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Editorial on the Research Topic

Functional Annotation of Farm Animal Genomes

All fields of biology have been greatly influenced by the generation of complete and well-annotated
genome assemblies. This impact is most apparent with the findings and resulting applications from
the Human Genome Project (HGP), which has transformed biomedical science. The original
justification for having a genome assembly was to get a complete “parts list” with the primary
goal being the identification and location of all genes. However, it soon became readily apparent that
genomes were muchmore than just sequences that code for proteins; protein-coding regions account
for ∼1.5% of the human genome and similar results were obtained in analyzing the genomes of
domesticated and other farmed animal species. Thus, current efforts have been focused on finding
relevant functional elements, such as non-coding elements that regulate when, where, and howmuch
specific genes and/or particular isoforms are expressed.

To address the need for annotation of farm animal genomes, the Functional Annotation of
Animal Genomes (FAANG) Consortium was launched in 2015. Like other research consortia,
FAANG (www.faang.org) is committed to sharing data rapidly and before publication for the benefit
of the whole community (www.faang.org/data-share-principle), with data and metadata
(standardized details on samples, laboratory and bioinformatic protocols applied with a
comprehensiveness more than current practice) being collected in the FAANG Data Portal
(https://data.faang.org/home).

A Research Topic call for papers was made to provide the opportunity to report on the ongoing
efforts to annotate farm animal genomes and inform genomic biology. We believed that such a
Research Topic would be timely as a historical marker of such efforts, as the pilot FAANG projects
were being completed and a number of larger-scale projects are underway in Australia, the
United States and Europe. Many groups responded to this call. The Research Topic also offered
the opportunity to establish reference-settings for FAANG with respect to methods and protocols.
We are pleased that 21 papers, representing eight species as well as two species-agnostic resource
reports, are presented in this collection. Below, we summarize reports with complementary themes,
focused on one or more of the following topics:

NEW BIOLOGICAL AND BIOINFORMATIC RESOURCES FOR THE
COMMUNITY

As a community, it is important to have shared resources to minimize duplication of effort,
standardize wet-lab protocols, and consistent and readily-available bioinformatic pipelines. Such
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efforts are a hallmark of the FAANG community from its
inception, and several groups reported the completion of
different community resources. An European-US effort to
describe tissue samples, as well as sample collection protocols
and associated metadata across two early FAANG pilot projects,
was provided by Tixier-Boichard et al. Several groups reported
equine community resources. Donnelley et al. highlighted
development of a stallion tissue biobank, a community
collaboration to “sponsor” individual tissues to expand
epigenetics data for mares was described (Kingsley et al.), and
documentation of protocols for measuring chromatin accessible
sites using ATAC-seq of equine tissues was contributed (Peng
et al.). Two groups outlined FAANG community data resources,
including a description of available livestock data and annotation
tools at Ensembl (Martin et al.) and an account of the current
status and resources available at the FAANG data portal
(Harrison et al.).

REFERENCE TRANSCRIPTOMES FOR
CATALOGING FUNCTION AND
PREDICTING REGULATORY
RELATIONSHIPS

Transcriptomic resources are very much akin to the generation of
a reference genome assembly, by providing important baseline
functional knowledge for highly relevant tissues of each species.
Given the continuous improvement in sequencing technologies,
it was not surprising that many papers utilized the latest
platforms (e.g., long-read sequencing, single cell RNA-seq) to
define RNA transcripts and splice variants, as well as chromatin
accessibility and epigenetic modifications at RNA-expressing
genes. These efforts reflect the breadth of the community in
targeting many farmed species spanning fish, birds and mammals
for different tissues, developmental stages, and cell types. For
example, RNA-seq-based transcriptomes for 10 tissues or isolated
cell populations from chickens was summarized by Overbey et al.
Iso-seq-based (Chang et al.) and Nanopore-based (Halstead et al.)
transcriptomes of a large number of cattle tissues was generated
and used to identify full-length transcripts and alternative
splicing isoforms, which were often tissue-specifically
expressed. Long-read transcriptome technology was also used
by Ali et al. on fourteen tissues to improve the annotation of the
Rainbow trout genome, as well as identify splice isoforms
associated with traits of economic importance in aquaculture.
Similar long-read transcriptome analysis of several tissues in
Salmon genome annotation was shown to substantially
improve the transcript catalog for this species (Ramberg et al.).
A new RNA isoform, circular RNA, was cataloged across public
and new RNA-seq datasets for three tissues from sheep, cattle,
and pig (Robic et al.), and both tissue- and developmental stage-
associated differences in abundance of circular RNAs was
detected. Further, RNA-seq analysis of eight specific flow-
sorted populations of peripheral blood mononuclear cells
(PBMC) was compared to single-cell RNA-seq analysis of
PBMC by Herrera-Uribe et al. Both datatypes extended

annotation for the pig genome, identified co-expressed genes
for all major PBMC types in porcine blood, and showed many
specific cell types could be matched to human PBMC cell-specific
transcriptomes. Finally, co-expression analysis between RNAs
and miRNAs across different stages of spermatogenesis was used
to predict miRNA regulatory targets in this important process (de
Lima et al.).

LARGE SCALE FUNCTIONAL
ANNOTATIONS: INSIGHTS FROM THE
OVINE AND CAPRINE FAANG PROJECTS
Chromatin accessibility patterns and epigenomic modifications
were reported as outcomes of the ovine FAANG project. The
work from Davenport et al. and Massa et al. is setting high
standards for analyzing histone modification, transcription
factor binding and/or whole genome-wide methylation
analyses. The authors demonstrated that the level of activity
at the functional genomic elements found correlated with
nearby transcriptomic expression. Further exploration of
transcription start sites (Salavati et al.) confirmed the spatial
association of active genomic elements and initiation of
transcription. Furthermore, E and colleagues used whole
genome sequencing and Hi-C to provide mechanistic insights
as to the biological basis for polled intersex syndrome (PIS)
leads to reproductive disorders in goats.

THEUSEOF FUNCTIONAL GENOMICDATA
TO PREDICT CAUSAL VARIANTS

An ultimate goal of both basic and applied genomics is to
connect genotype to phenotype, and multiple groups
reported progress in linking genetic variation with the
molecular phenotype of RNA expression, which has seen
substantial advancement in Genotype-Tissue Expression
(GTEx) studies in humans and model species. By analyzing
chicken tissues for which both RNA-seq and genomic DNA
sequence were available in two populations, Jehl et al. developed
thresholds for variant calling and showed the value of existing
RNA-seq datasets for reliable SNP detection in allele-specific
expression (ASE) and future GTEx studies. In a second report
from this group and again investigating chicken RNA-seq data,
Degalez et al. reported on the value of haplotype-aware variant
annotation and the interest to consider multi-nucleotide
variants in the coding regions. Prowse-Wilkins et al.
produced and integrated histone modification and CTCF
data across six tissues from lactating dairy cows to identify
partitions of the genome predicted to comprise functional
regions in these tissues. Importantly, they then showed the
level of activity of these functional regions were correlated
with nearby gene expression and such regions were enriched
for putative causal variants. Interestingly, the level of
enrichment improved where regions were correlated with the
level of expression and was greatest for QTL for milk production
traits. This work provided strong evidence for the core
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hypothesis of the FAANG project; that form follows function
and cataloging genome functional elements can be used to find
important (e.g., predictive) variation likely causing phenotypic
differences.

As exemplified by this collection, the efforts produced by groups
throughout the world indicate the future of FAANG is very bright.
Having said this, the value of the insights provided by the currently
more comprehensive efforts in human and biomedical models is
clear, and significantly more progress will be needed to fully exploit
the public investment in animal agricultural genomics. Especially
challenging will be the validation of predicted functional elements
and the verification of casual variants associated with complex traits,
as each polymorphism may have only a small effect. However, the
next major advancements in translation of farm animal genome
functional variation into prediction of biological phenotype will
come from such precise knowledge of individual genomes.

We close by congratulating each of the contributing authors for
their outstanding work, and extend our appreciation to all of the
reviewers for their time and effort to improve each submission.
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Mazdak Salavati1,2†, Alex Caulton3,4†, Richard Clark5, Iveta Gazova1,6,
Timothy P. L. Smith7, Kim C. Worley8, Noelle E. Cockett9, Alan L. Archibald1,
Shannon M. Clarke3, Brenda M. Murdoch10 and Emily L. Clark1,2* on behalf of
The Ovine FAANG Project Consortium

1 The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom,
2 Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Midlothian,
United Kingdom, 3 AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand, 4 Genetics Otago, Department of
Biochemistry, University of Otago, Dunedin, New Zealand, 5 Genetics Core, Edinburgh Clinical Research Facility,
The University of Edinburgh, Edinburgh, United Kingdom, 6 MRC Human Genetics Unit, The University of Edinburgh,
Edinburgh, United Kingdom, 7 USDA, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE,
United States, 8 Baylor College of Medicine, Houston, TX, United States, 9 Department of Animal, Dairy and Veterinary
Sciences, Utah State University, Logan, UT, United States, 10 Department of Animal, Veterinary and Food Sciences,
University of Idaho, Moscow, ID, United States

The overall aim of the Ovine FAANG project is to provide a comprehensive annotation
of the new highly contiguous sheep reference genome sequence (Oar rambouillet
v1.0). Mapping of transcription start sites (TSS) is a key first step in understanding
transcript regulation and diversity. Using 56 tissue samples collected from the reference
ewe Benz2616, we have performed a global analysis of TSS and TSS-Enhancer
clusters using Cap Analysis Gene Expression (CAGE) sequencing. CAGE measures
RNA expression by 5′ cap-trapping and has been specifically designed to allow the
characterization of TSS within promoters to single-nucleotide resolution. We have
adapted an analysis pipeline that uses TagDust2 for clean-up and trimming, Bowtie2
for mapping, CAGEfightR for clustering, and the Integrative Genomics Viewer (IGV)
for visualization. Mapping of CAGE tags indicated that the expression levels of CAGE
tag clusters varied across tissues. Expression profiles across tissues were validated
using corresponding polyA+ mRNA-Seq data from the same samples. After removal of
CAGE tags with <10 read counts, 39.3% of TSS overlapped with 5′ ends of 31,113
transcripts that had been previously annotated by NCBI (out of a total of 56,308 from
the NCBI annotation). For 25,195 of the transcripts, previously annotated by NCBI, no
TSS meeting stringent criteria were identified. A further 14.7% of TSS mapped to within
50 bp of annotated promoter regions. Intersecting these predicted TSS regions with
annotated promoter regions (±50 bp) revealed 46% of the predicted TSS were “novel”
and previously un-annotated. Using whole-genome bisulfite sequencing data from the
same tissues, we were able to determine that a proportion of these “novel” TSS were
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hypo-methylated (32.2%) indicating that they are likely to be reproducible rather than
“noise”. This global analysis of TSS in sheep will significantly enhance the annotation
of gene models in the new ovine reference assembly. Our analyses provide one of
the highest resolution annotations of transcript regulation and diversity in a livestock
species to date.

Keywords: ovine, TSS, CAGE, WGBS, promoter, enhancer, transcriptome, FAANG

INTRODUCTION

The Functional Annotation of Animal Genomes (FAANG)
consortium is a concerted international effort to use molecular
assays, developed during the Human ENCODE project (Birney
et al., 2007), to annotate the majority of functional elements in
the genomes of domesticated animals (Andersson et al., 2015;
Giuffra and Tuggle, 2019). Toward this aim, the overarching
goal of the Ovine FAANG project (Murdoch, 2019) is to provide
a comprehensive annotation of the new highly contiguous
reference genome for sheep, Oar rambouillet v1.0.1 The Ovine
FAANG project is developing a deep and robust dataset of
expressed elements and regulatory features in the sheep genome
as a resource for the livestock genomics community. Here, we
describe a global analysis of transcription start sites (TSS) using
Cap Analysis Gene Expression (CAGE) sequencing.

Cap Analysis Gene Expression measures RNA expression by
5′ cap-trapping to identify the 5′ ends of both polyadenylated
and non-polyadenylated RNAs including lncRNAs and miRNAs,
and has been specifically designed to allow the characterization of
TSS within promoters to single-nucleotide resolution (Takahashi
et al., 2012). By using 5′-cap capture, we avoid transcripts
that have been 5′ degraded. Conventional RNA-Seq and cDNA
datasets can be “contaminated” with such degradation products
and data from transcripts where first strand cDNA synthesis
was incomplete. These “contaminants” can give rise to erroneous
transcript/gene models with false 5′ ends. The level of resolution
provided by CAGE allows investigation of the regulatory inputs
driving transcript expression and construction of transcriptional
networks to study, for example, the genetic basis for disease
susceptibility (Baillie et al., 2017) or for systematic analysis of
transcription start sites through development (Lizio et al., 2017).
Using CAGE sequencing technology, the FANTOM5 consortium
generated a comprehensive annotation of TSS for the human
genome, which included the major primary cell and tissue types
(Forrest et al., 2014).

The goal of this study was to annotate TSS and TSS-
Enhancer clusters in the ovine genome (Oar rambouillet v1.0).
Our approach was to perform CAGE analysis on 55 tissues
and one type of primary immune cell (alveolar macrophages).
Tissues representing all the major organ systems were collected
from Benz2616, the Rambouillet ewe used to generate the Oar
rambouillet v1.0 reference assembly. CAGE tags for each tissue
sample clustered with a high level of specificity according to
their expression profiles as measured by mRNA-Seq. Mapping
of CAGE tags indicated that a large proportion of detected

1https://www.ncbi.nlm.nih.gov/assembly/GCF_002742125.1/

TSS did not overlap with the current annotated 5′ end of
transcripts. The reproducibility of these “novel” TSS was tested
using whole-genome DNA methylation profiles from a subset of
the same tissues.

DNA methylation plays a key role in the regulation of gene
expression and the maintenance of genome stability (Ibeagha-
Awemu and Zhao, 2015), and is the most highly studied
epigenetic mark. In mammalian species, DNA methylation
occurs primarily at cytosine-phosphate-guanine dinucleotides
(CpG) and to a lesser extent at CHH and CHG sites (where
C, cytosine; H, adenine, guanine, or thymine; and G, guanine)
(An et al., 2018). Generally, DNA methylation in the promoter
region of genes represses transcription, inhibiting elongation
by transcriptional machinery. Methylation over TSS represses
transcription initiation whereas, conversely, methylation within
gene bodies stimulates elongation and influences alternative
splicing of transcripts (Jones, 2012; Lev Maor et al., 2015; An
et al., 2018). Using DNA methylation profiles, we were able
to determine the proportion of “novel” TSS in our dataset
that were likely true signals of transcription initiation based
on a hypomethylated state rather than being an artifact of
CAGE sequencing.

We provide the annotation of TSS in the ovine genome as
tracks in a genome browser via the Track Hub Registry and
visualize these in the R package GViz, ensuring the data are
accessible and useable to the livestock genomics community. The
global analysis of TSS we present here will significantly enhance
the annotation of gene models in the new ovine reference
assembly demonstrating the utility of the datasets generated
by the Ovine FAANG project and providing a foundation
for future work.

MATERIALS AND METHODS

Animals
Tissues were collected from an adult female Rambouillet sheep
at the Utah Veterinary Diagnostic Laboratory on April 29, 2016.
At the time of sample collection, Benz2616 was approximately
6 years of age and after a thorough veterinary examination
confirmed to be healthy. Benz 2616 was donated to the project by
the USDA. Sample collection methods were planned and tested
over 15 months in 2015−2016, and a description of these is
available via the FAANG Data Coordination Centre.2

2https://data.faang.org/api/fire_api/samples/USU_SOP_Ovine_Benz2616_Tissue
_Collection_20160426.pdf
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Sample Collection
Necropsy of Benz2616 was performed by a veterinarian to ensure
proper identification of tissues, and a team of scientists on
hand provided efficient and rapid transfer of tissue sections to
containers which were snap frozen in liquid nitrogen before
transfer to −80◦C for long-term storage. Alveolar macrophages
were collected by bronchoalveolar lavage as described in
Cordier et al. (1990). Details of all 100 samples collected
from Benz2616 are included in the BioSamples database under
submission GSB-7268, group accession number SAMEG3296073

and associated information is recorded according to FAANG
metadata specifications (Harrison et al., 2018). The FAANG
assays, as described later, were generated from a subset
of tissues for CAGE (56 tissues), polyA+ mRNA-Seq (58
tissues), and whole-genome bisulfite sequencing (WGBS) (8
tissues) (Figure 1).

CAGE Library Preparation and Analysis
RNA Isolation for CAGE Library Preparation
Frozen tissues (60–100 mg per sample) were homogenized by
grinding with a mortar and pestle on dry ice and RNA was
isolated using TRIzol Reagent (Invitrogen) according to the
manufacturer’s instructions. After RNA isolation, 10 µg of RNA
per sample was treated with DNase I (NEB) then column
purified using a RNeasy MinElute kit (Qiagen), according to the
manufacturer’s instructions. Full details of the RNA extraction
protocol are available via the FAANG Data Coordination
Centre.4 Each RNA sample was run on an Agilent BioAnalyzer
to ensure RNA integrity was sufficiently high (RINe > 6).
Details of RNA purity metrics for each sample are included in
Supplementary Table 1. RNA samples were then stored at−80◦C
for downstream analysis.

CAGE Library Preparation and Sequencing
Cap Analysis Gene Expression libraries were prepared for each
sample as described in Takahashi et al. (2012) from a starting
quantity of 5 µg of DNase treated total RNA. Random primers
were used to ensure conversion of all 5′ cap-trapping RNAs
according to Takahashi et al. (2012). The full protocol is
available via the FAANG Data Coordination Centre.5 Libraries
were prepared in batches of eight and pooled. Sequencing was
performed on the Illumina HiSeq 2500 platform by multiplexing
eight samples on one lane to generate approximately 20 million
50 bp single-end reads per sample. Eight of the available
fifteen 5′ linker barcodes from Takahashi et al. (2012) were
used for multiplexing: ACG, GAT, CTT, ATG, GTA, GCC,
TAG, and TGG. In total, eight separate library pools were
generated and spread across two HiSeq 2500 flow cells. Details
of barcodes assigned to each sample and pool IDs are included in
Supplementary Table 1.

3https://www.ebi.ac.uk/biosamples/samples/SAMEG329607
4https://data.faang.org/api/fire_api/assays/USDA_SOP_RNA_Extraction_From_
Tissue_20180626.pdf
5https://data.faang.org/api/fire_api/assays/ROSLIN_SOP_CAGE-library-
preparation_20190903.pdf

Processing and Mapping of CAGE Libraries
All sequence data were processed using in-house scripting
(bash and R) on the University of Edinburgh high-performance
computing facility (Edinburgh, 2020). The analysis protocol for
CAGE is available via the FAANG Data Coordination Centre6

and summarized in Figure 2. To de-multiplex the data, we used
the FastX toolkit version 0.014 (Hannon Lab, 2017) for short
read pre-processing. We then used TagDust2 v.2.33 (Lassmann,
2015) to extract mappable reads from the raw data and for read
clean-up to remove the EcoP1 site and barcode, according to
the recommendations of the FANTOM5 consortium (e.g., Bertin
et al., 2017). This process resulted in cleaned reads approximately
27 nt in length (hereafter referred to as CAGE tags) which were
mapped to the Rambouillet Benz2616 genome available from
NCBI (Oar rambouillet v1.0 GCA_002742125.1) using Bowtie2
v.2.3.5.1 in −very-sensitive mode equivalent to options -D 20 -R
3 -N 0 -L 20 -i S,1,0.50 (Langmead and Salzberg, 2012). Multi-
mapped reads were identified using Bowtie2 v.2.3.5.1 in –very-
sensitive mode and excluded from the rest of the analysis. The
mapped BAM files were then processed for base-pair resolution
strand-specific read counts using bedtools v.2.29.0 (Quinlan and
Hall, 2010). Metrics for the attrition of raw reads at each stage
of the analysis pipeline are included in Supplementary File 1,
Section 1.1 For the bedGraph files to be used in the CAGEfightR
package, they were converted to bigWig format using UCSCs tool
BedGraphToBigWig (Kent et al., 2010).

Normalization and Mapping of CAGE Tags
For normalization and clustering of CAGE tags (as CAGE
Tags-Per-Million Mapped: CTPM), we used the software
package CAGEfightR v.1.5.1 (Thodberg and Sandelin, 2019).
The normalization was performed by dividing CAGE tag
counts in each predicted cluster by the total mapped CAGE
tags in the sample, multiplied by 1 × 106. To perform
these analyses, we created a custom BSgenome object (a
container of the genomic sequence) for sheep from Oar
rambouillet v1.0 using the BSgenome Bioconductor package
v.1.53.1 (Pages, 2020). Distribution metrics of CAGE tags across
the genome were annotated and analyzed using the TxDB
transcript ID assignment and Genomic Features package v.1.36.4
(Lawrence et al., 2013). The TxDB object was created using
the NCBI gff3 gene annotation file from NCBI Oar rambouillet
v1.0 GCA_002742125.1 (GCF_002742125.1_Oar_rambouillet_
v1.0_genomic.gff release 103).

