
ABSTRACT MATHEMATICAL 
COGNITION

EDITED BY : Philippe Chassy and Wolfgang Grodd
PUBLISHED IN : Frontiers in Human Neuroscience

http://journal.frontiersin.org/researchtopic/1363/abstract-mathematical-cognition
http://journal.frontiersin.org/researchtopic/1363/abstract-mathematical-cognition
http://journal.frontiersin.org/researchtopic/1363/abstract-mathematical-cognition
http://journal.frontiersin.org/journal/human-neuroscience


1 August 2016 | Abstract Mathematical CognitionFrontiers in Human Neuroscience

Frontiers Copyright Statement

© Copyright 2007-2016 Frontiers 
Media SA. All rights reserved.

All content included on this site,  
such as text, graphics, logos, button 

icons, images, video/audio clips, 
downloads, data compilations and 

software, is the property of or is 
licensed to Frontiers Media SA 

(“Frontiers”) or its licensees and/or 
subcontractors. The copyright in the 

text of individual articles is the property 
of their respective authors, subject to 

a license granted to Frontiers.

The compilation of articles constituting 
this e-book, wherever published,  

as well as the compilation of all other 
content on this site, is the exclusive 

property of Frontiers. For the 
conditions for downloading and 

copying of e-books from Frontiers’ 
website, please see the Terms for 

Website Use. If purchasing Frontiers 
e-books from other websites  

or sources, the conditions of the 
website concerned apply.

Images and graphics not forming part 
of user-contributed materials may  

not be downloaded or copied  
without permission.

Individual articles may be downloaded 
and reproduced in accordance  

with the principles of the CC-BY 
licence subject to any copyright or 

other notices. They may not be 
re-sold as an e-book.

As author or other contributor you 
grant a CC-BY licence to others to 

reproduce your articles, including any 
graphics and third-party materials 

supplied by you, in accordance with 
the Conditions for Website Use and 

subject to any copyright notices which 
you include in connection with your 

articles and materials.

All copyright, and all rights therein,  
are protected by national and 

international copyright laws.

The above represents a summary 
only. For the full conditions see the 

Conditions for Authors and the 
Conditions for Website Use.

ISSN 1664-8714 
ISBN 978-2-88919-816-0  

DOI 10.3389/978-2-88919-816-0 

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a pioneering 
approach to the world of academia, radically improving the way scholarly research 
is managed. The grand vision of Frontiers is a world where all people have an equal 
opportunity to seek, share and generate knowledge. Frontiers provides immediate and 
permanent online open access to all its publications, but this alone is not enough to 
realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, online 
journals, promising a paradigm shift from the current review, selection and dissemination 
processes in academic publishing. All Frontiers journals are driven by researchers for 
researchers; therefore, they constitute a service to the scholarly community. At the same 
time, the Frontiers Journal Series operates on a revolutionary invention, the tiered publishing 
system, initially addressing specific communities of scholars, and gradually climbing up to 
broader public understanding, thus serving the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative 
interactions between authors and review editors, who include some of the world’s best 
academicians. Research must be certified by peers before entering a stream of knowledge 
that may eventually reach the public - and shape society; therefore, Frontiers only applies 
the most rigorous and unbiased reviews. 
Frontiers revolutionizes research publishing by freely delivering the most outstanding 
research, evaluated with no bias from both the academic and social point of view.
By applying the most advanced information technologies, Frontiers is catapulting scholarly 
publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: 
they are collections of at least ten articles, all centered on a particular subject. With their 
unique mix of varied contributions from Original Research to Review Articles, Frontiers 
Research Topics unify the most influential researchers, the latest key findings and historical 
advances in a hot research area! Find out more on how to host your own Frontiers 
Research Topic or contribute to one as an author by contacting the Frontiers Editorial 
Office: researchtopics@frontiersin.org

http://www.frontiersin.org/
mailto:researchtopics@frontiersin.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://journal.frontiersin.org/researchtopic/1363/abstract-mathematical-cognition
http://journal.frontiersin.org/journal/human-neuroscience


2 August 2016 | Abstract Mathematical CognitionFrontiers in Human Neuroscience

ABSTRACT MATHEMATICAL 
COGNITION

Despite the importance of mathematics in our educational systems little is known about how 
abstract mathematical thinking emerges. Under the uniting thread of mathematical development, 
we hope to connect researchers from various backgrounds to provide an integrated view of 
abstract mathematical cognition. 

Much progress has been made in the last 20 years on how numeracy is acquired.  Experimental 
psychology has brought to light the fact that numerical cognition stems from spatial cognition. 
The findings from neuroimaging and single cell recording experiments converge to show 
that numerical representations take place in the intraparietal sulcus. Further research has 
demonstrated that supplementary neural networks might be recruited to carry out subtasks; 
for example, the retrieval of arithmetic facts is done by the angular gyrus.  Now that the neural 
networks in charge of basic mathematical cognition are identified, we can move onto the stage 
where we seek to understand how these basics skills are used to support the acquisition and use 
of abstract mathematical concepts. 
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The Editorial on the Research Topic

Abstract Mathematical Cognition

Despite the importance of mathematics in our educational systems, little is known about how
abstract mathematical thinking emerges. Most research on mathematical cognition has been
dedicated to understanding its more simple forms such as seriation and counting. Although these
forms constitute the foundational plinth upon which all other maths skills develop, the gap between
basic skills and the processing of complex mathematical concepts is poorly understood. What
has come to be sufficiently well understood, however, is how numeracy is acquired. The 90s
marked a change in our approach to human cognition in general and to mathematical cognition
in particular. Neuroimaging technologies have enabled localization of neural activity, revealing
that mathematical cognition, like other forms of cognition and skills, depends upon a network
of activation. The key finding from neuroimaging and single cell recording is that numerical
information is held in the intraparietal sulcus. Now that the core of mathematical cognition has
been identified it is time to understand how basic skills are used to support the acquisition and
use of abstract mathematical concepts. Chassy and Grodd (2012) opened the door for abstract
mathematical cognition by examining for the first time the neural correlates of negative numbers,
an abstract mathematical concept that emerges early on in mathematical curricula. The present
issue reports crucial advances in our understanding of the neural underpinnings of abstract
mathematical cognition.

For a general introduction to the topic the reader is referred to the article signed by Moeller
et al. The article offers an excellent overview of the networks that are involved to some degree
in processing quantities, the very basis of mathematical cognition. The authors’ conclusion
strengthens the view that a frontal parietal network constitutes the essence of our abilities in
mathematics. The fronto-parietal network has been highlighted by a number of studies and is
thought to underpin the learning of mathematical concepts. By increasing the complexity of the
concepts stored in our memory, we improve the quality of our understanding of the physical
world in the first stages of mathematical cognition. Abstract concepts are then able to emerge from
concrete, physical quantities.

On the path of mathematical development, the first step toward an abstract representation of
concepts is the shift from concrete, object-based cognition to the use of symbols. The symbols,
though arbitrary, represent concrete quantities that help children quantify and thus understand
the world around them. Roesch and Moeller support this view by suggesting that an internal
representation of fingers contributes to the actual ability to represent quantities. In a similar vein,
a cross cultural study authored by Bender and Beller compares the Western counting system to
a Polynesian language of the Tonga island, offering a unique view of how concrete counting of
different objects leads to an abstract representation of numbers; thus demonstrating that the roots
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of abstract mathematical cognition emerge from basic, sensory
abilities (a long standing view that finds a new echo here). By
highlighting the concrete roots of mathematical cognition, the
authors of these studies open the debate on the inheritance of
mathematical skill by pointing toward very concrete sensory
performance.

The symbols in a later stage of mathematical development
are used to represent concepts of an abstract nature. That is,
once the notion of natural number is acquired, the next step
toward expertise is to formalize operations as abstract entities.
For example, the operation 5 + 4 = 9 is concrete and can be
taught by using objects. Dowker demonstrates that pupils tend
to use the same problem-solving strategies to solve problems
in subtraction and addition problems. Since the properties of
the two operations differ the application of the same strategy
leads the pupil to commit errors. Pupils have to learn a new set
of properties to be able to solve subtraction. Similarly, Huber
et al. argue that mental representations of fractions do not differ
from natural numbers; what do differ are the strategies used to
encode information. Dowker’s and Hubet et al.’s views are in line
with the study of Mihulowicz et al. who, by comparing left and
right lesioned patients, showed that arithmetic operations are
underpinned by different networks. The view of some educators,
that subtraction and addition are mirror operations, is mistaken.
It is interesting to note that teaching might be adapted so that
different approaches could be used to teach different operations.
The studies highlight the fact that learning arithmetic includes
knowledge that is not purely numerical. This is our first hint
indicating that educational strategies might have a huge influence
on the ability of students to learn abstract concepts. The next
stage in mathematical learning is the step consisting in moving
from concrete (arithmetic) to abstract (algebraic) relationships.
A study by Susac et al. looked at this move and showed that it

requires about 4 years of training to master this new step toward
abstract thinking in mathematics. It is crucial to note that these
4 years are in addition to the many years required for correctly
mastering the basics. Mathematical learning is a long road. It calls
for pedagogical approaches that are specific to each level.

Two main variables might modulate the acquisition of
mathematical expertise: Educational system and inherited
factors. The idea that teaching practices impact heavily on the
ability of students to develop their skills in abstract mathematical
cognition is demonstrated by Prado et al. The authors ran a cross
cultural study comparing Chinese and American students on
problem-size effects, and show that educational practices, which
differ in the 2 countries, impact on the wiring of the network in
charge of symbolic arithmetic. In line with this result, McLean
and Rusconi attempt to bridge the gap between the findings of
academic science and the practical problems faced by teaching
institutions when dealing with students with mathematical
difficulties. After revealing the cognitive factors underpinning
the acquisition of mathematical knowledge, McLean and Rusconi
discuss the types of interventions that may help students with
mathematical difficulties. With respect to inherited factors,
Zhang et al. have shown that gifted adolescents display a highly
integrated fronto-parietal network, hence displaying a more

efficient link between the representation of numbers in the
parietal cortex and working memory in the prefrontal cortex.

The many findings of the articles in this special topic call for
further research to see how specific neural networks serve various
abstract mathematical concepts.
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Only recently has the complex anatomo-functional system underlying numerical
cognition become accessible to evaluation in the living brain. We identified 27
studies investigating brain connectivity in numerical cognition. Despite considerable
heterogeneity regarding methodological approaches, populations investigated, and
assessment procedures implemented, the results provided largely converging evidence
regarding the underlying brain connectivity involved in numerical cognition. Analyses
of both functional/effective as well as structural connectivity have consistently
corroborated the assumption that numerical cognition is subserved by a fronto-
parietal network including (intra)parietal as well as (pre)frontal cortex sites. Evaluation
of structural connectivity has indicated the involvement of fronto-parietal association
fibers encompassing the superior longitudinal fasciculus dorsally and the external
capsule/extreme capsule system ventrally. Additionally, commissural fibers seem
to connect the bilateral intraparietal sulci when number magnitude information is
processed. Finally, the identification of projection fibers such as the superior corona
radiata indicates connections between cortex and basal ganglia as well as the thalamus
in numerical cognition. Studies on functional/effective connectivity further indicated a
specific role of the hippocampus. These specifications of brain connectivity augment
the triple-code model of number processing and calculation with respect to how
gray matter areas associated with specific number-related representations may work
together.

Keywords: brain connectivity, DTI, white matter pathways, fronto-parietal network, numerical cognition

In the history of neurology, attempts to explain normal and impaired cognitive function
following brain damage have alternated between two extreme perspectives; specifically, views
based on localization of function and views based on functional connectivity. The localizationist
view ascribes specific cognitive functions to gray matter (GM) brain areas with cognitive
impairments attributed to lesions of these specific areas. Prominent historical examples of this
view include the work of Broca (1861) and Wernicke (1874), who associated language production
and perception, respectively, with specific cortical structures. Another prominent example of
localization of function is the work of Brodmann (1909), who proposed a map of 46 cortical
areas—so-called Brodmann areas (BA)—and their functionality. This work still influences
neuro-scientific research today. In contrast, connectionist views of brain function take the
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connections of white matter (WM) pathways to be instrumental
to cognitive functions, with disrupted connections also leading to
impairments of the respective cognitive functions. Interestingly,
such a connectionist view of brain function was proposed
by Campbell (1905) at about the same time as Brodmann
introduced his localizationist approach. Later, Reinvang (1985),
amongst others, suggested ‘‘systemic localization’’ to be the
overarching principle of brain organization, in which the
functional role of a given brain area is not determined by
its anatomical structure alone but also by its relationships
to other areas—an argument, for which there is increasing
empirical evidence (e.g., López-Barroso et al., 2013; see
Catani et al., 2012, 2013 for reviews). Thus, it is the
integrity and specific interplay of activated GM cortical
areas connected by WM fiber tracts which underlie human
cognitive functions.

Recently, brain hodology, the science of connectional
anatomy (Catani and Ffytche, 2005), which characterizes
the WM connections between brain regions, has become
accessible to evaluation in the living brain by using
diffusion tensor imaging (DTI). While functional magnetic
resonance imaging (fMRI) identifies functionally defined
cortical areas, tractography goes beyond this approach and
indicates, by which WM tracts these areas are connected.
This provides a powerful tool to study brain connectivity
patterns underlying cognitive functions. By quantifying
the diffusion characteristics of water molecules (Le Bihan
and Breton, 1985), which diffuse more freely along than
across myelinated tracts, it is possible to obtain in vivo
estimates of WM fiber orientation at the voxel level (Basser
et al., 1994). This information gives rise to diffusion tensor
tractography (Conturo et al., 1999; Jones et al., 1999; Mori
et al., 1999; Basser et al., 2000; Poupon et al., 2000), in
which WM tracts are reconstructed in three dimensions by
sequentially piecing together discrete voxel level estimates
of fiber orientation to extrapolate continuous trajectories.
Diffusion tensor tractography methodology has established
the existence of neural networks associated with language
processing (e.g., Saur et al., 2008) and also networks subserving
attentional functions (e.g., Umarova et al., 2010). Accumulating
such evidence has substantiated the functional role of
WM connections in both language as well as attentional
processing (e.g., Rijntjes et al., 2012). There have even been
suggestions to conceptualize aphasia (e.g., Forkel et al., 2014)
and neglect as disconnection syndromes (e.g., Bartolomeo
et al., 2012; Thiebaut de Schotten et al., 2014) arising from
disrupted neural connections between the involved cortex
areas.

Numerical cognition and the syndrome of acalculia, a
collection of impairments in processing numbers and mental
calculation, have also witnessed a history of localisationist
and connectionist views, although their study started later in
history and they were less well investigated than language.
Henschen (1920), who coined the term acalculia, also considered
calculation mechanisms to rely on a complex anatomo-
functional system, subserved by distinct cortical centers and their
interconnections.

In the present paper we summarize and review the
existing evidence on brain hodology underlying numerical
cognition. Comparable to the cases of language and
attention, considering WM connections may provide a
more comprehensive understanding of human numerical
cognition and its impairments (see also Matejko, 2014;
Matejko and Ansari, 2015). First attempts were made to
conceptualize acquired acalculia (Klein et al., 2013b) but
also its developmental counterpart dyscalculia (DD) as
disconnection syndromes (Kucian et al., 2014). Therefore,
we will first give a brief overview regarding the neural
GM correlates of numerical cognition before augmenting
those neuro-functional data with recent evidence on WM
connectivity made accessible by technical advances in DTI. In
this review we use a broad definition of numerical cognition
that encompasses tasks reflecting basic numerical competencies
(e.g., magnitude comparison) but also mental arithmetic (e.g.,
addition, subtraction, multiplication, etc.), as also required
in standardized tests of mathematical and/or intellectual
abilities. Studies investigating higher mathematics (such as
algebra, analysis or inferential procedures, etc.) and their
neuro-structural correlates are not included in the current
review.

Neural Correlates of Numerical Cognition

In the past two decades, significant progress has been made
in uncovering the neural basis of numerical cognition
(Menon, in press, for a review). The triple-code model (TCM)
of Dehaene et al. (2003) reflects a unique integration of
behavioral and neuro-functional aspects, proposing three
different representational codes for numbers and their
neural correlates. (i) A bi-hemispheric numerical magnitude
representation associated with the intraparietal sulcus (IPS);
(ii) A verbal representation of numbers associated with
left perisylvian language areas and the left angular gyrus
(AG) which is recruited in verbally mediated operations
like number naming as well as arithmetic fact retrieval; and
(iii) A visual number form representation specialized for
recognizing Arabic digits and associated with bilateral fusiform
regions. From its initial form the TCM assumed that number
processing requires the close interplay of domain-specific
number-related parietal as well as domain-general (pre)frontal
processes involving working memory and executive control.
This suggests that numerical cognition is subserved by a
multi-modular and distributed system within the human
brain.

So far, the TCM has not taken into account an explicit
and detailed delineation of the connecting fiber pathways
subserving this multi-modular organization, probably due to
the non-availability of appropriate imaging methods at the
time of its initial formulation. Nevertheless, in the first version
of the anatomo-functional TCM (Dehaene and Cohen, 1995),
and in a series of subsequent detailed single case studies, the
involvement of intra-hemispheric (cortico-subcortical, fronto-
parietal) as well as inter-hemispheric (commissural) pathways for
number processing and calculation was highlighted. Moreover,
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observed patterns of impairment (e.g., pure alexia for numbers)
were also explained by a disconnection account (Cohen and
Dehaene, 1995; see also Klein et al., 2013a). Nevertheless, the
vast majority of recent neuroimaging studies have focused
on the localization of activated GM areas. WM connections
underlying numerical cognition were not considered specifically
in most cases. We identified 10 studies investigating functional
connectivity (Table 1), and 17 studies investigating structural
WM connections in numerical cognition (see Table 2) from
the last ten years. The increasing number of publications
in recent years may not only reflect increasing research
interest but also progressive availability and validity of DTI
sequences (e.g., Soman et al., 2015) and appropriate processing
software.

Almost all studies aimed at specifying the fronto-parietal
network underlying numerical cognition as suggested by
the TCM. In this vein, intra-hemispheric fronto-parietal
connections (e.g., Rykhlevskaia et al., 2009; Tsang et al.,
2009; Matejko et al., 2013; Navas-Sánchez et al., 2014) and
inter-hemispheric (intra)parietal to (intra)parietal connections
(e.g., Cantlon et al., 2011; Krueger et al., 2011; Klein
et al., 2013b; Park et al., 2013) were of primary interest
in most studies. In the following we will summarize and
review the existing evidence regarding brain connectivity in
numerical cognition. First, functional and effective connectivity

(reflecting correlations between activation in specific brain
areas) will be considered. Subsequently, we will elaborate
on studies addressing structural connectivity, which allow
identification of anatomical WM fiber tracts involved in
numerical cognition.

Brain Connectivity in Numerical Cognition

Correlations Between Activated Brain
Areas—Functional and Effective Connectivity
A first way of evaluating the connectivity between specific
brain regions involves computing functional connectivity;
specifically, the correlation patterns between neural GM
activation elicited in different brain regions, while performing
a specific numerical task. Highly correlated activation in
two different brain areas is assumed to indicate that these
areas may work together (see Table 1 for an overview
of studies investigating functional connectivity). Emerson
and Cantlon (2012) used a symbolic-nonsymbolic number
matching task to localize number-specific activation in
parietal and (pre)frontal cortex areas in four- to eleven-
year-old children. They then correlated the time series of
activated voxels within frontal regions of interest (ROIs)
with parietal ROIs to obtain a measure of fronto-parietal

TABLE 1 | Overview of studies investigating functional/effective connectivity underlying numerical cognition.

Nr. Authors Year Connectivity Task Participants Connections
analysis

1 Tang et al. 2006 Functional connectivity Magnitude comparison,
addition

Chinese: 23.8 ± 0.8 years;
English-speaking:
26.8 ± 2.3 years

VFG – SMA, L SMA – L PMA,
L PMA– Broca, Broca – Wernicke,
VFG –L IPC, L IPC – Wernicke

2 Krueger et al. 2011 Effective connectivity (GCM) Multiplication 26 ± 6.7 years R IPS – L IPS; R IPS – R DLPFC;
L precG,- L preSMA;
L preSMA –L/R DLPFC; L IPS –L DLFPC

3 Rosenberg-Lee et al. 2011 Functional connectivity WIAT, WMTB-C 7–9 years L DLPFC –L AG, L SPL

4 Cho et al. 2012 Effective connectivity (PPI) Addition 7–10 years R Hippocampus –L DLPFC; L VLPFC

5 Emerson and Cantlon 2012 Functional connectivity TEMA, Matching numbers,
faces, words, and shapes

4–11 years IPS –PFC, IFG, insula

6 Supekar et al. 2013 Functional connectivity WASI; WIAT, WMTB-C,
Reading, addition
verification and production

8–9 years R Hippocampus –R MTG, R SMA,
L DLPFC, L VLPFC, L BG

7 Park et al. 2013 Effective connectivity (PPI) non-symbolic Addition,
number matching,
shape matching

18–29 years R IPS –L IPS, L sensorimotor cortex

8 Park et al. 2014 Effective connectivity (PPI) Magnitude comparison
on digits, dots, and
line lengths

4–6 years R SPL –L SMG, R preCG

9 Qin et al. 2014 Effective connectivity (PPI) Addition 7–9, 14–17, & 19–22 years Hippocamus –L/R DLPFC, L IPS

10 Rosenberg-Lee et al. 2015 Effective connectivity (PPI) Addition, subtraction 7–9 years, 16 with
dyscalculia

Hyperconnectivity IPS –AG, L SMG,
R MFG, R IFG, VMPFC in dyscalculia

L: left; R: right; GCM: Granger causality mapping; PPI—Psycho-Physiological Interactions; TEMA: Test of Early Mathematics Ability (Ginsburg and Baroody, 2003);

WMTB-C: Working Memory Test Battery for Children (Pickering and Gathercole, 2001); WASI: Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999); WIAT:

Wechsler Individual Achievement Test (Wechsler, 2005); VFG: visual fusiform gyrus; PMA: premotor association areas; Broca: Broca’s area; Wernicke: Wernicke’s area;

IPC: intraparietal cortex; IPS: intraparietal sulcus; DLPFC: dorsolateral prefrontal cortex; (pre)SMA: (pre) supplementary motor area; preCG: pre central gyrus; SPL: superior

parietal lobe; AG: angular gyrus; VLPFC: ventrolateral prefrontal cortex; IFG: inferior frontal gyrus; MTG: middle temporal gyrus; BG: basal ganglia; SMG: supramarginal

gyrus; VMPFC: ventromedial prefrontal cortex.
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TABLE 2 | Overview of studies investigating structural connectivity underlying numerical cognition.

Nr. Authors Year Connectivity Task Participants White matter
analysis tracts

1 Barnea-Goraly et al. 2005a DTI, ROI analysis
(6 directions)

WISC number tasks 7–20 years, VCFS –

2 van Eimeren et al. 2008 DTI, ROI analysis
(32 directions)

WIAT number tasks 7–9 years Atlas-based: SCR, ILF

3 Rykhlevskaia et al. 2009 DTI, fiber tractography
(probabilistic and deterministic,
ROI analyses),
23 directions

WASI, WIAT, WMTB-C 7–9 years,
23 with dyscalculia

Tractography-based:
ILF, IFOF, thalamic radiation,
caudal forceps major

4 Tsang et al. 2009 DTI, ROI analysis
(12 directions)

Multiplication, exact and
approximate addition,
WISC, WRAT, Reading

10–15 years Atlas-based: SLF

5 van Eimeren et al. 2010 DTI, ROI analysis
(12 directions)

Four basic arithmetic
operations

26.4 ± 3.0 years Atlas-based: SCR

6 Cantlon et al. 2011 DTI, fiber tractography
ROI analysis (deterministic,
15 directions)

Number comparison
symbolic and non-symbolic

6 years Tractography-based:
Callosal isthmus

7 Hu et al. 2011 DTI, TBSS analysis
(15 directions)

Digit/letter span, WAIS,
3 years of abacus training

10 years Atlas-based: Internal capsule,
thalamic radiation,
corona radiata, SLF, ILF

8 Klein et al. 2013b DTI, fiber tractography
ROI analyses
(probabilistic, 61 directions)

Mental addition 28 ± 5 years Tractography-based:
SLF, EC/EmC

9 Klein et al. 2013a Fiber tractography
(deterministic)

– 49 years, single case Tractography-based:
EC, SLF

10 Kucian et al. 2013 DTI, ROI analysis
(21 directions)

ZAREKI, WISC, Corsi 10 years,
15 with dyscalculia

Atlas-based:
SLF, adjacent to IPS

11 Navas-Sanchez et al. 2013 DTI, ROI analysis
(16 directions)

Math Talent Program,
Madrid, Spain

12–15 years Atlas-based: Corpus callosum,
internal capsule, SLF, SCR,
EC, thalamic radiation

12 Matejko, et al. 2013 DTI, TBSS analysis
(31 directions)

PSAT 17–18 years Atlas-based: SLF, SCR,
corticospinal tract

13 Li et al. 2013a DTI, fiber tractography
(probabilistic and TBSS,
30 directions)

WISC 10–11 years Tractography-based: SLF,
ILF, inferior
fronto-occipital fasciculus

14 Li et al. 2013b DTI, fiber tractography
(probabilistic and TBSS,
15 directions)

Abacus training for 3 years 10 years Tractography-based:
Forceps major

15 Willmes et al. 2014 DTI, fiber tractography,
ROI analysis (deterministic,
61 directions)

Parity judgment, magnitude
comparison from Klein et al.
(2010)

18–25 years Tractography-based:
EC/EmC, SLF

16 Van Beek et al. 2014 DTI (45 directions) Addition, Subtraction;
Multiplication, Division,
WISC, WMTB-C, word and
pseudoword reading

11–13 years Anterior arcuate fasciculus

17 Klein et al. 2014 DTI, fiber tractography
(deterministic,
61 directions)

Number bisection,
exact/approximate addition

19–42 years Tractography-based: MdLF,
ILF, SLF, EC/EmC,
cingulate bundle

PSAT: Preliminary Scholastic Aptitude Test (College Board USA, 2006); WASI: Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999); WIAT: Wechsler Individual

Achievement Test (Wechsler, 2005); WISC: Wechsler Intelligence Scale for Children (Wechsler, 2004); WMTB-C: Working Memory Test Battery for Children (Pickering and

Gathercole, 2001; WRAT: Wide Range Achievement Test (Wilkinson and Robertson, 2006); ZAREKI-R: Testverfahren zur Dyskalkulie bei Kindern (von Aster et al., 2005).

connectivity. Interestingly, stronger fronto-parietal connectivity
was associated with better math proficiency, emphasizing the
importance of integrated fronto-parietal processing in numerical
cognition. Tang et al. (2006) observed differential patterns
of fronto-parietal functional connectivity for Chinese- and
English-speaking participants in both a magnitude comparison
task and a mental addition task. The authors argued that

Chinese-speaking participants seemed to engage more strongly
a visuo-premotor association network for solving these tasks
(involving visual fusiform gyrus and premotor association areas).
On the other hand, native English speakers seemed to largely
employ language-based processes relying on left perisylvian
cortices (including Broca’s and Wernickes area) for the same
tasks.
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The important role of integrated fronto-parietal processing
was further substantiated by Supekar et al. (2013), who
investigated the neural predictors of arithmetic skill acquisition
in 8–9-year-old children before an 8-week math tutoring
program. The authors found that functional connectivity
of the hippocampus with dorsolateral and ventrolateral
prefrontal cortices as well as with the basal ganglia prior to
tutoring predicted subsequent learning effects. This finding
was interpreted to indicate that ‘‘individual differences in the
connectivity of brain regions associated with learning and
memory, and not regions typically involved in arithmetic
processing, are strong predictors of responsiveness to math
tutoring in children’’ (Supekar et al., 2013, p. 8230). In another
study evaluating the manifestation of numerical learning in
brain connectivity Rosenberg-Lee et al. (2011) investigated
changes in the connectivity of prefrontal and more posterior
brain areas between 2nd and 3rd grade using a cross-sectional
approach. They observed differential functional connectivity
between left DLPFC and posterior brain areas. In particular,
changes in functional connectivity between 2nd and 3rd
grade were stronger in what the authors termed dorsal
(superior parietal lobe, AG) as compared to ventral stream
areas (parahippocampal gyrus, lateral occipital cortex, lingual
gyrus).

Krueger et al. (2011) used multivariate Granger causality
to evaluate effective connectivity in adult numerical cognition.
Multivariate Granger causality mapping not only quantifies the
co-activation of two brain regions for a given task, but also
allows one to assess the direction of the connections between
the respective areas. The authors observed a fronto-parietal
network for multiplication, involving a reciprocal parietal IPS-
IPS circuit which subserves number magnitude information.
This magnitude processing related network was also interlaced
with a reciprocal fronto-parietal circuit from the dorsolateral
prefrontal cortex and the IPS associated with the execution
and updating of arithmetic operations. Importantly, the parietal
cortex received more inputs from the frontal cortex than the
other way around, indicating the central role of the parietal cortex
in number processing.

Another method to evaluate effective connectivity is the
approach of psychophysical interaction analysis (PPI), as used
by Park et al. (2013, 2014, see also Cho et al., 2012; Qin et al.,
2014). For adults, Park et al. (2013) used custom-made reaction
time experimental tasks assessing (i) non-symbolic addition
and subtraction, (ii) number matching as well as (iii) shape
matching. They found increased effective connectivity within
the right parietal cortex as well as between the right and left
parietal cortices for arithmetic tasks in general and subtraction
in particular. Importantly, the degree of effective connectivity
was associated positively with behavioral performance in the
subtraction task. Furthermore, Park et al. (2014) investigated
effective connectivity of the right parietal cortex with the left
supramarginal gyrus and the right precentral gyrus in 4–6-
year-old children. The degree of connectivity from the right
parietal cortex to the right precentral gyrus was predictive
of performance on a standardized symbolic math test (see
Figure 1 for an overview of the connections suggested by

functional/effective connectivity analyses). Using the same
method, Rosenberg-Lee et al. (2015) investigated differences in
functional connectivity of the IPS between typically developing
7–9-year-old children and a sample of children from the same
age group with DD. Interestingly, the authors found what
they called hyperconnectivity of the bilateral IPS in children
with DD with ventro- and dorsolateral PFC as well as the
SMG. The authors attributed this phenomenon to involvement
of compensatory mechanisms. On the other hand, they also
suggested that the ‘‘engagement of these circuits may result in
the activation of problem-irrelevant information that in turn
disrupts problems solving’’ (p. 18, see also below for findings on
structural connectivity in children with DD).

The conclusion of Supekar et al. (2013), stating that
hippocampal-prefrontal connectivity is specifically associated
with numerical learning, was corroborated by an evaluation
of effective connectivity of the hippocampus. Using PPI, Cho
et al. (2012) revealed strong causal bidirectional connectivity
between the right hippocampus and the left VLPFC and DLPFC
to be associated with the application of retrieval-based solution
strategies to an addition task in 7–10-year-old children. The
influence of hippocampal-prefrontal connectivity on numerical
learning was further specified in a paper by Qin et al. (2014),
which so far represents the only longitudinal study investigating
the influence of brain connectivity on numerical development.
The authors observed that the connectivity of the hippocampus
with prefrontal and parietal cortices was predictive of the gain in
7–9-year-old children’s fact retrieval fluency in mental addition
over a period of more than 1 year. Thus, numerical development
seems to be associated with changes in hippocampal-neocortical
connectivity.

Summarizing the results of studies evaluating functional
and effective connectivity associated with numerical cognition
clearly indicates that number processing involves a widespread
network including (intra)parietal (e.g., IPS, SPL, SMG, AG)
but also (pre)frontal cortex sites (e.g., DLPFC, VMPFC,
preCG, SMA, IFG) as well as the hippocampus. The latter
seems to be particularly involved in numerical learning
and development because hippocampal-prefrontal as well as
hippocampal-parietal connectivity is reliably associated with
children’s use of more sophisticated retrieval-based solution
strategies in mental arithmetic. Additionally, the strength of
fronto-parietal connectivity was associated with better math
proficiency. In line with the TCM these analyses of functional
and effective connectivity provide converging evidence for
numerical cognition to be subserved by a fronto-parietal network
also incorporating hippocampal structures. However, those
analyses do not allow for the identification of anatomical
WM fiber tracts connecting brain areas with correlated brain
activations. This can only be achieved by considering structural
connectivity. In the following, we describe another set of studies
which evaluated structural connectivity in two different ways to
pinpoint the WM tracts involved in numerical cognition.

Structural Connectivity
There are two different approaches to investigate structural
connectivity (see Table 2 for an overview of studies evaluating
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FIGURE 1 | Overview of cortical sites considered in the studies
evaluating functional/effective brain connectivity. Panel (A) depicts the
cortical sites (blue spheres) and their functional/effective connectivity patterns
(gray lines), found by Krueger et al. (2011), Emerson and Cantlon (2012), and

Park et al. (2013, 2014). These studies primarily focused on the fronto-parietal
network of numerical cognition. Panel (B) shows the cortical regions (red
spheres) and their functional/effective connectivity patterns (gray lines) identified
by Supekar et al. (2013) found to be predictive of numerical learning.

structural connectivity). The first is to evaluate the correlation
of diffusion parameters in predefined ROI with either behavioral
performance or with fMRI activation peaks observed for
numerical tasks. Fractional anisotropy (FA) and/or radial
diffusion (RD; see Mukherjee et al., 2008 for an explanation of
the physical principles) are often used diffusion parameters in
these analyses. Additionally, ROIs are usually located to reflect
a specific (mostly) atlas-identified WM pathway. The second
approach is fiber tractography, which allows for the virtual
reconstruction of entireWMpathways. Thereby, diffusion tensor
tractography can characterize not only the orientation but also
the integrity ofWM fibers in vivo and noninvasively (Basser et al.,
1994). The following section will discuss studies using atlas-based
ROI analyses and fiber tractography in turn.

Atlas-based ROI Analyses of Diffusion Measures
Studies using ROI analyses provided evidence for the
involvement of anterior to posterior association and projection
fiber tracts in numerical cognition. With respect to anterior to
posterior association fiber tracts, Rykhlevskaia et al. (2009)
observed that increased FA in a temporo-parietal ROI
incorporating parts of the superior longitudinal fasciculus
(SLF), the inferior longitudinal fasciculus (ILF), and the
inferior fronto-occipital fasciculus (IFOF) was associated
with better performance of 7–9-year-old children in the
arithmetic subtest of an IQ test. The importance of fronto-
parietal connections was further corroborated by Tsang
et al. (2009). These authors used a combination of tests
administered outside and inside the scanner, to investigate
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the association between FA in a central part of the SLF and
performance in a computerized approximate arithmetic task.
In particular, the authors considered performance scores of
10–15-year-olds from the arithmetic subtest of a scholastic
achievement test to control for the specificity of their results.
They found an association of higher FA in the SLF and
better performance in approximate arithmetic, indicating the
importance of fronto-parietal connectivity for performance in
mental arithmetic.

As regards projection fiber tracts, Rykhlevskaia et al.
(2009) reported that increased FA in a temporo-parietal ROI
incorporating parts of the anterior thalamic radiation and the
cortico-spinal tract was associated with better performance
of 7–9-year-old children in the arithmetic subtest of an
IQ test. Comparably, van Eimeren et al. (2008) used ROI
analyses to investigate the association of WM connectivity
with arithmetic performance. They found that in 7–9-year-
old children increasing FA in ROIs from the superior corona
radiata (SCR) was associated with better performance in the
arithmetic subtests of an IQ test administered outside the
scanner. To a lesser degree this also held true for FA in
ROIs from the ILF. van Eimeren et al. (2010) also found
evidence for an involvement of the SCR in numerical cognition.
They observed that higher FA in a ROI reflecting a central
segment of the left SCR was associated reliably with a
stronger BOLD response in the left AG, as recorded during
retrieval-prone calculations in a sample of mostly university
students.

Other studies reported a combination of projection and
association fiber tracts to be recruited in numerical cognition.
Matejko et al. (2013), using tract-based spatial statistics (TBSS),
found higher FA in the left SLF, SCR, and cortico-spinal tract
of 17 to 18-year-olds to be associated with better performance
in the arithmetic subtest of a scholastic achievement test. TBSS
(see also Hu et al., 2011; Li et al., 2013b) employs a voxel-wise
statistic followed by the projection onto an alignment-invariant
mean FA skeleton in order to derive clusters, in which FA
correlates with a dependent variable. These clusters may be but
do not necessarily need to be used for ROI analyses. Instead,
most other studies reported in this paragraph extracted FA for
ROIs in tracts of interest (after atlas-based identification) from
aligned and spatially smoothed diffusion imaging data (Jones
et al., 2005).

There is also another approach to investigate structural
connectivity in numerical cognition. Instead of associating
diffusion measures in specified ROIs with performance or GM
activation, another subset of studies evaluated differences in
ROI-based diffusion parameters between different populations.
Rykhlevskaia et al. (2009) found reduced FA in ROIs located
in the IFOF, ILF, SLF, amongst others, in children with
developmental DD, as compared to typically developing children.
Recent data by Kucian et al. (2014) substantiated impairments
in WM connectivity as indicated by reduced FA and RD in
a posterior part of the SLF, in particular in children with
DD. These authors suggested that DD may be considered
a disconnection syndrome (see also Klein et al., 2013a for
the case of acquired acalculia). Navas-Sánchez et al. (2014),

when studying math-gifted adolescents, observed higher WM
integrity, as indicated by higher FA in ROIs located in the
SLF adjacent to inferior parietal cortex areas. Barnea-Goraly
et al. (2005a) found that reduced arithmetic competencies
in velocardiofacial syndrome may be caused by structural
WM aberrations in inferior parietal cortex (see also Lebel
et al., 2010; Till et al., 2011, for WM differences associated
with impaired numerical performance in children with fetal
alcohol spectrum disorder and youths with multiple sclerosis,
respectively).

Finally, there were another two studies specifically
investigating the influence of the duration of abacus use on
brain connectivity. Li et al. (2013b) employed TBSS and found
increased FA in the left callosal forceps major only, whereas
Hu et al. (2011) observed increased RD for abacus users after
three years of abacus training in a variety of WM connections,
including ‘‘the internal capsule (IC), corona radiata and posterior
thalamic radiation’’ (p. 19) as well as the SLF.

In summary, ROI analyses of DTI data are commonly
used to detect diffusion parameter alterations, as measured
by FA values. However, it is worth noting that WM tracts
specified by these analyses are simply those that pass through
the respective ROI, as indicated by comparison with a brain
atlas. Importantly, this means that the specified tracts were not
identified directly to connect to cortex sites of interest. Fiber
tractography based on task-related fMRI data, however, enables
the virtual reconstruction of WM pathways connecting cortex
areas found or assumed to be included in s processingmodel such
as the TCM.

Fiber Tractography
A last set of studies interested in structural connectivity
used either probabilistic or deterministic fiber tractography
to identify WM connections. Fiber tractography aims at
delineating WM pathways involved by virtually reconstructing
the most probable WM tract pathways between user-defined
seed points. Probabilistic tracking differs from deterministic
tracking in that the probability for false negative reconstructions
of specific tracts is taken into account. This probability is
typically elevated in areas where fibers cross, merge or kiss. By
employing both probabilistic and deterministic fiber tracking,
Rykhlevskaia et al. (2009) compared the brain connectivity
pattern in children with and without developmental DD. The
authors found that typically developing children showed more
inter-hemispheric (superior parietal) connectivity as well as
stronger connectivity of the right temporal-parietal cortex.
Probabilistic and deterministic fiber tracking analyses linking
WM and GM alterations in children with developmental DD
‘‘point to tracts connecting the fusiform gyrus with temporal-
parietal WM, most likely via the ILF, as a major locus of
neuroanatomical abnormalities in DD’’ (Rykhlevskaia et al.,
2009, p. 11).

Cantlon et al. (2011) employed deterministic fiber tracking
to further investigate the influence of inter-hemispheric IPS to
IPS connectivity on number processing in typically developing
children. The authors observed that FA within tracked fibers
of the left isthmus of the corpus callosum was correlated
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positively with performance in a number magnitude comparison
task administered in the scanner in six-year-old children.
On the other hand, Li et al. (2013a) used probabilistic fiber
tracking to identify and differentiate the course of the different
anterior to posterior association fiber tracts. Using TBSS,
FA values of the WM tracts identified were correlated with
children’s performance in the arithmetic subtest(s) of an IQ
test. Reliable positive associations between FA values and
arithmetic performance were observed for the left SLF, ILF and
bilateral IFOF.

More recent studies using probabilistic or deterministic fiber
tracking have tried to integrate the identified pathways for
numerical cognition into the broader architecture of dorsal
and ventral processing streams, as previously done for other
cognitive domains such as language (e.g., Hickok and Poeppel,
2007; Rauschecker and Scott, 2009; Weiller et al., 2011).
Klein et al. (2013b) investigated WM connections between
seed points observed to be activated in either more difficult
(calculation-based) or more easy (retrieval-based) addition
problems. For both conditions the authors reconstructed
pathways encompassing the SLF and the external/extreme
capsule (EC/EmC) system indicating that both magnitude-
and fact retrieval-related processing were subserved by two
largely distinct networks, both of them comprising dorsal
and ventral connections. This distinction between magnitude-
and fact retrieval-related processing on the level of structural
brain connectivity was further substantiated by the results of
Klein et al. (2014). These authors showed that the proposed
differentiation generalizes to other numerical tasks (i.e., number
bisection and exact/approximate addition). This indicates that
magnitude- and fact retrieval-related processing may indeed
rely on different neural networks, even though these networks
operate in an integrated manner to solve numerical tasks
most efficiently. This is also in line with the results of Van
Beek et al. (2014). These authors found that higher FA in
the left anterior portion of the arcuate fasciculus specifically
predicted better addition and multiplication but not subtraction
and division performance. As the arcuate fasciculus links
frontal with temporo-parietal cortex sites the authors argue
that ‘‘the association between the left arcuate fasciculus-
anterior and addition/multiplication reflects involvement of
phonological processing’’ (p. 117) related to arithmetic fact
retrieval.

Finally, Willmes et al. (2014) observed a common ventral
fronto-parietal connection encompassing the EC/EmC system
for the general cognitive operation of semantic classification
for the domains of language (e.g., word/non-word decisions)
and number processing (e.g., odd/even judgments). Interestingly,
this network appeared to be augmented by a dorsal connection
to the IPS running along the SLF, when number magnitude
was decision relevant, as is the case in number magnitude
comparison.

In summary, analyses of structural connectivity underlying
numerical cognition indicate crucial involvement of both
association fiber tracts running from anterior to posterior (e.g.,
SFL, EC/EmC system, ILF, and IFOF) as well as projection
fiber tracts (e.g., SCR, thalamic radiation) and transcallosal

commissural fibers connecting the bilateral intraparietal
sulci. Comparable to the results of studies investigating
functional/effective connectivity, the findings from structural
connectivity analyses corroborate the proposition of a fronto-
parietal network subserving numerical cognition. In particular,
the SLF and the EC/EmC system constitute important fronto-
parietal pathways connecting number-specific areas in the
parietal cortices (e.g., IPS, AG) with number unspecific
areas in (pre)frontal cortex (e.g., DLPFC, IFG), as proposed
by the TCM.

White Matter Pathways in Numerical Cognition
There is considerable convergence with respect to the fronto-
parietal WM pathways connecting domain-specific number-
related parietal brain areas (IPS, AG) to more domain-
general (pre)frontal areas. The SLF and the EC/EmC system
were identified repeatedly to be associated with fronto-parietal
processing in numerical cognition (e.g., Rykhlevskaia et al.,
2009; Tsang et al., 2009; van Eimeren et al., 2010; Klein et al.,
2013a,b; Matejko et al., 2013; Kucian et al., 2014; Navas-
Sánchez et al., 2014; see Figure 2 for a schematic illustration).
Importantly, the association of fronto-parietal connectivity with
numerical performance encompassing these systems is not only
in line with the results of the functional connectivity analyses
described above, but also corroborates the propositions of
the TCM. Furthermore, involvement of projection fibers such
as the (superior) corona radiata, possibly connecting motor
cortices and subcortical structures such as the thalamus, were
frequently observed to be involved in numerical cognition (van
Eimeren et al., 2008, 2010; Rykhlevskaia et al., 2009; Hu et al.,
2011).

The importance of the SCR is hard to reconcile with
the results of functional connectivity analyses, which usually
did not consider cortico-subcortical connections or subcortical
structures. Nevertheless, the involvement of these projection
fibers is in line with propositions of earlier versions of the
TCM by Dehaene and Cohen (1995, 1997), which have not been
pursued systematically so far—possibly due to the cortex-centerd
focus of recent (fMRI) research on numerical cognition.

With respect to the involvement of the SCR it is interesting
that fiber tracts, which have been found to be involved in number
processing less consistently, seem to be closely related neuro-
anatomically. In particular, the cortico-spinal tract (Matejko
et al., 2013; investigated in some cases at the level of the
internal capsule (Hu et al., 2011; Navas-Sánchez et al., 2014)
and the right thalamic radiation (Rykhlevskaia et al., 2009;
Hu et al., 2011) are often aggregated to constitute the SCR.
Neuro-anatomically the cortico-spinal tract, but also the superior
peduncle of the thalamic radiation are part of the corona
radiata—as is the SCR. Therefore, functional involvement of the
SCR seems particularly reasonable from a theoretical point of
view. The thalamic radiation directly connects the cortex with the
ventrolateral thalamus, while the cortico-striatal tract connects
the cortex indirectly with the ventrolateral thalamus via the
striatum. Thus, these structures connect GM areas known to
be involved in numerical cognition either directly or indirectly
(via the basal ganglia) with the thalamus. Interestingly, early
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FIGURE 2 | Schematic reconstruction of association (green, yellow),
projection (blue) and commissural (red) fiber tracts repeatedly
observed in numerical cognition tasks (in axial, sagittal and
coronal orientation). The superior longitudinal fasciculus (SLF) is
displayed in green, the inferior longitudinal fasciculus (ILF) and the
external/extreme capsule (EC/EmC) system are depicted in yellow, parts

of the internal capsule (IC) in dark blue, the superior coronar radiata
(SCR) is shown in light blue, and interhemispheric parietal to parietal
connections encompassing the callosal isthmus (CI) are shown in red.
Virtual dissections were performed for one individual with seed regions
chosen deliberately for illustration purposes only, regarding white matter
(WM) pathways involved in numerical cognition.

versions of the TCM (Dehaene and Cohen, 1995, 1997) suggested
a vital role of the basal ganglia and the thalamus in numerical
cognition. On the other hand, assuming the involvement of the
cortico-spinal tract or the IC to be associated with processing of
numerical information is less evident, because for both structures
connections to the parietal lobes are strongly associated with
motor and somatosensory processes (e.g., Newton et al., 2006;
Lotze et al., 2011; see Catani et al., 2012 for an overview).
However, all evidence for an involvement of these different
parts of the corona radiata comes from studies specifying
the involved WM in an atlas-based approach (either ROI
analyses, e.g., Rykhlevskaia et al., 2009; Navas-Sánchez et al.,
2014 or TBSS, e.g., Hu et al., 2011; Matejko et al., 2013).
We suggest that any strong interpretation of the functional
involvement of the SCR, the thalamic radiation, the cortico-
spinal tract, the cortico-striatal tract and even commissural
fibers should be made with great care, because the atlas-based
identification of WM tracts highly depends on where exactly
the respective ROI is placed (see Figure 3 for a schematic
illustration). Generally, ROI analyses do not provide virtual
reconstructions of the WM tracts connecting two GM areas

associated with number processing. Therefore, the WM tracts
identified by ROI analyses reflect all tracts passing through
the respective ROI, instead of considering only those tracts
connecting the WM areas of interest as in fiber tractography.
For the present WM tracts (i.e., SCR, cortico-spinal tract/IC,
thalamic radiation, cortico-striatal tract, and commissural fibers)
a respective ROI may incorporate fibers of more than one
tract, and small variation in the location of the ROI may
easily change the involved fiber tracts. It is even easily possible
to capture all of the latter tracts in one atlas-based ROI.
Importantly, this variability of results can be reduced by
employing methods of fiber tractography, which makes them
highly desirable for more studies evaluating brain connectivity
in numerical cognition. While studies on functional and atlas-
based structural connectivity paved the ground for a more
general understanding of the interaction of WM with GM in
numerical cognition, the actual connectivity within the fronto-
parietal network of numerical cognition seems to be captured
better using tractography-based analyses.

Generally, there seems to be notable agreement regarding
the identified fronto-parietal WM tracts, but so far there
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FIGURE 3 | Schematic illustration of problems with the identification of
projection fibers. Fiber tracts identified by atlas-based ROI analyses depend
strongly on where exactly along this bundle of tracts the respective ROI is
placed. As most of the ROIs reviewed in this article placed their ROI somewhere

between the basal ganglia and the cortex it is obvious that such a ROI might
well involve fibers of the SCR, the cortico-spinal tract/IC, the thalamic radiation
(light purple) or even commissural fibers (cortico-striatal tract not depicted for
reasons of clarity).

is no coherent picture with respect to lateralization of the
tracts involved. Some studies reported bilateral hemispheric
connections associated with number processing (e.g.,
Rykhlevskaia et al., 2009; Hu et al., 2011; Klein et al.,
2013b), whereas others only found significant results for
left hemispheric fiber tracts (e.g., van Eimeren et al., 2008;
Tsang et al., 2009; Kucian et al., 2014; Matejko et al., 2013)
or deliberately chose to focus on the left hemisphere, because
the authors were specifically interested in verbal numerical
representations supposed to be left-lateralized (e.g., Klein et al.,
2013a,b; Willmes et al., 2014). As regards interhemispheric
connections, only Cantlon et al. (2011) directly compared
inter-hemispheric (intra)parietal to (intra)parietal connections
and found them to be reliable for the genu, isthmus and
posterior splenium tracts of the corpus callosum. Additionally,
WM tracts along the forceps major (e.g., Rykhlevskaia et al.,
2009; Klein et al., 2013a; Li et al., 2013a,b) were observed to
be involved in numerical cognition connecting (intra)parietal
areas.

