment majorly due to radioresistance. Particularly the role of radiotherapy has not been established in gastric cancer (GC). Herein, we aimed to identify a radiosensitivity gene signature and to discover relevant targets to enhance radiosensitivity in GC cells.

Methods: An oligonucleotide microarray (containing 22,740 probes) was performed in 12 GC cell lines prior to radiation. A clonogenic assay was performed to evaluate the survival fraction at 2 Gy (SF2) as a surrogate marker for radiosensitivity. Genes differentially expressed (fold change > 6, q-value < 0.025) were identified between radiosensitive and radioresistant cell lines, and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was performed for validation. Gene set and pathway analyses were performed using Ingenuity Pathway Analysis (IPA).

Results: Radiosensitive (SF2 < 0.4) and radioresistant cell lines (SF2 ≥ 0.6) exhibited a marked difference in gene expression. We identified 68 genes that are differentially expressed between radiosensitive and radioresistant cell lines. The identified genes showed interactions via AKT, HIF1A, TGFB1, and TP53, and their functions were associated with the genetic networks associated with cellular growth and proliferation, cellular movement, and cell cycle. The Akt signaling pathway exhibited the highest association with radiosensitivity. Combinatorial treatment with MK-2206, an allosteric Akt inhibitor, and radiotherapy significantly increased cell death compared with radiotherapy alone in two radioresistant cell lines (YCC-2 and YCC-16).

Conclusion: We identified a GC-specific radiosensitivity gene signature and suggest that the Akt signaling pathway could serve as a therapeutic target for GC radiosensitization.

Keywords: radiosensitivity, gastric cancer, gene signature, Akt, MK-2206


INTRODUCTION

Gastric cancer (GC) is the third leading cause of cancer-related death worldwide (1, 2). In operable cases, surgery and chemotherapy form the mainstay of treatment. However, 5-year disease-free survival rates of patients with stage III GC ranges from 50 to 60% with standard treatments. Therefore, treatment intensification in patients with locally-advanced GC may be needed to improve the treatment outcomes.

A combination of radiotherapy and chemotherapy has been widely investigated in preoperative as well as postoperative settings as a strategy to improve GC treatment (3–5). However, recent trials suggest that the survival benefit of adding radiotherapy to the treatment regimen is modest (4). The limited efficacy of radiotherapy in GC can be explained by the intrinsic radiation resistance and suboptimal dose delivered due to the low radiation tolerance of organs at risk that surround the stomach. A variety of radiation resistance mechanisms have been studied, such as the DNA repair system, increased receptor tyrosine kinase signaling, decreased radiation-induced apoptosis, tumor hypoxia, and angiogenesis (6). The most widely used agents for radiosensitization are cytotoxic chemotherapeutics, such as 5-fluorouracil, and cisplatin (7). Combinations of radiotherapy with these agents have already been investigated with marginal effects and not negligible toxicities. Therefore, new classes of radiosensitizing agents are needed to improve the treatment outcomes in GC patients. One of the candidates can be relevant to a radiosensitivity mechanism.

Gene expression profile analysis to predict response to radiation therapy has been performed in various types of cancers (8–14). It has been shown that a gene expression-based model can predict patient-specific radiation sensitivity (15). These gene expression data can not only be used in predicting patient radiosensitivity but also in screening for new possible targets in addition to previously suggested predictive markers (16).

In this study, we measured the radiosensitivity, analyzed the mRNA expression profile of GC cells before radiotherapy, and identified differentially-expressed genes and relevant signaling pathways involved in the development of radiosensitivity by comparing radiosensitive and radioresistant GC cell lines. Especially, the Akt pathway was evaluated as a crucial pathway in determining radioresistance of GC cells, and an Akt inhibitor markedly increased radiosensitivity in radioresistant GC cell lines.



MATERIALS AND METHODS


Cell Lines and Culture

Twelve GC cell lines (AGS, MKN-1, MKN-74, SNU-216, SNU-484, SNU-638, YCC-1, YCC-16, YCC-2, YCC-3, YCC-6, and YCC-7) were used. The SNU-series of cell lines were obtained from the Korean cell line bank, and the YCC-series represented cell lines that were established using samples from Korean GC patients at the Songdang Institute for Cancer Research (SICR, Yonsei University College of Medicine, Seoul, South Korea). Cells were incubated in RPMI supplemented with 10% heat inactivated fetal bovine serum, 1% penicillin/streptomycin at 37°C in a 5% CO2 humidified atmosphere, following the institutional protocol (17).



Clonogenic Assay

Radiosensitivity was defined as the survival fraction at 2 Gy of radiation (SF2). To evaluate radiation sensitivity in GC cells, cells were seeded in triplicate and were incubated overnight at 37°C to enable them to adhere to the wells. Cells were then irradiated with X-rays (2 Gy), and cell viability was evaluated 7–10 days post-irradiation. After fixation, colonies containing over 50 cells were calculated. Experiments were replicated three times independently, and the average number of colonies was used. SF2 was determined by the following formula:
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where seedingefficiency is defined as the number of colonies formed divided by expected colony number. SF2 ranged from 0 to 1, wherein a lower SF2 represents higher radiosensitivity.



RNA Preparation and Oligonucleotide Microarrays

Microarray data were obtained from GC cells in the unirradiated condition. The total RNA was extracted from each cell line using the TRIzol reagent (Invitrogen, Carlsbad, CA, United States) according to the manufacturer’s instructions. The Yonsei reference RNA was prepared as previously described (18). The quantity and quality of RNA were confirmed using an ND-1000 spectrophotometer (NanoDrop Technologies, United States) and gel electrophoresis. An oligonucleotide microarray was performed using a human oligo chip (SICR-GT, Seoul, South Korea) containing 22,740 oligonucleotide probes (70 bases each with a reference design). The test samples (RNA from each GC cell line) were labeled with Cy5 and individually co-hybridized with the Cy3-labeled reference RNA (SICR, Seoul, South Korea). Gene expression data were deposited in the Gene Expression Omnibus (GEO) database (accession number: GSE39747).



Gene Expression Analysis

Microarray data extraction and analysis were performed using the BRB-ArrayTools1 for gene identification and gene set analysis. For normalization, the linear models for the microarray data (LIMMA) package were applied using R (version 3.6.1). Genes for which less than 20% of expression data exhibited at least a 1.5-fold change in either direction from the median value of the gene were excluded in the filtering process. Genes differentially expressed between radiosensitive and radioresistant cells were identified by a two-sample t-test using a random-variance model (q-value < 0.025 and fold change more than 2-fold). The P value was adjusted for multiple hypothesis testing using the q-value as suggested by Story (19).

The genetic network was generated through the use of Ingenuity Pathways Analysis (IPA, Ingenuity Systems, www.ingenuity.com). Differentially expressed genes (DEGs) were overlaid onto a global molecular network developed based on the information contained in the Ingenuity Knowledge Base. Networks of network-eligible molecules were then algorithmically generated based on their connectivity. In the genetic network, molecules were represented as nodes, and the biological relationship between two nodes was represented as an edge. All edges were supported by at least one reference from the literature, a textbook, or canonical information stored in the Ingenuity Pathways Knowledge Base.

A heatmap was generated using the BRB-ArrayTools. Principal component analysis was performed for data reduction and simplifying datasets to three dimensions for plotting purposes. Principal component analysis was conducted using R statistical software2, using the “princomp()” function and default options.



Quantitative RT-PCR

DIRAS3, CDKN2B, POF1B, ALDH1A1, and ANTXR2 were selected for the validation of the microarray data by quantitative RT-PCR (qRT-PCR) performed on the 12 GC cell lines. In brief, 4 μg of total RNA from each sample was reversely transcribed using the SuperScript II Reverse Transcriptase (Invitrogen, Carlsbad, CA, United States). Two hundred nanograms of synthesized cDNA were PCR-amplified using QuantiTect SYBR Green PCR (QIAGEN, Valencia, CA, United States). Each reaction was run in a Stratagene MX3005P (Stratagene, La Jolla, CA, United States). Expression values for each gene were determined using a standard curve constructed from Human Genomic DNA (Promega, Madison, WI, United States). The house-keeping gene hypoxanthine phosphoribosyltransferase (HGPRT, HPRT1) was selected for the normalization and construction of the standard curve. Non-template control wells without cDNA were included as negative controls. The primer sets designed for PCR amplification are shown in Supplementary Table S3.



Whole Exome Sequencing

To identify somatic mutations in TP53, KRAS, and PIK3CA, whole exome sequencing (WES) data of the 12 GC cell lines were obtained from the genome database of the SICR and the Yonsei University College of Medicine (Seoul, South Korea). Briefly, single nucleotide variants (SNVs) were evaluated using WES data as previously described (17).



AKT Inhibitor Treatment

A highly selective AKT inhibitor, MK-2206 was purchased from Selleckchem (Houston, TX, United States). To assess the radiosensitizing effect of AKT pathway inhibition in combination with radiation, clonogenic assays with or without the AKT pathway inhibitor MK-2206 were performed using radioresistant YCC-16 cells, which harbor the PIK3CA mutation, and YCC-2 cells, which harbor the KRAS mutation. Clonogenic assays were performed as described previously. Cells were seeded in triplicate for 24 h to allow attachment to wells. Cells were treated with MK-2206 (1.0 μM) or the vehicle control for 1 h, followed by 2 Gy or mock irradiation. Immediate growth medium exchange was not performed after radiation. Plates were incubated to allow for colony formation (7 d). Colonies containing over 50 cells were then calculated and experiments were repeated three times.



Statistical Analysis

Statistical analyses were performed using the GraphPad Prism 7 and R software (v.3.5.1). For continuous variables, student’s t-test was applied when comparing two groups which are non-paired. When comparing continuous variables among more than two groups, analysis of variance (ANOVA) was applied and Tukey’s post hoc analysis was performed to identify which groups exhibit significant difference among the multiple groups. The statistical tests used are specified in the figure legends. A Pearson’s correlation analysis was used to evaluate the correlations between parameters. P values < 0.05 indicated statistical significance.



RESULTS


Association of SF2 With Genetic Variation in GC Cells

The study design is summarized in Figure 1. First, to determine the radiosensitivity of gastric cells, twelve GC cell lines were irradiated at 2 Gy and a clonogenic assay was performed to calculate the SF2 (Table 1 and Supplementary Figure S1). SNU-638 and MKN-1 cells were highly radiosensitive with an SF2 < 0.4 (0.127 and 0.143, respectively). The YCC-2, YCC-16, and YCC-7 cell lines were radioresistant with an SF2 ≥ 0.6 (0.609, 0.620, and 0.667, respectively). No significant difference in SF2 was observed according to genetic mutations in TP53, PIK3CA, and KRAS (Supplementary Figure S2A). In addition, no significant correlation between doubling time and SF2 was observed (Supplementary Figure S2B).
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FIGURE 1. Design of the present study utilizing 12 GC cell lines.



TABLE 1. Characteristics of the 12 gastric cancer (GC) cell lines.
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Differential Expression of Genes Between Radiosensitive and Radioresistant GC Cells

To identify individual genes and functions relevant to radiosensitivity, gene expression profiling was performed. Two-sample t-tests between radiosensitive (SF2 < 0.4) and radioresistant cell lines (SF2 ≥ 0.6) identified 613 genes showing expression levels with differences greater than 2-fold and q-value of less than 0.025 (Figure 2A). Cell lines with intermediate radiosensitivity were excluded from DEG-analysis to drive a more radiosensitivity specific gene set. Of these genes, 68 showed differences in expression with more than a 6-fold change (Supplementary Table S1). To validate the microarray results, we selected five genes (DIRAS3, CDKN2B, POF1B, ALDH1A1, and ANTXR2) for analysis by qRT-PCR. Similar to the microarray results, these genes exhibited a greater than 6-fold difference between radiosensitive and radioresistant GC cells (Figure 2B). Moreover, we confirmed that the cell lines with intermediate radiosensitivity exhibited an intermediate gene signature between sensitive and resistant cell lines (Supplementary Figure S3). In addition, principal component analysis (PCA) was performed to assess the transcriptional landscape of the GC cell lines. The PCA plot well distinguished the radiosensitive cell lines (SNU-638 and MKN-1) from radioresistant cell lines (YCC-2, YCC-16, and YCC-7) while the intermediate cell lines (YCC-3, YCC-1, AGS, YCC-6, SNU-216, SNU-484, and MKN-74) were placed between the radiosensitive and radioresistant cell lines (Figure 2C).
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FIGURE 2. Comparison of the gene expression profile between radiosensitive and radioresistant gastric cancer (GC) cell lines. (A) Microarray was performed in radiosensitive (SF2 < 0.4; SNU-638; and MKN-1) and radioresistant cells (SF2 ≥ 0.6; YCC-2, YCC-16, and YCC-7). A heatmap showing differences in gene expression levels greater than 2-fold change. Genes whose expression levels increased more than 2-fold are shown in red, whereas those whose expression decreased more than 2-fold are shown in green. (B) Comparison of qRT-PCR with microarray-based gene expression levels among radiosensitive (SF2 < 0.4; SNU-638; and MKN-1), intermediate (0.4 ≤ SF2 < 0.6; YCC-3, YCC-1, AGS, YCC-6, SNU-216, SNU-484, and MKN-74), and radioresistant cells (SF2 ≥ 0.6; YCC-2, YCC-16, and YCC-7) of DIRAS3, CDKN2B, ANTXR2, and ALDH1A1. (C) Principal component analysis with gene expression profiles of the GC cell lines. Each cell line is represented as a radiosensitive group (SF2 < 0.4; red), an intermediate group (SF2 between 0.4 and 0.6; black), or a radioresistant group (SF2 ≥ 0.6; blue).




Akt Pathway as a Candidate for Regulating Radiosensitivity in GC Cells

Functional annotation and pathway analysis of the identified 68-gene signature was performed using Ingenuity Pathway Analysis (IPA) to assess which pathways are involved in the development of radiosensitivity in GC cells. Figure 3 displays the top four genetic networks found to be enriched in IPA. Each genetic network showed interactions via major signaling pathway molecules, including AKT, HIF1A, TGFB1, and TP53 (Figure 3D). Functions associated with the genetic networks included cellular growth and proliferation, cellular movement, and cell cycle (Table 2). The Akt-centered network exhibited the highest IPA score, and nine genes of the 68 identified genes were related to the Akt signaling pathway (Supplementary Table S2).
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FIGURE 3. Genetic networks associated with genes differentially expressed between radiosensitive and radioresistant gastric cancer (GC) cell lines. (A–D) Ingenuity Pathway Analysis (IPA) revealed AKT (A), HIF1A (B), TGFB1 (C), and TP53 (D) as core genetic networks associated with radiosensitivity.



TABLE 2. Results of the Ingenuity pathway network analysis (IPA) using the 68 differentially-expressed genes
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Increase in Radiosensitivity as a Result of Akt Pathway Inhibition

Considering the potential role of the Akt pathway in determining the radiosensitivity based on gene network analyses, we further investigated whether the Akt pathway could serve as a druggable target to decrease radiosensitivity in GC cells. The radioresistant cell lines, YCC-2 and YCC-16, were subjected to combinatorial treatment with 2 Gy of radiation and allosteric Akt inhibitor, MK-2206. Although a decrease in SF2 was observed after monotherapy with either MK-2206 or radiotherapy, a combinatorial treatment of MK-2206 and radiotherapy resulted in a significant decrease in SF2 compared to that observed on using either treatment alone (Figure 4).
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FIGURE 4. AKT signaling inhibitor MK-2206 enhances the effect of radiotherapy. YCC-16 and YCC-2 cell lines were treated with MK-2206 (1.5 μM) for 1 h prior to radiation, and the clonogenic assay was performed to measure SF2 in each treatment condition (n = 9 for each experiment). Statistical analysis by ANOVA with post-hoc Tukey’s multiple comparison test. ****P < 0.0001.




DISCUSSION

Herein, we describe the gene signature of radiosensitive and radioresistant GC cells, and demonstrate the role of the Akt pathway in determining the radiosensitivity of GC cells. We used 12 GC cell lines and found that radioresistant GC cell lines exhibit contrasting gene expression profiles compared with radiosensitive GC cell lines. Further gene network analyses revealed Akt as a central pathway regulating radiosensitivity. Blocking the Akt signaling pathway through a clinically available Akt inhibitor, MK-2206, significantly enhanced radiosensitivity in radioresistant GC cell lines, which implies that Akt pathway could serve as a potential therapeutic target.

This is the first study to describe the SF2 of multiple GC cell lines and correlate gene expression profiles with radiosensitivity. From our gene network analyses, we discovered major signaling pathways, including molecules such as Akt, VEGF, HIF-1α, TGF-β, and p53. These gene networks are known to regulate cellular growth, proliferation, movement, and cell cycle. We further focused on the role of Akt as the Akt-centered network exhibited the highest IPA score. Akt is a serine/threonine protein kinase and a major signaling molecule of the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway, which activates downstream molecules involved in cell survival, cell cycle, and proliferation (20). Amplification of AKT1 and a somatic mutation of AKT2 have been previously reported in GC, and about 80% of tumors have been found to have elevated levels of Akt and phosphorylated Akt, which showed a statistically significant correlation with poor patient outcomes in GC (21). Akt-mediated radioresistance has been suggested to occur via the activation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), which is a major enzyme involved in DNA-double strand break repair, and is responsible for decreased degradation of cyclin D1 (which is crucial for cell cycle progression), and the vial up-regulation of miR-214 (22–24).

In our study, although we observed anti-tumor effects of MK-2206 as monotherapy, the anti-tumor effect was significantly enhanced when combined with radiotherapy. In clinical settings, the safety and therapeutic efficacy of the MK-2206 monotherapy as a second-line agent were evaluated in GC patients who progressed after first-line treatment (25). Although the treatment was well tolerated, the therapeutic effect was modest with a response rate of 1%. This is in contrast to the in vitro data from our study, where MK-2206 treated as a single agent induced similar tumor cell killing effects as radiotherapy. The discrepancy may come from the lower efficacy of in vivo drug delivery to tumor compared to in vitro treatment, which may result in a suboptimal drug dose in tumor to kill cancer cells. This implies that although Akt itself may be a therapeutic target in GC, development of combination treatments is needed considering the poor therapeutic efficacy as monotherapy. The combination of radiotherapy and Akt inhibitors has mostly been tested in preclinical models, with Akt inhibitors having a radiosensitizing effect (26, 27). However, such combinations have been rarely tested in clinical studies. Recently, several phase I trials were conducted to evaluate the safety of combining an Akt inhibitor with chemoradiation or stereotactic body radiotherapy in solid tumors (28, 29). Combination treatments of Akt and radiotherapy were well tolerated in these trials. Future studies are needed to evaluate the therapeutic efficacy of this novel combination.

Along with Akt, we also found other major signaling pathways that may be involved in radiosensitization, including VEGF, HIF-1α, TGF-β, and p53. Although p53 is not druggable, target agents blocking VEGF, or TGF-β pathway have been developed. The radiosensitizing effect of anti-angiogenic therapy has been demonstrated from many studies where the radiosensitizing effect is mediated through normalization of tumor vasculature leading to increase in oxygenation of the hypoxic tumor (30). Not only through tumor vasculature, but VEGF may also induce cancer cell intrinsic radioresistance through VEGFR2 expressed on cancer cells, which can be reversed by interfering VEGF/VEGFR2 signaling (31). TGF-β has also been suggested to exhibit synergistic therapeutic effects with radiotherapy (32, 33). TGF-β can mediate radioresistance by inducing a mesenchymal phenotype in cancer cells (33) or by inhibiting radiotherapy-induced anti-tumor immunity (32). Therefore, combination of TGF-β inhibitors with radiotherapy could also be a promising combination. In a clinical trial, fresolimumab, a TGF-β blocking antibody, in combination with radiotherapy was tested in breast cancer patients who failed at least one line of treatment (34). A marked increase in CD8 central memory pool was observed, although the therapeutic response was modest. Other classes of TGF-β inhibitors, such as galunisertib and vactosertib, are also being tested in combination with chemotherapy (35) or immunotherapy (NCT03724851). Taken together, it would be of great interest to investigate the effects of VEGF, HIF-1α, TGF-β, and p53 pathways on radiosensitization. Future trials should also consider the possible radiosensitizing effect of drugs targeting these pathways and test the combination with radiotherapy.

Using gene expression analyses on the 12 GC cell lines, we identified 68 genes that were differentially expressed between radioresistant and radiosensitive cell lines. Expression of selected genes in cell lines according to radiosensitivity were also validated by qRT-PCR (DIRAS3, CDKN2B, POF1B, ALDH1A1, and ANTXR2). We identified other candidates responsible for the development of radiosensitization among the 68 genes. Expression of DIRAS3 and CDKN2B was markedly increased in radiosensitive cell lines. DIRAS3 expression has been shown to be associated with chemosensitization to paclitaxel via cell cycle arrest at the G2/M stage in breast cancer cells (36). CDKN2B encodes a cyclin-dependent kinase inhibitor and controls cell cycle G1 progression, which has a radiosensitizing potential since cells at late G1 stage are known to be radiosensitive (37). Similarly, agents that selectively block CDK4/6 have been reported to enhance radiosensitivity in cancer cells (38). In contrast, expression of ALDH1A1 and POF1B were significantly increased in radioresistant cell lines. ALDH1A1 (aldehyde dehydrogenase 1 family member A1) has been used as a cancer stem cell marker and is associated with chemoresistance in ovarian cancer (39). Moreover, a previous study found that ALDH1A1-silencing sensitized ovarian cancer cells to chemotherapy (40). POF1B has a function in actin binding, and this adhesion-related molecule has been suggested to be important for radioresistance through an interaction with the extracellular matrix (41). Although we only focused on the Akt pathway, other molecules may also serve as promising targets for enhancing radiosensitivity and could be investigated in further studies.

The 68 DEGs may also provide an opportunity to evaluate the radiosensitivity of tumors by gene expression analysis. Although further validation in human tumor samples is required, the 68 DEGs may be used to develop a radiosensitivity scoring platform for predicting response to radiotherapy in GC patients. Oncotype DX is already being widely used in breast cancer patients to properly identify candidates for chemotherapy (42). Scott et al. have reported that a gene-expression-based radiation-sensitivity index derived from the NCI-60 database can predict treatment outcome in patients with solid tumors (15, 43). Selecting the proper candidates and radiation dose for patients based on their gene expression data may improve the therapeutic efficacy of radiotherapy. Future trials exploring the role of radiotherapy in GC patients may need to integrate the gene signature for radiosensitivity to predict tumor-intrinsic radiosensitivity in order to aid in selecting the right patients for enrollment.

Limitations were also present in this study. The number of cell lines used in this study was limited to 12 cell lines which may be inadequate to draw clear conclusions. In addition, we did not perform in vivo studies to evaluate the effect of Akt inhibition on radiosensitivity. Further investigations utilizing a larger number of cell lines along with in vivo studies are required for adequate conclusions.

In conclusion, we report a unique radiosensitivity gene signature in GC cells and describe the role of the Akt pathway in radiosensitizing GC cells. Our findings suggest Akt pathway as a potential therapeutic target to enhance radiosensitivity in GC. The predictive power of our radiosensitivity gene signature and the therapeutic efficacy of combining Akt inhibitors to radiotherapy should be validated in future clinical studies.
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The consensus of endoscopic therapy for early gastric cancer (EGC) mainly depends on its clinicopathological features. However, the roles of tumor-associated neutrophils (TANs) in EGC remain uncertain. Here, we explored its predictive role for lymph node metastasis (LNM) in EGC. Three hundred twenty-two patients who underwent radical gastrectomy for EGC were enrolled. Preoperative peripheral blood was used to analyze the neutrophil-to-lymphocyte ratio (NLR), and the different status of TANs was determined by hematoxylin-and-eosin staining (H&E) and immunohistochemistry (IHC). TANs, rather than NLR, were positively associated with tumor size, Lauren classification, lymphovascular invasion (LVI), and LNM. Univariate analysis revealed that TANs were associated with LNM as well as tumor size, depth of invasion, Lauren classification, histological classification, LVI, and perineural invasion. In addition to histological classification and LVI, TANs were found to be an independent risk factor for LNM in EGC (P = 0.013). Stratification analysis by depth of invasion showed LVI in SM1 tumor, and both LVI and TANs (P = 0.042) in SM2 tumor were independent risk factors for LNM. In conclusion, TANs in EGC can predict LNM, and TANs may help to estimate LNM precisely in addition to the current criteria.

Keywords: early gastric cancer, tumor-associated neutrophils, lymph node metastasis, cancer-associated fibroblasts, IL-8


INTRODUCTION

Gastric cancer is one of the most lethal malignant diseases worldwide, especially in China, ranking second in the incidence and third in the mortality of all malignant tumors (1, 2). The incidence of early gastric cancer (EGC) has been increasing in the past decades with the enhanced public awareness of this disease and the development of screening technologies. Endoscopic therapy, including endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD), has been generally recognized to be appropriate for EGC, and the prognosis of EGC has been improved (3). However, concerns about the concurrent lymph node metastasis (LNM) have been plaguing endoscopic therapy for EGC (4). There are several established consensuses for this issue; clinicopathological features, such as tumor size, invasion depth, histological classification, ulceration, and lymphovascular infiltration (LVI), have been used to assess the risk of LNM in EGC (5, 6). Currently, three evaluation categories (absolute, expanded, and relative indications or endoscopic curability A, B, and C) are used to guide endoscopic therapy for EGC depending on the incidence of LNM and completeness of the primary tumor removal (5, 6). Actually, endoscopic therapy has some pitfalls for EGC according to these current guidelines. Additional surgical resection revealed that LNM was detected in only 5% of patients who did not meet the criteria of curative endoscopic resection (7, 8). However, it has been demonstrated that ~0.2% patients with absolute indication and 0.7% patients with expanded indication encountered simultaneous LNM (4). Therefore, seeking a more precise indicator for LNM is compelling for EGC.

The abovementioned consensus mainly depends on morphological characteristics and histological classification of tumors. It has been established that gastric cancer is a highly heterogeneous tumor, and tumor microenvironment (TME) plays an important role in stomach carcinogenesis, tumor progression, therapeutic response, and the prognosis (9). Complex and diverse cell components are found in TME as well as tumor cells, including fibroblasts, immune cells, pericytes, and endothelial cells (10). Neutrophils infiltrating in the TME, known as tumor-associated neutrophils (TANs), have been shown to be involved in tumorigenesis, angiogenesis, and tumor metastasis (11, 12). Cancer-associated fibroblasts (CAFs) are the predominant cell type in the tumor-associated stroma and contribute to tumorigenesis by secreting growth factors, modifying the extracellular matrix, supporting angiogenesis, suppressing antitumor immune responses, and fostering resistance to therapy (13). We have revealed previously that CAFs in gastric cancer tissues produce massive IL-8, which results in chemoresistance, and CAFs are associated with poor prognosis for advanced gastric cancer patients (14). IL-8 is the prominent chemokine of neutrophils, and it may recruit neutrophils to tumor tissues via interaction with CXCR1/2 in neutrophils (15). However, whether TANs and/or CAFs are associated with LNM in EGC remains unknown.

In this study, we performed a retrospective study with 322 cases of EGC, who underwent radical gastrectomy with curative intent, to investigate the predictive roles of TANs and/or CAFs for LNM. We showed that TANs and CAFs were associated with clinicopathological features in EGC, including tumor size, depth of invasion, Lauren classification, lymphovascular invasion (LVI), and LNM. Univariate analysis revealed that TANs and CAFs were associated with LNM as well as tumor size, depth of invasion, Lauren classification, histological classification, LVI, and perineural invasion. However, histological classification, LVI, and TANs were the independent risk factors for LNM with multivariate analysis. TAN infiltration was consistent with mature CAFs. Our results identified that TANs in EGC can predict LNM and that TANs may help to estimate LNM precisely in addition to the current criteria.



MATERIALS AND METHODS


Patients

As shown in a CONSORT diagram, a consecutive series of 322 patients with EGC from January 2011 to December 2017 in the Affiliated Hospital of Nanjing University of Chinese Medicine were enrolled in the study. All these patients underwent open or laparoscopic D2 radical gastrectomy with curative intent and were pathologically diagnosed with early gastric adenocarcinoma according to the American Joint Committee on Cancer (AJCC) criteria. EGC was defined as a tumor invading the mucosa or submucosa (pT1). All these patients had not received preoperative chemotherapy or radiotherapy, and all these patients received follow-up for overall survival (OS) by telephone or subsequent consultation with a cutoff date of December 2019. The follow up time was 24–108 months (median: 53 months).

The stomach was anatomically divided into three portions: the upper third, the middle third, and the lower third. The depth of tumor infiltration was divided into three groups: intramucosa (tumor infiltration confined in the mucosa lamina propria or muscularis mucosae), SM1 (tumor infiltration confined in the superficial submucosal layer, <500 μm from the muscularis mucosae), and SM2 (tumor infiltration confined in the deep submucosal layer, more than 500 μm from the muscularis mucosae). Lauren classification includes intestinal, diffuse, mixed, and undefined type according to the fifth edition of WHO criteria (16). The clinicopathological features were collected, including gender, age (<65 or ≥65); tumor location; tumor size (<2, 2–2.9, or ≥3 cm); macroscopic type (elevated, flat, or depressed); depth of tumor infiltration (intramucosa, SM1, or SM2); histological classification (well, moderately, or poorly differentiated); the presence of LVI, perineural invasion, and Helicobacter pylori infection; and the status of LNM. All these pathological features were reviewed for this study by two experienced pathologists. The samples were obtained following written consent according to an established protocol approved by the Institutional Review Board of Nanjing University of Chinese Medicine. This study was also in compliance with the Declaration of Helsinki.
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Blood Neutrophil-to-Lymphocyte Ratio (NLR) Analysis

The neutrophil counts and lymphocyte counts in the pretherapeutic blood routine of these patients were collected. The NLR was defined as the neutrophil count divided by the lymphocyte count. The median value of NLR in these patients was used as the cutoff of NLR, and these patients were divided into the high-NLR group and the low-NLR group.



TAN Analysis

The TANs were determined pathologically by H&E staining and immunohistochemistry (IHC). A rabbit polyclonal anti-myeloperoxidase (MPO) antibody (Cell Signaling Technology, MA, USA) was used, and H&E staining or IHC was performed on paraffin-embedded formalin-fixed tissues according to standard protocols. Neutrophil was defined as lobulated nuclei, and the cytoplasm was rich in reddish granules. Neutrophils engaged within the tumor tissue (including the neoplastic parenchyma and the tumor stroma) were referred to as TANs (17). All the slides containing tumor tissue were observed at low power, and the section with the most apparent neutrophilic aggregates within the tumor tissue was selected. Ten non-overlapping high-power fields (HPFs, 400-fold magnification, field diameter 0.55 μm) were observed continuously. However, the areas closely adjacent to mucosal erosion, ulcer, or infarct-like necrosis of tumor were excluded for neutrophil counting. Patients were divided into high- and low-TAN infiltration groups, based on a median TAN number of 10 per HPF in primary tumors.



CAF Analysis

CAFs constitute the predominant stromal component in many types of malignancies. Due to their aforementioned interrelation with neutrophils, we performed CAF analysis pathologically by H&E staining and IHC. A mouse monoclonal anti-α-smooth muscle actin (α-SMA) antibody (Cell Signaling Technology, MA, USA) was used. CAFs were defined as fibroblast-like cells proliferating around the tumor parenchyma (18). Patients were classified as high- or low-CAF phenotype depending on the percentage of CAFs in tumor stroma. According to the report of Lee et al. (19), cases were defined as high-CAF phenotype if CAFs accounted for more than 50% of tumor stroma; otherwise, cases were defined as low-CAF phenotype. However, 12 cases diagnosed with mucinous adenocarcinoma were not included in the CAF study due to the extracellular mucin pools instead of obvious cells. Ueno et al. (20) reported that CAFs can be classified into mature or immature CAFs. Mature CAFs are defined as fine elongated collagen fibers occupying the background predominantly, which contains long and thin spindle fibroblast cells with fewer weak eosinophilic cytoplasm, dense nuclei, and inconspicuous nucleoli. Immature CAFs are defined as mucoid without obvious collagen fibers or a few keloid-like collagens, which contains plump spindle- or stellate-shaped fibroblast cells with weak basophilic cytoplasm, oval and vacuolar nuclei, and prominent nucleoli. The expression of α-SMA in mature CAFs was weaker than that in immature CAFs. We evaluated the maturity of CAFs in the high-CAF group.



Detection of IL-8 in Tumor Tissues

The expression of IL-8 in gastric tissue specimens was detected by IHC according to standard protocols. A mouse monoclonal anti-IL-8 antibody (Abcam, Cambridge, UK) was used.



Statistical Analysis

Differences and relationships between groups with continuous or categorical variables were statistically compared with Student t, χ2, Fisher's exact test, and Spearman correlation analysis using SPSS software (version 22.0, SPSS Inc., Chicago, IL). The OSs were calculated using the Kaplan–Meier method. The log-rank test was used to compare the difference between these groups. A multivariate logistic regression analysis was performed to identify the independent risk factors of LNM. P < 0.05 were considered to be statistically significant.




RESULTS


TANs and CAFs Were Associated With Clinicopathological Features in EGC

The clinicopathological features of these enrolled patients were listed in Table 1. We first investigated the clinicopathological significance of TANs and CAFs. As shown in Figure 1, TANs and CAFs were detected in the tumor stroma of all these EGC patients, and 44% (130/322) constituted the high-TAN group, while 45.2% (140/310) were classified into the high-CAF group (Table 1). TANs were associated with the tumor size (P = 0.036), Lauren classification (P = 0.001), LVI (P = 0.005), and LNM (P = 0.000) significantly (Table 1). CAFs were closely correlated with tumor size (P = 0.003), depth of invasion (P = 0.000), Lauren classification (P = 0.043), LVI (P = 0.000), perineural invasion (P = 0.000), and LNM (P = 0.000) (Table 1). However, there was no remarkable association between TAN infiltration and CAFs (r = 0.059, P = 0.351) (Supplementary Table S1).


Table 1. The clinical significance of TANs and CAFs in the EGC tissues.
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FIGURE 1. TANs and CAFs in gastric cancer tissues. TANs and CAFs were detected in the tumor stroma of all these EGC patients by H&E staining and IHC. (A) Both the high-TAN and high-CAF groups: more than 10 TANs per HPF (black arrow) were detected, and CAFs (yellow arrow) accounted for more than 50% of tumor stroma. (B) The high-TAN group with low CAFs: more than 10 TANs per HPF (black arrow) were detected, and CAFs accounted for <50% of tumor stroma. (C) The low-TAN group with high CAFs: <10 TANs per HPF were detected, and CAFs (yellow arrow) accounted for more than 50% of tumor stroma. (D) The low-TAN group with low CAFs: <10 TANs per HPF were detected, and CAFs accounted for <50% of tumor stroma. (A1, B1, C1, D1) TANs using MPO staining. (A2, B2, C2, D2) CAFs using α-SMA staining.


We also evaluated the clinical relevance of the preoperative neutrophil counts and NLR of these patients. The neutrophil counts ranged from 0.80 × 109 to 10.12 × 109/L with an average of 3.39 ± 1.37 × 109/L, while the NLR values varied from 0.62 to 11.8 with a median value of 1.9. Therefore, 1.9 was used as the cutoff value for low NLR or high NLR. As shown in Supplementary Table S2, both the neutrophil counts and the NLR showed no significant association with the clinicopathological features except patient gender, which was not consistent with locally advanced gastric cancer (21).

The OSs between different TAN or CAF groups were also investigated respectively. A total of 43 patients died in this patient cohort (11–55 months, median: 33 months). The low-TAN group or the low-CAF group showed slight improvement in OS compared with the high-TAN group or the high-CAF group; however, it did not reach significant significance (P = 0.069 for low- and high-TAN groups, P = 0.649 for low- and high-CAF groups) (Supplementary Figure S1).



Risk Factors for LNM by Univariate and Multivariate Analysis

The presence of LNM remains a major concern in endoscopic therapy for EGC; therefore, we investigated the risk factors associated with LNM in our patient cohort undergoing radical surgery. The average number of removed regional lymph nodes was 21.4 per case (ranging from 12 to 68). The incidence of LNM was 15.2% (49/322) in this whole cohort, and it was 5.8% (9/156), 14.3% (6/42), and 27.4% (34/124) in the intramucosal tumor, SM1 tumor, and SM2 tumor, respectively.

Univariate analysis revealed that tumor size (P = 0.003), depth of invasion (P = 0.000), Lauren classification (P = 0.000), histological classification (P = 0.001), LVI (P = 0.000), perineural invasion (P = 0.011), TANs (P = 0.000), and CAFs (P = 0.000) were associated with LNM significantly in the 322 patients (Table 2). However, multivariate analysis indicated that histological classification (P = 0.026), LVI (P = 0.000), and TANs (P = 0.013) were the independent risk factors for LNM (Figure 2). We performed stratification analysis by depth of invasion to identify the specific factors for LNM in different stages of EGC. Intramucosal tumors are the best indication for endoscopic therapy (5, 6). However, tumor size (P = 0.038), Lauren classification (P = 0.004), histological classification (P = 0.015), TANs (P = 0.028), and CAFs (P = 0.002) were associated with LNM of intramucosal tumors (Supplementary Table S3), and only CAF was the independent risk factor (P = 0.049) (Supplementary Table S4). For submucosal tumors, the risk factors included Lauren classification (P = 0.001), histological classification (P = 0.004), LVI (P = 0.000), TANs (P = 0.003), and CAFs (P = 0.003) (Supplementary Table S5); however, both LVI (P = 0.000) and TANs (P = 0.037) were the independent factors (Figure 3). Further stratification analysis indicated that both LVI (P = 0.000) and TANs (P = 0.042) were the independent factors for SM2 tumors (Figure 4), and only LVI was the independent factor for SM1 tumors (P = 0.041) (Supplementary Table S6). Collectively, our results indicated that TANs, in addition to the established factor LVI (5, 6), can predict LNM in EGC, especially in SM2 tumor.


Table 2. Clinicopathological features associated with LNM in EGC patients.
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FIGURE 2. Multivariate logistic regression analysis of potential risk factors for LNM in patients with EGC. Histological classification (P = 0.026), LVI (P = 0.000), and TANs (P = 0.013) were the independent risk factors for LNM in the patients with EGC.
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FIGURE 3. Multivariate logistic regression analysis of potential risk factors for LNM in patients with submucosal EGC. Both LVI (P = 0.000) and TANs (P = 0.037) were the independent factors for LNM in patients with submucosal EGC.



[image: Figure 4]
FIGURE 4. Multivariate logistic regression analysis of potential risk factors for LNM in patients with SM2 EGC. Stratification analysis indicated that both LVI (P = 0.000) and TANs (P = 0.042) were the independent factors for SM2 tumors.




Correlation Between TANs and CAFs in EGC Tumor Tissues

To probe the potential mechanisms underlying neutrophil infiltration in gastric cancer tissues, we evaluated the correlation between TANs and CAFs, because CAFs can produce IL-8 and IL-8 is one of the prominent chemokines for neutrophils. The prevalence of the high-CAF subgroup was 7.2% for intramucosal tumors and increased to 58.5% for SM1 tumors and 90.5% for SM2 tumors (Table 1). However, the prevalence of CAFs had nothing to do with that of TANs in the whole patient cohort or in the patients with SM tumors (Supplementary Table S1). We further studied the maturity of CAFs and their relationship with TANs. Figure 5 shows the morphological characteristics of mature and immature CAFs in tumor tissues. The mature CAFs were associated with TANs in all SM tumors (r = 0.180, P = 0.046) (Table 3) and in SM2 tumors (r = 0.215, P = 0.034) (Table 4), but they had no correlation in SM1 tumors (Supplementary Table S7). Importantly, the mature CAFs were significantly related to LNM in SM2 tumors (P = 0.004) (Supplementary Table S8).


[image: Figure 5]
FIGURE 5. The morphological characteristics and α-SMA expression of mature and immature CAFs in tumor tissues. (A–C) Mature CAFs: the cancer invaded the deep submucosa (SM2), and mature CAFs mainly constituted the stroma (A). (B) was the amplification of the black frame in A and showed thin spindle fibroblasts with fine elongated collagen fibers. C showed the mature CAFs with weak positive α-SMA staining. (D–F) Immature CAFs: the cancer invaded the deep submucosa (SM2), and immature CAFs mainly constituted the stroma (D). (E) was the amplification of the black frame in (D) and showed plump spindle fibroblast cells without obvious collagen fibers. (F) showed the immature CAFs with a highly positive expression of α-SMA.



Table 3. Correlation between TANs and mature or immature CAFs in submucosal gastric cancer tissues (n = 129).
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Table 4. Correlation between TANs and mature or immature CAFs in SM2 gastric cancer tissues (n = 105).
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The above results hinted that TAN infiltration was consistent with mature CAFs. We examined the IL-8 expression in the tumor tissues by IHC. As shown in Figure 6, IL-8 was highly expressed in mature CAFs rather than in immature CAFs, and IL-8 expression was consistent with TAN distribution, which supported the notion that CAF-derived IL-8 recruits neutrophils in tumor tissues and promotes tumor progression subsequently.


[image: Figure 6]
FIGURE 6. IL-8 was highly expressed in mature CAFs. IL-8 expression in the tumor tissues was determined by IHC, and IL-8 was detected in tumor stroma rather than in tumor cells. IL-8 was highly expressed in mature CAFs (A), while it was seldom detected in immature CAFs (B).





DISCUSSION

In a retrospective study, we investigated the clinicopathological significance of TANs and CAFs in EGC. We revealed that TANs and CAFs, rather than peripheral blood neutrophil count and NLR, were positively associated with clinicopathological features including tumor size, Lauren classification, LVI, and LNM. In addition to histological classification and LVI, TANs were found to be an independent risk factor for LNM in all EGC patients. Stratification analysis by depth of invasion showed that CAFs in intramucosal tumor, LVI in SM1 tumor, both LVI and TANs in SM2 tumor were independent risk factors for LNM. Our results demonstrated that TANs can predict LNM in EGC.

Neutrophils are the most abundant inflammatory cells in human circulation, and neutrophils have been revealed to regulate tumor progression in recent years. TANs can be divided into N1 and N2 TANs according to their activation and cytokine status and effects on tumor cell growth. N1 TANs exert an antitumor activity, by direct or indirect cytotoxicity. N2 TANs stimulate immunosuppression, tumor growth, angiogenesis, and metastasis by DNA instability or by cytokine and chemokine release (22). Nuclear morphology was suggested to distinguish between these two subtypes, with N1 neutrophils having a hypersegmented nucleus and N2 neutrophils consisting of banded or ring-like nuclei (23), and there are no distinct markers to distinguish between the two states of TAN so far (24). In this study, TANs were found to be associated with LNM in EGC; however, we did not identify the subtype of TANs. High-level TANs in GC patients have been shown to be associated with disease progression and poor clinical outcome (12), but in Epstein–Barr virus-associated gastric carcinoma with abundant lymphocytic interstitium, a high density of CD66b-positive TANs is associated with intestinal-type histology and low frequency of LNM (25), and the presence of neutrophil infiltration in the corpus was closely related to the development of metachronous gastric cancer after ESD (26). Hence, how TANs promote LNM or tumor progression in gastric cancer remains unclear. We have observed neutrophils in the tumor thrombus in the tumor-draining lymphatics of gastric cancer (data not shown), which may be one of the underlying mechanisms and needs further investigation.

CAFs are the prominent cell component in the TME of gastric cancer, and CAFs can produce IL-8 to recruit neutrophils (14). A recent study indicated that the combination of CD66b+ TANs and α-SMA+ CAFs could be used as an independent factor for poor outcomes in gastric cancer patients (27). We also evaluated the clinicopathological significance of CAFs in addition to TANs in EGC. CAFs mainly existed in deep submucosal tumors (SM2), and its prevalence in the high-CAF subgroup was 90.5%. In SM2 tumors, it is difficult to identify the presence of LNM in endoscopic therapy for EGC (28). We showed that TANs, besides LVI, were an independent factor of LNM for SM2 tumors. LNM was found in 18.7% (14/75) in the low-TAN group, while it increased to 40.8% (20/49) in the high-TAN group. However, CAFs were not identified as an independent risk factor for LNM in our EGC cohort (P = 0.051). We further evaluated the maturation of CAFs in the TME. It has been shown that mature CAFs may produce more collagen I and IL-8 (29). Abundant collagen I increases the stiffness of tumor stroma and the internal pressure of the tumor, which results in the rupture of tumor cells and paves the way for the spread or metastasis of cancer cells together with the regular alignment of fibers (30, 31). The increased stromal stiffness aggravates hypoxic TME, which promotes neutrophil polarization and inhibits its apoptosis (32). Besides histological morphology, the CAF immunophenotypes are variable, and the level of α-SMA expression is higher in the immature CAF subtype than in the mature CAF subtype (33), as we have found. We further demonstrated that IL-8 was highly expressed in mature CAFs than in immature CAFs; that mature CAFs correlated with TANs in SM tumors, especially in SM2 tumors; and that mature CAFs were significantly associated with LNM in SM2 tumors. Therefore, we speculated that mature CAFs produce more IL-8, recruit more neutrophils to cancer tissues, and promote neutrophil polarization, which synergistically promotes LNM and tumor progression in EGC, especially in SM2 tumors.

The clinical significance of neutrophil counts and NLR in EGC remains uncertain (34, 35). We showed that both neutrophil counts and NLR had no significant association with the clinicopathological features except patient gender in our EGC cohort. The inconsistency among various reports may be due to different patient cohorts and different cutoffs of NLR, and further studies are needed to elucidate the clinicopathological and prognostic values.

Collectively, our results demonstrated that TANs predict LNM in EGC and that TANs may be incorporated into the current morphological criteria of endoscopic therapy for EGC, which will help to estimate LNM precisely. Of course, further prospective studies are needed to evaluate TANs as a marker of LNM in EGC. We have collected a few pathological data of EGC patients undergoing additional gastrectomy due to non-curative endoscopic treatment depending on the current criteria, and we intend to establish a comprehensive and quantitative predictive system for LNM.
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Differential expressions and functions of various micoRNAs (miRNAs) have been intensively studied in both colon and rectal cancers. However, the importance of miRNAs on radiotherapy (RT) response and clinical outcome in rectal cancer patients remains unclear. In this study, we used real-time polymerase chain reaction to examine the expressions of miR-302a, miR-105, and miR-888 in normal mucosa and cancer tissue from rectal cancer patients with and without preoperative RT. The biological function of miR-302a, miR-105, and miR-888 expression was further analyzed and identified through the public databases: TCGA (The Cancer Genome Atlas) and GEPIA (Gene Expression Profiling Interactive Analysis). The results showed that the expression of miR-105 in rectal cancer was higher than that in normal mucosa in RT (P = 0.042) and non-RT patients (P = 0.003) and was associated with mucinous histological type (P = 0.004), COX-2 (P = 0.042), and p73 expression (P = 0.030). The expression of miR-302a was shown more frequently in cancers with necrosis (P = 0.033) and with WRAP53 expression (P = 0.015), whereas miR-888 expression occurred more frequently in tumors with protein the expression of survivin (P = 0.015), AEG-1 (astrocyte elevated gene-1) (P = 0.003), and SATB1 (special AT-rich sequence binding protein 1) (P = 0.036). Moreover, TargetScan also predicted AEG-1 and SATB1 as putative targets for miR-888. The miRNA–gene network analysis showed that ABI2 was associated with all the three miRNAs, with lower expression and good diagnostic value in rectal cancers. The TCGA database demonstrated the association of miR-105 expression with high carcinoembryonic antigen level (P = 0.048). RT reduced the expressions of miR-302a, miR-105, and miR-888. Prognostic analysis showed that miR-888 expression was independently associated with worse survival of patients without RT [overall survival, P = 0.001; disease-free survival, P = 0.009]. Analysis of biological function revealed that the protein serine/threonine kinase activity and PI3K-AKT signaling pathway were the most significantly enriched functions and pathways, respectively. Our findings suggest that miR-105 is involved in rectal cancer pathogenesis and miR-888 is associated with prognosis. MiR-302a, miR-105, and miR-888 have potential influence on the pathogenesis, RT, and prognosis of rectal cancer.

Keywords: miRNAs, pathogenesis, radiotherapy, prognosis, rectal cancer


INTRODUCTION

Colorectal cancer (CRC) includes both colon and rectal cancers and is the third most common cancer worldwide and the second leading cause of cancer deaths in many parts of the Western world (1). Because of the differences in embryological origin, anatomy, and biological and clinical features, such as metastatic patterns, colon, and rectal cancers should require separate strategies concerning cancer therapies. Adjuvant chemotherapy in stage III and possibly high-risk stage II colon cancer is associated with improved survival (2). Preoperative short- or long-course radiotherapy (RT) for stage II or III rectal cancer is the standard course of treatment. Total mesorectal excision is the cornerstone of rectal cancer management. Although the multimodal therapies including a preoperative radiochemotherapy have been proposed for patients with locally advanced rectal cancer based on TNM staging according to National Comprehensive Cancer Network guidelines, the response to RT and prognosis vary a lot among patients who have the same TNM stages. Therefore, it is urgent to discover novel and better biomarkers as clinical indicators to improve RT response and eventually survival in rectal cancer patients.

MicroRNAs (miRNAs) are small non-coding RNAs (18–22 nt in length) that regulate the expression of target genes by interfering at posttranscriptional level by degrading target mRNAs and/or inhibiting their translation (3). Increasing amounts of evidence show that miRNAs play a crucial role in almost all cellular biological processes including metabolism, differentiation, survival, and apoptosis. The discovery of critical functions of miRNAs has opened new avenues for diagnosis, prediction of treatment response, and prognosis for many malignancies including CRC (4). PI3K/AKT signaling miR-105 expression has been altered in different types of cancers. Loss of miR-105 expression was associated with poor prognosis in hepatocellular carcinoma (HCC) (5, 6), glioma (7, 8), and non–small cell lung cancer (9), which indicates that miR-105 may function as a potential tumor suppressor in these malignancies. On the contrary, upregulated expression of miR-105 was associated with poor prognosis in breast cancer patients (10). Moreover, overexpression of miR-105 was associated with CRC with aggressive phenotype (11). However, the specific clinical values of miR-105 in CRC remain to be further elucidated. Aberrant expression of miR-888 has recently been reported in several types of cancers, prominently in urogenital malignancies. MiR-888 has been shown to be dysregulated in chromophobe renal cell carcinomas (12). It has been found that miR-888 is involved in the promotion of prostate cancer progression (13), and a recent study identified miR-888 cluster as a novel cancer network in prostate cancer (14). In addition, an infrequent somatic mutation mapping within the miR-888 hairpin is identified in a primary epithelial ovarian tumor (15). MiR-888 is one of the most overexpressed small RNAs in endometrial cancers (16, 17). MiR-888 may be involved in breast cancer metastasis (18), and plays a major role in promoting the proliferation and metastatic potential of HCC cells (19). These findings indicate that miR-888 plays an oncogenic role in several cancer types. Although the overexpression of miR-888 has been found in colon cancer tissue as compared with normal mucosa by large-scale miRNA profiling (20), the potential role of miRNA-888 in CRC remains to be further investigated. The aberrant expression of miR-302a has been frequently reported in a variety of cancer types. The downregulation of miR-302a in breast cancer cells plays an important role in regulation of invasion and metastasis of breast cancer (21). The low expression of miR-302a inhibits cell proliferation and invasion and induces cell apoptosis in HCC by directly targeting vascular endothelial growth factor-A (22). The overexpression of miR-302a in prostate cancer cells can induce cell cycle arrest and inhibit cell proliferation in vitro and tumor formation in vivo (23). Moreover, the lower expression of miR-302 family members is associated with more aggressive cancer progression in skin, cervical, and gastric cancer (24–27). MiR-302a is overexpressed in colon cancer (20), which may inhibit proliferation and invasion of cancer cells by reducing the expression of related proteins through suppressing the MAPK and PI3K/AKT signaling pathways (28, 29). However, the prognostic value of miR-302a in CRC has been not completely clarified.

It is well-known that one single miRNA can simultaneously target multiple genes that are involved in a specific signaling cascade or cellular mechanisms. Therefore, some miRNAs may be regulators of complex radioresistance responses of tumor cells and thus directly exploited to sensitize radioresistant CRC cells to RT. For instance, miR-302a can sensitize the response of breast cancer to RT (30), and miR-302a expression is inversely correlated with those of AKT1 and RAD52 (two critical regulators of radioresistance). To our knowledge, there is no such study that has been specifically conducted to investigate the involvement of miR-302a, miR-105, and miR-888 in RT response of rectal cancers. Therefore, we have taken three steps for selecting miR-302a, miR-105, and miR-888 as the target miRNAs in the present study: (1) by bibliographic retrieval to find their expressions in different malignancies, (2) by studying target miRNAs in different publications based on their important roles in other malignancies, and (3) by finding the data on the prognostic value and RT response in rectal cancer.

This study aimed to examine whether the expressions of miR-302a, miR-105, and miR-888 were associated with other biological factors, RT response, and clinical outcome in a cohort of rectal cancer patients obtained from Swedish Clinical Trial of Preoperative RT. Our specified aims, based on RT or non-RT patients, were to examine the expressions of the three miRNAs in the primary cancers compared with normal rectal mucosa, RT effects on the miRNAs, the relationships of the miRNAs with proliferation- and apoptosis-related factors, and patient survival. We further analyzed these miRNAs in the protein-protein interaction network and their biological functions based on The Cancer Genome Atlas (TCGA) and Gene Expression Profiling Interactive Analysis (GEPIA) database.



MATERIALS AND METHODS


Rectal Cancer Patients and Samples

This study included a cohort of 80 patients with rectal cancer from the Southeast Swedish Health Care region who participated in a randomized Swedish Rectal Cancer Trial of Preoperative RT between 1987 and 1990 (31). Locally curative resection was performed on all patients. The surgery has been described in detail (31). Forty-one patients received tumor resection alone, and 39 received preoperative RT followed by surgical tumor resection. RT was given at a total dose of 25 Gy in five fractions over a median of 8 days (6–14 days) before the surgery. The surgical tumor resection was carried out in a median of 4 days (range, 0–8 days) after RT. Samples were collected from primary rectal cancer (n = 80) and distant normal mucosa (n = 52). The distant normal mucosa was taken from the proximal or distal margin (4–35 cm from the primary tumor) of the resected rectum, which was histologically free from tumor. Tissue collection and preparation are described in detail in our previous study (32). None of the patients received preoperative or adjuvant chemotherapy. The median follow-up period or the patients was 66.5 months (range, 0–193 months). All patients gave their informed consent for inclusion before they participated in the study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the institutional review board of Linköping University, Sweden (Dnr-2012-107-31). There was no statistical difference between the non-RT and RT patients regarding the characteristics of the patients and tumors (P > 0.05; Table 1).


Table 1. Characteristics of the patients and tumors.
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Quantitative Reverse Transcriptase–Polymerase Chain Reaction for miRNA Expression

An experienced pathologist took samples including normal mucosa and primary tumor from surgical specimens. The samples were formalin-fixed and paraffin-embedded, and the tissue blocks were sectioned to produce standard microscopic slides that were stained with hematoxylin and eosin (HE). An experienced pathologist examined all HE slides from different pathological blocks from each patient in order to select our required block/tissue for use. Total RNA was extracted from cancerous and distant normal samples from patients, using mirVana miRNA Isolation Kit (Ambion, Austin, TX, USA) according to the manufacturer's protocol. Concentration and purity of RNA were quantified using Nanodrop ND-1000 Spectrophotometer (Thermo Scientific, Rockford, IL, USA). cDNA was synthesized using gene-specific primers according to the TaqMan MicroRNA Assay protocol (Applied Biosystems). After reverse transcription and quantitative reverse transcriptase–polymerase chain reaction (qRT-PCR), the CT values (CT) were calculated by SDS 2.4.1 software (Applied Biosystems) using the manual threshold settings (threshold = 0.2). RNU6b (assay no. 001006; Applied Biosystems) was selected as a reference gene. The fold change in miRNA expression was calculated using the 2−ΔΔCt method (33). The detailed protocol for qRT-PCR and data analysis was described in Supplementary Materials. Finally, TargetScan 3.0 was then used to predict gene targets of these miRNAs.



Tissue Array and Immunohistochemistry for the Expression of Biological Factors

In order to understand the possible pathway of miRNAs in carcinogenesis, RT response, and eventually patient survival, we examined the relationships of the miRNAs with biological factors associated with apoptosis, carcinogenesis, and RT response. These factors were studied on the sections of the blocks (fixation described above) from the same patients at our laboratory. The data for p73 (n = 74) (32), p130 (n = 71) (34), phosphatase of regenerating liver-3 (PRL-3, n = 73) (35), endosialin (TEM1, n = 75) (36), survivin (n = 47) (37), peroxisome proliferator-activated receptor δ (PPAR-δ, n = 67) (38), WRAP53 (n = 67) (39), astrocyte elevated gene-1 (AEG-1) (n = 70) (40), COX-2 (n = 77) (41), and special AT-rich sequence binding protein 1 (SATB1, n = 68) (42) of primary rectal cancers determined by immunohistochemistry were taken from previous studies conducted with the same cases used in the present study at our laboratory. Apoptosis (n = 71) was detected by TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling) assay (43). The percentage of apoptotic cancer cells was determined by counting ~1,000 tumor cells. Cases were considered as negative if apoptotic cells constituted fewer than 5% of tumor cells. The detailed protocol is described in Supplementary Materials.



miRNA–Gene Network Construction

The miRNet database provided the miRNA–gene interaction information, and Cytoscape software was used to visualize the networks.



Biological Functional Analysis

Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis conducted by “clusterProfiler” package on R language were used to explore the biological function for miRNA-related genes on pathway level.

ABI2 expression was compared between rectal cancer tissues (n = 92) and normal controls (n = 318) based on the GEPIA database. Further, the diagnostic values of ABI2 expression were analyzed in 167 rectal cancer patients and 10 normal controls based on the TCGA database. Finally, the prognostic value of ABI2 expression in 92 rectal cancer patients was determined by survival analysis.



TCGA Data Analysis

The data of miR-105, miR-302a, and miR-888 expression for 170 rectal cancer and three paired normal rectal specimens were downloaded from TCGA data portal (National Cancer Institute and National Human Genome Research Institute, accessed November 1, 2017). The data collection process was in compliance with all laws and regulations. Clinical characteristics are summarized in Table 2, except one case, which was excluded because of the nature of treatment being neoadjuvant. Then, clinical significance and prognostic value of three miRNAs for rectal cancer based on TCGA were also investigated.


Table 2. TCGA rectal cancer clinical characteristics.
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Statistical Analysis

Statistical differences in miRNA expression between cancer and distant normal samples were evaluated by the two-tailed non-parametric Wilcoxon test by GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, CA, USA). The relationships of miRNA levels with clinicopathological parameters or biological variables were evaluated by using the Mann-Whitney U-test for two groups and the Kruskal–Wallis test for more than two groups. Survival curves were generated according to the Kaplan–Meier method and compared by the log-rank test. Multivariate analyses were performed with the Cox proportional hazards model. P < 0.05 was considered significant. These calculations were performed with Statistica version 10.0 (StatSoft Inc.).




RESULTS


The Expression of miR-302a, miR-105, and miR-888

The expression of miR-302a, miR-105, and miR-888 was examined in 80 primary rectal cancers and 56 normal rectal samples normalized to RNU6b. Expression of each miRNA in cancers with normal samples was compared in non-RT group and RT group. As shown in Figure 1, the expression of miR-105 was significantly increased in cancers compared with normal samples in non-RT cases (median, 0.041 vs. 0.027, P = 0.042). A similar phenomenon was observed in RT cases; i.e., miR-105 expression was significantly increased in cancers compared with normal samples (median, 0.116 vs. 0.012, P = 0.003). There were no differences in the expressions of miR-302a and miR-888 between cancers and normal samples regardless of RT.


[image: Figure 1]
FIGURE 1. miRNA expression was examined with qRT-PCR. The expression levels of miR-105 (A–C), miR-302a (D–F), and miR-888 (G–I) in rectal cancers as compared with the normal mucosa in patients without and with RT were represented in the box–whisker plots on a log2 scale.


We then compared each miRNA expression of cancers between non-RT and RT group. Compared with the non-RT cases, the expression of miR-105 in RT cases was significantly decreased in cancers (median, 0.334 vs. 0.010, P < 0.001) when the normalization of the expression of miR-105 of normal samples was 1. However, compared with the non-RT cases, the expression of miR-302a and miR-888 in RT cases were significantly decreased in cancers (median, 0.169 vs. 0.001, P < 0.001; median, 0.270 vs. 0.002, P < 0.001; Figure 1).



miRNA Expression in Relation to Clinicopathological and Biological Features

In non-RT cases, the high expression of miR-105 was significantly more common in mucinous cancers than non-mucinous histological type (P = 0.004, Table 3). The high expression of miR-105 was markedly associated with strong COX-2 and positive p73 expression (P = 0.030, Table 4). Likewise, miR-302a expression was more frequent in the cancers with necrosis (P = 0.033, Table 3) and strong WRAP53 expression (P = 0.015, Table 4). The cancer patients with the high expression of miR-888 were older than those with low miR-888 expression (P = 0.038, Table 3). The high expression of miR-888 also occurred more frequently in the cancers with strong survivin expression (P = 0.015) and the weak expression of AEG-1 (P = 0.003) and SATB1 (P = 0.036, Table 4). The TargetScan miRNA target prediction algorithm identified little overlap between the targets identified with the database and our experimental results except two targets (AEG-1 and SATB1) for miRNA-888 (Supplementary Materials). There were no significant associations between the expressions of miR-302a, miR-105, miR-888, and gender or TNM stage.


Table 3. Correlation between miR-105, miR-302a, and miR-888 expression and clinicopathological features in rectal patients without and with radiotherapy (RT).
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Table 4. Correlation between miR-105, miR-302a, and miR-888 expression and biological factors in rectal patients without and with radiotherapy (RT).
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miRNA Expression in Relation to the Patients With RT

In RT cases, the high expression of miR-105 was related to negative PRL-3 (P = 0.013), TEM1, P = 0.003), and strong PPAR-δ expression (P = 0.043). The high expression of miR-302a was associated with positive p130 (P = 0.002). The high expression of miR-888 was related to increased apoptosis (P = 0.029) and decreased TEM1 expression (P = 0.025, Table 4). No significant association was present between the expressions of miR-302a, miR-105, or miR-888 and clinicopathological features (P > 0.05, Table 3).



miRNA Expression in Relation to Survival of the Patients

RT has not shown any effect in conferring survival benefit for stage IV patients due to distant metastasis; thus, those patients are excluded from prognostic analysis In non-RT patients, univariate analysis showed that the high expression of miR-888 was correlated with worse overall survival (OS, P = 0.001), disease-free survival (DFS, P = 0.009), and local recurrence (P = 0.015) and had a trend relationship to distant recurrence (P = 0.054, Figure 2). Further, a multivariate analysis revealed the prognostic significance of OS and DFS remained, independent of gender, age, TNM stage, and differentiation [OS: hazard ratio (HR), 4.881; P = 0.015; 95% confidence interval (CI), 1.369–17.406; DFS: HR, 2.627; P = 0.039; 95% CI, 1.052–6.560; Table 5]. There were no significant relationships between the expressions of miR-105 or miR-302a and survival regardless of RT (P > 0.05).


[image: Figure 2]
FIGURE 2. Relationships of the miR-888 expression in the primary rectal cancers with the patients' overall survival (A) and disease-free survival (B), tumor location (C), and distant recurrence (D) of non-RT patients.



Table 5. Multivariate analysis of miR-888 expression with overall survival and disease-free survival in rectal cancer patients without radiotherapy (RT).
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Biological Functional Analysis of miR-302a, miR-105, and miR-888

miRNet was used for network creation and analysis. The miRNA–gene network for these three miRNAs was shown, in which several genes had relationships with more than one miRNA (Figure 3A). GO annotation showed that protein serine/threonine kinase activity was the most significantly enriched functions for these miRNA-related genes (Figure 3B). PI3K-AKT signaling pathway showed high correlation with these miRNA-related genes from KEGG pathway analysis (Figure 3C).


[image: Figure 3]
FIGURE 3. Biological functional analysis of miR-302a, miR-105, and miR-888. The relationships of miR888, miR105, and miR302a were analyzed with the miRNA–gene interaction network. ABI2 revealed as the key interaction molecule for these three miRNAs (A). Protein serine/threonine kinase activity was the most significantly enriched function for these miRNAs-related genes from GO annotation (B). PI3K-Akt signaling pathway showed high correlation with these miRNAs-related genes from KEGG (C).


Moreover, the expression of ABI2, which was associated with all the three miRNAs, was compared between rectal cancers (n = 92) and normal controls (n = 318) based on the GEPIA database. ABI2 expression in cancers was significantly lower than that in normal controls (Figure 4A). Further, the diagnostic values of ABI2 expression were analyzed in 167 rectal cancer patients and 10 normal controls based on the TCGA database. Wilcoxon test showed that these two groups had a significant difference (P = 0.046), with an area under the curve (AUC) of 0.688 for diagnostic ROC curve (Figure 4B). Finally, the prognostic value of ABI2 expression was determined by survival analysis. The results showed that ABI2 expression was not associated with the DFS or OS in rectal cancer patients (Figure 5). Taken together, these results indicate the oncogenic feature of these three miRNAs in pathogenesis of rectal cancer based on ABI2 expression.


[image: Figure 4]
FIGURE 4. The different expression of the ABI2 in the rectal cancer (red box) and the normal controls (gray box) (A) and the diagnostic values (B) were represented.



[image: Figure 5]
FIGURE 5. Survival analysis showed that the ABI2 expression was not associated with disease-free survival (A) and overall survival (B) in rectal cancer patients.




Analysis of miR-302a, miR-105, and miR-888 Expression in TCGA Database

To validate the role of miR-302a, miR-105, and miR-888 expression in rectal cancer, we used the TCGA database and obtained the expression for a panel of rectal cancers (n = 159). The range of miR-105 in rectal cancer tissue was 0–1,442, mean value with standard deviation was 80.12 ± 249.29. Mean values with standard deviation of miR-302a and miR-888 in rectal cancers were 0.04 ± 0.22 (0–2) and 0.06 ± 0.30 (0–3), respectively. The expressions of the three miRNAs in rectal cancers were not different from those in normal rectal tissue (P > 0.05). Furthermore, the patients were also classified into a low expression group and a high expression group based on the median value (1) of miR-105 expression, along with the median value (0) of miR-302a and miR-888 expression.

Moreover, we investigated the expression of these miRNAs with clinicopathological features in 159 rectal cancers. Using the TCGA database, we did not see the significant association of miR-302a, miR-105, or miR-888 expression with clinicopathological features (P > 0.05, Table 6), which was almost in accordance with our results above. Nevertheless, we found that the expression of miR-105 was significantly higher in rectal cancers with high carcinoembryonic antigen (CEA) level (P = 0.048). Ultimately, we analyzed the association between these miRNAs expression in rectal cancer and prognosis based on the data retrieved by TCGA. There was no significant relationship between the expression of miR-302a, miR-105, or miR-888 and OS (P > 0.05).


Table 6. Correlation of clinicopathological characteristics and miR-302a, miR-105, and miR-888 expression in the rectal cancer patients based on TCGA.
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DISCUSSION

miRNAs are emerging as major regulatory factors in normal and tumor cell processes and have been demonstrated to be involved in oncogenesis, tumor progression, invasion, and metastasis (44). To identify potential miRNAs in relation to other biomarkers, RT response, and clinical outcome in rectal cancers, we examined the relative levels of miR-302a, miR-105, and miR-888 in cancer and normal samples from a cohort of 80 rectal cancer patients with a Swedish clinical trial of preoperative RT. In non-RT cases, the expression of miR-105 in rectal cancers was significantly higher than that in normal rectal samples. Moreover, the expression of miR-105 was significantly higher in rectal cancers with mucinous histological type, more frequently in cancers with strong COX-2 and p73 expression. Previous studies showed that the expressions of p73 and COX-2 were significantly increased in primary rectal cancers compared with normal mucosa samples, indicating that both of them are involved in rectal cancer development (32, 41). We found that the expression of miR-105 was significantly higher in rectal cancers with high CEA level based on the TCGA data. CEA is a complex glycoprotein produced by 90% of CRCs and modulates intercellular adhesion and functions as a promoter of cellular aggregation (45). A recent study demonstrated the modulatory role of miR-105 in tumor necrosis factor α-induced epithelial–mesenchymal transition and further CRC metastasis (10). These findings suggested an aggressive cancer phenotype of miR-105, which might be important for rectal cancer development and progression. We further examined the expression of miR-105 in patients undergoing RT and found that miR-105 expression was related to negative PRL-3 and TEM1 expression and positive PPAR-δ expression. Our previous studies showed that the weak expression of PRL-3 and strong expression of PPAR-δ predicted favorable survival in rectal cancer patients with preoperative RT (35, 38). Together with these findings, our results suggest the involvement of miR-105 in pathogenesis and imply its potential role in radiation response for rectal cancer patients.

In the present study, there was no difference of either miR-302a or miR-888 expression between rectal cancers and normal rectal samples without RT, which was consistent with the results based on the TCGA-retrieved data. In contrast, the previous study by Bobowicz et al. (20) revealed that miR-302a and miR-888 were overexpressed in malignant tissue as compared with normal mucosa. The objects of this study were restricted to T2−3N0 colon cancer patients; this might contribute to the variations seen in our results.

Moreover, our results showed that the expression of miR-888 was significantly higher in cancers with strong survivin and weak AEG-1 and SATB1 expression. In fact, miR-888 is upregulated in some urogenital malignant tumors and plays a potential role in cancer progression. Upregulated miR-888 expression was suggested to have an important function in development and progression of endometrial tumors (16, 17). Likewise, a recent study showed that the overexpression of miR-888 increased cellular proliferation and migration by targeting the tumor suppressor genes RBL1 and SMAD4, suggesting the oncogenic role of miR-888 in prostate cancer progression (13). The latest study validated RBL1, KLF5, SMAD4, and TIMP2 as the direct miR-888 targets in prostate cancer (14). MiR-888 upregulated in MCF-7 side population cells by targeting E-Cadherin expression, which indicates its potential role in metastasis of breast cancer (18). In HCC, miR-888 increased the expression of MMP-2 and MMP-9 proteins, which contribute to cell migration and invasion; miR-888 also decreased the expression of p53 protein, which further promoted malignancy (19). Indeed, the target prediction by TargetScan, a superior program with the best performance in comparison, also identified AEG-1 and SATB1 as putative targets for miR-888 in the present study. Our previous studies had identified the role of SATB1 and AEG-1 in the progression of rectal cancer, as well as the involvement of the nuclear factor κB signaling pathway for AEG-1 and potential interaction in response to radiation through different canonical pathways for SATB1 by Western blotting and qRT-PCR analysis (40, 42, 46). Thus, these findings are consistent with the results of our present study, which points to an oncogenic role for miR-888 in rectal cancer by modulating targets such as AEG-1 and SATB1. These results may suggest that blocking miR-888 could be an effective therapeutic approach in rectal cancer patients.

Importantly, the present study showed that the high expression of miR-888 was independently related to worse survival and had a potential relationship to recurrence in primary rectal cancer without RT. Moreover, high miR-888 expression was related to heavily increased apoptosis and less TEM1 expression in RT patients, and RT may reduce the expression of miR-888. Previous studies showed that TEM1 expression in tumor cells was positively related to PRL expression, whereas weak PRL-3 expression predicts favorable survival in rectal cancer patients with preoperative RT (35, 36). Therefore, these results suggest that miR-888 can serve as a potential biomarker for preoperative RT and clinical outcome in rectal cancer. The survival benefit from miR-888 expression was not observed in the TCGA database, which was probably attributed to the few samples of normal rectal mucosa in the TCGA database.

Although we could not find a difference of miR-302a expression between rectal cancers and normal rectal samples in non-RT patients, the expression of miR-302a was significantly higher in rectal cancers with necrosis and strong WRAP53 expression. However, when the predicted targets identified by TargetScan were compared with our experimental results, we found there was no overlap for miR-302a. Most likely being that the miRNA targets were tissue-specific. This result illustrated the well-documented difficulties of predicting targets for miRNA (47). Our previous study showed that tumor necrosis was related to advanced stage and worse survival in rectal cancer patients (48), and WRAP53 level was significantly increased in primary tumor compared to normal mucosa, which was associated with poor prognosis (39). In fact, the reduced expression of miR-302a has been frequently reported in several types of malignancies, such as breast cancer (21), HCC (22), prostate cancer (23), cervical cancer (24), and skin cancer (25, 26). However, miR-302a was found to be overexpressed in CRC (20, 28, 29). MiR-302a overexpression inhibits proliferation and invasion of CRC cells by reducing the expression of related proteins through suppression of MAPK and PI3K/AKT signaling pathways (28, 29). Taken together, these studies suggest the distinct role of miR-302a expression in the pathogenesis of CRC, and further studies are needed to determine its role in CRC.

The miRNA–gene network analysis showed that several genes had relationships with more than one miRNA. Biological functional analysis revealed the protein serine/threonine kinase activity and PI3K-AKT signaling pathway were the most significantly enriched function and pathway, respectively. Furthermore, the expression of ABI2, a target related with all three miRNAs, was significantly lower in rectal cancer tissues than that in normal controls, with an AUC of 0.688 for diagnostic ROC curve. As we know, ABI-2, a member of the ABI family of adaptor proteins, has been proven to be involved in signaling pathways involving tyrosine kinase and Rac GTPase. A previous study showed that ABI2 functions as a tumor suppressor and a cell migration inhibitor (49). Thus, these results indicate the oncogenic feature of the three miRNAs in pathogenesis of rectal cancer based on the data of ABI2 expression.

In RT patients, the high expression of miR-302a was related to positive p130, and RT might decrease the expression of miR-302a. A recent study showed that miR-302a sensitized breast cancer cells against RT. In addition, the expression of miR-302a was inversely correlated with those of AKT1 and RAD52, the two critical regulators of radioresistance (30). Together with these findings, our study provides new evidence on RT response in rectal cancers and suggests that miR-302a may be a potential sensitizer for RT therapy in rectal cancers.

Biological functional analysis in the current study showed that protein serine/threonine kinase activity was the most significantly enriched function for these miRNA-related genes. The serine–threonine kinases are an important family of proteins that modulate the phosphorylation of many key effectors of the apoptotic process, which includes key mediators of carcinogenesis such as RAF, AKT/protein kinase B, and MEK. The enriched functions of protein kinases for these miRNAs suggested their key roles in CRC carcinogenesis. Likewise, PI3K/AKT signaling pathway showed high correlation with these miRNA-related genes from KEGG. It is well-known that the PI3K/AKT signaling pathway plays a vital role in cell survival. Aberrant activation of this signaling cascade is associated with CRC development and progression (50). In addition, the prosurvival function of PI3K/AKT signaling is expected to positively contribute to the radioresistance of cancer cells. The inhibition of PI3K/AKT signaling leads to an enhancement of radiosensitivity of cancer cells both in vitro and in vivo. Furthermore, the increase in radiosensitivity by PI3K/AKT inhibition involves both the diminution of DNA repair and an enhancement of apoptosis induction. Therefore, regulatory oncogenic or tumor suppressor miRNAs for PI3K/AKT signaling regulate cellular proliferation, migration, invasion, angiogenesis, and resistance to chemotherapy/RT in CRC (51).

In the future, we will work on the limitations of our present study. We have planned to collect more rectal cancer patients with the RT to confirm the present results and further to examine these miRNA effects on rectal cancer patients with different RT strategies, such as varying doses and fractions. Besides, the deeper biological investigation is needed to identify the functional roles and signaling pathways of these miRNAs.

This study showed that expression of miR-105 was upregulated in the rectal cancers as compared with the normal samples regardless of RT, and the high expression of miR-105 and miR-888 was associated with aggressive clinicopathological features. TargetScan predicted AEG-1 and SATB1 as putative targets for the miR-888. The TCGA database demonstrated that expression of the miR-105 was associated with high level of CEA. Moreover, RT decreased the expressions of the miR-105, miR-302a, and miR-888. More importantly, the increased expression of miR-888 was independently related to the worse prognosis in the rectal cancer patients without RT. Our findings suggested that the miR-105 was involved in pathogenesis and miR-888 in prognosis. The expression of miR-302a, miR-105, and miR-888 played potential roles in RT response for rectal cancer patients.



CLINICAL PERSPECTIVES

• The overexpression of miR-105 in the rectal cancers as compared with the normal rectal tissue may provide further evidence to confirm the diagnosis for rectal cancer.

• The overexpression of miR-105 and miR-888 may be indicators for aggressive clinicopathological features of rectal cancers.

• The decreased expression of miR-302a, miR-105, and miR-888 may play potential roles in RT response for rectal cancer patients.

• The overexpression of miR-888 was associated with worse outcome in rectal cancer patients.
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Purpose

The exploration and interpretation of DNA methylation-driven genes might contribute to molecular classification, prognostic prediction and therapeutic choice. In this study, we built a prognostic risk model via integrating analysis of the transcriptome and methylation profile for patients with gastric cancer (GC).



Methods

The mRNA expression profiles, DNA methylation profiles and corresponding clinicopathological information of 415 GC patients were downloaded from The Cancer Genome Atlas (TCGA). Differential expression and correlation analysis were performed to identify DNA methylation-driven genes. The candidate genes were selected by univariate Cox regression analyses followed by the least absolute shrinkage and selection operator (LASSO) regression. A prognostic risk nomogram model was then built together with clinicopathological parameters.



Results

5 DNA methylation-driven genes (CXCL3, F5, GNAI1, GAMT and GHR) were identified by integrated analyses and selected to construct the prognostic risk model with clinicopathological parameters. High expression and low DNA hypermethylation of F5, GNAI1, GAMT and GHR, as well as low expression and high DNA hypomethylation of CXCL3 were significantly associated with poor prognosis rates, respectively. The high-risk group showed a significantly shorter prognosis than the low-risk group in the TCGA dataset (HR = 0.212, 95% CI = 0.139–0.322, P = 2e-15). The final nomogram model showed high predictive efficiency and consistency in the training and validation group.



Conclusion

We construct and validate a prognostic nomogram model for GC based on five DNA methylation-driven genes with high performance and stability. This nomogram model might be a powerful tool for prognosis evaluation in the clinic and also provided novel insights into the epigenetics in GC.
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Introduction

Gastric cancer (GC) is the third leading cause of cancer-related death and the fifth most common cancer worldwide (1). In the past decades, despite important progress in comprehension of pathology and molecular features, and in development of therapeutic target such as HER2, many patients were diagnosed with inoperable GC with unfavorable overall survival (2). In the era of precision medicine, omics analysis based on DNA, RNA and protein of GC tissues have revealed molecular classifications associated with diagnosis and prognosis (3–5). However, the application of such biomarkers or classifications on daily practice remains challenging to date (6). Hence, diagnostic and prognostic models based on molecular signature and clinical features of patients with GC have important practical value.

The epigenetic modification of nucleic acids, including DNA methylation, histone acetylation, microRNAs, and noncoding RNA, plays an important role in genome stability and gene regulation (7). Various cancers were characterized with the aberrant DNA methylation, such as hypomethylation of oncogene and hypermethylation of suppressor gene, which was involved in tumorigenesis, heterogeneity and therapeutic resistance (8). Therefore, the exploration and interpretation of DNA methylation-driven genes might contribute to molecular classification, prognostic prediction, and therapeutic choice. The prognostic value of MGMT promoter methylation in patients with high-risk glioma treated with radiotherapy and temozolomide highlighted the application feasibility of DNA methylation in clinical implementation (9). In patients with GC, previous studies have revealed that DNA methylation could serve as molecular biomarkers in helicobacter pylori infection, cancer occurrence, and prognosis (10). Meanwhile, with the rapid development of high-throughput sequencing, genome-wide profiling provides us more individualized and systematic evaluation of DNA methylation in cancer (11, 12). However, the molecular mechanisms underlying gene-expression regulated by DNA methylation is unclear, and the diagnostic and prognostic value of these DNA methylation-driven gene remains to be future explored.

Previous studies have reported several prognostic implications in GC, such as the DNA methylation status of nuclear element-1, and the expression of CLIP4 methylation-associated genes (13, 14). However, due to the lack of simultaneously transcriptomic and DNA methylation profiles analysis, as well as an easy-to-use and quantitative evaluation criterion, these findings are still far from clinical application. In the present study, we constructed a prognostic model for patients with GC via integrating analysis of the transcriptome and methylation profile, combined with clinicopathological characteristics. Our findings will contribute to improve the prognosis assessment of GC.



Materials and Methods


Patients and Samples

A total of 450 RNA-sequencing profiles (415 GC samples and 35 adjacent samples), 397 DNA methylation-sequencing profiles and corresponding clinicopathological information of 415 patients with GC were downloaded from The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/, up to April 20, 2020). Among 415 GC patients, 397 patients had both mRNA expression (Illumina RNA Sequencing platform) and DNA methylation data (Illumina Infinium Human Methylation 450 platform). Patients with overall survival (OS) less than 30 days were removed and resulted with 373 patients. In total, 346 patients had matched transcriptomic data, DNA methylation data and clinical outcomes (OS ≥ 30 days). To validate the relevance between expression of DNA methylation-driven genes and overall survival of patients, we downloaded gene expression profiles of GSE14210 (n = 145), GSE15459 (n = 200), GSE22377 (n = 43), GSE29272 (n = 268), GSE51105 (n = 94) and GSE62254 (n = 300) microarray dataset and corresponding clinical characteristics from the Gene Expression Omnibus (GEO) database.



Differential Expression Analysis and Survival Analysis of Patients With GC

To identify differentially expressed genes (DEgenes) in GC, differential expression analysis was performed in 415 tumor samples and 35 normal samples from TCGA using t-test followed by p value adjustment with “Benjamini-Hochberg” method. DEgenes were defined as the adjusted p value (p-adjust) < 0.05 and |log2 fold change (FC) |> 1. Next, survival analysis by univariate Cox regression was performed to uncover the survival-associated genes (Survgenes) in GC patients. The best cutoff value for each gene was determined by survminer package and the significant Survigenes were defined as p value < 0.001.



The Identification of DNA Methylation-Driven Gene

The aberrant expression of these DNA methylation-driven genes may be driven factors in the initiation and progression of tumors (15). Briefly, the mean DNA methylation Beta value for all CpG sites in the promoters of certain gene was calculated as the DNA methylation value for the gene. Gene expression and DNA methylation data were automatically matched to identify transcriptionally predictive DNA methylation events. Correlation analysis between gene expression and DNA methylation level were performed in 397 GC samples (16). Methylation-associated genes (Methygenes) were defined as |Coef| > 0.5 and p value < 0.001.

Candidate genes were selected by Venn diagram, only genes meeting the criteria of significance in the differential expression, survival and methylation correlation analyses were chosen for downstream analysis. In order to narrow down the DNA methylation-driven genes significantly associated with prognosis, we utilized the least absolute shrinkage and selection operator (LASSO) analysis, which is a regression analysis method considering both regularization and variable selection (17). After the identification of 5 DNA methylation-driven genes, we performed external validation of the outcome differences between high expression and low expression patients through Kaplan-Meier survival plots (http://kmplot.com/).



Establishment of the Risk Score Prediction Model

A risk score prediction model was constructed based on the expression levels of the DNA methylation-driven genes filtered by LASSO, which was weighted by coefficients of multivariate Cox regression. The risk score that output the largest χ² value in the Mantel-Cox test was defined as the optimal cutoff value, which stratified GC patients into high-risk and low-risk groups. The exact risk score was calculated according to the following formula. Risk score = β gene1 × expression gene1 + β gene2 × expression gene2 + β gene3 × expression gene3 + β gene4 × expression gene4 + β gene5 × expression gene5 + β gene1 × methylation gene1 + β gene2 × methylation gene2 + β gene3 × methylation gene3 + β gene4 × methylation gene4 + β gene5 × methylation gene5. We next evaluated outcome differences between high-risk and low-risk patients through Kaplan-Meier survival plots, and evaluated time-dependent receiver operating characteristic (ROC) curves to examine the predictive efficacy of the DNA methylation-driven gene risk model.



The Design and Validation of the Nomogram

To test the predictive efficacy of the risk score model alone and in combination with other clinicopathological characteristics (including the age, sex, histologic grade, TNM stage and family history) of patients with GC, we performed survival analysis with the clinicopathological parameters. A prognostic nomogram consist of the five methylation-driven genes and available clinicopathological parameters was generated via the rms R package (18). Validation of the nomogram contained calibration and discrimination. The calibration was measured by the distance between the predicted probabilities and the 45-degree line, which represented the best prediction. The discrimination, namely the predictive accuracy of a nomogram, was assessed by a concordance index (c-index), which quantified the concordance level between predicted and actual probabilities.




Results


The Clinicopathological Characteristics of Enrolled GC Patients

The workflow of this study is presented in Figure 1A. In the TCGA dataset, a total of 415 GC patients enrolled with a median age of 67 years (range: 30 to 90 years). In general, 268 patients (65%) were male and 147 (35%) were female. There were 57 stage I (14%), 123 stage II (30%), 171 stage III (41%), 41 stage IV (10%) cases and 23 unknowns (5%). As to the Lauren classification, 176 patients (42%) and 72 patients (17%) were diagnosed with intestinal GC and diffuse GC, respectively. 373 patients had overall survival time more than 30 days with a median of 467 days (range: 31 to 3720 days). The detailed clinicopathological characteristics of 415 patients were shown in Table 1 and Table S1.




Figure 1 | The identification of DNA methylation-driven genes in GC. (A) The work-flow in this study. (B) The Venn diagram of the DEgenes, Surgenes and Methygenes in 415 GC patients, of which 39 DNA methylation-driven genes are identified to be associated with overall survival of patients with GC. DEgenes, differentially expressed genes; Surgenes, survival-associated genes; Methygenes, methylation-associated genes. (C) 1000 iterations of Cox LASSO regression with 10-fold cross-validation is conducted to reduce the number of DNA methylation-driven genes. (D) A total of 5 DNA methylation-driven genes with nonzero coefficients are selected as candidate predictors.




Table 1 | The clinicopathological characteristics of patients (N = 415).





Screening of DNA Methylation-Driven Genes in GC

To screen the driver genes in GC to achieve high prediction efficiency of the prognostic model, differential expression analysis, survival analysis and methylation correlation analysis were performed in the GC patients from TCGA cohort. Firstly, differential expression analysis was performed in mRNA expression data in GC samples (n = 415) and normal samples (n = 35) from TCGA. DEgenes were defined as the adjusted p value (p-adjust) < 0.05 and |log2 fold change (FC) | > 1. As results, 3038 DEgenes, including 2351 upregulated genes and 687 downregulated genes, were identified and used in further analysis (Figure 1B and Table S2). Secondly, survival analysis by univariate COX regression were performed in 373 GC patients with OS longer than 30 days. 1341 Surgenes were filtered with the criteria of p < 0.001 (Figure 1B and Table S3). Thirdly, correlation analysis between the expression level and the methylation value was performed in 397 GC patients and 1649 Methygenes were identified with |Coef|>0.5 and p <0.001 in GC patients (Figure 1B and Table S4). To screen out the candidate genes, Venn diagram demonstrated that 39 genes were significant in the differential expression, survival and correlation analysis (Figure 1B and Table S5). To further narrow down the candidate genes, we performed LASSO regression to eliminate numbers of variables which contributed less to the model (Figure 1C). The ability of these genes to predict prognosis was represented by the absolute value of their nonzero coefficients. Finally, a total of 5 DNA methylation-driven genes with nonzero coefficients were selected as candidate predictors (Figure 1D).

The 5 DNA methylation-driven genes were C-X-C motif chemokine ligand 3 (CXCL3), coagulation factor V (F5), G protein subunit alpha I1 (GNAI1), Guanidinoacetate N-Methyltransferase (GAMT) and growth hormone receptor (GHR) and were selected to build the prognostic model. Correlation analyses of mRNA expression level and methylation level at representative CpG site and mean level of all CpG sites (CpGs) of the 5 genes were presented in Figure 2, the expression of CXCL3, F5, GNAI1, GAMT and GHR were all negatively correlated with the DNA methylation levels and were all statistically significant (Figure 2 and Table S6).




Figure 2 | Regression analysis between gene expression and DNA methylation of five candidate predictors in TCGA dataset. Regression analysis between gene expression and DNA methylation (including methylation of CpGs in the promoter and mean methylation) of CXCL3 (A), F5 (B), GNAI1 (C), GAMT (D) and GHR (E). The horizontal and vertical axis represents methylation and mRNA expression of the DNA methylation-driven gene, respectively. TPM, transcripts per million.





Prognostic Value of DNA Methylation-Driven Genes

We performed survival analyses based on different mRNA expression and DNA methylation levels of CXCL3, F5, GNAI1, GAMT and GHR in the dataset from TCGA. High expression and low DNA hypermethylation of F5, GNAI1, GAMT and GHR, as well as low expression and high DNA hypomethylation of CXCL3 were significantly associated with worse prognosis (Figures 3A, B), which demonstrating a negative regulatory relationship between DNA methylation and gene expression, suggesting the DNA methylation might be driven factor in these aberrantly expressed genes in GC. In addition, we observed the similar difference of outcomes between high expression and low expression patients in 6 microarray datasets, which validated the prognostic value of these DNA methylation-driven genes in GC (Figure 3C).




Figure 3 | Survival analysis for five candidate predictors. (A) Survival analysis based on gene expression level for CXCL3, F5, GNAI1, GAMT and GHR in 373 patients with GC. (B) Survival analysis based on DNA methylation level for CXCL3, F5, GNAI1, GAMT and GHR in 346 patients with GC. The horizontal axis and vertical axis denote the survival time and the survival probability, respectively. (C) Survival analysis based on gene expression level for CXCL3, F5, GNAI1, GAMT and GHR in GSE14210, GSE15459, GSE22377, GSE29272, GSE51105 and GSE62254 microarray dataset.





Generation of the Risk Score and Prognostic Risk Model of Nomogram

We performed the multi-Cox proportional hazards regression analysis to calculate the risk score by the predictive function within R. Here, the cutoff value for the risk score was 0, which risk score < 0 represented low risk whereas risk score ≥ 0 represented high risk. GC patients were divided into high-risk and low-risk group according to the optimum cutoff. Next, we integrated the above prognostic risk model and available clinicopathological characteristics (age, gender and TNM stage) to build a quantitative nomogram for predicting the individualized probability of survival times in clinical practice (Figure 4A). The C-index for the nomogram was 0.674 (95% CI: 0.637–0.711), which showed a high predictive accuracy. The calibration curves of the nomogram between the predicted 1-, 3-, and 5-year OS probabilities and the best prediction (represented by the 45-degree line) showed good consistency (Figure 4B).




Figure 4 | Generation of the nomogram composed of prognostic risk model and clinicopathological characteristics. (A) A quantitative nomogram is integrated using the risk score and available clinical characteristics for predicting the probability of 1-, 3-, and 5-year survival times for patients with GC. (B) The calibration plot of the nomogram between the predicted probabilities of survival and the 45-degree line at 1, 2, 3, and 5 years. The 45-degree line represents the best prediction.



Specifically, compared with patients with high-risk, low-risk patient showed significantly better OS (HR = 0.325, 95% CI = 0.218–0.484, p < 0.001) (Figure 5A). Combined with clinicopathological parameters, further validation of the prognostic efficacy for the nomogram showed that patients with high scores in both risk model and clinical features had a remarkedly worse OS (HR = 0.212, 95% CI = 0.139–0.322, p < 0.001) than that of low scores group (Figure 5B). In addition, ROC analysis showed that the time-dependent area under the curves (AUCs) for 0.5, 1, 2, 3, and 5-year OS rates for GC patients were 0.687, 0.681, 0.744, 0.744 and 0.789, respectively (Figure 5C). Specifically, the AUCs of the nomogram at 1 year, 3 year and 5 year were 0.715, 0.751 and 0.787, respectively. whereas the AUCs of risk score (0.681 at 1 year, 0.733 at 3 year and 0.789 at 5 year) were no less than that of risk score in combination with clinical features. Although the prognostic risk score itself had compatible predict efficiency similar to the nomogram in GC, the nomogram had a better clinical application prospect (Figure 5C).




Figure 5 | Validation of the prognostic risk model and nomogram. (A) Survival analysis in GC patients with high-risk and low-risk. HR = 0.325, 95% CI = 0.218–0.484, P < 0.001. (B) Survival analysis in GC patients with different level in risk score combined with clinical features. HR = 0.212, 95% CI = 0.139–0.322, P < 0.001. (C) The time-dependent area under the curves (AUCs) for 0.5, 1, 2, 3, and 5-year OS rates for GC patients, respectively.





Validation of the Prognostic Nomogram

Three hundred forty-six GC patients with matching clinical information and OS more than 30 days were randomly stratified into a training dataset (N = 208) and a validation dataset (N = 138) by 6:4 ratio. Patients were classified into low-risk and high-risk groups utilizing the same cutoff value as previous analysis. Survival analysis revealed that patients with high scores in risk model or in nomogram had a significantly shorter OS than these in low score group (Figures 6A, B). In addition, we also evaluated predictive ability of the associated clinical features (age, gender and TNM stage) in 346 patients, of which only the TNM stage was a significant prognostic predictor (Figure 6C), suggesting that the prognostic model of nomogram was much more powerful than clinicopathological parameters.




Figure 6 | External validation of the risk model and nomogram. (A) Survival analysis of patients with different risk level in training dataset (N = 208). (B) Survival analysis of patients with different risk level in validation dataset (N = 138). (C) The predictive ability of the associated clinical features (age, gender and TNM stage) in 346 patients.






Discussion

GC is the leading cause for cancer disability-adjusted life-years and accounts for 10% of the total worldwide (19). In recent years, despite important advances in early diagnosis and treatment options, and a slight decline in incidence and mortality, the burden of GC remains high (2). GC is a multistep disease and characterized by high heterogeneity, which involves numerous genetic and epigenetic variations. Previous research revealed that aberrant DNA methylation of tumor-associated genes might contribute to early detection of carcinogenesis and prediction of clinical outcome (10, 13, 20). Hence, the exploration and validation of DNA methylation-driven genes is necessary for early diagnosis and prognosis. In the present study, we integrated the paired transcriptomic and DNA methylation profiles to screen genes driven by methylation, and construct a prognostic nomogram for GC patients.

Hu CG et al. reported a risk assessment model based on expression of three CLIP4 DNA methylation-associated genes in 393 GC samples from TCGA database (14). CLIP4 was reported to regulate the expression of several genes associated with tumor invasiveness and metastasis, and the promoter methylation of CLIP4 might be involved in the pathogenesis of GC. They identified 35 differently expressed genes between CLIP4 hyper-methylation and hypo-methylation groups, of which CLDN11, APOD and CHRDL1 were significantly associated with survival in GC patients (14). They further established a risk assessment model based on expression of CLDN11, APOD and CHRDL1 for GC patients. The Univariate Cox regression analysis showed that targeted molecular therapy (HR = 0.6886, p = 0.0300), radiotherapy (HR = 0.4544, p = 0.0013) and risk value (HR = 0.4635, p = 0.0089) were significantly associated with overall survival time. However, whether other methylation-associated genes are involved in the initiation and progression of GC remains to be further explored. Recently, Long JY et al. integrated methylation and paired gene expression profiles of DEGs to identify DNA methylation-driven genes in 371 samples via MethylMix and LASSO analysis, and further built a risk score predictive model for patients with hepatocellular carcinoma based on expression of two DNA methylation-driven genes, which provided us novel insight (12).

In this study, we identified 3,038 DEgenes, 1,649 Methygenes, and 1,341 Survgenes via high throughput profiles and clinicopathological information of 415 GC patients from TCGA. Among these genes, a total of 39 genes were selected as candidate genes. Subsequently, we conducted univariate Cox regression analyses and LASSO regression of these 39 candidate genes. As a penalized regression method that uses an L1 penalty to shrink regression coefficients toward zero, LASSO analysis contributes to eliminate the number of variables and enhance the prediction accuracy (17). During 1000 iterations of Cox LASSO regression, the higher the nonzero coefficients of a gene presents, the stronger is the ability to predict prognosis. As a result, we identified five predictors (CXCL3, F5, GNAI1, GAMT and GHR), whose aberrant expression might be driven by DNA methylation. The prognostic efficacy showed that patients with high scores in risk score (HR = 0.325, 95% CI = 0.218–0.484, p < 0.001) and in nomogram ((HR = 0.212, 95% CI = 0.139–0.322, p < 0.001)) had worse OS than that of low scores group. Compared with the risk model based on expression of CLIP4 DNA methylation-associated genes, our nomogram has a better performance in prognostic efficacy.

We observed a negative regulatory relationship between DNA methylation and mRNA expression of these predictors. Among them, low expression and high DNA hypomethylation of CXCL3 were significantly associated with poor prognosis. CXCL3 is a family member of CXC chemokine ligand (CXCL). Previous research revealed that CXCL7 and CXCL1 were associated with the malignant progression of GC via CXCR2 signaling (21). Besides, a recent study identified CXCL3 and CXCL8 as diagnostic and prognostic genes in colon adenocarcinoma via integrating mRNA expression and DNA methylation profiles (22). The biological functions of CXCL3 in the initiation and progression of GC remains to be further validated.

In this study, F5, GNAI1, GAMT and GHR were poor prognostic factors in this study. F5 was a procofactor in the blood coagulation cascade, it functioned as a cofactor which activated coagulation factor X to convert prothrombin to thrombin (23). Previous research revealed that the high expression of F5 was associated with improved overall survival in triple-negative breast cancer (24). Recently, the high expression of F5 was reported to be significantly associated with a shorter OS in GC patients, which was consistent with our results (25). GHR was a member of the class I cytokine receptor family which played key roles in cancer progression. GHR was recently reported to mediate cell progression and apoptosis via the BRAF/MEK/ERK signaling pathway in breast cancer (26). According to the literature, GHR was elevated in GC serum samples and high expression of GHR mRNA was associated with a poor outcome in GC patients (27, 28), which suggested that GHR may serve as novel biomarkers for the early diagnosis and prognosis determination of GC.

GNAI1 belonged to the Gαi family, which primarily functioned as inhibitors of adenylyl cyclase. GNAI1 was reported to confer hydrogen peroxide-induced apoptosis in human lung cancer cells and be associated with the prognosis of thyroid cancer patients (29, 30). However, the biological functions of GNAI1 in GC remained unclear. GAMT was a new p53 target which connects p53 to creatine metabolism in the regulation of ATP homeostasis. GAMT was involved in p53-mediated genotoxic and metabolic stress-induced apoptosis (31). Previous research reported that GAMT expression was associated with the prognosis of GC patients received chemotherapy (32). In the present study, high expression and low DNA hypermethylation of GAMT was significantly associated with poor prognosis rates.

Nomograms have been widely used for cancer prognosis, resulted from their ability to transfer statistical predictive models into numerical estimate of the probability of death or recurrence. In this study, we constructed a prognostic nomogram based on expression of five DNA methylation-driven genes and clinicopathological parameters. Survival analysis showed that patients with high scores in nomogram had a significantly shorter OS than these in low score group, both in the training cohort and the validation cohort. Although the risk score itself had compatible predict efficiency similar to the nomogram in GC, the nomogram had a better clinical application prospect.

However, several limitations exist in this study. First of all, we focus on the integration of bioinformatics dataset to construct a prognostic risk model, which remains experimental validation in the future. Secondly, due to the limited size of samples with paired gene expression and DNA methylation data, we failed to validate the relationship between mRNA and methylation level in other databases of GC. At last, the nomogram was generated without clinical characteristics such as differentiation degree, Lauren classification, status of microsatellite instability (MSI) and tumor mutation burden (TMB), due to the incomplete information of GC patient in TCGA dataset.
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Background

We assessed the association between microsatellite instability-high (MSI-H) and tumor response to neoadjuvant chemotherapy (NAC) as well as its prognostic relevance in patients with clinical stage III gastric cancer (cStage III GC).