Clustering of CAGE Tags
To annotate TSS in the Oar rambouillet v1.0 genome assembly,
we first generated expression read counts for each tag (bp
resolution). Tags with <10 read counts were removed first
then any tags that were not present in at least 37/56
tissues (i.e., two-thirds of the tissues) were also removed.
This conservative representation threshold was introduced to
ensure CAGE tags included in downstream analysis were
reproducible. In the absence of additional biological replicates,
we based this on the assumption that a CAGE tag was

6https://data.faang.org/api/fire_api/analysis/ROSLIN_SOP_CAGE_analysis_
pipeline_20191029.pdf
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FIGURE 1 | FAANG assays (CAGE, WGBS, and mRNA-Seq) performed on each tissue from Benz2616.

more likely to be reproducible if it was shared across
multiple tissues. However, it should be noted that this method
would reduce sensitivity to putative highly tissue-specific TSS

and this is discussed later. Gene annotation from NCBI’s
GTF file (GCF_002742125.1_Oar_rambouillet_v1.0_genomic.gtf
release 103) was used to validate the coordinates of predicted
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FIGURE 2 | Workflow of the analysis pipeline and respective tools used for CAGE sequence data analysis.

CAGE clusters (i.e., residing within or outside the promoter of
annotated genes). Five thresholds for representation, of CAGE
tags (excluding intergenic and intronic tags) across tissues, were
compared (one tissue, five tissues, one-third of the tissues, half
of the tissues, two-thirds of the tissues, and all of the tissues).
The proportion of CAGE tag clusters within (tagged by unique
gene IDs) or outside the promoter region (untagged) was used
to compare each threshold. Highly stringent filtering (56/56
representation) found CAGE tag clusters associated with 2,949
genes (out of 30,862 genes annotated by NCBI) representing
putative TSS for genes expressed in all 56 tissues. A reduction
of the threshold to two-thirds (37/56 tissues) resulted in 13,912
genes (31,113 transcripts) associated with CAGE tag clusters.
Reducing the threshold further to one-third of tissues resulted in
a high proportion of CAGE tag clusters that were not associated
with genes (“untagged”) (41.6%) and 18,005 associated with genes
(39,458 transcripts). According to this criterion, we selected the
two-thirds threshold. Although highly stringent, this provided
only the highest confidence TSS tag clusters, associated with

widely expressed genes and widely used promoters, for the
analysis of the dataset we present here. Further details of this
comparison are included in Supplementary File 1, Section 1.2.

Transcription start sites expression profiles (as CTPM) were
then regenerated for each tissue using the CAGEfightR v.1.5.1
quickTSS, quickEnhancers, and findLinks functions (Thodberg
and Sandelin, 2019). The CAGE tags clustered (1) uni-
directionally (according to the sense or anti-sense flag of the
mapped CAGE tag) into predicted TSS and (2) bi-directionally,
using the TSS-Enhancer detection algorithm from CAGEfightR
(Thodberg and Sandelin, 2019), into correlated TSS and enhancer
(TSS-Enhancer) clusters. Bi-directional (TSS-Enhancer) clusters
are defined as clusters of CAGE tags that are located on the
opposing strand within 400−1,000 bp proximity of the center of
a promoter (Thodberg and Sandelin, 2019). The bi-directional
clusters outside of this range were excluded from this analysis
according to the previously described method in Thodberg
et al. (2019). The concept of uni-directional and bi-directional
clustering is illustrated in Figure 3.
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FIGURE 3 | Schematic representation of the two clustering algorithms used in the CAGEfightR package for TSS (uni-directional) and TSS-Enhancer (bi-directional)
clustering.

Identification of Shared TSS or
TSS-Enhancer Clusters Across Tissues
Transcription start sites or TSS-Enhancer clusters that
were shared across tissues were identified by investigating
the CTPM expression profile of each of the tissues using
correlation-based and mutual information (MI) distance
matrices (Priness et al., 2007; Reshef et al., 2018). This
method of MI-based clustering tolerates missingness and
outlier-induced grouping errors in gene expression profiles
(Priness et al., 2007). Using this method, we assumed that
the CTPM expression profile, for each cluster, could vary
across tissues. However, for a predicted TSS or TSS-Enhancer
cluster to be considered high-confidence and associated
with widely expressed genes and widely used promoters,
it must be present in at least two-thirds of the tissues
(37/56) in the dataset.

Identification of Tissue-Specific TSS or
TSS-Enhancer Clusters
The two-thirds representation threshold applied previously
would remove all tissue-specific CAGE tag clusters. To overcome
this, a rerun of the clustering algorithm was performed with
the two-thirds representation threshold removed. Tissue-specific
uni-directional TSS clusters that were only present in 1/56 tissues
were identified by filtering for CAGE tags with >10 expressed
counts to create a data frame. The data frame was then filtered
tissue by tissue to only retain uni-directional TSS clusters present
in each tissue separately. This process was then repeated for the
TSS-Enhancer clusters.

Annotation of “Novel” TSS in the Ovine
Genome
We expected given the diversity of tissues sampled that we would
detect a significant number of “novel”, previously unannotated
TSS. The CAGE tag uni-directional clusters (TSS) were annotated
using the mergeByOverlay function of the GenomicFeatures
package in R and the custom TxDB object as follows:

mergeByOverlaps(subject = TSS, query = promoters(txdb,
upstream = 25, downstream = 25, use.names = T,c(“tx_name,”
“GENEID”)), maxgap = 25, type = “any”). The TxDB object
calculates the range of the promoter based on the 5′UTR and
first CDS codon coordinates. In each tissue, any putative TSS
region within 50 bp range of the promoter coordinate of a gene
model was considered “annotated”. In addition, we expanded
this range to 400 bp to determine whether this would identify
significantly more unannotated TSS further from the promoter.
A reverse sub setting of the 50 bp window region was performed
as follows: subsetByOverlaps(x = TSS, ranges = annotated,
invert = TRUE). These regions were considered “novel” TSS
previously unannotated in the assembly. This process was
repeated for every tissue separately (n = 56).

Comparative Analysis of WGBS and
CAGE Data
Preparation of Genomic DNA From Tissue
Extraction of DNA for bisulfite sequencing was performed
using a phenol:chloroform:isoamyl alcohol method. Briefly,
approximately 1 g frozen tissue was pulverized and resuspended
in 2.26 ml of digestion buffer (10 mM Tris−HCl, 400 mM
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NaCl, 2 mM EDTA, pH 8.0) with 200 µl of SDS 10% and
60 µl RnaseA (10 mg/ml) (Sigma-Aldrich, St. Louis, MO,
United States). RNA degradation proceeded for 1 h at 37◦C
with gentle shaking. Next, 25 µl of proteinase K (20 mg/ml)
(Sigma-Aldrich) was added to the suspension and incubated
overnight (approximately 16 h) at 37◦C with gentle shaking.
The viscous lysate was transferred to a 2 ml Phase Lock tube
(VWR, Radnor, PA, United States) and extracted twice with
Tris–HCl-saturated phenol:chloroform:isoamyl alcohol (25:24:1)
pH 8.0, followed by extraction with 2.5 ml chloroform. The
DNA was precipitated by addition of 5.5 ml of 100% ethanol
and 250 µl of 3 M sodium acetate to the aqueous phase in a
15 ml conical tube, mixed by gentle inversion until the DNA
became visible. The DNA was removed with a bent Pasteur
pipette hook, washed in 5 ml 70% cold ethanol, air dried then
resuspended in 250 µl−1 ml of 1 × TE, and stored at −20◦C
until use. DNA concentration was quantified fluorometrically on
the Qubit 3.0 Fluorometer (Thermo Fisher Scientific, Waltham,
MA, United States) using the Qubit dsDNA HS Assay Kit.
The purity of the extractions was determined via 260/280 and
260/230 ratios measured on the NanoDrop 8000 (Thermo Fisher
Scientific) and DNA integrity was assessed by 1% agarose gel
electrophoresis. The protocol is available via the FAANG Data
Coordination Centre.7

Whole-Genome Bisulfite Conversion and Sequencing
Library preparation and sequencing of seven tissues and one
cell type (Figure 1), selected to include a representative from all
major organ systems, were performed by The Garvan Institute
of Medical Research, Darlinghurst, Sydney, NSW, Australia.
Un-methylated lambda DNA was added at 0.5% of the total
sample DNA concentration before bisulfite conversion as a
conversion efficiency control. DNA conversion was carried out
using the EZ DNA Methylation-Gold Kit (Zymo Research,
CA, United States) following the manufacturer’s instructions.
The Accel-NGS Methyl-seq DNA kit (Swift Biosciences, MI,
United States) for single indexing was used to prepare the
libraries, following the manufacturer’s instructions. Libraries
were pooled together and sequenced across six lanes of a flow cell
on an Illumina HiSeq X platform using paired-end chemistry for
150 bp reads (min 10× coverage). The protocol is available via
the FAANG Data Coordination Centre.8

WGBS Data Processing
Paired-end Illumina WGBS data were processed and analyzed
using in-house scripting (bash and R) and a range of purpose-
built bioinformatics tools on the AgResearch and University
of Edinburgh high-performance computing facilities. The
analysis protocol for WGBS is available via the FAANG Data
Coordination Centre9 and summarized in the next section.

7https://data.faang.org/api/fire_api/assays/USDA_SOP_DNA_Extraction_From_
WholeBloodandLiver_20200611.pdf
8https://data.faang.org/api/fire_api/assays/AGR_SOP_WGBS_AgR_Libary_
prep_20200610.pdf
9https://data.faang.org/api/fire_api/analysis/AGR_SOP_WGBS_AgR_data_
analysis_20200610.pdf

Briefly, FASTQ files for each sample, run across multiple
lanes, were merged together. TrimGalore v.0.5.010 was used to
trim raw reads to remove adapter oligos, poor-quality bases
(phred score less than 20), and the low-complexity sequence
tag introduced during Accel-NGS Methyl-seq DNA kit library
preparation as follows: trim_galore -q 20 –fastqc –paired –clip_R2
18 –three_prime_clip_R1 18 –retain_unpaired –o Trim_out
INPUT_R1.fq.gz INPUT_R2.fq.gz.

A bisulfite-sequencing amenable reference genome was built
using the Oar rambouillet v1.0, GenBank accession number:
GCA_002742125.1 genome with the BSSeeker2 script bs_seeker2-
build.py using bowtie v2.3.4.3 (Langmead and Salzberg, 2012)
and default parameters. The Enterobacteria phage lambda
genome available from NCBI (accession number NC_001416)
was added to the Oar rambouillet v1.0 genome as an extra
chromosome to enable alignment of the unmethylated lambda
DNA conversion control reads. Paired-end, trimmed reads
were aligned to the reference genome using the BSSeeker2
script bs_seeker2-align.py and bowtie v2.3.4.3 (Langmead and
Salzberg, 2012) allowing four mismatches (-m 4). Aligned
bam files were sorted with samtools v1.6 (Li et al., 2009)
and duplicate reads were removed with picard tools v2.17.1111

MarkDuplicates function.
Deduplicated bam files were used to call DNA methylation

levels using the “bam2cgmap” function within CGmaptools
(Guo et al., 2018) with default options to generate ATCGmap
and CGmap files for each sample. The ATCGmap file format
summarizes mapping information for all covered nucleotides on
both strands, and is specifically designed for BS-seq data; while
the CGmap format is a more condensed summary providing
sequence context and estimated methylation levels at any covered
cytosine in the reference genome.

Hypermethylated and hypomethylated regions were
determined for each sample using methpipe v3.4.3 (Song
et al., 2013). Specifically, CGmap files for each sample were
reformatted for the methpipe v3.4.3 workflow using custom
awk scripts. The methpipe symmetric-cpgs program was used
to merge individual methylation levels at symmetric CpG pairs.
Hypomethylated and hypermethylated regions were determined
using the hmr program within methpipe, which uses a hidden
Markov model using a Beta-Binomial distribution to describe
methylation levels at individual CpG sites, accounting for the
read coverage at each site.

Visualization of the individual CpG site methylation levels
with a minimum read depth cut-off of 10x coverage was done
using Gviz package v.1.28.3 (Hahne and Ivanek, 2016).

Comparative Analysis of Annotated and
“Novel” TSS with WGBS Methylation
Information
We expected that reproducible TSS, either annotated or
novel, would overlap with hypomethylated regions of the
genome (Yamashita et al., 2005; Yagi et al., 2008). To

10https://github.com/FelixKrueger/TrimGalore
11https://broadinstitute.github.io/picard/
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test whether this was true for those identified in our
analysis, both annotated and novel TSS from the CAGE BED
tracks were intersected with WGBS hypomethylation profiles
using bedtools v.2.29.2 (Quinlan and Hall, 2010) and the
following script: bedtools intersect -b WGBS_HypoCpG.bed -a
Novel_or_ Annotated.bed > Novel_or_annotated_HypoCpG.bed.
Any annotated and novel TSS (within a ± 50 bp window
of the promoter) that intersected hypomethylated regions of
DNA in each tissue, were verified as reproducible TSS and
the remainder as “noise”. The overlay of these regions was
visualized as a genomic track using the Gviz package v.1.28.3
(Hahne and Ivanek, 2016).

Visualization of the Annotated TSS,
mRNA-Seq, and WGBS Tracks in the
Ovine Genome
To confirm the simultaneous expression of mRNA, CAGE
tags corresponding to an active TSS and a hypomethylated
region of DNA, a genomic track on which all three datasets
could be visualized, were generated. This visualization consists
of the following tracks: (1) uni-directional CAGE tag clusters
(TSS), (2) bi-directional CAGE tag clusters (TSS-Enhancers),
(3) WGBS hypomethylation score (bp resolution), (4) transcript
level expression (mRNA-Seq [TPM]), (5) the transcript models,
and (6) the gene model. Areas of the genome where TSS
or TSS-Enhancer regions overlapped regions with a high
hypomethylation score, within the 5′ end of an actively
expressing transcript (TPM score), were considered reproducible
TSS for that tissue. This process was performed using eight
tissues with matching mRNA-Seq, CAGE, and WGBS data.
The Gviz package v.1.28.3 was used to visualize these tracks
(Hahne and Ivanek, 2016).

Validation of Tissue-Specific Expression
Profiles
mRNA Sequencing
Total RNA for mRNA-Seq from 32 tissues (Figure 1) was
prepared, as previously for the CAGE samples, by USMARC,
and for 26 tissues by Baylor College of Medicine (BCM)
using the MagMAX mirVana total RNA isolation kit (Thermo
Fisher Scientific, Waltham, MA, United States) according
to the manufacturer’s instructions. Paired-end polyA selected
mRNA-Seq libraries were prepared and sequenced on an
Illumina NextSeq500 at USMARC or the Illumina HiSeq2000
at BCM using the Illumina Tru-Seq Stranded mRNA Library
Preparation Kit. For each tissue, a set of expression estimates,
as transcripts per million (TPM), were obtained using the
transcript quantification tool Kallisto v0.43.0 (Bray et al., 2016).
The mRNA-Seq analysis pipeline is accessible via the FAANG
Data Coordination Centre.12 A pairwise distance matrix (multiple
correlation coefficient based) was produced using MI values for
all tissues and a dendrogram of tissues was created to visualize

12https://data.faang.org/api/fire_api/analysis/ROSLIN_SOP_RNA-Seq_analysis_
pipeline_20200610.pdf

grouping patterns of tissues with similar mRNA expression
profiles, and for comparison with the CAGE dataset.

Comparative Analysis of Tissue-Specific
Expression Profiles Using Information
From CAGE and mRNA-Seq
We assessed whether TSS expression profiles from the CAGE
dataset were biologically meaningful using the mutual
information (MI) sharing algorithm (Joe, 1989). Tissues
with the same function and physiology should have similar TSS
expression profiles. The CTPM expression level was binned
(n = 10) using the bioDist package v.1.56.0 (Ding et al., 2012)
and mutual information (MI) for each pair of tissue samples was
calculated as in Joe (1989).

δ =
(
1− exp (−2× δ)

)0.5

MI distance = 1− δ

A pairwise distance matrix (multiple correlation coefficient
based) was produced using MI values for all tissues and
a dendrogram of tissues created to visualize grouping
patterns of tissues with similar TSS expression profiles. If
the expression profiles were meaningful, then tissues with
similar function and physiology would group together in clades
within the dendrogram. These tissue-specific groupings were
then further validated by comparison with mRNA-Seq data
for the same samples, using the MI sharing algorithm and
dendrogram approach.

RESULTS

Library Size and Annotation Metrics
The mean CAGE library depth based on uniquely mapped
CAGE reads was 4,862,957 reads. A detailed explanation of
the attrition of reads at each stage of the analysis pipeline is
included in Supplementary File 1, Section 1.1. Library depth
varied across tissues. Tissues with low depth were not related
to any specific barcodes and were evenly spread over the two
sequencing runs (Supplementary Figure 1 and Supplementaty
Table 1), suggesting random variation rather than systematic
differences due to specific barcodes or sequencing runs. The RINe

values were also consistently >7 for all tissues with low counts,
indicating RNA integrity was also unlikely to be affecting library
depth. Differences in tag numbers are therefore more likely to
relate to variation in efficiency between individual libraries or
tissue-specific differences related to the physiology of the tissue.

CAGE Tag Clustering and Annotation by
Genomic Regions
We used a newly developed software package to annotate
TSS in the Rambouillet Benz2616 genome (Thodberg and
Sandelin, 2019; Thodberg et al., 2019) which clustered the
CAGE tags as (1) uni-directionally into predicted TSS or (2) bi-
directionally into correlated TSS and enhancer (TSS-Enhancer)
clusters (Figure 3). The clustered CAGE tags were filtered to
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remove any clusters with a minimum expression level of <10
tag counts. The mean (±SD) and median number of tissues
per cluster was 3.68 ± 4.78 and 2, respectively. Application of
the two-thirds representation criteria (i.e., a minimum of 37/56
tissues had to express the tag cluster) and filtering out of tag
clusters with <10 TPM resulted in an average of 8,219 uni-
directional TSS clusters, from a total of 5,450,864 (pre-filtering),
for downstream analysis. A detailed description of the cluster
metrics at each stage of filtering is included in Supplementary
File 1, Sections 1.1 and 1.3. Although direct comparisons are
difficult due to differences in methodology and the relative
“completeness” of the reference annotation used, the level of
retained CAGE sequencing datasets (0.5% retained clusters
with two-thirds tissue representation) is somewhat lower than
reported for other mammalian promoter-level expression atlas
projects. In the FANTOM5 project, for example, approximately
5% of clusters were retained (Forrest et al., 2014). To further
validate the two-thirds tissue representation criteria we chose,
we also investigated the number of transcripts captured in the
poly-A enriched mRNA-Seq dataset. Poly-A enriched mRNA-Seq
data were available for 52 matching tissues and captured a smaller
number of transcripts (n = 32,852) with TPM > 10 in comparison
with CAGE CTPM > 10 (n = 53,507). Direct comparison of
expression for CAGE tags (27 nt) and paired-end RNA-Seq
(75 nt) reads could result in technology-dependent bias. Taking
this into consideration, the CAGE dataset with the two-thirds
representation criteria applied provided annotation for 31,113
transcripts with minimum CPTM > 10. When the same criteria
were applied to the mRNA-Seq dataset, only 3,908 transcripts
with TPM > 10 were annotated. The expression (as TPM) of
transcripts for each tissue and the TPM threshold metrics are
included in Supplementary File 1 and Supplementary Table 4.

Bi-directional TSS-enhancer clusters were far fewer in
number, although retention was higher with over 23% meeting
the same two-thirds representation criteria 741 from a total of
3,131. Though fewer in number, these bi-directional (including
TSS-enhancer) clusters are functionally important in the
regulation of expression of their target genes (Andersson et al.,
2014; Thodberg and Sandelin, 2019), consistent with finding
them in over two-thirds of tissues. The co-expression of leading
enhancer RNA (eRNA) which is captured by CAGE sequencing
can provide a map to enhancer families in the genome and the
genes under their regulation (Andersson et al., 2014).

The locations of both uni-directional TSS and bi-directional
TSS-Enhancer clusters were identified in Oar rambouillet v1.0
and the proportion of TSS clusters located within or near
annotated gene features was estimated (Figure 4). The custom
BSgenome and TxDB objects created from the GFF3 file format
provide detailed calculated coordinates for the following sections:
intergenic (>1,000 bp before 5′UTR or after the end of 3′UTR),
proximal (1,000 bp upstream of the 5′UTR), promoter (± 100 bp
from 5′UTR), and the standard gene model (5′UTR, exon, intron,
and 3′UTR). The genomic region class with the highest number
of uni-directional clusters (39.25%) was the promoter regions
(± 100 bp from 5′UTR) (Figure 4A), with a relatively even
distribution within the other regions of the genome, including 6%
mapping proximally to the 5′UTR. The majority of bi-directional

TSS-Enhancer clusters were also located in promoter regions
(70.1%) with a smaller proportion (25.6%) located in proximal
regions (Figure 4B). The lack of bi-directional TSS-Enhancer
clusters in other regions is a consequence of the operation of
the CAGEfightR algorithm, which only considers bi-directional
clusters within a 400–1,000 bp window of a TSS CAGE tag
cluster (Thodberg and Sandelin, 2019; Thodberg et al., 2019).
This approach also reduced the total count compared with
unidirectional clusters (28,148 uni-directional clusters relative
to 741 bi-directional TSS-Enhancer clusters across tissues)
(Thodberg et al., 2019).