Finally, other WM pathways have been found to be
involved in number processing less consistently. In particular,
involvement of the IFOF (e.g., Rykhlevskaia et al., 2009; Li
et al., 2013a), connecting frontal cortex sites with occipital
sensory cortical areas was reported. Since all reported studies
used visually presented stimuli this most probably reflects

involvement of visual perceptual processes in numerical
cognition. Additionally, the ILF was repeatedly found to be
associated with numerical performance (e.g., van Eimeren et al.,
2008; Rykhlevskaia et al., 2009; Li et al., 2013a). As the ILF
represents a parieto-temporal connection, it may be most likely
involved in connecting left-hemispheric perisylvian language
areas, as proposed to be associated with the verbal representation
of numbers in the TCM.

Other Methodological Limitations and
Implications
Substantial convergence concerning the involvement of WM
pathways in numerical cognition is notable, considering the
variety of methodological approaches and tasks employed to
investigate quite different populations. The different methods for
investigating brain connectivity come with specific advantages
and limitations. Functional connectivity analyses (e.g., Emerson
and Cantlon, 2012) can only provide temporal correlations
between activation in remote brain areas. Effective connectivity
analyses (e.g., Krueger et al., 2011; Cho et al., 2012) additionally
specify the direction in which one neuronal system exerts
an influence over another. However, both attempts do not
allow identification of WM tracts in a strict sense. As regards
structural connectivity, ROI analyses of DTI data (e.g., van
Eimeren et al., 2008, 2010; Matejko et al., 2013) require a priori
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hypotheses about the WM tracts involved. Additionally, intra-
and inter-individual variability in the delineation of ROIs
limits their reproducibility and reliability, as discussed above
regarding involvement of the SCR. On the other hand, the
interpretation of results from probabilistic and deterministic
tractography (e.g., Rykhlevskaia et al., 2009; Willmes et al., 2014)
depends on placement and size of the seed regions as well as on
algorithm settings (Aoki et al., 2007). Additionally, tractography
is particularly complex for regions where fibers cross, kiss, or
merge, possibly leading to artefactual reconstructions (Basser
et al., 2000). Furthermore, numerical performance was not only
assessed inside (e.g., Tsang et al., 2009; Cantlon et al., 2011)
but also outside (e.g., Rykhlevskaia et al., 2009; Matejko et al.,
2013) the scanner. Moreover, assessment procedures also ranged
from standardized diagnostic test instruments (e.g., TEMA,
WIAT) over specific subtests selected from those standardized
tests (e.g., subtest numerical operations from the WIAT; e.g.,
Barnea-Goraly et al., 2005a; Rosenberg-Lee et al., 2011; Emerson
and Cantlon, 2012) to custom-made experimental reaction time
tasks (e.g., Krueger et al., 2011; Park et al., 2013).

Finally, about half of the studies evaluated WM connectivity
in children up to the age of 11 years (e.g., Emerson and Cantlon,
2012; Park et al., 2014), another three included adolescents
between 11 and 18 years of age (e.g., Matejko et al., 2013; Navas-
Sánchez et al., 2014), and only five studies investigated healthy
adults (mostly students, e.g., Krueger et al., 2011; Park et al.,
2013). Furthermore, there was one single-case stroke patient
study (Klein et al., 2013a).

This shows that a considerable number of studies on brain
connectivity in numerical cognition has been conducted with
children and adolescents. Therefore, it seems important to
evaluate whether these data shed new light on the potential
development of WM connectivity within the fronto-parietal
network underlying numerical cognition. However, no specific
systematic trend was evident for age. Fronto-parietal associations
(e.g., SLF) as well as projecting tracts (e.g., SCR) were found to be
involved in numerical cognition from the youngest ages studied.
This finding may be expected, because the identified fiber
tracts (e.g., ILF, SLF, SCR, etc.) are important neuro-anatomical
structures, which develop independently from specific cognitive
functions during childhood and adolescence (e.g., Barnea-Goraly
et al., 2005b; Huang et al., 2006; Asato et al., 2010; see Peters et al.,
2012 for a recent meta-analysis).

Against this background, future studies are needed to evaluate
how far the functional coupling of particular cortex areas or
WM pathways associated with numerical cognition are specific
to number processing and/or calculation. The study of Willmes
et al. (2014) provides a first step in this direction. The authors
investigated the WM connections associated with the general
cognitive operation of semantic classification across the domains
of language and number processing. They observed a common
fronto-parietal connection encompassing the EC/EmC system
for semantic classification, irrespective of content. This is in
line with evidence suggesting that functional specificity of
GM cortex areas (e.g., as suggested by Brodmann, 1909) is
hard to reconcile with the differential involvement of cortical
areas in a variety of tasks. For instance, Simon et al. (2002,

2004; see also Humphreys and Lambon Ralph, 2014 for a
recent fMRI meta-analysis over 8 cognitive domains including
number processing) found that the IPS was activated not only
in number processing but also (partly overlapping) for the
initiation of saccades, attention shifting, grasping, pointing, and
language processing. This corroborates the notion of systemic
localization, as suggested early on by Reinvang (1985). In this
view, domain specificity may not be a question of localization
(which cortex areas?) or connectivity (which fiber tracts?).
Instead, it is important to concomitantly consider which cortex
areas are connected to which other areas by which fiber
tracts. The particular combination of cortex areas connected
by specific fiber tracts may then be an indicator of domain-
specificity.

Moreover, the question of how numerical learning and
development manifest in WM connectivity is of particular
interest. There is evidence for qualitative changes in GM
activation patterns following numerical learning (e.g., Delazer
et al., 2003; Kaufmann et al., 2011). There are now indications
that learning may change WM connectivity parameters (Sagi
et al., 2012; see Menon, 2013 for implications on cognitive
development). For numerical cognition, Supekar et al. (2013)
were able to show that numerical learning is specifically predicted
by the connectivity of the hippocampus with prefrontal cortex
sites (see Figure 1, see also Cho et al., 2012). Additionally,
Qin et al. (2014) found longitudinal gains for fact retrieval
fluency in 7–9-year-old children in mental addition, which were
predicted by effective connectivity of the hippocampus with
prefrontal and parietal cortices. Thus, numerical development
as characterized by increasing use of retrieval-based solution
strategies seems to be associated specifically with changes
in hippocampal-neocortical connectivity. In the future, it
might also be interesting to study the development of the
different networks underlying arithmetic fact retrieval and
number magnitude processing as identified by Klein et al.
(2013a).

In addition to variation by age, there are five studies
investigating brain connectivity in special populations: children
with DD (Rykhlevskaia et al., 2009; Kucian et al., 2014;
Rosenberg-Lee et al., 2015), individuals with velocardiofacial
syndrome (Barnea-Goraly et al., 2005a), and math-gifted
children (Navas-Sánchez et al., 2014). Molko et al. (2004) also
provide first evidence regarding structural alterations in fiber
orientation in children with Turner syndrome, who often present
with numerical deficits.

Synthesis and Perspectives

Considering the variety of methodological approaches, types
of assessment instruments, and populations investigated,
the convergence of evidence regarding brain connectivity
in numerical cognition is remarkable. Analyses of both
functional/effective as well as structural connectivity consistently
corroborate the propositions of the TCM: Numerical cognition
seems to be subserved by a widespread network including
(intra)parietal (e.g., IPS, SPL, SMG, AG) but also (pre)frontal
cortex sites (e.g., DLPFC, VMPFC, preCG, SMA, IFG), as well
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as the hippocampus. Studies on functional/effective connectivity
indicate a specific role of the hippocampus in numerical
development. In children, hippocampal-prefrontal as well as
hippocampal-parietal connectivity were found to be associated
with the acquisition of retrieval-based solution strategies, while
in adults hippocampal-parietal connectivity was associated with
the retrieval of arithmetic facts. On the other hand, analyses
of structural connectivity provide converging evidence for
functional involvement of association fibers from the SLF
dorsally as well as the EC/EmC system ventrally as the primary
fronto-parietal connections in the numerical cognition network.
Synced with commissural fibers such as inter-hemispheric
IPS to IPS connections running transcallosally along the
callosal isthmus and the forceps major, all these results further
corroborate the proposition of the TCM of numerical cognition
being subserved by fronto-parietal neural networks.

The specifications in this review of the WM pathways
involved in numerical cognition also extend the TCM with
respect to how GM areas associated with specific number-related
representations (e.g., IPS: number magnitude vs. AG: arithmetic
facts) may work together. The involvement of projection fibers
such as the SCR (in particular the part of the thalamic radiation
and the cortico-striatal tract) may revive the importance of
the basal ganglia as well as the thalamus, which were already
incorporated in early versions of the TCM by Dehaene and
Cohen (1995, 1997). As a consequence, it is now possible to
evaluate the idea that numerical impairments arise from WM
disconnections between specific cortical areas in an individual
brain (Kucian et al., 2014 for developmental DD; Klein et al.,
2013a for acquired acalculia). This is in line with considerations
for deficits in other domains (e.g., Schlaug et al., 2009 for aphasia

and Rusconi et al., 2009 for a disconnection account of the
Gerstmann syndrome).

These new insights into the WM correlates of numerical
cognition also come with methodological as well as theoretical
implications for future studies on brain hodology underlying
numerical cognition. On the methodological side it would be
interesting to combine different approaches to obtain a more
comprehensive picture of the neural WM and GM correlates
of numerical cognition. For instance, functional and structural
connectivity analyses may be complemented by fMRI and voxel-
based morphometry (see Rykhlevskaia et al., 2009, for a first
attempt). Additionally, the ultrahigh-resolution 3D-model of the
human brain (‘‘BigBrain’’) provides unprecedented information
on the interconnection of cortical regions (Amunts et al., 2013).
Taken together, considering brain connectivity not only seems
inevitably mandatory in order to understand human numerical
cognition but it also opens up new avenues for future research.
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Recent years have seen an increase in research articles and reviews exploring
mathematical difficulties (MD). Many of these articles have set out to explain the etiology
of the problems, the possibility of different subtypes, and potential brain regions that
underlie many of the observable behaviors. These articles are very valuable in a research
field, which many have noted, falls behind that of reading and language disabilities. Here
will provide a perspective on the current understanding of MD from a different angle,
by outlining the school curriculum of England and the US and connecting these to the
skills needed at different stages of mathematical understanding. We will extend this
to explore the cognitive skills which most likely underpin these different stages and
whose impairment may thus lead to mathematics difficulties at all stages of mathematics
development. To conclude we will briefly explore interventions that are currently available,
indicating whether these can be used to aid the different children at different stages of
their mathematical development and what their current limitations may be. The principal
aim of this review is to establish an explicit connection between the academic discourse,
with its research base and concepts, and the developmental trajectory of abstract
mathematical skills that is expected (and somewhat dictated) in formal education. This
will possibly help to highlight and make sense of the gap between the complexity of the
MD range in real life and the state of its academic science.

Keywords: mathematical difficulties, mathematical development, children, school curriculum, intervention

There has been increasing interest in mathematical difficulties
(MD) particularly as government departments seek to under-
stand why countries such as the US and the UK have low levels
of functional numeracy. For example, Gross et al. (2009) found
that around 25% of those able to work in the UK do not have
essential mathematical skills, and Parsons and Bynner (2005)
reported that those with poor numeracy were twice as likely to
be unemployed as those with competent levels. These low levels
of attainment have been linked with the developmental disability
dyscalculia where low mathematics achievement stands against a
background of otherwise normal skills (e.g., language, memory,
visuo-spatial attention, etc.), and is characterized as a primary
impairment of number skills (Butterworth, 2005, 2010). However
it seems unlikely that dyscalculia alone can account for the find-
ings as its prevalence rates range between 1.3 and 10.3% (Devine
et al., 2013). It seems thus likely that a large proportion of those
with poor numeracy would instead have MD, which we theorize
encompass a range of mathematical learning shortcomings that
may manifest at various developmental stages and originate in
a variety of underlying causes. To explore at what point in time
these diverse difficulties may impact on mathematic ability, this
review will explore what children are expected to learn as they go
through the mathematics curriculum. Clarity on the “expectation
trajectory” should prove extremely useful in a research field where
no comprehensive and consensus model of a “developmental

trajectory” is yet available. We will then identify a recent model
that has outlined the basic cognitive components involved in
mathematical skill development. This model lends itself natu-
rally to identifying individual causes of MD, especially when
difficulties are conceptualized as a decoupling between develop-
mental and expectation trajectory at different stages in formal
education.

DEFINING MD
Although most people, when asked, will report having struggled
with mathematics at some point in their lives, objective difficul-
ties with the learning of mathematics are said to present when
mathematical achievement is significantly lower than the aver-
age obtained by the appropriate age group. Official figures of
attainment seem to suggest that in the UK 10% of children in
formal education do not reach the required standards by ages
7 and 11 (DfES, 2012), and in the US 18% of children in for-
mal education do not reach the required standards by ages 10
and 14 (National Center for Education Statistics, 2011; see also
Mathematics Curriculum section). Individual achievement can be
measured against consensus ideal standards (e.g., Common Core
Standards for Mathematics, accessed August 9 2013, http://www.

corestandards.org/Math/Practice), overall class achievement, or
standardized tests. The latter are often based on academic and/or
pedagogical models of mathematical cognition (e.g., Wide Range
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Achievement Test-Revised (WRAT-R; Jastak and Wilkinson, 1984;
Woodcock Johnson-Revised (WJ-R) Calculation and Applied
Problems subtests; Woodcock and Johnson, 1989).

In developmental research children are typically selected as
MD from a single assessment of their mathematical ability. One
problem with selecting children this way is that there is little
consensus about the method of selection. Some have included
children who show a discrepancy between IQ and mathemat-
ics performance (e.g., Lindsay et al., 2001), but more commonly
researchers have applied a cut-off criterion where children who
perform below a given percentile on a standardized measure of
mathematics achievement are defined as having MD (e.g., Geary
et al., 2000; Butterworth, 2003; Szucs et al., 2013). Despite the
popularity of a cut-off selection there is little consensus about at
what level the cut-off criterion should be set and this can lead to
differing cognitive profiles emerging from different research stud-
ies (Murphy et al., 2007). Another problem with selection based
on a single assessment is that mathematics requires a range of
different skills and these skills are different depending upon the
child’s expected stage of their mathematical development, so the
same MD label may in principle indicate very different profiles.
For example, MD at Grade 1 could indicate inability to use place
value and perform simple additions and subtractions, whereas a
classification of MD at Grade 5 could either indicate inability to
translate numerical information into a Cartesian framework and
solve geometrical problems or still indicate lack of more basic
skills such as fluency in arithmetic operations (see e.g., Figure 1).
In other words, inclusion in a MD group can be a reflection
of these different stages of their understanding. The tests used
for screening may differ for different age groups to reflect the
expected stage of their development and so within-cohort differ-
ences are mostly meaningful in relation to age of the children and
curriculum standards. Moreover, approximately 30% of individ-
uals who are classified as having some sort of MD at any one
time will not remain in the same category (i.e., they will not
be classified as MD at further testing) over time (Silver et al.,
1999; Mazzocco and Myers, 2003). Repeated testing however is
extremely infrequent in practice and only a few targeted longitu-
dinal studies have been conducted so far (e.g., Geary et al., 2000;
Jordan et al., 2002, 2003; Vukovic and Siegel, 2010).

A host of persistent and or temporary factors have been pro-
posed as the underlying cause of MD but no universal consensus
risk assessment, prognostic and rehabilitative model is available
as yet. Severe MD are known to be associated with psycho-
logical, neurological, and genetic conditions, such as epilepsy,
Turner’s syndrome, fragile X syndrome, phenylketonuria and
ADHD (Shalev et al., 2000). Furthermore MD are often co-
morbid with delayed language development and behavioral disor-
ders (e.g., Manor et al., 2001). In cases where MD are co-morbid
with other learning difficulties or pathological conditions, it is
very difficult to discriminate whether the mathematics impair-
ment is a primary deficit or whether it is instead due to a
deficit in other functions. But even in cases where MD do not
seem to be associated with any other conditions and a clear
achievement-potential discrepancy is found in otherwise non-
problematic individuals, several potential mechanisms may be at
play. Despite this, no empirically-based normative developmental

trajectory for mathematics learning has been yet established, and
the non-problematic range of variation for age-appropriate levels
is currently untested (see also Szucs and Goswami, 2013).

MATHEMATICS CURRICULUM
It is thus informative to take a closer look at template “expected
developmental trajectories” of recent formulation, setting the
standard against which individual or cohort performance will be
contrasted within and between schools in a near future. Amount
of tolerance toward performance deviance from the standards
will probably depend on school-specific pedagogical and curricu-
lum choices and on the average achievement levels of the cohort
involved. Professional diagnoses of MD, often based on standard-
ized tests will then typically follow in the most severe cases and
dedicated support staff may be called in. It is however impor-
tant to bear in mind that difficulties with math are unlikely to
receive the same support as language difficulties, due to the only
relatively recent awakening of public awareness (e.g., Bynner and
Parsons, 1997). In this section we provide an overview of the guid-
ing principles and targets behind the mathematics curriculum for
England and the US and explore the impact that curricula can
have on MD by setting age-appropriate targets.

We have chosen to provide descriptions of the English
and US curriculum as both governments have developed
very clear standards. For those interested in a comparative
perspective, The Trends in International Mathematics and
Science Study (TIMSS) has made some comparisons on cur-
ricula in many different countries but it is beyond the scope
of this review to outline each of these and we thus redirect
the reader to the latest report (TIMSS 2011 International
Results in Mathematics, accessed 20 September 2013,
http://timssandpirls.bc.edu/timss2011/downloads/T11_IR_Math
ematics_FullBook.pdf). We will first describe two different cur-
ricula and compare their approach to learning this multi-layered
skill. We look at what each child is expected to have achieved
by the end of each level or grade, thus showing what cognitive
components may impact at different stages of mathematics devel-
opment. This discussion comes at a critical time as the national
curriculum for mathematics in England has just completed its
consultation period at the Department for Education and is due
to be implemented in September 2014. The US is already in the
stages of implementing a new curriculum and it is currently
under adoption in 45 states.

ENGLAND
In England, all children in state funded schools are mea-
sured on their academic progress at 4 stages in their school
career (approximately age 7, 11, 14, and 16). These are
known as Key Stages 1–4 (KS1-4). Mathematics is a com-
pulsory national curriculum subject at all 4 key stages (see
Table 1; a full description of the curriculum can be found at
http://www.education.gov.uk/schools/teachingandlearning/curric
ulum/primary/b00199044/mathematics). Assessment within the
first three Key Stages is measured in levels. A child can reach one
of 3 different levels of achievement (i.e., typically Level 1–3 for
Key Stage 1, Level 4–6 for Key Stage 2 and Level 5–7 for Key Stage
3, although there may be overlaps such as children leaving KS 1
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FIGURE 1 | (A) Expectation trajectory with attainment targets for Number and Algebra, Shape, Space, and Measures, and Handling Data from the UK curriculum.
On average, children reach Level 2 at age 7, Level 4 at age 11 and Level 5–6 at age 14. (B) Expectation trajectory with targets by grade from the Core Standards.
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Table 1 | Breakdown of Key Stages in the English curriculum per

school year and chronological age.

Chronological ages School years Key stage

3–5 Pre-school/reception EYFS

5–7 1–2 1

7–11 3–6 2

11–14 7–9 3

14–16 10–11 4

at Level 4 or only achieving Level 3 at the end of KS 2), ranked in
ascending order of skill complexity (see Figure 1A). In addition,
mathematics is included for 3–5 year old children within the
Early Years Foundation Stage (EYFS). This review concentrates
on this EYFS, as well as KS 1 and 2 as this encompasses the ages
(3–11 years) where most research has focused on MD, however
a brief description of KS3 is included as this includes math
skills that some exceptional children in primary school can work
toward.

At the EYFS, children are introduced to mathematics through
guidelines set out in the Problem Solving, Reasoning, and
Numeracy framework (DCSF, 2008). Within this framework,
there are skills outlined for using numbers as labels and for count-
ing (e.g., using number names accurately, counting up to four
and beyond and recognizing numerals); calculating (e.g., using
the vocabulary involved in adding and subtracting, understand-
ing “more” and “less” to compare two numbers, relating addition
to combining two groups and subtraction to “taking away”); and
shapes, spaces, and measures (e.g., using language to compare
quantities, talk about, recognize and recreate simple patterns,
using words to describe position). Both formative and summative
assessment of these skills is recorded in each child’s Early Learning
Profile. Early years practitioners are encouraged to use play as part
of the child’s learning activities and the focus is on providing the
basic skills necessary to make the transitions into KS1.

At all stages there is a general attainment target for using and
applying mathematics. However this does not have detailed stan-
dards and is included to ensure that teachers instruct students
about the connections between different areas of mathemati-
cal knowledge (National Curriculum for England Mathematics,
1999, p. 6). The skills measured at KS1 come under two broad sec-
tions called number and shape, and space and measures. Under
each section the curriculum outlines a number of standards that
set out detailed targets. For example, within the numbers sec-
tion, the target for counting states that “Pupils should be taught
to count reliably up to 20 objects at first and recognize that if
the objects are rearranged the number stays the same; be famil-
iar with the numbers 11–20; gradually extend counting to 100
and beyond” (National Curriculum for England Mathematics,
1999, p. 16). The target for number patterns and sequences is
to “create and describe number patterns” and use this knowl-
edge to make predictions. This includes patterns of multiples of
2, 5, and 10, sequences of odd and even numbers and the rela-
tionship between halving and doubling (National Curriculum for
England Mathematics, 1999, p. 16). At KS1, academic perfor-
mance is assessed via individual teacher assessment against the

National Curriculum Attainment Targets rather than by exami-
nation and pupils is expected to achieve KS1 level 2. The latest
government figures were published in 2011 and they show that
90% of children were achieving the expected level.

At KS2 the skills measured are number; shape, space, and mea-
sures, handling data, and mental arithmetic. Again each section
has standards with associated targets. For example, the target for
counting states that “Pupils should be able to count on and back
in tens or hundreds from any two- or three-digit number; rec-
ognize and continue number sequences formed by counting on
or back in steps of constant size from any integer, extending to
negative integers when counting back” (National Curriculum for
England Mathematics, 1999, p. 21). Within the handling data,
the targets for processing, representing and interpreting data
include “interpreting tables, lists and charts used in everyday
life; constructing and interpret frequency tables, representing and
interpreting discrete data using graphs and diagrams (National
Curriculum for England Mathematics, 1999, p. 27). Pupils at KS2
have formal assessments in the final year of primary school and
this provides information about the children’s math performance
before they move onto secondary schooling and KS 3 and 4.
Pupils are expected to reach a KS2 Level 4 standard in mathemat-
ics and schools were set a target to ensure 60 per cent of pupils
achieve this standard (DfES, 2010). In 2011, the percentage of
pupils attaining level 4 or above at KS2 was 84% (DfES, 2012).
Whilst this may seem a high level, there were still a substantial
number of schools with attainment below the 60% target that sug-
gests that many children are not achieving the necessary skills in
mathematics before they progress to secondary school education.

The skills measured at KS3 come under the same broad topic
headings as at KS2. As expected, the level of difficulty and range
of skills required increases. For example, within the handing data
topic children are expected to move up to a level of understanding
where they can use statistical calculations and begin to use prob-
ability. Again each section has standards with associated targets.
Similar to KS1, pupils are assessed through teacher assessment
and pupils are expected to reach either KS3 Level 5 or 6 in math-
ematics (National Curriculum for England Mathematics, 1999,
p. 7). In 2011, the percentage of pupils attaining level 5 or above at
KS2 was 81% (DfES, 2012). A more detailed representation of the
attainment targets at each level with Key stages 1–3 is presented
in Figure 1A; using and applying mathematics is not included in
this figures as there the attainment targets are not as detailed as
the other sections.

UNITED STATES
In contrast to the English system, the mathematics curriculum in
the US has been largely up to individual states (before introduc-
tion of the new curriculum); there was no common curriculum.
Nevertheless performance on these diverse curricula has been
assessed by the National Assessment of Educational Progress
(NAEP) at Grades 4 (age 9–10 years). In 2011, a nationally rep-
resentative sample of 209,000 children from 21 urban districts of
the US were assessed on five content areas: number properties and
operations (e.g., computation with or understanding of whole
numbers and common fractions and decimals), measurement
(e.g., knowledge of units of measurement for capacity, length,
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area, volume and time), geometry (e.g., knowledge and under-
standing of simple shapes, and relationships between shapes such
as symmetry and transformations), data analysis, statistics, and
probability (e.g., understanding data collection and organization,
reading and interpreting representations of data, and basic con-
cepts of probability), and algebra (e.g., understanding of algebraic
representation, patterns, and rules; graphing points on a line or a
grid; and using symbols to represent unknown quantities). This
found that 82% of pupils were classed as at or above basic in
mathematics, which suggests that by age 9 years, 18% of chil-
dren experience some form of difficulty learning mathematics.
Furthermore, a similar assessment conducted with over 175,000
eighth-graders (age 13–14 years) found that the percentage at or
above basic levels drops to 73% (National Center for Education
Statistics, 2011). Thus it appears that the number of children
with difficulties increases as they progress through the curricu-
lum. Although it is not possible to compare performance between
the English and US children because the measures of assessment
differ considerably, as well as the ages of the children, it is clear
that a significant number of children in both countries are not
achieving attainment targets in mathematics. Furthermore, statis-
tics collected at later stages of schooling show that performance
drops further as children progress through their schooling and
gets decoupled from the expectation trajectory in about 20–30%
of the children (National Center for Education Statistics, 2011).

Given that the evidence suggests that there is decoupling,
it is worth describing here that a new Common Core State
Standards Initiative (National Governors Association Center for
Best Practices, Council of Chief State School Officers, 2010) has
recently proposed a math curriculum that is to be adopted by
the majority of states from 2014 (see Figure 1B). This curricu-
lum lays out the mathematics content that should be learned at
each grade level from kindergarten to Grade 8 (see http://www.

corestandards.org/Math for a full description of the curriculum).
Educators in the US and elsewhere have found it necessary to
redefine what students should be able to understand and do
when learning mathematics. They defined common core stan-
dards, while recognizing that the assumption that what is learnt
before should determine what is learnt at a later stage is unwar-
ranted, given the current state of the science. At the moment,
indeed, only partial models of learning pathways to mathematical
concepts and skills can be obtained from scientific and educa-
tion research, with very few exceptions (see e.g., LeFevre et al.,
2010). The criteria for the standards were developed from aca-
demic research; analyses of which skills are required of students
entering college and workforce training programs and by look-
ing at standards from high achieving nations and data from the
TIMSS in collaboration with some of the teaching bodies within
the US. For the purpose of this review, which concentrates on
children up to age 11, we will report the four key domains:
Operations and Algebraic Thinking; Number and Operations in
Base 10; Measurement and Data; Geometry. In addition Counting
and Cardinality is included for Kindergarten and Number and
Operations is included for Grades 3 and 5. Within each domain,
there are several standards, clustered into related standards. For
example, during Kindergarten, within the domain of Counting
and Cardinality, children are expected to acquire number names
and the count sequence sufficiently to count up and determine

the number of objects in a set and to compare numbers; within
Operations and Algebraic thinking they should understand the
concept of addition as putting together and adding to, and sub-
traction as taking apart and taking from; within Number and
Operations in Base 10 they should be able to work with num-
bers up to 19 and begin to understand place value; within
Measurement and Data, they should be able to describe and com-
pare measurable attributes such as length or weight, and classify
objects and count the number of objects in categories; and within
Geometry, they should be able to identify and describe shapes
such as squares, triangles and circles as well as analyze, compare,
create, and compose shapes (National Governors Association
Center for Best Practices, Council of Chief State School Officers,
2010; Common Core Standards for Mathematics, p. 10). The
first assessments of this new curriculum are due to begin in the
2014–2015 school year.

One of the guiding teaching principles made explicit by the
Core Standards is teachers’ focus on “mathematical understand-
ing” as the royal pathway, along with procedural learning, to
meaningful achievement. “There is a world difference between
a student who can summon a mnemonic device to expand a
product such as (a + b) (x + y) and a student who can explain
where the mnemonic comes from. [The latter] may have a bet-
ter chance to succeed to a less familiar task such as expanding
(a + b + c) (x + y).” (Common Core State Standard Initiative for
Mathematics, 2010, p. 4)

Note that the proposed assessment is tightly connected with
this definition of “understanding.” If assessment is only focused
on the ability to reach and provide the correct solution to a
given problem, it will often confound procedural or mechanic
learning with mathematical understanding. Specifically assessing
mathematical understanding means assessing: (1) the ability to
generalize knowledge to novel situations, (2) the ability to explain
the underlying meaning of procedures.

• Difficulty with math is not only defined by an inability to fol-
low the procedure but may unveil a deeper problem (i.e., a lack
of mathematical understanding)

• To assess learning, we needn’t focus exclusively on achieve-
ment: apparently normal achievement at one stage, may still
lead to later difficulties with numbers, if it is exclusively driven
by procedural learning

• Difficulties may appear at a later stage due to lack of proper
understanding at earlier stages; a child who shows MD at Grade
7 may not have understood concepts from Grade 5 and 6
despite normal achievement.

To illustrate how development is thought to develop, Figure 1B
shows the trajectory of US children following the new Common
Core State Standards curriculum.

COMPARING CURRICULA
Both the current English and new US curricula provide clear
and detailed targets for arithmetic development and how chil-
dren will build up an understanding of this complex discipline,
and there are many commonalities between them. For example,
they both have a strong focus on counting and place value within
the early years and use this skill as a basis for progression onto
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calculations. Calculations are conducted first with single digit and
then multi-digit numbers. They both also have a focus on shapes,
space, and measurement that begins in early years and is included
at all levels of the curriculum. However there are also differences
that may impact on the selection of MD children. The US curricu-
lum is much more strongly focused on number and operations
within the early grades and purposely does not introduce addi-
tional topics until later schooling (The Hunt Institute, 2011). The
idea behind this was to achieve an intricate grounding in these
skills which can then be taken forward to new skills later in the
trajectory. There is also more emphasis on conceptual under-
standing than rote procedural learning. The English curriculum
does introduce these other topics. For example it has a strong
emphasis on patterns. Even at KS1, children are expected to be
able to “create and describe number patterns” whereas within the
US curriculum patterns are not included as a standard until Grade
4 (approximately 9–10 years of age). Another contrast is that the
English curriculum outlines the use of mental models for calcu-
lation. The target is to develop rapid recall of number facts and
procedures; a target which calls directly on memory processes.

EXPECTATION TRAJECTORY AND IMPLIED COGNITIVE
SKILLS
In the remainder of this article we will provide an overview of
one of the mathematical development models that, in our opin-
ion, looks promising for the identification of potential causes and
areas of intervention in MD. These can occur at any stage of pri-
mary schooling when there is a decoupling between the general
expectation and an individual’s actual developmental trajectory.

Although our knowledge on mathematical learning and cog-
nition has enormously expanded in the last few decades, there
is no consensus or comprehensive developmental trajectory for
mathematical skills, let alone a consensus model on MD. Grade
placements for specific topics are therefore suggested on the basis
of national and international comparisons, educators’ collective
experience, and researchers’ and mathematicians’ professional
judgment. By establishing a standard set of principles and objec-
tives on such basis, the initiative opens to the possibility of
improving the process on a large scale as research on learning and
effectiveness progresses.

The expected developmental trajectory, based on a consen-
sus between education professionals (Figures 1A,B) rather than
academic research output and theoretical models, will thus con-
tinue to set the main standard against which a given individual
or cohort will contrast their performance and will be deemed as
having MD or not in the years to come. The amount of tolerance
toward deviance from the standards (and thus criteria for MD)
is likely to be influenced by school-specific pedagogical and cur-
riculum choices and also on the average achievement levels of the
cohort involved. Once the most severe cases are identified as such,
professional diagnoses of MD will then be typically undertaken
and dedicated support staff may be called in—although difficul-
ties with mathematics are unlikely to receive the same support as
language difficulties (Butterworth et al., 2011).

The most straightforward type of MD (or MD risk) diag-
nosis is probably the one done at the earliest stages such as
Kindergarten and Grade 1, where although multiple cognitive

skills are already interacting to enable numerical understanding,
such understanding is still very far removed from of the level of
abstraction expected in later years. Typically diagnosis even at this
early stage follows from a child’s poor performance on a standard-
ized test of mathematics especially in comparison to performance
on measures of other abilities such as reading or IQ (e.g., Geary
et al., 2000, 2007; Murphy et al., 2007; Chu et al., 2013), although
other studies suggest that screening using experimental measures
of number sense such as approximate number system acuity or
skills in several counting tasks may be suitable (e.g., Jordan et al.,
2006, 2009; Chu et al., 2013). At this stage abstraction is very
much rooted in and inferred from concrete experiences such as
those outlined above in the Kindergarten Common Core stan-
dards. These imply very basic and foundational skills, part of
which may rest on a core number processing toolkit and basic
cognitive abilities we share with animals (see e.g., Gallistel, 1989;
Butterworth, 1999; Kawai and Matsuzawa, 2000; Dehaene, 2001).
Part already rests on an interaction with symbolic processing skills
and independent functions such as language and spatial process-
ing (see e.g., Jordan et al., 2009; Cirino, 2011). It is apparently on
these very concrete and relatively simple foundations that abstract
mathematics starts being taught and learnt. In following years
and up to the adult stage, with increasing abstraction the picture
becomes much more complex and difficult to decipher.

LeFevre et al. (2010) have recently proposed a model including
multiple cognitive factors that may contribute to the develop-
mental trajectory and determine an individual’s mathematical
outcomes throughout developmental stages. Their model is based
on the triple-code neuropsychological model of adult numeri-
cal processing (Dehaene et al., 2003), one that has collected the
widest consensus and empirical support in recent years. LeFevre
et al.’s (2010) model provides a simple and promising frame-
work that could be especially well suited to identify cognitive
precursors that may become important to fulfill expectations
at different stages of the developmental trajectory up to adult
age. No doubt, such framework would benefit from further
refinements and the inclusion of possible additional cognitive
precursors (see Figure 2). However the model does lend itself well

FIGURE 2 | Schematic of the Pathways model with predicted relations
among cognitive precursors, early numeracy skills, and mathematical
outcome measures. From LeFevre et al. (2010) Child Development. With
permission. Note this is Canadian.
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to the translation of academic concepts into educational targets by
providing a theoretically-driven framework to evaluate and pre-
dict achievement targets. Moreover, by suggesting developmental
pathways that are compatible with the guiding assumptions of
much research in adult numeracy, knowledge will be easier to
update and predictions about potential neural substrates could
also be more easily derived from adult studies.

A USEFUL WORKING FRAMEWORK
LeFevre et al. (2010) have provided an initial test of their
model in a longitudinal study with a large cohort of children
from preschool and Kindergarten (aged between 4; 5 and 6; 6
years), following their progress in mathematics for 3 years. They
hypothesized that linguistic, quantitative, and spatial attention
pathways contribute independently to number skills and that they
vary in their unique and relative contributions to mathematical
outcomes, depending on task demands. Their test for basic
quantitative knowledge (a cognitive precursor of more complex
numeracy knowledge) was an object counting task with small sets
of objects, and they used subitizing speed as a summary index
(i.e., the speed in correctly recognizing numerosities from 1 to 3).
Subitizing is generally considered a reasonable index of children’s
quantitative knowledge (see e.g., Landerl et al., 2004) although
a visuo-spatial short-term memory component may also be at
play (Feigenson et al., 2004). Linguistic skills were assessed via
measures of vocabulary and phonological awareness (Dunn and
Dunn, 1997; Wagner et al., 1999); and spatial attention skills
were measured with an adaptation for children of the spatial span
task (aka Corsi blocks test; see Passolunghi and Cornoldi, 2008).
Each of these indexes, therefore, captured a complex of skills
rather than a single element in relation with language, quantity
(or numerosity) and space, while still maintaining some level of
specificity.

As a measure of early numeracy skills, LeFevre et al., used the
number of correct responses in single and multi-digit number
naming from Arabic format and the percentage of correct trials
in a non-linguistic arithmetic task on small quantities (e.g., men-
tal operations between sets of objects; see Levine et al., 1992).
These tasks are meant to maximally tap on either the linguis-
tic or the quantity code (see Figure 2). Finally, as measures of
mathematical outcomes at Grade 2, both standardized and more
experimental tests were used: the Numeration, Geometry and
Measurement subtests from the KeyMath Test-R (Connolly, 2000)
and the Calculation tests from the WJ Tests of Achievement-
R (Woodcock and Johnson, 1989) covering most of the skills
required by Grade 1 and 2, a Number Line task (Laski and Siegler,
2007) requiring to place numbers in the appropriate position on
a line whose extremes are labeled as 0 and 1000 and taken as
a measure of coordination between symbolic and quantitative
knowledge, and a comparison task between single digit numbers
whose physical size was orthogonally varied with their numerical
size, tapping on symbolic but especially quantitative knowledge
(Landerl et al., 2004; Holloway and Ansari, 2009).

The thickness of the connectors in Figure 2 between cognitive
precursors (left-hand boxes) and numerical knowledge (central
boxes) indicates the relative importance of the contribution of
cognitive precursors to early numeracy skills measures as they

emerged from a multiple regression analysis. Measures of linguis-
tic skills predicted up to 30% of the variance in the symbolic
number system task, whereas subitizing latency predicted up to
32% of the variance in the non-linguistic arithmetic task. Neither
of them predicted performance in the alternative number task.
Spatial attention was apparently involved in both the symbolic
and the magnitude task (predicting 16 and 15% of the variance
respectively). Three different factors, corresponding to the lin-
guistic, spatial, and quantitative pathways, were entered in a fur-
ther multiple regression analysis to assess their predictive power
on the standardized and experimental mathematical outcomes
(right-hand boxes). Overall they accounted for a substantial pro-
portion of variability (26–56%) in both the conventional and the
experimental outcome measures. As shown by connector thick-
ness, the relative contribution of each pathway varies with the
outcome considered.

The linguistic pathway (i.e., individual measures of vocabulary
and phonological awareness and number naming) contributed
to all mathematical outcomes, but especially those related with
geometry and measurement, numeration and calculation (i.e.,
classical tests of school achievement) and the Number Line task.
The spatial attention pathway resulted involved in all outcomes,
except for the experimental magnitude comparison task, whereas
the quantitative pathway was found to contribute to magnitude
comparison, numeration, number line and calculation but not to
geometry and measurement.

In summary, most mathematical outcome measures in the
LeFevre et al. (2010) study, including standardized batteries,
depend on the functioning of the symbolic number system, with a
heavily linguistic component. Whether the symbolic number sys-
tem may itself be related to the quantitative pathway was assessed
with a more complex quantitative task, non-symbolic arith-
metic by Gilmore et al. (2010). They suggested that “children’s
non-symbolic numerical abilities [. . .] appear to contribute to
their achievement in mathematics primarily because they are
associated with children’s successful learning of number words
and symbols, which figures prominently in [. . .] the kindergarten
mathematics curriculum and the assessment of mathematical
learning [. . .]” (Gilmore et al., 2010; p. 8). Furthermore, Gilmore
et al. (2010), had partialled out the effect of literacy achievement
and verbal intelligence. On the whole, these findings would sug-
gest that primary impairments in the use of the symbolic system
(Ansari, 2008) and/or linguistic deficits (Manor et al., 2001)
will exert a pervasive negative effect on individual trajectories of
mathematical achievement. For example, in the UK curriculum
the rudiments of an abstract symbolic number system beyond
10 (i.e., beyond the number of fingers, typically used as concrete
and intuitive representations for both cardinality and ordinality)
constitute attainment targets at Level 2. Thus the developmental
trajectory of pupils with impairment in the symbolic pathway
could start diverging at about age 7 and become more and
more decoupled from the expectation trajectory throughout
schooling. The quantitative pathway alone, indeed, will become
progressively inadequate to handle the abstraction of concepts
and complexity of skills expected in later years (e.g., numbers
of increasing size, mental arithmetic with two and three digit
numbers, decimals, recognition of pattern in the number series,
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negative number arithmetic, linear and quadratic equations).
Under the curriculum proposed by the Standards, difficulties
would emerge even earlier, between Kindergarten and Grade 1
(i.e., ages 5 and 6), due to the early introduction of place value,
with two-digit numbers and operations between them (see also
Figure 3). MD from impairment in the symbolic system at age
5 in the US might therefore be diagnosed as MD at age 7 in the
UK. Based on adult models of the role of language in number
processing, specific impairments in the language system will
particularly compromise the learning of rote memory arithmetic,
and in particular multiplications and complex mental operations
(Dehaene et al., 2003). Major difficulties will thus start to emerge
when pupils reach US Grade 3 or UK attainment Level 3 (i.e.,
around the age of 8), particularly if children do not spontaneously
discover alternative strategies to verbal representations. Teachers
may also teach alternative strategies.

What could be considered as core numerosity processing
(see e.g., Butterworth, 2010) or analogue magnitude process-
ing (Dehaene et al., 2003), and whose selective impairment is
thought to underlie developmental dyscalculia (e.g., Rubenstein
and Henik, 2009) does not appear to contribute as importantly to
tasks in the mathematics curriculum tapping geometry and mea-
surement. In the presence of a problem in the quantitative system,
achievement tests involving these tasks may therefore be rela-
tively spared when compared to tasks of numeration, calculation,
number comparison etc. from the earliest age. In a recent training
study, Park and Brannon (2013) reported a relation between adult
performance improvements in tasks tapping the approximate
number system (a likely quantitative precursor), and performance

improvements in corresponding symbolic arithmetic tasks. This
connection between an approximate number system and math-
ematics proficiency would seem also to be domain-specific, and
Dewind and Brannon (2012) showed that improvement in a com-
parison task involving the approximate number system did not
generalize to a homologue visuo-spatial task. This calls the pre-
diction of developmental dissociations between difficulties arising
from impairments at the level of non-verbal, non-symbolic quan-
tity processing and impairments in auxiliary domains—even if
conceptually related with quantity, such as spatial processing—
with the latter exerting more subtle and elusive effects on the
developmental trajectory of number processing as opposed to
measurement and geometry skills.

In LeFevre et al.’s (2010) study, acomplex measure of spatial
attention and working memory was found to contribute to geom-
etry and measurement, and all other outcome measures, except
for symbolic magnitude comparison with single digits. Purely
attentional deficits may therefore compromise most achievement
tasks except for those primarily resting on the core quantitative
pathway. MD will thus be more subtle than with those deriv-
ing from impairment in the symbolic and quantitative pathways,
yet equally spread across attainment targets from UK Level 2 or
US Grade 1, when place value and visuo-spatial geometric prop-
erties are taught. Additional strain may be put on the system
when working toward UK Level 5 (or at US Grade 5), with the
introduction of the Cartesian system and connections between
number, geometry, and measurement. It is however also possi-
ble that this may in fact provide a novel and affordable method
to parse space, thus improving these children’s performance in

FIGURE 3 | Hypothetical coupling of expectation and developmental trajectory. Targets for Kindergarten and the first five grades have been associated
with their most likely cognitive precursors on the basis of an expanded Pathways model (see LeFevre et al., 2010 and our section “Expectation Trajectory and
Cognitive Skills”).
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mathematics. An interesting possibility that would need to be
explored with ad hoc empirical studies.

It may be surprising that there is not an independent pathway
for working memory within this framework as many researchers
have found that performance on working memory measures
can specifically predict mathematics performance (e.g., Holmes
and Adams, 2006; Bull et al., 2008). Indeed research that has
specifically explored the impact of working memory subsystems
(phonological loop, visuo-spatial sketch pad (VSSP), and cen-
tral executive) in the longitudinal development of mathematical
learning has suggested that the VSSP may be important for
younger children (e.g., Bull et al., 2008; Holmes et al., 2008;
Simmons et al., 2008). One suggestion is that young children’s
mental representations of quantities rely heavily on visual-spatial
representations, as they have not yet developed a spontaneous ver-
bal rehearsal system. As children progress through school they
increasingly use verbal representations of quantities such as num-
ber words and the role of the VSSP has less impact (see Rasmussen
and Bisanz, 2005). One reason for apparent missing pathway is
that LeFevre et al.’s description differs from others. For exam-
ple, many studies have included variations of the Corsi Blocks
task as their measure of visuo-spatial working memory. LeFevre
et al., also used a version of this task but describe it as a spatial
attention task due to problems distinguishing the nature of the
task. Nevertheless LeFevre et al., note that a more detailed account
about the role of working memory in mathematical learning may
be necessary. In particular they suggest that working memory
may play an important role in integrating knowledge from the
linguistic and quantitative pathways.

More recently LeFevre et al.’s (2010) basic architecture was
used as a working framework by Cirino (2011) who maintained
the original conceptual distinctions but expanded the range of
tasks (symbolic vs. non-symbolic) used to measure the effects of
quantity precursors in Kindergarten on a single outcome mea-
sure (i.e., small written sums). Interestingly, the symbolic (with a
strong linguistic element) vs. non-symbolic distinction between
precursors of later mathematical outcomes was also highlighted
by Jordan et al. (2006, 2009), who reported how children’s socio-
economic status defined by their family income level interacts
with the symbolic/linguistic pathway (but also see Mejias and
Schiltz, 2013). That is to say children from low-income fami-
lies will enter primary school with an initial disadvantage due
to poorer start-up symbolic/linguistic resources despite showing
in most numerical tasks (e.g., verbal and non-verbal counting,
verbal and non-verbal arithmetic, estimation, number patterns)
similar growth trajectories as children from high-income families,
with the notable exception of verbal story problems. Therefore,
given the pervasive effects that the symbolic number process-
ing pathway may exert on later mathematical outcome (see also
Jordan et al., 2002), and their characterization of MD as difficulty
in story problems and arithmetic combinations], children from
low socio-economic backgrounds should be considered at higher
risk for MD and intervention strategies could be specifically
devised from Kindergarten. This point has also been corrobo-
rated more recently by Gilmore et al. (2010) who highlighted
two factors contributing to mathematics achievement: a non-
symbolic aptitude, which is essentially insensitive to differences in

socio-economic status, and symbolic ability that may be respon-
sible for the higher achievement levels found in association with
higher socio-economic status. They point out that preschool
exposure to conventional symbol systems is higher in higher for
children of wealthy families (Jordan et al., 1992; Griffin and Case,
1996), therefore the achievement gap due to impoverished sym-
bolic environment may be eliminated by targeted interventions
at Kindergarten (Siegler and Ramani, 2008). Interestingly, such
interventions may also provide useful evidence for the putative
causal link between symbolic skills and the developmental tra-
jectory of mathematics learning, which as of now can only be
two co-varying variables due to the correlational character of the
evidence reported above.

It has also been shown that reading difficulties predict lower
number skills especially those implying verbal sequential fac-
tors, and should therefore be treated as risk factors too (Jordan
et al., 2006). Manor et al. (2001) established a relation between
developmental language disorders and measures of mathematical
outcomes. In particular, both receptive and expressive language
impairments were associated with low scores in reasoning princi-
ples and arithmetic operations. Only expressive deficits, however
predicted poor performance in counting principles. Despite the
sometimes different theoretical frameworks adopted by different
research groups, especially regarding whether a single number
core processing module or domain general skills are at the ori-
gin of difficulties with mathematics (see e.g., Bull et al., 2008;
Locuniak and Jordan, 2008; Desoete et al., 2009; Geary et al.,
2009), data suggest that mathematics difficulties at Kindergarten
will persist and predict an atypical growth rate in the following
years (Morgan et al., 2009). This is not to say that MD can-
not appear after an otherwise normal developmental trajectory in
successive years or a child who has experienced difficulties since
Kindergarten cannot benefit from interventions at a later stage
(the predictive power of early mathematics difficulties on later
difficulties never reaches 100%, and MD can also appear at later
stages).

ADDING NEW COMPONENTS TO THE ORIGINAL
FRAMEWORK
As previously mentioned, the merit of LeFevre et al.’s (2010)
model consists of bringing together in a simple but comprehen-
sive framework the main cognitive modules that are expected
to interact and inform mathematical outcomes across the nor-
mal developmental trajectory, rather than focusing on one single
cognitive domain. It does so by paralleling a well-known neu-
ropsychological model of adult mathematical cognition (Dehaene
et al., 2005). Specifics about the component pathways and their
operationalization’s (e.g., whether approximate quantities and
numerosity processing should be considered as partially indepen-
dent subcomponents of the quantity pathway) can be improved
by testing predictions and expanding the model’s evidence base.
Interesting connections with MD can be established by classify-
ing groups of individuals (e.g., children with Williams syndrome
vs. children with spina bifida vs. dyslexics) based on the pathway
that may be most problematic. With the model, MDs character-
ized by different patterns of development-expectation decoupling
and educational outcomes may be diagnosed and assessed (e.g.,
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LeFevre et al., 2010). To this purpose, and based on the literature
on both adult and developmental number processing, we would
like to suggest that additional components may be useful to create
a model to diagnose/assess/predict MD.

For example in addition to spatial and linguistic precursors,
body representations may be related to numeracy skills, as sug-
gested by the interactions between finger gnosis and number
processing in both adults and children. In a few studies, MD was
reportedly associated with impairments of finger gnosis, left-right
orientation and writing, also known under the name of develop-
mental Gerstmann syndrome (see e.g., Miller and Hynd, 2004).
In the past, this was typically taken as evidence for a functional
connection between all of these abilities and between finger gno-
sis and the development of number skills in particular (see e.g.,
Butterworth, 1999). The connection seems to be corroborated by
the fact that acquired brain lesions localized to the left posterior
hemisphere often produce the adult version of Gerstmann’s syn-
drome (a cluster of neuropsychological symptoms characterized
by left–right confusion, agraphia, acalculia, and finger agnosia;
Gerstmann, 1940). Likewise, TMS studies have identified contigu-
ous neural substrates in adult participants with causal effects on
numerical processing, finger gnosis, and categorical left–right dis-
crimination (Rusconi et al., 2005; Hirnstein et al., 2011). Without
undermining the significance of these associations, Kleinschmidt
and Rusconi (2011) have recently suggested that the Gerstmann
functions, including finger gnosis and calculation may indeed be
supported by a network of cortical regions in the left posterior
parietal lobe whose intraparietal projections converge toward a
common subcortical bottleneck location. A small and localized
lesion to the bottleneck location will cause systematic associa-
tion of symptoms. The adult version of Gerstmann’s syndrome
would thus be characterized as an anatomical syndrome, meaning
that the four symptoms may not be functionally interdependent,
and yet still subjected to the very same local neural efficiency
parameters and maturation constraints. This may also suggest an
anatomical mechanism for the somewhat elusive developmental
version of Gerstmann syndrome and provide an additional cluster
of non-numerical predictors—although not necessarily cognitive
precursors - of mathematics achievement, that could help identify
a neurofunctional locus for certain patterns of MD.