Materials and Methods

The NAC + surgery and the control cohorts consisted of 177 and 513 cStage III GC patients, respectively. The clinical and pathological features were compared between patients with MSI-H [n=57 (8.3%)] and microsatellite stability or microsatellite instability-low (MSS/MSI-L) [n=633 (91.7%)]. Radiological and histological response to NAC were evaluated based on response evaluation criteria in solid tumors (RECIST) and tumor regression grade (TRG) systems, respectively. The log-rank test and Cox analysis were used to determine the survival associated with MSI status as well as tumor regression between the two groups in both NAC + surgery and the control cohorts.



Results

A statistically significant association was found between MSI-H and poor histological response to NAC (p=0.038). Significant survival priority of responders over poor-responders could only be observed in MSS/MSI-L but not in MSI-H tumors. However, patients with MSI-H had statistically significantly better survival compared to patients with MSS/MSI-L in both the NAC + surgery (hazard ratio=0.125, 95% CI, 0.017–0.897, p=0.037 ) and the control cohort (hazard ratio=0.479, 95% CI, 0.268–0.856, p=0.013).



Conclusion

MSI-H was associated with poorer regression and better survival after NAC for cStage III GC. TRG evaluation had prognostic significance in MSS/MSI-L but not in MSI-H. Further studies are needed to assess the value of NAC for cStage III GC patients with MSI-H phenotype.
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Introduction

Gastric cancer (GC) is the third most common cause of cancer-related death worldwide (1). While radical gastrectomy with lymphadenectomy remains the cornerstone of curative treatment of GC, prognosis is still poor with a high recurrence rate, especially for patients with locally advanced and/or lymph node (LN) positive cancer, leading to recommendations for routine perioperative or neoadjuvant chemotherapy (NAC) for resectable stage II or III GCs (2–4). However, the selection of patients who might most benefit from NAC is based purely on radiologic staging. Few biomarkers of GC have been identified to predict the response to NAC.

There is increasing interest in the potential value of molecular subtypes and particularly, microsatellite instability-high (MSI-H) as a prognostic marker (5–7). Conflicting results have been reported with regard to the prognostic significance of MSI status for GC patients treated with NAC (8–11). The review by Ratti et al. suggested that outcome was worse after perioperative chemotherapy, related to a detrimental role of cytotoxic drugs in MSI-H subgroup (12). However, the heterogeneity of clinical stages (II and/or III) included in the studies makes it difficult to interpret the data. Moreover, few studies have assessed the impact of MSI phenotype on tumor response to NAC (i.e. histopathological regression of GC after NAC) (13).

According to the Chinese Society of Clinical Oncology (CSCO) guideline, NAC is recommended for cT3-4aN+M0 GC or cT4aNanyM0 adenocarcinoma of the esophago-gastric junction (AEG) (i.e. clinical stage III patients) (14). Our aim was to investigate the association between MSI-H and tumor response to NAC as well as its prognostic relevance in patients with clinical stage (cStage) III GC treated by NAC and curative gastrectomy.



Material and Methods

Clinical and pathological data were retrospectively collected from our prospective institutional database. All procedures followed were in accordance with the ethical standards of our institutional ethics committee and with the Helsinki Declaration of 1964.


Patients

All patients treated by NAC and then curative gastrectomy for cStage III GC or AEG (adenocarcinoma, mucinous adenocarcinoma, and signet ring cell carcinoma) at Ruijin Hospital between February 2016 and June 2018 were eligible for this study. The control group consisted of patients treated by curative surgery ± adjuvant chemotherapy but without NAC, for cStage III GCs or AEGs during the same period in our institution. Patients with squamous cell carcinoma, lymphoma, gastrointestinal stromal tumor, neuroendocrine tumor, GC related to other malignancies, AEG type I [according to Siewert et al. (15)], those treated with palliative resection or emergency procedures, or patients with incomplete postoperative pathological evaluation records were not included.



Initial Diagnosis and Neoadjuvant Chemotherapy Protocol 

Esophagus-gastro-duodenoscopy with biopsy and thoracic-abdominal-pelvic computed tomography (TAP-CT) were routinely performed to obtain histological diagnosis and determine tumor staging, respectively. In line with the CSCO guideline (14), three to four cycles of platinum/5-fluorouracil based doublet or triplet NAC regimens were administered to patients with cStage III GC/AEG according to the Union for International Cancer Control (UICC)/American Joint Committee on Cancer (AJCC) TNM classification, 8th edition (16). A regimen containing Apatinib was administered to 22 patients in this cohort, who were participants of a prospective, single arm, phase II trial conducted in our institution at the same period (17). Tumor response after NAC was assessed on control TAP-CT by a dedicated radiologist, who was unaware of the future inclusion of patients in this study, using the Response Evaluation Criteria in Solid Tumors (RECIST) guideline version 1.1 (18), and recorded as complete response (CR: disappearance of all target lesions), partial response (PR: at least a 30% decrease in the sum of diameters of target lesions), progressive disease (PD: at least a 20% increase in the sum of diameters of target lesions or the appearance of new lesions) or stable disease (SD: between PR and PD). The objective response rate (ORR) was defined as the proportion of patients who had CR or PR (18).



Surgical Procedure

All patients underwent laparoscopic exploration to confirm tumor resectability; curative gastrectomy was performed either by laparoscopy or after conversion to open surgery. Distal/total gastrectomy (DG/TG) + D2 lymphadenectomy was routinely performed for GC. For AEG types II and III, a transhiatal extended gastrectomy (THG) with mediastinal lymphadenectomy was performed.


Pathological Evaluation and Tumor Regression

Tumors were staged post-operatively according to the UICC/AJCC (16). Histological categorization was documented according to Lauren’s classification (19). Tumor response to NAC was evaluated based on tumor regression grade (TRG) described by Becker et al. : Grade 1, complete or subtotal regression (<10% residual tumor per tumor bed; Grade 1a, complete regression and Grade 1b, subtotal regression); Grade 2, partial tumor regression (10%–50% residual tumor per tumor bed); and Grade 3, minimal or no tumor regression (>50% residual tumor per tumor bed) (20). In accordance with Becker et al. (21), Grade 1 patients were defined as responders and those with Grades 2 or 3 as poor-responders.




Microsatellite Status Analysis

The MSI status of the surgical specimens was determined using a five-Bethesda-marker (NR-24, BAT-25, BAT-26, CAT-25, MONO-27) panel (22). Tumors with instability at two or more of the five markers were classified as MSI-H. Those with one unstable marker were classified as microsatellite instability-low (MSI-L) whereas tumors with all five markers stable were classified as microsatellite stability (MSS).



Expression of Mismatch Repair Proteins

Four MMR proteins, MLH1, MSH2, PMS2, and MSH6, were submitted to immunohistochemical staining on formalin-fixed, paraffin-embedded tumor tissue sections. The loss of expression of a single protein or a dimeric couple (MLH1/PMS2 or MSH2/MSH6) suggested the presence of MMR deficiency (dMMR) (12).



Adjuvant Therapy and Follow-Up

Patients were given postoperative chemotherapy based on age, pathological results as well as their Eastern Cooperative Oncology Group (ECOG) performance. All patients were followed every month during the first year, then every 3 months during the second and the third years, then every 6 months until recurrence or the censoring date. A multidisciplinary team managed patients with recurrence and/or metastasis. Serum tumor markers (CEA, CA199, CA125) were obtained every 3 months during the first 3 years then at every visit. TAP-CT and endoscopy were conducted every 6 months during the first 2 years then annually after surgery. Disease-free survival (DFS) was defined as the time between the date of surgery and the date either of recurrence or death from any cause.



Statistical Analysis

Statistical analysis was performed using the IBM Statistical Package for the Social Sciences (SPSS 13.0, Chicago, IL, USA). Pearson’s Chi-Square or Fisher’s exact test was applied for categorical data, expressed as percentages. For median and quartiles, the non-parametric Wilcoxon rank-sum test was used. The median DFS was determined by the Kaplan-Meier method, and survival curves were compared with the log-rank test. Cox analysis was used to determine the survival associated with MSI status as well as tumor regression. Two-sided p-values <0.05 were considered to be statistically significant.




Results


Patient Enrollment

The NAC + surgery cohort included 130 (70.3%) males and 55 (29.7%) females [median age: 61 (range, 22–81) years]. Microsatellite status and MMR analysis were available for 184/185 specimens (no residual tumor tissue available (TRG 1a) in one patient). As seen in the flow diagram (Figure 1), eight patients were excluded from this cohort. Thus, 177 patients were retained for survival and tumor regression analysis. Details of NAC regimens administered are shown in Table 1. Postoperative chemotherapy regimens were: EOX (107/177), CapeOX/SOX (55/177), DS/PS (5/177) or Capecitabine/S-1 (10/177). The same chemotherapy regimen was given pre- and post-operatively to 124/177 patients. An adjuvant regimen different from NAC was given to patient either because he presented PD during NAC or because he was given a pre-operative SOXA + post-operative SOX regimen according to the protocol of our Apatinib phase II trial (17).




Figure 1 | Flow diagram of patients excluded from the NAC cohort. NAC, neoadjuvant chemotherapy; TRG, tumor regression grade; MSS, microsatellite stability; MSI-L, microsatellite instability-low; MSI-H, microsatellite instability-high.




Table 1 | Neoadjuvant chemotherapy regimens.



The cohort without NAC included 354 (69.0%) males and 159 (31.0%) females [median age: 64 (range, 26–90) years]. Microsatellite status and MMR analysis were available for all 513 specimens in this control cohort.

As of June. 2020, eight patients (one in the NAC + surgery cohort, seven in the control cohort) were lost to follow-up. The median follow-up of the whole cohort (n=690) was 27.3 (1.5–51.9) months.



Microsatellite Status and Expression of Mismatch Repair Proteins

MSI-H status was identified in 57 (8.3%) patients and dMMR was found in all these MSI-H tumors (loss of expression of the MLH1/PMS2 dimeric couple in 55 patients and loss of expression of PMS2 protein in two patients). However, seven patients with the same patterns of dMMR and five patients with other patterns were found to be MSS/MSI-L by the five-Bethesda-marker panel. There was no significant difference in the prevalence of MSI-H, dMMR or the loss of expression of four MMR proteins between the NAC + surgery cohort and the control cohort.



Patient Demographics and Pathological Evaluation

Clinical characteristics of 57 MSI-H and 633 MSS/MSI-L patients are summarized in Table 2. MSI-H was more frequently observed among females and elderly patients. No statistically significant difference was found between the two groups with regard to tumor location, cT stage and cN stage. The ORR after NAC was 55.9% (99/177): 33.3% (4/12) for MSI-H and 57.6% (95/165) for MSS/MSI-L, showing no statistically significant difference (p=0.102). In terms of pathological evaluation (Table 3), a statistically significant difference was found between the two groups with regard to tumor size, Lauren’s classification, perineural invasion, pN stage (for patients in the control cohort) and AJCC/UICC p stage (for patients in the control cohort). In the NAC + surgery cohort, all MSI-H patients were poor-responders to NAC, whereas 46 (27.9%) and 119 (72.1%) patients in the MSS/MSI-L group were considered as responders and poor-responders, respectively (p=0.038). Overall, responders in TRG evaluation was positively correlated to radiological tumor response (CR + PR) (r=0.267, p<0.001, Pearson correlation analysis).


Table 2 | Patient demographics, clinical patterns, and microsatellite status.




Table 3 | Pathological characteristics and microsatellite status.





Prognostic Value of Microsatellite Instability-High and MMR Deficiency

The 3-year DFS rates differed statistically significantly between MSI-H and MSS/MSI-L patients in both the NAC + surgery cohort (91.7% vs. 48.2%, respectively) and the control cohort (70.1% vs.51.4%, respectively) (Figure 2A). The hazard ratios for MSI-H vs. MSS/MSI-L were 0.125 (95% CI, 0.017-0.897) for the NAC + surgery (p=0.037) and 0.479 (95% CI, 0.268–0.856) for the control cohort (p=0.013). The 3-year DFS rates differed statistically significantly between dMMR and pMMR (MMR proficiency, expression of all four MMR proteins) patients in both the NAC + surgery cohort (82.4% vs. 47.8%, respectively) or the control cohort (66.6% vs.51.5%, respectively) (Figure 2B). The hazard ratios for dMMR vs. pMMR were 0.264 (95% CI, 0.083–0.837) for the NAC + surgery (p=0.023) and 0.576 (95% CI, 0.347–0.957) for the control cohort (p=0.033).




Figure 2 | Disease-free survival curve according to (A) microsatellite status. (B) expression of mismatch repair proteins. Surg, the control group; NAC, the neoadjuvant chemotherapy + surgery group; MSS, microsatellite stability; MSI-L, microsatellite instability-low; MSI-H, microsatellite instability-high; pMMR, mismatch repair proficiency; dMMR, mismatch repair deficiency.





Prognostic Value of Tumor Regression Grade

Survival curves stratified according to TRG are shown in Figure 3A. Responders tended to have higher 3-year DFS rate compared to poor-responders (60.7% vs. 47.8%, p=0.110) (Figure 3B). The hazard ratio for responders vs. poor-responders was 0.651 (95% CI, 0.379–1.110, p=0.115) in the NAC + surgery cohort. However, the 3-year DFS rates differed statistically significantly between responders and poor-responders in patients who were MSS/MSI-L (60.7% vs. 43.3%, p=0.042) (Figure 3C). The hazard ratio for responders vs. poor-responders was 0.579 (95% CI, 0.340–0.907, p=0.045) in the MSS/MSI-L group.




Figure 3 | Disease-free survival curve according to (A) TRG in the NAC + surgery cohort. (B) responders vs. poor-responders in the NAC + surgery cohort. (C) responders vs. poor-responders in MSS/MSI-L group. TRG, tumor regression grade; NAC, neoadjuvant chemotherapy; MSS, microsatellite stability; MSI-L, microsatellite instability-low.






Discussion

Our study found a statistically significant association between microsatellite instability and poor histological response to NAC in cStage III GC. Significant survival priority of responders to NAC could be observed in MSS/MSI-L group but not in MSI-H group where all patients were poor-responders. We hypothesize that TRG would probably be inapplicable to predict prognosis for this molecular subtype of GC. On the other hand, MSI-H was found to be a positive survival predictor in cStage III GC patients irrespective of whether NAC was given or not. Compared to the control cohort, the better survival of MSI-H patients in the NAC + surgery cohort suggests that cStage III GC patients with this molecular alteration might still benefit from NAC in spite of poor histological response.

The prevalence of MSI-H in our study (8.3%) was lower than the 9.2% overall rate reported in the meta-analysis by Polom et al. (23). As MSI-H is associated with earlier stage at diagnosis and limited nodal metastasis (12), this might reasonably explain the difference since only cStage III patients were included in our study. In previous studies, the prevalence of MSI-H in GC patients treated by NAC varied from 6.6% to 9.0% (8, 10, 11). The lack of standardized diagnostic criteria (different marker panels used to detect MSI status) might be responsible for this heterogeneity. The absence of MLH-1 expression was observed in 62 out of 690 (9.1%) patients, close to the 9.8% (28/285) rate reported by Hashimoto et al. (9), but higher than those in two European studies [5.2% (8) and 7.9% (11), respectively]. Differences in ethnicity (Asian vs. Caucasian) are a probable explanation. The close prevalences of MSI-H/dMMR in the NAC + surgery and the control cohorts in our study seemed to indicate that NAC probably does not influence microsatellite status or the expression of MMR proteins.

Several well-recognized associations between clinical/pathological features and MSI-H (female sex, older age, occurrence in stomach rather than EG junction, larger tumor size, perineural invasion (+), intestinal type) were found in our study (8, 11, 24). MSI-H tumors were located more frequently in the distal stomach (24), which explained why the proportion of distal gastrectomy was higher in MSI-H group compared to MSS/MSI-L group. Kohlruss et al. found that MSI-L was more frequent in intestinal GC (10). This discrepancy suggests that the relationship between microsatellite status and Lauren’s classification as well as its prognostic significance need to be further investigated for locally advanced GCs. After NAC, the ORR of the whole cohort was 55.9% (99/177), higher than 37.3% (25/67) reported by Achilli et al. (25). However, the NAC regimens were different and these authors included cStage II tumors (51%) whereas we did not. In our study, tumor response assessed by Recist 1.1 criteria showed a good correlation to pathological evaluation of tumor response to NAC (TRG system), which was in line with a study conducted in rectal cancer (26). Whether MSI-H status would influence the radiologic response evaluated by RECIST criteria was unclear since we were unable to find any relevant studies to compare with ours. In accordance with other studies (8, 11), no statistically significant differences were found in pathological stages (ypT, ypN) after NAC between the two groups. However, for patients in the control cohort, the proportions of pN0 stage and AJCC/UICC pStage II were higher in MSI-H group compared to MSS/MSI-L group (20.0% vs. 4.3%, 31.1% vs. 6.8%, both p<0.001). This statistically significant difference suggests that the MSI-H tumors are prone to up-staging (especially N0 to N+) by preoperative TAP-CT. A reasonable explanation could be that the average size of lymph nodes in MSI-H was much larger than that in MSS/MSI-L cancers (27).

MSI-H’s poor histological response to NAC has been observed previously but the difference in response rates was not statistically significant (p=0.36 and p=0.683, respectively) (8, 11). Hashimoto et al. considered the loss of MLH-1 expression as a predictor of poor histological regression after NAC evaluated by the Japanese Gastric Cancer Association criteria (9). However, they did not investigate the association between MSI-H and tumor regression. Kohlruss et al. observed a higher proportion of TRG 3 (p=0.002) in MSI-H patients but found that MSI-H was not associated with poor response to NAC (p=1.00) (10). To the best of our knowledge, our study is the first to report a statistically significant association between poor histological response to NAC (TRG 2 or 3) and MSI-H.

Despite the poor histological response to NAC, the benefit of MSI-H did not seem to be attenuated by peri-operative chemotherapy in cStage III gastric cancer. In our study, patients with MSI-H had a statistically significant better 3-year DFS rate compared to MSS/MSI-L after NAC. This contradictory association is in line with two (10, 11), but in opposition to two other studies (8, 9), one of which was a post-hoc study of the MAGIC trial (2). There are several hypotheses that might possibly explain these divergent results. First, tumor stage varied in these studies. More ypT≤2 patients were included in the MAGIC trial (37.7% in the whole cohort and 55.5% in MSI-H group) whereas the proportions were 26.3% in our study, and 23.8%, 24.2%, 14.1% in other studies, respectively (9, 10, 11). Regardless of the down-staging effect of different regimens applied in these studies, we can speculate that indications for NAC in the MAGIC trial were more liberal compared to the other studies. The negative outcome could be explained by the higher proportion of less-advanced GCs. On the other hand, the Japanese study included patients with metastases (13.6% in MSS/MSI-L and 7.1% in MSI-H groups, respectively), although the authors claimed that these patients underwent R0 resection after NAC (9). This relatively high proportion of stage IV patients could affect the survival analysis, overshadowing the potential survival priority of patients with MSI-H. In our study, only clinical stage III patients were included, resulting in a homogeneous tumor stage. Secondly, different NAC regimens were administered. A platinum/5-fluorouracil based regimen ± anthracycline was used in the two studies with negative results (8, 9), while in the other studies (10, 11) and ours, some patients received a taxane (Docetaxel/Paclitaxel)-based regimen. Indeed, several studies have reported resistance of MSI-H tumors to fluorouracil-based chemotherapy and platinum drugs (28, 29). A post-hoc study of the CLASSIC trial also demonstrated that a capecitabine plus oxaliplatin-based adjuvant chemotherapy was of no benefit for MSI-H patients with stage II to III disease (30). Tsai et al. owed this MSI-relevant chemoresistance to increased autophagy activation (31). However, Nikanjam et al. found that MSI-H was correlated to the low expression of TUBB3, a protein biomarker associated with taxane resistance (32). Although stratified analysis according to regimens was unavailable in our study due to the small sample size in MSI-H group, we can only speculate that taxane-based regimens might improve survival of MSI-H patients. Thirdly, the disparity of diagnostic criteria for MSI status reduced the comparability of populations since no two studies applied identical panels to detect MSI-H. Of note, the Japanese study used an IHC method to test the loss of MLH1 expression; however, 14.3% of the MLH1 negative tumors were found to be MSS/MSI-L in their study (9).

In our study, MSI-H patients receiving NAC + surgery showed a better (although not statistically significant) survival compared to MSI-H patients with surgery alone. Whether or not MSI-H patients benefit from NAC has widely been discussed in GC. According to results of a large-sample-size individual patient data meta-analysis, Pietrantonio et al. suggested the possibility of omission of chemotherapy in MSI-H GCs according to a clinically and pathologically defined risk of relapse (33). Currently, MSI-H status is routinely taken into consideration in deciding whether chemotherapy should be administered or not in stage II (but not stage III) colorectal cancers. Dai et al. also found that postoperative adjuvant chemoradiotherapy is effective for stage III GC, regardless of the MSI status (34). The conclusion of our study, if validated, provides support for peri-operative chemotherapy in cStage III patients with MSI-H GCs. We can speculate that different therapeutic strategies should be adopted for stage II and III MSI-H GCs.

Immunotherapy (anti-programmed cell death-1 inhibitor) has been considered a promising option for MSI-H GCs (35). Although immunotherapy has been found to be effective for MSI-H refractory or metastatic tumors (36), evidence is lacking to use it to replace chemotherapy for cStage III MSI-H GC. Zheng et al. reported a high pathological CR rate (83.3%) of MSI-H gastrointestinal tumors treated by neoadjuvant immunotherapy, but this was a case series with only six cases (37). Thus, there is an urgent need to find an efficient multimodality treatment (may be taxane-based chemotherapy regimens ± immunotherapy) for cStage III MSI-H GC.

Our study has several limitations. Firstly, this was a retrospective single-center study, including Chinese patients only. Since a large proportion of Chinese patients have an advanced tumor stage (usually cStage III) at diagnosis, it is important to explore better solutions for this entity of patients in China. Secondly, we did not test MSI status on pre-therapeutic biopsy tissue. Of note, Kohlruss et al. found that MSI status was consistent with resected tumors in all 42 biopsy samples (10), in line with our speculation that NAC would not change microsatellite status. Thirdly, regimens of NAC were heterogeneous due to the retrospective aspect of our study. Well-designed prospective studies are needed to validate our findings. Fourthly, the median follow-up was short; the median DFS has been reached in the study cohort (21.6 months) but not the median overall survival (OS). So we chose DFS instead of OS to compare between MSI-H and MSS groups. Longer follow-up is necessary to establish any convincing conclusion about survival. Fifthly, as the survival curves of Grades 2 and 3 were similar in our study, we merged TRG 2 and 3 tumors into the same poor-responders category [in accordance with (21)], but this may have skewed our results.

In conclusion, MSI-H was associated with poorer histological regression after NAC in clinical stage III GC. However, better survival was found in these patients compared to MSS/MSI-L patients. TRG evaluation had prognostic significance in MSS/MSI-L patients but not in MSI-H patients. We suggest that MSI status testing be used to predict survival for cStage III patients treated by NAC and curative gastrectomy. However, further studies are needed to assess the value of NAC for cStage III GC patients with MSI-H phenotype.
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HHIP Overexpression Suppresses Human Gastric Cancer Progression and Metastasis by Reducing Its CpG Island Methylation
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Human hedgehog-interacting protein (HHIP), a negative regulator of hedgehog (HH) signaling pathway, has been reported to be dysregulated in many types of cancer, including gastric cancer. However, the inhibitory role of HHIP as well as the underlying molecular mechanism of HHIP regulation in gastric cancer haven’t been fully elucidated yet. In this study, we demonstrated that HHIP overexpression significantly suppressed the proliferation and invasion of AGS cells evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and transwell assays, respectively. Interestingly, methylation-specific polymerase chain reaction (MS-PCR, MSP) showed that HHIP overexpression dramatically decreased its de novo promoter methylation levels in AGS cells. Furthermore, HHIP expression was higher in adjacent non-cancerous tissue compared to matched gastric cancer tissue. High HHIP level was negatively correlated with metastasis (p = 0.035) but not local recurrence (p = 0.58). Taken together, our study suggested that HHIP can modulate gastric cancer progression and metastasis via regulation of its de novo promoter methylation levels in a feedback manner. Lower HHIP levels is positively associated with gastric cancer metastasis, which not only indicates HHIP could be served as a protective marker for gastric cancer, but also suggests restoring HHIP expression might be a potential therapeutic strategy for clinical treatment.
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INTRODUCTION

The classical hedgehog (HH) signaling pathway includes sonic hedgehog (SHH), Indian hedgehog (IHH), and desert hedgehog (DHH). It has been reported that HH ligand can lead to Smoothened (SMO) activation by binding with Patched (PTCH), followed by nuclear translocation of Gli family and then upregulation of their downstream target genes (1–3). Lots of evidences have shown that abnormal activation of HH signaling pathway contributes to tumor progression, including gastric cancer (4, 5). However, the potential molecular mechanism of HH signaling, especially the dysregulation of Human hedgehog-interacting protein (HHIP) gene, is largely uncertain in gastric cancer.

As a negative regulator of the HH signaling pathway (6–8), HHIP plays crucial roles in tumorigenesis. Decreased HHIP expression has been identified in many types of cancer and is associated with hyperactivation of HH signaling pathway which directly promotes cancer progression (9–11). Consistently, we have already found that HHIP expression is downregulated in gastric cancer (12), however, it is still unknown of the underlying mechanism which causes low expression of HHIP in gastric cancer cells.

To this aim, we have investigated the biological function as well as the potential mechanism of HHIP regulation in gastric cancer in this study. Our results showed that HHIP overexpression significantly suppressed proliferation and migration of gastric cancer cells. Moreover, we also identify an interesting feedback loop functions as a critical event to finely regulate HHIP expression: HHIP overexpression can decrease the CpG island methylation status on its de novo promoter, which further inhibits gastric cancer progression and metastasis.



MATERIALS AND METHODS


Patient Tissue Specimens

All the specimens, including 52 paired adjacent non-cancerous tissue and gastric cancer tissue, were collected from Department of Surgery, The First People Hospital of Zhangjiagang City, Soochow University (Jiangsu, China) between 2015 and 2018. All surgically specimens were immediately frozen in liquid nitrogen after removal from the patients. Specimens were inspected by at least 2 professional pathologists and classified according to tumor-node-metastasis (TNM) staging of UICC (International Union against Cancer) in 2020. Patients included 28 males and 24 females with an age range from 36 to 72 years (median 60.82 years). 18 cases were stage I patients, 16 cases were stage II, and 38 cases were stage III patients (Table 1).


TABLE 1. Clinical features of patients.

[image: Table 1]All specimens with patient consents and approval were obtained from the Institute Research Ethics Committee.



Reagents and Cell Culture

The Lenti-X HTX lentiviral packaging kit and lentiviral vector PlvxDsRed-monomer-nl were purchased from Takara (Japan). Gastric cancer cell line AGS was purchased from the Shanghai Institute of Life Science Cell Information Center of the Chinese Academy of Sciences (Shanghai, China) and cultured with RPMI-1640 (Invitrogen, Carlsbad, CA, United States) including 10% fetal bovine serum (FBS), 100 μg/mL streptomycin and 100 U/mL penicillin.



Lentiviral Vector Construction and Transduction

The full-length fragment of HHIP was amplified by Polymerase chain reaction (PCR) and then was cloned into lentiviral vector PlvxDsRed-monomer-nl (LV-HHIP). Empty vector PlvxDsRed-monomer-nl was used as the negative control (LV-CON). Lentivirus expressing LV-CON or LV-HHIP was produced as described previously (12). AGS cells were cultured in six-well plates (5 × 104 cells/well) until the confluence reached to 70%, then equal volume of lentivirus expressing LV-CON or LV-HHIP were added into each well for infection. After 72 h, cells were observed under a fluorescence microscope and then harvested for the following experiments.



Cell Proliferation Assay

Cell proliferation was inspected by the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay. Cells were cultured in 96-well plates (4 × 103/well), followed by lentiviral infection on the next day. After 48 h, 20 μL MTT (5 mg/mL) was added into each well and then incubated for 4 h. Replaced the medium in each well with 150 μL dimethylsulfoxide (DMSO) to dissolve formazan. Finally the optical density values were measured by a microplate spectrophotometer at 492 nm.



RNA Isolation and Reverse Transcription (RT)-PCR

Total RNA was isolated by TRIzol reagent (Shanghai Jingmei Bio Engineering, China) then converted to cDNA (the SuperScript III First-Strand Synthesis System; Invitrogen). The PCR primers and conditions had described before (12) (Table 2).


TABLE 2. Primers used for realtime-PCR, methylation-specific PCR and bisulfite- sequencing PCR.

[image: Table 2]


Methylation-Specific PCR and Bisulfite-Sequencing PCR to Detect HHIP Gene Methylation

Primers for methylation-specific PCR (MSP) and bisulfite-sequencing PCR (BSP) analysis to evaluate HHIP promoter methylation status were as described previously (4) and listed in Table 2. The whole procedure was according to the manufacturer’s instruction. Ten clones were randomly selected from each sample for DNA sequencing by Sangon Co. Ltd. (Shanghai, China).



Transwell Assay

Transwell assays were performed according to the manufacturer’s instructions. AGS cells in serum-free medium were seeded (5 × 104/mL/well) inside the chamber, while 500 μL culture medium containing 10% FBS was added into the outside of the chamber in each well of 24-well plate. After 24 h, non-invasive cells were removed from the upper surface of the membrane, while the invasive cells were fixed in methanol (10 min) and then stained with 0.1% crystal violet hydrate (Sigma, St. Louis, MO, United States; 30 min). After air-drying, the membrane was mounted on the slide and examined using microscope.



Western Blot Analysis

Total cell lysates were harvested via radioimmunoprecipitation assay buffer (Cell Signaling Biotechnology), then quantified by a bicinchoninic acid protein assay kit (Pierce). Equal proteins were separated on 10% protein gels (Millipore, Bedford, MA, United States). After transferring, the PDVF membranes were blocked with 5% skimmed milk (w/v) at room temperature (2 h) and then incubated with rabbit anti-Flag antibody (1:2000 dilution; Santa Cruz Biotechnology, Santa Cruz, CA, United States) overnight (4°C), followed by incubation with secondary antibodies. The immunoreactive bands were detected with the ECL plus chemiluminescence kit (Beyotime Institute of Biotechnology, Haimen, China).



Statistical Analysis

SPSS version 16.0 software (SPSS, Inc., Chicago, IL, United States) was used to analyze the results. All measurement data were expressed as the mean ± standard deviation. Comparisons were made by the t test between two groups or by one-way analysis of variance among multiple groups. Follow-up data were collected by a specially-assigned person for 3 years. Metastasis free time means the time from the beginning of treatment to the distant metastases. Local recurrence free time means the time from the beginning of treatment to local recurrence. P < 0.05 was statistically considered significant.



RESULTS


Overexpression of HHIP in Human Gastric Cancer Cells by Lentiviral Infection

To assess the roles of HHIP in gastric cancer cell development, we first stably overexpressed HHIP in gastric cancer AGS cells by lentivirus-delivered HHIP (LV-HHIP) or empty control (LV-CON). After infection for 48 h, more than 85% of AGS cells were successfully transduced by LV-HHIP evaluated by immunofluorescence detection (Figures A1–2). Reverse Transcription (RT)-PCR analysis showed that the HHIP mRNA levels were significantly increased in LV-HHIP group (transduced with LV-HHIP), comparing to the control group LV-CON (Figure 2A). Overexpression of HHIP was further confirmed by western-blot analysis at transitionally level (Figure 1D). Overall, these results showed that lentiviral LV-HHIP had efficiently infected AGS cells and indeed increased the expression of HHIP in gastric cancer cells.


[image: image]

FIGURE 1. HHIP overexpression was induced by lentivirus-delivered HHIP and inhibited the proliferation of AGS cells. (A1–2) The efficiency of lentiviral transduction was monitored by fluorescence microscopy. (B) The results of transwell assays showed that the invasive rate of OE group was lowest among three groups (CON>NC>OE). (C) MTT assays showed that the cell number of OE group is less than CON group. (D) The protein levels of HHIP were assessed by western blotting with an anti-Flag antibody. The size of the band showing the target fusion protein was near 58 kD. M: marker; 1: LV-CON-3FLAG-GFP; 2: LV-NC-3FLAG-GFP; and 3: LV-HHIP-OE-GFP. (NC: negative control, OE; overexpression).
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FIGURE 2. HHIP overexpression reduced methylation levels of de novo HHIP promoter in AGS cells and HHIP had lower expression in gastric cancer tissue specimen. (A) HHIP overexpression was confirmed by western blot assay in AGS cells; (B) HHIP mRNA levels were lower in gastric cancer tissue specimen detected by real-time PCR analysis; (C) Comparison of HHIP CpG island methylation proportion in the cells transduced with LV-CON or LV-HHIP. HHIP overexpression reduced methylation levels of HHIP promoter in gastric cancer AGS cells. *p < 0.05.




Overexpression of HHIP Inhibits the Proliferation and Invasion of Human Gastric Cancer Cells

To test the role of HHIP overexpression in proliferation and invasion of gastric cancer cells, AGS cells were transduced with LV-HHIP, or LV-CON and cultured for consecutive days (from day 1 to day 6). Cell proliferation rate was monitored by MTT assay on each day following transduction correspondingly. The results showed that compared to LV-CON, HHIP overexpression substantially inhibited proliferation of AGS cells (Figure 1C). Additionally, in comparison to LV-CON cells, LV-HHIP cells significantly demonstrated lower mobility to invade through matrigel-covered-membrane in transwell assays as shown in Figure 1B. Therefore, our data showed that HHIP overexpression suppressed the progression of gastric cancer by inhibiting cell proliferation, migration, and invasion.



Overexpression of HHIP Inhibits HHIP Promoter Methylation in Human Gastric Cancer Cells

To clarify the potential mechanism caused low HHIP expression in gastric cancer cells, we next try to assess the de novo HHIP promoter methylation status. After infection with LV-HHIP or LV-CON for 72 h, the HHIP promoter methylation levels in AGS cells were detected by both MSP and BSP analysis. The MSP results suggested that the PCR products from non-methylated primers increased after HHIP overexpression, while the PCR products from the methylated primers was significantly decreased (Figure 2C). Moreover, the HHIP CpG island methylation proportion was accounted for 99.67% in LV-CON cells, while it was 13.85% in LV-HHIP cells (Table 3). Consistently, the BSP results showed that compare to LV-CON, the methylation level of HHIP promoter was significantly reduced in LV-HHIP cells. Thus, all these data suggested that overexpression of HHIP could inhibits HHIP promoter methylation in human gastric cancer cells in a feedback manner.


TABLE 3. The methylation-specific PCR results.
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HHIP Was Higher in Normal Gastric Tissues and Positively Correlated With Metastasis Free Rate in Gastric Cancer

We tested HHIP expression levels in all the specimens from 52 paired gastric cancer tissue and matched adjacent normal tissues by RT-PCR analysis. The results showed that HHIP expression was higher in adjacent normal gastric tissues than in gastric cancer tissues (Figure 2B). After 3 years follow-up, we found that the metastasis free rate was positively correlated with HHIP levels. The metastasis free rate was 88.6% in HHIP positive group, whereas it was only 61.9% in HHIP negative group (p = 0.035; Figure 3B). Instead, the local recurrence free rate was not correlated with HHIP levels. The local recurrence free rate was 83.5% in HHIP positive group while 75% in HHIP negative group (via 75%; p = 0.58; Figure 3A). Our results suggested that higher HHIP levels showed higher metastasis free rate, which not only hints the protective role of HHIP in gastric cancer development, but also provides evidence to serve HHIP as a potential biological target for gastric cancer treatment.
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FIGURE 3. The relationship between HHIP expression levels and local recurrence free rate and metastasis free rate. (A) The local recurrence free rate of HHIP positive group was higher than negative group (83.5% via 75%; p = 0.58); (B) The metastasis free rate of HHIP positive group was higher than negative group (88.6% via 61.9%; p = 0.035).




DISCUSSION

As we known, HHIP can encode a transmembrane glycoprotein which binds to HH proteins, thereby inhibiting the HH pathway signaling (13, 14). HHIP is located on chromosome 3q31.21-31.3 and HHIP loss could lead to gastrointestinal tumors (15). It has been reported that HHIP was downregulated in gastric cancer (16), which suggests HHIP might function as a tumor suppressor in the gastric tumorigenesis. Consistently, our previous study has just demonstrated that HHIP had lower expression in gastric cancer cells compare to the normal control cells (12). Though the correlation between HHIP and gastric cancer malignance has been studied, the precise function of HHIP as well as the mechanism of HHIP regulation in gastric tumorigenesis remains to be uncertain. In this study, we observed that overexpression of HHIP significantly inhibited the proliferation and invasion of AGS cells, which might provide evidences to further support the tumor suppressor function of HHIP in gastric cancers.

Hedgehog signaling plays an indispensable role in regulation of gastric cancer cell proliferation, migration and invasion (17–19), however, the potential molecular mechanism underlying dysregulation of HH signaling in gastric cancer is still uncertain. Since HHIP is a negative regulator of HH signaling (13), the upregulation of HHIP may play a critical role in suppressing HH signaling pathway in gastric cancer. In this study, we demonstrated that HHIP overexpression significantly decreased de novo HHIP promoter methylation levels in AGS cells. Interestingly, our results suggest that there might be a positive feed-back regulating HHIP expression by modulating its own promoter methylation levels in gastric cancer cells. Importantly, we also found that HHIP positive specimens showed higher metastasis free rate of gastric cancer. We speculate that HHIP overexpression inhibits human gastric cancer growth and metastasis via decrease of CpG island methylation levels on its own promoter. Thus, HHIP might be used as a biological target for gastric cancer, which definitely needs more clinical research in future.

Gene therapy mainly depends on the effectively delivery of exogenous DNA into the target cells (20, 21). A lentiviral carrier is a gene therapy vector based on the human immunodeficiency virus and has been developed to infect cells with long-term maintenance in vivo. In this study, we applied a “suicide” virus, which infects target cells but does not produce new viral particles in the host cells (22, 23). The constructed HHIP-overexpressing lentivirus demonstrated a high infection rate and produced high levels of HHIP in gastric cancer cells. Importantly, AGS cells infected with HHIP-overexpressing lentivirus led to a significant reduction of cell proliferation and invasion. Our results show that the constructed HHIP-overexpressing lentivirus is a promising therapeutic strategy to treat gastric cancer through downregulation of HH signaling pathway. Further animal experiments are necessary to evaluate the effects of HHIP-overexpressing lentivirus used as a therapeutic agent for gastric cancer treatment.

In summary, we have established a lentiviral vector to overexpress the HHIP gene in gastric cancer cells and found that overexpression of HHIP remarkably inhibited the proliferation and invasion of AGS cells, accompanied by decreased de novo HHIP promoter methylation levels in AGS cells. Our study revealed a positive feed-back loop in regulation of HHIP expression in gastric cancer cells. HHIP overexpression might be used to inhibit human gastric cancer growth and metastasis via reducing CpG island methylation on its own promoter. All suggests that HHIP might be an efficient target and overexpression of HHIP by a lentiviral vector might be a promising therapeutic strategy for gastric cancer treatment.
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Background

Surgery combined with postoperative chemotherapy is an effective method for treating patients with gastric cancer (GC) in Asia. The important roles of systemic inflammatory response in chemotherapy have been gradually verified. The purpose of this study was to assess the difference in clinical effectiveness of FOLFOX (oxaliplatin + leucovorin + 5-fluorouracil) and XELOX (oxaliplatin + capecitabine), and the prognostic value of postoperative platelet–lymphocyte ratio (PLR) in the XELOX group.



Methods

Patients who received radical gastrectomy combined with postoperative chemotherapy between 2004 and 2014 were consecutively selected into the FOLFOX and XELOX groups. Group bias was reduced through propensity score matching, which resulted in 278 patients in each group. Cut-off values of systemic immune inflammation (SII) score and PLR were obtained by receiver operating characteristic curve. Kaplan–Meier and Log-rank tests were used to analyze overall survival. The chi-square test was used to analyze the association between clinical characteristics and inflammatory indexes. Univariate and multivariate analyses based on Cox regression analysis showed independent risk factors for prognosis. The nomogram was made by R studio.



Results

Patients receiving XELOX postoperative chemotherapy had better survival than those receiving FOLFOX (P < 0.001), especially for stage III GC (P = 0.002). Preoperative SII was an independent risk factor for prognosis in the FOLFOX group, and PLR of the second postoperative chemotherapy regimen in the XELOX group, combined with tumor size and pTNM stage, could construct a nomogram for evaluating recurrence and prognosis.



Conclusion

XELOX is better than FOLFOX for treatment of GC in Chinese patients, and a nomogram constructed by PLR, tumor size and pTNM stage can predict recurrence and prognosis.





Keywords: gastric cancer, postoperative chemotherapy, oxaliplatin capecitabine, platelet–lymphocyte ratio, systemic immune inflammation, prognosis, nomogram



Introduction

Gastric cancer (GC) is the third most common cause of cancer mortality worldwide, and causes 723,000 deaths each year according to the International Agency for Research on Cancer (IARC) in 2012. With the increasing awareness of cancer prevention and treatment worldwide, the incidence of GC has been declining in some developed countries, but more than 70% of new cases come from developing countries, and 42.6% are from China (1, 2), which suggests that GC is still a major threat to human health. At present, radical gastrectomy remains the curative treatment for GC globally, and postoperative chemotherapy has been a standard component of the treatment in Asia (3). In the selection of postoperative chemotherapy regimens, FOLFOX (oxaliplatin + leucovorin + 5-fluorouracil) and XELOX (oxaliplatin + capecitabine) are common regimens that have been widely used clinically after decades of clinical research (4). However, few studies have directly compared their efficacies, and choosing a suitable chemotherapy regimen is still a topic of discussion among clinicians.

The representative CLASSIC trial demonstrated a survival benefit for XELOX in patients with stages II–III GC (5, 6). Louvet et al. (7) showed that FOLFOX has good clinical efficacy in advanced GC. However, the high degree of heterogeneity of GC affects the clinical efficacy of different chemotherapy regimens. Baumgartner et al. (8) found that for palliative treatment of gastroesophageal cancer, XELOX was better than FOLFOX. Currently, there is still a lack of data demonstrating the feasibility of which chemotherapy regimen is more suitable for Chinese patients after radical gastrectomy.

The important role of tumor immunity in tumor progression is widely recognized. Immunological factors, especially in the peripheral blood, are considered to be potential biomarkers for prognosis and even early diagnosis of cancer and to guide postoperative chemotherapy. In 2014, Galon first proposed combination of immune response in the tumor microenvironment with traditional pathological staging based on tumor burden, presence of cancer cells in regional lymph nodes, and metastases to construct TNM-Immune (TNM-I)). In 2018, The Lancet first published the application of immune score for predicting postoperative chemotherapy sensitivity of patients with colon cancer. Pathological immunity evaluation may provide reliable information on tumor prognosis (9, 10). For early diagnosis of GC, Fang et al. (11) demonstrated that neutrophil–lymphocyte ratio (NLR) and platelet–lymphocyte ratio (PLR) were significantly better than traditional tumor markers. Lee et al. (12) found that patients with NLR ≥3 had worse survival after postoperative FOLFOX chemotherapy. Similarly, the dynamic changes in circulating immune cells also can be used to evaluate the effect of adjuvant therapy. Wang et al. (13) found that timing of neutropenia may be a potential prognostic biomarker, and Yumiko et al. (14) found that patients whose NLR increases by two at 60 days after surgery might not be suitable for nivolumab monotherapy. The systemic inflammatory response has an important role in influencing tumor progression and evaluating prognosis. Therefore, it is important to develop a simple and convenient inflammation index as a part of cancer classification and a prognostic tool for GC patients after radical gastrectomy and postoperative chemotherapy.



Materials and Methods


Patients

We consecutively selected 652 patients with GC in the Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital between 2004 and 2014. The diagnosis was based on paraffin sections and confirmed by experienced pathologists after surgery. All patients underwent radical gastrectomy with R0 resection. During hospitalization of the patient, routine preoperative examinations were performed, including stomach computed tomography/magnetic resonance imaging, chest radiography, abdominal ultrasonography, electrocardiography, and hematological examinations and some patients underwent positron emission tomography-computed tomography (PET–CT) as needed.

Exclusion criteria were (1): preoperative chemotherapy; (2) antiplatelet agent therapy within 3 months before surgery; (3) intravascular coagulation; (4) active bleeding; (5) concurrent abdominal and other systemic infections or severe cardiovascular disease; (6) patients with blood malignancies, including multiple myeloma and (7) patients who did not complete postoperative chemotherapy as required.

According to the postoperative chemotherapy regimens, patients were divided into the FOLFOX and XELOX groups. Clinicopathological data were saved in the Gastric Cancer Information Management System v1.2 of Harbin Medical University Cancer Hospital (Copyright No.2013SR087424, http:www.sgihmu.com): sex, age, tumor size, Borrmann type, tumor location, hematological examination, histological type, vascular infiltration, and lymph node dissection. The pTNM stage and histology type were according to the 8th edition American Joint Committee on Cancer (AJCC). All patients were re-examined through checking radiological examination (ultrasound, CT and gastroscopy) and tumor markers every 6 months, and PET–CT was performed as needed.



Inflammatory Index

Blood samples were collected from patients in fasting condition 1 week before surgery. For patients undergoing XELOX chemotherapy after surgery, blood samples were collected from patients in fasting condition in the first day for each time of postoperative chemotherapy. Blood (2 ml) from the cubital vein was collected and sent to the hematology laboratory where the serum was separated. For inflammation index, systemic immune inflammation (SII) score = N × P/L, neutrophil–lymphocyte ratio (NLR) = N/L, platelet–lymphocyte ratio (PLR) = P/L (N = neutrophil count, L = lymphocyte count, and P = platelet count)



Chemotherapy

FOLFOX regimen: Day 1, oxaliplatin (85 mg/m2) in 500 ml normal saline or glucose, by intravenous infusion for 2 h. On Days 1 and 2, leucovorin (20 mg/m2), by intravenous bolus, for 10 min; after the bolus, 5-FU (400 mg/m2), by rapid intravenous bolus, and then 5-FU (600 mg/m2), by continuous intravenous infusion for 22 h. XELOX regimen: oxaliplatin, 150 mg/m2, by intravenous infusion, on Day 1 of every 3 weeks, and capecitabine (Xeloda), 1,000 mg/m2, orally, twice daily from Day 1 to Day 14 every 3 weeks, and at the same time, myocardial nutrition, liver protection, acid inhibition, and anti-vomiting therapies were given (4). FOLFOX regimen was performed at least six times and XELOX regimen was performed at least 8 times. All included patients received adequate chemotherapy without treatment discontinuation and dose reductions.



Toxic and Adverse Effects

The main toxic and adverse effects of the two groups patients were bone marrow suppression and gastrointestinal reactions (including nausea, vomiting, and loss of appetite), as well as fatigue, oral mucositis, hand and foot syndrome, peripheral neurotoxicity, and liver and kidney damage. However, the toxic and adverse effects were grades I–III, with no grade IV, and were alleviated by symptomatic treatment (4).



Statistical Analysis

To minimize the influence of confounding factors on selection bias, propensity score matching (PSM) was performed. The propensity scores were elicited from matched patients in 1:1 ratio with greedy matching algorithms without replacement. All clinical and pathological characteristics included sex, age, tumor size, Borrmann type, tumor location, lymph node dissection, histological type and vascular infiltration. Standardized differences for all characteristics before and after PSM were evaluated by chi-square test. If there is one Clinicopathological feature with a value of P >0.05, it was considered that there was a statistically significant selection bias between two groups. And there was no statistically significant selection bias existed when all characteristics had value of P<0.05.

Overall survival (OS) was determined, which was calculated as the time from surgery to death from any cause. Disease-free survival (DFS) was calculated as the time from surgery to recurrence in various forms. If patients were alive at last follow-up, they were censored. The 5-year OS in each group was compared. Log-rank test and Kaplan–Meier method were used to analyze the survival curves. The survival time was shown as median ± standard deviation.

The diagnostic significance of inflammatory indexes, including NLR, PLR and SII, for patients with GC was calculated and compared according to receiver operating characteristic (ROC) curve analysis. The area under the curve (AUC) was calculated, and the optimal cut-off value was analyzed by the Youden index, which was calculated by the sensitivity − (1 − specificity). The maximum value of the index was the optimal threshold. The dynamic changes of inflammation index and circulating immune cells was tested by non-parametric rank sum test (Mann−Whitney U Test). If P <0.05, it was considered that the change between the two measurements had significant statistical difference; if P >0.05, it was considered that there was no statistical difference. The chi-square test also was used to analyze the association between inflammatory index and clinicopathological features. P <0.05 was considered there was statistically significant association; P >0.05 was considered there was no statistically significant association.

Univariate and multivariate analyses based on Cox regression were used to analyze the independent risk factors for prognosis and recurrence, respectively. The indicators included clinicopathological features and the immune biomarkers with the largest AUC area calculated by ROC curve (SII was analyzed in FOLFOX group, and PLR was analyzed in XELOX group). Variables with a value of P <0.05 in the univariate analysis were subsequently included in a multivariate analysis, variables with a value of P <0.05 in the multivariate analysis were considered as the independent risk factors for prognosis in the study. In order to avoid the possibility of these biomarkers may have increased the likelihood of achieving chance or spurious results, we performed FDR test by Benjamin Hochberg and ANOVA of repeated measurement data for P values of significant immunobiomarkers in multivariate analysis. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated for each factor. R studio was used to construct the nomogram model of risk assessment using the ‘SvyNom’ and ‘rms’ packages. The box chart combined with scatter chart and line chart were drawn by GraphPad Prism8. SPSS version 25.0 (Chicago, IL, USA) was used for analysis.




Results


Clinical Characteristics

There were 281 and 299 patients in the FOLFOX and XELOX groups, respectively. The median age was 56 years (range: 24–77 years), and the male:female ratio was 425:155. The clinicopathological characteristics of the two groups of patients are summarized in Table 1. Before PSM, the two groups of patients had significant differences in vascular invasion (P = 0.004). There were 25 (8.9%) and 51 (17.1%) patients with vascular invasion in the FOLFOX and XELOX groups, respectively, and 256 (91.1%) and 248 (82.9%) patients without vascular invasion. After PSM, the two groups were matched 1:1, with 278 patients in each group. Each variable was well balanced without significant difference (All P > 0.05) (Table 1, Figure 1).


Table 1 | Baseline characteristics of patients before and after PSM.






Figure 1 | Study protocol designed according to the criteria.





NLR, PLR, and SII Score

For NLR, PLR and SII score, 2.16, 128.61 and 524.45, respectively, were calculated as the most appropriate cut-off thresholds by the Youden index of the ROC curve for all patients after PSM based on preoperative hematology. The AUC was 0.576 (95% CI: 0.527–0.624), 0.616 (95%CI: 0.568–0.664), and 0.597 (95% CI: 0.549–0.645), respectively (Figure 2A). The AUC of NLR, PLR and SII was 0.596 (95% CI: 0.530–0.663), 0.587 (95% CI: 0.520–0.654), and 0.620 (95% CI: 0.554–0.686), respectively, in the FOLFOX group, and 0.533 (95% CI: 0.459–0.606), 0.624 (95% CI: 0.552–0.696), and 0.546 (95% CI: 0.472–0.619) in the XELOX group (Figures 2B, C).




Figure 2 | (A) ROC curve of NLR, PLR and SII score among total patients in PSM cohort. (B) ROC curve of NLR, PLR and SII score of patients with FOLFOX. (C) ROC curve of NLR, PLR and SII score of patients with XELOX.





Postoperative Chemotherapy and Patient Survival

In the PSM cohort, the XELOX group had better survival than the FOLFOX group had (P < 0.001). In the FOLFOX group, survival time was 59.89 ± 20.70 months, and 5-year survival rate was 50.0%. In the XELOX group, survival time was 60.0 ± 18.13 months, and 5-year survival rate was 65.83%. In stage I and II patients, there was no significant difference in OS between the two groups (P = 0.161, P = 0.055). In stage III patients, the XELOX group had a better survival rate than the FOLFOX group had (P = 0.002). Patients treated with FOLFOX had survival time of 35.15 ± 20.68 months, and 5-year survival rate was 34.94%, and patients treated with XELOX had survival time of 60.0 ± 19.87 months, and 5-year survival rate was 52.17% (Figures 3A–D).




Figure 3 | (A–D) Survival curves based on patients with FOLFOX and XELOX in all stages, stage I, stage II and III. (E–H) Survival curves based on preoperative SII score of patients with FOLFOX in all stage, stage I, stage II and III. (I–L) Survival curves based on preoperative PLR of patients with XELOX in all stages, stage I, stage II and III.



The results of the first three postoperative chemotherapy hematological examinations of patients who received XELOX were recorded. Two hundred and seventy-eight patients received the first postoperative chemotherapy regimen, 231 received the second, and 211 received the third. In addition to the first regimen, 67 patients returned to the local hospital for follow-up treatment according to medical advice. Finally, 65 (30.81%) of 211 patients had tumor recurrence (blood metastasis: 29 (44.6%), lymph node metastasis: 15 (23.1%), peritoneal implantation metastasis: 12 (18.5%), recurrence in situ: eight (12.3%) and one unknown case). One hundred and forty-six (69.19%) patients survived more than 5 years after treatment.



Inflammatory Index and Patient Survival

Patients with FOLFOX in the PSM cohort had a significant difference in overall survival between SII >524.45 and SII ≤524.45 [OS: 37.79 ± 21.05 vs 60.0 ± 19.68 months, P <0.001; hazard ratio (HR): 1.897, 95% CI: 1.355–2.655]. In stage I patients, there was no significant difference between patients with SII >524.45 and SII ≤524.45 (P = 0.078). In stage II patients, those with SII >524.45 had worse survival than those with SII ≤524.45 (OS: 60.0 ± 21.12 vs 60.0 ± 15.79 months, P = 0.011; HR: 2.826, 95% CI: 1.288–60.503). In stage III patients, those with SII >524.45 also had worse survival time (OS: 30.27 ± 19.90 vs 48.47 ± 20.97 months, P = 0.017; HR: 1.685, 95% CI: 1.144–2.482) (Figures 3E–H). SII score had a significant association with PLR, NLR and tumor location at chi-square analysis in clinical and pathological features (P < 0.001, P < 0.001 and P = 0.024) (Table 2).


Table 2 | Chi-square analysis of the connection between inflammation index and clinicopathological features.



Patients treated with XELOX in the PSM cohort had a significant difference in OS between PLR >128.61 and PLR ≤128.61 (OS: 60.0 ± 19.65 vs 60.0 ± 16.32 months, P < 0.001; HR: 2.178, 95% CI: 1.452–3.266). In stage I and II patients, there was no significant difference in OS between patients with PLR >128.61 and PLR ≤128.61 (P = 0.465, P = 0.717). In stage III patients, those with PLR >128.6 had worse survival time than those with PLR ≤128.61 (OS: 37.90 ± 20.16 vs 60.0 ± 18.57 months, P = 0.001; HR: 2.109, 95% CI: 1.324–3.360) (Figures 3I–L). PLR had a significant association with tumor size, SII score, NLR and pTNM stage at chi-square analysis in clinical and pathological features (P < 0.001, P < 0.001, P < 0.001, P < 0.001) (Table 2).



Univariate and Multivariate Regression Analyses in FOLFOX Groups

To identify the independent risk factors for prognosis of patients with GC in the FOLFOX group, univariate and multivariate analyses based on the Cox risk regression model were implemented. According to univariate analysis, tumor size (P < 0.001), SII score (P < 0.001), Borrmann type (P < 0.001), tumor location (P = 0.002) and pTNM stage (P < 0.001) were significant. According to multivariate analyses, SII score (P = 0.001), Borrmann type (P = 0.032) and pTNM stage (P < 0.001) were independent risk factors for prognosis (Table 3).


Table 3 | Prognosis factors of patients with GC by univariate and multivariate based on cox regression analysis in FOLFOX group.





Univariate and Multivariate Regression Analyses in XELOX Groups

Previous results showed that the OS of patients in the XELOX group was significantly better than in the FOLFOX group, which mainly in those with stage III. We performed detailed statistical analysis on the first three chemotherapy regimens of patients in the XELOX group. According to hematological examination of the patients in the first three postoperative chemotherapy regimens, through the ROC curve, AUC of NLR was 0.494, 0.547 and 0.590, compared with 0.538, 0.628 and 0.641 in PLR and 0.498, 0.565 and 0.609 in SII score, respectively (Figures 4A–C).




Figure 4 | (A–C) ROC curve of PLR of patients with XELOX from first to third postoperative chemotherapy regimens. (D–F) Box plot combined with scatter plot of NLR, PLR and SII score of patients with tumor recurrence from preoperative period to the third postoperative chemotherapy regimen. (G–I) Box plot combined with scatter plot of NLR, PLR and SII score of patients who survived >5 years from preoperative period to the third postoperative chemotherapy regimen. (J–L) Line chart of lymphocytes, neutrophils and platelets of patients with XELOX from preoperative period to the third postoperative chemotherapy regimen.



Univariate and multivariate analysis based on Cox risk regression model were performed according to clinical and pathological factors, including sex, age, tumor diameter, PLR, Borrmann type, tumor location, pTNM stage, histological type and vascular infiltration from the preoperative period to the second postoperative chemotherapy regimen. The analysis of preoperative and each time of postoperative chemotherapy were showed in Supplement 1. For patients with second time of chemotherapy after radical gastrectomy, tumor size (P = 0.008), PLR (P = 0.014) and pTNM stage (P = 0.009) were independent risk factors for DFS (Table 4-A). Tumor size (P = 0.009), PLR (P = 0.011) and pTNM stage (P = 0.008) were independent risk factors for OS (Table 4-B). In order to avoid the possibility that PLR may have increased the likelihood of achieving chance or spurious results, we performed FDR test and ANOVA of repeated measurement data for P values in multivariate analysis. In addition, the PLR values of 211 patients of each treatment were shown by Line Chart (Supplement 2 and 3).


Table 4A | Prognosis factors for DFS of patients with GC by multivariate based on cox regression analysis in XELOX group.




Table 4B | Prognosis factors for OS of patients with GC by multivariate based on cox regression analysis in XELOX group.





Dynamic Changes of Inflammation Index and Circulating Immune Cells

For 65 patients with tumor recurrence after the third postoperative chemotherapy regimen, the NLRs were 2.30 ± 1.45 (mean ± standard deviation), 2.12 ± 2.33, 1.58 ± 1.24 and 1.74 ± 1.41; PLRs were 161.92 ± 78.32, 125.42 ± 59.71, 124.36 ± 55.73 and 126.28 ± 67.77, and SII scores were 608.59 ± 452.41, 502.88 ± 566.79, 365.23 ± 514.44 and 369.77 ± 393.82 (Figures 4D–F). For circulating immune cells, the percentages of neutrophils were 57.93 ± 12.59, 54.43 ± 12.61, 50.03 ± 13.09 and 50.96 ± 12.77; the percentages of lymphocytes were 30.45 ± 10.07, 35.15 ± 12.08, 38.44 ± 11.40 and 37.50 ± 11.91, and platelet count was 256.83 ± 80.71, 231.58 ± 79.59, 211.57 ± 70.02 and 200.75 ± 69.56 (Figures 4J–L).

For 146 patients who survived for >5 years from the preoperative period to the third postoperative chemotherapy regimen, the NLRs were 2.02 ± 1.39, 1.62 ± 0.82, 1.35 ± 0.68 and 1.28 ± 0.72; PLRs were 122.81 ± 61.13, 115.20 ± 43.95, 105.55 ± 35.89 and 95.61 ± 33.40; and SII scores were 484.13 ± 354.91, 361.45 ± 234.43, 279.70 ± 169.60 and 235.84 ± 152.57 (Figures 4G–I). For circulating immune cells, the percentages of neutrophils were 56.44 ± 10.22, 51.89 ± 10.54, 48.16 ± 10.63 and 46.52 ± 11.03; the percentages of lymphocytes were 33.66 ± 11.61, 36.44 ± 9.68, 40.17 ± 9.67 and 41.57 ± 10.44; and platelet count was 238.32 ± 68.27, 217.29 ± 61.84, 205.47 ± 54.72 and 181.01 ± 48.11 (Figures 4J–L).



Nomogram in XELOX Group

In the second chemotherapy regimen, due to the univariate and multivariate regression analyses, PLR, tumor size and pTNM stage were independent risk factors that significantly correlated with the recurrence and prognosis of patients in the XELOX group, based on the Cox risk regression model. We combined these clinical features with DFS and OS to construct nomogram models to predict the recurrence and prognosis of patients (Figures 5A, D). The AUC of the model that predicted recurrence within 3 and 5 years was 0.757 (95% CI: 0.687–827) (Figure 5B) and 0.765 (95% CI: 0.699–0.830) (Figure 5C), respectively. The sensitivity was 57.1% and 62.5%, respectively, and the specificity was 86.3% and 79.9%, respectively. The AUC of the model that predicted prognosis within 3 and 5 years was 0.735 (95% CI: 0.659–0.810) (Figure 5E) and 0.763 (95% CI: 0.698–0.828) (Figure 5F), respectively. The sensitivity was 56.4 and 62.5%, respectively, and the specificity was 83.5 and 80.5%, respectively.




Figure 5 | (A) Nomogram model predicting 3 and 5 years recurrence of patients in XELOX group. (B) ROC curve of nomogram model predicting 3-year recurrence. (C) ROC curve of nomogram model predicting 5-year recurrence. (D) Nomogram model predicting 3 and 5 years survival of patients in XELOX group. (E) ROC curve of nomogram model predicting 3-year survival. (F) ROC curve of nomogram model predicting 5-year survival.






Discussion

Radical gastrectomy is still the standard treatment for GC. To inhibit metastasis of tumor cells, adjuvant treatments are becoming abundant, such as neoadjuvant chemotherapy, postoperative chemotherapy, immunotherapy, and targeted therapy. However, there are still significant variations worldwide in treatment outcome because of the high heterogeneity of GC. For example, patients in Asia mainly have distal, intestinal and HER-2-positive GC, while those in western countries are mainly proximal, diffuse and HER-2-negative GC, and intestinal GC is more sensitive to postoperative chemotherapy, especially oxaliplatin-based chemotherapy (15, 16). Besides, on the timing of chemotherapy, the MAGIC trial confirmed that preoperative neoadjuvant chemotherapy can increase the 5-year survival rate of stage II–III GC patients from 23 to 36%, which makes neoadjuvant chemotherapy widely used in Europe. In Asia, neoadjuvant chemotherapy also has been shown to be effective in improving surgical resection rates (17, 18), but postoperative chemotherapy has been widely shown to have good clinical efficacy for decades, which, combined with radical gastrectomy, has become the standard treatment mode. Therefore, to select suitable chemotherapy regimens for Chinese patients, we compared the long-term efficacy between FOLFOX and XELOX. We found that OS of patients receiving XELOX was significantly better than those receiving FOLFOX, and this difference was mainly found in patients with stage III GC, which is the same as the previous study by Kabsoo et al. study on XELOX (19).

The CLASSIC trial confirmed that XELOX chemotherapy increased the 5-year survival rate of patients by 9% and reduced the incidence of chemotherapy toxicity to 10% (5, 6). Park et al. (20) also found that for advanced GC patients who did not receive any treatment, their overall remission rate after treatment with XELOX regimen was 63%, and OS was extended to 11.9 months. These trials showed satisfactory clinical results for XELOX treatment for GC. The sensitivity of cancer cells to drug treatment depends not only on sufficient drugs reaching the target cells, but also on the drug sensitivity of the tumor cells (21, 22). Capecitabine is a precursor of fluorouracil and has no anticancer effect itself, but has cytotoxicity at the location of the liver and solid tumors, thereby increasing the drug concentration in tumor cells, while minimizing the systemic toxicity of chemotherapy. Since it was first approved for the treatment of metastatic colon cancer in 2001, it has been used frequently in the gastrointestinal tract because of its simple administration route and therapeutic effectiveness (23). The third-generation antitumor platinum drug oxaliplatin ((1R, 2R-diamminocyclohexane) oxalatoplatinum (II)) has a different antitumor effect compared with conventional cisplatin. The hydrated derivatives it forms act on DNA structure and mainly form interchain crosslinks to bend and unwind DNA. Meanwhile, the affinity of high-mobility group proteins for oxaliplatin interchain crosslinks is significantly lower than that of cisplatin, which makes the antitumor activity of oxaliplatin significantly stronger than that of cisplatin (24–26). Besides, it shows a good clinical effect on HER-2-positive and intestinal GC, mainly in China and Japan. Tumor cells of intestinal GC are rich in ribosomes and lack lysosomes and mucus, which makes them more responsive to oxaliplatin chemotherapy than diffuse GC cells (27, 28). Additionally, due to the lower intake of folic acid in Asian patients and the significant difference in CYP2A6 gene between Asian and Caucasian populations, Asian patients are more tolerant of treatment-related toxicity of chemotherapeutic drugs (29). However, Nozomu Fuse et al. (30) found that the incidence of chemotherapy-related toxicity in Japanese patients treated with XELOX increased significantly to 94%, although they suspected that it was due to the large number of older patients in the study. The clinical effect of XELOX should be verified by further, extensive clinical data. In our study, 146 patients (69.2%) who received XELOX treatment achieved 5-year survival, which was significantly higher than the clinically common 50% response rate (31), and no serious chemotherapy toxicity response occurred. Although this result might be related to the fact that only the first three chemotherapy results were recorded in this study, it confirmed the CLASS study and indicated that XELOX regimen is suitable for postoperative treatment of Chinese GC patients.

Prognosis of patients with resectable GC is based on histopathological criteria of tumor invasion according to the Union for International Cancer Control and AJCC TNM classification system, which could supply useful but incomplete prognostic information. On the other hand, the connection between tumor immunology and prognosis has been gradually recognized, which is also considered as a potential biomarker and guidance for appropriate treatment (32–35). New England Journal of Medicine has reported that for patients with invasive and indolent lymphoma, rituximab combined with macrophage checkpoint inhibitor 5F9 has shown good results in clinical treatment (36). However, histopathological observation of the immune response of the tumor microenvironment is limited by the randomness of selection of tissue sites, and the inflammation indexes in peripheral blood have been verified to evaluate the prognosis of patients with esophageal cancer, renal cancer and GC. However, these indexes cannot reflect the individual patient’s immune status like the former. Numerous of evidence indicates that systemic inflammatory response is related to the effect of chemotherapy (37). Huang et al. (38) found that patients with a combined Neutrophil/platelet/lymphocyte/differentiation Score (CNPLDS) of six to nine are less sensitive to first-line chemotherapeutic drugs postoperatively than those with a score of one to five. We found that SII score was an independent risk factor for prognosis in the FOLFOX group and PLR in the second time of XELOX postoperative chemotherapy regimen was an independent predictor using the Cox risk regression model, which could evaluate the clinical efficacy of the corresponding treatment. We also found that high PLR had a significant association with tumor size and pTNM stage through the chi-square test, which was related to deeper tumor invasion, and presence of not only local lymph node metastasis, but also a distant metastasis. Fridman et al. (39) also demonstrated that the immune system plays an important role in metastasis. Such progress in the XELOX group in our study was reflected by dynamic changes in PLR and corresponding immune cells.

Postoperative PLR could assess the sensitivity to XELOX of patients with GC, which also indicated that platelet and lymphocytes played important roles during treatment. Additionally, we found that in patients with tumor recurrence, inflammation biomarkers NLR, PLR and SII score were increased during the second to third chemotherapy regimens. Among the related circulating immune cells, there an increase in neutrophil percentage as well as a decline in lymphocyte percentage, and the decline in platelet count was lower than that of long-term surviving patients. By contrast, for 146 long-term surviving patients, inflammation biomarkers NLR, PLR and SII score, neutrophil percentage and platelet count showed a downward trend, but lymphocyte percentage showed a continuous increase, which indicated that not only the postoperative PLR, but also the dynamic changes in PLR during treatment could evaluate the sensitivity of patients to XELOX chemotherapy. This might be related to the 29 patients (44.6%) with blood metastasis among the patients with GC recurrence, which was higher than 34.2% in the study by Yoo et al. (40). Although the above dynamic changes did not show significant differences, this trend was worthy of further study. It is known that in the circulating immune system, lymphocytes kill tumor cells and inhibit distant metastasis, and a large increase in neutrophils can secrete cytokines interleukin (IL)-1, IL-10, interferon-γ and tumor necrosis factor-α and other factors to inhibit lymphocytes (CD4+ and CD8+ cells) and natural killer cells, promote tumor immune escape, and enhance tumor cell resistance. The inflammatory reaction around neutrophils triggers a wide cascade effect that causes damage to contact tissues and nonspecific inflammatory response, and promotes tumor cell implantation and recurrence (41–44). Platinum-based chemotherapeutic drugs destroy vascular endothelial cells to produce Von Willebrand factor, while circulating platelet can promote angiogenesis via this factor. Additionally, platelet also promote tumor metastasis and angiogenesis by releasing various growth factors such as vascular endothelial growth factor-A. The platelet formed can also promote tumor cell immune escape and resistance to chemotherapeutic drugs. The progression, metastasis and recurrence of tumors lead to changes in systemic inflammatory response, which can be indirectly manifested by continuous hematological testing (45–47). For patients with abnormal inflammation indexes and immune cells during the second to third chemotherapy regimens, whether they can be remedied by adding cetuximab (48) or changing the regimen will be the direction of our next study.

Although studies that have focused on predicting prognosis of patients or guiding treatment by inflammatory index have been widely used, it is difficult to individualize evaluation. With the development of big data for cancer research and real world studies, nomograms combining clinicopathological features and inflammatory indexes to evaluate the prognosis of GC have been widely used clinically. Liu et al. (49) found that a nomogram that combined systemic prognostic score, tumor location and TNM stage can predict the prognosis of stage II–III GC with postoperative chemotherapy. We analyzed the clinical significance of PLR through the Gastric Cancer Information Management System v1.2 of Harbin Medical University Cancer Hospital database. According to multivariate analysis, PLR of the second postoperative chemotherapy regimen, tumor size and pTNM stage were independent factors that significantly correlated with recurrence and prognosis of patients in the XELOX group. A nomogram model that combined the above factors was constructed to predict the recurrence and prognosis for 3 and 5 years. Through ROC curve analysis, it was found that AUC of the nomogram that predicted the recurrence of patients for 3 and 5 years were 0.757 and 0.765, sensitivity was 57.1 and 62.5%, and specificity was 86.3 and 79.9%, respectively. The AUC of the nomogram that predicted the prognosis of patients for 3 and 5 years were 0.735 and 0.763, sensitivity was 56.4 and 62.5%, and specificity was 83.5 and 80.5%, respectively. The prediction model established by PLR, tumor size and pTNM merits further clinical verification and application.



Limitations

This retrospective study still had some limitations. First, although PSM was used to deal with the bias between groups, there may still be potential factors that affected the results. Second, this study was mainly aimed at inflammation indexes of Chinese GC patients who receive chemotherapy, thus, whether the results are applicable to other populations needs verification. Finally, further analysis is needed to evaluate the efficacy of FOLFOX chemotherapy by peripheral blood immune biomarkers.



Conclusion

The survival was superior in the XELOX over the FOLFOX group, although this is the case overall, statistical significance was only reached in those with stage III disease, not those in stage I and stage II disease (P = 0.161 and 0.055). Also, in the XELOX group, the PLR predicted for prognosis in the stage II and III patients only, not the stage I patients (P = 0.078). Preoperative SII score was an independent risk factor for prognosis in the FOLFOX group, while PLR of the second postoperative chemotherapy regimen was an independent risk factor for prognosis in the XELOX group. The nomogram constructed by PLR, tumor size and pTNM stage can evaluate the recurrence and prognosis of patients who receive XELOX.
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Objective

To examine the effect of proprotein convertase subtilisin/kexin type 9 (PCSK9) on gastric cancer (GC) progression and prognosis, and to explore the underlying mechanism.



Methods

PCSK9 expression levels in human GC tissues were determined by quantitative real-time PCR, western blotting, and immunohistochemical assay. PCSK9 serum levels were detected by enzyme-linked immunosorbent assay. The relationships of PCSK9 and GC progression and survival were analyzed using the Chi-square test, Kaplan-Meier analysis, and Cox proportional hazards model. The effect of PCSK9 on cell invasion, migration, and apoptosis were determined in human GC cell lines and mouse xenograft model separately using PCSK9 knockdown and overexpression strategies. The PCSK9 interacting molecules, screened by co-immunoprecipitation combined with LC-MS/MS, were identified by immunofluorescence localization and western blotting. Additionally, the mitogen-activated protein kinase (MAPK) pathway was assessed by western blotting.



Results

PCSK9 mRNA and protein levels were significantly elevated in GC tissues compared with the paired normal tissues at our medical center (P < 0.001). Notably, the up-regulation of PCSK9 expression in GC tissues was related to tumor progression and poor survival. GC patients had higher serum levels of PCSK9 than the age-matched healthy controls (P < 0.001); PCSK9 promoted invasive and migratory ability and inhibited apoptosis in GC cells with no apparent affection in cell proliferation. The silencing of PCSK9 reversed these effects, suppressing tumor metastasis in vitro and in vivo. Furthermore, PCSK9 maintained these functions through up-regulating heat shock protein 70 (HSP70), ultimately facilitating the mitogen-activated protein kinase (MAPK) pathway.



Conclusion

Collectively, our data revealed that high PCSK9 expression levels in GC tissue were correlated with GC progression and poor prognosis and that PCSK9 could promote GC metastasis and suppress apoptosis by facilitating MAPK signaling pathway through HSP70 up-regulation. PCSK9 may represent a novel potential therapeutic target in GC.





Keywords: proprotein convertase subtilisin/kexin type 9, gastric cancer, heat shock protein 70, MAPK pathway, prognosis



Introduction

Gastric cancer (GC) is one of the most lethal carcinomas in the world, which ranks fifth in incidence and the third in the leading cause of cancer-related death (1). Worldwide over one million new cases and approximately 783,000 deaths were reported in 2018 (2). Despite the gradually declining incidence in Northern America and Europe, it is worth noting that GC still remains a high incidence and mortality in Eastern Asia (2–4). The prognosis of patients with advanced GC remains unsatisfactory (5). Patients often progress to a serious stage by the time they seek medical attention. Therefore, it is imperative that potential biomarkers be identified to better understand the development and progression of GC and develop new strategies to improve the prognosis of GC patients.

Pro-protein convertases (PCs) are a group of Ca2+-dependent secretory mammalian serine proteases (6). Structurally, the PCs start from the signal peptide at the N-terminal extremity and end with the specific C-terminal domain; adjacent to both ends are the pro-domain that keep the enzyme inactive, and the P-domain regulated by calcium and PH, and in the middle is the high homology catalytic domain, the particular structure making the PCs exhibit highly selective cleavage rule at the basic residues, and after cleavage, the inactive precursors become bioactive proteins and peptides, the bioactive peptides playing a variety of biological functions in viral infections, auto-immune diseases, metabolic diseases, and malignant tumors (7).

As a unique member of the proprotein convertase family, proprotein convertase subtilisin/kexin type 9 (PCSK9) can auto-catalytically process its pro-segment in the absence of basic or non-basic amino acid (8–10). Previous studies have proved that PCSK9 plays an important role in cholesterol metabolism and the treatment of coronary atherosclerosis (11–13). A growing number of recent studies have found that PCSK9 becomes a latent tumor-targeting molecule which has the value of potential application in a variety of tumors (14–16). In 2013, PCSK9 was reported to be identified as an excellent biomarker for the early detection of gastric adenocarcinoma (17). It can be successfully screened by a SILAC-based quantitative proteomic approach and validated by immunohistochemical labeling. However, little is known about PCSK9 as an oncogene in GC. Hence, our current study aimed to investigate the role of PCSK9 in GC and its underlying mechanism.



Materials and Methods


Patients Information and Tissue Samples

A total of 155 gastric adenocarcinoma patients were consecutively enrolled in the study between January 2012 and December 2016, who would be followed up until December 2018. GC specimens and corresponding adjacent normal tissues were collected at the time when the patients underwent gastroscopy or surgical resection in Zhongshan Hospital of Fudan University (Shanghai, China). Lymph node metastasis was verified by postoperative pathology. None of the patients had received radiotherapy or chemotherapy before operation. The blood samples were collected before surgery to be centrifuged at 2000 rpm for 10 min to separate serum, which was to be stored in -80°C refrigerator for later use. A collection was made of the clinicopathologic characteristics of all patients such as age, gender, tumor size and differentiation, Lauren’s classification, TNM stage, and prognosis (Supplementary Table 1). TNM stage was assessed according to the American Joint Committee on Cancer (AJCC) 8th edition of GC (18). Thirty age-matched controls were composed of healthy volunteers who were required to undergo a regular medical examination without taking statins or PCSK9 antibody.



Reagents and Antibodies

TRC051384 (termed as heat shock protein 70(HSP70) agonist, catalog no. HY-101712) and apoptozole (termed as HSP70 inhibitor; catalog no. HY-15098) were purchased from MedChemExpress (New Jersey, USA). Rabbit monoclonal antibodies against PCSK9 (catalog no. 85813) for western blotting, HSP70(catalog no. 4873), p38 (catalog no. 8690), phosphorylated (p)−p38(catalog no. 9215), extracellular signal−regulated kinase 1/2 (ERK1/2; catalog no. 4695), p−ERK1/2 (catalog no. 4370), c−Jun N−terminal kinase (JNK; catalog no. 9252), and p−JNK (catalog no. 9251) were acquired from Cell Signaling Technology (Danvers, MA, USA). Rabbit monoclonal antibody against PCSK9 (catalog no. ab28770) for immunohistochemistry, immunoprecipitation and immunofluorescence was purchased from Abcam (Cambridge, MA, USA). Mouse monoclonal antibody against β−actin (AA128) was purchased from Biotime Biotechnology Co. Ltd. (Shanghai, China).



Cell Lines and Culture

Human GC cell lines (SGC-7901, MKN-45, MKN-28, KATO-III, AGS, MGC-803 and NCI-N87) and human gastric mucosal epithelial cell line (GES-1) were purchased from Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (Shanghai, China). AGS cells were cultured in DMEM/F12 medium (Hyclone, Logan, UT, USA), and NCI-N87 cells, in RPMI-1640 medium (Hyclone, Logan, UT, USA) and others, in IMDM medium (Hyclone, Logan, UT, USA), containing10% fetal bovine serum (FBS, Gibco, Carlsbad, CA, USA), 100 μg/ml of streptomycin and 100 U/ml penicillin in an humidified air atmosphere incubator with 5% CO2 at 37°C.



Plasmids and Transfection

The short hairpin(sh) RNAs against PCSK9 and negative control shRNA were synthesized by Genomeditech (Shanghai, China) and were inserted into pGMLV-SB7 cloning vector (Genomeditech, Shanghai, China). The coding regions of human PCSK9 was cloned into the expression vector pGMLV-CMV-MCS-PGK-Puro (Genomeditech, Shanghai, China). The empty vector was packaged as negative controls.

SGC-7901 and MGC-803 cells were infected with the lentivirus-transducing units according to the manufacturer’s protocol. The stable transfectants were selected and cultured in medium containing blasticidin or puromycin separately. The efficiency of genetic silencing or overexpression was evaluated by western blotting. We selected PCSK9 shRNA‐1 with the highest efficiency for the further mechanism study.



RNA Extraction and Quantitative Real-Time PCR

Total RNA was isolated from the frozen tissues or harvested cells with RNA extraction kit (Promega, Madison, Wi, USA) and reversed to cDNA using GoScript™ Reverse Transcription Mix, Random Primers (Promega, Madison, Wi, USA). The cDNAs were amplified by Eastep® qPCR Master Mix Kit (Promega, Madison, Wi, USA) on ABI Prism 7500 Sequence Detection system (Applied Biosystems, Tokyo, Japan). The relative target gene expression was analyzed using 2-△△Ct method, and β-actin was used for normalization. The primer sequences were used as follows: human PCSK9 (forward:5’-CACGGAACCACAGCCACCTT-3’; reverse: 5’-CGCCACTCATCTTCACCAGGAA-3’; β-actin (forward: 5’-AATCTGGCACCACACCTTCTA-3’; reverse: 5’-ATAGCACAGCCTGGATAGCAA-3’).



Western Blotting

Proteins were isolated from the cells and tissues using RIPA lysis buffer (Biotime, Shanghai, China). The protein concentration was measured with BCA enhanced Protein Assay Kit (Biotime, Shanghai, China). The total proteins were loaded onto SDS-PAGE gels (Biotime, Shanghai, China). After electrophoresis, the proteins were transferred to polyvinylidene fluoride (PVDF) membrane (Millipore, Billerica, MA, USA), which was to be incubated with primary antibodies. After incubated with horseradish peroxidase-conjugated secondary antibodies, the immune complexes were detected with ECL Detection Kit (Millipore, Billerica, MA, USA) and quantified using Gel-Pro Analyzer (Media Cybernetics Corporation, USA).



Immunohistochemistry

The histological sections of gastric tissues were deparaffinized and rehydrated before subjected to heat-induced antigen retrieval. After incubated with primary antibodies overnight at 4°C, the secondary antibody was incubated at room temperature for 1 hr. Upon DAB substrate color rendering, the histological sections were sealed using neutral gum to be photographed. The expression level was independently evaluated by 2 senior pathologists according to the intensity and proportion of positive cells. The staining intensity was graded on a four-point scale: 0, negative; 1, weak; 2, intermediate; and 3, strong, and the percentage of positive cells was divided into five grades: 0, 0%; 1, 1–25%; 2, 26–50%; 3, 51–75%; and 4, 76–100%. The final score was calculated by multiplying the intensity and percentage scores. An overall score of 0–12 was acquired and graded as: score 0, negative; score 1–4, weak; score 5–8, moderate; and score 9–12, strong.



Enzyme-Linked Immunosorbent Assay

The serum levels of PCSK9 were detected using an ELISA Kit (Abcam, Cambridge, UK), and the assay was performed according to manufacturer’s instructions. In short, 50 μl per well of serum and standard solution was added to the plates, followed by an addition of 50 μl of the Antibody Cocktail specific for PCSK9 before incubated for 1hr at room temperature. Afterward, the plates were washed, and an addition of TMB development solution was made to generate blue coloration. With sulfuric acid added to stop the reaction, the absorbance was measured at a wavelength of 450nm using a microplate reader (FlexStation 3, Molecular Devices, USA).



Clonogenic Assay

GC cells were seeded at a density of 1 × 103 cells/well in a six-well plate. After culturing for 15 days, the cells were fixed by adding an appropriate amount of methanol. Afterward, the cells were stained with 0.1% crystal violet solution (Biotime, Shanghai, China) and photographed. The number of colonies containing more than 50 cells was counted manually.



Cell Counting Kit-8 (CCK-8) Assay

When plated in 96-well plates at 2 × 103 cells per well, SGC-7901 and MGC-803 cells were cultured with Cell Counting Kit (CCK8, Biotime, Shanghai, China) for 24, 48, 72, 96, and 120 h, respectively. Absorbance at 450nm was measured with the microplate reader (FlexStation 3, Molecular Devices, USA).



Scratching Assay

Parallel lines were drawn using a marker on the floor of the 6-well plate. The cells were seeded in 60-mm culture wells at 5 × 105 cells/well. An artificial “wound” was created with a 200 μl pipette tip. The wound width was recorded and measured at the two time points of 0 and 24 h after scratching under an optical microscope (Olympus, Tokyo, Japan) to evaluate the migration of the tested cells.



Transwell Migration and Invasion Assay

The migration and invasion of GC cells were determined using 24-well Transwell chambers (Corning, NY, USA) coated without or with Matrigel (Corning, NY, USA). The cells were harvested to be suspended in the serum-free medium supplemented with 1% BSA. In the migration test,100 μl of solution containing approximately 1х105 cells was plated into the upper compartment, and 600 μl of 10% FBS containing medium was added to the bottom compartment. Following a 24h incubation at 37°C, the cells on the upper-side of the membrane were removed with clean swabs. Fixed with 4% paraformaldehyde, the samples were stained using crystal violet (Biotime, Shanghai, China). The number of the cells was counted and photographed under an optical microscopy (IX51, Olympus, Japan). In the invasion assay, 50μg Matrigel and 45 μl of serum-free medium were spread on each membrane before incubated at 37°C overnight to solidify the Matrigel. Into the upper compartment were plated 100 μl of the cells. The remaining procedures were identical to those in the cell migration test.



Cell Apoptosis Assay

The cell apoptosis was detected with the flow cytometry method. The cells were collected and washed in cold PBS before centrifuged at 1000rpm for 5 min. After resuspended in 100 μl of binding buffer, the cells were labeled with 5 μl of FITC Annexin V and 5 μl of propidium iodide (BD Pharmingen™, USA) for 15 min at room temperature in the dark. Terminally, 400 μl of binding buffer was added to each tube and a FACS Aria II (BD) was used to evaluate the apoptotic cells.



Co-Immunoprecipitation (co-ip) and LC-MS/MS Analysis

Cells were lysed with the cell lysis buffer supplemented with complete protease inhibitor cocktail (Roche, Switzerland) and the proteins were pre-cleared. Protein-G-A agarose beads (Roche, Switzerland) were incubated with anti-PCSK9 antibody or non-specific rabbit IgG antibody (CST, Danvers, MA, USA) at 4°C overnight. Becoming pelleted, the precipitates were washed thrice with the lysis buffer, before analyzed using western blotting. After electrophoresis, the gels were stained using Coomassie Blue Fast Staining Solution (Biotime, Shanghai, China) and a Q-Exactive mass spectrometer (Thermo Scientific, USA) was used to do the LC-MS/MS analysis.



Immunofluorescence Staining

Sterilized glass coverslips were put onto a 24-well plate, followed by an addition of the cell suspension with 50% seeding density, before incubated overnight. After15-min fixing with 4% paraformaldehyde at room temperature, 0.3% Triton X-100 (Biotime, Shanghai, China) was added to break the cell membrane. Successively were added primary antibody, corresponding secondary antibody and DAPI according to the protocol. In the end, one drop of mounting medium containing anti-fluorescence quencher was placed onto each slide. Then the coverslip was picked up, inverted onto drop in a cell-side-down manner and nail-polish-sealed. Images were collected under a confocal fluorescence microscope (FV3000, Olympus).



Xenograft Tumor Assay

Thirty BABL/c nude mice aged 4 weeks, purchased from Slack Laboratory Animal Co., ltd (Shanghai, China), were kept under the specific pathogen-free (SPF) condition, and maintained in a climate-controlled room (12:12h artificial dark-light cycle with a stable room temperature of 23 ± 2°C), gaining free access to standard rodent chow and water. After that, the mice were equally divided into three groups at random: PCSK9 shRNA with/without HSP70 agonist, and PCSK9 shNC group, respectively. A total of 1 × 106 SGC-7901 cells with/without PCSK9 shRNA lentivirus were digested and suspended in 100 μl of bacterial-free PBS. Each group was injected with relevant cells via tail vein according to the preimplantation experiment. The next day those which bore PCSK9 shRNA SGC-7901 cells were treated with physiological saline or TRC051384 intraperitoneally at a dose of 9 mg/kg as first dose and then 4.5 mg/kg every 12 h thereafter for 10 days, as previously described (19). Four weeks later, the mice were subjected to18F-FDG positron emission tomography (PET) scan (MedicLab PET/MR, Madic Technology Co. Ltd, Shandong, China) to show a rough picture of tumor metastasis. Five weeks after SGC-7901 injection, the mice were sacrificed, the lungs isolated, photographed and fixed in formalin. Afterward, the lung tissues were embedded in paraffin to be cut into 4-μm segments, which were to be stained using the standard hematoxylin and eosin (H&E) staining method for later metastatic nodules calculation.



Statistical Analysis

Statistical analyses were performed using SPSS 20.0 software (SPSS, Chicago, IL, USA) and GraphPad Prism8.0 (GraphPad Software, Inc., San Diego, CA, USA), the data shown as mean ± S.D. or Median (Q1-Q3) according to the normal distribution test. The significance of the differences was analyzed with Student’s t-test, one-way analysis of variance (ANOVA) or Mann-Whitney U-test, and the relationship between clinicopathological factors and PCSK9 expression, with the chi-square test. The diagnostic value of PCSK9 expression in GC was measured using the receiver operating characteristics (ROC) curve. The survival analysis was assessed by the Kaplan-Meier method and examined by the log-rank test. Univariate and multivariate analyses were performed using the Cox proportional hazards regression model. P < 0.05 was considered to be statistically significant.




Results


Increased PCSK9 Expression in Primary GC Tissues and Its Overexpression associated With Lymph Node Metastasis and Poor Prognosis


PCSK9 was Upregulated in Primary GC Tissues

To explore the expression of PCSK9 in GC, we first evaluated the mRNA and protein expression levels of PCSK9 in paired GC and adjacent non-tumor tissues by qRT-PCR (n = 60; Figure 1A) and western blotting (n = 40; Figures 1B, C), the results showing that PCSK9 expression was significantly higher at both the transcriptional and protein level in the tumor tissues than in the adjacent normal tissues (P < 0.0001).




Figure 1 | Increase of PCSK9 expression in GC. (A) PCSK9 mRNA expression levels assessed in paired GC and adjacent normal tissues (P < 0.0001; n = 60) (B) PCSK9 protein expression levels measured in GC tissues and related adjacent non-tumorous tissues in representative eight patients by western blotting; β-actin served as the internal control. (C) Comparison of relative PCSK9 protein expression in 40 GC tissues and adjacent non-tumorous tissues by western blotting (P < 0.001). (D) Serum levels of PCSK9 analyzed by ELISA in GC patients (n = 60) and healthy volunteers (HV; n = 30; P < 0.0001). (E) Representative IHC image of PCSK9 protein in GC and adjacent normal tissues. (F) Distribution of PCSK9 IHC score in GC and adjacent normal tissues (P < 0001). (G) IHC score in GC and adjacent normal tissues (n = 155; P < 0.001). (H) Overall survival curve for GC patients with high vs. low expression of PCSK9 IHC score generated with Kaplan-Meier methods (P < 0.01).





Increased PCSK9 Levels in the Peripheral Blood of GC Patients

The increased PCSK9 expression in GC tissues led to the investigation of PCSK9 serum levels in the GC patients, which through ELISA detected serum PCSK9 levels in 60 GC patients and 30 age-matched healthy controls. The results showed that PCSK9 serum levels were significantly higher in the GC patients than in the controls (250.1 ± 73.20 vs. 129.9 ± 32.75 ng/ml; P < 0.0001; Figure 1D).



Overexpression of PCSK9 in GC Tissues was Associated With Poor Prognosis and Lymph Node Metastasis

In order to clarify the clinical significance of PCSK9, immunohistochemical (IHC) staining was performed and PCSK9 expression was scored in 155 GC tissues and their matched adjacent non-cancerous tissues. The results indicated that PCSK9 was mostly localized to the cytoplasm and partially to the extracellular matrix in GC tissues; and that PCSK9 was distinctly enhanced in GC tissues when compared with their matched adjacent non-cancerous ones (Figures 1E–G.). In the GC cohort, 8 patients (5.16%) had strong PCSK9 staining, 27 (17.42%) had the moderate, and 117 (75.48%) had the weak, respectively. Only 3 patients (1.94%) produced no positive PCSK9 expression. As indicated by the ROC curve to define low and high PCSK9 expression level, the cutoff point was found as 7.5, and the area under a curve (AUC) was 0.6274 (95% CI: 0.4997–0.7550). To this end, IHC score during 8–12 was determined as high PCSK9 expression, whereas the others were determined as low.

A collection was made of the clinicopathological characteristics of all the 155 patients for the chi-square test to explore the correlation between PCSK9 expression and the values. As shown in Table 1, the high expression of PCSK9 in GC was significantly correlated with lymph node metastasis (P < 0.05). However, no statistically significant correlations were observed between PCSK9 and other clinicopathological variables such as age (P = 0.609), sex (P = 0.7), tumor differentiation (P = 0.578), Lauren’s classification (P = 0.574), tumor size (P = 0.204), tumor depth of infiltration (P = 0.647), and TNM staging (P = 0.304).


Table 1 | PCSK9 expression levels and clinicopathologic characteristics in GC patients.



Next, we investigated the relationship between PCSK9 expression and prognostic outcome in the GC patients, whose follow-up period ranged from 1.3 to 71.7 months, with a median overall survival time of 35.6 months. The survival time was compared between the patients with low PCSK9 expression (n = 140) and those with high PCSK9 expression (n = 15) by Kaplan-Meier survival analysis, the result showing that high PCSK9 expression predicted a worse outcome in the GC patients (P < 0.01; Figure 1H). As indicated by the univariate COX regression model, Lauren’s classification, Tumor Differentiation, T staging, N staging, M staging, TNM staging, and PCSK9 expression were significantly associated with an increased risk of cancer-related death (Table 2). According to the multivariate analysis, furthermore, PCSK9 expression was an independent prognostic predictor for the GC patients with poor survival (hazard ratio [HR]: 2.158; 95% CI: 1.140–4.087; P < 0.05; Table 2).


Table 2 | Univariate and multivariate analyses of clinicopathological factors for overall survival in GC patients.






PCSK9 Promoting Invasion and Migration and Suppressing Apoptosis of GC In Vitro

As PCSK9 expression was upregulated in GC, we hypothesized that PCSK9 could play a role in gastric cancer development. To explore the biological role of PCSK9 in GC, we applied seven human GC cell lines (SGC-7901, MKN-45, MKN-28, KATO-III, AGS, MGC-803, and NCI-N87) and a normal gastric mucosa cell line (GES-1) to the in vivo study. In measuring the PCSK9 mRNA and protein levels by qRT-PCR and western blotting in all these cell types, it was found that PCSK9 expression increased to varying degrees in all GC cells when compared with GES-1 (Figures 2A, B). Of the GC cell lines, SGC-7901 showed the highest relevant mRNA and protein level, while MGC-803 and NCI-N87 showed the lowest PCSK9 level. Accordingly, the SGC-7901 and MGC-803 cells were picked up for further experiments in view of their biological features.




Figure 2 | PCSK9 promoted migration and invasion and inhibited apoptosis of GC cells in vitro. (A) Relative PCSK9 expression in a panel of GC compared with GES1 cells, as determined by quantitative real-time PCR. (B) Western blotting of PCSK9 expression in eight cell lines; β-actin served as the internal control. (C, D) PCSK9 levels verified by western blotting; β-actin as the internal control. (E) Wound healing assay in SGC-7901 with/without PCSK9 knockdown; scale bar 100 μm. (F) Wound healing assay in MGC-803 cells with/without PCSK9 overexpression; scale bar 100 μm. (G) Transwell migration assay of SGC-7901 with/without PCSK9 knockdown; scale bar 100 μm. (H) Transwell migration assay of MGC-803 with/without PCSK9 overexpression; scale bar 100 μm. (I) Transwell invasion assay of SGC-7901 with/without PCSK9 knockdown; scale bar 100 μm. (J) Transwell invasion assay of MGC-803 with or without PCSK9 overexpression; scale bar 100 μm. (K, L) The cells collected and stained with FITC-Annexin V and propidium iodide; the percentage of apoptotic cells analyzed by flow cytometry assay; representative images presented. Data are expressed as mean ± S.D.; **P < 0.01, ***P < 0.001; WT, wild type; NC, negative control; OE, overexpression.



Then the lentivirus of the corresponding plasmids was produced to be transduced so that PCSK9 shRNA and PCSK9 shNC in SGC-7901 and PCSK9 OE/control cells were successfully built in MGC-803 cell lines (Figures 2C, D). The functional experiments revealed that the wound healing rate was significantly decreased in SGC-7901 PCSK9 shRNA cells when compared with SGC-7901 PCSK9 shNC and wild type cells (P < 0.001). Meanwhile, significantly impaired migratory and invasive ability as well as increased apoptosis were found in SGC-7901 PCSK9 shRNA cells (Figures 2E, G, I, K). The reverse result was totally observed in PCSK9 overexpressing MGC-803 cells. Compared with the controls and wild type (WT) cells, PCSK9 OE MGC-803 cells showed enhanced healing rate, and more aggressive migration and invasion activity (Figures 2F, H, J). Moreover, the cell apoptosis was significantly decreased in MGC-803 cells upon PCSK9 overexpression when compared with the control group and WT cells (Figure 2L). However, no significant differences were observed in cell proliferation of the two cell lines and their corresponding silencing or overexpressing cells (Supplementary Figure 1).



PCSK9 Up-Regulating HSP70 Expression and HSP70 Inhibition Suppressing PCSK9-Induced Invasion and Migration and Promoting Apoptosis in GC

To further determine the mechanism of PCSK9 in GC, we first screened the interacting molecules with PCSK9 by co-immunoprecipitation combined with LC-MS/MS analysis, subsequently verified by immunofluorescence localization and western blotting. As seen in Figures 3A, B, HSP70 was screened out and verified from a total of 46 candidate protein molecules interacting with PCSK9 referring to its known function in carcinoma progression. PCSK9 and HSP 70 interacted at the cytoplasm (Figure 3C). Afterward, we detected the expression of HSP70 in the GC tissues by immunohistochemistry, before analyzing the relationship between the two molecules, finding that HSP70 in the cancerous tissues with high PCSK9 expression was in the state of high expression, while that with low PCSK9 expression was significantly reduced. As indicated by Pearson correlation analysis, HSP70 expression was positively correlated with PCSK9 expression (Figure 3D). HSP70 expression was significantly elevated in PCSK9-OE MGC-803 cells when compared with MGC-803 control cells (Figure 3M). The inhibition of HSP70 in PCSK9-OE MGC-803 cells suppressed cell invasion and migration while inducing increasing apoptosis (Figures 3F, H, J, L). Conversely, decreased HSP70 expression was detected in shPCSK9 SGC-7901 cells when compared with the controls (Figure 3M). The migratory and invasive ability was more enhanced in HSP70 agonist treated PCSK9 shRNA SGC-7901 cells than in non-treated PCSK9 shRNA SGC-7901cells (Figures 3E, G, I). Simultaneously, decreasing apoptosis was detected (Figure 3K). Partially because of its upregulating HSP70, PCSK9 facilitated GC cell migration and invasion and suppress apoptosis.




Figure 3 | PCSK9 interacting with HSP70 and modulating MAPK pathway. (A) HSP70 identified by LC-MS/MS as interactor of PCSK9. (B) PCSK9 interacting with HSP70 in GC cell line through co-immunoprecipitation. (C) Confocal laser-scanning detecting the expression of PCSK9 and HSP70 in GC cells. (D) Correlations of PCSK9 and HSP70 protein expression in GC tissues based on immunoscoring. (E) The cells pretreated with TRC051384(10 μM) for 4 h; wound healing assay conducted in PCSK9 shRNA SGC-7901 cells with/without HSP70 agonist and NC cells. (F) The cells pretreated with apoptozole (2 μM) for 24 h; wound healing assay conducted in MGC-803 OE cells with/without apoptozole and MGC-803 control cells. (G) Transwell migration assay of PCSK9 shRNA SGC-7901 cells with/without HSP70 restoration and NC cells. (H) Transwell migration assay of MGC-803 OE cells with/without apoptozole and MGC-803 control cells. (I) Transwell invasion assay of PCSK9 shRNA SGC-7901 cells with/without HSP70 restoration and NC cells. (J) Transwell invasion assay of MGC-803 OE cells with/without apoptozole and MGC-803 control cells. (K) Apoptosis of SGC-7901, measured by flow cytometry. (L) Apoptosis of MGC-803 cells, measured by flow cytometry. (M) PCSK9 up-regulating HSP70 expression and activating MAPK pathway (Right: SGC-7901 cells; Left: MGC-803 cells); β-actin served as the internal control. The statistical significance between different groups was calculated with Student’s t-test; data expressed as mean ± S.D. *P < 0.05, **P < 0.01, ***P < 0.001; NC, negative control; A, agonist; I, inhibitor.