Capturing Metrics of CAGE Tag Clusters
per Gene
During the clustering process, we also determined the proportion
of annotated genes and transcripts in the Oar rambouillet
v1.0 NCBI annotation that we did not capture using our
dataset. When the two-thirds representation filtering criteria
were applied, 44.7% of transcripts (25,195) and 54.6% of genes
(16,950) were not captured by our CAGE TSS clusters. When
the two-thirds representation filtering criteria were removed, and
presence of the CAGE tag in only one tissue out of 56 considered
sufficient, the proportion that we did not capture was reduced
to 7% of genes and 5% of transcripts. To investigate whether
some genes posessed multiple putative TSS, we also estimated the
number of CAGE TSS clusters per gene. The median and also
the highest frequency of TSS cluster per gene was 1 (mean 1.8)
(13,912 genes/31,3113 transcripts annotated using our dataset),
indicating that the vast majority of genes annotated in the Oar
rambouillet v1.0 reference genome have only one TSS, and genes
with more than five TSS were rare (Supplementary Figure 5 and
Supplementary Table 5).

Distribution of CAGE Tag Clusters in Oar
rambouillet v1.0 Relative to Oar_v3.1
The new reference sheep genome assembly (Oar rambouillet
v1.0) is more contiguous than the earlier draft genome sequence
Oar_v3.1 (Jiang et al., 2014) with contig N50 values of 2,572,683
and 40,376 bp, respectively, and would be expected to provide a
better template for annotation of gene models and other genomic
features. As a proxy for testing this assumption, we investigated
how mapped CAGE tag clusters were distributed across the two
genome assemblies (Supplementary Figure 2). The percentage of
uni-directional CAGE tag clusters mapping to intergenic regions,
which usually occurs due to missing gene model information,
was greater for Oar_v3.1 (33.9%) relative to Oar rambouillet
v1.0 (8%). The percentage of uni-directional CAGE tag clusters
mapping to annotated promoter regions was greater for Oar
rambouillet v1.0 (39.25%) compared with Oar_v3.1 (14.94%),
indicating the proportion of accurate gene models in Oar
rambouillet v1.0 was greater. Of the 28,148 unidirectional TSS
clusters mapped to Oar rambouillet v1.0, 87.74% mapped to
13,868 unique genes (31,729 transcripts). In comparison, of the
23,829 unidirectional TSS clusters mapped to Oar_v3.1, 49.1%
mapped to 6,549 genes (9,914 transcripts). A larger number of
TSS-Enhancer CAGE clusters were detected in Oar_v3.1 (1121)

Frontiers in Genetics | www.frontiersin.org 9 October 2020 | Volume 11 | Article 58058017

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-580580 October 21, 2020 Time: 13:7 # 10

Salavati et al. TSS Annotations of Oar rambouillet 1

FIGURE 4 | The genomic region distribution of CAGE tag clusters mapped against Oar rambouillet v1.0 assembly and gene annotation. The counts were averaged
across tissues. (A) Uni-directional TSS clusters with the highest proportion in promoter region (± 100 bp of the 5 UTR beginning at the [TSS]). (B) Bi-directional
TSS-Enhancer clusters with the highest proportion in the proximal region (1,000 bp upstream of the 5′UTR beginning at the [TSS]).

in comparison with Oar rambouillet v1.0 (741) mapping to 1371
and 2598 unique genes, respectively. A detailed comparison of
mapping of the CAGE tags with the two reference assemblies is
included in Supplementary File 1, Sections 2 and 3.

Mapping of CAGE Tags Shared Across
All Tissue Samples
Correlation-based and mutual information (MI) distance
matrices were used to evaluate the occurrence of TSS and
enhancer TSS across tissues. The mean ± SD number of tissues
in which each cluster passed the two-thirds criteria (expressed
in 37/56 tissues) was 47.73 ± 6.03. Uni-directional TSS clusters
(n = 28,148 TSS regions) that were shared across tissues and
detected in at least 37/56 tissues are visualized in Figure 5.
Each chord in Figure 5 represents the presence of an expressed
uni-directional TSS cluster shared across tissues. The majority of
the uni-directional TSS that were shared across tissues mapped
to promoters (39.25%) and were shared evenly across the tissues
sampled (Figure 5). Some tissues, e.g., mammary gland, pituitary
gland, and urinary bladder, had more uni-directional TSS
mapping to intergenic regions, which might indicate evidence
of alternative splicing or differential TSS usage across tissues
(Figure 5). Alternative splicing events and differential TSS usage,
captured by CAGE, are often not included in reference gene
prediction models (Berger et al., 2019).

Bi-directional TSS-Enhancer CAGE clusters were far fewer in
number but were shared in a similar pattern across tissues as the
uni-directional TSS clusters (Figure 6). The majority (70.1%) of
the TSS-Enhancer clusters mapped to promoters (n = 520) while
25.6% mapped to “proximal” regions as expected according to the
400−1,000 bp detection window for TSS-Enhancer clusters from
the center of the promoter (Figure 6). For some tissues including
abomasum, spleen, and heart right atrium, the proportion

of bi-directional TSS-Enhancer clusters mapping to proximal
regions was greater indicating more enhancer families could be
present within these tissues (Figure 6).

Mapping of Tissue-Specific CAGE Tags
The application of the two-thirds criteria provided a high level
of confidence in assigning TSS and TSS-Enhancer elements,
but eliminated the ability to observe potential tissue-specific
CAGE tags or TSS clusters. Tissue-specific tags, i.e., those
observed in only one of the 56 tissues, were examined to
evaluate the ability to distinguish tissue-specific clusters from
the background. A total of 3,228,425 tags were observed in
only one tissue, and a much higher proportion (80.0%) of these
tags mapped to intergenic and intronic regions compared with
tags found across tissues, suggesting they do not represent true
TSS (Supplementary Table 2). Only 0.8% of the tissue-specific
CAGE tag clusters mapped to promoter or proximal regions
(Supplementary Table 2). The cecum (n = 1554), cerebellum
(n = 601), and longisimus dorsi muscle (n = 477) had the
highest number of tissue-specific predicted unidirectional TSS.
The greatest number of expressed TSS (>1 CTPM) was detected
in ceberellum (84/601) as shown in Supplementary Figure 3A.
However, the expression level of tissue-specific CAGE tag clusters
was very low (<2 CTPM), which combined with the small sample
size (n = 1) for each tissue meant that analysis of tissue-specific
TSS was not particularly meaningful using this dataset. The
analysis was repeated for tissue-specific TSS-Enhancer clusters
which is detailed in Supplementary Figure 3B.

Proportion of “Novel” TSS Within the
CAGE Dataset for Each Tissue
Cap Analysis Gene Expression tag clusters were annotated
initially using the Oar rambouillet v1.0 gene models from NCBI.
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FIGURE 5 | Chord diagram of expression level (TPM) of CAGE tag clusters (uni-directional TSS) across all the tissues collected from Benz2616. Shared CAGE tag
clusters are common to at least two-thirds of the tissues (37/56).

A tissue-by-tissue annotation was performed using the same
gene models to identify any CAGE tag clusters within a 50 bp
window of the promoter boundaries of every gene. From a total
of 23,994± 518 TSS (the average number of TSS per tissue± SE),
we found 11,349± 170 (49.8%± 0.01) were located within 50 bp
of the promoter. The CAGE tag clusters were annotated using the
NCBI Oar rambouillet v1.0 GFF3 gene track file (version 103) and
a TxDB object created in the GenomicFeatures package (version
1.36.4) in R. CAGE tag clusters within 50 bp (short range) or
400 bp (long range) of the promoter were defined as annotated.
Supplementary File 2 includes BED files for these CAGE tag
clusters. The percentage of “novel” previously un-annotated, but
likely to be reproducible, CAGE tag clusters for each tissue within

50 bp (short range) and 400 bp (long range) from the promoter
are detailed in Table 1.

Comparative Analysis of CAGE and
WGBS to Validate “Novel” TSS
True TSS and TSS-Enhancer elements are very likely to be
associated with areas of hypomethylation (Yamashita et al.,
2005; Yagi et al., 2008). The assessment of hypomethylation
of regions where “novel” TSS were identified thus provides a
means to support or question their designation as true TSS.
The methylation status of putative TSS regions for eight of the
tissues used for CAGE analysis was examined at single nucleotide
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FIGURE 6 | Chord diagram of expression level (TPM) of CAGE tag clusters (bi-directional TSS-Enhancer) across all the tissues collected from Benz2616. CAGE tag
clusters expressed (>10 CTPM) by at least two-thirds of the tissues (37/56).

resolution using WGBS. Each WGBS library was pooled before
sequencing and multiplexed across eight lanes of the HiSeq X
platform. After trimming of the raw reads, the sequenced libraries
produced an average of 103 Gbp of clean data. The average
mapping rate of the reads was 78.8%. A small proportion (8.5%)
of mapped reads were identified as PCR or optical duplicates
and were removed before downstream analysis. The average read
depth of the filtered libraries was 20× coverage (Supplementary
Table 3). Only cytosines with a minimum of 10 reads were
retained for the subsequent comparative analysis with CAGE
data to ensure a high level of confidence in the methylation
level estimates, as per published recommendations (Doherty
and Couldrey, 2014; Ziller et al., 2015). We would expect that
reproducible TSS, either annotated or novel, would overlap with
hypomethylated regions of the genome (Yamashita et al., 2005;

Yagi et al., 2008). Comparative analysis of the CAGE data with the
WGBS methylation levels from eight tissues from Benz2616 was
used to investigate methylation levels at the TSS in comparison
with gene body and UTR regions. For the majority of genes, the
methylation level was much lower around the transcriptionally
active TSS or regulatory enhancer candidate regions compared
with the gene body (e.g., for gene IRF2BP2, Figure 7). We
overlaid the WGBS hypomethylated regions and the CAGE
uni-directional TSS clusters (annotated and “novel”) within 50
bp of the promoter. For the eight matching tissues, 88.7%
of the annotated TSS clusters and 32.2% of the “novel” TSS
were hypomethylated (Figure 8). The combined evidence of the
hypomethylation and TSS support the conclusion that 32.2% are
in fact novel TSS clusters, whereas 67.8% of the novel TSS clusters
lack this confirmation.
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TABLE 1 | The total number and percentage of “novel” CAGE tag clusters for each tissue within 50 bp (short range) and 400 bp (long range) from the promoter.

Tissue % Novel Clusters within 50 bp Clusters within 400 bp Total

Abomasum 49.38 8,161 8,688 16,584
Abomasum pylorus 49.89 12,339 13,074 25,963
Adipose subcutaneous 51.74 12,336 13,074 26,970
Adrenal cortex 51.79 12,285 13,019 26,859
Adrenal medulla 52.86 11,520 12,210 25,604
Alveolar macrophages 51.19 12,008 12,731 25,845
Caudal vena cava 37.75 10,937 11,578 18,179
Cecum 51.68 12,070 12,801 26,261
Cerebellum 48.59 8,393 8,936 16,796
Cerebral cortex 51.19 12,199 12,917 26,327
Descending colon 51.80 11,830 12,539 25,810
Diaphragm 52.53 10,367 11,016 22,733
Duodenum 52.34 11,243 11,932 24,620
Esophagus 49.90 10,016 10,625 20,741
Gall bladder 47.78 11,870 12,578 23,852
Heart atrioventricular valve left 50.90 12,268 13,000 26,330
Heart right atrium 52.96 10,996 11,666 24,444
Heart right ventricle 50.47 12,260 12,987 26,082
Hippocampus 53.40 12,142 12,878 27,451
Hypothalamus 52.7 11,105 11,786 24,527
Ileum 52.45 12,352 13,094 27,411
Jejunum 31.67 10,810 11,418 16,361
Kidney cortex 52.04 12,317 13,057 27,076
Kidney medulla 51.07 10,946 11,618 23,365
Liver 49.35 12,255 12,981 25,459
Lung 52.91 11,644 12,339 25,995
Lymph node mesenteric 46.34 12,132 12,838 23,742
Lymph node prescapular 53.56 11,533 12,228 26,096
Mammary gland 49.75 10,048 10,688 20,774
Omasum 39.89 9,167 9,708 15,692
Ovary 50.79 12,334 13,073 26,434
Oviduct 53.29 11,563 12,260 25,957
Parathyroid gland 53.5 11,577 12,272 26,231
Peyer’s patch 52.41 11,881 12,578 26,240
Pituitary gland 47.25 6,918 7,362 13,400
Pons 40.69 11,622 12,296 20,506
Rectum 53.55 12,002 12,723 27,192
Reticulum 53.39 12,185 12,911 27,589
Retina 53.54 11,805 12,537 26,691
Rumen atrium 50.69 12,335 13,077 26,363
Rumen ventral 40.20 7,109 7,567 12,165
Skeletal muscle biceps femoris 50.23 12,151 12,872 25,715
Skeletal muscle longissimus dorsi 53.67 11,356 12,060 25,748
Skeletal muscle semimembranosus 51.15 12,262 12,993 26,471
Skin non-haired 52.4 11,907 12,629 26,337
Spinal cord cervical 51.47 11,376 12,050 24,508
Spiral colon 53.25 11,937 12,662 26,813
Spleen 53.46 12,161 12,892 27,568
Thalamus 41.61 11,426 12,079 20,404
Thyroid gland 53.6 11,894 12,615 27,012
Tongue 39.57 9,639 10,244 16,512
Tonsil palatine 46.57 12,178 12,875 23,978
Urethra 52.76 11,387 12,087 25,292
Urinary bladder 51.68 11,163 11,840 24,174
Uterus caruncle 48.33 12,199 12,917 24,857
Vagina 52.30 11,600 12,300 25,543
Average 49.80 11,349 12,032 23,994

Total number represents the number of CAGE tag clusters (from the total of 28,148) that are present in each of the 56 tissues. The clusters for each tissue were then
annotated by proximity to promoter regions either 50 or 400 bp (the latter includes the count of the former). The % Novel represents the count of the clusters falling
outside of 400 bp vicinity of any current promoter region.
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FIGURE 7 | Overlay of CAGE, mRNA-Seq, and WGBS data tracks centered using the genomic coordinates of genes IRF2BP2 and ARID4B. (A) Shows a
hypomethylated area overlapping multiple uni- and bi-directional CAGE tag clusters at 5′UTR of IRF2BP2. (B) Predicted CAGE tag clusters with no verifying
hypomethylation island within the middle of ARID4B gene, which are likely to be “noise”.

Validation of Tissue Expression Profiles
Using mRNA-Seq
The tissue samples from Benz2616 were collected for the
purpose of annotating her genome and as such N = 1 in all
cases. As an alternative strategy to having multiple biological
replicates, we validated the expression profiles for each tissue
by comparing the CAGE data (CTPM) and mRNA-Seq (TPM)
in 52 matching tissues. The transcript expression TPM was
significantly correlated with the CAGE tag cluster CTPM values
(correlation coefficient 0.19, Pearson p-value < 1 × 10−8) and
visualized as a heatmap (Supplementary Figure 4).

The similarity of tissue expression profiles for the uni-
directional TSS clusters was estimated to determine if tissues
with similar physiology and function formed distinct groups as
expected. Similarity (distance) analysis showed a partial grouping
based on tissue type and organ system as shown in Figure 9A.
Physiologically similar tissues including nervous system and
muscle tissues grouped closely together. This grouping was also

present in the mRNA-Seq data from tissue-matched samples
(Figure 9B), indicating good correlation between the two
datasets. Similar groupings based on organ system and tissue type
were observed for multiple tissues and cell types generated for the
sheep gene expression atlas using mRNA-Seq (Clark et al., 2017).

Comparative Visualization of the
Datasets
An interactive visualization interface was developed to make
these datasets accessible and usable for the livestock genomics
community. The genomic browser incorporates the bp resolution
hypomethylation data, the CTPM expression of TSS and
TSS-Enhancer regions, and the mRNA-Seq TPM expression
at transcript level. These tracks are also overlaid using the
coordinates provided by the TxDB objects for transcripts and
gene models as shown in Figure 10. This form of overlaid
view allows for confirmation of transcript expression and the
exact coordinate of the corresponding TSS in each tissue. For
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FIGURE 8 | Numbers of CAGE TSS that were hypomethylated according to the WGBS data to distinguish between “novel” reproducible (+HypoCpG) TSS and
“noise” (w/o). (A) Shows the distribution of CAGE clusters as novel and annotated with or without HypoCpG. (B) Percentage of CAGE clusters in each category for
each of the eight tissues.

validation purposes, the promoter region should be under a
hypomethylated CpG island on the DNA track for a proportion
of actively transcribed gene in each tissue. The detailed bigBED
format tracks for all the tissues are available online.13,14

These visualization tools were used to identify any co-
expressed enhancers within the proximity of a TSS. We were able
to identify 741 TSS-Enhancer clusters across the 56 tissues. An
example of these bi-directional clusters is shown in Figure 10
as a pink box. The pairwise CTPM levels of co-expression of
the bi-directional clusters and those of the uni-directional TSS

13https://trackhubregistry.org/search/view_trackhub/TW3SmXMBjGhbr
AAjJGTU
14https://data.faang.org/api/fire_api/trackhubregistry/hub.txt

clusters were compared using the Kendal correlation function
in CAGEfightR (Thodberg and Sandelin, 2019). There were
5,383 significant co-expression pairs between uni-directional
clusters (28,148) and bi-directional clusters (741). An example
of a co-expressed TSS-Enhancer is shown in Figure 10 as a
black line connecting the significant start positions of the co-
expression pairs.

The co-expression range of bi-directional clusters, in some
cases, can span beyond the 10-Kbp distance, as shown in the
IK gene example (Figure 10). The expression of enhancer RNA
(eRNA) with the promoter expression level of their target genes
has been reported before (Tippens et al., 2018). This layer of
annotation provides a foundation for enhancer target mapping
in the sheep genome. The detailed list and annotated target
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FIGURE 9 | Network analysis of tissue TSS and gene expression profiles in 52 matched samples from Benz2616. The clustering algorithm was based on MI
distance of each tissue given the expressed (A) mRNA-Seq transcript level TPM and (B) CAGE tag clusters (TSSs).

transcripts of these co-expression clusters can be found in
Supplementary File 2.

FANTOM5 Mammalian and Avian CAGE
TSS
The FANTOM5 project also used CAGE to annotate TSSs in
mammalian and avian genomes (Andersson et al., 2014; Forrest
et al., 2014; Imada et al., 2020). The FANTOM5 data release
contained putative TSSs for human, mouse, chicken, rhesus
monkey, and dog.15 We performed a comparative analysis of the
number of TSSs captured by these datasets with the CAGE dataset
we generated for sheep (Table 2 and Supplementary Table 6).
The number of genes annotated by CAGE uni-directional TSS
clusters in this study was greater than chicken, rhesus monkey,
and dog produced as part of the FANTOM5 project; however,
TSS annotation for sheep was still consistently less robust than
for murine and human genomes.

DISCUSSION

High-quality reference genomes are now available for many
farmed animal species including domestic sheep (Ovis aries).
The earlier draft genome sequence (Jiang et al., 2014) has
been superseded by a more contiguous genome assembly
(Oar rambouillet v1.016). Annotation of this genome sequence,
however, is currently limited to gene and transcript models.
There is a lack of information on regulatory sequences and the
complexity of the transcriptome is underestimated. For example,

15https://fantom.gsc.riken.jp/5/data/
16https://www.ncbi.nlm.nih.gov/assembly/GCF_002742125.1/

promoters and TSS are not well annotated and alternative
promoters and transcripts are poorly characterized. The overall
aim of the Ovine FAANG project was to provide a comprehensive
annotation of Oar rambouillet v1.0. To contribute to this aim,
we generated a high-resolution global annotation of transcription
start sites (TSS) for sheep. After removal of CAGE tags with <10
read counts, 39.3% of TSS overlapped with 5′ ends of transcripts,
as annotated previously by NCBI. A further 14.7% mapped
to within 50 bp of annotated promoter regions. Intersecting
these predicted TSS regions with annotated promoter regions
(±50 bp) revealed 46% of the predicted TSS were “novel” and
previously un-annotated. Using WGBS from the same tissues,
we were able to determine that a proportion of these “novel”
TSS were hypomethylated (32.2%), indicating that they are likely
to be reproducible rather than “noise”. The number of NCBI
transcript/gene models for which there was no associated CAGE
tag cluster was relatively small (7%) when we removed the strict
filtering criteria, indicating the usefulness of CAGE data for
genome annotation. However, the “noisy” nature of CAGE data,
proportion of multi-mappers and duplicated reads, resulted in a
considerable attrition of raw reads. We also chose to use strict
filtration criteria, requiring the CAGE tags to be present in two-
thirds of tissues. This resulted in a relatively modest number
of high confidence CAGE clusters. This strict filtering could be
relaxed for future analysis of the data. The global annotation of
TSS in sheep we present will significantly enhance the annotation
of gene models in the new ovine reference assembly (Oar
rambouillet v1.0).

The quality of the annotation of reference genomes for
livestock species is improving rapidly with reductions in the
cost of sequencing and generation of new datasets from
multiple different functional assays (Giuffra and Tuggle, 2019).