At least a transient phase of finger counting and finger cal-
culation almost invariably precedes the mature mathematical
cognition in the developmental trajectory, although educators
may have different views on its utility (e.g., Moeller et al., 2011).
In fact, the use of fingers to represent number is ubiquitous across
ages and cultures (Dantzig, 1954; Butterworth, 1999). Children
use finger counting as an initial strategy to understand and keep
track of counting and calculate, even if this is often seen as
just a very primitive strategy (Geary et al., 2007). Amputees
and children with congenital agenesia of hands and fingers use
phantom fingers as quantifiers (Poeck, 1964). Finger counting
strategies also tend to be used by older children and adults with
MD, to make up for deficient mental number representations.
Furthermore, performance in tests of finger gnosis before for-
mal schooling selectively predict mathematical outcomes at a later
age (e.g., Fayol et al., 1998; Noël, 2005) and it has been reported
that early finger training may improve numerical abilities at

a later stage (Gracia-Bafalluy and Noël, 2008; but see Fischer,
2010). According to a very popular idea, these latter findings are
consistent with numerical knowledge being represented together
with the same sensory and motor features that are engaged dur-
ing learning (see e.g., Fischer, 2012). There is indeed empirical
evidence that traces of finger counting habits influences—not
necessarily always in a beneficial way—symbolic number repre-
sentations and calculation processes (Domahs et al., 2008, 2010;
also see Fischer and Brugger, 2011) for a review on other relevant
interactions). Another possibility is that the crosstalk between
numerical and body representations is not integral to numerical
representations but provides a means to offload and free work-
ing memory resources while processing numerical information in
a task-dependent way (e.g., Fischer, 2006). Of relevance to this
context, however, are not the exact mechanisms underlying the
cross-talk between fingers and numbers and whether traces of
finger processing are indeed integral to the numerical representa-
tion. The consensus and empirical evidence that finger counting
does play a role in the development of numerical skills could thus
suggest a useful expansion and improve the predictive power of
the LeFevre et al. (2010) model by including a dedicated body
representation component amongst the cognitive precursors.

In addition, as noted above, although working memory is
included in the LeFevre et al. (2010) framework as part of spa-
tial attention pathway, an additional or more detailed component
may be required to address the more complex aspects of math-
ematical development. For example, LeFevre at al. note that
working memory may be involved in the coordination of infor-
mation from the world and from memory. The central executive
is usually considered the working memory subsystem responsible
for coordinating information, including controlling attentional
resources (Baddeley, 2003). There have been many studies which
have shown that children with MD show impaired performance
compared to typically developing children on tasks which are
designed to tap into central executive processes (e.g., Bull et al.,
1999; Geary et al., 2004; McLean and Hitch, 1999). However the
role of the central executive within mathematical development
is less well understood. Recently, LeFevre et al. (2013) exam-
ined executive attention, which they suggest encompasses exec-
utive functioning and the central executive in working memory,
in children’s development of mathematics. Children completed
executive attentional tasks and mathematical tasks (specifically
tasks on knowledge of the number system and arithmetic flu-
ency) at either 8 or 9 years of age. They repeated the mathematical
tasks 1 year later. Using structural equational modeling, LeFevre
et al., showed that executive attention was concurrently predic-
tive of both knowledge and fluency but predicted growth in
performance only for fluency. LeFevre et al., conclude that the
executive functioning may be particularly important in the early
years of mathematical development when new tasks are being
taught and learned. We would also expect that executive function-
ing, rather than being a cognitive precursor, may play a crucial
role in integrating knowledge from the linguistic and quantitative
pathways.

In Figure 3 we show how the model could be used to draw
predictions on the cognitive abilities that are necessary at each
developmental stage as specified in the Core Standards. This in
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turn will suggest what cognitive problems may subtend MD at
different stages.

INTERVENTIONS
One may assume that precise knowledge of the mechanism(s)
underlying an individual’s difficulties with mathematics may be a
prerequisite for devising tailored teaching, remediation and inter-
vention strategies. Therefore it is important to have a well-defined
model that can encapsulate where difficulties may occur and how
remediation can pinpoint these difficulties.

All researchers and educators agree that mathematic compe-
tence is not a single well-defined skill but encompasses a range
of skills. What is clear from the expectation trajectory is that
low attainment, particularly measured at single assessment, can
also reflect a single or multitude of difficulties with mathemati-
cal concepts. The evidence suggests that although there may be
around 2–10% of the population with the severe specific diffi-
culty dyscalculia, it is also likely that the 15–20% described in the
Parsons and Bynner (2005) report have difficulties with only cer-
tain aspects of mathematics. These difficulties may be sufficient
to hinder their education and employment prospects. Of course
there may be other reasons for low achieving population such as
math anxiety (e.g., Ashcraft, 2002) or poor teaching. However it is
often difficult to disentangle these from poor attainment. In addi-
tion, as noted above, some problems may be due to co-morbid
developmental disorders such as dyslexia or ADHD (Rubenstein
and Henik, 2009). Nevertheless even those with co-morbid con-
ditions will have difficulties which impact at different stages of
mathematic development.

Thus the question remains on the best way to assist those
who do have underlying difficulties. In a series of well designed
empirical studies, Fuchs and colleagues (see Fuchs et al., 2009,
2013; Powell et al., 2009; Powell and Fuchs, 2010) developed and
tested the effects of extensive training of children with MD on
targeted foundational skills, for example counting or retrieval,
on typical math achievement tasks (e.g., Number Combinations).
They derive the rationale for their interventions (which are also
available commercially as the software Pirate Math) from existing
empirical evidence linking specific foundational skills with more
complex math and curriculum targets. Dowker (2009) noted that
there has been an increase in the number of intervention pro-
grams as the government and charities highlight problems in
numeracy. Dowker is very clear in her recommendations that
any intervention should be individualized to reflect the fact that
math is a multi-layered skill and difficulties can occur at dif-
ferent stages. Recent reviews of the efficacy of interventions for
students who are showing signs of struggling with numeracy
(e.g., Kroeger et al., 2012), have tried to assess a selection of
the current range of interventions available and suggest future
directions. Kroeger et al. (2012) evaluated 20 commercially avail-
able programs (mostly available in the US) by exploring whether
each program was developed from neuroscientific research, what
cognitive processes were targeted by the program, and the kind
of research that supported the program. They explicitly imple-
mented this approach because they believe that the most effective
intervention practices would integrate research from neuroscien-
tists and cognitive developmental psychologists as well as math

educators. In particular it has been shown that the impact of neu-
roscientific data can influence the general public perception of
research, including interventions, as brain research appears more
compelling than behavioral data (Weisberg et al., 2008). However,
for an intervention to be deemed successful it must build on
evidence from all three fields.

Kroeger et al. (2012) found that only three programs included
publisher-reported use of neuroscience research in their develop-
ment, and here they focused on the triple code model (Dehaene
et al., 2003). These were Fluency and Automaticity through
Systematic Teaching with Technology (FASTT Math), Number
Worlds (NW), and The Number Race (NR). In addition only
FASTT Math, NW and NR plus two others (Accelerated Math
(AM), Corrective Mathematics (CM) were supported by empir-
ical, peer-reviewed research on their efficacy. Their review con-
cluded that although 4 of these 5 intervention programs showed
improvements on test scores, the programs emphasize represen-
tation of number sense, akin to the quantitative pathway, math
facts and working memory. For example, in the NR, quantitative
pathways and math facts are trained. Children play a computer
game that requires them to first carry out a numerical compari-
son task; they must choose the larger of two quantities of treasure
faster than a competitor. The competitor is essentially the com-
puter program represented by a character on the screen, and the
difference in magnitude between the two quantities can be large
or small to manipulate difficulty. Furthermore the quantity can be
represented in a non-symbolic format, sets of gold pieces, in sym-
bolic Arabic numerals or symbolic number words. Presenting the
numerical information in different ways is designed to strengthen
links between representations of number (Wilson et al., 2006). At
a higher level of difficulty, the quantities can only be worked out
on completion of arithmetic problems (e.g., is 6–2 bigger than
4 + 0?). On completion of the comparison task, the game moves
counting task. The set of treasure they chose in the comparison
task is placed next to treasure from a competitor. The child
then races against their competitor by moving the same number
of squares in grid as they have pieces of treasure. This is done
by counting each piece of treasure one at a time and hence
loading on one-to-one correspondence and cardinality. Kroeger
et al.,note that few intervention programs have focused on prob-
lem solving or executive function although the CM program may
load onto both of these as it attempts to teach students rules and
strategies to help solve arithmetic problems. Executive function
is potentially one cognitive process that underlies mathematical
understanding and, in general, it appears that apart from number
sense there is little intervention targeting the underlying cognitive
processes. To mesh with our expectation trajectory—intervention
could be targeted where a difficulty is found.

Another commercially available intervention, which has been
developed in the UK and not included in Kroeger et al., is Catch
Up Numeracy. In this intervention program children are individ-
ually assessed and provided with targeted sessions building on
their strengths and weaknesses. This is low intensity intervention
program and children complete just two 15 min remediation ses-
sions a week. However it has shown some good improvements
with children who have weaknesses in their math performance
but are not necessarily dyscalculic. For example, Holmes and
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Dowker (2013) showed that children identified as MD who fol-
lowed the Catch Up program for 30 weeks showed significant
gains in their numeracy. These gains were twice as large as other
children with MD who had received no intervention and more
than the gains expected from typically developing children.

One of the interventions mentioned here, the Number Race
(http://www.thenumberrace.com), is freely available and is very
explicitly connected with the adult neuropsychological model
that also shaped LeFevre et al.’s (2010) framework. More recently
the researchers have added another game to develop fluency in
arithmetic, the Number Catcher (http://www.thenumbercatcher.
com/). Peer reviewed research is not available for the Number
Catcher but research in the Number Race suggests effects on
core numerical processing. For example, Räsänen et al. (2009)
tested 30 preschoolers who had been identified as having poor
numeracy skills and compared them to 30 typically developing
children. Half the children followed a software program called
Graphogame-Math that trains children to compare small numer-
ical differences; and half the children played the Number Race
games. After 3 weeks of playing the games 10–15 min a day,
both experimental groups demonstrated improved performance
in number comparison but did not improve in other number
skills such as verbal and object counting. The developers thus
suggest that their programs should be used in conjunction with
other techniques. Both the Number Race and Number Catcher do
make use of game software to engage children with mathematics.
This application of games for an educational purpose, or gamifi-
cation, is becoming an increasingly more popular way to motivate
learners (e.g., Deterding, 2012).

In summary, there is growing demand and concurrent devel-
opment of interventions for math difficulties. There is some
evidence to suggest that intervention can improve scores on
mathematics tests but also a warning that the intervention is not
targeted sufficiently at the underlying cognitive skills of math-
ematics nor designed for individuals who may show differing
profiles of difficulties. Future interventions should draw upon
the growing body of evidence that mathematic difficulties can
occur at different stages and for different underlying reasons.
Some existing intervention programs might eventually lead to
significant improvements in mathematical understanding if the
program attempts to pinpoint specific skills that are required for
mathematical competence. That should be attuned to different
cognitive pathways and combination of skills at every develop-
mental stage (e.g., Figure 3) and should be conducted within a
theoretically-driven framework. In this way, applied can also be
used to feed back into theory and contribute with new knowledge
toward the delineation of an empirically-based developmental
trajectory.
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Numerical cognition has long been considered the perfect example of abstract information
processing. Nevertheless, there is accumulating evidence in recent years suggesting that
the representation of number magnitude may not be entirely abstract but may present a
specific case of embodied cognition rooted in the sensory and bodily experiences of early
finger counting and calculating. However, so far none of the existing models of numerical
development considers the influence of finger-based representations. Therefore, we make
first suggestions on (i) how finger-based representations may be integrated into a current
model of numerical development; and (ii) how they might corroborate the acquisition of
basic numerical competencies at different development levels.
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INTRODUCTION
The mental representation of number magnitude is often seen
as the perfect example of what is called abstract. This seems
reasonable as the quantity information conveyed by any num-
ber is independent of the characteristics of the objects in the
set denoted, such as size, color, weight, etc. In line with this,
Gauss wrote in a letter to Bessel in 1830 that “we must admit
with humility that [. . .] number is purely a product of our
minds”—a claim which seems to be corroborated by recent data
(e.g., Condry and Spelke, 2008; Cantlon et al., 2009). Never-
theless, there is also accumulating evidence in recent years sug-
gesting that the representation of number magnitude may not
be entirely abstract. Instead, it seems to not only depend on
input format (see Cohen-Kadosh and Walsh, 2009 for a review
and discussion) but might even represent a specific instance of
embodied cognition, rooted in sensory and bodily experiences
(Lakoff and Núñez, 2000; Núñez, 2004). Importantly, early fin-
ger counting has been suggested to play a vital role for the
development of a representation of embodied numerosity (e.g.,
Domahs et al., 2010; Fischer and Brugger, 2011; Moeller et al.,
2012).

On a very basic level this assumption is corroborated by the
observation that the majority of children use their fingers when
learning to count or calculate at some point in their numerical
development (e.g., Fuson and Hall, 1983; Fuson, 1988). Addi-
tionally, it has repeatedly been found that finger-based numerical
representations still influence number processing in adults. Di
Luca et al. (2006), for instance, observed that there seems to
be an association between specific fingers and numbers. When
asked to respond to a presented number (1–10) by pressing a
corresponding key, adults’ responses were faster when the key had
to be pressed by a finger which was associated to the respective

number in their prototypical finger counting strategy (e.g., 1
corresponding to thumb, 2 corresponding to index finger, etc.).
Another line of research evaluated in how far symbolic number
processing is influenced by the respective finger counting system
used. In this context, Domahs et al. (2010) contrasted possible
influences of the German and Chinese finger counting system.
In the German finger counting system each number from 1 to
10 is not only assigned to a specific finger but also associated
with a specific finger pattern following 1-to-1 correspondence
(i.e., the thumb stretched out for 1, thumb and index finger for
2, thumb, index, and middle finger for 3, etc.). This means that
for numbers >5 both hands are required for the respective finger
pattern (i.e., one full hand plus the thumb of the other hand for
6). In contrast, in the Chinese system this 1-to-1 correspondence
only applies to numbers up to 5 whereas numbers larger than
5 are indicated symbolically using one hand only. The authors
found that in a symbolic magnitude comparison task, reaction
times of German-speaking participants were significantly longer
when at least one of the to-be-compared numbers was associated
with a finger counting pattern requiring both hands (e.g., 4 vs.
6 or 6 vs. 8). Domahs et al. (2010) argue that Chinese partici-
pants did not show this increase in reaction times because their
finger counting pattern only required one hand for all numbers
up to 10.

Based on these and other results, Moeller et al. (2012) sug-
gested that finger-based representations should be considered a
distinct representation of number magnitude that is automatically
activated whenever we encounter a number. However, so far none
of the existing models of numerical development (e.g., von Aster
and Shalev, 2007; Krajewski and Schneider, 2009) considers the
influence of finger-based representations. Therefore, the aim of
the current article is to discuss how finger-based representations
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might corroborate the acquisition of basic numerical competen-
cies and to derive first suggestions on how finger-based repre-
sentations may be integrated into a current model of numerical
development.

DIGITS IN A CURRENT MODEL OF NUMERICAL
DEVELOPMENT
The currently most sophisticated model of early numerical
development was proposed by Krajewski and Schneider (2009).
The authors assume numerical competencies to develop
on three consecutive levels through an association between
non-numerical abilities such as quantity discrimination,
the understanding of part-whole relations, etc. and more
specifically numerical skills such as counting. The following
line of argument will focus primarily on the numerical
skills of the model because those should be accessible and
promotable by finger-based numerical representations. In
the following section, we will first argue how finger-based
representations will add to each of the three levels of the
developmental model of Krajewski and Schneider (2009) before
we will discuss possible constraints and limitations of our
propositions.

LEVEL I: BASIC NUMERICAL SKILLS
Krajewski and Schneider (2009) propose that on the first level
of development, children learn to recite the exact number word
sequence and become skilled at counting. At this stage, many of
them start to use their fingers by adopting the finger counting
system of the respective cultural area, even without any specific
instruction to do so. In the German finger counting system,
which we will refer to as the working example throughout this
article, the finger counting sequence starts with the thumb for
1 and then goes on with the index finger for 2, the middle
finger for 3, the ring finger for 4, the pinkie for 5, restarting
the same sequence at the thumb of the other hand for 6 and
so on to 10 (see Figure 1; Level I). Thus, each number word
is linked to one specific finger as it is the case in most fin-
ger counting systems of Western cultures (Bender and Beller,
2011, 2012; see below for a discussion on cultural differences
in finger counting). Due to this link between fingers and num-
bers, the counting principle of one-to-one-correspondence is
easily understandable (Brissaud, 1992). On a very basic level,
even the acquisition of the number words themselves might be
corroborated by making use of fingers, as the finger-number
association may help perceive the number words as phonolog-
ical discrete items (Beller and Bender, 2011) and contributes,
as some kind of marker, to memorizing them (Brissaud, 1992;
Fayol and Seron, 2005; De La Cruz et al., 2014). Additionally,
the counting principle of stable order and the ordinal concept of
numbers might be conveyed as well (Brissaud, 1992; Fayol and
Seron, 2005; Crollen et al., 2011), because the involved motor
sequence during finger counting (e.g., stretching out thumb,
stretching out index finger, etc.) is just as stable as the number
word sequence. This might help understand that for instance
“ten”, which is assigned to the ultimate finger counted, comes
after “nine”, which is associated with the penultimate finger
counted.

FIGURE 1 | Schematic illustration in what way finger-based
representations may be integrated into the model of early
mathematical development by Krajewski and Schneider (2009). On
level I the acquisition of the number word sequence and basic counting
principles can be supported by finger-based representations as each finger
may be associated with a specific number word. On level II the
development of quantity-number associations and of spatial-numerical
representations can be corroborated because each finger pattern reflects
the cardinality of the counted set. Finally, on level III the acquisition of initial
calculation abilities such as number composition, decomposition, and
comparison can be fostered by finger-based representations as fingers
allow for grouping, regrouping, and comparing.

LEVEL II: QUANTITY-NUMBER CONCEPT
On level II of the developmental model by Krajewski and
Schneider (2009), children are suggested to become aware of
the quantitative meaning conveyed by each number word. The
acquisition of this so called cardinal number concept can also
be supported by fingers (Brissaud, 1992). During finger count-
ing, following the German finger-counting routine, digits are
stretched out one after another whereas outstretched ones are not
pulled in again (see Figure 1; Level II). This procedure allows
for linking each number word to the corresponding quantity
and for perceiving this quantity-number association both visu-
ally as well as through tactile and even proprioceptive sensa-
tions. By nature, finger counting is thus “cardinalized count-
ing” (Brissaud, 1992) because quantities increase steadily (one
by one) with every additional finger added during counting.
This visualizes not only the respective cardinal values but also
their progressive summation (see Figure 1; Level II). As this
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summation usually occurs in a specific spatial direction, it was
suggested recently that finger counting might even modulate the
spatial representation of magnitude, also known as the mental
number line (Fischer, 2008). For instance, Pitt and Casasanto
(2014) observed that just 15 min of training finger counting
in leftward direction, this means (in palm up position) from
the right thumb for 1 over the left pinkie for 6 to the left
thumb for 10, extinguished and partially reversed the usual
association of small numbers with left and larger numbers with
right which was observed in Western participants (e.g., Dehaene
et al., 1993). Taken together, these considerations indicate that
fingers might not only contribute to the acquisition of ordi-
nal counting but may also corroborate the understanding of
cardinal quantity-number associations and the development of
spatial-numerical associations (Fischer, 2008; Tschentscher et al.,
2012).

LEVEL III: NUMBER RELATIONSHIPS
On level III of their development model, Krajewski and Schneider
(2009) argue that children start to learn that numbers not only
convey quantities but also allow for describing relationships
between quantities. This insight enables them to compose (e.g.,
2 and 3 equals 5) and de-compose numbers (e.g., 5 is de-
composable into 3 and 2) as well as to quantify the precise
difference between two numbers (e.g., 3 is distinct from 5 by
2). Although these abilities already reflect initial calculations,
they may nevertheless be corroborated by finger-based repre-
sentations. Many children use their fingers when they start to
calculate but not only, as often criticized, to keep track of items
while counting up (e.g., Fuson, 1988) but also to visualize and
combine the involved quantities as a whole (Siegler and Shrager,
1984). To combine, for example, 3 and 2 in this way, children
might first stretch out thumb, index finger, and middle finger
simultaneously; then add ring finger and pinkie, just to conclude
finally that the result is 5, as all fingers of one hand are stretched
out in the end. The other way round, finger-based strategies
can also be used to visualize number decomposition. For this
purpose, children might first display the initial quantity with their
fingers (e.g., all fingers of one hand for 5) and then separate
two subgroups of digits from each other (e.g., thumb, index, and
middle finger for 3 vs. ring finger and pinkie for 2) by putting
some digits closer together (see Figure 1; Level III; left side). In
addition to compositions and decompositions, fingers might even
exemplify differences between numbers. When children compare,
for instance, the finger magnitudes 3 and 5 with each other,
they can easily see them differ by 2, namely by ring finger and
pinkie (see Figure 1; Level III; right side). This indicates that even
number relationships, which are required for initial calculations,
can be conveyed by finger-based numerical representations.

Taken together, these considerations strongly suggest that
finger-based numerical representations are well-suited to corrob-
orate the acquisition of basic numerical concepts such as counting
as well as the understanding of cardinality and number relations.

POSSIBLE CONSTRAINTS AND LIMITATIONS
While above considerations clearly argue for a specific
role of finger-based representations in children’s numerical

development, there also seem to be constraints and limitations to
this account (e.g., Bender and Beller, 2011; Previtali et al., 2011
for discussions of this point).

A first point to consider is whether finger-based representa-
tions are a necessary step in children’s numerical development.
This would be a very strong claim and hard to proof. Actually,
Butterworth et al. (2011) observed that some indigene Australian
cultures do not at all use their fingers in numerical contexts
but are nevertheless able to perform simple calculations. On
the other hand, Poeck (1964) reported the case of a girl born
without forearms, who counted the fingers of her phantom
hands to solve simple arithmetic problems. Additionally, Crollen
et al. (2011) found that even blind children use their fingers
to count and calculate, yet less often and systematically. Against
this background, we are confident that finger-based numerical
representations can corroborate the acquisition of basic numer-
ical concepts, although we do not wish to claim that they
are mandatory or even necessary to develop basic numerical
concepts.

A second point to consider is whether above mentioned
advantages of finger-based numerical representations may be
generalizable across culturally differing finger counting routines.
Between cultures, finger counting routines vary, for instance,
(i) in the finger on which counting is started (i.e., thumb for
1 in Germany, index finger for 1 in the US, little finger for 1
in Iran); (ii) how the finger counting sequence continues from
6 to 10 (i.e., with the same finger sequence on the second
hand in most Western cultures or with the first hand using
finger symbolic gestures in China). In our opinion, it seems
reasonable to assume that the acquisition of basic numerical
concepts (i.e., counting, understanding of cardinality and number
relations) may be corroborated best, when fingers and num-
bers are associated in 1-to-1-correspondence and a stable finger
sequence is used. Thus, it should not matter which finger (on
which hand) is used to begin and how the finger counting
sequence continues because these two preconditions allow for
both, associating (i) a specific finger with a specific number;
and (ii) a specific finger pattern with a specific cardinality. In
case of the Chinese finger counting system, for instance, this
is only fulfilled for numbers up to 5. For numbers exceeding
5, which are represented symbolically (see above), the order
of the counting sequence is still stable but there is no 1-to-
1-correspondence between fingers and numbers. Therefore no
finger is specifically associated with number 7, nor is the car-
dinality of 7 reflected in its associated finger pattern, which
makes decompositions and compositions impossible (see also
Domahs et al., 2012 for the case of the Korean finger counting
system).

Finally, recent evidence indicates that finger counting habits
vary not only across cultures but also on the individual level.
Wasner et al. (2014a) observed, for instance, that whether German
participants started counting on their left or right hand was
influenced reliably by whether both of their hands were equally
available. Additionally, Wasner et al. (2014b) found that finger
patterns differed—at least for specific numbers (e.g., 4)—when
participants were asked to either count to that number (i.e., by
thumb, index, middle, and ring finger) or to show the respective
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number as a spontaneous finger pattern (i.e., index, middle, ring
finger, and pinky). Irrespective of the fact that there tends to be
some flexibility in adults’ finger counting habits, it seems reason-
able that children benefit most, if they stick to a stable motor
sequence when learning to count on fingers (for similar results
on object counting see Kamawar et al., 2010). Importantly, this is
corroborated by a recent study on cognitive robotics, in which De
La Cruz et al. (2014) observed “that learning the number words in
sequence along with [stable] finger configurations helps the fast
building of the initial representation of number in the robot” and
“the internal representations of the finger configurations them-
selves [. . .] sustain the execution of basic arithmetic operations”
(p. 1).

Nevertheless, it should be noted that all studies on the dif-
ferences of finger-based representations across individuals as
well as cultures were conducted primarily with adult partic-
ipants. To the best of our knowledge, there is currently no
study investigating the flexibility of children’s finger count-
ing habits. Thus, further research is needed to clarify how
children develop finger-counting habits and whether different
finger counting routines impact on numerical development
differentially.

CONCLUSION
In summary, above considerations clearly suggest that finger-
based representations can corroborate the acquisition of basic
numerical concepts at all three levels of the developmental model
proposed by Krajewski and Schneider (2009): They seem to be
helpful for (I) learning the number word sequence and basic
counting principles because numbers and fingers are associated in
1-to-1 correspondence during finger counting; (II) understand-
ing the quantity-number association and developing a spatial-
numerical representation because during finger counting num-
bers are not only associated with specific fingers but also with
finger patterns that indicate the progression of magnitudes; and
(III) acquiring initial calculation abilities such as composition
and decomposition or number comparison because fingers allow
for grouping, regrouping and comparing. Notwithstanding these
reasonable benefits, we do not intend to claim that finger-based
representations are a mandatory or necessary prerequisite of suc-
cessful numerical development. Nevertheless, they can positively
influence the acquisition of basic numerical concepts. Against
this background, it seems plausible that numbers may not be
“purely a product of our minds”, as suggested by Gauss in his
letter to Bessel but in fact reflect a specific case of embodied
cognition that roots in the bodily experiences of early finger
counting and calculating. Therefore, we strongly suggest that
digits should be considered in current models of numerical
development.
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INTRODUCTION
The realm of numbers constitutes just
one of many fields of mathematical cogni-
tion, but arguably a pivotal one. It is also
among those core domains of knowledge
that—while being prepared for unfolding
in the human species (Feigenson et al.,
2004; Hyde, 2011)—nonetheless requires
cultural mediation to unfold to its full
potential: Not only is the availability
of a conventionalized counting sequence
essential for accurate counting and cal-
culating (Gordon, 2004; Pica et al., 2004;
Frank et al., 2008; Spaepen et al., 2011),
acquiring a counting sequence in the first
place is also crucial in more fundamental
ways: for grasping the concept of precise
quantities, for comprehending the ordi-
nal and cardinal nature of numbers, or
for learning the algorithms of basic arith-
metics that then pave the way for higher
levels of mathematics.

Learning to count also promotes
acquaintance with some of the more
general principles that characterize math-
ematics such as abstractness. In fact, one
of the first principles to be learned in this
process is that numbers are abstract—
all kinds of entities can be counted with
the same number words (Gelman and
Gallistel, 1978; but see also Cohen Kadosh
and Walsh, 2009). But not all counting
sequences seem to reflect this princi-
ple. A substantial number of Oceanic
languages, for instance, have counting
sequences whose usage is restricted to
specific objects, while other objects are
counted otherwise (Bender and Beller,
2006a,b).

This pattern of counting different
things differently seems to directly con-
tradict the abstractness principle and has

thus been taken as an earlier stage in
the evolution of numerical thinking (e.g.,
Klix, 1993). While the latter assumption
was refuted elsewhere (Beller and Bender,
2008), the question remains open of how
(if at all) such apparently non-abstract
counting sequences may foster abstract
numerical cognition. Here, we defend
the position that the Oceanic counting
sequences are not only compatible with an
abstract understanding of numbers, but
may even promote such an understand-
ing. To this end, we propose to conceive
of these sequences as the verbal compo-
nents of the mathematical code, which
provide the symbols that people use to rep-
resent and manipulate abstract mathemat-
ical concepts. Analyzing how the specific
properties of these symbol systems affect
the processing of numerical information
will help us to understand better how
abstract mathematical thinking emerges.

COUNTING SEQUENCES AND THEIR
COGNITIVE IMPLICATIONS
In general, each counting sequence con-
sists of a limited set of symbols for basic
numbers and (optionally) some compo-
sition rules for representing larger num-
bers. These symbols and composition rules
constitute a distinct numeration system,
the properties of which may differ sub-
stantially across languages (Chrisomalis,
2004; Bender and Beller, 2012; Widom and
Schlimm, 2012).

The system’s internal structure, for
instance, depends on its dimensional-
ity (Zhang and Norman, 1995). One-
dimensional systems are unstructured;
they either use the same symbol in a cumu-
lative manner to indicate increasing set size
(as in tallies), or employ specific symbols

distinctively to indicate distinct set sizes
(as with the Arabic digits from 1 through
9). In contrast, two-dimensional systems
like the English number words make use of
a base (in this case: “ten”), which is raised
to various powers (“hundred,” “thousand,”
etc.). Number words in between are com-
posed according to the addition and multi-
plication principle, as in “two hundred and
three.”

Counting sequences are cultural tools,
whose properties may give rise to “repre-
sentational effects” (Zhang and Norman,
1995), that is, they affect how numeri-
cal information is represented and pro-
cessed (Nickerson, 1988; Fuson, 1990;
Miller et al., 1995; Zhang and Wang, 2005;
Schlimm and Neth, 2008; Domahs et al.,
2010; Beller and Bender, 2011; Krajcsi and
Szabo, 2012). An analysis of such repre-
sentational effects will help us to illumi-
nate the cognitive implications of specific
counting systems.

SPECIFIC COUNTING SYSTEMS IN
OCEANIC LANGUAGES
In a large number of Oceanic languages,
two types of verbal systems co-exist: reg-
ular systems for general counting and
systems restricted to counting specific
objects in a particular manner (Bender
and Beller, 2006a,b). For illustration, take
the Polynesian language spoken on Tonga,
an island group in the Western Pacific.

Tongan employs five numeration sys-
tems: a general and four specific ones. All
of them contain primary numerals for the
numbers 1 through 10 and for the powers
of the base up to 105 (Bender and Beller,
2007). The specific systems deviate from
each other and from the general system
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in three ways: They make use of diverg-
ing counting units; they employ distinct
lexemes for some of the powers; and they
are applied to only one kind of object
each. Accordingly, sugar-cane is counted
in pairs, whereas coconuts, pieces of yam
for planting, and fish are counted in pairs
when few, but in scores when numerous.

It was especially the object-specificity of
counting that arrested researchers’ inter-
est early-on and nurtured the assump-
tion that speakers of languages like Tongan
may lack an abstract concept of num-
ber (Klix, 1993). However, viewing this
feature in the context of the other two
peculiarities allows for a more accu-
rate assessment. It reveals that number
word composition in the specific systems
remains highly systematic. In fact, the
rules for composing number words in
the general system require only marginal
modifications (namely acknowledgement
of the counting unit and the specific power
numerals) to generate number words in
the specific systems. This structural align-
ment, together with the older age of the
general system, also suggests that the spe-
cific systems were deliberately developed
out of the general one (Bender and Beller,
2006a,b, 2007).

While the structure of the general
counting sequence was retained, the
counting unit to which its constituents
referred (and hence the value of the
counted set) was increased. This trans-
formation of values follows the same
principle that is inherently instantiated
in two-dimensional systems, namely the
multiplication principle for composing
larger number words. In these systems,
the base and its powers are counted as
if they were objects: “three hundreds” is
similar to “three baskets.” Specific systems
carry this abstraction one step further by
implicating that the “three hundreds” may
refer in fact to “three hundreds of pairs or
scores.”

Adopting the multiplication principle
inherent in power term constructions (like
“three hundreds”) for the creation of spe-
cific counting systems is far from being
trivial. It requires a sophisticated under-
standing of counting insofar, as num-
ber words are used now to count not
just objects, but other numbers and even
abstract counting units. To this end,
countability is defined recursively, and in

doing so, also paves the way for conceiv-
ing of multiplication as an algorithm for
mental arithmetics.

What at first glance may look
laborious—the recursive extraction of
numerical values—can, thus, in fact be
cognitively advantageous: It allows for
more compact representations, which, in
the absence of notation, not only reduces
cognitive load (Beller and Bender, 2008),
but also increases the speed and correct-
ness of mental arithmetic (Lordahl et al.,
1970; Bender and Beller, 2013).

CONCLUSION
With our analysis we hope to have demon-
strated, that the apparently non-abstract
representations in Oceanic counting
systems have indeed fostered abstract
numerical cognition. But beyond this
rehabilitation of the specific systems and
their users, this “exotic” phenomenon is
of more general relevance to the cogni-
tive sciences. It also serves as an instance
of the recursive process in which cultural
tools and cognitive achievements advance
each other and thus as an instance of the
“ratchet effect” (Tomasello, 1999; and see
Wiese, 2003) of culture more generally,
which also highlights the importance of
anthropological insights for cognitive sci-
ence theorizing (Beller et al., 2012). By
their mere existence and usage, cultural
tools may promote cognitive advance-
ment. Designed to serve one purpose,
tools generally have more properties than
only those relevant to the task at hand,
and these properties may then afford
new ways of usage or reasoning (see also
Miller and Paredes, 1996; Coolidge and
Overmann, 2012). It is this extra value of
cultural tools that, in the domain of math-
ematical cognition, promotes abstract
thinking.
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Multiplication problems involving large numbers (e.g., 9 × 8) are more difficult to solve
than problems involving small numbers (e.g., 2 × 3). Behavioral research indicates that
this problem-size effect might be due to different factors across countries and educational
systems. However, there is no neuroimaging evidence supporting this hypothesis. Here,
we compared the neural correlates of the multiplication problem-size effect in adults
educated in China and the United States. We found a greater neural problem-size effect
in Chinese than American participants in bilateral superior temporal regions associated
with phonological processing. However, we found a greater neural problem-size effect
in American than Chinese participants in right intra-parietal sulcus (IPS) associated with
calculation procedures. Therefore, while the multiplication problem-size effect might be a
verbal retrieval effect in Chinese as compared to American participants, it may instead
stem from the use of calculation procedures in American as compared to Chinese
participants. Our results indicate that differences in educational practices might affect the
neural bases of symbolic arithmetic.

Keywords: education, arithmetic, problem-size, fMRI, multiplication

INTRODUCTION
In mental arithmetic, the problem-size effect describes a well-
known phenomenon whereby problem difficulty increases with
the numerical size of the operands (Ashcraft and Guillaume,
2009). For example, single-digit multiplication problems involv-
ing relatively large numbers (e.g., 9 × 8) take longer to solve (and
are more error prone) than problems involving smaller numbers
(e.g., 2 × 3). Although the problem-size effect is one of the most
widely observed phenomena in the cognitive arithmetic literature,
its sources remain debated (Ashcraft and Guillaume, 2009).

On the one hand, the multiplication problem-size effect might
occur because answers of large problems are more difficult to
retrieve from long-term memory than answers of small problems
(Campbell and Graham, 1985; Siegler, 1988; Ashcraft, 1992). This
may be because large problems are not frequently encountered
and practiced during arithmetic learning in school (Hamann and
Ashcraft, 1986). Such problems tend to be associated with several
candidate answers (Campbell and Graham, 1985). For example,
8 × 6 might be associated with the correct answer (i.e., 48) but
also with incorrect neighboring answers from the multiplication
table (e.g., 56). Because small problems are more practiced and
less likely to be associated with interfering answers, their repre-
sentations may be more differentiated in memory and answers of
small problems should be more easily retrieved from long-term
memory than large problems.

On the other hand, the multiplication problem-size effect
might result from differences in strategy choices for solving
small vs. large problems (Lefevre et al., 1996; Penner-Wilger
et al., 2002). Specifically, LeFevre and colleagues have argued
that large problems are less frequently solved by retrieval than
small problems. Rather, answers of large problems may be derived
from procedural calculation algorithms, such as decomposition
(e.g., 8 × 9 = 8 × 10 − 8; 6 × 4 = 5 × 4 + 4) and transforma-
tion (e.g., 3 × 8 = 8 + 8 + 8) (Dowker, 2005). Procedural strate-
gies are typically thought to be slower and more error prone than
direct retrieval. Thus, the greater use of such strategies in large vs.
small problems would explain the problem-size effect.

It has been proposed that the sources of the problem-size
effect might depend upon differing educational backgrounds
across countries (Lefevre and Liu, 1997; Campbell and Xue, 2001;
Penner-Wilger et al., 2002). This hypothesis is supported by
behavioral studies showing that the effect indeed differs across
countries. First, although the multiplication problem-size effect
can be observed on response times (RTs) and error rates in
individuals educated in China and in North America, it is sig-
nificantly smaller in Chinese than North American participants
(Campbell and Xue, 2001). Second, whereas adults educated in
North America report using both retrieval and calculation strate-
gies when solving single-digit multiplication problems (Lefevre
et al., 1996), adults educated in China report relying almost
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exclusively on retrieval when solving single-digit multiplication
(Campbell and Xue, 2001). Third, the distributions of response
times associated with small and large multiplication problems
significantly differ between North American and Chinese adults,
suggesting differences in strategy choices between groups (i.e.,
mixture of retrieval and calculation for North Americans and
exclusive retrieval for Chinese) (Penner-Wilger et al., 2002).
Overall, these behavioral results suggest that the source of the
problem-size effect might depend upon factors associated with
educational background across countries. Specifically, while the
effect might be explained by differences in retrieval effort in
Chinese adults, it might arise from differences in the use of calcu-
lation strategies in North American participants (Penner-Wilger
et al., 2002).

Such behavioral results based on self-report and analyses of
response times have been challenged, however. Specifically, it has
been argued that verbal reports might be misleading because they
are likely to be influenced by instructions (Kirk and Ashcraft,
2001) and might not accurately distinguish between calculation
and retrieval (Fayol and Thevenot, 2012). Furthermore, because
calculation procedures can be highly practiced and automa-
tized, these might be implemented as fast as retrieval (Fayol and
Thevenot, 2012). Therefore, analyzes of response times might
not necessarily give meaningful insight into the strategies used in
arithmetic problem-solving.

The goal of the present study was to provide additional evi-
dence for the dependency of the problem-size effect on educa-
tional background by comparing its neural correlates in Chinese
and American adults. Specifically, we used functional magnetic
resonance imaging (fMRI) to measure the brain activity of adults
educated in China and the United States while they evaluated
small and large single-digit multiplication problems. Previous
neuroimaging studies suggest that arithmetic processing relies on
a heterogeneous brain network. On the one hand, left temporo-
parietal regions are typically activated when problems are more
likely to rely on fact retrieval, as is the case for single-digit mul-
tiplication (Lee, 2000; Andres et al., 2011, 2012; Prado et al.,
2011), small problems (Stanescu-Cosson et al., 2000; Zhou et al.,
2007; Jost et al., 2009; De Smedt et al., 2011), extensively trained
problems (Zamarian et al., 2009), problems self-reported to be
retrieved (Grabner et al., 2009), and exact arithmetic (Dehaene
et al., 1999; Venkatraman et al., 2006). These regions are thought
to support the verbal representation of math facts and include
the left middle/superior temporal gyrus (Sandrini et al., 2003;
Ischebeck et al., 2007; Zhou et al., 2007; Andres et al., 2011, 2012;
Prado et al., 2011) and the left angular gyrus (Grabner et al.,
2009, 2013; Zamarian et al., 2009). On the other hand, a dor-
sal fronto-parietal network is typically engaged when problems
are more likely to involve the manipulation of numerical quanti-
ties, as is the case for single-digit subtraction (Lee, 2000; Piazza
et al., 2007; Prado et al., 2011), large problems (Stanescu-Cosson
et al., 2000; Zhou et al., 2007; Jost et al., 2009; De Smedt et al.,
2011), untrained problems (Zamarian et al., 2009), problems self-
reported to be calculated (Grabner et al., 2009), and approximate
arithmetic (Dehaene et al., 1999; Venkatraman et al., 2006). This
network involves the IPS, a region thought to be involved in the
representation of numerical magnitudes (Nieder and Dehaene,

2009). It also involves the lateral and medial frontal cortices,
which are thought to reflect the demands in working-memory
and executive control associated with the manipulation of num-
bers (Ansari, 2008; Jost et al., 2009). Recently, these findings have
been confirmed by a quantitative meta-analysis of the neuroimag-
ing literature (Arsalidou and Taylor, 2011). This meta-analysis
indicated that there are substantive overlap between the neural
bases of numerical processing and arithmetic in the parietal and
frontal cortices, suggesting that procedural strategies relying on
numerical manipulation are likely to be used during arithmetic
calculation. However, this meta-analysis also indicated that left
temporal regions are specifically engaged during operations that
are likely to rely on verbal fact retrieval, such as multiplication.

Overall, neuroimaging studies conducted on western adults
(Stanescu-Cosson et al., 2000; Jost et al., 2009) and children (De
Smedt et al., 2011) have observed a neural problem-size effect
(i.e., greater activity for large than small problems) in the dorsal
fronto-parietal regions typically involved in numerical calcula-
tion. While these findings suggest that the effect might stem
from the greater use of calculation procedures in large than small
problems, it is possible that this result might depend upon differ-
ences in cultural and educational background. To our knowledge,
only two previous studies have investigated the neural corre-
lates of arithmetic across Chinese and English languages (Tang
et al., 2006; Venkatraman et al., 2006). First, by studying English–
Chinese bilinguals, Venkatraman et al. (2006) found that solving
arithmetic problems in a language different from the one used
to learn them is associated with enhanced activity in several
brain regions. These increases are observed in regions associated
with verbal retrieval for exact arithmetic and regions associ-
ated with numerical manipulation for approximate arithmetic.
Although this study supports the idea that regions involved in ver-
bal retrieval and numerical processing are differentially engaged
in arithmetic, it could not evaluate the effect of cultural and
educational background on the neural bases of arithmetic as it
focused on the same group of bilingual individuals. Second, Tang
et al. (2006) recently compared the neural correlates of sim-
ple arithmetic processing in participants educated in China and
Western countries. However, this study only did so with single-
digit addition, and did not further dissociate between small and
large problems. Because single-digit addition and multiplication
diverge in terms of learning methods (Dehaene et al., 2003) and
problem-solving strategies (Fayol and Thevenot, 2012), differ-
ences in the neural bases of the multiplication problem-size effect
between Chinese and Western individuals remain unknown.

In the present study, we expected the neural bases of the multi-
plication problem-size effect to specifically differ between Chinese
and Americans. Behavioral studies suggest that the problem-size
effect preferentially may result from differences in retrieval effort
in Chinese, whereas it preferentially may rely on differences in
the use of calculation procedures in North Americans (Penner-
Wilger et al., 2002). Therefore, we expected that the problem-size
effect would be more strongly associated with activity in brain
regions involved in the verbal representation of math facts (i.e.,
left mid-superior temporal gyrus and/or left angular gyrus) in
Chinese as compared to American participants. Conversely, we
hypothesized that the problem-size effect would be more strongly
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associated with activity in brain regions involved in numerical
manipulation and arithmetic calculation (i.e., IPS and frontal
regions) in American as compared to Chinese participants. As is
common in the neuroimaging literature (Poldrack, 2006), most
studies have indirectly inferred the role of temporal and pari-
etal brain regions involved in arithmetic based on anatomical
landmarks and prior research. It is increasingly believed, how-
ever, that such “reverse” inferences can be greatly strengthened
by systematically localizing the cognitive processes of interest in
each participant (Saxe et al., 2006). In the present study, we
used independent localizer scans to identify the parietal and
temporal cortices involved in verbal and numerical processing.
This enabled us to improve the specificity and selectivity of our
analyses.

MATERIALS AND METHODS
PARTICIPANTS
Thirty-two Chinese participants were recruited from the Beijing
community in China, and 33 American participants were
recruited from the Chicago community in the United States.
Data from three Chinese and four American participants were
excluded due to excessive movement in the scanner (i.e., greater
than 3 mm). Two Chinese and three American participants were
further excluded because their error rates were above 30%.
Therefore, 27 Chinese participants [13 males; mean age = 24.2
years; standard deviation = 2.12; age range: 20–28 years] and 26
American participants [10 males; mean age = 25.2 years; stan-
dard deviation = 3.07; age range: 19–30 years] were included
in the analyses. Chinese participants were native Chinese speak-
ers, while American participants were native English speakers.
All participants had a minimum of 13 years of education,
which they completed in their respective countries (i.e., China
or the United States). Although all participants were gradu-
ates from high-school, they varied regarding the number of
years of post-secondary education they received. However, as
emphasized by Campbell and Xue (2001) and Lefevre and Liu
(1997), basic arithmetic skills such as single-digit multiplica-
tion are acquired and consolidated primarily during elementary
education. Therefore, with respect to single-digit multiplication
skill, it is unlikely that this variability in the number of years
of post-secondary education might have affected our results.
Nonetheless, to ensure that any fMRI differences between the
Chinese and American groups were not driven by differences in
math proficiency, we performed control analyses in which rele-
vant effects were controlled for differences in multiplication skill
(see below).

None of the Chinese participants were of Western descent and
none of the American participants were of Asian descent. All
subjects were right-handed and had no history of neurological
or psychiatric disorders. Experimental protocols were approved
by the local Institutional Review Boards, and informed consent
was obtained from each participant. Chinese and American par-
ticipants were compensated 75 RMB and 20 USD per hour for
their time, respectively. Groups were comparable in terms of
age (t(51) = 1.34, p = 0.19) and gender (Fisher’s Exact test: p =
0.58). The exact same individuals participated in the localizer and
the arithmetic tasks.

TASK
In each trial of the multiplication task, participants evaluated the
answer of a single-digit multiplication problem involving Arabic
numerals (see Figure 1A). The exact same stimuli were employed
for the Chinese and American groups. Following a previous study
(Prado et al., 2011), we included 12 small and 12 large multi-
plication problems. In small multiplication problems, the two
operands were smaller than or equal to 5 (e.g., 3 × 4). In large
multiplication problems, both operands were larger than 5 (e.g.,
6 × 7). Each problem was repeated twice with a true answer (e.g.,
3 × 4 = 12) and once with a false answer, yielding 72 trials total
in each task (36 small and 36 large problems). False answers were
table-related. They corresponded to the answer that would be
obtained by adding or subtracting 1 to the first operand (e.g.,
3 × 5 = 20 or 3 × 5 = 10). Problems involving 0 (e.g., 3 × 0),
1 as second operand (e.g., 3 × 1) and ties (e.g., 3 × 3) were not
included in the main experiment but were used in the practice
session. Twelve problems with a correct answer and twelve prob-
lems with a false answer were included in the practice session for
each task.

LOCALIZER SCANS
Our hypotheses involved regions of the parietal and tempo-
ral cortices involved in verbal and numerical processing (see
Introduction). To identify those regions and improve the sensitiv-
ity and specificity of our analyses (Saxe et al., 2006), localizer scans
were included in the experiment. In the verbal processing local-
izer (see Figure 1C), participants decided whether two visually
presented words rhymed or not. Single character (monosyllables)
Chinese words were used for the Chinese group and monosyl-
labic English words were used for the American group. To ensure
that judgments were not based solely on orthographic similarities
between words, orthography and phonology were manipulated
independently. That is, the two words could have similar orthog-
raphy and similar phonology (e.g., dime–lime; - ; 12 trials),
similar orthography but different phonology (e.g., pint–mint;

- ; 12 trials), different orthography but similar phonology
(e.g., jazz–has; - ; 12 trials) or different orthography and
different phonology (e.g., press–list; - ; 12 trials). Similar
orthography in Chinese was operationalized as sharing the same
phonetic radical (right part of the character). We also included a
perceptual control condition in which two symbol strings were
presented on the screen instead of word pairs (12 trials). In
American participants, the two symbol strings consisted of rear-
ranged parts of lower case Courier letters. In Chinese participants,
the two symbol strings were single Tibetan characters. Tibetan
characters were chosen because they are similar to Chinese char-
acters in terms of visual complexity and configuration. The
perceptual condition was designed to control for visual stimula-
tion and response selection in both groups. All participants had
to determine whether the symbol strings matched (the symbols
matched in half of the trials). Twelve trials of each condition were
presented in the practice session. Different sets of stimuli were
used in the practice and in the scanning sessions.

In the numerical processing localizer (see Figure 1B), par-
ticipants decided which of two visually presented dot arrays
were composed of the larger number of dots (i.e., the larger
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FIGURE 1 | Experimental and localizer tasks. (A) In the multiplication
task, participants were asked to evaluate the answer of single-digit
multiplication problems. Problem-sizes were either small (e.g., 3 × 4) or
large (e.g., 6 × 7). (B) In the numerical processing localizer, participants
decided which of two dot arrays were composed of the larger number of
dots. (C) In the verbal processing localizer, American participants decided

whether two visually presented English words rhymed or not (left) and
Chinese participants decided whether two visually presented Chinese
words rhymed or not (right). In all tasks, the first stimulus was
presented for 800 ms, followed by a blank screen for 200 ms. A second
stimulus was then presented for 800 ms, followed by a red fixation
square for 200 ms.

numerosity). The exact same stimuli were employed for the
Chinese and American groups. The numerical comparisons were
“easy” (i.e., 12 dots vs. 36 dots; 24 trials), “intermediate” (i.e., 18
dots vs. 36 dots; 24 trials), or “hard” (i.e., 24 dots vs. 36 dots;
24 trials). Six different dot sizes were used and stimuli were con-
trolled for differences in cumulative surface areas and distribution
of dot sizes (Prado et al., 2011). Twelve trials of each condition
were presented in the practice session. Different stimuli were used
in the practice and in the scanning sessions.