PCSK9 Promoting GC Metastasis and Suppressing Apoptosis by Facilitating MAPK Signaling Pathway

Given that MAPK pathway is implicated in tumor cell proliferation, differentiation, and apoptosis, we hypothesized that it could be involved in PCSK9-induced tumor progression as well. Therefore, we monitored the phosphorylation of JNK, p38, and ERK1/2 expression level by western blotting in SGC-7901 PCSK9 knockdown cells, MGC-803 PCSK9-OE cells, and their corresponding negative controls, the results showing that the phosphorylation of JNK, p38 and ERK1/2 levels was significantly downregulated in SGC-7901 PCSK9 shRNA cells when compared with SGC-7901 PCSK9 shNC cells, and that an addition of HSP70 agonist partially restored the phosphorylation level of JNK, p38, and ERK1/2. Conversely, the protein levels were significantly upregulated in MGC-803 PCSK9-OE cells when compared with MGC-803 PCSK9 control cells. Pretreatment with apoptozole depleted MAPK activation in PCSK9-OE cells (Figure 3M). Thus, PCSK9 was demonstrated to play a key role in the development of GC by facilitating MAPK signaling pathway, with HSP70 acting as a synergistic role.



PCSK9 Promoting Metastasis of GC In Vivo

In view of the finding that PCSK9 facilitates the migration and invasion of GC cells in vitro, we further tested whether PCSK9 could affect tumor progression in vivo. When 30 mice were equally divided into 3 groups: PCSK9 shRNA, PCSK9 shRNA+HSP70 agonist and NC group, SGC-7901cells silencing PCSK9, and its corresponding control cells were injected into the nude mice via the lateral tail vein. Those which bore PCSK9 shRNA SGC-7901 cells were treated with physiological saline or TRC051384 intraperitoneally for 10 days. Five weeks later, all the mice were sacrificed. As shown in Figure 4A, of the three PCSK9 shRNA group weighted the heaviest, whereas PCSK9 shRNA with HSP70 agonist group did the lowest (shPCSK9+HSP70 A vs. shPCSK9 vs. shNC: 16.128 ± 3.088g vs. 22.959 ± 2.717g vs. 21.459 ± 1.359 g, P < 0.001). Moreover, a trend of continued negative increase in body weight occurred in shRNA+HSP70 agonist group (5th vs. 1st: 16.128 ± 3.088 g vs. 18.210 ± 1.399 g). Knockdown of PCSK9 inhibited tumor metastasis while addition of HSP70 agonist counteracted this effect. Least metastatic lesions in lungs were found in PCSK9 silencing models through PET/CT scan and H&E staining of lung slides (Figures 4B–D). All this suggested that PCSK9 had an effect on promoting GC metastasis in vivo.




Figure 4 | Silencing of PCSK9 suppressing the GC tumor metastasis in a mouse xenograft model and HSP70 agonist reversing this countervailing effect. (A) Mouse weight measured once a week at the indicated time points after injection with PCSK9 knockdown and control SGC-7901 cells until the 5th week. (B) Representative images of lungs and PET scan of different groups (white circles represent suspected lesions). (C) Representative images of hematoxylin and eosin (H&E) staining of metastatic lung nodules from different groups. (D) Metastatic nodules in lungs of orthotopic xenograft mice model calculated (n = 10/group); data presented as mean ± S.D.; NS, not significant; **P < 0.01, ***P < 0.001.






Discussion

In this study, we explored the molecular mechanism underlying the tumor promotion of PCSK9 in GC, which, to our knowledge, represented a pioneering comprehensive analysis of PCSK9 in GC. In our cohort, PCSK9 mRNA and protein levels were significantly elevated in GC tissues when compared with paired adjacent normal tissues. The up-regulation of PCSK9 in GC could predict poor survival of GC patients, highlighting the potential of PCSK9 as a novel biomarker for GC.

A growing amount of evidence has manifested that PCSK9 show a promising advantage to cancer progression as well as poor clinical prognosis in several malignant tumors, such as melanoma (14), non-small cell lung cancer (NSCLC) (15), breast cancer (16), and hepatocellular carcinoma(HCC) (20). Our findings demonstrated that high PCSK9 expression was correlated with lymph node metastasis and that it is the independent predictor for GC patients with poor survival. This may be attributed to its internal ability in both cell proliferation and apoptosis. Under physiological conditions, PCSK9 is mainly expressed in the liver and, to a lesser extent, in the pancreas, kidney, brain and small intestine but hardly expressed in the stomach (21). PCSK9 was initially recognized as neural apoptosis regulated convertase1 (NARC1) (22), which represents the molecule in brain apoptosis. In the models of mice that underwent partial hepatectomy, PCSK9 expression was highly induced in the liver, even if under a PCSK9 defect genetic background, a high-cholesterol diet could rescue liver cell proliferation (22, 23). In our study, we found that PCSK9 expression was upregulated in GC cells, which significantly inhibited cell apoptosis and promoted cell invasion and migration as well. However, it didn’t have an effect on proliferation in GC cell lines. Apart from the features of uncontrollable proliferation and apoptotic resistance in tumor cells, invasion and migration have been recognized as the most two important hallmarks leading to the lethality in GC (24, 25). As indicated by the current results, PCSK9 depletion in SGC-7901 cells distinctly suppressed the migrative and invasive ability and upregulated apoptotic rate when compared with the cells transduced with the empty vector, and the inverse results were found in PCSK9 overexpression MGC-803 cells in comparison with the MGC-803 controls. Our in vivo experiments were also consistent with the in vitro data that PCSK9 knockdown in SGC-7901 cells significantly inhibited tumor metastasis in the lungs, as indicated by the model of xenograft nude mice. The significant correlation between the PCSK9 expression and migration/invasion and apoptosis of GC suggested that PCSK9 could serve as a “metastasis promotor gene” in GC.

Subsequently, we managed to pick up HSP70 as the interacting molecule in PCSK9 tumor regulation, which played a synergistic role in the process. HSP70, a member of the evolutionarily highly conserved heat shock protein family, plays an important role in enhancing cell resistance to various stimuli and alleviating cell damage via its molecular chaperone function in protein folding, unfolding, and disaggregation (26). Lines of studies have revealed that the basal level of HSP70 was high in several types of malignancies (27–31) and that it has been categorized as a bad prognosis factor (27, 28). HSP70 has also been demonstrated to cooperate in chemotherapy and radiotherapy resistance probably due to its capacity to disable cell death (32–34). Consistent with these pieces of evidence, our findings indicated that HSP70 had a high expression in GC tissues when compared with the adjacent normal tissues. High expression of HSP70 is known to be in accordance with the high expression level of PCSK9. In parallel, the tissues with low expression of PCSK9 showed a consistent low expression of HSP70. In vitro, HSP70 rarely expressed in PCSK9 depleted SGC-7901 cells, but highly expressed in PCSK9 overexpression MGC-803 cells. The expression of the two molecules had a positive correlation. Inducing HSP70 expression could reverse the inhibition effect of silencing PCSK9 in SGC-7901 both in vitro and in vivo. Thereby, PCSK9 up-regulation can be responsible for the induction of HSP70 expression in metastatic GC, which promotes the migration and invasion of GC.

Furthermore, we found that MAPK signaling pathway was involved in the PCSK9-induced cancer promotion and that the silencing of PCSK9 impeded the phosphorylation of p38 MAPK, ERK1/2, and JNK, thus significantly downregulating the migration and invasion of cells. HSP70 induction could partially transverse this effect. Conversely, the overexpression of PCSK9 in MGC-803 cells facilitated MAPK signaling pathway, accelerating the migration/invasion of the cells when compared with the controls. Previous studies have shown that MAPK signaling pathway plays a central role in the stimulation of cancer cell proliferation, apoptosis, and metastasis (35–37). And also p38 MAPK participates in resistance to chemotherapy drugs like cisplatin, irinotecan, and 5-fluorouracil (38), which are often administered in GC chemotherapy regimens. However, Bode AM et al. (39) found an antiapoptotic effect of JNK pathway in GC, which seemed to be controversial. Our results showed that p38, ERK1/2, and JNK were all activated in the PCSK9-related cancer procedure, and that the modulation of JNK showed a pro-apoptotic effect.

It is undeniable that there are some limitations to our study. We detected PCSK9 expression in 155 GC tissues and serum PCSK9 protein levels preoperatively in 60 patients. The sample size is relatively small. Besides, the follow-up time of the cohort is partially short and we failed to achieve the 5-year overall survival time. Thus, additional studies with larger sample sizes, longer follow-up periods are needed to confirm our findings.

In recent years, the link between cholesterol metabolism and cancer progression has drawn a great deal of attention. Of note, PCSK9, which stands for the up-regulation of LDL cholesterol via promoting LDL receptor degrading, may participate in cancer progression by modulating cholesterol supply to the tumor, as indicated in a B cell tumor mouse model in which hepatic PCSK9 expression and secretion were induced, leading to hepatic LDLR reduction and hypercholesterolemia. More exogenous lipids were transported to the tumor cells to support the genesis and proliferation of the tumor (40). Abdelwahed KS et al. (16) suggested that suppression of the PCSK9-LDLR axis could inhibit tumor progression and recurrence in the hormone-dependent breast cancer in a nude mouse xenograft model. Interestingly, HSP70 was also found upregulated in the livers of obese mice (41). HSP70 overexpression in HepG2 cells enhanced the synthesis of cholesterol, the size of lipid droplets increasing simultaneously. Moreover, it was indicated that LDL enhances colorectal cancer progression via MAPK signaling pathway (42). In our study, we showed that PCSK9 could promote tumor metastasis in GC partly through HSP70 up-regulation by modulating MAPK pathway. This exciting finding prompted us to pursue further studies to reveal a profound understanding of PCSK9 in tumor promotion, especially in lipid metabolism.



Conclusion

To conclude, we validated in our study that PCSK9 could function as a deleterious biomarker in GC; that high PCSK9 expression levels in GC tissue could be correlated with GC progression and prognosis; and that PCSK9 could promote GC metastasis and suppress apoptosis via facilitating MAPK signaling pathway through HSP70 up-regulation. Additionally, we identified PCSK9 as a harmful molecule in tumor progression, which indicates that the inhibition of PCSK9 can be a novel and promising therapeutic approach to GC.



Data Availability Statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.



Ethics Statement

The studies involving human participants were reviewed and approved by the Clinical Research Ethics Committee of Fudan University. The patients/participants provided their written informed consent to participate in this study. The animal study was reviewed and approved by the Animal Ethics Committee of Zhongshan Hospital.



Author Contributions

BX, SL, YF, and YC wrote the manuscript. BX and SL executed the experiments. BX, SL, and YF collected clinicopathological data and GC specimens. BX, SL, and YZ analyzed the data. DS added support to the making of the figures and tables. YC and SZ dominated in designing the study, instructing the experiments, and reviewing the manuscript. All authors contributed to the article and approved the submitted version.



Funding

This work was supported by the Shanghai Science and Technology Commission (grant no. 19ZR1409400).



Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2020.609663/full#supplementary-material



References

1. International Agency for Research on Cancer. World Cancer Report 2014. Lyon: IARC (2014). 632 p.

2. Siegel, RL, Miller, KD, and Jemal, A. Cancer statistics, 2018. CA Cancer J Clin (2018) 68(1):7–30. doi: 10.3322/caac.21442

3. Bray, F, Ferlay, J, Soerjomataram, I, Siegel, RL, Torre, LA, and Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2018) 68(6):394–424. doi: 10.3322/caac.21492

4. Russo, AE, and Strong, VE. Gastric Cancer Etiology and Management in Asia and the West. Annu Rev Med (2019) 70:353–67. doi: 10.1146/annurev-med-081117-043436

5. Wagner, AD, Syn, NL, Moehler, M, Grothe, W, Yong, WP, Tai, BC, et al. Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev (2017) 8:CD004064. doi: 10.1002/14651858.CD004064.pub4

6. Fugere, M, and Day, R. Cutting back on pro-protein convertases: the latest approaches to pharmacological inhibition. Trends Pharmacol Sci (2005) 26(6):294–301. doi: 10.1016/j.tips.2005.04.006

7. Couture, F, D’Anjou, F, and Day, R. On the cutting edge of proprotein convertase pharmacology: from molecular concepts to clinical applications. Biomol Concepts (2011) 2(5):421–38. doi: 10.1515/bmc.2011.034

8. Benjannet, S, Rhainds, D, Essalmani, R, Mayne, J, Wickham, L, Jin, W, et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem (2004) 279(47):48865–75. doi: 10.1074/jbc.M409699200

9. McNutt, MC, Lagace, TA, and Horton, JD. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J Biol Chem (2007) 282(29):20799–803. doi: 10.1074/jbc.C700095200

10. Seidah, NG, and Prat, A. The proprotein convertases are potential targets in the treatment of dyslipidemia. J Mol Med (Berl) (2007) 85(7):685–96. doi: 10.1007/s00109-007-0172-7

11. Sabatine, MS, Giugliano, RP, Keech, AC, Honarpour, N, Wiviott, SD, Murphy, SA, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med (2017) 376(18):1713–22. doi: 10.1056/NEJMoa1615664

12. Navarese, EP, Kolodziejczak, M, Schulze, V, Gurbel, PA, Tantry, U, Lin, Y, et al. Effects of Proprotein Convertase Subtilisin/Kexin Type 9 Antibodies in Adults With Hypercholesterolemia: A Systematic Review and Meta-analysis. Ann Intern Med (2015) 163(1):40–51. doi: 10.7326/M14-2957

13. Stoekenbroek, RM, Lambert, G, Cariou, B, and Hovingh, GK. Inhibiting PCSK9 - biology beyond LDL control. Nat Rev Endocrinol (2018) 15(1):52–62. doi: 10.1038/s41574-018-0110-5

14. Sun, X, Essalmani, R, Day, R, Khatib, AM, Seidah, NG, and Prat, A. Proprotein convertase subtilisin/kexin type 9 deficiency reduces melanoma metastasis in liver. Neoplasia (2012) 14(12):1122–31. doi: 10.1593/neo.121252

15. Bonaventura, A, Grossi, F, Carbone, F, Vecchie, A, Minetti, S, Bardi, N, et al. Serum PCSK9 levels at the second nivolumab cycle predict overall survival in elderly patients with NSCLC: a pilot study. Cancer Immunol Immunother (2019) 68(8):1351–58. doi: 10.1007/s00262-019-02367-z

16. Abdelwahed, KS, Siddique, AB, Mohyeldin, MM, Qusa, MH, Goda, AA, Singh, SS, et al. Pseurotin A as a novel suppressor of hormone dependent breast cancer progression and recurrence by inhibiting PCSK9 secretion and interaction with LDL receptor. Pharmacol Res (2020) 158:104847. doi: 10.1016/j.phrs.2020.104847

17. Marimuthu, A, Subbannayya, Y, Sahasrabuddhe, NA, Balakrishnan, L, Syed, N, Sekhar, NR, et al. SILAC-based quantitative proteomic analysis of gastric cancer secretome. Proteomics Clin Appl (2013) 7(5-6):355–66. doi: 10.1002/prca.201200069

18. In, H, Solsky, I, Palis, B, Langdon-Embry, M, Ajani, J, and Sano, T. Validation of the 8th Edition of the AJCC TNM Staging System for Gastric Cancer using the National Cancer Database. Ann Surg Oncol (2017) 24(12):3683–91. doi: 10.1245/s10434-017-6078-x

19. Mohanan, A, Deshpande, S, Jamadarkhana, PG, Kumar, P, Gupta, RC, Chauthaiwale, V, et al. Delayed intervention in experimental stroke with TRC051384–a small molecule HSP70 inducer. Neuropharmacology (2011) 60(6):991–9. doi: 10.1016/j.neuropharm.2010.12.003

20. Lee, S, Zhang, C, Liu, Z, Klevstig, M, Mukhopadhyay, B, Bergentall, M, et al. Network analyses identify liver-specific targets for treating liver diseases. Mol Syst Biol (2017) 13(8):938. doi: 10.15252/msb.20177703

21. Seidah, NG, Awan, Z, Chretien, M, and Mbikay, M. PCSK9: a key modulator of cardiovascular health. Circ Res (2014) 114(6):1022–36. doi: 10.1161/CIRCRESAHA.114.301621

22. Seidah, NG, Benjannet, S, Wickham, L, Marcinkiewicz, J, Jasmin, SB, Stifani, S, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A (2003) 100(3):928–33. doi: 10.1073/pnas.0335507100

23. Zaid, A, Roubtsova, A, Essalmani, R, Marcinkiewicz, J, Chamberland, A, Hamelin, J, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology (2008) 48(2):646–54. doi: 10.1002/hep.22354

24. Guggenheim, DE, and Shah, MA. Gastric cancer epidemiology and risk factors. J Surg Oncol (2013) 107(3):230–6. doi: 10.1002/jso.23262

25. Fidler, IJ. Critical determinants of metastasis. Semin Cancer Biol (2002) 12(2):89–96. doi: 10.1006/scbi.2001.0416

26. Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol (2013) 14(10):630–42. doi: 10.1038/nrm3658

27. Dimas, DT, Perlepe, CD, Sergentanis, TN, Misitzis, I, Kontzoglou, K, Patsouris, E, et al. The Prognostic Significance of Hsp70/Hsp90 Expression in Breast Cancer: A Systematic Review and Meta-analysis. Anticancer Res (2018) 38(3):1551–62. doi: 10.21873/anticanres.12384

28. Kumar, S, Gurshaney, S, Adagunodo, Y, Gage, E, Qadri, S, Sharma, M, et al. Hsp70 and gama-Semino protein as possible prognostic marker of prostate cancer. Front Biosci (Landmark Ed) (2018) 23:1987–2000. doi: 10.2741/4684

29. Targosz, A, Pierzchalski, P, Krawiec, A, Szczyrk, U, Brzozowski, T, Konturek, SJ, et al. Helicobacter pylori inhibits expression of heat shock protein 70 (HSP70) in human epithelial cell line. Importance of Cag A protein. J Physiol Pharmacol (2006) 57(2):265–78. doi: 10.2170/physiolsci.L656

30. Dutta, SK, Girotra, M, Singla, M, Dutta, A, Otis Stephen, F, Nair, PP, et al. Serum HSP70: a novel biomarker for early detection of pancreatic cancer. Pancreas (2012) 41(4):530–4. doi: 10.1097/MPA.0b013e3182374ace

31. Joo, M, Chi, JG, and Lee, H. Expressions of HSP70 and HSP27 in hepatocellular carcinoma. J Korean Med Sci (2005) 20(5):829–34. doi: 10.3346/jkms.2005.20.5.829

32. Rerole, AL, Jego, G, and Garrido, C. Hsp70: anti-apoptotic and tumorigenic protein. Methods Mol Biol (2011) 787:205–30. doi: 10.1007/978-1-61779-295-3_16

33. Jego, G, Hazoume, A, Seigneuric, R, and Garrido, C. Targeting heat shock proteins in cancer. Cancer Lett (2013) 332(2):275–85. doi: 10.1016/j.canlet.2010.10.014

34. Rerole, AL, Gobbo, J, De Thonel, A, Schmitt, E, Pais de Barros, JP, Hammann, A, et al. Peptides and aptamers targeting HSP70: a novel approach for anticancer chemotherapy. Cancer Res (2011) 71(2):484–95. doi: 10.1158/0008-5472.CAN-10-1443

35. Das Thakur, M, and Stuart, DD. Molecular pathways: response and resistance to BRAF and MEK inhibitors in BRAF(V600E) tumors. Clin Cancer Res (2014) 20(5):1074–80. doi: 10.1158/1078-0432.CCR-13-0103

36. Zhang, Y, Zhou, X, Cheng, L, Wang, X, Zhang, Q, Zhang, Y, et al. PRKAA1 Promotes Proliferation and Inhibits Apoptosis of Gastric Cancer Cells Through Activating JNK1 and Akt Pathways. Oncol Res (2020) 28(3):213–23. doi: 10.3727/096504019X15668125347026

37. Zou, P, Zhang, J, Xia, Y, Kanchana, K, Guo, G, Chen, W, et al. ROS generation mediates the anti-cancer effects of WZ35 via activating JNK and ER stress apoptotic pathways in gastric cancer. Oncotarget (2015) 6(8):5860–76. doi: 10.18632/oncotarget.3333

38. Grossi, V, Peserico, A, Tezil, T, and Simone, C. p38alpha MAPK pathway: a key factor in colorectal cancer therapy and chemoresistance. World J Gastroenterol (2014) 20(29):9744–58. doi: 10.3748/wjg.v20.i29.9744

39. Bode, AM, and Dong, Z. The functional contrariety of JNK. Mol Carcinog (2007) 46(8):591–8. doi: 10.1002/mc.20348

40. Huang, J, Li, L, Lian, J, Schauer, S, Vesely, PW, Kratky, D, et al. Tumor-Induced Hyperlipidemia Contributes to Tumor Growth. Cell Rep (2016) 15(2):336–48. doi: 10.1016/j.celrep.2016.03.020

41. Zhang, J, Fan, N, and Peng, Y. Heat shock protein 70 promotes lipogenesis in HepG2 cells. Lipids Health Dis (2018) 17(1):73. doi: 10.1186/s12944-018-0722-8

42. Wang, C, Li, P, Xuan, J, Zhu, C, Liu, J, Shan, L, et al. Cholesterol Enhances Colorectal Cancer Progression via ROS Elevation and MAPK Signaling Pathway Activation. Cell Physiol Biochem (2017) 42(2):729–42. doi: 10.1159/000477890



Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Xu, Li, Fang, Zou, Song, Zhang and Cai. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 08 January 2021

doi: 10.3389/fonc.2020.598238

[image: image2]


The RNA-Binding Protein DDX18 Promotes Gastric Cancer by Affecting the Maturation of MicroRNA-21


Yeqian Zhang 1,2†, Fengrong Yu 1†, Bo Ni 1,2†, Qing Li 2, Seong-Woo Bae 3, Jong-Ho Choi 3, Han-Kwang Yang 3,4, Seong-Ho Kong 3,4* and Chunchao Zhu 1*


1 Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, 2 State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, 3 Department of Surgery, Seoul National University Hospital, Seoul, South Korea, 4 CancerResearch Institute, Seoul National University, Seoul, South Korea




Edited by: 
Fenglin Liu, Fudan University, China

Reviewed by: 
Zhengrong Li, First Affiliated Hospital of Nanchang University, China

Jun Li, St. Jude Children’s Research Hospital, United States

*Correspondence: 
Seong-Ho Kong
 seongho.kong@snu.ac.kr
 Chunchao Zhu
 zcczmy@hotmail.com 


†These authors have contributed equally to this work


Specialty section: 
 This article was submitted to Gastrointestinal Cancers, a section of the journal Frontiers in Oncology


Received: 24 August 2020

Accepted: 06 November 2020

Published: 08 January 2021

Citation:
Zhang Y, Yu F, Ni B, Li Q, Bae S-W, Choi J-H, Yang H-K, Kong S-H and Zhu C (2021) The RNA-Binding Protein DDX18 Promotes Gastric Cancer by Affecting the Maturation of MicroRNA-21. Front. Oncol. 10:598238. doi: 10.3389/fonc.2020.598238




Objectives

The noncoding RNAs (ncRNAs) play important roles in gastric cancer. Most studies have focused on the functions and influence of ncRNAs, but seldom on their maturation. DEAD box genes are a family of RNA-binding proteins that may influence the development of ncRNAs, which attracted our attention. By combining a small sample for high-throughput gene microarray screening with large samples of The Cancer Genome Atlas (TCGA) data and our cohort, we aimed to find some gastric cancer-related genes. We evaluated the clinical significance and prognostic value of candidate gene DDX18, which is overexpressed in gastric cancer tissues. To provide a theoretical basis for the development of new therapeutic targets for the treatment of gastric cancer, we investigated its effect on the malignant biological behavior of gastric cancer in vitro and in vivo, and also discuss its mechanism of action.



Methods

(i) The differential profiling of mRNA expression in five pairs of gastric cancer and adjacent normal tissues was studied by Arraystar Human mRNA Microarray. By combining this with TCGA data and our cohort, we finally filtered out DDX18, which was upregulated in gastric cancer tissues, for further investigation. (ii) The protein expression of DDX18 was detected by immunohistochemistry staining. Then the relationship between the DDX18 expression level and the clinicopathological data and prognosis was analyzed. (iii) A CCK-8 assay and colony formation assay were used to evaluate the effect of DDX18 on cell growth and proliferation in vitro. A transwell assay was also performed to examine the migration and invasion of gastric cancer cells. Cell apoptosis was analyzed by using a fluorescein isothiocyanate–annexin V/propidium iodide double-staining assay. To identify the role of DDX18 in the tumorigenic ability of gastric cancer cells in vivo, we also established a subcutaneous gastric cancer xenograft model. Coimmunoprecipitation, small RNAseq, and western blotting were performed to explore the mechanism of action of DDX18 in gastric cancer. A patient-derived xenograft (PDX) model was used to confirm the effect of DDX18 in gastric cancer tissues.



Result

(i) DDX18 was upregulated in gastric cancer tumor tissues from a TCGA database and our cohort. The expression of DDX18 was also closely related to tumor volume, Borrmann classification, degree of tumor differentiation, cancer embolus, lymph node metastasis, and TNM stage. (ii) DDX18 could promote cell proliferation, migration, and invasion and inhibit cell apoptosis in vivo and in vitro. (iii) DDX18 could promote the maturation of microRNA-21 through direct interaction with Drosha, decreasing PTEN, which could upregulate the AKT signaling pathway. (iv) The PDX model showed that DDX18 could promote the proliferation of gastric cancer tissues by means of the PTEN–AKT signaling pathway.



Conclusions

(i) DDX18 can be treated as a molecular marker to assess the prognosis of patients with gastric cancer. (ii) DDX18 could be a potential therapeutic target in gastric cancer.





Keywords: gastric cacner, ncRNA (noncoding RNA), DEAD box family, PTEN (phosphatase and tensin homolog deleted on chromosome 10), Drosha-independent miRNA



Introduction

As the third most deadly cancer worldwide, gastric cancer is a serious threat to human health (1). While early gastric cancer has a good cure rate, advanced or late gastric cancer often has a poor prognosis. Therefore, it is very important to find specific biomarkers to evaluate and predict the occurrence and metastasis of gastric cancer and assess treatments to improve the diagnosis and treatment of this disease.

An increasing number of studies have shown that noncoding RNAs (ncRNAs) such as microRNAs and long noncoding RNAs (lncRNAs) play an important role in the occurrence and development of gastric cancer. However, these studies have mainly focused on the regulation and influence of microRNAs and lncRNAs on downstream genes. How ncRNAs are regulated is relatively unknown.

The DDX (DEAD-box gene) family is a family of RNA helicases that was first proposed by Patrick Linder in 1989 (2, 3). The DEAD box has nine conserved regions (Q, I, Ia, Ib, II–VI) and region II, which includes D (Asp), E (Glu), A (Ala), and D, which has been recognized as a characteristic sequence. These proteins are obtained by hydrolysis of ATP and then release RNAs to regulate cellular processes such as translation initiation, nuclear and mitochondrial splicing, and ribosome and splice packaging. Previous studies have suggested that the DDX family members are expressed abnormally in tumor tissues, which is related to tumor occurrence, development, metastasis, and invasion (4–6).

The expression levels of mature microRNAs are mainly determined by a critical rate-limiting step: the processing of premature microRNAs (pri-microRNAs and pre-microRNAs) (2). The Drosha microprocessor, whose core components are Drosha and DGCR8, functions first in microRNA maturation (7). Nevertheless, neither Drosha nor DGCR8 can recognize the indicated pri-microRNAs with any specificity (8). Regulatory components are needed in the microprocessor to offer specificity for recruiting and processing pri-microRNAs, accounting for the finding that the same primary transcript could generate diverse expression levels of mature microRNA.

In this study, we first used gene chip technology to explore the differentially expressed genes in gastric cancer. Further analysis of the clinical and pathological data identified the high expression of DDX18 in gastric cancer tissues. We performed cell function experiments to study the role of DDX18 in gastric cancer. We also explored its molecular mechanism by means of molecular cytology technology and animal experiments to elucidate DDX18 and to determine its role in the occurrence and development of gastric cancer.



Materials and Methods


Patients and Tissue Samples

Thirty-seven pairs of fresh gastric cancer and control normal gastric tissue specimens were obtained during surgery carried out on 37 patients from January 2013 to August 2014. All 37 patients underwent resection of primary gastric cancer at Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. Resected cancer tissues and paired noncancerous tissues were immediately cut and frozen in liquid nitrogen, and kept at –80°C until RNA and DNA extraction for quantitative real-time polymerase chain reaction (PCR).

For the assessment of immunoreactivity and the prognostic value of DDX18 in gastric cancers, the inclusion criteria for patients with gastric cancer were as follows: (i) a distinct pathological diagnosis of gastric adenocarcinoma; (ii) no radiotherapy, chemotherapy, or other anticancer therapies prior to surgery; (iii) primary tumor resection, including radical gastrectomy and palliative gastrectomy; and (iv) availability of complete clinicopathological and follow-up data.

A total of 585 paraffin-embedded tissue samples that met the above criteria were collected from patients with gastric cancer at the Department of Gastrointestinal Surgery, Renji Hospital, from January 2006 to December 2011 for tissue microarray construction and immunohistochemistry (IHC) staining. The overall survival (OS) is calculated from the date of tumor resection until death.



Cell Lines and Cell Cultures

Cells from the human gastric cancer cell lines SGC-7901, NCI-N87, HGC27, MGC-803, BGC-823, and AGS were purchased from the Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China. All the cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Invitrogen, Carlsbad, CA, USA). The medium contained 10% fetal bovine serum and 1% penicillin/streptomycin. All cells were incubated in a cell incubator under 5% CO2 at 37°C.



Lentivirus Transfection

Genomeditech (Shanghai, China) assisted in the design and production of DDX18 short hairpin RNA (shRNA).

Six-well plates were prepared and inoculated with the appropriate gastric cancer cells, with the adherent cells occupying about 50% of the total area of the plates. The appropriate amount of lentivirus was added to each well according to the multiplicity of infection value of gastric cancer cells. The cells were screened with antibiotics recommended by Genomeditech, and the transfection efficiency was measured by fluorescence quantitative PCR or western blot. The target sequences of DDX18 were: sh-1, sense: 5′–3′, GCAGCGGAACCTAAAGTTT; sh-2, sense: 5′–3′, GCATACCTATGGCTTGATA; sh-control, sense: 5′–3′, TTCTCCGAACGTGTCACGT.



RNA Extraction and Quantitative Real-Time PCR

Total RNA was extracted with Trizol and reverse-transcribed into complementary DNA (cDNA) by PrimeScript™ (Takara Biomedical Technology, Beijing, China). Using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the internal reference, real-time PCR analysis was conducted using an Applied Biosystems 7500 Real-Time PCR System (biological system), and the relative expression level of the target genes was calculated by the 2–ΔΔCt method. The primer sequences were: DDX18: 5′–3′, F-ATGTCACACCTGCCGATGAAA, R-CCCTGAAACTTTAGGTTCCGC; GAPDH: 5′–3′, F-GGAGCGAGATCCCTCCAAAAT, R-GGCTGTTGTCATACTTCTCATGG.



Western Blotting

Gastric cancer cells were lysed by radioimmunoprecipitation assay (RIPA) buffer (Beyotime, Beijing, China) and protease inhibitors (Roche, CA, USA). Then, 10% sodium dodecyl sulfate glue was used for electrophoresis and electrorotation to transfer the protein to the nitrocellulose (NC) membrane. The NC membrane was blocked for 1 hour at room temperature in Tris-buffered saline containing 5% skimmed milk. After incubation with primary and secondary antibodies, electrochemiluminescence was used to obtain bands (antibodies: DDX18 Abcam ab70527; P-AKT cell signaling SER473; AKT 10174-2-AP; PTEN Abcam ab32199).



Coimmunoprecipitation

We linked three labels (FLAG-DDX18, HA-Drosha, His-DGCR8) to the indicated proteins. The prepared cells transfected with FLAG-DDX18, HA-Drosha, and His-DGCR8 plasmids were collected for nuclear protein extraction followed by coimmunoprecipitation. A nuclear protein extraction kit (P0027, Beyotime) was used according to the manufacturer’s protocol. In brief, alternate vortexing and centrifugation combined with the extraction kit were used to separate the total proteins into nuclear and cytoplasmic proteins. At the same time as the cell nuclear proteins were prepared, protein A/G magnetic beads (B23201; Bimake, Shanghai, China) were preincubated on a spinning wheel at 4°C for 30–60 minutes and washed three times with PBS. The antibody complex was then suspended in the nuclear protein solution. After the protein solution was fully combined with the magnetic bead–antibody complex, the extraction buffer was washed three times. Magnetic separation was performed by heating. The immunoprecipitate was collected and western blotting was performed.



Cell Proliferation

The proliferation capacity of gastric cancer cells was determined by cell count kit 8 (CCK-8; Beyotime, China). After transfection with DDX18 shRNA, gastric cancer cells were inoculated in 96-well plates, with about 2000 cells per well. Under dark conditions, each chamber was incubated for 1 hour with 10 µl CCK-8 reagent and the optical density was measured at a wavelength of 450 nm with a SpectraMax Plus 384 (Molecular Devices). Six-well plates were used to lay about 500 gastric cancer cells in each well, and then the cells were allowed to grow for about 2 weeks. After washing twice with phosphate-buffered saline (PBS), cells were fixed in 4% paraformaldehyde for 15 minutes, and 0.5% crystal violet staining was performed for a further 15 minutes. The number of gastric cancer cell clones in different groups was calculated.



Detection of Apoptosis

For the cell apoptosis assay, 20 × 105 cells per well were cultured under serum deprivation in six-well plates. Adherent cells were detached with 0.25% trypsin without ethylenediaminetetraacetic acid in 1 × PBS. Cells were harvested in complete RPMI 1640 and centrifuged at 1000 r.p.m. for 5 minutes. Each batch of cells was washed with 1 × PBS and stained with 50 mg/ml propidium iodide (PI) and annexin V–fluorescein isothiocyanate according to the manufacturer’s instructions. The percentage of annexin V (+) and PI (–) cells was analyzed by flow cytometry.



Transwell Assay

A transwell chamber was prepared with 600 µl serum-free RPMI 1640 medium added to each well, followed by 5 × 105 cells. The culture medium containing 20% serum was used in the lower layer. After 24 hours, the chamber was washed twice with PBS, 4% paraformaldehyde was used to fix the cells for 15 minutes, crystal violet was used for staining for 15 minutes, and the number of cells passing through the chamber was counted under a microscope.



Luciferase Reporter Gene

The DDX18 gene, PTEN gene 3′-untranslated region (UTR) target clone (CmiT010099-MT05), and negative control clone (CmiT000001-MT05) were purchased from GengCopia Company, USA. For the secretory double luciferase reporter gene analysis, 293T cells were inoculated in six-well plates and cotransfected when the cell confluence reached 50%. The culture medium was changed to whole medium 24 hours after transfection and incubation continued. The supernatant of the cell culture solution was carefully collected 48 hours after transfection and packed into two tubes, each containing 200 μL, which was used for the detection of Gaussia luciferase (GLuc) and secretory alkaline phosphatase (SeAP), respectively. The supernatant used to detect SeAP was placed in a water bath at 65°C for 15 minutes; the working solution of 1 × glucose was prepared and incubated in the dark at room temperature for 25 minutes; the working solution of 1 × SeAP was prepared and incubated in the dark at room temperature for 10 minutes; 10 µl of supernatant and 100 μl of the corresponding working solution were added to each well of a 96-well plate, and multiples of three were used in each group. After incubation at room temperature for 1–10 minutes, the fluorescence was determined using a microplate reader. For data processing, with the SeAP fluorescence reading as the internal reference, the ratio of the GLuc fluorescence reading to the SeAP fluorescence reading was compared among the groups, and the mean values of three reading plates and three complex holes were taken.



Immunohistochemistry and Staining Evaluation

Paraffin sections were dewaxed with xylene, rehydrated by fractional ethanol, and antigens were extracted. The sections were blocked with 10% bovine serum albumin (BSA), incubated with primary antibody for 1 hour, and then incubated with secondary antibody for 30 minutes at room temperature. DAPI (4′,6-diamino-2-phenylindole hydrochloride; AppliChem, A4099) was used to stain the nucleus. An automatic fluorescence microscope (Nikon) was used for image observation and analysis. The tissue sections were assessed and graded by two independent investigators who were unaware of the clinicopathological factors. The staining intensity was 0 (negative), 1 (weak), 2 (medium), and 3 (strong).The degree of staining was stratified as 0 (0%), 1 (1–25%), 2 (26–50%), 3 (51–75%), and 4 (76–100%), defined as the percentage of positive staining area in the total tumor invasion area. The final score of DDX18 expression was 0–7. The samples were divided into two groups: low DDX18 expression (0–3 points; IHC-0) and high DDX18 expression (4–7 points; IHC-1,2).



Cellular Immunofluorescence

After immersion in 100% alcohol, alcohol lamp burning, and ultraviolet irradiation, a glass slide was placed into a six-well plate, and gastric cancer cells were spread on the glass slide. The cells were allowed to grow to 30–50% of the area of the glass slide on the second day. Cells were fixed with 4% paraformaldehyde for 15 minutes and treated with 0.5% Triton X-100 for 1 minute. Nonspecific binding sites were blocked by 1% BSA. The primary antibody was incubated for 1 hour at room temperature and the secondary antibody for 30 minutes, and then treated with DAPI for 30 minutes for nuclear staining. Observation and analysis were conducted by automatic fluorescence microscope (Nikon).



Animal Models

To construct the subcutaneous tumor model of nude mice, 5 × 106 gastric cancer cells were injected into the left axilla of each nude mouse. After 4 weeks, the nude mice were killed, the subcutaneous tumor was removed, and its weight and volume were measured; 4% paraformaldehyde was used to store the tumor. All animal experiments were approved by the Ethics Committee of Renji Hospital.



Statistical Analysis

SPSS 22.0 (SPSS Inc., Chicago, IL, USA) was used to analyze and calculate all the data, and the value was the mean ± SD. Student’s t-test and the chi-squared test were used in the study. The Cox proportional hazard model was used for univariate and multivariate analysis to understand the factors affecting survival. P < 0.05 was considered statistically significant.




Results


DDX18 Is Outstanding in Gastric Cancer Gene Chip Analysis

The mRNA expression profile of the known protein in five cases of gastric cancer and adjacent tissues was analyzed by an Arraystar Human mRNA Microarray v2.0 gene chip. The GAPDH gene was used as the internal control, and the fold difference between the different groups of >2 or <–2 with P < 0.05 was used for standard screening. In all the genes upregulated, five genes with the highest fold change were obtained, which were TWIST2, MET, HOXA13, DDX18, and PRND (Figure 1A).




Figure 1 | DDX18 is highly expressed in gastric cancer. (A) DDX18 expression on a gene chip. (B) DDX gene family expressions in The Cancer Genome Atlas (TCGA) database.





Differential Expression of DDX18 in gastric cancer tissues

First, we assessed five pairs of gastric cancer tissues and matched paracancerous tissues by using gastric cancer gene chip technology. We used a fold change >2 and P < 0.05 as the inclusion criteria, and DDX18 attracted our attention among the top differentially expressed genes (Figure 1A). In other words, the DDX family of genes caught our attention. Combining this with The Cancer Genome Atlas (TCGA) database, we focused on DDX18 as our target of interest (Figure 1B). Next, we examined DDX18 in 22 pairs of fresh gastric cancer tissues from a large sample set by quantitative PCR (Figure 2B) and western blot analyses (FigureS 2C, D), which confirmed that DDX18 was specifically highly expressed in gastric cancer tissues (P < 0.05). Similar results were verified in the TCGA database (Figure 2A).




Figure 2 | DDX18 expressions in gastric cancer tissues. (A) DDX18 expressions from The Cancer Genome Atlas (TCGA). (B) DDX18 mRNA expression in 22 paired gastric cancer tissues. (C, D) DDX18 protein expressions in 10 paired gastric cancer tissues. (E) DDX18 expression by immunohistochemistry.



Next, we detected the expression of DDX18 in 585 cases of gastric cancer by IHC. IHC-0 indicated negative DDX18 expression, and IHC-1 and IHC-2 indicated positive DDX18 expression, according to immunohistochemical grade (Figure 2E). Subsequently, we analyzed the relationship between the DDX18 protein level and the clinicopathological features of gastric cancer in 585 cases of gastric cancer. The results of univariate analysis showed that positive DDX18 protein expression was present in 65.0% (380/585) of gastric cancer cases. The expression level of DDX18 was closely related to tumor location, tumor size, Borrmann classification, differentiation, intravascular tumor thrombus formation, nerve invasion, depth of invasion, lymph node metastasis, and TNM staging but not to age or gender.

All patients were divided into the DDX18 high-expression group (a total of 380 patients with IHC-1 and IHC-2) and the DDX18 low-expression group (a total of 205 patients with IHC-0), which were divided by DDX18 immunohistochemistry. The OS rates of the patients in the low-expression group were 90.6%, 76.7%, and 67.8%. The OS rates of the patients with high expression were 88.9%, 63.1%, and 54.7%. The difference between the two groups in the first stage of gastric cancer was not significant, but in stage II and stage III gastric cancer significant differences were observed (Figures 3A–D).




Figure 3 | Survival curve of DDX18. (A) Overall survival (OS) curve of DDX18. (B) Survival curve of patients with TNM stage (I) (C) Survival curve of patients with TNM stage II. (D) Survival curve of patients with TNM stage III.



The results showed that the degree of tumor differentiation, lesion site, Borrmann classification, tumor size, intravascular thrombosis, nerve invasion, depth of invasion (T stage), lymph node metastasis (N stage), and DDX18 expression level had significant effects on the OS rate of 585 patients with gastric cancer, and the difference was significant (P < 0.05) (Table 1). The depth of invasion (T stage), lymph node metastasis (N stage), and DDX18 expression were independent prognostic risk factors (Tables 2 and 3).


Table 1 | Association of DDX18 expression with clinicopathological characteristics in 585 patients with gastric cancer.




Table 2 | Univariate analysis of overall survival in 585 patients with gastric cancer.




Table 3 | Multivariate Cox regression analysis of overall survival in 585 patients with gastric cancer.





Impact of DDX18 on Gastric Cancer Cell Lines

We detected the expression of DDX18 in gastric cancer cell lines (Figure 4A). Then we designed two target sequences of shDDX18, and a mixture of two shRNAs was used in the following experiments. The proliferative activity of the AGS-sh-DDX18 cells and the control cells was compared by the CCK-8 method. The OD450 values of each group were detected for five consecutive days. After 5 days, DDX18 knockdown significantly decreased the proliferation rate of tumor cells by 63.0% (P < 0.001) (Figure 4B). Subsequently, we compared the proliferative activity of the SGC-7901-OE cells and the control cells and found that exogenous DDX18 could significantly promote the growth of the SGC-7901 cells. The difference was significant (P < 0.001) (Figure 4C).




Figure 4 | Impact of DDX18 on gastric cancer cell lines. (A) DDX18 expression in gastric cancer cell lines. (B) DDX18 knockdown decreased the proliferation of gastric cancer cells. (C) DDX18 overexpression promotes the proliferation of gastric cancer cells. (D) DDX18 knockdown decreases clonal formation of gastric cancer cells. (E) DDX18 knockdown decreases invasion of gastric cancer cells. (F) DDX18 knockdown increases the apoptotic rate of gastric cancer cells. PI, propidium iodide. (G) DDX18 overexpression decreases the apoptotic rate of gastric cancer cells. PI, propidium iodide.



We found that the interference group’s ability to form clones (82.3 ± 5.31) was significantly lower than that of the control group (289.4 ± 11.2) (P < 0.01) (Figure 4D). The results demonstrated that DDX18 has a significant effect on the proliferation of individual adherent cells.

The transwell results showed that the number of penetrating cells in the control group was 83.6 ± 12.5 cells/high-power field (HPF), which was significantly higher than that of the interference group (26.6 ± 4.3 cells/HPF). The migration of the AGS cells was significantly weaker than that of the control group (P < 0.01) after stable knockdown of DDX18 gene expression (Figure 4E). Similar results were found in the BGC-823 cell line, which was another gastric cell line with high DDX18 expression (Figure S1).

In the cell apoptosis experiment, we used serum-free culture to induce apoptosis to study the effects of DDX18 on the absence of a nutrient supply. This enabled us to study the antiapoptotic ability.

The results showed that the average apoptotic rate of the interference group was 27.58 ± 3.63% compared with 7.03 ± 1.44% for the control group. The proportion of apoptotic cells increased significantly (P < 0.01), suggesting that interference with the DDX18 gene in the AGS cells significantly reduced the antiapoptotic ability (Figure 4F). Similar results showed that the average apoptosis rate of the overexpression group was 16.09 ± 2.24% after 48 hours of starvation, which was significantly lower than that of the control group (28.64 ± 4.33%, P < 0.01), suggesting that the antiapoptotic ability of the SGC-7901 cells was significantly enhanced after overexpression of the DDX18 gene (Figure 4G).



Interaction of DDX18 and Drosha

In a previous study, we found that DDX18 is highly expressed in gastric cancer. Cell and animal experiments have confirmed that DDX18 promotes the proliferation of gastric cancer cells. However, the mechanism that DDX18 exerted in this process remains unclear: DDX families belong to a family of RNA helicases with conserved DEAD domains, which have been found to play a role in various tumors. In addition to the original functions of DDX18 and the DDX family, we speculated that DDX18 might be related to the formation and maturation of RNAs. Therefore, we hypothesized that DDX18 might be related to the maturation of microRNAs. Next, we constructed a DDX18-KD cell model and detected the expression of microRNAs after DDX18 knockdown by small RNA-seq. We found that the expression of microRNA-21 in the DDX18-KD cell lines decreased significantly (Figure 5C). Combined with the detection of 22 clinical samples, the results showed that the expression of microRNA-21 was positively correlated with DDX18 expression (Figure 5B). Therefore, the results indicated that DDX18 can promote the expression of microRNA-21.




Figure 5 | Interaction of DDX18 and Drosha. (A) DDX18 interacts with Drosha but not DGCR8. (B) The expression of microRNA-21 is correlated with that of DDX18. (C) MicroRNA expressions in the DDX18-KD cells. (D) DDX18 could affect the expression of microRNA-21. (E) MicroRNA-21 could bind to the 3′-untranslated region of PTEN and lead to degradation.



A common pathway exists for the maturation of microRNAs, i.e., pre-microRNAs sheared and matured through the action of Drosha and DGCR8. However, the expression of microRNAs differed in different cells. Therefore, there must be molecules that can specifically recognize and bind pre-microRNAs and affect their expression levels. Combined with the above research, we found a relationship between DDX18 and microRNA-21. Next, through coimmunoprecipitation experiments, we found that DDX18 could interact with Drosha but could not interact with DGCR8 (Figure 5A). Therefore, we propose that DDX18 could affect the expression of microRNA-21 by interacting with Drosha (Figure 5D).



Confirmation of the DDX18→microRNA-21→PTEN/AKT Pathway

In a previous study, we identified the role of DDX18 in gastric cancer cells and confirmed that DDX18 could promote the expression of microRNA-21. Therefore, the mechanism of action of microRNA-21 in gastric cancer cells was examined next. By analyzing the sequence of microRNA-21, we speculated that microRNA-21 might bind to the 3′-UTR of PTEN, promoting the degradation of PTEN mRNA and affecting related pathways downstream.

To further confirm the direct effect of miR-21-3p and PTEN, we used the dual luciferase gene reporter system to verify that PTEN was the target gene for miR-21-3p. The following plasmids were cotransfected into 293T cells: mimic miR-21-3p + PTEN 3′-UTR target clone plasmid, mimic NC + PTEN 3′-UTR target cloning plasmid, mimic miR-21-3p + negative control fluorescein enzyme plasmid, and mimic NC + negative control luciferase plasmid. The results showed that the miR-21-3p mimic could significantly inhibit the activity of luciferase (P < 0.01) and confirmed the direct effect of miR-21-3p and the PTEN 3′-UTR (Figure 5E).

We performed western blotting to confirm that DDX18 affects the PTEN/AKT signaling pathway by controlling the maturation of microRNA-21. We added microRNA-21 mimics, microRNA-21 inhibitor, and mTOR inhibitor to the AGS-sh-DDX18 cell line and finally added microRNA-21 mimics and mTOR inhibitor to detect the expression levels of DDX18, PTEN, p-AKT, and total AKT. The results showed that the expression of PTEN was inhibited again after readministration of the microRNA-21 mimics in the AGS cell line, and the phosphorylation of AKT was enhanced (Figure 6A).




Figure 6 | The DDX18→microRNA-21→PTEN/AKT pathway. (A, B) DDX18 affects the PTEN/AKT signaling pathway by controlling the maturation of microRNA-21. (C) DDX18 can also affect the expression of PTEN by regulating microRNA-21, which in turn affects the phosphorylation of AKT and regulates the AKT signaling pathway. (D–G) DDX18 interference strongly inhibited the AGS cell subcutaneous tumorigenic ability in vivo. *P < 0.05, ***P < 0001.



Subsequently, we added microRNA-21 mimics, microRNA-21 inhibitor, and mTOR inhibitor to the SGC-7901-OE cell line that had been transfected with DDX18 and finally added microRNA-21 inhibitor and mTOR inhibitor to detect the expression levels of DDX18, PTEN, p-AKT, and total AKT (Figure 6B). The results showed that the inhibition of PTEN was blocked by the addition of the microRNA-21 inhibitor, and the phosphorylation level of downstream AKT was significantly decreased. Therefore, DDX18 can indeed affect the expression of PTEN by regulating microRNA-21, which in turn affects the phosphorylation of AKT and regulates the AKT signaling pathway. This result confirms our hypothesis (Figure 6C).



Effect of DDX18 on Tumor Formation in Vitro

AGS-sh-DDX18 cells and control AGS-sh-NC cells were used to induce subcutaneous tumor formation in the two groups of nude mice for 3 weeks. None of the mice in the two groups died during the experimental period. After 3 weeks of observation, the tumor-bearing nude mice were sacrificed, and the subcutaneous tumors were dissected. When the transplanted tumor was peeled from the skin, the tumor surface had a complete envelope with a clear boundary and slight adhesion to the surrounding tissue. We found that the average weight of the subcutaneous tumors in the control group was 1.57 ± 0.56 g, which was significantly different from that in the intervention group (P = 0.0003) and the interference group (0.56 ± 0.31 g). DDX18 interference strongly inhibited the AGS cell subcutaneous tumorigenic ability in vivo, which was consistent with the results of the in vitro experiments (Figures 6D–G).

Then we detected the influence of DDX18 on the patient-derived xenograft (PDX) models. PDX models with low DDX18 expression were implanted in the mice. From the third day, group 1 was injected with PBS every day, while the corresponding group 2 was injected with the PTEN inhibitor SF1670. After 21 days, we found that the injection of SH1670 could effectively promote tumor growth (Figure 7A). IHC detection showed that, with the injection of SF1670, PTEN expression was significantly decreased, while the expression of P-AKT was reactivated (Figures 7B, C).




Figure 7 | The effect of DDX18 on gastric cancer patient-derived xenograft (PDX) models. (A) The growth curve of DDX18 on PDX models by injection of SF1670. (B, C) Immunohistochemistry of the effect on PDX models by injection of SF1670.






Discussion

Gastric cancer is one of the most common malignant tumors worldwide. Data from the World Health Organization have shown that the number of new cases of gastric cancer ranked fifth among all malignant tumors, following lung cancer, breast cancer, colorectal cancer, and prostate cancer (1). In addition to the high incidence of gastric cancer, the mortality rate of gastric cancer ranks third among all malignant tumors worldwide because of its high degree of malignancy, hidden early symptoms, and relatively low sensitivity to radiotherapy and chemotherapy. Gastric cancer poses a serious threat to the lives and health of people worldwide. This disease is a major burden to patients and families and also consumes many public health resources. Therefore, further study of the relationship between the clinicopathological characteristics of gastric cancer and the prognosis of patients, exploration of effective treatment methods, and comprehensive improvements in the overall level of diagnosis and treatment of gastric cancer are urgently needed.

In our study, we first discussed the differential expression of DDX18 in gastric cancer tissues and adjacent tissues, identifying the specific high expression of DDX18 in the cancer samples. Combined with the analysis of clinical prognosis data, we found that DDX18 was positively correlated with the degree of malignancy of gastric cancer and could significantly affect the prognosis of patients with gastric cancer. Further analysis showed that DDX18 could be applied as an independent risk factor for the prognosis of gastric cancer.

The role of ncRNAs, represented by microRNAs, in tumors, especially in gastric cancer, has been extensively studied in recent years (9–13). MicroRNAs can promote the degradation of RNA by targeting the 3′-UTR of the corresponding RNA, which can be regulated at the post-transcriptional level (14). At present, the maturation process of microRNAs is relatively clear. Pre-microRNAs can be further matured through the shearing effect of Drosha and eventually become mature microRNAs (15). However, the regulation of the formation, maturation, and expression of microRNAs is still unknown. The RNA helicase family has RNA helicase activity. The protein family represented by the DDX family is an important part of this group.

Certain members of the DEAD-box helicase (DDX) family have been defined as cofactors to the Drosha complex, which controls the post-transcriptional maturation of a specific group of microRNAs. Drosha is an RNase III enzyme, which binds and cleaves double-stranded RNA without any sequence specificity (15). It is known that one nucleotide substitute of pri-microRNA in the stem–loop structure would inhibit Drosha-mediated modification, suggesting that the stem–loop structure should be critical for the enzymatic activity of Drosha (16). The Drosha-mediated processing depends on the unique complexity in the sequence or structure of microRNA, even though all pri-microRNAs share some common features on one or more stem–loop structure. Some RNA-binding proteins, such as DDX18, serve as good candidates to identify this specificity through their selective interaction with targeted pri-microRNAs. Furthermore, Drosha harbors no helicase activity compared with another RNase III endonuclease, Dicer, which is also involved in pre-microRNA processing (17). Taken together, potential interaction between DDX18 and Drosha not only confers microRNA-binding specificity but also assists in the generation of a desirable stem–loop structure for the indicated pri-microRNAs, followed by efficient cleavage.

In this study, we first found that DDX18 was associated with the malignancy of gastric cancer. Based on the clinical prognosis of patients, we confirmed that DDX18 is abnormally highly expressed in patients with advanced gastric cancer and is closely related to a poor prognosis. Therefore, we speculated that DDX18 may play an important role in the development and progression of gastric cancer. Furthermore, we performed in vivo and in vitro experiments to detect the function of DDX18 in gastric cancer. Our findings showed that DDX18 promoted tumor growth. Knockdown of DDX18 also substantially decreased gastric cancer cell migration and invasion. Further studies showed that DDX18 could regulate the maturation of microRNA-21 and then affect the function of the downstream PTEN/AKT signaling pathway. Both microRNA-21 and the PTEN/AKT signaling pathway have already been proved to play an important role in gastric cancer (18–20).

In a previous study on microRNAs, we focused on the downstream target genes and the functions of microRNAs but did not examine the upstream regulation of microRNA expression and maturation. This study provides a new direction for DDX family and microRNA research. Moreover, we provide a preliminary experimental basis and theoretical basis for the future study of DDX18 as a new target for the treatment of gastric cancer.
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Background

In recent five years, reports regarding albumin-to-globulin ratio (AGR) and the survival of gastric cancer (GC) have emerged rapidly, yet their association remains controversial. This meta-analysis was aimed to provide an insight into the prognostic significance of pretreatment AGR in GC.



Methods

PubMed, Embase, Cochrane library, Web of Science, WanFang, China National Knowledge Infrastructure (CNKI) and VIP databases were searched for relevant studies, from inception to September 30, 2020. Individual hazard ratios (HRs) with their 95% confidence intervals (CIs) were combined by Stata 12.0 software to evaluate the association between pretreatment AGR and overall survival (OS) and disease-free survival/progression-free survival (DFS/PFS).



Results

A total of 8,305 patients with GC from 12 studies were included for further analysis. Pooled analyses indicated that low AGR was closely associated with worse OS (HR = 1.531, 95% CI: 1.300–1.803, P < 0.001) and worse DFS/PFS (HR = 2.008, 95% CI: 1.162–3.470, P = 0.012) in GC patients. Moreover, subgroup analyses demonstrated that the association between low AGR and worse OS remained constant despite variations in country, tumor stage, cut-off value, cut-off selection and treatment method.



Conclusion

AGR could act as an efficient prognostic indicator for GC, and that low pretreatment AGR predicts poor prognosis in GC.
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Introduction

Gastric cancer (GC) is the third leading cause of cancer-related deaths globally, with 784,000 deaths in 2018 (1). Its frequently advanced stage at diagnosis leads to high mortality and poor prognosis. At present, the generally accepted prognosis indicators for GC are TNM stage, tumor differentiation and tumor location. However, patients with similar pathological features often presented diverse survival outcomes. Although the prognostic significance of certain inflammatory markers (2, 3) and tumor markers (4, 5) in GC have already been certified, we need to identify more prognostic markers that are inexpensive to test and easily available before treatment for enabling precision prediction.

Recently, the use of albumin and globulin as tumor prognostic markers have aroused great interest among scholars, due to close relations with the nutritional status and inflammatory responses of cancer patients. Albumin-to-globulin ratio (AGR) which is calculated as AGR = albumin/(total proteins−albumin) has been considered as a possible effective combination of two prognosis indicators. Previous pooled analyses indicated that lower AGR was associated with poorer survival in digestive system cancers (6), solid tumors (7), and even human cancers (8). However, regarding GC, no consensus has been reached on the role of AGR as an indicator for predicting prognosis based on the articles recently published. Thus, it is necessary to perform a meta-analysis of relevant studies to clarify whether AGR can predict the survival of GC, so as to provide more convincing evidence to confirm its prognostic value.



Materials and Methods


Search Strategy

A comprehensive electronic search was performed in seven databases, including four databases in English (PubMed, Embase, Cochrane library and Web of Science) and three databases in Chinese (WanFang, China National Knowledge Infrastructure (CNKI), VIP). The censor date for the present meta-analysis was up to September 30, 2020. The search terms were: (1) “albumin to globulin ratio” or “albumin to globulin” or “albumin globulin ratio” or “albumin/globulin” or “albumin and globulin” or “AGR”; (2) “gastric cancer” or “gastric neoplasm” or “stomach cancer” or “stomach neoplasm” or “cancer of stomach” or “gastric carcinoma”. No search restrictions were implemented. References from relevant literature were examined manually for potentially eligible studies.



Inclusion and Exclusion Criteria

The criteria for eligible studies in our meta-analysis were as follows: (1) GC should be diagnosed by pathology; (2) serum albumin and globulin were measured before treatment; (3) the prognostic value of AGR for overall survival (OS), disease-free survival (DFS) or progression-free survival (PFS) in GC was explored; (4) the hazard ratio (HR) with 95% confidence interval (CI) could be extracted directly or indirectly; (5) English or Chinese articles with available full-text.

Candidate studies would be excluded according to the criteria below: (1) case reports, abstracts, reviews, comments and letters; (2) patients were not separated into high AGR and low AGR groups; (3) no sufficient data was presented to calculate HR; (4) an overlap among survival data; (5) non-human research.



Data Extraction and Quality Assessment

Two independent inspectors (ZY and YZ) evaluated the eligibility of every candidate study by scanning the title/abstract and full-text in turn. The following information was independently extracted from the selected literature by two inspectors (ZY and GW): first author, year of publication, country, study duration, study design, sample size, tumor stage, cut-off value for AGR, cut-off selection, treatment method, follow-up time, and HR for OS/DFS/PFS with 95%CI. We designated the extraction order of HR as follows: multivariate analysis > univariate analysis > Kaplan-Meier survival curve. If only Kaplan-Meier curve could be obtained, survival data was extracted by Engauge Digitizer 4.1 to calculate HR. During the aforementioned process, disagreements between two inspectors were settled by consulting with the senior reviewers (LT).

We used Newcastle-Ottawa Scale (NOS) to score the quality of selected studies from 3 items: selection, comparability and outcome. A study with 6 stars or more was considered to be a high-quality study which was acceptable.



Statistical Analysis

For this meta-analysis, all statistical procedures were completed using Stata 12.0 software (Stata Corp., College Station, TX, USA). The associations of low pretreatment AGR with OS and DFS/PFS were assessed by combining HRs with 95% CIs. Regarding high AGR as reference, an HR > 1 represented a negative effect of low AGR on survival outcomes. I2 statistics were used to measure heterogeneity among studies. A random-effect model was applied when substantial heterogeneity existed (P < 0.1 and I2 > 50%) (9). Otherwise, a fixed-effect model was selected. A sensitivity analysis was performed to assess whether each single study had a dramatic impact on the combined HR. Meta-regression analyses based on possible confounders were conducted to account for the heterogeneity. The publication bias was assessed from Begg’s funnel plot and Egger’s test. If a significant publication bias existed, “trim and fill method” (10) was used to adjust its potential effect. P < 0.05 was considered significant.




Results


Literature Search

According to the aforementioned search strategy, a total of 662 articles were yielded. After removing 195 duplicates, 467 articles were reviewed by scanning the title/abstract. Full-text analysis was performed on 17 potentially eligible studies, and 12 cohort studies (11–22) were finally applied to our comprehensive meta-analysis after excluding four with unavailable data and one that did not focus on GC (Figure 1).




Figure 1 | Flow diagram of the study selection.





Study Characteristics

These 12 cohort studies, published between 2015 and 2020, included 8,305 patients with GC of TNM stage I–IV who underwent surgery and/or chemotherapy. Eleven of the 12 cohorts were retrospective, and only one (11) was prospective. The sample sizes of these cohorts ranged from 157 to 3,266. The cut-off value for AGR ranged from 1.14 to 1.93. All studies reported the association between AGR and OS, and four (11, 13, 14, 19) reported the association between AGR and DFS or AGR and PFS. Ten of studies were published in English, two (12, 16) in Chinese. The Newcastle-Ottawa Quality Score was 6–9. The summary of all cohorts was detailed in Table 1.


Table 1 | The characteristics of included cohort studies.





The Association Between Low Albumin-to-Globulin Ratio and Overall Survival

Among the 12 studies, nine reported positive results of the associations between low pretreatment AGR and worse OS, and three (16, 19, 21) showed negative results. Ten of studies provided HRs for OS in multivariate analyses, while the rest two HRs were extracted from univariate analysis and survival curve respectively (16, 20). Pooled analysis of all cohorts revealed that OS was obviously shorter in patients with low pretreatment AGR than those with elevated AGR (HR = 1.531, 95% CI: 1.300–1.803, P < 0.001; Figure 2) by using a random-effect model due to substantial heterogeneity (I2 = 76.8%, P < 0.001).




Figure 2 | Forest plot of hazard ratios (HRs) for overall survival (OS) in total patients.



The sensitivity analysis under a random-effect model showed that no single study dramatically affected the robustness of the pooled result across studies (Figure 3). Subsequently, meta-regression analyses were performed to investigate the origin of heterogeneity. We found that treatment method was a significant heterogeneous confounder (P = 0.022), while country, sample size, tumor stage and cut-off value were not (Table 2). The Galbraith plot suggested that the majority source of heterogeneity in all the selected studies was Xue’s study (13), and the other four studies presented slight heterogeneity (Figure 4).




Figure 3 | Sensitivity analysis for overall survival (OS).




Table 2 | Meta-regression analyses for overall survival.






Figure 4 | Galbraith plot for overall survival (OS).



We performed subgroup analyses stratified by five factors (country, tumor stage, cut-off value, cut-off selection and treatment method), and the outcomes were listed in Table 3. Both in Chinese and non-Chinese studies, the association between low AGR and worse OS remained constant (Figure 5A). Similarly, we obtained consistent results in the other four subgroup analyses (Figures 5B–E).


Table 3 | Subgroup analyses for overall survival.






Figure 5 | Forest plot of hazard ratios (HRs) for overall survival (OS). (A) Subgroup analysis stratified by country; (B) Subgroup analysis stratified by tumor stage; (C) Subgroup analysis stratified by cut-off value; (D) Subgroup analysis stratified by cut-off selection; (E) Subgroup analysis stratified by treatment method.



An obvious publication bias was observed by the asymmetric Begg’s funnel plot (Figure 6A) and Egger’s test (t = 3.35, P = 0.007). Then, we supplemented the funnel plot with 6 possible missing studies using the “trim and fill method” to make the funnel plot symmetrical (Figure 6B). The adjusted pooled HR under a random-effect model was 1.204 (95% CI: 1.015–1.429, P = 0.033), which demonstrated that the association between low AGR and worse OS was not altered after adjusting for publication bias.




Figure 6 | Begg’s funnel plot to evaluate potential publication bias. (A) Funnel plot for overall survival (OS); (B) The adjusted funnel plot for OS.





The Association Between Low Albumin-to-Globulin Ratio and Disease-Free Survival/Progression-Free Survival

The DFS/PFS outcomes from four studies comprising 1,345 patients were analyzed. The heterogeneity was substantial (I2 = 92.1%, P < 0.001); therefore, a random-effect model was used. The result of pooling four HRs from multivariate analyses revealed that low pretreatment AGR was also significantly associated with worse DFS/PFS (HR = 2.008, 95% CI: 1.162–3.470, P = 0.012; Figure 7). Limited by the number of studies, we did not conduct test for publication bias.




Figure 7 | Forest plot of hazard ratios (HRs) for disease-free survival/progression-free survival (DFS/PFS).






Discussion

This pooled analysis of survival data from 8,305 patients in 12 cohorts is the first large-scale study evaluating the prognostic value of pretreatment AGR in GC patients. As expected, we found that OS and DFS/PFS were obviously shorter in GC patients with low pretreatment AGR than those with elevated AGR, which indicated that low pretreatment AGR could predict poor prognosis of GC. The results in subgroups stratified by country, tumor stage, cut-off value, cut-off selection and treatment method were shown to be apparently consistent with the overall trend, which demonstrated consistent and robust effects of low AGR on worse OS. The sensitivity analysis demonstrated that the core conclusion of this meta-analysis was stable. Moreover, the reliability of core conclusion was not influenced by the appearance of publication bias.

With respect to the mechanisms of association between AGR and survival, nutrition and inflammation may be a satisfactory explanation. Patients with advanced GC are more likely to suffer from malnutrition and cachexia than those at early stages (23), which contributes to tumor progression. However, serum albumin is not only a window into the nutritional status of the human body but also a mirror of the levels of inflammation (24). Chronic inflammation has been generally accepted to be involved in the genesis and invasion of GC (25, 26). Cancer-related inflammation leads to the escape of serum albumin into the interstitium by increasing capillary permeability (27). Research has shown that albumin in the interstitium is taken up, broken down and utilized by rapidly proliferating cancer cells (28). What is more, the antioxidant function of albumin contributes to maintaining the stability of DNA replication and plays a role against carcinogenesis (29). On the other hand, the calculated globulin is thought to be a pro-inflammatory protein, including C-reactive protein (CRP), interleukin (IL), tumor necrosis factor (TNF) and so on. There is evidence suggesting that the elevation of CRP in cancer patients is caused by immune factors such as enhanced activation of macrophage function, which is closely related to revascularization of tumor and hematogenous dissemination of tumor cells (30). Moreover, the upregulation of inflammatory cytokines (such as IL-6 and TNF-α) can promote the genesis, immune escape and metastasis of GC via a series of pathways (31, 32), and this may also suppress the albumin synthesis (33, 34). Consequently, there is adequate biological plausibility in attributing malnutrition and inflammatory activity as the link between hypoalbuminemia and hyperglobulinemia and worse survival of GC.

Although the role of albumin and globulin alone in predicting the prognosis of GC has been confirmed (22, 35), the predictive efficacy of a single indicator is susceptible to some factors such as dehydration, fluid retention, tissue edema, synthetic raw materials insufficient, and hepatic dysfunction. However, the ratio of albumin and globulin can dramatically reduce the influence of such factors. Furthermore, the advantage of AGR also lies in its sensitivity. In previous studies (36), some subjects with both total serum protein (6.0–8.0 g/dl) and albumin (3.2–5.2 g/dl) in the normal range had low AGR (<1.1). In other words, AGR had the ability to recognize patients with poor prognosis who were not recognized by albumin. Even so, it’s worth noting that liver cirrhosis, rheumatologic diseases, as well as acute inflammation, which may cause dramatic fluctuations in protein levels, should be excluded before applying AGR to predict prognosis (37).

The value of AGR goes beyond prognostic prediction. A relatively large retrospective cohort study of a general health screened population found an increased risk of cancer incidence in subjects with low AGR, including GC (36). The study by Toiyama et al. revealed low AGR was associated with GC progression, such as large tumor size, positive lymph node metastasis, serosal invasion, and venous invasion (19). In view of the close relationships between AGR and unfavorable clinicopathologic characteristics of GC, the association between low AGR and poor survival of GC was understandable.

The high degree of heterogeneity among each study was the concern that must be taken into account. Through the sensitivity analysis, meta-regression and stratified analyses, we found that the majority of heterogeneity was attributable to treatment method. The prognostic value of AGR appeared to be higher in the multiple treatment group which included chemotherapy, possibly due to better chemotherapy tolerance in patients with good nutritional status (38). As illustrated in Galbraith plot (Figure 4), the heterogeneity was derived from five studies, so we conducted an in-depth analysis of these five studies. In Xue’s study (13), the subjects were non-metastatic GC patients, among whom the majority of stage II–III patients received adjuvant chemotherapy after surgery except a tiny minority in poor physical condition, which may be the reason why they obtained a high HR value. Two of the studies (15, 16) had sample sizes of more than 1,500, which were much larger than the others. Oppositely, Qian’s study (12) had the smallest sample size and the shortest follow-up time among all studies. Moreover, HR for OS in only one study (20) was calculated through the survival curve. To sum up, in addition to treatment method, the heterogeneity in our meta-analysis may also be caused by sample size, follow-up time, HR source and other factors.

Several inevitable limitations to our meta-analysis should be mentioned. First, all of the patients included in the current study were from Asian countries, so our finding about AGR may be more applicable to Asian populations. For Caucasian GC patients, the prognostic role of AGR remains unknown, but the prognostic value of pretreatment albumin has been elucidated (39). Second, the cut-off values were inconsistent which ranged from 1.14 to 1.93, hence the heterogeneity among studies may be aggravated. Third, our meta-analysis included only one prospective study, and the rest were retrospective analyses, which unavoidably led to a bias risk. Thus, further well-designed large-scale prospective trails to validate the conclusion of our meta-analysis and to explore appropriate cut-off values for different populations is indispensable.



Conclusion

Overall, our meta-analysis demonstrated that GC patients with low pretreatment AGR compared with elevated AGR showed worse survival. Hence, we suggest that AGR could act as an efficient prognostic indicator for GC, and that low pretreatment AGR predicts poor prognosis in GC. We recommend applying AGR to identify high-risk GC patients for pretreatment intervention in clinical practice.
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Due to the lack of typical symptoms and signs and sensitive indicators for early diagnosis of obstructive colorectal cancer (OCRC), it is critically needed to find new novel biomarkers to ameliorate the management of OCRC patients. In this study, 472 blood samples were collected and measured by enzyme-linked immunosorbent assay (ELISA) to investigate the value of serum chemokine ligand 7 (CXCL7) in diagnosis and prognosis for OCRC patients. The median concentrations of CXCL7 in non-OCRC and OCRC were both higher than that in controls (both P < 0.05). Importantly, the median serum concentration of CXCL7 in OCRC was also higher than that in non-OCRC (P < 0.001). In all OCRC patients, the area under the curve (AUC) of CXCL7 was 0.918 with a sensitivity of 86.54% and a specificity of 81.87%. Similarly, the AUC of CXCL7 was 0.684 when the diagnostic test was performed between OCRC and CRC patients. CXCL7 had a higher AUC than other markers. The concentration of CXCL7 in 40 postoperative OCRC patients was higher than normal people and lower than preoperative patients. The median survival time was 62.00 months and the 5-year overall survival (OS) rate of the patients was 51.80% in all 155 OCRC patients. Multivariate Cox proportional hazard regression model analysis showed that high CXCL7 in serum was independent factors associated with poor OS of OCRC patients (HR = 2.216, P = 0.032). These results demonstrate that serum CXCL7 may be a potential biomarker both in diagnosis and prognosis for OCRC patients.
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Introduction

Colorectal cancer (CRC) is one of the most common cancer in the digestive system worldwide, and the morbidity and mortality are at the forefront. Nowadays, CRC remains the most fatal cancer in China (1–4). According to the newly published cancer data report of the United States in 2017, the number of CRC patients and deaths were 135,430 and 50,260 in China, which ranked the top of the gastrointestinal cancer both in morbidity and mortality (3). Similarly, in a survey report of China in 2015, the number of CRC patients and deaths were 376,300 and 191,000 respectively, followed by gastric cancer, liver cancer, and esophageal cancer (5). CRC patients can have a higher survival rates if having an early diagnosis and fit treatment (6, 7). About 8 to 29% of CRC patients were obstructive colorectal cancer (OCRC) when diagnosed at the first time (8). Acute colonic obstruction often needs emergent surgical management to decompress the patient’s intestine, so the surgical resection becomes the most important curative treatment for OCRC (9). OCRC is also very difficult to definitely diagnose in the early stage due to lack of its early typical symptoms and signs and sensitive indicators for early diagnosis (10). Although the diagnosis and treatment have been improved in recent years, this emergency surgery still exists with high morbidity (40–50%), mortality (15 to 20%), and stoma creation rates compared with the non-OCRC patients (11), which could affect the life quality of OCRC patients. Therefore, OCRC patients often have advanced stages and worse long-time survival compared with non-OCRC patients (8–11), for the reason of high invasiveness and distant metastasis (12).

Chemokines, 8–12 kDa secretory proteins, can regulate the migration of leukocyte and play vital roles in many physiological and pathological processes, including inflammation and repairing damaged and wound tissues (13–15). These small proteins can be classified into CXC-, CX3C-, CC-, and XCL subgroup chemokines based on the position of conserved cysteines near the N-terminus (16). CXCL7, also named NAP-2, which belongs to CXCL-subgroups, is released by activated platelets and is related to the occurrence and development of various tumors (17–21).

Nowadays, OCRC can be diagnosed by some invasive and non-invasive methods. However, these methods may not be fully implemented sometimes because of following pain and low sensitivity (22, 23). Therefore, it is critical to detect OCRC before it advanced and reduce the chance of recurrence and physical and mental harm. OCRC was diagnosed for emergency intestinal obstruction and postoperative pathological diagnosis, so it lacked signs for early diagnosis (24). Our previous study has pointed out that serum CXCL7 may be an auxiliary diagnostic biomarker for CRC (17). However, the role of serum CXCL7 in OCRC diagnosis had not been illustrated, and the concentration had also not been detected.

In this study, 472 people were recruited, including 156 OCRC patients, 156 non-CRC patients, and 160 healthy people. Then, all of the blood samples were collected and measured by enzyme-linked immunosorbent assay (ELISA). Meanwhile, each person’s data of biomarkers (CEA, CA125, and CA19-9) were also acquired in the Clinical Laboratory. Moreover, overall survival time and state of 155 OCRC patients were obtained after surgical operation. ROC curve analysis and logistic regression models were adopted for exploring the diagnostic ability of serum CXCL7 in OCRC patients. Kaplan–Meier plotter and Cox proportional hazard regression models were used to explore whether serum CXCL7 could be a prognostic marker or not. Importantly, we try to explore the use of CXCL7 in OCRC patients’ diagnosis and investigate the long-term oncologic outcomes and prognostic factors in OCRC patients. With the analysis, we found that the median serum CXCL7 in OCRC was also higher than that in the non-OCRC group and also higher than in controls, which was consistent with our assumption that the serum concentration of CXCL7 in OCRC patients was highly expressed. Systematic analysis showed that CXCL7 in serum may be a preferable diagnostic biomarker for OCRC patients. Furthermore, serum CXCL7 is identified as an independent factor with poor prognosis in OCRC patients [Serum CXCL7 is not an independent factor in non-OCRC patients (data not shown)]. All in all, serum CXCL7 may be a potential biomarker both in diagnosis and prognosis for OCRC patients.



Materials and Methods


Subjects and Serum Sample Selection

Blood samples from 156 OCRC patients, 156 non-OCRC patients, and 160 healthy people were collected from the department of Cancer Research Center in the Affiliated Hospital of Jiangnan University from May 2012 to May 2018. The selection criteria of non-CRC patients and healthy people were selected according to our previous study. The OCRC patients were chosen according to the following criteria. (1) Patients had clinical symptom, physical examination, imaging examination (such as abdominal computed tomography, CT), laboratory examination, colonoscopy, and surgical findings. (2) Postoperative pathological diagnosis conformed to the clinical judgments. (3) Other conditions were referred to the rules of our previous study (16). Informed consents were obtained from all 472 subjects in this study. The study was approved by the Institutional Research Ethics Committee of the Affiliated Hospital Jiangnan University.

The blood samples of all 312 CRC people were collected in the morning within 3 days before surgery. The blood samples of 160 healthy people were also obtained in the morning. The samples were centrifuged at 2,000×g for 20 min, then subpackaged serum. Part of the serum of each sample was used to detect the levels of CEA, CA125, and CA19-9. The other subpacked serum of samples were used to measure the concentration of serum CXCL7.



Enzyme-Linked Immunosorbent Assay

The levels of serum CXCL7 was quantitatively measured by using the NAP-2/CXCL7 detection ELISA kit (Shanghai Langdon Biotechnology; Shanghai, China). Manipulation steps were conducted according to the manufacturer’s instruction. Specific steps were the same as our previous study (15). Each index of all samples was repeated twice. Reference lines for CEA, CA125, and CA19-9 were identified as 5.0 ng/ml, 35.0 U/ml, and 37.0 U/ml.



Postoperative Follow-Up and Data Collection

The clinical and follow-up data of OCRC patients were retrospectively collected. The data were as follows: (1) Demographic data: gender and age. (2) Pathological data: tumor location, colon cancer site, tumor size, histological type, T stage, N stage, M stage, TNM stage, vascular invasion and nerve invasion. (3) Hematology index: CXCL7, CEA, CA125, and CA19-9 in serum. The collection methods of follow-up data: A systematic follow-up was carried out for OCRC patients. A follow-up team was set up, which was composed of three persons, with one person as the team leader, responsible for the formulation of follow-up plan, data collection and task coordination; the other two persons as follow-up personnel, mainly responsible for the collection of the follow-up data of OCRC patients. The follow-up time was defined as once every 2 months in the first year after operation, once every 3 months in 2nd–4th years, and once every 6 months in 5th years and above. The follow-up methods were outpatient reexamination follow-up, letter follow-up and telephone follow-up, using home follow-up and e-mail for special cases. The follow-up contents were as follows: survival status, cause of death, recurrence and cause of tumor, and whether metastasis occurred. The follow-up data were collected and checked by two follow-up personnel. As for the disagreement, the team leader could judge the results. The definition of overall survival time (OS) of OCRC: the start time of follow-up was clearly determined once diagnosed, and the end point of follow-up was death caused by specific cause of OCRC (Such data was defined as complete data). The other results of follow-up time were classified as censoring data (without death event, other death caused by non-tumor factors, loss of visit and so on).



Statistical Analysis

The concentration of serum CXCL7 and four markers in two groups were compared by using Mann–Whitney U-test, and interpretation of results with median (M) and interquartile range (IQR; Q1–Q3). Kruskal–Wallis H-test was also adopted when the results in three or more groups were analyzed. Categorical variables were described by frequencies (n) and percentages (%) with a statistical test of chi-square (χ2) test. To assess the predictive ability of CXCL7 and CEA, CA125, and CA19-9 for OCRC, the logistic regression models were used to optimize the diagnostic efficiency. ROC curves were used to estimate the diagnostic value, including the area under the ROC curve [AUC, 95% confidence interval (CI)], Youden index (sensitivity +specificity-1) and Interactive dot diagram. The overall survival time (OS) of OCRC patients was estimated by using the Kaplan–Meier analysis, and log-rank test was used for statistical difference test. Univariate and multivariate Cox proportional hazard regression models were used to evaluate the independent prognostic factors. All analyses were performed by using the SPSS 21.0 statistical software (IBM; Armonk, NY, USA), and P <0.05 was statistically significant.




Results


Median Serum Levels of CXCL7 and Tumor Associated Antigens (CEA, CA125, and CA19-9) in Patients With Non-OCRC, OCRC, and Controls Prior to Surgery

The total number of people in this study is 472, including 156 patients with non-OCRC (57 women and 99 men, age: 63.39 ± 9.53 years), 156 patients with OCRC (50 women and 106 men, age: 62.95 ± 9.31 years) and a control group of 160 healthy people (60 women and 100 men, age: 62.01 ± 5.09 years). The three groups were comparable in terms of age and sex (both P > 0.05). The median serum CXCL7 concentration was 0.98 (IQR: 0.75–1.26) ng/ml in control group. The median serum CXCL7 concentration was 1.53 (IQR: 1.14–1.86) ng/ml in non-OCRC, and 1.87 (IQR: 1.50–2.23) ng/ml in the OCRC group. The median concentrations of CXCL7 in non-OCRC and OCRC were both higher than that in controls (both P < 0.05). Importantly, the median serum concentration of CXCL7 in OCRC was also higher than the median in non-OCRC (P < 0.001; Figure 1A). The comparison of the concentration in terms of CEA, CA125, and CA19-9 were all higher than controls in CRC patients (both in non-OCRC and OCRC patients, all P < 0.05; Figures 1B–D); however, the comparison had no significant difference between non-OCRC and OCRC groups (Supplementary Table 1). Patients’ characteristics in non-OCRC and OCRC groups are shown in Supplementary Table 2. The difference was only found in T stage between non-OCRC and OCRC groups (P = 0.023), no other significant differences were found between two groups.




Figure 1 | Comparison of the expression of serum CXCL7 and tumor-associated antigens in patients with non-OCRC, OCRC and health control group. (A) Serum CXCL7 (Kruskal–Wallis test: non-OCRC vs the control, OCRC vs the control and non-OCRC vs OCRC, all P < 0.001, n = 160, 156, 156 respectively). (B) Serum CEA (Kruskal–Wallis test: non-OCRC vs the control P < 0.001; OCRC vs the control P < 0.001 and non-OCRC vs OCRC P > 0.05, n = 158, 99, 99 respectively). (C) Serum CA125 (Kruskal–Wallis test: non-OCRC vs the control P < 0.001; OCRC vs the control P < 0.001 and non-OCRC vs OCRC P >0.05, n = 157, 115, 115 respectively). (D) Serum CA19-9 (Kruskal–Wallis test: non-OCRC vs the control P < 0.01; OCRC vs the control P < 0.01 and non-OCRC vs OCRC P > 0.05, n = 152, 105, 99 respectively). **P < 0.01, ***P < 0.001, NS, no statistical significance.





Associations Between Serum Levels of CXCL7 and Clinical Pathological Characteristics in OCRC Patients

Associations of serum levels of CXCL7 in OCRC patients referring to age, sex, tumor size, histological type, location, and TNM stage were progressively conducted among all 156 OCRC patients. The median serum CXCL7 concentrations were 1.68 (IQR: 1.34–1.91) ng/ml, 1.91 (IQR: 1.63–2.22) ng/ml, and 1.93 (IQR: 1.54–2.42) ng/ml in N0–N2 subgroups respectively. The results showed that serum CXCL7 expression was elevated in according to the lymph node metastasis stages (N0–N2, r = 0.195, P = 0.015). The median serum CXCL7 concentrations were 1.64 (IQR: 1.34–1.90) ng/ml, 1.92 (IQR: 1.56–2.29) ng/ml, and 1.99 (IQR: 1.63–2.38) ng/ml in different TNM stages from I–II to IV. The correlation between serum CXCL7 and TNM stages was statistically significant (r = 0.217, P = 0.006). The data showed that no significant correlation between CXCL7 and other pathological characteristics in OCRC patients (all P > 0.05, Table 1).


Table 1 | Level of serum CXCL7 related to different clinical pathological characteristics in OCRC patients.





Diagnostic Efficiency of Serum CXCL7 in OCRC and Non-OCRC Patients

According to the comparison of serum CXCL7 in OCRC and controls, the data indicated that serum CXCL7 may be used as a diagnostic biomarker for OCRC patients. Then 316 people were randomly divided into discovery cohort and validation cohort. The discovery cohort had 189 subjects, including 93 OCRC patients and 96 controls, meanwhile the rest 127 people were allocated into validation cohort (63 OCRC patients and 64 controls). Next, the diagnostic test was conducted in the discovery cohort and validation cohort. ROC curve results showed that the AUCs were 0.899 in discovery cohort and 0.942 in validation cohort (Supplementary Figure 1), which indicated CXCL7 may be a potential biomarker for OCRC diagnosis. In order to better explore the efficiency of CXCL7 in OCRC diagnosis, all subjects were introduced into analysis, and the results of sensitivity and specificity were evaluated by ROC curve analysis. The AUC of CXCL7 was 0.918 (95% CI: 0.882–0.945; P < 0.001, Figure 2A). The cutoff value was 1.30 ng/ml (Figures 2B, C) with a sensitivity of 86.54% and a specificity of 81.87%. Meanwhile the diagnostic test was performed between non-OCRC patients and the controls, the AUC of CXCL7 was 0.812 (95% CI: 0.765–0.854; P < 0.001, Figure 2D), which was lower than OCRC group. The sensitivity, specificity, and cutoff value were shown in Figures 2E, F respectively. Furtherly, the diagnostic test was performed between OCRC and CRC patients, the AUC of CXCL7 was 0.684 (95% CI: 0.629–0.735; P < 0.001; sensitivity: 62.82%, specificity: 65.38%; cutoff value: 1.70 ng/ml; Figures 2G–I).




Figure 2 | ROC curves for distinguishing the OCRC and non-OCRC patients from controls referring to serum CXCL7. (A–C) in discovery cohort. (A) AUC in OCRC patients. (B) Interactive dot diagram in OCRC patients. (C) Youden index in OCRC patients. (D–F) AUC, Interactive dot diagram and Youden index in validation cohort of OCRC patients. (G–I) ROC curves for OCRC and non-OCRC patients. *Groups: (B, E) 0 = Controls, 1 = OCRC group, (H) 0 = non-OCRC group, 1 = OCRC group.





Diagnostic Efficiency of Serum CXCL7 in Different N Subgroups of OCRC Patients

Based on the results that the levels of CXCL7 were different significances in N0 and N1–2 subgroups, the N0 and N1–2 OCRC patients were used for analysis respectively. The AUC of CXCL7 was 0.885 (95% CI: 0.833–0.925; P < 0.001; sensitivity: 80.00%, specificity: 80.62%; cutoff value: 1.29 ng/ml; Figures 3A–C) in N0 group; the AUC of CXCL7 was 0.931 (95% CI: 0.894–0.958; P < 0.001; sensitivity: 90.09%, specificity: 81.87%; cutoff value: 1.30 ng/ml; Figures 3D–F) in N1–2 group.




Figure 3 | ROC curves in different N subgroups of OCRC patients. (A) AUC in N0 patients. (B) Youden index in N0 patients. (C) Interactive dot diagram in N0 patients. (D–F) AUC, Youden index and Interactive dot diagram in N1–2 OCRC patients in order. *Groups: 0 = Controls, 1 = OCRC group.





Comparison of Diagnostic Efficiency of CXCL7 and Other Three Markers in OCRC and Non-OCRC Patients

Diagnostic efficiency of CXCL7, CEA, CA125, and CA19-9 was also brought into comparison. Among the five indicators in OCRC patients, the AUC of CXCL7 was maximal; and the AUCs of CEA, CA125 and CA19-9 were, respectively, 0.786 (95% CI: 0.731–0.835, P < 0.001, Supplementary Figure 2A), 0.657 (95% CI: 0.579–0.713, P < 0.001, Supplementary Figure 2B) and 0.614 (95% CI: 0.551–0.674, P = 0.002, Supplementary Figure 2C). In non-OCRC patients, the AUCs of CEA, CA125, CA19-9, and CA724 were, respectively, 0.784 (95% CI: 0.729–0.833, P < 0.001, Supplementary Figure 2D), 0.666 (95% CI: 0.607–0.722, P < 0.001, Supplementary Figure 2E), and 0.611 (95% CI: 0.548–0.671, P = 0.003, Supplementary Figure 2F). Deeply, the diagnostic test was performed between OCRC and CRC patients by using these biomarkers to make a thorough exploration on the ability of distinguishing OCRC and CRC patients. Out of our expectation, the results showed that CXCL7 had a higher AUC than other markers (Supplementary Figures 2G–I).



The Levels of Serum CXCL7 in Postoperative OCRC Patients

In order to know the concentration change of CXCL7 in preoperative and postoperative OCRC patients, a total of 40 OCRC patients in diagnostic test were selected as participants to detect the levels of CXCL7 after one month of resection operation. Seven women and 33 men were involved, including Stage I one patient, Stage II 16 patients, Stage III 17 patients, Stage IV six patients. The concentration of CXCL7 in postoperative OCRC patients was 1.25 (IQR: 1.03–1.56) ng/ml, which was descended compared with the level of preoperative OCRC patients (1.81, IQR: 1.38–2.20 ng/ml, P < 0.05, Figures 4A, B). Although the concentration of CXCL7 has decreased after resection operation, the levels of CXCL7 were still higher than controls (P < 0.05, Figure 4C). Therefore, the concentration of CXCL7 in postoperative OCRC was higher than normal people and lower than preoperative patients.




Figure 4 | Analysis of serum CXCL7 in postoperative OCRC patients. (A) Comparison of the expression levels of serum CXCL7 (Postoperative vs Preoperative). (B) Comparison of the expression levels of serum CXCL7 (Postoperative vs Preoperative, matched by 1:1). (C) Comparison of the expression levels of serum CXCL7 (Postoperative vs Control, matched by 1:1). ***P < 0.001.





Upregulation of Serum CXCL7 Predicted the Poor Prognosis in OCRC Patients

Above all the results of the diagnosis tests, serum CXCL7 may be a diagnostic biomarker of OCRC. Further, to evaluate the prognostic value of CXCL7 in OCRC patients, 155 patients were followed up after surgery (one people lost follow-up) for getting the survival state and time. The median survival time of all 155 OCRC patients was 62.00 (95% CI: 55.28–68.72) months and the 5-year overall survival rate of the patients was 51.80% (Figure 5A). There were significantly differences in OS in terms of T stage (HR: 1.688, 95% CI: 1.222–2.332, P = 0.001; Figure 5H), N stage (HR: 2.825, 95% CI: 1.555–5.132, P =0.002; Figure 5I), M stage (HR:4.588, 95% CI: 2.429–8.555, P < 0.001; Figure 5J), TNM stage (HR:3.262, 95% CI: 2.278–4.671, P < 0.001; Figure 5K), CXCL7 (HR:4.804, 95% CI: 2.672–8.676, P < 0.001; Figure 5N), and CEA (HR:2.696, 95% CI: 1.625–4.473, P < 0.001; Figure 5O). The details were shown in Table 2. However, no statistical differences were found in other factors (Figures 5B-5G, 5L, 5M, 5P-5R, and Table 2; all P > 0.05). Multivariate analysis showed that high CXCL7 in serum was independent factor associated with poor OS of OCRC patients (HR = 2.216, 95% CI: 1.069–4.593, Table 2, P = 0.032).




Figure 5 | Kaplan–Meier curves of OCRC patients showing the overall survival time after primary tumor resection. (A) Survival time of all OCRC patients. (B) Survival time in different gender subgroups (P > 0.05). (C) Survival time in different age subgroups (P > 0.05). (D) Survival time in different locations (P > 0.05). (E) Survival time in Colon and Rectum of OCRC patients (P > 0.05). (F) Survival time in Tumor size of OCRC patients (P > 0.05). (G) Survival time in different Histological type (P > 0.05). (H-K) Survival time in different T stages, N stage, M stage, and TNM stage one by one (all P < 0.05). (L, M) Survival time in of OCRC patients related to Vascular invasion (L) and Nerve invasion(M) (1: yes, 0: no; all P > 0.05). (N) Survival time in different CXCL7 groups (high vs low in serum; P < 0.05). (O) Survival time in different CEA groups (high vs low in serum; P < 0.05). (P–R) Survival time in different CA125, CA19-9 and CA724 subgroups respectively (high vs low in serum; all P > 0.05).




Table 2 | Cox proportional hazard regression analysis on the expression of serum CXCL7 in OCRC patients.






Discussion

Intestinal obstruction is a common clinical complication of colorectal cancer. Once intestinal obstruction occurred, the treatment methods may be very troublesome, meanwhile the prognosis would be unsatisfactory even a large number of treatment measures had been implemented for OCRC patients (8, 25). Many studies have proved that OCRC patients have worse prognosis than non-OCRC patients and often suffered from an advanced stage (8, 9, 26–28). Therefore, it is so vital for OCRC patients with an early diagnosis as soon as possible and the overall survival time would be elevated with timely treatment. In this study, the serum CXCL7 was measured and analyzed by plotting ROC curves to make a thorough exploration of the ability in OCRC diagnosis. Then, the CXCL7 was used to ascertain the relation between the long-time outcomes and prognostic factors.

CXCL7 belongs to ELR+ CXC chemokines and functions binding to its receptor CXCR2 (29), and has a prominent effect on immune response by recruiting neutrophils to the sites of vascular injury (30, 31). CXCL7 has been proved to be a vital tumor microenvironment regulator in several cancers and a potential biomarker in diagnosis of cancers (16, 24, 28). The level of CXCL7 was detected in early lung cancer and was a potential marker with an AUC of 0.64 (32). Other study also focused on the efficiency of CXCL7 in lung diagnosis with an AUC of 0.83, which suggested that CXCL7 may be a diagnostic biomarker in lung cancer (33). In our study, the concentration of serum CXCL7 is higher in OCRC patients than controls. Further, CXCL7 was also higher in OCRC patients than non-OCRC group. The comparison among three groups supported our assumption that CXCL7 in serum could make a distinction between OCRC, non-OCRC and controls to some extent. For clearly displaying the results for diagnostic tests, we also made ROC curves graphs, Youden index graphs and Interactive dot diagram together. As the results shown, the CXCL7 in serum of OCRC patients had an AUC of 0.918 when compared with controls, and AUC of 0.684 when compared with non-OCRC, which were higher than other three markers. It illustrated CXCL7 could be utilized as a biomarker for detecting OCRC.

In this study, the patients with high levels of serum CXCL7 had significantly poorer oncologic outcomes in OCRC patients. Overexpression of CXCL7 is associated with poor prognosis in several cancers and connected to tumor growth, invasion, migration and angiogenesis by motivating the PI3K/AKT/mTOR signaling pathways (34, 35). The signaling pathway of AKT existed in all cells of people and participated in many metabolic processes, such as cell growth, apoptosis, migration, etc. (36, 37). CXCL7 can also play its role through Ras/Raf/mitogen-activated protein kinase (MAPK) signaling pathways associated with tumor angiogenesis (38). CXCL7 could accelerate tumor metastasis via regulating the expression of VEGF-C/D in breast cancer (39). The ERK pathway also can be accelerated by CXCL7-CXCR2/CXCR1 axis (40). Thus, CXCL7 may be a factor in the occurrence process of OCRC by activating AKT and other signaling pathway, leading to a poor survival outcome in OCRC patients. The serum CXCL7 was just correlated with TNM stages in all pathological characteristics in OCRC patients, so we assumed that CXCL7 could be a selected marker for predicting long-time outcomes of OCRC patients. By using univariate and multivariate Cox proportional hazard regression (41), it proved that CXCL7 in serum was an independent prognostic factor with worse outcomes compared with low concentration of CXCL7 in OCRC patients, and this result was consistent with previous studies that the overexpression of CXCL7 was a predicted signal of poor prognosis in CRC patients (42).

In order to comprehensively explore the efficiency of CXCL7 in diagnosis and prognosis of OCRC patients, some details in this study will continue to be explored for deeply interpreting the ability of CXCL7. First, the number of OCRC patients should be expanded with patients of different regions and various races. Then, habits and custom information of patients, such as smoking, drinking, exercise, etc., should be collected once the patients were enrolled in this study. Next, the levels of CXCL7 should continuously detected if possible, and the preoperative levels of CXCL7 in OCRC patients should be compared with the concentration of CXCL7 in postoperative patients, thus the role of CXCL7 may be illustrated in the process of OCRC and provide more information about the connection with other factors. More importantly, the molecular mechanism of CXCL7 may be explored, and the biological functions of CXCL7 will be studied in OCRC patients, someday in the future. Overall, this is the first time to quantitatively measure serum CXCL7 for exploring the efficiency in diagnosis and prognosis of OCRC patients. The increased levels of CXCL7 in serum were associated with the TNM stages and poor prognosis, and the results showed that serum CXCL7 may be a potential biomarker both in diagnosis and prognosis for OCRC patients. This study also expands our understanding of the roles of small molecule cytokines in cancer diagnosis and prognosis.
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tRNA-derived fragments (tRFs) are a new classification of small non-coding RNAs (sncRNAs) derived from the specific cleavage of precursors and mature tRNAs. Accumulating recent evidence has shown that tRFs are frequently abnormal in several cancers. Nevertheless, the role of tRFs in gastric cancer and its mechanism remain unclear. In this study, we found abnormal expression of tRF-3017A (derived from tRNA-Val-TAC) in gastric cancer tissues and cell lines and confirmed its effect on promoting the invasion and migration of gastric cancer cells through functional experiments in vitro. Analysis of clinicopathologic data showed patients with higher tRF-3017A were associated with significantly higher lymph node metastasis. Mechanistic investigation implies that tRF-3017A regulates the tumor suppressor gene NELL2 through forming the RNA-induced silencing complex (RISC) with Argonaute (AGO) proteins. In this study, we found that higher tRF-3017A were associated with significantly higher lymph node metastasis in gastric cancer patients and the tRF-3017A may play a role in promoting the migration and invasion of gastric cancer cells by silencing tumor suppressor NELL2.
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Introduction 

Gastric cancer (GC) is one of the most common human cancers, which is the second leading cause of cancer death worldwide, and its global burden is increasing (1, 2). In recent years, the incidence and mortality rates of GC have been declining (3). However, GC still has the worst outcome of all solid organ tumors, due to the frequent occurrence of late lymph node metastasis or distant metastasis (4). Because the treatment of advanced GC is limited and the prognosis is poor, it is urgent to find new biomarkers and prognostic indicators to reflect the disease status and develop more therapeutic targets for this deadly disease.

tRNA-derived fragments (tRFs) are ubiquitous in all areas of biology. As short non-coding RNAs, they are abundant and heterogeneous (5–7). Increasing studies have shown that tRFs aren’t products from random degradation. Instead they are producted by specific cleavage of multiple pre-tRNAs and mature tRNAs by different ribonucleases (8–11). tRFs are classified into two main subgroups: shorter tRFs of length 14–36 nt and longer tRFs of lengths 30–40 nt (12–14). Angiogenin (ANG) and other RNase cleave specific tRNAs and create longer tRFs (15). Dicer and ANG cleave specific tRNAs and produce shorter tRFs (16). Although the naming of tRFs has not yet been unified, it is certain that there are differences in the biological sources and functions of tRFs in different subgroups (17). It has been indicated in studies that tRFs play important roles in oncogenesis and cancer progression (16, 18–21). tRFs can regulate tumor progression by competitive binding of RNA binding proteins (22–24). It has also been reported that tRFs can play an RNA silencing role similar to that of miRNA, which is, mRNA silencing by forming RISC with AGO protein (25, 26). Another study reported that a specific tRNA-derived small RNA (tsRNA) named LeuCAG 3’ tsRNA binds to mRNAs of ribosomal proteins to enhance efficient translation (27). In summary, the main biological functions of tRFs include regulation of gene expression, protein translation and various cellular activities (28). Morever, recent studies have suggested that tRFs can potentialy serve for prediction in breast cancer (29–32), clear cell carcinoma (33, 34), colorectal cancer (35, 36), and prostate cancer (37–39). Therefore, much attention has been paid to these tRNA derivatives for cancer predictor and therapeutic targets (20).