Frontiers in Genetics | www.frontiersin.org 16 October 2020 | Volume 11 | Article 58058024

https://fantom.gsc.riken.jp/5/data/
https://www.ncbi.nlm.nih.gov/assembly/GCF_002742125.1/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-580580 October 21, 2020 Time: 13:7 # 17

Salavati et al. TSS Annotations of Oar rambouillet 1

FIGURE 10 | Long-range correlation of single enhancer site with multiple promotors of several genes. The track shows the significant correlation of a leading/primary
enhancer site highly co-expressed with several TSS sites of different genes in a relatively long coding frame (± 10,000 Kb). The 3rd track from the top also shows the
level of methylation at CpG sites at DNA level of Benz2616 overlaying the same coordinates of the IK gene and ± 10 Kbp.

Oar rambouillet v1.0 superseded the Texel reference assembly
(Oar_v3.1) Jiang et al. (2014). Oar_v3.1 is still widely utilized by
the sheep genomics community and the Ensembl annotation17

also includes sequence variation information. We compared how
mapped CAGE tag clusters were distributed across genomic
features in Oar rambouillet v1.0 and Oar_v3.1 (Jiang et al., 2014)
and found that the proportion of CAGE tag clusters mapping
to promoter regions was greater for Oar rambouillet v1.0 (39%)
than Oar_v3.1 (15%). This may be because Oar_v3.1 was built
using short-read technology (Jiang et al., 2014), which had a
significant bias to GC-rich regions, and therefore did not robustly
capture the 5′ ends of many genes (Chen et al., 2013). In
comparison, the Oar rambouillet v1.0 assembly was generated
using long-read technology, which dramatically improves the
ease of assembly resulting in increased contiguity (Contig N50:
Oar_v3.1 0.07 Mb and Oar rambouillet v1.0 2.57 Mb). Other
recent high-quality reference genome assemblies for livestock,
e.g., goat (Bickhart et al., 2017; Worley, 2017) and water buffalo
(Low et al., 2019), have been built using long-read sequencing
technology in combination with optical mapping for scaffolding.

Highly annotated genomes are powerful tools that can help
us to understand the mechanisms underlying complex traits

17https://www.ensembl.org/Ovis_aries/Info/Index

in livestock (Georges et al., 2018; Giuffra and Tuggle, 2019)
and mitigate future challenges to food production (Rexroad
et al., 2019). GWAS results, for example, can be integrated with
functional annotation information to identify causal variants
enriched in trait-linked tissues or cell types (reviewed in Cano-
Gamez and Trynka, 2020). Using enrichment analysis (Finucane
et al., 2018) showed that heritable disease associated variants from
GWAS were enriched in enhancer regions in relevant tissues
and cell types in humans. The TSS and TSS-Enhancer clusters
identified in this study could be utilized in a similar way for SNP

TABLE 2 | Metrics comparison of CAGE atlases from 7 species.

Species Genome TSS Genes

Human hg38 209,911 31,184

Mouse mm10 164,672 30,501

Chicken galGal5 32,015 7,759

Sheep Oar rambouillet v1.0 28,148 13,912

Rhesus monkey rheMac8 25,869 8,047

Dog canFam3 23,147 5,288

The total number of TSSs identified using CAGE methodology and the number of
corresponding genes. Data for all the species other than sheep were accessed via
the FANTOM5 data portal.
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enrichment analysis of GWAS variants in sheep. Using ChIP-
Seq data, Naval-Sanchez et al. (2018) found that selective sweeps
were significantly enriched for proximal regulatory elements to
protein coding genes and genome features associated with active
transcription. A high-quality set of variants for sheep, generated
using whole-genome sequencing information for hundreds of
animals across multiple breeds, is available through the Sheep
Genomes Database (2020). This dataset could be used to identify
functional SNPs enriched in the TSS and TSS-Enhancer clusters
for multiple tissues and cell types that we have annotated in
the Oar rambouillet v1.0 assembly. High-throughput functional
screens using gene editing technologies are now possible to
validate these functional variants (reviewed in Tait-Burkard et al.,
2018). New iPSC lines for livestock species also now offer the
potential to do this in relevant cell types (Ogorevc et al., 2016).

Our high-resolution atlas of TSS complements other available
large-scale RNA-Seq datasets for sheep (e.g., Clark et al., 2017).
The analysis we present here includes tissues representing all
major organ systems. However, we were unable to generate
CAGE libraries for a small number of difficult to collect or
problematic tissues, and as such may have missed transcripts
specific to these tissues. We were also only able to generate CAGE
libraries from one isolated cell type, alveolar macrophages. As
demonstrated by the FANTOM5 (Forrest et al., 2014), ENCODE
(Birney et al., 2007) and FragENCODE (Foissac et al., 2019)
projects, including a diversity of immune cell types, in both
activated and inactivated states, in future work would capture
additional transcriptional diversity. New technologies, such as
single cell sequencing, will allow annotation of cell-specific
expressed and regulatory regions of the genome at unprecedented
resolution (Papatheodorou et al., 2019). C1 CAGE now offers
the opportunity to detect TSS and enhancer activity at single-cell
resolution (Kouno et al., 2019).

We have also generated full-length transcript information
using the Iso-Seq method, for a small subset of tissues from
Benz2616. Integrating mRNA-Seq and Iso-Seq datasets has been
used successfully to improve the annotation of the pig genome
(Beiki et al., 2019). By merging the Iso-Seq data with the CAGE
and mRNA-Seq datasets, we will be able to measure differential
transcript usage across tissues and improve the resolution of
the Oar rambouillet v1.0 transcriptome further. Our analysis
indicated that although the vast majority of transcripts had one
TSS, some genes had multiple putative TSS which could be
validated with the additional resolution provided by the Iso-
Seq data. As such, the study we present here represents just the
first step in demonstrating the power and utility of the different
datasets generated for the Ovine FAANG project, which will
provide one of the highest resolution annotations of transcript
regulation and diversity in a livestock species to date.
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Supplementary Figure 1 | CAGE library size for each of the 56 tissues analyzed.

Supplementary Figure 2 | The percentage of CAGE tags mapped to each
genomic region for Oar rambouillet v1.0 (A) and Oar_v3.1 (B) reference genome
assemblies. The counts were averaged across tissues prior to annotation.

Supplementary Figure 3A | The distribution of tissue specific TSS in 56 tissues
of Benz2616. The bar shows the count of tissue specific TSS in each tissue with
the proportion being expressed with CTPM > 1 colored in red.

Supplementary Figure 3B | The distribution of tissue specific TSS-Enhancers
across the 56 tissues from Benz2616. The bars show the count of tissue specific
TSS in each tissue with the proportion being expressed with CTPM > 1 colored
in red.

Supplementary Figure 4 | Heatmap of mRNA-Seq and CAGE expression
profiles (TPM and CTPM). The correlation was calculated over 52 matched tissues
and 5732 transcripts—TSS expressed in all tissues.
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Supplementary Figure 5 | Distribution of uni-directional CAGE TSS clusters per
annotated gene. (A) The histogram of the TSS cluster per gene. (B) Detailed table
of TSS per gene data underlying the histogram and percentage per total
TSS clusters.

Supplementary Table 1 | Details of 5′ linker barcodes and pool ID assigned to
each tissue sample.

Supplementary Table 2 | Percentage of tissue-specific CAGE tags mapping to
genomic features.

Supplementary Table 3 | Summary of WGBS sequencing and mapping results.

Supplementary Table 4 | Comparison of mRNA-Seq dataset with
matched tissues within the CAGE dataset with regards to tissue
support criteria.

Supplementary Table 5 | Summary of minimum tissue support calculations for
TSSs per gene in each scenario. Tissue support thresholds of 1, 5, 18, 28, and 37
tissues out of total 56 were analyzed.

Supplementary Table 6 | Comparison of this study with other CAGE datasets
available as part of the FANTOM5 consortium data release.

Supplementary File 1 | Section 1: Attrition of raw reads at each stage of the
analysis pipeline, rationale for selecting the two-thirds representation threshold for
mapped CAGE tags and clustering metrics. Sections 2, 3: Detailed comparison
of mapping of the CAGE tags to the two reference assemblies Oar_v3.1 and Oar
rambouillet v1.0 and analysis workflow.

Supplementary File 2 | Expression data frames from uni-, bi-directional,
long-range linked co-expression clustering and transcript level mRNA-Seq from all
56 tissues (two-thirds representation rule applied).
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Alveolar macrophages function in innate and adaptive immunity, wound healing,
and homeostasis in the lungs dependent on tissue-specific gene expression under
epigenetic regulation. The functional diversity of tissue resident macrophages, despite
their common myeloid lineage, highlights the need to study tissue-specific regulatory
elements that control gene expression. Increasing evidence supports the hypothesis
that subtle genetic changes alter sheep macrophage response to important production
pathogens and zoonoses, for example, viruses like small ruminant lentiviruses and
bacteria like Coxiella burnetii. Annotation of transcriptional regulatory elements will aid
researchers in identifying genetic mutations of immunological consequence. Here we
report the first genome-wide survey of regulatory elements in any sheep immune cell,
utilizing alveolar macrophages. We assayed histone modifications and CTCF enrichment
by chromatin immunoprecipitation with deep sequencing (ChIP-seq) in two sheep
to determine cis-regulatory DNA elements and chromatin domain boundaries that
control immunity-related gene expression. Histone modifications included H3K4me3
(denoting active promoters), H3K27ac (active enhancers), H3K4me1 (primed and
distal enhancers), and H3K27me3 (broad silencers). In total, we identified 248,674
reproducible regulatory elements, which allowed assignment of putative biological
function in macrophages to 12% of the sheep genome. Data exceeded the FAANG and
ENCODE standards of 20 million and 45 million useable fragments for narrow and broad
marks, respectively. Active elements showed consensus with RNA-seq data and were
predictive of gene expression in alveolar macrophages from the publicly available Sheep
Gene Expression Atlas. Silencer elements were not enriched for expressed genes, but
rather for repressed developmental genes. CTCF enrichment enabled identification of
11,000 chromatin domains with mean size of 258 kb. To our knowledge, this is the
first report to use immunoprecipitated CTCF to determine putative topological domains
in sheep immune cells. Furthermore, these data will empower phenotype-associated
mutation discovery since most causal variants are within regulatory elements.

Keywords: insulator, promoter, enhancer, innate immunity, alveolar macrophage, sheep, epigenetics, ChIP-seq

Frontiers in Genetics | www.frontiersin.org 1 January 2021 | Volume 11 | Article 61203130

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.612031
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.612031
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.612031&domain=pdf&date_stamp=2021-01-07
https://www.frontiersin.org/articles/10.3389/fgene.2020.612031/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-612031 December 23, 2020 Time: 12:34 # 2

Massa et al. ChIP-Seq in Sheep Alveolar Macrophages

INTRODUCTION

Increasingly, livestock researchers are identifying functional
variants outside of genes as associated with valuable production
traits, supporting the need to molecularly annotate regulatory
elements (Ibeagha-Awemu and Zhao, 2015; Zhao et al., 2015;
Wang et al., 2017). DNA regulatory elements are sequences
associated with a reproducible biological function that can
control gene expression through epigenetic modifications
(Birney et al., 2007). Human studies consistently document
the importance of variants within CRE sequences to critical
phenotypic traits. Several groups estimated that over 90% of
causal mutations that explain phenotypic variation laid outside of
genes within regulatory elements (Hindorff et al., 2009; Maurano
et al., 2012; Albert and Kruglyak, 2015). Currently, little is known
regarding in vivo tissue annotation of regulatory elements in
livestock species (Villar et al., 2015; Zhao et al., 2015; Wang
et al., 2017, 2018; Naval-Sanchez et al., 2018; Nguyen et al.,
2018; Fang et al., 2019; Hall et al., 2020; Kingsley et al., 2020).
Therefore, the FAANG consortium recognized this need and
formed a global network of researchers for epigenetic discovery
in food animal species (Andersson et al., 2015; Tuggle et al., 2016;
Giuffra and Tuggle, 2019).

Types of cis-acting, DNA regulatory elements (CREs) that
control gene expression include active promoters and enhancers,
primed enhancers, silencers, and insulators (Dunham et al.,
2012). Although CTCF has also been associated with trans-
acting regulation (Handoko et al., 2011). Promoters are stretches
of DNA located at the TSS of genes and serve as scaffolding
for promotion, assembly, and initiation of transcription (Birney
et al., 2007). Enhancers act more distally and in an orientation
independent fashion to activate gene transcription (Banerji
et al., 1981). However, enhancers classically must be within
the same three-dimensional chromatin domain as their target
gene (Schaffner, 2015). Chromatin immunoprecipitation and
sequencing (ChIP-seq) (Barski et al., 2007; Johnson et al.,
2007) of the post-translational modification marks histone
3 lysine 27 acetylation (H3K27ac) and histone 3 lysine 4
trimethylation (H3K4me3) allowed genome wide identification
of active enhancers and active promoters, as demonstrated in
early ChIP-seq assays (Heintzman et al., 2007; Won et al.,
2008). In addition, H3K27ac often overlapped H3K4me3 regions
in active promoters of highly expressed genes (Wang et al.,
2008). Potential enhancers that are epigenetically primed but not
fully active are marked by histone 3 lysine 4 monomethylation
(H3K4me1) alone (Heintzman et al., 2007). H3K4me1, in

Abbreviations: ChIP-seq, chromatin immunoprecipitation with sequencing;
CREs, cis-regulatory elements; DPBS, Dulbecco’s phosphate buffered saline;
ENCODE, Encyclopedia of DNA elements Project Consortium; FAANG,
Functional Annotation of Animal Genomes Consortium; FDR, false discovery
rate; FRiP, fraction of reads in peaks; GO, gene ontology; H3K4me1, histone three
lysine four monomethylation; H3K4me3, histone three lysine four trimethylation;
H3K27ac, histone three lysine 27 acetylation; H3K27me3, histone three lysine
27 trimethylation; kb, kilobases; N-ChIP, native chromatin immunoprecipitation
with sequencing; NSC, normalized strand correlation; RSC, relative strand
correlation; TAD, topologically associating domain; TPM, transcripts per million;
TSS, transcription start site; X-ChIP, cross-linked chromatin immunoprecipitation
with sequencing.

conjunction with H3K27ac, is found at active distal enhancers
(Jambhekar et al., 2019). Lastly, histone 3 lysine 27 trimethylation
(H3K27me3) marks broad regions that are transcriptionally
repressed or silenced (O’Geen et al., 2011) as the modification
is established by the activity of polycomb complexes that
help to supercoil the heterochromatin (Dunham et al., 2012;
Aranda et al., 2015). Uniquely, some regions are marked
simultaneously by methylation at H3K4 and H3K27 termed
bivalent regulatory chromatin. Bivalent histone modifications
(the combination of H3K4me3 and H3K27me3) were reported
to responsively shift gene expression from a poised or primed
state to active transcription, most widely studied in embryonic
stem cells (Vastenhouw and Schier, 2012). Tissue resident
macrophages share features with embryonic stem cells in
that they retain the ability to replenish local cell populations
(Sieweke and Allen, 2013).

Since regulatory element functions are dependent on three-
dimensional chromatin structure within the nucleus, we
also sought to define the boundaries of chromatin loops.
Chromosomes are compartmentalized into physically interacting
segments called TADs (Dixon et al., 2012; Nora et al., 2012)
also known as chromatin loops (Rao et al., 2014; Bonev
and Cavalli, 2016) that have shared function. Chromatin
immunoprecipitation of CCCTC-binding factor (CTCF), denotes
insulator regions which anchor domain boundaries (Zhou
et al., 2010). The function of cis-acting regulatory elements,
including those marked by H3K4me3, H3K27ac, and H3K4me1,
is generally constrained to genes within the same domain.
While histone post translational modifications serve as predictive
signals of specific types of regulatory elements, and functions are
conserved across species, the exact sequence of the regulatory
element is generally not well conserved (Birney et al., 2007;
Villar et al., 2015). Therefore, experimental determination of
regulatory elements within a variety of tissues is necessary
to fully understand unique gene regulatory networks within
food animal species.

Host regulatory element variation likely plays a significant role
in macrophage immune response to infections. Immunity-related
gene regulatory variation has potential to affect production
efficiency by altering both the global and tissue-specific
transcriptome (Rauw, 2012; Lavin et al., 2014). For example,
recent work showed that macrophages can develop trained
immunity or innate immune memory which provides non-
specific enhanced protection after exposure to pathogens. This
non-adaptive immunological memory is reversibly retained in
the epigenome of macrophages (Saeed et al., 2014). Trained
immunity may be dependent on genetic variants in genes separate
from those involved in classical immunological memory (van der
Heijden et al., 2018). Furthermore, Salavati et al. (2019) found
that sheep immune-related tissues including macrophages have
moderate to extreme allele-specific expression. Allele specific
expression is commonly attributed to cis-acting regulatory
variation which provides an understandable mechanism for
parent-of-origin or tissue-specific gene expression since cis-
acting regulatory elements are physically linked to a single
allele copy. We have chosen to study alveolar macrophages
from sheep lungs both for their tissue-specific gene expression
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and as a representative cell type to identify immunity related
regulatory elements.

Macrophages, as part of the immune system, are a core
tissue identified by the FAANG consortium for epigenetic
studies (Andersson et al., 2015). Macrophages are professional
phagocytes that function in cell-mediated innate immunity at
interfaces of the body with the environment and in adaptive
immunity as professional antigen presenting cells. Alveolar
macrophages in the lungs serve as infection surveillance against
airborne pathogens. They also participate in homeostasis in
their local tissue microenvironment, a function of specialized
tissue-resident macrophages in essentially every organ in the
body (Lavin et al., 2014). Macrophages can be hijacked by
pathogens like Mycobacterium bovis, Ovine lentivirus, Coxiella
burnetii, Mycoplasma ovipneumoniae, Brucella melitensis, and
Salmonella enterica, that cause zoonotic and economically
important diseases in sheep: tuberculosis, ovine progressive
pneumonia, Q-fever, atypical pneumonia (part of respiratory
disease complex), brucellosis, and salmonellosis, respectively
(Gendelman et al., 1986; Niang, 1992; Niang et al., 1997;
Shannon and Heinzen, 2009; Blacklaws, 2012; Hall et al., 2020).
Many of these infectious agents are intracellular organisms that
can sequester within host macrophages from the full force of
the immune system and manipulate antigen processing and
presentation. Elucidation of variation within DNA regulatory
elements will aid detection of disease resistant animals that
reduce infectious burden within flocks. Genetic determination
of resistance and susceptibility can be a crucial tool for disease
eradication from individual animal, herd health, and One Health
perspectives (Sundberg and Schofield, 2009).

Our objectives for this experiment were to develop a catalog of
core histone modifications and of CTCF enriched boundaries in
sheep macrophages to locate and functionally annotate regulatory
elements. Since CREs compose a far greater portion of the
genome than protein coding genes (Moore et al., 2020) lack of
annotation in the sheep represents a critical knowledge gap. To
the authors’ knowledge, this work is the first epigenetic analysis
based on ChIP-seq in any sheep immune cell. We chose native
ChIP-seq for greater enrichment and reproducibility of signal
(David et al., 2017). As a method of validation, we compared
genes near discovered regulatory element regions to RNA-seq
data in alveolar macrophages from the Sheep Gene Expression
Atlas (Clark et al., 2017). These data presented here will serve
as functional epigenetic annotation in sheep immune cells to aid
future work on phenotypic-associated variation for important
food production, fiber, and immunity related traits.

MATERIALS AND METHODS

Alveolar Macrophage Cell Collection
Animals were cared for and handled according to protocols
approved by the Institutional Animal Care and Use Committee
at Washington State University under Animal Subject Approval
Form 4618. Sheep were humanely euthanized with intravenous
sodium pentobarbital and lungs were removed firstly during
routine postmortem examination by a veterinarian. No gross

lesions were detected in the sheep. Alveolar macrophages
were collected from the lungs of 2, 1-year-old, clinically
healthy, crossbred (Suffolk, Polypay, and Targhee) ewes using
methods modified from those previously described (Gendelman
et al., 1984; Cordier et al., 1990; Clark et al., 2017). Briefly,
bronchoalveolar lavage fluid was collected by serial lavages with
sterile DPBS (Mg2+ Ca2+ free). Cells were isolated from collected
lavage fluid by centrifugation (400 × g for 10 min) and washed
with DPBS at room temperature. Erythrocytes within the pellet
were lysed by suspension in sterile water for 30 s. The harvested
cells were confirmed to be morphologically consistent with
macrophages on cytological evaluation as others have reported
(Sheehan et al., 2005). Cells were stained with trypan blue to
assess membrane integrity then counted with an automated
cytometer (Nexcelom Bioscience, Lawrence, MA, United States).
Aliquots of 5 × 107 live macrophages were suspended in
cryopreservation medium (CryoStor CS10, BioLife Solutions,
Bothell, WA, United States) and slowly frozen to −80◦C in
isopropyl alcohol baths (Mr. Frosty, Thermo Fisher Scientific,
Waltham, MA, United States) for short term storage.