EXPERIMENTAL PROTOCOL
Participants practiced the experimental and localizer tasks before
entering into the scanner. In the scanner, the multiplication task
and the numerosity processing localizer were decomposed in
2 functional runs of about 4 min each. The verbal processing
localizer was administered in one single run lasting approxi-
mately 7 min. Participants also performed an additional sub-
traction evaluation task in the scanner. The data from this
task will not be considered in this report. The order of the
tasks was fully counterbalanced across participants. The tim-
ing and order of trial presentation within each run was opti-
mized for estimation efficiency using optseq2 (http://surfer.nmr.
mgh.harvard.edu/optseq/). Specifically, although trials appeared
to be presented in a random order to participants, the timing
and order of trials in each condition was calculated by opt-
seq2 in order to remove the overlap from the estimate of the
hemodynamic response (by introducing variable periods of fix-
ation, or jitters). Behavioral responses were recorded using an

MR-compatible keypad placed below the right hand. Visual stim-
uli were generated using E-prime software (Psychology Software
Tools, Pittsburgh, PA) and projected onto a translucent screen
that was viewed by the participants through a mirror attached to
the head-coil.

Stimulus timing was identical in all tasks. A trial started with
the presentation of a first stimulus (multiplication, dot array or
word) for 800 ms, followed by a blank screen for 200 ms. A sec-
ond stimulus (multiplication answer, dot array or word) was then
presented for 800 ms. This second stimulus was followed by a
red fixation square (duration: 200 ms) that indicated the need to
make a response during an interval ranging from 2800 to 3600 ms.
Twenty-four null trials were included in the multiplication task
and the numerical localizer scan. Twelve null trials were included
in the verbal localizer scan. In the null trials, a black square was
presented for the same stimulus duration as in the experimental
trials and participants were asked to press a button when the black
square turned red.

IMAGING PROCEDURES
Data from the Chinese participants were collected at the State
Key Lab of Cognitive Neuroscience and Learning at Beijing
Normal University in China. Data from the American partici-
pants were collected at the Northwestern University’s Center for
Advanced MRI (CAMRI) in the United States. At both sites, the
exact same scanner model (Siemens 3T TIM Trio MRI scan-
ner; Siemens Healthcare, Erlangen, Germany) and exact same
scanning parameters were used. The fMRI blood oxygenation
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level dependent (BOLD) signal was measured with a suscepti-
bility weighted single-shot echo planar imaging (EPI) sequence.
The following parameters were used: TE = 20 ms, flip angle =
80◦, matrix size = 128 × 120, field of view = 220 × 206.25 mm,
slice thickness = 3 mm (0.48 mm gap), number of slices = 32,
TR = 2000 ms. Before functional image acquisition, a high res-
olution T1 weighted 3D structural image was acquired for each
subject (TR = 1570 ms, TE = 3.36 ms, matrix size = 256 × 256,
field of view = 240 mm, slice thickness = 1 mm, number of
slices = 160).

BEHAVIORAL DATA ANALYSIS
Behavioral studies have found that large multiplication problems
were associated with both longer RT and higher error rates than
small problems (Ashcraft and Guillaume, 2009). Errors, however,
are known to elicit specific activity in brain regions and this may
bias fMRI analyses (Holroyd and Coles, 2002). Therefore, only
correct trials are analyzed in the present study and the behavioral
multiplication problem-size effect is measured in terms of a dif-
ference in RT rather than error rate. Specifically, the behavioral
multiplication problem-size effect was investigated by analyzing
RT data on correct trials as a function of problem-size and group.
This was done using a 2 × 2 ANOVA with the within-subject fac-
tor Problem-size (small, large) and the between-subject factor
Group (Chinese, American).

fMRI DATA ANALYSIS
Data analysis was performed using SPM5 (Statistical Parametric
Mapping) (www.fil.ion.ucl.ac.uk/spm). The first six images of
each run were discarded to allow for T1 equilibration effects. The
remaining functional images were corrected for slice acquisition
delays, spatially realigned to the first image of the first run to
correct for head movements, co-registered with the segmented
anatomical image, normalized to the standard T1 Montreal
Neurological Institute (MNI) template volume (normalized voxel
size, 2 × 2 × 4 mm3), and spatially smoothed with a Gaussian
filter equal to twice the voxel size (4 × 4 × 8 mm3 full width at
half maximum). The quality of the normalization was verified in
each participant by visually checking the registration and ensur-
ing an adequate correspondence between each individual’s brain
and the MNI template. Event-related statistical analysis was per-
formed according to the general linear model. Trials in which an
incorrect response was recorded were excluded from the analyses.
Activation was modeled as epochs with onsets time-locked to the
presentation of the first stimulus and with a duration of 2 s. Only
hits (i.e., correct responses in problems with a true answer) were
considered of interest in the behavioral and fMRI analyses of the
multiplication task. All epochs were convolved with a canonical
hemodynamic response function. The time series data were high-
pass filtered (1/128 Hz), and serial correlations were corrected
using an autoregressive AR (1) model.

Previous behavioral studies have found that the multiplication
problem-size effect is larger for American than Chinese partici-
pants (Campbell and Xue, 2001). Such a difference in task perfor-
mance might introduce a potential confound in the fMRI analysis
because any group differences in activity could be potentially
explained by this discrepancy (Church et al., 2010). To minimize

this confound, we matched the Chinese and American groups
in terms of their behavioral problem-size effect. Specifically, we
iteratively removed from the fMRI analyses the Chinese partici-
pants with the smallest multiplication problem-size effect and the
American participants with the largest multiplication problem-
size effect until no significant difference was observed between
groups. This procedure yielded two groups with 22 participants
in each for the fMRI analyses (i.e., 44 participants total). To
determine the neural correlates of the multiplication problem-
size effect in these remaining participants, we calculated for each
subject the contrast of large vs. small problems (i.e., the neu-
ral problem-size effect). The resulting individual contrast images
were entered into two random effect (RFX) analyses: a one-
sample t-test across all participants (Chinese and Americans) and
a two-sample t-test coding each group separately. In both analy-
ses, the mean-centered individual behavioral problem-size-effects
were included as covariates to control for any remaining behav-
ioral differences between groups. These analyses allowed us to
identify (1) the voxels showing a significant neural problem-size
effect across groups and between groups, as well as (2) the vox-
els whose difference in activity between large and small problems
(i.e., the neural problem-size effect) co-varied with the differ-
ence in RT between large and small problems (i.e., the behavioral
problem-size effect) across groups and between groups. In the
localizer scans, we calculated for each participant the contrasts of
(1) word pairs vs. symbol strings in the verbal processing localizer
(word pairs > strings) and (2) hard vs. easy numerical compar-
isons in the numerical processing localizer (hard > easy). The
resulting individual contrast images were subsequently entered
into RFX one-sample t-tests.

Unless otherwise noted, group-level statistical tests were con-
trolled for a family-wise error (FWE) rate of p < 0.05 across
the whole brain, via a combination of individual voxel thresh-
old of p < 0.005 and cluster extent threshold of 880 mm3

(i.e., 55 voxels). The cluster extent threshold was deter-
mined by Monte Carlo simulations (5000 iterations) conducted
using the “AlphaSim” program (http://afni.nimh.nih.gov/pub/
dist/doc/manual/AlphaSim.pdf) using an estimate of the smooth-
ness of the data provided by SPM. Additionally, when no sig-
nificant effect was present at this threshold, activations were
examined with a FWE rate of p < 0.1 (across the whole brain).
This was achieved by using a more lenient individual voxel thresh-
old of p < 0.01 and a cluster extent threshold of 1120 mm3 (i.e.,
70 voxels) (estimated by AlphaSim). Such a more lenient thresh-
old allows for an examination of more diffuse activations (Hasson
et al., 2007) and indicates a statistical tendency. It is thus more
informative than uncorrected thresholds because it allows for an
interpretation of the results while giving a precise idea about the
rate of false positive (Bennett et al., 2009).

In addition, small volume corrections were applied to a priori
regions of interest of the parietal and temporal cortex iden-
tified in the localizer scans. These were the right IPS iden-
tified in the numerical processing localizer (x = 36, y = −48,
z = 47) and the left Middle Temporal Gyrus (MTG) iden-
tified in the verbal processing localizer (x = −28, y = −58,
z = 21). For these two regions, activation was controlled
for a FWE rate of p < 0.05 within a 12-mm radius sphere
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around each set of coordinates, via a combination of individ-
ual voxel threshold of p < 0.005 and cluster extent threshold
of 128 mm3 (i.e., 8 voxels) (using AlphaSim and the proce-
dure detailed above). All coordinates are reported in MNI space.
For anatomical localization, we performed a non-linear trans-
formation from MNI to Talairach coordinates (Talairach and
Tournoux, 1988) and identified the regions activated via the
Talairach Daemon software (http://ric.uthscsa.edu/resources).
Cross validations were performed by overlaying each map on
anatomical reference images from the Brodmann and AAL (auto-
matic anatomic labeling) maps included in the Mricron software
(www.sph.sc.edu/comd/rorden/MRIcron/).

Brain activity in activated clusters was extracted for visualiza-
tion using the SPM toolbox Marsbar (http://marsbar.sourceforge.
net/). Regions of Interests (ROIs) included all voxels within the
activated cluster. For each participant, we calculated the average
activity for each trial type within an ROI by averaging the fMRI
signal across all voxels within that ROI.

RESULTS
BEHAVIOR
Multiplication task
A main effect of Problem-size revealed that participants were
slower at evaluating large than small multiplication problems
[F(1, 51) = 29.23, MSE = 8, 554, p < 0.00001]. Therefore, a sig-
nificant behavioral problem-size effect (i.e., difference in RT
between large and small problems) was observed across all par-
ticipants. However, this effect interacted with Group [F(1, 51) =
6.67, MSE = 8, 554, p = 0.013], such that the problem-size effect
was greater in American than Chinese participants (144 ms for
American participants, 52 ms for Chinese participants). This was
the case despite the fact that the problem-size effect was sig-
nificant in each group separately [Chinese: t(26) = 4.02, p =
0.0004; American: t(25) = 4.23, p = 0.0003]. Finally, the ANOVA
revealed a main effect of Group [F(1, 51) = 51.97, MSE = 63, 026,
p < 0.00001], indicating that Chinese participants were faster
than American participants.

In line with previous findings (Campbell and Xue, 2001),
our results indicate that the behavioral multiplication problem-
size effect was larger in American than Chinese participants.
To minimize this behavioral confound in fMRI analyses, we
attempted to match the Chinese and American groups in terms of
their behavioral problem-size effect (see Materials and Methods).
After the matching procedure, the multiplication problem-size
effect was still significant across participants [Chinese: F(1, 21) =
16.24, MSE = 2, 482, p = 0.0006; American: F(1, 21) = 14.42,
MSE = 15, 109, p = 0.002] (see Figure 2). However, the interac-
tion between Group and multiplication Problem-size effect was
no longer significant [F(1, 42) = 4.05, MSE = 8796, p = 0.051],
indicating that the problem-size effect was more comparable
across groups (although there remained a numerical difference
between the problem-size effect between the groups).

Localizer scans
In the verbal processing localizer, mean RT for correct responses
was submitted to a 2 × 2 ANOVA with the within-subject
factor Stimulus type (word pairs, symbol strings) and the

FIGURE 2 | Behavioral performance on the multiplication task. (A)
Before equating for the magnitude of the problem-size effect between
groups, the multiplication problem-size effect was significantly larger for
American than Chinese participants. (B) After equating for the magnitude of
the problem-size effect between groups, the multiplication problem-size
effect was no longer significantly larger for American than Chinese
participants. light gray, small problems; dark gray, large problems;
∗p < 0.05; n.s., non-significant; error bars, standard error of the mean.

between-subject factor Group (Chinese, American). The ANOVA
revealed a main effect of Stimulus type [F(1, 51) = 47.87, MSE =
8142, p < 0.00001], a main effect of Group [F(1, 51) = 24.03,
MSE = 114, 762, p = 0.00001] and an interaction of Stimulus
type and Group [F(1, 51) = 44.81, MSE = 8142, p < 0.00001].
Therefore, although participants took overall longer to evalu-
ate word pairs than symbol strings, the effect was greater in
Chinese (926 ms vs. 689 ms) than in American adults (1143 ms
vs. 1137 ms).

In the numerical processing localizer, mean RT for correct
responses was submitted to a 2 × 2 ANOVA with the within-
subject factor Comparison difficulty (easy, intermediate, hard)
and the between-subject factor Group (Chinese, American).
We found a main effect of Comparison difficulty [F(2, 102) =
42.82, MSE = 2410, p < 0.00001], indicating that RT increased
as comparison difficulty increased (easy: 734 ms, intermediate:
760 ms, hard: 820 ms). Although the ANOVA revealed faster
RT for Chinese than American participants [F(1, 51) = 28.13,
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MSE = 246, 022, p < 0.00001], there was no interaction between
Group and Comparison difficulty [F(2, 102) = 0.79, MSE = 2410,
p = 0.46]. Thus, consistent with previous research (Pinel et al.,
2001; Prado et al., 2011), there was an inverse relationship
between RT and the numerical distance between numerosities of
the dot patterns (i.e., a distance effect). This effect, however, was
not modulated by group.

Finally, the size of the main effect of Comparison difficulty
in the numerical processing task was comparable to the size of
the main effect of Stimulus type in the verbal processing local-
izer [86 ms vs. 121 ms, t(52) = 1.41, p = 0.16]. Therefore, both
localizer contrasts were comparable in terms of difficulty.

fMRI RESULTS
Localizer scans
As described in the Materials and Methods, localizer scans served
to identify a priori regions of interest of the parietal and tempo-
ral cortices (i.e., IPS and MTG) involved in verbal and numerical
processing for small volume correction of the main analyses.
Across all participants, the verbal processing localizer identified
a region of the left mid-superior temporal cortex more active
for words than symbol strings (x = −28, y = −53, z = 21).
Additional activation was observed in dorsal and ventral parts of
the left Inferior Frontal Gyrus (IFG), left Middle Frontal Gyrus
(MFG) and left Precentral Gyrus (PG) (see Figure 3 and Table 1
for a full list of activated regions). In the numerical processing
localizer, enhanced activity was observed for hard than easy com-
parisons in the right IPS (x = 36, y = −48, z = 47). Additional
activation was observed in a fronto-parietal network encompass-
ing the left Precuneus, left ventral IFG, and Anterior Cingulate
Cortex (ACC) (see Figure 3 and Table 1 for a full list of activated
regions).

Multiplication problem-size effect
Across Chinese and American participants, a significant neu-
ral problem-size effect (i.e., greater activity for large than small
multiplication problems) was observed in several fronto-parietal
regions, including the left IPS, bilateral IFG, left MFG, and

FIGURE 3 | Brain regions identified by the localizer scans across all
participants. In the verbal processing localizer (red), greater activity for
words than symbols was observed in the left Superior and Middle Temporal
Gyri (STG/MTG), left Inferior Frontal Gyrus (IFG), and left Precentral Gyrus
(PG). In the numerical processing localizer (blue), greater activity for difficult
than easy comparisons was observed in the right Intraparietal Sulcus (IPS)
and Anterior Cingulate Cortex (ACC). All activations are overlaid on a 3D
rendering of the MNI-normalized anatomical brain. The upper part of the
brain is cut out (Z = 46) to show activations in deeper sulci and along the
medial wall of the cortex.

Table 1 | Clusters activated in the localizer scans across all participants.

Anatomical regions ∼BA Cluster size (mm3) MNI coordinates Z scores

X Y Z

VERBAL PROCESSING LOCALIZER (WORDS > SYMBOLS)

L. Inferior/Middle frontal gyrus 46/47 21200 −44 20 21 5.44

L. Middle temporal gyrus 21 1648 −28 −53 21 3.46

R. Caudate – 7696 36 −43 2 4.86

L. Precentral gyrus 6 2336 −48 −3 48 4.62

L. Caudate – 1600 −4 1 18 4.09

L. Middle/superior temporal gyrus 21/22 1952 −55 −37 6 3.91

L. Parahippocampal gyrus 28 976 −24 −18 −13 3.88

L. Anterior cingulate gyrus 25 880 −4 19 −4 3.85

L. Cuneus 18 2528 0 −73 15 3.24

R. Middle frontal gyrus 9 21200 4 50 23 3.11

NUMERICAL PROCESSING LOCALIZER (HARD > EASY COMPARISONS)

R. Inferior frontal gyrus 9 4704 50 9 25 5.18

R. Anterior cingulate gyrus 32 896 10 21 39 3.83

L. Precuneus/superior parietal lobule 7 920 −18 −56 51 3.9

R. Intra-parietal sulcus 40 904 36 −48 47 3.78

Notes. All clusters survive a threshold of p < 0.05 FWE corrected for multiple comparisons.

L, left; R, right; ∼BA, approximate Brodmann Area; MNI, Montreal Neurological Institute.
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ACC (see Table 2). Critically, however, the effect differed between
groups.

First, we found a greater neural problem-size effect for Chinese
than American participants in the bilateral Superior Temporal
Gyrus (STG), as well as in the left precentral/postcentral gyri and
precuneus (see Figure 4A and Table 2). A visualization of the pat-
tern of brain activity in the left and right STG revealed that the
group difference was driven by a positive neural problem-size
effect in Chinese participants, and a negative effect for American
participants (see Figure 4B for a plot in the left STG). The left
MTG/STG cluster identified in the verbal processing localizer did
not overlap with the left STG cluster exhibiting the group differ-
ence in neural problem-size effect. However, overlap was observed
in the left STG at a FWE corrected threshold of p < 0.1, indicating
a statistical tendency.

Second, we found a greater neural problem-size effect for
American than Chinese participants in the right IPS and ACC
(activation in the right IPS was found after small volume cor-
rection based on the peak activity obtained in the numerical
localizer task, see Materials and Methods) (see Figure 4A and
Table 2). The peak activity of this right IPS cluster was less
than 12 mm away from the peak coordinates of the right IPS
region identified in the numerical processing localizer. In the
IPS, an examination of the pattern of brain activity revealed
that the group difference was driven by a larger positive neu-
ral problem-size effect for American than Chinese participants
(see Figure 4C).

Simple effect analyses were then conducted to assess the sig-
nificance of the neural problem-size effect in each group sep-
arately. First, in both the right IPS (x = 30, y = −60, z = 36;

Z = 3.77) and the ACC (x = −2, y = 24, z = 36; Z = 4.09), we
found a significant neural problem-size effect across American
participants. Importantly, the effect in the IPS was absent in
Chinese participants. Second, we did not find a significant neural
problem-size effect across Chinese participants in either the left or
right STG at our stringent FWE corrected threshold of p < 0.05.
However, this effect tended to be significant in both of these
regions, as revealed by further analyses conducted at a threshold
of p < 0.1 (FWE corrected across the whole-brain). Furthermore,
small multiplication problems tended to be associated with more
activity than large multiplication problems (i.e., a reverse neu-
ral problem-size effect) in American participants (p < 0.1 FWE
corrected) in both of these regions.

Individual differences in the multiplication problem-size effect
Overall, the results above suggest that the neural sources of the
multiplication problem-size effect differ in Chinese and American
participants. To test whether activity in the brain regions found
above was related to behavioral performance, we then identi-
fied the voxels in which there was a reliable between-subject
relationship between the behavioral and neural problem-size
effects in Chinese and American participants across the whole-
brain. Although we did not find any regions showing such a
relationship across Chinese participants, we found that a larger
neural problem-size effect was associated with a larger behav-
ioral problem-size effect across American participants in the right
IPS, ACC and right IFG (see Figure 5A). Critically, this relation-
ship was more positive across American than Chinese participants
in all of these regions (see Figure 5B and Figure 5C for a plot
in the right IPS). Therefore, the neural bases of inter-individual

Table 2 | Clusters showing a multiplication neural problem-size effect.

Anatomical regions ∼BA Cluster size (mm3) MNI coordinates Z scores

X Y Z

ACROSS ALL PARTICIPANTS (LARGE > SMALL)

R. Insula 13 4592 34 20 4 5.62

L. Inferior frontal gyrus 47 13504 −40 18 −12 5.56

L. Precuneus/intraparietal sulcus 7/40 7328 −30 −46 44 4.75

R. Medial frontal gyrus 6 1936 0 14 52 4.42

L. Cuneus 18 2880 0 −80 24 4.22

CHINESE (LARGE > SMALL) > AMERICAN (LARGE > SMALL)

L. Paracentral lobule/precuneus 5/7 14112 −10 −44 60 5.14

R. Superior temporal gyrus 42 1616 58 −24 4 4.68

R. Medial frontal gyrus 11 3360 6 48 −12 4.31

L. Superior temporal gyrus 22 1488 −64 −16 4 3.96

L. Precentral/postcentral gyrus 4/3 944 −54 −16 44 3.72

L. Insula 13 896 −38 −24 20 3.6

R. Fusiform gyrus 19 896 24 −60 −8 3.06

AMERICAN (LARGE > SMALL) > CHINESE (LARGE > SMALL)

L. Medial frontal gyrus 8 1968 −4 20 52 3.59

R. Intraparietal sulcus* 40 128 32 −60 44 2.98

Notes. All clusters survive a threshold of p < 0.05 FWE corrected for multiple comparisons.

L, left; R, right; ∼BA, approximate Brodmann Area; MNI, Montreal Neurological Institute.
*Region significantly activated after small volume correction.
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FIGURE 4 | Group differences in the neural problem-size effect (i.e.,
difference in activity between large and small multiplication problems).
(A) A greater neural problem-size effect was observed in Chinese than
American participants in the bilateral Superior Temporal Gyrus (STG), left
Postcentral Gysrus (PG), and Precuneus (Prec) (yellow). A greater neural
problem-size effect was observed in American than Chinese participants in
the right Intraparietal Sulcus (IPS) and Anterior Cingulate Cortex (ACC)
(purple). All activations are overlaid on 3D renderings of the MNI-normalized

anatomical brain. The upper part of the brain is cut out at two different
heights (left panel: Z = 8; right panel: Z = 46) to show activations in deeper
sulci and along the medial wall of the cortex. (B) Plot of the brain activity
observed for large (dark gray) and small (light gray) problems as a function of
group in the left STG cluster (for visualization only). (C) Right: Plot of the brain
activity observed for large (dark gray) and small (light gray) problems as a
function of group in the right IPS cluster (for visualization only). Note that the
scale is different than that in (B).

variations in the problem-size effect also differed between the
Chinese and American group.

Control analyses
The group differences in the neural problem-size reported above
are consistent with our hypotheses. However, it is important to
ensure that such effects are not driven by other factors.

First, consistent with previous reports (Lefevre and Liu, 1997;
Campbell and Xue, 2001), American participants were less pro-
ficient in single-digit multiplication than Chinese participants:
they displayed poorer overall performance and a larger problem-
size effect. We controlled for group differences in behavioral
problem-size effect by including this factor as covariate in our
main analyses and by matching the groups in terms of this
effect. To further rule out the possibility that overall group dif-
ferences in multiplication performance were driving our results,
we performed an additional set of analyses in which we included
both problem-size effect and overall response time as nuisance
covariates. The results obtained with this model were simi-
lar to the results obtained in our initial analysis. Specifically,
all the clusters in which we observed differences in the neural

problem-size effect in Chinese vs. Americans remained signif-
icant with these covariates. This suggests that none of our
results were due to differences in overall performance between
groups.

Second, as can be seen on Figure 5C, inter-individual differ-
ences in the behavioral problem-size effect were larger in the
American than in the Chinese group. Although none of the
American participants can be considered outliers (defined as >3
standard deviations from the mean), it remains possible that
the more positive relationship between the behavioral and neu-
ral problem-size effects in the IPS for American compared to
Chinese participants might be driven by a greater inter-individual
variability. Therefore, we conducted another set of analyses in
which we removed the two American participants with the largest
behavioral problem-size effects, thereby equating inter-individual
variability between groups. Again, the results obtained with these
analyses were similar to the results obtained in our initial analyses.
Specifically, there was still a reliable positive relationship across
American participants in the right IPS and ACC (but not in the
right IFG). This relationship was also greater in Americans than
Chinese in both of these regions.
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FIGURE 5 | Inter-individual variability in the multiplication
problem-size effect. (A) Across American participants, a larger behavioral
problem-size effect (difference in response time between large and small
problems) was associated with a larger neural problem-size effect
(difference in brain activity between large and small problems) in the
right Intraparietal Sulcus (IPS) and the Anterior Cingulate Cortex (ACC).
(B) A stronger positive relationship between behavioral and neural
problem-size effects was observed in American than Chinese participants
in the bilateral IPS and ACC. (C) Plot of the relationship between the
behavioral and neural problem-size effect in the right IPS for American

(triangles, solid line) and Chinese (circles, dotted line) participants (for
visualization only). Brain activity was extracted in the cluster showing a
stronger positive relationship between behavioral and neural problem-size
effects in American than Chinese participants for multiplication. The
relationships between behavioral and neural problem-size effects
remained significant in the right IPS and ACC when the two subjects
with the largest behavioral effects were removed from the analysis. All
activations are overlaid on a 3D rendering of the MNI-normalized
anatomical brain. The upper part of the brain is cut out (Z = 46) to show
activations in deeper sulci and along the medial wall of the cortex.

Third, Chinese and American participants were scanned
on two different MRI scanners. To minimize this factor, the
exact same experimental protocol, scanner model, and scan-
ning protocol were used. However, it remains possible that
some of the between-group differences might still be affected by
scanner-related factors (e.g., in shim or magnetic susceptibility).
Importantly, such scanner-related biases should affect all con-
trasts to the same degree. This includes low-level contrasts in
which one would not expect any differences between groups. To
test for this possibility, we contrasted the brain activity associ-
ated with null trials in Chinese vs. American participants. We did
not find any brain regions differentially activated between groups,
even at a lenient threshold of p < 0.01 uncorrected. Therefore, it
seems unlikely that systematic differences between scanners might
have biased our results.

DISCUSSION
The problem-size effect is one of the most robust and consis-
tent phenomena in the cognitive arithmetic literature (Ashcraft

and Guillaume, 2009). Yet, there is a debate as to whether the
effect reflects differences in retrieval effort or in the use of cal-
culation procedures between large and small problems (Ashcraft
and Guillaume, 2009). Several behavioral studies suggest that the
sources of the problem-size effect might in fact depend upon
differing educational backgrounds across countries (Lefevre and
Liu, 1997; Campbell and Xue, 2001; Penner-Wilger et al., 2002).
Specifically, while the effect might result from differences in
retrieval effort in Chinese participants, it might stem from dif-
ferences in the use of calculation strategies in North American
participants (Penner-Wilger et al., 2002). The present fMRI study
sought to test this hypothesis by investigating the neural bases of
the multiplication problem-size effect in Chinese and American
adults.

NEURAL MULTIPLICATION PROBLEM-SIZE EFFECT ACROSS ALL
PARTICIPANTS
Across all Chinese and American participants, we found greater
overall activity for large than small multiplication problems in a
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network of dorso-parietal brain regions encompassing the IPS as
well as the lateral and medial prefrontal cortex. This finding is
consistent with several previous neuroimaging studies that have
shown that these regions are more active for large than small
problems (Stanescu-Cosson et al., 2000; Zhou et al., 2007; Jost
et al., 2009; De Smedt et al., 2011). Although this finding might
be interpreted as reflecting greater use of calculation procedures
in large than small problems (De Smedt et al., 2011), follow-up
analyses revealed that it was mostly driven by the American group.
As discussed below, our study suggests that the neural bases of
the multiplication problem-size effect are affected by country and
educational background.

NEURAL MULTIPLICATION PROBLEM-SIZE EFFECT IN CHINESE
PARTICIPANTS
Our results revealed a larger neural problem-size effect in Chinese
than American participants in the bilateral STG. The left STG
cluster tended to overlap with the mid-superior temporal region
identified in the rhyming task that was used as verbal process-
ing localizer. Several neuropsychological (Sandrini et al., 2003;
Van Harskamp et al., 2005) and neuroimaging (Zhou et al.,
2007; Andres et al., 2011, 2012; Prado et al., 2011) studies have
suggested that regions of the mid-superior temporal cortex (espe-
cially in the left hemisphere) are involved in the representation of
math facts in verbal memory. For example, studies have found
that lesions of the left mid-superior temporal regions are associ-
ated with impaired retrieval of multiplication facts (Lampl et al.,
1994; Sandrini et al., 2003; Van Harskamp et al., 2005; Delazer
et al., 2006). In a previous study, we have suggested that the left
MTG might be involved in the storage of the semantic associ-
ation between a multiplication problem and its answer (Prado
et al., 2011). In the present study, the greater involvement of the
left STG in Chinese than American participants is broadly consis-
tent with a general role of the temporal cortex in lexical-semantic
processing (Vandenberghe et al., 1996; Price et al., 1997; Rissman
et al., 2003). However, it is interesting to note that the left STG
is typically associated with phonological (rather than semantic)
processing in the literature (Friederici, 2012; Wu et al., 2012) and
that both the left and right STG are believed to play an impor-
tant role in letter to speech sound mapping (Suzuki and Sakai,
2003; Hickok and Poeppel, 2007; Blau et al., 2009). Activation
of the bilateral STG might thus also reflect the greater involve-
ment of phonological representations during the processing of
large vs. small multiplication problems in Chinese as compared to
American participants. This might be due to the fact that, unlike
Americans, Chinese memorize multiplication facts as rhyming
formulas in school, thanks to the single-syllable structure of
Chinese number words (this strategy is reflected in the name of
the Chinese multiplication table, i.e., Nine Nine song).

It is interesting to note that a larger neural problem-size effect
in Chinese than American participants was also observed in other
brain regions, such as the precentral and postcentral gyrus and the
precuneus. Such activations were not a priori predicted and, in the
absence of any relevant localizers, must be interpreted with cau-
tion. However, the involvement of these regions may indicate that
factors other than verbal retrieval might differentiate arithmetic
processing in Chinese and American participants. For example,

although only Arabic numerals were used in this task, reading
experience may affect arithmetic processing (Tang et al., 2006).
Because the Chinese writing system places greater demands on
visuo-spatial processing than the English writing system, these
activations might thus reflect enhanced visuo-spatial processing
in Chinese participants (Tang et al., 2006; Cantlon and Brannon,
2007). Such activations might also reflect the use of alternative
visuo-spatial strategies in Chinese participants, such as abacus
imagery (Cantlon and Brannon, 2007).

NEURAL MULTIPLICATION PROBLEM-SIZE EFFECT IN AMERICAN
PARTICIPANTS
We also found a larger neural problem-size effect in American
than Chinese participants in the right IPS and the ACC. The IPS
is believed to house neuronal populations sensitive to numeri-
cal magnitudes (Nieder and Dehaene, 2009) and to be a critical
region for numerical processing in general (Ansari, 2008). This
region is consistently found activated in tasks involving numer-
ical comparison (Ansari, 2008) and arithmetic problem-solving
(Dehaene and Cohen, 2007). Critically, enhanced activity in the
IPS has been observed when problems are solved with calcula-
tion procedures rather than retrieved from memory (Grabner
et al., 2009). Such enhanced activation of the IPS is typically
accompanied with greater recruitment of frontal regions, includ-
ing the ACC (Grabner et al., 2009). Recruitment of such frontal
regions has been attributed to the greater demands in working-
memory and executive control associated with calculation strate-
gies (Delazer et al., 2003). Therefore, our findings suggest that the
multiplication problem-size effect might result from a greater use
of calculation procedures in large vs. small problems in American
as compared to Chinese participants.

MULTIPLICATION AND VERBAL RETRIEVAL IN CHINA
Why would the problem-size effect be more associated with
differences in verbal representations in Chinese than American
participants? One possibility is that the Chinese education system
places greater emphasis on verbal memorization methods than
American education (Zhang and Zhou, 2003). To some extent,
rote verbal teaching methods are employed in both China and
the United States. Multiplication tables are used to teach multi-
plication in Chinese and American elementary schools, but those
methods tend to be used earlier and more extensively in China
than in the United States (Zhang and Zhou, 2003). The result is
that Chinese children spend more time practicing multiplication
facts than American children, both in school and at home. Rote
verbal memorization of multiplication facts in Chinese children
might also be facilitated by cultural specificities. For example,
the Chinese multiplication table is shorter and easier to mem-
orize than the tables typically used in American schools (Zhou
et al., 2007). Rote verbal learning is further made easier by the
relative transparency and conciseness of Chinese words for num-
bers, as compared to English words (Miller et al., 1995). Overall,
these educational divergences might explain why a greater pro-
portion of Chinese than North American adults rely on direct
retrieval strategies to solve both small and large multiplication
problems (Campbell and Xue, 2001), and why the multiplication
problem-size effect might be more strongly related to differences
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in verbal representations in Chinese as compared to American
participants.

MULTIPLICATION AND CALCULATION PROCEDURES IN AMERICANS
The greater reliance on calculation procedures in American than
Chinese participants might be explained by the greater emphasis
that American education tends to place on the comprehension
of mathematical concepts during childhood (such as numeri-
cal magnitude or numerical order) than on verbal memorization
methods per se (Graham and Fennell, 2001). Overall, less exten-
sive reliance on rote verbal learning in the United States than in
China is likely to lead to weaker associations between multipli-
cation problems and their solutions in American as compared
to Chinese adults, which might lead to a greater use of indirect
calculation procedures. This may be especially true for problems
involving large problem-sizes, which are typically less drilled in
school than problems involving smaller operands (Hamann and
Ashcraft, 1986). Indirect strategies used by American participants
could involve decomposing a relatively large problem-size item
(e.g., 9 × 8) into a multiplication problem that is easier to retrieve
from memory (e.g., 10 × 8 = 80) and using a different oper-
ation to calculate the results (e.g., 80 − 8 = 72). It might also
involve transforming a multiplication problem (e.g., 3 × 8) into
easier addition problems (e.g., 8 + 8 + 8). These indirect strate-
gies involve a manipulation of numerical magnitudes through
addition or subtraction and are more likely to engage numerical
processing mechanisms in the IPS (as well as control processes in
the ACC) than verbal retrieval mechanisms in the mid-superior
temporal gyrus. In keeping with these observations, we found
more activity for large than small multiplication problems in
American participants in the IPS and ACC, but not in any regions
of the temporal cortex. Instead, we found that large problems
tended to be associated with less activity than small problems in
the left STG (see Figure 4B). Therefore, large problems might be
more likely to be solved by backup strategies and calculation pro-
cedures than verbal retrieval in American participants. Overall,
our results are consistent with the view that a failure to retrieve
the answer of large problems and a more extensive use of calcula-
tion procedures in large vs. small problems might give rise to the
problem-size effect in American adults (Lefevre and Liu, 1997;
Penner-Wilger et al., 2002).

Interestingly, a previous study found greater activity in the left
STG (as well as in the left IFG) for single-digit addition in English-
speakers as compared to Chinese-speakers (Tang et al., 2006).
Because this study did not categorize problems as a function of
their sizes, it is impossible to know whether the effect was driven
by small or large problems (or both). Nonetheless, an examina-
tion of the pattern of activity in the left STG in the present study
(see Figure 4B) indicates that small multiplication problems also
elicited numerically higher activity in American than Chinese
participants. Therefore, the higher left STG activity for English
than Chinese speakers observed by Tang et al. (2006) might have
been primarily driven by small addition problems and may reflect
greater retrieval effort for these problems in English speakers.
Critically, although Tang et al. (2006) did not find any reliable
group differences in regions associated with numerical calcula-
tion, English-speakers tended to engage more extensive activity in

the right parietal cortex than Chinese-speakers (see Figure 1 in
Tang et al., 2006). Our findings suggest that this effect might have
been driven by large problems and might reflect a greater use of
calculation procedures in English than Chinese-speakers.

INDIVIDUAL DIFFERENCES IN THE MULTIPLICATION PROBLEM-SIZE
EFFECT
Further support for the greater use of calculation procedures in
American than Chinese participants is given by an analysis of
the inter-individual variability in the multiplication problem-size
effect. We found that a larger behavioral problem-size effect was
associated with a larger neural problem-size effect in both the IPS
and ACC across American participants, but not across Chinese
participants. Furthermore, this relationship was significantly
stronger for American than Chinese participants. Therefore, even
if the problem-size effect is likely to result from the use of
calculation procedures in most American participants, this is
especially true for participants exhibiting the largest problem-size
effects. This was, however, not the case for Chinese participants.
Surprisingly, we did not find any relationship between behavioral
and neural multiplication problem-size effects in the left mid-
superior temporal gyrus across Chinese individuals. Although
it is always difficult to interpret a null effect, it is possible that
this lack of relationship might be due to the smaller inter-
individual variability observed in the Chinese sample than in the
American sample. Future studies with a larger number of subjects
and greater inter-individual variability might examine the rela-
tionship between behavioral and neural problem-size effects in
Chinese participants.

OTHER FACTORS THAT MAY HAVE INFLUENCED THE BETWEEN-GROUP
COMPARISON
Although we argue that the between-group differences observed
here result from divergences in educational backgrounds across
countries, other potential factors should be considered. For exam-
ple, between-group differences might result from differences in
MRI scanners (Costafreda et al., 2007; Gountouna et al., 2010;
Yendiki et al., 2010), language processing (Bolger et al., 2005)
and/or performance levels (Church et al., 2010). However, none
of these factors appear to provide a better explanation of our find-
ings than differences in educational methods across countries.
First, although the present data were acquired at two different
sites, the exact same experimental protocol, scanner type and
scanning protocol were used in both sites. Several studies have
shown that, when these precautions are taken, activation variabil-
ity due to scanner site is small compared to inter-individual vari-
ability in the cognitive task (Costafreda et al., 2007; Gountouna
et al., 2010; Yendiki et al., 2010). Those studies all conclude that
multi-site studies are reliable. Second, arithmetic problems were
presented in the same Arabic numeral form to both Chinese
and American participants, thus controlling for linguistic differ-
ences between groups. Third, a limitation of our study is that
we did not acquire measures of intellectual and arithmetic abil-
ities for each participant. Therefore, the differences between the
Chinese and American groups might be attributable to overall
differences in arithmetic skill, rather than differences in educa-
tional background. This may be problematic because differences
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in proficiency have been found to affect the neural bases of arith-
metic processing (Grabner et al., 2007; Matejko et al., 2012; Price
et al., 2013). However, this possibility is unlikely for two rea-
sons. Firstly, behavioral research has shown that equating groups
of Chinese and North-American adults for overall (multi-digit)
arithmetic performance does not remove differences in single-
digit multiplication performance: Chinese are still faster overall
and exhibit a smaller problem-size effect than North-Americans
(Lefevre and Liu, 1997). Therefore, the smaller multiplication
problem-size effect observed in Chinese than American partic-
ipants is more likely to be due to cultural and/or educational
factors than proficiency per se (Lefevre and Liu, 1997). Secondly,
we controlled for overall group differences in skill by (1) match-
ing groups in terms of size of the problem-size effect and (2)
including in our fMRI analyses the behavioral problem-size effect
and the overall response time as nuisance covariates. Therefore,
although we cannot definitely rule out the hypothesis that some
of our results might be attributable to differences in profi-
ciency, we think that the differences observed in the present
study are more likely to stem from differences in educational
backgrounds.

CONCLUSION
In sum, our findings support the idea that the source of the mul-
tiplication problem-size effect may vary across countries (Penner-
Wilger et al., 2002). Specifically, the neural dissociation observed

between STG and IPS for large and small problems indicates that
the effect is more likely to be due to reliance on verbal representa-
tions in Chinese than American individuals, while it might more
likely result from the use of calculation procedures in American
than Chinese individuals. Our direct demonstration of differ-
ences in the reliance on these underlying mechanisms in Chinese
and American adults is in keeping with prior behavioral research
based on self-report and analyses of reaction time (Lefevre and
Liu, 1997; Campbell and Xue, 2001; Penner-Wilger et al., 2002).
Together with Tang et al. (2006), our study indicates that the neu-
ral bases of elementary arithmetic are modulated by educational
differences across countries. Such findings might be important for
understanding the effects of different teaching methods on the
neural representations of arithmetic (Dowker, 2005). They might
also improve our knowledge of the neural bases of math learning
disabilities across countries, as those are likely to stem from dif-
ferent sources (Geary, 2010) depending on education and cultural
background.
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Different specific mechanisms have been suggested for solving single-digit arithmetic
operations. However, the neural correlates underlying basic arithmetic (multiplication,
addition, subtraction) are still under debate. In the present study, we systematically
assessed single-digit arithmetic in a group of acute stroke patients (n = 45) with
circumscribed left- or right-hemispheric brain lesions. Lesion sites significantly related
to impaired performance were found only in the left-hemisphere damaged (LHD) group.
Deficits in multiplication and addition were related to subcortical/white matter brain
regions differing from those for subtraction tasks, corroborating the notion of distinct
processing pathways for different arithmetic tasks. Additionally, our results further point
to the importance of investigating fiber pathways in numerical cognition.

Keywords: arithmetic, arithmetic facts, number processing, lesion analysis, stroke patients, fiber pathways

INTRODUCTION
Despite numerous fMRI studies reporting the neural correlates of
number processing (e.g., see Dehaene, 2009; Nieder and Dehaene,
2009 for reviews; see Arsalidou and Taylor, 2011 for a meta-
analysis), there is still no agreement about the cognitive mecha-
nisms involved in basic arithmetic, nor have its neural bases been
delineated sufficiently. There is no consensus even with regard
to single-digit operations, such as “2 × 3,” which are encoun-
tered frequently in every-day life and are assumed to be solved
by retrieval from long-term memory without additional compu-
tation. These problems are commonly referred to as arithmetic
facts, however a precise definition is rarely given (Domahs and
Delazer, 2005).

Neuropsychological observations of double dissociations sug-
gest that arithmetic facts are stored separately from other numer-
ical information such as arithmetic concepts or procedures
(Warrington, 1982; McCloskey et al., 1991b; McCloskey, 1992;
Hittmair-Delazer et al., 1995; Delazer and Benke, 1997). The cur-
rently most influential model of numerical cognition, the Triple
Code Model (TCM) by Dehaene et al. (2003) refers only to mul-
tiplication table facts, whereas addition is seen as a mixed oper-
ation, in which both direct and indirect processing pathways can
be involved. In contrast, subtraction is assumed to rely essentially
on magnitude processing, and it does not involve language-based
processes (Lee and Kang, 2002). However, there is evidence that
different arithmetic operations can be solved via diverse strategies
(Lee, 2000) and considerable individual differences in strategy
use have been reported (LeFevre et al., 1996a; Campbell and
Xue, 2001; Thevenot et al., 2007). Self-reports suggest that the

fact-retrieval strategy can be applied for easy items from all arith-
metic operations, whereas it is much more often applied for
multiplication (82%) and addition (75%) than for division and
subtraction (cf. Campbell and Xue, 2001; Grabner et al., 2009).
Thus, it has been suggested that single-digit addition tasks with
sums smaller than ten, which do not involve “carrying,” can
also be retrieved from memory directly (LeFevre et al., 1996b;
Stanescu-Cosson et al., 2000; Klein et al., 2013). Findings by
Thevenot et al. (2013) suggest that the retrieval strategy for addi-
tion tasks is more common in older as compared to younger sub-
jects. Moreover, the bimodal distribution of reaction time (RT)
data (Campbell, 2008) indicates that basic subtraction problems
can also be solved by the retrieval strategy.

Another question concerns the interrelation of arithmetic
operations. If different operations can be solved by the same
strategy—do they share common neural representations? Results
of neuroimaging studies provide evidence for separate represen-
tations (Arsalidou and Taylor, 2011; Rosenberg-Lee et al., 2011),
however there is no comprehensive data from a group study
in patients so far. The TCM (Dehaene et al., 2003) posits that
arithmetic fact retrieval is subserved by left-hemispheric peri-
sylvian and language areas. So far the TCM neither specifies in
detail all language areas involved nor how they are connected for
processing numerical information.

Therefore, the current study aimed to investigate single-digit
arithmetic tasks in different arithmetic operations (i.e., addi-
tion, subtraction, multiplication) in a sample of 45 acute stroke
patients in order to identify the brain structures crucial for their
execution.
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The variability of diagnostic tests and methodologies used in
previous neuropsychological studies on single-digit arithmetic
does not allow for direct comparisons. Single case studies have
included patients with very divergent etiologies, such as closed
head injury (e.g., McCloskey et al., 1991a), Fahr’s disease (Delazer
et al., 2004), dementia (e.g., Pesenti et al., 1994), or radiotherapy
following leukemia (Hittmair-Delazer et al., 1995). These studies
are informative as to the nature of the putative cognitive pro-
cesses involved in relation to some processing model, yet they are
not suited for determining critical brain areas involved in par-
ticular functions. Voxel-wise lesion-behavior mapping (VLBM)
methods applied in an unselected stroke sample are considered
a powerful approach to identify not only those brain structures
which are “involved” in arithmetic fact retrieval but rather which
are critically required for normal functioning. These methods
implement inferential statistical analyses irrespective of clinical
diagnoses or specified regions of interest. Moreover, these meth-
ods also allow to identify potential new brain areas in the network
explored (Bates et al., 2003; Rorden et al., 2007). However, for
valid VLBM-findings the examined sample should be unselected
and the lesions should possibly cover the entire brain or at least
large portions of it. Furthermore, because of neural plasticity,
reorganization processes, and spontaneous recovery changes in
shape, location, and functional integrity of brain tissue depend on
the time post-stroke, potentially affecting the results of a VLBM
analysis (Karnath and Rorden, 2012). To minimize these interven-
ing sources, we decided to investigate patients only in the acute
phase.

The aim of the current study was two-fold. First, we aimed at
identifying brain structures critical for the execution of single-
digit calculation. Based on the assumptions of the TCM and
results of further neuroimaging studies, as summarized in a
recent meta-analysis (Arsalidou and Taylor, 2011), we expected
involvement of left perisylvian regions in arithmetic fact retrieval.
Second, the study set off to systematically examine whether
single-digit problems from different arithmetic operations are
dependent on the same or different neural circuits.

METHODS
PATIENTS
Forty-five acute stroke patients, 21 left-hemisphere damaged
(LHD), and 24 right-hemisphere damaged (RHD) participated in
the study. This unselected sample comprised all patients consecu-
tively admitted to the Center of Neurology at Tübingen University
Clinic during 33 months, who met the inclusion criteria: MR or
CT-documented cerebral stroke with cortical involvement, max.
14 days post-stroke, no previous lesions, no other neurological
or psychiatric diseases, no substantial micro-angiopathy or white
matter alterations, right-handedness, and German language as
their mother tongue. Demographic and clinical data of all patients
is presented in Table 1 and Supplementary Table 1. LHD patients
were tested for language comprehension with the “Color-Figure”
subtest items from the German adaptation of the Aphasia Check-
List (ACL; Kalbe et al., 2005), and language production with the
“Picture naming task” from the Aachener Aphasia-Bedside Test
for acute patients (AABT; Biniek et al., 1992). Right-hemisphere
patients underwent hemispatial neglect testing consisting of two

cancellation tasks: “Letter Cancellation Task” (Weintraub and
Mesulam, 1985) and “Bells test” (Gauthier et al., 1989), a copy-
ing task (Johannsen and Karnath, 2004), and a line bisection task
(Heilman and Valenstein, 1979). Visual field deficits were assessed
in all patients with a confrontation visual field test.

All patients gave their informed consent. The study was con-
ducted in accordance with the ethical standards laid down in
the 1964 Declaration of Helsinki and was approved by the ethics
committee of the University Clinic Tübingen.

STIMULI AND PROCEDURE
Participants performed single-digit multiplication, addition, and
subtraction tasks as part of a standardized neuropsychologi-
cal battery examining number processing performance (Number
Processing and Calculation (NPC) Battery; Delazer et al., 2003),
also providing cut-off scores for impaired performance. In the
NPC battery the three different arithmetic tasks constitute sepa-
rate subtests. The standardized procedure requires that the testing
per subtest is aborted after five consecutive incorrect or missing
responses. Like for most cognitive neuropsychological assessment
procedures, there is no time limit for answering the individual
items. Self-corrections were allowed. Each calculation task was
presented on a separate A4-sheet of paper (black digits printed
on white paper, digit height: 7 mm). Sheets were aligned centrally
on a table in front of the patient. Participants responded orally.

For the subsequent correlation of addition and subtraction
tasks with lesion information we considered only those items of a
subtest, which did not involve a carry or borrow operation (i.e.,
the sum was smaller than 10). Also, none of the items involved “0”
or “1” as operands, because they are assumed to represent a dis-
tinct class of arithmetic problems implying rule-based processing
(McCloskey et al., 1991a). With these item restriction criteria, the
multiplication task comprised 36, the addition task 10, and the
subtraction task 15 items.

Table 1 | Demographic and clinical data of the left- and right-

hemisphere damaged patients.

LHD RHD

n 21 24

Sex (f/m) 15/6 11/13

Age (years) Mean (SD) 61.6 (16.1) 61.0 (14.0)

Stroke type Ischemic stroke 17 21

Hemorrhagic stroke 4 3

Interval lesion onset
to examination (days)

Mean (SD) 4.3 (1.9) 5.5 (2.8)

Interval lesion onset
to imaging (days)

Mean (SD) 2.1 (2.0) 3.7 (3.5)

Education (years) Mean (SD) 14.1 (4.4) 12.3 (4.5)

Contralateral paresis % present 28.6 66.7

Visual field deficit % present 23.8 20.8

Aphasia % present 38.1 –

Neglect % present – 16.7

*Except for “Contralateral paresis” (χ2 = 6.5, p = 0.011) there are no significant

differences between the groups.
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Table 2 | Raw scores (number of items solved correctly) observed for the two patient groups in each arithmetic task.

LHD (n = 21) RHD (n = 24)

Items Mean Median SD Range Mean Median SD Range

Addition 10 9.1 10.0 2.3 0–10 10.0 10.0 0.0 10–10

Subtraction 15 13.4 15.0 3.4 1–15 14.8 15.0 0.4 14–15

Multiplication 36 32.0 33.0 7.5 2–36 34.0 35.5 3.1 24–36

To operationally determine impaired performance in the arith-
metic tasks, we used cut-off criteria. For multiplication the cut-
offs provided with the NPC-battery were used (cf. Delazer et al.,
2003). The NPC-battery provides no separate cut-offs for addi-
tion items with sums below 10, or for subtraction items with
minuends below 10. However, ceiling performance is expected in
a healthy population. Thus, patients were considered to be show-
ing a deficit in a given fact-retrieval task if their performance
was below a mastery criterion computed by means of a proce-
dure derived from criterion-referenced measurement. Using exact
binomial (95%, i.e., 1 − α) confidence intervals computed for the
relative frequency of items solved correctly, performance is con-
sidered to be in the mastery range if the upper bound of that
interval is higher than some (high) criterion probability, e.g., pc =
0.95 or pc = 0.99. In case of very easy tasks like addition under 10,
pc = 0.99 was considered to be appropriate. For the somewhat
more difficult subtraction facts pc = 0.95 was employed.