Abnormal expression of tRNA-derived fragments in GC was detected through tRF&tiRNA array and we chose this upregulated tRF-3017A for further study. tRF-3017A, a kind of specific degradation product of mature tRNA-Val-TAC 3’ end, is composed of 19 nt (5’-AGCCCCAGTGGAACCACCA’). Based on qRT-PCR and clinicopathologic data analysis, we suggested that the expression level of tRF-3017A was abnormally increased in patients with lymph node metastasis of GC. The results of functional experiments showed that tRF-3017A can promote GC cells by targeting and regulating NELL2, its downstream mRNA. Nerve epidermal growth factor-like like protein (NELL) was originally discovered in chickens as a polymeric and multimodular extracellular glycoprotein (40). Two NELL mammalian homologues, named NELL1 and NELL2, have been found in the human fetal brain cDNA library (41). NELL2 was found enriched in the nervous system in the beginning and was known to be involved in neural development (41–44). Previous studies have shown that NELL2 is enriched in normal nerve cells compared with nervous system tumors (45) and that it inhibits cancer cell migration in renal cell carcinoma (46).

In this present study, we detected tRF-3017A expression level in tissues of GC patients and GC cell lines, and further analyzed the relevance between tRF-3017A and clinicopathologic features of GC. Biological functions of tRF-3017A were explored by functional experiments which identified its effect on migration and invasion. Furthermore, we identified a potential molecular regulatory relationship between tRF-3017A and NELL2 in GC progression.



Materials and Methods


Tissues

Eighty-seven GC tissues and matched-paired noncancerous adjacent tissues (NATs) were obtained from GC patients who underwent surgical treatment in the First Affiliated Hospital of China Medical University (Shenyang, China) between 2016 and 2017. All of these GC patients were confirmed by pathological diagnosis and agreed after being informed according to ethical guidelines. No patients were treated with chemoradiotherapy or targeted therapy before the operation. Matched-paired NATs were obtained from areas more than 5 cm away from the lesion. All tissue samples were put into liquid nitrogen immediately after separation and then transferred to −80°C for long-term storage. The research ethics committee of the First Affiliated Hospital of China Medical University permitted this study which conformed to the criteria of the declaration of Helsinki.



Cell Culture

The human gastric mucosal epithelial cell line (GES-1) was obtained from BeNa Culture Collection (Henan, China). The human GC cell lines MGC-803 and HGC-27 were purchased from Shanghai Institutes for Biological Sciences, China Academy of Science (Shanghai, China). AGS, MKN-45, and SNU-16 cells were obtained from the American Type Culture Collection (Manassas, Virginia). All cells were incubated in RPMI 1640 medium (HyClone) supplemented with 10% fetal bovine serum (FBS) and cultured at 37°C in an atmosphere containing 5% CO2 (Thermo, Waltham, MA, USA).



Microarray Analysis

Tissues and matched NATs of 10 patients with GC were prepared for the nrStarTM Human tRF&tiRNA PCR Array (Arraystar, Lnc. Rockville, MD 20850 USA. Cat#: AS-NR-002) analysis. Microarray hybridization and samples preparation followed manufacturer’s standard protocols.



RNA Extraction and Quantitative Real‐Time PCR (qRT-PCR)

According to the manufacturer’s agreement, the total RNA of GC tissues and cells was extracted by TRIzol reagent (Invitrogen, USA). Mir-X™ miRNA First-Strand Synthesis Kit (Clontech) or PrimeScript RT reagent Kit (Takara) was used to synthesize the complementary DNA (cDNA). TB Green® (RR820A, Takara) was used to identify expression level of tRF-3017A and mRNAs on the Light Cycler 480 II Real-Time PCR system (Roche Diagnostics). The program consists of a 95°C temperature cycle for 5 s, 60°C for 20 s, and 55°C for 30 s, repeating 45 times. Samples were analyzed in triplicate, and melting curve analysis were used to identify the specificity of the primers. Cycle threshold (Ct) was based on total cycles required for the TB Green® signal to cross the threshold. The relative expression of tRF-3017A in all samples were calculated using the Ct method normalized to RNU6B (U6) and Glyceraldehyde phosphate dehydrogenase (GAPDH) for mRNAs. Samples with a Ct >38 were considered negative. The primers were customized using Sangon Biotech, and sequences are shown in Table S1. After the reaction, 2-ΔΔCt method was used to analyze the data results, and the formula was shown as follows: ΔΔCt = ΔCttumor[Ct(target)-Ct(reference)]-ΔCtNATs[Ct(target)-Ct(reference)].



Cell Transfection

According to the cellular tolerance, six-well plates with 2 ml culture medium were used to plate 2×105 cells per well. Cells were transiently transfected by 50 nM tRF-3017A mimics or corresponding negative control-mimics (NC-mimics) and 100 nM tRF-3017A inhibitor or NC-inhibitor (GenePharma) by utilization of Lipofectamine 3000 Reagent (Thermo Fisher Scientific). Short interfering RNAs (siRNAs) targeting NELL2 and pEX3 plasmid for overexpressing NELL2 were synthesized by RiboBio and GenePharma. The final transfection concentration of pEX3-NELL2 and si-NELL2 was 50 and 100 nM, respectively. Sequences of transfection reagents are shown in Table S1. After 48 h transfection, cells were harvested and used in subsequent experiments.



Transwell Assay

Transwells (REF3422, Corning, NY, USA) were performed to transwell migration assay. 5×104 cells transfected with tRF-3017A mimics or tRF-3017A inhibitor after 48 h were cultured with 200 μl RPMI medium (without FBS) in the upper chamber, and 600 μl culture medium with 10% FBS was added to the bottom chamber. Cotton swabs were cautiously used to remove the non-migratory cells from the upper chamber after 24 h of incubation at 37°C with 5% CO2. After staining with hematoxylin and eosin (H&E), the remaining cells were captured in 9 randomly selected visual fields by utilization of a Leica DM3000 microscope (Leica, Wetzlar, Germany). Color grab comparison method of Software Image-Pro 6.0 was used to count the remaining cells. For transwell invasion experiments, Matrigel (356234, MA, USA) was added to the upper chamber based on the above scheme.



Wound Healing Assay

2.5×104 cells transfected with tRF-3017A mimics or tRF-3017A inhibitor after 48 h were plated in 12-well plates and cultured all-night. The single-cell layer was nicked using the tip of a 200-microlitre pipettor. Before adding the new medium (without FBS), PBS was used to remove floating cells and scraped cell fragments. Areas of wound were displayed at 200x magnification under an inverted light microscope (Leica DMI3000B). Images were captured at 0 and 24 h after the scratch was made. The scratch area coverage, which reflects the migration ability of GC cells, was analyzed by Image-J software (Media Cybernetics, Rockville, MD, USA).



Cell Counting Kit-8 Proliferation Assay

The Cell Counting Kit-8 (CCK-8) (SA618, Dojindo Laboratories, Kumamoto, Japan) was used to measure the capacity for cellular proliferation according to the manufacturer’s instructions. 2×103 cells of HGC-27 were seeded into 96-well culture plates for 24, 48, 72, and 96 h, respectively. The microplate reader (Bio-Rad, Hercules, CA, USA) was used to determine the optical density at a wavelength of 450 nm.



Western Blot

Total protein was extracted via Total Protein Extraction kit (T9300A, BCA Protein Assay Kit, Takara). SDS-PAGE gels (KGMG010W10, KeyGen) and polyvinyl difluoride (PVDF) membranes (ISEQ00010, Millipore, MA, USA) are used for protein electrophoresis and transfer, respectively. 5% free fat milk emulsion was used to block the membrane at room temperature for 2 h. Then the primary antibody was incubated overnight at 4°C. Primary antibodies are NELL2 antibody 1:1,000 dilution (ab181376, rabbit monoclonal antibody, Abcam, CA, USA) and GAPDH antibody 1:5,000 dilution (ab21612, rabbit polyclonal antibody, Abcam, CA, USA). Secondary antibodies which anti-rabbit (1:5,000, ZB2301, ZSGB-BIO, Beijing, China) were added at 25°C for 1.5 h, then membranes were imaged by GelCapture software (DNR Bio-Imaging Systems). For experiments based on GC tissue samples, MinuteTM (Tissues Total Protein Extraction Kit for WB, Cat No. SD-001, MN, USA) was used to extract total protein.



RNA Immunoprecipitation (RIP) Assay

The Magna RIP RNA-binding protein immunoprecipitation kit (17-700, Millipore, MA, USA) was used to perform the RIP assay for Ago2. Anti-Ago2 antibody (ab32381, Abcam, CA, USA) and control IgG were used for the RIP assay. The expression of tRF-3017A and NELL2 immunoprecipitated by Ago2 were evaluated by qRT-PCR.



Dual-Luciferase Reporter Assay

To determine the target regulating relationship between tRF-3017A and NELL2 mRNA, a luciferase reporter assay was implemented using AGS cells. 3 ‘UTR of NELL2 mRNA including the tRF-3017A binding site and it’s mutant construct were inserted in the luciferase reporter vector of pmirGLO. The luciferase reporter was cotransfected with NELL2-3’UTR fusion vector and tRF-3017A mimics, inhibitor and corresponding NC. Cells were harvested 48 h later. And then the luciferase reporter assay (E1910, Promega, USA) and Infinite M200 PRO microplate reader (Tecan) were used to detect the luciferase activities (firefly and renilla).



Statistical Analysis

All data were analyzed by SPSS version 21.0 (Chicago, IL, USA), GraphPad Prism, Image-Pro Plus, and Image J software. The histogram drawn according to -ΔΔCt is used to describe the expression level of tRF-3017A in 87 GC patients. The scatter plot drawn according to -ΔCt and paired t test was used to describe the relative expression of tRF-3017A in 87 patients with cancer tissue and its paired NATs. Chi-square test and ROC analysis were used to analyze the correlation between expression of tRF-3017A and clinicopathologic data of 87 GC patients. The relative expression of tRF-3017A and clinicopathologic data in 87 patients were used for ROC analysis. Pearson correlation was performed to determine correlation coefficients. All experiments were accomplished with the lowest three times. Mean value ± standard deviation (SD) was used to list Data. The differentiation between two groups was compared with the Student’s t-test.




Results


Expression of tRF-3017A Is Increased in GC Tissues and Cell Lines

According to the tRF&tiRNA PCR array data, we analyzed the differential expression of tRNA fragments (fold change >2 and P <0.05) and found that six were upregulated and 12 were downregulated in GC tissues compared with NATs. Statistically significant gene results were shown in Figure S1A and Table S3. An upregulated tRF, tRF-3017A was selected for following study. tRF-3017A is a degradation product of mature tRNA-Val-TAC which specific cleave at the 3’ end of T-loop (Figure 1A). We investigated the expression of tRF-3017A using qRT-PCR in 87 cases of GC tissues and matched-paired NATs and found upregulated tRF-3017A in 62 of 87 (71.2%) pairs of GC tissue relative to matched-paired NATs (-ΔΔCt, Figure 1B). Based on paired t test, the expression of tRF-3017A was higher in GC tissues than in matched-paired NATs (-ΔCt, P < 0.001, Figure 1C). We then detected the expression level of tRF-3017A in GC cell lines (MKN-45, MGC-803, SNU-16, AGS, and HGC-27), using its expression level in GES-1 as a reference. We found increased expression of tRF-3017A in GC cells (Figure 1D).




Figure 1 | Expression of tRF-3017A in GC tissues and cell lines. (A) tRF-3017A is a 3’ fragment of mature tRNA-Val-TAC. The specific cleavage site is located at the T-loop. Image from tRNADB (http://trna.bioinf.uni-leipzig.de/DataOutput/Result?ID=tdbD00011005). (B) Expression level (-ΔΔCt) of tRF-3017A was quantified in GC tissues compared with matched-paired NATs among 87 GC patients by qRT-PCR, and U6 RNA was used as a qRT-PCR control for tRF-3017A. Each column represents up/down-regulated tRF-3017A expression in one GC patient. (C) Expression of tRF-3017A was upregulated (-ΔCt, paired t test) in GC tissues relative to matched-paired NATs among 87 GC patients by qRT-PCR. (D) Expression of tRF-3017A in GC cell lines. GES-1, human gastric mucosal epithelial cell, was used as a qRT-PCR control. *P < 0.05; **P < 0.01.



Chi-square test was used to analyze the clinicopathologic data of 87 GC patients to further explore the potential clinical value of tRF-3017A expression level and clinicopathologic features (Table 1). We found that higher tRF-3017A expression level was significantly associated with higher lymph node metastasis (P = 0.016). ROC curves were carried out to identify if tRF-3017A could function as a diagnostic tool to differentiate GC tissues from matched-paired NATs or to indicate more detailed clinicopathologic features. Unfortunately, the tRF has not demonstrated satisfactory diagnostic efficacy (Figures S1B, C).


Table 1 | Correlation between tRF-3017A expression and clinicopathological factors in tissue samples of GC patients (n = 87).



Collectively, these results suggest that up-regulated expression of tRF-3017A may play a role in the metastasis of GC.



tRF-3017A Promotes the Invasion and Migration of GC Cells

To further explore whether tRF-3017A could regulate biological function in GC cells, we knocked down and overexpressed tRF-3017A in HGC-27 and AGS cells, and qRT-PCR was used to detect the overexpression efficiency (Figure S1D). Transwell assay was performed to evaluate the migratory and invasive capacities of GC cells transfected tRF-3017A mimics or inhibitor and their matching NC. As shown in Figure 2A, GC cells treated with 3017A-mimics showed significantly enhanced invasion and migration abilities. In contrast, GC cells treated with 3017A-inhibitor had markedly weaker abilities than in the NC group (Figure 2B). A wound healing assay was then conducted to observe whether tRF-3017A could affect the motility of GC cells. Different scratch healing rates in wound healing analysis showed that motile ability was significantly enhanced after tRF-3017A overexpression and decreased after tRF-3017A knockdown (Figures 3A, B). CCK-8 proliferative assays was performed to detected how tRF-3017A affects GC cell proliferation. However, proliferation of GC cells were not affected by knockdown/overexpression of tRF-3017A (Figure S1E).




Figure 2 | Transwell assays verified the effect of tRF-3017A on migration and invasion of GC cells. (A) Migration and invasion of GC cell lines HGC-27 and AGS were investigated after tRF-3017A-mimics or NC-mimics. (B) Migration and invasion of GC cell lines HGC-27 and AGS were investigated after tRF-3017A-inhibitor or NC-inhibitor. Representative images and bar graphs were depicted. Data are shown as mean ± SD. NC, negative control. *P < 0.05; **P < 0.01.






Figure 3 | The scratch wound healing assay on GC cell lines. (A) The scratch wound healing assay was used to determine the cell motility ability in GC cell lines HGC-27 and AGS transfected with tRF-3017A-mimics or NC-mimics. (B) The scratch wound healing assay was used to determine the cell migration ability in GC cell lines HGC-27 and AGS transfected with tRF-3017A-inhibitor or NC-inhibitor. Representative images and bar graphs were depicted. Data are shown as mean ± SD. NC, negative control. **P < 0.01.





tRF-3017A May Play a Role in Regulating the Migration and Invasion of GC Cells by Targeting NELL2

We used the 3’ UTR complementary binding principle and mRNA target prediction algorithms to predict downstream target genes of tRF-3017A using online databases, and to investigate the molecular mechanism of tRF-3017A in regulating GC cells. As shown in Figure 4A, we evaluated target gene results that overlapped between miRanda, TargetScan, TargetRank, and tRFTar and reviewed available literature to improve reliability and narrow the prediction range. We comprehensively considered structure scores, free energy ranking and reports of existing studies, and selected eight higher ranking genes, ESAM, ARMCX3, NELL2, MARCH1, TRIM38, TPPP, EPHA4, and SOCS5. Preliminary validating results by qRT-PCR indicated that NELL2 changed the most of all and that its expression levels were upregulated after transfection with tRF-3017A inhibitor or downregulated after transfection with tRF-3017A mimics (Figures 4B, C). Although there was also a statistically change in EPHA4, NELL2 was selected for further study due to its most significant change. To verify the regulatory relationship between tRF-3017A and NELL2 at the protein level, we transfected GC cells with tRF-3017A mimics or inhibitors and detected NELL2 expression level by Western blot. tRF-3017A overexpression significantly decreased protein expression of NELL2 in GC cells. In contrast, tRF-3017A inhibition significantly increased protein expression of NELL2 in GC cells (Figures 4D, E). Transwell assay was carried out to validate the biological function of NELL2 in HGC-27. As shown in Figure 4F, silencing NELL2 could significantly increase GC cells migration and invasion. While migration and invasion of GC cells were impaired by NELL2 overexpressing. The transfection efficiency of overexpressing NELL2 and knockdown NELL2 was shown in Figure S1F.




Figure 4 | tRF-3017A may play a role in regulating the migration and invasion of GC cells by regulating NELL2. (A) Venn diagram evaluated the overlapped genes among miRanda, TargetScan, TargetRank, and tRFTar predictions. (B, C) The expression levels of eight predicted target genes were performed to detect in AGS cell line after transfection with tRF-3017A-inhibitor or mimics by qRT-PCR. (D, E) The expression levels of NELL2 were detected in AGS cell line after transfection with tRF-3017A-inhibitor or mimics by western blot. (F) GC cell migration and invasion ability were detected after transfected with si-NELL2 and pEX3-NELL2. (G) Expression of NELL2 was downregulated (-ΔCt, paired t test) in GC tissues relative to matched-paired NATs among 84 GC patients by qRT-PCR. (H) Correlation analysis of relative expressions of tRF-3017A and NELL2 and “r” is the correlation coefficient. (I) The luciferase activity of wild type NELL2 3’UTR or mutant NELL2 3’UTR after transfection with tRF-3017A mimics or 3017A-inhibitor and their corresponding NC in AGS cell line. (J) The result of the RIP based on Ago2 showed that tRF-3017A may exert its miRNA-like silencing effect by combining Ago2, thus targeting NELL2. Representative images and bar graphs were depicted. Data are shown as mean ± SD. NC, negative control. *P < 0.05; **P < 0.01.



Then qRT-PCR was performed to examine the expression of NELL2 relative to tRF-3017A. We found that mRNA level of NELL2 was downregulated in cancer tissues compared with NATs among 84 cases (three cases did not participate in this analysis due to insufficient cDNAs) of GC tissues (Figure 4G). Correlation between expression level of tRF-3017A and NELL2 was analyzed and the correlation coefficient was -0.41 (P < 0.001) (Figure 4H), which suggesting a moderate negative relevance between tRF-3017A and NELL2 RNA expression levels.

In order to verify whether tRF-3017A regulates NELL2 through miRNA-like mRNA silencing mechanism, luciferase report assay and RIP assay were performed. Luciferase reporter assay based on complementary pairing in the 3 ‘UTR region of NELL2 (Figure S1G) showed that relative luciferase activity of luciferase mRNA containing the wild-type NELL2-3’UTR could significantly increased or decreased by tRF-3017A inhibitor or mimics. In contrast, mutant NELL2-3’UTR luciferase activity was not affected (Figure 4I). These results demonstrated that tRF-3017A could specifically bind 3’UTR of NELL2. Western Blot experiments for 12 patients with significant differential tRF-3017A expression from the study cohort showed that the expression of tRF-3017A inversely correlated with NELL2 (Figure S1H). Furthermore, RIP based on Ago2 was performed in GC cells to explore the level of tRF-3017A and NELL2 immunoprecipitated by Ago2 via qRT-PCR. The results of Ago2-RIP assay validated that both tRF-3017A and NELL2 interact directly with Ago2 (Figure 4J).



The Migration and Invasion Ability of GC Cells Which Effected by tRF-3017A Could Be Largely Rescued by Inhibition or Overexpression of NELL2

Rescue experiments were performed to further support the results that tRF-3017A affects the ability of migration and invasion of GC cells by targeting NELL2. Our results showed that knockdown of NELL2 restores impaired migration and invasion ability induced by knocking down tRF-3017A (Figures 5A, B). Likewise, the enhanced ability of migration and invasion induced by overexpression of tRF-3017A was reversed by overexpressing NELL2 (Figures 6A, B). In conclusion, our results demonstrated that tRF-3017A may be in action in promoting GC cells migration and invasion by regulating its downstream target gene NELL2. This presents a potential mechanism by which tRF-3017A promotes the invasion and migration of GC cells (Figure 7).




Figure 5 | Knockdown of NELL2 restores impaired migration and invasion ability induced by knocking down tRF-3017A. (A) GC cell migration and invasion ability were detected after co-transfected with tRF-3017A inhibitor and si-NELL2. (B) The scratch wound healing assay was used to detect GC cell migration ability after co-transfection. Data are shown as mean ± SD. NC, negative control. *P < 0.05; **P < 0.01.






Figure 6 | Enhanced ability of migration and invasion induced by overexpression of tRF-3017A was restored by overexpressing NELL2. (A) GC cell migration and invasion ability were detected after co-transfected with tRF-3017A mimics and pEX3-NELL2. (B) The scratch wound healing assay was used to detect GC cell migration ability after co-transfection. Data are shown as mean ± SD. NC, negative control. **P < 0.01.






Figure 7 | Working model illustrating the mechanism in which tRF-3017A may promote GC cell migration and invasion by targeting NELL2. RISC, RNA-induced silencing complex.






Discussion

The development of GC is accompanied by the gradual accumulation of multiple genes and epigenetic changes in a complex regulatory interaction network (47, 48). Early studies suggested that tRFs are the products of random degradation of tRNA (49, 50). With the advance of sequencing technology, we gradually realized that tRFs play crucial roles in different sorts of biological processes and that they may play an important role in tumorigenesis and progression. Therefore, the biological functions of these tRFs have attracted growing attention. Increasing evidence shows that tRFs play important roles in oncogenesis and the development of various tumors (51–53). tRF-1001 is essential for proliferation in colorectal cancer, and knocking down tRF-1001 arrests tumor cells in the G2 phase (14). Stable expression of tRF-CU1276 can inhibit a DNA dynamics regulator, endogenous RPA1, thus regulating the molecular DNA damage response and inhibiting proliferation in lymphoma cell lines (54). The newly identified tRF-1280, previously known as miR-1280, can inhibit metastasis in colorectal cancer (36). Moreover, the metastasis and progression of breast cancer can be inhibited by endogenous tRFs replacing YBX1 (23). Nevertheless, the expression level, potential function, and molecular mechanism of tRFs in GC are still indistinct.

In the present study, in order to find the differentially expressed tRNA-derived fragments in GC, we performed tRF&tiRNA microarray analysis on 10 pairs of GC and its paired NATs. We selected tRF-3017A which is upregulated for further study. We detected tRF-3017A expression level and found that it was abnormally highly expressed in GC tissues and cell lines. To identify the relevance between tRF-3017A and clinicopathologic features, the chi-square test was performed and suggested the association between higher expression of tRF-3017A and lymph node metastasis. It is well known that the occurrence of GC metastasis is a key factor affecting patient prognosis. Therefore, we explored the diagnostic value of tRF-3017A for occurrence and lymph node metastasis of GC through ROC analysis. Unfortunately, tRF-3017A has not demonstrated satisfactory diagnostic efficacy. The aberrant tRF-3017A expression level in GC tissues and cell lines has never been reported. Thus, in this study, we are the first to reveal the association between tRF-3017A and GC lymph node metastasis.

In terms of mechanisms, previous studies have shown that tRFs play important roles in RNA silencing through the complement of tRFs and target mRNA. 3’ tRFs were found to bind with Ago2, which is important in RNA interference (RNAi), for target recognition (26, 55, 56). Some studies indicate that tRFs bind directly to target mRNA, resulting in microRNA like effects (57, 58). For example, tRF-CU1276 in B-cell lymphoma regulates the molecular response to DNA damage by directly binding to the 3’UTR of RPA1 (54). tRF5-Glu was found to inhibit cell proliferation in ovarian cancer through directly binding to the 3’ UTR of BCAR3 (59). In this present study, it was observed through functional experiments that the migration and invasion ability of GC cells were promoted by the increase of tRF-3017A and also inhibited by the absence of tRF-3017A. Based on the reported RNAi mechanism, we further explored the mechanism of tRF-3017A inducing GC metastasis. According to the 3’ UTR complementary combination principle, the mRNA target prediction algorithm, the reference of existing research and validation of RNA and protein levels, we selected the possible regulated target genes, NELL2, downstream of tRF-3017A. Existing studies have shown that NELL2 is enriched in paracancer tissue and can inhibit clear cell carcinoma metastasis. Therefore, we attempted to verify whether NELL2 participated in the mechanism promoting GC metastasis of tRF-3017A. Correlation analysis showed that there is a moderate negative correlation between tRF-3017A and NELL2 expression. Knockdown and overexpression experiments validated that NELL2 could inhibit the migration and invasion of GC cell. Further luciferase report analysis and RIP-Ago2 assay demonstrated that tRF-3017A could form complex with Ago2 to target silencing NELL2. In addition, results of RESCUE experiments supported that tRF-3017A affects the migration and invasion of GC cells by regulating its downstream target gene NELL2. Our results show that tRF-3017A specifically bind to the 3’ UTR of NELL2 by interacting with Ago2 and negatively regulate NELL2 expression, similar to the mechanism of miRNA-mediated target gene silencing. In summary, this study verified that a tRNA derived fragment, tRF-3017A, can induce GC metastasis by targeting NELL2. The mechanism of tRF-3017A induced metastasis in which NELL2 is involved may provide a new therapeutic target for inhibiting GC metastasis.



Conclusions

In conclusion, this study found that tRF-3017A is abnormally highly expressed, revealed that the upregulated expression of tRF-3017A is associated with lymph node metastasis in GC and demonstrated that tRF-3017A promotes migration and invasion of GC cell lines. Moreover, we revealed that tRF-3017A promotes GC through regulation of NELL2 in a mechanism similar to miRNA-mediated target gene silencing.
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Background

Platelet activating factor acetylhydrolase 1b catalytic subunit 3 (PAFAH1B3) is associated with a variety of human diseases. However, its function in gastric cancer remains uncertain.



Methods

PAFAH1B3 expression was analyzed in The Cancer Genome Atlas (TCGA) and genotype-tissue expression pan-cancer data. The association between PAFAH1B3 expression and patient prognosis was evaluated using TCGA clinical survival data. Enrichment analysis of PAFAH1B3 was performed using the clusterProfiler R software package. Moreover, the correlation between PAFAH1B3 expression and immune cell infiltration were evaluated by analyzing TCGA database. CCK8 assay and colony-formation assay were performed to assess the effect of PAFAH1B3 on the proliferation of gastric cancer cells. Transwell assay was used to evaluate the impact of PAFAH1B3 on gastric cancer cell migration. Western blot was performed to evaluate the role of PAFAH1B3 on signaling pathways in gastric cancer cells.



Results

PAFAH1B3 was highly expressed in many types of tumors including gastric cancer. High PAFAH1B3 expression was significantly correlated with proliferation-related gene sets involved in DNA replication, the cell cycle, and cell cycle checkpoints. Further analysis showed that high PAFAH1B3 expression was associated with high M1 macrophage and CD8-positive T cell infiltration scores. PAFAH1B3 knockdown inhibited the proliferation, migration, and the activation of oncogenic signaling in gastric cancer cells.



Conclusions

Our findings suggest that PAFAH1B3 may be an oncogene in gastric cancer.
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Introduction

Gastric cancer is a major malignant tumor of the digestive system. It is prone to relapse and metastasis during the late stage and has a high mortality rate (1). At present, there is a lack of effective early diagnostic markers to detect and treat gastric cancer. With the rapid development of high-throughput sequencing technology and transcriptomic research, more driver genes continue to be discovered. However, there remains an urgent need to identify more key driver oncogenes, especially those that affect the composition of the immune microenvironment in gastric cancer.

Platelet activating factor acetylhydrolase 1b catalytic subunit 3 (PAFAH1B3) is one of the catalytic subunits of Platelet-activating factor (PAF) acetylhydrolase, which was reported to play crucial roles in certain types of cancers by regulating PAF activity (2, 3). Previous studies have indicated the association between PAFAH1B3 and cancer progression. For example, PAFAH1B3 expression was found to be higher in hypopharyngeal squamous cell carcinoma tissues than in adjacent non-tumor samples and predicted a poor outcome (4). Selective inhibition of PAFAH1B3 has been reported to impair cancer cell survival (5). However, the role of PAFAH1B3 in gastric cancer remains unknown.

In this study, we evaluated PAFAH1B3 expression in various tumors in The Cancer Genome Atlas (TCGA) and its correlation with patient prognosis. We further examined the association of PAFAH1B3 expression with molecular pathways in gastric cancer. Since immune cell infiltration is important for the prognosis of gastric cancer patients (6, 7), we also examined the correlation between PAFAH1B3 expression and the immune cell infiltration scores. Finally, we examined the effect of PAFAH1B3 knockdown on the apoptosis and proliferation of gastric cancer cells. Our results offer novel insights into the functional role of PAFAH1B3 in gastric cancer.



Materials and Methods


Data Collection and Analysis

PAFAH1B3 expression profiles and TCGA and Genotype-Tissue Expression (GTEx) clinical pan-cancer data were downloaded from the University of California, Santa Cruz (UCSC) Xena database (https://xenabrowser.net/datapages/), including data on adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney chromophobe, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma (KIRP), acute myeloid leukemia (LAML), brain lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), skin cutaneous melanoma (SCKM), stomach adenocarcinoma (STAD), testicular germ cell tumor (TGCT), thyroid carcinoma (THCA), uterine corpus endometrial carcinoma (UCEC), and uterine carcinosarcoma (UCS). To evaluate PAFAH1B3 expression, tumor tissues were obtained from TCGA, and normal tissues were obtained from TCGA and the GTEx database.



Correlation and Enrichment Analyses

Pearson correlation analysis of PAFAH1B3 mRNA and other mRNAs was performed in gastric cancer using TCGA STAD data. The 300 genes most positively associated with PAFAH1B3 were selected for enrichment analysis to determine the function of PAFAH1B3. Gene ontology (GO) analysis was performed using the EnrichGO function in the clusterProfiler R software package R with the following parameters: ont = all, pvalue-Cutoff = 0.05, and qvalue-Cutoff = 0.05. Gene set enrichment analysis was performed using the gseKEGG and gsePathway functions in clusterProfiler with the following parameters: nPerm = 1,000, minGSSize = 10, maxGSSize = 1,000, and pvalue-Cutoff = 0.05.



Immune Cell Infiltration

We downloaded pan-cancer immune cell infiltration scores from TCGA that were derived from a previously published study (8), the results of which were based on the CIBERSORT analytical tool (9). TCGA gastric cancer samples were divided into two groups according to the median PAFAH1B3 expression (high versus low level), and their immune cell infiltration levels were compared.



Cell Culture and Treatment

AGS, MGC-803, BGC-823, SGC-7901 cell lines were purchased from the Cell Bank of the Shanghai Institute of Cells, Chinese Academy of Science (Shanghai, China). All cell lines were cultured in Dulbecco’s modified Eagle’s medium (Gibco) in 10-cm petri dish (Corning) at 37°C with 5% CO2. Cell transfection was performed using the Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s protocol. Briefly, cells were seeded in six-well plates (Corning) and grown to a cell density of 30% and then transfected and cultured at 37°C for a further 48 h, followed by harvesting for quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and other experiments.



RNA Extraction and qRT-PCR

Total RNA from approximately 1×106 cells were isolated using TRIzol reagent (Pufei, Shanghai, China) according to the manufacturer’s protocol. The primers used for qRT-PCR, including those for PAFAH1B3 and GAPDH, were obtained from Applied Biosystems (Ribo, Guangzhou, China). The primer sequences were (5’-3’): PAFAH1B3 forward -GAGAAGAACCGACAGGTGAAC, reverse-CGGCAAACAGGTGTGTAGC. GAPDH forward-CTGGGCTACACTGAGCACC, reverse-AAGTGGTCGTTGAGGGCAATG. QRT-PCR parameters were: 95°C 6 min; (95°C 10 s, 58°C 30 s) × 40 amplification cycles. Relative expression levels were normalized to internal controls and calculated according to the 2–ΔΔCT method.



Western Blotting

Total protein from approximately 1×106 cells were extracted using radioimmunoprecipitation assay buffer and then quantified using the bicinchoninic acid method (Beyotime, Shanghai, China). Equal amounts of protein sample were separated using 8–15% sodium dodecyl sulfate–polyacrylamide gel electrophoresis and then transferred to nitrocellulose membranes. Membranes were blocked with 5% non-fat milk in TBST (Abcam, Cambridge, UK) for 1 h at room temperature and incubated with primary antibody (Abcam) at 4°C overnight. Membranes were then washed three times andincubated with horseradish peroxidase-labeled secondary antibody (Santa Cruz Biotechnology, Dallas, TX, USA) for 1 h. Signals were detected using an enhanced Chemiluminescent Western Blot Analysis Kit (Thermo Fisher Scientific, Inc.).



CCK8 Assay

Cells in the logarithmic growth phase from each experimental group were trypsinized, resuspended in complete medium, and cultured overnight. On the second day, cell proliferation was evaluated by Cell Counting Kit-8 reagent (Abcam) according to the manufacturer’s protocol. Optical density values at 460 nm were detected using a microplate reader (Molecular Devices, Rockford, IL, USA).



Colony-Formation Assay

One-hundred gastric cancer cells were plated into six-well plates and cultured for 10 days. Cell colonies were fixed and stained with crystal violet (Beyotime, China) for 5 min in 10% ethanol. Cell colonies were imaged and counted.



Transwell Assay

Thirty thousand gastric cancer cells were plated in the upper chamber of the transwell chamber (Corning, USA) in a 24-well plate. 24 h after incubation at 37°C, cells on the top surface of the chamber were removed by wiping. Cells on the bottom surface of the chamber were fixed with 4% paraformaldehyde for 10 min and stained with crystal violet (Beyotime, China) for 5 min. The number of migrated cells were imaged and counted.



Statistical Analyses

Data are expressed as means ± standard deviation. All data were analyzed using SPSS ver. 21.0 software (SPSS, Inc., Chicago, IL, USA). The normality of the data was tested using the Kolmogorov–Smirnov test. Pairwise differences between groups were analyzed using Student’s t-test. Significance was assessed at a level of P < 0.05.




Results


Pan-Cancer PAFAH1B3 Expression Analysis

We first evaluated PAFAH1B3 expression in TCGA and GTEx pan-cancer database, and found higher PAFAH1B3 expression in 24 tumors compared with the corresponding normal tissues, including: ACC, BLCA, BRCA, CESC, CHOL, COAD, ESCA, GBM, HNSC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PRAD, READ, SCKM, STAD, TGCT, THCA, UCEC, and UCS (Figure 1A).




Figure 1 | Pan-cancer PAFAH1B3 expression analysis. (A) PAFAH1B3 expression in tumor and normal tissues in pan-cancer data of The Cancer Genome Atlas (TCGA) and GTEx. (B) PAFAH1B3 expression in tumor and normal tissues in STAD from TCGA. (C) PAFAH1B3 expression in paired tumor and normal tissues in STAD from TCGA. Data were shown as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.



Particularly, high PAFAH1B3 expression was observed in STAD gastric cancer in the TCGA cohort (Figure 1B) compared with the adjacent tissues (Figure 1C), suggesting that PAFAH1B3 may play a role in the pathogenesis of gastric cancer.



Association Between PAFAH1B3 Expression and Cancer Patient Prognosis

To evaluate the utility of PAFAH1B3 expression in predicting cancer patient prognosis, we analyzed the association between PAFAH1B3 expression and overall survival in the TCGA cohort. The results showed that higher PAFAH1B3 expression was significantly associated with poor prognosis in ACC (P = 0.00023), LIHC (P = 0.0011), LUAD (P = 0.015), MESO (P = 0.003), SARC (P = 0.011), and SKCM (P = 0.0033) (Figures 2A–F), indicating that PAFAH1B3 is a potential oncogene in these types of cancers.




Figure 2 | The association between PAFAH1B3 expression and cancer patient prognosis. (A–F) The correlation between PAFAH1B3 expression and the prognosis of various cancer types was analyzed using The Cancer Genome Atlas (TCGA) database.





Correlation and Enrichment Analyses

To further explore the functions and pathways affected by PAFAH1B3, we performed correlation analyses between PAFAH1B3 and all other mRNAs in gastric cancer using TCGA data. The 300 genes most positively associated with PAFAH1B3 were selected for enrichment analysis, and the top 50 genes were displayed in a heatmap (Figure 3). We further explored potential functional pathways based on the top 300 genes using the R software clusterProfiler package. GO functional enrichment analysis revealed that PAFAH1B3 was associated mainly with cell proliferation-related pathways including DNA replication and cell cycle checkpoints (Figures 4A–C). Gene set enrichment analysis was conducted to search the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway databases. The KEGG analysis results showed that spliceosome, ribosome, and cell cycle terms were significantly enriched (Figure 4D). The Reactome analysis revealed significant enrichment of cell cycle, M phase, and DNA repair pathways (Figure 4E). These results suggest that high PAFAH1B3 expression is associated with the hyperactivation of multiple oncogenic pathways in gastric cancer, especially signalings which control cell proliferation.




Figure 3 | The correlation analysis of PAFAH1B3. Top 50 genes most positively associated with PAFAH1B3 were shown in heatmap. Data were normalized by Z-score standardization method.






Figure 4 | Enrichment analysis of PAFAH1B3 in gastric cancer. (A–C) Significant Gene Ontology terms of top 300 genes most positively associated with PAFAH1B3, including biological processes (A), cell component (B), and molecular function (C). (D, E) Significant gene set enrichment analysis (GSEA) results of PAFAH1B3, including KEGG pathways (D) and Reactome pathways (E).





Correlation Between Immune Cell Infiltration and PAFAH1B3 Expression

Next, we analyzed the immune cell infiltration scores of gastric cancer patients from TCGA database. The infiltration scores of M1 macrophages and the CD8-positive T cells were higher in the high-PAFAH1B3-expression cohort compared with those in the low-PAFAH1B3-expression cohort (Figure 5A).




Figure 5 | The correlation analysis between immune cell infiltration and PAFAH1B3 in gastric cancer. (A) The immune cell infiltration level in high and low PAFAH1B3 expression groups in gastric cancer of The Cancer Genome Atlas (TCGA) cohort. (B) The correlation between PAFAH1B3 and the immune cell infiltration levels, red represents positive correlation, green represents negative correlation, and the deeper the color, the stronger the correlation. Data were shown as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, no significance.



PAFAH1B3 expression was significantly positively correlated with the M1 macrophage infiltration and CD8-positive T cell infiltration (Figure 5B), indicating that high PAFAH1B3 expression promotes the intratumoral accumulation of CD8-positive T cells and macrophages, especially M1-like macrophages. These results suggest that high PAFAH1B3 expression is closely related to the immune-activated status of gastric cancer.



PAFAH1B3 Knockdown Inhibited the Malignant Behaviors and Signaling in Gastric Cancer Cells

Next, we evaluated PAFAH1B3 expression in multiple gastric cancer cell lines, and found relatively higher expression of PAFAH1B3 in BGS-823 and SGC-7901 cells compared with that in AGS and MGS-803 cells (Figure 6A). To explore the biological effects of PAFAH1B3 on gastric cancer cell proliferation, we knocked down PAFAH1B3 expression in BGS-823 and SGC-7901 cells via two PAFAH1B3 shRNA, and validated the successful silence of PAFAH1B3 expression in these two cell lines (Figure 6B). Next, we conducted CCK8 assay to evaluate cell proliferation. The Results showed that the proliferation rates of the BGS-823 and SGC-7901 cells were significantly inhibited following PAFAH1B3 knockdown (Figure 6C). The negative effect of PAFAH1B3 on gastric cancer cell proliferation was further confirmed by colony-formation assay (Figure 6D). Besides, PAFAH1B3 silencing also significantly impaired the migratory ability of gastric cancer cells as evidenced by Transwell assay (Figure 6E). Finally, we looked at the impact of PAFAH1B3 on several oncogenic signaling pathways by Western blot. The results showed that PAFAH1B3 knockdown in SGC-7901 cells led to the obviously downregulated levels of IRS1, Myc, HMGB1, and PTGS2. On the other hand, the levels of MET and FOXM1 were slightly upregulated. The level of EZH2 was unchanged by PAFAH1B3 knockdown (Figure 6F). Taken together, PAFAH1B3 facilitates the proliferation, migration, and the activation of oncogenic signaling in gastric cancer cells.




Figure 6 | Knockdown of PAFAH1B3 inhibited the proliferation and migration of gastric cancer cells. (A) The level of PAFAH1B3 was evaluated in various gastric cancer cell lines by qRT-PCR. (B) BCG-823 and SGC-7901 cells were transfected with si-PAFAH1B3, the level of PAFAH1B3 was evaluated by qRT-PCR. (C, D) The proliferation of gastric cells (GC) was examined by CCK-8 assay (C) and colony-formation assay. (E) The migration of GC cells was examined by transwell assay. (F) The expression levels of indicated proteins were evaluated by Western blot in control and PAFAH1B3-silenced BCG-823 cells. Data were shown as mean ± SD. ***p < 0.001.






Discussion

In recent years, PAFAH1B3 was reported to play regulatory roles in various kinds of diseases, including human cancers. For example, in hypopharyngeal squamous cell carcinoma (HSCC), the expression of PAFAH1B3 was reported to be upregulated and was correlated with poor patient prognosis. Silencing PAFAH1B3 expression restricted the proliferation, invasion, and migration of HSCC cells (4). Metabolomic study indicated that inhibition of PAFAH1B3 suppressed the growth of breast cancer by upregulating the levels of anti-tumor lipids, such as ceramides and several PPARα ligands, indicating that PAFAH1B3 serves as a metabolic oncogene in breast cancer (10). Similarly, selective small-molecule PAFAH1b3 inhibitors impaired the growth of neuroblastoma cells, suggesting that PAFAH1b3 might become a targetable oncoprotein (5). Nevertheless, the expression pattern of PAFAH1B3 in various human cancers and its prognostic values are still elusive. Here, by data mining using TCGA datasets, the hyperexpression of PAFAH1B3 was observed in 24 types of tumor tissues compared with normal tissues, suggesting that PAFAH1B3 might serve as a novel oncogene in these tumor types.

Next, we examined the expression level of PAFAH1B3 and its prognostic value using pan-cancer TCGA and GTEx data obtained from the UCSC Xena database. Compared with normal tissues, we found that PAFAH1B3 was highly expressed in ACC, BLCA, BRCA, CESC, CHOL, COAD, ESCA, GBM, HNSC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PRAD, READ, SCKM, STAD, TGCT, THCA, UCEC, and UCS, whereas its expression was low in LAML tissue. PAFAH1B3 was particularly highly expressed in gastric cancer tissues compared with adjacent normal tissues according to TCGA data. Overexpression of PAFAH1B3 generally predicts a poor prognosis in ACC, LIHC, LUAD, MESO, SARC, and SKCM. These results support the use of PAFAH1B3 as a prognostic biomarker of tumor prognosis.

Our enrichment analysis results showed that PAFAH1B3 is closely related to cell proliferation-related pathways such as DNA replication, the cell cycle, and cell cycle checkpoints. Further analyses demonstrated that PAFAH1B3 knockdown inhibited the proliferation of the AGS and MGC-803 gastric cancer cell lines. On the other hand, the signaling mechanisms underlying the function of PAFAH1B3 in tumor cells are largely unknown to date. Here, we found that PAFAH1B3 knockdown in gastric cancer cells downregulated the levels of IRS1, Myc, HMGB1, and PTGS2, which were reported to serve as oncogenes in many types of cancers (11–14). These results suggest that PAFAH1B3 facilitated the activation of multiple oncogenic signaling pathways in gastric cancer cells.

Stroma cells in tumor microenvironment, especially immune cells, are vital elements which have profound impacts on regulating the malignant behaviors of tumor cells (15–17). Accumulating evidence has elucidated their clinicopathological significance in predicting the outcomes and therapeutic efficacy in cancer patients (18, 19). The infiltration of CD8-positive T cells and tumor-associated macrophages was reported to facilitate the progression of epithelial gastric cancer (20–22). In the present study, infiltration levels of CD8-positive T cells and M1 macrophages were significantly higher in the gastric cancer group with high PAFAH1B3 expression. Moreover, positive correlations were detected between PAFAH1B3 expression and infiltration levels of CD8-positive T cells and M1 macrophages, indicating a key role of PAFAH1B3 in regulating tumor immunology.

In summary, PAFAH1B3 may play a pathogenic role in gastric cancer progression, both acting on tumor cells or on tumor-infiltrating immune cells.
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Background

Colorectal cancer (CRC) is a common malignant solid tumor with an extremely low survival rate after relapse. Previous investigations have shown that autophagy possesses a crucial function in tumors. However, there is no consensus on the value of autophagy-associated genes in predicting the prognosis of CRC patients. This work screens autophagy-related markers and signaling pathways that may participate in the development of CRC, and establishes a prognostic model of CRC based on autophagy-associated genes.



Methods

Gene transcripts from the TCGA database and autophagy-associated gene data from the GeneCards database were used to obtain expression levels of autophagy-associated genes, followed by Wilcox tests to screen for autophagy-related differentially expressed genes. Then, 11 key autophagy-associated genes were identified through univariate and multivariate Cox proportional hazard regression analysis and used to establish prognostic models. Additionally, immunohistochemical and CRC cell line data were used to evaluate the results of our three autophagy-associated genes EPHB2, NOL3, and SNAI1 in TCGA. Based on the multivariate Cox analysis, risk scores were calculated and used to classify samples into high-risk and low-risk groups. Kaplan-Meier survival analysis, risk profiling, and independent prognosis analysis were carried out. Receiver operating characteristic analysis was performed to estimate the specificity and sensitivity of the prognostic model. Finally, GSEA, GO, and KEGG analysis were performed to identify the relevant signaling pathways.



Results

A total of 301 autophagy-related genes were differentially expressed in CRC. The areas under the 1-year, 3-year, and 5-year receiver operating characteristic curves of the autophagy-based prognostic model for CRC were 0.764, 0.751, and 0.729, respectively. GSEA analysis of the model showed significant enrichment in several tumor-relevant pathways and cellular protective biological processes. The expression of EPHB2, IL-13, MAP2, RPN2, and TRAF5 was correlated with microsatellite instability (MSI), while the expression of IL-13, RPN2, and TRAF5 was related to tumor mutation burden (TMB). GO analysis showed that the 11 target autophagy genes were chiefly enriched in mRNA processing, RNA splicing, and regulation of the mRNA metabolic process. KEGG analysis showed enrichment mainly in spliceosomes. We constructed a prognostic risk assessment model based on 11 autophagy-related genes in CRC.



Conclusion

A prognostic risk assessment model based on 11 autophagy-associated genes was constructed in CRC. The new model suggests directions and ideas for evaluating prognosis and provides guidance to choose better treatment strategies for CRC.
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Introduction

Colorectal cancer (CRC) is a prevalent disease worldwide (1). Even with improvements in living standards and changes in dietary structure, the morbidity and fatality of CRC have remained high in recent years (2). At present, the prognosis of CRC patients is primarily assessed using the tumor-node-metastasis (TNM) staging system. Generally, the earlier the stage it occurs, the better the prognosis is. Autophagy is a lysosome-dependent degradation pathway characterized by cytoplasmic vacuolation (3). It can degrade damaged structures in the cytoplasm and produce small organic molecules, and other substances for protein compound and energy metabolism, enabling cells to adapt to hypoxia and starvation (4). The process of autophagy is modulated by multifarious complex signaling molecules (5). Failure of this regulatory mechanism is closely related to tumor development, neurodegenerative diseases, and aging (6–8). Current experimental data demonstrate that autophagy is related to CRC (9). Raptor and autophagy-related 5 (ATG5), which are autophagy-related genes, contribute to CRC metastasis and drug resistance by regulating autophagy (10, 11), suggesting that autophagy may be significant in treatment and prognosis prediction for CRC. Although many investigations have explored the pathogenesis of CRC, further studies are needed to fully elucidate its detailed molecular mechanisms.

In the present study, autophagy-associated genes differentially expressed in CRC were screened using a bioinformatics approach. In addition, a simple prognostic model of autophagy-associated genes related to the prognosis of CRC patients was constructed based on Cox analysis, in order to obtain evidence for the application of these genes in prognosis prediction and clinical treatment of CRC patients.



Materials and Methods


Data Download and Identification of Differentially Expressed Genes

Raw CRC transcript data, clinical patient data, and the metadata for all DNA whole-exome BAM files were collected from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/; released before October 27, 2019) (12), and data for 1,526 autophagy-associated genes with a relevance score of >1.5 were obtained from the GeneCard database (https://www.genecards.org; released before February 19, 2020) (13). As 15 genes, including MARCHF7, CCN2, H2AX, and SARS1, were not found in the TCGA CRC sample, only 1,511 autophagy-associated genes were obtained. TCGA CRC mutation data (VarScan2 Variant Aggregation and Masking) were downloaded from UCSC (https://xenabrowser.net/datapages/; released before March 30, 2020) (14). Sample expression values from the above data were collated using perl (version 10.0.18363.1256), and the ENSEMBL gene ID was converted into a gene name. The Wilcox test was performed on the autophagy-associated genes from CRC tissues and normal tissues using the R software (version 3.6.1) “limmar” package, and the differentially expressed genes (DEGs) were defined by the absolute values of log (fold change) >1 and FDR (false discovery rate) <0.05.



Prognostic Model Construction

DEGs were subjected to univariate Cox analysis using the “survival” R package. Autophagy-associated genes related with CRC prognosis were identified, and multivariate Cox analysis was carried out to construct a prognostic model according to the best Aike information criterion. 



Assessment of the Accuracy of the Prognostic Model

By combining the expression of autophagy-associated genes and the coefficients obtained by multivariate Cox regression analysis, a final formula for calculating risk scores was listed next: risk scores = SLCO1A2exp × 1.24168405018345 + RAB6Bexp × 0.425074259002984 + SNAI1exp × 0.480196885198325 + NOL3exp × 0.473830469554988 − ULK4exp × 1.04014423940406 − EPHB2exp × 0.295212904754073 + TRAF5exp × 0.379124034189421 − PPARGC1Aexp × 0.516127561999247 + MAP2exp × 0.742235003720545 − RPN2exp × 0.557629664887039 − IL13exp × 6.47343548405588. According to the above formula, we calculated the prognostic risk value for each sample in the TCGA data (the median value of the risk score was the standard for defining the high-risk and low-risk groups). Then, the “survival” and “survminer” R packages were used for survival analysis and independent prognosis analysis using the risk score, as well as for visualization of the results. We also performed Kaplan-Meier (KM) survival analysis of 11 autophagy genes in the model. Receiver operating characteristic (ROC) analysis was conducted using the “survivalROC” R package. Finally, the concordance index (C-index) of the autophagy-related prognostic model was calculated. The values of C-index and AUC have low accuracy when they are from 0.50 to 0.70, moderate accuracy when they are from 0.71 to 0.90, and high accuracy when they are greater than 0.90. 



Evaluation of EPHB2, NOL3, and SNAI1

For the evaluation of protein level, IHC samples of CRC were downloaded from EPHB2, NOL3, and SNAI1 in the human protein atlas (HPA) database (https://www.proteinatlas.org/) (15) and the integrated optical density (IOD) was analyzed. The IOD of IHC was analyzed by Image-Pro Plus 6.0 software and GraphPad software 8 (statistical significance between groups was examined with an independent-samples t-test). For the evaluation of cell level, the verification of EPHB2, NOL3, and SNAI1 was performed using the Cancer Cell Line Encyclopedia (CCLE) database (https://portals.broadinstitute.org/ccle/about) (16), and GraphPad software 8 was used to visualize the mRNA expression of these genes in nine common CRC cell lines (CACO2, HCT116, HT29, LOVO, RKO, SW1116, SW48, SW480, and SW620) obtained from the CCLE database. When the p value is less than 0.05, the data are considered to be statistically significant. 



Identification of Related Signaling Pathways

To identify potential signaling pathways related to prognosis in CRC, we divided CRC patients into high- and low-risk groups for Gene Set Enrichment (GSEA) analysis using the prognostic model. To determine the biological functions and signaling pathways related to the genes in the prognostic model, the target genes of 11 autophagy genes in the model were obtained using the online RNA prediction platform ENCORI (encyclopedia of RNA interactions, http://starbase.sysu.edu.cn/rbpClipRNA.php?source=mRNA; released before February 19, 2020) (17), and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out. 



The Relationship Between the Expression of 11 Autophagy-Associated Genes and MSI and TMB

According to the previous steps (18), the algorithm MANTIS was used to calculate the MSI score of each sample of CRC, and then R was used to analyze the correlation between these autophagy-related genes and MSI (Spearman), and draw the radar map of the correlation between these genes and MSI. Perl was used to collate the TCGA CRC mutation data obtained from UCSC and calculate the TMB data of each sample. The TMB data of each sample were collated and calculated by perl, and the TMB was calculated as the total number of somatic mutations (including non-synonymous point mutations, insertions, and deletions in the coding region of exons)/the size of the target region, in units of mutations/Mb. Then R was used to analyze the correlation between these autophagy-related genes and TMB (Spearman). Finally, the radar map of the correlation between these genes and TMB was drawn.




Results


Differential Expression of Autophagy-Associated Genes

According to the mRNA matrix data for 568 CRC tissues and 44 normal tissues in TCGA, absolute values of mRNA expression levels with log (fold change) >1.0 and FDR <0.05 were used as screening criteria. A total of 301 autophagy-associated DEGs were obtained, of which 134 were significantly downregulated and 167 were significantly upregulated. The scatter plot is shown in Figure 1A, and the top five autophagy genes with the most significant upregulation and downregulation are presented in Table 1.




Figure 1 | (A) Volcano map of autophagy-associated DEGs. (B) Screening of autophagy-associated genes associated with the prognosis of CRC by univariate Cox analysis. (C) Box plot showing expression of 11 autophagy-associated genes in normal tissues and CRC. **p < 0.01, ***p < 0.001.




Table 1 | Top five autophagy-associated genes significantly upregulated and downregulated in CRC.





Prognostic Model Construction

To further understand whether autophagy-associated DEGs were associated with the survival of CRC patients, we obtained 30 prognosis-associated genes by univariate Cox analysis (Figure 1B), which were screened and modeled by further multivariate Cox analysis (Table 2). Finally, a box plot was used to show the expression of genes used to build the model in normal and CRC tissues (Figure 1C).


Table 2 | Construction of 11 autophagy-associated genes for prognosis.





Assessing the Accuracy of the Prognostic Model

Based on the analysis results, the median value of the risk score was determined. According to the median value, all samples were classified into high- and low-risk groups. The analysis results were visualized and a distribution map of the risk score was drawn. Figure 2A shows the probability distribution of the risk score. Red points represent samples of the high-risk group, and green points represent samples of the low-risk group. Figure 2B presents the distribution of risk scores and survival time. The ordinate is the survival time (in years), the red points denote dead cases, and the green points denote alive cases. Survival analysis of risk scores showed significant statistical differences between the two groups (p = 1.277e-07) (Figure 2C). The results of KM survival analysis of the 11 autophagy prognostic genes in the model indicated that EPHB2, NOL3, and SNAI1 were relevant to the survival of patients with CRC (Figures 3A–C). According to the prognostic model, the survival rates of the high- and low-risk groups were predicted (Table S1). The 5-year survival rate of CRC patients in the low-risk group was approximately 0.738, with a 95% confidence interval (CI) of 0.618-0.881. The 5-year survival rate of CRC patients in the high-risk group was about 0.477 with a 95% CI of 0.365-0.623. Univariate and multivariate independent prognostic analyses uncovered that the risk score for this prognostic model was an independent prognostic factor (p < 0.001) (Figures 2D, E). The AUC values for the 1-year, 3-year, and 5-year ROC curves were 0.764, 0.751, and 0.729, respectively (Figures 3D–F). Finally, the C-index was applied to evaluate the prediction ability of the model. The C-index is the proportion of all patient pairs in which the predicted consequences are in agreement with the practical consequences. The C-index of the prognostic model was calculated to be 0.734 (standard error = 0.028). In summary, the above results show that the model has a moderate accuracy.




Figure 2 | (A) Risk scores for all samples from clinical data. (B) Distribution of risk scores and survival time of patients. (C) KM assessment of survival time for samples from TCGA clinical data using the autophagy prognostic model. Forest plot of (D) univariate and (E) multivariate independent prognostic analysis of the model.






Figure 3 | (A–C) KM survival analysis for EPHB2, NOL3, and SNAL1. (D–F) 1-year, 3-year, and 5-year ROC curves and AUC based on the autophagy prognostic model.





Evaluation of EPHB2, NOL3, and SNAI1

EPHB2, NOL3, and SNAI1 were highly expressed at the protein level (Figure 4) and cellular level (Figures 5A–C), which were consistent with the data obtained in TCGA. The most upregulated expressions of EPHB2, NOL3, and SNAI1 in the nine common CRC cell lines were SW620, HT29, and CACO2, respectively (Figures 5D–F).




Figure 4 | IHC analysis of EPHB2 (A), NOL3 (B), and SNAI1 (C) in CRC tissues. *p < 0.05, **p < 0.01.






Figure 5 | mRNA analysis of EPHB2 (A, D), NOL3 (B, E), and SNAI1 (C, F) in CRC cell lines.





Acquisition of Potential Signaling Pathways

According to the GSEA analysis, the high-risk group was mainly associated with the Notch, VEGF, WNT, MAPK, and TGF-β signaling pathways, which are tumor-related pathways (Figure 6A; Table 3). The low-risk group had a negative correlation with DNA replication, RNA degradation, cell cycle, mismatch repair (MMR), peroxisome, and glutathione metabolism, which are mainly involved in cytoprotective response (Figure 6B; Table 3). GO analysis revealed that the primary biological processes of the target genes of the model included mRNA processing, RNA splicing, and regulation of mRNA metabolic process (Figure 7A). KEGG analysis revealed that the major enriched pathways included spliceosome, RNA transport, mRNA surveillance pathway, and ribosome biogenesis in eukaryotes (Figure 7B). These pathways are mainly concentrated in the processes of splicing and metabolism of mRNA.




Figure 6 | (A) GSEA analysis of main enriched pathways in the high-risk group. (B) GSEA analysis of main enriched pathways in the low-risk group.




Table 3 | Display of GSEA enrichment results in high and low risk groups.






Figure 7 | (A) GO analysis and (B) KEGG analysis of the target genes of 11 autophagy-associated genes in the model. The radar maps of 11 autophagy-associated genes are analyzed with MSI (C) and TMB (D), respectively. Regulatory relationships between the 11 genes in the model and autophagy (E). *p < 0.05, **p < 0.01, ***p < 0.001.





Some Autophagy-Associated Genes Were Related to MSI and TMB

Based on the previous data, a correlation between MMR pathway and low-risk groups was discovered, so we speculate that the expression of these autophagy-associated genes may be related to MSI. A previous report has shown that high TMB in CRC is usually related to MSI and mismatch repair defects (19). Therefore, we also analyzed the relationship between these autophagy-related genes and TMB. As can be seen from Figures 7C, D, EPHB2, IL-13, MAP2, RPN2, and TRAF5 are correlated with MSI, EPHB2 (R = -0.204), RPN2 (R = -0.255), and TRAF5 (R = -0.295) are negatively correlated with MSI, while IL-13 (R = 0.102) and MAP2 (R = 0.141) are positively correlated. IL-13, RPN2, and TRAF5 were correlated with TMB, RPN2 (R = -0.244) and TRAF5 (R = -0.094) were negatively correlated with TMB, while IL-13 (R = 0.093) was positively correlated with TMB.




Discussion

CRC is caused by abnormal cell growth in the colon or rectum. Increasing numbers of studies confirm the importance of autophagy in CRC at various stages (20, 21). In the current work, we used bioinformatics analysis to identify autophagy-associated genes with statistically significant differences in expression in CRC.

As the early symptoms of CRC are not obvious, the prognosis of CRC patients is poor once CRC progresses (22). Hence, the identification of effective prognostic markers is important to guide assessment and treatment of CRC patients. Huang et al. constructed a prognostic model that has been confirmed by experiments to have a clear correlation with CRC, and the marker based on multi-RNA had a higher prognostic accuracy than TNM staging (23). Zhou et al. identified five autophagy genes to establish an early recurrence classifier. The report shows that autophagy score can be used to predict the postoperative survival rate of CRC (24). Qian and his colleagues constructed a competitive endogenous RNA (ceRNA)-ceRNA interaction network mediated by autophagy in CRC by integrating the systematic expression profiles of long non-coding RNA and mRNA (25). Some people even screened the autophagy-related non-coding RNA, for network construction or prognostic model construction based on the characteristics of autophagy genes (26). Most of the above studies used the human autophagy database to obtain a small number of autophagy-related genes, in order to identify biomarkers related to the prognosis of CRC. However, these studies ignored the potential key autophagy-related genes that have not been paid attention to, which is of great significance in mining the prognosis, occurrence, and development of CRC. As autophagy affects the progression and prognosis of CRC and may even lead to chemotherapy resistance, we established a prognostic model of CRC based on 1,511 autophagy-associated genes. It was a new simple prognostic model based on the listed genes (SLCO1A2, RAB6B, SNAI1, NOL3, ULK4, EPHB2, TRAF5, PPARGC1A, MAP2, RPN2, and IL-13) and established using univariate Cox analysis and multivariate Cox analysis. ULK4, EPHB2, PPARGC1A, RPN2, and IL-13 had hazard ratio (HR) values less than 1 and were thus good prognostic factors, whereas SLCO1A2, RAB6B, SNAI1, NOL3, TRAF5, and MAP2 with a HR greater than 1 were considered poor prognostic factors. The 5-year survival rates of CRC patients in the high-risk group and low-risk group were 73.8% and 47.7%, respectively. These results indicate that the survival rates of patients with high-risk scores were markedly lower than those of patients with low-risk scores. We deduced the following rule from the risk curve: the higher the risk score, the greater the number of deaths and the larger the proportion of death. Independent prognostic analysis revealed that the risk value obtained from the autophagy prognostic prediction model was an independent prognostic factor. Higher risk scores were correlated with poorer patient prognosis.

According to the KM survival analysis, the autophagy-associated genes EPHB2, NOL3, and SNAI1 in the prognostic model were statistically significant (p < 0.05). EPHB2 encodes the receptor tyrosine kinase transmembrane glycoprotein family member EPHB2, which engages in lots of cellular processes including movement, division, and differentiation (27). EPHB2 functions in the gastrointestinal homeostasis and is an essential factor regulating the classification of mature epithelial cells (28). EPHB2 primarily generates in epithelial cells and is the highest level of EPH receptor in the ordinary intestine (29). Studies in human breast cancer have shown that the expression of EPHB2 can induce the increase of ATG5/12 and LC3II, thereby inducing autophagy (26). Based on experimental results, Kandouz and colleagues propose that EPHB2 may affect autophagy via the ERK1/2 and PI3K pathways (27, 30). Moreover, they observed LC3 accumulation and transformation from LC3I to LC3II in EPHB2-upregulated cells. Knock-out of the autophagy regulatory genes ATG5/7 can significantly reduce cellular death induced by EPHB2. Some researchers have found that reducing tyrosine phosphorylation of EPHA1 and EPHB2 induces autophagy in CRC cells (28). There are also reports that the expression of EPHB2 is reduced during the development of CRC tumors, and its high expression may inhibit the development of tumors and reduce the invasion of cancer cells (31). This is consistent with the relationship between the low expression of EPHB2 and the poor prognosis of CRC in our survival analysis. EPHB2 is a tumor suppressor that affects the progression of CRC by acting on autophagy (27).

On the contrary, according to the results of our survival analysis, high expression of NOL3 was connected to poor prognosis in CRC. NOL3 encodes an anti-apoptotic protein that is involved in pathways including apoptosis and autophagy, apoptosis regulation, and signal transduction (32). The caspase recruitment domain (CARD) of NOL3 can downregulate the activity of p53 via CARD–CARD interaction (32). p53 is a well-known tumor suppressor protein (33). Some research indicates that p53 may induce autophagy whether it is inhibited or activated, and current data suggest that p53 promotes cell autophagy by inhibiting the mechanistic target of rapamycin kinase (mTOR) (34). SNAI1 participates in the stimulation of epithelial-to-mesenchymal transition (EMT) and exerts a vital role in tumor drug resistance, cellular proliferation inhibition, survival, and movement (35). SNAI1 is a pivotal regulator of EMT and controls CRC invasion and proliferation (36). Recent research suggests that autophagy degrades SNAI1 in cancer cells via LC3 and/or (sequestosome 1) SQSTM1, thereby inhibiting tumor progression (30).

Furthermore, the other eight genes in the model are closely related to the tumor. Some studies suggest that RAB6B, one of the RAS oncogene family members, functions in retrograde transport at the Golgi complex level or in retrograde transport in nerve cells (37). Silencing RAB6B in gastric cancer inhibits the AKT/JNK signaling pathway, suppressing gastric cancer cell proliferation, and impels apoptosis by furthering the p38 MAPK pathway (38). Overexpression of Caveolin-1 has been shown to reduce paclitaxel resistance of osteosarcoma cells via weakening autophagy, and the AKT/JNK pathway is an effective regulator for autophagy (39, 40). Furthermore, p38 MAPK can inhibit autophagy and promote microglial inflammation via phosphorylating unc-51-like autophagy activating kinase 1 (ULK1) (41), and the stimulation of the p38 MAPK pathway via osteopontin can advocate malignant change in CRC, and suppress autophagy (42).

SLCO1A2 is the gene encoding organic anion-transporting polypeptide 1A2 (OATP1A2), which belongs to the organic anion transport polypeptide (OATP) subunit of the superfamily of drug transporters. OATP1A2 is mainly found in epithelial tissue and can affect the distribution of many drugs, xenobiotics, and endophytes (43). OATP1A2 dysfunction may damage the pharmacokinetics and traits of a drug, thereby affecting the effectiveness of the treatment, and it may also hinder the absorption of endogenous organisms to the target tissue (43). OATP1A2 is regulated by AMPK, which has an impact on its membrane target, internalization, reuse, and degradation processes (44). Some researchers found that OATP1A2 could not be detected in the large intestine of normal controls when conducting intestinal transport protein research, but in another study, OATP1A2 was found to be widely expressed in patients with CRC liver metastases (45, 46). Therefore, OATP1A2 could be an influential factor altering the effect of oral drug treatment in CRC. As shown in Figure 2, the expression level of the SLCO1A2 tumor group was higher than that of the normal group. The interaction between autophagy and drug transporters is reported to be related to drug resistance (47). For example, high expression of the transporter ATP binding cassette subfamily G member 2 can promote autophagy, and the activation of autophagy greatly increases the survival rate of cells (48). TRAF5 regulates the stimulation of the typical nuclear factor kappa B (NF-κB) pathway (49, 50). Most investigations have found that activation of the NF-κB pathway can inhibit autophagy (51).

RPN2 is tremendously overexpressed in CRC and promotes cell proliferation by regulating the glycosylation state of epidermal growth factor receptor (52, 53). RPN2 has been manifested to repress autophagy in liver cancer (54). IL-13, one of the autophagy genes used to construct the model, is an important T cell-derived cytokine that induces EMT in CRC cells (55). In the airway epithelium, IL-13 can activate autophagy and affect cell secretion (56). Besides, in breast carcinoma, IL-13 can regulate the expression of Beclin 1 as well as light chain 3 beta (LC3B), increasing the formation of autophagosomes via IKKβ/NFκBp65 (57). The protein encoded by PPARGC1A is a transcriptional co-activator that modulates genes involved in energetic metabolism (58). This protein cooperates with a variety of transcription elements to enhance mitochondrial oxidative phosphorylation (OXPHOS) under conditions of high energy demand (58). In various malignant tumors, including CRC, ascendant expression of PPARGC1A is strongly related to metabolism and advances the growth, distant spread, and chemical resistance of tumor cells (58). Overexpression of PPARGC1A increases the amount of the OXPHOS protein complex, accelerates autophagy, and activates tumor development in breast cancer cells (59). In melanoma cells, downregulating PPARGC1A/PPARGC1B results in decreased OXPHOS activity, creating an acidic tumor environment and triggering autophagy (60). MAP2 is mainly involved in neurite outgrowth and neuronal migration during neuronal development (61, 62). However, there have been few studies of MAP2 in non-nerve cells (61). Some researchers have observed that a high level of MAP2 is absent from normal mucosa in aggressive oral neoplasm (61). MAP2 interacts with growth factor receptor-bound protein 2 to enhance the ERK signaling pathway (63). In RAS-driven cancers (including CRC), it has been demonstrated that RAF/MEK/ERK inhibition can cause cancer-cell-protective autophagy (63). ULK4 belongs to a member of the unc-51-like serine/threonine kinase family functioning in the neuron (64). Lebovitz et al. investigated more than 200 human autophagy-related signatures and cancer-associated changes in the DNA sequence as well as RNA expression, and used sequence data from TCGA to examine their relationships with multiple cancer types and patient survival outcomes (65). ATG7 and ULK4, which are core autophagy genes, showed effective selection of mutations in renal cancer and endometrial cancer, respectively, indicating that the expression and mutation of ULK4 may be closely related to autophagy (65). The above data demonstrate that the 11 genes used to build the model are all involved in autophagy to a greater or lesser extent, as illustrated in Figure 7E. However, owing to a lack of research, the mechanisms by which ULK4 and SLCO1A2 interact with autophagy remain unclear. They appear to be key genes regulating the autophagy pathway in CRC; however, more experiments are needed to confirm this.

Some signaling transduction pathways are known to be abnormally activated during the occurrence and progression of CRC, in particular, Notch, VEGF, WNT, MAPK, and TGF-β signaling, and these pathways cooperate with cell autophagy to determine the fate of the cell (66–69). Our GSEA enrichment analysis showed that the high-risk group with higher mortality than the low-risk group had a mainly positive role in the relevant mechanisms of tumor cells, including the Notch, VEGF, WNT, MAPK, and TGF-β signaling pathways, 11 autophagy associated genes may be related to the biological pathway related to CRC, and its dysfunction may lead to poor prognosis of CRC. While the low-risk group had mainly negative correlations with DNA replication, RNA degradation, cell cycle, MMR, peroxisome, and glutathione metabolism, all of which are normal cell protective responses. A considerable number of studies have concluded that autophagy is a protective mechanism for cancer cells, limiting the response to various therapeutic interventions (70, 71). These results indicate that autophagy is largely based on the interaction with various abnormal signaling pathways to influence the progress of CRC. A large number of studies have proved that the MMR pathway plays an important role in repairing DNA replication errors in normal and tumor cells (72, 73). The deficiency of DNA MMR protein, which determines the microsatellite instability-high (MSI-H), may lead to the accumulation of mutations and the production of new antigens, which may stimulate the anti-tumor immune response (74). Clinical trials have shown that MSI-H status is associated with long-term benefits for patients treated with an immune checkpoint inhibitor. It has been reported that the expression level of autophagy key factor LC3B-II in CRC is higher than that in MSI (75). UVRAG, a key autophagy tumor suppressor, produces truncated mutations when CRC patients have MSI  (76). The mutated UVRAG loses its ability to inhibit autophagy and promotes tumorigenesis (76). A recent study report also suggested that autophagy-related genes were expressed differently in an MSI group and microsatellite stability (MSS) group, which suggested that autophagy may be closely related to tumor MSS. According to our analysis of the results, we found that EPHB2, IL-13, MAP2, RPN2, and TRAF5 are related to MSI, and EPHB2 has been experimentally confirmed to be negatively related to MSI-H (77), which is the same as the result of our analysis. From the results, we discovered that RPN2 and TRAF were negatively correlated with TMB and MSI, while IL-13 was positively correlated with TMB and MSI. The correlation between RPN2, TRAF, and IL-13 in TMB and MSI was consistent, which partly explains the consistency with high TMB and high MSI, and suggests that autophagy-related genes may have a key effect on MSI.

At the same time, to further understand the potential mechanism between the 11 autophagy-associated genes of this model and CRC, we analyzed their targeted genes by GO and KEGG. According to Figure 7B, all the targeting genes of the 11 autophagy-associated genes used to construct the prognostic model may be related to RNA splicing. Splicing factors are key regulators of the mRNA alternative splicing (78). Researchers have investigated the expression level of more than 20 splicing factors, meanwhile autophagy was stimulated by hypoxia in oral tumors and found that the serine and arginine rich splicing factor 3 (SRSF3) was considerably downregulated (78). The results show that the splicing factor SRSF3 is a carcinogen in CRC, and the silencing of its expression can induce autophagic death of CRC cells (79). The variable transcripts of Beclin 1 are produced by selective 3’ splicing, and its translation products show reduced activity during starvation-induced autophagy, suggesting that the subtype of splicing may be a negative regulator of autophagy (80). As a proliferation regulatory factor of CRC, splicing factor proline and glutamine rich (SFPQ) can cooperate with peroxisome proliferator activated receptor gamma (PPARγ) (81). PSF gene knockout induces autophagosome generation via suppressing PPARγ (81). In malignant tumor cells, knockdown of the core spliceosome components small nuclear ribonucleoprotein polypeptide E and small nuclear ribonucleoprotein D1 polypeptide resulted in cancer cell death through autophagy rather than apoptosis (82). Consequently, preceding investigations also support our hypothesis that RNA splicing affects the progression of CRC by regulating autophagy. However, the connection between the conservative processes (autophagy and RNA splicing) is not completely clear, and more experiments are needed.

The series of bioinformatics analyses described here show that the autophagy prognostic model had a certain level of accuracy in predicting the prognosis of CRC patients. Nevertheless, more research and clinical evidence are needed to confirm the validity of this model.

In total, 301 DEGs in CRC were identified by bioinformatics analysis. GSEA, GO, and KEGG analyses indicated that autophagy may have an essential function in key signaling pathways of CRC, thereby deepening our understanding of the mechanism by which autophagy participates in the development of CRC. The analysis of the relationship between autophagy-associated genes and MSI and TMB suggests that autophagy may be an important process affecting MSI and TMB. We also established a simple prognostic model using bioinformatics tools. The model was based on screening autophagy-associated genes that were extremely relevant to the appearance and evolvement of cancers. A series of analysis methods were used to assess the predictive capability of the model. We believe that the autophagy prognostic model might have a far-reaching role in improving traditional TNM staging and histological classification for the prognosis prediction and treatment of CRC patients.
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Human cytomegalovirus (HCMV) is an oncogenic virus associated with tumorigenesis. Our previous study revealed that the HCMV US31 gene interacted with NF-κB2 and mediated inflammation through macrophages. However, there are few reports on the role of US31 in gastric cancer (GC). The aim of this study was to investigate the expression of the US31 gene in GC tissue and assess its role in the occurrence and development of GC. US31 expression in 573 cancer tissues was analyzed using immunohistochemistry. Results showed that US31 was significantly associated with tumor size (P = 0.005) and distant metastasis (P < 0.001). Higher US31 expression indicated better overall survival in GC patients. Overexpression of US31 significantly inhibited the proliferation, migration, and invasion of GC cells in vitro (P < 0.05). Furthermore, expression levels of CD4, CD66b, and CD166 were positively correlated with US31, suggesting that it was involved in regulating the tumor immune microenvironment of GC. RNA sequencing, along with quantitative real-time polymerase chain reaction, confirmed that the expression of US31 promoted immune activation and secretion of inflammatory cytokines. Overall, US31 inhibited the malignant phenotype and regulated tumor immune cell infiltration in GC; these results suggest that US31 could be a potential prognostic factor for GC and may open the door for a new immunotherapy strategy.
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Introduction

Gastric cancer (GC) is the fourth most common malignant tumor and second leading cause of tumor-related deaths in the world (1). Despite significant clinical and surgical improvements, the prognosis of GC patients, especially in late stages of the disease, is generally poor and remains a huge challenge (2). It is generally believed that the occurrence of GC is a multi-step, multi-factor changing process induced by multiple etiologies and genetics. Risk factors related to the development of GC include smoking, obesity, and excessive nitrate intake in food (3). In recent years, increasing evidence has shown that pathogen infection is also an important factor in the development of GC (4).

Human cytomegalovirus (HCMV), one of the β-herpesviruses with a wide range of cellular affinities, is a common and persistent pathogen affecting the world’s population (5). Many studies have shown that HCMV infection can be involved in tumorigenesis as a tumorigenic factor (6–8). The detection rate of HCMV DNA in many tumor tissues, such as colon cancer (9), glioma (10), breast cancer (11), and prostate cancer (12), is significantly higher than that in the normal adjacent tissues. HCMV expresses different viral genes in different infection states, thereby affecting the function of host cells. HCMV-encoded viral regulatory proteins can directly activate oncogenes, thereby promoting the transformation of normal infected cells into malignant phenotypes and enhancing tumor progression (13, 14). In addition, HCMV can significantly change the immunological characteristics of infected cells, and the tumor immune microenvironment, which are important factors in the development of tumors (11, 15). Our previous research found that HCMV infection was associated with GC, and the detection rate of HCMV DNA in GC tumor tissues was significantly higher than that in adjacent tissues (16, 17). Furthermore, serum HCMV-specific IgG and IgM antibodies were significantly higher in GC patients than in healthy controls (18).

HCMV has 208 open reading frames throughout the genome and contains both a long unique sequence (UL) and short unique sequence (US) (19, 20). US31 is located in the US region of HCMV and is a member of the US1 family (21). Our previous study found that US31 can significantly alter the immunological function of monocytes and macrophages and promote the polarization of M1 macrophages. Overexpression of US31 in systemic lupus erythematosus can cause an inflammatory response and thus participate in the development of this disorder (22). However, the role of US31 in the occurrence and development of GC has not been reported.

In this study, we evaluated the expression of the HCMV US31 protein in GC tumor tissues and explored its possible relationship with the clinicopathological characteristics and prognosis of GC patients. In addition, the correlation between US31 and immune characteristics of GC patients was analyzed to determine the effect of US31 on the immune microenvironment of GC. Furthermore, we investigated the effect of US31 on the proliferation, migration, and invasion of GC cell lines.



Materials and Methods


Patients and Tissue Samples

We collected 537 GC tissue samples retrospectively from December 2008 to July 2011 in the Second Affiliated Hospital of Wenzhou Medical University (Wenzhou, People’s Republic of China). All tissues obtained from surgical resection were diagnosed as GC according to the American Joint Committee on Cancer guideline (8th edition), fixed immediately with formalin, and embedded in paraffin. Clinical characteristics such as gender, age, tumor size, depth of invasion, lymph node metastasis, TNM stage, postoperative chemotherapy, and relapse were collected. This study was approved by the Ethics Committee of the Second Affiliated Hospital of Wenzhou Medical University. An informed consent form was signed by all patients participating in this study.



Cell Culture and Construction of a Recombinant Plasmid Expressing US31

Two GC cell lines (BGC-823, and SGC-7901) were purchased from the cell bank of the Chinese Academy of Medical Sciences. All cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco) containing 10% fetal bovine serum (FBS; Gibco) at 37°C in a 5% CO2 atmosphere.

The DNA fragment of the US31 coding sequence tagged with hemagglutinin (HA), from the HCMV Merlin strain, was inserted into the pcDNA3.1(+) vector by ligating into the NedI/XhoI sites. The plasmid was sequenced to confirm successful construction. When cultured cells reached 60–70% confluence, the plasmid was transfected into the cells using Lipofectamine 2000 (Invitrogen) and incubated at 37°C according to the experimental manual. The expression and location of US31 was examined using an anti-HA-Tag antibody via western blot and immunofluorescence, respectively.



RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction

Total RNA was extracted from transfected cells at 24 and 48 h using TRIzol reagent (Invitrogen). cDNA was then synthesized according to the manufacturer’s protocol. Real-time polymerase chain reaction (RT-qPCR) was performed to examine mRNA expression levels using a SYBR® Green PCR Kit (Qiagen). Then, the expression levels of genes in transfected cells relative to the control group were calculated by the comparative Ct method (2−ΔΔCt). Glyceraldehyde 3-phosphate dehydrogenase was used as an internal loading control. All primers used are listed in Table 1.


Table 1 | The primer sequences for RT-qPCR.





RNA-Sequencing and Functional Enrichment Analysis of Differentially Expressed Genes

An RNA-sequencing (RNA-seq) analysis was performed in transfected cells at 24 and 48 h at the Beijing Genomics Institute to determine the effect of US31 overexpression on mRNA levels of GC cells. Differentially expressed genes (DEGs) of two groups were compared using the edgeR package. The significance criteria were defined as | log2(fold change) | > 1 and a p value < 0.05. To determine the function of these DEGs, a functional enrichment analysis, including Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, was performed using the Shanghai Bohao Biotechnology website (http://enrich.shbio.com/index/ga.asp).



Immunoprecipitation and Liquid Chromatography With Tandem Mass Spectrometry Analysis

The proteins that interact with US31 were identified by immunoprecipitation (IP) using a Pierce Magnetic HA-Tag IP/CoIP Kit (Thermo Fisher Scientific Inc., USA) according to the manufacturer’s instructions. Briefly, SGC-7901 cells were transiently transfected with recombinant US31-HA plasmid and harvested 48 h post-transfection. Subsequently, supernatants containing US31-HA-tagged proteins were added to pre-washed magnetic beads and incubated for 1 h at 25°C. The immunoprecipitate was then boiled in 2× SDS loading buffer, subjected to SDS-PAGE, and visualized by silver staining. The eluted proteins were identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS) (Novogene, Beijing, China).



Western Blotting

Total proteins were harvested, and western blots were performed as described previously (23). Briefly, proteins were separated using 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred onto polyvinylidene difluoride membranes. After blocking with 5% non-fat milk at 24°C for 1 h, the membranes were incubated with primary antibodies targeting HA-Tag (diluted 1:1000, Cell Signaling Technology) and glyceraldehyde 3-phosphate dehydrogenase (diluted 1:1000, Proteintech) at 4°C overnight. After that, membranes were incubated with secondary horseradish peroxidase-conjugated antibodies (dilution 1:5000, Cell Signaling Technology) for 2 h at 25°C. Proteins were detected using a Bio-Rad Imaging System.



Immunofluorescence

Cells were seeded on glass coverslips in 6-well plates, transfected with US31, and incubated at 37°C for 48 h. Next, the cells were fixed in 4% formaldehyde, permeabilized with 0.5% Triton X-100 in phosphate-buffered saline, blocked with 5% bovine serum albumin at 37°C for 30 min, and incubated with primary antibodies for HA-Tag (diluted 1:200) and US31 (diluted 1:1000) at 4°C overnight. Subsequently, cells were incubated with a secondary fluorescence-conjugated goat antibody and stained with 4′,6-diamidino-2-phenylindole. Finally, images were collected using a fluorescence microscope. The fluorescence signals were visualized as green (Alexa Fluor 488 HA-Tag) and red (Alexa Fluor 594 US31).



Tissue Microarray and Immunohistochemistry

The tissue microarray (TMA) was constructed and immunohistochemistry (IHC) performed as described previously (23). Briefly, TMA slides were dewaxed in xylene, incubated in a 0.5% hydrogen peroxide bath for 10 min, blocked in sheep serum for 30 min, and then incubated with a US31 polyclonal rabbit antibody (diluted 1:500), or CD4, CD8, CD66b, and CD163 polyclonal rabbit antibodies (diluted 1:1000) at 24°C for 2 h. After incubation with secondary antibodies at 24°C, and staining with 3,3′-diaminobenzidine (Dako) and counterstaining with hematoxylin, the TMA slides were analyzed using an Easyscan6 digital slice scanner (MOTIC Medical Diagnostic Systems). All samples were evaluated independently by two pathologists without knowledge of the patients’ information.

The expression of US31 was rated 0 (negative), 1 (weak), 2 (medium), or 3 (strong) based on the color intensity. In addition, five high-power fields of each slice were selected randomly and the percentage of positive cells in each was recorded and scored as: 0 (< 5%), 1 (5–25%), 2 (26–50%), 3 (51–75%), and 4 (> 75%). The total US31 score was obtained by multiplying the color intensity and positive cell percentage scores. For the expression of CD4, CD8, CD66b, and CD163, the scores were normalized by dividing the number of positive cells by the total area (cells/mm2).



Cell Proliferation Assays

We performed the cell counting kit-8 (CCK8) assay to evaluate GC cell proliferation. Briefly, transfected cells (5000 cells/well) were seeded into 96-well plates and cultured in 100 μl DMEM containing 10% FBS. Then, 10 μl CCK8 solution was added to each plate at 24, 48, and 72 h. After incubation at 37°C for 2 h, absorbance was measured at 450 nm in a microplate reader.



Transwell Migration and Invasion Assays

Transwell migration and invasion assays were performed as described previously (23). Briefly, transfected cells were collected and counted. For the migration assay, 200 μl of DMEM containing 2 × 105 cells was added to the upper chamber, and 500 μl of DMEM with 10% FBS was added into the lower chamber. For the invasion assay, the upper chamber was coated with 100 μl Matrigel (BD Pharmingen) diluted in serum-free DMEM (1:10) before cells were added. After incubation at 37°C for different time periods, cells were fixed with 4% paraformaldehyde for 15 min, stained with 0.1% crystal violet for 15 min, and counted.



Statistical Analyses

Statistical analyses were performed with SPSS version 20.0 (IBM) and Prism 7.0 (GraphPad) software. Data are presented as means ± standard deviation or percentages. Comparisons between two groups were made using two-tailed Student’s t or χ2 tests. Survival was determined using the Kaplan-Meier method, and the log-rank test was applied for survival comparisons. *P < 0.05, **P < 0.01, and ***P < 0.001 indicated statistically significant differences.




Results


Clinicopathological Characteristics of Patients

A total of 573 GC patients, including 414 (72.3%) males and 159 (27.7%) females, were enrolled in the study to evaluate the expression of US31. The mean age of these patients was 58.9 ± 11.3 years (range, 20 to 86 years). The study also included TNM classification and pathologic staging of the patients. There were 277 (48.3%) stage I/II patients and 296 (51.7%) stage III/IV patients. Three hundred ninety-two (68.4%) patients received post-operative chemotherapy. Relapse occurred in 233 (40.7%) patients and 253 (44.2%) died with a median follow-up of 59 months (range, 0 to 101 months). Clinicopathological characteristics of all GC patients are shown in Table 2.


Table 2 | Clinicopathological characteristics of gastric cancer patients and their correlation with the expression of HCMV US31 protein.





US31 Was a Prognostic Biomarker to Predict Tumor Size and Distant Metastasis

IHC showed that US31 was expressed mainly in the cytoplasm (Figure 1A). According to the different intensities by IHC, we divided these patients into US31-negative (n = 69) and US31-positive groups (n = 504). Correlations between the expression of US31 and the clinical characteristics of GC patients were analyzed (Table 2). The expression of US31 was significantly associated with tumor size (P = 0.005) and distant metastasis (P < 0.001). Correlations of US31 with gender, age, T stage, N stage, and postoperative chemotherapy were not statistically significant (P > 0.05).




Figure 1 | Expression of US31 in gastric cancer (GC) and its impact on prognosis. (A) Representative immunohistochemical staining of US31 in GC tissue. Brown indicates positive staining. (B) Correlation between the expression level of US31 and tumor size. (C) Correlation between the expression level of US31 and distant metastasis. (D) Kaplan-Meier curves for overall survival of GC patients with US31 expression. (E) Kaplan-Meier curves for disease-free survival of GC patients with US31 expression. *P < 0.05 and **P < 0.01. ns, no significance.



US31-positive patients were clustered into high (n = 68), medium (n = 146), and low (n = 290) US31 expression groups. The results further showed that the tumor size and distant metastasis rate of GC were significantly negatively correlated with the expression of US31 (Figures 1B, C). This indicated that the expression of US31 may inhibit the occurrence and development of GC. A Kaplan–Meier analysis suggested that US31-positive patients had better prognosis than US31-negative patients for overall survival (OS; log-rank P = 0.03; hazard ratio (HR) = 0.69; 95% confidence interval (CI) = 0.46–1.02) (Figure 1D), but not for disease-free survival (DFS; log-rank P = 0.22; HR = 0.79; 95% CI = 0.51–1.21) (Figure 1E). In the univariate analysis of OS, expression of US31 was a significantly independent prognostic biomarker (P = 0.03; HR = 0.69; 95% CI = 0.49–0.98). However, the multivariate analysis showed that expression of US31 was not an independent predictor for OS (P = 0.53; HR = 0.89; 95% CI = 0.62–1.28). Table 3 shows detailed information of the univariate and multivariate analyses. Overall, higher US31 expression could inhibit GC progression and suggest a better prognosis.


Table 3 | Univariate and multivariate Cox regression analysis of overall survival in patients with gastric cancer.





US31 Inhibited the Proliferation, Migration, and Invasion of GC Cells

To investigate the effect of US31 on the biological function of GC cells, we transfected a plasmid into BGC-823 and SGC-7901 cells to overexpress US31. Overexpression was confirmed by western blot (Figure 2A). Results of the immunofluorescence assay showed that US31 was mainly expressed in the cytoplasm and cell membrane of GC cells (Figure 2B), which was consistent with the location shown in IHC. Then, we performed a CCK8 analysis to examine the effect of US31 on cell proliferation. Compared with the control group, US31 overexpression inhibited the proliferation of GC cells, especially BGC-823 cells (P < 0.05; Figure 2C). The Transwell migration and invasion assays showed that US31 overexpression inhibited cell migration and invasion of BGC-823 and SGC-7901 cells (P < 0.05; Figure 2D). Taken together, these results showed that US31 inhibited both the growth and migration of GC cells.




Figure 2 | Overexpression of US31 significantly inhibits the proliferation, migration, and invasion of gastric cancer (GC) cells. (A) Overexpression of US31 in BGC-823 and SGC-7901 cells. (B) Immunofluorescence was used to detect the expression and location of US31 in GC cells. Green fluorescence represents the HA-tag; red fluorescence represents US31. US31 is mainly expressed in the cytoplasm and cell membrane. (C) The CCK-8 assay shows that US31 overexpression inhibits the proliferation of GC cells. (D) The Transwell assay shows that US31 overexpression inhibits the migration and invasion of GC cells. **P < 0.01 and ***P < 0.001. ns, no significance.





High US31 Expression Was Associated With the Immune Microenvironment of GC

HCMV infection can affect the tumor immune microenvironment. We analyzed the infiltration of CD4+, CD8+, CD66b+, and CD163+ cells into GC tissues to verify the effect of US31 expression on the immune microenvironment of GC. The results showed that the expression levels of CD4, CD66b, and CD163 in US31-positive tissues was significantly higher than those in US31-negative tissues (all P < 0.001; Figure 3A), while there was no significant difference in CD8 expression between the two groups (P = 0.98; Figure 3A).




Figure 3 | Association between US31 expression and various tumor-infiltrating immune cells and the immune response regulated by US31 expression of gastric cancer (GC) cells. (A) Representative immunohistochemical staining of tumor-infiltrating immune cells (CD4+, CD8+, CD66b and CD163 cells) in US31 positive and negative tissues. Overview picture is 100×; detailed picture is 400×. And the association between US31 expression and those tumor-infiltrating immune cells. (B) mRNA levels of representative immune-related genes measured by RNA-seq. (C) mRNA levels of representative immune-related genes in GC cells with US31 overexpression detected by real-time quantitative polymerase chain reaction. ***P < 0.001. ns, no significance.



To study the effect of US31 overexpression on GC, RNA-seq was performed in transfected cells at 24 and 48 h. Based on the significance criteria (| log2(fold change) | > 1 and p value < 0.05), we obtained 51 and 1082 DEGs at 24 and 48 h, respectively. The mRNA levels of representative immune-related genes showed a significant increase using both RNA-seq and RT-qPCR detection after transfection of US31 for 48 h (Figures 3B, C). In addition, GO and KEGG enrichment analysis suggested that overexpression of US31 activated the immune response and promoted the secretion of cytokines in GC (Figure 4).




Figure 4 | US31 expression regulates the immune response of gastric cancer (GC) cells. (A–D) Gene Ontology and KEGG enrichment analyses of differentially expressed genes caused by overexpression of US31 in BGC-823 at 24 and 48 h, respectively.



To further investigate US31’s potential partners, we transfected the US31-HA plasmid into SGC-7901 cells and performed IP to obtain the proteins that potentially interacted with US31 (Additional file: Supplementary Figure S1A). Subsequently, LC-MS/MS analysis was performed to identify those proteins (Additional file: Supplementary Table S1 and S2). As shown in Fig. S1, 824 proteins in total were shown to interact with US31, and NF-κB2 were in the list of those proteins. Then we used the gene list of those proteins for GO pathway analysis. Consistent with the results of RNA-seq, GO pathway analysis showed that the US31 partner proteins were the most enriched in cell-cell adhesion, NF-κB signaling, and the tumor necrosis factor (TNF)-mediated signaling pathway, among others (Supplementary Table S3). Taken together, these results implied that US31 may inhibit the progression of GC through mediating immune microenvironment.




Discussion

Despite the rapid development of various precision therapies, the cause of GC is still poorly understood. Increasing evidence has suggested that infection with the oncogenic HCMV virus is associated with the progression of GC. However, the role of the expression of many HCMV genes in tumors is still unknown. Understanding the relationship between these genes and GC will help improve the treatment and prognosis of patients. In this study, we show, for the first time, that high expression of HCMV US31 can significantly improve the prognosis of GC patients by inhibiting the proliferation and metastasis of GC. Moreover, US31 can activate the host’s immune response and cytokine secretion. These results suggest that US31 might act as a better prognostic factor in the development of GC.

HCMV infection is closely related to the occurrence and progression of various tumors, including glioma, breast cancer, colorectal cancer, and prostate cancer. In addition, the diverse HCMV genes in human cancers present different functional phenotypes in tumors. For example, Lv et al. (24) reported that HCMV infection was associated with an increased gastrointestinal cancer risk. HCMV has a higher prevalence in patients with primary breast cancer and colorectal cancer with brain metastases, and the high expression of HCMV- immediate-early proteins (IE) in the tumor tissues of the patients suggests a poor prognosis (25). HCMV IE1 and IE2 can activate phosphoinositide 3-kinase/Akt signaling pathways, use oxidative phosphorylation to inhibit Rb protein function, and reduce the expression of p53 family proteins in gliomas (26). The US28 protein can promote the proliferation of tumor cells and increase the expression of cyclin D1 (27). In contrast, Herbein et al. (28) reviewed the tumor suppressor effects of HCMV and thought that HCMV may act as an oncolytic virus. HCMV can induce tumor cell apoptosis, regulate the tumor microenvironment, stimulate the infiltrating immune cells to kill the tumor cells, and thus act as a protective factor in the tumor. Therefore, we speculate that there existed different expression patterns of HCMV genes in tumor tissues, and these different patterns may have opposite effects in tumor progression. Our previous research showed that the UL133–UL138 locus, located in the ULb′ region of HCMV, may be crucial for the development of GC. The UL138 gene is a virus-associated tumor suppressor gene that interacts with HSP70 to inhibit proliferation and promote apoptosis of GC cells. Here, we had demonstrated another tumor suppressor gene of HCMV that is US31, could predict a better prognosis of GC.

The HCMV US1 family is mainly composed of US1, US31, and US32 genes. The US1 gene is an immediate-early gene, and the US32 gene is associated with the latent virus (29). However, there are few reports about the expression of US31 in HCMV infection and its effect in GC patients. In this study, we used a self-made specific affinity purified US31 antibody to analyze the expression of US31 in 573 GC tissues by IHC. The results showed that US31 was mainly expressed around the cytoplasm and cell membrane. US31 expression significantly correlated with tumor diameter and distant metastasis. Moreover, US31 protein overexpression was significantly associated with better prognosis of OS in GC patients. Consistent with these results, overexpression of US31 significantly inhibited the proliferation, migration, and invasion of GC cells in vitro. Taken together, US31 may be a potential prognostic biomarker to inhibit the development of GC (Figure 5).




Figure 5 | Proposed model for the function landscape of the HCMV-induced US31 expression in GCs.



Accumulating studies have demonstrated that the tumor microenvironment has a clear relationship with the prognosis of cancer patients. Alterations of the tumor microenvironment may result in the secretion of cytokines and activate various cell signaling pathways, thereby promoting tumor development. Tumor-infiltrating immune cells, including tumor-associated macrophages, dendritic cells, and lymphocytes, are the major components of the tumor microenvironment and important factors involved in the development of tumors (30).

Persistent infection of HCMV can stimulate the immune response of patients. This, in turn, leads to chronic inflammation and poor survival. HCMV can encode a human interleukin (IL)-10 homolog to suppress host immunity. Furthermore, HCMV-infected cells can secrete a variety of cytokines (such as IL-10 and transforming growth factor-β), extracellular matrix proteins, and angiogenic factors to change the tumor microenvironment (31). Chang et al. (32) found that there was a certain IL-10 homolog in the supernatant of HCMV-infected cells. After treatment with this supernatant, the maturation ability and ability to produce inflammatory cytokines of dendritic cells were significantly inhibited. In the current study, we found that the expression of US31 significantly correlated with the expression of CD4, CD66B, and CD163. Huang et al. (33) detected the infiltration of CD66b+ and CD163+ cells in 662 GC tissues by IHC. These results suggested that infiltration of CD66b+ neutrophils was associated with favorable tumor characteristics, while high infiltration of CD163+ tumor-associated macrophages was associated with disease progression and poor survival. Moreover, Jiang et al. (34) indicated that the Immune Score, a novel signature based on the expression of CD3, CD8, CD45, and CD66b in 251 GC tissues, could predict recurrence and survival of GC. Therefore, we speculate that the expression of US31 in GC may regulate the immune microenvironment of the tumor.

Based on the immune microenvironment, several inflammatory cytokines could activate the immune response and modulate an antitumoral response in the tumor. For example, TNF-α is an inflammatory mediator and functions as an anti-tumorigenic factor at high concentrations (35). IL-1β is also reported to mediate anti-tumor responses through T lymphocytes (36, 37). Our previous studies found that US31 interacted with NF-κB2 (22), leading to phosphorylated P100 polyubiquitination and activating NF-κB2 (22). This, in turn, induced monocyte- and macrophage-mediated inflammation and stimulated the differentiation of macrophages into M1 macrophages. Consequently, the NF-κB2 regulators and signaling molecules TNF-α, IL-8, CCL2, ICAM-1, and RelB were significantly upregulated. Consistent with previous studies, our current results showed that the expression of US31 could also upregulate the secretion of inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in GC cells. Furthermore, GO pathway analysis showed that the proteins that interact with US31 identified by MS were mainly involved in immune- and inflammation- related pathways. These results suggest that US31 may act as an immune- and inflammation-related factor in GC, thereby inhibiting the progression of cancer. Nevertheless, how US31 regulates those cytokines and GC progression is unclear and requires further in-depth study.

In summary, this study reports, for the first time, that the HCMV US31 gene is a potential prognostic factor for GC patients than those in current use. Its expression in GC tissue was significantly associated with tumor size and distant metastasis. Moreover, the overexpression of US31 can inhibit the proliferation, migration, and invasion of GC cells. In addition, US31 can activate the immune response and regulate the tumor immune microenvironment. Although the mechanism underlying the effect of US31 on the immune microenvironment of GC requires further research, this study provides new ideas for the treatment and prediction of the prognosis of GC patients.
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Supplementary Figure 1 | Immunoprecipitation and liquid chromatography with tandem mass spectrometry analysis results of US31 expression in gastric cancer (GC) cells. (A) The US31 was immunoprecipitated by HA-tag. (B) Silver staining of US31 and its partner proteins. The US31 was covered by the light IgG. (C) Venn diagram showing 824 proteins were identified to interact with US31. NF-κB2 was in the list. (D) US31 interacting proteins identified by IP-MS were clustered by GO molecular function.

Supplementary Table 2 | The US31 interacting proteins list by LC-MS/MS.

Supplementary Table 3 | Enrichment list of US31 interacting proteins in GO.
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Background

Gastric cancer is one of the most common malignancies worldwide. Although the diagnosis and treatment of this disease have substantially improved in recent years, the five-year survival rate of gastric cancer is still low due to local recurrence and distant metastasis. An in-depth study of the molecular pathogenesis of gastric cancer and related prognostic markers will help improve the quality of life and prognosis of patients with this disease. The purpose of this study was to identify and verify key SNPs in genes with prognostic value for gastric cancer.