Chromatin Immunoprecipitation and
Sequencing
Isolation of Native Chromatin
Native chromatin isolation and immunoprecipitation was
modified from methods published previously for tissues
(Wagschal et al., 2007; Maunakea et al., 2010; David et al., 2017;
Naval-Sanchez et al., 2018). Additional protocol details are
included in Supplementary Methods 1 and provided on the
FAANG data portal (see Supplementary Methods 11 ). Cells
and buffers were maintained on ice during all steps. Nuclei
were isolated from approximately 5 × 107 unfixed, thawed
cells firstly by incubation on ice in hypotonic buffer [0.3 M
sucrose, 60 mM KCl, 15 mM NaCl, 5 mM MgCl2, 0.1 mM
EGTA, 15 mM Tris-HCl, pH 7.5, and HALT protease inhibitor
cocktail (Thermo Fisher Scientific)]. Sodium butyrate 5 mM was
included to inhibit histone deacetylases during processing. Next,
0.2% IGEPAL CA-630 detergent (Sigma-Aldrich, St. Louis, MO,
United StatesA) was added to the suspension with gentle Dounce
homogenization using a tight pestle. The nuclei suspension was
then carefully layered onto 8 mL of buffer containing 1.2 M
sucrose and centrifuged at 4,000× g for 20 min at 4◦C. Detergent
layers were removed carefully from the nuclei pellet, then the
pellet was resuspended in micrococcal nuclease digestion buffer
with protease inhibitors. The pellet was briefly vortexed and
then 60 Kunitz units of micrococcal nuclease (M0247S, New
England Biolabs, Ipswich, MA, United States) was added for
12 min incubation at 37◦C to digest the chromatin into mono-
and di-nucleosomes. Addition of 20 mM EGTA quenched
the digestion reaction and soluble chromatin fragments were
recovered in the supernatant by probe-free, cup horn sonication
for 2× 30 s on ice at high power (260 watts). A sample of purified
digested chromatin was checked for adequate fragmentation
on an agarose gel and on a fragment bioanalyzer (Agilent,

1https://data.faang.org/api/fire_api/assays/WSU_SOP_Native_ChIP-seq_
Protocol_2019.pdf
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Santa Clara, CA, United States) to ensure oligonucleosome
fragment lengths within 100–450 base pairs. Average chromatin
fragment size was approximately 150 bp in both biological
replicates. Chromatin concentration was then measured by
fluorescence quantification using the Qubit dsDNA HS kit
(Thermo Fisher Scientific).

Immunoprecipitation of Chromatin
Input nucleosomal DNA for each ewe were used as negative
controls (no addition of antibody or magnetic beads). Chromatin
for immunoprecipitation was pre-cleared by incubation with
protein G coupled magnetic beads (Dynabeads, Invitrogen,
Waltham, MA, United States). Antibodies to the following
targets were used for each chromatin immunoprecipitation:
five microliters of anti-H3K4me3, anti-H3K27ac, anti-
H3K27me3, anti-H3K4me1, and 10 microliters of anti-CTCF
(see Supplementary Table 2 for catalog numbers and lots).
Antibodies were pre-bound to magnetic beads at 4◦C then the
antibody-bead complexes were added to the diluted (50 mM
NaCl, 50 mM Tris-HCl pH 7.5, and 5 mM EDTA), fragmented
chromatin for overnight incubation in one milliliter volumes
with rotation at 4◦C. Enriched chromatin was harvested by
magnetic bead pulldown, washed with increasing salt buffers
(75–175 mM NaCl) to remove non-specific chromatin, and DNA
was purified with the iPure kit (Diagenode, Liege, Belgium)
as per manufacturer’s recommendation, excluding the cross-
linking reversal step. Total amount of immunoprecipitated DNA
obtained for each sample was determined by Qubit dsDNA
HS analysis.

Library Preparation and Sequencing
Sequencing libraries were prepared from 7.5 ng of
immunoprecipitated or input control DNA using Truseq
ChIP Sample Prep kit (Illumina, San Diego, CA, United States)
following the manufacturer’s protocol with 15 PCR cycles to
minimize duplication bias and size selection of 250–600 bp to
include the bulk of immunoprecipitated fragments ligated to
adapters. Preparation for multiplexing was accomplished by
utilizing indexing adapters included in the kit. ChIP library
size was assessed by Fragment Analyzer (Advanced Analytical
Technologies, Ankeny, IA, United States) with the High
Sensitivity NGS Fragment Analysis Kit (Agilent, Ankeny, IA,
United States), and library concentration was determined by
StepOnePlus Real-Time PCR System (Thermo Fisher Scientific)
with the KAPA Library Quantification Kit (Kapa Biosystems,
Wilmington, MA, United States). Each library was diluted
to 4 nM with RSB (10 mM Tris-HCl, pH 8.5), followed by
denaturation with 0.1 M NaOH, and 20 pM was clustered
in a high-output flow cell using HiSeq Cluster Kit v4 on a
cBot (Illumina). After cluster generation, the flow cell was
loaded onto HiSeq 2500 for sequencing using HiSeq SBS kit v4
(Illumina). DNA was sequenced with a read length of 50 bp
from a single end generating between 41.96 million and 80.15
million filter-passed reads for each library. These were derived
from a total of 644,923,132 reads for the experiment that passed
initial sequencing quality filters (97% pass-rate) (Table 1 and
Supplementary Data 15).

TABLE 1 | Summary of read counts from ChIP-seq assays.

ChIP-seq
target

Ewe A Ewe B

Total reads Usable
fragments

Total reads Usable
fragments

Input Control 43,513,683 33,901,350 44,568,055 34,245,907

H3K4me3 41,963,508 23,545,621 43,705,079 23,796,392

H3K27ac 46,534,416 33,599,474 46,205,646 34,309,656

H3K27me3 72,339,834 45,918,247 68,038,026 47,130,715

H3K4me1 78,646,889 59,258,883 80,153,553 48,412,817

CTCF 44,138,652 28,139,080 42,575,226 28,717,487

Total reads include all raw data from sequencing. Usable fragments are defined
consistent with ENCODE standards as reads that map to a single best location
(quality filter -q 5), with optical duplicates removed as flagged by MACS2. Additional
mapping statistics are in the Supplementary Data 15.

Analysis of ChIP-Seq Data
Sheep ChIP-seq sequencing files generated for this article are
publicly available in the ENA database and FAANG data portal
under project accession PRJEB40528 (ERP124181). Optional
parameters used for all bioinformatics tools and detailed
bioinformatics protocol are included in Supplementary Table 3.

Sequencing data bcl files were converted to fastq format and
adaptor sequences were trimmed using bcl2fastq2 (Illumina).
Reads were quality checked with FastQC software (Andrews
and Babraham, 2016) with attention to duplication rate
(Supplementary Data 15). Sequence reads were mapped to the
unmasked Rambouillet sheep genome (Oar_rambouillet_v1.0,
GCA_002742125.1, Worley, 2017; Salavati et al., 2020), that
excludes the mitochondrial genome, with BWA v0.7.17 (Li and
Durbin, 2009) (see Supplementary Data 15 and Supplementary
Data 4 supplementary results for additional mapping details).
Reads were sorted and indexed with Picard v2.9.22 . Reads were
filtered for quality and unique mapping with SAMtools v1.9
(Li et al., 2009). Peaks for histone modifications and CTCF
were found for each animal individually using MACS2 v2.1.1
at FDR cut-offs of less than 5% (Zhang et al., 2008; Feng
et al., 2012). Effective genome size of the sheep was specified as
2.62× 109 bp based on the Golden Path Length from ENSEMBL.
The broad peak calling option in MACS2 was enabled to calculate
both narrow peaks and broad block binding of the H3K27me3
and H3K4me1 datasets. A third set of peaks were called from
pooled reads from both animal replicates to maximize sensitivity;
these pooled peaks were subsequently filtered for only those
called in both individual animals. Overlap between all three
peak sets, each individual animal and the pooled reads, were
determined with bedtools v2.26.0 and bedops v2.4.38 to create
the reproducible consensus peaks (Quinlan and Hall, 2010; Neph
et al., 2012). These reproducible consensus peaks were used for all
downstream analysis of regulatory elements. Regulatory elements
were categorized into active promoters (H3K4me3-enriched
regions, with or without overlapping H3K27ac enrichment),
active enhancers (all regions enriched for H3K27ac, and

2http://broadinstitute.github.io/picard/
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regions with H3K27ac only), primed enhancers (H3K4me1-
enriched regions), silencers (H3K27me3-enriched), and insulator
chromatin domain boundaries (CTCF-enriched).

The called peaks were annotated with the nearest gene
and genomic feature type using the annotatePeaks.pl program
in HOMER v4.10.4 (Heinz et al., 2010) and the NCBI Ovis
aries Refseq Annotation Release 103 (O’Leary et al., 2016)
for the Oar_Rambouillet_v1.0 genome (GCF_002742125.1). The
definition of genomic promoter features was manually adjusted
to regions within 2 kb of any gene TSS in the Annotation
Release. GO analysis was completed from ChIP-seq target
associated gene lists with PANTHER (Mi et al., 2019). HOMER
findMotifs.pl was used to scan consensus peaks for transcription
factor protein binding motifs (see Supplementary Methods 1
for further details). Correlation analysis and conversion of BAM
files to normalized, input-subtracted bigwig files for visualization
was completed with deepTools v3.3.0 (Ramírez et al., 2016)
(Supplementary Methods 1).

Comparison of ChIP-Seq Data to Public
RNA-Seq Data
Processed gene expression data in sheep alveolar macrophages
from publicly available mRNA-seq datasets were obtained from
supplementary files provided by Clark et al. “Supplementary
Dataset 1. Gene expression level atlas as TPM (unaveraged)”
available at https://doi.org/10.1371/journal.pgen.1006997.s004
(Clark et al., 2017). The authors also provided the processed
data available for download through the University of Edinburgh
DataShare portal at http://dx.doi.org/10.7488/ds/2112.
This processed data was derived from paired end alveolar
macrophage transcriptomic RNA-seq from two adult, females:
a Texel × Scottish Blackface available at the ENA database
under study accession number PRJEB191993 at sample accession
SAMEA5535418 run accession ERR2074323 (Clark et al., 2017)
and a Texel from study accession PRJEB61694 , published
previously (Jiang et al., 2014).

The processed RNA-seq data from female alveolar
macrophages was filtered by genes expressed equal to or greater
than 1.0 TPM in at least one animal. Mitochondrial genes were
removed as ChIP-seq data is from nuclear chromatin only. This
yielded a list of 12,042 genes expressed in alveolar macrophages
from either individual female at TPM ≥ 1. These genes were
then ranked by average TPM for comparison to ChIP-seq peak
enrichment. Consensus BED files for each histone modification
were annotated with ChIP-seq read count per peak region from
the pooled mapped reads of both Crossbred ewes, then ranked
from highest to lowest by count. Rank of peaks by total read
count and their corresponding nearest gene were compared
to rank of genes from RNA-seq TPM with Spearman’s Rho
correlation test since the data was non-parametric. Unidentified
LOC open reading frames that were mapped to Oar_v3.1 without
gene names and that could not be converted to an open reading
frame in Oar_Rambouillet_v1.0 with NCBI Genome Remap
were removed before comparisons.

3http://www.ebi.ac.uk/ena/data/view/PRJEB19199
4http://www.ebi.ac.uk/ena/data/view/PRJEB6169

RESULTS

Summary of Quality Metrics
Chromatin immunoprecipitation and sequencing for four
histone modification marks: H3K4me3, H3K27ac, H3K4me1,
H3K27me3, and CTCF were completed on two animal replicates
to identify regulatory elements in sheep alveolar macrophages.
Negative controls consisted of input fragmented chromatin for
each animal sequenced to a similar depth. Mean mapping rate
for raw reads was 98.58% to the Rambouillet genome assembly
(Oar_rambouillet_v1.0) (see Supplementary Data 15 for detailed
mapping rates). Non-duplicated fractions of reads were high
between 0.80 and 0.94 indicating good library quality. Usable
fragments exceeded 23 million reads for all narrow marks and 45
million reads for broad marks (Table 1). Correlation of mapped
filtered reads for all ChIP-seq datasets sorted by each chromatin
mark rather than by individual animal (Supplementary Data 15
and Supplementary Figure 5). This confirmed reproducibility
of antibody enrichment between the two animal replicates
(Pearson’s correlation coefficient: 0.94–0.99) (see Supplementary
Figures 5, 6 for additional animal replicate comparisons).
Cumulative enrichment “fingerprint” plots showed significant
enrichment above the background, particularly for narrow marks
such as H3K4me3 (Supplementary Figure 7). NSC and RSC
values confirmed significant enrichment in immunoprecipitated
datasets compared to input controls, exceeding 1.05 and 2.17,
respectively, in all datasets (Supplementary Data 15).

Regulatory Element Region
Characteristics, GC Content, and
Genome Coverage
Regulatory elements were defined by regions of ChIP-seq signal
enrichment along the genome for each of the five chromatin
marks; total analysis included ten antibody-enriched, epigenomic
datasets from alveolar macrophages. Significant regions were
called at 5% FDR in both individual animals and then in pooled
reads. In total 491,635 and 446,798 regulatory elements were
defined in each individual animal (Supplementary Figure 8
and Supplementary Data S15-Table 3). Together regulatory
elements covered between 8.79 and 8.23% of the genome in
individual animals. We then filtered the set of significantly
enriched regions in the pooled reads to select only those
that were also significant in both individual animals (see
Figure 1A for study design). We termed these reproducible
regions of signal enrichment as consensus regulatory elements.
This yielded 248,674 consensus regulatory elements in sheep
alveolar macrophages (Figure 1B). Consensus regions were
putatively assigned to regulatory element classes. Active cis-
acting regulatory elements include 71,933 regions marked
by H3K4me3 classified as promoters and 68,818 marked by
H3K27ac grouped as enhancers or highly active regions. Regions
enriched for H3K4me1, considered primed and active enhancers
were discovered at 31,800 genomic locations that included both
broad and narrow regions of signal enrichment. Silencers were
regions with signal enrichment for H3K27me3 found at 53,879
broad regions that cover long stretches of DNA. Lastly, 22,244
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FIGURE 1 | Study design and total consensus regulatory elements identified
in alveolar macrophages. (A) Schematic overview of the study design for
determining consensus regulatory element regions, statistically reproducible
with a FDR cut-off of 5% in all three datasets: pooled reads, ewe A, and ewe
B. (B) Native ChIP-seq yielded many reproducible consensus regions for all
chromatin marks. Ramv1 is Oar_rambouillet_v1.0 genome.

very narrow regions marked by CTCF were identified that
denoted genomic locations of insulators indicative of chromatin
domain boundaries. Consensus regulatory elements were used
for further analysis since there was acceptable agreement amongst
animal replicates (Supplementary Datas 5, 6, 15).

Altogether, consensus regulatory elements from macrophages
cover 11.77% of the sheep genome. Promoter signal enrichment
covered 2.77% of the genome and regions were narrow,
short stretches of DNA, with a median length of 0.81 kb
(Table 2). Promoter regions had higher GC nucleotide content
compared with other regulatory elements and the background
GC content of the sheep genome (Table 2). Active enhancers
(H3K27ac) comprised a slightly longer portion of the genome
than promoters. Active enhancer regions also had increased
GC nucleotide content compared to the genomic average but
less so than promoters. Broad and narrow primed enhancers

TABLE 2 | Consensus regulatory element region details.

Chromatin
mark

Total genome
coverage %

Median region length
in bp (Q1–Q3)

Average GC base
content %

H3K4me3 2.77 818 (534–1,320) 47.9

H3K27ac 2.85 843 (542–1,399) 43.2

H3K4me1 3.76 2,419 (1,435–4,059) 40.9

CTCF 0.71 764 (534–1,089) 39.4

H3K27me3 6.05 2,488 (1,542–3,962) 38.4

The Oar_Rambouillet_v1.0 genome assembly was used to calculate coverage
and GC content for regions captured by each ChIP-seq mark. The assembly is
2,869.9 megabases (Mb) with an estimated effective genome size of 2,620 Mb
and calculated 41.9% GC base content. Q1–Q3 is quartile 1 and quartile 3 for
interquartile range.

marked by H3K4me1 covered larger regions of the genome
(Table 2) and had neutral to mildly depleted GC content.
Insulator regions enriched for CTCF were fewer and narrowest
with a median length of 0.76 kb occupying the least percentage
of the genome. Silencers marked by H3K27me3, covered the
largest portion of the genome at 6.05% and displayed broad
blocks of signal enrichment at 2.5 kb median length. Silencer
regions were markedly depleted of GC nucleotide content
compared with other regulatory elements and the genome
background content.

Regulatory Elements Have Combinations
of Multiple Chromatin Marks
Detected regulatory element regions had either a single type of
chromatin mark or a combination of enrichment from multiple
marks in that stretch of DNA (Figure 2). Most combinations of
marks were between those associated with active gene expression
(H3K4me3, H3K27ac, and H3K4me1) whereas the repressive
mark H3K27me3 had much fewer regions with overlap by
another mark. Generally, H3K4me3 and H3K27ac active marks
had greater numbers of overlapping regions and H3K27me3
silencer regions had few overlapping regions with either active
mark. Boundary regions between these two types of chromatin
were often marked by CTCF and H3K4me1 enrichment. Shown
in Figure 2, promoters and enhancers captured 54–65% of the
same regions. However, not all promoters marked by H3K4me3
appeared to be active as only 40,112 of them were also marked
by H3K27ac. In fact, H3K4me3 regions were also occasionally
enriched for the repressive mark H3K27me3. Promoter regions
that did not have H3K27ac signal were mostly enriched for only
H3K4me3 (22,036; 70% self only) and did not have overlap with
other chromatin marks.

We also analyzed enhancer associated overlap of marks to
elucidate primed, transitional, and active enhancers used in sheep
macrophages. Overall, 87,458 putative enhancer regions were
identified as those enriched for H3K27ac or H3K4me1, or a
combination of both. H3K27ac enrichment was found at 28% of
the regions marked by H3K4me1 which yielded 8,932 putative
highly active enhancers (Supplementary Data 15). However, we
also found that 19,569 putative active enhancers were exclusively
marked by H3K27ac (self-only) and were not overlapped by
enrichment for H3K4me1 suggestive of regions with a different
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FIGURE 2 | Overlaps of chromatin marks with one another as a percentage of consensus regions for each ChIP-seq target. The segmented bar graphs show
regions enriched in each respective ChIP-seq mark color coded by overlap with other marks, the number of peaks from that respective mark that overlap with peaks
from other marks are noted in each color-coded segment. Textured bars are regions exclusive to that mark (only marked by self) that did not have enrichment for
other marks. Gray bars are regions that have three or four overlapping chromatin marks in that region. On the far-right, the arrow indicates black bars representative
of regions with significant signal enrichment in all immunoprecipitated datasets with no specificity for the ChIP-seq antibody target, these were considered putative
“hyperChIPable” regions.

cis-acting regulatory function. Primed enhancers, with H3K4me1
signal enrichment, and CTCF -enriched insulators shared notable
overlap since approximately 80% of total CTCF regions were
also marked by H3K4me1 (Supplementary Data 15). Both CTCF
and H3K4me1 signal enriched regions had greater overlap by
multiple marks (42–58%, Figure 2 gray bars) than in other
immunoprecipitated datasets.

Most silencer regions, 64%, are only enriched for H3K27me3
signal consistent with the expected prediction of heterochromatin
that would exclude the other ChIP-seq targets we assayed
(Figure 2, red hashed bar). Approximately 15% of silencer
regions have some overlap with H3K4me1 indicative of primed or
transitional regulatory elements at boundary regions. Acetylation
and trimethylation of H3K27 are essentially never found in the
same regions (0.1%, Supplementary Data 15), except where
regions were enriched in most or all immunoprecipitated
datasets. Interestingly, 1520 genomic regions had significant

signal enrichment in all histone modification and CTCF datasets
(Figure 2, black bars).

Regulatory Element Annotations and
Genomic Localization
Each regulatory region was binned into a genomic category
(promoter, intron, exon, or intergenic) and annotated with
the nearest Refseq gene. The majority of H3K4me3 enriched
regions were located within genes (intron and exon) or near
the 5′ end of genes within 2 kb of TSS annotated as promoter
regions (Figure 3A and Supplementary Figure 9). Twenty-
eight percent of all H3K4me3 enriched regions were within
2 kb of the annotated TSSs of genes and pseudogenes. Nearly
half (49%) of the regions distal to the TSS were within the
first intron or first exon of genes. The pattern of H3K4me3
signal around gene TSSs was bimodal with high enrichment
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FIGURE 3 | Genomic localization of active promoters and enhancers, H3K4me3 and H3K27ac. Pie charts display the genomic feature (promoter, exon, intron, or
intergenic) that regions from each active ChIP-seq target fell within. Promoter is defined as features that fall within 2 kb of the 5′ end of genes. Histograms display the
distribution of ChIP-seq regions around the transcription start site (TSS) 0 at the 5′ end of genes by distance in bp. ChIP-seq regions were binned into number per
50 bp segment. (A) Genomic locations of H3K4me3 enriched regions by feature. The subset that were found within the first intron is also shown. (B) Distribution of
H3K4me3 regions around the TSS of genes. (C) Genomic locations of H3K27ac enriched regions by feature; and (D) H3K27ac regions around gene TSS.

of promoters regions 500 base pairs upstream of the gene and
a maximal enrichment at 200 base pairs downstream of the
TSS with severe depletion of signal at the TSS (Figure 3B).
Inspection of H3K4me3 regions that were within 2 kb of an
annotated TSS, revealed 11 were associated with miRNAs in

sheep and 295 were associated with tRNA. Overall, 3.6% of
active enhancer and active promoter regions were associated
with tRNA genes.