In addition, to detect possible dissociations for individual
patients’ performance on different tasks, we performed specific,
freely available single-case statistical tests for differences in level
of performance (http://homepages.abdn.ac.uk/j.crawford/pages/
dept/SingleCaseMethodology.htm; Deloche and Willmes, 2000;
cf. Crawford and Garthwaite, 2005; Willmes, 2010) implementing
operational definitions for different types of performance dissoci-
ations (classical and strong) as conceptually proposed by Shallice
(1988).

LESION ANALYSIS
We used diffusion-weighted images for patients, who underwent
MR-imaging within the first 48 h after stroke-onset (Weber et al.,
2000), or T2-weighted fluid-attenuated inverse-recovery (FLAIR)
contrast MR-imaging, if images were acquired later than that
(Brant-Zawadzki et al., 1996; Noguchi et al., 1997; Ricci et al.,
1999; Schaefer et al., 2002). If MR-images were not available,
we employed CT-images. If several subsequent imaging data sets
were available for the same patient, we chose the session acquired
closest to the time of behavioral testing and providing the best
imaging contrast for lesion demarcation.

Lesion borders were marked directly in the individual MR-
or CT-scan using MRIcron software (www.mricro.com/mricron).
Subsequently, both the anatomical scan and the lesion shape
were mapped onto stereotaxic space using the “Clinical Toolbox”
for normalization (Rorden et al., 2012; www.mccauslandcenter.
sc.edu/CRNL/clinical-toolbox) implemented in SMP8 (www.fil.
ion.ucl.ac.uk/spm). Some of the normalized lesion images had
to be adjusted manually to the standard template by validating
specific anatomical landmarks such as the basal ganglia. This was
particularly the case in patients with extended hemorrhage, in

which the normalization algorithm may lead to an unrealistic
specification.

To investigate the relationship between lesion location and per-
formance in the calculation tasks, we carried out separate VLBM
analyses for each arithmetic operation and patient group (LHD
or RHD, respectively) using the non-parametric Liebermeister
test of the NPM software (Rorden et al., 2007) provided by
the MRIcron package. For each voxel, the two subgroups of
patients with resp. without a lesion in a given voxel were com-
pared with regard to showing resp. not showing a deficit in the
particular task. Because of the heavily left-skewed distributions
of total scores correct per arithmetic operation item set, only
this dichotomous performance measure was employed. Voxels
damaged in at least one patient were included in the analy-
sis. The results were corrected for multiple comparisons using
a permutation-based family-wise error-correction approach with
p < 0.05. Cortical and subcortical areas corresponding to voxels
with a significant lesion-performance link were identified in the
MNI-single subject space according to the Anatomical Automatic
Labeling atlas (Tzourio-Mazoyer et al., 2002). White matter tracts
were identified according to the diffusion tensor imaging (DTI)-
based atlas by Catani and Thiebaut de Schotten (2012). In addi-
tion, probabilistic cytoarchitectonic maps of the white matter
fiber tracts from the JuBrain atlas (Bürgel et al., 2006), imple-
mented in the Anatomy Toolbox of the Juelich Research Center,
were consulted to safeguard against possible differences in fiber
tract labeling due to methodological differences in preparing
different atlases.

RESULTS
Figure 1 illustrates the conventional lesion density plot for all n =
45 patients with either LHD or RHD.

At the behavioral level, in the LHD group, 2 patients (L09,
L13) showed a deficit in multiplication, 6 patients (L01, L04, L08,
L13, L15, L16, L19) were impaired in single-digit addition, and
4 patients (L01, L04, L13, L15) in single-digit subtraction. In the
RHD patient group, 3 patients (R09, R15, and R23) were impaired
in single-digit multiplication. No patient with RHD was impaired
in single-digit addition or subtraction. Nevertheless, overall per-
formance was good, as is apparent from the raw data presented
in Table 2. Testing was aborted due to five consecutive incorrect
responses only in patient L01 for addition and subtraction, and
patient L13 for multiplication.

Additionally, dissociation in performance between the three
arithmetic operations was observed. Details are given in the upper
panel of Table 3.

Several patients suffered from aphasia. To further explore the
relationship of language and arithmetic deficits we tested for

Frontiers in Human Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 286 | 58

http://homepages.abdn.ac.uk/j.crawford/pages/dept/SingleCaseMethodology.htm
http://homepages.abdn.ac.uk/j.crawford/pages/dept/SingleCaseMethodology.htm
www.mricro.com/mricron
www.mccauslandcenter.sc.edu/CRNL/clinical-toolbox
www.mccauslandcenter.sc.edu/CRNL/clinical-toolbox
www.fil.ion.ucl.ac.uk/spm
www.fil.ion.ucl.ac.uk/spm
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Mihulowicz et al. Single-digit arithmetic

FIGURE 1 | Simple lesion-overlap for the LHD resp. the RHD patient group. The number of overlapping lesions is color-coded with increasing frequencies
from violet (n = 1) to red (n = maximum observed).

Table 3 | Patients with dissociations between arithmetic and

language tasks.

Dissociation Classicala Strongb

Addition > Subtraction L04

Multiplication > Subtraction L01

Subtraction > Multiplication L13

Multiplication > Addition L01

Addition > Multiplication R09, R15 L13

Picture naming > Addition L01

Addition > Picture naming L16, L18 L10

Picture naming > Subtraction L01

Subtraction > Picture naming L10, L18

Picture naming > Multiplication L13

aOnly one function impaired and significantly poorer than the non-impaired

function.
bBoth functions impaired, but significantly different from each other (cf. Crawford

and Garthwaite, 2005).

dissociations between performance in each arithmetic opera-
tion and the picture naming task. The results are presented in
the lower panel of Table 3. In fact, there were patients (L09 for
multiplication, L04 for subtraction) who were impaired on an
arithmetic task despite no language deficit. However, these dif-
ferences were not large enough to qualify as dissociation. All of
the cases reported in Table 3 who performed significantly better
on a language task than on an arithmetic task showed a strong
dissociation.

Results of the VLBM analyses are presented in Figure 2. In the
LHD patient group, deficits in single-digit multiplication were sig-
nificantly associated with a lesion in the superior longitudinal
fascicle II (SLF II) according to the JuBrain atlas (Bürgel et al.,
2006). This fiber bundle corresponds to the structure termed
longitudinal segment of the arcuate fascicle (AF) according to
the Atlas of Human Brain Connections (Catani and Thiebaut
de Schotten, 2012) as apparent when overlaying these two path-
way maps on the same template. In contrast, deficits in single-
digit addition were significantly related to lesions of the insula,
Rolandic operculum, Heschl’s gyri, inferior frontal operculum,
external capsule and the AF, but not the SLF II as described by
the JuBrain atlas. For single-digit subtraction significant lesion-
behavior correlations were found for insula, external/extreme
capsule (EC/EmC)-system, and putamen. In the RHD patient
group no significant correlations were observed1 .

According to Catani and Thiebaut de Schotten (2012) the AF
can be further partitioned into three segments: anterior, long and
posterior segment. The long segment corresponds to the dorsal
pathway directly connecting frontal, parietal and temporal cor-
tices, whereas the anterior segment corresponds to more dorsal
(superior) fibers connecting temporal and frontal regions via the
parietal Geschwind’s area. With regard to this partition of the

1For the size of the current sample dichotomous analysis is the method of
choice (Rorden et al., 2007). Yet, an analysis of continuous data (i.e., without
cut-offs) using the Brunner-Munzel test revealed similar results; however, for
addition the result was only marginally significant due to the overall small
sample.
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FIGURE 2 | (A) Statistical voxel-wise lesion-behavior mapping (VLBM)
analyses using the Liebermeister-test statistic for the dichotomous
deficit yes/no-criterion in the three arithmetic tasks in 21 LHD
patients. Plotted are voxels that survived a permutation-test based

FEW correction at p < 0.05. Areas in red are associated with deficits
in addition, in blue with subtraction, and in green with multiplication.
Color bars indicate z-scores. MNI coordinates of transversal sections

(Continued)

Frontiers in Human Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 286 | 60

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Mihulowicz et al. Single-digit arithmetic

FIGURE 2 | Continued
are indicated. (B) Significant lesion areas from panel A overlaid on white
matter pathways: in orange the AF according to the DTI-based atlas by Catani
and Thiebaut de Schotten (2012), and in violet the SLF according to the
probabilistic cytoarchitectonic JuBrain atlas (Bürgel et al., 2006). The graded
shadowing represents the probability of a given voxel belonging to the

particular fascicle, where brighter color indicates higher probability. (C)
Results of the VLBM analyses for multiplication facts (yellow) and addition
facts (red) overlaid on two segments of the AF according to Catani and
Thiebaut de Schotten (2012). The anterior segment of the AF is depicted in
green and the long segment in blue. Note that the segments overlap partially.
MNI coordinates of transversal sections are also indicated.

AF the current results suggest that the part of the lesion map
related to multiplication facts primarily comprised the long seg-
ment, while the map for addition mostly covered the anterior
segment (Figure 2C). However, because the two segments of the
AF partially overlap, a clear-cut distinction was not possible.

DISCUSSION
The objective of the current study was to identify brain regions
critical for solving single-digit arithmetic tasks employing VLBM
in a sizeable group of stroke patients. In particular, we aimed
to explore differences in brain areas subserving this process in
different arithmetic operations.

DISSOCIATION OF OPERATIONS
The present results show dissociations on the behavioral level,
as well as distinct pathways for solving of single-digit tasks in
different arithmetic operations. Deficits in multiplication were
associated with more superior lesions in the SLF II according
to the JuBrain atlas (Bürgel et al., 2006) than deficits in addi-
tion, although they both involved the AF according to the atlas
by Catani and Thiebaut de Schotten (2012). In contrast, signif-
icant lesion maps for subtraction involved the external/extreme
capsule-system and insular cortex. These results support the
notion of relative distinctness of arithmetic operations, suggest-
ing that even single-digit additions and subtractions are processed
differently than multiplication table facts.

This finding is in line with the evidence from functional neu-
roimaging studies suggesting partly distinct processing patterns
for different arithmetic tasks, as revealed by the meta-analysis
of Arsalidou and Taylor (2011). However, Rosenberg-Lee et al.
(2011) found different patterns of activations for addition, sub-
traction and multiplication tasks (carefully matched for difficulty
and processing speed) only in the right hemisphere, whereas
the left hemisphere activations were overlapping. In contrast, in
the current study we observed differences between operations in
a group of LHD patients, while no significant lesion-symptom
correlations were found for the RHD patients group. Similar dis-
crepancies have repeatedly been shown for language functions,
where the regions of fMRI-activations in language processing did
not exactly correspond to regions critical and necessary for the
execution of a particular function (Binder et al., 2009). Another
possible explanation for our divergent findings is the type of
task employed, which was a verification task in the study by
Rosenberg-Lee et al. (2011) in contrast to a production task in
the current study.

The question about the source of discrepancies among arith-
metic operations remains open. It has previously been argued that
the neural correlates underlying the representations of multipli-
cation table facts and subtraction problems diverge, because they
rely on different solution strategies (Dehaene and Cohen, 1997;

Lee, 2000; Tschentscher and Hauk, 2014). Although single-digit
addition and subtraction problems analyzed in the current
study are commonly considered all to be solved predominantly
via retrieval from long term memory in a normal population
(Campbell and Xue, 2001; Grabner et al., 2009), the results of
Fayol and Thevenot (2012) and Barrouillet and Thevenot (2013)
contradict this view: the reported solution times suggest that—
in contrast to multiplication—even single-digit addition and
subtraction might not be directly retrieved from memory. In
the present study we measured patients’ performance only with
respect to accuracy. This approach is more common in neuropsy-
chological testing, as RTs are highly variable and less informative
in acute stroke patients. Thus, it remains ambiguous whether
the observed dissociations result from distinct semantic repre-
sentations or processing strategies underlying different arithmetic
operations. Another source of differences might be the relative
problem size of different arithmetic operations. While products of
single-digit addition and subtraction task remain relatively small,
single-digit multiplication yields much larger results. Several
studies aiming at a comparison of different arithmetic operations
have struggled with this issue (e.g., Dehaene and Cohen, 1991,
1997; Kazui et al., 2000; Lee, 2000; Van Harskamp and Cipolotti,
2001; Kawashima et al., 2004; Delazer et al., 2006; Ischebeck et al.,
2006; Zhou et al., 2006). However, we are confident that for
the specific question of the current study—single-digit tasks that
could possibly be retrieved as rote facts—the issue of problem size
is less dramatic than in case of complex calculation tasks.

Altogether, along with several neuroimaging studies (e.g.,
Arsalidou and Taylor, 2011; Prado et al., 2011; Fayol and
Thevenot, 2012; Tschentscher and Hauk, 2014) our results chal-
lenge the traditional cognitive psychology models (Ashcraft, 1992;
Campbell and Oliphant, 1992; Siegler and Shipley, 1995) assum-
ing that single-digit addition, subtraction and multiplication are
all solved through the use of very similar retrieval strategies.

DISCONNECTION AS A SOURCE OF ARITHMETIC DEFICITS
Interestingly, the main sites revealed by the VLBM analyses were
located in the white matter of the brain. This may be explained
by the fact that the cortical areas critical for arithmetic were to a
large extent spared in our patient sample: most importantly, the
angular gyrus (AG).

One of the claims of the TCM is the involvement of the
left AG in language-based retrieval of arithmetic facts. This was
confirmed in both neuroimaging studies in healthy participants
(Delazer et al., 2003; Grabner et al., 2009; Zamarian et al., 2009),
and several brain damaged patients (Cohen et al., 2000; Lee,
2000). Results of an fMRI study based on self-reports about cal-
culation strategies further point to involvement of the left AG
in fact-retrieval (Grabner et al., 2009). However, Zaunmüller
et al. (2009) reported a diverging finding in a patient with severe
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multiplication fact-retrieval deficits, although his brain lesion
did not involve the left AG (see also Van Harskamp et al., 2005
for a similar case). Another patient with preserved single digit
multiplication, despite a lesion extending to the supramarginal
gyrus and part of the left AG, was also described (Van Harskamp
and Cipolotti, 2001). However, this latter patient suffered from
dementia and brain atrophy.

Apparently, disruption of white matter tracts can be critical for
arithmetic. This lesion locus seemed to be present in some single
case studies (e.g., Van Harskamp et al., 2005; Zaunmüller et al.,
2009) as well. For instance, a case of pure Gerstmann syndrome
has been described after a subcortical lesion beneath, but sparing
the AG itself (Mayer et al., 1999). In (Zaunmüller et al., 2009)
both a lesion of the ventral external/extreme capsule system and
the dorsal SLF II were reported but not discussed. While we agree
with the original interpretation that a lesion of the basal ganglia
may have added to the severe multiplication impairment of the
patient, we want to suggest that even though the left AG was not
affected by the lesion, this area was no longer connected to frontal
areas such as Broca’s area. Therefore, the observed disconnections
of both dorsal and ventral fiber pathway systems may also account
for the observed multiplication impairment.

Whereas cortical substrates of numerical cognition have been
investigated extensively, white matter pathways mediating the
complex, multimodal processes of calculation have not yet been
attended to systematically. Individual differences in white matter
integrity have been shown to predict arithmetic skills in chil-
dren. In particular, arithmetic approximation skills correlated
with fractional anisotropy in the anterior portion of the SLF
(Tsang et al., 2009) and performance on a basic equations test cor-
related with fractional anisotropy in the left inferior lateral fascicle
(Van Eimeren et al., 2008). In adolescents, fractional anisotropy
and radial diffusivity of the left SLF, left superior corona radi-
ata (as labeled by the JHU-atlas Mori et al., 2009 corresponding
to the AF in Catani and Thiebaut de Schotten, 2012), and the
left cortico-spinal tract correlated with performance on the math
subtest of the Preliminary Scholastic Aptitude Test, which is
a nationwide administered scholastic measure, including word
problems, geometry, algebraic equations, and complex arithmetic
(Matejko et al., 2013). In adults, a combined fMRI-DTI study
revealed a correlation between gray matter activation during cal-
culation (all four arithmetic operations taken together) and the
microstructure of the adjacent white matter (Van Eimeren et al.,
2010). Activation of the left AG correlated significantly with the
fractional anisotropy values of left superior corona radiata. For
small (product < 25) but not for large problem size items, the
correlation was significant for the superior coronae radiatae bilat-
erally. Thus, some evidence pointing to the importance of white
matter connections for arithmetic functioning has already been
published.

RELATION TO THE TCM
The current results challenge the traditional psychological models
of arithmetic but also the currently most popular neuropsycho-
logical model—the TCM (Dehaene et al., 2003).

Figure 1 reveals that the most important anatomical struc-
tures implied by the TCM, i.e., the left angular gyrus and the

intraparietal sulcus (IPS) bilaterally, were not covered in our
sample of LHD patients. Therefore, based on the premises of
the modular cognitive neuropsychological TCM, one should not
expect any of the patients to present with deficits in calculation,
which were nonetheless observed in our sample.

One of the central postulates of the TCM is the general dis-
tinction between a mental number magnitude representation on
the one side and verbally mediated fact retrieval processes on the
other side. According to the TCM, arithmetic problems can be
solved via two basic routes. First, rote and overlearned arithmetic
facts can be retrieved from long-term memory without relying on
quantity information via the so-called direct route. Alternatively,
the arithmetic problem gets related to quantity information via
the indirect semantic route in the bilateral intraparietal cortex
and only then submitted to left perisylvian regions, in particu-
lar the left angular gyrus, and finally linked to a number word to
be uttered (e.g., in case of more difficult tasks).

The TCM (Dehaene et al., 2003) does not yet specify the neu-
roanatomical connections between the proposed modules. The
first attempt to systematically investigate white matter pathways
involved in numerical cognition was made by Klein et al. (2013).
The authors performed probabilistic DTI-based fiber tracking,
taking as seed points areas of activation for easy and complex
addition tasks (assumed to represent fact-retrieval and number
magnitude-based processing, respectively). The resulting network
included all major sites predicted by the TCM plus several other
areas previously proposed as an amendment to the TCM. The
authors identified two separate networks for easy and more diffi-
cult calculation, both involving dorsal (SLF) and ventral pathways
(external/extreme capsule system) connecting frontal and pari-
etal regions. Regions involved primarily in easy arithmetic tasks
were connected predominantly by ventral fibers belonging to the
middle longitudinal fascicle, converging in the sub-insular white
matter near the claustrum as well as superior and medial part of
the external and/or extreme capsule (Klein et al., 2013). These
ventral pathways were also crucial for single-digit subtraction in
the present study.

In contrast, deficits in addition and multiplication fact
retrieval were associated with lesions of the dorsal pathways. In
particular, lesion maps for multiplication facts involved major
parts of the long segment of the AF (corresponding to the SLF
II in other atlases), which constitutes a major, direct connection
between temporal and temporo-parietal areas involved in arith-
metic fact retrieval. For addition, the significant lesion map did
not involve the SLF II bundle, although it also overlapped with
the AF—most probably with its anterior part. This pattern is
consistent with the TCM, which regards addition as a mixed oper-
ation, relying on both fact retrieval and (intraparietal) number
magnitude processing. Accordingly, we observed that addition
deficits may relate to lesions of both, the long segment and the
anterior segment of the AF, which connects frontal with tempo-
ral parts indirectly via intraparietal areas (Catani et al., 2005).
Multiplication, based primarily on rote fact retrieval, seems to
rely rather on pathways directly connecting frontal and temporo-
parietal areas.

Thereby, our results also demonstrate the importance of white
matter pathway connections in the human brain. A recent atlas
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guiding glioma surgery suggests that most white matter path-
ways are not resectable (i.e., resection would most probably cause
functional loss; Ius et al., 2011). Thus, for the interpretation
of impairments in behavior observed in single-case studies or
voxel-based lesion mapping studies not only gray matter lesions
should be investigated but also disconnections of white matter
fiber pathways.

LIMITATIONS AND FUTURE PERSPECTIVES
Although the significant lesion maps for addition and subtraction
deficits did not overlap, current statistical methods implemented
in MRIcron do not yet allow for a direct (multivariate) com-
parison, which is a common problem in neuroscience research
(Nieuwenhuis et al., 2011). The dissociation of operations can
thus only be tested based on the behavioral data, where in fact
significant differences were found.

However, at the behavioral level, three out of four patients
impaired in subtraction also showed a deficit in addition. Since
addition and subtraction are complementary operations, addi-
tion may be used as a back-up strategy to solve subtraction tasks
and vice versa. In case one operation is impaired, the complemen-
tary back-up strategy is missing, thus making the other operation
more error-prone. Alternatively, an association between impair-
ments may be due to other reasons.

The cortical parts of the maps with significant lesion-
performance association for addition and subtraction both
encompass the insula, which has recently been suggested by
Arsalidou and Taylor (2011) to be included in the TCM. These
authors argue that the insula plays a rather non-specific role,
being involved in switching between working memory and default
states during problem solving, since in other studies the insula
was associated with error processing (Hester et al., 2004) or the
execution of responses (Huettel et al., 2001).

The current results suggest that solving single-digit arithmetic
operations is subserved predominantly by the left hemisphere.
This conforms with the majority of previous clinical evidence, on
which the earlier version of the TCM is based (e.g., Dehaene and
Cohen, 1997). In the fMRI literature left-lateralization of activa-
tion patterns is particularly evident for multiplication, whereas
other arithmetic operations have been found to activate both
hemispheres (e.g., Chochon et al., 1999; Zhou et al., 2007; Klein
et al., 2010). Nonetheless, some of the RHD patients also did
show deficits in solving arithmetic tasks: all of them only in
multiplication.

Further, in the current study we used a standardized neu-
ropsychological test. Like many other clinical assessments it only
appraises accuracy and not solution times, because response times
of acute patients are not as reliable and informative as in the
healthy population. However, it is also possible that a lesion
to a region causes slowing down of responses but no drop in
accuracy.

In the current study we investigated a group of patients in
acute stroke phase to avoid the influence of compensation and
brain reorganization processes. The next step would be to inves-
tigate longitudinal aspects of brain damage at different stages of
recovery from acute stroke to chronic phase. This would inform
about the stability of observed structure-behavior correlations in

light of spontaneous neural recovery and compensatory brain
plasticity.

CONCLUSIONS
In the present study, we provide first evidence from a voxel-
based lesion mapping analysis in a sizeable group of acute stroke
patients for distinct neural processing pathways in different arith-
metic operations. We identified different white matter pathways
that lead to arithmetic fact-retrieval deficits in different arith-
metic operations when disrupted. Our findings contribute to
reconciling diverging evidence about involvement of the AG in
arithmetic fact retrieval, by showing that a disconnection of a
cortical structure through a white matter lesion can be associ-
ated with deficits comparable to those after damage of the cortical
structure itself. Our results also argue for further amendments of
the anatomo-functional TCM, which does not yet provide inclu-
sion of white matter interconnections of the multiple (cortical)
processing modules it describes.
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Forty-four children between 6;0 and 7;11 took part in a study of derived fact strategy
use. They were assigned to addition and subtraction levels on the basis of calculation
pretests. They were then given Dowker’s (1998) test of derived fact strategies in addition,
involving strategies based on the Identity, Commutativity, Addend +1, Addend −1, and
addition/subtraction Inverse principles; and test of derived fact strategies in subtraction,
involving strategies based on the Identity, Minuend +1, Minuend −1, Subtrahend +1,
Subtrahend −1, Complement and addition/subtraction Inverse principles. The exact
arithmetic problems given varied according to the child’s previously assessed calculation
level and were selected to be just a little too difficult for the child to solve unaided. Children
were given the answer to a problem and then asked to solve another problem that could
be solved quickly by using this answer, together with the principle being assessed. The
children also took the WISC Arithmetic subtest. Strategies differed greatly in difficulty, with
Identity being the easiest, and the Inverse and Complement principles being most difficult.
The Subtrahend +1 and Subtrahend −1 problems often elicited incorrect strategies based
on an overextension of the principles of addition to subtraction. It was concluded that
children may have difficulty with understanding and applying the relationships between
addition and subtraction. Derived fact strategy use was significantly related to both
calculation level and to WISC Arithmetic scaled score.

Keywords: young children, mathematical development, arithmetical reasoning, derived fact strategies, addition,
subtraction

INTRODUCTION
There have been a number of studies of children’s use of derived
fact strategies in addition and subtraction (Baroody et al., 1983;
Russell and Ginsburg, 1984; Beishuizen et al., 1997; Carpenter
et al., 1997; Dowker, 1998, 2009; Blote et al., 2000; Star and Rittle-
Johnson, 2008; Jordan et al., 2009; Torbeyns et al., 2009; Cowan
et al., 2011). Certain derived-fact strategies appear very early
(Baroody and Gannon, 1984; Carpenter and Moser, 1984; Siegler
and Jenkins, 1989; Cowan and Renton, 1996). One of the earli-
est is the “counting-on-from-larger” concrete addition strategy,
whereby the child adds two numbers (e.g., 2 + 6), by representing
the larger number (e.g., with fingers) first, and then “counting-
on” the smaller number: “6, 7, 8–it’s 8!” This involves implicit
use (with or without an explicit knowledge) of the commutativ-
ity principle (Baroody and Gannon, 1984; Cowan and Renton,
1996). By contrast, there are many sophisticated strategies involv-
ing the use of decomposition and decomposition for multi-digit
arithmetic that appear late and appear to characterize unusually
skilled mental calculators (Hope and Sherrill, 1987).

There has been rather less research on children’s subtrac-
tion strategies than on their addition strategies. The use of
derived fact strategies might seem even more important with
regard to subtraction than addition, since children are gener-
ally less able to retrieve subtraction facts than addition facts
(Barouillet et al., 2008), so could benefit more from alterna-
tive strategies. Yet it may be more difficult for children to use

derived fact strategies for subtraction than addition, both because
their relative lack of known facts gives them less of a base from
which to use them, and because some derived fact strategies
for subtraction, such as the “subtraction by addition” strategy
(DeSmedt et al., 2010; Peters et al., 2013) depend on some
understanding of the inverse relationship between addition and
subtraction, which some studies suggest is difficult for children
(see below).

Most studies of derived fact strategies have not adjusted the
difficulty of the arithmetic problems to the child’s arithmetical
level, thereby risking on the one hand that some children may find
it easier to calculate or retrieve a solution directly than to derive it
on the basis of a principle, and on the other hand that they may
find the problems so difficult that they refuse to attempt them at
all, or make wild guesses. The present study aimed to adapt the
problems given to individual children to their previously assessed
calculation ability, and to present them with problems just a lit-
tle too difficult for them to solve unaided. More generally, most
studies have not looked at the relationship between derived fact
strategy use and arithmetical ability, but have focused more on
chronological age differences. The present study looks at rela-
tionships between the use of derived fact strategies and both
calculation performance level and performance on a standard-
ized arithmetic test emphasizing reasoning. Previous work by this
author (Dowker, 1998, 2005, 2009) has focused on individual dif-
ferences in general readiness to use derived fact strategies (i.e., the
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total number of such strategies used in a task), whereas this study
focuses more on the use of particular strategies.

Thus, the present study investigated 6- and 7–year-olds’ ability
to use derived fact strategies, based on a range of principles, for
both addition and subtraction. The principles were selected for
their applicability across a fairly wide range of difficulty. Some
derived fact strategies, such as most counting-based strategies or
those based on the use of doubles, are mainly applicable to single-
digit arithmetic (Carpenter and Moser, 1984; Baroody, 1987);
others, including certain decomposition strategies (Beentjes and
Jonker, 1987; Beishuizen, 1993; Beishuizen et al., 1997; Carpenter
et al., 1997; Fuson et al., 1997) are mainly applicable to multi-digit
arithmetic. Important as these strategies are, the present study
restricted the strategies under consideration to those that may be
used for both single-and multi-digit arithmetic

The Identity principle, which is here investigated for both addi-
tion and subtraction, is the most basic of arithmetical principles:
that if an arithmetical operation produces a given result, then
the repetition of the same arithmetical principle will produce the
same result. Its use in predicting the result of an arithmetical
operation is properly speaking not a “derived-fact strategy” but
a “same-fact” strategy. Thus, its inclusion in the study is intended
to investigate whether children tend to use the result of one oper-
ation to predict the result of another at all, over and above the
particular principles that they are able to use in such predictions.
This principle has received relatively little attention, but would
appear to be a cornerstone of the ability to use derived fact strate-
gies. It was predicted that while the majority of children would
use this strategy, a significant number would not.

The Commutativity principle is a crucial addition principle,
and one which appears to be used with some frequency by pri-
mary school children (Baroody et al., 1983; Russell and Ginsburg,
1984; Canobi et al., 1998; Dowker, 1998, 2009; Canobi, 2005).
Strategies based on commutativity only hold for addition and
therefore are only investigated for that operation.

Simple associativity-based strategies, involving the addition
and subtraction of 1, are also investigated. The N + 1 principle for
addition is the simplest of the assumptions that result from the
broader associativity principle. This is the principle that if one of
the addends is increased by 1, then the sum will also be increased
by 1. Other related principles, also to be investigated here, include:

The N − 1 principle for addition: that if one of the addends is
decreased by 1, then the sum will also be decreased by 1.
The Minuend + 1 principle for subtraction: that if the minuend
is increased by 1, then the remainder will also be increased by 1.
The Minuend −1 principle for subtraction: that if the minuend
is decreased by 1, then the remainder will also be decreased by 1.
The Subtrahend +1 principle for subtraction: that if the subtra-
hend is increased by 1, then the remainder will be decreased by 1.
The Subtrahend −1 principle for subtraction: that if the subtra-
hend is decreased by 1, then the remainder will be increased by 1.

Finally, this study investigates strategies based on the inverse rela-
tionship between addition and subtraction. Most studies (Bisanz
and LeFevre, 1990; Demby, 1993) suggest that strategies based
on the addition/subtraction Inverse principle (a + b − b = a;
if a + b = c, then c − b = a) are among the later-developing

derived-fact strategies, and are not typically used until the age of
about 10. However, Baroody et al. (1983) found that many 7-and
8-year-olds used this strategy, and that it typically preceded the
N + 1 strategy. Gilmore and Bryant (2006, 2008) and Robinson
and Dubé (2009, 2013) found considerable individual differences
in elementary school children’s use of this strategy, but some 6-to
9-year-olds pupils used it effectively. A strategy logically related
to inversion strategies is the Complement principle: if a − b = c,
then a − c = b. This has not been much investigated, at least with
regard to children in this age range, and will be considered here. It
was predicted that neither the addition/subtraction Inverse prin-
ciple nor the complement principle would be used by a majority
of children.

METHODS
PARTICIPANTS
144 children ranging from 6;0 to 7;11 were tested individu-
ally. They came from two state primary schools in Oxford. 79
were boys and 65 were girls. Their mean age was 81.95 months
(SD = 6.23).

PROCEDURE
Use of principles task
The task was Dowker’s (1998, 2009) test of use of arithmetical
principles in derived fact strategies. It included tests of strategy
use in both addition and subtraction.

Addition principles task
In order to evaluate the children’s competence in addition calcu-
lations, each child was given the mental addition test previously
devised to assess children’s arithmetical performance prior to
an estimation task (Dowker, 1997). It consisted of a list of 20
addition sums graduated in difficulty from 4 + 5, 7 + 1, etc., to
235 + 349. These sums were simultaneously presented orally and
visually in a horizontal format. The children’s answers were oral.

The sums were as follows:

(1) 6 + 3 (11) 31 + 57
(2) 4 + 5 (12) 68 + 21
(3) 8 + 2 (13) 52 + 39
(4) 7 + 1 (14) 45 + 28
(5) 4 + 9 (15) 33 + 49
(6) 7 + 5 (16) 26 + 67
(7) 8 + 6 (17) 235 + 142
(8) 9 + 8 (18) 613 + 324
(9) 26 + 72 (19) 523 + 168

(10) 23 + 44 (20) 349 + 234

Testing continued with each child until (s) he had failed to give a
correct response to six successive items.

The children were then divided into five levels according to
their performance on the mental calculation task. The levels were:
Beginning Arithmetic (unable to deal reliably with single-digit
addition); Facts to 10 (passed items 1–4 but failed at least 2 of
the next 4 items); Facts to 25 (passed items 1–8, but failed at least
2 of the next 4 items); 2-Digit Addition- No Carrying (passed
items 1–12, but failed at least 2 of the next 4 items); and 2-Digit
Addition –Carrying (passed items 1–16, but failed at least 2 of the
final 4 items). Table 1 in the Results section gives the numbers of
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Table 1 | Addition strategies used at different levels.

Level Beginning Facts to Facts to 2-Digit 2-Digit Total

arithmetic 10 25 (Carrying) (No carrying)

Problem within
range

2 + 2 5 + 3 8 + 6 23 + 44 52 + 39

Problem just
outside range

5 + 3 8 + 6 23 + 44 52 + 39 523 + 168

n 11 34 63 16 20 144

Mean age in
months

79.88 (6.63) 80.98 (6.5) 82.04 (6.3) 83.54 (3.82) 84.65 (5.98) 81.95 (6.23)

Mean
arithmetic
scaled score

3.86 (1.07) 8.89 (2.31) 10.62 (3.09) 10.7 (3.68) 12.19 (4.12) 9.97 (3.59) χ2 p

Identity 22% 56% 80% 88% 95% 73% 25.66 0.000**

Commutativity 9% 38% 65% 82% 70% 57% 28.00 0.000**

Addend +1 0% 24% 51% 71% 75% 56% 28.04** 0.000**

Addend −1 0% 18% 40% 59% 65% 37% 22.06 0.000**

Inverse 0% 18% 6% 35% 25% 14% 9.59 0.031*

*p < 0.05; **p < 0.01.

children at each level, and examples of items that would be within
and just outside of their range.

They were then given an arithmetical reasoning test involving
use of arithmetical principles in derived fact strategies. The tech-
nique was used of giving children the answer to a problem and
then asking them to solve another problem that could be solved
quickly by using this answer, together with the principle under
consideration. Problems preceded by answers to numerically
unrelated problems were given as controls. The exact arithmetic
problems given varied according to the child’s previously assessed
calculation level of the child, and were selected to be just a little
too difficult for the child to solve unaided. Such a set of prob-
lems is here termed, as in earlier studies (Dowker, 1998, 2009),
the child’s base corresponding set).

Each child was shown the addition problems, while the exper-
imenter simultaneously read them to him/her. Children were
asked to respond orally. The children received three addition
problems per principle. The questions about the principles were
grouped around the addition problems, so that the children
received 6 questions (involving 5 principles and a control ques-
tion) for one addition problem; then 6 questions for the sec-
ond addition problem; then 6 questions for the third addition
problem.

The principles investigated were as follows:

(1) The Identity principle (e.g., if one is told that 8 + 6 = 14,
then one can automatically give the answer “14,” without
calculating, if asked “What is 8 + 6?”).

(2) The Commutativity principle (e.g., if 9 + 4 = 13, 4 + 9 must
also be 13).

(3) The N ± 1 principle (e.g., if 23 + 44 = 67, 23 + 45 must be
68).

(4) The N − 1 principle (e.g., if 9 + 8 = 17, 9 + 7 must be
17 − 1 or 16).

(5) The addition/subtraction Inverse principle (e.g., if 46 + 27 =
73, then 73 − 27 must be 46).

For one of the addition problems in each set, the order of
presentation of principles was:

Commutativity, Identity, N + 1, N − 1, Control, Inverse.
For a second problem in each set, the order was:
Inverse, N + 1, N − 1, Commutativity, Identity, Control.
For the third problem in each set, the order was:
Control, Inverse, N − 1, Identity, Commutativity, N + 1.
The order of presentation of the addition problems was varied
systematically.
Children were allowed 30 s to begin answering a question; if they
did not give an answer within that time, the researcher moved on
to the next question.

A child was deemed to be able to use a principle if (s) he could
explain it and/or used it to derive at least 2 out of 3 unknown
arithmetical facts, while being unable to calculate any sums of
similar difficulty when there was no opportunity to use the
principle.

Subtraction principles test
The subtraction principles part of the Use of Principles Task was
also preceded by a calculation pretest, which consisted of a list of
20 subtraction problems, as follows:

(1) 6 − 2 (11) 68 − 42
(2) 8 − 4 (12) 86 − 44
(3) 10 − 3 (13) 62 − 14
(4) 9 − 5 (14) 43 − 17
(5) 15 − 7 (15) 75 − 38
(6) 13 − 6 (16) 84 − 59
(7) 12 − 4 (17) 326 − 125
(8) 15 − 7 (18) 894 + 513
(9) 37 − 23 (19) 681 − 214

(10) 55 − 32 (20) 572 − 348
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The children were then divided into four levels according to their
performance on the mental calculation task. The levels were:
Beginning Arithmetic (unable to deal reliably with single-digit
subtraction); Facts to 10 (passed items 1–4 but failed at least 2
of the next 4 items); Facts to 25 (passed items 1–8, but failed at
least 2 of the next 4 items); and 2-Digit Subtraction (passed items
1–12, but failed at least 2 of items 13–16 and/or of items 17–20).
Originally, the 2-Digit Subtraction group was divided into two
groups, as with addition: 2-Digit-No Borrowing, and 2-Digit-
Borrowing. However, as only 8 children would have met criteria
for the 2-Digit-Borrowing group, they were grouped together, for
the purposes of the present study, with those who could only carry
out 2-digit subtraction when borrowing was not involved. Table 3
in the Results section gives the numbers of children at each level,
and examples of items that would be within and just outside of
their range.

The questions about the principles were grouped around the
subtraction problems, so that the children received 8 questions
(involving 7 principles and a control question) for one addition
problem; then 8 questions for the second addition problem; then
8 questions for the third addition problem

The principles investigated for subtraction were as follows, in
order of their difficulty for the children:

(1) The Identity principle (e.g., if one is told that 12 − 5 = 7,
then one can automatically give the answer “7,” without
calculating, if asked “What is 12 − 5?”).

(2) The Minuend ±1 principle (e.g., if 67 − 45 = 22, 68 − 45
must be 23).

(3) The Minuend −1 principle (e.g., if 572 − 348 = 224,
571 − 348 must be 223).

(4) The Subtrahend ±1 principle (e.g., if 9 − 6 = 3, 9 − 7 must
be 2).

(5) The Subtrahend −1 principle (e.g., if 37 − 23 = 14, 37 − 22
must be 15).

(6) The addition/subtraction Inverse principle (e.g., if
681 − 214 = 467, then 214 + 467 must be 681.

(7) The Complement principle (e.g., if 11 − 3 = 8, 11 − 8 must
be 3).

For one of the subtraction problems in each set, the order of
presentation of principles was:

Complement, Minuend + 1, Subtrahend + 1, Inverse,
Minuend −1, Subtrahend −1, Identity, Control.
For a second problem in each set, the order was:
Minuend−1, Subtrahend +1, Minuend +1, Inverse, Identity,
Minuend −1, Control, Complement.
For the third problem in each set, the order was:
Control, Identity, Subtrahend +1, Minuend +1,
Subtrahend −1, Complement, Minuend −1, Inverse.
The order of presentation of the subtraction problems was
randomly varied.
Children were allowed 30 s to begin answering a question; if they
did not give an answer within that time, the researcher moved on
to the next question.

The order of presentation of addition and subtraction was
randomly varied.
In addition, the children were given the Arithmetic subtest of
the Wechsler Intelligence Scale for Children or WISC (Wechsler,
1991).

RESULTS
As no children calculated the answers to the control questions
within the time given, responses to control questions will not be
analyzed here.

RESULTS FOR ADDITION
Table 1 gives the percentage of responses at each level using each
principle in derived fact strategies for addition.

Chi-square tests were carried out to investigate whether there
were significant differences between the different levels as regards
the frequency of each strategy. The chi-square value and p value
are given in the final two columns of Table 1. In all the chi-square
comparisons, there were 4◦ of freedom.

Post-hoc tests were then carried out to investigate which group
differences were causing the significant effects. For the Identity
principle and the Addend −1 principle, the significant differences
were between Beginning Arithmetic and each of the other levels
except for the Facts to 10 level; and between the Facts to 10 level
and the 2-Digit (Carrying) level. For the Commutativity prin-
ciple and the Addend +1 principle, the significant differences
were between Beginning Arithmetic and each of the other lev-
els except for the Facts to 10 levels; and between the Facts to 10
level and both the 2-Digit (No Carrying) the 2-Digit (Carrying)
levels. For the Inverse principle, there was a borderline signifi-
cant difference between the Beginning Arithmetic and the 2-Digit
(No Carrying) level, and no other group differences reached
significance.

Entry method nominal logistic regressions were carried out
with each principle (Used or Did Not Use) as the dependent vari-
able. The covariates were Age in months and WISC Arithmetic
(Scaled Score). The chi-square and p-values for these regressions
are given in Table 2.

RESULTS FOR SUBTRACTION
Table 3 gives the percentage of responses at each level using each
principle in derived fact strategies for subtraction. With regard
to the Subtrahend +1 and Subtrahend −1 strategies, two per-
centages are given. The first percentage given is that for use of
a common but incorrect strategy: that of assuming that if a − b =
c, then a − (b + 1) = c + 1 (instead of c − 1), or that if a −
b = c, then a − (b − 1) = c − 1 (instead of c + 1). The second
percentage is for the use of the correct strategy.

Chi-square tests were carried out to investigate whether there
were significant differences between the different levels as regards
the frequency of each strategy. The chi-square value and p value
are given in the final two columns of Table 3. In the case of the
Minuend +1 and Minuend −1 strategies, two comparisons were
made: one taking only the correct strategy into account; and one
combining use of the correct strategy and the common incor-
rect strategy. In all the chi-square comparisons, there were 3◦ of
freedom.
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Table 2 | Results of nominal logistic regressions on the use of addition strategies with age and arithmetic scaled score as covariates.

Principle used Age in months: χ2 Age in months: p Arithmetic scaled score: χ2 Arithmetic: scaled score: p

Identity 4.505 0.034* 4.92 0.034*

Commutativity 4.66 0.031* 3.885 0.049*

Addend +1 2.73 0.099 8.045 0.005**

Addend −1 3.32 0.069 7.64 0.006**

Inverse 1.43 0.232 0.027 0.87

*p < 0.05; **p < 0.01.

In all chi-square comparisons, df = 1.

Table 3 | Subtraction strategies used at different levels.

Level Beginning Facts to Facts to 2-Digit Total
arithmetic 10 25 subtraction

Problem within range ? 6–3 12–5 58–34
Problem just outside range 6–3 12–5 58–34 82–26
n 18 56 48 22 144
Mean age in months 79.88 (6.63) 80.98 (6.5) 82.87 (5.84) 85.63 (4.59) 81.95 (6.23)
Mean arithmetic scaled
score

4.82 (1.94) 9.39 (2.58) 11.4 (3.33) 12.31 (3.61) 9.97 (3.59) χ2 p

Identity 17% 61% 77% 86% 65% 29.49 0.000**
Minuend +1 0% 23% 54% 71% 38% 35.26 0.000**
Minuend −1 0% 21% 50% 71% 56% 9.42 0.022*
Subtrahend +1 0% + 6% 20% + 4% 60% + 4% 55% + 22% 38% + 6% 1.92a 9.66b 0.775a 0.02*b

Subtrahend -1 0% + 6% 20% + 2% 54% + 6% 43% + 29% 33% + 7% 2.45a 11.23b 0.57a 0.009**b

Complement 0% 18% 6% 35% 14% 9.43 0.022*
Inverse 0% 7% 17% 27% 12% 8.56 0.026*

*p < 0.05 **p < 0.01
aAnalysis for correct strategy only.
bAnalysis for combination of correct strategy with common incorrect strategy.

Post-hoc tests were then carried out to investigate which group
differences were causing the significant effects. For the Identity
principle, the significant differences were between Beginning
Arithmetic and each of the other levels. For the Subtrahend +1
principle and the Subtrahend −1 principle, the significant differ-
ences were between Beginning Arithmetic and each of the other
levels; and between the Facts to 10 level and each of the other
levels. Two different post-hoc analyses were carried out for the
Subtrahend +1 and Subtrahend −1 principles: for the correct
strategy alone, and for the correct strategy combined with the
common incorrect strategy. For the correct strategy alone, no
group differences were significant for these principles. For the
combination of the correct and the common incorrect strategy,
the significant differences, in the case of both the principles, were
between the 2-Digit Subtraction level and every other level. For
the Complement principle and the Inverse principle, there were
significant differences between the Beginning Arithmetic and the
2-Digit Subtraction level, and no other group differences reached
significance.

Entry method nominal logistic regressions were carried out
with each principle as the dependent variable. The dependent
variable was binary (Used vs. Did Not Use). In the case of the
Minuend +1 and Minuend −1 principles, two different analyses
were done: (a) for Correct Strategy Use alone and (b) for Correct

Strategy Use combined with Common Incorrect Strategy Use.
The covariates were Age in months and WISC Arithmetic (Scaled
Score). The chi-square and p-values for these regressions are given
in Table 4.

CHILDREN’S JUSTIFICATION OF THEIR ANSWERS
Most (91%) of children classed as using the principles were able
to justify their answers.

Typical justifications included:

(Identity); “It’s the same!”
(Commutativity): “Those numbers are just the same, but the
other way round.”
(N + 1 principle for addition; Minuend +1 principle for sub-
traction): “It’s just one more.”
(N − 1 principle for subtraction; Minuend −1 principle for
subtraction): “It’s just one less.”
(Subtrahend +1 principle for subtraction): (Usually, incor-
rectly): “It’s just one more.” (Correctly): “That’s one more, so
the answer has to be one less.”
(Subtrahend −1 principle for subtraction): (Usually, incor-
rectly): “It’s just one less.” (Correctly): “That’s one less, so the
answer has to be one more.”
(× 10) principle: “You just add on a 0.”
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Table 4 | Results of nominal logistic regression on use of subtraction strategies with age and arithmetic scaled score as covariates.

Age in months:χ2 Age in months: p Arithmetic scaled score: χ2 Arithmetic: scaled score: p

Identity 4.86 0.041* 6.84 0.009**

Minuend +1 8.265 0.004** 14.77 0.000**

Minuend −1 3.3 0.068 10.9 0.001**

Subtrahend +1 1.86a; 3.3b 0.24a; 0.07b 0.12a; 1.37b 0.73a; 0.24b

Subtrahend −1 4.42a; 4.43b 0.035*a; 0.035*b 0.57a; 0.7b 0.45a; 0.4b

Complement 4.915 0.027* 2.13 0.145
Inverse 0.88 0.348 5.45 0.02*

*p < 0.05; **p < 0.01.
aAnalysis for correct strategy only.
bAnalysis for combination of correct strategy with common incorrect strategy.

(Inverse principle): “Because that (a + b) = c, so c take away
that (a) must be (b).” (Of course the child used the actual
numbers rather than letters.)
(Complement principle): “If that (a) take away that (b) = c,
then that (a) take away that (c) must be b.”

DISCUSSION
This study shows that many 6- and 7-year-olds children can make
explicit use of derived fact strategies in addition and subtraction.
There is, however, a great deal of variation in the use of such
strategies in this age range, influenced by both by the particular
strategies involved, and by children’s calculation ability.

USE OF PARTICULAR STRATEGIES
The most basic principle, Identity, was used with by far the great-
est frequency; and is the only strategy that was used more than
once or twice at the Beginning Arithmetic level. It was still only
used by a minority of children at this level, however; and was
not used universally even at the higher levels. This was followed
by commutativity of addition, supporting other studies that sug-
gest that this principle is used earlier than most other arithmetical
principles (Baroody et al., 1983; Cowan and Renton, 1996; Canobi
et al., 1998, 2003).

The strategy of using commutativity is followed in frequency
by strategies that involve adding, or (to a lesser extent) subtract-
ing, 1 from a problem component and thereby to the result.

Strategies of the latter type could be, and often were, used
incorrectly as well as correctly. When used for addition, they
tended to be used correctly; but this was not the case for subtrac-
tion, where the Subtrahend +1 and Subtrahend −1 problems were
more likely to lead to incorrect than correct strategy use. Children
are more likely, if told that a − b = c, to deduce that a − (b + 1) =
c + 1, than correctly that a − (b + 1) = c − 1. In other words,
when using this class of strategies, they often fail to make appro-
priate use of compensation. This may in part reflect procedural
difficulties, perhaps relating to working memory limitations.
However, when considered in conjunction with the children’s
common failure to use the addition-subtraction inverse principle
for addition or subtraction, or the complement principle for sub-
traction, it probably also reflects a difficulty in understanding the
relationships between addition and subtraction. The arithmeti-
cal relationships most accessible to children appear to be those
appropriate to addition, and these are sometimes inappropriately

extended to subtraction. It may be that the same is true of rela-
tionships between addition and other arithmetical operations;
e.g., MacCuish (1986) found that 9- and 10-year-olds children
overextended certain addition principles to multiplication.

With regard to strategies involving use of the inverse rela-
tionship between addition and subtraction, results of the present
study are far more consistent with those of Bisanz and LeFevre
(1990) than with those of Baroody et al. (1983), in that strategies
of this nature were used very infrequently. The logically related
complement strategy for subtraction was used even more rarely.

This is particularly striking, since these children were being
taught mathematics according to the National Numeracy Strategy
(DfEE, 1999), which explicitly recommended teaching children
to understand the inverse relationship between addition and
subtraction from the second year of primary school onwards.
Nevertheless, the principle was only used by about one in ten
children, similar to findings for a sample studied before the
explicit introduction of this concept into the English school cur-
riculum (Dowker, 1998). This suggests that children, at least
under the age of 8, do not readily make use of this principle in
arithmetic.

However, this may not be the case for all arithmetical tasks.
Gilmore and Bryant (2006, 2008) found that 6-to 9-year-olds chil-
dren did often make use of derived fact strategies involving inverse
relationships between addition and subtraction. They performed
better and more accurately on such problems as “15 + 12 −
12 = �” than on control problems such 11 + 11 − 7 = �.” An
explanation for the discrepancy in results might be that children
are better at noticing and making use of relationships between
addition and subtraction within an arithmetic problem than
between two arithmetic problems. If there is an addition and a
subtraction within the same problem it is perhaps harder to treat
them as unrelated—“one’s adding and one’s taking away”—than
if the task involves perceiving and using a relationship between
an addition problem and a subtraction problem. This provides
further evidence that the ability to use derived fact strategies is
not “all or nothing” and may be highly dependent on context and
mode of presentation of a task.