Methods

SNP-related data from gastric cancer patients were obtained from The Cancer Genome Atlas (TCGA) database, and the functions and pathways of the mutated genes were analyzed using DAVID software. A protein-protein interaction (PPI) network was constructed using the STRING database and visualized by Cytoscape software, and molecular complex detection (MCODE) was used to screen the PPI network to extract important mutated genes. Ten hub genes were identified using cytoHubba, and the expression levels and the prognostic value of the central genes were determined by UALCAN and Kaplan-Meier Plotter. Finally, quantitative PCR and Western blotting were used to verify the expression of the hub genes in gastric cancer cells.



Results

From the database, 945 genes with mutations in more than 25 samples were identified. The PPI network had 360 nodes and 1616 edges. Finally, cytoHubba identified six key genes (TP53, HRAS, BRCA1, PIK3CA, AKT1, and SMARCA4), and their expression levels were closely related to the survival rate of gastric cancer patients.



Conclusion

Our results indicate that TP53, HRAS, BRCA1, PIK3CA, AKT1, and SMARCA4 may be key genes for the development and prognosis of gastric cancer. Our research provides an important bioinformatics foundation and related theoretical foundation for further exploring the molecular pathogenesis of gastric cancer and evaluating the prognosis of patients.
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Introduction

Gastric cancer is the fifth most common malignant tumor worldwide and the second leading cause of cancer-related death (1). Although the treatment strategies for gastric cancer have substantially improved in recent years, the mortality rate is still high due to various genetic mutations and abnormal signaling pathways underlying the progression of this disease (2). The occurrence and development of gastric cancer, as a complex disease, involves a series of genetic, epigenetic and phenotypic changes. Gene polymorphisms involved in multiple biological pathways have been identified as potential risk factors for gastric cancer (3). Given the high morbidity and mortality of gastric cancer, identification of its underlying molecular mechanism and genetic characteristics and elucidation of biological indicators for diagnosis and prognosis are essential for the personalized and precise treatment of gastric cancer patients.

Bioinformatics analysis based on high-throughput sequencing is an important method for exploring the molecular mechanism of tumor pathogenesis, identifying biomarkers that can be used for early diagnosis, and discovering therapeutic targets. Single nucleotide polymorphisms (SNPs) are nucleotide polymorphisms that are commonly found in the genome of an organism; among individuals of different species, single nucleotides in the same position of the genomic DNA sequence undergo substitution, insertion or deletion and other mutations, resulting in a single nucleotide change at this site (4). SNPs are generally considered to be the genetic basis of and potential cancer markers that lead to differences in the individual susceptibility to disease. Analysis of SNP-containing genes is important for the early diagnosis and individualized targeted treatment of cancer.

The Cancer Genome Atlas (TCGA) database can be used for high-throughput genomic analysis. To further explore the biological significance of SNP-containing genes in the diagnosis and prognosis of gastric cancer, we downloaded gastric cancer-related SNP data from TCGA database and used bioinformatics analyses, including mutation analysis, function and pathway enrichment analyses, protein-protein interaction (PPI) network analysis and related analyses. Our aim was to explore the mutated genes related to the diagnosis and prognosis of gastric cancer and to provide a scientific theoretical basis for personalized and precise treatment of gastric cancer.



Materials and Methods


Data Processing and Analysis

The TCGA data portal was terminated, and all TCGA data were transferred to the newly established genomic data sharing platform (https://gdc.cancer.gov/) (5). Since the original data on SNPs in TCGA have not yet been opened to the public, we downloaded the processed SNP-related data of gastric cancer and the original mRNA expression data. The mRNA data were collected from 413 samples (including 32 normal samples and 381 cancer samples). The mutated genes were obtained from the SNP data of the downloaded gastric cancer samples. The edgeR software package was used to integrate and standardize the downloaded mRNA raw data, and analysis was performed to obtain the differentially expressed genes and their expression levels. The mRNA data provided by TCGA are publicly available, and thus, no approval from the local ethics committee was required.



Functional Enrichment and Pathway Analysis of Mutated Genes

To elucidate the dysfunction caused by these mutated genes, we used the DAVID (http://www.DAVID.org) (6) database to perform Gene Ontology (GO) and Kyoto Gene and Genome Encyclopedia (KEGG) analyses on genes from more than 25 mutated samples. As an open source platform, DAVID can be used to determine the association between target molecules. By selecting the GO term and the KEGG pathway and using P <0.05 as the cut-off value, we identified the molecular functions (MFs), biological processes (BPs), cellular components (CCs) and KEGG pathways of the enriched mutated genes.



Construction of the PPI Network of the Mutated Genes and Gene Expression Analysis

The STRING database (http://string-db.org/) provides the significant PPIs (7). Cytoscape is used for visual exploration of interactive networks (8). In this study, the STRING database was used to perform PPI network analysis of the selected SNP-containing genes, and then, Cytoscape visualization was used, with a confidence score> 0.4 as the cut-off criterion. The Cytoscape plug-in cytoHubba (9) was used to identify the hub genes by finding the intersections of the first 30 genes from 12 topological analysis methods and then using molecular complex detection (MCODE) to establish the module of the PPI network, with a degree cutoff = 2, node score cutoff = 0.2, k‐core = 2, and max depth = 100.17 (10).



Kaplan-Meier Survival Curve of the Mutated Genes and Screening of Prognostic Biomarkers

Kaplan-Meier Plotter (https://kmplot.com/analysis/) can use gene expression data to assess the survival rate of breast, lung, gastric and ovarian cancer patients. Recurrence-free survival (RFS) and overall survival (OS) data were downloaded from GEO (Affymetrix microarray only), EGA and TCGA. The main purpose of this tool is biomarker evaluation based on meta-analysis (11). Using the Kaplan-Meier chart, we evaluated the effects of the mutated genes on the prognosis of gastric cancer patients and finally identified genes that can be used as prognostic biomarkers for this disease.



Hub Gene Verification Through UALCAN

UALCAN (http://ualcan.path.uab.edu/) is a web-based tool that can provide fast and customizable functions based on level 3 RNA-seq and clinical data of 31 cancer types from TCGA database (12). In this study, the UALCAN database was used to verify the expression of the central genes identified in the module between normal and cancer samples. We chose P <0.05 and fold change> 2 as the threshold.



Analysis of Cancer Genomics Data Through cBioPortal

cBioPortal for Cancer Genomics (http://cbioportal.org) provides resources for visualizing and analyzing multidimensional cancer genomics data (13). In this study, based on mutations and changes in the DNA copy number of the four selected subtypes of gastric cancer, we performed an analysis of the genomic changes in pivotal genes.



Cell Culture and Antibodies

AGS, HGC27 and GES-1 cell lines were purchased from the Cell Bank of the Chinese Academy of Sciences and cultured in RPMI-1640 medium containing 10% fetal bovine serum (FBS). FBS and RPMI-1640 were purchased from Gibco (NY, USA). The cells were placed in an incubator at 37°C and a CO2 concentration of 5%. Antibodies against TP53 (#2527), BRCA1 (#14823), PIK3CA (#4255), AKT1 (#2938), and SMARCA4 (#49360) were purchased from Cell Signaling Technology (Beverly, MA, USA). Antibodies against HRAS (abs137096) and beta actin antibody (abs132001) were obtained from Absin (Shanghai, China). The secondary antibodies used in this study include goat anti-mouse IgG-HRP (abs20001) and goat anti-rabbit IgG-HRP (abs20002), both of which can be obtained from Absin.



qPCR for Detection of the Expression Levels of the Hub Genes

According to the manufacturer’s instructions, total RNA was isolated from cells using TRIzol reagent (TaKaRa, Beijing, China) and reverse transcribed into cDNA using PrimeScript RT Master Mix reagent (TaKaRa, Beijing, China). Quantitative real-time PCR (qRT-PCR) was performed using the ABI 7500HT Fast real-time PCR system (Applied Biosystems, California, USA), and then, melting curve analysis was performed. The following cycling conditions were used: 95°C for five minutes, followed by 40 cycles of 95°C for 20 seconds and 60°C for 30 seconds. We used the 2-ΔΔCt method, with GAPDH as an internal control, to determine the average relative fold change in mRNA expression. The primers are shown in Table 1.


Table 1 | The primer of hub genes.





Western Blot Analysis

The gastric cancer cells were inoculated into a 6 cm Petri dish, treated for 48 hours, scraped and collected. The cells were dissolved on ice in PMSF-containing RIPA buffer, and then, the mixture was centrifuged at 13,000 x g at 4°C for 5 minutes to remove the cell debris. The supernatant was collected, and the total protein concentration was determined using the BCA protein assay kit. Approximately 20 μg of protein was separated by 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein was wet transferred to a 0.22 μm polyvinylidene fluoride (PVDF) membrane using a constant current of 300 mA, blocked with 5% skim milk powder in TBST for 2 hours and incubated overnight with the appropriate primary antibody (1:1000). The next day, the membrane was washed 3 times with TBST for 10 minutes. At room temperature, the membrane was incubated with the HRP-conjugated secondary antibody (1:8000) for 2 hours and washed with TBST 3 times for 10 minutes each time. A chemiluminescence kit (Life Technologies, Shanghai, China) was used to observe the bound antibody under the Bio-Rad gel imager infrared imaging system (ChemiDoc XRS +).



Statistical Methods

Data are means ± standard deviation. Two-tailed unpaired Student’s t tests were used to assess significance unless stated otherwise. P < 0.05 was deemed significant.




Results


Data Processing and Analysis

Using the VarScan method to extract germ/somatic cell mutation data of gastric cancer samples from the second-generation sequencing data of TCGA database as SNP data, we selected 945 genes with mutations in more than 25 samples. Among these genes, 96 genes were mutated in more than 50 samples (Figure 1). From TCGA database, 413 samples with gastric cancer gene expression data, including 32 normal tissue samples and 381 cancer tissue samples, were obtained. The patient characteristics are in Supplementary Table 1. The edgeR software package was used to analyze the differential expression between the gastric cancer and normal tissue samples (Figure 2), with |log FC|> 2 and P <0.01 as the cut-off criteria. We further analyzed the SNP-containing genes and differentially expressed genes in gastric cancer to explore the dysfunction caused by gene mutations and abnormal expression.




Figure 1 | Data processing and analysis. A waterfall map of 10 genes that were mutated in more than 90 samples.






Figure 2 | A volcanic map of differential gene expression. The red dot represents the upregulated mRNAs, and the green dot represents the downregulated mRNAs.





Functional Enrichment and Pathway Analysis of the Mutated Genes

To further elucidate the functions of the mutated genes in gastric cancer, we used DAVID online software to perform functional enrichment analysis and pathway analysis on the 945 genes with mutations in more than 25 samples. Functional enrichment analysis showed that in the BP categories, SNP-containing genes were mainly concentrated in homophilic cell adhesion via plasma membrane adhesion molecules, membrane depolarization during action potential and neuronal action potential. In the CC categories, mutated genes were mainly categorized in the plasma membrane, proteinaceous extracellular matrix, and voltage-gated sodium channel complex. In the MF categories, these genes were mainly enriched in calcium ion binding, extracellular matrix structural constituent and voltage-gated sodium channel activity (Table 2). Pathway enrichment analysis revealed the enrichment of the SNP-containing genes in many signaling pathways related to cancer, including the phosphatidylinositol 3 kinase (PI3K)/Akt signaling pathway, calcium signaling pathway, and cyclic guanosine monophosphate (cGMP)-PKG signaling pathway (Figure 3).


Table 2 | Gene ontology analysis of 945 mutant genes in gastric cancer.






Figure 3 | Pathways enrichment map of 945 mutant genes. The top 20 terms with the lowest P value were selected. Count: the number of enriched genes in each term.





Construction of the PPI Network for the Mutated Genes

To further study the potential relationships between the mutated genes, we used the STRING online database to mine the interactions among these genes. Cytoscape software was used to visualize the complex PPI network, which included 360 nodes and 1616 edges (Figure 4A). MCODE was used to obtain the important modules from the PPI network, including 25 nodes and 245 edges (Figure 4B). Functional and KEGG pathway enrichment analyses showed that the BP categories of important modules mainly included CC organization, biological regulation and cell communication; the CC categories included nucleus, membrane-enclosed lumen and protein-containing complex; and the MF categories mainly included protein-binding, ion binding and transferase activity (Figure 4C). KEGG pathway enrichment analysis showed that important module genes were mainly enriched in the FoxO signaling pathway and thyroid hormone signaling pathway (Figure 5).




Figure 4 | Construction of the PPI network for the mutated genes and analysis of important modules. (A) Cytoscape was used to construct a PPI network of 945 mutant genes, including 360 nodes and 1616 edges. (B) MCODE was used to obtain an important module with 25 nodes and 245 edges from the PPI network. (C) The functional enrichment histogram of important modules. Each biological process, cellular component and molecular function category is represented by a red, blue and green bar, respectively. The height represents the number of IDs in the user list and in the category.






Figure 5 | Pathways enrichment map of important modules.





Screening and Survival Analysis of Pivotal Genes

Using the intersection of the first 30 genes in cytoHubba’s 12 algorithms, we identified 10 key genes: TP53, EP300, AKT1, HRAS, PTEN, PIK3CA, SMARCA4, CREBBP, BRCA1 and ATM (Figure 6A). Metascape tools were used to analyze the pathway and biological process enrichment of hub genes. We observed that key genes are enriched in the PID P53 downstream pathway, apoptosis, regulation cellular response to stress, etc (Figures 6B, C). The cBioPortal online platform provided a graphic analysis of the genetic variation of the hub genes. As shown in the figure, 10 key SNP-containing genes all showed a high mutation rate in gastric cancer, with a rate of genome change ranging from 8% to 45% (Figure 6D). To determine whether the selected hub genes have clinical correlations, we used Kaplan-Meier curves to analyze the univariate survival of these genes and found that the expression of TP53, HRAS, BRCA1, PIK3CA, AKT1 and SMARCA4 was correlated with prognosis (Figure 7). Thus, these genes can be used as prognostic indicators of gastric cancer.




Figure 6 | Selection and analysis of pivotal genes. (A) Identification of the 10 most important central genes using the Cytoscape software plug-in cytoHubba. (B) Metascape tools were used to analyze the pathway and biological process enrichment of hub genes. (C) Protein-protein interaction network and MCODE components identified in the gene lists. (D) Graphic analysis of the genetic alteration of key genes.






Figure 7 | Univariate survival analysis of the key genes using Kaplan-Meier curves. (A) TP300. (B) HRAS. (C) BRCA1. (D) PIK3CA. (E) AKT1. (F) SMARCA4.





Hub Gene Verification Through UALCAN

UALCAN, an online tool with data from TCGA and GTEx, was used to verify the expression of these key genes in gastric cancer. In this study, according to the RNA sequence data from TCGA database, the mRNA expression levels of 6 genes were compared between the gastric tumor samples and the adjacent normal tissues. These six genes were found to be highly expressed at the transcriptional level in 415 gastric cancer tissues compared with 34 normal tissues (Figure 8). We chose P<0.05 and multiple change>2 as the threshold.




Figure 8 | Analysis of the expression of key mutated genes. Six key genes are highly expressed in gastric cancer tissues compared with normal tissues. (A) TP300. (B) HRAS. (C) BRCA1. (D) PIK3CA. (E) AKT1. (F) SMARCA4.





Genomic Changes of the Hub Genes

We used the cBioPortal tool to select 478 samples from TCGA database and explored the genome-specific changes of the hub gene. A summary analysis of cancer types showed that in the gastric cancer data set from TCGA, the proportion of the 6 genes changed from 12.66% to 51.90%, with the lowest to highest levels in mucinous stomach adenocarcinoma, diffuse type stomach adenocarcinoma, stomach adenocarcinoma, and tubular stomach adenocarcinoma (Figure 9).




Figure 9 | Genome-specific changes in the pivotal genes in 5 gastric cancer data sets. (A) All hub genes; (B) TP53; (C) HRAS; (D) BRCA1; (E) PIK3CA; (F) AKT1; (G) SMARCA4. Each row represents a gene, and each column represents a tumor sample. Red bars, gene amplifications. Blue bars, deletions. Green squares, missense mutations.





Gene Expression Levels of the Six Genes in Gastric Cancer

qRT-PCR was used to analyze the expression of TP53, HRAS, BRCA1, PIK3CA, AKT1, and SMRACA4 in gastric cancer. The results showed that the expression of the hub genes in AGS and GES-1 cell lines was upregulated compared with that in GES-1 cell lines (Figure 10). Western blot results showed that the expression levels of the six genes in gastric cancer cells were significantly higher than those in normal cells (Figure 11).




Figure 10 | Expression of the key genes in gastric cancer cells. (A-F) qRT-PCR analysis of mRNA expression of key genes in GES-1, MGC803 and AGS cells. **P < 0.01, ***P < 0.001, and ****P < 0.0001.






Figure 11 | Western blotting analysis of the key genes; β-actin was used as a loading control. (A) Protein expression of TP53, HRAS, BRCA1 and PIK3CA. (B) Protein expression of AKT1 and SMARCA4.






Discussion

Gastric cancer is a complex disease and the fifth most common malignant tumor worldwide; it is also the third leading cause of cancer-related death (14). To improve the quality of life and prognosis of patients and prolong their survival time, researchers must further clarify the molecular mechanism leading to malignant biological behavior of gastric cancer and identify prognostic markers that affect the development of this disease. According to previous reports, genetic polymorphisms will increase the risk of cancer and are considered to be indicators of poor prognosis in various cancers and potential carcinogenic markers. Therefore, bioinformatics analysis of SNP-containing mutant genes and selection of valuable genes can provide new tools to treat patients and predict prognosis in the clinic.

In this study, we conducted a series of bioinformatics analyses on gastric cancer-related data in TCGA database to screen and identify prognostic biomarkers related to SNP-associated expression. We conducted functional and pathway enrichment analyses of these genes and found that these genes are enriched in the nucleus and protein complex, mainly regulating multicellular BPs, developmental processes and metabolic processes. Pathway analysis showed that genes mutated in gastric cancer are mainly involved in the PI3K-AKT pathway, CGMP-PKG pathway, calcium signaling pathway, and many other cancer-related pathways. Functional and pathway enrichment analyses revealed the molecular mechanism of SNP-containing genes in the development of cancer.

Six mutated genes, TP53, AKT1, HRAS, PTEN, PIK3CA, SMARCA4 and BRCA1, which are closely related to the occurrence and development of gastric cancer, were screened. Survival analysis showed that the high expression of these six genes was associated with poor prognosis of gastric cancer. Using UALCAN online analysis, we found that the expression of the six genes in gastric cancer tissues was significantly higher than that in normal tissues. Subsequent cell experiments confirmed this result. In addition, we also used cBioPortal tools to study the genomic changes of the key genes in patients with gastric cancer from TCGA database. We found that there were five types of gastric cancer, and tubular gastric adenocarcinoma had the highest frequency of mutations in these genes. The rates of alteration of seven genes ranged from 12.66% to 51.90%.

TP53 (tumor protein p53) is the gene with the highest mutation frequency in gastric cancer (approximately 50%), and it is also the most commonly mutated gene in human cancer. This gene plays an important role in cell cycle arrest, cellular senescence, apoptosis, differentiation and metabolism (15). As a research hotspot in the field of tumor molecular biology, mutations in this gene are related to the poor prognosis of various cancers (16). Most TP53 mutations are missense mutations and gene deletions caused by substitution of single nucleotides, resulting in changes in the TP53 activity. Mutant p53 protein not only loses the antitumor effect of wild-type p53 protein but also increases tumor cell activity, invasion and metastasis and promotes the occurrence and progression of tumors (17). Previous studies have demonstrated the relationship between TP53 and gastric cancer. Ando et al. (18) studied clinical samples from 182 cases of gastric cancer and found that TP53-positive tumors had deeper invasion and more lymph node and liver metastasis than other tumors, and some genes (PICT1, RPL11) were involved in the progression of cancer through TP53 (19). TP53 mutations occur late in gastric carcinogenesis, contributing to the final transition to cancer (20). In addition, Jiang et al. found that TP53 mutation can inhibit tumor immunity in gastric cancer (21). According to the results of our analysis, the degree value of the TP53 gene is the highest among the 10 hub genes, and its increased expression is negatively correlated with the five-year survival rate of gastric cancer, which further confirms the validity of this study. Further exploration of TP53 mutant genotypes will help reveal the molecular mechanisms underlying the occurrence and development of gastric cancer.

HRAS is a member of the RAS gene family, which participates in the activation of RAS protein signal transduction. The RAS protein is a GDP/GTP-binding protein that mainly regulates proliferation, differentiation and senescence in wild-type cells (22). HRAS functions as an oncogene after activation, and activation commonly occurs through mutations (SNPs, insertions, translocations) and increased expression (23). Diseases related to HRAS include breast cancer, liver cancer, thyroid cancer, and bladder cancer (24–27). Ectopic expression of HRAS was shown to promote the proliferation, migration, invasion, angiogenesis and clone formation of gastric cancer cells (28). Our results suggest that HRAS may play an important role in the diagnosis and treatment of gastric cancer.

Breast cancer susceptibility gene (BRCA1) belongs a class of tumor suppressor genes with high penetrance that plays an important role in the response to DNA damage (including DNA double-stranded breaks) (29). The BRCA1 protein can bind to various proteins to regulate gene transcription, maintaining the integrity of the genome. BRCA1 gene mutation leads to DNA replication errors and mutations, which promote abnormal cell proliferation and lead to tumorigenesis (30). Increasing evidence shows that BRCA1 is widely associated with breast, ovarian and colon cancers (31, 32). Interestingly, the location of BRCA1 in gastric cancer cells was reported to be different, and different expression levels were observed. The expression of BRCA1 in the cytoplasm is downregulated, and the expression of BRCA1 in the nucleus is upregulated, which is related to the poor prognosis of advanced tumors (33). BRCA1 gene polymorphisms have also been associated with susceptibility to gastric cancer (34, 35). Our study showed that the expression of BRCA1 in gastric cancer was higher than that in normal samples, and high expression was associated with poor prognosis, which indicates that BRCA1 may play contrasting roles in different types of tumors, and the role of BRCA1 in gastric cancer should be further explored.

The PI3K-Akt signal transduction pathway plays an important role in tumorigenesis, development, treatment and prognosis (36). PI3K is a component of the PI3K signaling pathway, plays a key role in the regulation of cell proliferation, survival and adhesion and is often upregulated in human cancer (37). PIK3CA (phosphoinositide-3-kinase, catalytic, alpha gene) encodes the p110α subunit of PI3K. It plays an important role in tumor cell proliferation, differentiation, transport and metabolism (38). In addition, the PIK3CA pathway regulates angiogenesis and the immune response to cancer (39). PIK3CA mutations have been found in approximately 30% of human cancers (40), including breast cancer, ovarian cancer, colon cancer, and prostate cancer (41–44). In gastric cancer, high PIK3CA protein expression is closely related to tumor invasiveness, tumor phenotype and poor survival of patients (45). PIK3CA mutations were associated with high T stage, poor differentiation and microsatellite instability (46, 47). In our study, correlation analysis showed that the expression of PIK3CA in tumor tissues was significantly higher than that in normal tissues. However, OS analysis indicated theassociation of better prognosis of gastric cancer with highexpression of PIK3CA, suggesting that the role of PIK3CA ingastric cancer is worthy of further exploration.

AKT is a direct downstream target protein of PIK3. Increasing evidence shows that the activation of the AKT protein plays an important biological role in the development of cancer (48). AKT1 is one of the subtypes of AKT. Activated AKT1 phosphorylates many downstream substrates and participates in the regulation of cell growth, metabolism, proliferation, apoptosis and other processes (49). Petrini et al. found that patients with overexpression of AKT1 in gastric cancer had a poor prognosis, suggesting that AKT1 can be used as a poor prognostic marker for gastric cancer (50). Ghatak et al. found that AKT1 mutation was associated with an abnormal cell cycle in gastric cancer (51). Pathway analysis showed that AKT1 is enriched in PI3K-AKT, MAPK and several other pathways closely related to cancer, which indicates that the gene encoding AKT1 has an important biological function in the development of cancer.

ATP-dependent chromatin remodeling plays an important role in the occurrence and development of cancer, participating in almost all aspects of DNA metabolism, such as transcription, recombination, DNA repair and DNA replication (52). The SWI/SNF complex (BAF complex) was the first discovered mechanism of chromatin remodeling. Proteins encoded by SMARCA4 (also known as BGR1) are members of the SWI/SNF family, have helicase and ATP enzyme activities, and regulate gene transcription by changing the structure of chromatin (53). SMARCA4 is generally considered a tumor suppressor gene (54). However, some recent reports have demonstrated that SMARCA4 plays an important role in cell survival and proliferation in some types of cancer (55, 56). Martinez et al. found that SMARCA4 was highly expressed in 11 kinds of tumor tissues, including gastric cancer tissue, and was related to poor prognosis (57), which reflects the dual role of SMARCA4 in cancer. Previous studies have identified several genes as promising diagnostic and prognostic biomarkers for GC (58). In our study, the expression of SMARCA4 in gastric cancer cells was higher than that in normal cells. OS analysis indicated that high expression of SMARCA4 was linked to poor prognosis, which is consistent with previous studies, and further confirmed our results. When SMARCA4 is mutated in gastric cancer, our data indicated that SMARCA4 does not act as a tumor suppressor, which may be due to the pathological activity of abnormal residual complexes of SWI/SNF.

Finally, we analyzed the protein expression of six key genes. We observed that the expression of TP53, AKT1, HRAS, PTEN, PIK3CA, SMARCA4 and BRCA1 in gastric cancer cells was higher than that in normal gastric cells. This is consistent with the results of our bioinformatics analysis. In genetic analysis, SNP is widely used as a kind of genetic markers, and some SNP located in genes may directly affect the protein structure or expression level. The six screened genes are highly expressed in gastric cancer cells, suggesting that these SNP mutant genes may play a role as oncogenes in gastric cancer. Based on this finding, a more in-depth study of the mechanism of these genes will help to reveal the role of SNP in the mechanism of cancer.



Conclusion

In this study, through bioinformatics and experimental analyses, we found that six SNP-containing genes (TP53, AKT1, HRAS, PTEN, PIK3CA, SMARCA4 and BRCA1) may be key factors in the occurrence and prognosis of gastric cancer and participate in many pathways related to cancer development. Therefore, on this basis, further studies should be performed to detect the polymorphic sites of these genes and explore their corresponding expression levels, which can be used to predict the prognosis of patients. These findings will need to be verified in large-scale clinical studies to determine their accuracy and sensitivity in tumorigenesis and to guide the individualized treatment of patients. However, the focus of this study is to provide new ideas for clinical diagnosis and prognostic evaluation through bioinformatics analysis. Our results provide an important bioinformatics basis and related theoretical basis for guiding follow-up research on gastric cancer.
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Background

Nitric oxide (NO) and cyclic guanosine phosphate (cGMP) play important roles in blood pressure regulation, neurotransmitter delivery, renal function, and tumorigenesis and development. The intermediate link of this signaling pathway, soluble guanylyl cyclase (sGC), is particularly important. However, the role of the GUCY1A2 gene encoding the sGC α2 subunit is unknown.



Methods

Gene expression and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. After screening for GUCY1A2 expression, the expression differences between gastric cancer (GC) tissues and adjacent noncancerous tissues were determined using R software. Quantitative real-time polymerase chain reaction (qRT-PCR) and meta-analysis were used to verify the result. The correlation between the expression of GUCY1A2 and clinicopathological parameters was explored by logistic regression. Then, Kaplan-Meier survival analysis and the Cox proportional hazards regression were used to evaluate the relationship between the expression of GUCY1A2 and the survival of GC patients. Finally, gene set enrichment analysis (GSEA) was used to explore and analyze the GC-related signaling pathways affected by high GUCY1A2 expression.



Results

We found that GUCY1A2 was highly expressed in GC tissues compared to adjacent noncancerous tissues (P < 0.001). qRT-PCR (P < 0.001) and meta-analysis (SMD = 0.65, 95% CI: 0.20-1.10) confirmed the difference in GUCY1A2 expression. Logistic regression analysis showed that high expression of GUCY1A2 was associated with histological grade (OR=1.858 for poor vs. well or moderate, P = 0.004) and T stage (OR = 3.389 for T3 vs. T1, P = 0.025; OR = 3.422 for T4 vs. T1, P = 0.028). Kaplan-Meier curves indicated that GC patients with high expression of GUCY1A2 had a poor prognosis than that of patients with low expression. Univariate analysis indicated that GUCY1A2 and some clinicopathological parameters, such as age, pathological stage, and TNM stage, may predict poor prognosis. Multivariate analysis further confirmed that GUCY1A2 was an independent prognostic marker (HR = 1.699; 95%CI, 1.175-2.456; P = 0.005). GSEA showed that the high GUCY1A2 phenotype is significantly enriched for tumor-associated signaling pathways.



Conclusions

GUCY1A2 is highly expressed in GC and may be used as a potential prognostic marker.
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Introduction

Gastric cancer (GC) is a malignant tumor with high morbidity and mortality rates worldwide. Its incidence rate and fatality rate are fifth and third, respectively. This disease has become a major public health problem that seriously threatens human health. In 2018, there were approximately 1, 000, 000 new cases and 783, 000 deaths (1). Moreover, the incidence rate of GC in Eastern Asia has increased notably. Although the treatment of GC has shown major progress, treatment strategies for this disease are still limited. In particular, patients with advanced GC can only undergo palliative tumor reduction surgery or other conservative treatments. Therefore, it is important to identify prognostic biomarkers of GC.

Guanylate cyclase is an enzyme that catalyzes the conversion of guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP). The guanylate cyclase C (GC-C) receptor is present in intestinal epithelial cells, can increase cGMP levels by binding with enterotoxin and participates in many important physiological processes of cells (2). Because of its important physiological functions, GC-C has become a therapeutic target for gastrointestinal disorders and colorectal cancer (3, 4). Two other guanylate cyclase isoforms, GC1 and GC2, encoded by GUCY2D and GUCY2F, are related to visual function (5). The soluble guanylate cyclase (sGC) is a heterodimeric enzyme composed of α (α1, α2) and β (β1, β2) subunits (6, 7). The α and β subunits of sGC are encoded by different genes and can be regulated independently in most human tissues (8). sGC, as a major receptor for nitric oxide (NO), generates cyclic guanosine monophosphate (cGMP), which is involved in various physiological activities (9, 10), such as platelet aggregation (10), smooth muscle relaxation (11, 12) and neurotransmitter delivery. In cancer, the NO/sGC/cGMP signaling pathway plays a dual role. On the one hand, it increases the frequency of mutations in the tumor suppressor gene P53 thereby promoting tumor development, and on the other hand it may mediate the apoptotic effects of cancer cells affecting the occurrence and development of tumor (13–15). The α1β1 isoform is the most active and studied type in sGC (16). Some studies have shown that sGCα1 expression is upregulated in breast and prostate cancers (17, 18). However, the expression of sGCα1 decreased significantly in astrocytoma, oligodendrocytoma, and glioblastoma multiforme (19). The sGCβ1 subunit may affect cancer progression by regulating gene expression and chromatin remodeling (20). The above research indicates that the subunits of sGC play an important role in tumorigenesis and development, and this study focused on the GUCY1A2 gene, which encodes the α2 subunit of sGC. One study reported sequencing analysis of a pediatric lung adenocarcinoma presenting with brain metastasis revealed a mutation in GUCY1A2 (21). This suggests that the GUCY1A2 gene may be involved in the process of tumor development, but few related studies have been reported. Whether the GUCY1A2 gene can be used as a prognostic marker or therapeutic target for tumors remains to be further explored.

Using the Cancer Genome Atlas (TCGA) database, we downloaded and analyzed gene and clinical data, followed by Gene Expression Omnibus (GEO) dataset analysis and quantitative real-time polymerase chain reaction (qRT-PCR) to validate the analysis results preliminarily. The prognostic value of GUCY1A2 in GC was evaluated by Kaplan-Meier survival curve and Cox regression analysis. Through the above methods we explored the expression and prognostic significance of the GUCY1A2 gene encoding the α2 subunit in GC. Our results provide certain basis for GUCY1A2 as a promising prognostic marker for GC.



Materials and Methods


Datasets and Clinical Specimens

The gene expression data (407 cases, workflow type: RNASeq-FPKM) and clinical information (443 cases) for this study were obtained from the TCGA dataset (https://portal.gdc.cancer.gov/). As of March 2020, we included gene expression data on GUCY1A2 from 375 GC tissue samples and 32 adjacent noncancerous tissue samples, as well as the clinical data of patients such as age, gender, pathological stage, histological grade, TNM stage, survival time and survival outcome. The detailed clinicopathological parameters are shown in Table S1. In addition, we collected 51 pairs of GC tissues and adjacent noncancerous tissues from Zhongda Hospital of Southeast University and approved by the Ethics Committee of Zhongda Hospital, Southeast University. These samples were obtained from patients who had never received preoperative radiotherapy or chemotherapy before surgical resection. The samples were collected and stored in RNA later (Austin, Texas, USA) at -80°C until utilized.



RNA Extraction and Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) Analysis

Total RNA from GC tissues and adjacent noncancerous tissues was extracted using TRIzol reagent (Invitrogen, Carlsbad, USA). Then, the concentration and purity of total RNA were measured with NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, USA). Reverse transcription was performed using PrimeScript™ RT kit (Takara, Tokyo, Japan). The reaction conditions of the PCR system according to 2x RealStar SYBR Mixture kit (with ROX) instruction on a StepOnePlus PCR system (Applied Biosystems, Waltham, USA) were as follows: predenaturation at 95°C for 2 min and then 95°C for 15 seconds, 60°C for 30 seconds, and 72°C for 30 seconds, for a total of 40 cycles. The forward primer of GUCY1A2 is TTGGATGAACTCATGGGCCG, and the reverse primer is TCAACCCATCTTGGGCCTTT. The primer sequence of β-actin used for qPCR was as follows: forward: TCCATCATGAAGTGTGACGT, reverse: GAGCAATGATCTTGATCTTCAT. We used β-actin as an internal control and compared the mRNA expression levels by the 2-ΔΔCt method.



Verification of GUCY1A2 by the GEO Datasets

By using “cancer”, “tumor”, “carcinoma” or “neoplasm” and “gastric” or “stomach” as search terms and “Homo sapiens” as qualifier, we searched and screened microarray and RNA sequencing data from the GEO database. We downloaded a total of 11 eligible datasets (GSE13195, GSE13911, GSE26899, GSE27342, GSE29272, GSE33335, GSE37023, GSE54129, GSE63089, GSE64591 and GSE65801) (Table S2). A comprehensive meta-analysis was conducted to verify the differences in GUCY1A2 expression by Review Manager 5.3. The standard mean deviation (SMD) and 95% confidence interval (CI) were used to calculate the combined value. The χ2 and I2 statistical test were used to evaluate the heterogeneity between the included data sets. When P > 0.05 or I2 < 50%, the combined effect was calculated by the fixed effects model; otherwise, the random effects model (P < 0.05 or I2 > 50%) was used.



Gene Set Enrichment Analysis (GSEA)

According to the median expression of GUCY1A2, GC patients were divided into two groups (high expression group and low expression group). GSEA was used to investigate the potential mechanism of the expression of GUCY1A2 as a prognostic factor for GC. The annotated gene set was selected (c2.cp.kegg.v6.2.symbols.gmt) as the reference gene set. 1,000 gene sets were arranged in each analysis, and gene set permutations were performed 1,000 times for each analysis. The normalized enrichment score (NES), nominal P-value, and false discovery rate (FDR) Q-value were used to estimate the significantly enriched gene sets.



Statistical Analysis

All statistical analyses were performed with R 3.6.3 software, and P < 0.05 was considered statistically significant. First, we compared the expression of GUCY1A2 in GC tissues and adjacent noncancerous tissues via the Wilcoxon rank-sum test. Second, the Kaplan-Meier method was used to analyze the correlation between the expression level of GUCY1A2 and the overall survival (OS) of patients. The relationship between the expression of GUCY1A2 and clinicopathological parameters was analyzed by logistic regression. Then, the correlation of clinicopathological parameters and GUCY1A2 expression with OS was analyzed using univariate Cox regression analysis, and multivariate Cox regression analysis was performed to further verify whether the above possible prognostic factors were independent.




Results


GUCY1A2 Was Highly Expressed in GC Tissues

The Wilcoxon rank-sum test was used to compare the expression of GUCY1A2 in 375 GC tissues and 32 adjacent noncancerous tissues. We discovered that the expression of GUCY1A2 in GC tissues was significantly higher than that in adjacent noncancerous tissues (P < 0.001) (Figure 1A). In addition, in 27 pairs of GC and adjacent noncancerous tissues, GUCY1A2 was also overexpressed in GC tissues compared with adjacent noncancerous tissues (P = 0.001) (Figure 1B). In summary, GUCY1A2 was highly expressed in GC tissues.




Figure 1 | The expression of GUCY1A2 and its association with clinicopathological parameters and OS based on TCGA database. (A) GUCY1A2 expression was higher in GC tissues than in adjacent noncancerous tissues (P < 0.001); (B) GUCY1A2 was expressed at higher levels in GC tissues compared to 27 paired adjacent noncancerous tissues (P = 0. 001); (C) qRT-PCR analysis of GUCY1A2 expression in 51 pairs of GC and adjacent noncancerous tissue samples (P < 0.001); (D) Correlation between GUCY1A2 expression and histological grade (P = 0.003); (E) Correlation between GUCY1A2 expression and T stage (P = 0.008); (F) Kaplan-Meier curve of the relationship between GUCY1A2 expression and OS of GC patients (P = 0.025). OS, overall survival; TCGA, The Cancer Genome Atlas; GC, gastric cancer; qRT-PCR, quantitative real-time polymerase chain reaction. *P < 0.05.





Verification of GUCY1A2 Upregulation by qRT-PCR and Meta-analysis

To verify the difference in GUCY1A2 expression in TCGA database, we used qRT-PCR to evaluate the expression of GUCY1A2 at the transcriptional level. We found that the GUCY1A2 mRNA level in GC tissues was significantly higher than that in adjacent noncancerous tissues (P < 0.001, Figure 1C). In addition, a comprehensive meta-analysis of GUCY1A2 expression data for patients with GC in GEO database was conducted (Table S2). The results further confirmed the differential expression of GUCY1A2 in GC tissues and adjacent noncancerous tissues (SMD=0.65, 95%CI: 0.20-1.10, Figure 2).




Figure 2 | Meta-analysis of GUCY1A2 expression data from GEO microarrays. The pooled SMD of GUCY1A2 was 0.65 (95%CI: 0.20-1.10) by the random effects model. GEO, Gene Expression Omnibus; SMD, standard mean difference; CI, confidence interval.





Correlations Between GUCY1A2 Expression and Clinicopathological Parameters of GC Patients

To probe the relationship between the expression of GUCY1A2 and the clinicopathological parameters of the GC patients, we used R software to further analyze the expression level of GUCY1A2 in GC patients with different clinicopathological parameters. Figure 1D showed that the expression of GUCY1A2 in the poor group (G3) was higher than that in the well or moderate group (G1/2) for histological grade (P = 0.003). In addition, as the T stage increased, the expression of GUCY1A2 was also elevated (Figure 1E, P = 0.008). These results indicated that GUCY1A2 may function as an oncogene. Logistic regression analysis with GUCY1A2 expression as a categorical dependent variable showed that increased GUCY1A2 expression was significantly associated with histological grade (OR=1.858 for poor vs. well or moderate, P = 0.004) and T stage (OR = 3.389 for T3 vs. T1, P = 0.025; OR = 3.422 for T4 vs. T1, P = 0.028) (Table 1).


Table 1 | Relationships between GUCY1A2 expression and clinicopathological parameters of GC patients.





Kaplan-Meier Estimate of Survival in GUCY1A2-High and GUCY1A2-Low Patients

Kaplan-Meier survival analysis was utilized to evaluate the prognosis of GC patients with different levels of GUCY1A2 from TCGA database. The results indicated that the high GUCY1A2 expression group had a poor prognosis than the low GUCY1A2 expression group (P = 0.025) (Figure 1F). We further analyzed the correlation between GUCY1A2 expression and OS in GC patients with different clinicopathological parameters to investigate the prognostic value of GUCY1A2. The subgroup analysis showed that the OS was significantly different when grouped by GUCY1A2 for age≥60 years (P = 0.014), well or moderate status (P = 0.043) and T3/4 stage (P = 0.011). In other words, the OS was poor in patients with high GUCY1A2 expression and an age ≥60 years, well or moderate status and T3/4 stage (Figures 3A–F). The relationship between GUCY1A2 expression level and survival rate of GC patients was analyzed using the Kaplan-Meier Plotter database. The results showed that GUCY1A2 expression in GC patients was associated with OS (HR = 1.53; 95%CI, 1.23-1.91, P < 0.001), first progression survival (FP) (HR = 1.58; 95%CI, 1.24-2.01, P < 0.001), post progression survival (PPS) (HR = 2.03; 95%CI, 1.41-2.92, P < 0.001) and relapse-free survival (HR = 2.35; 95%CI, 1.20-4.62, P = 0.011) (Figures 4A–D). These results suggest that high expression of GUCY1A2 is associated with poor prognosis in GC patients.




Figure 3 | Relationship between GUCY1A2 expression and OS in different subgroups of clinicopathological parameters. (A) OS curve of GC patients with age<60 (P = 0.174); (B) OS curve of GC patients with age≥60 (P = 0.014); (C) OS curve of GC patients with well or moderate histological grade (P = 0.043); (D) OS curve of GC patients with poor histological grade (P = 0.076); (E) OS curve of GC patients with T1/2 stage (P = 0.989); (F) OS of GC patients with T3/4 stage (P = 0.011). OS, overall survival; GC, gastric cancer.






Figure 4 | Relationship between GUCY1A2 expression and survival of GC patients based on Kaplan-Meier Plotter database. (A) OS curve of GC patients (P < 0.001); (B) FP curve of GC patients (P < 0.001); (C) PPS curve of GC patients (P < 0.001); (D) RFS curve of GC patients (P = 0.011). OS, overall survival; FP, first progression survival; PPS, post progression survival; RFS, relapse-free survival.





Prognostic Significance of GUCY1A2 Expression in GC patients

To further explore the GUCY1A2 expression related to the prognosis of GC, we conducted univariate analysis. The results demonstrated that high GUCY1A2 expression (HR = 1.433; 95%CI, 1.030-1.992; P = 0.032) and other clinicopathological parameters, such as age (HR = 1.027; 95%CI, 1.008-1.046; P = 0.006), pathological stage (HR= 1.535; 95%CI, 1.221-1.931; P < 0.001), T stage (HR = 1.298; 95%CI, 1.023-1.645; P = 0.032), N stage (HR = 1.267; 95%CI, 1.069-1.502; P = 0.006), and M stage (HR = 2.048; 95%CI, 1.096-3.827; P = 0.025), were associated with poor OS (Table 2). Multivariate analysis was performed to confirm the prognostic value of GUCY1A2 expression. The results showed that age (HR = 1.042; 95%CI, 1.021-1.063; P < 0.001), gender (HR = 1.552; 95%CI, 1.016-2.370; P = 0.042) and GUCY1A2 expression (HR = 1.699; 95%CI, 1.175-2.456; P = 0.005) were independently associated with OS (Table 2) (Figure 5). In summary, the expression of GUCY1A2 is an independent prognostic factor, and increased GUCY1A2 levels are associated with poor OS.


Table 2 | Univariate and multivariate analysis of prognostic factors in GC patients.






Figure 5 | Forest plot of the multivariate Cox regression model. GUCY1A2 was an independent predictor of poor survival rate (HR = 1.699; 95%CI, 1.175-2.456; P = 0.005). HR, hazard ratio; CI, confidence interval. *P < 0.05, **P < 0.01, ***P < 0.001.





Identification of GUCY1A2-Related Signaling Pathways

According to the median value of GUCY1A2 expression, data were divided into high and low expression sets, and we screened related signaling pathways by GSEA. Based on the NES, FDR Q-value and nominal P-value, significantly enriched signaling pathways were selected. There were fourteen enriched and cancer-related signaling pathways: ECM receptor interaction, calcium signaling pathway, focal adhesion, basal cell carcinoma, Hedgehog signaling pathway, MAPK signaling pathway, TGF-beta signaling pathway, pathway in cancer, cell adhesion molecule, renal cell carcinoma, JAK-STAT signaling pathways, ABC transporter, small cell lung cancer, and Wnt signaling pathways (Table 3 and Figure 6).


Table 3 | Enrichment plots from gene set enrichment analysis.






Figure 6 | Enrichment plots of multiple signaling pathways from GSEA. Significantly enriched signaling pathways were ECM receptor interaction, Calcium signaling pathway, Focal adhesion, Basal cell carcinoma, Hedgehog signaling pathway, MAPK signaling pathway, TGF-β signaling pathway, Pathway in cancer, Cell adhesion molecule, Renal cell carcinoma, JAK-STAT signaling pathway, ABC transporters, Small cell lung cancer, Wnt signaling pathways. GSEA, gene set enrichment analysis.






Discussion

Soluble guanylate cyclase has been used in the treatment of cardiovascular diseases such as pulmonary hypertension. Increasing attention has been given to its role in cancer. NO/sGC/cGMP signaling is an important pathway for regulating vascular function, cognition and many other physiological activities. Due to the complex role of NO/SGC/cGMP signaling pathway, it has become a hot issue in cancer research. As an intermediate link, sGC plays an indispensable role in this process. Studies have found differences in the expression of different subunits of sGC in cancer, but there is no research on the expression level of the GUCY1A2 gene encoding the α2 subunit in GC and its prognostic significance.

In this study, we analyzed the differential expression of GUCY1A2 in GC and its significance as a prognostic factor. Moreover, we screened the related enriched signal pathways to understand the mechanism by which GUCY1A2 regulates the development of GC. First, we analyzed the expression of GUCY1A2 in GC tissues and adjacent noncancerous tissues using RNA seq data in TCGA database and found that GUCY1A2 was highly expressed in GC. Next, we performed qRT-PCR and a meta-analysis to verify the high expression of GUCY1A2 in GC, and our findings were consistent with the results of the bioinformatics assay. Moreover, the expression of GUCY1A2 was upregulated with increasing histological grade and T stage. The above findings suggested that GUCY1A2 plays a role in promoting the development of GC. Logistic regression analysis showed that high expression of GUCY1A2 was significantly associated with histological grade (OR = 1.858 for poor vs. well or moderate, P = 0.004) and T stage (OR = 3.389 for T3 vs. T1, P = 0.025; OR = 3.422 for T4 vs. T1, P = 0.028). Kaplan-Meier curves indicate that the prognosis of GC patients with high GUCY1A2 expression is poorer than that of patients with low expression. The same result was obtained by analyzing in the Kaplan-Meier Plotter database. Further subgroup analysis was performed to evaluate the prognostic value of GUCY1A2. It was found that GC patients with high expression of GUCY1A2 in the subgroup of older than 60 years, well or moderate, and T3/4 stage had a poor prognosis. Univariate analysis suggested that GUCY1A2 and some clinicopathological parameters, such as age, pathological stage, and TNM stage, may predict poor prognosis. Multivariate analysis further validated that GUCY1A2 was an independent prognostic factor. Finally, we utilized GSEA to identify the signaling pathways related to GUCY1A2 in GC. The results suggested that ECM receptor interaction, calcium signaling pathway, focal adhesion, basal cell carcinoma, Hedgehog signaling pathway, MAPK signaling pathway, TGF-beta signaling pathway, pathway in cancer, cell adhesion molecule, renal cell carcinoma, JAK- STAT signaling pathways, ABC transporter, small cell lung cancer, and Wnt signaling pathways were correlated with the progression of GC. The ECM is an important part of the tumor microenvironment (TME), which promotes tumor growth and metastasis by affecting physiological functions such as signal transduction, epithelial mesenchymal transition (EMT), and angiogenesis (22, 23). The calcium signaling pathway is related to the proliferation, migration, invasion and formation of drug-resistant cancer cells (24–26). Focal adhesions are closely related to the ECM, which jointly regulates the migration and invasion of cancer cells (27, 28). TGF-β is the main inducer of EMT (29), immune escape and stimulation of metastasis during cancer progression (30). In addition, the TGF-β signaling pathway plays contradictory roles in different stages and cancers. For example, in early stage of breast cancer TGF-β is inhibiting tumor progression, while in advanced stage it plays a role promoting cancer (31, 32). The Hedgehog signaling pathway is activated in cancer and affects tumor development by maintaining and promoting the phenotype of cancer stem cells, stimulating EMT and metastasis (33, 34). Cell adhesion molecules mediate the contact and interaction between cells or between cells and the extracellular matrix and participate in various physiological activities, such as cell recognition, signal transduction, growth and differentiation (35, 36). Moreover, these molecules promote cancer migration and invasion through angiogenesis and destroy the integrity of epithelial cells (37). JAK-STAT participates in the process of internal immune regulation (38). Its imbalance affects tumor growth and development by promoting angiogenesis, regulating the tumor-related matrix and affecting immune escape (39, 40). The ABC transporter removes a variety of chemotherapeutic drugs from the cell, leading to multidrug resistance (MDR) of cancer cells and reducing the effect of chemotherapy. The Wnt signaling pathway and MAPK signaling pathway have been shown to be upregulated in a variety of cancers, and they are involved in regulating the occurrence and development of cancer (41, 42). The above findings provide ideas to explore the carcinogenic and cancer-promoting molecular mechanisms of GUCY1A2, suggesting that GUCY1A2 is involved in the development of GC by regulating various cancer-related molecular signaling pathways.

Our study also has some limitations. First, the number of tumor tissues in the TCGA database was significantly higher than the number of normal tissues used as a control. Second, only the differences in GUCY1A2 mRNA expression level were analyzed, and protein level and direct molecular mechanism were not explored in depth. Finally, the sample size of qPCR assay was relatively small.

In summary, we analyzed the gene expression data of the online database TCGA and found that the expression of GUCY1A2 was higher in GC than in adjacent noncancerous tissues. The same results were obtained in qRT-PCR experiments and GEO database validation. Univariate and multivariate Cox analyses assessed the prognostic significance of GUCY1A2 in GC. Finally, we used GSEA to identify related enriched signaling pathways and preliminarily analyzed the molecular mechanism of GUCY1A2 involvement in gastric carcinogenesis and development. This is the first study to investigate the prognostic value of GUCY1A2 in GC. This study provides a partial basis for screening prognostic biomarkers in GC, but the prognostic value of GUCY1A2 in GC still needs to be explored and validated by more clinical trials and population studies.
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Background

To date, few reports have investigated genetic alterations and clinicopathological features in cardia and noncardia gastric cancer (GC).



Methods

In total, 435 GC patients receiving curative surgery were included. The clinicopathological features, recurrence patterns, prognoses and genetic alterations were compared between cardia and noncardia GC patients.



Results

Among the 435 enrolled patients, 47 (10.8%) had cardia GC. Compared with noncardia GC, cardia GC was associated with more intestinal-type tumors and similar initial recurrence patterns and 5-year overall survival (OS; 50.8% vs. 50.5%, P = 0.480) and disease-free survival (DFS; 48.6% vs. 48.9%, P = 0.392) rates. For both intestinal-type GC and diffuse-type GC, the clinicopathological features and 5-year OS and DFS rates were not significantly different between the cardia and noncardia GC patients. Multivariable analysis showed that cardia GC was not an independent prognostic factor. Compared with noncardia GC, cardia GC was associated with increased PIK3CA amplification than in patients with intestinal-type GC and was associated with increased HER2 expression in patients with diffuse-type GC.



Conclusions

Cardia GC is not an independent prognostic factor. In cardia GC patients with intestinal-type GC, PIK3CA amplification was more common, and in those with diffuse-type GC, HER2 expression was more common. Targeted therapy may be beneficial for these patient subgroups.





Keywords: gastric cancer, cardia, noncardia, genetic alteration, PIK3CA amplification, HER2 expression



Introduction

Gastric cancer (GC) is the sixth most common cancer and ranks second in terms of cancer-related death worldwide (1). The incidence of cardia GC has shown an increasing trend over time, while that of noncardia GC has shown a decreasing trend.

According to the 8th edition of the American Joint Committee on Cancer (AJCC)/Union for International Cancer Control (UICC) tumor, node, metastasis (TNM) classification system (2), Siewert type 2 cardia cancer with esophagogasric junction invasion is classified as esophageal cancer, and Siewert type 3 cardia cancer is classified as GC. It was reported that cardia GC was associated with more advanced staging and unfavorable clinicopathological features at diagnosis than noncardia GC (3).

In terms of molecular analyses, some reports have investigated genetic alterations in cardia and noncardia GC (4, 5). Genome-wide association studies have revealed that some single nucleotide polymorphisms (SNPs) are associated with noncardia GC only (4), while others have shown no difference in the SNPs between cardia and noncardia GC (5). In addition, HER2 expression has been reported to be higher in cardia GC than in noncardia GC (6). The correlation between HER2 expression and histologic types in GC is controversial; HER2 expression has been reported to be associated with intestinal-type GC in some studies (7), whereas other studies have indicated that HER2 expression was more common in diffuse-type GC (8). Consequently, there is a need to investigate the correlation between genetic alterations and histologic type in cardia and noncardia GC.

The aim of the current study was to compare the clinicopathological characteristics, recurrence patterns, and prognoses between cardia and noncardia GC after curative surgery. As in a previous study (9), a nine-gene mutation panel was used to perform genetic analysis with the MassARRAY method; in addition, Helicobacter pylori (HP) infection, Epstein–Barr virus (EBV) infection, and PIK3CA amplification were compared between cardia and noncardia GC patients.



Materials and Methods

Between 2005 and 2014, a total of 435 GC patients with adenocarcinoma who underwent curative surgery were included in the present study. According to the 8th edition of the AJCC/UICC TNM classification system, among the 435 GC patients, 47 (10.8%) patients were classified as having cardia GC. Tumor and normal gastric mucosa tissues were collected, and genetic alterations were analyzed for all 435 GC patients. The Institutional Review Board of Taipei Veterans General Hospital approved the present study (2020-09-017CC). All samples used in this study had been previously collected from the biobank of Taipei Veterans General Hospital and were anonymized. All enrolled patients signed an informed consent form before sample collection from the biobank.

Regarding the extent of lymphadenectomy, at least D1+ dissection was performed for early GC, while D2 dissection was performed for advanced GC (10).

The follow-up examinations were the same as those performed in a previous study (11) and were conducted every 3 months during the first 3 years after surgery and every 6 months thereafter. Patients with tumor recurrence could receive 5-fluorouracil (FU)-based chemotherapy. No patients enrolled in the present study received preoperative chemotherapy. Adjuvant therapy, such as S-1, has been prescribed for stage II or III disease after curative surgery at our institute since 2008 due to its proven survival benefit (12). Approximately 62% of the enrolled patients underwent surgery before 2008. Consequently, the number of patients who received adjuvant chemotherapy was low in the present study.


Analysis of Microsatellite Instability and Genetic Mutations

As reported in a previous study (13), five reference microsatellite markers were used to determine microsatellite instability (MSI), namely, D5S345, D2S123, D17S250, BAT25 and BAT26. MSI-high (MSI-H) was defined as ≥2 loci of instability, while MSI-low/stable (MSI-L/S) was defined as one locus or no MSI loci of instability (13).

As demonstrated in a previous study (9), a MassARRAY system (Agena, San Diego, CA) was used to identify 76 mutation hotspots in nine GC-related genes: PIK3CA, AKT1, AKT2, AKT3, PTEN, ARID1A, TP53, BRAF, and KRAS. Mutations in PTEN, PIK3CA, AKT1, AKT2, or AKT3 were defined as PI3K/AKT pathway genetic mutations.



HP and EBV Detection

As mentioned in a previous study, HP infection was identified using polymerase chain reaction (PCR) assays (14).

EBV infection was identified using the in situ hybridization (ISH) technique for the detection of EBV-encoded small RNAs in formalin-fixed paraffin-embedded tissue samples (15).



Immunohistochemical (IHC) Staining for HER2

HER2 IHC staining was performed with anti-human c-erbB-2 A0485 polyclonal antibody (dilution 1:500; Dako) (16). An IHC score of 3+ or an IHC score of 2+ with a positive fluorescence in situ hybridization result was defined as positive HER2 IHC staining.



Statistical Analysis

IBM SPSS Statistics 25.0 (IBM Corp., Armonk, NY, USA) was used for statistical analyses. Categorical data were compared between groups using the χ2 test with Yate’s correction or Fisher’s exact test. Overall survival (OS) was defined from the date of surgery to the date of death or the last follow-up. Disease-free survival (DFS) was defined as the length of time after surgery during which the patient was alive without GC recurrence. The Kaplan–Meier method was applied for the survival analysis of OS and DFS. Multivariable analysis with Cox proportional hazards models was applied to analyze the independent prognostic factors of OS. Statistical significance was defined as a P value less than 0.05.




Results


Clinicopathological Features

Among the 435 GC patients, 47 (10.8%) had cardia GC. Regarding the clinicopathological characteristics, as shown in Table 1, patients with cardia GC had more intestinal-type tumors than those with noncardia GC.


Table 1 | Clinical profile between cardia and non-cardia GC patients.



As shown in Table 2, for both intestinal-type and diffuse-type GC, there was no significant difference between patients with cardia GC and those with noncardia GC in terms of clinicopathological features.


Table 2 | Clinical profile between cardia and non-cardia GC patients in intestinal-type and diffuse-type GC.





Initial Recurrence Patterns

Among the 435 patients, 145 (33.3%) experienced tumor recurrence. As shown in Table 3, no significant difference was observed in the initial recurrence pattern between cardia and noncardia GC or between intestinal-type GC and diffuse-type GC.


Table 3 | The initial recurrence pattern between cardia and non-cardia GC patients in intestinal-type and diffuse-type GC.





Survival Analysis

As shown in Figure 1, there was no significant difference in the 5-year OS (50.8% vs. 50.5%, P = 0.480, Figure 1A) or DFS (48.6% vs. 48.9%, P = 0.392, Figure 1B) between cardia and noncardia GC patients. For intestinal-type GC, the 5-year OS (53.8% vs. 52.5%, P = 0.440, Figure 1C) and DFS (49.3% vs. 51.9%, P = 0.356, Figure 1D) rates were not significantly different between cardia and noncardia GC patients. For diffuse-type GC, the same trends were observed for 5-year OS (46.7% vs. 46.8%, P = 0.759, Figure 1E) and DFS (46.7% vs. 45.4%, P = 0.688, Figure 1F) between cardia and noncardia GC patients.




Figure 1 | The 5-year OS (50.8% vs. 50.5%, P = 0.480) and DFS (48.6% vs. 48.9%, P = 0.392) rates were not significantly different between cardia and noncardia GC. For intestinal-type GC patients, the 5-year OS (53.8% vs. 52.5%, P = 0.440) and DFS (49.3% vs. 51.9%, P = 0.389) rates were not significantly different between cardia and noncardia GC. For diffuse-type GC patients, the 5-year OS (46.7% vs. 46.8%, P = 0.759) and DFS (46.7% vs. 45.4%, P = 0.688) rates were not significantly different between cardia and noncardia GC. The survival curves are shown as follows: (A) OS curves of all GC patients; (B) DFS curves of all patients; (C) OS curves of intestinal-type GC patients; (D) DFS curves of intestinal-type GC patients; (E) OS curves of diffuse-type GC patients; (F) DFS curves of diffuse-type GC patients.



Univariable analysis demonstrated that age, sex, gross appearance, lymphovascular invasion, pathological T and N categories, and PIK3CA amplification were significantly associated with OS. The seven factors mentioned above, as well as tumor location (cardia GC vs noncardia GC), were included in the multivariable analysis. The Cox proportional hazard model demonstrated that age, gross appearance, and pathological T and N categories were independent prognostic factors of OS (Table 4).


Table 4 | Univariate and multivariate analysis of factors affecting OS of GC patients after curative surgery.





Genetic Analysis

As shown in Table 5, for intestinal-type GC, patients with cardia GC had increased PIK3CA amplification (59.4% vs. 38.4%, P = 0.025) compared to patients with noncardia GC. For diffuse-type GC, patients with cardia GC had increased HER2 expression (26.7% vs. 4.9%) compared to patients with noncardia GC.


Table 5 | The molecular differences between cardia and non-cardia GC patients after curative surgery.






Discussion

Cardia GC patients have been reported to have a more advanced tumor stage and unfavorable clinicopathological features at diagnosis than noncardia GC patients (3). However, the 5-year OS was shown to be similar between cardia and noncardia GC patients at each TNM stage (3). In the present study, the clinicopathological features, recurrence patterns, and prognoses were similar between cardia and noncardia GC patients; however, more intestinal-type tumors were observed in cardia GC patients. The multivariable analysis also demonstrated that cardia GC itself is not an independent prognostic factor. According to our results and those of other studies (3), late-stage diagnosis is the main cause of the poorer patient prognosis for cardia GC than noncardia GC.

HER2 expression is higher in the gastric cardia than in other locations of the stomach (6). The correlation between HER2 expression and Lauren’s histologic types remains controversial. Some studies have reported that HER2 expression was associated with intestinal-type GC (7); however, others have reported that HER2 expression was correlated with diffuse-type GC (8). In addition, the presence of HP infection may induce HER2 overexpression (17). Consequently, the discrepancy among studies might be due to the small sample sizes and differences in racial and environmental factors. One of the novel findings of the present study is that HER2 expression is significantly higher in cardia GC patients than in noncardia GC patients among those with diffuse-type GC but not intestinal-type GC. A randomized controlled trial demonstrated that trastuzumab in combination with chemotherapy improved survival in patients with advanced gastric or gastroesophageal junction cancer compared with chemotherapy alone (16). The frequency of HER2 expression in the GC patients enrolled in the present study was 10.1%, which was considered the cutoff percentage for targeted therapy benefits. According to our results, we recommend performing IHC staining for HER2 in patients with diffuse-type GC, as targeted therapy may be beneficial for this subtype.

It has been reported that PIK3CA amplification was associated with GC-related death (18); in addition, patients with PIK3CA amplification had worse survival than patients without PIK3CA amplification, which is similar to our results. In the present study, cardia GC was associated with higher PIK3CA amplification than noncardia GC but only among intestinal-type GC patients, not diffuse-type GC patients. In vivo and in vitro studies demonstrated the significance of proapoptotic and antiproliferative inhibition of PI3K. Therapeutic agents targeting PI3K have been applied in phase 1 and phase 2 clinical trials among patients with gastrointestinal cancer. In addition, combination therapy with PI3K inhibitors and other targeted therapies are under investigation (19). The frequency of PIK3CA amplifications in the enrolled GC patients in the present study was 47.4%, which was considered the cutoff percentage for targeted therapy benefits. According to our results, we recommend testing for PIK3CA amplification in intestinal-type cardia cancer patients, as they may benefit from targeted therapy.

Four molecular subtypes of GC using the database of The Cancer Genome Atlas (TCGA) have been reported (20); however, the etiology and genetic alterations of cardia GC are still not well known. Our results demonstrated that cardia GC presented with more intestinal-type tumors than noncardia GC, which was also reported in a TCGA analysis (20). The differences between cardia GC and noncardia GC are multifactorial, involving etiology, biological behaviors, lifestyle, HP infection, EBV infection, gastroesophageal reflux disease, environment, and genetic and epigenetics (21). For economic reasons, we used the MassARRAY method to analyze genetic mutations. Despite the high cost, we believe that next-generation sequencing could provide additional information on differences in the genetic alterations between cardia and noncardia GC; we plan to implement this technique in future research on this topic.

In the present study, the top three genetic mutations in gastric cardia and noncardia cancer were in the PI3K/AKT pathway, TP53 and ARID1A. In the present study, the frequency of PI3K/AKT pathway mutations was not significantly different between patients with cardia and noncardia GC. It has been reported that only tumors located in the middle third of the stomach show an increase in PIK3CA mutations (22). EBV infection was associated with PIK3CA mutation, especially in the body of the stomach (20). EBV infection and PIK3CA mutation are more likely to induce carcinogenesis in the middle third of the stomach. TP53 mutations can upregulate the transcription of vascular endothelial growth factor receptor-2 (VEGFR2) by promoter remodeling (23). A significant increase in VEGF expression was observed in cancer patients with TP53 mutations (24). The anti-VEGFR2 inhibitor ramucirumab combined with paclitaxel has been approved as the standard second-line systemic therapy (25); however, the survival benefit is limited and novel combination therapies with other targeted therapies and immunotherapy may be beneficial for patient outcome (26). ARID1A, a tumor suppressor gene, has been identified as the second most mutated gene after TP53 in GC (19), and ARID1A deficiency is associated with poor prognosis and lymph node metastasis in GC patients (27). Loss of ARID1A expression correlated with increased PD-L1 expression (28), and ARID1A mutation was associated with MSI and EBV infection (29). Consequently, immunotherapy might be beneficial for GC patients with ARID1A alterations.

One of the limitations of this study is its retrospective and single-center nature. In addition, the number of cardia GC patients in the molecular analysis was small, which may have caused selection bias. In the future, more patients from different countries and races are needed to validate our results, which may provide convincing evidence for GC treatment in the future.



Conclusion

In conclusion, cardia GC is not an independent prognostic factor. For intestinal-type GC, PIK3CA amplification was more common in cardia GC patients than in noncardia GC patients. For diffuse-type GC, HER2 expression was more common in cardia GC patients than in noncardia GC patients. Targeted therapy may be beneficial for these patient subgroups.
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Background

Tumor-associated macrophages (TAMs) play a critical role in the progression of malignant tumors, but the detailed mechanism of TAMs in gastric cancer (GC) is still not fully explored.



Methods

We identified differentially expressed immune-related genes (DEIRGs) between GC samples with high and low macrophage infiltration in The Cancer Genome Atlas datasets. A risk score was constructed based on univariate Cox analysis and Lasso penalized Cox regression analysis in the TCGA cohort (n=341). The optimal cutoff determined by the 5-year time-dependent receiver operating characteristic (ROC) curve was considered to classify patients into groups with high and low risk. We conducted external validation of the prognostic signature in four independent cohorts (GSE84437, n=431; GSE62254, n=300; GSE15459, n=191; and GSE26901, n=109) from the Gene Expression Omnibus (GEO) database.



Results

The signature consisting of 7 genes (FGF1, GRP, AVPR1A, APOD, PDGFRL, CXCR4, and CSF1R) showed good performance in predicting overall survival (OS) in the 5 independent cohorts. The risk score presented an obviously positive correlation with macrophage abundance (cor=0.7, p<0.001). A significant difference was found between the high- and low-risk groups regarding the overall survival of GC patients. The high-risk group exhibited a higher infiltration level of M2 macrophages estimated by the CIBERSORT algorithm. In the five independent cohorts, the risk score was highly positively correlated with the stromal cell score, suggesting that we can also evaluate the infiltration of stromal cells in the tumor microenvironment according to the risk score.



Conclusion

Our study developed and validated a general applicable prognostic model for GC from the perspective of TAMs, which may help to improve the precise treatment strategy of GC.
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Introduction

Gastric cancer (GC), as one the most common malignant tumors, is the third leading cause of cancer death in the world (1). In recent years, with the progress and development of treatment methods, such as perioperative treatment and the application of targeted drugs, the survival time of patients with gastric cancer has been improved to some extent, but the overall prognosis is still unsatisfactory (2). In view of this, how to improve the overall survival of patients with gastric cancer is still a hot topic in the current research field.

The tumor microenvironment (TME) plays a critical role in tumorigenesis and development (3). Tumor-associated macrophages (TAMs), as an important component of the TME of malignant tumors (4), have been shown to have significant functions in the progression of malignant tumors, such as regulating the proliferation, invasion and metastasis of tumor cells (5–7). The degree of TAM infiltration is also directly related to the depth of tumor invasion, lymph node status and clinical stage of gastric cancer (8–10) and has become a new therapeutic target and prognostic indicator in the individualized treatment of gastric cancer. At present, the detailed mechanism of TAMs in gastric cancer is still not fully explored.

Effective prognosis evaluation is an important guarantee for the precise treatment of gastric cancer patients; however, the prognostic biomarkers that can be used in clinical practice are still limited to date. Considering the great potential of TAMs in prognosis assessment and precise targeting for gastric cancer treatment, the identification of specific markers of TAMs through high-throughput sequencing data may provide a valuable reference for new clinical diagnosis and treatment strategies of gastric cancer.

In this work, we explored the association between the infiltration abundance of macrophages and immune-related gene expression. Importantly, we constructed a prognostic model of gastric cancer based on seven immune genes related to macrophage infiltration and confirmed its prognostic value in different cohorts, which will help to formulate an individualized treatment plan for gastric cancer patients.



Materials and Methods


Data Acquisition

We first obtained the immune infiltration data of The Cancer Genome Atlas (TCGA) from Tumor IMmune Estimation Resource Web Server (TIMER, https://cistrome.shinyapps.io/timer/) (11, 12). Then, we downloaded the gene expression profiles and corresponding clinical information from The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/). A total of 341 GC patients with complete data were included in this study. The immune-related gene list was acquired from the ImmPort database (https://immport.niaid.nih.gov). Next, we acquired the gene expression profiles and the clinical data of four independent cohorts (GSE84437, n=431; GSE62254, n=300; GSE15459, n=191; and GSE26901, n=109) from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The batch effects in different datasets were removed by the “ComBat” function of the R package “sva” (13). We complied with the access rules of the corresponding database during the process of data acquisition. Approval from the local ethics committee was not needed in this work because the above data were acquired from public databases. The workflow of this study and the clinical information of the above 5 independent cohorts are shown in Figure 1 and Table 1, respectively.




Figure 1 | The workflow chart of this study.




Table 1 | The clinical data of the 5 independent cohorts.





Exploration of the Prognostic Significance of Macrophage Infiltration in Patients With Gastric Cancer

A total of 341 GC patients were assigned to the high and low macrophage infiltration groups given the optimal cutoff value determined by X-title software (14), where the overall survival of the two groups was compared by Kaplan–Meier survival analysis. Statistical significance was set as a p value of the log rank test less than 0.05.



Identification of Differentially Expressed Immune-Related Genes (DEIRGs) Between the High and Low Macrophage Infiltration Groups

We extracted immune-related genes from the TCGA dataset and identified the differentially expressed immune-related genes (DEIRGs) between the high and low macrophage infiltration groups by the “limma” R package. A false discovery rate (FDR) of <.05 and log FC >1 were considered to be significant.



Gene Ontology Function Annotation of DEIRGs

We carried out Gene Ontology (GO) functional annotation of the DEIRGs between the high and low macrophage infiltration groups by the R package “clusterProfile”, including cellular component (CC), molecular function (MF), and biological process (BP).



Development and Validation of an Immune-Related Gene Prognostic Signature

Univariate Cox regression analysis and Kaplan–Meier survival analysis were initially combined for the preliminary screening of prognosis-related immune genes (PRIGs). P<0.05 was considered to be significant. Afterwards, the least absolute shrinkage and selection operator (LASSO) algorithm was applied to reduce the scope of PRIGs. While the LASSO penalized Cox analysis was implemented, we subsampled the dataset 1000 times and selected the PRIGs over 900 repeated times. A subselection of PRIGs was detected as a result of a penalty proportional to their size to shrink the regression coefficient (15, 16). Genes with zero regression coefficients were excluded. After that, regression coefficients were applied to establish a prognostic risk score, which was derived from LASSO Cox regression analysis of each PRIG multiplied by the expression level of each PRIG. The GC patients were classified into low-risk and high-risk groups considering the optimal cutoff corresponding to the maximum AUC value of the 5-year time-dependent receiver operating characteristic (ROC) curve (17). The LASSO regression analysis was performed with the “glmnet” R package. Time-dependent ROC curves and Kaplan–Meier survival curves were generated with the R packages “survivalROC” and “survminer”. To test the independent prognostic value of the risk score, univariate and multivariate Cox regression analyses were carried out. The four independent cohorts (GSE84437, n=431; GSE62254, n=300; GSE15459, n=191; and GSE26901, n=109) were used for the external validation of the prognostic model’s performance.



Estimation of Immune Cell Infiltration

The abundances of six immune infiltrates (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells) in samples in TCGA datasets were estimated by the TIMER algorithm. The relative proportions of 22 infiltrated immune cell types were quantified by the CIBERSORT algorithm for each sample (18, 19). P < 0.05 was used as the standard to filter the sample.



Exploration of the Tumor Microenvironment in Different Risk Groups

We calculated the StromalScore (which captures the presence of stroma in tumor tissue), ImmuneScore (which represents the infiltration of immune cells in tumor tissue), and ESTIMATEScore (which infers tumor purity) of the sample contained in the five independent cohorts based on the ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) algorithm using the R package “estimate”. We calculated the normalized enrichment score (NES) to quantify immune cell infiltration and immune function by single sample gene set enrichment analysis (ssGSEA) using the “GSVA” R package. Independent-samples t tests were used to compare the differences between the high- and low-risk groups, and p < 0.05 was suggested to indicate statistical significance.




Results


High Infiltration by Macrophages Is Associated With Unfavorable Overall Survival

We assessed the potential prognostic significance of immune cell infiltration for GC using the TIMER algorithm, and higher infiltration of macrophages was found to be associated with poor prognosis (Figure 2A). This provided an important basis for us to carry out subsequent research.




Figure 2 | Identification of differential expressed immune-related genes(DEIRGs) associated with macrophage infiltration. (A) The high infiltration by Macrophages is unfavorable for the OS of GC. (B). The vol plot DEIRGs. (C) The circle plot of GO terms up-regulated in the high macrophage infiltration group. (D) The circle plot of GO terms up-regulated in the low macrophage infiltration group.





Identification of DEIRGs Associated With Macrophage Infiltration

A total of 283 DEIRGs were identified by the Wilcox test in the “limma” R package (Figure 2B). A total of 234 genes were upregulated in the high macrophage infiltration group (log FC>1), and 49 genes were upregulated in the low macrophage infiltration group (log FC<-1) (Figure 2B).



GO Enrichment Analysis for the DEIRGs

The immune-related genes upregulated in the high macrophage infiltration group were mainly enriched in calcium ion homeostasis, cellular divalent inorganic cation homeostasis, receptor ligand activity, leukocyte migration, etc. (Figure 2C). The immune-related genes upregulated in the low macrophage infiltration group were mainly enriched in receptor ligand activity, cell chemotaxis, cytokine receptor binding, and antimicrobial humoral response (Figure 2D).



Establishment of a Seven-Immune Gene Prognostic Signature in the TCGA Cohort

A total of 16 genes were selected as prognosis-related genes by univariate Cox regression analysis and Kaplan–Meier survival analysis (Figures 3A, B). LASSO Cox regression analysis was then applied to exclude genes that may be highly correlated with other genes (Figure 3C). We ultimately identified a 7-gene signature. The risk score = FGF1*0.1606 + GRP*0.0835 + AVPR1A*0.0316 + APOD*0.0024 + PDGFRL*0.0482 + CXCR4*0.0019 + CSF1R*0.0108. Patients were assigned into low-risk and high-risk groups according to the optimal cutoff of 1.784 determined by the 5-year ROC curve (Figures 3D, G). The results showed that the overall survival rate (OS) of the high-risk group was significantly lower than that of the low-risk group (Figure 3E). The area under the curve (AUC) values for the model predicting OS at 1, 3 and 5 years were 0.642, 0.645 and 0.672, respectively (Figure 3F). It is worth mentioning that the expression levels of 7 genes in the signature were positively correlated with macrophage abundance, as verified by Spearman correlation analysis (Figure 4), indicating that we could estimate the degree of macrophage infiltration in GC tissue according to the risk score. The risk of death of GC patients increased with the increasing risk score (Figures 5A, B). Then, we included the risk score and other clinical factors in univariate and multivariate Cox regression analyses, and the results showed that the risk score was an independent prognostic indicator (Figures 5C, D). The prognostic signature was applicable for GC patients in early and advanced stages (Figures 5E, F).




Figure 3 | The building process of the seven immune gene prognostic signature in the TCGA cohort. (A) The forrest plot of the univariate Cox analysis. (B) The corrplot of the prognostic related genes. (C) Lasso penalized COX regression analysis. (D) The optimal cutoff determined by 5-year time-depend ROC curve. (E, F) The Kaplan–Meier survival analysis and time‑dependent ROC analysis of the signature for predicting the OS of patients in the TCGA cohort. (G) The risk score distribution of patients in in the TCGA cohort.






Figure 4 | The correlation analysis of the signature and the macrophage infiltration.






Figure 5 | Independence validation of the risk score in the TCGA cohort. (A, B) The heatmap, and the survival status of patients in in the TCGA cohort. (C) The forrest plot of the univariate Cox analysis. (D) The forrest plot of the multivariate Cox analysis. (E, F) Subgroup validation based on the clinical stage.





External Validation of the Prognostic Signature in Four Independent Cohorts

We calculated the risk score of each sample in the four independent cohorts using the calculation formula derived from TCGA and assigned them into groups with a high risk or low risk based on the unified cutoff consistent with the TCGA cohort. The results of survival analysis revealed that the OS of patients in the high-risk group was significantly shorter than that in the low-risk group in each independent cohort (Figures 6A, D, G, J). In the GSE84437 cohort, the AUC values for the risk score predicting OS at 1, 3 and 5 years were 0.559, 0.598 and 0.601, respectively (Figure 6B). In the GSE62254 cohort, the AUC values for the risk score predicting OS at 1, 3 and 5 years were 0.616, 0.607 and 0.612, respectively (Figure 6E). In the GSE15459 cohort, the AUC values for the risk score predicting OS at 1, 3 and 5 years were 0.559, 0.613 and 0.640, respectively (Figure 6H). In the GSE26901 cohort, the AUC values for the risk score predicting OS at 1, 3 and 5 years were 0.688, 0.715 and 0.696, respectively (Figure 6K). The patients’s risk death was positively correlated with the risk score (Figures 6C, F, I, L). The results of univariate and multivariate Cox regression analysis confirmed that the risk score was an independent prognostic indicator in each independent cohort (Figures 7A–D). These results demonstrated the robustness of this prognostic model.




Figure 6 | External validation of the prognostic model. (A, B) The Kaplan–Meier survival analysis and the time‑dependent ROC analysis of the signature for predicting the OS of patients in the GSE84437 cohort. (C) The heatmap, distribution of risk score, and the survival status of patients in in the GSE84437 cohort. (D, E) The Kaplan–Meier survival analysis and the time‑dependent ROC analysis of the signature for predicting the OS of patients in the GSE62254 cohort. (F) The heatmap, distribution of risk score, and the survival status of patients in in the GSE62254 cohort. (G, H) The Kaplan–Meier survival analysis and the time‑dependent ROC analysis of the signature for predicting the OS of patients in the GSE15459 cohort. (C) The heatmap, distribution of risk score, and the survival status of patients in in the GSE15459 cohort. (J, K) The Kaplan–Meier survival analysis and the time‑dependent ROC analysis of the signature for predicting the OS of patients in the GSE26901 cohort. (L) The heatmap, distribution of risk score, and the survival status of patients in in the GSE26901 cohort.






Figure 7 | External independence validation of the prognostic model in the (A) GSE84437 cohort (B) GSE62254 cohort (C) GSE15459 cohort (D) GSE26901 cohort. *green represents the univariate Cox analysis, red represents the multivariate Cox analysis.





Immune Cell Infiltration Between Different Risk Groups

The infiltration levels of CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells in the high-risk group were all higher than those in the low-risk group estimated by the TIMER algorithm (Figures 8A, B). The infiltration levels of resting memory CD4+ T cells, resting mast cells, and M2 macrophages in the high-risk group were higher than those in the low-risk group estimated by the CIBERSORT algorithm. The infiltration levels of plasma cells, activated memory CD4+ T cells, follicular helper T cells, and M0 macrophages in the low-risk group were higher than those in the high-risk group estimated by the CIBERSORT algorithm (Figures 8C–E).




Figure 8 | The difference of immune cell infiltration between high- and low-risk groups. (A) The circos plot of risk score and the infiltration of six types of immune cells. (B) The vioplot showed the difference of the abundances of six immune infiltrates (TIMER algorithm) between high- and low risk groups in the TCGA cohort. (C) The heatmap of 22 kinds of immune cells infiltration. (D) The corHeatmap of 22 kinds of immune cells infiltration. (E) The vioplot showed the difference of the abundances of 22 types of immune cells infiltrates between high- and low risk groups[CIBERSORT algorithm, red represent high risk(n=527), blue represent low risk(n=509)].





The Relationship Between the Tumor Microenvironment and the Prognostic Signature

There were common differences between the high- and low-risk groups in the 5 independent cohorts. For example, the abundances of macrophages, mast cells, and neutrophils in the high-risk group were all higher than those in the low-risk group (Figures 9A–E). The upregulation of CXCR4 and CSF1R expression is related to the enhancement of multiple immune functions, such as T cell costimulation and coinhibition, checkpoints, and CCR, while the upregulation of FGF1, GRP, AVPR1A, APOD, and PDGFRL was associated with the weakening of T cell APC coinhibition and MHC class I (Figure 10). Another important finding was that a higher StromalScore was found to be associated with an unfavorable prognosis of GC (Figures 11A–E). Interestingly, the risk score was highly positively correlated with the StromalScore in the five independent cohorts (Figures 11A–E), which may help us to explain the causes leading to different clinical outcomes in different risk groups.




Figure 9 | The landscape of tumor microenvironment for difference of immune cell infiltration between high- and low-risk groups (A) TCGA cohort (B) GSE84437 cohort (C) GSE62254 cohort (D) GSE15459 cohort (E) GSE26901 cohort.






Figure 10 | The correlation between genes and immune function.






Figure 11 | The correlation between risk score and Stromal score (A) TCGA cohort (B) GSE84437 cohort (C) GSE62254 cohort (D) GSE15459 cohort (E) GSE26901 cohort.






Discussion

Gastric cancer (GC) is a digestive tract malignant tumor with a high incidence rate and mortality (20). Surgery combined with radiotherapy and chemotherapy is the main method for the treatment of GC. However, because of the occult early symptoms of GC, most patients are initially diagnosed in the middle and advanced stages, with a 5-year survival rate of less than 20% (21). The traditional TNM staging system seems to have difficulty accurately assessing the overall prognosis of GC patients (22). For example, in clinical work, we will find that some GC patients with early pathological stages may not have a high overall survival rate. In recent years, with the development of research on the pathogenesis of GC, an increasing number of surgeons have realized that the factors that determine the survival time of GC patients after surgery are not only the complete resection of the tumor but also the gene expression of the tumor (23, 24).

As an important component of the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play a critical role in the tumorigenesis and development of GC (25–27) and have become a new therapeutic target and prognostic indicator in GC. Recent studies have shown that TAMs can promote tumor progression by participating in the immune regulation of GC (28–30). The exploration of immune genes associated with TAMs may provide new biomarkers for the prognostic assessment of GC.

Considering that research on TAMs and immune gene expression is still lacking in the field of GC, we conducted this study. We confirmed the prognostic value of TAMs for GC, and GC patients with higher macrophage infiltration were found to have a poor prognosis. Then, we found that there were significant differences in the expression of immune-related genes between the high and low macrophage infiltration groups, and the functions of the immune genes that were upregulated in the two groups were also different, indicating that macrophage abundance did have a certain impact on the immunophenotype of GC. Whether this is the direct cause of the difference in prognosis between the two groups is still unknown. However, such a finding provides an important hypothesis; that is, TAMs may lead to different clinical outcomes of GC indirectly by influencing the immunophenotype of GC. Next, we screened seven genes from these differentially expressed genes to form the risk score. Interestingly, an obviously positive correlation was observed between the risk score and macrophage abundance, implying that we can speculate what the level of macrophage infiltration is in GC based on the risk score. At present, TAMs have been considered a new target for the treatment of GC (31), and this discovery will undoubtedly provide important clues for treatment strategies focusing on TAMs. In addition, the abundance of macrophages in GC tissues was estimated by targeted sequencing of seven specific genes, which will also maximize cost-effectiveness.

We conducted external validation in four independent cohorts to test the reliability of the prognostic model. The results showed that we could accurately identify GC patients with good and poor prognoses depending on the model, which means that clinicians can provide individualized treatment for GC patients based on the risk score. For example, for patients with high risk scores, clinicians should closely follow up and make corresponding postoperative review plans, while for patients with low risk scores, excessive treatment should be avoided, which is of great significance for reasonable allocation of medical resources. Current studies have shown that the TAM cell population is in a state of continuous transformation between M1 and M2 macrophages, and M2 macrophages have immunosuppressive and tumor-promoting effects (32). We found that the macrophage M2 infiltration level in the high-risk group was significantly higher than that in the low-risk group, which may be an important factor for the poor prognosis of the high-risk group. Meanwhile, it also suggested that the risk score may play a critical role in the process of TAM phenotype polarization to the M2 type. Apart from macrophages, the high-risk group also exhibited a higher abundance of mast cells and neutrophils. According to related reports, mast cells in the TME can release VEGF to support tumor angiogenesis and degrade extracellular matrix by releasing matrix metalloproteinase-9 (MMP9) to promote metastasis, which is conducive to tumor progression (33). Transforming growth factor-β (TGF-β) in the TME could promote neutrophil polarization to the N2 type, which could stimulate immunosuppression, tumor angiogenesis, proliferation, and metastasis (34–36).

Stromal cells in the TME can be divided into angiogenic vascular cells (AVCs), cancer-associated fibroblasts (CAFs), cancer-associated adipocytes (CAAs), and mesenchymal stromal cells (MSCs) (37). AVCs provide nutrition and oxygen for tumor cells, remove metabolic waste, and provide an entry point for metastatic tumor cells to enter the circulatory system (38). In the TME, CAFs promote the formation of an oxygen-rich, immunosuppressive and proinflammatory microenvironment and indirectly support tumor occurrence (39). CAAs provide energy for the growth of tumor cells by producing metabolites and lipid factors that promote tumor growth, promote the invasion characteristics of tumor cells in the primary tumor site and distant metastasis, and protect tumor cells from the influence of various treatments (40, 41). MSCs promote tumor angiogenesis by secreting angiogenic factors and promoting perivascular tissue differentiation into pericytes and promote tumor cell movement and metastasis to distant organs by producing CCL5 (42). Therefore, targeted therapy of stromal cells in the TME will have a positive impact on the prognosis of cancer patients. Considering the close correlation between the risk score and stromal cells, the seven genes in the signature may be a new target for the treatment of stromal cells.

Overexpression of fibroblast growth factor 1 (FGF1) is observed in various cancers and is correlated with poor survival (43). Depletion of AVPR1A in castration-resistant prostate cancer cells resulted in decreased cell proliferation and reduced cyclin A (44). Apolipoprotein D (APOD) has been determined to be a predictor of breast cancer recurrence among tamoxifen-treated patients with estrogen receptor positivity (ER+) (45). The modulation of platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) through overexpression and silencing is widely used in cancers and is attractive as an oncologic target with diverse therapeutic possibilities, leading to a role as a clinical variable and in the nodal metastasis of GC (46). CXC type 4 chemokine receptor (CXCR4), synonymous with fusion protein (Fusin) or CD184, plays a role in promoting migration and mediating cell death regulated by autophagy in the peritoneal diffusion of gastric cancer cells (47). Zhu (48) demonstrated in vivo that interrupting signaling by the myeloid growth factor receptor CSF1R in a mouse model of pancreatic ductal adenocarcinoma (PDAC) can effectively reprogram macrophage reactions, causing enhanced antigen presentation and antitumor T cell responses.

Our study is the first to clarify the prognosis and application value of immune-related genes in gastric cancer from the perspective of TAMs. The establishment and validation of the prognostic model were based on 5 independent cohorts, with a total of 1372 patients, which is the largest prognostic model discovery project for GC so far. Our work has produced some convincing results, but there are still some deficiencies that need to be improved or supplemented in the future. For example, the specific mechanism of the seven genes contained in the signature in GC is still unclear and needs further exploration.



Conclusion

Our study developed and validated a general applicable prognostic model for GC from the perspective of TAMs, which may help to improve the precise treatment strategy of GC.
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Purpose

The present study was designed to explore the prognostic value of preoperative inflammatory and nutritional biomarkers in stage III gastric cancer (GC) patients with adjuvant chemotherapy and to develop a novel scoring system called the inflammatory-nutritional prognostic score (INPS).



Methods

A total of 513 patients with pathological stage III GC undergoing radical gastrectomy followed by adjuvant chemotherapy from 2010 to 2017 were enrolled in the study. Clinicopathological characteristics and blood test parameters of individual patients were collected. The least absolute shrinkage and selection operator (LASSO) Cox regression model was used for feature selection to construct INPS. Survival curves were generated using the Kaplan-Meier method with log-rank tests. The nomogram was generated based on the result of the multivariate analysis using Cox’s proportional hazards model. The model was assessed by the concordance index (C-index) and was internally validated by bootstraps.



Results

According to the results of Lasso Cox regression and K-M survival curves, INPS was determined as follows: a low body mass index (BMI) (<23 kg/m2), a low prealbumin (<180 mg/L), a high neutrophil-lymphocyte ratio (NLR) (≥2.7), a high platelet-lymphocyte ratio (PLR) (≥209.4), a low lymphocyte-monocyte ratio (LMR) (<2.8), and a low prognostic nutritional index (PNI) (<45.1); each were scored as 1, and the remaining values were scored as 0. The individual scores were then summed up to construct the INPS and further divided into 4 groups: Low Risk (INPS 0); Low-medium Risk (INPS 1); High-medium Risk (INPS 2-4); and High Risk (INPS 5-6). In multivariate analysis, INPS was an independent predictor of overall survival (OS) in stage III GC, with the 5-year OS rates of 70.8%, 57.4%, 41.5%, and 30.6%, respectively. The nomogram based on INPS and other independent predictors (gender, pT stage, pN stage, lymphovascular invasion, and CEA level) showed good predicting performance with a C-index of 0.707, which was superior to the TNM stage alone (C-index 0.645, p=0.008) and was internally validated with the corrected C-index of 0.693.



Conclusion

Preoperative INPS was an independent prognostic factor of stage III GC patients with radical surgery followed by adjuvant chemotherapy. The nomogram based on INPS may serve as a simple and potential model in risk stratification and guiding treatment strategies in clinical practice.





Keywords: gastric cancer, prognosis, immunonutritional status, nomogram, scoring system



Introduction

In China, gastric cancer (GC) is the second most common cancer and the third leading cause of death among all malignancies, accounting for 45% of GC-related mortality worldwide (1, 2). Due to the lack of effective screening, the majority of GC patients in China are diagnosed at an advanced stage, and the overall 5-year survival rate is less than 40% (3). Especially for stage III GC, even with radical surgery and standard adjuvant chemotherapy, the prognosis is still very poor and highly heterogeneous (4–6). Thus, it is necessary to identify a more accurate and cost-effective prognostic model for individualized risk stratification and optimal therapeutic strategies for stage III GC patients.

In recent years, increasing evidence indicates that there is a specific triangle connection between nutrition, inflammation, immunity, and cancer (7). Preoperative biomarkers in peripheral blood, to some extent, reflecting the baseline nutritional and immune status of patients are considered as potential markers for predicting the prognosis, due to high accessibility in clinical practice (8–10). In GC, several studies have reported some inflammation-based indexes, such as the neutrophil-lymphocyte ratio (NLR), lymphocyte-monocyte ratio (LMR), platelet-lymphocyte ratio (PLR), and immune inflammation index (SII), and nutrition-based parameters, such as the body mass index (BMI), albumin, and prognostic nutritional index (PNI), are associated with the prognosis (11–13). Some studies combined known prognostic factors to establish a new scoring system to predict prognosis and guide clinical practice. For instance, Gao et al. reported that TNM-PNI was a new and effective prognostic indicator for patients with GC after curative D2 resection (14). However, so far, no studies have comprehensively integrated these inflammatory, nutritional, and clinicopathological parameters to predict the prognosis, especially for stage III GC patients. We believe that integrating these markers might provide more accurate prognostic information and is more meaningful than individual indicators.

Therefore, we designed this retrospective study and aimed to explore a novel prognostic scoring system, which we called the inflammatory-nutritional prognostic score (INPS), based on preoperative inflammatory and nutritional biomarkers integrating with clinicopathologic parameters, to predict outcomes in stage III GC patients undergoing curative gastrectomy followed by adjuvant chemotherapy.



Materials and Methods


Patients and Study Design

A total of 513 GC patients undergoing curative gastrectomy followed by adjuvant chemotherapy at Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine between February 2010 and October 2017 were enrolled in this study. Inclusion criteria included the following: 1) R0 resection with D2 lymphadenectomy; 2) stage pIII (according to UICC/AJCC cancer staging 8th edition) gastric adenocarcinoma confirmed by postoperative histopathology; 3) completed adjuvant chemotherapy after surgery unless disease progression or death; 4) no preoperative chemotherapy or radiotherapy; 5) no preoperative parenteral nutrition, acute inflammation, or other immune diseases; 6) no history of other malignancies; and 7) intact clinicopathologic and follow-up data. Patients who underwent emergency surgery due to bleeding, perforation, or obstruction or those that died of operative complications within 30 days after surgery were excluded. Adjuvant chemotherapy regimen included 5-fluorouracil based (5-FU) combinational chemotherapy and mono-chemotherapy.



Data Collection and Definition of Variables

Clinicopathological information of individual patients was collected, including gender, age at diagnosis, tumor sites, histological grade, pathological tumor type, pTNM stage (AJCC cancer staging 8th edition), lymphovascular/perineural invasion, and adjuvant chemotherapy regimen. Preoperative body mass index (BMI) and blood tests were done within 2 weeks before surgery. The continuous variables (normal value), including CA12-5 (35 U/ml), CA19-9 (35 U/ml), CEA (5 ng/ml), AFP (8.78 ng/ml), hemoglobin (120 g/L), total protein (60 g/L), prealbumin (180 mg/L), albumin (35 g/L), albumin-globulin ratio (AGR, 1.25), neutrophil count (7×109/L), lymphocyte count (0.8×109/L), monocyte count (1×109/L), and platelet count (320×109/L), were grouped according to the standards developed by the clinical laboratory of Ruijin Hospital. The optimal cut-off of preoperative BMI(23 kg/m2) was determined by Asian-specific criteria based on our previous study (15).

The neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), lymphocyte- monocyte ratio (LMR), systemic immune inflammation index (SII), and prognostic nutritional index (PNI) were calculated as follows: NLR= N/L, PLR=P/L, LMR=L/M, SII= P×N/L, and PNI= albumin (g/L) + 5×L (109/L) (N: neutrophil count, P: platelet count, L: lymphocyte count, and M: monocyte count). The optimal cut-off levels of these markers were determined using the R package “maxstat” (Maximally Selected Rank Statistics) based on overall survival (OS) in the present study.



Patients Follow-Up

Follow-up assessment included physical examinations and blood tests, including tumor markers and imaging examinations (chest, abdomen, and pelvic CT or MRI scan with contrast) every 3 months in the first 2 years and then every 6 months until 5 years after surgery. Endoscopy was performed annually. The latest follow-up date was December 2019, with a median follow-up of 59.5 months (95% CI: 55.5-63.5). OS was defined as the time from primary surgery until death from any cause.



Statistical Analysis

Continuous and categorical variables were summarized using medians [interquartile ranges (IQRs)] and frequencies (percentages). A Chi-square test or Fisher’s exact test was used to test the association between categorical variables. Due to the presence of multicollinearity, we used the least absolute shrinkage and selection operator (LASSO) Cox regression model for dimensionality reduction to select the most useful prognostic features out of all the available inflammatory and nutritional biomarkers. The method uses an L1 penalty to shrink some regression coefficients to exactly zero. To find an optimal λ, 10-fold cross-validation with minimum criteria was employed. The retained features with nonzero coefficients were used to establish a novel inflammatory-nutritional prognostic score (INPS). Survival curves were generated using the Kaplan-Meier method with log-rank tests. To identify the independent prognostic factors, univariate and multivariate analyses were performed using Cox’s proportional hazards model. The variables with a p-value of 0.1 or less in univariate analysis were included in the multivariate analysis. Finally, a prognostic nomogram was generated based on the result of multivariate analysis, with the discriminative ability assessed by the concordance index (C-index) and the goodness of fit assessed by R2. Calibration curves were performed to compare the predicted probability of OS with the actual outcome. The model was internally validated by bootstraps with 1,000 resample. A two-tailed p-value of less than 0.05 was considered to be statistically significant. Statistical analyses were carried out using SPSS version 24.0 and R language version 4.0.2 (http://www.R-project.org).




Results


Patients’ Characteristics and INPS Construction

The baseline clinicopathologic characteristics are shown in Table 1. Of the 513 enrolled patients, 356(69.4%) were male and 157(30.6%) were female; 219(42.7%) were stage IIIA, 189(36.8%) were stage IIIB and 105(20.5%) were stage IIIC. The median age at diagnosis of GC was 60 years old (IQR: 53~67). During the follow-up period, 278(54.2%) patients were detected as local recurrence or distant metastasis. Among them, 243(47.4%) patients died. The 5-year OS rates of stage IIIA, IIIB, IIIC patients were 69.5%, 41.0%, and 27.6%, respectively. The baseline information of 15 nutritional and Inflammatory biomarkers is also listed in Table 1.


Table 1 | The baseline clinicopathological characteristics of 513 GC patients.



The process diagram of INPS construction and risk stratification is shown in Figure 1. The correlation matrix between 15 biomarkers (correlation coefficient R from -1 to1) is represented in Figure 2A. Using the LASSO Cox regression model, six features with non-zero coefficients including BMI, prealbumin, NLR, PLR, LMR, and PNI were selected out of all 15 parameters, which corresponded to the optimal value λ.min = 0.033 (Figures 2B, C). The novel inflammatory-nutritional prognostic score (INPS) was determined as follows: low BMI (<23 kg/m2), low prealbumin (<180 mg/L), high NLR (≥2.7), high PLR (≥209.4), low LMR (<2.8), and low PNI (<45.1) were scored as 1, and the rest of the values were scored as 0. The individual scores were then summed up to construct the INPS, ranging from 0 to 6. According to the survival curves via Kaplan-Meier analysis and log-rank tests, the prognosis between INPS 1 and INPS 2 was significantly different (pairwise comparison: p=0.02), and the prognosis of INPS 2, 3, and 4 groups was similar (pairwise comparison: p=0.733, 0.742, 0.947). There was no significant difference between INPS 5 and 6 groups (pairwise comparison: p=0.827). So INPS was further divided into four groups: patients with INPS 0 were assigned to the Low Risk group(n=106, 20.7%); patients with INPS 1 were assigned to the Low–Medium Risk group(n=145, 28.3%); patients with INPS 2 to 4 were assigned to the High–Medium Risk group(n=209, 40.7%), and patients with INPS 5 to 6 belonged to the High Risk Group(n=53, 10.3%).




Figure 1 | The process diagram of INPS construction and risk stratification. NLR, neutrophil-lymphocyte ratio=N/L; PLR, platelet-lymphocyte ratio=P/L; LMR, lymphocyte-monocyte ratio=L/M; SII, systemic immune inflammation index=P×N/L; PNI, prognostic nutritional index=albumin (g/L)+5×L (109/L) (P, platelet count; N, neutrophil count; L, lymphocyte count; M, monocyte count); AGR, albumin-globulin ratio=albumin/(total protein-albumin); BMI, body mass index=weight(kg)/height(m)2; INPS, inflammatory-nutritional prognostic score.






Figure 2 | Construction of the INPS using LASSO Cox regression model. (A) A correlation matrix is represented from R=-1 negative correlation (red) to R=1 positive correlation (blue). (B) LASSO coefficient profiles of the 15 nutritional and Inflammatory biomarkers. (C) Ten-fold cross‐validation for tuning parameter selection in the LASSO model. The dotted vertical lines were drawn at the optimal values by minimum criteria and 1-SE criteria. Solid vertical lines represented partial likelihood deviance ± SE. Herein, a value λ = 0.033 with log (λ) = -3.411 was chosen via minimum criteria. INPS, inflammatory-nutritional prognostic score; SE, standard error; BMI, body mass index; AGR, albumin-globulin ratio; NLR, neutrophil-lymphocyte ratio; PLR, platelet-lymphocyte ratio; LMR, lymphocyte-monocyte ratio; SII, systemic immune inflammation index; PNI, prognostic nutritional index.