More than half of H3K27ac enhancer regions were annotated
within introns (Figure 3C). Half of those regions were within
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the first intron which indicated enrichment for active enhancers
near the 5′ end of genes. Active enhancer signal had a similar
bimodal distribution around the TSS of genes as promoters,
but the maximal signal was located approximately 450 bp
upstream of genes, with a second peak of signal approximately
450 bp downstream of the TSS (Figure 3D). However, on
average, H3K27ac-exclusively enriched enhancer regions were
more distal, 36 kb from the nearest TSS with 21% greater than
50 kb away from the nearest gene. Only 4% of the H3K27ac-
exclusive regions were within 2 kb of a TSS. Silencers exclusively
marked by H3K27me3 were further from genes than other ChIP-
seq targets at an average of 53.5 kb from TSS with 34% greater
than 50 kb away.

Promoters Predicted Actively Expressed
Genes From RNA-Seq
Exactly half of all genes annotated in the Rambouillet
reference (Refseq Annotation release 103) were associated
with an H3K4me3 enriched regulatory element. Regulatory
elements with H3K4me3 signal were identified with gene-rich
regions of the genome, 77% were within 20 kb of the nearest
gene. Regions with ChIP enrichment for active promoters
and enhancers, H3K4me3, H3K27ac, and H3K4me1 were
at constitutively expressed housekeeping genes including
POL3D, ACTB (Figure 4A), and GAPDH and many had
moderate signal enrichment. Active promoters were also
found at macrophage tissue-specific genes like PPARG
(Supplementary Figure 10) and at environment-specific
genes like ITGAX that are highly expressed in RNA-seq
(Figure 4B). Several tissue-specific highly expressed genes
were associated with high ChIP-seq signal (Figure 4B).
Lineage-specific genes that are not expressed in alveolar
macrophages such as GATA6 (Figure 4C) had enrichment of
H3K4me3 at promoter regions but lacked distal enhancers
(H3K4me1 and H3K27ac) and were not enriched for H3K27ac
at promoters. Developmental genes which are not expressed in
adult alveolar macrophages had broad regions of enrichment for
H3K27me3 (Figure 4D).

Promoter regions enriched for H3K4me3 were then filtered
for those within only 2 kb of annotated genes, as these were
most likely to be a correct match between regulatory element
and TSS. Approximately 73% of genes with active H3K4me3
enrichment within 2 kb of the TSS were also expressed in
RNA-seq data from sheep alveolar macrophages in the Sheep
Gene Expression Atlas. Analysis of regions with H3K4me3
and H3K27ac enrichment showed 78% were associated with
gene expression from RNA-seq regardless of distance from that
annotated gene. Maximum signal enrichment of H3K4me3 at
promoter peaks within 2 kb of TSS was positively correlated
with gene expression TPM when compared to RNA-seq data
(r = 0.28, P = 10−130). The top third H3K4me3 enriched regions
corresponded to genes from the RNA-seq data with an average
expression of 77 TPM (Figure 5A). Within the bottom third
of H3K4me3-enriched regions the average expression of nearest
genes was 40 TPM. Signal at promoter regions with enrichment
for both H3K4me3 and H3K27ac did not have a quantitatively

stronger correlation with gene expression than did H3K4me3
signal alone (r = 0.12).

Gene ontology analysis of genes associated with both
H3K4me3 and H3K27ac enrichment that were expressed in
alveolar macrophages had significant (P < 0.05), greater
than two fold overrepresentation for biological processes
like viral protein processing, positive regulation of antigen
receptor-mediated signaling pathway, type I interferon-mediated
signaling, regulation of autophagy, and mitotic spindle assembly
checkpoint, among others. Antigen processing and presentation
via MHC class II was overrepresented at 1.76-fold (additional
GO annotation in Supplementary Data 15). Motif analysis
of promoter sequences identified many known bindings sites
for transcription factor proteins ELF4, ETS, and interferon-
regulatory factors (IRF1-3 and IRF8) within H3K4me3 regions.
Additional de novo motifs had highest similarity to binding
sites for transcription factor proteins SFPI1, MYB family,
and CEBP family.

Further analysis of promoters revealed a small subset of
3,641 regions with signal enrichment for both H3K4me3 and
the repressive mark H3K27me3. Annotation with the nearest
gene revealed 45% of these regions were within 2 kb of a
TSS. These 1,630 regions were considered bivalent promoters.
Regions were associated with 1,166 protein-coding genes. Gene
ontology analysis was largely enriched for genes involved in
molecular functions for transcriptional regulation, transcription
factor activity, DNA and RNA binding, and RNA polymerase
II regulation (Figure 5B). Biological processes discovered
in GO overrepresentation analysis involved cell and tissue
differentiation, stimulus response, and cell movement, among
others (Supplementary Data 15). Motif analysis revealed that
de novo motifs were more significant (P = 10−58) than known
motifs (P = 10−30) within bivalent promoter sequences. A de
novo motif with similarity to the binding motif for yeast
protein STB1 was found in 38% of regions. Known motif
analysis revealed bivalent promoter sequences were enriched for
“CCCGC” and “CGCGCG” sequences and the motif for the
Drosophila GAGA factor protein.

Enhancers Were Enriched for de novo
Binding Motifs
Total enhancer regions with either H3K4me1, H3K27ac, or both
were more numerous than H3K4me3 promoter regions. We
found that genes have multiple enhancer regions. On average five
significant regions enriched for enhancer signal were associated
with each unique gene. In fact, we found that 69% of active
enhancer regions marked with H3K27ac were found in clusters
of two to seven (average of 3.2) significant regions around the
same gene. Multiple regions meant that enhancers are further
from the genes they control. H3K27ac regions were a mean of
1.9 kb further from their genes than H3K4me3 regions. Our data
revealed that 56% of genes may be controlled by multiple active
distal enhancers (e.g., H3K27ac regions further than 2 kb from
genes) in macrophages.

DNA sequences from active enhancer regions marked by
H3K27ac were scanned for motifs with HOMER. Enhancer
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FIGURE 4 | Selected consensus regions of ChIP-seq signal at active and repressed genes in macrophages. Signal enrichment along the Y-axis is displayed as
average reads per genomic content (RPGC) normalized for sequencing depth to 1× genome coverage. Input control signal was subtracted from the profiles to
remove noise. The X-axis represents the chromosomal location with size bar given in kb. (A) Region displaying a housekeeping gene that we would be constitutively
expressed in all cells and have active promoter and enhancer peaks, ACTB (actin-beta) from chromosome 24. (B) Tissue-specific gene actively expressed in alveolar
macrophages, ITGAX, chromosome 24, and (C) tissue specific gene that is not expressed in alveolar macrophages, GATA6, chromosome 23. (D) Developmental
genes that should be silenced with broad H3K27me3 signal, HOXA1 and HOXA2 on chromosome 4 that are not expressed in fully differentiated macrophages. In
this region there is also an unannotated gene (predicted lncRNA) that has a bivalent promoter enriched by both H3K27me3 and H3K4me3. See Supplementary
Figure 10 for signal around additional immune-related genes.
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FIGURE 5 | Promoter regulatory elements and gene expression. (A) RNA-seq gene expression was associated with signal enrichment of active promoters marked
by H3K4me3. RNA expression is shown as transcripts per million (TPM). (B) Bivalent promoter (H3K4me3 and H3K27me3) associated GO analysis annotations for
categories of molecular functions.

sequences contained similar central bases but often shorter
consensus motifs with degenerate bases at the flanking
sequences (Figure 6A) to known human macrophage-specific
binding sites. Within the top three most significant de novo
motifs within H3K27ac regions was a 15-bp sequence with
0.89 match score similarity to the known binding motif

for the protein peroxisome proliferator activated receptor
gamma (PPARG). PPARG is a transcription factor specific
to macrophages within the lung microenvironment. The de
novo PPARG motif was discovered in approximately 10% of
active enhancers. Primed enhancers denoted by H3K4me1
were generally enriched for known lineage specific and
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FIGURE 6 | Regulatory element motif enrichment in sheep alveolar macrophages with comparison to known motifs from model species. (A) De novo motifs from
sheep macrophages were discovered for the transcription factor protein PPARG in active enhancers (H3K27ac-enriched regions), this protein is a known
tissue-specific regulatory protein in alveolar macrophages. The third motif is a de novo motif that had a 0.88 match score to NFKB1 protein binding motifs identified
in mice. (B) HOMER scanning of insulator sequences identified by CTCF immunoprecipitation revealed enrichment in 50.5% of regulatory regions by the de novo
motif in sheep displayed here. The motif is similar but not identical to the known CTCF motif from humans. Additional CTCF motifs discovered in sheep are shown in
Supplementary Figure 12.

pioneering factor motifs. Approximately half of H3K4me1
regions contained the known motif for the transcription
factor protein PU.1. Primed enhancers in sheep additionally
contained binding motifs for the transcription factor proteins

CCAT enhancer binding protein beta (“C/EBP-beta,” CEBPB)
and CEBPC, SpiB, and SpiC, and a de novo motif for
NFKB1 reflecting presence of immunity related binding
sites (Figure 6A).
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Silencers Were Associated With Lack of
Gene Expression
Silencer regulatory elements denoted by H3K27me3 signal
were generally not near genes on a genome-wide basis, since
69% of significant regions were in intergenic regions (see
Supplementary Figure 11 for genomic localizations). Less than
a third of H3K27me3 regions were within introns, and 1–
2% of regions were within exons or near the 5′ end of
genes. Under 7% of the genes nearest to H3K27me3 regions
were expressed in alveolar macrophage RNA-seq data. Silencer
regions were located an average of greater than 29 kb from
the nearest gene. Motif analysis identified binding sites for
two significant motifs (P < 10−51), to the proteins Zfp281
and NFKB1. Several additional C2H2 zinc finger protein
binding sites were discovered with borderline significance
(P = 10−42) for transcription factor proteins ZKSCAN1,
ZNF467, and ZNF165. Silencer regions were found near
homeobox transcription factor genes (HOX family) involved
in embryologic development. The closest genes to H3K27me3
regions in the sheep genome included 46% of all homeobox
genes know in humans.

CTCF Insulators Motif Analysis and TAD
Anchoring
Insulator element CTCF peaks were scanned with HOMER
to determine the top de novo binding motifs in sheep and
top known motifs (Figure 6B). CTCF and CTCF like motifs
were the most significant motifs discovered amongst known
motifs with (P = 10−1482) and amongst closest matches to
de novo motifs (P = 10−4338) (Supplementary Figure 12).
Significant motifs with match score greater than 0.75 were used
to scan the DNA sequence of all CTCF regions and revealed
50.5% of consensus regions contained CTCF motifs. Next, we
calculated the genomic distance between pairs of nearest CTCF
enriched regions on each chromosome since these insulators
form domains with paired anchors. We found that the genome
could be divided into approximately 11,100 predicted TADs
based on pair-wise counts per chromosome (see Supplementary
Data 15). These regions were calculated to be an average of
258 kb in length. Based on gene content per chromosome
insulators delimited an average of three genes per chromatin
domain in sheep.

HyperChIPable Regions Found in Sheep
Macrophages
In our comparative analyses between ChIP-seq targets we
discovered enriched signal in 1,520 regions of the genome
that were significant compared with the control in all
immunoprecipitated datasets. The regions did not have
specificity for any antibody used for pulldowns. These
“hyperChIPable regions” spanned a small fraction (0.43%)
of the genome. However, they were broad at 8 kb, longer
than regions found in any individual target. Although the
majority of hyperChIPable regions were found within intergenic
regions (59%), there was moderate but significant enrichment at
promoters (P = 8.9× 10−8) indicating a pattern to their location

rather than pure noise. Like H3K4me3 regions, hyperChIPable
regions were found within the first intron of genes or at the TSS
(39%) (see Supplementary Figure 13).

DISCUSSION

Overview
We identified repressive and active regulatory elements and
validated regions by comparison to public RNA-seq data
on alveolar macrophages from the Sheep Gene Expression
Atlas (Clark et al., 2017). These data met the benchmarks
for acceptable quality set forth by the ENCODE project
consortium and the livestock FAANG consortium exceeding
sequencing depth of 20 million usable fragments for narrow
marks and 45 million usable fragments for broad marks
with production of complex libraries (Dunham et al., 2012;
Andersson et al., 2015). We identified the promoters and
distal cis-acting regulatory elements for housekeeping genes,
genes associated with macrophage differentiation, and tissue-
specific alveolar macrophage genes. We found bivalent regulatory
elements at the promoters of few genes and annotated GO
processes that varied from the processes found in more typical
promoters. We also identified significant regions bound by
CTCF with N-ChIP that revealed insulators and allowed the
first preliminary estimates of chromatin domains in sheep
alveolar macrophages. Our collective data assigned a putative
biological regulatory function in macrophages to nearly 12% of
the sheep genome.

Alveolar macrophages served as a biologically interesting
tissue given their myriad local functions and importance to
zoonotic intracellular pathogens. We were able to identify
GO overrepresentation in regulatory element associated genes
involved in pathways reflective of tissue-resident macrophage
main functions in homeostasis such as protein catabolism,
autophagy, and nitrogen metabolism (Lavin et al., 2014).
Both innate immune functions like interferon signaling, and
adaptive immune functions like antigen processing and MHC
class II presentation were identified as significant, reflecting
macrophages unique role in both branches (Schmidt et al., 2016).
We chose native ChIP-seq (N-ChIP) instead of formaldehyde
cross-linked (X-ChIP) because it has been reported to preserve
antibody epitopes leading to increased enrichment of signal and
less back ground noise (O’Neill and Turner, 2003; Wagschal
et al., 2007; Villar et al., 2015; David et al., 2017; Fang
et al., 2019). Cells were frozen and stored short term prior to
processing for N-ChIP since this method has been demonstrated
to maintain sensitivity and reproducibility (Brind’Amour et al.,
2015). While a possible limitation is that some protein-chromatin
interactions may be lost in freezing. Optimization of shearing was
effective with highly reproducible micrococcal nuclease digestion
in our hands, that reliably yielded mononucleosomes. Native
ChIP has compounded advantages in that no large protein-
chromatin complexes are created that have been shown to inhibit
shearing, and the endo- and exo-nuclease activity of micrococcal
nuclease allows excellent resolution of the ChIP-seq target regions
(Skene and Henikoff, 2015).
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Individual Chromatin Modifications in
Sheep Macrophages Reflect
Expectations
We found evidence in ChIP-seq enriched active regions
(H3K4me3 and H3K27ac) of increased guanosine and cytosine
content, as others have shown in various cell types that promotes
open chromatin (Glass and Natoli, 2016). Heterochromatin and
silencer sequences were shown to be depleted for GC content
(Glass and Natoli, 2016) like our H3K27me3-enriched regions
(see Table 2 for GC content summary). We found a clear bimodal
distribution of active promoters and enhancers around the TSS
(Figure 3) as has been reported by others for a variety of tissue
types (Kingsley et al., 2020). At the TSS there was a slight
depression in signal reflecting this nucleosome depletion that
would allow for the positioning of the initiation complex and
RNA polymerase along the chromatin.

Indicative of promoter regions, H3K4me3 enrichment should
be detected at one-half to two-thirds of all genes in a cell including
60% of silenced genes (Barski et al., 2007). We were able to find
reproducible peaks in both animal replicates that account for
50% of the annotated genes or pseudogenes in the sheep genome
yielding putative active and primed (poised) promoters used in
sheep alveolar macrophages. Promoters primed by H3K4me3
have also been demonstrated in macrophages notably at TLR4
promoters and immediate early genes that help to induce rapid
expression after exposure to foreign and injurious stimuli like
LPS (Escoubet-Lozach et al., 2011). We produced an annotation
resource for active regulatory elements at key immune genes
including TLR4, TLR8, TLR6, MHC class II genes, BHLHE40,
and BHLHE41 that are highly expressed in alveolar macrophages
(Supplementary Figure 10). The transcription factors BHLHE40
and BHLHE41 are master regulators that repress expression
of lineage-inappropriate genes in alveolar macrophages and
govern self-renewal. In fact, BHLHE40 inhibits H3K27ac in
regulatory elements to control gene expression (Rauschmeier
et al., 2019). BHLHE41 was not annotated in the previous
reference annotation for Oar_v3.1. Therefore its gene expression
profile is absent from the original analysis in the Sheep Gene
Expression Atlas, but it was associated with very high signal
enrichment for ChIP-seq active marks so we would predict it is
also highly expressed in sheep alveolar macrophages. Our analysis
revealed regulatory elements for core tissue-specific genes like the
transcription factor PPARG (Supplementary Figure 10) which
regulates homeostasis and surfactant catabolism (Lavin et al.,
2014) and also detected enrichment for its protein binding motif
in active regulatory regions.

Nearly two-thirds of H3K4me3 regions in sheep macrophages
were found further than 2 kb from annotated genes or within the
first intron or first exon. This perhaps suggests that alternative
start sites exist in macrophages or that gene and transcript
annotation is incomplete for the sheep genome. Previous work
showed that immunity related genes are enriched for tissue
specific allelic expression (Salavati et al., 2019) so alveolar
macrophages may express unique isoforms. The FR-AgENCODE
project found similar results in immune cells of goats, where
37% of coding transcripts were determined to be alternative

and multi-exonic (alternative splicing) compared to the reference
annotations and many extensions of annotated genes were also
discovered (Foissac et al., 2019). In fact, the ENCODE Project
consortium originally detected a similar trend in humans and
reported that the sole use of Refseq based annotations led to
dramatically overestimated distance of regulatory elements from
expected promoter locations at TSS (Birney et al., 2007). The
annotation build for Oar_rambouillet_v1.0 included few immune
tissues for gene prediction. Generation of experimental data to
improve TSS annotation is one of the objectives defined by
the Ovine FAANG Project and cap analysis gene expression
(CAGE) data on 55 tissues and alveolar macrophages was
recently published (Salavati et al., 2020). CAGE is an excellent
method to confirm function and location of promoters and
enhancers (Andersson et al., 2014) for validation of ChIP-seq
(Wood et al., 2020).

Total enhancer regions were more numerous than active
promoter regions as each gene can be controlled by multiple
enhancers but generally a single promoter. Differentiation
between active and primed distal regulatory elements was
possible in our data as H3K27ac (Creyghton et al., 2010)
had a clear association with sheep macrophage promoters and
predicted gene expression from the Sheep Gene Expression
Atlas. The mark H3K4me1 functions to prime enhancer regions
disallowing recruitment of histone deacetylases and was less
predictive of gene expression in sheep. Rather, we found these
primed enhancer regions were highly enriched for canonical
PU.1 binding motifs in sheep. So called pioneer factors, PU.1
can bind partially compact chromatin and help open chromatin
for additional transcription factors (Bernstein et al., 2002). PU.1
is also a lineage-determining transcription factor highly active
in macrophages (Glass and Natoli, 2016; Soares et al., 2017).
We found PU.1 motifs in 50% of enhancers, Lavin et al. (2014)
reported motifs in 30–40% of murine macrophage enhancers
with X-ChIP. Sheep enhancers contained binding motifs for
enhancer binding proteins CEBPB and CEBPD that are known
to regulate genes involved in immunity including cytokines,
chemokines, and proinflammatory factors (Wang et al., 2019).
CEBP proteins also mediate acetylation of H3K27 through
coactivators which prevent methylation at this residue, priming
the region for further activation. Next, we identified insulators
that can modulate enhancer function.

Our data was able to identify greater than 50,000 CTCF
enriched regions in the genome of each individual animal and
approximately 22,000 common to both animals. This matches
the estimate of 40,000–50,000 CTCF occupied sites obtained
in individual cell types from the wealth of ENCODE data
(Ghirlando and Felsenfeld, 2016). This was an interesting
experiment as relatively few studies use native chromatin for
CTCF immunoprecipitation, and we may not have captured
transient CTCF regions. In ChIA-PET studies, many insulators
are transiently bound by CTCF with low correlation of occupancy
and other regions form more permanent contacts, which may
explain the lower percentage of overlapping sites we saw between
the two sheep compared to other marks (Handoko et al., 2011;
Guo et al., 2015). Native ChIP-seq is reported to be successful
for CTCF since its binding affinity to chromatin is far greater
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than other transcription factors (Nakahashi et al., 2013). In
fact, our dataset may be enriched for predominantly “non-
exchangeable” CTCF sites that have the highest binding affinity
and generally denote the largest structural chromosome loops.
In the future, comparison with X-ChIP and Hi-C from sheep
may be helpful to elucidate localized transient chromatin loops.
We were able to estimate the average size of chromatin loops
from our CTCF sites by empirically assuming pairs will form
contact domains. This yielded a mean estimated domain size
of 258 kb comparable to human contact domains determined
from Hi-C data of median 185 kb (Rao et al., 2014). Literature
surveys report 1,000–1,000,000 loops per genome (Fullwood
et al., 2009; Jin et al., 2013; Sanborn et al., 2015). Our
data yielded an estimated 11,000 pairs (22,000 regions) that
could form loops in the sheep genome. Hi-C assays in goats
yielded 8,990 TADs in goats with a similar size of 220 kb
(Foissac et al., 2019).