DO SUCCESS AND FAILURE IN THE DERIVED FACT STRATEGY TEST
ALWAYS REFLECT USE OF PRINCIPLES?
So far in this paper, “use of principles” and “use of derived
fact strategies” have been discussed almost as though they were
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synonymous; but of course the relationship between the two
is likely to be far more complex. With all of the arithmetical
principles discussed here, there are two separate issues: whether
a child understands an arithmetical concept or principle, and
whether they use this principle appropriately in an arithmetical
strategy. Some principles may not be used in derived fact strate-
gies because the children have no access to the principles. On the
other hand, children may understand an arithmetical principle or
relationship, but not apply it appropriately.

The present study involved explicit use of derived fact strate-
gies in a task involving arithmetic problems presented in symbolic
format, and not embedded in a practical or social context. Some
studies have suggested that children may be more likely to use
derived fact strategies when problems are presented in concrete
form (Bryant et al., 1999) or if the task requires only implicit
rather than explicit use of the principle (Siegler and Stern, 1998).
Canobi et al. (1998) studied 6-to 8-year-olds’ use of derived fact
strategies based on commutativity and associativity, and their
evaluations of puppets using these strategies. They were consid-
erably better at judging and justifying the appropriateness of a
puppet’s use of such strategies than at using the strategies them-
selves. It is therefore likely that the present study gives a somewhat
conservative estimate of the extent of derived fact strategy use in
young children.

However, studies also suggest that elicited use of derived
fact strategies is not the most difficult task. Children and even
adults tend to be better at using derived fact strategies appropri-
ately when these are instructed or directly elicited, than at using
them spontaneously, though there is a strong correlation between
elicited and spontaneous use of such strategies (Gaschler et al.,
2013).

A review by Prather and Alibali (2009) indicates that context
and mode of assessment may have a significant impact on whether
children use such strategies. Moreover, it is possible that children
may sometimes have failed to use a strategy because of a coin-
cidental procedural error or momentary distraction, rather than
because of a failure to understand the principle. The fact that the
criterion for success on a principle was use of the relevant strategy
for two out of three arithmetic problems (rather than all three)
reduces this risk, but does not eliminate it completely.

The question also arises of whether the reverse may have hap-
pened at times: could children have responded correctly to some
items because they calculated from scratch and did so accurately,
rather than because they used the principle? However, while this
possibility can never be totally ruled out, it is unlikely to have
occurred in most cases because (1) the sets of problems given
to individual children were selected on the basis of the pretest
indicating that they would be too difficult for them to calculate
mentally; (2) they were not able to calculate the control problems
mentally; (3) in the vast majority of cases, they were able to justify
their correct answers.

RELATIONSHIPS BETWEEN DERIVED FACT STRATEGIES AND
ARITHMETICAL ABILITY
Although discrepancies can and do occur, in both directions,
between calculation performance level and extent of derived fact
strategy use (Dowker, 1998, 2009), the two are very strongly

associated (see Tables 1, 3). This was true despite the fact that the
difficulty of the arithmetic problems given was adjusted according
to the children’s calculation performance levels. Only a minor-
ity of children at the Beginning Arithmetic levels for addition
and subtraction used any derived fact strategies. The use of such
strategies became more frequent at the Facts to 10 levels, and
increased sharply as children reached the Facts to 25 level and
beyond. This increase with calculation performance level was
found for both addition and subtraction; and was significant for
all strategies except for the Complement principle for subtraction,
perhaps due to floor effects for this principle.

Scaled score on an arithmetical reasoning task was also a strong
predictor of most strategies, showing a significant relationship to
use of all strategies except some of the more difficult ones: the
Inverse principle in the addition task; and the Subtrahend +1,
Subtrahend −1 and Complement principles in the Subtraction
task. Thus, the use of most derived fact strategies is closely related
to arithmetical ability. The relationship to chronological age is less
strong, but is present for Identity and Commutativity in addition
and for Identity, Minuend +1 and Subtrahend −1 in subtraction.
These children were all within a relatively limited age range (6;0
to 7;11) and age might be found to have a stronger influence in a
group with a wider age range.

The relationships that were found between derived fact strat-
egy use and both calculation performance levels and WISC
Arithmetic could indicate that a certain level of arithmeti-
cal knowledge is a prerequisite for the use of such strategies.
Alternatively, the derived fact strategies may develop first, and
contribute to an improvement in calculation performance.

As pointed out by Dowker (2009), these alternative possibili-
ties have some parallels with the “some principles first” and “skills
first” theories of the relationship between counting principles and
procedures. Findings (Dowker, 2008) with regard to the existence
of both a strong correlation and the existence of discrepancies
in both directions in individual children suggest some degree
of “mutual development” or iterative relationship between the
two (Baroody and Ginsburg, 1986; Cowan et al., 1996). Rittle-
Johnson et al. (2001) have suggested that this extends to the
iterative development of principles and skills in the later devel-
opment of arithmetic. This would be consistent with the results
of this study, showing a strong relationship between derived fact
strategy use and arithmetical ability as measured both by addition
and subtraction performance levels and by the WISC Arithmetic
test, but at the same time, showing discrepant performance (e.g.,
Tables 1, 3 show that some children at the Facts to 10 level used
the addition/subtraction inverse strategy, and some at the higher
levels failed to use Identity—though the latter was rare, and might
possibly be explainable on the basis of momentary distraction or
procedural error).

Dowker (2009) found the relationships between derived fact
strategy use and performance on standardized arithmetic tests to
be less strong in children with mathematical difficulties than in
other children, which may indicate that the iterative integrative
process occurs less effectively in this group than among typically
achieving children.

Further research is needed to investigate the extent to which
both age and level of mathematical achievement may influence
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the relationships between calculation and derived fact strategy
use. Certainly, the evidence suggests that there are children, both
among low and typical achievers in mathematics, whose derived
fact strategy use is considerably better than would be expected
from their calculation ability (Dowker, 1998; Gilmore and Bryant,
2006, 2008). Further studies of the characteristics of such children
might give us a greater understanding of the levels of functional
independence and interdependence between derived fact strategy
use and other arithmetical abilities.

OTHER AREAS FOR FURTHER RESEARCH
Much more research, and in particular longitudinal research, is
needed if we are to fully understand the nature, foundations and
development of derived fact strategies. This must involve research
into the order in which such strategies develop, and whether
any particular strategies are prerequisites for any other strate-
gies. It must also involve studying the nature and direction of
predictive relationships between derived fact strategies, calcula-
tion performance, and arithmetical concepts; and, in particular,
whether derived fact strategies are more dependent on principled
knowledge or the ability to implement strategies in arithmetic.
Intervention studies would be crucial here: would training in
derived fact strategies lead to improvement in calculation, and/or
vice versa?

With regard to this issue, it is also important to investigate the
effects of context and task presentation mode on performance.
Research should also go beyond arithmetic in examining whether
any domain-general abilities have a specific role to play in the
development and use of derived fact strategies.

Moreover, it would be desirable to investigate the neural
mechanisms involved in understanding and using derived fact
strategies. Studies of patients have indicated that double disso-
ciations can occur between retrieval and derived fact strategy use
(Warrington, 1982; Delazer, 2003). Now that it is increasingly fea-
sible to carry out brain imaging studies with children, researchers
should investigate whether the network of brain areas involved
in the use of derived fact strategies differs in any way from that
involved in other aspects of arithmetic, and whether this changes
with development.
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Decimal fractions comply with the base-10 notational system of natural Arabic numbers.
Nevertheless, recent research suggested that decimal fractions may be represented
differently than natural numbers because two number processing effects (i.e., semantic
interference and compatibility effects) differed in their size between decimal fractions and
natural numbers. In the present study, we examined whether these differences indeed indi-
cate that decimal fractions are represented differently from natural numbers.Therefore, we
provided an alternative explanation for the semantic congruity effect, namely a string length
congruity effect. Moreover, we suggest that the smaller compatibility effect for decimal
fractions compared to natural numbers was driven by differences in processing strategy
(sequential vs. parallel). To evaluate this claim, we manipulated the tenth and hundredth
digits in a magnitude comparison task with participants’ eye movements recorded, while
the unit digits remained identical. In addition, we evaluated whether our empirical findings
could be simulated by an extended version of our computational model originally developed
to simulate magnitude comparisons of two-digit natural numbers. In the eye-tracking study,
we found evidence that participants processed decimal fractions more sequentially than
natural numbers because of the identical leading digit. Importantly, our model was able to
account for the smaller compatibility effect found for decimal fractions. Moreover, string
length congruity was an alternative account for the prolonged reaction times for incongruent
decimal pairs. Consequently, we suggest that representations of natural numbers and
decimal fractions do not differ.

Keywords: number comparison, decimal fractions, compatibility effect, string length congruity effect, computa-
tional modeling, artificial neural network

INTRODUCTION
In recent years, there was increased research interest in the cogni-
tive mechanisms underlying multi-digit number processing (see
Nuerk et al., 2011 for a review). Nevertheless, while considerable
progress has been accomplished in understanding the processing
of natural multi-digit numbers and also fractions, the cognitive
mechanisms involved when processing decimal fractions have
largely been neglected so far. This is particularly noteworthy
because decimal fractions – just like multi-digit natural num-
bers – comply with the general base-10 place-value structure of
the Arabic number system: the numerical value of each individ-
ual digit in a multi-digit Arabic number is determined by its
position within the respective digit string (i.e., units, 10, 100,
etc.). Any number can thus be written as a linear combina-
tion of powers of 10, each weighted with one from the set of
10 symbols (i.e., the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9). For
instance, 639 can be expressed as 6 × 102 + 3 × 101 + 9 × 100.
Different from natural numbers, decimal fractions are also com-
posed of weighted powers of 10 with integer exponents smaller

than zero, separated from the components with integer expo-
nents larger than or equal to zero by the so-called decimal point1

(e.g., 63.9 = 6 × 101 + 3 × 100 + 9 × 10−1). Decimal
fractions may thus be considered just an extension of natural
numbers.

Despite these structural similarities there are at least two
important differences when individuals have to process decimal
fractions, for instance in a number magnitude comparison task:
(i) different from natural numbers the mere number of digits is not
an indicator for the overall magnitude of decimal fractions (e.g.,
2.45 is larger than 1.532, although 2.45 is the shorter digit string).
(ii) The role of zeros in decimal fractions differs from their role
in natural numbers: while zeros to the right of the decimal point
with one or more non-zero digits further to the right (e.g., 6.07) do
change the value of a decimal fraction, adding one or more zeroes
at the right end of a decimal fraction does not change its magnitude

1Please note that different cultures use different symbols for the decimal mark. The
two most common decimal marks are a dot “.” and a comma “,”.
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(e.g., 6.0 = 6.00, but 60 < 600). Importantly, these differences
lead to characteristic errors observed in numerical development.
Desmet et al. (2010) investigated misconceptions about decimal
fractions in children from grade 3 to 6 using a number magni-
tude comparison task. Younger children, in particular, tended to
overgeneralize their previously acquired knowledge about natu-
ral numbers and assumed systematically (but mistakenly) that the
more digits a number has, the larger its value. Moreover, children
assigned zero the same role as in natural numbers: on the one hand,
they implied that adding a zero at the end of a decimal fraction
would make it larger. On the other hand, they assumed that adding
a zero at the tenths position would not change a decimal fraction’s
value.

The processing of decimal fractions in adults has only recently
been examined in cognitive psychology. Based on the observation
that the numerical distance effect (i.e., faster and less error-prone
responses when comparing relatively distant numbers, e.g., 1 vs. 9
as compared to close numbers, e.g., 4 vs. 5, Moyer and Landauer,
1967) did not differ between natural numbers and decimal frac-
tions, Dewolf et al. (2013) concluded that decimal fractions are
processed similar to natural numbers. This corroborates the natu-
ral number conversion hypothesis (Dewolf et al., 2013) assuming
that whenever participants have to compare the magnitude of deci-
mal fractions they might convert the decimal fractions into natural
number expressions by simply ignoring the decimal points and
then comparing the corresponding natural number.

In contrast to this view, Varma and Karl (2013) suggested that
participants do not resort to natural numbers. The authors inves-
tigated differences between decimal fraction and natural number
processing, proposing two effects other than the distance effect:
(i) a syntactic interference effect and (ii) a semantic interfer-
ence effect. The syntactic interference effect is just another label,
introduced by Varma and Karl (2013), for the processing prop-
erty described by unit-decade compatibility of two-digit numbers
(Nuerk et al., 2001). The unit-decade compatibility effect states
that magnitude comparisons of unit-decade-compatible natural
number pairs (e.g., 42 vs. 57, with 4 < 5 and 2 < 7) are executed
faster and less error-prone than comparisons of unit-decade-
incompatible pairs (e.g., 47 vs. 62, with 4 < 6, but 7 > 2). Thereby,
the unit-decade compatibility effect designates an influence of
decision-irrelevant units on the comparison process of the whole
numbers. This suggests that the numerical magnitude of a number
is represented componentially via the magnitudes of units, 10, 100,
etc., complying with the base-10 place-value structure of the Ara-
bic number system (cf. Nuerk et al., 2011 for a review). Varma and
Karl (2013) compared this compatibility effect for two-digit num-
bers with a similar compatibility effect for tenths and hundredths
of decimal fractions (e.g., compatible: 0.42 vs. 0.57 and incompat-
ible: 0.47 vs. 0.62). The authors found that the compatibility effect
was smaller for two-digit decimal fractions than for two-digit nat-
ural numbers and interpreted this finding to imply that different
representations are used for decimal fraction and natural number
comparison.

Additionally, Varma and Karl (2013) also observed a semantic
interference effect: response times for comparisons with congruent
numerical magnitude relations between pairs of decimal frac-
tions, respectively natural numbers (e.g., 0.2 vs. 0.53; 0.2 < 0.53

and 2 < 53), were faster than comparisons for incongruent pairs
(e.g., 0.23 vs. 0.5; 0.23 < 0.5, but 23 > 5). The authors inter-
preted this semantic interference effect as a consequence of parallel
access to the individual digits, implying that decimal fractions
also activate natural number representations in addition to deci-
mal fraction representations. Interestingly, Varma and Karl (2013)
compared the semantic interference effect in decimal fractions
with the semantic interference effect in natural numbers by con-
verting the decimal fractions into natural numbers by deleting
the leading zero and attaching it to the right end of the num-
ber (e.g., 0.23 was converted to 23.0). The semantic interference
effect was larger in decimal fractions, supporting their hypothe-
sis that decimal fractions are represented differently than natural
numbers.

Taken together, recent research seems to suggest that decimal
fraction representations are accessed exclusively when comparing
decimal fractions with an identical number of digits in the digital
string, whereas natural number representations seem to interfere
in case of decimal fractions with an unequal number of digits to
the right of the decimal point.

In the present study, we will point out that the rejection of the
natural number conversion hypothesis by Varma and Karl (2013)
might be premature by offering an alternative explanation for their
findings of a reduced compatibility effect and an increased seman-
tic interference effect. First, Varma and Karl (2013) suggested other
explanations for the smaller compatibility effect for decimal frac-
tions than natural numbers. One of these accounts was that in
their experiment the position of the decision-relevant digits was
confounded with whether natural numbers or decimal fractions
had to be compared with respect to overall number magnitude.
Thus, the smaller compatibility effect can also be explained by the
difference between natural numbers and decimal fractions regard-
ing the position of the digits decisive for the number magnitude
comparison process. For natural numbers the first (leftmost) digit
is (primarily) decisive (e.g., in 21 vs. 87, 2 and 8 are relevant),
whereas for decimal fractions (<1) the second digit is decisive2

(e.g., in 0.21 vs. 0.87, 0 is irrelevant, but 2 and 8 are relevant).
Thus, we argue that the important difference between natural
numbers and decimal fractions is notational. We suggest that
padded natural numbers (like 021 vs. 087) should be processed
similarly to decimal numbers (0.21 vs. 0.87) and when leading
zeros of decimal numbers are omitted, these should be processed
similarly to positive numbers. However, it has not been shown
yet that there are similar compatibility effects, when three digit
natural numbers – either with differing first digits or with iden-
tical first digits but differing second digits – have to be compared
(see Nuerk et al., 2011; Klein et al., 2013 for reviews). Hence, we
suggest that the observed difference in compatibility effects by
Varma and Karl (2013) might be due to different notations used to
examine the compatibility effect in natural numbers and decimal
fractions.

Second, we also propose an alternative account for the seman-
tic interference effect. In particular, we suggest that the semantic
interference effect might alternatively be explained in terms of a

2Please note that all decimal fractions in the study of Varma and Karl (2013) were
smaller than 1 and had 0 as the leading digit.
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congruity effect between the numerical magnitude of the single
digits constituting the respective number and the number of dig-
its constituting the digital string. Henceforth referred to as string
length congruity effect : the comparison of the decisive digits of two
decimal fractions can be either congruent (e.g., 2.7 vs. 2.91 with
7 < 9 and 2 vs. 3 digits) or incongruent with the comparison of
the string lengths (e.g., 7.14 vs. 7.6 with 1 < 6, but 3 vs. 2 dig-
its). Importantly, first evidence on a somewhat similar effect has
already been reported in previous studies. Naparstek and Henik
(2010, 2012) and Pansky and Algom (2002) observed that – at
least for circular or matrix presentation – the number of digits
interfered with the numerical value of the digit. In the numeri-
cal value block of Naparstek and Henik (2010), participants had
to compare the magnitude of a digit out of a set composed of a
varying number of identical digits (e.g., 333) and letter fillers to
the standard five. Although the number of digits was irrelevant,
participants processed congruent items (number of digits and
numerical value being the same: e.g., 333) faster than incongruent
items (number of digits and numerical value different: e.g., 3333).
Hence, this finding suggests that the number of digits interfered
with the processing of the numerical value of a digit. Moreover,
in numerical cognition, a common assumption is that numer-
ical and physical magnitudes are not processed independently
(e.g., Walsh, 2003; Bueti and Walsh, 2009). Because incongruent
items differ from congruent items also in their physical magnitude
(i.e., continuous magnitude dimensions such as total surface area,
and total “white” color over black background, see Leibovich and
Henik, 2013), not only the number of digits, but also their phys-
ical magnitude might interfere with processing of the numerical
magnitude.

Thus, prolonged reaction times for length incongruent decimal
fractions (e.g., 7.14 vs. 7.6 with 1 < 6, but 3 digits vs. 2 digits; Varma
and Karl, 2013) might also be explained in terms of interference
between the numerical magnitude of the digits constituting the
number and the string length of the number. As a consequence,
the semantic interference effect observed byVarma and Karl (2013)
might be caused by a purely structural difference between natural
numbers and decimal fractions, which cannot be matched across
item types: as argued above, the mere number of digits is not a
valid indicator for the overall magnitude of decimals, whereas it
is always a valid indicator for natural numbers. Varma and Karl
(2013) tried to account for different visual aspects by adding a zero
at the end of natural numbers, but, nevertheless, this difference
cannot be controlled for (e.g., 3 < 15 and 3.0 < 15). Therefore, we
suggest that the semantic interference effects observed for natural
numbers and decimal fractions might have different origins. In
the case of natural numbers, numbers with more digits are always
larger than numbers with fewer digits, even when the magnitude of
the single digits constituting the number with fewer digits is larger
than the magnitude of the digits constituting the number with
more digits. For instance, when comparing “9 vs. 27,” “27” con-
tains more digits indicating that it is larger than“9.” However,“9”is
larger than “2” and “7” and therefore, a componential comparison
of 9 with“2”or“7”suggests that“9”should be larger resulting in the
proposed semantic interference effect for natural numbers (Varma
and Karl, 2013). Thus, for natural numbers, the numerical mag-
nitudes of the single digits interfere with each other. In contrast,

in the case of decimal fractions, string length may interfere with
numerical magnitude. For instance, when comparing “0.9” with
“0.27” and “0.9” is larger than “0.27,” because “9” is larger than “2.”
However, the number“0.27”contains more digits than the number
“0.9,” which in case of natural numbers would indicate the larger
number - and thus, interferes with the decision-relevant compari-
son of “9”and“2”resulting in the proposed string length congruity
effect.

The alternative accounts regarding the reduced compatibility
effect for decimal fractions as well as the semantic interference
effect observed by Varma and Karl (2013) rely heavily on the
notion of componential processing of the individual digits of any
multi-digit number as, for instance, indicated by the (unit-decade)
compatibility effect (e.g., Nuerk et al., 2001). We want to argue that
the processing of decimal fractions may well be integrated into the
model of componential number processing. In the present study,
we will corroborate this claim by means of a combined empiri-
cal and computational modeling approach. In a first step, we will
appraise participants’ eye-fixation behavior, while engaged in a
number magnitude comparison task involving decimal fractions
(e.g., 2.91 vs. 2.43; see also Table 1 for an overview of differ-
ent decimal fraction types employed in the present study). This
method is used because the registration of eye movements allows
for a more fine-grained online evaluation of the comparison pro-
cess itself. According to the eye-mind hypothesis, the location of
eye-fixations and their duration are valid and reliable indicators
of what part of a stimulus (i.e., which digit) is processed at a given
moment in time and how long this processing lasts (e.g., Rayner
and Pollatsek, 1989; Rayner, 1998). In a second step, we aimed
at evaluating whether an adapted version of our computational
model for multi-digit natural number comparison (Huber et al.,
2013a) can also account for the processing of decimal fractions.
Thus, the main focus of the present study lies on the computational
model, with which we want to show that the findings of Varma and
Karl (2013) can be explained by the natural number conversion
hypothesis.

More specifically, the aim of the eye-tracking experiment was
threefold: first, we wanted to explore why the compatibility effect
in the study of Varma and Karl (2013) was smaller for decimal
fractions than for natural numbers. A recent study by Huber
et al. (2013a) showed that in two-digit number comparison the
size of the unit-decade compatibility effect increased with the
percentage of within-decade filler items (e.g., 43 vs. 47) relative
to between-decade critical items. Correspondingly, the authors
found that fixations on the irrelevant unit relative to the rel-
evant 10 digits increased, the more within-decade fillers were
included. Similarly, the number (and duration) of fixations on
irrelevant digits might be indicative of the size of the compat-
ibility effect. Transferring these findings to the case of decimal
fraction processing, the smaller compatibility effect for decimal
fractions should be associated with fewer fixations on the non-
decisive hundredth digits. Such a fixation pattern would indicate
that participants process decimal fractions with identical first dig-
its more sequentially than natural numbers with differing first
digits. A sequential processing strategy can be identified, when
most fixations are on relevant digits and only few fixations on
irrelevant digits. Conversely, when participants process digits in
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Table 1 | Examples for compatible and incompatible and congruent and incongruent decimal fraction pairs for decimal types a.0c, a.b0, a.bc,
and a.b, respectively.

Decimal type Compatible Incompatible

Numbers Tenth digit Hundredth digit Numbers Tenth digit Hundredth digit

a.0c 9.07 vs. 9.39 0 < 3 7 < 9 1.09 vs. 1.51 0 < 5 9 > 1

a.b0 8.10 vs. 8.97 1 < 9 0 < 9 6.54 vs. 6.90 5 < 9 4 > 0

a.bc 4.25 vs. 4.69 2 < 6 5 < 9 3.29 vs. 3.67 2 < 6 9 > 7

Congruent Incongruent

Numbers Tenth digit Number of digits Numbers Tenth digit Number of digits

a.b 2.7 vs. 2.91 7 < 9 2 vs. 3 digits 7.14 vs. 7.6 1 < 6 3 vs. 2 digits

parallel, the number of fixations on relevant and irrelevant digits
would be more balanced (Moeller et al., 2009). A combination of
sequential and parallel processing strategies was already observed
for multi-digit number comparison beyond the two-digit number
range (Meyerhoff et al., 2012) and therefore, might also be present
when comparing decimals. Accordingly, we would expect the tenth
digits to be fixated much longer than the hundredth digits as mea-
sured by total reading time (TRT; i.e., the time spent fixating a
digit).

Second, Varma and Karl (2013) observed that decimal fractions
with zeros at the rightmost position (e.g., “0.30”) were responded
to faster than other decimals. However, the authors did not inves-
tigate whether processing of decimal fractions with zeros directly
to the right of the decimal point (e.g., “0.03”) might also be pro-
cessed faster, providing further support for a privileged role of the
digit zero in the comparison of decimal fractions. Similar to faster
response times, we would expect that the total fixation time for
decimal fractions containing at least one zero will be shorter than
for decimal fractions without a zero.

Third, we used the proportion of fixations on tenth and hun-
dredth digits obtained from the empirical study for attentional
weighting of the respective digits in the computational model. In
the computational model, relevance of the respective digits has to
be prespecified in a task demand layer. In principle, two heuris-
tics are possible to obtain suitable values: (i) a trial-and-error
approach using starting random values and (ii) an approach using
proportions of digits as starting values and adjusting them such
that error rates of the simulated data corresponded to the error
rates of the empirical data. As we had available proportions of
fixations on tenth and hundredth digits from the empirical study,
we employed the second approach. Finally, we used reaction times
and error rates from the eye-tracking experiment to validate our
computational model.

The particular aim of the computational modeling study was to
examine whether an extended version of our model for two-digit
number comparison (Moeller et al., 2011; Huber et al., 2013c) can
account for the findings of the eye-tracking study, which would
corroborate the natural number conversion hypothesis for decimal
fractions. Therefore, we adapted the existing model to specifically
account for the effects observed by Varma and Karl (2013). Most

importantly, we extended the network such that three-digit num-
bers could be compared (as it was already done in the study of
Huber et al., 2013b) in order to consider the string lengths of the
numbers to be compared. With these measures, a general model
of multi-digit number processing encompassing natural as well as
decimal fractions can be developed and tested empirically, as done
in the current study.

EMPIRICAL STUDY
METHODS
Participants
Twenty five students of the University of Tuebingen participated in
the study (15 female, 10 male) for course credits. Average age was
24.8 years with a standard deviation (SD) of 2.67 years (range 21–
33 years). All participants reported normal or corrected-to-normal
vision. The study was approved by the local ethics committee of
the Medical Faculty of the Eberhard Karls University of Tuebingen.
All participants gave their written informed consent.

Apparatus
Eye-fixation behavior was recorded by an EyeLink 1000 tracking
device (SR-Research, Kanata, ON, Canada). Following 9-point
calibration at the start of the experiment as well as drift correc-
tions before each trial, the spatial resolution of the eye-tracking
device was less than 0.5 degrees of visual angle at a sampling rate of
1000 Hz. A 20′′ monitor set at a resolution of 1024 × 768 pixels and
driven at a refresh rate of 120 Hz was used to present stimuli. View-
ing distance was about 60 cm. The experiment was programmed
using the Experimental Builder software (SR-Research, Kanata,
ON, Canada).

Stimuli and design
We created 320 pairs of decimal fractions. Decimal fractions were
either two- or three-digit numbers ranging from 1.04 to 9.96. Unit
digits were identical for number pairs and ranged from 1 to 9.
Digits at the tenth and hundredth position ranged from 0 to 9.
Participants had to compare four different types of decimal frac-
tion pairs (i.e., 80 decimal fraction pairs for each type). Whereas
one of the decimal fractions always consisted of non-zero digits
(e.g., 2.91), the other one was generated considering the following
constraints: the decimal fraction involved (i) a zero at the tenth
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position (a.0c; e.g., 2.04), (ii) a zero at the hundredth position
(a.b0; e.g., 2.40), (iii) no digit at the hundredth position (a.b;
e.g., 2.4), and (iv) no zeros at all (a.bc; e.g., 2.43). Furthermore,
we manipulated compatibility and string length congruity (see
Table 1). To increase the relevance of the hundredth digit, we fur-
ther included 120 filler number pairs with identical digits at the
tenth position (e.g., 7.91 vs. 7.98 or 2.83 vs. 2.8) which resulted in a
total of 440 items. Moreover, all digits except for units differed for
decimal fraction pairs. Importantly, we balanced overall distance,
tenth distance and hundredth distance across all stimulus groups
and problem size across all stimulus groups except stimuli with
zero at the hundredth position, which had to have a lower over-
all problem size than the other groups because of its definitional
properties.

Stimuli were displayed as white digits on a black background in
Courier New (size: 48, style: bold). By using this non-proportional
font we ensured that all digits had the same width. X/Y coordi-
nates of decimal fraction pairs were 496/384 and 528/649 pixels
or 528/384 and 496/649 pixels, such that leading digits were
not presented above each other in order to prevent column-wise
processing (see Meyerhoff et al., 2012 for a similar layout). The
coordinates of the fixation cross were 512/150 pixels. Decimal
fractions consisting of three digits extended to a visual angle of
4.8, horizontally, and 1.2, vertically.

Procedure
Participants were assessed individually in a dimly lit room. Instruc-
tions requested participants to indicate the larger of two decimal
fractions as accurately and fast as possible. When the larger
decimal fraction was at the top of the screen, the upper but-
ton on a gamepad had to be pressed with the right thumb.
Otherwise, when the larger decimal fraction was at the bot-
tom of the screen, the lower button had to press with the left
thumb. The position of the larger decimal fraction was counter-
balanced for each type of decimal fraction pairs. Each participant
completed five practice trials to become familiar with task require-
ments. Trial order was pseudo-randomized ensuring that the
same button was not pressed more than three times in a row.

After fixation of the fixation point had been checked by the
experimenter, the next item was presented until the participant
pressed one of the response buttons, which was immediately
followed by the presentation of the fixation point for the next
trial.

Analysis
Unfortunately, because of a programming error only 320 of the
440 items were presented. These items were randomly drawn from
all 440 items such that each participant worked on a different
subset of the 440 items. About 85.5 (SD = 3.76) items of the 320
number pairs were filler items (i.e., about 27% like in the original
set). Moreover, since the items were a random subset of all items,
matching was not affected substantially (see Table 2).

Three participants exhibited error rates higher than 25% (50%
guessing rate) in the string length incongruent condition and were
excluded. All subsequent analyses were run on the data of the
remaining 22 participants. Additionally, we only included tri-
als followed by a correct answer with response latencies longer
than 200 ms and within ±3 standard deviations from the indi-
vidual mean RT. This trimming procedure resulted in a loss of
6.52% of the data. Only items considered in the RT analysis were
also included in the analysis of the eye-fixation data. Moreover,
error rates were subjected to an inverse sine transformation before
analysis to approximate their binomial distribution with a normal
distribution (see e.g., Kirk, 2013, p. 103).

For the analysis of participants’ eye fixation behavior interest
areas around each digit and the decimal point were defined with
a height of 120 pixels and a width of 39 pixels. We defined the
interest areas to be quite narrow, such that the interest areas of
each digit and decimal mark were of equal size and interest areas
did not overlap. Therefore, it might be possible that participants
processed the tenth digit parafoveally while fixating the decimal
mark. We exclusively analyzed TRT on the relevant digits (i.e.,
tenth and hundredth digit) and on critical decimal fractions. Thus,
we included only critical decimal fractions with either a zero at the
tenth position (e.g., 2.04), a zero at the hundredth place (e.g., 2.40)
or only two-digit decimal fractions (e.g., 2.4), respectively, whereas

Table 2 | Mean (SD in parentheses) overall distance, tenth distance, hundredth distance, problem size, and number of items for
compatible/congruent and incompatible/incongruent decimal fraction pairs for decimal types a.0c, a.b0, a.bc, and a.b, respectively.

Decimal type Compatibility/

congruity

Overall distance Tenth distance Hundredth distance Problem size Number of items

a.0c Compatible 0.40 (0.02) 3.66 (0.25) 3.48 (0.15) 10.62 (0.63) 29.56 (2.83)

Incompatible 0.41 (0.02) 4.42 (0.22) 3.44 (0.26) 10.50 (0.47) 28.76 (2.71)

a.b0 Compatible 0.40 (0.02) 3.69 (0.25) 3.62 (0.15) 11.36 (0.63) 28.60 (2.33)

Incompatible 0.40 (0.02) 4.37 (0.22) 3.56 (0.26) 10.85 (0.47) 29.76 (1.94)

a.bc Compatible 0.40 (0.02) 3.67 (0.23) 3.50 (0.23) 11.26 (0.50) 28.56 (2.83)

Incompatible 0.40 (0.02) 4.39 (0.17) 3.48 (0.14) 10.79 (0.35) 28.88 (2.82)

a.b Congruent 0.40 (0.02) 3.67 (0.23) 3.77 (0.23) 11.23 (0.50) 30.20 (2.66)

Incongruent 0.40 (0.02) 4.39 (0.17) 3.69 (0.14) 10.80 (0.35) 30.00 (2.87)

Please note that participants were presented different numbers of items due to a programming error.
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the additional decimal fraction in numbers of the a.bc type was
not included (e.g., 2.91), because there is no critical single decimal
fraction. For these latter decimal fractions, mean TRTs from both
tenth and hundredth digits were calculated.

Reaction times, error rates, and TRT were analyzed by running
separate repeated measures analyses of variance (ANOVA). In case
of violation of the sphericity assumption for repeated measures
ANOVA, the Greenhouse-Geisser (GG) correction was applied
to adjust the degrees of freedom. For reasons of readability, the
original df together with the GG coefficient are reported.

RESULTS
Reaction times and error rates
Processing of zeros and tenth–hundredth compatibility. First, we
examined, whether we could replicate the relatively smaller com-
patibility effect found in the study of Varma and Karl (2013) and
how zeros in different positions of decimal fractions influenced
processing of these decimal fractions. Therefore, we analyzed
reaction times and error rates by conducting repeated-measures
3 × 2 ANOVAs with factors decimal type (a.0c, a.b0, and a.bc) and
tenth–hundredth compatibility (compatible and incompatible).

The ANOVA for RT revealed a significant main effect of dec-
imal type [F(2,42) = 42.61, p < 0.001, η2

p = 0.67]. Pairwise
comparisons indicated that participants compared decimal type
a.0c fastest, followed by a.b0 and decimal type a.bc slowest (all
p < 0.001; a.0c: M = 805 ms; a.b0: M = 832 ms; a.bc: M = 851 ms;
see also Figure 1A). Thus, we found that zeros facilitated par-
ticipants’ comparisons of decimal fractions. The main effect of

FIGURE 1 | Reaction times (RT; A, empirical, B, simulated) for different
decimal fraction pair types (e.g., a.0c = 2.04 vs. 2.91, a.b0 = 2.40 vs.
2.91, and a.bc = 2.43 vs. 2.91). ***p < 0.001.

compatibility and the interaction between group and compat-
ibility were not significant, indicating sequential processing of
decimal fractions (both p > 0.14). Moreover, for error rates we
did not find significant main or interaction effects (all p > 0.28).

String length congruity. String length congruity effects on RT and
error rates were analyzed by running ANOVAs with congruity as
independent variable. Both ANOVAs yielded significant results,
indicating shorter RT and lower ER for length congruent than
incongruent decimal fraction pairs [RT: M = 819 vs. 886 ms;
F(1,21) = 43.42, p < 0.001, η2

p = 0.67; ER: M = 2.29 vs. 9.24%;

F(1,21) = 34.33, p < 0.001, η2
p = 0.62; see also Figures 2A,C].

Eye-tracking data
Processing of zeros and tenth–hundredth compatibility. Further-
more, we explored whether participants processed the digits in
the decimal fractions sequentially or in parallel. Therefore, we
ran a repeated-measures 3 × 2 × 2 ANOVA with factors deci-
mal type (a.0c, a.b0, and a.bc), tenth–hundredth compatibility
(compatible and incompatible) as well as digit position (tenth
and hundredth digit) and TRT as dependent variable. Results
will be reported starting with the three-way interaction, followed
by its constituting two-way interactions before main effects will
finally be described. Mean TRT for all factors are provided in
Table 3.

We observed a significant three-way interaction [F(2,42)=5.17,
p < 0.05, η2

p = 0.20, GG = 0.74; see Figure 3]. This interaction
was broken down by conducting two 2 × 2 ANOVAs with factors
decimal type and tenth–hundredth compatibility separately per
digit position (i.e., tenth and hundredth digit).

For the tenth digit (see Figure 3A), the interaction between
decimal type and tenth–hundredth compatibility was significant,
indicating that compatibility effects differed at the tenth digit posi-
tion [F(2,42) = 11.55, p < 0.001, η2

p = 0.36, GG = 0.79]. The
two-way interaction was further analyzed by conducting (i) two
univariate ANOVAs with the factor decimal type for compati-
ble and incompatible items separately and (ii) three univariate
ANOVAs with the factor tenth–hundredth compatibility for each
decimal type.

For compatible number pairs, we found a significant main effect
of decimal type [F(2,42) = 38.42, p < 0.001, η2

p = 0.65]. Partic-
ipants fixated the tenth digits of decimal type a.bc longer than
that of other types (both p < 0.001), whereas TRT on the tenth
digits of decimal types containing a zero did not differ signifi-
cantly (p = 0.38). For incompatible number pairs, the main effect
of decimal type was also significant [F(2,42) = 32.62, p < 0.001,
η2

p = 0.61]. However, different from compatible number pairs,
participants fixated the tenth digit of decimal type a.0c shorter
than that of other types (both p < 0.001), while TRT on the tenth
digit of decimal types a.b0 and a.bc did not differ significantly
(p = 1.00).

Subsequently, we evaluated tenth–hundredth compatibility
effects on participants TRT for each of the three decimal types
separately. Results indicated that the main effect of tenth–
hundredth compatibility was significant for decimal type a.b0
[F(1,21) = 22.96, p < 0.001, η2

p = 0.52], but not for the other dec-
imal types (both F < 1). While the tenth digits were fixated 45 ms
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FIGURE 2 | Reaction times (RT; A, empirical; B, simulated) and error rates (ER; C, empirical; D, simulated) for decimal fraction pair type a.b (e.g., 2.4 vs.
2.91). The decimal fraction with three digits was either larger (i.e., congruent: 3.98 vs. 3.6) or smaller than the decimal fraction with two digits (i.e., incongruent:
7.63 vs. 7.9). ***p < 0.001.

Table 3 | Mean (SD in parentheses)TRT in ms on tenth and hundredth digits for compatible/congruent and incompatible/incongruent decimal
fraction pairs for decimal types a.0c, a.b0, a.bc, and a.b, respectively.

Tenth digit Hundredth digit

Decimal type Compatible/

congruent

Incompatible/

incongruent

Compatible/

congruent

Incompatible/

incongruent

a.0c 181 (42) 178 (40) 32 (28) 34 (27)

a.b0 194 (43) 239 (51) 27 (26) 32 (36)

a.bc 234 (35) 237 (41) 39 (33) 42 (44)

a.b 91 (57) 137 (62) 1 (4) 1 (2)

less for compatible than for incompatible a.b0 number pairs, mean
compatibility effects for decimal types a.0c and a.bc were −3 and
3 ms, respectively (see also Figure 3A).

For the hundredth digit (see Figure 3B), the main effect of
decimal type was significant [F(1,21) = 5.19, p < 0.05, η2

p = 0.20].
Pairwise comparisons revealed that participants fixated the zero
of the decimal type a.b0 less than the hundredth digit of decimal
types a.bc (p < 0.05). All other pairwise comparisons were not
significant (all p > 0.17). The main effect of tenth–hundredth
compatibility and the two-way interaction were not significant
(both F < 1.24, p > 0.54).

Taken together, the three-way interaction revealed a significant
compatibility effect on tenth digits for decimal type a.b0. More-
over, we found that zeros were fixated less often than other digits:

tenth digits of decimal type a.0c were fixated less than tenth digits
of decimal type a.bc in case of compatible number pairs and less
than tenth digits of decimal types a.b0 and a.bc in case of incom-
patible number pairs. Similarly, the zero of decimal type a.b0 (i.e.,
the hundredth digit) was fixated less than the hundredth digits of
other decimal types.

All three two-way interactions were significant [decimal
type × compatibility: F(2,42) = 18.08, p < 0.001, η2

p = 0.46;
decimal type × digit position: F(2,42) = 23.06, p < 0.001,
η2

p = 0.52; digit position × compatibility: F(1,21) = 4.49, p < 0.05,

ηp
2 = 0.18]. In the above analyses of the three-way interaction, we

already described the interaction between decimal type and tenth–
hundredth compatibility for each digit position separately (i.e.,
for tenth and hundredth digit separately). Moreover, we already

Frontiers in Human Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 172 | 81

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Huber et al. Decimal fraction and natural number representations

FIGURE 3 | Mean total reading times (TRT) for (A) tenth and (B)
hundredth digit for different decimal fraction pair types (e.g.,
a.0c = 2.04 vs. 2.91, a.b0 = 2.40 vs. 2.91, and a.bc = 2.43 vs. 2.91).
Decimal fraction pairs were either compatible (e.g., 4.21 vs. 4.67) or
incompatible (e.g., 2.45 vs. 2.91). ***p < 0.001, *p < 0.05.

analyzed differences between decimal types for each digit posi-
tions (as indicated by the two-way interaction between decimal
type and digit position). Finally, tenth–hundredth compatibil-
ity effects were already discerned for tenth and hundredth digit.
Thus, only the analysis of the digit position effects remains to
be presented (TRT on tenths − TRT on hundredths) for each
decimal type (as indicated by the two-way interaction between
decimal type and digit position). First, we analyzed digit posi-
tion effects for each decimal type separately. Then, we compared
digit position effects of decimal types against each other. Gen-
erally, the tenth digits were fixated longer than the hundredth
digits for all decimal types (all p < 0.001) with mean differences
between TRT on tenth and hundredth digits for a.0c, a.b0, and
a.bc being 147, 187, and 195 ms, respectively. The digit posi-
tion effect of decimal type a.0c was significantly smaller than the
effect of other types (p < 0.001), but decimal types a.b0 and
a.bc did not differ significantly (p = 1.00). Thus, irrespective of
decimal type, participants fixated hundredth digits far less than
tenth digits indicating an (at least partially) sequential processing
strategy.

Finally, all main effects were significant [decimal type:
F(2,42) = 96.29, p < 0.001, η2

p = 0.82; compatibility:

F(1,21) = 55.27, p < 0.001, η2
p = 0.73; digit position:

F(1,21) = 281.66, p < 0.001, η2
p = 0.93]. Comparable to the RT

analysis, pairwise comparisons revealed that participants fixated
decimal type a.0c shortest, followed by a.b0 and a.bc (all p < 0.001;
a.0c: M = 106 ms; a.b0: M = 123 ms; a.bc: M = 138 ms). Moreover,

the significant compatibility effect indicated shorter TRT for com-
patible than incompatible number pairs (M = 118 vs. 127 ms).
Finally, we found longer TRT on relevant tenth digits than on
irrelevant hundredth digits (M = 210 vs. 34 ms).

String length congruity. Since the critical digit for decimal type
a.b did not contain a digit at the hundredth’s position, we ana-
lyzed TRT of tenth digits separately by conduction a paired
t-test. Thereby, we evaluated whether string length congruity
also affected participants’ fixation pattern in addition to response
times. The paired t-test for the string length congruity effect of
decimal type a.b revealed a significant congruity effect. Partici-
pants fixated the tenth digits of incongruent number pairs longer
than those of congruent number pairs [congruent: M = 91 ms vs.
incongruent M = 137 ms; F(1,21) = 40.06, p < 0.001, η2

p = 0.66].

SIMULATION
MODEL FOR TWO-DIGIT NUMBER COMPARISON
To simulate the processing of decimal fractions, we adapted the
computational model of Huber et al. (2013c), which simulates
the comparison of two-digit numbers using an artificial neural
network (see Figure 4). This model consists of two single-digit
comparison networks for tens and units and a cognitive control
network, which was inspired by the cognitive control network of
Verguts and Notebaert (2008).

The single-digit comparison networks are composed of an
input layer and a comparison layer. In the input layer the rep-
resentation of digits is modeled using a place coding system with a
fixed Gaussian distribution for each digit (see Verguts et al., 2005,
for a similar approach). Thus, for each digit there is a unit which is
activated most and units coding digits of a similar magnitude are
activated to a lesser degree depending on their numerical distance
to the respective digit [i.e., f (i, j) = exp(−10 ∗ |i − (j + 1)|)
for node i and digit j]. The units of the input layer are con-
nected via forward connections to two comparison nodes, one
coding “left digit larger” and the other one coding “right digit
larger.” The activation of comparison nodes is calculated by
the weighted sum of input nodes reduced by inhibitory con-
nections between comparison nodes with weights winh = −2.
The activation function of the comparison nodes is a sigmoid
function.

Before single-digit comparison networks were integrated into
the cognitive control network, they were trained using the delta
rule (Widrow and Hoff,1960). To do so, weights between input and
comparison layer were initialized by generating pseudo-random
values in the interval [−1; 1]. The training comprised 100,000
trials, after which the network compared all combinations of
single-digit number pairs correctly. Only one network was trained.
Connection weights were reused in the second network.

In the cognitive control network, activity of input nodes is
propagated to the comparison nodes following formula A1 of
Verguts and Notebaert (2008). However, instead of an indica-
tor function we use the activation propagated from the input
layer to the comparison layer because in our model the input
of the cognitive control network is the output of the single-digit
comparison networks. Hence, instead of using color informa-
tion like in a Stroop task (see Verguts and Notebaert, 2008),
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FIGURE 4 | Architecture of the neural network model for decimal fraction
processing: networks (A) to (C) depict digit comparison networks for (A)
units, (B) tenth digits and (C) hundredth digits, and (D) the number of

digits comparison network. These networks are integrated into the neural
network of cognitive control (E) as suggested by Verguts and Notebaert
(2008). L, left digit larger node; R, right digit larger node.

we use the comparison information of one of the digits being
larger. This information is not prespecified in the input layer
(as it would be when using the original network architecture of
Verguts and Notebaert, 2008), but is generated by the single-digit
comparison networks. Comparison nodes are connected to two
response nodes via forward connections. Again, one node codes
“left digit larger” and the other one codes “right digit larger”
and response nodes are connected to each other via inhibitory
connections with winh = −0.5. Moreover, activation in the
comparison layer is modulated by task nodes for the two tasks
of comparing either tens or units, as described by equation A2 in
Verguts and Notebaert (2008).

Effects of cognitive control are simulated via a conflict monitor-
ing unit. The degree of conflict detected by the conflict monitoring
unit is used to adapt the connection weights between task demand
nodes and corresponding comparison nodes according to the
Hebbian learning rule in equation A3 of Verguts and Notebaert
(2008).

Response times are simulated by counting the number of steps
needed until one of the comparison nodes reaches a fixed threshold
θ of 0.8. Since it is possible that this threshold is never reached, the
maximum value for simulated response times was set to 200.

MODIFICATIONS OF THE EXTENDED MODEL FOR DECIMAL FRACTIONS
The model for two-digit numbers could be extended to simulate
decimal fraction comparison without introducing further qualita-
tive changes to the original model structure (see Figure 4). Since
decimal fractions consisted of up to three digits, we simply added
another single digit comparison network. Moreover, to simulate
the comparison of numbers comprising different numbers of dig-
its (i.e., two vs. three digits), we added another network for the

comparison of the number of digits, which was very similar to the
single-digit comparison networks (see Figure 4C). The compar-
ison of the number of digits can be simulated by the very same
network architecture as the comparison of digits (e.g., Verguts
and Fias, 2004; Santens and Verguts, 2011). However, tuning
curves have to be broader for non-symbolic comparisons (i.e.,
number of digits) than symbolic comparisons (i.e., comparison
of numerical magnitude; Santens and Verguts, 2011) using the
following activation function: f (i, j) = exp(−|i − (j + 1)|) for
node i and number of digits j. Moreover, the number of nodes
was reduced to four nodes for the comparison of numbers with
up to four digits (see Figure 4D). Four digits were chosen to
extend the network easily for comparisons of numbers with up
to four digits, but also three or five or more digits would have
been feasible. We also had to extend the task demand layer. Differ-
ing from the two-digit comparison network, there are nodes for
the comparison of units, tenths, hundredths, and the number of
digits.

Furthermore, activation of task nodes and connection weights
between comparison layer and response layer were modified to
simulate different attentional weighting of the respective digits of
decimal fractions. Attentional weighting values were inspired by
the relative frequency of fixations on tenth and hundredth digits.
Activity of the task node for units was set to 0 as a negligible num-
ber of fixations fell on unit digits, namely 2.5% of all fixations.
The task node for the tenth digits was set to the largest value of
1.5, because they were fixated most (i.e., 84% of all fixations). To
implement the very weak interference of hundredth digits, with
only 13% of all fixations on hundredth digits, activation was set
to the very low value of 0.01. A similar pattern of values was
chosen for the connection weights between comparison layer and
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response layer: 0.1, 1.0, 0.1, for unit, tenth and hundredth dig-
its, respectively. A different weighting of relevant and irrelevant
tasks was also suggested by Santens and Verguts (2011). In their
computational model the representational layer of the irrelevant
dimension was multiplied by a parameter � with the value of 0.15,
which determined the size of the size congruity effect (see also
Schwarz and Ischebeck, 2003).

Moreover, to capture the increased impact of zero in dec-
imal fraction processing (Varma and Karl, 2013), single-digit
comparison networks were not trained using a distribution
obtained from a Google-survey (see also Verguts and Fias, 2006;
Moeller et al., 2011; Huber et al., 2013b). Instead, the frequency
of occurrence of 0 in the training set of single-digit numbers
was 15% larger and the frequency of occurrence of 1 was 5%
larger than the frequency of occurrences of the other digits. By
increasing the frequency of occurrence of 0, comparison with
0 will be trained more often, thereby; increasing corresponding
weights between input nodes and comparison nodes, thus lead-
ing to faster comparisons with zero (see also Verguts et al., in
press, for frequency effects). We also tried only to increase the
frequency of 0, but this was not as effective as additionally increas-
ing the frequency of 1. However, other values might also have
resulted in a similar effect. Moreover, we slightly increased the
training phase to 120,000 trials (in contrast to 100,000 trials in
Huber et al., 2013c).

Attentional weights for the comparison of the number of digits
were set to slightly lower values than the attentional weights for the
comparison of tenth digits (i.e., activation of task node: 1.0 and
connection weight between comparison and response layer: 0.7).
However, each comparison of the number of digits was trained
more often than the comparison of single digits in the single-digit
comparison networks (i.e., 100,000 trials for 4 nodes vs. 120,000
trials for 10 nodes of the other single-digit comparison networks).
Thereby, the comparison of number of digits is faster than the
magnitude comparison of digits, resulting in a more pronounced
string length congruity effect.