Survival Analysis Based on Individual Biomarkers and INPS Groups

Survival curves via Kaplan-Meier analyses and log-rank tests of 6 selected nutritional and Inflammatory biomarkers and INPS groups are presented in Figure 3. Our results indicated that low BMI, low Prealbumin, high NLR, high PLR, low LMR, and low PNI were significantly associated with shorter OS (HR=1.56, 95% CI:1.21-2.02; HR=1.61, 95% CI:1.21-2.12; HR=1.45, 95% CI:1.12-1.88; HR=1.47, 95% CI:1.09-2.00; HR=1.50, 95% CI:1.13-1.99; HR=1.68, 95% CI:1.30-2.17, respectively). The 5-year OS rates of the patients in the INPS Low, Low–Medium, High–Medium, and High Risk groups were 70.8%, 57.4%, 41.5%, and 30.6%, respectively (Low–Medium Risk vs Low Risk: HR=1.64, 95% CI: 1.06-2.53, p=0.026; High–Medium risk vs Low risk: HR = 2.45, 95% CI: 1.65-3.65, p<0.001; High risk vs Low risk: HR = 3.30, 95% CI: 2.04-5.35, p<0.001).




Figure 3 | Survival curves via Kaplan-Meier analysis of 6 nutritional and Inflammatory biomarkers and INPS groups. (A) Survival curves of BMI (≥23 vs <23). (B) Survival curves of Prealbumin (≥180 vs <180). (C) Survival curves of NLR (<2.7 vs ≥2.7). (D) Survival curves of PLR (<209.4 vs ≥209.4). (E) Survival curves of LMR (≥2.8 vs <2.8). (F) Survival curves of PNI (≥45.1 vs <45.1). (G) Survival curves of INPS groups (score 0 vs 1 vs 2-4 vs 5-6). INPS, inflammatory-nutritional prognostic score; BMI, body mass index; NLR, neutrophil-lymphocyte ratio; PLR, platelet-lymphocyte ratio; LMR, lymphocyte-monocyte ratio; PNI, prognostic nutritional index.



Univariate analysis and multivariate Cox regression analysis of baseline characteristics and INPS groups are presented in Table 2. The potential prognostic factors identified in the univariate analysis (p ≤ 0.1) were included in the multivariate analysis. According to the multivariate analysis, INPS was an independent survival predictor for stage III GC patients with adjuvant chemotherapy, with the adjusted HR=1.50(0.96-2.32), 2.21(1.46-3.33), and 2.75(1.67-4.55), p<0.001. Besides INPS, Gender (p=0.015), pT stage (p=0.026), pN stage (p<0.001), lymphovascular invasion (p=0.003) and CEA level (p=0.007) were independent prognostic factors for OS.


Table 2 | Univariate and multivariate analyses of baseline characteristics and INPS groups for overall survival in 513 GC patients.





Construction of a Novel Prognostic Nomogram Based on INPS for Stage III GC Patients

A novel prognostic nomogram based on the results of the multivariate analysis using all the independent indicators for OS including INPS, pT stage, pN stage, lymphovascular invasion, and CEA level is presented in Figure 4A. A higher total score revealed a worse clinical prognosis of stage III GC patients after surgery. The nomogram showed a good performance with a C-index of 0.707 and an R² of 0.216, which was better than the pTNM stage alone (C-index 0.645, p=0.008). The model was internally validated by bootstraps with 1,000 resample with the corrected C-index of 0.693 and the corrected R² of 0.186. Calibration plots of the nomogram (method=‘boot’, B=1000) predicting 3- and 5-year OS also performed well with the ideal model (Figures 4B, C).




Figure 4 | A novel prognostic nomogram based on INPS for stage III GC patients. (A) The nomogram for predicting 3- and 5-year survival probability in stage III GC patients. Calibration plots of the nomogram for 3-year (B) and 5-year (C) survival probability using bootstraps with 1,000 resample. INPS, inflammatory-nutritional prognostic score; GC, gastric cancer; OS, overall survival; CEA, carcinoma embryonic antigen.





Association Between INPS Group and Clinical Characteristics

The relationship between INPS and clinicopathological characteristics is summarized in Table 3. The INPS group significantly correlated with the age at diagnosis (p<0.001), CA12-5 (p=0.005), CA19-9 (p=0.008) and AFP (p=0.034). There was no significant association between INPS and other clinical characteristics. Our results revealed those patients with older age at diagnosis (>60) and elevated tumor markers (CA19-9, CA12-5, and AFP) had a higher proportion of the INPS High Risk group (score 5-6).


Table 3 | Association between the INPS group and clinical characteristics.






Discussion

In China, since the nationwide screening program has not been well developed, locally advanced GC, especially stage III GC, accounts for the majority of resectable GC, resulting in a low overall 5-year survival rate (16, 17). According to the ACTS-GC trial and CLASSIC trial, even after radical gastrectomy followed by standard adjuvant chemotherapy, the prognosis of stage III GC is still very poor (4, 5). Thus, it is quite important to identify the specific biological characteristics for tumor progression so as to make further risk stratification and individualized therapeutic strategy.

The results of the present study indicated that INPS, consisting of preoperative BMI, prealbumin, NLR, PLR, LMR, and PNI, was an independent indicator of outcome in stage III GC patients who underwent surgery followed by adjuvant chemotherapy. Survival analysis showed that INPS could effectively classify patients into four risk groups. Furthermore, we integrated INPS with other independent clinicopathologic predictors to construct a prognostic nomogram for stage III GC patients, which showed a good prognostic performance.

Cancer-related inflammation and malnutrition are quite common in patients with malignant tumors and closely correlated to tumor recurrence and progression (7, 18). In the past few years, a number of studies have explored the prognostic value of some preoperative inflammatory and nutritional biomarkers in GC patients, including NLR, PLR, BMI, PNI, Glasgow Prognostic Score (GPS), and so on, and aimed to find out the most optimal predictor for the outcome. The results were variable and controversial leading to the limited clinical value (8, 11–14, 19). Actually, single indicators have certain limitations, and cannot fully reflect the overall immune and nutritional status of patients. Gennaro Galizia’s study established a new prognostic tool, the Naples prognostic score, including albumin, cholesterol, NLR, and LMR, which showed a better performance than the existing single index in predicting the prognosis of colorectal cancer patients (20). What’s more, most of the studies incorporated these indicators of strong collinearity and correlation into a multivariate cox regression analysis to investigate independent prognostic factors, causing interference between variables and certain statistical problems. Our study included all available parameters as much as possible and used the LASSO Cox regression model to effectively select valuable variables and, to some extent, reduced the influence of multicollinearity.

In our study, BMI, prealbumin, and PNI represented patients’ nutritional status, and NLR, PLR, and LMR represented patients’ immune-inflammatory microenvironment. Interestingly, in line with our previous study and other researches (15, 21), high-BMI patients showed better prognosis, which further confirmed a phenomenon called the “obesity paradox” in the prognosis of GC. Cancer-associated malnutrition also contributes to severe postoperative complications, decreased immunological function, and the activation of the systemic inflammatory response (SIR), leading to poor therapeutic efficacy (7, 22). In addition, elevated neutrophils could create a tumor-favorable microenvironment through secretion of reactive oxygen species (ROS), nitric oxide, and arginase, causing lymphocytes inactivation, while lymphocytes play important roles in immune surveillance and anti-tumor response (23, 24). Monocytes, especially which differentiate into macrophages, play vital roles in cancer development, progression, and metastases (25). And there is accumulating evidence that tumor cell-activated platelets can facilitate cancer survival and dissemination (26). Based on this evidence, the score combining NLR, PLR, and LMR has been proved as an independent prognostic factor in several cancers (10, 27). Some studies identified the immunoscore of tumor tissue and serum interleukin-6 (IL-6), IL-11 or CD4+/CD8+ T cell also reflecting the immunoinflammatory status, but it is hard to be used in clinical practice due to the high cost and inconvenience (28).

In terms of other predictors in the nomogram, consistent with previous researches, pT stage, pN stage, lymphovascular invasion, and elevated CEA, representing the intrinsic characteristics of the tumor, were independent prognostic factors (6, 29). Whether gender is a prognostic factor for GC remains unknown and controversial (30, 31). In our study, men showed worse outcomes than women, probably due to the differences in the age distribution (age>60 was 53.9% in men and 38.2% in women, p<0.001), with more chronic diseases in men leading to worse treatment compliance.

The major strengths of this research include the large size of the cohort of postoperative stage III GC, receiving standard D2 gastrectomy by specialized and experienced gastroenterology surgeons at a high-volume comprehensive hospital, where nearly 1,000 GC surgeries are performed per year, and the use of standard adjuvant chemotherapy regimens in all patients. These factors, to some extent, resulted in the consistency between patients and reliable results. Furthermore, this was the first study focusing on stage III GC to comprehensively take into account the intrinsic characteristics of the tumor, the immuno-inflammatory microenvironment, and the nutritional status of the host. More importantly, parameters in INPS are routinely detected, cost-effective, and easily accessible in clinical practice, making it a great and valuable index for prognostic stratification, treatment optimization, and guiding postoperative follow-up strategies. We recommend closer monitoring and more frequent follow-up for High–Medium or High Risk patients to early detect tumor recurrence. Also, various studies have shown that improvement of malnutrition and inflammatory status could lead to fewer postoperative complications and better outcomes (32–34). However, whether it is necessary to add anti-inflammatory drugs or to strengthen chemotherapy regimens for INPS High-risk individuals remains to be further verified in prospective studies.

Our study still has some limitations. It was a retrospective study from a single center, and the results should be further externally validated in multiple health centers or in large-scale prospective cohorts. In addition, due to the specific and complicated biological behavior of cancers, other factors affecting the prognosis of GC (genomics biomarkers, lifestyle habits and socioeconomic status, etc.) were not included in our parameters.

In conclusion, as an available and cost-effective scoring system, preoperative INPS has good clinical application prospects in predicting the postoperative survival of stage III GC patients with adjuvant chemotherapy. The prognostic nomogram based on INPS shows good prognostic performance and may act as an optimal tool for making individualized treatment strategy and follow-up plan.
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Background

Gastric cancer (GC) is a malignancy with high morbidity and mortality rates worldwide. SNHG12 is a long noncoding RNA (lncRNA) commonly involved many types of cancers in the contexts of tumorigenesis, migration and drug resistance. Nevertheless, its role in GC proliferation is poorly understood.



Methods

Bioinformatics and qRT-PCR assays were used to analyze the expression of SNHG12 in GC tissues and cells. In vitro and in vivo experiments were conducted to detect the role of SNHG12 in GC development. qRT-PCR, PCR, western blotting (WB), RNA binding protein immunoprecipitation (RIP), immunoprecipitation (IP), immunohistochemistry (IHC), fluorescence in situ hybridization (FISH) and in situ hybridization (ISH) were performed to investigate the underlying mechanisms by which SNHG12 promotes GC proliferation.



Results

SNHG12 was highly expressed in GC cells and tissues, and predicted poor survival. In vitro and in vivo assays showed that SNHG12 knockdown inhibited GC proliferation, while SNHG12 overexpression promoted GC proliferation. Further experiments confirmed that SNHG12 was mainly located in the cytoplasm and bound to HuR. Bioinformatics analysis predicted that YWHAZ was the common target of SNHG12 and HuR, and that the “SNHG12-HuR” complex enhanced the stability of YWHAZ mRNA. Furthermore, YWHAZ, which was highly expressed in GC, predicted poor survival and promoted GC proliferation by phosphorylating AKT. Rescue assays verified that SNHG12 promoted GC proliferation by activating the AKT/GSK-3β pathway.



Conclusions

SNHG12 binds to HuR and stabilizes YWHAZ. SNHG12 promotes GC proliferation via modulation of the YWHAZ/AKT/GSK-3β axis in vitro and in vivo. Thus, SNHG12 could become a novel therapeutic target for anti-tumor therapy.
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Introduction

Gastric cancer (GC) is a malignancy that can easily invade and proliferate in adjacent regions and poses a serious threat to human health worldwide (1). Although neoadjuvant and systemic radio-chemotherapy have shown some benefits for the management of GC, its prognosis remains disappointing due to metastasis and recurrence (2, 3). The identification of biomarkers and their underlying mechanisms associated with GC tumorigenesis and proliferation show promise for facilitating early diagnosis and prompting precision therapy (4).

Long noncoding RNAs (lncRNAs) are evolutionarily conserved RNA molecules with a length of more than 200 nucleotides that lack protein-coding ability (5). Numerous studies indicate that lncRNAs play various functional roles in multiple kinds of biological processes, including cell growth, invasion, migration, and tumorigenesis (6, 7). The oncogenic role of lncRNA small nucleolar RNA host gene 12 (SNHG12) has been verified in recent studies (8). LncRNA SNHG12 promotes temozolomide resistance in glioblastoma (9). In renal cell carcinoma, SNHG12 promotes proliferation, migration, invasion and sunitinib resistance via the SNHG12/SP1/CDCA3 axis (10). In addition, previous studies also reported that SNHG12 promotes GC proliferation, migration by sponging miR-320 and miR-16 (11, 12). However, the possible interactions between SNHG12 and other genes and signaling pathways in GC remains to be elucidated.

LncRNAs stimulate the pathogenesis of GC through their participation in key signaling pathways: for example, linc00662 promotes colon cancer tumor growth and metastasis by activating the ERK signaling pathway (13), and lncRNA PSTAR inhibits hepatic carcinoma cell proliferation and tumorigenesis by inducing p53-mediated cell cycle arrest (14). Herein, we found that when its expression was increased, SNHG12 reduced the overall survival of GC patients and promoted GC tumorigenesis by activating the AKT/GSK-3β pathway and binding with the RNA binding protein ELAVL1 (also known as HuR) and stabilizing YWHAZ expression. Thus, SNHG12 shows promise as a biomarker for prognosis prediction and a possible therapeutic target in GC patients.



Materials and Methods


GC Patients and Tissue Specimens

A total of 16 GC tissues and the corresponding adjacent non-cancerous epithelial tissues were obtained from GC patients undergoing radical surgery from March to July 2020 at Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine. The patients did not undergo radiotherapy or chemotherapy prior to surgery. All cases were independently diagnosed histologically by two experienced pathologists and staged according to the tumor-node-metastasis (TNM) staging system of the American Joint Committee on Cancer (AJCC 7th ed., 2010). All tissue samples were immediately frozen in liquid nitrogen after resection from patients and stored at −80°C for further analysis. The acquisition of the tissues was approved by the Ruijin Hospital Ethics Committee.



Cell Culture

GC cell lines (MGC-803, AGS, HGC-27, MKN-28, MKN-45, SGC-7901, BGC-823) and the non-malignant gastric mucosal epithelial cell line (GES-1) were purchased from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China). DMEM (Meilunbio, #MA0212-1) with 10% newborn calf serum (Bioagrio, #S1105-100) was used for cell culture (37°C in 5% CO2).



RNA Extraction, Quantitative Reverse Transcription PCR (qRT-PCR) and PCR

Total RNA was extracted from cultured cells and tissues using TRIzol reagent (Vazyme, #R401-01) according to the manufacturer’s instructions. A cytoplasmic and nuclear RNA purification kit (#21000, 37400) was purchased from NORGEN. RNA was reverse transcribed into cDNA using HiScript III RT SuperMix for qPCR (Vazyme, #R323-01). cDNA was quantified by qRT-PCR and the data were acquired with SYBR Green (Vazyme, #Q711-02/03) using an Applied Biosystems 7500 instrument. Taq Master Mix (Dye Plus) (Vazyme, #P112-01) was used in PCR. GAPDH and ACTB were used as internal controls. Primers are listed in Supplementary 1.



Lentivirus Production, siRNA, Plasmids and Cell Transfection

Lentivirus-containing short hairpin RNA (shRNA) targeting SNHG12 was purchased from OBiO (Shanghai, China), and the pCDH-CMV-Human vector for SNHG12 overexpression was purchased from Allwin (Shanghai, China). SiRNAs for YWHAZ, HuR and negative control (NC) oligonucleotides were obtained from Sangon Biotech (Shanghai, China). GC cells were transfected with the above-mentioned oligonucleotides and plasmids using Lipofectamine 2000 (Invitrogen, #1875894) according to the manufacturer’s protocol. The sequences of the siRNAs are listed in Supplementary 1.



Western Blotting

Total proteins from cells were extracted using RIPA buffer supplemented with protease inhibitors and phosphatase inhibitors. Primary antibodies against YWHAZ (ABclonal, #A13370), GAPDH (Proteintech, #60004-1-Ig), AKT (Cell Signaling Technology, #4691S), p-AKT (Cell Signaling Technology, #13038S), GSK-3β (Cell Signaling Technology, #9315S), p-GSK-3β (ABclonal, #AP1088), and ELAVL1 (Cell Signaling Technology, #12582S) were used in this study.



Cell Proliferation Detection

For the Cell Counting Kit-8 (CCK-8) assay, 100 μl of cell suspension with 3,000 cells was seeded into each well of a 96-well plate. Every day, 10 μl of CCK-8 solution was added to each well and cultured for 2.5 h. Then, the absorbance at 450 nm was measured by a microplate reader (BioTek Instruments). For colony formation assays, 1,500 cells per well were seeded into six-well plates and cultured for 10 days. Colonies were fixed and stained with 0.5% crystal violet. EdU assays were conducted according to the protocol of the Cell-Light EdU Apollo567 In Vitro Kit (#C10310-1), which was purchased from RiboBio company. Cells were cultured in 24-well plates, and 50 μM EdU labeling medium was added to the cells for 2 h the next day. The cells were then treated with 4% paraformaldehyde (pH 7.4) for 30 min and then 0.5% Triton X-100 for 20 min at room temperature. The samples were stained with anti-EdU working solution and subsequently incubated with Hoechst 33342 (5 μg/ml). The percentage of EdU-positive cells was measured under fluorescence microscopy. Four fields of view were randomly selected in each well to determine the percentage of EdU-positive cells.



RNA Binding Protein Immunoprecipitation

RNA binding protein immunoprecipitation (RIP) was performed using the EZ-Magna RIP Kit (Millipore 17-700) according to the manufacturer’s protocol, and the antibody used in this assay was ELAVL1 (Cell Signaling Technology, #12582S). The primers used in this assay are listed in Supplementary 1.



Fluorescence In Situ Hybridization (FISH) and In Situ Hybridization (ISH)

The FISH assays of GC cells and ISH assays of tissues were conducted according to the method described as previously (15, 16).



Immunohistochemistry (IHC)

IHC staining was performed as previously described (15). Primary anti-bodies against YWHAZ (ABclonal, #A13370), AKT (Cell Signaling Technology, #4691S), p-AKT (Cell Signaling Technology, #13038S), GSK-3β (Cell Signaling Technology, #9315S), and p-GSK-3β (ABclonal, #AP1088) were used in this study.



In Vivo Animal Assays

Four-week-old immunodeficient BALB/c female nude mice were randomly divided into two groups (n = six for each group). MGC-803 cells (2 × 107) with stable sh-SNHG12 or empty vector were separately subcutaneously injected into the flanks of the subjects. After 1 month, the mice were sacrificed, and the tumors were dissected for volume measurement and further immunohistochemical investigations.



Statistical Analysis

All statistical analyses were conducted using SPSS 23.0 (SPSS, Chicago, IL, USA) or GraphPad Prism V8 (GraphPad Prism, Inc., La Jolla, CA, USA). Each experiment was performed at least in triplicate, and data are presented as the mean ± SD of three independent experiments. Student’s t-test or one-way ANOVA was used to compare the means of two or three groups. Differences with P values less than 0.05 were considered statistically significant.




Results


SNHG12 Is Overexpressed in GC and Predicts a Poor Prognosis

Based on bioinformatic database analysis, we explored the relationship between dysregulated lncRNAs and GC development. The Cancer RNA-Seq Nexus online tool (http://syslab4.nchu.edu.tw/) was used to analyze the upregulated lncRNAs in GC tissues (Figure 1A). Among them, SNHG12 was significantly highly expressed in GC tissues. According to the Gene Expression Profiling Interactive Analysis (GEPIA) online tool (http://gepia.cancer-pku.cn/index.html), SNHG12 expression was higher in tumor tissues from patients with various stages of GC than in matched normal tissues in the stomach adenocarcinoma (STAD) dataset (Figures 1B, C). In the Kaplan–Meier plotter online tool (https://kmplot.com/analysis/), high SNHG12 expression was shown to indicate poor survival in GC (Figure 1D). Hence, we conducted SNHG12 expression profiling in GC tissues and GC cell lines. SNHG12 was significantly highly expressed in GC tissues compared with the corresponding adjacent non-cancerous epithelial tissues (Figure 1E). On the other hand, SNHG12 was highly upregulated in all GC cell lines assessed, and we chose MGC-803 and AGS cells for further assays (Figure 1F).




Figure 1 | SNHG12 is highly expressed in GC tissues and cells and predicts poor survival. (A) Upregulated lncRNAs in GC tissues according to the Cancer RNA-Seq Nexus online tool (http://syslab4.nchu.edu.tw/). (B) SNHG12 expression in GC tissues compared with matched normal epithelial tissues according to the GEPIA online tool (http://gepia.cancer-pku.cn/index.html). (C) SNHG12 expression in various stages of GC in GEPIA. (D) Survival analysis of SNHG12 using the Kaplan–Meier plotter online tool (https://kmplot.com/analysis/). (E) SNHG12 expression in GC tissues compared with adjacent non-cancerous tissues by qRT-PCR. (F) SNHG12 expression in GC cell lines detected by qRT-PCR. Significant results are presented as *P < 0.05, **P < 0.01, ***P < 0.001.





SNHG12 Promotes GC Cells Proliferation

To verify the role of SNHG12 in GC proliferation, gain and loss assays were conducted in MGC-803 and AGS cells: shRNA vectors were used to knockdown SNHG12, and compared with the NC, the expression levels in sh-SNHG12-1 or sh-SNHG12-2 were both significantly inhibited in MGC-803 and AGS cells (p <0.01) (Figure 2A). As shown in Figures 2B, C, the results of CCK-8 assays demonstrated that MGC-803 and AGS cells transfected with the sh-SNHG12-1 and sh-SNHG12-2 vectors proliferated more slowly than those transfected with the NC vectors (p <0.01). On the other hand, to overexpress SNHG12, pCDH-CMV-human vectors were transfected into MGC-803 and AGS cells. Figure 2D shows that SNHG12 expression in MGC-803 cells transfected with pCDH-CMV-human vectors was 1.25-fold higher than that in the NC cells, while in AGS cells, it was approximately 1.7-fold higher (both p <0.05). CCK-8 assays showed that upon SNHG12 overexpression, MGC-803 and AGS cells proliferated faster than the NC cells (p <0.01) (Figures 2E, F). Colony formation assays were conducted to elucidate the effect of SNHG12 on GC cell proliferation. Upon SNHG12 knockdown, the colony numbers of MGC-803 cells decreased by approximately 40% in the sh-SNHG12-1 group or 60% in the sh-SNHG12-2 group compared with the NC, while in AGS cells, the colony numbers decreased by approximately 60% in the sh-SNHG12-1 group or 80% in the sh-SNHG12-2 group (all p <0.05) (Figure 2G). On the other hand, upon SNHG12 overexpression, the colony numbers of MGC-803 and AGS cells were 1.5-and 2.5-fold higher, respectively, than that of the NC cells (all p <0.05) (Figure 2H). EdU assays showed that the proportion of Edu-positive MGC-803 cells decreased by 50% in the sh-SNHG12-1 group and 92.5% in the sh-SNHG12-2 group, while that of AGS cells decreased by 78% in the sh-SNHG12-1 group and 77% in the sh-SNHG12-2 group upon SNHG12 suppression (all p <0.01) (Figures 2I–K). The above results indicated that SNHG12 indeed promotes GC cell proliferation.




Figure 2 | SNHG12 promotes GC cells proliferation. (A) Efficiencies of SNHG12 knockdown by qRT-PCR. (B, C) CCK-8 assays showing the effects of SNHG12 knockdown on cell proliferation. (D) Efficiencies of SNHG12 overexpression by qRT-PCR. (E, F) CCK-8 assays showing the effects of SNHG12 overexpression on cell proliferation. (G, H) Colony formation assays showing the role of SNHG12 on GC cell proliferation. (I–K) EdU assays showing the regulation of SNHG12 on GC cell proliferation. Significant results are presented as *P < 0.05, **P < 0.01, ***P < 0.001.





SNHG12 Binds to HuR and Stabilizes mRNA ELAVL1

To elucidate the underlying mechanisms by which SNHG12 regulates GC proliferation, it is important to first confirm the intracellular location of SNHG12. FISH assays showed that SNHG12 was mainly located in the cytoplasm (Figure 3A), and this finding was also supported by cytoplasmic and nuclear RNA purification assays (Figures 3B, C). These findings suggested that SNHG12 mainly exerted its function at the post- transcriptional level and might cooperate with RNA binding proteins. HuR, a popular RNA binding protein (RBP) encoded by ELAVL1, can enhance the stability of mRNAs. qRT-PCR and western blotting (WB) assays showed that upon knockdown or overexpression of SNHG12, the relative HuR expression at the RNA and protein levels decreased or increased, respectively (Figures 3D–G). However, HuR knockdown did not change the expression of SNHG12 (Figures 3H, I). We further used bioinformatics (http://pridb.gdcb.iastate.edu/RPISeq/) to predict the interaction between SNHG12 and HuR, and the random forest (RF) classifier and support-vector machine (SVM) classifier scores were 0.9 and 0.8, respectively (Figure 3J), suggesting that SNHG12 has a high probability of binding to HuR. RIP assays revealed that SNHG12 bound to HuR in MGC-803 and AGS cells (Figures 3K–M). To further investigate the mechanisms by which SNHG12 regulates HuR, we investigated whether ELAVL1 mRNA could bind to HuR. The RNA–Protein Interaction Prediction (RPISeq) online tool predicted the interaction between ELAVL1 and HuR: the RF classifier and SVM classifier scores were 0.75 and 0.9, respectively (Figure 3N). RIP assays verified the prediction that ELAVL1 could bind to HuR (Figures 3O–Q). Furthermore, to verify whether the SNHG12-HuR complex could enhance the stability of ELAVL1 mRNA, MGC-803 and AGS cells were transfected with NC shRNA, sh-SNHG12-2 or sh-SNHG12-2 and si-HuR and then treated with actinomycin D, which can inhibit RNA synthesis. Cells were harvested every 3 h to obtain RNA for qRT-PCR assays. The results showed that the half-life of ELAVL1 mRNA was significantly reduced in the SNHG12 and HuR knockdown groups compared with the NC group (Figures 3R, S).




Figure 3 | SNHG12 binds to HuR and stabilizes ELAVL1 mRNA. (A–C) FISH assays and cytoplasmic and nuclear RNA purification assays indicate that SNHG12 is mainly located in the GC cell cytoplasm. (D–G) qRT-PCR and WB assays showing the expression of HuR at the RNA and protein levels upon SNHG12 knockdown and overexpression. Numbers show the quantification of the relative protein amount. (H, I) qRT-PCR assays showing the efficiency of HuR knockdown and its effect on the regulation of SNHG12. (J) Prediction of the interaction probabilities of SNHG12 and HuR by bioinformatics (http://pridb.gdcb.iastate.edu/RPISeq/). Predictions with probabilities >0.5 were considered as “positive”, indicating that the RNA more likely to interact with the protein than not to interact. (K–M) RIP assays showing that SNHG12 binds to HuR. (N) Prediction of the interaction probabilities of ELAVL1 and HuR by bioinformatics (http://pridb.gdcb.iastate.edu/RPISeq/). (O–Q) RIP assays showing that ELAVL1 binds to HuR. (R, S) RNA stability assays were conducted using actinomycin D to disrupt RNA synthesis in MGC-803 and AGS cells, and the degradation rates of ELAVL1 mRNAs were tested every 3 h. Significant results are presented as ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001. Magnification ×400; scale bar, 20 μm.





SNHG12 Enhances the Stability of YWHAZ by Binding to HuR

We used the StarBase online tool to collecte mRNAs positively correlated with SNHG12 and ELAVL1 and overlapped the results (Figure 4A and Supplementary 2). Among the 119 common genes, we chose some mRNAs that were highly positively correlated with SNHG12 and ELAVL1 and associated with cell proliferation: YWHAZ, YES1, RNABP, RPL23 and ILF3. Upon SNHG12 or HuR knockdown, YWHAZ expression decreased the most, as detected by qRT-PCR (Figures 4B, C). After comprehensive consideration, we chose YWHAZ as the research target. YWHAZ, encodes the 14-3-3ζ protein, which is a well-known protein involved in many signal transduction and tumor progression (17). WB assays illustrated that the YWHAZ protein was positively related to SNHG12 and HuR (Figures 4D–F). Furthermore, we used bioinformatics to predict the interaction between YWHAZ and HuR, and the RF classifier and SVM classifier scores were 0.75 and 0.93, respectively (Figure 4G). Then, RIP assays were conducted, and the results showed that YWHAZ could bind to HuR in MGC-803 and AGS cells (Figures 4H–J). Then, RNA stability assays were conducted to verify whether the SNHG12–HuR complex could enhance the stability of YWHAZ mRNAs. The results showed that the half-life of YWHAZ mRNA was significantly reduced in the SNHG12 and HuR knockdown groups compared with the NC group (Figures 4K, L). In conclusion, the SNHG12–HuR complex can regulate the stability of YWHAZ.




Figure 4 | The SNHG12-HuR complex enhances the stability of YWHAZ. (A) mRNAs positively correlated with SNHG12 and HuR according to StarBase. (B, C) qRT-PCR assays showing the changes in several mRNAs involved in cell proliferation upon SNHG12 or HuR knockdown. (D–F) WB assays showing the expression of YWHAZ protein levels upon SNHG12 and HuR knockdown. Numbers show the quantification of the relative protein amount. (G) Prediction of the interaction probabilities of YWHAZ and HuR by bioinformatics (http://pridb.gdcb.iastate.edu/RPISeq/). Predictions with probabilities >0.5 were considered as positive, indicating that the RNA was more likely to interact with the protein than to not interact. (H–J) RIP assays showing that YWHAZ binds to HuR. (K, L) RNA stability assays showing the degradation rates of YWHAZ mRNAs tested every 3 h. Significant results are presented as ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.





YWHAZ Promotes GC Cell Proliferation Via the AKT/GSK-3β Pathway

qRT-PCR assays showed that YWHAZ was upregulated in GC cell lines compared to GES-1 cells (Figure 5A). We used the GEPIA online tool (http://gepia.cancer-pku.cn/index.html) and found that YWHAZ expression was high in tumor tissues (Figure 5B). Kaplan–Meier survival analysis using the Kaplan–Meier plotter online tool (https://kmplot.com/analysis/) indicated that patients with high YWHAZ expression had poor outcomes (Figure 5C). Upon transfection of si-YWHAZ, the efficiencies of YWHAZ knockdown were over 30% in MGC-803 and AGS cells; CCK-8 assays showed that proliferation of GC cells was slower in the si-YWHAZ groups than in the NC groups; colony formation assays indicated that the colony numbers for both MGC-803 and AGS cells decreased by approximately 50% in the si-YWHAZ groups compared with the NC group (all p <0.05) (Figures 5D–H). Previous studies demonstrated that YWHAZ could promote glioma cell invasion by activating the PI3K/AKT pathway (18). Thus, WB assays showed that the protein expression levels of YWHAZ, p-AKT, and p-GSK-3β were decreased upon YWHAZ knockdown, while the total expression of AKT and GSK-3β did not change in MGC-803 and AGS cells (Figure 5I).




Figure 5 | YWHAZ is highly expressed in GC and promotes GC cell proliferation. (A) qRT-PCR assays showing YWHAZ expression in GC cells normalized to GES-1. (B) YWHAZ expression in GC tissues from the GEPIA online tool (http://gepia.cancer-pku.cn/index.html). (C) Survival analysis of YWHAZ using the Kaplan–Meier plotter online tool (https://kmplot.com/analysis/). (D) Efficiencies of YWHAZ knockdown in MGC-803 and AGS cells by qRT-PCR. (E, F) CCK-8 assays showing the effects of YWHAZ on GC cell proliferation. (G, H) Colony formation assays showing the potential of YWHAZ to affect GC cell proliferation. (I) WB assays showing the effect of YWHAZ on the AKT/GSK-3β pathway. Numbers show the quantification of the relative protein amount. Significant results are presented as *P < 0.05, **P < 0.01, ***P < 0.001.





SNHG12 Promotes GC Cell Proliferation Via the YWHAZ/AKT/GSK-3β Axis

It has been previously reported that YWHAZ can mediate signal transduction by binding to phosphoserine-containing proteins (19). To further investigate its role in the AKT pathway, IP assays were conducted, and the results showed that compared with that in the NC groups, AKT and p-AKT expression was enriched in the si-YWHAZ group but decreased in the sh-SNHG12 groups, while total AKT protein expression in the NC and sh-SNHG12 groups was not different (Figure 6A). In addition, SNHG12 knockdown led to decreased expression of YWHAZ, p-AKT, and p-GSK-3β, but the expression of AKT and GSK-3β did not change (Figure 6B). Moreover, overexpression of SNHG12 resulted in increased expression of YWHAZ, p-AKT, and p-GSK-3β, and the expression of AKT and GSK-3β did not change (Figure 6C). Then, we conducted rescue assays, and transfected MGC-803 and AGS cells with NC siRNA, si-YWHAZ, pcDNA-SNHG12, or pcDNA-SNHG12 plus si-YWHAZ. CCK-8 assays showed that YWHAZ knockdown suppressed GC cell proliferation and that SNHG12 overexpression promoted GC cell proliferation. On the other hand, YWHAZ knockdown and SNHG12 overexpression resulted in no differencein GC proliferation compared to the NC groups (Figures 6D, E). WB assays showed that the expression of YWHAZ, p-AKT, and p-GSK-3β decreased upon YWHAZ knockdown; while the expression of YWHAZ, p-AKT, and p-GSK-3β increased upon SNHG12 overexpression. Furthermore, when YWHAZ was knocked down and SNHG12 was overexpressed simultaneously, the expression of YWHAZ, p-AKT, and p-GSK-3β was rescued compared to knockdown YWHAZ or overexpression SNHG12. However, the total protein levels of AKT and GSK-3β did not change (Figure 6F).




Figure 6 | SNHG12 promotes GC proliferation via the AKT/GSK-3β pathway. (A) IP assays showing that YWHAZ interacts with and phosphorylates AKT. (B, C) WB assays showing the effect of SNHG12 on the AKT/GSK-3β pathway. (D–F) Rescue assays validated that SNHG12 promotes GC cell proliferation by regulating YWHAZ via the AKT/GSK-3β pathway. (G) SNHG12 activates AKT pathway. Numbers show the quantification of the relative protein amount. Significant results are presented as *P < 0.05, ***P < 0.001.



To further investigate whether SNHG12-mediated GC proliferation depended on the activation of the AKT pathway, we treated MGC-803 and AGS cells with wortmannin, a specific PI3K inhibitor. SNHG12 significantly elevated the protein levels of p-AKT and p-GSK-3β, and the effects were reversed by wortmannin (Figure 6G). In summary, SNHG12 promotes GC cell proliferation in a manner dependent on AKT pathway activation.



SNHG12 Promotes GC Proliferation In Vivo

To further validate the tumor-formation potential of SNHG12 in vivo, MGC-803 cells stably transfected with sh-SNHG12 or empty vector were inoculated into nude mice. After 1 month, tumors in the sh-SNHG12 groups were found to be much smaller in size than those in the NC groups (Figure 7A). Tumor volume in the NC groups was significantly higher than that in the sh-SNHG12 groups (Figure 7B). ISH analysis of SNHG12 and IHC analysis of Ki67 levels in tumor tissues showed that tumors in the NC groups had higher densities than those in the sh-SNHG12 groups (Figure 7C). Furthermore, we performed IHC assays to measure the levels of YWHAZ, AKT, p-AKT, GSK-3β, and p-GSK-3β proteins in the NC and sh-SNHG12 groups. The results showed that the sh-SNHG12 groups exhibited lower protein levels of YWHAZ, p-AKT, and p-GSK-3β than the NC groups, while the expression of AKT and GSK-3β showed no difference (Figures 7D–H). The above data indicated that SNHG12 indeed promotes GC proliferation.




Figure 7 | SNHG12 promotes GC proliferation in vivo. (A, B) Comparison of tumor formation between the NC groups and sh-SNHG12 groups. (C) SNHG12 and Ki-67 levels between the NC groups and sh-SNHG12 groups by ISH and IHC. (D–H) Expression of YWHAZ, AKT, p-AKT, GSK-3β, and p-GSK-3β proteins in the NC and sh-SNHG12 groups by IHC. (I) Schematic illustration of the mechanism underlying SNHG12 regulation of GC proliferation. Significant results were presented as ***P < 0.001. Magnification ×200, magnification ×400, scale bar 20,000 nm.






Discussion

Abundant evidence illustrates that lncRNAs usually exhibit aberrant expression in various tumors and serve as vital modulators of biological processes, including cell proliferation, migration, epithelial-mesenchymal transition (EMT) and so on, which are meaningful to cancer diagnosis and therapy (20, 21). The oncogenic role of SNHG12 has been verified in recent studies, but the mechanisms underlying its role in GC are unclear. In this study, we confirmed by bioinformatics analysis and qRT-PCR assays that SNHG12 expression was upregulated in GC tissues and cells, and we also validated that SNHG12 was mainly distributed in the cytoplasm, suggesting that SNHG12 plays a role at the post-transcriptional level. Functional assays including CCK-8, colony formation assays and EdU assays illustrated that SNHG12 upregulation promotes GC cell proliferation.

To further clarify the molecular mechanisms of SNHG12 in GC proliferation, we investigated the relationship between SNHG12 and HuR, an established tumor-associated RBP. qRT-PCR showed that SNHG12 positively regulated the expression of HuR at the RNA and protein levels, while HuR could not regulate the expression of SNHG12. Furthermore, RIP assays verified that SNHG12 binds to HuR and RNA stability assays demonstrated that the SNHG12-HuR complex stabilized ELAVL1 mRNA. This newly formed complex with ELAVL1 formed a loop. Many lncRNAs can bind to HuR to stabilize mRNAs. LncRNA RMST can enhance DNMT3 expression through interaction with HuR (22); LINC00707 promotes GC proliferation and metastasis by interacting with HuR (23). Nevertheless, this is the first report that SNHG12 can regulate the expression of HuR, and that the SNHG12-HuR complex could enhance the stability of ELAVL1 mRNA. HuR has emerged as an attractive drug target for cancer therapy (24), and our works verified that SNHG12 could target HuR, thus regulating many mRNAs associated with cancer progression, which is meaningful and helpful for the development of drugs targeting HuR.

Based on previous reports and bioinformatic analysis, we hypothesized that YWHAZ is a target mRNA positively correlated with SNHG12 and HuR. The RPIseq online tool predicted that YWHAZ was highly likely to interact with HuR, and this hypothesis was supported by RIP assays. RNA stability assays demonstrated that SNHG12 and HuR regulated the stability of YWHAZ. Although previous studies reported that SNHG12 or YWHAZ could bind to HuR in other cancer types, this study is the first report that SNHG12 regulates the stability of YWHAZ by binding to HuR. Subsequently, we demonstrated that YWHAZ is highly expressed in GC cell lines and tissues by qRT-PCR and that high YWHAZ expression is related to poor survival. Cell proliferation-associated assays and WB assays demonstrated that YWHAZ promoted GC cell proliferation via the AKT/GSK-3β pathway. YWHAZ is of great significance in the diagnosis and treatment of various types of tumors (17). Our studies demonstrated the direct relationships among SNHG12, HuR and YWHAZ, which provides new evidence for improving tumor therapy and diagnosis.

AKT is the central node of many signaling pathways and modulates many downstream proteins involved in cellular survival, proliferation, and migration (25). It has been demonstrated that lncRNAs regulate AKT activity in direct or indirect ways (6). Previous studies reported that SNHG12 could activate the AKT pathway (26), but further elucidation is required. We found that YWHAZ could interact and phosphorylate AKT; thus, we hypothesized that SNHG12 activates the AKT pathway via YWHAZ. In this study, WB assays verified that AKT, p-AKT and YWHAZ expression was decreased in the sh-SNHG12 groups compared to the normal control groups. Rescue assays further demonstrated that SNHG12 promoted GC cell proliferation via the YWHAZ/AKT/GSK-3β axis and that this process was dependent on the AKT signaling pathways. Furthermore, according to previous studies, YWHAZ, PI3K, AKT and β-catenin can form a protein complex to stabilize β-catenin (27); YWHAZ interacts and stabilizes β-catenin by decreasing its ubiquitination degradation (19). In addition, GSK-3β can increase the degradation of β-catenin by forming a complex with APC. Axin, which upon phosphorylation by AKT, is inhibited (28, 29). Based on the above findings, we hypothesized that SNHG12 can stabilize β-catenin and increase its expression. Nevertheless, this hypothesis needs further investigations.



Conclusion

SNHG12 functions as an oncogene in GC development and can be a biomarker for predicting prognosis. In this study, we show that SNHG12 binds to HuR to target ELAVL1 and YWHAZ, both of which are established tumor progression-related genes, and promotes GC cell proliferation via the YWHAZ/AKT/GSK-3β axis (Figure 7I).
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Stomach adenocarcinoma (STAD) is a leading cause of cancer deaths, and the outcome of the patients remains dismal for the lack of effective biomarkers of early detection. Recent studies have elucidated the landscape of genomic alterations of gastric cancer and reveal some biomarkers of advanced-stage gastric cancer, however, information about early-stage biomarkers is limited. Here, we adopt Weighted Gene Co-expression Network Analysis (WGCNA) to screen potential biomarkers for early-stage STAD using RNA-Seq and clinical data from TCGA database. We find six gene clusters (or modules) are significantly correlated with the stage-I STADs. Among these, five hub genes, i.e., MS4A1, THBS2, VCAN, PDGFRB, and KCNA3 are identified and significantly de-regulated in the stage-I STADs compared with the normal stomach gland tissues, which suggests they can serve as potential early diagnostic biomarkers. Moreover, we show that high expression of VCAN and PDGFRB is associated with poor prognosis of STAD. VCAN encodes a large chondroitin sulfate proteoglycan that is the main component of the extracellular matrix, and PDGFRB encodes a cell surface tyrosine kinase receptor for members of the platelet-derived growth factor (PDGF) family. Consistently, Gene Ontology (GO) analysis of differentially expressed genes in the STADs indicates terms associated with extracellular matrix and receptor ligand activity are significantly enriched. Protein-protein network interaction analysis (PPI) and Gene Set Enrichment Analysis (GSEA) further support the core role of VCAN and PDGFRB in the tumorigenesis. Collectively, our study identifies the potential biomarkers for early detection and prognosis of STAD.




Keywords: stomach adenocarcinoma (STAD), WGCNA, early diagnosis, TCGA, biomarkers, prognosis



Introduction

Stomach adenocarcinoma (STAD) constitutes >95% of all gastric malignancies that is a leading cause of cancer deaths. Since there is no typical symptom in early-stage STAD, majority of patients are clinically diagnosed at advanced stages with poor prognosis. The 5-year survival rate for patients with advanced-stage STAD is typically <5%, while the survival rate is > 90% for early-stage patients (1, 2), which underscores the importance of the early detection for good clinical outcome.

Biomarkers including DNAs, RNAs, and metabolites can be used as an indicator of normal or pathogenic biological process, and of pharmacological response to a therapy. Recently, numerous next generation sequencing studies have shed light on the genomics basis and found many potential biomarkers in gastric cancer. Whole-Genome sequencing showed that TP53, ARID1A, TGFBR2, CDH1, SYNE1 and TMPRSS2 were significantly mutated genes in 49 patients with advanced-stage gastric cancer (3), and that TP53, ARID1A, CDH1 are a common set of genetic mutations related to the diffuse subtype of gastric cancer from various studies (3–5). The Cancer Genome Atlas (TCGA) project proposed a molecular classification dividing gastric cancer into four subtypes, i.e., tumors positive for Epstein–Barr virus, microsatellite unstable tumors, genomically stable tumors, and tumors with chromosomal instability, for patient stratification and trials of targeted therapies (1). Although these progresses, only conventional biomarkers (CEA, CA19-9, HER2) are still in clinical use (6), and the lack of effective biomarkers for early detection limits the prevention and treatment of gastric cancer (7).

Characterization of gene expression signature can identify clinical biomarkers and therapeutic targets. Weighted gene co-expression network analysis (WGCNA) is a powerful method to explore the complex relationships between gene expression profiles and phenotypes. Genes of microarray or RNA sequence data are sorted into several modules (clusters) based on their correlation, and then relating these modules to clinical data can find the correlation between modules and traits. Since the expression profile of a few hub genes represents that of the entire module, digging centrally located intramodular hub genes greatly narrows the range of genes to be screened, which improves the accuracy of pinpointing key trait-related genes (8). In this study, we use WGCNA to dig potential biomarkers for early-stage STAD using RNA-Seq and clinical data from TCGA database. We find five hub genes, i.e., MS4A1, THBS2, VCAN, PDGFRB and KCNA3 are potential early diagnostic biomarkers. Furthermore, we show that high expression of VCAN and PDGFRB is associated with poor prognosis of STAD, suggesting they can be used as candidate prognostic biomarkers.



Materials And Methods


Data Download and Processing

RNA-seq data and clinical information are obtained from The Cancer Genome Atlas (TCGA) database. The verification data set GSE116312 was downloaded from the Gene Expression Omnibus (GEO) database and processed online using GEO2R, with the default setting as the threshold (We selected 7 gastritis tissues in this gene set as the normal group, and 3 gastric cancer tissues as the tumor group). TCGA is a public database designed to create a comprehensive and complete map cancer genome atlas (9). TCGA collects various information on more than 40 human cancers, including RNA-seq, miRNA-seq and clinical information, etc., and it is a comprehensive database website for cancer data. GEO collects a large number of public gene chip data. TCGAbiolinks (10) is an R package that can be downloaded in Bioconductor (http://bioconductor.org) for free and used in R language. Its main functions can be divided into data downloading, data analysis, and result visualization. It is a very powerful R package for TCGA data analysis. The 407 samples of RNA-seq data and 344 samples of clinical information in this study are all downloaded and preprocessed by the TCGAbiolinks R package.



Enrichment Analysis of Pathway and Gene Ontology

ClusterProfiler (11) is an R package for Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We used the clusterProfiler R package to analyze the differentially expressed genes (DEGs) in STAD. Taken P value<0.05 and Q value<0.2 as the threshold and displayed the enrichment results of the top 15 GOterms and KEGG pathways.



Weighted Gene Co-ExpressionNetwork Analysis

Weighted Gene Co-expression Network Analysis (WGCNA) can be used for dividing the genes in the microarray sample into different modules according to their correlation. And it can be used to classify the modules by using the central gene or eigengenes in the module. This method can also be used for associating modules with trait samples to find the most relevant modules for targeted therapy or biomarkers (8). We identified 344 STAD samples with clinical information among 407 STAD samples, and constructed an expression matrix. The clinical information was sorted according to the order of the RNA-seq samples on the constructed expression matrix to construct a clinical information matrix. We used the WGCNA method to analyze the STAD tumor samples. We extracted tumor samples from the 407 samples to make an expression matrix, and used the bitr function in the clusterProfiler R package to convert the Ensembl ID in the expression matrix into a Gene Symbol for subsequent analysis. At the same time, we used the TCGAbiolinks R package to download the clinical data of STAD, and finally 344 of the 375 tumor samples were screened to match the clinical data samples.



Gene Set Variation Analysis and Survival Analysis

Gene Set Variation Analysis (GSVA) enrichment analysis (12) can calculate the enrichment degree of the target gene set in a single sample. We design all genes in each module as a gene set (a total of six gene sets are designed). The enrichment score > 0 is defined as the high group, and the enrichment score < 0 is defined as the low group. Kaplan-Meier survival analysis was performed on each gene set. Gene Expression Profiling Interactive Analysis (GEPIA) is based on tumor samples and normal samples in TCGA and Genotype-Tissue Expression (GTEx) databases to perform correlation analysis, differential expression analysis, similar gene detection, profiling plotting, patient survival rate analysis and dimensionality reduction analysis (13, 14). GEPIA 2 is an upgraded version of GEPIA. Candidate biomarkers in lightyellow module were submitted to the GEPIA2 website, and cutoff-High and cutoff-Low were set to 50% for Kaplan-Meier survival analysis. And, P value of less than 0.05 is considered statistically significant.



Immunohistochemistry Assay

Two pairs of tissue samples, 20180919C, 20180919N and 20190120C, 20190120N were approved by the Affiliated Hospital of Southwest University. All tissue samples were approved by the patients. After the tumor tissues were paraffin sectioned, they were incubated with PDGFRB (1:100) and VCAN (1:100) antibodies at 4°C for overnight. Then the paraffin sectioned were incubated with HRP-conjugated secondary antibodies for 20 minutes at room temperature. Subsequently, they were stained by DAB, and tissues were counterstained with hematoxylin. Finally, photographs were taken by the inverted microscope. The positive rate was calculated using the IHC-toolbox plug-in in Image J. PDGFRB (# 3169T) antibody was purchased from Cell Signaling Technology (CST, Boston, MA, USA). VCAN (bs-2533R) antibody was purchased from Bioss Antibodies (Beijing,China).



Hub Genes’ Protein-Protein Interaction Network and Correlation Analysis

CytoHubba is a novel Cytoscape plugin, which can be used for measuring nodes by their network characteristics (15). It contains 11 methods of topology analysis. In this study, we used Maximal Clique Centrality (MCC) topology method. String online database (16) is an online website that can construct a protein-protein interaction network (PPI) based on bioinformatics predictions or biochemical experimental results (https://string-db.org/). In this study, we used the String website to analyze the target candidate hub genes for PPI analysis, export the results, and use the Cytoscape to edit vector images. And we used ggstatsplot R package performs correlation analysis on candidate hub genes’ expression.



Single-Gene Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) is a computational method that can evaluate microarray data at the gene set level. By comparing the genes on the gene expression profile chip with the gene set on the Molecular Signatures Database (MSigDB). It can be used to understand the expression status of the genes on the microarray in a specific functional gene set, and whether this expression status is statistically significant (17). Routine enrichment analysis must be used after performing differentially expressed gene screening. Besides, it should use the screened genes for functional enrichment. However, GSEA does not need to do this, so it can retain as much information as possible. We used GSEA v_4.1.0 software (funded by a grant from NCI’s Informatics Technology for Cancer Research (ITCR), https://www.gsea-msigdb.org/) to perform single-gene pathway enrichment analysis on the expression matrix containing 344 STAD tumor samples. The median of gene expression is used as the standard for dividing high and low expression groups.




Results


Differentially Expressed Genes in the STAD

To explore molecular pathogenesis of STAD, mRNA sequencing (RNA-seq) analysis was performed on the tumor and the normal stomach gland tissues. A total of 407 RNA-seq data including 375 tumor and 32 non-tumor samples were standardized using the TCGAbiolinks package (Figure 1A). A total of 3,746 genes showed altered transcript levels (fold change ≥ 2, FDR < 0.01) in the STAD compared with the normal tissues. There were 1,902 and 1,757 up- and down-regulated genes respectively (Figure 1B).




Figure 1 | A total of 407 STAD and normal samples were obtained from the TCGA database, and 3,746 DEGs were identified. (A) 30 samples was randomly used to test the standardized results. (B) Heatmap of 3,746 DEGs (FDR<0.01, LogFC<-1 and LogFC>1).



We use the clusterProfiler packages in R software to perform GO (Gene ontology) and KEGG (The Kyoto Encyclopedia of Gene and Genome) pathway enrichment analyses of these differentially expressed genes (DEGs). Analysis of significantly enriched GO terms (Figures 2A–C) indicated that these genes are mainly enriched in GO terms such as muscle system process (GO:0003012), collagen-containing extracellular matrix (GO:0062023) and receptor ligand activity (GO:0048018), etc., and draw directed acyclic graphs of the representative GO terms (Supplementary Figure 1). KEGG pathway analysis showed that pathways including neuroactive ligand-receptor interaction, p53 signaling and gastric acid pathways were significantly enriched (Figure 2D).




Figure 2 | GO enrichment analysis and KEGG pathway analysis were performed on 3,746 DEGs in STAD. (A) GO biological process (BP) enrichment results. (B) GO cellular component (CC) enrichment results. (C) GO molecular function (MF) enrichment results. (D) KEGG pathway enrichment results.





WGCNA Analysis to Dig Potential Biomarkers of Early-Stage STAD

To clarify the key gene clusters and hub genes related to stages and grades of STAD, we performed WGCNA analysis using the gene expression matrix of the STADs and the matched clinical data. The soft threshold was set to 7, and the scale-free topology fitting index reached 0.98 (Figure 3A). Through the WGCNA calculation, we divided the genes expressed in the STADs into 26 modules (Figure 3B), each with a unique color. The genes contained in gray module are genes that do not belong to any other modules. According to the correlation between the modules, a cluster tree diagram was constructed (Figure 3C). Module-Clinical Trait Relationships (MCTR) analysis showed the correlation between modules and STAD stages and grades (Supplementary Tables 1, 2). Using P value < of 0.05 as a threshold, the results displayed that the MEorange (r= -0.114, P= 0.034), the ME (Module Eigengene) black (r= -0.117, P= 0.030), the MEblue (r= -0.106, P= 0.05), the MEdarkgrey (r= -0.148, P= 0.006), the MElightyellow (r= 0.141, P= 0.009), and the MEcyan (r= 0.153, P= 0.004) are significantly related to the stage I of STAD (Figure 3D).




Figure 3 | The WGCNA method was used to analyze STAD and to find out the modules that are significantly related to traits. (A) Scale-free topology fitting graph. (B) Cluster modules dendrogram of STAD (up) and the colored bands (down) each dendrogram indicate the module color. (C) Clustering dendrogram of genes, with dissimilarity based on topological overlap, together with assigned module colors. (D) Module–Clinical Trait Relationships of consensus module eigengene and different stages of STAD. Each row in the table corresponds to an ME (module eigengene), and each column to a clinical parameter. The cells are colored by the correlation according to the color legend. Intensity and direction of correlations are indicated on the right side of the heatmap (red, positively correlated; green, negative correlated).



The genes of these six modules were aligned to the DEGs in the STADs. The shared genes that differentially expressed in the STADs and belonged to these six modules were selected. Gene pairs with weight greater than 0.1 were put into the Cytoscape (18) for the construction of the co-expression network, and 10 hub genes in the network were identified by the Cytoscape’s cytoHubba plugin (Supplementary Figure 2). Six of the ten genes showed significantly differential expression pattern in the stage I STAD compared with the normal tissues (Figures 4A–J). The GSE16312 data set was used as a validation set, and 5 genes were verified among the six candidate biomarkers (Figures 4K–L) i.e., MS4A1, THBS2, VCAN, PDGFRB, and KCNA3. Specifically, the expression of membrane spanning 4-domains A1 (MS4A1), thrombospondin 2 (THBS2), versican (VCAN), and platelet derived growth factor receptor beta (PDGFRB) was significantly up-regulated, while potassium voltage-gated channel subfamily A member 3 (KCNA3) down-regulated in the stage I STAD. These results suggest that the five hub genes may serve as potential diagnostic biomarkers for early-stage STAD.




Figure 4 | Candidate gene expression and verification. (A) LY9. (B) MS4A1. (C) THBS2. (D) VCAN. (E) PDGFRB. (F) KCNA3. (G) FCRL5. (H) ARHGAP25. (I) FLI1. (J) TRAF3IP3. (K) Candidate biomarkers in the STAD volcano map. (L) Candidate biomarkers in the verification set GSE116312 volcano map. *P<0.05, **P<0.01, ***P<0.001 and ns, not significant.





PDGFRB and VCAN Are Two Potential Biomarkers for Prognosis

We used the six modules as gene sets to perform gene set variation analysis (GSVA) (Figures 5A, B) and survival analysis (Figures 5C–H). The results showed that only the lightyellow gen set significantly correlated with the survival probability, i.e., patients with the high GSVA enrichment score had lower survival compared with that of harboring low GSVA enrichment score (Figure 5F). In the lightyellow gene set, VCAN, PDGFRB and THBS2 have been identified as biomarkers for early diagnosis of STAD. In order to study whether they have an effect on the prognosis of STAD, we performed Kaplan-Meier survival analysis on the GEPIA2 database. The result showed that the high expression of PDGFRB and VCAN was significantly related to the poor prognosis of STAD (Figures 5I–K). Then, we performed IHC staining on 4 tissue samples using PGFRB and VCAN antibodies, i.e., 20180919C, 20180919N, 20190120C and 20190120N (C indicates tumor tissue while N means adjacent normal tissue, and samples with same numbers are from the same STAD patients). The results displayed that the expression of PDGFRB and VCAN was significantly improved in the tumor tissues compared with that of the normal adjacent tissues (Figure 6).




Figure 5 | Gene set variation analysis and survival analysis. (A) Heat map of gene set GSVA enrichment score. (B) Gene set GSVA enrichment score box plot. (C) Orange gene set survival analysis. (D) Blue gene set survival analysis. (E) Black gene set survival analysis. (F) Lightyellow gene set survival analysis. (G) Darkgrey gene set survival analysis. (H) Cyan gene set survival analysis. (I) PDGFRB Kaplan-Meier survival analysis. (J) VCAN Kaplan-Meier survival analysis. (K) THBS2 Kaplan-Meier survival analysis.






Figure 6 | The expression of PDGFRB and VCAN was significantly improved in the tumor tissues compared with the normal adjacent tissues. (A) IHC results of 20180919 samples with PDGFRB antibody. (B) IHC results of 20180919 samples with VCAN antibody. (C) IHC results of 20190120 samples with PDGFRB antibody. (D) IHC results of 20190120 samples with VCAN antibody (C indicates tumor tissue while N means adjacent normal tissue, and samples with same numbers are from the same STAD patients). *P<0.05, **P<0.01.





Co-Expression Network and Pathway Analysis

We constructed a co-expression network of PDGFRB and VCAN (Figure 7A). Some genes in the network had been reported to be candidate biomarkers for STAD diagnosis and prognosis, such as biglycan (BGN), metalloproteinase-2 (TIMP2), adipocyte enhancer binding protein 1 (AEBP1), collagen type VI alpha 2 chain (COL6A2) and collagen type VI alpha 3 chain (COL6A3) (19–22), etc. The expression of VCAN and PDGFRB showed a significant linear relationship (Figure 7B), and both of them showed significant high expression levels at stage I of STAD tissues compared with that of normal tissues and maintained high expression levels after stage II (Figures 4D, E). In order to explore the protein interaction between PDGFRB and VCAN, as well as the interaction with other genes, we used the String online database to perform protein-protein network interaction analysis (PPI), and the results showed that PDGFRB can interact with other proteins such as phosphatase and tensin homolog (PTEN) and signal transducer and activator of transcription 3 (STAT3). At the same time, the interaction network also pointed out that BGN and decorin (DCN) can act as a bridge to connect the interaction between VCAN and PDGFRB (Figure 7C).




Figure 7 | Co-expression network and protein interaction network analysis. (A) Co-expression network of VCAN and PDBFRB. (B) The linear correlation analysis between VCAN and PDGFRB was performed using the ggstatsplot R package (R2 = 0.71, P=2.04e-104). (C) The protein interaction analysis involving VCAN and PDGFRB was conducted by String online database.



The PPI results showed that there is protein interaction between PDGFRB, PTEN and STAT3. To determine whether PDGFRB as well as VCAN correlates with specific PTEN or STAT3-associated molecular programs, we performed gene set enrichment analysis (GSEA) of the 344 STAD samples. We selected 1,188 and 1,210 genes of PTEN- and STAT3-associated pathways from the MSigDB database. We divided the 344 tumor samples into PDGFRB or VCAN high and low expression groups based on the median expression of the two genes. The enrichment results for the signal pathway related to PTEN show that the “WP_FOCAL_ADHESION” gene set was significantly enriched in the PDGFRB high expression group (Figure 8A). This gene set represents the focal adhesion kinase signaling pathway and regulates cell migration and blood vessel formation (23). In the VCAN high expression group, the “WP_FOCAL_ADHESION” gene set was also significantly enriched (Figure 8B). In the VCAN high expression group, the “WP_PI3KAKT_SIGNALING_PATHWAY” and “WP_SENESCENCE_AND_AUTOPHAGY_IN_CANCER” gene sets were significantly enriched (Supplementary Figures 3A, B). These two gene sets represent the PI3K-Akt signaling pathway that can regulate metabolism (24) and the senescence autophagy signaling pathway, respectively. When enriching the pathways related to STAT3, we found that in the VCAN high expression group, the “REACTOME_SIGNALING_BY_PDGF” gene set was significantly enriched (Figure 8C). This gene set represents the platelet-derived growth factor (PDFG) signaling pathway that involves STAT3 and PDGFRB. PDFG pathway has extensive regulation on inflammation, carcinogenesis and cell growth and differentiation (25). In addition, in the VCAN high expression group, we also found that the “WP_TGFBETA_RECEPTOR_SIGNALING” and “REACTOME_SIGNALING_BY_MET” gene sets were significantly enriched. These two gene sets represent the transforming growth factor (TGF-β) signals which related to inflammation and tumorigenesis, and the hepatocyte growth factor receptor (MET) signal which related to tumor growth and survival (Supplementary Figures 3C, D).




Figure 8 | Gene set enrichment analysis results. (A) High expression of PDGFRB gene can up-regulate the focal adhesion kinase signaling pathway. (B) High expression of VCAN gene can up-regulate the focal adhesion kinase signaling pathway. (C) High expression of VCAN will lead the PDGF pathway up-regulate.






Discussion

Although the advances in modern medical treatments, the possibility of curing advanced-stage STAD is extremely low. The side effects of surgery, radiotherapy, and chemotherapy are huge, and patients have to bear the expensive medical expenses that the majority of people cannot afford. Compared with the treatment of advanced STAD, the early STAD treatment can be cured by ordinary surgical procedures to remove the tumor tissue (26, 27).

Blocking STAD at an early stage can greatly reduce the economic burden of patients, reduce the side effects of radiotherapy and chemotherapy, and improve survival rates. Therefore, early screening or diagnosis of STAD is the cheapest and most effective method for the treatment, greatly improving the survival rate of patients. With the development of sequencing technology, the analysis of gene expression has become routinely and provides comprehensive and objective information, which can help doctors make decisions. Our current research is based on the RNA-seq data of STAD, and use the WGCNA that can perform correlation analysis between gene expression and clinical traits. Finally, we identified 5 candidate biomarkers, MS4A1, THBS2, VCAN, PDGFRB and KCNA3, for early diagnosis of STAD.

Membrane spanning 4-domains A1 (MS4A1) encodes a B-lymphocyte surface protein that plays a role in the development and differentiation of B-cells. MS4A1 is selectively expressed in mature B cells or most malignant B cells and has become a clinical target for the treatment of mantle cell lymphoma and autoimmune diseases (28).

Thrombospondin 2 (THBS2) is a member of the thrombospondin family, which mediates cell-to-cell or cell-to-matrix interactions. It has been reported that THBS2 plays a role in cell adhesion, extracellular matrix modeling, bone growth, development, inflammation, and pathological angiogenesis (29).

VCAN encodes a large chondroitin sulfate proteoglycan, a member of the aggrecan/versican proteoglycan family. VCAN is involved in cell adhesion, proliferation, tissue morphogenesis and maintenance (30). Studies have shown that VCAN is related to growth and metastasis of ovarian cancer, migration and metastasis of breast cancer, and poor prognosis of colorectal cancer.

PDGFRB encodes a tyrosine kinase containing a conserved transmembrane receptor which plays an important role in the signal transduction of individual growth and development (31, 32). In recent years, studies have shown that PDGFRB is related to familial infantile myofibromatosis (33), eosinophilic myeloma, fusiform cerebral aneurysm, and breast cancer, etc. Wang et al. reported that PDGFRB is co-expressed with hypomethylated gene neuropilin 1 (NRP1) and associated with poor overall survival in gastric cancer patients (33–37).

Potassium voltage-gated channel subfamily A member 3 (KCNA3) can regulate neurotransmitter release, neuronal excitability, epithelial electrolyte transport, heart rate, insulin secretion, smooth muscle contraction and cell volume, and is involved in the immune modulation of memory T cell-mediated autoimmune diseases and auto-reactive effector (38, 39).

Through GSVA enrichment analysis and Kaplan-Meier survival analysis, we found that VCAN and PDGFRB are significantly related to the prognosis of STAD. DEGs’ KEGG pathway enrichment analysis indicated that the P53 signaling pathway was significantly enriched, and PTEN was involved in regulating this pathway. This result is consistent with the enrichment results of the signal pathway involving PTEN by using the GSEA method. The results of PPI analysis also confirmed that PGFRB can interact with PTEN and STAT3. VCAN may indirectly interact with PTEN and STAT3, which in turn affects the pathway of tumor development, migration and invasion. The results of single-gene GSEA enrichment showed that the high expression of VCAN will lead to the up-regulation of PDGF signaling pathway involving PDGFRB and STAT3, which consistent with the linear correlation between PDGFRB and VCAN expressions.

Collectively, our work focused on finding early STAD biomarkers. We revealed five genes that can be used as candidate biomarkers for early STAD detection. In addition, we illustrated that VCAN and PDGFRB could be potential biomarkers for the prognosis of STAD.
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Patients with advanced stomach adenocarcinoma (STAD) commonly show high mortality and poor prognosis. Increasing evidence has suggested that basic metabolic changes may promote the growth and aggressiveness of STAD; therefore, identification of metabolic prognostic signatures in STAD would be meaningful. An integrative analysis was performed with 407 samples from The Cancer Genome Atlas (TCGA) and 433 samples from Gene Expression Omnibus (GEO) to develop a metabolic prognostic signature associated with clinical and immune features in STAD using Cox regression analysis and least absolute shrinkage and selection operator (LASSO). The different proportions of immune cells and differentially expressed immune-related genes (DEIRGs) between high- and low-risk score groups based on the metabolic prognostic signature were evaluated to describe the association of cancer metabolism and immune response in STAD. A total of 883 metabolism-related genes in both TCGA and GEO databases were analyzed to obtain 184 differentially expressed metabolism-related genes (DEMRGs) between tumor and normal tissues. A 13-gene metabolic signature (GSTA2, POLD3, GLA, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A, and RDH12) was constructed for prognostic prediction of STAD. Sixteen survival-related DEMRGs were significantly related to the overall survival of STAD and the immune landscape in the tumor microenvironment. Univariate and multiple Cox regression analyses and the nomogram proved that a metabolism-based prognostic risk score (MPRS) could be an independent risk factor. More importantly, the results were mutually verified using TCGA and GEO data. This study provided a metabolism-related gene signature for prognostic prediction of STAD and explored the association between metabolism and the immune microenvironment for future research, thereby furthering the understanding of the crosstalk between different molecular mechanisms in human STAD. Some prognosis-related metabolic pathways have been revealed, and the survival of STAD patients could be predicted by a risk model based on these pathways, which could serve as prognostic markers in clinical practice.
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Introduction

Stomach adenocarcinoma (STAD) accounts for 95% of stomach tumors, which is associated with high mortality (1). The most effective treatment is radical surgery in the early stages combined with chemotherapy, postoperative radiotherapy, and lymphadenectomy, but 65% of patients with STAD presented at an advanced stage, and nearly 85% of patients with STAD display lymph node metastasis at the time of diagnosis (2). Despite the decreasing incidence worldwide, the 5-year survival rate of patients with resectable STAD ranges from 10% to 30% (3). Although STAD can be treated with radical surgery and adjuvant therapy, more than 40% of patients continue to experience recurrence or tumor metastasis (4). The association between microarray-based gene expression profiling and the corresponding phenotypic changes in STAD has allowed accurate early diagnosis or evaluation of prognosis (5). The development of novel biomarkers in STAD would aid early diagnosis, guide surgical and adjuvant therapy decision making, and provide potential therapeutic targets.

Changes in metabolism-related genes result in abnormal metabolism-related pathways and the production of metabolites in cancer cells, which are associated with transformation, tumor growth, and tumor progression (6). Specific metabolic activities have been developed to image tumors, provide prognostic biomarkers, and identify therapeutic targets (7). Thus, exploring and exploiting specific metabolic alterations in cancer has implications for clinical oncology and basic cancer pathophysiology. For example, increasing evidence has shown that the disordered metabolism of non-essential amino acids plays a key role in cancer development and progression via metabolic reprogramming in cancer cells (8). Proline metabolism in cancer, which is involved in collagen synthesis and degradation, influences tumor heterogeneity and the epigenetic landscape (9). Extensive crosstalk has being revealed between abnormal glucose metabolism and cancer cell signaling, a great example of which is the “Warburg effect” (aerobic glycolysis) (10). Additionally, the metabolism of ketone bodies, fatty acids, and choline is also significantly altered in cancer cells (11). These exciting advancements in cancer metabolism reprogramming and crosstalk have facilitated the identification of new targets for treating malignancies (12). The development of immunotherapy has resulted in a fundamental change in the survival rate and prognosis of cancer (13). Furthermore, the association between the immune microenvironment and other biological processes has become increasingly important for immunotherapy. The immunoediting theory suggests that various metabolic machinery influence the behavior of immune cells and antitumor immune responses (14). Metabolic stress in tumor-infiltrating immune cells leads to changes in their functional activities, thereby promoting the evasion of immunosurveillance by cancer cells (15). Thus, studies on metabolic reprogramming of the immune microenvironment would promote the repurposing of drugs targeting cancer metabolism and immunotherapy.

Recently, with the rapid development of bioinformatics, many novel biomarkers have been discovered for the diagnosis and prognosis of multiple cancers based on large-scale RNA-sequencing (RNA-seq) transcriptome data and the corresponding clinical follow-up information. More efficient and accurate approaches have promoted the application of personalized medicine in clinical practice. With the discovery of complex biological processes in cancer, using a gene set to construct a prognostic signature would be better than a single gene pattern. In this study, a metabolism-based prognostic signature was systematically analyzed by combining data from the TCGA and GEO databases. Patients with STAD were divided into high- and low-risk score groups according to the metabolism-based prognostic risk score (MPRS). This metabolism-based prognostic signature was verified to be significantly associated with survival in STAD using TCGA and GEO data. Furthermore, the significant differences in the distribution of immune cells between the high- and low-risk score groups according to this metabolism-based prognostic signature further revealed the differentially expressed immune-related genes (DEIRGs) between the two groups. This indicates that metabolic reprogramming of the immune microenvironment requires further experimental verification and clinical research.



Materials and Methods


Metabolism-Related Genes in STAD

The mRNA expression and corresponding clinical data were downloaded from The Cancer Genome Atlas (TCGA) website (https://portal.gdc.cancer.gov/) (16) and the GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84437). The type of gene expression data was FPKM. A total of 407 and 433 samples were obtained from TCGA and GEO (GSE84437), respectively, which included 883 metabolism-related genes in both TCGA and GEO databases based on the Molecular Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). The clinical characteristics based on the TCGA database included sex (male and female), age (35 to 90 year), grade (including grades 1, 2, and 3), pathologic T (tumor size, including T1, T2, T3, T4, and TX), pathologic M (tumor metastasis, including M0, M1, and MX), pathologic N (tumor lymph node metastasis, including N0, N1, N2, and NX), pathologic stage (stages I, II, III, and IV), and survival data (survival time and survival status). The clinical characteristics based on the GEO database included sex (male and female), age (27 to 86 years old), pathologic T (tumor size, including T1, T2, T3, and T4), and pathologic N (tumor lymph node metastasis, including N0, N1, N2, and N3). There are two human tasks for auditor 1 and auditor 2, respectively, to take actions and reviewed the data of included samples to determine the next actions according to the auditors’ input.



Identification of DEMRGs Between Normal and Tumor Tissues in STAD

The ‘limma’ package (https://www.bioconductor.org/packages/release/bioc/html/limma.html) was used to identify DEMRGs between normal and tumor tissues in STAD (p < 0.05, false discovery rate (FDR) ≤ 0.05, fold change ≥ 2) from the TCGA database. The p value was adjusted by FDR.



Functional and Pathway Enrichment Analyses of DEMRGs in STAD

The identified DEMRGs in STAD from TCGA data were enriched in various Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (p < 0.05 and FDR < 0.05) according to the DAVID functional annotation bioinformatics microarray database (https://david.ncifcrf.gov/) (17). Analysis of gene ontology (GO) terms was performed using Cytoscape ClueGO (adjusted P < 0.05, corrected using the Benjamini-Hochberg method) based on the subtype analysis of biological processes (BPs) (18). All DEMRGs were identified using the protein-protein interaction (PPI) network based on the STRING database (https://string-db.org/). The criteria of hub molecule searching were set as a molecular complex detection (MCODE) score > 7, and statistical significance was set at P < 0.05 (19).



Cox Regression and Overall Survival Analyses of DEMRGs in STAD

The Cox proportional hazard regression model was performed using the ‘survival’ package in R (https://www.rdocumentation.org/packages/survival/versions/3.2-3) to select OS-related DEMRGs (P < 0.05) in STAD based on the survival information of TCGA data. Each OS-related DEMRG from Cox regression analysis was further plotted in the Kaplan–Meier survival curve using Kaplan-Meier Plotter (https://kmplot.com/analysis/) (20).



Lasso Regression Construction and Verification in STAD

The OS-related DEMRGs were used to construct a prognostic model in STAD with lasso regression using the ‘glmnet’ package in R (https://cran.r-project.org/web/packages/glmnet/index.html). Patients with STAD from the TCGA group were divided into high- and low-MPRS groups according to the median value of MPRS (median value = −0.39). Similarly, patients with STAD from the GEO group were divided into high and low MPRS groups according to the median value of MPRS (median value = −0.39). The receiver operating characteristic (ROC) curves were plotted using the R package (https://www.rdocumentation.org/packages/pROC/versions/1.16.2/topics/roc) to show the specificity and sensitivity of MPRS in the TCGA group. The Kaplan-Meier curve was used to evaluate the relevance of overall survival between the high and low MPRS subtypes. Additionally, univariate and multivariate Cox regression models were used to analyze the association between OS and MPRS in STAD based on some parameters, including age, sex, grade, pathologic stage, pathologic T, pathologic M, pathologic N, and risk score in the TCGA group and age, sex, pathologic T, pathologic N, and risk score in the GEO group. The clinical characteristics and MPRS-based assessment nomogram (https://cran.r-project.org/web/packages/rms/index.html) were used to evaluate prognosis in patients with STAD patients (1-, 2-, and 3-year survival rates) in both the TCGA and GEO groups.

Moreover, gene set enrichment analysis (GSEA) (version 4.1.0) identified different gene sets in the high- and low-MPRS groups by 1,000 permutations p < 0.05, and FDR q-value < 0.05, calculated using the Benjamini-Hochberg multiple testing). Protein expression levels were verified in the Human Protein Atlas (HPA) (https://www.proteinatlas.org/) (21). In order to compare our findings with the previous studies, we searched genes using GenCLiP 3 (http://ci.smu.edu.cn/genclip3/input_enrichment.php#) (22).



Identification of Different Immune Cells and DEIRGs Between High- and Low-MPRS Subtypes in STAD

The distribution of immune cells (p < 0.05) was investigated between high- and low-MPRS subtypes in STAD tissue samples using the Kolmogorov-Smirnov tests in R (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/ks.test.html) in the TCGA group. Furthermore, the correlation of different immune cells was determined using the ‘Corrplot’ package in R (https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html). The ‘limma’ package (https://www.bioconductor.org/packages/release/bioc/html/limma.html) was used to identify DEIRGs (p < 0.05, false discovery rate (FDR) ≤ 0.05, and fold change ≥1.20) between high- and low-MPRS subtypes in the TCGA group. The identified DEIRGs in STAD were input into the DAVID functional annotation bioinformatics microarray database (https://david.ncifcrf.gov/) to analyze significant KEGG pathways (p < 0.05, FDR < 0.05).



Cell Lines and Cell Culture

STAD cells MKN-45 and AGS, and normal cells GES-1 were purchased from Keibai Academy of Science (Nanjing, China). RPMI-1640 medium (Corning, NY, USA) plus 10% fetal bovine serum (FBS, Gibco) were used to culture those cells with 5% CO2 atmosphere at 37°C.



RNA Extraction and qRT-PCR

The STAD cells and normal cells (4 × 106) were used to extract total RNA through the following steps: (i) the cells were washed with PBS (3×); (ii) a volume (1 ml) of TRizol Reagent (Invitrogen) was used to lyse cells (10 min, ice); (iii) 200 μl chloroform was added to each tube with sufficient mixing; (iv) after resting for 5 min on ice, they were centrifuged (12,000 r/min, 15 min); (v) the same volume of isopropanol was added to supernatant with sufficient mixing; (vi) after resting for 15 min on ice, they were centrifuged (12,000 r/min, 15 min); (vii) a volume (1 ml) of ethanol (v/v = 75%) was added to precipitate, and then centrifuged (12,000 r/min, 5 min); and (viii) after removing ethanol, 20μl RNA enzyme-free water was added to dissolve RNA precipitate. Each total RNA was reversely transcribed into cDNA for quantitative real-time PCR (qRT-PCR) analysis with SYBR Premix ExTaq kit (TaKaRa). For the reverse transcription reaction system: (i) add 2 μl 5× gDNA Eraser buffer, 1 μl 5× gDNA Eraser buffer, 500 ng total RNAs, and RNase-free water up to 10 μl at 42°C for 2 min. (ii) Add 1 μl PrimeScript RT Enzyme Mix I, 1 μl RT Primer Mix, 2 μl 5× Prime Script buffer, 4 μl RNase-free water to reaction solution from the first step at 37°C for 15 min, 85°C for 5 s, and save at 4°C. qRT-PCR reaction system contained 5 μl SYBR buffer, 4 μM primers (forward and reverse primers), 2 μl RNase-free water, and 1 μl cDNA. Beta-actin was set as an internal control for gene quantification. The numbers of technical and biological replicates were at least three times for each gene with qRT-PCR analysis.




Results


Discovery of DEMRGs Between Tumor and Normal Tissues in STAD Based on TCGA Data

A total of 884 MRGs overlapped between the TCGA (Supplementary Table 1) and GEO groups (Supplementary Table 2). Analysis of DEMRGs between tumor and normal tissues in STAD was performed in the TCGA group. Finally, 184 DEMRGs were identified as DEMRGs between tumor and normal tissues based on TCGA data (Figure 1 and Supplementary Table 3). Among them, 70 DEMRGs were downregulated, and 114 DEMRGs were upregulated (Figure 1).




Figure 1 | Heatmap of the differentially expressed metabolism-related genes (DEMRGs) between normal and tumor issues in stomach adenocarcinoma [(STAD) (N, normal tissues; T, tumor issues].





DEMRGs Were Significantly Enriched in Cancer-Related Pathways and Biological Processes in STAD

KEGG enrichment analysis was used to analyze the pathways involved in the identified DEMRGs. A total of 38 statistically significant KEGG pathways were enriched in STAD (Figure 2A and Supplementary Table 4), and most pathways were closely associated with metabolism-related pathways, including pyrimidine metabolism, purine metabolism, arginine and proline metabolism, glutathione metabolism, metabolism of xenobiotics by cytochrome P450, drug metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, arachidonic acid metabolism, drug metabolism, amino sugar and nucleotide sugar metabolism, fatty acid metabolism, alanine, aspartate, and glutamate metabolism, glycine, serine, and threonine metabolism, cysteine and methionine metabolism, one carbon pool by folate, galactose metabolism, sphingolipid metabolism, tyrosine metabolism, fructose and mannose metabolism, pentose phosphate pathway, tryptophan metabolism, RNA polymerase, retinol metabolism, inositol phosphate metabolism, valine, leucine, and isoleucine degradation, phenylalanine metabolism, beta-alanine metabolism, selenoamino acid metabolism, pyruvate metabolism, glyoxylate and dicarboxylate metabolism, riboflavin metabolism, cyanoamino acid metabolism, propanoate metabolism, porphyrin and chlorophyll metabolism, fatty acid elongation in mitochondria, butanoate metabolism, taurine and hypotaurine metabolism. The hub molecules of these signaling pathways should be considered.




Figure 2 | Significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and biological processes (BPs) of differentially expressed metabolism-related genes (DEMRGs) in stomach adenocarcinoma (STAD). (A) Pathways in cancer significantly enriched with DEMRGs in SATD (p < 0.05). (B) The DEMRGs were classified according to the BPs (p < 0.05). The DEMRGs with significantly enriched in the pathways are shown with a greater node size. Same color indicates the same functional group. A representative group with the most significant term and lag is highlighted.



GO enrichment analysis according to BPs was performed to analyze the identified DEMRGs. A total of 86 statistically significant BPs were obtained in STAD (Figure 2B and Supplementary Table 5), which mainly included the following 11 clusters: carboxylic acid metabolic process, carboxylic acid biosynthetic process, monocarboxylic acid metabolic process, alcohol biosynthetic process, cellular modified amino acid biosynthetic process, cellular lipid catabolic process, oxidoreductase activity (acting on the CH-OH group of donors, NAD or NADP as acceptor), cellular amine metabolic process, nucleobase-containing small-molecule biosynthetic process, nucleoside monophosphate metabolic process, and phospholipid metabolic process. These BP enrichments of the identified DEMRGs have broad implications in STAD cells, influencing cell metabolism.

The DEMRGs were identified using the PPI network in STAD (Figure 3A and Supplementary Table 6). Furthermore, three key modules (module 1 score = 12.375, module 2 score = 8, and module 3 score = 7. 615) were selected (Figures 3B–D). Thus, a total of 17 hub molecules were identified in module 1, including POLR1C, PNPT1, POLR2K, POLR1B, POLR1A, POLR2H, RRM2B, POLD1, POLR2B, POLD3, ADCY5, NME4, POLE3, NME2, ITPA, NPR1, and ENPP3 (Figure 3B). A total of 33 hub molecules were identified in module 2, including GSTM1, GGT6, GGT5, CYP2B6, GSTA1, ADH4, GSTA2, GPX3, CYP2C18, ADH7, ASS1, SHMT2, GSS, RRM1, MTHFD2, MTHFD1, ALDH3A1, ENTPD3, SRM, SDS, G6PD, CYP3A4, GSTM5, PSPH, ALDH18A1, OAT, DTYMK, UCK2, UCKL1, and GLS (Figure 3C). A total of 27 hub molecules were identified in module 3, including DCK, AMPD2, PFKP, LDHA, AMPD1, PSAT1, AGMAT, TK1, RRM2, ME1, HPRT1, SMS, ADSS, CMPK1, HK1, HK2, PYGM, MTHFD1L, ENTPD6, ENTPD5, G6PC, PYGB, CANT1, AHCY, PDE2A, and ALDOB. These identified hub molecules of DEMRGs promoted the understanding of the key molecular mechanisms on metabolism underlying STAD development.




Figure 3 | Protein-protein interaction (PPI) network of the differentially expressed metabolism-related genes (DEMRGs) in stomach adenocarcinoma (SATD). (A) PPI network of the DEMRGs in SATD. (B–D) The entire PPI network was analyzed using MCODE, and three modules (module 1 score = 12.375, module 2 score = 8, and module 3 score = 7. 615) were obtained.





Survival Analysis of DEMRGs in STAD Based on TCGA Data

The identified DEMRGs as continuous factors were used to perform Cox regression analysis with survival information in TCGA (Supplementary Table 7). A total of 16 DEMRGs were significantly related to the risk ratio in STAD (Figure 1), including ENTPD6, GPX3, GSTA2, POLD3, GLA, UCK2, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A, and RDH12. The survival-related DEMRGs were further plotted in Kaplan–Meier survival curve by Kaplan-Meier Plotter according to the median value of each OS-related DEMRG from Cox regression analysis (Figure 4).




Figure 4 | Kaplan-Meier survival curve of overall survival associated with differentially expressed metabolism-related genes (DEMRGs) in stomach adenocarcinoma (STAD). The DEMRGs associated with overall survival of patients with STAD were ENTPD6, GPX3, GSTA2, POLD3, GLA, UCK2, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A, and RDH12 (p < 0.05).





Construction of OS-Related DEMRG Prognostic Model for STAD

The prognostic model consisting of 13 metabolism-related genes (GSTA2, POLD3, GLA, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A, and RDH12) was constructed using lasso regression, where log (lambda) was set between −3 and −4 (Figure 5A). The area under the curve (AUC) value of MPRS based on the prognostic model in the TCGA group was plotted by the ROC curve, which suggested that MPRS could be a good index for evaluating the prognostic status of patients with STAD (Figure 5B). Additionally, the association of overall survival and MPRS was significant, which indicated that high MPRS is correlated with poor prognosis in STAD based on TCGA data (Supplementary Table 8). The association of overall survival and MPRS was also significant in STAD based on GEO data, which indicated that high MPRS is correlated with poor prognosis (Supplementary Table 9). The survival results in the TCGA and GEO groups were plotted in survival plots with gene expression (GSTA2, POLD3, GLA, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A, and RDH12) heatmaps based on TCGA data (Figure 5C) and GEO data (Figure 5D).




Figure 5 | Lasso regression identified the prognostic model in adenocarcinoma (STAD). (A) Lasso regression complexity was controlled by lambda using the ‘glmnet’ package in R. (B) The receiver operating characteristic (ROC) score in STAD based on The Cancer Genome Atlas (TCGA) data. (C) Riskplot heatmap between high- and low-risk score groups based on TCGA data. (D) Riskplot between high- and low-risk score groups based on n GEO data.



The corresponding clinical data of the TCGA and GEO groups are listed in Supplementary Table 10 and Supplementary Table 11. The univariate analysis revealed that age, pathologic stage, pathologic N, and risk score were significantly related to OS (Figure 6A) based on TCGA data. The multivariate analysis revealed that age and risk score might be independent risk factors for STAD (Figure 6B) based on TCGA data. To verify the results, the univariate analysis was also performed with GEO data, which revealed that age, pathologic T, pathologic N, and risk score were significantly related to OS (Figure 6C). The multivariate analysis was also performed with GEO data, which revealed that age, pathologic T, pathologic N, and risk score might be independent risk factors for STAD (Figure 6D). Furthermore, a nomogram plot was constructed to guide clinical application of basic clinical characteristics, including age at initial diagnosis, sex, pathologic M stage, pathologic T stage, pathologic N stage, pathologic stage, and MPRS to estimate patient survival (Figure 6E) based on TCGA data. The nomogram plot was also constructed using GEO data to verify the consistency of the results to estimate the patient survival rate (Figure 6F).




Figure 6 | The relevance of clinical features and metabolism-related risk scores in stomach adenocarcinoma (STAD). (A) Univariate Cox regression analysis of risk factors in STAD based on The Cancer Genome Atlas (TCGA) data. (B) Multivariate Cox regression analysis of risk factors in STAD based on TCGA data. (C) Univariate Cox regression analysis of risk factors in STAD based on GEO data. (D) Multivariate Cox regression analysis of risk factors in STAD based on GEO data. (E) The risk score and clinical information assessment nomogram to evaluate STAD prognosis based on TCGA data (1-, 2-, and 3-year survival rates). (F) The risk score and clinical information assessment nomogram to evaluate STAD prognosis based on GEO data (1-, 2-, and 3-year survival rates).





GSEA Identified Some Significant Gene Sets Between High- and Low-MPRS Groups Based on TCGA and GEO Data

The STAD samples were divided into two groups according to MPRS. Based on TCGA data, the significant gene sets enriched in the high-MPRS group were drug metabolism by cytochrome p450, metabolism of xenobiotics by cytochrome p450, retinol metabolism, arachidonic acid metabolism, and ether lipid metabolism and those in the low-MPRS group were cysteine and methionine metabolism, glyoxylate and dicarboxylate metabolism, purine metabolism, alanine aspartate, and glutamate metabolism, and pyrimidine metabolism (Figure 7A and Supplementary Table 12). The results were consistent with significant gene sets enriched in GEO data. Based on GEO data, the significant gene sets enriched in the high-MPRS group were drug metabolism cytochrome p450, metabolism of xenobiotics by cytochrome p450, and arachidonic acid metabolism and those in the low-MPRS group were purine metabolism, alanine aspartate and glutamate metabolism, and pyrimidine metabolism (Figure 7B and Supplementary Table 12).




Figure 7 | Differentially expressed immune-related genes (DEIRGs) based on Molecular Signatures Database (GSEA) data and different immune responses between high- and low-risk score groups in stomach adenocarcinoma (STAD). (A) DEIRGs between high- and low-risk score groups based on The Cancer Genome Atlas (TCGA) data. (B) DEIRGs between high- and low-risk score groups based on Gene Expression Omnibus (GEO) data. (C) The differential distribution of immune cells between high- and low-risk score groups. (D) The correlation between 10 types of immune cells in STAD. (E) Volcano plot of DEIRGs in STAD between high- and low-risk score groups. Upregulated DEIRGs are shown as red points, and downregulated DEIRGs are shown as green points. *p < 0.05, **p < 0.01, and ***p < 0.001.





Differential Distribution of Immune Cells, Expressed IRGs, and Immune-Related Pathways Between High- and Low-MPRS Groups

The proportion of immune cells in STAD was significantly different between the high- and low-MPRS groups, including naïve B cells, monocytes, macrophages M0, macrophages M1, activated NK cells, Tregs, activated memory CD4 T cells, follicular helper T cells, and resting dendritic cells (Figure 7C and Supplementary Table 13). Additionally, some of the different proportions of immune cells between risk score subtypes correlated with each other; for example, M1 macrophages and activated memory CD4 T cells, M0 macrophages, and resting dendritic cells (Figure 7D). Furthermore, 194 DEIRGs were identified between the high-risk and low-risk score groups, including 10 downregulated and 183 upregulated IRGs (Figure 7E and Supplementary Table 14). The DEIRGs were enriched in 12 significant KEGG pathways: cytokine-cytokine receptor interaction (Figure 8A), TGF-beta signaling pathway (Figure 8B), ErbB signaling pathway (Figure 8C), neuroactive ligand-receptor interaction, neuroactive ligand-receptor interaction, melanoma, hematopoietic cell lineage, Jak-STAT signaling pathway, pathways in cancer, calcium signaling pathway, regulation of actin cytoskeleton, MAPK signaling pathway, and chemokine signaling pathway (Supplementary Table 15).




Figure 8 | The significant immune-related pathways of differentially expressed immune-related genes (DEIRGs) in stomach adenocarcinoma (STAD). (A) DEIRGs significantly enriched in cytokine-cytokine receptor interaction pathway. (B) DEIRGs significantly enriched in TGF-β signaling pathway. (C) DEIRGs significantly enriched in ErbB signaling pathway.





RT-qPCR and Protein Levels Confirmed the Identified Molecules

Furthermore, qRT-PCR was used to validate the expressions of 13 metabolism-related genes (GSTA2, POLD3, GLA, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A, and RDH12). The results showed that no significant difference was found for four metabolism-related genes (DCK, CKMT2, ACYP1, and POLR1A) between MKN-45 and GES-1 (Figure 9A). The results showed that no significant difference was found for four metabolism-related genes (GLA, DCK, ACYP1, POLR1A, and RDH12) between AGS and GES-1 (Figure 9B). All other genes were significantly different expressed between cancer cells and control cells. Protein expression levels were verified in the Human Protein Atlas (HPA) (https://www.proteinatlas.org/), and here two represent results were provided in Figures 9C, D, which indicated that the identified metabolism-related proteins were overexpressed in STAD tissues. Other protein expression levels can be checked online (https://www.proteinatlas.org/) (21).




Figure 9 | The verification of identified genes using PCR and HPA database. (A) Q-PCR was used to validate the expressions of 13 metabolism-related genes (GSTA2, POLD3, GLA, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A, and RDH12) between MKN-45 and GES-1. (B) Q-PCR was used to validate the expressions of 13 metabolism-related genes (GSTA2, POLD3, GLA, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A, and RDH12) between AGS and GES-1. (C) Protein expression level of GSTA2 was verified in the Human Protein Atlas (HPA). (D) Protein expression level of ASAH1 was verified in the HPA. *p < 0.05, **p < 0.01, and ***p < 0.001. NS, None significance.






Discussion

Despite great improvements in the diagnosis, prevention, and treatment, patients with STAD still have a poor prognosis and an unsatisfactory survival rate (23). With the development and application of prognostic and diagnostic signatures in clinical practice, molecular biomarkers, such as methylation state non-coding RNA, and mRNA have greatly contributed to patient classification, disease status monitoring, and personalized therapeutic schedules (24). Further studies on potential molecular biomarkers will benefit patients enormously. Cancer tissues often exhibit an abnormal metabolic profile, which is known as the “cancer metabolome” (25). Some of these aberrant metabolites are significantly associated with the proliferation, progression, recurrence, and metastasis of cancer cells (26). The main metabolic hallmarks of STAD have encouraged researchers to analyze metabolites. For example, the intermediates of the glycolysis/TCA cycle have a wide range of functions in multiple cellular processes. The inhibition of the activity of the 2-oxoglutarate dehydrogenase (OGDH) complex resulted in a decrease in mitochondrial membrane potential (ΔΨm) and ATP production and an increase in ROS levels and the NADP/NADPH ratio, which affected cellular energy metabolism to suppress STAD cell growth and migration (27). The deregulated uptake of some amino acid-related metabolic enzymes also has a wide range of functions in multiple cellular processes. For example, glutaminase 1 (GLS1) and gamma-glutamylcyclotransferase (GGCT) were found to be overexpressed in patients with STAD using LC-ESI-MS/MS. The co-expression level of GLS1 and GGCT was significantly associated with lymph node metastasis, histological grade, and TNM stage in STAD (28). Other metabolic hallmarks influence cancer cells, such as increased demand for nitrogen, metabolic interactions, and alterations in metabolite-driven genes (29). With the development of immunotherapy strategies against cancer, the activity and safety of the anti-PD-1 antibody pembrolizumab have been assessed in STAD patients with PD-L1-positive recurrence or metastasis. In an open-label, multicenter, phase 1b trial, pembrolizumab showed promising anti-tumor activity and toxicity profile in patients with STAD (30). Immunometabolism is an emerging field that can provide an understanding of the association between cancer metabolism and immune response in STAD. In the tumor microenvironment, metabolic remodeling and metabolic reprogramming of immune cells promote tumorigenesis, tumor progression, treatment resistance, and metastasis (31).

In our study, we performed lasso regression analysis to construct a metabolism-related prognostic model consisting of 13 genes (GSTA2, POLD3, GLA, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A, and RDH12) from 184 DEMRGs in both TCGA and GEO databases. The identification of this gene signature allowed the analysis of metabolism-related pathways and metabolic signatures at the transcriptional level to explore prognostic markers in STAD. We obtained high- and low-MPRS groups according to the metabolic prognostic signature. Furthermore, alterations in the immune cells in the tumor microenvironment between the high- and low-MPRS groups indicated an association between metabolic reprogramming and immune cells. The systematic analysis of metabolism-related genes in STAD has explored their potential roles as prognostic markers in STAD. The findings of our study were consistent with those of a previous study when we checked GenCLiP 3 (22). For example, glutaminase (GLS1), a protein associated with energy metabolism in cancer cells, encodes glutaminase, which catalyzes the hydrolysis of glutamine to glutamate and ammonia and plays a predominant role in the formation of malignant tumors. Studies on metabolic reprogramming, which targets glutamine metabolism in cancer cells, have focused on the glutaminase isozyme GLS (32). In addition, the result was also consistent with our experimental result, that glutaminase expressed higher in cancer cells (AGS and MNK-45) than normal control cells (GES-1). Lactate dehydrogenase A (LDHA) catalyzes the conversion of L-lactate and NAD to pyruvate and NADH during anaerobic glycolysis. Targeting LDHA to remodel the metabolic pathway has shown anticancer activity in cancer cells. When the function of LDHA was inhibited, energy metabolism could convert glycolysis to oxidative phosphorylation, leading to an increase in ROS levels and mitochondrial dysfunction. The potential therapeutic value of targeting metabolite-driven genes for the treatment of cancer is breaking new ground (33). GSTM1 encodes glutathione S-transferase, and mutations in this gene have been linked to several biological processes, including drug susceptibility, oxidative stress, environmental toxicity, and tumorigenesis. A total of 237 cases and 250 controls were genotyped for the GST1 polymorphism using the PCR-RFLP technique. GST1 was identified as a prognostic marker, which is closely related to the metabolism of xenobiotics in lung cancer. Therefore, patients carrying the mutant version of GSTM1 show the highest risk of lung cancer (34). Abnormal metabolism of choline and ethanolamine phospholipids is prevalent in almost all types of cancers. CHKA encodes choline kinase alpha protein, which plays a key role in the biosynthesis of phosphatidylcholine. Abnormal choline phospholipid metabolism in cancers frequently results from CHKA overexpression and hyperactivity. The novel choline kinase inhibitor could reprogram cellular metabolism and inhibit cancer cell growth (35). Among the identified 184 DEMRGs in both TCGA and GEO databases, 64 DEMRGs have been reported to be related to cancer metabolism, including GLS, CYP3A4, HK1, GSTM1, HK2, LDHA, CHKA, SHMT2, AKR1C3, G6PD, ADH1B, TYMS, PFKP, RRM1, AKR1C2, SAT1, ODC1, DCK, and ASAH1, PIK3CB, PYCR1, AKR1B10, ACO2, AKR1C1, GPI, GLUL, NNMT, ALDH3A1, EPHX1, ASS1, CBR1, SMPD1, MTHFD2, TK1, ACSL4, ME1, AGPS, UGT1A10, MTHFD1, RRM2, EPHX2, LPCAT1, ACP5, CYP2B6, INPP5A, PAFAH1B2, ASAH2, NUDT5, MTHFD1L, PYGB, GPT, ACP1, ADH7, BLVRB, CHDH, PTGS1, GSTA2, CES1, GSTA1, DNMT1, ACACB, FTH1, GSS, and G6PC, according to search with the keywords “metabolism and cancer” in GenCLiP 3 database (http://ci.smu.edu.cn/genclip3/input_enrichment.php#) (22). In the present study, we comprehensively examined the mRNA signature associated with STAD survival in the discovery stage (TCGA-STAD) based on RNA-Seq data and the validation stage (GEO dataset) based on microarray data. Our results showed that significant difference was found for nine metabolism-related genes (GSTA2, POLD3, GLA, GGT5, ASAH1, OPLAH, ME1, NNMT, and RDH12) between MKN-45 and GES-1. The results also showed that significant difference was found for eight metabolism-related genes (GSTA2, GLA, GGT5, CKMT2, ASAH1, OPLAH, ME1, and NNMT) between AGS and GES-1. The signature was first applied in the training set and was then validated in the testing set, suggesting that it was reliable. To testify the universality in different patients and to verify its application in different clinicopathological subgroups, survival analysis was performed in various subgroups. We found that the signature was independent of other potential predictors, including age, sex, stage, and grade, and its performances were of satisfaction. This suggests that most of our results were consistent with those of a previous study, with some new findings. Potential function of the mRNA encoding genes was annotated based on the gene ontology functional enrichment analysis. Among the encoding genes for 13 mRNAs significantly associated with STAD survival in the replication analysis, most of identified metabolism related genes were enriched in the metabolic process. So we think those hub genes might affect molecular metabolism, including nucleic acid, amino acid, and fatty acid, in caner related pathways. Furthermore, KEGG enrichment of DEMRGs between tumor and normal tissues in STAD showed the involvement of some significant pathways. The identified pathways influence several metabolic processes, such as ribonucleic acid metabolism (nucleotide sugar, pyrimidine, and purine), glucose and lipid metabolism (glycolysis/gluconeogenesis, fatty acid, fructose, mannose, pentose phosphate, pyruvate, and fatty acid elongation in mitochondria), amino acid metabolism (arginine, proline, alanine, aspartate, glutamate, glycine, serine, threonine, cysteine, methionine, tyrosine, tryptophan, valine, leucine, isoleucine, phenylalanine, selenoamino acid, and cyanoamino acid). These metabolism-related pathways provide clues to further studies on metabolic rewiring in cancers. For example, most cancer cells exhibit aberrant activation of lipid metabolism, which induces tumors to synthesize, elongate, and desaturate fatty acids to promote tumorigenesis, proliferation, and progression (36). Patients with upregulated glutaminolysis, glycolysis, and de novo synthesis of fatty acids are in a hypercatabolic state. The development of novel drugs targeting cancer anabolism or host catabolism has made great achievements in anticancer experimental treatments (37). Additionally, hub molecules were obtained from the PPI network, and their functions were evaluated in further studies. Some of these genes have been reported to be crucial in cancer metabolism. For example, glucose-6-phosphate dehydrogenase (G6PD) produces key electron donors, such as NADPH, against oxidizing agents. The oxidative pentose-phosphate pathway maintains a normal NADPH/NADP ratio to support cell growth. All the molecules involved in the oxidative pentose phosphate pathway are important for cell growth. Loss of G6PD in cancer cells generates high NADP, induces compensatory increases in malic enzyme 1 and isocitrate dehydrogenase, and inhibits dihydrofolate reductase activity to block folate-mediated biosynthesis (37). Cytochrome P450 (CYP3A) proteins are involved in the metabolism of approximately half the drugs, such as cyclosporin A, acetaminophen, diazepam, codeine, and erythromycin. Cytochrome P450 also metabolizes carcinogens, steroids, and other lipids. The polymorphisms CYP3A5*3 and CYP3A4* 1 B were tested more frequently in patients with primary lung tumors than in normal volunteers. The CYP3A5*3/4* 1B genotype might have high levels of CYP3A4 activity, which is crucial for the biotransformation of numerous anticancer agents and the metabolism of carcinogens (38). In our study, the identification of meaningful OS DEMRGs in STAD and their enriched pathways involved in the development and progression of SATD would provide valuable prospects for clinical diagnosis and new therapeutic strategies. However, further study and verification of the identified OS-DEMRGs in a prognostic model are necessary.