We defined the first de novo CTCF motif in sheep
macrophages. The central core of the 19-bp canonical motif is
maintained between human and sheep, however, the flanking
nucleotides on either end of the motif displayed heterogeneity
compared to the core human motif in the JASPAR database
(MA0139.1). The de novo motifs were found in approximately
half of the sheep insulator regions, meaning half do not contain
recognizable motifs or may have bindings sites adjacent to
immunoprecipitated regions since CTCF binds chromatin in
large protein complexes. However, from Rao et al. (2014), only
54% of CTCF-bound regions contain CTCF motifs, paralleling
the 50% motif content we found in sheep. This can create
difficulty in calling pairs of CTCF that form the anchors for TADs
and localized sub-TADs.

Combinatorial Patterns of Mark Overlap
in Regulatory Elements
We found complex patterns of overlapping histone modifications
across the regulatory element landscape. The “histone code”
precisely titrates gene expression at multiple levels and is better
assayed by analysis of multiple ChIP-seq targets together as
we saw in sheep (Figure 2). This “cross-talk” reinforces the
chromatin state by either supporting activation or attenuation of
gene expression and may provide mechanisms for redundancy
and epigenetic memory (Fischle et al., 2003; Wang et al., 2008).
Epigenetic memory serves a key role in macrophages as it is
the proposed mechanism behind trained immunity, that can
reversibly recalibrate responses to pathogens, non-specifically.
For all our ChIP-seq targets, regulatory elements contained at
least some degree of overlap. Patterns of overlap in histone
modifications compartmentalize the genome into euchromatin
and heterochromatin, i.e., active versus repressed transcription.
Subsequently, we saw relatively little overlap of H3K27me3 with
the other marks tested as this is the only distinctly repressive
mark we examined. In these sheep, the subset of active elements
with both H3K4me3 and H3K27ac were better predictors of
highly expressed genes that either mark alone, found at well-
annotated genes as they were more frequently at the TSS.
Conversely, we determined H3K27ac-exclusive regions were

consistent with distal CREs (true enhancers) as reported in many
species (Villar et al., 2015).

Some promoter regions in sheep macrophages were found to
paradoxically have both H3K4me3 active marks and H3K27me3
repressive marks. These bivalent promoters signify unique
genes that have highly variable and responsive gene expression
(Vastenhouw and Schier, 2012). GO revealed different functions
from those with active promoters with the caveat that both
gene lists may contain noise from the RNA-seq data being from
different animals than the ChIP-seq data. Alveolar macrophages
are known to maintain tissue homeostasis when quiescent but
once activated in response to invading pathogens or tissue
injury can begin cytokinesis and phagocytosis (Lavin et al.,
2014; Glass and Natoli, 2016; Schmidt et al., 2016). Bivalent
promoters play essential roles in myeloid differentiation and
when macrophage progenitors lose H3K27me3 repression at
certain bivalent sites it can contribute to development of cancers
like acute myeloid leukemia (Thalheim et al., 2017). Motif
analysis revealed very few know transcription factor binding sites
and several motif sequences of low complexity and high GC
enrichment comparable to bivalent promoters of mammalian
embryonic stem cells (Mantsoki et al., 2015).

In contrast, overlap of H3K27me3 and H3K27ac histone
modifications are antagonistic to one another and not found in
the same regions (Tie et al., 2009). Accordingly, we did not find
enrichment of these two marks together in the same regions.
Overall, silencer elements, H3K27me3, were found in broadly
different locations than active elements captured by H3K27ac,
H3K4me3 and H3K4me1. We were able to find enrichment
of 6% of the sheep genome in alveolar macrophages with
the silencer mark H3K27me3. This likely represents the bulk
of this compartment in the sheep genome since H3K27me3
corresponds to regions of heterochromatin estimated to comprise
8% of the human genome as 92% is euchromatin (Consortium
International Human Genome Sequencing, 2004; Rao et al.,
2014). In our data, H3K4me1 and CTCF showed some overlap
with one another and with H3K27me3 regions near boundary
zones between heterochromatin and euchromatin. We found in
sheep macrophages as Barski et al. (2007) found in human T-cells,
that locations with CTCF enrichment also were enriched for
multiple histone methylation marks found at domain boundaries.

Lastly, because we produced data for multiple marks, we were
able to elucidate putative hyperChIPable regions in the sheep
genome. These regions were found in all immunoprecipitated
datasets and were not specific for any one target or antibody
(Figure 3B). HyperChIPable regions were slightly more likely
to be found at promoter regions and within the first intron
of genes near TSSs (Supplementary Figure 13). This active
promoter effect has been reported in the past for biologically
hyperChIPable regions in human and mouse (Wreczycka et al.,
2019). There may be a biological reason that these regions
appeared in all immunoprecipitated fractions or are perhaps
more efficiently sequenced. Enrichment of these non-specific
sites near promoters may also be an artifact of the experimental
protocol as micrococcal nuclease digestion is more efficient
at euchromatin than heterochromatin, so a larger portion of
fragment ends available for sequencing will naturally occur
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around open chromatin. HyperChIPable regions may also be
caused by artifacts in the reference assembly. Regions containing
repetitive elements are troublesome for genome assembly and
may be collapsed, therefore natural copy number variation
would create the appearance of falsely elevated signal in the
region (Amemiya et al., 2019). We have provided these putative
hyperChIPable regions for sheep in the public OSF repository
(see section “Data Availability Statement”). As these regions were
not known previously in sheep and not yet validated, we have
not removed them from our ChIP-seq datasets. However, once
validated in additional sheep tissues these regions can be included
on a “block list” of sites to be removed from future experiments,
like the ENCODE consortium created for model organisms, since
they do not represent signal from the protein target of interest
(Carroll et al., 2014).

Regulatory Element Locations and
Signal Enrichment Associate With Gene
Expression
Generally, gene expression can be quantitatively predicted by
the signal enrichment of histone modifications. However, specific
gene expression is highly contingent on cell type and the usage
of specific regulatory elements is cell type dependent, especially
in immune genes (Lavin et al., 2014). Thus, it was critical for
us to experimentally determine histone modifications in primary
macrophages most representative of in vivo conditions rather
than from cell culture conditions to identify the regulatory
elements that are uniquely used by the immune system. We
found modest, positive correlation that was highly statistically
significant (P = 10−130), between signal enrichment of H3K4me3
in promoters and gene expression in alveolar macrophages
determined in the Sheep Gene Expression Atlas (Clark et al.,
2017). This correlation served as a “proof-of-concept” validation
of our ChIP-seq regions. Importantly, we found that overlap of
both H3K27ac and H3K4me3 had a stronger predictive value for
gene expression than H3K4me3 alone as nearly 80% of genes with
enrichment for both were expressed from RNA-seq. In sum these
active regulatory elements were at the TSS of approximately 7,600
protein coding genes that were actively expressed in alveolar
macrophages. Quantitative correlation between our ChIP-seq
signal and RNA-seq expression was limited since the data was
obtained from different animals, of different breeds, raised on
different continents, and the RNA-seq data were obtain from
two individual female animals in separate experiments. More
complex regression analysis could improve correlation between
ChIP-seq signal and RNA-seq data (Angelini and Costa, 2014),
however, we opted for a simple analysis as proof-of-concept
for this data resource. We would expect ChIP-seq signal to
have improved quantitative correlation with RNA-seq data if
generated from the same animals at the same time points.
We envision the ChIP-seq data presented here being used as
foundational annotation of CREs in quiescent macrophages
from healthy sheep and these data will allow identification of
target regions for further study. Future work may expand upon
the multiple functions of macrophages by examining activated
or infected macrophages and yield both epigenomic data and

transcriptional data from the same macrophage populations.
These types of studies have potential to capture epigenetic
modifications caused by response to exogenous agents or
orchestrated by infectious agents at regions identified in resting
cells and at additional genomic regions (Hall et al., 2020;
Herrera-Uribe et al., 2020).

We also captured transcriptional activators for a variety of
types of RNA that could not be correlated to gene expression
from mRNA-seq. For example, we identified the promoter for
several members of the let-7 microRNA precursor family. In
human and murine macrophages, let-7 has been shown to post-
transcriptionally control cytokine production in innate immune
responses by repressing production of interleukin-10 (IL-10), IL-
6, and TLR4 until pathogens are detected (Schulte et al., 2011).
Annotation of short RNA elements, which is largely missing from
the sheep genome annotation, could be defined by combining
RNA-seq methods with more stable DNA based methods like
ChIP-seq to find short regions of active transcription. Our data
indicated several regulatory elements that displayed the pattern
of bona fide active promoters but are not near any currently
annotated genes or regulatory RNA; we hypothesize these regions
may control expression of either novel tissue-specific, short
regulatory, or weakly expressed transcripts which are difficult to
annotate. Deep sequencing RNA experiments in sheep and goats
have indeed found lncRNA had shorter transcripts and weaker
expression which explains difficulty in annotation of these types
of functional elements (Clark et al., 2017).

Conclusion
In summary, we generated ChIP-seq data for four core histone
modifications and chromatin domain defining CTCF locations
for the first time in sheep primary alveolar macrophages. We
have shown that active enhancer and promoter signal enrichment
was predictive of gene expression in sheep macrophages. We
also provided annotations of novel hyperChIPable regions that
may represent biological or non-specific experimental artifacts
and potentially should be included on a “block list” to be
removed from future ChIP-seq experiments in sheep. The data
generated here are publicly available for researchers and will
be valuable for comparative and ovine immunology studies as
well as fine mapping to improve marker assisted selection for
infectious disease resilience. ChIP-seq defined promoters may
help to annotate TSSs of genes, especially those that are not
well or widely expressed. We also put forth novel binding
motifs found within regulatory elements in sheep macrophages.
Understanding the epigenetic control and response mechanism
of the immune system is very important not only for animal
health and infectious agent eradication but also for numerous
economically important production traits. The immune response
in sheep has energy resource costs despite the health outcome,
and this ultimately affects efficiency of meat and milk production
for human consumption. Therefore, genetic, and epigenetic
improvement of infectious disease resistance or tolerance is
important to increasing production efficiency in sheep. Use of
regulatory element annotation data to develop marker-assisted or
genomic selection tools has advantages over traditional methods
to control infectious diseases as it promotes selection of hardier
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animals prior to the introduction of pathogens and avoids
antibiotic resistance altogether.

These data, as part of FAANG, can be readily incorporated
into the reference genome annotation or viewed as custom
tracks. Generation of these data on a macrophage immune
cell type will allow future work on mutations and epigenetic
variations that cause differences in sheep immune response,
zoonoses transmission, and immunological effects on
production efficiency.
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Background: Polled intersex syndrome (PIS) leads to reproductive disorders in goats

and exerts a heavy influence on goat breeding. Since 2001, the core variant of an

11.7 kb deletion at ∼129Mb on chromosome 1 (CHI1) has been widely used as a

genetic diagnostic criterion. In 2020, a ∼0.48Mb insertion within the PIS deletion was

identified by sequencing in XX intersex goats. However, the suitability of this variation for

the diagnosis of intersex goats worldwide and its further molecular genetic mechanism

need to be clarified.

Results: The whole-genome selective sweep of intersex goats from China was

performed with whole-genome next-generation sequencing technology for large sample

populations and a case–control study on interbreeds. A series of candidate genes

related to the goat intersexuality phenotype were found. We further confirmed that

a ∼0.48Mb duplicated fragment (including ERG and KCNJ15) downstream of the

∼20Mb PIS region was reversely inserted into the PIS locus in intersex Chinese goats

and was consistent with that in European Saanen and Valais black-necked goats.

High-throughput chromosome conformation capture (Hi-C) technology was then used

to compare the 3D structures of the PIS variant neighborhood in CHI1 between intersex

and non-intersex goats. A newly found structure was validated as an intrachromosomal

rearrangement. This inserted duplication changed the original spatial structure of goat

CHI1 and caused the appearance of several specific loop structures in the adjacent

∼20 kb downstream region of FOXL2.

Conclusions: Results suggested that the novel complex PIS variant genome was

sufficient as a broad-spectrum clinical diagnostic marker of XX intersexuality in goats from
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Europe and China. A series of private dense loop structures caused by segment insertion

into the PIS deletion might affect the expression of FOXL2 or other neighboring novel

candidate genes. However, these structures require further in-depth molecular biological

experimental verification. In general, this study provided new insights for future research

on the molecular genetic mechanism underlying female-to-male sex reversal in goats.

Keywords: intersexuality, genome-wide selection, Hi-C, copy number variant, translocation

BACKGROUND

In as early as the nineteenth century, people regarded
hornlessness as a beneficial and important economic trait and
bred specialized hornless goat strains. However, during breeding,
the proportion of intersex individuals in the hornless goat
population gradually increased. This phenomenon was termed
polled intersex syndrome (PIS) (Eaton, 1945). Intersexuality,
the phenomenon wherein certain dioecious organisms possess
both sexes, has been widely observed in various livestock species
(Bosu and Basrur, 1984; Wang and Zhang, 1993), including goats
(Ramadan and El Hassan, 1988; Ramadan et al., 1991), within
the last century. The proportion of intersex goats within the
global population is 4–15% (Zhan et al., 1994; Chen et al., 2010;
Song et al., 2015). Reproductive system malformations in PIS
goats lead to the loss of reproductive capacity and are thus some
of the great challenges encountered in the development of the
goat industry.

In 1996, the CHI1q41–q45 genomic regions were confirmed
to be linked to hornlessness (Vaiman et al., 1996, 1999). Various
molecular methods, such as chromosome walking technology
and sequencing, have been used to refine the PIS locus to
<100Kb (Schibler et al., 2000). In 2001, the indicator of PIS
in goats was mapped and resolved to an 11.7 kb non-coding
deletion in CHI1q43 that was located ∼200 kb upstream of the
FOXL2 gene (Pailhoux et al., 2001). FOXL2 is an important
sex determination gene (Bagheri-Fam et al., 2017; Tao et al.,
2018) with a key role in ovarian development (Pannetier et al.,
2016; Elzaiat et al., 2017). For example, a previous study on
mouse models with ovarian FOXL2 gene deletion showed that
FOXL2+/− mice have a normal phenotype, FOXL2+/+ mice have
a similar phenotype as patients with human blepharophimosis
syndrome, and FOXL2−/− mice exhibit narrow eye slits and
premature ovarian failure (Baron et al., 2005). Furthermore, by
using gene editing technology, Boulanger et al. (2014) verified
that the loss of function and expression silencing of FOXL2 can
cause female-to-male sex reversal in XX goats (Boulanger et al.,
2014).

Moreover, the development of PIS diagnostic molecular
markers can effectively avoid the misdiagnosis caused by the
phenotypic identification of obscure PIS cases. Although a series

Abbreviations: PIS, Polled intersex syndrome; CNV, Copy number variant;

FST, Pairwise fixation index; SNP, Single nucleotide polymorphism; Hi-C, High-

through chromosome conformation capture; CHI, Capra hircus chromosome;

FOXL2, Forkhead box L2; KCNJ15, Potassium inwardly rectifying channel

subfamily J member 15; PIK3CB, Phosphatidylinositol-4,5-bisphosphate 3-kinase

catalytic subunit beta.

of PIS diagnostic methods based on PCR amplification has been
reported (Yang et al., 2012; Zhang et al., 2019), some studies
on the diversification of PIS deletion structure have questioned
the accuracy of these methods (Li et al., 2011; Kijas et al.,
2013). For example, some intersex Rangeland goats do not
exhibit the known homozygous PIS deletion (Kijas et al., 2013).
Therefore, whether PIS deletion is specific for the diagnostics of
intersexuality in goats remains controversial. Notably, the long-
read whole-genome sequencing of two (one Saanen and one
Valais Blacknecked black goats) genetically female (XX) intersex
goats (Simon et al., 2020) demonstrated that a highly complex
structural variant involving a∼0.48Mb duplicated segment from
∼21Mb of chromosome 1 (CHI1) is inversely inserted into the
known PIS deletion and that the length of the PIS deletion has
also been shortened to 10.159 kb from 11.7 kb (Pailhoux et al.,
2001).

In this study, we, for the first time, identified the intersex-
related genetic variation structure of the Chinese goat
population via high-throughput sequencing technology and
analyzed the chromosomal spatial structure of the PIS-related
genetic structure through high-throughput chromosome
conformation capture (Hi-C) technology to obtain an in-depth
understanding of the molecular genetic mechanism of PIS. Our
work could also provide a valuable reference for the future
development of diagnostic tools with enhanced broad-spectrum
recognition capabilities.

METHODS

Genomic Library Construction and
Sequencing
All the experimental conditions of this study were approved
by the Committee on the Ethics of Animal Experiments of the
Southwest University (No. [2007] 3) and the Animal Protection
Law of China.

We collected venous blood samples from 55 goats comprising
35 intersex goats (26 XX Tangshan dairy goats and 9 XX Chinese
southern native goats) and 20 XX non-intersex Tangshan dairy
goats. A total of 2mL venous blood was collected from each
animal (Sampling from Tangshan dairy goat breeding farm,
Tangshan, China). The wound was sterilized with 70% medical
alcohol. All 55 animals were returned to the pasture to continue
living after experimentation. All genomic DNA samples were
extracted by using a QIAGEN DNeasy Blood & Tissue kit
in accordance with the manufacturer’s protocol. Sequencing
libraries were constructed with DNA extracts and a NEBNext R©

Ltra DNA library preparation kit (Illumina R©, US). Sequencing
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was performed on an Illumina HiSeq × Ten platform (pair-
end 150 bp). The sequencing data generated in this study
were deposited in the NCBI SRA database (SRR10051499-
SRR10551533 and SRR10613872-SRR10613891). In addition, we
downloaded 166 non-intersex goat genome sequences from the
NCBI SRA database. The detailed information of the 221 animals
used in this study is shown in Supplementary Table 1.

Read Filtering, Read Alignment, and
Variant Calling
Raw sequencing reads were trimmed and filtered by using
Trimmomatic (version 0.36). We then mapped the clean
pair-end reads to a goat (Capra hircus) reference genome
(ARS1) by using BWA-MEM (version 0.7.13) with default
parameters except that “-M” was enabled to flag shortened
split hits as secondary data. We used Picard (version 2.1.1,
http://broadinstitute.github.io/picard) to remove potential PCR
duplicates. Finally, the reads were locally realigned around indels
with the IndelRealigner procedure in GATK (version 3.7). We
applied GATK to call variants and used the HaplotypeCaller
algorithm in Genomic Variant Call Format (GVCF) mode.
Variants were called individually for each animal, and one GVCF
file that listed genotype likelihoods was generated per animal.
Then, the variants were called from the GVCF files through joint
genotyping analysis. We removed SNPs that were within the
three base pairs of an indel by utilizing bcftools (version 1.8).
Biallelic SNPs were retained by applying a hard filter of QD <

2.0, MQ< 40.0, FS> 60.0, SOR> 3.0, MQRankSum<−12.5, or
ReadPosRankSum<−8.0. We also used vcftools (version 0.1.14)
to remove SNPs with a missing rating of more than 0.1. The copy
number variations (CNVs) with a silhouette score of <0.65 and
a MAF of <0.05 were identified by using CNVcaller software
(Wang et al., 2017a).

Genome-Wide Selective Sweep Analysis
and Gene Annotation
Here, we carried out whole-genome selection signal analysis
with two groups: (1) 35 intersex goats (case group, including 26
intersex Tangshan dairy goats [X/X] and 9 intersex Chinese goats
[X/X] from southern China) vs. 186 non-intersex individuals
(control group) and (2) 26 intersex goats (case group) vs. 20
non-intersex individuals (X/X, control group) from the Tangshan
dairy goat population. For the SNP dataset, we calculated the
pairwise fixation index (FST) and π ratio (πintersex/πnon−intersex)
with 40 kb sliding windows and 10 kb step size. Only windows
passing the above two thresholds were retained. Candidate genes
were subjected to functional enrichment with an online tool
(KEGG, http://www.genome.jp/kegg/pathway.html).

Additionally, we calculated VST and FST on the basis
of absolute copy number (CN) to identify divergent CNV
profiles between XX intersex and normal female goats.
VST was calculated by using following formula: VST =
Vtotal − (Vpop1 × Npop1 + Vpop2 × Npop2)/Ntotal

Vtotal
, where Vtotal is the total

variance, Vpop is the CN variance for each population, Npop is the
sample size for each population, andNtotal is the total sample size.

Lastly, we calculated linkage disequilibrium by using Arlequin
software version 3.5.1.3 (Excoffier and Lischer, 2010) with
a permutation test (EM algorithm, permutation number =

100,000).