Other parameters of the cognitive control network are mostly
identical to the ones used by Huber et al. (2013c) and Verguts
and Notebaert (2008): τ = 0.8, βin = 0.2, winh = −0.5, C = 0.7,
βcon = 1, λcon = 0.8, λw = 0.7, αw = 1, and βw = 0.5.

PROCEDURE AND ANALYSIS
The same stimuli as in the empirical study were used. However,
artificial networks were presented with the entire set of 440 items3.
We simulated 22 participants by creating 22 randomizations of
trial orders. Since we added random Gaussian noise at each time
step (M = 0, SD = 0.11), simulated RT and error rates were
different for each simulated participant. Similar to the empir-
ical study, we excluded simulated RT of trials which were not
solved correctly from further analyses resulting in a loss of 2.6%
of the data. Moreover, error rates were subjected to the inverse
sine transformation prior to analyses to approximate a normal
distribution.

3Please note that results were comparable when analyzing only a random subset of
320 items of the 440 items corresponding to 320 items which were presented to the
participants in the empirical study.

RESULTS
Processing of zeros and tenth–hundredth compatibility
To examine the tenth–hundredth compatibility effect and how
zeros influence processing of decimal fractions, we analyzed sim-
ulated RT and error rates by conducting two repeated-measures
3 × 2 ANOVAs with factors decimal type (a.0c vs. a.b0 vs. a.bc) and
tenth–hundredth compatibility (compatible vs. incompatible).
For RT data, the main effect of decimal type was significant [deci-
mal type: F(2,42) = 18.03, p < 0.001, η2

p = 0.46]. Mean RT for a.0c,
a.b0, and a.bc were: 9.53, 9.88, and 9.87, respectively. Similar to
the findings for the behavioral RT, we found that decimal type a.0c
was compared faster than the other decimal types (all p < 0.001).
However, different from the empirical RT findings, decimal type
a.b0 did not differ significantly from decimal type a.bc (p = 1.00,
corrected for multiple comparisons). The main effect of tenth–
hundredth compatibility and the interaction between decimal type
and tenth–hundredth compatibility were not significant (both
p > 0.24). Moreover, in line with the empirical findings, we did
not find any significant main or interaction effects for error rates
(all p > 0.05). Thus, as indicated in Figure 1, simulated RT repli-
cated the finding of faster RT for decimal type a.0c compared to
the other decimal types studied. However, the model could not
account for faster RT for decimal type a.b0 compared to decimal
type a.bc.

String length congruity
String length congruity effects for simulated RT and error rates
were analysed by running two paired t-tests. Both t-tests were
significant indicating shorter simulated RT and lower simulated
ER for length congruent than incongruent decimal fraction pairs
[RT: M = 9.14 vs. 10.87; F(1,21) = 265.43, p < 0.001, η2

p = 0.93;

ER: M = 1.02 vs. 7.05%; F(1,21) = 65.98, p < 0.001, η2
p = 0.76].

Thus, as depicted in Figure 2 (for RT see Figures 2A,B and for ER
see Figures 2C,D), simulated RT as well as ER were in accordance
with the empirical findings.

DISCUSSION
In the present study, we aimed at providing an alternative explana-
tion for the findings of Varma and Karl (2013), who had reported
a smaller compatibility effect and a larger semantic interference
effect for decimal fractions as compared to natural numbers.
These two findings would be consistent with the hypothesis that
decimal fractions are represented differently and, thus, decimal
fractions would be processed differently when compared to nat-
ural numbers. Therefore, we examined whether rejecting the
natural number conversion hypothesis, stating that decimal frac-
tions are processed similar to natural numbers, may have been
premature. Our results indicated that both findings can also be
explained by relying on componential processing of multi-digit
natural numbers in line with the natural number conversion
hypothesis (see also Dewolf et al., 2013). It provides a more
parsimonious explanation for findings in decimal fraction com-
parison, because additional decimal fraction representations do
not have to be assumed in order to explain how participants
compare decimal fractions. Thus, the present study supports the
notion that natural numbers and decimal fractions are processed
similarly.
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COMPATIBILITY EFFECT
We did not find a significant compatibility effect for reaction times
or error rates data in our behavioral experiment. This result sug-
gests that hundredth digits interfere less, when comparing decimal
fractions than when comparing natural numbers with respect to
their magnitude. At first glance, this pattern of results is in line
with the interpretation of Varma and Karl (2013), suggesting
distinct representations for decimal fractions. However, there is
another explanation for the absence of the compatibility effect
in our study: participants may have compared the decimal frac-
tions – at least in part – sequentially (e.g., Moeller et al., 2009;
Meyerhoff et al., 2012). This assumption could be tested systemat-
ically in the present study by evaluating participants’ eye fixation
behavior. In particular, Moeller et al. (2009) hypothesized that a
sequential comparison of two two-digit numbers would primar-
ily lead to fixations on tens and to only a very small number of
fixations on units. Moreover, fixations should not differ between
compatible and incompatible number pairs. Analogously, sequen-
tial processing of decimal fractions in our study would result
in long TRT on the tenth digits and only very short TRT on
the hundredth digits. In fact, we actually found that pattern for
number pairs including no zeros (i.e., a.bc) or zero at the tenth
position (i.e., a.0c). There was no compatibility effect for hun-
dredth digits, and TRT on tenth digits were about six times longer
(ranging from 1.6 to 223 times for individual participants) than
TRT on hundredth digits. In order for (automatic) processing
of the hundredth digits to interfere sufficiently with the pro-
cessing of tenth digits (i.e., to elicit a significant compatibility
effect), participants have to fixate the hundredth digits to a certain
extent (cf. Huber et al., 2013a). Thus, our findings indicate that
hundredth digits could be ignored more easily, when comparing
decimal fractions with identical unit digits. The most probable
reason for this is that participants processed decimal fractions
sequentially and not in parallel, which is typical for two-digit
numbers.

Nevertheless, we found a significant compatibility effect for
TRT on the tenth digits of decimal fractions having zero at the
hundredth position (i.e., a.b0). Thus, whereas compatibility did
not affect participants’ reaction times and error rates, it modulated
participants’ fixations on the tenth digits. Therefore, zero at the
hundredth position might mislead participants to assume that this
decimal fraction is smaller than the other one. As a consequence,
participants had to fixate the tenth digit longer in incompatible
than in compatible decimal fraction pairs to overcome this bias.

Finally, also in our computational simulations we did not find
a significant compatibility effect, although we simulated the com-
parison of decimal fractions, using a fully componential model.
As outlined above, this finding is obviously a consequence of the
very low attentional weighting of the hundredth digits, elim-
inating the compatibility effect. Increasing the activity of the
task demand nodes and the weights of the connection between
task demand nodes and comparison layer for the hundredth dig-
its would result in reliable compatibility effects for all decimal
fraction types. Similarly, we would predict that increasing the rel-
evance of the hundredth digit in an empirical study would result
in a reliable compatibility effect. One way to achieve this would
be to increase the number of filler items. Macizo and Herrera

(2011; see also Huber et al., 2013a) found that the size of the
unit-decade compatibility effect in two-digit numbers depends
on the number of filler items: the more within-decade filler
items, the larger the compatibility effect. Therefore, it is possi-
ble that increasing the number of filler items would have led to
a significant compatibility effect. To conclude, also our compu-
tational modeling suggested that a smaller compatibility effect or
even the absence of a compatibility effect for decimal fractions
does not necessarily imply a distinct representation of decimal
fractions.

STRING LENGTH CONGRUITY EFFECT
Similar to the results of Varma and Karl (2013), string length con-
gruity had a very strong impact on the comparison of decimal
fractions. In particular, we found reliably longer reaction times
and higher error rates for length incongruent than length con-
gruent decimal fraction pairs (i.e. congruent: 2.7 vs. 2.91 with
7 < 9 and 1 vs. 2 digits; incongruent: 7.14 vs. 7.6 with 1 < 6,
but 2 vs. 1 digits). We even had to exclude three participants
from the analysis because of their very high error rates (almost
at chance level) when comparing string length incongruent items.
A possible explanation may be that these three participants con-
fused, for instance, 2.06 with 2.60. However, if so, they made this
error not systematically. Otherwise, we would have observed a
more systematic error pattern and error rates close to 100% for
incongruent pairs, which was not the case. Instead, error rates
were close to chance level (i.e., 50%). Moreover, our participants
were university students who not only should have learnt the dec-
imal notation in school, but are also confronted with it in their
statistics courses. Therefore, we are confident that they should
at least have had a basic understanding of decimal number nota-
tion. Nevertheless, a further study would be required to investigate
whether a poor understanding of decimal number notation might
explain the poor performance of some students when comparing
decimals.

Varma and Karl (2013) suggested that the string length con-
gruity effect is caused by semantic interference of natural and
decimal fraction mental representations. However, our simulation
provides an alternative explanation. We did not include specific
representations for decimal fractions in our network architecture.
Instead, we added representations for the number of digits of deci-
mal fractions. Thereby, we were able to simulate the observation of
longer reaction times for incongruent than for congruent decimal
fraction pairs (i.e., the string length congruity effect). The string
length congruity effect may thus be just another example for the
assumption that numerical magnitude and physical magnitude (as
reflected by the number of digits) are not processed independently
(Pansky and Algom, 2002; Naparstek and Henik, 2010, 2012).
Numbers with more digits also have a larger physical (i.e., hor-
izontal) extension. Thus, continuous magnitude dimensions (e.g.,
total surface area, and total “white” color over black background)
might interfere with the processing of numerical magnitudes (see
also Leibovich and Henik, 2013, for a similar suggestion regard-
ing numerosities). This notion is further supported by the fact
that we used a very similar network architecture as in the study
of Santens and Verguts (2011), who simulated the size congruity
effect (Henik and Tzelgov, 1982) using a dual route model with
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separate representations for numerical magnitude and physical
magnitude. In their model the shared decision account was imple-
mented, according to which the interaction between comparison
of numerical and physical magnitude takes place at the decision
level (e.g., Schwarz and Heinze, 1998; Santens and Verguts, 2011).
Contrarily, the shared representation account suggests that numer-
ical and physical magnitude share the same representation (e.g.,
Walsh, 2003; Bueti and Walsh, 2009). We adapted the approach of
Santens and Verguts (2011) by creating separate representations
for numerical magnitude and number of digits, the latter imple-
mented as a discrete measure of horizontal extent. Thereby, the
network architecture of the present study was motivated by the
shared decision account for the interaction of numerical magni-
tude and continuous physical magnitude as proposed by Santens
and Verguts (2011). Hence, we suggest that not only numerical and
continuous physical magnitude may interfere at the decision level
(as for the size congruity effect), but also numerical magnitude
and the discrete number of digits.

Taken together, our simulation study indicates that the number
of digits interferes with the comparison of numerical magnitudes
(as measured by the string length congruity effect). However, this
influence of the number of digits might indicate an influence of
physical magnitude (i.e., vertical extension) on the processing of
number magnitude. Further studies are needed to disentangle
these two possible origins of the string length congruity effect.

ROLE OF ZERO
Interestingly, we observed that decimal fractions with a zero at
the tenth position were processed fastest. Importantly, however,
we were only able to simulate this finding by increasing the fre-
quency of occurrence of zeros in single-digit number comparison.
Yet, this modification did not explain why decimal fractions with
ending zeros were compared faster than decimal fractions with-
out zeros. Varma and Karl (2013) suggested that zeros may be
privileged in cognitive processing. Our simulation, implementing
such a privileged processing of zeros, suggested that this privi-
leged processing affected decimal fractions with zeros at the tenth
digit position, but not those with zeros at the hundredth position,
which was more or less neglected by the participants in our study
and therefore, should not have affected response times. How-
ever, an alternative account might be that participants did not
process decimal fractions with zeros at the end componentially.
Instead, they might have processed the fractional part of the dec-
imal fraction holistically. For instance, when comparing 2.91 and
2.40, participants ignored the unit digits and compared 91 and
40 instead. Specific processing advantages (as indicated be faster
response times) for multiples of ten have already been reported
before (Brysbaert, 1995; Nuerk et al., 2002). Thus, faster responses
for decimal fractions with zeros at the end might not necessarily
indicate a privileged role of zeros but a privileged role of multiples
of ten, which a model of strictly componential processing cannot
account for.

PERSPECTIVES
By assuming that processing of decimal fractions is not different
from processing of natural numbers, our computational model
also allows for predictions about the processing of natural numbers

and decimal fractions within one model framework. In accordance
with our findings for decimal fractions, we would expect that the
unit-decade compatibility effect is smaller for three-digit numbers
with identical hundred digits as compared to the hundred-decade
compatibility effect for three-digit numbers.

Necessarily, the natural number conversion hypothesis and the
model architecture employed in the present study suggest that the
number of digits should influence the comparison of numbers not
only when comparing decimal fractions, but also when comparing
two natural numbers. However, differing from decimal fractions
in natural numbers, the number of digits is always congruent with
numerical magnitude. Therefore, different numbers of digits can
only facilitate the comparison of two natural numbers, but never
interfere with the comparison of two natural numbers. Neverthe-
less, the computational model architecture predicts that natural
numbers containing different numbers of digits should be com-
pared faster than natural numbers with the same number of digits,
even if distance and problem size are matched.

Moreover, the computational model, which served as a basis for
the extended network presented in the current study, was devel-
oped to simulate effects of cognitive control observed in two-digit
number processing. It was able to account for the proportion con-
gruity effect found by Macizo and Herrera (2013) and predicted
a Gratton effect (Gratton et al., 1992) in two-digit number com-
parison. Hence, the computational model predicts that also the
comparison of decimal fractions should be under cognitive control
modulating the relevance of tenth and hundredth digits. Regard-
ing the tenth–hundredth compatibility effect, we would expect
it to be more pronounced in a stimulus set with a smaller pro-
portion of incompatible relative to compatible number pairs, as
found by Macizo and Herrera (2013) for the case of two-digit
numbers. Moreover, in the original computational model (Huber
et al., 2013c) cognitive control was implemented to act locally on a
trial-by-trial basis and, thereby, it was able to simulate the Gratton
effect in two-digit number comparison. Transferred to the case of
decimals, the model thus predicts that participants should adapt
to different proportions of incompatible trials when comparing
decimal fractions on a trial-by-trial basis as well. However, the
computational model suggests that not only the relevance of digits
should be influenced by processes of cognitive control, but also
the inferential influence of the number of digits. This means that
the inferential influence of the number of digits should depend on
the proportion of string length incongruent to congruent num-
ber pairs (in the sense of a proportion congruity effect). In the
current computational model, the network for comparing differ-
ent numbers of digits was added in the same way as the network
for the magnitude comparison of digits. Therefore, the same pro-
cesses of cognitive control, which modulate the relevance of tenth
and hundredth digits, should also modulate the influence of the
number of digits. In a similar vein as for the relevance of tenth
and hundredth digits, the computational model predicts that the
influence of the number of digits should be smaller for higher pro-
portions of incongruent trials. More specifically, the string length
congruity effect should be larger in a condition with only 25%
incongruent trials than in a condition with 75% incongruent trials
(see Macizo and Herrera, 2013, for a similar proportion congruity
manipulation on the unit-decade compatibility effect). Moreover,
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as cognitive control was implemented to act locally on a trial-by-
trial basis, the computational model also predicts a Gratton effect
for the string length congruity. These predictions are a direct result
of the network architecture employed to simulate the string length
congruity effect and have to be demonstrated in future empirical
studies.

Furthermore, we simulated the processing of decimal frac-
tions using a fully componential model. With this architecture,
however, the model was not able to account for the observed
faster responses for decimal fractions with zero at the rightmost
position. We suggested that the fractional part of these decimal
fractions might be processed holistically because of its similar-
ity to multiples of ten (e.g., the fractional part of 2.40 is 40).
In the study of Moeller et al. (2011), the fully componential
model was favored, because it was more parsimonious than the
hybrid model assuming that there exit both a componential as
well as a holistic representation of two-digit numbers (e.g., Nuerk
and Willmes, 2005). However, the present study suggests that
at least some two-digit numbers (i.e., whole 10) might be pro-
cessed holistically favoring a hybrid model of two-digit number
processing.

CONCLUSION
The present study aimed at investigating the processing of dec-
imal fractions. Currently, there is a debate on whether decimal
fractions are processed like natural numbers (natural number
conversion hypothesis) or whether there exist mental represen-
tations of decimal fractions, which are distinct from those of
natural numbers. The latter suggestion of distinct representations
for decimal fractions was supported (i) by the finding of a smaller
compatibility effect in decimal fraction than in natural number
comparison and (ii) by a semantic interference effect indicating
that natural number representations interfere with the compari-
son of decimal fraction representations. In the present study, we
investigated whether these differences indeed indicate that deci-
mal fractions are processed differently from natural numbers. To
do so, we provided another account for the semantic interference
effect. We proposed that a string length congruity effect evoked
by an incongruity between comparison of the magnitude of dig-
its and the physical length could also account for the semantic
interference effect. To evaluate this suggestion, we conducted an
eye-tracking study and simulated the empirical findings using a
computational model. Importantly, in the computational model
we did not implement specific decimal fraction representations.
Instead, our model was an extension of our fully componential
model for two-digit number comparison. To account for the pro-
posed string length congruity effect, we added a network for the
comparison of the number of digits. The computational model
could account for the smaller compatibility effect in decimal
fraction comparison and for the string length congruity effect
providing further support for the natural number conversion
hypothesis.
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As enhanced fronto-parietal network has been suggested to support reasoning ability
of math-gifted adolescents, the main goal of this EEG source analysis is to investigate
the temporal binding of the gamma-band (30–60 Hz) synchronization between frontal and
parietal cortices in adolescents with exceptional mathematical ability, including the func-
tional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-
parietal network (phase-locking durations and network lability in time domain), and the
self-organized criticality of synchronizing oscillation. Compared with the average-ability
subjects, the math-gifted adolescents show a highly integrated fronto-parietal network
due to distant gamma phase-locking oscillations, which is indicated by lower modular-
ity of the global network topology, more “connector bridges” between the frontal and
parietal cortices and less “connector hubs” in the sensorimotor cortex. The time domain
analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal
coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal
connection reconfiguration.The results from sample fitting in the power-law model further
find that the phase-locking durations in the math-gifted brain abides by a wider interval
of the power-law distribution. This phase-lock distribution mechanism could represent a
relatively optimized pattern for the functional binding of frontal–parietal network, which
underlies stable fronto-parietal connectivity and increases flexibility of timely network
reconfiguration.

Keywords: mathematically gifted adolescents, fronto-parietal functional binding, EEG cortical network, gamma
phase-locking duration, power-law model

INTRODUCTION
In the fields of education and psychology, exceptional logical rea-
soning and visual-spatial imagery abilities are regarded as the
main characteristics of mathematically gifted adolescents. Numer-
ous neuroscience studies have reached an agreement that the
gifted mathematical thinking abilities are supported by a coop-
erative fronto-parietal network (O’Boyle et al., 2005; Lee et al.,
2006; Wartenburger et al., 2009; Prescott et al., 2010; Desco
et al., 2011; Hoppe et al., 2012), including the widespread activa-
tion of fronto-parietal cortices, the heightened intrahemispheric
frontal–parietal connectivity, and the enhanced interhemispheric
frontal connectivity between the dorsolateral prefrontal and pre-
motor cortices (Prescott et al., 2010). Some empirical studies have
further suggested that the functional facilitation of the fronto-
parietal network is driven by the extensively activated posterior
parietal cortices (Lee et al., 2006; Desco et al., 2011). Besides,
math-gifted adolescents were found having a larger number of
fronto-parietal connections within the right hemisphere as com-
pared with the left hemisphere (Prescott et al., 2010). Based on
the highly developed right hemisphere and well-developed inter-
hemispheric interaction, math-gifted adolescents can activate a
“bilateral” fronto-parietal network during the cognitive processing

related to mathematical thinking (Alexander et al., 1996; Stern-
berg, 2003; O’Boyle et al., 2005; O’Boyle, 2008; Desco et al., 2011).
Therefore, the heightened“interplay”of anterior/posterior accom-
panied with the enhanced interhemispheric frontal connectivity,
the extensive parietal activation and the bilateral fronto-parietal
network have been suggested as the important neural mechanisms
of the math-gifted brain (Singh and O’Boyle, 2004; O’Boyle et al.,
2005; Lee et al., 2006; Prescott et al., 2010; Desco et al., 2011).

The parieto-frontal integration theory (P-FIT) on individ-
ual differences in reasoning competence emphasizes the crucial
process of information communication between association cor-
tices within the parietal and frontal brain regions (Jung and Haier,
2007). Neural oscillations and synchronization represent impor-
tant mechanisms for interneuronal communication and bind-
ing of information among distributed brain regions. Specifically,
gamma oscillations (30–60 Hz) are considered as the important
building blocks of the electrical activity of the brain and possibly
represent a universal code of information communication in the
central nervous system (Basar et al., 1999, 2001). Gamma-band
modulation in spectral power shows spatial correspondence with
the fMRI blood oxygenation level dependent (BOLD) variation in
the activated regions of the brain (Niessing et al., 2005; Lachaux
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et al., 2007). Gamma oscillation is also highly involved in sensation,
perception, and cognition, and is correlated with high-order cog-
nition, working memory load, and decision-making, etc. (Karakas
et al., 2001; Howard et al., 2003; Fitzgibbon et al., 2004; Her-
rmann et al., 2010). As low-frequency oscillations coordinate long-
range functional connectivity, gamma synchronization oscillation
is more spatially restricted and reflects high-density local informa-
tion processing (Brovelli et al., 2005; Bassett et al., 2006), which has
been proposed as a crucial mechanism for the short-lasting func-
tional binding between discrete brain regions (Koenig et al., 2005).
Furthermore, the gamma binding-by-synchrony activity among
neuronal populations constitutes a transient, large-scale, and task-
specific functional neurocognitive network (Basar-Eroglu et al.,
1996; Doesburg et al., 2008; Uhlhaas et al., 2011).

On the other hand, the network with dynamic binding not
only depends on the transient coupling between neural assem-
bles, but also requires the timely reconfiguration of connections
to adapt to external stimuli and inner perturbation. As a rep-
resentation of functional coupling strength between adjacent or
distant brain areas, the synchronization between neuronal assem-
bles is actually operated in a metastable dynamic system (Werner,
2007). For example, EEG phase synchronization (PS) is a mix-
ture of episodic phase-locking durations interrupted by phase-
shifts (desynchronization) in spontaneous EEG (Freeman and
Rogers, 2002; Chialvo, 2004; Thatcher et al., 2009a). As continuous
phase-locks enhance the functional coupling between neuronal
populations and lead to the emergence of connections in neu-
ronal networks, phase-shifts mark the beginning of a different
set of connections and the occurrence of network reconfigura-
tion (Thatcher, 2012). Moreover, these phase-locking durations
have been discovered to conform the rule of power-law distri-
bution, which has been widely accepted as a typical empirical
signature of non-equilibrium systems in self-organized critical
states (Kitzbichler et al., 2009). The gamma network in partic-
ular has been found having the highest global synchronizability
in the fractal networks of the brain, suggesting that the gamma
synchronizing network is dynamically located at a critical edge
in transit to desynchronization. The highly critical state of the
gamma network increases its adaptiveness to cater for chang-
ing environmental requirements through rapid reconfiguration
of connections (Bassett et al., 2006).

Through EEG source analysis of the gamma cortical network,
the present study aims to find the giftedness-related capacity of
functional binding in the crucial fronto-parietal network of rea-
soning, by assessing the task-related functional connectivity and
adaptive network reconfiguration. The study first compared the
basic cortical network topologies constituted by gamma phase-
locking oscillations in math-gifted and average-ability adolescents
while they were performing a deductive reasoning task. Further-
more, at a neural-mechanistic level of analysis, the study inves-
tigated the temporal dynamics of the fronto-parietal network,
including the phase-locking intervals/durations (PLI) and the
lability of fronto-parietal network reorganization. Then, the para-
meter fitting of the PLIs in the power-law model was conducted
to assess the criticality of phase-locking durations, which could
construct an association between the functional connectivity and
adaptive reconfiguration of fronto-parietal network. After that, the

relationship among the enhanced fronto-parietal connectivity, the
extensive reorganization of fronto-parietal connections, and the
high criticality of PLIs in the math-gifted brain was analyzed and
discussed.

MATERIALS AND METHODS
SUBJECTS
Two groups of subjects were enrolled in this study. The math-gifted
group included 11 adolescents (eight males and three females)
aged 15–18 years (mean± SD: 16.3± 0.6), who were from the Sci-
ence and Engineering Experimental Class at Southeast University
(Nanjing, China). The class was composed of adolescents who
had been recruited through a special college entrance examina-
tion aiming at gifted students under 15 years old with exceptional
abilities in mathematics and natural sciences. Three criteria were
employed to select math-gifted subjects from the class accord-
ing to the definition of “school giftedness” (Renzulli, 1978; Heller,
1989): (1) nomination: they were recommended by their teacher
according to their behavioral performance; (2) academic perfor-
mance: they should have been awarded prizes in nationwide or
provincial mathematical competitions; (3) intelligence score: their
scores of Raven Advanced Progressive Matrices (RAPM) test were
higher than 32 (mean± SD: 33.6± 0.8). For the control group, 13
subjects were recruited from the Fourth High School of Nanjing,
using the following criteria: (1) they were matched with the math-
gifted group for age (mean± SD: 15.9± 0.7) and gender (eight
males and five females); (2) they had average-level performance in
mathematical class tests; (3) their scores of RAPM test were <32
(mean± SD: 23.5± 4.5).

The exclusion criteria adopted included left handedness, med-
ical, neurological or psychiatric illness, and history of brain injury
or surgery. To avoid the long-term training effect on the human
brain activity, students who had received special training course
of Mathematical Olympiad were excluded from this experiment.
All the subjects were given informed consent and the study was
approved by the Academic Committee of the Research Center
for Learning Science, Southeast University, China. The subjects
received financial compensation for their participation.

EXPERIMENTAL PARADIGM
As the essential mathematical skill and the standard type of
deductive reasoning, a categorical syllogism task of analytic type
(verbal–logical way) was adopted in this study. Categorical syllo-
gism is constituted by a major premise, a minor premise, and a
conclusion. The actual reasoning process has been considered to
emerge during the presentation of the minor premise and remain
active until the validation of the conclusion (Fangmeier et al., 2006;
Rodriguez-Moreno and Hirsch, 2009). Neuroimaging studies have
identified that frontal, parietal, temporal, and occipital complexes
are involved in deductive reasoning tasks (Goel et al., 2000; Goel
and Dolan, 2001; Knauff et al., 2002; Goel, 2007). Particularly, the
activations in the left inferior frontal gyrus, bilateral precentral
gyrus of the left fronto-parietal system, and the left basal gan-
glia have been consistently reported to be specific to categorical
syllogism (Prado et al., 2011).

The syllogistic sentences without specific content include three
basic items: “S,” “M,” and “P.” “M” is the medium item and is

Frontiers in Human Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 430 | 90

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Zhang et al. Gamma binding and mathematical giftedness

presented in both the major premise and the minor premise. “S”
and “M” constitute the major premise, and “M” and “P” the minor
premise. From the two premises, the inferred relationship between
“S” and “P” forms the conclusion (Figures 1A,B).

The experiment adopted a three-block paradigm, included a
valid block (32 trials), an invalid block (32 trials), and a baseline
block (40 trials). The combinations of syllogistic sentences follow-
ing the true logical rules constituted a valid block, which employed
the logic expressions proposed by Evans et al. (1993). An invalid
block was constituted by the invalid combinations of syllogistic
sentences, in which there was inconclusive relationship between
two premises or incorrect conclusion under clear premises. A base-
line block consisted of the trials including the same letter items in
each sentence, in which there was no need for subjects to think of
the relationship between the items. The letters used in the syllo-
gistic sentences were randomly selected from the 26 letters of the
English alphabet. Some samples are shown in Figure 1B.

The trials of the three blocks were presented in a random order,
which was performed by the E-Prime 2.0 experimental procedure.
The stimuli presentations of all the trials took about 30 min. The
major premise, minor premise, and conclusion were presented
sequentially along the timeline (Figure 1C). When the minor
premise was shown, subjects were asked to draw a logical con-
clusion to judge whether the subsequent conclusion was valid or
invalid (the ratio of the numbers of valid and invalid trials was
1:1). Subjects put their left index finger on “D” key and right index

finger on “K” key at the beginning of a trial. They were asked
to respond as accurately as possible by pressing “D” for “invalid”
and “K” for “valid” within 3000 ms after the presentation of the
conclusion. The time length of a reasoning process is 9000 ms.

Before the formal experiment, a practice session including five
trials was conducted by each subject. After that, they decided
whether to practice again or enter the following formal procedure.
The sentences included Chinese characters and English letters,
which were white on black background to avoid visual fatigue.

EEG RECORDING AND PREPROCESSING
The EEG data were recorded using the Neuroscan system at sam-
pling rate 1000 Hz, with 60 scalp electrodes placed according to
the international 10–20 system (Figure 2). Additionally, bilateral
mastoids were used to place the reference electrodes. To monitor
ocular movements and eye blinks, electro-oculographic (EOG)
signals were simultaneously recorded by four surface electrodes,
with one pair placed over the higher and lower left eyelids and the
other pair placed 1 cm lateral to the outer corners of the left and
right orbits.

By using the Scan 4.3 data preprocessing software, the contin-
uous EEG signals with correct responses were band-pass filtered
between 1 and 100 Hz. The epoch of each trial was extracted using
a time window of 9500 ms (500 ms pre-stimulus and 9000 ms
post-stimulus), and was baseline-corrected according to the pre-
stimulus time interval. Ocular artifacts were removed according

FIGURE 1 | Experiment protocol: (A) rules and forms for cross-combination in logical syllogism. The valid forms utilized in this experiment are AAA, AII, EAE,
EIO, AEE, EAE, EIO, AOO, AAI EAO, IAI, OAO, which are adapted from Evans et al. (1993). For example, a valid combination of EAE and the first rule is “No S is
M; All M are P; Therefore, No S is P”; (B) some samples of valid, invalid, and baseline trials; (C) timeline of the stimuli.
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FIGURE 2 | Head model and cortical vertices. The diagram located at the
left of the arrow shows the head model with four layers (scalp, outer skull,
inner skull, and cortex), and the scalp is placed with 60 EEG data channels.
The diagram located at the right of the arrow shows the cortical vertices
that are transformed from the EEG channel locations through a source
estimation procedure.

to the simultaneously recorded EOG signals. After the artifact
rejection with the thresholds ranging from 50 to 75µV, the blink
and electrocardiogram noises were excluded. Finally, 18–22 trials
were retained for each math-gifted subject and 15–25 trials were
retained for each control subject. In addition, the independent
component analysis (ICA) in the EEGLAB Toolbox was used to fur-
ther clear the visible artifacts, such as the components of possible
ocular and muscle movements. Since the emergence of the minor
premise in the syllogistic sentence was viewed as the beginning
of the actual reasoning process, the time interval 3000–9000 ms
(presentation time of the minor premise and conclusion) of the
artifact-free EEG signal was selected as the event-related time
window. Because of the individual differences in response speed
and completion time of each trial, the interval 4000–8000 ms was
further extracted as the time window for data analysis.

GAMMA-BAND RESPONSE AND CORTICAL SOURCE ESTIMATION
Gamma-band response
Task-induced response at the gamma frequency of the human
brain activity was first assessed in each EEG channel by calculat-
ing event-related synchronization/desynchronization (ERS/ERD),
which was expressed as the percentage of power increase/decrease
relative to the baseline resting state:

ERS/ERD
(
f
)
=
[
A
(
f
)
− R

(
f
)
/R(f )

]
× 100% (1)

where f indicates the gamma frequency band, A(f) is the power
spectrum density (PSD) of an EEG signal in the task period and
R(f) is the PSD in the pre-stimulus interval of the signal. Positive
value is ERS and negative value represents ERD.

Cortical current estimation
There is a limitation that the EEG-based brain connectivity analy-
sis was influenced by the volume conduction, which was caused
by the variation of the electrical conductivity among the different
head layers (Langer et al., 2012; Klados et al., 2013). To avoid this
problem, the scalp-recorded EEG signals were transformed into
the source space, which was performed by using the source estima-
tion procedure of the Brainstorm Toolbox that is documented and

freely available at http://neuroimage.usc.edu/brainstorm (Tadel
et al., 2011). In the source estimation, the EEG signals were
assumed to be mainly determined by a block of electric dipoles
located at the surface of the cortex. Based on an averaged realistic
head model that was constituted by four layers, i.e., scalp, outer
skull, inner skull, and cortex, the symmetric Boundary Element
Method (BEM) in the open-source software (http://www-sop.
inria.fr/athena/software/OpenMEEG/) (Gramfort et al., 2010) was
applied to the EEG electrode locations to obtain the volume con-
ductor modeling of the subjects, i.e., the forward model matrix.
Through an inverse kernel matrix produced by the standardized
Low Resolution Brain Electromagnetic Tomography (sLORETA)
and the forward model, the raw EEG signals were transformed
into the current sources located at the cortical surface. By apply-
ing a downsampling procedure to the original sources, 248 cortical
vertices were selected to serve as the nodes in the following graph
theory analysis (Figure 2).

PHASE SYNCHRONIZATION AND UNDIRECTED GRAPH CONSTRUCTION
To quantify the strength of connectivity, the cortical currents were
followed by a phase-locking value (PLV) calculation between each
pair of the nodes. PLV is a representative method of PS through
obtaining a statistical quantification of the frequency-specific syn-
chronization strength between two neuroelectric signals (Lachaux
et al., 1999). The phase-locked neuronal groups can communicate
effectively, because the communication windows between these
neuronal populations for input and output are open at the same
time (Fries, 2005). For two signals x(t ) and y(t ) with instanta-
neous phases φx(t ) and φy(t ), PS is the locking of the phases
associated to each signal, i.e., |φx(t )−φy(t )|= const. Phase can
be obtained through the Hilbert transform (HT), which is used to
constitute an analytical signal as H (t ) = x (t )+ ix̃ (t ). Here, x̃ (t )

is the HT of x(t ), defined as x̃ (t ) = 1
π

PV
∫
∞

−∞

x(t ′)
t−t ′ dt ′, where PV

denotes the Cauchy principal value. The phase of the signal x(t ) is
defined by φx (t ) = arctan x̃ (t ) /x (t ). The PLV bivariate metric
for φx(t ) and φy(t ) is defined as

PLV =

∣∣∣∣∣∣ 1

M

M−1∑
j=0

exp
(
i
(
φx
(
j1t

)
− φy

(
j1t

)))∣∣∣∣∣∣ (2)

where1t is the sampling interval and M is the number of sample
points of each signal. The range of PLV is within [0,1], where 1
denotes perfect PS and 0 represents absence of synchronization
(Sakkalis, 2011).

After calculating the PLV matrix of size 248× 248 for all the cor-
tical vertices, a fixed connection density was employed to acquire
the adjacency matrix. The connection density of the network was
set to p= 21n n/n according to the Erdos–Renyi model (Erdos and
Renyi, 1961), where n is the number of the nodes. After that, the
graph theory was used to quantify the topological properties of
the adjacency matrix (Bullmore and Sporns, 2009; Rubinov and
Sporns, 2010).

In the following definitions of the graph-theoretical measures
based on an adjacency matrix [ai,j], N is the set of all the nodes in
a functional brain network (i, j) represents the link between nodes
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i and j (i, j ∈N ). If there is a link (i, j) between nodes i and j, then
ai,j= 1, which denotes a connection status; otherwise, ai,j= 0.

Degree of node i is the number of links connected to it:

ki =
∑
j∈N

aij (3)

Modularity of a network is defined by

Q =
∑
u∈M

euu −

(∑
v∈M

euv

)2
 (4)

where M is a set of non-overlapping modules that the network
can be fully divided. euv is mainly determined by the ratio of the
number of the links connecting the nodes in module u with the
nodes in module v to the total number of the links in the network.

Characteristic path length is defined by

L =
1

n

∑
i∈N

Li =
1

n

∑
i∈N

∑
j∈N ,j 6=i dij

n − 1
(5)

where Li is the average distance between node i and other nodes,
and dij is the shortest path length between nodes i and j, which
is given by dij =

∑
amn∈gi→j

amn (gi→j is the shortest geodesic path

between i and j. For all disconnected pairs i, j, dij=∞).
Node clustering coefficient is quantified by a proportion of the

number of existing connections between the nearest neighbors of
a node i to the number of maximally possible connections:

Ci =
2ti

ki (ki − 1)
, (Ci = 0 if ki < 2) , (6)

where ti is the number of triangles around node i, i.e., ti =
1
2

∑
j ,h∈N

aij aihajh , ki is the degree of the node.

Node betweenness centrality is measured according to the pro-
portion of the number of the shortest paths between all the node
pairs passing through a specific node to the total number of
shortest paths between all the node pairs, which can assess the
communication role of the node within the functional network
and is defined as follows:

bi =
1

(n − 1) (n − 2)

∑
h,j∈N

h 6=j ,h 6=i,j 6=i

ρhj (i)

ρhj
(7)

where ρhj is the number of the shortest paths between nodes h and
j, and ρhj(i) is the number of the shortest paths between nodes h
and j that pass through node i. A node with high betweenness
centrality is thus crucial to play the role of “connector hub” in the
network.

Edge betweenness centrality is calculated based on how many of
the shortest paths between all the node pairs in the network pass
through a specific edge:

Bij =
1

(n − 1) (n − 2)

∑
h,k∈N

i 6=j ,h 6=k
h 6=i,h 6=j
k 6=i,k 6=j

ρhk
(
ij
)

ρhk
,
(
aij = 1

)
(8)

where ρhk is the number of the shortest paths between nodes h and
k, and ρhk(ij) is the number of the shortest paths between nodes h
and k passing through edge (i, j). An edge with high betweenness
centrality represents a “connector bridge” between two parts of a
network, the removal of which might affect the communication
between many pairs of nodes through the shortest paths between
them.

PHASE-LOCKING DURATION AND NETWORK LABILITY DURING
DYNAMIC BINDING PROCESS
Since PLV is the temporal statistic of the intermittent phase-
locking durations in a specified time interval, the PLIs between
frontal and parietal cortical signals were extracted to further
quantify the distribution characteristic of the continuous syn-
chronizations. PLI is the period of time when two oscillators
maintain the synchronization activity in their phase difference
within a limited range, i.e.,1φxy(t )= |φx(t )−φy(t )|< const. In
this paper, PLI is defined as the length of time during which two
signals x(t ) and y(t ) are synchronized by satisfying the condition
of−π4 < 1φxy (t ) <

π
4 (Kitzbichler et al., 2009). If this condition

does not hold true, the phase-locking oscillation is interrupted and
enters into the phase-shifting interval.

On the other hand, to measure the coordinated change of func-
tional coupling states of the synchronizing network during reason-
ing task, the fronto-parietal lability was calculated in the selected
nodes ranging from frontal, sensorimotor to parietal cortices. The
lability is quantified by the total number of phase-locking pairs of
signals in a dynamic network that can change over time. The num-
ber of signal pairs that were phase-locked at any time points can
be acquired according to the following preset condition of phase
difference:

N (t ) =
∑
x<y

b
(∣∣∣1φxy (t ) <

π

4

∣∣∣) (9)

where b
(∣∣1φxy (t )

∣∣ < π
4

)
=

{
1, if

∣∣1φxy (t )
∣∣ < π

4
0, otherwise

The lability of a synchronizing network is defined as

12 (t , 1t ) = |N (t +1t )− N (t )|2 (10)

where the time interval1t was set to 10, 15, 20, and 25 ms respec-
tively, as 10–30 ms had been proposed as the optimal temporal
window for information transmission and storage in cortical cir-
cuits (Harris et al., 2003). It is clear that larger12(t,1t ) represents
more extensive change in the fronto-parietal network and more
flexible adjustment of the functional connections.
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For all the trials, the scattergrams were constituted by the sam-
ples with the feature distribution of mean fronto-parietal PLI and
mean lability of fronto-parietal network in 10, 15, 20, and 25 ms
time intervals. Linear discriminant analysis (LDA) (Webb, 2003)
with 10-fold cross-validation was employed to further discover the
giftedness-related dynamic functional binding pattern.

CRITICALITY ASSESSMENT OF PHASE-LOCKING DURATIONS
To construct an association between PLI and functional reor-
ganization of network, critical dynamics of the fronto-parietal
synchronization is assessed by fitting the PLIs in the “power-law”
model. The PLI distributed in a critical interval indicates that a
“metastable” synchronization is in effect, which implies the syn-
chronizing state would access “neuronal avalanche” and adaptive
reorganization by synaptic interaction in the face of endoge-
nous perturbation and external event (Werner, 2007; Beggs, 2008;
Kitzbichler et al., 2009; Thatcher et al., 2009a).

Playing the role of functional integration between posterior
parietal and frontal cortices in reasoning (Jung and Haier, 2007),
the inter-module connections between frontal and parietal cor-
tical areas are crucial for straightforward coupling. Therefore,
the phase-locking durations between 30× 30 frontal–parietal
node pairs were concatenated to constitute the inter-node PLI
sample set.

In this study, the parameter fitting method proposed by Clauset
et al. was applied to the PLIs set. The method has been proven valid
on various datasets from the natural phenomenon with power-law
distribution characteristic (Clauset et al., 2009). Let x represents a
discrete set of PLI values, a discrete power-law distribution can be
described by the following probability density

p (x) = Pr (X = x) = Cx−α (11)

where X represents the observed PLI value, C is a normaliza-
tion constant, and α indicates the power-law exponent. It is clear
that smaller α indicates a higher probability of long phase-locking
duration. In practice, not all the PLI values obey the power-law,
and only the values greater than a minimum value xmin can fit in
the power-law distribution with less bias. While the data are drawn
from a distribution that follows a power-law exactly for x ≥ xmin,
the scaling parameter α can be estimated correctly. In the special
case of xmin= 1, the maximum likelihood estimator (MLE) used
for appropriate estimation of α is given by the solution to the

transcendental equation
ζ ′(α̂)
ζ(α̂)
= −

1
n

n∑
i=1

ln xi , where ζ is the Rie-

mann zeta function. When xmin> 1, the zeta function is replaced

by the generalized zeta
ζ ′(α̂, xmin)
ζ(α̂, xmin)

= −
1
n

n∑
i=1

ln xi . For each possible

choice of xmin, α was estimated by the MLE. The Kolmogorov–
Smirnov (KS) goodness-of-fit statistic was calculated according
to D = max

x≥xmin
|S (x)− P (x)|, where S(x) is the cumulative dis-

tribution function of the data for the observation with the value
larger than xmin, and P(x) is the cumulative distribution function
of the best fitting of data to the power-law model in the region
x ≥ xmin. The optimal estimation of xmin is the one that gives the
minimum value of D. Root-mean-square error (RMSE) expressed

by Re =

√
[
∑

di
2/n] is used to assess the goodness-of-fit of the

power-law scaling, where di is the deviation between the observed
value and the estimated one.

ANOVA STATISTICAL TEST
The single-trial analysis results obtained from 215 samples of
the math-gifted group and 252 samples of the control group
were examined statistically using the one-way analysis of vari-
ance (ANOVA) in the Matlab Statistics Toolbox, with group
(gifted/control subjects) serving as the between-subjects factor. At
the nodal level of the graph-theoretical analysis, clustering coef-
ficient and node betweenness centrality of each cortical vertex
were statically tested by the one-way ANOVA. Moreover, edge
betweenness centrality was tested as well for 30× 30 links con-
necting frontal–parietal nodes. The Bonferroni Corrections were
used in the multiple statistical tests, with significance level set to
0.05. At the global level of the functional network, the ANOVA was
conducted on modularity and characteristic path length, respec-
tively. Additionally, the relevant fitting parameters of PLIs in the
power-law model from the single-trial analytical results were sta-
tistically compared between the two groups. For the behavioral
data, the AVOVA tests were used to identify the group difference
in task performances in terms of accuracy and response time.

RESULTS
BEHAVIORAL MEASURE OF TASK PERFORMANCE
In the deductive reasoning task, the math-gifted group has
outperformed the control group in average response accu-
racy (mean± SD: 75.14± 12.58% in the math-gifted group and
68.20± 15.29% in the control group). Regarding the reaction
time of correct response, significant group difference (p= 0.0036)
has been observed in the task, in which the math-gifted adoles-
cents showed shorter reaction time than the controls (mean± SD:
831± 536 ms in the math-gifted group and 994± 655 ms in the
control group).

ENHANCED FUNCTIONAL INTEGRATION IN THE GAMMA CORTICAL
NETWORK
The ERS/ERD based brain topological maps show that the gamma-
band response induced by the deductive reasoning task is mainly
distributed in the prefrontal, frontal, sensorimotor, parietal, and
occipital regions. The math-gifted group in particular has higher
gamma-band ERS in the central sensorimotor regions as compared
with the average-ability subjects (Figure 3A). Corresponding to
this result, relatively extensive brain regions with small phase dif-
ference are discovered in the math-gifted group, as shown in the
phase topologies from the averaged values of the subjects in the
time window of data analysis (Figure 3B).

From the graph-theoretical analysis results of the gamma cor-
tical network, the basic neurocognitive network topologies of
the two groups are primarily composed of the prefrontal, fron-
totemporal, parietal, occipital, and fronto-parietal modules. With
the same connection density employed in the two groups, the
gamma synchronization network in the math-gifted group shows
an expanded fronto-parietal module that integrates more corti-
cal vertices in frontal, parietal, and sensorimotor regions and the
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relatively shrinking frontotemporal modules, by using the Lou-
vain method for functional community detection (Blondel et al.,
2008). In the comparison between the PLV matrices from the
two groups, the intensively increased synchronized node pairs in
the gamma cortical network of the math-gifted subjects focus on
the fronto-parietal cortical regions, accompanied with the node
pairs with decreased synchronization in prefrontal, temporal, and
occipital regions (Figure 4). Moreover, the ANOVA results for test-
ing the between-groups difference in the individual nodes show
that the math-gifted adolescents have significantly high clustering
coefficients on the nodes in the fronto-parietal module (adjusted
p< 0.05/248), especially in the sensorimotor area (Figure 5A),

FIGURE 3 | Scalp activities in spectral power and relative phase
difference: (A) task-induced ERS/ERD at gamma frequency band;
(B) relative phase topologies, in which the electrode at central location is
used as the reference. The left column is from the averaged value of the
math-gifted subjects, and the right column is from the control subjects.

which means enhanced local interconnectivity or cliques among
the neighbors of the nodes in fronto-parietal cortical area and
correlates with higher local efficiency of information transfer
and robustness of fronto-parietal network (Bullmore and Sporns,
2009; Power et al., 2010; Kitzbichler et al., 2011).

In the math-gifted brain, the expanded fronto-parietal func-
tional module and enhanced connectivity of the frontal–parietal
network are associated with the emergence of more connections
between structurally separated frontal and parietal cortical ver-
tices. The ANOVA results indicate that some frontal–parietal
links show significantly higher edge betweenness centrality in
the cortical network of the math-gifted subjects (adjusted
p< 0.05/900), suggesting the enhanced role of “connector bridges”
of the frontal–parietal connections (Figure 5B). The increased
direct connections in the fronto-parietal network can make the
distant nodes be linked through relatively few intermediate steps,
which supports the straightforward information communication
and promotes the capacity of parallel information transfer of the
fronto-parietal network. Specifically, more fronto-parietal “con-
nector bridges”would decrease the dependence of inter-area infor-
mation communication on the “connector hubs” and increase the
robustness of the gamma network even in the case of the hub
lesion. As shown in Figure 5C, the cortical vertices with signifi-
cantly lower node betweenness centrality (adjusted p< 0.05/248),
i.e., decreased role of “connector hubs,” in the math-gifted brain
are found being located at the central sensorimotor area, involv-
ing some of the cortical vertices in premotor and primary motor
regions (Figure 5C).

Besides, the ANOVA analysis of the global network further
demonstrates that the math-gifted adolescents have significantly
lower modularity in the global network topology as compared
to the average-ability subjects (Figure 5D), which reflects the
highly integrated configuration pattern at the level of global
topology. However, the longer characteristic path length in the
math-gifted group indicates the less economical network config-
uration, which might be caused by the fixed connection density
used in the network analysis that would lead to the disconnected
nodes in prefrontal, temporal, and occipital regions (Figure 5E)
(Table 1).

FIGURE 4 | Gamma neurocognitive network topologies and
between-groups difference in synchronized node pairs: (A) network
topology derived from the averaged PLV matrix of the math-gifted subjects;
(B) network topology derived from the averaged PLV matrix of the control
subjects. Each node represents a cortical vertex, and the size of node is
proportional to the degree of node. The color of node indicates the

membership of topological module, which is segmented by the Louvain
method for functional community detection; (C) the difference of phase
synchronization between the PLV matrices of the math-gifted and control
groups. As compared to those of the control group, the blue edges represent
the increased synchronizations of the math-gifted group, and the red edges
are the decreased synchronizations.
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FIGURE 5 | Between-groups statistical differences of topological
parameters: when the topological parameters of the math-gifted
subjects are compared with those of the control subjects, the statistical
differences are shown in (A) the red nodes with significantly higher
clustering coefficient and the blue nodes with significantly lower
clustering coefficient (adjusted p<0.05/248), (B) the links with

significant higher edge betweenness centrality (adjusted p<0.05/900),
(C) the cortical vertices with significantly lower node betweenness
centrality (adjusted p<0.05/248), (D) the significantly lower modularity
of global network (p<0.01), and (E) the significantly longer characteristic
path length (p<0.05). The size of node/line corresponds to log p value for an
ANOVA test with the null hypothesis that between-groups difference is zero.

Table 1 | Between-groups F -tests for differences in graph measures of

global network topology with fixed connection density: SS, sum of

squares; df, degrees of freedom; MS, mean square.

Source SS df MS F P

Modularity Group 0.0131 1 0.0131 11.09 p<0.01

Error 0.5486 465 0.0012

Total 0.56169 466

Characteristic

path length

Group 0.0852 1 0.0852 3.91 p<0.05

Error 10.1389 465 0.0218

Total 10.2241 466

PROLONGED PHASE-LOCKING DURATION AND INCREASED LABILITY
OF NETWORK REORGANIZATION
From the result of PLI analysis, the increased inter-module con-
nections of fronto-parietal network can be attributed to stable
phase dynamics of synchronization oscillation between distant
brain regions (Thatcher et al., 2009a). Figure 6A illustrates the
episode phase-locks between a pair of frontal–parietal cortical
signals and the time-varying process of phase-lock/shift (synchro-
nization/desynchronization) between them. Compared with the

average-ability subjects, the longer mean phase-locking duration
in the math-gifted adolescents represents a wider range of stable
patterns of PS in the time domain, which supports straightforward
communication and functional coupling of the frontal–parietal
cortical areas (Figure 8A).