Along with the advancement in tumor immunology, immunotherapy combined with other therapies against tumors has been applied in clinical practice (39). Increasing evidence suggests that metabolic remodeling and metabolic reprogramming play a crucial role in the immune response to affect tumorigenesis, progression, invasion, and metastasis in various cancer cells (40). However, studies on the association between metabolic processes and the immune system (immune-related genes and pathways) are limited, which has hindered the advancement in the clinical application of combined metabolism-targeting drugs and immune checkpoint inhibitors (41). Previous studies have shown that immune cell responses and metabolism signaling networks are dynamically regulated. For example, serine/threonine kinase-mediated signaling networks can act as upstream regulators to regulate the metabolism of T cells. Immunometabolic signaling networks may uncover more therapeutic possibilities targeting metabolic molecules and immune cell responses in human cancers (42). In this study, the proportion of immune cells in STAD was significantly different between the high- and low-MPRS groups, including naïve B cells, monocytes, M0 macrophages, M1 macrophages, activated NK cells, Tregs, activated memory CD4 T cells, follicular helper T cells, and resting dendritic cells. Furthermore, the 194 DEIRGs were enriched in 12 significant KEGG pathways. In this study, we investigated some of the immune-related genes driven by metabolism in depth. For example, evidence has shown that HIF-1α/LDH-A mediates cell metabolism by causing a shift between aerobic glycolysis and oxidative phosphorylation, which alters PD-L1 expression; thus, the upregulated expression of checkpoint inhibitor PD-L1 induces tumor resistance to therapy (43). GHRL was one of the DEIRGs identified in our study, which acts as a powerful appetite stimulant and plays a key role in energy homeostasis. GHRL can regulate whole-body metabolism via the ghrelin-signaling pathway in the hypothalamus and alter the metabolic activity of cancer and immune cells (44). A systematic analysis of immune-related genes between high- and low-MPRS subtypes to clarify the role of metabolism in cancer immunotherapy would be meaningful.



Conclusion

The findings of our study were consistent with the previous study, but we focused on the cross-talking between metabolic reprogramming and immune system (45). In summary, we performed a systematic analysis of metabolism-related genes for predicting the prognosis of STAD, constructed a 13-gene metabolic signature as a prognostic model, and explored the association between metabolism and cancer immunity. The identified OS-related DEMRGs, DEIRGs, enriched metabolism-related pathways, and enriched immune-related pathways may play an important role in STAD tumorigenesis and deserve further study in clinical applications as diagnostic biomarkers and therapeutic targets.
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Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver, with high morbidity and mortality, yet its molecular mechanisms of tumorigenesis are still unclear. In this study, gene expression profile of GSE62232 was downloaded from the Gene Expression Omnibus (GEO). The RNA-seq expression data and relative clinical information were retrieved from the Cancer Genome Atlas (TCGA) database. The datasets were analyzed by differential gene expression analysis and Weighted Gene Co-expression Network Analysis (WGCNA) to obtain the overlapping genes. Then, we performed a functional enrichment analysis to understand the potential biological functions of these co-expression genes. Finally, we constructed the protein-protein interaction (PPI) analysis combined with survival analysis. MARCO, CLEC4M, FCGR2B, LYVE1, TIMD4, STAB2, CFP, CLEC4G, CLEC1B, FCN2, FCN3 and FOXO1 were identified as the candidate hub genes using the CytoHubba plugin of Cytoscape. Based on survival analysis, the lower expression of FCN3 and FOXO1 were associated with worse overall survival (OS) in HCC patients. Furthermore, the expression levels of FCN3 and FOXO1 were validated by the Human Protein Atlas (HPA) database and the qRT-PCR. In summary, our findings contribute new ideas for the precise early diagnosis, clinical treatment and prognosis of HCC in the future.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and the main cause of global cancer-related death (1). The current treatment principle is comprehensive treatment based on surgical treatment. Non-surgical treatment includes local tumor treatment, radiotherapy, chemotherapy and biological treatment. Liver transplantation technology is gradually becoming mature, but it is also mainly suitable for early HCC patients and the prognosis of late patients is poor (2). However, due to the lack of early diagnosis biomarkers, patients are usually in the late clinical stage at the time of diagnosis, and the overall survival (OS) of HCC patients is very poor. Therefore, it is of great significance to identify effective biomarkers and therapeutic targets for the treatment of HCC.

In recent years, bioinformatics analysis of expression profile has been widely and rapidly used to identify novel and more effective potential biomarkers for cancer treatment and patient prognosis (3–7). However, how to transform the microarray information into a better understanding of biology through traditional differential expression analysis is still a major challenge. Weighted Gene Co-expression Network Analysis (WGCNA) is an advanced method used to construct a co-expression module based on similar gene expression patterns and analyze the relationship between modules and specific features. Here, the differential gene expression analysis and WGCNA are combined to enhance the discrimination ability of highly related genes, which can be used as candidate biomarkers.

In this study, the mRNA expression data of HCC from the GEO and TCGA databases were analyzed by differential gene expression analysis and WGCNA to obtain the overlapping genes. Then, we performed a functional enrichment analysis to understand the potential biological functions of these co-expression genes. Finally, we constructed the protein–protein interaction (PPI) analysis combined with survival analysis. These results will help us to understand the etiology and potential molecular mechanism of HCC, and provide new therapeutic targets or biomarkers for HCC.



Materials and Methods


Data Sources and Data Processing

The workflow of the analysis is shown in Figure 1.




Figure 1 | The flow chart of data preparation, processing, analysis, and validation.



Gene expression profile of GSE62232 (8) was obtained using R package GEOquery from the GEO (http://www.ncbi.nlm.nih.gov/geo/). It was submitted by Sandrine Imbeaud and based on GPL570 platform ([HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array), including 81 HCC samples and 10 normal samples. Probes were converted into gene symbols according to the annotation documents, and repeated probes of the same gene were removed by determining the median expression value of all corresponding probes. Results, 21,654 genes were selected for subsequent analysis. The RNA-seq expression data and relative clinical information of HCC patients were retrieved from the TCGA database (https://portal.gdc.cancer.gov/) (9), including 374 HCC samples and 50 normal samples. In this study, we maintained genes with CPM (count per million) ≥1. After filtering with the RPKM (Reads Per Kilobase per Million mapped reads) function in edge R package (10), 13,913 genes with RPKM value entered our next analysis.



Differential Gene Expression Analysis

The limma package (Version4.0; http://www.bioconductor.org/packages/release/bioc/html/limma.html) (11) was applied to significance analysis of differentially expressed genes (DEGs) between HCC and normal tissue samples with the following selection criteria: thresholds of |logFC| ≥1.0, and an adjusted p-value of <0.05. The values of genes calculated by limma R package, and genes with expression of <0.5 were deleted. The volcano plot and hierarchical clustering analysis were represented by the R packages “ggplot2” and “pheatmap”, respectively.



WGCNA and Interaction With the DEGs

WGCNA is an analysis method for analyzing gene expression patterns of multiple samples. It can cluster genes with similar expression patterns and analyze the relationship between modules and specific traits or phenotypes. Co-expression network was established using the WGCNA R package (12) based on the gene expression data profiles of TCGA-HCC and GSE62232.

First, the samples were tested, abnormal samples and genes were eliminated, the Pearson correlation matrix was constructed through the gene correlation coefficient, and the power function apq = |cpq|β (apq = adjacency between gene p and gene q, cpq = Pearson’s correlation between gene p and gene q, and β = soft threshold) was used to convert it into a weighted adjacency matrix. In order to satisfy the scale-free distribution, soft threshold was set as β = 2 and 5. Then we transform the adjacency matrix into topological overlap matrix (TOM). Finally, genes with similar expression patterns were merged into the same module (minimum module size = 50). In order to identify the overlapping genes between important modules and TCGA-HCC and GSE62232 datasets, a Venn diagram was developed using the R package “VennDiagram” (13).



Function Enrichment Analysis

The clusterProfiler package (14) was used for functional enrichment of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (15). Through GO enrichment analysis, we can better understand their biological characteristics. KEGG helps us study the functional interpretation of genes and genomes as a whole network. The GO terms consist of the following three parts: biological process (BP), cell component (CC) and molecular function (MF). Adjusted p-value <0.05 was considered to have statistical significance.



Protein–Protein Interaction (PPI) Network and Hub Gene Identification

The Search Tool for Retrieval of Interacting Genes database (STRING, https://string-db.org/) was used to construct PPI networks (16). According to the confidence score ≥0.4, the genes with significant interaction were screened, and the filtered results were imported into the Cytoscape software 3.8.0 (17) (http://www.cytoscape.org) for network visualization. CytoHubba is used to explore important nodes in biological networks. It provides 11 topological analysis methods, Maximal Clique Centrality (MCC) algorithm was considered to be the most effective method to find the hub nodes (18). Top 12 MCC values were selected and then intersection was taken to get the hub genes in PPI analysis.



Hub Genes Validation and Survival Analysis

In order to further verify the relationship between hub genes and clinical features, we analyzed the corresponding data from TCGA database for verification. OS was performed by using the survival package in R software and disease-free survival (DFS) analyses of hub genes was analyzed using the online tool Gene Expression Profiling Interactive Analysis (GEPIA) (http://gepia.cancerpku.cn/) (19). The Kaplan–Meier curves were plotted by the expression profiles, which were divided into two groups based on the median expression value of hub genes. For survival analysis, R package “survival” and “survminer” were used to implement log-rank tests, p-value <0.05 was considered as statistically significant.



Validation of Protein Expressions of Hub Genes by the HPA Database

The Human Protein Atlas database (HPA) (https://www.proteinatlas.org/) (20) is dedicated to providing tissue and cellular distribution information of a variety of human proteins. The protein expression of the survival-related genes between HCC and normal tissues was determined using immunohistochemistry (IHC) from the HPA.



RNA Extraction and qRT-PCR

Total RNA was isolated using the Nuclezol LS RNA Isolation Reagent (ABP Biosciences, Inc). cDNA was synthesized using 1.0 ug of total RNA with the SureScript-First-strand-cDNA-synthesis-kit (GeneCopoeia, Guangzhou). Quantitative PCR was performed for hub genes using the BlazeTaq™ SYBR ® Green qPCR Mix 2.0 kit (GeneCopoeia) with the CFX96 real time quantitative PCR instrument (Bio-Rad, USA). The relative expression levels were determined by the 2−ΔΔCt method and normalized to internal control GAPDH. All qPCR reactions were performed in triplicate. The primers designed by Qingke Biology Co., Ltd are listed as below: FCN3-F: CAGGATGGTTCTGTGGATTT; FCN3-R: TCAGCGTCATAGGTGGTAAA; FOXO1-F: CTTCTGACTCTCCTCCCCACA; FOXO1-R: CCCATCCTACCATAGCCATTG; GAPDH-F: CGCTGAGTACGTCGTGGAGTC; GAPDH-R: GCTGATGATCTTGAGGCTGTTGTC.




Results


The Identification of DEGs

In total, 1,019 DEGs in the GSE62232 dataset (Figure 2A) and 2,703 DEGs in the TCGA dataset (Figure 2B) were found to be dysregulated in tumor tissues by the limma package, according to the adjusted p-value of <0.05 and a |logFC| ≥1.0. The heatmaps of the two datasets, as shown in Figures 3A, B, respectively show that these DEGs can distinguish HCC from normal specimens well.




Figure 2 | The volcano plot of DEGs in patients with HCC. (A) Volcano plot of DEGs in the GSE62232 dataset. (B) Volcano plot of DEGs in the TCGA dataset. Up-regulated genes and down-regulated were represented in red dot and green dot respectively.






Figure 3 | The heatmaps of DEGs between HCC and normal tissues. (A) Heatmap of the GSE62232 dataset. (B) Heatmap of the TCGA dataset. Red represents the upregulated genes and green represents the downregulated genes.





Construction of Weighted Gene Co-Expression Modules and Identification of Overlapping Genes With DEGs

In order to construct the co-expression modules and find the key modules related to HCC, the datasets of GSE62232 and TCGA-HCC were evaluated by the WGCNA package. Hierarchical clustering analyses are shown in Figures 4A and 5A. After assigning colors to each module, a total of nine modules in the GSE62232 (Figure 4B), and 10 modules (Figure 5B) in TCGA-HCC were identified. Next, we tried to assess the relationship between modules and clinical traits (tumor and normal). The results of the module–trait relationships are presented in Figures 4C and 5C, revealing that the black module in the GSE62232 and the blue module in the TCGA-HCC were found to have the highest association with normal tissues (black module: r = 0.88, p = 9e−31; blue module: r = 0.79, p = 1e−90).




Figure 4 | Co-expression modules construction and selection in the GSE62232 dataset. (A) Samples clustering and trait heatmap. (B) Dendrogram of co-expression network modules were clustered with dissimilarity according to topological overlap (1-TOM). (C) Heatmap of the correlation between the module eigengenes (ME) and traits.






Figure 5 | Co-expression modules construction and selection in the TCGA dataset. (A) Samples clustering and trait heatmap. (B) Dendrogram of co-expression network modules were clustered with dissimilarity according to topological overlap (1-TOM). (C) Heatmap of the correlation between the module eigengenes (ME) and traits.



As shown in the Venn diagram, 414 and 2,066 co-expression genes were found in the black module of GSE62232 dataset and the blue module of TCGA-HCC, respectively. A total of 87 overlapping genes were extracted to verify the genes of co-expression modules (Figure 6).




Figure 6 | The Venn diagram of genes among DEG lists and co-expression module. In total, 87 overlapping genes in the intersection of DEG lists and two co-expression modules.





Functional Enrichment Analysis of the 87 Overlapping Genes

To gain the potential biological functions and pathway relevance of the 87 genes, GO and KEGG pathway analyses were conducted. The results of GO enrichment analysis showed that the genes were significantly enriched in humoral immune response, collagen-containing extracellular matrix, carbohydrate and peptide binding (Figure 7A). Then, KEGG analysis indicated that the genes were mainly enriched in Serotonergic synapse, MAPK signaling pathway and Gastric cancer (Figure 7B).




Figure 7 | GO and KEGG pathway analysis of the 87 genes. (A) GO analysis; (B) KEGG pathway analysis. GO analysis includes biological process (BP), cellular component (CC), and molecular function (MF). The count represents the number of genes and the color represents the adjusted p-values.





PPI Network Construction and Hub Genes Screening

The PPI network of the overlapped genes was constructed with Cytoscape software based on the STRING database, which contains 84 nodes and 269 edges (Figure 8A). The hub genes selected from PPI network by MCC algorithm of cytohubba plugin were shown in Figure 8B. According to MCC sores, 12 genes with the highest score were selected as the hub genes, including MARCO, CLEC4M, FCGR2B, LYVE1, TIMD4, STAB2, CFP, CLEC4G, CLEC1B, FCN2, FCN3 and FOXO1.




Figure 8 | PPI network construction and hub genes screening. (A) PPI network of the overlapping genes was constructed using Cytoscape software based on STRING database. (B) The top 12 genes with the highest mcc score were selected as hub genes from the PP.





Validation of the Hub Genes

In order to confirm the reliability of the hub genes, we drew a box plot of the expression of each gene between HCC and normal tissues (Figure 9). OS analysis of the 12 hub genes were performed by Kaplan–Meier plotter using the R survival package (Figure 10). GEPIA2 is an online database, designed to quickly obtain customizable functions. Using this tool, disease-free survival (DFS) curves (Figure 11) were obtained and log rank P values of 12 hub genes were measured. Among these 12 genes, we found that the expression levels of FCN3 and FOXO1 were significantly related with OS of the HCC patients (P <0.05) (Figures 10K, L), while with DFS there was no significant difference observed in HCC patients with an expression level of FOXO1 (Figure 11L). Moreover, both the immunohistochemical (IHC) staining obtained from the Human Protein Atlas (HPA) database and the qRT-PCR showed a significantly lower expression of FCN3 and FOXO1 in HCC tissues than in normal tissues (Figures 12 and 13).




Figure 9 | Validation of expression levels of hub genes among HCC and normal tissues from the TCGA database. (A) MARCO, (B) CLEC4M, (C) FCGR2B, (D) LYVE1, (E) TIMD4, (F) STAB2, (G) CFP, (H) CLEC4G, (I) CLEC1B, (J) FCN2, (K) FCN3 and (L) FOXO1.






Figure 10 | Overall survival (OS) analyses of hub genes. (A) MARCO, (B) CLEC4M, (C) FCGR2B, (D) LYVE1, (E) TIMD4, (F) STAB2, (G) CFP, (H) CLEC4G, (I) CLEC1B, (J) FCN2, (K) FCN3 and (L) FOXO1. The red line represents samples with high gene expression, and the blue line represents samples with low gene expression.






Figure 11 | Disease-free survival (DFS) analyses of hub genes. (A) MARCO, (B) CLEC4M, (C) FCGR2B, (D) LYVE1, (E) TIMD4, (F) STAB2, (G) CFP, (H) CLEC4G, (I) CLEC1B, (J) FCN2, (K) FCN3 and (L) FOXO1. The red line represents samples with high gene expression, and the blue line represents samples with low gene expression.






Figure 12 | Immunohistochemistry of the genes in HCC (right) and normal tissues (left) from the human protein atlas (HPA) database. (A) FCN3, (B) FOXO1.






Figure 13 | Validation of the expression level of two hub genes using qRT-PCR. (A) FCN3, (B) FOXO1.






Discussion

In the clinical application of HCC, traditional diagnostic methods such as serum alpha-fetoprotein (AFP) has limited specificity and sensitivity, current data show that there is no single biomarker used for the detection of HCC alone, especially in the early stages of development (21). Therefore, better biomarkers for specific prognosis and progression of HCC are demanded. Several genes have been identified as novel biomarkers for HCC diagnose. For instance, SCAMP3 was over-expressed in numerous tumors, especially in HCC. SCAMP3 level was positively correlated with disease stages and tumor grades and negatively correlated with patient survival (2); SOX4, STK39, TARBP1, and TDRKH can be regarded as potential prognosticators and therapeutic targets for HCC (22).

In this study, we first combined DEGs and WGCNA to improve the ability to identify genes related to HCC. Our bioinformatics analysis based on TCGA and GEO databases. A total of 87 overlapping genes were extracted to verify the genes of co-expression modules. Based on the Cytoscape software of string database, we consider the top 12 genes as core genes, including: MARCO, CLEC4M, FCGR2B, LYVE1, TIMD4, STAB2, CFP, CLEC4G, CLEC1B, FCN2, FCN3 and FOXO1. Among them, the low expression of FCN3 and foxo1 was significantly related to the OS rate of HCC patients.

FCN3 (Ficolin-3) is a member of fibrin gelatins family, which is mainly expressed in lung and liver. FCN3 can recognize carbohydrate, mediate apoptosis, regulate phagocytosis and activate complement lectin pathway, and participate in local and systemic innate immune response. FCN3 can recognize and bind acetyl compounds and glycosyl structures on the surface of host cells and pathogens, further combine with serine protease, produce living enzymes, hydrolyze complement C4, C2 and C3, form membrane attack complex and initiate cell apoptosis through a series of linkage reactions. The activation of complement lectin pathway mediated by FCN3 is the main defense mechanism of human innate immunity. Studies have shown that the abnormal expression of FCN3 in esophageal cancer, ovarian cancer and other tumors may participate in the host cancer immune response process (23, 24). Previous studies have also shown that FCN3 was overexpressed in the serum of most HCC patients after RFA. FCN3 might be a biomarker for RFA treatment efficacy and a potential target for HCC immunotherapy (25). Our research also shows FCN3 can be regarded as potential prognosticator for HCC.

FOXO1 (Forkhead box O1), also known as the forkhead rhabdomyosarcoma transcription factor (FKHR), is a key member of Forkhead Box family (26). FOXO1 is a factor that inhibits tumorigenesis. Consistently, interruption of FOXO1 level/activity promotes canceration. PI3K, mitogen-activated protein kinase (MAPK) and IκB kinase (IKK) and other major signaling pathways promote carcinogenesis through FOXO family members (27). Studies have shown that low levels of FOXO1 are closely related to digestive system neoplasms (28, 29). Lou et al. found that microRNA-142-5p overexpression inhibits cell growth and induces apoptosis by regulating FOXO1 in Hepatocellular Carcinoma Cells (30). Wang et al. performed the differential co-expression analysis of hepatic gene expression in samples of HCV-cirrhotic patients with and without HCC. They found that FOXO1 might play crucial roles in HCC development (31).

In summary, we provided a comprehensive bioinformatics analysis to identify potential predictive biomarkers between HCC and normal tissues, the present study suggests that the low expression of FCN3 and FOXO1 was significantly related to the OS rate of HCC patients. Our findings provide novel insights into the role of potential biomarkers in HCC and suggest that these findings may have a great clinical significance. However, our article also has many limitations. Firstly, the expression and risk prediction ability of hub genes have not been verified in a large number of clinical samples (22). Secondly, the specific functions of the hub genes in HCC were still missing, we still need to perform experiments to explore this in the future. In addition, it may not be very accurate for each patient with HCC subtypes and we still need to perform experiments to explore this in the future (32).
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Introduction

Knowledge of the high microsatellite-instability (MSI-H)/mismatch repair deficiency (MMRd) status is of increasing interest for personalized neoadjuvant or adjuvant therapy planning. Only a few studies are available on MSI-H distribution in the Northern European Caucasian patient population. In this study, we focused on a large cohort of tumors of the upper gastrointestinal tract.



Materials and Methods

Surgical material from a total of 1,965 patients was analyzed for MSI-H/MMRd status (including 1,267 carcinomas of the esophagus or stomach). All tumors were analyzed with an internationally recommended immunohistochemical panel consisting of four antibodies (MLH1, MSH2, PMS2, and MSH6). The results were molecularly objectified.



Results

Adenocarcinomas with MSI-H/MMRd were detected with the following distribution: esophagus (1.4%), stomach (8.3%), small intestine (18.2%), large intestine (8.5%), intrahepatic bile ducts (1.9%), and pancreas (0%). In case of gastric tumors with MSI-H/MMRd, neoadjuvant therapy did not influence the prognosis of patients (p = 0.94). Within all tumor entities with MSI-H/MMRd, patients with a UICC stage 4 were also represented. In this advanced stage, 11.7% of patients with MSS tumors were diagnosed compared to 0.5% of patients with MSI-H tumors relative to the entire tumor collective.



Discussion

In this study, the proportion of MSI-H/MMRd tumors in the stomach is smaller than would have been expected in knowledge of the data published by TCGA or AGRC. Negative prognostic effects regarding MSI-H status and neoadjuvant therapy as described by the MAGIC study group were not seen in our cohort. The extent to which the MSI-H/MMRd status should be known for neoadjuvant therapy planning must be clarified in prospective studies in the future. At present, there is no convincing data to dispense the neoadjuvant therapy for gastric carcinoma. Due to the very convincing, positive data regarding the response rates of MSI-H tumors to treatment with PD1/PD-L1 inhibitors, every metastatic carcinoma of the gastrointestinal tract should be tested for its MSI-H status.
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Introduction

Over the last years, an increasing number of tumor entities were analyzed for high microsatellite-instability (MSI-H)/mismatch repair deficiency (MMRd) (1). MSI is characterized by tumor DNA sequence alterations, namely deletions or expansion of short tandem repeats (mainly mono- or dinucleotide motifs) in microsatellite regions in comparison to non-tumor DNA. These DNA alterations accumulate because of a failure of the DNA mismatch repair (MMR) system that normally repairs errors occurring during DNA replication (2). MMRd leads to an increased accumulation of DNA alterations genome wide, which are assumed indirectly by testing for MSI. The underlying pathogenic mechanisms are hypermethylation of the promotor regions of genes encoding MMR proteins in most cases or mutations in MMR genes (e.g., MLH-1, PMS-2, MSH-2, and MSH-6) resulting in loss of function of the entire MMR system. It is proposed that immunohistochemistry that takes into account four proteins (MLH1, MSH2, MSH6, and PMS2) is sufficient as a screening method for a MSI phenotype in diagnostic algorithms. If these four proteins are detected by immunohistochemistry in the tumor cell nuclei, no further testing is necessary as the tumor is assumed to harbor no MMRd. These tumors are often classified as “microsatellite stable (MSS),” as no MSI is assumed in the presence of expressed MMR proteins [exceptions exist with very rare forms of Lynch syndrome (LS)] (3–6).

The MMR proteins form a functional complex consisting of two heterodimers MLH1–PMS2 and MSH2–MSH6.

The PMS2 protein degenerates in the absence of MLH1 (therefore, MLH1 promoter methylation or mutation in MLH1 occurs, leading to loss of function of MLH1, also leads to missing the detection of PMS2 in immunohistochemistry), and MSH6 degenerates in the absence of MSH2. However, MLH1 and MSH2 proteins can remain stable on their own without their respective partners. Loss of nuclear staining in the tumor cells either with MLH1/PMS2 or MSH2/MSH6 constitutes a MSI-H phenotype. Mutations in MMR genes are known to occur and are classified as either sporadic or less frequently hereditary, with the latter defining LS (formerly HNPCC). Because almost all tumors with mutations in the MMR genes display the MSI phenotype, MSI testing has become a useful diagnostic tool in screening for cancer predisposing to LS (7, 8).

More recently, studies have focused on the prognostic and predictive value of the MSI phenotype independent of the underlying repair defect. For example, colorectal carcinomas (CRCs) with a MSI phenotype were reported to display less frequent distant metastasis in comparison to that in MSS tumors, and patients had a more favorable outcome (9, 10).

Furthermore, the MSI phenotype of tumors was shown to be a predictive marker for a more sensitive response to immune checkpoint blockade (e.g., anti-PD-1 inhibitor) with improved clinical benefit (11). It is assumed that the large amount of frameshift-derived neoantigens resulting from MMRd (sporadic and hereditary) leads to a more sensitive response to immune checkpoint blockade, regardless of specific cancer entity (12).

Little reliable data exist on the incidence of MSI-H tumors of the upper GI tract in the Northern European Caucasian patient population. While there are several publications on CRC, carcinomas of the upper gastrointestinal tract or bile ducts in particular are underrepresented and often considered only in a very small number of patients. Therefore, the aim of this study was to determine the incidence of the MSI-H phenotype in a Northern European Caucasian patient cohort, considering nearly 2,000 unselected human gastrointestinal or biliodigestive carcinomas, with a special focus on the poorly characterized carcinoma entities of the upper gastrointestinal tract.



Materials and Methods


Statistical Analysis

Patient data were prospectively collected in a database. Overall survival was evaluated from the date of surgery to death. Kaplan–Meier curves were generated and compared using the log-rank test. Data on patients with no event or lost follow-up were censored at the last date of consultation. A two-sided p-value < 0.05 was considered statistically significant. SPSS package version 25 (IBM, Armonk, New York, USA) was used for all statistical analyses.



Patients and Tumor Samples

In this retrospective study, we analyzed formalin-fixed and paraffin-embedded human tumor tissue for its DNA MMR protein status/microsatellite status. For this purpose, surgical material from different tumor entities was considered. We included all patients who underwent surgery in our Cancer Centers (with some exceptions of the pancreatic tumor collective and two tumors of the small intestine) during a 15-year period. We had access to the tumor material within the selected time period. There was no pre-selection of patients beyond that. In total, 1,965 carcinomas were analyzed (Table 1). Representative tumor material was transferred to tissue microarrays (TMAs) for immunohistochemical analysis. To determine the DNA repair protein status, four proteins (MLH1, PMS2, MSH2, and MSH6) were immunohistochemically determined. Additionally, we examined all CRCs for their expression of MSH3 to determine the extent of “elevated microsatellite alterations at selected tetranucleotide repeats” (EMASTs) in our collective. Thus, in a first step all tumors were primarily screened for MMR status by immunohistochemistry. A tumor was considered mismatch-repair deficient (MMR-d) if two contiguous protein pairs (MLH1/PMS2 or MSH6/MSH2) or MSH3 in CRCs) showed a nuclear protein loss in the tumor cells, while the surrounding non-tumor cells (inflammatory cells or fibroblasts) showed preserved nuclear staining (positive internal control). We did not observe an isolated protein failure, which can occur in connection with LS, in our tumor collective. All cases with abnormalities of the staining pattern were re-analyzed on large tumor blocks in order to verify the result of the TMA evaluation and to be able to make statements regarding a possible heterogeneous distribution of DNA repair protein-deficient tumor clones. Nevertheless, we verified the results on a molecular level in exemplary cases using an in-house PCR additionally (see details below). With this approach, there was only one gastric carcinoma where we were unable to show MSI-H, although we detected a focal failure of MSH6 protein expression with unknown significance in a few hundred tumor cells. We were able to show the concordance between the immunohistochemical and molecular results in all other analyzed cases. As a result, we restricted ourselves to protein analysis for the remaining tumors.


Table 1 | Characteristics of the patients.





Ethics Committee Approval

Procedures were followed as outlined in accordance with ethical standards formulated in the Helsiniki Declaration 1975 (and revised in 1983). Patients gave their written consent to usage of their tumor specimens, and the objective of the projects is primarily in the field of diagnostic and quality assurance. An approval was obtained from the University of Cologne Ethics Committee (reference number: 13-091 and 10-242).



TMA Construction

For TMAs, one tissue core from each tumor was punched out and transferred into a TMA recipient block. TMA construction was performed as previously described (13, 14). In brief, tissue cylinders with a diameter of 1.2 mm each were punched from selected tumor tissue blocks using a self-constructed semi-automated precision instrument and embedded in empty recipient paraffin blocks, and 4 μm sections of the resulting TMA blocks or large scale tumor blocks were transferred to an adhesive coated slide system (Instrumedics Inc., Hackensack, NJ, USA) for immunohistochemistry.



Immunohistochemical Analysis of MMR Proteins

All tumors were stained for MLH1 (clone: M1 Ventana), MSH2 (G219-1129), PMS2 (EPR3947), and MSH6 (Clone44, Ventana) on Ventana Benchmark stainers. Additionally, all CRCs were stained for MSH3 (clone EPR 4334) on the Bond stainer from Leica, Germany, using EDTA buffer (1:100 dilution). 3,3′-Diaminobenzidine (DAB) was used as a chromogen and hematoxylin as a counterstain.



Molecular Analysis

Tumor areas were marked by an experienced pathologist on an H&E stained slide and corresponding unstained tumor, and paired normal tissues were macrodissected from formalin-fixed, paraffin-embedded (FFPE) 10 µm thick tissue sections. DNA extraction was performed with the Maxwell 16 FFPE Plus Tissue LEV DNA Purification Kit (Promega, Mannheim, Germany) on the Maxwell 16 (Promega, Mannheim, Germany) following the instructions of the manufacturer after overnight digestion with Proteinase K.

Microsatellite status was determined using an in-house PCR protocol with primers for the Bethesda markers, including the mononucleotide markers BAT25 and BAT26 or the dinucleotide markers D5S346, D2S123, D17S250, D10S197, D18S58, and D13S153 and the tetranucleotide marker MYCL1. For evaluation, polymerase chain reaction (PCR) was followed by fragment length analysis on an ABI PRISM 3500 Genetic Analyzer (Applied Biosystems, Life Technologies, Darmstadt, Germany).




Results

In the present study, we analyzed the MMRd status of 1,965 adenocarcinomas from the gastrointestinal tract and biliopancreatic system. In 82 out of 1,965 cases (4.2%), we observed a loss of expression at the protein level in the tumor cells of at least one of the two pairs of MMR proteins (MLH1/PMS2 or MSH6/MSH2). These tumor tissues were then tested for MSI-H by an in-house PCR protocol (as described above). The results confirmed the concordant MSI-H/MMRd status of the exemplary molecularly tested tumors (compare Figure 1). For available clinical patient characteristics, see Tables 1–3.




Figure 1 | Distribution of MSI-H carcinomas in the GI-tract.




UICC Stage 4 in MSS and MSI Tumors Related to All Tumor Entities

Within the whole patient cohort, in this study, 229 MSS tumors presented in our operative tumor collective with UICC stage 4 (11.7%) compared to 10 tumors with MSI (0.5%). In the MSI subgroup, 12.2% of patients were diagnosed with UICC stage 4 (Table 2).


Table 2 | Characteristics of MSI-H tumors.




Table 3 | Characteristics of MSI-H gastric carcinomas.





Esophageal Adenocarcinoma

Out of 685 patients with EAC, 562 patients were finally analyzable. In eight out of 562 (1.4%) cases of EAC, the analysis revealed MSI-H tumors. All of these tumors showed a loss of MLH1 and PMS2 at the protein level. Patient characteristics are given in Tables 1, 2. Reasons for non-informative cases included lack of tissue samples or absence of unequivocal cancer tissue in the TMA spot. Not all clinical data were available from the 31 patients. This is in line with the idea that EACs are predominantly assigned to the chromosomally instable (CIN) subgroup of gastric carcinoma (compare Discussion) (15).

In the subgroup of MSI-H tumors, seven out of eight tumors were localized with lymph nodal metastasis (UICC stage 2 or 3). One patient presented with an oligometastasized UICC stage 4 tumor.



Gastric Adenocarcinoma

The subgroup of GACs comprises 582 patients, of which 528 were analyzable. Of these, 44 tumors were classified as MSI-H (8.3%), significantly less than we expected according to TCGA (compare Discussion). In order to check the quality of our collective, we have presented the outstanding prognostic importance of UICC staging (compare Figure 2).




Figure 2 | Overall survival of all primary operated gastric carcinomas.



In the MSI-H subgroup, 28 patients underwent primary surgical resection without neoadjuvant therapy, while 11 patients received neoadjuvant therapy with cytostatic combinations. The majority of cases were diagnosed in either a localized or less advanced tumor stage (UICC stages 1 and 2; n = 23, 58%). Nevertheless, 19 patients already harbored regional lymph node metastases (48.1%) at time of diagnosis (Table 3). Three patients presented with distant metastases already at the time of diagnosis or shortly after surgery (UICC stage 4; 7.6%).

The OS analysis revealed that the MSI-H tumors treated with primary surgery tended to show a better prognosis compared to the MSS tumors treated the same way. However, this result was only slightly insignificant (p = 0.09) (compare Figure 3). Neoadjuvant therapy had no measurable influence on the prognosis of MSI-H tumors (p = 0.94) in our collective (Figure 4 and Table 3).




Figure 3 | Overall survival in gastric cancer with high microsatellite instability (MSI-H) without neoadjuvant treatment compared to microsatellite stable tumors (MSS).






Figure 4 | Overall survival in gastric cancer with high microsatellite instability (MSI-H) after neoadjuvant treatment.



All MSI-H gastric carcinomas were examined for possible heterogeneity of MMR protein expression. For this purpose, all tumor-bearing paraffin blocks with the corresponding precipitated protein were re-analyzed. No heterogeneous expression was found that would have been suspicious for MSS clones within a MSI-H tumor. Also, the lymph node metastases showed a homogeneous MSI-H phenotype.



Small Bowel Adenocarcinoma

Within the SBAC subgroup (n = 11), two MSI-H carcinomas were detected (18.2%). One tumor occurred in association with LS. However, both MSI-H tumors presented in a locally advanced, regional lympho-nodal metastatic stage (UICC stage 3).



Large Bowel Adenocarcinoma

All 319 LBAC tumors included were analyzable. In 27 cases (8.5%), a MSI-H phenotype was revealed, which was more frequently localized in the right colon (n = 21; 77.8%). Two tumors occurred in association with LS. From 240 patients, we have additional clinical follow-up data. In the overall cohort, almost twice as many men received surgery (199 men versus 120 women). However, in the MSI-H group, there were more women (15 women versus 12 men). While in the overall cohort UICC stages 1 and 2 are represented with 127 patients; 113 patients were diagnosed in advanced tumor stages 3 and 4. Thus, both UICC groups (1 + 2 versus 3 + 4) are almost equally distributed. The metastatic UICC stage 4 is especially strongly represented with 79 patients (24.8%). In the MSI-H group, an enrichment of UICC stages 1 and 2 (n = 10; 37%) was found. Of 79 patients who presented with UICC stage 4, five patients had MSI-H tumors (6.3%; 18.5% UICC stage 4 tumors in the MSI-H subgroup). Additionally, we found a single patient with loss of MSH3 and confirmed instability of the tetranucleotide MYCL1. In our collective of CRCs, we found a frequency of 0.3% for EMAST. Further patient characteristics are given in Tables 1, 2.



Bile Duct Adenocarcinoma

Intrahepatic bile duct carcinomas of 52 patients were available for analysis. Clinical data were available for all patients. One tumor showed MSI with selective loss of MLH1 and PMS2 (1.9%). This male patient was over 60 years old and presented clinically with advanced UICC stage 4 (Tables 1, 2).



Pancreatic Ductal Adenocarcinoma

A total of 319 PDAC tumors were analyzed. All tested carcinomas showed a MSS phenotype. Clinical data was available for all patients. Patient characteristics are given in Tables 1, 2.




Discussion

MSI-H is a predictor for the probability of an increased response to immune checkpoint inhibitors directed against PD-1/PD-L1 in different carcinoma entities (11, 12, 16). At the same time, MSI-H tumors do not seem to benefit from cytostatic therapy with 5-FU. This may be due to the fact that chemosensitivity requires the integration of 5-FU into tumor DNA and that an intact MMR system is required for this integration (17, 18). The prognostic relevance of a neoadjuvant therapy for patients with MSI-H gastric cancer is unclear. While one study showed an unfavorable prognosis, indicating that neoadjuvant chemotherapy should not be used in this setting, other studies found no such effect (19–21). Knowledge of the MSI status of the tumor is therefore of increasing interest for therapy planning, irrespective of the question of possible LS. Two procedures are recommended to determine the MSI status. Internationally, an immunohistochemical analytical method, including the four MMR proteins mentioned above, is recommended as a screening method. Alternatively or in addition, a PCR- or NGS-based method can be used (8, 22–24). Both methods were used in this study to determine the MSI status of the tumors analyzed here.

Over the last 5 years, several publications have described the extent of expected MSI-H tumors in different tumor entities (1, 25). The majority of studies did not focus on Northern European patients. There is no clarity about the extent to which the therapy-relevant subgroup of MSI-H tumors is represented in the German patient population and what differences arise between this subgroup and Southern European or non-European populations. We have therefore analyzed more than 1,900 tumors of the upper or lower gastrointestinal tract, pancreas or intrahepatic bile ducts for their MSI-H status. The tumor material originated mainly from a single large German surgical center. In accordance with the data of other research groups, there are about 1% of MSI-H tumors that are EACs (26–28). To the best of our knowledge, there are nine publications to date that deal with the frequency of MMRd in EAC. Including the data of the TCGA group (n = 70), a total of 285 adenocarcinomas were analyzed in these studies (n = 5 to n = 70). Only a proportion of these patients were of Caucasian origin. The extent of MSI-H varied between 0 and 20%, with 20% in a small study referring to only one patient. The 70 EACs analyzed from the TCGA group were all MSS (26–35). Thus, LS as a hereditary cause of MSI-H does not play a relevant role in the pathogenesis of esophageal cancer. The very low frequency of MSI-H in esophageal cancer will also allow conclusions to be drawn about the response rates to immune checkpoint inhibitor treatment.

Adenocarcinomas of the stomach show significantly more MSI-H tumors compared to the esophagus. Considering TCGA, up to 21% of gastric carcinomas were MSI-H (36, 37). Nevertheless, other data on the MSI-H frequency in gastric cancer is highly variable and fluctuates between 7 and 24% (25). Recently, a study was published that molecularly characterized more than 600 adenocarcinomas of the stomach and the gastroesophageal junction. It is assumed that this group studied a Northern European Caucasian patient population. The well-documented analysis results show practically identical results to our tumor cohort, with 9.6% MSI-H in surgically removed gastric cancers (38). If the data of this group and our data are combined, it can be assumed that less than 10% of MSI-H gastric carcinomas in Germany have been diagnosed within over 1,000 tested gastric carcinomas. This information is particularly relevant in view of the good response rates to immune checkpoint therapies in this subtype, as the MSI-H subtype is to be expected in less than half of German patients with gastric cancer compared to that of TCGA data (MSI-H in TCGA collective 21.9%). According to our results, metastasized MSI-H tumors (UICC stage 4) are very rare, at least in a potentially operable patient collective. However, this statement is strongly flawed, since we have only analyzed surgical material, and gastrectomy is usually not performed on already hematogenously metastasized gastric carcinomas. Reliable statements about the frequency of MSI-H phenotype in the (advanced) hematogenously metastasized state (UICC stage 4) are not possible. Although, since the MSI-H status is associated with a favorable prognosis in all studies, a relevant number of patients with UICC stage 4 MSI-H cannot be assumed. As mentioned above, contradictory data exist regarding the prognostic relevance of neoadjuvant chemotherapy in patients with MSI-H gastric cancer. We did not find any statistical significance (see also Figure 3). In our collective, there was neither a less beneficial prognosis in the MSI-H neoadjuvant treated group as suggested by the retrospective data of the MAGIC study group nor a favorable prognosis as demonstrated in the Heidelberger study group. In the future, larger and prospectively considered patient collectives will have to clarify the prognostic and predictive effects of neoadjuvant therapy in the MSI-H group. From our point of view, the contradictory data available to date do not justify abandoning neoadjuvant treatment in MSI-H gastric carcinoma (38).

The proportion of MSI-H colon carcinomas in our collective with 8.5% is slightly below the internationally usual proportion of about 13–15%. We explain this by the fact that the sporadic MSI-H tumors of the colon occur in older patients who are under-represented in our university hospital (39, 40). The proportion of UICC stage 4 colon cancer in our patient population is higher than expected. This is possibly explained by the university structure of visceral surgery with its own hepatobiliary unit, possibly leading to an accentuation of patients in advanced tumor stages.

This underlines two characteristics and also possible weaknesses of this publication. First, it is a retrospective analysis of a large but solitary university cancer center. Therefore, the patient population is biased. Second, the main focus of the Visceral Surgery Clinic is the treatment of carcinomas of the upper gastrointestinal tract; for these tumor entities, the center and this publication will probably be able to provide very realistic and representative data on the MSI-H distribution in the surgical material. This is limited for carcinomas of the lower gastrointestinal tract for the reasons described above. A further weakness lies in the sole analysis of the surgically removed tumor material considered by us. Most patients showed no distant metastases at the time of surgery. In the remaining cases, the maximum was that of resectable metastases in an oligometastatic fashion. Patients who at the time of diagnosis were either intensively metastasized or were not operable for other reasons were not considered. It is not to be assumed and does not correspond to the clinical experience of the authors that a quantitatively significant proportion of MSI-H tumors occur in the group of patients with extensive distant metastases. At least in the group that received surgery, patients with oligometastasized gastric carcinoma, a comparably high proportion of MSI-H tumors were found as in the rest of all gastric tumors. However, our data also make it clear that MSI-H tumors are also found in a metastatic tumor stage despite their otherwise more favorable prognosis. The authors of this study argue that at least all metastatic GACs should be analyzed for their MSI-H status.

Molecular analyses on hundreds of adenocarcinomas revealed a comparable number of MSI-H tumors in the small intestine and colon (41, 42).

Additionally, we can confirm the rare sequence for the MSI-H bile duct carcinoma in our collective. In the prognostically and therapeutically extremely unfavorable ductal adenocarcinoma of the pancreas, we did not find any MSI-H tumors in our patient collective. Nevertheless, other major analyses rarely describe MSI-H tumors in the pancreas as well. However, the expected frequency is below 1%.

In summary, MSI-H is also distributed with varying frequency to a Northern European patient population within the gastrointestinal tract. In the esophagus, MSI-H tumors are very rare (about 1%). In the stomach, they represent a subgroup of about 10%. The proportion of MSI-H tumors in the stomach is therefore significantly smaller than would have been expected after TCGA or AGRC. We did not see any negative prognostic effects regarding the MSI-H status and neoadjuvant therapy as described by the MAGIC study group. The extent to which the MSI-H status should be known for neoadjuvant therapy planning must be clarified in prospective studies in the future. At this point in time, there is no convincing data to dispense with neoadjuvant therapy for gastric carcinoma. MSI-H tumors also occur in metastasized UICC stage 4 tumors. Due to the very convincing, positive data regarding the response rates of MSI-H tumors to treatment with PD1/PD-L1 inhibitors, every metastatic carcinoma of the gastrointestinal tract should be tested for its MSI-H status, independently of the question of underlying LS.
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Immunosuppressive molecules are valuable prognostic biomarkers across different cancer types. Leukocyte immunoglobulin like receptor subfamily B1 (LILRB1) is considered to be an immunosuppressive molecule, which is an important receptor of human leukocyte antigen G. However, the clinical significance of LILRB1 expression in gastric cancer remains unexplored. We analyzed the immunohistochemistry data of 166 gastric cancer patients to determine the clinicopathologic and survival significance of LILRB1. Immunofluorescence was conducted to detect the co-localization of LILRB1 with infiltrating immune cells. Additionally, we also assessed the immune contexture, immune cell functions and tumor microenvironment state related to LILRB1. We found that LILRB1 was mainly present in tumor stroma which was higher in tumor tissues compared with matched adjacent tissues. High-LILRB1 expression was associated with more advanced tumor stage, higher recurrence risk and worse survival. Immunohistochemistry and bioinformatic analysis showed that LILRB1 had a significant positive correlation with M2 tumor-associated macrophages (TAMs) infiltration. Immunofluorescence confirmed that M2 TAMs were the primary immune cells expressing LILRB1. Dense infiltration of LILRB1+ M2 TAMs yielded an immunosuppressive microenvironment manifested as enriched exhausted CD8+ T cells and increased immunosuppressive cytokines. Moreover, patients with high infiltration of both LILRB1+ cells and M2 TAMs indicated poor prognosis and inferior therapeutic responsiveness to adjuvant chemotherapy. In conclusion, LILRB1+ M2 TAMs were associated with a pro-tumor immune contexture and determine poor prognosis in gastric cancer. Further studies are essential to explore therapeutic targeting LILRB1+ M2 TAMs.
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Introduction

Gastric cancer (GC) represents the fifth most prevalent malignancy and the third leading cause of cancer mortality worldwide (1). Radical surgery combined with postoperative adjuvant chemotherapy is the main treatment for advanced GC; however, the prognosis of patients is yet poor (2). Due to the uncertainty of chemosensitivity and the consequent chemoresistance, several patients have a high recurrence rate after chemotherapy. The change in the tumor microenvironment can predict the prognosis and chemosensitivity of patients. Therefore, it is crucial to stratify prognosis and predict the treatment response based on tumor microenvironment.

In the tumor microenvironment, tumor-associated macrophages (TAMs) are the primary infiltration components with different forms of expression between inflammation and cancer. Macrophages infiltrating into tumor tissue polarize into an antitumor M1 or a pro-tumor M2 subset. Typically, M2 TAMs exert a specific role in promoting tumor growth, promoting angiogenesis, and inhibiting adaptive immunity. Our previous study also confirmed that M2 TAMs indicate poor prognosis in GC patients (3). Thus, TAMs are an attractive target for tumor therapy. However, increasing evidence showed diversity in macrophages, but distinguishing them only by the current two polarization forms is challenging. Therefore, clarifying the distribution and function of macrophage subsets in tumor tissues is essential for accurate clinical treatment targets.

Leukocyte immunoglobulin-like receptor subfamily B1 (LILRB1) is a transmembrane glycoprotein, a major receptor of human leukocyte antigen G (HLA-G) (4). It is considered to be an immunosuppressive receptor. LILRB1 combines classic and non-classic human major histocompatibility complex (MHC) molecules to exert an immunosuppressive effect. It is mainly involved in the regulation of maternal-fetal immune tolerance and induction of transplantation immune tolerance (5). The rapid growth of tumor cells is largely due to the escape of immune surveillance (6). As an immunosuppressive receptor, LILRB1 may play a major role in the process of tumor cells escaping immune surveillance. Recently, it has been found that macrophages expressing inhibitory receptor LILRB1 interact with MHC class I components on the surface of tumor cells to protect tumor cells from phagocytosis. Moreover, some studies suggested that TAMs affect the efficacy of chemotherapy in tumor patients (7, 8). However, the effect of LILRB1 on TAMs and its role in the tumor microenvironment has not yet been analyzed systematically in GC.

In this study, we detected the frequency of LILRB1 and macrophages in GC patients. The correlation between LILRB1 and clinicopathological factors, macrophage infiltration, and tumor microenvironment immune status would be analyzed. Furthermore, we evaluated the prognostic potential of LILRB1 and macrophages, and assessed the predictive value of postoperative adjuvant chemotherapy in this subpopulation.



Methods


Patients and Tissue Samples

The study recruited 166 GC patients who underwent radical surgery during 2009–2013 in the First Affiliated Hospital of Sun Yat-sen University. None of the patients received preoperative treatment, including chemotherapy or radiotherapy. Comprehensive information about the clinicopathological data and survival outcomes of all patients was obtained. The median follow-up period was 42 (range: 2–99) months in this cohort. All tumor tissues and 46 adjacent peritumoral tissues were formalin-fixed and embedded in paraffin. The tumor stages were categorized according to the 7th edition of American Joint Committee on Cancer (AJCC) TNM staging system. Adjuvant chemotherapy (ACT) was given to TNM stage II and III patients after surgery, according to the National Comprehensive Cancer Network (NCCN) guidelines and patient preference. All chemotherapy regimens were fluorouracil-based combination chemotherapy. The human studies were sanctioned by the local ethics committee at the First Affiliated Hospital of Sun Yat-sen University.



Immunohistochemistry

The formalin-fixed and paraffin-embedded sections were deparaffinized with xylene and then rehydrated. Antigen retrieval was performed with Tris/EDTA buffer pH 9.0 for 20 min at 95 °C in paraffin-embedded tissue sections. The slides were incubated with antibodies against CD163 (1:400; Cell Signaling Technology, #93498) and LILRB1 (1:400; Abcam, ab238145) overnight at 4°C. The reactivity was detected using Dako EnVision-HRP (Dako).



Assessment of the LILRB1 and CD163 Cell Density in IHC Specimens

The infiltration density of LILRB1+ and CD163+ cells per field was evaluated by two independent pathologists who were blinded to the patients’ clinical data using Image-Pro Plus 6.0 (Media Cybernetics Inc.) for assistance. For each tissue core or normal section, three randomized fields of positive-stained cells were counted under a high-power field (HPF) of 400X. The density of LILRB1+ and CD163+ cells was calculated as the mean number of fields from cores or normal sections. The cut-off values of LILRB1+ and CD163+ cells density were the median values. For LILRB1+ cells,≥85 in average field was defined as high and <85 was defined as low. For CD163+ cells, ≥28 in average field was defined as high and <28 was defined as low.



Immunofluorescence

We performed immunofluorescence, as described previously. Primary antibodies were used as follows: anti-human CD163 (1:100; Biolegend; 326507), anti-LILRB1 (1:200; Abcam, ab238145), anti-human-Cytokeratin 7 (1:100; Biolegend, 601601). After washing, cells were incubated with Alexa Fluor 488- or 546- or 647-labeled secondary antibodies for 1 h. Nuclei were counterstained using DAPI. The stained cells were visualized using an inverted confocal microscope, and the images were processed using ZEN2.3.



TCGA and GEO Data Processing

Level 4 gene expression data (RSEM normalized) of The Cancer Genome Atlas (TCGA) were downloaded from the UCSC Xena browser (https://gdc.xenahubs.net). We used TCGA database to analyze the difference of LILRB1 expression between GC and normal tissues. We calculated the scores of LILRB1+ M2 TAMs signature genes by the geomean of TCGA RSEM expression to confirm relative abundance. The correlation between LILRB1+ M2 TAMs and exhausted CD8+ T cells was analyzed by gene set enrichment analysis (GSEA, v3.0), as previously reported (9). The LILRB1+ M2 TAMs signature genes and exhausted CD8+ T cell gene set were showed in Supplementary Table 1, which were identified based on previous studies (9, 10).

Microarray datasets GSE15459 and GSE 29272 were downloaded from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) and used as a training set for the LILRB1 expressed prediction. We also estimated the proportion of immune cells used GSE62254 cohort. The RMA algorithm was applied to normalize and transform all the raw data from GEO to expression values in the R environment (v3.5.3).



Evaluation of Infiltrating Immune Cells in Public Database

The CIBERSORT algorithm was conducted to evaluate the proportion of immune cells in GC patients, as reported previously (11). This method allows sensitive and specific discrimination of 22 human immune cell phenotypes, including B cells, T cells, natural killer (NK) cells, macrophages, dendritic cells, and myeloid subsets. Briefly, the gene expression profiles were prepared using standard annotation files. Then, the data were uploaded to the CIBERSORT web portal (http://cibersort.stanford.edu/), and the algorithm was run using the default signature matrix at 1000 permutations.



Statistical Analysis

The correlation between LILRB1 expression and clinicopathological characteristics of GC was evaluated by Student’s t-test. The Pearson’s correlation test was used to determine the extent of correlation between the expression of LILRB1 and that of other genes. The survival outcomes, including overall survival (OS) and disease-free survival (DFS) were analyzed using Kaplan–Meier curves, log-rank test, and univariate/multivariate Cox regression analysis. The data of all groups in the figure were expressed as mean ± SDs. Two-sided P < 0.05 was considered statistically significant. All analyses were performed using GraphPad Prism (version 6.00), R (version 3.6.1) or SPSS statistics (version 21) software.




Results


LILRB1 Is Expressed in Stroma of GC and Associated With an Aggressive Phenotype

Initially, we detected the expression of LILRB1 in GC tissues and adjacent tissues from First Affiliated Hospital of Sun Yat-sen University (FHSYSU) cohort by immunohistochemistry (Figure 1A). The current results showed that the expression of LILRB1 was higher in tumor tissues compared to the matched adjacent tissues (P < 0.01, Figure 1B). Similarly, we also detected the abnormal expression of LILRB1 in GC tissues in two other independent cohorts (TCGA and GSE29272, Figures 1C, D). Interestingly, we found that LILRB1 was mainly present in tumor stroma rather than tumor cells (Figure 1A). In order to further determine the expression distribution of LILRB1, immunofluorescence was detected, and GC cells were labeled with cytokeratin 7 (CK7). The data further confirmed that LILRB1 was mainly expressed in the tumor stromal microenvironment (Figure 1E).




Figure 1 | LILRB1 was highly expressed in stroma of GC. (A) The expression of LILRB1 in GC tissues and adjacent tissues from First Affiliated Hospital of Sun Yat-sen University (FHSYSU) cohort by IHC. (B) Box diagram showed that the count of LILRB1+ cells in GC was higher than that in gastric cancer tissues in FHSYSU cohort. (C, D) TCGA cohort and GSE29272 cohort showed higher LILRB1 expression in GC tissues than in normal gastric tissues. (E) LILRB1 was mainly distributed in the stroma of gastric cancer by tricolor immunofluorescence microscopy. **P < 0.01 and ***P < 0.001.



Additionally, we analyzed the correlation between LILRB1 and the clinicopathological characteristics of GC patients. We also observed that males with GC expressed more LILRB1 than female patients (Figure 2A). However, no significant correlation was established between LILRB1 and patients’ age or tumor grade (Figures 2B, C). The LILRB1 expression was significantly associated with large tumor size (>5 cm), deep tumor invasion, and lymph node metastasis (Figures 2D–F). Correspondingly, a higher proportion of LILRB1 was detected in stage III tumors than stage I-II tumors (Figure 2G).




Figure 2 | The correlation between LILRB1 and clinicopathological characteristics of GC patients. (A) LILRB1 expression in male patients was higher compared with female. (B, C) No significant correlation was established between LILRB1 and patients’ age or tumor grade. (D) Patients with large tumor size (>5 cm) had high-LILRB1 expression. (E) Patients with deep tumor invasion had high-LILRB1 expression. (F) Patients with lymph node metastasis had high-LILRB1 expression. (G) Higher proportion of LILRB1 was detected in stage III tumors than stage I-II tumors. *P < 0.05, **P < 0.01 and ***P < 0.001. ns, no statistical significance.





M2 TAMs Are the Primary Immune Cells Expressing LILRB1

The tumor microenvironment showed an abundance of immune cell infiltration, which exerted an impact on tumor progression and prognosis of patients (12, 13). Herein, we sought to discover the influence of LILRB1 on the immune contexture in GC. Thus, CIBERSORT was employed to assess the relative proportion of 22 human hematopoietic cell phenotypes (LM22) within the GSE15459 database. The data showed that high LILRB1 expression was associated with a low level of memory B cells and memory resting CD4 T cells but a high proportion of M2 TAMs, neutrophils, and memory-activated CD4 T cells (Figure 3A). To further analyze the correlation between LILRB1 and the immune microenvironment of GC, we conducted a correlation analysis between LILRB1 and 22 types of immune cells. Next, we found an interesting phenomenon that LILRB1 had a significant positive correlation with M2 TAMs infiltration (Figure 3B), considered immunosuppressive cells that promote tumor progression (14). However, no significant correlation was established between LILRB1 and M1 macrophage infiltration, which was previously identified to possess the antitumor effect in GC (3).




Figure 3 | M2 TAMs were the primary immune cells expressing LILRB1. (A) CIBERSORT was employed to assess the difference of 22 kinds of immune cells between LILRB1 high tumors and LILRB1 low tumors. (B) The correlation analysis between LILRB1 and 22 types of immune cells. (C, D) LILRB1 expression showed a positive correlation with M2 macrophages by IHC. (E) Immunofluorescence assay showed that LILRB1 was mainly expressed in M2 TAMs. *P < 0.05, **P < 0.01 and ***P < 0.001. ns, no statistical significance.



To substantiate these findings, we performed IHC staining of LILRB1 and CD163 (classic biomarker of M2 TAMs). Consistent with the results from CIBERSORT, LILRB1 expression showed a positive correlation with M2 TAMs (Figures 3C, D, Pearson’s correlation R = 0.51, P < 0.01). Subsequently, we conducted immunofluorescence staining to evaluate the correlation between LILRB1 expression and macrophage localization. As illustrated in Figure 3E, M2 TAMs were identified as components of the LILRB1 infiltrate, expressing the CD163 M2 marker. In contrast, no co-expression of LILRB1 and CD80 (biomarker of M1 macrophages) was detected.



LILRB1 Expression Is Correlated With Multiple M2 Macrophage-Related Markers

Further, we analyzed the macrophage markers in the TCGA database to verify the CIBERSORT results. These findings showed that LILRB1 expression was positively correlated with the expression of CD163 and CD204, M2 macrophage markers, involved in promoting tumor growth and metastasis (Figures 4A, B). On the other hand, no significant correlation was observed between LILRB1 and iNOS expression, which was widely recognized as a marker of M1 macrophages (Figure 4C). Moreover, transcription factor IRF4 induced M2-type polarization of macrophages, which was upregulated in patients with high LILRB1 expression (Figure 4D) (15).




Figure 4 | LILRB1 expression was correlated with multiple M2 macrophage-related molecules. Correlation between LILRB1 and M1/M2 macrophage-related molecules including (A) CD163, (B) CD204, (C) iNOS, (D) IRF4, (E) CCL22, (F) IL-10, (G) TGF-β1, (H) IL-23A, and (I) IL-8.



The imbalance between proinflammatory and anti-inflammatory cytokines secreted by M1/M2 macrophages in the tumor microenvironment promote the development of GC (16). Therefore, we hypothesized that cytokines are dysregulated in high-LILRB1 expression tumors. M2 macrophage-derived cytokines promote an immunosuppressive tumor microenvironment, including CCL22, IL-10, and TGF-β1, that were significantly correlated with LILRB1 expression GC patients (Figures 4E–G). Conversely, M1 macrophage-derived proinflammatory cytokines, such as IL-23A and IL-8, were not correlated with LILRB1 expression (Figures 4H, I). Thus, these results suggested that LILRB1 may be involved in the M2 polarization of macrophages to promote GC progression.



LILRB1+ M2 TAMs Exhibit an Immunosuppressive Phenotype

We next aimed to investigate the potential impact of LILRB1-expressing M2 TAMs on immune microenvironment in GC. We conducted GSEA to analyze the relationship between LILRB1+ M2 TAMs and functional status of CD8+ T cells. The result showed that exhausted CD8+ T cell gene set was significantly enriched in high LILRB1+ M2 TAMs signature (Figure 5A, FDR q = 0.008). There was no significant difference in the expression of effector molecules including CD107a and IL-17A in classification of LILRB1+ M2 TAMs signature (Figure 5B). Moreover, we evaluated the relationship between LILRB1+ M2 TAMs and immune checkpoint molecules. High LILRB1+ M2 TAMs signature exhibited abundant programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), and hepatitis A virus cellular receptor 2 (HAVCR2) expression (Figure 5C). Consequently, these data indicated that LILRB1+ M2 TAMs may be involved in promoting immune escape of GC cells.




Figure 5 | LILRB1+ M2 TAMs exhibited an immunosuppressive phenotype. (A) GSEA suggested that the exhausted CD8+ T cells genes enriched in LILRB1+ M2 TAMs signature high GC patients. (B) Expression difference of effector molecules (CD107a, IL-17A) between LILRB1+ M2 TAMs high signature and low signature. (C) Expression of immune checkpoint molecules (PD-1, CTLA-4, HAVCR2, LAG-3, VTCN1, and CD276) in LILRB1+ M2 TAMs high and low expression subgroup. **P < 0.01 and ***P < 0.001, ns, no statistical significance.





LILRB1 and M2 TAMs Determine Poor Prognosis in GC Patients

To further discover the clinical significance of LILRB1 and M2 TAMs infiltration in GC, we evaluated the prognosis of LILRB1+ and CD163+ cells by Kaplan–Meier analysis and log-rank test. The findings revealed that GC patients with high expression of LILRB1 had a poor OS (Figure 6A). High density of CD163+ macrophage infiltration also predicted unfavorable prognosis in OS (Figure 6B). Moreover, high levels of LILRB1 and CD163 were associated with a high risk of recurrence in GC patients (Figures 6E, F). Multivariate Cox regression analysis demonstrated that differentiation grade (OS: hazard ratio (HR): 2.025, 95% CI: 1.148-3.571, P = 0.015; DFS: HR: 3.083, 95% CI: 1.569-6.059, P = 0.001), high CD163 (OS: HR 1.866, 95% CI: 1.177-2.958, P = 0.008; DFS: HR: 1.771, 95% CI: 1.073-2.925, P = 0.025), high LILRB1 expression (OS: HR: 2.008, 95% CI: 1.262-3.195, P = 0.003; DFS: HR: 1.947, 95% CI: 1.187-3.195, P = 0.008), and TNM stage (OS: HR: 3.095, 95% CI: 1.465-6.540, P = 0.003; DFS: HR: 3.702, 95% CI: 1.619-8.464, P = 0.002) was an independent poor prognostic factor for OS and DFS (Tables 1, 2). We also evaluated the correlation between the expressions of LILRB1 and CD163 and OS by every stage. There was a significant positive correlation between LILRB1 and CD163 expression in different TNM stages. Patients with high expression of LILRB1 had poorer OS in TNM stage II and III. However, the relationship between LILRB1 and OS in TNM stage I patients was not statistically significant, possibly due to the small number of stage 1 patients included in the study. These findings were showed in Supplementary Figure 1.




Figure 6 | LILRB1 and M2 TAMs determined poor prognosis in GC patients. (A, B) Overall survival curves according to the levels of LILRB1 and CD163 distribution in GC patients. (C, D) Overall survival of GC patients stratified on the basis of LILRB1 and CD163. (E, F) Recurrence curve according to the levels of LILRB1 and CD163 distribution. (G, H) Recurrence risk stratified on the basis of LILRB1 and CD163. ***P < 0.001.




Table 1 | Univariate and multivariate analyses for OS in GC patients.




Table 2 | Univariate and multivariate analyses for DFS in GC patients.



Furthermore, we combined LILRB1+ cells with CD163+ cells for survival analysis. Notably, patients with high infiltration of both LILRB1+ and CD163+ cells indicated poor OS and high risk of recurrence (Figures 6C, G). Low levels of LILRB1+ and CD163+ cells infiltration predicted favorable survival. Patients with LILRB1highCD163low or LILRB1lowCD163high levels infiltration showed an intermediate prognosis. In order to highlight the prognostic merit and enhance clinical practicality, we trichotomized patients into three risk subgroups: low-risk group (LILRB1lowCD163low), the intermediate-risk group (LILRB1highCD163low/LILRB1lowCD163high), and high-risk group (LILRB1highCD163high). Consistent with our identification, the low-risk group showed a favorable prognosis, while high-risk group showed poor OS and maximal risk of recurrence (Figures 6D, H).



Increased LILRB1+ TAM Infiltration Predicts Poor Efficacy of Adjuvant Chemotherapy After Surgery in GC Patients

Previous studies demonstrated that the alternations within tumor infiltrating immune contexture predominantly affected the response to postoperative adjuvant chemotherapy (ACT) (17). Thus, we assessed the predictive value of different risk groups for the efficacy of fluorouracil-based ACT in GC patients. Typically, ACT produced survival benefits in the GC patients (Figure 7A). The results of stratified analysis suggested that patients in the low and intermediate risk group benefit significantly from ACT (Figures 7B, C). However, in patients with high risk (LILRB1highCD163high), OS was not improved even after ACT was applied (Figure 7D). Taken together, these findings revealed that the levels of LILRB1+ cells combined with CD163+ cells could stratify patients into various risk subgroups and predict the sensitivity of patients to ACT.




Figure 7 | Increased LILRB1 and M2 TAMs infiltration predict poor efficacy of ACT (adjuvant chemotherapy) in GC patients. Overall survival for (A) all enrolled, (B) low-risk, (C) intermediate-risk, (D) high-risk GC patients with or without ACT.






Discussion

Leukocyte immunoglobulin-like receptor subfamily B (LILRB) is a transmembrane glycoprotein and is a critical receptor of human leukocyte antigen G (HLA-G) molecules (18). It is widely distributed and expressed in NK cells, monocytes/macrophages, dendritic cells (DCs), and tumor cells (19). Previous studies have found that LILRB1 promotes tumor development, such as lung cancer, breast cancer, and pancreatic cancer, which can significantly enhance the movement and migration ability of cancer cells and promote tumor metastasis. Furthermore, LILRB1 is considered as an immunosuppressive receptor that can not only bind with the classical human major histocompatibility complex (MHC) molecules but also with non-classical MHC molecules (such as HLA-G and HLA-E) to exert immunosuppressive effect (20). It is mainly involved in the regulation of maternal fetal immune tolerance and induction of transplantation immune tolerance. The rapid growth of tumor cells could be attributed to the escape of immune surveillance. As a major immunosuppressive receptor, LILRB1 plays a critical role in the escaping of tumor cells from immune surveillance. Thus, it is of great significance to understand the function of LILRB1 and break the “tumor immune tolerance microenvironment.”

In recent years, some studies have shown that LILRB1 is expressed in a variety of tumor cells, and the expression level is significantly related to tumor growth and prognosis of patients (21). For example, LILRB1 promotes tumor progression in maintaining the stem cells and hematopoietic stem cells (22). Interestingly, LILRB1 is mainly expressed around tumor cells rather than on tumor cells in patients with GC. The analysis of GSE15459 cohort and immunohistochemical detection of 166 patients with GC in our center revealed that the expression of LILRB1 was positively correlated with M2 TAMs infiltration. Immunofluorescence further confirmed that M2 macrophages are the main immune cells expressing LILRB1, rather than M1 macrophages. M2 TAMs are the most abundant immune cells in tumor tissues. M2 TAMs stimulate natural T cells to produce Th2 type response. These cells secrete vascular endothelial growth factor (VEGF), transforming growth factor β (TGF-β), and other cytokines (23) that promote tissue repair, angiogenesis, immunosuppression, and tumor progression (24). It has been found that LILRB1 high-expressing macrophages interact with MHC class I components on tumor cell surfaces to protect tumor cells from phagocytosis (25). In addition, LILRB1 promotes M2 polarization of macrophages. These results suggested that LILRB1 mediates M2 TAMs to promote tumor immune escape in GC, which is a potential target for antitumor immunotherapy.

We further investigated the impact of LILRB1 on immune microenvironment in GC patients. LILRB1 expression was significantly correlated with several M2 macrophage-related cytokines including CCL22, IL-10, and TGF-β1. These molecules have been widely reported to promote tumor metastasis, immune escape, and angiogenesis (26–29). We next explored the difference of immune status between LILRB1+ M2 TAMs high and low subgroups. The exhausted CD8+ T cell gene set was found significantly enriched in LILRB1+ M2 TAMs signature high GC patients. Exhaustive T cells are a group of T cells with reduced effector function and continued expression of inhibitory receptors (30). It is involved in the negative regulation of tumor immunity (31). Additionally, high LILRB1+ M2 TAMs signature exhibited abundant immune checkpoint molecules expression including PD-1, CTLA-4, LAG-3, and HAVCR2. These results suggest that the application of corresponding monoclonal antibodies targeting immune regulatory points to reverse depleted T cells and restore anti-tumor immune response may benefit GC patients with high LILRB1 expression.

Prognosis evaluation is the key to selecting the appropriate treatment for cancer patients. In recent years, the prognostic significance of tumor-infiltrating immune cells has gained increasing attention because of their role in the occurrence and development of tumors (32). In the current study, we confirmed that patients with LILRB1 and CD163+ cell infiltration had poor OS rate and high recurrence rate. Moreover, we divided three risk subgroups according to the expression levels of LILRB1 and CD163. Patients with increased expression of LILRB1 and CD163 show poor prognosis. Adjuvant chemotherapy has been recommended as the standard therapy to improve the prognosis of patients with stage II/III GC. However, all patients do not benefit from adjuvant chemotherapy, and the selection criteria of candidate regimens are yet unclear. Recent studies suggested that tumor-associated macrophages affect the efficacy of chemotherapy in tumor patients (8). Therefore, we further studied the correlation between the infiltration of LILRB1 and CD163+cells and the efficacy of chemotherapy in patients with stage II/III GC. Notably, when a large number of LILRB1 and CD163+ cells infiltrate into GC tissues, patients may not benefit from chemotherapy. These results would facilitate appropriate selection of adjuvant chemotherapy for the management of GC patients.

Nevertheless, the present study has serval limitations. First, our study is based on a retrospective design. An external cohort is required to verify the prognostic significance of LILRB1 in GC patients and ACT efficacy. Moreover, there is no international unification cutoff value to identify the levels of LILRB1 and CD163 expression. Different cutoff values may affect the repeatability of the results. Moreover, we have not identified the mechanism underlying the formed and differentiated LILRB1+ macrophages, which need to be explored in future research. Previous studies have reported that the numbers of CD163+ macrophages were higher in tumor microenvironment of cases with a cytotoxic/Th1 signature (33, 34). Thus, using CD163 alone as a marker of M2 macrophages is not rigorous enough. To supplement this deficiency, we also found a correlation between LILRB1 and M2 macrophage expression using CIBERSORT algorithm. In different cohort, our analysis also found that LILRB1 was associated with the expression of other M2 macrophage marker (CD204).



Conclusions

This study revealed that LILRB1 is highly expressed in GC tissues and mainly expressed in M2 macrophages. Dense infiltration of LILRB1+ M2 TAMs yielded an immunosuppressive microenvironment. Patients with high infiltration of both LILRB1+ cells and M2 TAMs indicated poor prognosis and inferior therapeutic responsiveness to adjuvant chemotherapy. Further studies are essential to explore therapeutic targeting LILRB1+ M2 TAMs.
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Colorectal cancer (CRC) is one of the most common cancers. Almost 1/3 of CRC are rectal cancer, and 95% of rectal cancers are rectal adenocarcinoma (READ). Increasing evidences indicated that long noncoding RNAs (lncRNAs) have important role in the genesis and development of cancers. The purpose of our present study was to identify the differential expression lncRNAs which potentially related with immune cells infiltration and establish a risk assessment model to predict the clinical outcome for READ patients. We obtained three immune-related differential expression lncRNAs (IR-DELs) (C17orf77, GATA2-AS1, and TPT1-AS1) by differential expression analysis following correlation analysis and Cox regression analysis. A risk assessment model were constructed by integrating these analysis results. We then plotted the 1-, 3-, and 5-year ROC curves depending on our risk assessment model, which suggested that all AUC values were over 0.7. In addition, we found that the risk assessment model was correlated with several immune cells and factors. This study suggested that those three signatures (C17orf77, GATA2-AS1, and TPT1-AS1) screened by pairing IR-DELs could be prognosis markers for READ patients and might benefit them from antitumor immunotherapy.




Keywords: READ, immune, LncRNAs, overall survival, risk model



Introduction

Colorectal cancer (CRC) is one of the most prevalent cancer which accounts for approximately 10% of cancer cases and deaths annually. There are almost 1.8 million new cases of CRC and 881,000 deaths occurred in the world globally (1). Rectal cancer as a subtype of CRC which accounts for one-third of newly diagnosed CRC cases every year (2); 95% of rectal cancer is the rectal adenocarcinoma (READ). The treatment guidelines state that preoperative neoadjuvant chemotherapy could improve the radical resection rate and reduce local recurrence. Thus, even though surgery is the primary treatment for READ, preoperative neoadjuvant chemoradiotherapy is still the key to the treatment of READ (3, 4). However, previous studies demonstrated that almost 30% of patients treated with a curative treatment will develop distant metastases finally (5–8). It is very important to find suitable biomarkers for the prognosis of READ patients.

Recently, increasing evidences indicated that immune cells and immune factors participated in antitumor effects, including tumor initiation and progression (9, 10). The immunotherapy has promising advantages for cancers in the treatment efficiency and long-term survival of patients (11). CRC is a type of tumor which is accompanied by high density of tumor-infiltrating lymphocytes. The CRC patients, for example, with higher CD8+ T lymphocytes always displayed a better prognosis (12–14). Actually, previous studies demonstrated that signatures focusing on the tumor immune infiltrations have shown a promising predictive and prognostic value in diagnosis, evaluation, and treatment of cancer (15).

Long noncoding RNAs (lncRNAs) are kind of RNA which not coding for any protein or peptides and account for approximately 80% of the human transcriptome. Most of lncRNAs are more than 200 nucleotides and regulate 70% of the gene expression. In recent years, increasing studies have shown that lncRNAs are deeply involved in both normal cell development and cancer genesis (16, 17). In the present study, we aimed to investigate the relationships of lncRNAs with gene expression profile and the tumor-immune microenvironment in READ, and construct a risk assessment model for prognosis prediction in READ patients and benefit them from antitumor immunotherapy.



Material and Method


Data Source and Differentially Expression Analysis

The data used in this study was obtained from openly database TCGA (The Cancer Genome Atlas), which included 10 normal and 166 READ samples. The mRNA expression profile data were analyzed by DESeq2 package in R (3.6.1) software as cutoff with padj <0.05, |logFC| ≥0.5, and basemean >50. Gene transfer format (GTF) files were downloaded from Ensembl (http://asia.ensembl.org) for gene annotation. A list of recognized immune-related genes (IR-Genes) was downloaded from the ImmPort database (http://www.immport.org) and was used to screen IR-lncRNAs by a coexpression strategy. The extent of immune cell infiltration was obtained from Tumor Immune Estimation Resource (TIMER) (https://cistrome.shinyapps.io/timer/). Spearman’s correlation analysis was performed between IR-DEGs and their corresponding lncRNAs as cutoff with r ≥0.3 and p-value <0.05 to screen the immune-related differentially expressed lncRNAs (IR-DELs).



Survival Analysis

According to the median expression value or median risk score, patients were divided into high-expression/risk group and low-expression/risk group. Survival, Survminer, and RegParallel package in R were used to carry out univariate and multivariate Cox regression analysis.



Construction of Specific Risk Assessment Model

The risk model was established based on the expression data and multiplied Cox regression coefficients. The formula was set as followed, risk score = expression level of C17orf77 * (−1.5905) + expression levels of GATA2-AS1 * (−1.3003) + expression level of TPT1-AS1 * (−1.4072) (18, 19). To further investigate the relevance of the risk model with the clinical pathological features of READ, we analyzed the relationship between the risk value and vital status, gender, pathologic NMT, and pathologic stage. We then constructed time-dependent receiver operating characteristic (ROC) curves within 1-year, 3-year, 5-year, and clinical features and estimated its utility as a prognostic model for predicting the survival status.



Statistical Analysis

A repeated-measure ANOVA followed by Bonferroni post hoc tests or unpaired two-tail Student’s t-test was used as indicated. All statistical analyses were performed using the Graphpad Prism 6.0.1.




Results


Identification of Immune-Related Differentially Expressed lncRNAs

We downloaded the expression data of 176 samples (10 control vs. 166 READ) from TCGA database. Through differential expression analysis by DEseq2, we screened 7,283 differentially expression genes (DEGs) (4,120 DEGs were upregulated and 3,163 DEGs were downregulated) (Figure 1A). Of which, we obtained 514 immune-related DEGs (IR-DEGs) by cross-analysis with the recognized immune-related genes (Figure 1B) and 420 differential expression lncRNAs (DELs) by cross-analysis with GTF annotation data (Figure 1C). We then introduced the Spearman’s correlation analysis for those 514 IR-DEGs and 420 DELs and identified that there were 9,973 IR-DEGs-IR-DELs pairs involved 508 IR-DEGs and 409 IR-DELs.




Figure 1 | Identification of immune-related differential expression lncRNAs (IR-DELs). (A) Volcano plot of DEGs for READ. (B) Volcano plot of IR-DEGs for READ. (C) Volcano plot of DELs for READ. (D) The univariate Cox regression analysis for those 22 IR-DELs. (E) The heatmap of 22 IR-DELs verified by univariate Cox regression analysis. (F) The multivariate Cox regression analysis for those three IR-DELs.



The purpose of this study was to identify the IR-DELs which could use to construct a risk assessment model to predict the outcome of READ. Therefore, we performed univariate Cox regression analysis for those 409 IR-DELs and found 22 IR-DEL expression were associated with the overall survival (OS) of READ (Figure 1D). The expressions of those DELs are shown in Figure 1E. Subsequently, we also performed multivariate Cox regression analysis for those 22 IR DELs and found three IR-DELs (C17orf77, GATA2-AS1, and TPT1-AS1) were still associated with the OS of READ (Figure 1F).



Establishment of Specific Risk Assessment Model

The expressions of those three DELs (C17orf77, GATA2-AS1, and TPT1-AS1) were increased significantly in the cancer group (Figure 1E). We used those three DELs to construct a specific risk assessment model. The risk scores and survival outcome of each READ cases are displayed in Figures 2A, B. The expression of C17orf77 and GATA2-AS1 were decreased significantly while the expression of TPT1-AS1 was comparable between the low-r and high-risk groups (Figure 2C).




Figure 2 | Risk assessment model construction based on three signature DELs. (A, B) Risk scores (A) and survival outcome (B) of each case for READ. (C) The expression of C17orf77, GATA2-AS1, and TPT1-AS1 between low- and high-risk groups. (D) Overall survival analysis of the risk model. (E) The ROC curve of the risk model. (F–H) The 1-year (F), 3-year (G), and 5-year (H) ROC of the prognosis model suggested that all AUC values were over 0.70.



After regrouping the READ patients by risk value, we analyzed the relationship of the risk model with the OS of READ and found that low-risk READ patients exhibited a better OS (Figure 2D). Meanwhile, we also calculated the areas under curve (AUCs) for each receiver operating characteristic (ROC) curve of those three IR-DELs and drew the curved line (Figure 2E). To validate the optimality, we also plotted the 1-, 3-, and 5-year ROC curves, which suggested that all AUC values were over 0.7 (Figures 2F–H).



Clinical Evaluation by Risk Assessment Model

The TNM staging system was widely used for cancer stage classification and determining the appropriate treatment strategy. Therefore, we analyzed the relationship of the risk score with the clinical characteristics. As shown in Figure 3, we found that the risk score in the death READ patients was significantly higher than that in the alive READ patients (Figure 3A). There was a comparable risk value between male and female (Figure 3B). The risk score showed several differences among pathologic N, pathologic M, and pathologic stage system except pathologic T system (Figures 3C–I). We also calculated the AUC for each ROC curve of those clinical characters drew the curved line; the result is shown in Figure 3J. The AUC value of the risk model in predicting the survival status was the highest (0.7126).




Figure 3 | Clinical evaluations with the risk model. (A–I) The histogram showed that vital status (A), pathologic N (C, D), pathologic M (E), and pathologic stage (H, I) were significantly associated with the risk score. The risk score in different gender groups (B) and different pathologic T groups (F, G) were comparable. The lower-risk score represented lower risk in prognosis. (J) The AUC value of TNM staging, gender, and risk model. *p < 0.05; **p < 0.01; ***p < 0 .001.





Estimation of Tumor-Infiltration With the Risk Assessment Model

Firstly, we analyzed the differences of immune infiltration between normal and READ patients and found that there are 50 immune cells and factors that were different between control and cancer. Because lncRNAs and immune-related genes were initially connected, we consequently investigated the relationship of the risk model with the tumor immune microenvironment (Supplementary Table 1). We then investigated whether those 64 immune cells and factors were different between low-risk group and high-risk group. After this analysis, we found five immune cells and immune factors were different (Figures 4A–E). A detailed Spearman’s correlation analysis was conducted; the result is shown in Figure 4F. READ patients in the high-risk group were more positively associated with Macrophage_TIMER.




Figure 4 | Estimation of tumor-infiltrating immune cells with risk assessment model. (A–E) The infiltrating score of five immune cells and immune factors (A), Macrophage_TIMER; (B), Macrophage M0_CIBERSORT-ABS. (C), B-cell plasma_XCELL. (D), Class-switched memory B cell_XCELL. (E), Plasmacytoid dendritic cell_XCELL) between low- and high-risk groups were difference significantly. (F) Patients in the high-risk group were more positively associated with Macrophage_TIMER. *p < 0.05; ***p < 0.001.






Discussions

CRC is one of the most common cancers which comprised colon cancer and rectal cancer. While colon cancer and rectal cancer are very similar in several ways, their treatments are quite different. Due to the improvement of the treatment over the last few decades, the OS rate of READ has greatly improved. However, the additional long-term survival for READ patients is hard to achieve even under extensive treatment compared with other cancers. Previous studies indicated that almost 30% of patients treated with a curative treatment will eventually develop distant metastases (5–8). Therefore, the early diagnosis and prediction of prognosis in patients with READ are important for their long-term survival.

Increasing evidence indicated that lncRNAs deeply participated in the tumor genesis, development, and metastasis (20–22). In another aspect, lncRNAs were screened to be the prognosis biomarkers for cancers, including READ. Chao et al. (2019) found lncRNA D16366 could be a potential biomarker for diagnosis and prognosis of hepatocellular carcinoma (23). Zhao et al. (23) found that five lncRNAs (AC079789.1, AC106900.2, AL121987.1, AP004609.1, and LINC02163) were independently associated with the prognosis of patients with rectal cancer through using univariate and multivariate Cox regression analyses (24). Those five lncRNAs could be the potential biomarkers for READ (24). Qi et al. (25) found that lncRNA KCNQ1OT1 and SNHG1 were unveiled as common diagnostic biomarkers for the initiation and metastasis of colon and rectal cancers (25).

Increasing evidences indicated that immune cells and factors play an important role in antitumor immunity and antitumor initiation and progression (9, 10). Immune checkpoint blockade therapy has become an important cancer treatment option and immunotherapy has promising advantages in terms of efficiency and long-term survival (11). Antibody drugs, such as anti-PD-1 and anti-PD-L1, demonstrate obvious advantages such as broad applicability across cancer types and durable clinical response when treatment is effective (26). In the present study, we aimed to investigate the relationships of IR-DELs with immune cells and immune factors of READ and construct a risk assessment model to predict the prognosis for patients with READ and distinguishing those who could benefit from antitumor immunotherapy. First, we found that 23 IR-DELs were associated with the OS of READ by differential expression analysis, correlation analysis, and univariate Cox regression analysis. Three IR-DELs (C17orf77, GATA2-AS1, and TPT1-AS1) were independently associated with the OS of READ. Previous studies indicated that OS-related genes could be used to construct the risk assessment model. According to previous studies, we also constructed a risk assessment model by using those three IR-DELs (C17orf77, GATA2-AS1, and TPT1-AS1) (18, 19). The correlation analysis results showed that risk value was correlated with pathologic N, pathologic M, pathologic stage, several immune cells, and immune factors. The AUC value was over 0.7 which proved that the model had certain accuracy in predicting the prognosis. However, whether this model could be used for clinical prognosis, diagnosis still needs further validation studies.

Chromosome 17 Open Reading Frame 77 (C17orf77) is a gene in cancer that has not been well studied yet. In 2019, Shaikh et al. found that C17orf77 may hold a putative role in both pathogenesis of smoking and nonsmoking-related head and neck squamous cell carcinoma tumors and could be considered a potential biomarker for separating these tumors (27). GATA-binding protein 2 (GATA2) is a member of the GATA family of zinc-finger transcription factors. GATA2 exists as an acetylated protein in immature precursor cells. GATA2-AS1 is the antisense RNA of GATA2. In 2019, Zhang et al. found that GATA2-AS1 could repress nonsmall-cell lung cancer cell proliferation via regulating GATA2. These results indicated that GATA2-AS1 could be a potential target for lung cancer drugs (28). In 2020, Li et al. found that GATA2-AS1 was a tumor-associated lnRNAs in COAD by bioinformatics analysis (29). TPT1-AS1 is the antisense RNA of tumor protein, translationally controlled 1 (TPT1). Previous studies indicated that TPT1-AS1 could regulate the genesis and development of several cancers by different ways. Huang et al. and Gao et al. found that TPT1-AS1 could promote cell growth in cervical cancer and glioblastoma via acting as a sponge for miR-324-5p and miR-23a-5p, respectively (30, 31). Tumors grow and evolve through constant crosstalk with the surrounding microenvironment, and emerging evidences indicate that angiogenesis and immunosuppression frequently occur simultaneously in response to this crosstalk. Although VEGFR2 was downregulated in the prostate cancer, VEGFR2 was upregulated in the high-risk prostate cancer and predicted clinical progression. Krebs et al. found miR-221-3p upregulation as an escape mechanism from VEGFR2 inhibition in prostate cells (32). Zhang et al. (33) and Zhang et al. (34) found that TPT1-AS1 could promote angiogenesis, progression, and metastasis of CRC through TPT1-AS1/NF90/VEGFA signaling pathway and upregulating the TPT1-mediated FAK and JAK-STAT3 signaling pathways, respectively (33, 34). Our present study indicated that C17orf77, GATA2-AS1, and TPT1-AS1 could be the prognosis biomarkers for READ which reinforced the role of those lncRNAs in predicting the outcome of cancers as biomarkers.

In conclusion, we identified three IR-DELs correlated with OS and constructed a specific risk assessment model for prognostic prediction of READ. Those three IR-DEL classifiers also demonstrated considerable predictive accuracy for predicting the OS. In addition, the risk model was correlated with immunotherapy-related biomarkers, suggesting its application value for predicting the efficiency of treatment. However, we also recognized some shortcomings and limitations in this study, especially for the lack of clinical validation. Therefore, we will collect clinical samples and carry out the verification in the future work.
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Background

Gastric cancer (GC) is one of the most common cancers all over the world, causing high mortality. Gastric cancer screening is one of the effective strategies used to reduce mortality. We expect that good biomarkers can be discovered to diagnose and treat gastric cancer as early as possible.



Methods

We download four gene expression profiling datasets of gastric cancer (GSE118916, GSE54129, GSE103236, GSE112369), which were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between gastric cancer and adjacent normal tissues were detected to explore biomarkers that may play an important role in gastric cancer. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of overlap genes were conducted by the Metascape online database; the protein-protein interaction (PPI) network was constructed by the STRING online database, and we screened the hub genes of the PPI network using the Cytoscape software. The survival curve analysis was conducted by km-plotter and the stage plots of hub genes were created by the GEPIA online database. PCR, WB, and immunohistochemistry were used to verify the expression of hub genes. A neural network model was established to quantify the predictors of gastric cancer.



Results

The relative expression level of cadherin-3 (CDH3), lymphoid enhancer-binding factor 1 (LEF1), and matrix metallopeptidase 7 (MMP7) were significantly higher in gastric samples, compared with the normal groups (p<0.05). Receiver operator characteristic (ROC) curves were constructed to determine the effect of the three genes’ expression on gastric cancer, and the AUC was used to determine the degree of confidence: CDH3 (AUC = 0.800, P<0.05, 95% CI =0.857-0.895), LEF1 (AUC=0.620, P<0.05, 95%CI=0.632-0.714), and MMP7 (AUC=0.914, P<0.05, 95%CI=0.714-0.947). The high-risk warning indicator of gastric cancer contained 8<CDH3<15 and 10<expression of LEF1<16.



Conclusions

CDH3, LEF1, and MMP7 can be used as candidate biomarkers to construct a neural network model from hub genes, which may be helpful for the early diagnosis of gastric cancer.





Keywords: gastric cancer, gene expression profiling, bioinformatics analysis, weighted gene co-expression network analysis, neural network model



Background

Gastric cancer (GC) is one of the most common cancers all over the world and causes high mortality. Especially in China, where almost a third of the world’s new cases of GC occur (1). The treatment of gastric cancer has limited effect. Although the survival of some patients with advanced gastric cancer can be prolonged through chemotherapy, most chemotherapy has limited efficacy and a short maintenance time. The 2-year survival rate is less than 10% (2). The rapid development of tumor transcriptome data based on the second-generation high-throughput sequencing technology comprehensively reveals the multi-genetic and highly heterogeneous measuring points of the tumor. The diagnosis of the tumor molecular and targeted treatment is an effective means for improving the early diagnosis rate (3). It is also the direction and goal of the development of the clinical treatment of the tumor, and the achievement of this goal will ultimately depend on the search for specific tumor biomarkers (4).

Detection through serum tumor markers is a noninvasive diagnostic method commonly used in the clinic. However, conventional assays for carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) are not specific or sensitive enough for accurate diagnosis of GC, and it is necessary to develop some novel biomarkers (5). Bioinformatics technology has been increasingly used to authenticate the differentially expressed genes (DEGs) and underlying pathways that are related to the occurrence and progression of GC, which can help researchers excavate the potential genetic targets of diseases (6).

However, it is difficult to obtain credible results when using the independent microarray technology because of the higher false-positive rates (7). Therefore, this study reanalyzed four expression profiling datasets downloaded from the Gene Expression Omnibus (GEO) dataset. T1he DEGs were searched for by GEO2R tools. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses of overlap genes among four datasets were conducted in the Metascape database. The molecular mechanisms of the occurrence and progression of gastric cancer were detected by enrichment analysis of functions and pathways and protein-protein interaction (PPI) network analysis. The hub genes were analyzed by Cytoscape. The survival curve analysis was performed by km-plotter and the stage plots of hub genes were generated by the GEPIA online database. CDH3, LEF1, and MMP7 were used as candidate biomarkers to construct a back propagation neural network model.



Methods


Downloaded Public Data

The GEO (8) contains a variety of high-throughput sequencing experimental data. Four expression profiling datasets [GSE118916 (9), GSE54129 (10), GSE103236 (11), and GSE112369 (12)], which all screen genes associated with the formation of gastric cancer from normal tissue, were downloaded from the GEO human gene expression array.



Intra-Group Data Repeatability Test

The statistical analysis and graphic drawing were performed via the R programming language. The correlation between all samples from the same dataset was tested using a correlation heat map, which was constructed in R. The method of principal component analysis was used to analyze the dimensionality of the data and observe the distribution of the data (13).



Identification of DEGs

GEO2R (8) was used to identify DEG between gastric cancer and normal tissues adjacent to the cancer. We set the threshold as logFC≥1 or ≤-1, P value < 0.05. A volcano mapping tool (https://shengxin.ren) was used to map the volcano. Four datasets were then introduced into Fun Rich (a feature rich analysis tool) (http://www.funrich.org/) to filter DEGs. The DEGs shared between the four datasets were obtained via the Venn diagram, which was depicted by the Venn tool. The Circos diagram shows gene overlap and function overlap between different gene lists.



Establishing Weighted Gene Co-Expression Network Analysis (WGCNA)

The raw data of GSE54129 were preprocessed by the R package (version 3.5.0). The control group and gastric cancer samples were arranged according to the P value from small to large. A total of 5000 DEGs were selected for WGCNA (14). WCGNA can identify highly synergistically changing sets of genes. Gene networks conform to a scale-free distribution. According to this point, the gene network can be divided into different modules based on the similarity of expression to find the pivot genes. WGCNA performed module identification. Then, WCGNA established a gene co-expression network and we studied the module relationship. Finally, modules were associated with clinical characteristics.



Visual Analysis of Gene Expression Networks

DAVID (15) was used for function and pathway enrichment analysis of differential genes. Metascape (16) was again used for DEG enrichment analysis. STRING (17) was used to construct the protein-protein interaction network. Gene Set Enrichment Analysis (18) (GSEA) is an analysis method for genome-wide expression profile microarray data that compares genes with predefined gene sets. That is, based on the existing information base of gene location, properties, functions, biological significance, etc., a molecular tag database is constructed. In this database, known genes are classified according to chromosomal positions, established gene sets, patterns, and tumor-related genes. The group and GO gene set is used to group and classify multiple functional gene sets. By analyzing the gene expression profile data, we can understand their expression status in a specific functional gene set, and whether this expression status has some statistical significance. After analyzing all sequenced genes of gastric cancer tissue and normal gastric tissue by GSEA software and importing gene annotation files, the software analyzed the expression networks between genes. We therefore fully understand the effect of the richness of the feature set on the biological function of genes.



RT-qPCR

CDH3, MMP7, and LEF1-specific primers of human and mouse were designed (Table 1). Gastric cancer and normal gastric tissue samples were used to extract total RNA. Then, mDNA was used as the template and cDNA was transcribed with random primers (HiScript III 1st Strand cDNA Synthesis Kit, Beijing, China). Then a qPCR fluorescence kit (Taq Pro Universal SYBR qPCR Master Mix, Beijing, China) was used to quantitatively analyze the expression of the target gene. 2-ΔΔCt was expressed as a fold change in gene expression relative to the experimental group compared to the control. GAPDH was used as an internal reference.


Table 1 | Primers and their sequences for PCR analysis.





Western Blot Analysis

Gastric cancer tissue was stored at -196°C. For the MMP7 protein, the anti-MMP7 polyclonal antibody (1: 500 dilution, Proteintech, USA) was used. CDH3 polyclonal antibody (dilution rate = 1:500, Protientech, USA) was used to detect CDH3. LEF1 polyclonal antibody was used to detect LEF1 (dilution rate = 1:500, Protientech, USA). The result was analyzed with Image-Pro Plus.



Animal Models

Ten BALB/c-nu-nu nude mice were used to construct a gastric cancer mouse model. MGC-803 cells were injected into the gastric serosal layer of nude mice to establish the model of gastric tumor in situ. The cultured cells were resuspended to the concentration of 1.0×10^8/ml with a 1:1 mixture of matrix adhesive.



Immunohistochemistry

The expression of MMP7, CDH3, and LEF1 in gastric tissues was analyzed by immunohistochemistry. After routine sectioning, the slides were dewaxed, dehydrated by gradient alcohol, blocked and inactivated by endogenous peroxidase, repaired by an antigen, and blocked by goat serum. Primary antibody was added and the mixture was incubated at 4°C. Labeled secondary antibody was added and the mixture was incubated at 37°C. Horseradish peroxidase labeling solution was added, the mixture was stained with DAB/H2O2, counterstained with hematoxylin, conventionally dehydrated, made transparent, and observed with a microscope after mounting.



Neural Network Model

We randomly divided the data into a training set and validation set, with a ratio of 1:7. We set 35 samples as the training set and 5 samples as the validation set. We used Matlab (version 10) for machine learning, trained 2678 steps, and established a predictive model when the true value was close to the predicted value. The output variable was the relative expression of MMP7. The training error was 0.033031, and the R value was 0.9624.



Statistical Analysis

The unpaired Student’s t-test was used to compare the two sets of data to determine statistical significance. Pearson’s test was used to compare the correlation between gene expression and gastric cancer. Receiver operator characteristic (ROC) curve analysis was performed to determine the usefulness of MMP7, CDH3, and LEF1 in predicting gastric cancer. The high-risk early warning range of gastric cancer was analyzed by the cubic spline interpolation algorithm. The Pearson-rho test was used to calculate the expression of hub genes and status of GEA for the correlation analysis.




Results


Checking Data Quality

Pearson’s correlation test and the analysis of principal component analysis (PCA) were used to verify the distribution of data within a group. Based on Pearson’s correlation test, the data within the group were well distributed in the gastric cancer group and the control group in the GSE54129 dataset (Figure 1A). Based on PCA analysis, the repeatability of the data in the GSE54129 group also met the analysis requirements (Figure 1B). According to Pearson’s correlation test, the strong correlation between the GSE112369 in each group was shown (Figure 1C). PCA showed that the GSE112369 data set was well distributed (Figure 1D).




Figure 1 | (A) Pearson’s correlation analysis of samples from the GSE54129 dataset. The color reflects the intensity of the correlation. When 0<correlation<1, there exists a positive correlation. When -1<correlation<0, there exists a negative correlation. The larger the absolute value of a number the stronger the correlation. (B) PCA of samples from the GSE54129 dataset. In the figure, principal component 1 (PC1) and principal component 2 (PC2) are used as the X-axis and Y-axis, respectively, to draw the scatter diagram, where each point represents a sample. In such a PCA diagram, the farther the two samples are from each other, the greater the difference is between the two samples in gene expression patterns. (C) Pearson’s correlation analysis of samples from the GSE112369 dataset. The color reflects the intensity of the correlation. (D) PCA of samples from the GSE112369 dataset.





The Identification of DEGs

GSE118916, GSE54129, GSE103236, and GSE112369 datasets were used to draw a volcano map (Figures 2A–D). Circos analysis was used to find that GSE54129 and GSE112369 had an overlap of DEGs (Figure 3A). Concurrently, there was also an overlap in the function of genes (Figure 3B). The threshold was set as logFC≥1 or ≤-1, P value < 0.05. These results have shown that a total of 3231 DEGs in the GSE118916 dataset, 5273 DEGs in the GSE54129, a total of 2557 DEGs in the GSE103236, and a total of 2477 DEGs in the GSE112369 dataset were identified. Seventy genes overlapped in the four datasets using the analysis of the Venn diagram (Figure 3C).




Figure 2 | (A) The volcano plot illustrates the differences between control and gastric cancer tissues after analysis of the GSE118916 dataset with GEO2R. (B) The volcano plot illustrates the difference between control and gastric cancer tissues after analysis of the GSE54129 dataset with GEO2R. (C) The volcano plot illustrates the difference between control and gastric cancer tissues after analysis of the GSE103236 dataset with GEO2R. (D) The volcano plot illustrates the difference between control and gastric cancer tissues after analysis of the GSE112369 dataset with GEO2R.