Although too long phase-locking duration has been surmised
to lead to the lack of flexibility of neural activity (Thatcher et al.,
2008), Figure 7 shows a tendency that the prolonged fronto-
parietal PLI accompanies with the increase of fronto-parietal
network lability. The results of the LDA between the two groups
with classification accuracies of 0.8026, 0.7997, 0.7831, and 0.7811,
corresponding to different time intervals, indicate that the math-
gifted brain could be characterized by longer PLI and higher
lability in the fronto-parietal network reorganization, especially
for the relatively rapid change in the 10 and 15 ms intervals
(Figures 7A,B). From the samples of the math-gifted subjects, the
long mean PLI helps information processing of network and the
extensive adjustment of fronto-parietal connections indicates the
widespread connection reorganization to adapt to temporal bind-
ing for cognitive event. The phase-lock mechanism in the math-
gifted brain represents an optimized synchronization pattern in
functional binding of fronto-parietal network, because it simulta-
neously supports the phase “stability” of functional coupling and
the “flexibility” of network connection reorganization.
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FIGURE 6 | Illustration of phase-locking duration between pairs of
cortical signals and power-law distribution diagrams of PLIs at gamma
frequency: (A) the top of the diagram is the phase signals of the two
cortical signals from a frontal–parietal node pair. The bottom of the diagram
is the time curve of the phase difference between them. The horizontal axis
is time course and the vertical axis represents phase difference between
the cortical signals. The light gray box contains the region in which the
phase signals are synchronized, and the light yellow boxes represent the
PLIs within which the synchronization is unintermittent. (B) Cumulative
distribution function of PLI (>35 ms) plotted on logarithmic axes. The blue
fitting curves are derived from all the math-gifted subjects and the red
fitting curves are derived from all the control subjects. The horizontal axis is
PLI and the vertical axis is cumulative probability density. The black dotted
line represents a power-law rule with exponent α= 3.

POWER-LAW DISTRIBUTION OF LARGE PHASE-LOCKING DURATIONS
The coordination relationship in functional binding of fronto-
parietal network can be explained by the power-law distribution
of PLIs. Based on a plenty of PLI samples from the trial con-
catenation for each subject (the sample size n> 106) (Table 2),
Figure 6B depicts the cumulative distribution functions P(x) of
the PLIs of all the subjects when x is >35 ms. It can be seen that
each PLI distribution follows the power-law rule (the standard
deviation of the estimated values Re< 0.5%), which is manifested
as an exponential fall-off. It is notable that the obvious difference
between the two groups is presented in the distribution tail that
represents large but rare synchronization and critical behavior as
well (Clauset et al., 2009; Kitzbichler et al., 2009).

The basic parameters of the power-law fitting from the single-
trial data provide statistic evidence for the difference between the
two groups. Corresponding to the higher maximum PLI values,
the math-gifted subjects show wider power-law interval of PLIs
distribution, i.e., the critical interval, and lower power-law expo-
nent (Figures 8A–D) (Table 3). In the expanded critical interval,
large synchronization durations (>35± 3.2 ms) play an impor-
tant role in maintaining the inter-module connectivity temporally,
although they form a small proportion in the total PLI samples.

FIGURE 7 | Scattergrams of frontal–parietal PLI and network lability:
the blue circles represent the samples from all the math-gifted
subjects and the red asterisks are the samples derived from all the
control subjects. The horizontal axis is mean value of the
frontal–sensorimotor, sensorimotor–parietal, and frontal–parietal PLIs and
the vertical axis represents fronto-parietal network lability in (A) 10-ms, (B)
15-ms, (C) 20-ms, and (D) 25-ms.

At the same time, the synchronizations in the critical interval are
surmised to be tuned to the critical point of state transition, which
could make the fronto-parietal synchronizing state “metastable.”
Additionally, the lower power-law exponent of the math-gifted
brain could be viewed as an indicator of higher intrahemispheric
frontal–parietal connectivity, as it is found to be correlated to
stronger structural connectivity (Kitzbichler et al., 2009).

Critical synchronization can be compatible with the rapid net-
work reorganization in response to temporary perturbation and
stimulus, which promotes the adaptive ability of a functional
network in spatial reconfiguration of connections (Bassett et al.,
2006; Kitzbichler et al., 2009). The adaptive change imposed on a
network is realized through local rewiring rules motivated by the
activity-dependent synaptic development (Bornholdt and Röhl,
2003). The rich distant connections in fronto-parietal network of
the math-gifted brain provide more available links and selection
advantage to operate the local rewiring rule, since the adjust-
ment of these connections has been found to be the most salient
gamma network change during the adaptive network reconfigura-
tion (Bassett et al., 2006; Kitzbichler et al., 2011). In the math-gifted
brain, the phase-locking durations abiding by wider power-law
distribution might account for the optimized synchronization
pattern of functional binding through achieving a better balance
between prolonged PLI and increased network lability.

DISCUSSION
The paradigms used in the previous studies on math-gifted adoles-
cents or children mostly involved visuospatial imagery tasks that
were related to mathematical thinking ability, such as RAPM test
and mental rotation. As an essential mathematical skill, a cognitive
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Table 2 | Basic parameters of the power-law fitting of individual PLI samples between 30×30 node pairs from trial concatenation: n, sample

size; 〈x〉, mean value of samples; xmax, maximum PLI; x̂min, estimated minimum PLI of power-law distribution interval; α̂, estimated power-law

exponent; ntail= [ x̂min, xmax]; Re, standard deviation of estimated values.

n 〈x〉 xmax x̂min α̂ ntail Re (×10−2)

MATH-GIFTED SUBJECT

01 311242 20 316 36 2.89 280 0.31

02 316268 21 438 37 2.83 401 0.26

03 325099 22 332 37 2.86 295 0.27

04 205294 23 376 33 2.87 343 0.33

05 335295 21 355 37 2.80 318 0.23

06 201462 20 347 35 2.82 312 0.25

07 268759 19 334 33 2.92 301 0.29

08 260084 20 265 36 2.9 229 0.29

09 334978 21 432 35 2.92 397 0.30

10 390596 21 456 37 2.86 419 0.21

11 568511 21 401 36 2.85 365 0.28

Mean value 319781 21 368 37 2.86 333 0.27

CONTROL SUBJECTS

01 318080 18 258 31 2.90 227 0.32

02 322137 19 296 35 2.94 261 0.30

03 252469 18 290 31 2.95 259 0.32

04 313898 17 261 31 2.90 230 0.36

05 307197 20 292 36 2.85 256 0.28

06 321789 19 355 34 2.92 321 0.27

07 312976 21 319 36 2.81 283 0.25

08 383190 19 289 34 2.92 255 0.32

09 297221 17 221 29 2.93 192 0.41

10 401429 20 316 34 2.88 282 0.33

11 396750 19 281 33 2.93 248 0.32

12 362526 19 249 34 2.94 215 0.26

13 275928 19 331 33 2.91 298 0.31

Mean value 328122 19 289 33 2.9 255 0.31

task of the analytic type (verbal–logical way) was designed in this
study for determining whether the previous research results were
specific to the mathematical thinking or just the general attri-
butions of problem solving. The logical syllogism used in this
experiment is viewed as a basic form of mathematically logi-
cal thinking and fills the void of the experimental paradigm in
neuroscience studies of mathematical giftedness.

To the best of our knowledge, this is the first time that the indi-
vidual difference between math-gifted and average-level abilities
is investigated through EEG dynamic network analysis. With the
highest criticality in the fractal networks of the human brain,
the cortical network at the classic gamma frequency is assessed
by transforming the scalp-recorded EEG signals into the corti-
cal dipoles. According to the results obtained from the graph-
theoretical analysis, the math-gifted adolescents demonstrate a
highly integrated fronto-parietal network that is supported by
the prolonged gamma binding-by-synchrony activity among dis-
crete neuronal assembles, which is in line with the results of the
previous fMRI studies and the P-FIT model of reasoning. Fur-
thermore, as the prolonged periods of phase-locking are more
likely to occur between the processes within the same functional

module (Kitzbichler et al., 2009), the fronto-parietal PLIs in the
math-gifted brain might be the consequence of strong structural
connectivity of fronto-parietal network. On the other hand, the
math-gifted subjects recruited in our experiment might have more
practice with this kind of reasoning task by virtue of their exposure
to more education. The mental training-related effect might lead
to the changes of neuroelectric activities in phase-locking. That
is, perhaps the performances of the math-gifted adolescents in
gamma synchronization are not solely due to greater innate ability.

Functional connectivity of the phase coherent network is posi-
tively related to the phase-locking duration and stability of phase
dynamics. In the context of temporally stable fronto-parietal con-
nectivity in the math-gifted brain, the theory of critical dynamics
is applied to the realistic data from the high-order cognitive task
through the analysis of single-trial samples, which constructs an
association between the enhanced functional connectivity and the
highly adaptive reconfiguration of the fronto-parietal network in
the math-gifted brain. From the perspective of criticality, the exis-
tence of power-law distribution of PLIs in the brain puts the large
synchronization on a “metastable island”; that is, the longer the
PLI is, the higher the desynchronization possibility will be (Werner,
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FIGURE 8 | Between-groups AVOVA tests for basic power-law fitting parameters of PLIs from signal-trial data (p<0.01): (A) mean PLI; (B) maximum of
PLI; (C) power-law exponent; (D) power-law distribution interval of PLI.

Table 3 | Between-groups F -tests for differences in power-law fitting parameters of PLIs: SS, sum of squares; df, degrees of freedom; MS, mean

square.

Source SS df MS F P

Mean phase-locking duration Group 261.8558 1 261.8558 142.1430 p<0.01

Error 856.6231 465 1.8422

Total 1.1185e+003 466

Maximum of phase-locking duration Group 1.3654e+005 1 1.3654e+005 41.4677 p<0.01

Error 1.5311e+006 465 3.2927e+003

Total 1.6677e+006 466

Power-law exponent Group 0.1901 1 0.1901 131.0518 p<0.01

Error 0.6746 465 0.0015

Total 0.8647 466

Power-law distribution interval Group 1.1235e+005 1 1.1235e+005 35.5266 p<0.01

Error 1.4705e+006 465 3.1624e+003

Total 1.5829e+006 466

2007). The large-sample EEG study conducted in 378 children and
adolescents (Thatcher et al., 2008) has suggested that, the“optimal”
balance between phase-locking duration and phase-shifting dura-
tion benefits the effective allocation of neuronal resources, and is
related to high intelligence level that has been consistently con-
sidered as a basic factor of mathematical giftedness. The cortical
network study in this paper supports the opinion that the math-
gifted adolescents can use the well-allocated phase-lock resources
to facilitate the functional binding in the fronto-parietal cortices,

since the temporal binding between neuronal assembles depends
on the transient coupling and adapts to the timely connection
redistribution of network. Empirical studies have demonstrated
that the significant gamma network reorganization is affected by
the motor task, working memory task, cognitive effort, etc. (Bas-
sett et al., 2006; Kitzbichler et al., 2011). In the math-gifted brain,
the optimized phase-lock pattern in functional binding would
make the synchronizing network flexibly compatible to varying
cognitive requirement of the reasoning process. Except the neural
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correlates of mathematical giftedness, there is evidence that phase-
locking and phase-shift durations in EEG low-frequency intervals
are significantly different in people with Autism Spectrum Dis-
order (ASD), with longer periods of phase-lock and fewer phase-
shifts (Thatcher et al., 2009b). In addition, the individuals with
ASD also have been found showing the abnormal functional con-
nectivity between some regions in default model network (Assaf
et al., 2010). As there are frequent reports of the relevance between
people with ASD and high mathematical ability, the phase-locking
mechanisms in the both populations might follow the similar
distribution rule. Perhaps in another aspect of phase-locking dura-
tion and network reconfiguration, too long period would also lead
to the decreased flexibility of adaptive network reconfiguration,
because of the reduced resources available to be operated by the
phase-shift mechanism (Thatcher et al., 2008). Due to the dif-
ference in network wiring, the locally over-connected functional
network in the brain might be related to the deficits seen in ASD.

The optimized synchronization pattern of the fronto-parietal
network also plays a key role in information processing. The pro-
longed fronto-parietal phase-locking durations distributed in a
wider critical interval indicate that some optimizations of infor-
mation processing would occur simultaneously. Firstly, the gen-
erally prolonged phase-locking durations enhance the global syn-
chronization of the gamma network through a widespread stability
of phase dynamics, which could increase the capacity of informa-
tion storage of the network. Secondly, the phase-locking duration
at a critical state supports effective information communication
between neuronal assembles because the long synchronization
leads to efficient information transmission. Finally, when the
synchronizing activity is maintained at a critical state, it would
decrease the stability of the connection but increase the adap-
tiveness of the network for timely reorganization of connections.
In conclusion, the optimizations of the fronto-parietal synchro-
nization enhance the information processing of the math-gifted
brain during the deductive reasoning task, and further support
the exceptional logical thinking ability of math-gifted adolescents.
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Algebra typically represents the students’ first encounter with abstract mathematical
reasoning and it therefore causes significant difficulties for students who still reason
concretely. The aim of the present study was to investigate the developmental trajectory
of the students’ ability to solve simple algebraic equations. 311 participants between
the ages of 13 and 17 were given a computerized test of equation rearrangement.
Equations consisted of an unknown and two other elements (numbers or letters), and the
operations of multiplication/division.The obtained results showed that younger participants
are less accurate and slower in solving equations with letters (symbols) than those with
numbers. This difference disappeared for older participants (16–17 years), suggesting that
they had reached an abstract reasoning level, at least for this simple task. A corresponding
conclusion arises from the analysis of their strategies which suggests that younger
participants mostly used concrete strategies such as inserting numbers, while older
participants typically used more abstract, rule-based strategies.These results indicate that
the development of algebraic thinking is a process which unfolds over a long period of
time. In agreement with previous research, we can conclude that, on average, children
at the age of 15–16 transition from using concrete to abstract strategies while solving the
algebra problems addressed within the present study. A better understanding of the timing
and speed of students’ transition from concrete arithmetic reasoning to abstract algebraic
reasoning might help in designing better curricula and teaching materials that would ease
that transition.

Keywords: mathematics, education, algebra, problem solving, cognitive development, abstract reasoning, concrete
reasoning, strategy

INTRODUCTION
United States National Council of Teachers of Mathematics defines
algebra as “a way of thinking and a set of concepts and skills
that enable students to generalize, model, and analyze mathe-
matical situations” (National Council of Teachers of Mathematics
[NCTM], 2008). This field includes a wide array of topics rang-
ing from elementary linear equation solving to more abstract
topics such as modeling given contextual information by formu-
lating complex algebraic expressions. Algebra is usually the first
domain in school mathematics that encourages students’ abstract
reasoning. By making a transition from concrete arithmetic to the
symbolic language of algebra, students develop abstract math-
ematical cognition essential for their further advancement in
mathematics and science. Given that understanding fundamen-
tal algebra concepts and acquiring the necessary skills for solving
algebra problems requires a certain degree of prior knowledge
and abstract thinking, algebra is typically introduced in schools
after the development of arithmetic reasoning, as its general-
ization, usually around the age of 12. This is also roughly the
age at which, according to Piaget’s theory of cognitive devel-
opment, that had a far-reaching influence on both theory and
practice in education, a qualitative change in children’s cogni-
tive development occurs (Piaget, 1976). Specifically, this is the

age at which most children transition from the concrete opera-
tional stage to the formal operational stage (Inhelder and Piaget,
1958; Piaget, 1972). At this time children advance from logical
reasoning with concrete to abstract examples, and become able
to consider only logical relationships between different elements
while ignoring their concrete content. Therefore, this transition
from concrete to formal operational stage represents the basis
for their further educational advancement. However, many stud-
ies have shown that formal reasoning is not developed in most
adolescents of that age (Lawson, 1985). Consequently, numer-
ous abstract concepts in mathematics and science curricula are
too demanding for the majority of students that remain concrete
operational thinkers (Lawson and Renner, 1975). Therefore, it
was suggested that teaching abstract concepts should be delayed
until the brain maturation permits a transition to the stage of
formal operation. Specifically, in the last two decades, brain imag-
ing studies provided new evidence that adolescence represents
a period of continued neural development (Blakemore, 2012)
that may last longer than would be suggested by Piaget’s the-
ory. In particular, maturational changes in some brain regions
that are involved in abstract mathematical reasoning, such as
the prefrontal cortex, may last until late adolescence (Giedd and
Rapoport, 2010). Educational studies confirm that some tests of
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prefrontal lobe activity highly correlate with scientific reason-
ing ability and the capacity to reject scientific misconceptions
and adopt correct ideas (Kwon and Lawson, 2000). It seems that
children can hardly acquire some abstract reasoning skills until
certain age.

In line with arguments suggesting that understanding alge-
bra concepts may be difficult for children in primary schools,
research has shown that students indeed often face difficulties in
moving from the arithmetic to the algebraic form of reasoning
(Kieran, 2004). Despite these findings, many researchers argue
for an earlier introduction of algebra in mathematics curriculum
(e.g., Carraher et al., 2006; Warren et al., 2006). According to these
suggestions, developing algebraic skills and exposing students to
more demanding abstract tasks would help in enhancing their
abstract reasoning, thus facilitating the transition between cog-
nitive phases. This could be done in a gradual fashion, which is
in line with modern mathematics curricula that gradually intro-
duce elements of algebraic thinking in the early grades before
formally introducing algebra in the later grades (National Council
of Teachers of Mathematics [NCTM], 2000). As an example, since
the implementation of a National Curriculum in England, alge-
bra is taught earlier compared to the teaching practice 30 years
ago. However, this change of practice has not been overly ben-
eficial, as a recent large-scale survey has shown that the present
performance in algebra is broadly comparable to that of students
30 years ago (Hodgen et al., 2010). It seems that the early start
of algebra teaching gives an initial advantage to students, which
appears not sustained at a later age. Overall, despite many efforts
to address students’ difficulties with formal mathematical reason-
ing, it seems that little advancement has been made (Hodgen et al.,
2010).

A more overarching evaluation of students’ success and diffi-
culties in acquiring fundamental algebra concepts is introduced
by large international surveys, such as PISA (Program for Interna-
tional Student Assessment) and TIMSS (Trends in International
Mathematics and Science Study) that give insights into the qual-
ity and efficiency of school systems across many countries. The
findings of PISA testing conducted in 2012 with a particular focus
on mathematics indicate that students in the highest-performing
countries are “more frequently exposed to formal mathematics
than students in most of the other PISA-participating countries
and economies” (Organisation for Economic Co-operation and
Development [OECD], 2013, p. 148). Furthermore, data suggest
that the“exposure to more advanced mathematics content, such as
algebra and geometry, appears to be related to high performance
on the PISA mathematics assessment, even if the causal nature
of this relationship cannot be established” (Organisation for Eco-
nomic Co-operation and Development [OECD], 2013, p. 148).
These results indicate a crucial role of algebra in the development
of abstract mathematical reasoning.

However, when discussing the acquisition of basic algebra con-
cepts, it is important to highlight that these represent a broad part
of school mathematics. As was mentioned earlier, at its fundamen-
tal level, algebra includes solving simple algebraic equations that
were the focus of the present study. These equations were cho-
sen because equation rearrangement represents a very important
skill required for problem solving in many school subjects. Within

different teaching frameworks, it is often assumed that, once stu-
dents learn to solve a simple equations such as, e.g., they can solve
such equations for any unknown. This would mean that they are
able to solve equivalent simple equations containing both num-
bers, letters or other symbols. However, physics and chemistry
teachers know that students struggle with equations rearrange-
ments, especially for “all-symbol” equations. Küchemann (1981)
reported that the majority of the students up to the age of 15 fail
to interpret algebraic letters (symbols) as unknowns or general-
ized numbers, which would be expected from formal operational
thinkers. Instead, they still use concrete operational strategies in
solving such equations, e.g., ignoring the letters or replacing them
with numerical values. This inequivalent treatment of otherwise
comparable equations represents only one example of students’
inability to apply the learned principle of equation solving on
different instantiations of the same equation format. Given such
unequivalences, different mathematics education researchers clas-
sify equations in different manners. For example, Usiskin (1988)
classifies “equations with letters” used in school algebra as a for-
mula (A = LW ), an equation to solve, (5x = 40), an identity (sin
x = cos x tan x), a property [1 = n (l/n)], or a function (y = kx).
Within this, as well as other classifications, it is important to high-
light that different types of equations have a different feel not only
for students, but also for mathematicians depending on different
uses of the idea of a variable (Chazan and Yerushalmy, 2003).

Motivated by these differences, as well as the practical rele-
vance of this topic, the present study was aimed at investigating
the developmental trajectory of students’ ability to solve simple
algebraic equations. Based on the Usiskin’s (1988) classification,
only formulas and equations to solve were chosen, i.e., we used the
equivalent 3-terms equations with numbers or with letters. The
participants in the study included primary and secondary school
students who were all taught equation rearrangement in math-
ematics at least one year prior to the testing. In addition, they
used formulas in other school subjects such as physics and chem-
istry. However, we hypothesized that, despite repeated exposure
and practice with simple algebraic equations, some students of all
grades would still struggle with their rearrangement, especially if
equations contained only symbols (letters). Furthermore, we were
interested in students’ strategies in “all-symbol” equation solv-
ing. From our experience and previous studies (Susac et al., 2014,
under revision), we assumed that many students use very con-
crete strategies, such as inserting numbers because it takes time for
them to adopt the formal algebraic way of thinking. Consequently,
in the present study we explored the age at which the transition
from concrete-number-based reasoning to more abstract algebraic
reasoning really occurs.

MATERIALS AND METHODS
PARTICIPANTS
The participants in the present study included 331 students from
five primary and four secondary state schools in Zagreb. With
respect to primary school students, all state primary schools in
Croatia have the same curriculum, so their students have compara-
ble experiences with algebra education. With respect to secondary
schools, we tested students from two gymnasiums (general edu-
cation and foreign language type schools) and two technical
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secondary schools. These schools were chosen to represent the
average secondary school population in Zagreb mostly preparing
for university studies. Specifically, graduates from the two gym-
nasiums included in the present study typically continue their
education at university, typically studying non-mathematics or
science related majors. In comparison, graduates from the tested
technical schools often continue their education majoring in tech-
nical fields. Students from gymnasiums that specialize in natural
sciences and mathematics were not included in this study.

The participants in the present study included students from
the seventh grade of primary school (age 13–14 years) to the sec-
ond grade of secondary school (age 16–17 years). Hence, our
sample included the students of four age groups, i.e., different
school grades: the 7th and 8th grade of primary, and the 1st and
2nd grade of secondary school. Given that in Croatian schools,
equation rearrangement is taught at the end of the sixth grade
of primary school roughly corresponding to the students’ age
of 12–13, all our participants were taught how to solve the task
used in the study at least one year prior to this measurement. The
number of tested female and male students in each grade is shown
in Table 1.

The study was approved by the Ethics Committee of the Min-
istry of Science, Education and Sports, as well as by the schools’
headmasters. Each student’s parents gave an informed written
consent before the child took part in the experiment.

MATERIALS
Raven’s Progressive Matrices were used to assess general cognitive
ability (Raven, 1941, 1999). The d2 Test of Attention (Brick-
enkamp, 1962, 1999) was also administered, but the data were
not analyzed in the present study.

A computerized test of equation rearrangement was prepared
using E-Prime (Psychology Software Tools Inc., Pittsburgh, PA,
USA). In each trial, simple equations consisting of three elements
(numbers or letters) were presented in the centre of the visual
field. The presented numbers and letters were black, displayed in
24 pt size Ariel font on the white background. Participants’ task
was to make x the subject of the equation. Simultaneously with the
equation, a potentially correct or incorrect answer was presented
below the equation. The participants were asked to decide if the
offered answer was correct or incorrect.

Three types of equations were used in the study:

A equations: x · a = b,

B equations: x
a = b,

C equations: a
x = b.

The offered answers were of the following types: x · a = b,
x
a = b, and a

x = b. Within all presented equations, a and b stand

Table 1 | Number of students according to their age and gender.

7th grade 8th grade 1st grade 2nd grade

Male 36 41 62 54

Female 36 39 33 30

Total 72 80 95 84

for different letters and numbers which all appeared with the same
probability during the experiment.

PROCEDURE
The participants were tested during two school periods (45 min
long). During one school period, Raven’s Progressive Matrices
and d2 Test of Attention were administered to students in their
classrooms. On the same or on another day, students solved the
computerized test of equation rearrangement and completed a
post-measurement questionnaire in the computer lab.

Before administering the equation rearrangement test, partic-
ipants were familiarized with the task. They were instructed to
respond as quickly as possible by pressing one of the two mouse
buttons with their index and middle fingers, corresponding to
correct and incorrect answers, respectively. Prior to experimen-
tation, the participants performed a training block consisting of
6 equations equivalent to those used in subsequent experimental
trials.

During both practice and experimental trials, each equation
was presented until the participant responded, up to a maximum
of 30 s. If the participant did not respond within 30 s, the equation
disappeared from the screen and another 30 s were available to
give an answer. However, these late responses (<0.1% of all trials)
were not included in the analysis. After each response, the next
equation was presented after a delay of 1 s. Reaction times (RTs)
were measured automatically by the computer from the stimulus
onset to the participant’s response. No feedback was given to the
participants.

During the experiment, the participants were presented with
the three previously described types of equations, which were ran-
domized across four blocks. Each block consisted of 15 equations
of each equation type, amounting to an overall of 45 presented
equations per block. Two blocks contained equations with num-
bers, while the other two blocks contained equations with letters
(symbols). Equations in the first and third blocks contained num-
bers while those in the second and fourth blocks consisted of
letters. The participants could take a break between blocks if
needed.

After having finished the computerized test, the participants
completed a questionnaire designed for assessing their strategies
during equation solving. While responding to these question-
naires, the participants described how they solved each equation
type and ranked them by difficulty. In addition, they indi-
cated whether their response depended on the type of the
offered answers, and whether they changed their problem solving
strategies during the time course of the experiment.

DATA ANALYSIS
For each participant and each condition, reaction time and accu-
racy were evaluated. Only correct responses were included in the
analysis of RTs. Inverse efficiency was also calculated as the ratio of
reaction time and accuracy (Townsend and Ashby, 1978). Lower
values on this measure indicate higher efficiency on a particular
task. Inverse efficiency is used to account for the speed–accuracy
tradeoffs, and we used it as a measure of task difficulty.

To determine the effects of age, gender, level of abstrac-
tion, repetitions and equation type, a two-way repeated measures
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analysis of variance (ANOVA) on accuracy and RTs was conducted.
Repeated-measures post hoc tests using Bonferroni adjustment
were used to further assess the differences between different con-
ditions. In addition, a partial correlation coefficient was calculated
in order to determine the relation between participants’ cognitive
abilities and their efficacy in equation rearrangement. A threshold
of p < 0.05 was used for determining the level of effect significance.

To evaluate participants’ strategies in equation solving, we ana-
lyzed their answers in the administered post hoc questionnaire
using the general inductive approach (Thomas, 2003) and descrip-
tive statistical procedures. Each participant’s description of how
he/she solved each type of equation was categorized. Hence, differ-
ent categories reflect different student equation solving strategies,
some of which were correct, and some incorrect. Some partici-
pants used more than one strategy, and were accordingly assigned
to two or more categories. To simplify the comparison of used
strategies across participants’ age, all strategies were divided into
concrete and rule-based (more abstract) groups. Each participant
was assigned to concrete, rule-based or mixed (concrete and rule-
based) group. We also evaluated students’ views on equation type
difficulty from their ranks provided in the questionnaire.

RESULTS
EFFICACY OF EQUATION SOLVING
Age and gender effects
Two-way ANOVAs with factors Age (7th vs. 8th vs. 1st vs. 2nd
grade) and Gender (Male vs. Female) were conducted to compare
the mean accuracy and RTs. The obtained results for accuracy indi-
cated a statistically significant main effect of Age [F(3,323) = 9.43,
p < 0.001, η2

p = 0.081] and Gender [F(1,323) = 6.40, p < 0.05,

η2
p = 0.019], while the interaction effect was not significant

[F(3,323) = 1.45, p > 0.05, η2
p = 0.013]. Figure 1A shows that

accuracy increased with the age of participants. On average, girls
were more accurate than boys, and the participants in the 7th grade
of primary school were less accurate than those in the 1st and 2nd
grade of secondary school, while those in the 8th grade were less
accurate than the students in the 2nd grade of secondary school.

A corresponding comparison for RTs revealed a statistically
significant main effect of Age [F(3,322) = 12.91, p < 0.001,
η2

p = 0.107] and the interaction effect [F(3,322) = 4.14, p < 0.01,

η2
p = 0.037]. The main effect of Gender was not statistically sig-

nificant for RTs [F(1,322) = 0.09, p > 0.05, η2
p < 0.0001]. Average

RTs decreased with the age of participants (Figure 1B). Boys were
faster in equation solving in the first grade of secondary school,
whereas girls were faster in the second grade.

Age and abstraction level effects
To test the differences between participants’ accuracy and RTs
in solving equations with numbers and letters across different
age, we used the two-way mixed-design ANOVAs with between-
subjects factor Age (7th vs. 8th vs. 1st vs. 2nd grade) and
within-subjects factor Abstraction level (numbers vs. letters). With
respect to accuracy, the statistically significant main effects of Age
[F(3,327) = 8.37, p < 0.001, η2

p = 0.071] and Abstraction level

[F(1,327) = 47.17, p < 0.001, η2
p = 0.126], as well as the interac-

tion effect [F(3,327) = 4.89, p < 0.01, η2
p = 0.043], were found.

Participants were more accurate on equations with numbers, but
only in primary school and in the 1st grade of secondary school
(Figure 2A). In the 2nd grade of secondary school there was no sta-
tistically significant difference in the accuracy of solving equations
with numbers and letters.

For the RTs, results revealed a statistically significant main effect
of both factors, Age [F(3,326) = 11.68, p < 0.001, η2

p = 0.097] and

Abstraction level [F(1,326) = 4.45, p < 0.05, η2
p = 0.013], while

the interaction was not significant [F(3,326) = 0.61, p > 0.05,
η2

p = 0.006]. RTs deceased with age, the participants in the 2nd
grade of secondary school were the fastest, and the students in
the 1st grade of secondary school were faster than those in the
8th grade. Similar pattern is present in the RTs data as it is in the
accuracy data; differences between equations with numbers and
letters decreased with the participants’ age (Figure 2B).

Age and equation type effects
We have used two-way mixed-design ANOVAs with between-
subjects factor Age (7th vs. 8th vs. 1st vs. 2nd grade) and
within-subjects factor Equation type (A vs. B vs. C equation) to
test the differences between participants’ accuracy and RTs for
different types of equations across different age. For the accu-
racy, a significant main effects of both Age [F(3,327) = 8.37,
p < 0.001, η2

p = 0.071] and Equation type [F(2,654) = 66.59,

p < 0.001, η2
p = 0.169] were found, as well as their interac-

tion [F(6,654) = 2.53, p < 0.05, η2
p = 0.023]. All participants

were less accurate on the C equations compared to both the A
and B equations, while participants in the 1st grade of secondary
school were less accurate on B when compared to A equations
(Figure 3A).

Corresponding results for the RTs again revealed significant
main effects of both Age [F(3,326) = 11.68, p < 0.001, η2

p = 0.097]

and Equation type [F(2,652) = 41.59, p < 0.001, η2
p = 0.113], as

well as their interaction [F(6,652) = 3.56, p < 0.01, η2
p = 0.032].

Primary school participants solved the A equations faster than the
B and C equations, while the secondary school participants were
the slowest in solving the C equations. (Figure 3B).

Age and repetition effects
Two-way mixed-design ANOVAs with between-subjects factor Age
(7th vs. 8th vs. 1st vs. 2nd grade) and within-subjects factor
Block (first vs. second block) were used for testing the differ-
ences between participants’ accuracy and RTs across time course of
the experiment. The results showed a statistically significant main
effect of both factors, Age [F(3,327) = 8.37, p < 0.001, η2

p = 0.071]

and Block [F(1,327) = 5.11, p < 0.05, η2
p = 0.015], while the inter-

action was not significant [F(3,327) = 1.20, p > 0.05, η2
p = 0.011].

Figure 4A illustrates a trend of accuracy increase from the 7th
grade of primary school until the 1st grade of secondary school,
while pairwise comparisons revealed a statistically significant dif-
ference between the accuracy levels of participants in the 7th grade
when compared to those in the secondary school, and participants
in the 8th grade when compared to participants in the 2nd grade
of secondary school.

For the RTs, results indicated corresponding significant main
effects of both factors, Age [F(3,326) = 11.88, p < 0.001,
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FIGURE 1 | (A) Accuracy (percentage of correct responses) and (B) RTs for the participants in the 7th and 8th grade of primary school, and the 1st and 2nd
grade of secondary school, separated for male and female participants. Error bars represent 95% confidence intervals.

FIGURE 2 | (A) Accuracy (percentage of correct responses) and (B) RTs for the participants in the 7th and 8th grade of primary school, and the 1st and 2nd
grade of secondary school, separated for the equations with numbers and equations with letters. Error bars represent 95% confidence intervals.

η2
p = 0.099] and Block [F(1,326) = 312.27, p < 0.001, η2

p = 0.489],
while the interaction was not significant [F(3,326) = 2.58,
p > 0.05, η2

p = 0.023]. Participants of all ages became faster in

equation solving in the second block (Figure 4B).

Equation solving and cognitive abilities
The relation between the students’ equation solving efficacy
and their cognitive abilities was addressed by calculating the
partial correlation coefficient between participants’ inverse effi-
cacy and their scores on Raven’s Progressive Matrices score,
while controlling for the age effects. The obtained results
indicate a statistically significant correlation between equation
solving efficacy and cognitive abilities [r(307) = –0.22 [95%
CI: −0.32,−0.11], p < 0.001], indicating that the participants with
higher cognitive abilities were generally more efficient in equation
solving.

STRATEGIES USED FOR EQUATION SOLVING
Evaluation of participants’ answers in the questionnaires con-
firmed that they used different strategies for solving equations
with letters. We categorized their answers and divided them into
two groups – concrete strategies and rule-based strategies. The
most frequently used concrete strategy (37% of all participants)
was inserting numbers instead of letters. 11% of participants used
a “triangle” memory technique and 4% used a “biggest on the top”

strategy that is based on a belief that products and numerators are
“big.” For the equation a/x = b, one participant wrote an expla-
nation: “We got b by dividing a by x. Thus, b is smallest and a is
biggest. Then we get x by dividing a by b.”

The most common rule-based strategy (38% of all participants)
was a standard application of multiplication/division operations
on the equation. 11% of participants reported correctly mov-
ing letters to the other side of the equation and often indicated
the operation with arrows. The most frequently used incorrect
strategy (6%) was to “move letters other than x on the other side
of equation and change the sign” which meant to change mul-
tiplication to division and vice versa. This strategy gave correct
responses for the A and B, but not for the C equations. 6% of
participants used some kind of a learned rule. For example, one
participant wrote for a/x = b: “If x is a denominator then the
solution is the fraction of the remaining factors, given that the
nominator of the initial fraction (the one with x) remains the
same.” For a/x = b equation (C type), some participants (8%) only
swapped x and b without performing two steps of multiplication
and division.

Figure 5 shows how the proportion of participants who
used concrete and rule-based strategies changed with their age.
The majority of younger participants (from primary school)
used concrete strategies, whereas participants from secondary
school mostly used more abstract, rule-based strategies. Some
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FIGURE 3 | (A) Accuracy (percentage of correct responses) and (B) RTs for the participants in the 7th and 8th grade of primary school, and the 1st and 2nd
grade of secondary school, separated for the different equation types (the A, B and C equations). Error bars represent 95% confidence intervals.

FIGURE 4 | (A) Accuracy (percentage of correct responses) and (B) RTs for the participants in the 7th and 8th grade of primary school, and the 1st and 2nd
grade of secondary school, separated for the first and second block. Error bars represent 95% confidence intervals.

FIGURE 5 | Proportions of used strategy types (C, concrete; R,
rule-based; C&R, concrete and rule-based) for the participants in the
7th and 8th grade of primary school, and the 1st and 2nd grade of
secondary school.

participants used both concrete and rule-based strategies. For
example, one participant used standard multiplication/division
procedure for the A and B equations, but she inserted “real num-
bers”to solve the C equations. Participants who used both concrete
and rule-based strategies typically used a concrete strategy to solve
the C equations.

EQUATION DIFFICULTY RANKS
Figure 6A shows the inverse efficiency measures for different equa-
tion types (all with letters) across different participants’ age. To
test the differences between participants’ inverse efficiency in solv-
ing different types of equations a two-way mixed-design ANOVA
with between-subjects factor Age (7th vs. 8th vs. 1st vs. 2nd
grade) and within-subjects factor Equation type (A vs. B vs. C
equation) was used. The obtained results indicate a statistically
significant main effect of both factors, Age [F(3,325) = 11.84,
p < 0.001, η2

p = 0.099] and Equation type [F(2,650) = 43.72,

p < 0.05, η2
p = 0.119], while the interaction was not significant

[F(6, 650) = 0.33, p > 0.05, η2
p = 0.003]. If we adopt inverse

efficiency as a measure of task difficulty (Townsend and Ashby,
1978), the results suggest that the C equations were the most dif-
ficult. There was no statistically significant difference between the
A and the B equations.

Participants ranked different equation types by difficulty in the
questionnaires. 28 participants reported that all equation types are
equally difficult. Three participants thought that equations with
multiplications (A type) are easier than equations with division
(B and C). Eight participants did not provide an answer to this
question. Figure 6B shows the data of the remaining participants
across their age groups. Most participants reported that the A
equations were the easiest. However, a considerable number of
the secondary school students (32%) thought that the B equations
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FIGURE 6 | (A) Inverse efficiency on equations with letters for the
participants in the 7th and 8th grade of primary school, and the 1st and 2nd
grade of secondary school, separated for the different equation types (the
A, B, and C equations). Error bars represent 95% confidence intervals.
(B) Proportion of equation types ranked as the least difficult and the most
difficult by the participants in each grade.

were the easiest. Most participants agreed that the C equations
were the most difficult.

DISCUSSION
ACCURACY AND SPEED OF EQUATION SOLVING
The results obtained in the present study suggest that the tested
students were overall rather successful in equation rearrangement,

with accuracy levels amounting to an average of 85%. Although
this may seem quite high, if the true-false nature of test items is
taken into account this becomes a less satisfactory result, especially
for all-symbol equations which were correctly solved by 82% of
the participants. However, our data indicate that students become
more efficient, i.e., more accurate and faster, in higher school
grades.

With respect to gender differences, the girls in our sample were
on average more accurate in equation rearrangement than boys,
while no significant differences in their speed were revealed. This
finding is in disagreement with a common belief that boys are
better in mathematics than girls which is based on reports that
boys outperform girls on standardized tests like SAT (e.g., Byrnes
and Takahira, 1993). However, most studies report no differences
between boys and girls on algebra assessments (e.g., Bridgeman
and Wendler, 1991). In fact, girls sometimes do even better than
boys (e.g., Else-Quest et al., 2010), while male superiority among
adolescents is usually related to boys’ spatial reasoning and more
diverse strategies in problem solving (Geary, 1996). In the present
study we observed slightly higher accuracy for girls than for boys,
but overall comparable speed of equation solving, which resonates
with previous findings suggesting small, if any, gender differences
in solving simple algebraic equations.

It is important to emphasize that students’ success in solv-
ing simple algebra equations differed across different types of
equations. Specifically, within the present study we compared
equivalent equation formats that contained either symbols or
numbers. As expected, the obtained results indicate that the
younger participants were more accurate and faster in solv-
ing equations with numbers than with letters although these
were equivalent. This indicates that younger students still strug-
gle with more abstract equations. In contrast, students in the
2nd grade (age 16–17 years) had a comparable level of accu-
racy and RTs for equations with numbers and letters. This
indicates that they reached an adequate level of formal rea-
soning (Inhelder and Piaget, 1958), at least for this particular
task.

Next, we compared participants’ efficacy in solving three dif-
ferent types of equations. The lowest accuracy and the longest
RTs obtained for the C equations (a/x = b) suggest that this
was the most difficult type of equation. Younger students were
struggling with this equation type; the accuracy of the 7th grade
participants (age 13–14 years) was only 72%. Accuracy on the C
equations increased with the participants’ age, with 2nd graders
(age 16–17 years) reaching 85%. These results reflect the fact that
two operations are needed to solve C equations, and only one
operation for other two types of equation, thus indicating that the
procedural complexity has also a significant effect on efficiency in
equation solving. Our data suggest that even our oldest partici-
pants, 16–17 years old at the time of the testing, had difficulties
with the slightly more difficult, but still very simple equations.
This is in agreement with the previous reports on students’ diffi-
culties with “all-symbol” equations (Ekenstam and Nilsson, 1979;
Küchemann, 1981).

In addition to exploring age, gender and equation type effects,
within the present study we also explored practice effects across all
equation types. Our participants became faster and more accurate
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in equation rearrangement during the time course of the mea-
surement. This finding is in agreement with a previous report
indicating how children become faster during a 5-day practice in
algebra equation solving (Qin et al., 2004). It seems that some
of our participants learned how to solve equations as they were
repeatedly exposed to them for a short period of time, even without
feedback. Even the participants from the 2nd grade of secondary
school (age 16–17 years), who had stable high accuracy levels from
the beginning until the end of the measurement, became faster in
equation rearrangement. This might be an interesting finding for
mathematics teachers. However, additional studies are needed to
explore a long-term effect of such short and intense practice in
equation solving.

Furthermore, our results showed that the participants with
higher cognitive abilities were more efficient in equation solv-
ing. This is in line with the previous longitudinal testing which
indicated that students with higher IQ scores tended to demon-
strate higher cognitive levels and made faster progress through
algebra levels than students with lower IQ scores (Küchemann,
1981). It has been suggested that on familiar algebra tasks, partici-
pants rely on automated routines and acquired facts that are more
systematically learned by individuals of higher cognitive abilities
(Bornemann et al., 2010). Consequently, they outperform indi-
viduals with lower general cognitive abilities, while allocating the
same amount, or even less, of cognitive resources to the task.
Accordingly, we could conclude that our participants with higher
abilities profited from more efficient processes compared to indi-
viduals of lower cognitive abilities. However, the general cognitive
ability is not the only factor influencing individual’s understand-
ing of algebraic equations. Other factors are also important, such
as the intuitive assumptions and pragmatic reasoning about a
new notation, analogies with familiar symbol systems, interference
from new learning in mathematics, and the effects of misleading
teaching materials (MacGregor and Stacey, 1997).

CONCRETE AND RULE-BASED STRATEGIES FOR EQUATION SOLVING
Half of the participants used concrete strategies for equation rear-
rangement and the most frequently used concrete strategy was
inserting numbers into equations. When using this strategy, the
students think of an equivalent equation with numbers, solve it
and then apply the solving algorithm on the equation with sym-
bols. For example, for the A equation (x·a = b), they insert
numbers so the equation becomes 2·3 = 6 and then conclude that
“if 2 = 6/3, then x = b/a.” It seems that these participants have not
yet reached the formal operational stage and are more comfort-
able with concrete numbers in equations. This is in agreement with
the previous studies on algebraic processing in adolescents (Eken-
stam and Nilsson, 1979; Küchemann, 1981; Susac et al., under
revision).

A considerable number of participants (11%) used the “trian-
gle”method often taught by physics teachers to“simplify”equation
rearrangement for their students. Within this strategy, a trian-
gle is divided into three parts. Two quantities that are multiplied
together are written side-by-side at the bottom of the triangle.
The remaining quantity (their product) is written at the top. For
x·a = b (A equation), x and a are written at the bottom, and b at
the top. If we want to make x subject of the equation, x should be

covered and what is left, namely “b over a,” represents the result.
Although this strategy helps students in equation rearrangement,
this technique does not develop their formal reasoning.

The “biggest on the top” strategy also has origin in concrete way
of thinking. As few participants reported, they always considered
product in multiplication equations and numerator in division
equations as the biggest object that helped them in the rearrange-
ment. For example, in the A equations (x·a = b) they regard b as
the biggest object that helped them to form a solution (the biggest
goes on the top, therefore x = b/a). Although they did not explic-
itly insert numbers into equations, participants’ experience with
natural numbers may probably account for their line of reasoning
(the biggest number is always the product of two natural numbers,
and the numerator is bigger than the denominator and the result
of a division). In our previous study we have found that the UK
students also use this strategy (Susac et al., under revision).

More than half of the participants (56%) were reasoning more
abstractly while solving at least one equation type, i.e., they were
applying rules. During the testing, few participants made a tran-
sition from concrete substitution of letters by numbers to the
recognition of patterns and rules. The most frequently used rule-
based strategy was multiplication and division of equation with
the “letter next to x.” This procedure was performed correctly by
the majority of participants who decided to use it. However, the
most common incorrect strategy involved the procedure of mov-
ing“letter next to x”on the other side of equation and changing the
operation, multiplication to division and vice versa. This probably
reflects an inappropriate application of the procedure learned for
equations with addition/subtraction, indicating that the applica-
tion of mathematical rules and procedures can be very confusing
for students.

As in our previous study (Susac et al., under revision), some
participants reported moving letters to the other side of equation.
This corroborates findings showing that spatial reasoning is closely
related to the number sense (as in the case of mental number
line; e.g., Dehaene, 1997) and mathematical operations in general.
A number of neuroimaging and neuropsychology studies have
demonstrated that the relationship between number and space
processing is deeply rooted in the organization of parietal circuits
for these capacities (Hubbard et al., 2005). Mathematical experts
in our previous study often used spatial terms when explaining
their strategies in equation solving (Susac et al., under revision).
It seems that the development of spatial reasoning in students
might be beneficial even in “non-spatial” areas of mathematics
such as algebra. In addition, visualization can be also helpful in
developing problem-solving skills in mathematics (Scheiter et al.,
2010)

Some participants reported strategies based on some types of
rules that they developed by themselves. By repeated exposure
to equation rearrangement, they recognized some patterns from
which they derived some general rules. Although participants’
rules were not always correct, they possibly represent a step in
developing more consistent and correct solving strategies. A num-
ber of participants recognized that they do not have to perform two
steps of multiplication and division for a/x = b equation (C type),
and just swapped x and b. In doing so, they developed a new,
more efficient strategy during the experiment, through pattern
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recognition which is of great value in performing algebraic tasks
(Orton and Orton, 1999).

Overall, the obtained results suggest that the proportion of
concrete strategy usage decreases at the same time as the propor-
tion of rule-based strategies increases with the age of participants.
This progression is gradual and it probably continues after the
2nd grade of secondary school (age 16–17 years). Our data con-
firm that the development of algebraic thinking is a process which
unfolds over a long time. Consequently, we can conclude that chil-
dren at the age 14–15 are in transition from concrete to abstract
strategies in algebra that is in agreement with previous research
(Küchemann, 1981).

EQUATION DIFFICULTY RANKS
To determine the difficulty of different types of equations with
letters, we evaluated inverse efficiency across the age groups of our
participants. In all age groups, participants were the least efficient
in solving the C equations, which suggests that these are the most
difficult equation types. This finding was expected, because the
C equations are usually solved in two steps while only one step
is needed for the A and B equations. Not all participants per-
formed two operations in solving a/x = b (e.g., some of them
swapped x and b). However, for C equations, both equation and
solution involve division, which is generally more difficult than
multiplication (Hecht et al., 2003).

Inverse efficiency measures indicated that the A equations were
of similar difficulty as the B equations. The B equations, x/a = b,
are probably the easiest because their solution is based on mul-
tiplication and the order of the variables in the product is not
important. In the A equations, x·a = b, the solution includes
a division so an additional step to decide the right order of
numerator and denominator is needed (as a/b is not the same
as b/a). However, it seems that our participants were not fully
aware of this pattern, as can be observed in their inverse efficiency
results.

It is interesting to note that a large majority of participants
reported that the B equations are more difficult than the A equa-
tions although this is not supported by the obtained results.
Probably their self reports were again influenced by the fact that
division is perceived as more difficult than multiplication. How-
ever, in judging equation difficulty, participants failed to take into
account the fact that correctly solving these equations also includes
these operations. Still, the increased number of participants who
ranked B equations as easiest among older students suggests that
some older participants (from secondary school) became aware of
the patterns in the task. In addition, it seems that metacognitive
skills improve with age as secondary school students, on average,
ranked equation difficulty more accurately than younger partici-
pants. This finding concurs the previous reports on the importance
of metacognitive activities for success in problem solving in math-
ematics (Kramarski and Mevarech, 2003; Cohors-Fresenborg et al.,
2010).

CONCLUSION
The goal of the present study was to investigate the development
of students’ abstract reasoning skills on a simple equation rear-
rangement task. Although all our participants learned equation

rearrangement in mathematics at least one year prior to our test-
ing, and were required to solve simple equations in mathematics
and science problems, they still had difficulties with some equation
types. However, accuracy and speed of equation rearrangement
increased with the participants’ age. Younger participants were
more accurate and faster in solving equations with numbers than
with letters, suggesting that they are still concrete thinkers. The
difference in the efficacy of solving equations with numbers and
letters disappeared for participants from the 2nd grade of sec-
ondary school (age 16–17 years), indicating their ability to think
more abstractly, at least on our task. The transition from con-
crete to formal reasoning was also reflected in strategies that the
participants used for solving equation with letters. Younger partic-
ipants from the primary school (age 13–15 years) mostly employed
concrete strategies such as inserting numbers, while secondary
school participants (age 15–17 years) mainly used rule-based
strategies.

Our results indicate that the transition from concrete to abstract
reasoning represents quite a long process, even for simple algebraic
task used in this study. Teachers and educational policy makers
should be aware that it is not enough to learn about equation
rearrangement in mathematics once. It should not be presumed
that students master this skill quickly and that they can easily
apply it in other context such as problem solving in physics. On
the contrary, teachers should use every opportunity to encourage
students to use formal reasoning – both pattern recognition and
effective application of mathematical rules and known procedures.
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