Figure 3 | (A) Overlap between differently expressed gene lists of GSE118916, GSE54129, GSE103236, and GSE112369 only at the gene level, where purple curves link identical genes; (B) overlap between differently expressed gene lists of GSE118916, GSE54129, GSE103236, and GSE112369 not only at the gene level, but also at the shared term level, where blue curves link genes that belong to the same enriched ontology term. The inner circle represents gene lists, where hits are arranged along the arc. Genes that hit multiple lists are colored in dark orange, and genes unique to a list are shown in light orange. (C) The Venn diagram demonstrates that 70 genes were contained in the GSE118916, GSE54129, GSE103236, and GSE112369 datasets simultaneously.





Construction of Co-Expression Modules by Weighted Gene Co-Expression Network Analysis (WGCNA)

The GSE54129 datasets were used for WCGNA network analysis. We set the power value as 12 (Figure 4A). To generate important functional modules, the parameter was set as 0.2 (Figure 4B). Different modules were found to have cooperative or antagonistic relationships (Figure 4C). The redder the module, the more likely it is to develop gastric cancer, and the bluer the module, the less likely it is to develop gastric cancer (Figures 4C, D).




Figure 4 | (A) Construction of co-expression modules by the weighted gene co-expression network analysis (WGCNA) package in R. The default value of the parameter beta is 1 to 30. The horizontal axis of the graph above represents the weight parameter β, and the vertical axis of the left graph represents the square of the correlation coefficient between log (k) and log [p (k)] in the corresponding network. The higher the square of the correlation coefficient, the more the network approaches the distribution without network scale. The vertical axis of the right figure represents the mean of the adjacent function of all genes in the corresponding gene module. (B) The cluster dendrogram of genes in GSE54129. Each branch in the figure represents one gene, and every color below represents one co-expression module. (C) Clustering visualization of samples. Heatmap plot of the adjacencies in the hub gene network. Heatmap of the correlation between module eigengenes and the disease of gastric cancer. The red module was the most positively correlated with status, and the blue module was the most negatively correlated with status. (D) Interaction relationship analysis of co-expression genes. Different colors of horizontal axis and vertical axis represent different modules. The brightness of yellow in the middle represents the degree of connectivity of different modules. There was no significant difference in interactions among different modules, indicating a high-scale independence degree among these modules.





Functional Annotation

GSE54129 datasets were used for GO and KEGG analyses. Biological processes (BP) of GO analysis showed that there were variations including angiogenesis, oncostatin-M-mediated signaling pathway, and so on (Figure 5A). The analysis of cell components (CC) showed major variations including the extracellular space, apical plasma membrane, and the cell surface (Figure 5B). The analysis of molecular function (MF) variations included oncostatin-M receptor activity, heparin binding, alcohol dehydrogenase activity, and zinc-dependent (Figure 5C). In the analysis of KEGG, genes were found to be mainly enriched in glycolysis/gluconeogenesis, metabolism of xenobiotics by cytochrome P450, and cytokine-cytokine receptor interaction (Figure 5D). The results of GO enrichment are shown in Figure 5E.




Figure 5 | (A–C) Detailed information relating to changes in the biological processes (BP), cellular components (CC), and molecular functions (MF) of DEGs in gastric cancer and control tissues through the GO enrichment analyses. (D) The KEGG pathway analysis of DEGs. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; DEGs, differentially expressed genes. (E) Histogram of enriched terms across input differently expressed gene lists, colored by p-values, via Metascape.



GSEA was used to detect the functional enrichment and pathway analysis of DEGs (Figures 6A–F). The analysis of GO of gastric cancer (111 samples) showed that 2992/4374 genes were upregulated. When the threshold was set as p value < 0.05, 326 genes were identified. When the threshold was set as p value <0.01, 31 genes were identified. In addition, the analysis of GO of normal tissue (21 samples) showed that 1382/4374 gene sets were downregulated. When the threshold was set as p value < 0.05, 32 genes were identified, and when the threshold was set as p value < 0.01, 4 genes were identified. Table 2 lists the upregulated and downregulated genes. GSEA also revealed upregulated gene sets in gastric cancer, of which 99/176 genes were upregulated in gastric cancer compared with control. When the threshold was set as p value <0.05, the result showed that nine genes were enriched. When the threshold was set as p value <0.01, one gene set was enriched significantly in control. In total, 77/176 genes were downregulated in gastric cancer, and 2 gene sets were enriched when p value <0.05. The nine important gene sets correlated with gastric cancer are displayed in Table 3 according to NES, including




Figure 6 | (A–F) Based on gene set enrichment analysis (GSEA), the main GO term and signaling pathway of differentially enriched genes in gastric cancer tissues and normal tissues were investigated. (G) Bar graph of enriched terms across input gene lists, colored by p-values.




Table 2 | Functional enrichment analysis of DEGs in gastric cancer using GSEA.




Table 3 | Pathway enrichment analysis of DEGs in gastric cancer using GSEA.



“KEGG_FOCAL_ADHESION”, “KEGG _ECM_RECEPTOR_INTERACTION”  

“KEGG_VEGF_SIGNALING_PATHWAY”, and “KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM”, and so on.

The GO enriched terms of genes functions are shown in Figure 6G. To further explore the relationships between the terms, we selected items with the best p value from 20 clusters, each cluster did not exceed 15 items, and a total of not more than 250 items. We used Metascape for visual analysis, where each node represented a term, and was colored first by its cluster ID (Figure 7A). Then, these terms were analyzed by their p values (Figure 7B).




Figure 7 | (A) Colored by cluster ID, where nodes that share the same cluster ID are typically close to each other; (B) colored by p-value, where terms containing more genes tend to have a more significant p-value. (C) Protein-protein interaction network and MCODE components identified in the gene lists.





The Analysis of Hub Genes

A PPI network was constructed for the common differentially expressed genes in the four datasets (Figure 8A) and major nodes were analyzed (Figure 7C). The hub genes were obtained by Cytoscape analysis (Figure 8B). MCODE analysis was used to identify the most important modules (Figure 8C). The threshold was set as degree of ≥10 to obtain 10 hub genes. These genes may serve as important biomarkers and need to be further validated.




Figure 8 | (A) The protein-protein interaction (PPI) network of differentially expressed genes (DEGs). (B, C) The hub genes were identified from the PPI network and MCODE.





Pathological Analysis and Survival Curve of Hub Genes

We conducted a literature survey on the hub genes, and performed survival analysis for gastric cancer biomarkers with little or no research in the field. We found that aldo-keto reductase family 1 member C1 (AKR1C1), CDH3, LEF1, SLIT3, MMP7, and 15-hydroxyprostaglandin dehydrogenase (HPGD) genes were significantly correlated with prognosis (Figure 9). Subsequently, we conducted a pathological staging study on hub genes (Figure 10), and found that HPGD had a significant difference in the progression of gastric cancer (stage3-4, P<0.05), suggesting that it could be a new biomarker for the diagnosis and prevention of gastric cancer metastasis.




Figure 9 | Survival analysis of hub genes.






Figure 10 | The stage plots of hub genes were generated by GEPIA.





Verification of the Expression of MMP7, CDH3, and LEF1

Based on the above bioinformatics analysis, three genes (MMP7, CDH3, LEF1) were markedly upregulated in gastric cancer samples and there was a good interaction among the three genes. The results of western blotting showed that the relative expression level of CDH3, LEF1, and MMP7 was significantly higher in gastric samples, compared with the normal groups (p<0.05) (Figure 11A). And MMP7, CDH3, and LEF1 levels were verified from the relative expression level by RT-qPCR (Figures 11B–D). The result demonstrated that MMP7, CDH3, and LEF1 might be identified as biomarkers for gastric cancer. The animal experiment also showed that these three genes were significantly increased in the gastric cancer group by RT-qPCR (Supplementary Figure 1).




Figure 11 | Hub gene validation. (A) Western blotting expression of CDH3, LEF1, and MMP7 in the normal control (NC) and gastric cancer (GC) groups. (B) Relative expression of MMP7 by RT-qPCR analysis. P<0.05, compared with control. (C) Relative expression of CDH3 by RT-qPCR analysis. P<0.05, compared with control. (D) Relative expression of LEF1 by RT-qPCR analysis. P<0.05, compared with control.





Strong Associations Between the Relative Expression of the Three Gene and Gastric Cancer

ROC curves were constructed to determine the effect of the three genes’ expression on gastric cancer, and the AUC was used to determine the degree of confidence: CDH3 (AUC = 0.800, P<0.05, 95% CI =0.857-0.895), LEF1 (AUC=0.620, P<0.05, 95%CI=0.632-0.714), and MMP7 (AUC=0.914, P<0.05, 95%CI=0.714-0.947) (Figure 12A). Immunohistochemical results showed that the expression level of MMP7, CDH3, and LEF1 in gastric cancer tissues was higher than in the control group (Figure 12B). A western blotting experiment was carried out, and the results showed that the relative expression levels of MMP7, CDH3, and LEF1 in gastric cancer tissues were increased compared with the control group (Figures 13A–C). These results suggest that MMP7, CDH3, and LEF1 may be biomarkers for gastric cancer.




Figure 12 | (A) The ROC of three genes for gastric cancer. (B) The detection of MMP7, CDH3, and LEF1 in the gastric tissues by immunohistochemical staining with their own antibodies. (200X, 400X).






Figure 13 | (A) Quantitative comparison of MMP7 expression between the two groups. (B) Quantitative comparison of CDH3 expression between the two groups. (C) Quantitative comparison of LEF1 expression between the two groups. (D) The linear correlation between CEA and the relative expression of MMP7. (E) The linear correlation between CEA and the relative expression of CDH3. (F) The linear correlation between CEA and the relative expression of LEF1.



In order to further explore the correlation between hub genes and CEA which indicates the severity of gastric cancer, we calculated the linear correlation between the hub genes and CEA. CEA was positively associated with the relative expression of MMP7 (Pearson Rho=0.801, P<0.001) (Figure 13D). CEA was positively associated with the relative expression of CDH3 (Pearson Rho=0.883, P<0.001) (Figure 13E). CEA was positively associated with the relative expression of LEF1 (Pearson Rho=0.753, P<0.001) (Figure 13F).



Association Between Three Genes and Gastric Cancer by Pearson’s Correlation Test and Univariate Linear Regression

Pearson’s correlation coefficient displayed that gastric cancer outcome was significantly correlated with the expression of MMP7, CDH3, and LEF1 (p<0.05). Gastric cancer remained related to MMP7, CDH3, and LEF1 (p<0.05) in the univariate linear regression model (Table 4).


Table 4 | The correlation and linear regression analysis between GC and relevant gene expression.





The Neural Network Prediction Model and High-Risk Warning Range of Gastric Cancer

The neural network model was trained with 35 gastric samples as the training set, and 5 gastric samples as the validation set. After training, the neural network prediction model achieved the best results. The best training performance was 0.033031 at epoch 2678 (Figure 14A). The difference between the predicted value and the true value was very small (Figure 14B), and the residual plot showed the same result (Figure 14C). The predicted value was fitted to the true value, and the correlation coefficient was 0.9624 (Figure 14D). In summary, the expression of the three genes may be joint predictors of gastric cancer.




Figure 14 | (A) The neural network prediction model of gastric cancer. The best training performance was 0.033031 at epoch 2678. (B) The predicted value of the data was verified against the actual value. (C) Residual plot of difference between actual and predicted values. (D) The final training model of neural network prediction model, and the relativity was 0.9624. (E) The high-risk warning range of gastric cancer at the level of the planform. (F) The high-risk warning range of gastric cancer at the level of the three-dimensional stereogram. The color represents MMP7 expression: “yellow” represents “high” and “blue” represents “low”.



Through the cubic spline interpolation algorithm, we found that the high-risk warning indicator of gastric cancer was 8<CDH3<15 and 10<expression of LEF1<16 (Figure 14E). Therefore, the 3D stereogram can better represent the early warning range (Figure 14F).




Discussion

Gastric cancer is one of the diseases with the highest mortality rate and has a high incidence in China. Recently, although many comprehensive treatments have been used to improve the efficacy, the 5-year survival rate of gastric cancer is still only 20%-30% (19). Actively exploring relevant biomarkers, early diagnosis, reasonable assessment of their prognosis, and timely intervention are of great significance for clinical treatment. With the advancement of molecular biology research methods, new types of prognostic biomarkers have emerged in an endless stream, making prognostic evaluation more objective (20).

In previous studies, CD44v9 was found to be highly expressed in mouse gastric cancer proliferating cells, and CD44v9 positive immune expression can be considered as a prognostic indicator of early gastric cancer, but not as a prognostic indicator of advanced gastric cancer (21). Therefore, CD44v9 can be considered as a prognostic biomarker for early gastric cancer (22). Epidermal growth factor receptor 1 (HER1) is the growth factor of epidermal factor receptor (EGFR) gene coding, and is one of the four members of the human epidermal growth factor receptor family in the receptor tyrosine kinase superfamily (23). It works by binding specific ligands including epidermal growth factor and transforming growth factor-α which are then are activated. EGFR over expression is not only a prognostic indicator in gastric cancer, but also can be used as a basis for personalized treatment. HER1 can also be used as a therapeutic target for gastric cancer (24). HER2 is encoded by ERBB2 and is a member of the HER family. Unlike other members of the HER family, HER2 does not contain sites and signals that bind to other heterodimer ligands (25). In gastric cancer, 4%-7% of tumors were found to have ERBB2 amplification or HER2 overexpression. Studies have shown that the expansion of ERBB2 is associated with a poor prognosis of gastric cancer. Therefore, the identification and research of potential biomarkers are crucial for early diagnosis and prognosis (26).

By analyzing four microarray datasets in the current study, we found the differences between gastric cancer and normal tissues adjacent to the cancer. The four datasets contained a total of 70 DEGs, and their interactions were explored through KEGG and GO analysis. DEGs are mainly concentrated in angiogenesis, the oncostatin-M-mediated signaling pathway, cytokine-cytokine receptor interaction, and glycolysis/gluconeogenesis. Studies have reported that angiogenesis and glycolysis have an important influence on the occurrence and progression of gastric cancer (27, 28). In addition, recent studies have found that cytokine-cytokine receptor interactions play a significant part in the development of gastric cancer (29). The expression of nerve growth factor receptor p75 (p75NTR) in gastric cancer cells is significantly lower than in adjacent tissues, suggesting that p75NTR may play a significant role in gastric cancer metastasis (30, 31). The results of this paper are consistent with the above studies.

By analyzing public and private datasets, we found that MMP7 expression is highly expressed in gastric tissues. Matrix metalloproteinase is a protease secreted by endothelial cells, fibroblasts, and smooth muscle cells, which can degrade all extracellular matrix proteins (32). MMP-7 degrades IGFBP-3 by interacting with insulin-like growth factor binding protein 3, so that insulin-like growth factor 1 exerts an anti-apoptosis effect and promotes cell mitosis (33). MMP-7 can also degrade the Fas ligand on the cell membrane, inhibit Fas-mediated apoptosis, and promote tumor growth. The encoded preproprotein is proteolytically processed to generate the mature protease (34). The gene is highly expressed in digestive, urinary, breast, and lung cancer tissues (35, 36).

In a case-control study, Fu et al. investigated whether the MMP7 promoter (A-181G and C-153T) polymorphism genotype was a risk factor for gastric cancer in Taiwan. The GG genotype of MMP7 A-181G was identified as a risk factor for gastric cancer (37).

Li et al. found that MMP7 induced T-DM1 resistance and resulted in a poor prognosis of gastric adenocarcinoma in a DKK1-dependent manner. Exogenous overexpression of MMP7 promoted T-DM1 resistance and tumor growth, while MMP7 knockdown was associated with the opposite phenotype. Moreover, DKK1 knockout can lead to decreased expression of MMP7 and resistance to T-DM1 (38). All these results indicate that MMP7 is a very important biomarker for gastric cancer. However, since gastric cancer is not caused by a single gene, it often leads to multi-gene changes. Looking for a promising combination of multiple genes to predict gastric cancer will be more conducive to the early diagnosis of gastric cancer.

CDH3 can bind to cells and the extracellular matrix (39). CDH3 is highly expressed in cancer tissues such as colorectal cancer, thyroid cancer, and pancreatic cancer, but the study of CDH3 in gastric cancer is not completely clear. Hibi K et al. found that CDH3 gene demethylation occurred in 69% of GC patients, and CDH3 demethylation was significantly associated with increased TNM staging (39). CDH3 plays a role in cell-cell adhesion in epithelial tissue and plays a key role in maintaining tissue integrity and morphology. Alterations of CDH3 can lead to tissue disruption, cell dedifferentiation, increased tumor cell aggressiveness, and ultimately metastasis. Our research found that CDH3 is highly expressed in gastric cancer tissues, and it is included in the neural network model for prediction (40). In the future, it may be used as a new biomarker for the early diagnosis of gastric cancer or the prognostic judgment of its progression.

LEF1, located on the q23-q25 region of human chromosome 4, is the downstream nuclear transcription factor of the Wnt/β-catenin signaling pathway (41). LEF1 binds to β-catenin to regulate the expression of downstream molecules, thereby regulating the signal pathway (42). LEF1 is highly expressed in acute myelogenous leukemia, prostate cancer, small lymphocytic lymphoma, and other cancers (43, 44). microRNA-6852 has been shown to inhibit the progression of stomach and colorectal cancer. Wang et al. found that the expression of LEF1 was negatively correlated with the expression of miR-6852. miR-6852 inhibited proliferation, migration, and invasion of glioma cells by inhibiting LEF1 (45). In our study, LEF1 was found to predict gastric cancer jointly with CDH3 and MMP7, which may be used as a diagnostic marker for gastric cancer in the future. In view of the complexity of the pathogenesis factors of gastric cancer, we should focus on multiple targets to accurately judge the diagnosis and prognosis of the disease, which is better than single gene predictions.


Limitations

Despite the rigorous bioinformatics analysis performed in this study, some limitation are still present. The small sample size of our study may cause some bias in the results.



Future Directions

In subsequent studies, we will conduct MMP7, CDH3, and LEF1 validation and molecular mechanism studies at the animal level. Multi-center randomized controlled clinical trials should be conducted and more subjects recruited to verify the role of the levels of the three genes expressed in the progression of gastric cancer.

The bioinformatics analysis was used to predict the function and expression of 10 hub genes, providing guidance for subsequent research and exploration. This study shows that MMP7, CDH3, and LEF1 are highly expressed in gastric cancer tissues. Also, we found a correlation between the three by constructing a neural network model, and the disease status could be judged through the high-risk early warning range.




Conclusion

The bioinformatics analysis was used to predict the function and expression of 10 hub genes, providing a possible mechanism for subsequent research and exploration. This study showed that MMP7, CDH3, and LEF1 are highly expressed in gastric cancer tissues. We selected CDH3, LEF1, and MMP7 as candidate biomarkers to construct a back propagation neural network model from hub genes, which may be helpful for the early diagnosis of cancer through the high-risk early warning range.
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Supplementary Figure 1 | (A) Relative expression of MMP7 in mouse model of carcinoma in situ by RT-qPCR analysis. P<0.001, compared with control. (B) Relative expression of CDH3 in mouse model of carcinoma in situ by RT-qPCR analysis. P<0.001, compared with control. (C) Relative expression of LEF1 in mouse model of carcinoma in situ by RT-qPCR analysis. P<0.001, compared with control.
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Background

Gastric adenocarcinoma is an important contributor to cancer mortality and morbidity. This study aimed to explore the prognostic value of mutation patterns in gastric adenocarcinoma.



Materials and Methods

We extracted somatic mutation data for 437 gastric adenocarcinoma samples from The Cancer Genome Atlas (TCGA) Stomach Adenocarcinoma (STAD) cohort. Kaplan–Meier survival in the R package maftools was used to analyze associations between mutations and survival. Multivariate Cox proportional model was used to establish risk formula. A four-gene-based risk score was developed to predict the overall survival of patients with gastric adenocarcinoma. We used the Tianjin cohort dataset with survival information to further evaluate the clinical value of this mutation signature.



Results

Forty-five survival-related mutated genes were identified and verified, most of which were co-occurring in their mutation pattern and co-occurring with MLH3 and polymerase ϵ (POLE) mutations. Gastric adenocarcinoma samples with the 45 mutated genes had a significantly higher mutation count. Four-gene [UTRN, MUC16, coiled-coil domain-containing protein 178 (CCDC178), and HYDIN] mutation status was used to build a prognostic risk score that could be translated into the clinical setting. The association between the four-gene-based signature and overall survival remained statistically significant after controlling for age, sex, TNM stage, and POLE mutation status in the multivariate model [hazard ratio (HR), 1.88; 95% CI, 1.33–2.7; p < 0.001]. The prognostic significance of the four-gene-based risk score identified in TCGA cohort was validated in the Tianjin cohort.



Conclusion

A four-mutated gene risk formula was developed that correlated with the overall survival of patients with gastric adenocarcinoma using a multivariable Cox regression model. In two independent genomic datasets from TCGA and Tianjin cohorts, low risk scores were associated with higher tumor mutation loads and improved outcome in patients with gastric adenocarcinoma. This finding may have implications for prognostic prediction and therapeutic guidance for gastric adenocarcinoma.
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Introduction

Gastric adenocarcinoma is an important contributor to cancer mortality and morbidity, and its molecular mechanism remains largely incomprehensible. Next-generation sequencing (NGS) technology could provide genomic-level information about the mechanism of cancer. Numbers of large-scale genomic analyses on gastric adenocarcinoma have been completed, including The Cancer Genome Atlas (TCGA) project.

Recent research has shown that gastric adenocarcinoma is a heterogeneous disease. Surgical resection is still the main means of curative treatment for gastric adenocarcinoma. However, a portion of patients with advanced gastric adenocarcinoma developed local recurrences and distant metastases and had a poor prognosis after resection (1). Patients would have received the best treatment if their prognosis was depicted in advance. However, different prognoses of patients with similar clinical stages or pathologic grades remain unpredictable (2–5). Profiling the genetic mutation of gastric adenocarcinoma that influences the prognosis and accurate risk assessment based on genetic screening will lead to more effective clinical strategies in precision medicine.

In this study, we identified and verified 45 survival-related mutated genes with bioinformatics analysis from TCGA Stomach Adenocarcinoma (STAD) cohort. We investigated the function of these genes via Gene Ontology (GO) analysis. Through random survival forest algorithm, we ranked these mutated genes by importance and constructed a four−gene-based risk score with multivariable Cox regression model. Using the Tianjin cohort dataset with survival information, we evaluated the clinical value of the risk score.



Materials and Methods


Stomach Adenocarcinoma Datasets

Genomic data of gastric adenocarcinoma somatic mutation and gene expression data for 437 gastric adenocarcinoma samples in TCGA data portal (level 3) were downloaded from Genomic Data Commons (https://portal.gdc.cancer.gov) (Release Date: August 23, 2018). The Tianjin cohort contained data from 78 patients from northern China (6). Frozen tissue samples derived from surgical resection specimens of primary gastric adenocarcinoma from 294 northern Chinese patients without preoperative chemotherapy or radiotherapy were obtained from the Tianjin Medical University Cancer Institute and Hospital-National Foundation for Cancer Research Joint Tissue Banking Facility. Whole-exome sequencing was performed on 78 samples. Germline DNA was obtained from matching blood samples and used as a reference sequence to detect somatic mutations. Histopathologic diagnoses were independently reviewed by at least two experienced pathologists. Clinical follow-up data were complete for 78 participants with 25.08 months of median follow-up (32 deceased, 41.03%) (Supplementary Table 1). TCGA cohort also has the follow-up and vital status of patients (Supplementary Table 2). This study was approved by the Chinese PLA General Hospital (Beijing), which waived additional informed consent because all data used in this study were obtained from public databases. This study met the publication guidelines provided by TCGA (http://cancergenome.nih.gov/publications/publicationguidelines). All data were processed and analyzed by Excel 2010 and R (version 3.5.0).



Prognosis

Kaplan–Meier survival analyses implemented in the R package maftools and survival were used to analyze the correlation between mutations and survival (7). The log-rank test was used to determine significant differences of survival curves stratified by mutations. A two-sided p < 0.05 was considered statistically significant. Correlation between mutations and survival was also explored by multivariate Cox regression analyses by the R package survival.



Gene Ontology Pathway Analysis

The GO pathway analysis mutated genes were annotated by the R package of clusterProfiler (8). The cutoff p.adjust value was 0.01.



Random Survival Forest Algorithm

Random survival forest algorithm implemented in the R randomForestSRC was used to rank the survival-related genes by their importance.




Results


Survival in The Cancer Genome Atlas Stomach Adenocarcinoma Cohort

Somatic mutation data for 437 gastric adenocarcinoma samples from TCGA STAD cohort were extracted by maftools version 1.6.15 (http://www.bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/maftools.html). These somatic mutations included point mutations and insertions/deletions (indels). We annotated 17,431 protein-coding genes with somatic mutations that mostly consist of missense mutations (Figure 1A), and single-nucleotide polymorphism (SNP) was more common than insertion–deletion (InDel) (Figure 1B). Furthermore, the mutational contexts are derived from combinations of six mutational types (i.e., T>G, T>C, T>A, C>T, C>G, and C>A) (Figure 1C). The somatic mutation rates varied considerably among the samples (Figures 1D, E), though an average of 108 mutations occurred in each sample (Figure 1D). The top 10 mutated genes were TTN, TP53, MUC16, LRP1B, SYNE1, ARID1A, CSMD3, FAT4, FLG, and PCLO (Figure 1F).




Figure 1 | Selection of survival-related mutated genes in The Cancer Genome Atlas (TCGA) Stomach Adenocarcinoma (STAD) cohort. (A–C) Characteristics of the variations in TCGA STAD cohort. Histogram summarizing the variant types of all cases with substitutions, insertions, deletions, and SNP (single nucleotide polymorphism). (D) Stacked bar showing the cumulative frequency of variation for individual cases. (E) Boxplot summarizing the number of cases for each type of variant. (F) Stacked bar showing top 10 mutated genes. (G–J) Kaplan–Meier survival analyses stratified by TP53, MUC16, GLI3, and coiled-coil domain-containing protein 178 (CCDC178) mutation status, respectively. This analysis was implemented in the R package maftools.



In order to select the most weighted genes associated with survival outcome, Kaplan–Meier survival in the R package maftools was used to analyze associations between mutations and survival for each of the 17,431 protein-coding genes (Figure 1B). A two-sided p < 0.05 was considered statistically significant. The most studied tumor repressor gene TP53 was analyzed for example. All samples were categorized into two groups representing the wild-type and mutated TP53 respectively, and Kaplan–Meier survival analysis showed that there were no significant associations between TP53 mutations and survival in TCGA STAD cohort (Figure 1G). Forty-four mutated genes, such as MUC16 and GLI3, occurring in more than 5% of the patients, were significantly associated with a better survival outcome (Figures 1H, I). Only coiled-coil domain-containing protein 178 (CCDC178) mutations were significantly associated with a poor survival outcome (Figure 1J). The 45 mutated genes were listed in Table 1.


Table 1 | Survival-related mutated genes by Kaplan–Meier survival analyses.



To elucidate the function of these survival-related mutated genes, we conducted GO analysis and revealed that many genes play an important role in “cell–cell adhesion via plasma–membrane adhesion”, “extracellular matrix component”, and “alpha-catenin binding”, which were highly correlated to cancer metastasis and invasiveness (Table 2).


Table 2 | GO analysis of 45 survival-related mutated genes (partial data).





Clinical Features of Patients in The Cancer Genome Atlas Stomach Adenocarcinoma Cohort With the 45 Mutated Genes

To explore the relationship between these survival-related mutations, we performed pair-wise Fisher’s exact test to detect significant pairs of mutated genes in the 45 genes and DNA mismatch repair (MMR)-related genes [PMS2, MSH2, MLH1, MSH3, MLH3, MSH6, polymerase ϵ (POLE)]. Interestingly, most of the 45 mutated genes were co-occurring in their mutation pattern and co-occurring with MLH3 and POLE mutations (Figure 2A). Tumor mutation burden (TMB) is an important determinant for molecular subtyping of gastric adenocarcinoma in TCGA (9). Recent studies have shown that gastric adenocarcinoma with POLE mutations or microsatellite instability–high (MSI-H) had DNA MMR signatures and higher TMBs (10). Gastric adenocarcinoma samples with the 45 mutated genes had a significantly higher tumor count (Figure 2B; Mann–Whitney test p-value <0.0001). Since these mutations tended to occur simultaneously, we explored the relationship between all these mutations and prognosis. Kaplan–Meier survival analysis showed that the 45 mutated genes were significantly associated with a better survival outcome in TCGA STAD cohort (Figure 2C; log-rank test, p < 0.0001). Multivariate Cox regression analyses showed that the correlation remained statistically significant after controlling for confounding factors such as sex, age, and TNM stage (Figure 2D). So, the 45 mutated genes were important prognostic indicators associated with tumor mutation load.




Figure 2 | Association of 45 mutated genes status with tumor mutation load and prognosis in The Cancer Genome Atlas (TCGA) Stomach Adenocarcinoma (STAD) cohort. (A) Mutually exclusive and co-occurring gene pairs in STAD displayed as a triangular matrix. Green indicates tendency toward co-occurrence, whereas pink indicates tendency toward exclusiveness. (B) Mutation count per sample of gastric adenocarcinoma stratified by 45 mutated genes status. (C) Kaplan–Meier survival analysis stratified by 45 mutated genes status. (D) Multivariable Cox regression model tests for age, sex, TNM stage, and 45 mutated genes status. Square data markers indicate estimated HRs. Error bars represent 95% CIs. *p < 0.05; **p < 0.01; ***p < 0.001.





Construction of Risk Score Formula

The most common mutations of the 45 genes are missense substitutions. Other alterations include silent mutations, frameshift insertions and deletions, nonsense mutations, and other infrequent mutations. Both base substitution mutation and frameshift mutation can change the composition or sequence of amino acids in the polypeptide chain. According to the impact of different type mutations on DNA composition or sequence of amino acids, we scored these mutations, as follows: No mutation or Silent mutation: 0; Missense mutation, In-frame insertion or deletion: +1; Splice site mutation: +2; Nonsense mutation, frameshift insertion or deletion: +3; Multiple mutation: the maximum score of all (Figure 3A). There are four levels of mutations in total. Finally, we get the mutation score matrix (Supplementary Table 3). In order to select the most weighted genes, we used random survival forest algorithm (Ntree = 1,000, default parameters of Hemant Ishwaran algorithm) and set the 45 mutated genes score as variables in this model. We ranked these 45 genes by their importance from the random survival forest model (Figure 3B).




Figure 3 | Establishment of survival-related risk score in The Cancer Genome Atlas (TCGA) Stomach Adenocarcinoma (STAD) cohort. (A) Mutation score matrix. (B) Variable importance of the 45 survival-related mutated genes. (C) Mutually exclusive and co-occurring gene pairs in STAD displayed as a triangular matrix. Green indicates tendency toward co-occurrence, whereas pink indicates tendency toward exclusiveness. (D) Mutation count per sample in non-synonymous mutations. Frequency of MUC16, UTRN, HYDIN, and coiled-coil domain-containing protein 178 (CCDC178) mutations and gene mutation patterns. (E) Mutation count per sample of gastric adenocarcinoma stratified by four-gene mutation status. (F) Kaplan–Meier survival analysis stratified by risk score. (G) Multivariable Cox regression model tests for age, sex, TNM stage, polymerase ϵ (POLE) mutation status, and 4-gene mutation score. ***p < 0.001. (H) Mutation count per sample of gastric adenocarcinoma stratified by risk score. ****p < 0.0001 determined by Mann Whitney test.



Since the mutation status is divided into four levels, we selected four genes to construct the model in order to preserve the effect of all mutation states on the prognosis and take into account the minimalist principle. Combining Kaplan–Meier survival analysis log-rank p-value, mutation coexistence pattern, and the result of random survival forest algorithm, we selected UTRN, MUC16, CCDC178, and HYDIN as candidates for an accurate prediction of survival in gastric adenocarcinoma patients. UTRN ranked first among the candidates in random survival forest model (Figure 3B). MUC16 had the highest mutation frequency among the 45 genes (Table 1). CCDC178 mutations seem to be an independent factor (Figure 2A). MUC16 and CCDC178 also ranked in the top 10 important candidates (Figure 3B). UTRN and CCDC178 mutations were not significantly co-occurring or exclusive with each other in their mutation pattern (Figure 3C). Based on the selection of the three genes, using a computer to build the multivariate Cox model repeatedly, HYDIN was selected among the genes that had no obvious co-occurring or exclusive mutations with UTRN and CCDC178.

Of the 437 patients in TCGA cohort, the four genes were altered in 177 patients (40.5%). Consistently, gastric adenocarcinoma samples with the four mutated genes had a significantly higher mutation load (Figures 3D, E; Mann–Whitney test, p < 0.0001).

The mutated genes chosen from the previous step were constructed into the multivariate Cox proportional model to calculate the coefficients in TCGA cohort, thereby establishing the risk formula by which a risk score for each patient was calculated. Risk score = −0.1445* (mutation score of MUC16) − 0.459* (mutation score of UTRN) - 0.332* (mutation score of HYDIN) + 0.3102* (mutation score of CCDC178). Cutting off by 0, we defined risk score <0 as low-risk group, risk score = 0 as medium-risk group, and risk score >0 as high-risk group. Patients in the low-risk group had a markedly longer overall survival than those in the medium-risk group, and high-risk group had the shortest overall survival (Figure 3F; p < 0.0001, by log rank). The correlation between the four-gene-based signature and overall survival remained statistically significant after controlling for age, sex, TNM stage, and POLE mutation status in the multivariate model [hazard ratio (HR), 1.88; 95% CI, 1.33–2.7; p < 0.001] (Figure 3G). A significantly higher mutation count was also observed in gastric adenocarcinoma samples within the low-risk group (Figure 3H; Mann–Whitney test p-value <0.0001). So, the signature of the four-gene mutation would*nbsp;be a good prediction for survival of gastric adenocarcinoma patients.



Independent Validation of Four−Gene-Based Risk Score in the Tianjin Cohort

To further evaluate the clinical value of this four-gene mutation signature, we used Tianjin cohort dataset with survival information. Kaplan–Meier survival analyses showed low-risk scores were significantly associated with better survival outcomes (Figure 4A; log-rank test, p = 0.036). Significantly higher mutation count was also observed in Tianjin cohort gastric adenocarcinoma samples in the low-risk group (Figure 4B; Mann–Whitney test p-value <0.0001). Multivariable Cox regression analysis also showed that the association of the risk score with overall survival was statistically significant after controlling for age, sex, TNM stage, and POLE mutation status (Figure 4C; HR, 4.33; 95% CI, 1.29–14.5; p = 0.018).




Figure 4 | Validation of the risk score in Tianjin gastric adenocarcinoma cohort. (A) Kaplan–Meier survival analysis stratified by risk score. (B) Mutation count per sample of gastric adenocarcinoma stratified by risk score. (C) Multivariable Cox regression model tests for age, sex, TNM stage, polymerase ϵ (POLE) mutation status, and 4-gene mutation score. *p < 0.05.






Discussion

We analyzed 437 gastric adenocarcinoma samples from TCGA cohort and 78 gastric adenocarcinoma samples from a Tianjin cohort for survival prediction genes. We have identified and verified 45 mutated genes related to survival from 17,431 protein-coding genes in STAD. The GO enrichment showed that these genes play an important role in “cell–cell adhesion via plasma–membrane adhesion”, “extracellular matrix component”, and “alpha-catenin binding”. Obviously, these genes played a pivotal role in cancer metastasis. After that, we ranked the 45 survival−related mutated genes by random survival forest algorithm. Whole-genome sequencing is expensive, and data analysis takes a long time. The aim of this study is to develop a cheap and practical prognostic tool that can be accomplished by PCR. Combining Kaplan–Meier survival analysis log-rank p-value, mutation coexistence pattern, and the result of random survival forest algorithm, we selected four-gene mutation status to build a prognostic risk score that could be transformed into the clinical setting. Gastric adenocarcinoma samples classified into low-risk group had a significantly higher tumor mutation load and better survival outcome. The association between the four−gene-based risk score and overall survival was independent of mutations in POLE mutation status, age, sex, and TNM stage. Many studies have reported the association between these genes and tumors.

The deletion of chromosome 6q has been extensively mapped in a variety of tumors (11, 12). UTRN is located in this region, which encodes dystrophin. UTRN is a tumor suppressor inducing cell transformation when expressed in an antisense orientation. Studies showed decreased expression and inactivation mutations of UTRN in tumors. Expression of a wild-type UTRN in breast cancer cells inhibited tumor cell growth in vitro and reduced their tumor potential in nude mice (13). HYDIN is a gene whose impaired function has been linked to abnormal ciliary function, dyskinesia, and brain abnormalities (14, 15). HYDIN-derived sequences are targeted by the adaptive immunity in patients with cancer (16). Somatic mutations in HYDIN were found in breast cancer samples (17–19). MUC16, encoding a type I transmembrane mucin protein (20, 21), is frequently mutated in multiple types of human cancer (22). MUC16 was reported to modulate immune response to cancer (23–25). CA125 is a repeating peptide epitope of the mucin MUC16 (26, 27). MUC16 mutations were found to be associated with higher tumor mutation load, better survival outcomes, and immune response and cell cycle pathways in gastric adenocarcinoma (28). The CCDC178 is an 867-amino acid polypeptide and belongs to the superfamily of coiled-coil domain-containing protein. CCDC178 was reported to be mutated in hepatocellular carcinoma (29) and gastric carcinoma (30). CCDC178 associated with BRCA1-associated protein 2 (BRAP2), a negative regulator of extracellular signal-regulated kinase (ERK) pathway, and promoted its degradation (31). CCDC178 deficiency impaired the ERK activation in hepatocellular carcinoma (31). In our study, CCDC178 mutations were significantly associated with a poor survival outcome in gastric adenocarcinoma. The relative transcriptional level of CCDC178 was significantly downregulated in several types of carcinoma compared with adjacent non-cancerous tissues in TCGA cohorts (Supplementary Figure 1).

Compared with mutation detection, measurement of gene expression in cross-platform is unstable. Due to the lack of reproducibility and standardization, its clinical application may be limited. Recently, high-throughput sequencing technologies have been widely utilized in clinical cancer research. Compared to normal tissues, many high/low expressed proteins and mutated genes in tumor cells were identified. Combining several altered genes together may be feasible in predicting gastric adenocarcinoma risk and prognosis. In our study, the four genes (UTRN, MUC16, CCDC178, and HYDIN) were mutated in 177 patients (40.5%) in TCGA STAD cohort. The risk score is powerful and accurate in prognostic stratification. Our work provided an advanced method toward clinical applications of gene mutation profiling in STAD, especially in future personalized prediction and precision medicine.

However, our study has several limitations. The number of samples with follow-up data in the Tianjin cohort was limited. No CCDC178 mutation was detected in the Tianjin cohort. Gastric adenocarcinoma is a heterogeneous disease. Molecular subtyping can encompass this heterogeneity and provide useful clinical information. Prognostic tool constructed on the basis of anatomic site, histopathology, and molecular subtype may be more powerful and accurate. Considering the number of samples, anatomic site, histopathology, and molecular subtype were not included in this study. So, more prospective studies are necessary to further validate the reliability and stability of this risk score.



Conclusions

A four-mutated gene risk formula was developed that correlated with the overall survival of patients with gastric adenocarcinoma using a multivariable Cox regression model. In two independent genomic datasets from TCGA and Tianjin cohorts, low risk scores were associated with higher tumor mutation loads and improved outcome in patients with gastric adenocarcinoma. This finding may have implications for prognostic prediction and therapeutic guidance for gastric adenocarcinoma.
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Introduction

Colorectal cancer (CRC) is the most common gastrointestinal cancer and has a low overall survival rate. Tumor–node–metastasis staging alone is insufficient to predict patient prognosis. Autophagy and long noncoding RNAs play important roles in regulating the biological behavior of CRC. Therefore, establishing an autophagy-related lncRNA (ARlncRNA)-based bioinformatics model is important for predicting survival and facilitating clinical treatment.



Methods

CRC data were retrieved from The Cancer Genome Atlas. The database was randomly divided into train set and validation set; then, univariate and multivariate Cox regression analyses were performed to screen prognosis-related ARlncRNAs for prediction model construction. Interactive network and Sankey diagrams of ARlncRNAs and messenger RNAs were plotted. We analyzed the survival rate of high- and low-risk patients and plotted survival curves and determined whether the risk score was an independent predictor of CRC. Receiver operating characteristic curves were used to evaluate model sensitivity and specificity. Then, the expression level of lncRNA was detected by quantitative real-time polymerase chain reaction, and the location of lncRNA was observed by fluorescence in situ hybridization. Additionally, the protein expression was detected by Western blot.



Results

A prognostic prediction model of CRC was built based on nine ARlncRNAs (NKILA, LINC00174, AC008760.1, LINC02041, PCAT6, AC156455.1, LINC01503, LINC00957, and CD27-AS1). The 5-year overall survival rate was significantly lower in the high-risk group than in the low-risk group among train set, validation set, and all patients (all p < 0.001). The model had high sensitivity and accuracy in predicting the 1-year overall survival rate (area under the curve = 0.717). The prediction model risk score was an independent predictor of CRC. LINC00174 and NKILA were expressed in the nucleus and cytoplasm of normal colonic epithelial cell line NCM460 and colorectal cancer cell lines HT29. Additionally, LINC00174 and NKILA were overexpressed in HT29 compared with NCM460. After autophagy activation, LINCC00174 expression was significantly downregulated both in NCM460 and HT29, while NKILA expression was significantly increased.



Conclusion

The new ARlncRNA-based model predicts CRC patient prognosis and provides new research ideas regarding potential mechanisms regulating the biological behavior of CRC. ARlncRNAs may play important roles in personalized cancer treatment.





Keywords: colorectal cancer, autophagy, long noncoding RNAs, risk score, prognostic prediction model



1 Introduction

Colorectal cancer (CRC) is a common gastrointestinal cancer. According to the 2020 global cancer statistics, more than 1.9 million new cases of CRC were diagnosed, and 935,000 CRC patients died. CRC ranks third in morbidity and second in mortality for all tumors (1). With advancements in comprehensive therapy, including surgery, chemotherapy, biological immunotherapy, and radiotherapy, CRC outcomes are improving, but the overall survival rate is still low (2). Historically, the tumor–node–metastasis (TNM) staging system has been widely used to predict the prognosis of CRC patients. Generally, the prognosis is better with earlier staging. In recent years, however, some studies have shown that the combination of biomarkers and TNM staging is more accurate in predicting the prognosis of CRC patients (3, 4).

Long noncoding RNAs (lncRNAs) are defined as RNAs that contain more than 200 nucleotides and do not encode a protein. They play important roles in transcription, translation, and cell cycle regulation (5). A growing body of evidence indicates that lncRNAs play important roles in CRC occurrence, development, metastasis, and drug resistance (6–9). Moreover, several lncRNA-based prediction models have been built to predict the survival of patients with CRC (10–12), indicating that lncRNAs can serve as CRC biomarkers.

Autophagy is a process of intracellular degradation that helps maintain homeostasis by promoting nutrient recycling during nutrient deficiency, hypoxia, DNA damage, and infection (13, 14). It plays an important role in tumor development, maintenance, and progression (15). Studies have shown that autophagy is a double-edged sword, as it promotes CRC invasion and metastasis and CRC cell apoptosis (16, 17). Current studies show that tumor autophagy can predict patient prognosis (18, 19).

Overall, autophagy and lncRNAs both play important biological roles in CRC. To date, few studies have been conducted that investigate the role of autophagy-related lncRNAs (ARlncRNAs) in the survival of cancer patients. One study showed that the prognosis of patients with lung adenocarcinoma is related to the abnormal expression of 13 ARlncRNAs (20). We hypothesize that ARlncRNAs are closely related to the survival of CRC patients and that ARlncRNAs are potential biomarkers of and treatment targets for CRC. In this study, using bioinformatics technology, we identified and screened ARlncRNAs related to the prognosis of CRC patients and built a novel model that can be used to predict prognosis. This model is of great significance in predicting the prognosis of CRC patients in clinical practice.



2 Methods


2.1 Data Collection

We downloaded transcriptome and clinical data of CRC samples from The Cancer Genome Atlas (TCGA: https://portal.gdc.cancer.gov/repository) database. RNAs were annotated via human gene annotation files (GRCh38.p12) downloaded from the Ensembl database (https://asia.ensembl.org/index.html). Next, we downloaded human autophagy-related gene profiles from the Human Autophagy database (HADb: http://www.autophagy.lu/clustering/index.html).



2.2 Data Analysis

We employed Strawberry Perl software (v5.30.2.1) to compile the clinical data of CRC patients. After deleting “unknown” and incomplete survival data (“NULL”), we recorded the survival time, survival status, age at diagnosis, sex, clinical stage, T stage, M stage, and N stage of each patient. We used the Strawberry Perl program to organize the transcriptome data of CRC samples into an expression matrix and then used GRCh38.p12 to annotate the genes. Next, we obtained separate messenger RNA (mRNA) and lncRNA expression matrices for CRC samples and used the “limma” package in R (v4.0.0) for coexpression analysis of the mRNA expression matrix and autophagy-related gene profile to obtain the expression matrix for autophagy-related genes. Then, we performed coexpression analysis of the autophagy-related expression matrix and lncRNA expression matrix (selection criterion: absolute correlation coefficient > 0.3, p < 0.001) to obtain the lncRNA matrix coexpressed with autophagy-related genes, that is, ARlncRNAs. We utilized Strawberry Perl software to merge the clinical data of CRC patients and the information from the ARlncRNA expression matrix to obtain a matrix of the expression levels of ARlncRNAs and survival status. The flow chart of overall procedures is shown in Figure 1.




Figure 1 | The flow chart of overall procedures. TGCA, the Cancer Genome Atlas; IncRNA, long non-coding RNA; ARIcRNAs, autophagy-related IncRNAs; ROC, receiver operating characteristic; qRT-PCR, quantitative real-time polymerase chain reaction; FISH, fluorescence in situ hybirdization.





2.3 Model Establishment

We used the “caret” package in R to divide the database into train set and validation set. Then, we used the “survival” package in R to conduct univariate Cox regression analysis (p < 0.05) to screen ARlncRNAs related to the 5-year OS of CRC patients and then performed multivariate Cox regression analysis with optimization based on the optimal Akaike information criterion to screen ARlncRNAs for the prediction model. The risk score was the sum of the product of the expression level of each ARlncRNA and the corresponding multivariate Cox regression coefficient (21, 22). The above model was applied to calculate the risk score for each patient. The patients were divided into high- and a low-risk groups with the median risk score as the cutoff value. Next, the “pheatmap” package in R was employed to plot the heat maps of nine ARlncRNAs in each group.



2.4 Survival Analysis

We used the “survival” package in R to plot Kaplan–Meier survival curves to analyze the 5-year OS associated with high or low expression of each ARlncRNA and then performed the log-rank sum test to analyze survival differences between the high and low expression groups. We also compared the 5-year OS between the high-risk group and the low-risk group obtained from this model. Next, the “pheatmap” package in R was used to plot the survival time and survival status.



2.5 Model Evaluation

We utilized the “survivalROC” package in R to plot the receiver operating characteristic (ROC) curve to evaluate the sensitivity and specificity of the ARlncRNA-based risk model via the area under the curve (AUC). Moreover, we analyzed the performance of the risk score from the ARlncRNA-based model versus TNM stage, age, sex, and clinical stage for predicting 5-year survival. In addition, we performed multivariate Cox regression analysis and stratified analysis to determine whether the risk score was independent of clinical variables.



2.6 Gene Ontology and Kyoto Encyclopedia of Genes and Genomes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyzed the signal pathways of enrichment of genes that construct an interaction network with lncRNAs in the model.



2.7 ARlncRNA Interactive Networks

We used Perl software to screen autophagy-related genes coexpressed with prognostic ARlncRNAs and then used Cytoscape software (v3.8.0) to plot and visualize interactive networks of ARlncRNAs and mRNAs from the prediction model. Next, we utilized the “ggplot2,” “gglluvial,” and “dplayr” packages in R to plot a Sankey diagram to determine whether the ARlncRNAs included in the model were risk factors or protective factors.



2.8 Validation In Vitro


2.8.1 Cell Culture

Human colorectal cancer cell lines HT29 (Procell Life Science & Technology Co., Ltd., China), HCT116, and RKO (BeNa culture collection, China) and normal colonic epithelial cell line NCM460 (BeNa culture collection, China) were used for further investigations. Cell line HCT116 was cultured in Roswell Park Memorial Institute (RPMI) 1640 complete medium containing 10% fetal bovine serum (FBS), RKO, and NCM460 in Dulbecco’s modified Eagle’s medium (DMEM) (H) complete medium containing 10% FBS, and cell line HT29 in McCoy’s 5A complete medium containing 10% FBS. The cells were cultured at 37°C in an incubator and passaged by 0.1% trypsin digestion every 3–4 days during the logarithmic growth period. All cells were grown addictively. To detect the function of lncRNAs in autophagy, cells were applied with 25 nM mammalian target of rapamycin (mTOR) inhibitor Rapamycin for 72 h for further investigation.



2.8.2 Quantitative Real-Time Polymerase Chain Reaction

RNAs were extracted using the Trizol reagent (Invitrogen, Carlsbad, CA, USA), followed by removal of DNA with the TurboDNase kit (Ambion). Quantification of extracted RNA was performed using NanoDrop. Complementary DNA synthesis was performed using PrimeScript real-time (RT) reagent kit (Takara Bio, Japan) using 1,000 ng of total RNA. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed using the SYBR Select Master Mix (Applied Biosystems, Waltham, MA, USA) on an ABI 7900 system (Applied Biosystems). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a control. The Ct value was calculated based on the ΔΔCt method. Fold change of gene expression was expressed as 2−ΔΔCt. The primers used in this study were as follows: NKILA, sense strand 5′-CGGATACATCTTAGTTGTTATG-3′, antisense strand 5′-GTGCTGGAATCATCATTG-3′ and LINC00174, sense strand 5′-GCATTAGATTCTCATAGG-3′, antisense strand 5′-GGCATTAGATTCTCATAG-3′.



2.8.3 Western Blot

LC3B, p62, beclin1, and ATG7 were extracted from the indicated cells using radioimmunoprecipitation assay (RIPA) lysis buffer, and a BCA Protein Assay Kit (Thermo Scientific, USA) was used to measure the protein concentration. In total, 60 μg of protein was separated on 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) gels by PAGE and transferred onto nitrocellulose membranes. The membranes were blocked using 5% non-fat dry milk and incubated with primary rabbit monoclonal antibody overnight at 4°C. The membranes were washed with Tris-buffered saline with Tween 20 (TBST) and then incubated with the appropriate secondary antibody. Enhanced chemiluminescence reagent was used to detect the signal on the membrane. The antibody used in this study are shown in Supplementary Table 1.



2.8.4 Fluorescence In Situ Hybridization

The subcellular localization of LINC00174 and NKILA was detected by FISH assay. Cells were fixed with 4% paraformaldehyde (Aladdin, China) and incubated overnight at 37°C with a labeled LINC00174 or NKILA probe (Sangon, China). Then, cells were incubated with 4′,6-diamidino-2-phenylindole (Best-Bio, Shanghai, China). The image was acquired by laser scanning confocal microscopy (LSM710, Carl Zeiss, Germany).




2.9 Statistical Analysis

The Cox proportional hazard model was employed for univariate and multivariate analyses. The Kaplan–Meier method was used to plot survival curves, and the log-rank sum test was performed to analyze between-group differences. Due to homogeneity of variance, Student’s t-test and Dunnett’s multiple comparisons test in analysis of variance were used to analyze the expression levels of lncRNA in different cells. Statistical analyses were conducted with R (v4.0.0) and GraphPad Prism (v9.2.0) software. A two-tailed value of p < 0.05 was considered statistically significant, unless otherwise specified.




3 Results


3.1 Identification of Nine Prognostic ARlncRNAs

Using univariate Cox regression analysis and the Kaplan–Meier method, we screened 32 prognostic ARlncRNAs (Supplementary Table 2). Further multivariate Cox regression analysis of these 32 ARlncRNAs with optimization at an Akaike information criterion of 365.59 yielded an interactive network diagram with 9 ARlncRNAs and 53 coexpressed mRNAs (Figure 2). We then plotted Kaplan–Meier survival curves to analyze survival and plotted the corresponding survival curve associated with high or low expression of each of the nine ARlncRNAs (Figure 3). The results showed that the 5-year survival rate was significantly lower in the high- than in the low-expression group among all ARlncRNAs (NKILA, LINC00174, AC008760.1, LINC02041, PCAT6, AC156455.1, LINC01503, LINC00957, and CD27-AS1, all p < 0.05).




Figure 2 | The interaction network of OS-associated lncRNAs and autophagy genes. The pink circle refers to ARlncRNA, and the cyan square refers to autophagy genes.






Figure 3 | Kaplan–Meier 5-year overall survival (OS) curves for two groups divided by high and low expression level of ARlnRNAs. The red curves correspond to patients with high expression level of ARlnRNAs, while the blue curves correspond to patients with low expression level of ARlnRNAs.





3.2 Risk Score Model Based on Nine ARlncRNAs

We constructed a proportional hazards model of these nine ARlncRNAs using multivariate Cox regression analysis: risk score = (0.667 × the expression level of NKILA) + (−0.601 × the expression level of LINC00174) + (1.052 × the expression level of AC008760.1) + (0.543 × the expression level of LINC02041) + (0.533 × the expression level of PCAT6) + (0.843 × the expression level of AC156455.1) + (0.950 × the expression level of LINC01503) + (0.578 × the expression level of LINC00957) + (0.925 × the expression level of CD27-AS1) (Table 1).


Table 1 | ARlncRNAs applied to new prediction model.





3.3 Evaluation of the ARlncRNA-Based Prediction Model for CRC

We calculated the risk score for each patient based on the proportional hazard model for nine ARlncRNAs and then sorted the risk scores in ascending order. With the median as the cutoff value, we divided the patients into a high- and a low-risk group between train set and validation set. Figure 4 shows the risk score and survival status. Kaplan–Meier survival analysis indicated that the 5-year OS was significantly higher in the low- than in the high-risk group among train set (Figure 5A), validation set (Figure 5B), and all patients (Figure 5C). Moreover, the model had high sensitivity and specificity in predicting the 1-year OS of CRC patients among train set (Figure 5D), validation set (Figure 5E), and all patients (AUC = 0.717, Figure 5F). In addition, multivariate analysis showed that risk value was better than clinicopathological factors (Figure 5G). Sankey diagrams and heat maps were used to visualize the expression profiles for the nine ARlncRNAs in the low- and high-risk groups. The results showed that the expression level of all ARlncRNAs tended to be higher in the low- than in the high-risk group, and they were determined to be risk factors (Figures 5H–K).




Figure 4 | (A–C) The distribution of the risk scores of the patients in both high- and low-risk score groups among train set, validation set, and all patients. (D–F) Patients’ survival status and time distributed by risk score among train set, validation set, and all patients.






Figure 5 | (A–C) Kaplan–Meier survival curve of the low- and high-risk groups based on median risk score valued by ARlnRNAs model among train set, validation set, and all patients. (D–F) The receiver operating characteristic (ROC) curve of nine ARlncRNAs model among train set, validation set, and all patients. (G) The receiver operating characteristic (ROC) curve of nine ARlncRNA risk score and clinicopathological parameters (age, gender, clinical stage, and TNM stage). (H) The Sankey diagram shows the connection degree between the 53 mRNAs and 9 ARlncRNAs. (I–K) The heatmap of the nine ARlncRNA expression value in low- and high-risk score groups among train set, validation set, and all patients. Red to blue indicates a trend from high to low expression.





3.4 Risk Factors for Predicting 5-Year OS

We performed univariate Cox regression analysis to screen prognostic clinicopathological factors and then performed multivariate Cox regression analysis to analyze the effect of multiple clinicopathological factors (including age at diagnosis, sex, TNM staging, clinical stage, and risk score from the ARlncRNA model) on 5-year OS to screen independent predictors of 5-year OS. The results showed that sex, clinical stage, N stage, and M stage were unrelated to 5-year OS (p > 0.05), whereas age (HR = 1.051; 95% CI, 1.029−1.075; p < 0.001), T stage (HR = 1.751; 95% CI, 1.071−2.863; p = 0.026), and risk score from the ARlncRNA model (HR = 1.014; 95% CI, 1.005−1.022, p = 0.002) were independent predictors (Figures 6A, B). Moreover, the risk score was a risk factor, as the 5-year survival rate was lower if the risk score was >0.943.




Figure 6 | Forest plots of univariate and multivariate Cox regression analyses of clinicopathological parameters (age, gender, clinical stage, and TNM stage) and risk scores associated with 5-year overall survival. (A) Forest plot of univariate Cox regression analysis. (B) Forest plot of multivariate Cox regression analysis.





3.5 Correlation Between the Model Risk Score and Clinical Data

We performed stratified analysis based on age, sex, clinical stage, T stage, M stage, and N stage. The mean risk score for each factor was compared between the two groups of patients. Table 2 shows that the risk score from the ARlncRNA-based model was unrelated to sex (p = 0.204), age (≤65 vs. > 65 years old, p = 0.512), clinical stage (stage I–II vs. stage III–IV, p = 0.623), M stage (M0 vs. M1, p = 0.379), and N stage (N0 vs. N1–2, p = 0.556). The risk score for patients with T3–T4 stage was significantly higher than that for patients with T1–T2 stage (p = 0.005).


Table 2 | Correlation analysis between risk scores valued by new prediction model and clinicopathologic parameters.





3.6 Signaling Pathways Enriched With the Nine ARlncRNAs

We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to identify the signal pathways of enrichment of genes that construct an interaction network with lncRNAs in the model. The results showed that those genes were most enrichment in autophagy signal pathways (Figures 7A, B).




Figure 7 | Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. (A) GO analysis. (B) KEGG analysis.





3.7 Validation In Vitro

To verify the expression of selected lncRNAs, i.e., NKILA and LINC00174, in colorectal cancer cell lines, qRT-PCR was performed. As shown in results, NKILA and LINC00174 were all higher expressed in colorectal cancer cell line HT29 compared to normal colonic epithelial cell line NCM460 (Figure 8). FISH assay was used to detect the subcellular localization of LINC00174 and NKILA. The results showed that the target genes LINC00174 and NKILA were both expressed in the nucleus and cytoplasm of the NCM460 and HT29 cells (Figure 9). In addition, the protein expression of autophagy-related genes was detected by Western blot. The results showed that, compared to NCM460 cell, LC3B and ATG7 were lower expressed in RKO and HT29 cell (Figure 10). To detect the relation of NKILA and LINC00174 with autophagy, we stimulated the cells with mTOR inhibitor to activate the autophagy. As shown in the results, significant upregulation of LC3B and ATG7 protein expression was observed between HT29 and NCM460, which suggested that they were related to the activation of autophagy (Figure 11). In addition, compared with normal cultured cells, the expression of LINC00174 was significantly decreased in both NCM460 and HT29 cells after the addition of mTOR inhibitor, while the expression of NKILA was significantly increased (Figure 12), which suggested that NKILA and LINC00174 were related to autophagy.




Figure 8 | The expression of LINC00174 and NKILA was detected by qRT-PCR. (A) The expression of LINC00174 among normal colonic epithelial cell line and colorectal cancer cell lines. (B) The expression of NKILA among normal colonic epithelial cell line and colorectal cancer cell lines. All p-values were the comparison of the lncRNA expression of HCT116, RKO, HT29, and that of NCM460. ****p < 0.0001; ***0.0001 < p < 0.001; **0.01 < p < 0.001; ns: p > 0.05.






Figure 9 | The subcellular localization of LINC00174 and NKILA between NCM460 and HT29 cells. (A) Subcellular localization of LINC00174 in NCM460 cells. (B) Subcellular localization of LINC00174 in HT29 cells. (C) Subcellular localization of NKILA in NCM460 cells. (D) Subcellular localization of NKILA in HT29 cells.






Figure 10 | The protein expression of autophagy-related genes was detected by Western blot.






Figure 11 | Expression of autophagy-related proteins after autophagy activation.






Figure 12 | The expression of LINC00174 and NKILA after autophagy activation. (A) LINC00174, (B) NIKLA. ****p < 0.0001; ***0.0001 < p < 0.001.






4 Discussion

Cell death occurs via necrosis, apoptosis, and autophagy. Cell apoptosis and autophagy are programmed cell death pathways, and current studies show that apoptosis and autophagy are both regulated by lncRNAs and that regulating the expression level of lncRNAs involved in apoptosis and autophagy regulates the biological behavior of tumor cells. Wei et al. (23) showed that, in CRC, lncRNA CA3-AS1 reduces miR-93 expression by directly binding to miR-93, thereby promoting CRC apoptosis and suppressing tumor proliferation and invasion. In another study, lncRNA FAL1 promoted CRC apoptosis, thereby reducing tumor proliferation (24).

ARlncRNAs and apoptosis-related lncRNAs may have similar effects. In recent years, researchers have shown increased interest in the role of lncRNAs in tumor autophagy. lncRNA SLCO4A1-AS1 binds to miR-508-3p to upregulate PARD3, thereby promoting protective CRC autophagy and CRC proliferation (25). Zheng et al. (26) showed that the survival time of CRC patients is shorter for those with high lncRNA HAGLROS expression than for those with low expression. HAGLROS inhibits apoptosis and promotes autophagy to regulate tumor biological behavior mainly via the PI3K/AKT/mTOR and miR-100/ATG5 pathways. These data indicate that apoptosis and autophagy may have common regulatory pathways. We suspect that HAGLROS may be a marker for predicting the prognosis of patients with CRC. Another study showed that lncRNA Malat1 directly binds to miR-101 to regulate CRC autophagy, apoptosis, and proliferation. Further studies showed that the use of 3-methyladenine, an autophagy inhibitor, decreased Malat1-induced cell proliferation and promoted Malat1-induced apoptosis (27). Taken together, these studies show that lncRNAs play important roles in activating CRC autophagy, suggesting that lncRNAs regulate tumor biological behavior by activating CRC autophagy pathways, thereby enhancing tumor cell proliferation. This conclusion should be taken into consideration in clinical treatment.

In addition, ARlncRNAs play important roles in resistance to chemotherapy. Liu et al. (28) showed that lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) is highly expressed in CRC tissues and cell lines and is negatively correlated with miR-34a, which is involved in autophagy activation via targeted sites (HMGB1, ATG9A, and ATG4B). NEAT1 knockdown significantly inhibits CRC proliferation and enhances sensitivity to 5-fluorouracil (5-FU). Wang et al. (29) showed that lncRNA H19 triggers autophagy and induces 5-FU resistance in CRC cells via the miR-194-5p/SIRT1 pathway. H19 expression is significantly increased in patients with recurrent CRC, and the recurrence-free survival time is significantly shorter in patients with high H19 expression than in patients with low H19 expression. Han et al. (30) showed that, in CRC, the expression levels of lncRNA SNHG14 and ATG14, an autophagy-related gene, are significantly increased and that lncRNA SNHG14 regulates tumor proliferation, invasion, migration, apoptosis, and autophagy via the miR-186/ATG14 axis. High ATG14 expression significantly promotes the proliferation and reduces the apoptosis of cisplatin-resistant CRC cell lines. The expression of autophagy-related LC3B decreases after lncRNA SNHG14 knockdown in cisplatin-resistant CRC cell lines. These studies provide direct evidence that lncRNAs are closely related to autophagy and regulate drug resistance of CRC cells via autophagy pathways. ARlncRNAs may become novel treatment targets for resistance reversal.

Numerous studies have shown that lncRNA-based models can predict the prognosis of CRC patients (10–12). However, no ARlncRNA-based model has been established for predicting the prognosis of CRC patients. One study showed that an ARlncRNA-based model can predict the prognosis of patients with lung adenocarcinoma (20). In this study, we established an ARlncRNA-based model to predict the survival of CRC patients for the first time. We performed univariate analysis and obtained 32 prognostic ARlncRNAs from 612 tissue samples from TCGA and then performed multivariate Cox regression analysis to build a risk score model of nine significant prognostic ARlncRNAs (NKILA, LINC00174, AC008760.1, LINC02041, PCAT6, AC156455.1, LINC01503, LINC00957, and CD27-AS1). Next, we calculated the risk score for each CRC patient based on this model. Survival analysis showed that the 5-year OS was significantly higher in the low-risk group (risk score < 0.943) than in the high-risk group. A multivariate ROC curve showed that the model had high sensitivity and accuracy in predicting the 5-year OS rate (AUC = 0.717). Moreover, the risk score from this model, based on nine ARlncRNAs, was an independent predictor of CRC.

LINC01503 is an ARlncRNA that we screened that is negatively correlated with patient prognosis. Previous studies have shown that LINC01503 is highly expressed in CRC cell lines. LINC01503 overexpression promotes CRC proliferation and invasion, while LINC01503 silencing inhibits CRC proliferation and invasion. Moreover, LINC01503 regulates CRC proliferation and invasion via the miR-4492/FOXK1 signaling pathway (31). In gastric cancer and brain glioma, LINC01503 promotes tumor proliferation and invasion via the Wnt signaling pathway (32, 33). Using bioinformatics analysis, we concluded that LINC01503 is an autophagy-related prognostic predictor for CRC, but further research is needed to investigate the mechanism by which LINC01503 regulates tumor biological behaviors via autophagy pathways.

Numerous studies have shown that PCAT6 also plays an important role in tumor proliferation and invasion, such as in non-small cell lung cancer (34–36), breast cancer (37), cervical cancer (38, 39), and liver cancer (40, 41). Furthermore, PCAT6, a lncRNA, is highly expressed in colon cancer and is closely related to tumor malignancy. High PCAT6 expression is associated with low survival. PCAT6 activates the expression of antiapoptotic ARC and inhibits colon cancer cell apoptosis by increasing EZH2 expression (42). This study showed that PCAT6 is negatively correlated with the prognosis of CRC patients. Moreover, this study showed that PCAT6 is associated with autophagy and that PCAT6 probably increases tumor malignancy via autophagy pathways. Therefore, PCAT6 may regulate tumor biological behaviors through different molecular mechanisms, but research on autophagy pathways is still lacking. Another study showed that PCAT6 is an adverse prognostic predictor of CRC. Moreover, PCAT6 inhibits miR-204 expression, thereby promoting activation of the HMGA2/PI3K pathway and enhancing 5-FU resistance in CRC (43). Further research is needed to investigate additional mechanisms through which PCAT6 affects the biological behaviors of CRC.

Colorectal cancer patients with overexpression of LINC00174 have a poor prognosis. Overexpression of LINC00174 promotes the proliferation, migration, and invasion of colorectal cancer cells by regulating Mir-1910-3p/TAZ and Mir-3127-5p/E2F7 signaling pathways (44, 45). LINC00174, as an autophagy-related lncRNA, secreted by vascular endothelial cells, inhibits autophagy by SRSF1/P53 signaling pathway, which can alleviate myocardial insulin–reperfusion injury (46). In addition, NKILA can enhance autophagy of HK2 cells through Mir-140-5p/CLDN2/LPS pathway to induce acute kidney injury (47). In our research, we found that NKILA and LINC00174 were related to autophagy in colorectal cancer. However, at present, no study has found whether LINC00174 and NKILA can affect the occurrence and development of colorectal cancer through autophagy, which will also be the focus of our follow-up research.



5 Conclusion

We constructed a novel prediction model based on nine ARlncRNAs to predict the prognosis of CRC patients. Moreover, we verified the relationship among LINC00174, NKILA, and autophagy in colorectal cancer cells. Our results provide new ideas for further research on potential mechanisms involved in regulating the biological behaviors of CRC.


5.1 Limitations

The prediction model based on nine ARlncRNAs has some limitations. First, no prospective studies have been conducted to confirm its reliability. Second, while we plotted the complex interactive networks between ARlncRNAs and mRNAs, we did not perform in-depth pathway research. Last, we did not consider each patient’s treatment plan in this study, which may affect the study results. In summary, few studies have been conducted to investigate the use of ARlncRNAs to predict the prognosis of patients with CRC and how ARlncRNAs regulate autophagy. In the future, well-designed, randomized, controlled trials are needed to validate the reliability of this model.
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Background

Long noncoding RNAs (lncRNAs) are versatile in functions and can regulate cancer development, including the modulation of cancer immunity. Immune-related lncRNA signatures predicting prognosis have been reported in multiple cancers, but relevant studies in gastric cancer (GC) are still lacking.



Methods

We performed a comprehensive analysis using TCGA and Immport databases and identified an immune-related lncRNA signature by univariate and multivariate Cox regression analysis. qRT-PCR and immunohistochemistry assays were used for further validation. KEGG and GO analysis and ceRNA network establishment were carried out to explore the regulatory functions.



Results

We first identified an immune-related lncRNA signature, which can stratify gastric cancer patients into high- and low-risk subgroups and the high-risk cases frequently suffered from shorter overall survival time. Next, we validated the reliability of the lncRNA signature in an independent 75 gastric cancer samples and demonstrated that the three-year survival rate in high-risk patients was only 30.8% versus 66.5% in low-risk counterparts. Functional exploration indicated that the lncRNA signature might participate in multiple cancer-associated processes including cell adhesion and migration, cytokine-receptor interaction and immune evasion. Additionally, we observed that high-risk samples tended to form an immunosuppressive microenvironment, which had more M2-polarized macrophages and Tregs, but fewer CD8 effector T cells within tumors. Moreover, we found that PD-1 and PD-L1 were dramatically upregulated in a subset of high-risk patients with abundant M2 and Treg infiltration, implying these patients may benefit from anti-PD-1 and PD-L1 immunotherapy.



Conclusions

These results showed that the immune-related lncRNA signature had a prominent capacity to predict overall survival and the immune status of microenvironment in gastric cancer. Our findings may be useful for the risk-stratification management and provide a valuable clue to identify proper patients potentially benefit from immune checkpoint therapy in gastric cancer.





Keywords: lncRNA signature, gastric cancer, cancer immunity, overall survival, immunosuppressive microenvironment



Introduction

Gastric cancer (GC) is ranked the fifth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death (1). According to global cancer statistics, there were more than 1,000,000 new gastric cancer cases in 2018, with an estimated 1 in 12 patients dying from the malignancy (1). Surgical resection and chemotherapy are the common curative approaches for gastric cancer. Immunotherapies such as anti-PD-1/PD-L1 immune checkpoint blockade treatment have been demonstrated to be effective in some patients with advanced gastric cancer (2, 3). But the overall prognosis and survival of gastric cancer remain dismal, and the median survival time of advanced patients is only about 1 year (4). To improve the prognosis and reduce the burden of gastric cancer, it is necessary to develop effective molecular biomarkers that identify high-risk patients to build better clinical management and treatment strategies.

The molecular regulatory mechanisms of cancer are extremely complex (5). Beyond the well-documented coding-genes, a number of non-coding genes also exert crucial roles in cancer development. Long noncoding RNAs (lncRNAs) are the primary class of the non-coding family and have been extensively investigated in a variety of cancers (6, 7). LncRNA refers to the transcripts with a length of more than 200 nucleotides but with limited capacity to encode proteins. LncRNAs exhibit versatile functions to manipulate gene expression at the transcriptional, translational, and post-translational levels through binding to DNA, RNA, and proteins (6). Our previous studies identified some lncRNAs that play important roles in gastric cancer progression (8–12). For example, we found that Linc00152 can stimulate proliferation, epithelial to mesenchymal transition (EMT), migration and invasion (8); lncRNA GAS5 has a tumor suppressive role to induce cell cycle G1 arrest and inhibit malignant proliferation (9); and lncRNA PVT1 can activate STAT3 signaling pathway to trigger angiogenesis and vasculogenic mimicry, thereby promoting tumor growth in gastric cancer (10, 12). Recent studies suggest that lncRNAs also have great impacts on cancer immunity. Lnc-NKILA can sensitize tumor-specific cytotoxic T lymphocytes and Th1 cells to undergo activation-induced cell death, thus leading to cancer immune evasion (13). LncRNA-MM2P has the capacity to induce M2 polarization of macrophages, thereby inducing immunological tolerance and tumorigenesis of osteosarcoma (14). In addition to the multifarious functions, lncRNAs are highly stable in physiological environments and can be easily detected in body fluid and extracellular vesicles, therefore regarding as a promising biomarker for early diagnosis and prognostic evaluation (6). Detection of lncRNA PCA3 in urine was approved by the US Food and Drug Administration (FDA) in 2012 to be used in the early diagnosis of prostate cancer (15). Recent studies have reported the predictive value of lncRNA profiles in cancer prognosis, including for gastric cancer (16–19). However, most lncRNA molecular models have lacked adequate exploration of functional associations and necessary validation in independent cohorts.

In the current study, we first identified and then validated an immune-related lncRNA signature that may serve as an independent risk factor for predicting prognosis and survival time in gastric cancer. Our findings provide a potential strategy to identify high-risk patients, which will facilitate the precise management and seek for proper therapeutic strategies for these patients.



Materials and Methods


Gastric Cancer Samples Collection

In total, 75 gastric cancer specimens were collected from Huashan Hospital, Fudan University, from August 2015 to December 2016. None of the patients was carried out radio- or chemo-therapy before surgery. Each of the enrolled patients has written the informed consent. This research procedure was approved by the Human Research Ethics Committee of Huashan Hospital, Fudan University. Basic information of the samples was listed in Supplementary Table S1.



RNA Extraction and Quantitative Real-Time PCR Detection

Total RNA was isolated from gastric cancer tissues with Trizol reagent (Invitrogen, U.S.A.) according to the manufacturer’s instructions. Then, the extracted RNA was reverse-transcribed into cDNAs using a PrimeScript RT reagent Kit with genomic DNA Eraser (Takara Bio, Inc., Japan). qRT-PCR was performed using SYBR ® Premix Ex Taq™ kit in the Applied Biosystems Prism 7500. GAPDH was used as the internal control for normalizing the expression of target genes. The primer sequences were listed as follows:

	Lnc-SLC26A11-F: 5’-AAGTACAGCGTGTGTCCCAG-3’;

	Lnc-SLC26A11-R: 5’-CAACGTGGAGAGGAGGACAC-3’;

	Lnc-CHAF1B-F: 5’-CCTCCGAAGAGGATACGCAC-3’;

	Lnc-CHAF1B-R: 5’-CTTGGGAAATCCCTGGTGCT-3’;

	Lnc-PTPA-3-F: 5’-ACTTGCGGCTGACAAGAGAA-3’;

	Lnc-PTPA-3-R: 5’- AATCTGTTCCCTGCTGGGTG-3’;

	GAPDH-F: 5’-TCGACAGTCAGCCGCATCTTCTTT-3’;

	GAPDH-R: 5’-ACCAAATCCGTTGACTCCGACCTT-3’;





Immunohistochemistry Assay

For IHC staining, paraffin-embedded tissue slides were deparaffinized by xylene and hydrated in an ethanol gradient. Then, antigen retrieval was carried out in citrate buffer (pH 6.0) at high-temperature. After blocking with 10% normal goat serum, the tissue sections were incubated respectively with a primary CD163, FoxP3 and CD8 antibodies (1:400, Abcam, USA) overnight at 4°C. Subsequently the slides were treated with the ChemMate Dako EnVision Detection Kit, Peroxidase/DAB, Rabbit/Mouse kit (DakoCytomation, Glostrup, Denmark) and counterstained with hematoxylin. The immunostaining signals were observed using Nikon microscope.



LncRNA Expression Data Collection of Gastric Cancer

Raw gene expression date (HTsq-FPKM) of gastric cancer and the corresponding clinical information were extracted from TCGA database (https://portal.gdc.cancer.gov/) update to May 18, 2020.Transcript data and clinical information of 373 patients were included.

The exclusion criteria were as follows: (i) histologic diagnosis ruled out gastric cancer; (ii) extremely low gene expression values; (iii) Patients with incomplete clinical data and follow-up time less than 30 days. At last, 305 gastric cancer patients with reliable transcript data and detailed clinical information were collected in this research. ID conversion and the classification of RNAs were conducted by Perl (The Perl Programming Language, version 5.30.1, http://www.perl.org). The lncRNAs expression data were selected for further investigation.



Construction of the Immune-Related lncRNA Signature in Gastric Cancer

The immune-related genes expression profile was downloaded from the Immport database (https://www.immport.org/). Then, co-expression was carried out between the selected gastric cancer lncRNAs and immune-related genes, thereby obtaining the candidate immune-related lncRNA subset in gastric cancer. Next, the relationship of each lncRNA expression with overall survival was calculated using the univariate Cox model, and P < 0.01 was considered to be significantly statistical difference. The model was selected and constructed using the internal cohort by backward Cox analysis using Akaike’s information criterion (AIC) selection criteria, where the best model was selected with the least AIC score. The Kaplan‐Meier survival curves, Scatter plots and correlation heatmaps were performed in R software for further analysis (The R Project for Statistical Computing, version3.6.3, https://www.r-project.org/). Finally, lnc-SLC26A11, lnc-CHAF1B and lnc-PTPA-3 were picked out for lncRNA-signature because of their best performance to predict survival in gastric cancer.



Principal Components Analysis

PCA is a dimension reduction method and has been extensively used in gene expression analysis. More importantly, PCA can remove noise and discover patterns of inherent data through dimensionality reduction. PCA was applied to obtain a low-dimensional cluster distribution of high-dimensional gene sets in this study.



The Gene Set Enrichment Analysis

GSEA software (version 4.0.3) was employed to predict the potential functions of the lncRNA-signature. Combined with the high- and low-risk patients determined by the risk score system, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted to visualize various genes involved in different pathways and biological functions and their expression patterns. Gene sets for KEGG and GO were downloaded from the Molecular Signatures Database v7.1. Data were corrected for multiple testing (number of permutations=1000).



The Competing Endogenous RNA Network Development

The ceRNA network of lncRNA-miRNA-mRNA was constructed as follows. First, the potential lncRNA-miRNA interactions were predicted by the DIANA tools (http://carolina.imis.athena-innovation.gr/). Second, miRNAs and their target mRNAs were predicted by searching miRDB (http://mirdb.org/), miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/) and TargetScan (www.targetscan.org) database. Finally, Cytoscape software (version 3.7.2) was employed to visualize the lncRNA-miRNA-mRNA ceRNA network.



Immunocyte Infiltration Analysis

ESTIMATE (Estimation of Immune cells in MAlignant Tumor tissues using Expression data) was used to infer tumor cellularity as well as the different infiltrating normal cells (20). By performing single-sample gene set-enrichment analysis (ssGSEA), the immune score of each gastric cancer patient was calculated. According to the immune score, the degree of immune cell infiltration was quantified in gastric cancer tissues.



Statistical Analysis

Kaplan-Meier analysis with log-rank test was carried out to compare the survival difference between high- and low-risk gastric cancer groups. The univariate and multivariate Cox proportional hazard regression analysis were used to evaluate the prognostic value of the immune-related lncRNA signature. The immune scores between high-risk group and low-risk group using Mann-Whitney U test. All the statistical analyses were conducted using the R statistical software.




Results


Identification of the Immune-Related lncRNA Signature in Gastric Cancer

The Cancer Genome Atlas (TCGA) database across 33 cancer types with detailed clinical information is regarded as a landmark of cancer genomics programs. To identify the immune-related lncRNA signature in the current study, we downloaded all of the raw gene expression data of 373 gastric cancer patients from TCGA database. After carefully checking the clinical information of each sample, 68 patients were excluded due to incomplete clinical data or follow-up time less than 30 days. Ultimately, 305 patients were enrolled in the study and the basic information of gastric cancer patients was listed in Supplementary Table S1. The transcriptome data of the enrolled patients was analyzed and the lncRNA expression profile of gastric cancer was extracted from TCGA database. Meanwhile, the immune-gene profile was also acquired from the ImmPort database. By co-expression analysis between the lncRNA profile and immune-gene panel, an immune-lncRNA subset was developed, as depicted in the flowchart of Figure 1A. With the help of univariate cox regression analysis, we found that six lncRNAs, lnc-SLC26A11, lnc-CHAF1B-3, lnc-CHAF1B-2, LINC00106, MIR3142HG and lnc-PTPA-3 had significant correlation with prognosis in gastric cancer (Figure 1B).




Figure 1 | Identification of the immune-related lncRNA signature in gastric cancer. (A) Flowchart of identifying immune-related lncRNA signature derived from TCGA transcriptome of gastric cancer and Immport database. (B) Forest plot of the six lncRNAs by univariate cox regression analysis. (C) Akaike’s information criterion (AIC) scores of different lncRNA combination models and Model N is the best lncRNA signature with the lowest AIC score. (D) The multivariate analysis forest plot of Model N, which is composed of three immune-related lncRNAs as indicated in the figure. (E) Principal components analysis (PCA) showed survival status among four different gene sets including all genes of TCGA, immune genes of Immport database, immune-related lncRNAs and the identified three-risk lncRNA signature as indicated in the figures.



To further optimize the immune-related lncRNA model, Akaike’s information criterion (AIC) was employed to estimate the quality of various lncRNA combination models (Figure 1C and Supplementary Table S2). As lower AIC score indicate better statistical model quality for a given set of data, the model N with the smallest AIC score was ultimately selected, which was composed of lnc-SLC26A11, lnc-CHAF1B-2 and lnc-PTPA-3. Further multivariate analysis indicated this three-lncRNA model had robust statistical effect to predict prognosis (lnc-SLC26A11: HR = 0.673, 95% CI = 0.487-0.931, P = 0.017, coefficient = -0.395; lnc-CHAF1B-2: HR = 1.731, 95% CI = 1.252-2.392, P = 0.0009, coefficient = 0.549; lnc-PTPA-3: HR = 1.562, 95% CI = 1.159-2.106, P = 0.0034, coefficient = 0.446), as shown in Figure 1D.

Principal components analysis (PCA) is a common statistical method used to analyze large gene expression datasets and provide a low dimensional global map to clearly visualize the overall structure of the data. Here, we carried out PCA to evaluate the correlation of four different gene datasets and survival status. As shown in Figure 1E, the TCGA-gene dataset, immune-gene from ImmPort database and immune-lncRNA profile nearly failed to divide patients into different subgroups, and the alive and dead cases were unregularly scattered. By comparison, the three immune-related risk lncRNAs could better gather the alive and dead subgroups.

Taken together, the immune-related lncRNA signature was established with lnc-SLC26A11, lnc-CHAF1B and lnc-PTPA attributing to its prominent prognosis predictive potential in gastric cancer.



Clinical Significance of the Immune-Related lncRNAs in Gastric Cancer

According to the immune-related three-lncRNA signature, a risk score was calculated by regression coefficient for each patient. The risk score calculation was as follows: Risk score = (-0.395* lnc-SLC26A11 expression level) + (0.549*lnc-CHAF1B-2 expression level) + (0.446* lnc-PTPA-3 expression level). The 305 gastric cancer patients were then further divided into high- and low-risk groups based on the median risk score.

To clearly visualize the lncRNA signature, the lncRNA expression levels of each patient were displayed in a heat map (Figure 2A). Lnc-SLC26A11 was downregulated in high-risk patients, whereas CHAF1B-2 and lnc-PTPA-3 were significantly upregulated in the high-risk group (Figures 2A, B). As shown in Figures 2C, D, the risk of death gradually increased in accordance with the risk score and there were more dead patients among those with a high-risk score. The univariate and multivariate regression analysis suggested that the risk score could serve as an independent prognostic indicator without linking to age, gender, differentiation grade and clinical stage (Figure 2E and Supplementary Table S3). Next, we performed Kaplan-Meier analysis to evaluate overall survival between the high-risk and low-risk groups. As shown in Figure 2F, patients in the high-risk group frequently suffered from shorter survival time (P = 9.027E-04). The 1-year, 3-year, and 5-year survival rate of high-risk compared to low-risk patients were 69.4% vs. 84.8%, 40.4% vs. 55.4%, and 27.8% vs. 45.0%, respectively.




Figure 2 | Clinical significance of the immune-related lncRNAs in gastric cancer. (A) Heatmap of the three-lncRNA panel. Each column represented a patient. (B) The expression levels of the three lncRNAs in gastric cancer samples in TCGA database. (C) Risk score distribution according to the immune-related lncRNA profile in TCGA gastric cancer samples. (D) The association of risk score and survival status. (E) Forest plot of the univariate and multivariate analysis results showed that the risk score could serve as an independent prognostic indicator. (F) Kaplan-Meier curves of the overall survival time for high- and low risk patients in TCGA gastric cancer samples.



Collectively, these findings suggested that the immune-related lncRNA signature has a great capacity to predict survival of patients with gastric cancer.



Validation of the Immune-Related lncRNA Signature in an Independent Gastric Cancer Cohort

To evaluate the reliability of the immune-related lncRNA signature in prognostic prediction, 75 gastric cancer specimens were collected for further validation. The expression levels of the three lncRNAs were determined by qRT-PCR in the specimens and the risk score was calculated for each patient. These gastric cancer patients were stratified into high- and low-risk groups, according to the median risk score. Lnc-SLC26A11 had no statistically significant expression and lnc-CHAF1B-2 and lnc-PTPA-3 expression were markedly increased among the high-risk patients (Figures 3A, B). In line with the findings in Fig2, the high-scored patients had higher death risk (Figures 3C, D). Additionally, high-risk patients might undergo remarkably shorter survival time, and the 1-year, 2-year, and 3-year survival rates of the high-risk patients compared with those of the low-risk patients were 75.7% vs. 94.7%, 51.4% vs. 83.9%, and 30.8% vs. 66.5%, respectively. (Figure 3E). Receiver operating characteristic (ROC) curve analysis showed the immune-related lncRNA signature could serve as a useful prognostic marker for the survival of gastric cancer patients, as the area under the receiver-operating curve (AUC) reached to 0.75, 0.70 and 0.72 in 1-year, 2-year and 3-year respectively (Figure 3F).




Figure 3 | Validation of the immune-related lncRNA signature in an independent gastric cancer cohort. (A) Heatmap of the three-lncRNA panel in 75 validated gastric cancer samples. (B) The expression levels of the three lncRNAs in the 75 gastric cancer samples. (C) Risk score distribution according to the immune-related lncRNA profile in the validated gastric cancer cohort. (D) The association of risk score and survival status in the 75 gastric cancer samples. (E) Kaplan-Meier curves of the overall survival time for high- and low risk patients in the validated gastric cancer cohort. (F) Receiver operating characteristic (ROC) curve analysis showed the area under the receiver-operating curve (AUC) in 1-year, 2-year and 3-year respectively.



These results further confirmed the reliability and robustness of the immune-related lncRNA signature in predicting survival of gastric cancer patients, which may help to identify the high-risk patients and build better clinical management at the early stage.



Potential Functions of the Immune-Related lncRNA Signature

The functions of lncRNAs are thought to be reflected by their associated protein-coding genes. To exploit the underlying functions of the lncRNA signature, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were carried out for differentially co-expressed mRNAs. Results of the GO analysis are shown in Figure 4A, many cancer-associated processes were identified in the high-risk group by GO analysis, including cellular structure organization, cellular response to growth factor, ERK1/2 cascade, chemotaxis, integrin, cytokine and fibronectin binding and macrophage migration. Cellular structure organization and integrin and fibronectin binding play important roles in cancer metastasis. Meanwhile, cellular response to growth factor stimulus can activate malignant tumor growth, and ERK1/2 cascade is a well-known oncogenic pathway. Macrophage migration, aberrant chemotaxis and cytokine binding may mediate intricate cross-talks between tumors and the tumor microenvironment.




Figure 4 | Potential functions of the immune-related lncRNA signature. (A) GO analysis showed that these lncRNAs might participate in many cancer development processes. (B) GSEA assay indicated that a number of genes were enriched in cancer progression and immune-associated pathways. (C) ceRNA network of the lncRNA-signature. The red diamond blocks indicated the lncRNA, the green triangle blocks indicated miRNAs that can be potentially sponged by the lncRNAs. The blue circle blocks indicated the potential mRNA targets of each miRNA.



KEGG pathway analysis demonstrated that a number of genes were enriched in cancer progression and immune-associated pathways in the high-risk subset of patients. As shown in Figure 4B, ECM receptor interaction, focal adhesion, cell adhesion and actin cytoskeleton regulator are significantly linked to metastasis, whereas cytokine and its receptor interaction, calcium signaling may regulate cancer immunity.

As lncRNA may function as competing endogenous RNA (ceRNA) to sponge miRNA, thereby alleviating the silence effects of miRNA on its mRNA targets, we constructed a lncRNA-miRNA-mRNA ceRNA network to further explore the regulatory mechanisms of our lncRNA-signature (Figure 4C). The ceRNA network consisted of 3 lncRNAs, 14 miRNAs and 107 mRNAs. Many of the miRNAs and mRNAs have been previously found to play important roles in different types of cancer development, such as miR-544/RUNX3/NCR1/NKp46 axis in promoting hepatocellular carcinoma development (21), DNMT1 for aberrant DNA methylation (22), VEGFA for cancer-associated angiogenesis (23), among others. The ceRNA network was highly consistent with the GO and KEGG analyses, suggesting our model was convincible and reliable.

Collectively, these results indicated the high-risk group frequently had significant gene enrichment leading to cancer development and stimulating cancer immunity. This provides valuable insight for understanding the functional roles of the newly identified lncRNA signature.



Correlation of the Three-lncRNA Signature With Infiltration of Immune Cells

To address the relationship of the lncRNA-signature with cancer immunity, we analyzed some immune-related functions and found that there were significantly functional dysregulation on antigen presenting cell activation, T-cell activation, immune check-point expression, inflammation and interferon responses in high-risk group (Figure 5A). Next, the infiltration of 22 types of immune cells were evaluated in low- and high-risk groups, and the red rectangular box showed the differently infiltrated immune cells including macrophage M2, T cells regulatory (Treg), dendritic cell resting and monocytes (Figure 5B). It has been widely established that M2 polarized macrophages and Treg cells play critical roles in inducing immune suppression and evasion and aggravate cancer development. Further analysis substantiated that high-risk group had more infiltrating M2 polarized cells compared to that of low-risk group (Figures 5C, D). Consistently, Treg cells were enriched in the high-risk specimens (Figures 5E, F).




Figure 5 | Correlation of the three-lncRNA signature with infiltration of immune cells. (A) The comparison of immune-related functions between high- and low-risk groups. (B) The radar map showed the infiltration of 22 types of immune cells and the red rectangle boxes indicated the significant difference. (C) The scatter plot of M2 polarized cells linked to risk score. (D) The relative percentage of M2 polarized cells in high- and low-risk groups. (E) The scatter plot of Treg cells infiltration associated with risk score. (F) The relative percentage of Treg cells in high- and low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001. NS means non-statistical significance.



These results implied that the three-lncRNA signature was closely associated with the infiltration of immunosuppressive cells in gastric cancer and high-risk cancer specimens tended to form immunosuppressive microenvironment.



Immune-Related Gene Expression and Validation in Gastric Cancer Specimens

It is well-established that CD163 and IL-10 are the markers of M2 polarized macrophages, and FoxP3 is a vital transcriptional factor that mediates Treg function. Thus, the expression levels of these immune-related genes were analyzed in the TCGA dataset and our gastric cancer specimens. As shown in Figures 6A–C, the high-risk group exhibited significant upregulation of CD163, IL-10 and FoxP3 transcripts in TCGA dataset. To validate these findings, we carried out immunohistochemistry (IHC) to detect CD163 and FoxP3 proteins in our gastric cancer specimens. Consistent with the mRNA expression results, CD163 and FoxP3 protein levels were remarkably increased in the high-risk samples (Figures 6D, E). Meanwhile, the high-risk specimens had less cytotoxic CD8+ T-cell infiltration compared to that in the low-risk specimens (Figure 6F). The immunosuppressive microenvironment may protect tumor cells from immune destruction, which may account for the poor prognosis in high-risk patients.




Figure 6 | Immune-related gene expression and validation in gastric cancer specimens. (A, B) The mRNA expression levels of CD163 and IL-10 which are the well-documented markers of M2 polarized cells. (C) The mRNA expression levels of FoxP3 that is a critical for Treg function. (D–F) Immunohistochemistry (IHC) staining results of CD163, FoxP3 and CD8 proteins in high- and low-risk gastric cancer samples. (G–I) The mRNA expression levels of immune check-point PD-1, PD-L1 and CTLA4 in low-risk group with low expression levels of CD163 and FoxP3 and in high-risk group with high expression levels of CD163 and FoxP3.



Next, according to the expression levels of M2-macrophage and Treg markers, we defined two subgroups for further comparison as follows: the high-risk group with high expression levels of CD163 and FoxP3 and the low-risk group with low expression levels of CD163 and FoxP3. Considering immune checkpoints play vital roles in inhibiting the killing activity of effector T cells and immunotherapies that target immune checkpoints PD-1, PD-L1 and CTLA4 have achieved impressive success in various cancers, we further analyzed the expression levels of the three immune checkpoint molecules in the high- and low-risk subgroups. As shown in Figures 6G–I, both PD-1 and PD-L1 were significantly upregulated in high-risk subgroup with high levels of CD163 and FoxP3, and CTLA4 had a trend of increased expression but failed to reach statistical significance. This result imply that immune check-point inhibitors target PD-1/PD-L1 may provide a potential survival advantage for the specific high-risk patients.

Taken together, these findings suggested that the three lncRNAs of signature may have great impacts on the expression of cancer immune-related genes and may modulate the killing activity of CD8+ T-cells. Additionally, these results provided some useful clues for the treatment of high-risk patients with enriched infiltration of M2-macrophages and Tregs, who may benefit from anti-PD-1/PD-L1 immunotherapy.




Discussion

Gastric cancer remains a heavy health burden worldwide due to its high global morbidity and mortality (1). There remains a lack of effective approaches for early diagnosis and prognostic prediction. A large-scale genomic analysis revealed that specific molecular profiles are markedly associated with prognosis of gastric cancer patients (24). Gastric cancer has highly heterogeneous characteristics. In addition to the well-known coding genes and miRNAs, accumulating evidence demonstrates that lncRNAs play crucial roles in gastric cancer development and have great potential to serve as a promising biomarkers and therapeutic targets (6, 15). In the current study, we collected gene expression date and clinical information from TCGA database regarding 305 patients with gastric cancer. We first identified and then validated an immune-related lncRNA signature that prominently correlated with overall survival and immune suppressive status of the patients with gastric cancer. Our findings provide a novel set of lncRNA-based candidates to predict survival and stratify high-risk gastric cancer patients for better promoting early clinical management and treatment.

Given the regulatory functions of lncRNA in cancer immunity, immune-related lncRNA signatures have been exploited in several cancers, including glioblastoma (25), pancreatic cancer (26) and hepatocellular carcinoma (27). These previous investigations demonstrated that the immune-related lncRNA signature has great clinical implication in predicting disease outcomes. However, there have been no studies on immune-related lncRNA signatures in gastric cancer. Although previous studies reported a 24-lncRNA panel and a four-lncRNA combination associated with the prognosis of gastric cancer, these models were limited with respect to specific implications of lncRNA functions and lacked the necessary validation. Here, we identified for the first time an immune-related lncRNA signature of gastric cancer. Our results indicated that the immune-related lncRNA model may serve as an independent risk factor to predict patient survival time. The high-risk patients frequently suffered from shorter survival outcome and exhibited an immune suppressive status. Importantly, these findings were successfully validated using specimens from our independent 75 gastric cancer patients. This further confirmed the reliability and robustness of the immune-related lncRNA model.

To preliminarily understand the functions of the lncRNA signature in gastric cancer, we carried out a series of bioinformatical analyses including GO, KEGG gene set enrichment analyses, evaluating immune-related functions and immune cell infiltration and constructing the ceRNA network. We found that several well-known cancer pathways were enriched by the three-risk-lncRNA panel, including extracellular matrix interaction, cellular adhesion and migration, cytokine-receptor interaction and macrophage migration (Figure 4). Notably, high-risk patients showed obvious infiltration of immune suppressive cells including M2 polarized macrophages and Treg cells enrichment (Figure 5). IHC assay of our gastric cancer specimens also confirmed that the high-risk samples exhibited stronger M2-macrophage and Treg-related protein expression and had less CD8+ T effector cell infiltration (Figure 6). M2 polarized macrophages usually shared common characteristics with tumor-associated macrophages (TAMs), which have pleiotropically oncogenic functions to stimulate cancer migration, drug-resistance, immunosuppression and metabolic reprogramming (28). Recent study found that TAM can release extracellular vesicles to package lnc-HISLA and transmit lnc-HISLA to breast cancer cells. TAM-derived lnc-HISLA can stabilize HIF-1α protein to enhance aerobic glycolysis and mediate chemo-resistance of breast cancer cells (29). Treg, as another important category of immunosuppressive cells, can directly prevent cancer cells from antitumor immune responses of cytotoxic T-lymphocyte (30). LncRNA is also found to affect Treg differentiation. For instance, lnc-EGFR can bind to and stabilize EGFR protein to activate AP-1/NFAT signaling axis, which stimulates Treg differentiation and inhibits the cytotoxicity of T cells to promote hepatocellular carcinoma development (31). How the lncRNA signature regulates the infiltration of M2-macrophage and Treg, the underlying mechanisms still need to be clarified in future study. The ceRNA network might provide some implications on the molecular functions of the lncRNA signature. The three risk lncRNAs had the potential to sponge 14 miRNAs and might affect the expression of 107 downstream mRNAs (Figure 4). We found that many of the molecules in the network have been demonstrated to aggravate cancer progression. For instance, miR-544 can induce immune escape in hepatocellular carcinoma via targeting of RUNX3 to downregulate NCR1/NKp46 (21). Meanwhile, MiR-1207-5p can target STAT6 to promote breast cancer growth (32), DNMT1 is a critical factor responsible for DNA methylation modification (22), VEGFA can trigger aberrant angiogenesis and induce immune evasion (23), and IGFBP5 is capable of regulating the insulin-like pathway (33). These results imply that our immune lncRNA signature may activate cancer-associated signaling pathways, alter epigenetic modification, manipulate immune-related genes expression, affect immune cells recruitment and induce immunosuppressive microenvironment within tumors, which may contribute to poor prognosis and short survival duration in high-risk gastric cancer patients.

In addition, we also attempted to explore potential treatment for the high-risk patients. Nowadays, checkpoint inhibitor-based immunotherapies have made strikingly rapid development to inhibit cancer progression (34). Antibody-mediated blockade of PD-1 and PD-L1 can effectively reinvigorate exhausted T cells and enable them to eradicate tumor cells (35). Anti-PD-1 and PD-L1 antibodies, such as Nivolumab and Pembrolizumab, have displayed a manageable safety and promising efficacy to reduce tumor burden for patients with advanced gastric cancer (2, 3). The positive expression of PD-1 and PD-L1 are commonly used as effective biomarkers to select the responded patients (34). To probe whether high-risk patients may potentially acquire survival advantage from anti-PD-1 and PD-L1 treatment, we compared their transcription levels between high- and low-risk groups but no significant difference was observed (data was not shown). Given tumor immune microenvironment has great impact on the antitumor activity of effector T cells, we stratified a subset of high-risk patients with abundant M2 and Treg infiltration. Inspiringly, we found that both PD-1 and PD-L1 but not CTLA4 were markedly increased in these specific patients (Figures 6G–I). This finding implies that the subset of high-risk patients may acquire benefit from the immunotherapy of anti-PD-1 and PD-L1, and thus the lncRNA signature may have the potential to guide treatment option and it is warranted for further investigation.

Despite of the potential clinical implications, this study did have limitations. As the three lncRNAs in our signature have not been annotated previously, there is a lack of experimental evidence on their functional mechanisms. In addition, it will be necessary to evaluate the accuracy and specificity of the lncRNA signature in a prospective study using a larger cohort of gastric cancer samples. Our future investigation will focus on the functional mechanisms of the lncRNA signature and attempt to validate our findings in clinical practice.

In summary, we established an immune-related lncRNA signature in gastric cancer, which showed a prominent potential to predict patient survival and immune-suppressive status. These results provide an alternative strategy for risk-stratification and better clinical management of gastric cancer patients.
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