PCR Amplification to Verify Structural
Variant Genotypes
The primers (Supplementary Table 2) of breakpoints based on
the ∼0.48Mb fragment (CHI1:150,334,286–150,818,099) that
was reversely inserted into the PIS deletion region (∼10.16 kb,
CHI1:129,424,780–129,434,939) were designed with the online
tool Primer 3.04 software (http://bioinfo.ut.ee/primer3-0.4.0/) to
identify the structural characteristics of the identified duplication
variant in CHI1 in intersex goats. 2×TransTaq R© High Fidelity
(HiFi) PCR SuperMix II (TransGen Biotech, China) was used in
PCR amplification. The qPCR reaction conditions consisted of
an initial denaturation at 94◦C for 5min, followed by 35 cycles
of denaturation at 94◦C for 30 s, annealing at the locus-specific
temperatures presented in Supplementary Table 2 for 30 s, and
extension at 72◦C for 120 s. Finally, an elongation step (final
extension) was performed at 72◦C for 7min. Two-way Sanger
sequencing was performed on an ABI 3730 sequencer platform
(Life Technologies, US).

Three-Dimensional Genome Structure
Comparison Between Intersex and
Non-intersex Goats
Hi-C was performed on two individuals (Dazu black goat,
China). One was intersex (hornless, PIS +/+), and the other
was non-intersex (horned, female, PIS –/–). Sample processing
(treatment of leukocytes from venous blood with the cell
cross linker paraformaldehyde) and library construction were
performed by using standard methods (four cutter restriction
enzyme [MboI], Belton et al., 2012). Briefly as: (1) treat cells with
paraformaldehyde (37% formaldehyde) to fix the conformation
of DNA; (2) treat cross linked DNA with restriction enzymes
(four cutter restriction enzyme, MboI) to produce sticky ends;
(3) repair DNA ends with biotin labeling; (4) connect the DNA
fragments by DNA ligase; (5) release the cross linked DNA
state with 2.5M Glycine; (6) purify the DNA by AMPure XP
system (Beckman Coulter, Beverly, USA) and randomly break
into 300∼500 bp fragments; (7) construction of small DNA
fragment library using NEB Next Ultra DNA Library Prep
Kit (NEB, USA). After library construction, Qubit2.0 was used
for preliminary quantification. Then, the library was diluted
to 1 ng /µL. Agilent 2100 was used to determine whether
the insert size of the library met expectations. Q-PCR was
used to quantify accurately the effective concentration of the
library (>2 nM), and sequencing was finally performed with
an Illumina HiSeq×Ten PE150TM platform. Sequencing data
quality control, reference genome alignment (ARS1), interaction
map construction, and loop structure analysis were performed
with Juicer software (Durand et al., 2016) with the standard
parameters (Mbol restriction enzyme chunk size set at: 80000000
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FIGURE 1 | Genome-wide selective sweep of goat intersexuality by using SNPs and CNVs. (A) Manhattan plot showing the SNP-based selection signals of 35

intersex goats compared with those of 186 non-intersex goats from a large geographically distributed population. (B) Manhattan plot showing the SNP-based

selection signal of intersex goats within the Tangshan dairy goat population. (C) Manhattan plot showing the CNV-based selection signals of 35 intersex goats

compared with those of 186 non-intersex goats from a large geographically distributed population. (D) Manhattan plot showing the CNV-based selection signals of

intersex goats within the Tangshan dairy goat population.

bp). Image visualization was performed by using the matplotlib
package in the Python environment.

RESULTS

A total of 16 462,769 SNPs and 1,058 CNVs were obtained
from 221 samples. For the genome-wide selection of SNPs
in all individuals (35 intersex vs. 186 non-intersex goats),
we screened 258,064 windows and estimated their FST and
π ratios (Figure 1A, Supplementary Table 3). In total, we
identified 40 windows in accordance with the intersection of
the top 1% selective regions of both parameters (FST and
π ratio). These regions included 74 coding genes, which

encompassed or were located up- and downstream within the
300 kb range of the window. Six of these genes were annotated
to seven known signaling pathways (Supplementary Table 4),
including neuroactive ligand-receptor interaction (P2RY13 and
P2RY14), hippo signaling pathway-multiple species (STK3),
thyroid hormone signaling pathway (MED12L), hippo signaling
pathway (STK3), MTOR signaling pathway (RRAGB), protein
processing in endoplasmic reticulum (UBQLN2), and MAPK
signaling pathway (STK3).

Furthermore, we selected 46 Tangshan dairy goats from
large samples, set up a scientific case–control analysis test,
and identified the selected signal regions of intersexuality
within Tangshan dairy goat populations to prevent the
genetic background divergence of large sample populations
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from interfering with selection signal analysis (Figure 1B,
Supplementary Table 5). The results revealed that 50 windows
were generated by the intersection of the top 1% selective
regions of the FST and π ratios and 79 genes, which covered
or were located up- and downstream within the 300 kb range
of the window. Only four genes were enriched in known
pathways (Supplementary Table 6). These genes included
RBP2 (vitamin digestion and absorption), NCK1 (ErbB
signaling pathway, T cell receptor signaling pathway, and
Axon guidance), IL20RB (Jak-STAT signaling pathway and
cytokine–cytokine receptor interaction), and MRAS (tight
junction, phospholipase D signaling pathway, proteoglycans in
cancer, Rap1 signaling pathway, regulation of actin cytoskeleton,
Ras and MAPK signaling pathways, and HTLV-I infection).
Numerous consecutive windows in CHI1 (∼129 to ∼132Mb)
of intersex Tangshan dairy goats showed strong FST and π ratio
signals, and these windows covered the 11.7 kb fragment deletion
(PIS) that is widely recognized genomic signature of XX intersex
goats (Pailhoux et al., 2001).

The selective CNV-based sweep analysis of intersexuality
with a large population and various genetic backgrounds
of non-intersex goats (35 vs. 186) revealed that two CNVs
had the highest signals with FST (V1: FST = 0.834565,
CHI1:129,424,780–129,434,939; V2: FST = 0.830614,
CHI1:150,334,286–150,818,099) and VST (V1–VST = 0.73290;
V2–VST = 0.74050) (Figure 1C, Supplementary Table 5). These
two variants also carried the most prominent signal in the
Tangshan dairy goat population (20 vs. 26; V1: FST = 0.60641,
VST = 0.81321; V2: FST = 0.60641, VST = 0.83742; Figure 1D,
Supplementary Table 7). The V1 variant was contained within
the known intersex-related variant region (PIS deletion). Two
genes, namely,MRPS22 (∼120 kb distance) andCOBB2 (∼140 kb
distance), were found upstream of V1, whereas the FOXL2 gene
was found 340 kb downstream of V1. Other seven noncoding
RNA (LOC102190268, LOC108636915, LOC102185085,
LOC108636375, LOC102190822, LOC102191084, and
LOC100861210) were discovered between FOXL2 and V1.
Furthermore, KCNJ15 and ERG were encompassed by the V2
variant region, and ETS2 was located 230 kb downstream. No
coding gene was found within the 500 kb upstream region of V2.

The length of the PIS deletion (V1) on CHI1 was
∼10.16 kb and was located from 129,424,780 bp to 129,434,939
bp (Figures 2A,B) as observed by using the IGV browser
(Thorvaldsdóttir et al., 2013). We found that the length of the
V2 variant was ∼0.48Mb and that this variant was distributed
on CHI1 at 150,334,286–150,818,099 (Figure 2C). The different
genotypes of the V1 and V2 variant regions could be clearly
identified by comparing the read average coverage of each
variant’s region with that of the whole genome (Figures 2D,E).
On the basis of the genotypes of V1 and V2, we found that the
homozygous deletion of V1 and the homozygous duplication of
a ∼0.48Mb region of V2 were always simultaneously present
in all intersex goats (Figure 2F). Linkage disequilibrium analysis
revealed significant linkage (P < 0.0001) between the V1 and V2
mutations in 221 goats.

In the heterozygous and extra duplication homozygous
individuals with the V2 mutation, a considerable number of

reads were split-mapped simultaneously to the outer boundary
of V1 and the inner boundary of V2 (Supplementary Figure 1).
We verified the true boundary breakpoints of the two variant
regions through PCR amplification and Sanger sequencing
(Figures 2G–J). Therefore, the precise PIS genome structure was
doubly confirmed as an inverted duplication of the ∼0.48Mb
segment that had inserted into the 10.16 kb PIS deletion.

An average of >250 Gb (∼85×) of genome coverage data
were obtained from two individuals and used to construct
a 3D genome high-resolution interaction map. Firstly, we
gathered total 851,483,595 and 808,343,466 reads in case
and control individual, respectively. Secondly, according to
the mapping results of case and control dataset, there are
300,895,514 (35.34%) and 359,770,248 (44.51%) normal paired
reads, 402,929,844 (47.32%) and 347,404,121 (42.98%) chimeric
paired reads, 344,755,346 and 117,458,553 PCR duplicates reads,
156,341,608 and 244,912,442 intra-chromosomal interaction
reads, 71,982,908 and 173,316,912 short-distance interaction
sequence with interaction distance less than 20 kb (<20 kb),
84,358,664 and 149,510,017 long-range interaction sequences
with interaction distance larger than 20 kb (>20 kb), respectively.

The heat map of both sets of data with 80 kb resolution
revealed a potential intrachromosomal rearrangement site
(Figures 3A,B), which was initially identified in CHI1 of an
intersex individual (PIS–/–). This finding was consistent with
the physical location of V2, which was absent from non-intersex
goats (PIS–/–). We used a resolution of 10 kb to identify effective
breakpoints (Figures 3C,D). A small but sharp contact peak
suggested that a new intrachromosomal rearrangement occurred
in CHI1 of the intersex goats (Figures 3E,F). We identified
four private consequent loop regions in CHI1 of the intersex
goats (Supplementary Table 8) and compared these regions
with those in non-intersex individuals (Supplementary Table 9).
These loop regions were densely clustered in the ∼20 kb
downstream regions of the FOXL2 gene, which overlapped with
LOC102191651 and LOC108636917 (Figure 3G).

DISCUSSION

SNP-based genome-wide selection signal analysis revealed
numerous sharp signals in 35 intersex goats and 186 control
samples. Within the top 1% selection window, a series of
genes were identified and found to be deeply involved in
animal reproduction and multiple developmental processes.
For example, STK3 is a key molecule that connects the
downstream signaling pathway of estrogen and the Hippo
signaling pathway; it also regulates the dynamic development
of the uterine epithelium during the estrous cycle through the
signal transduction of uterine epithelial cells (Moon et al., 2019).
STK3 was annotated to other signaling pathways, such as the
MAPK (Bogani et al., 2009; Warr et al., 2016) and Hippo
signaling pathways, that also play an important role in gonadal
development and sex determination (Frum et al., 2018; Devos
et al., 2020). AlthoughMED12L has been verified to be associated
with fetal mental retardation in human (Nizon et al., 2019), it is
also involved in reproductive development (Sayem et al., 2017;
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FIGURE 2 | Model detection and verification of novel transposition in intersex goats. (A) Two CNVs (V1 and V2) on Chromosome1 observed by IGV software. (B)

Alignment and coverage of wide-genome short-reads from intersex goats as observed with IGV software. The CNV from 129,424,780 to 129,434,939 bp on

Chromosome 1 (V1, B) manifested as a deletion. (C) Alignment and coverage of wide-genome short-reads from intersex goats as observed by IGV software. The CNV

from 150,334,286 to 150,818,099 bp on Chromosome 1 manifested as a duplication (V2). (D) Genomic coverage of different genotypes of V1 variant reads

(Chromosome 1, 129.40–129.45Mb). (E) Genomic coverage of different genotype of V2 variant reads (Chromosome 1, 150.20–150.90Mb). (F) Two CNV variants (V1

and V2) associated with intersexuality had the same frequency in the population. (G) Schematic of the Chromosome 1 PIS transposition model and location map of

primers for PCR verification. (H) Gel electrophoresis verification of PCR results. (I,J) Sanger sequencing results of sequences amplified with primers 4 and 5.

Das and Kumar, 2018; Ulloa-Aguirre et al., 2018). In addition,
the RRAGB gene is enriched in the mTOR signaling pathway,
which is widely involved in gonadal development (Bajwa et al.,
2017; Correia et al., 2020). Therefore, our findings suggested that
numerous molecular mechanisms underlying development and
the physiological maintenance of intersexual characteristics await
further excavation.

Notably, the different genetic backgrounds of large samples
can cause many false-positive genes, and chromosomal regions

may thus be incorrectly identified. Given the inconsistent ratios
between the numbers of Tangshan dairy goats in the intersex and
control groups, a gene with considerable breed specificity caused
interference. We performed a strict case–control experiment on
the Tangshan dairy goat population to prevent the interference
of specific population backgrounds and identified a series of
interesting genes. The highest continuous selection signal was
observed in CHI1. These signals covered the areas of a previously
reported PIS deletion (Pailhoux et al., 2001) and six coding
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FIGURE 3 | Hi-C analysis results. (A) Window interaction matrix on CHI1 from 128.43 to 151.08Mb in intersexuality individuals with 80Kb resolution. (B) Window

interaction matrix on CHI1 from 128.43 to 151.08Mb in normal control individuals with 80Kb resolution. (C–F) Interaction matrix and comparison of the 129.1–129.7

and 150.3–150.9Mb regions on CHI1 between intersexuality and normal individuals with 10Kb resolution. (G) Analysis of loop conformation in the 129.4–130.2Mb

region of CHI1 between intersexuality and normal individuals at 5 kb resolution revealed that the intersexuality case had a particular loop conformation in the

129.80–129.88Mb region at which the sexual development-associated gene FOXL2 was located 30Kb upstream.

genes (MRAS, NMNAT3, ARMC8, DBR1, LOC108636376, and
SCLC35G2); SOX14 and MRPS22 in the upstream region; and
LOCl02190268 and IL20RB in the downstream region.

Some genes with cellular biological importance were
identified. For example, NMNAT3 maintains cell differentiation
by maintaining mitochondrial content (Son et al., 2016; Yu et al.,
2020). ARMC8 is involved in the adherence of regulatory cells to
cells and is associated with cell differentiation in ovarian cancer
tumors (Jiang et al., 2015; Gul et al., 2019). SOX14 is associated
with apoptosis in cancer cells in the sexual reproductive system
(Stanisavljevic et al., 2017) and is a crucial determinant of
allergy development in Drosophila (Ritter and Beckstead, 2010).
Interestingly, the conserved region of the MRPS22 gene is a
long-range enhancer and regulates the expression of FOXL2
through an unclear advanced cis-regulatory effect of chromatin
structure in humans and rats (Crisponi et al., 2004). Thus, our
case–control experiment involving a population with a single
genetic background enabled us to screen out many false-positive
signals and identify a series of credible candidate genes. The
results of this experiment provided insight into the molecular
genetic mechanism of intersexuality-related physiology.

The recent identification of the gene transcription profiles
of intersex and normal goat gonads through the use of RNA-
Seq technology suggests that a large number of differentially

expressed genes may be involved in the regulation of sex
determination and differentiation in intersex goats (Yang
et al., 2020). This result reminds us that many potential
molecular mechanisms under the goat sexual reversal phenotype
remain unclear.

Our CNV-based analysis results showed that equally strong
signals were generated in V1 and V2 in the large sample with
different genetic backgrounds and the Tangshan dairy goat
population in the case–control analysis. These signals were
recognized as the 10.16 kb PIS deletion and the ∼0.4838Mb
duplicated segment located∼20.9Mb further downstream of the
PIS deletion and∼150Mb on CHI1. In addition, as expected, the
highly complex structure was identified as the additional 0.4838
Mb-sized duplicated segment that was inversely inserted at the
breakpoint of the 10.16 kb deletion. Our findings were consistent
with the recent research results from a team in Germany that
used long-read whole-genome sequencing (Simon et al., 2020).
Although we utilized short-read sequencing technology, the large
sample size and classic case–control experimental design still
achieved the same effect. Our study confirmed that the XX
intersex goats from the hornless goat population in China share
the same PIS genome variant structure with European goats.

In accordance with previous studies that identified the
segment size and polymorphism in PIS deletion (Li et al., 2011).
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We believe that some loss in the ASR1 assembly occurred on the
last 180 bp section, while was not lost on the previous 11.7 kb
PIS deletion sequence (GenBank No. AF404302) investigated by
Simon et al. (2020). It was adjacent to the PISRT1 gene with the
closest physical distance. However, previous studies have shown
that PISRT1 does not participate in the expression of FOXL2 and
the determination/differentiation of the gonads. For example,
the overexpression of PISRT1 in PIS–/– fetuses does not affect
FOXL2 expression levels and gonadal development (Boulanger
et al., 2008).

The duplicated segment contained the KCNJ15 and ERG
genes. The extra copies of these two genes have an essential role in
horn and gonadal development. KCNJ15 is known to participate
in insulin secretion (Okamoto et al., 2012), nervous system
diseases (Zhou et al., 2018), gastric acid secretion (Yuan et al.,
2015), kidney cancer (Liu et al., 2019), and esophageal squamous
cell carcinoma (Nakamura et al., 2020). It is also involved in
gastric acid secretion and regulation (He et al., 2011), and the
relationship between gastric acid secretion and the effects of sex
hormones was verified decades ago (Adeniyi, 1991). The high
expression of KCNJ15 in follicle-associated epithelium suggests
that KCNJ15 may be involved in the functional development
of the ovary (Kobayashi et al., 2012) and implicates this gene
in female gonadal development. Furthermore, a large number
of studies have shown that ERG is not only an oncogene that
is related to a variety of cancers (Wang et al., 2017b; Zhang
et al., 2020), it also participates in the embryonic developmental
processes, including bone development (Iwamoto et al., 2000),
of a variety of organisms (Furlan et al., 2005; Nikolova-Krstevski
et al., 2009). This participation indicates that the ERG gene may
be related to horn and embryonic development.

Furthermore, Hi-C technology was used to study DNA
replication, transcription regulation, and DNA damage repair
and contact between chromosomal loci (Cremer and Cremer,
2001; de Wit and De Laat, 2012; Maass et al., 2018). Currently,
this topic is heavily explored in genomic research, and numerous
studies on technical method optimization have been performed
(Lin et al., 2018; Yardimci et al., 2019; Janaratne et al., 2020).

Intrachromosomal rearrangement or palindrome duplication
is associated with various processes of phenotypic determination
and development (Carbonell-Bejerano et al., 2017; Yin et al.,
2017; Mendoza et al., 2020). We performed the loop analysis of
the 3D genomes to further investigate the special chromosomal
spatial structures resulting from the identified intrachromosomal
rearrangement.We found several unique loop structures in CHI1
of homozygous PIS intersex goats but not in that of non-intersex
individuals. Many intrachromosomal rearrangement structures
can alter gene expression levels within and in areas adjacent to
a gene region by altering chromosomal structure (Demura et al.,
2007; Suzuki et al., 2020).

Substantial evidence indicates that many of the observed loops
are related to gene regulation and serve as anchors and promoters
(Ahmadiyeh et al., 2010; Hoffman et al., 2013; Rao et al., 2014).
The loops that we identified in this study were consistent and
clustered near the FOXL2 gene. Numerous pieces of evidence
have shown that silencing FOXL2 expression directly affects
ovarian development and oogenesis in fish (Fan et al., 2019),

mice, and humans (Uda et al., 2004; Thanatsis et al., 2019).
Specifically, the elimination of FOXL2 expression is sufficient
to induce female-to-male reversal in XX goats (Pannetier et al.,
2012; Boulanger et al., 2014). Therefore, although the regulatory
relationship between this newly discovered intrachromosomal
rearrangement and FOXL2 expression cannot be evaluated thus
far, the change in spatial chromosome 3D structure in the
adjacent region of FOXL2 was evident. Whether these loop
structures affect FOXL2 expression and cause intersexuality
by inhibiting cis-acting elements or switching trans-acting
elements should be evaluated through in-depth molecular
biology research.

In addition, we found that two genes were located within
the loop region: one was trafficking protein particle complex
subunit 1 pseudogene (LOC102191651), and the other was
an uncharacterized non-coding RNA (LOC108636917).
Additional evidence regarding the further functions of these
both genes remains lacking. Therefore, we cannot conclude
that these loops/two genes participate in gonadal development.
However, an interesting gene, PIK3CB, that was located further
downstream of LOC102191651 and LOC108636917 attracted
our attention. Numerous studies have shown that PIK3CB
plays an important role in the development and physiological
function of the ovary (Zheng et al., 2012; Li et al., 2013; Nteeba
et al., 2017). However, supernumerary data suggesting that
this gene is responsible for the occurrence and maintenance of
the intersexual phenotype are unavailable. Therefore, whether
the novel loop region containing both genes affects PIK3CB
expression and whether PIK3CB is a new essential factor that is
sufficient for causing female-to-male sex reversal in XX goats
need to be evaluated.

CONCLUSIONS

We performed the genome-wide selective sweep of intersex
goats with wide-genome next-generation sequencing. We doubly
verified that the structural variant of caprine PIS structure,
a 0.48Mb duplicated fragment located ∼20Mb downstream
of the PIS region that was reversely inserted into the PIS
deletion, was sufficient as a broad-spectrum clinical diagnostic
marker of XX intersex goats from Europe and China. The
existence of several private dense loop structures in the region
adjacent to FOXL2 of intersex XX goats but not in that
of non-intersex individuals suggested that intrachromosomal
rearrangement might affect the expression of FOXL2 or other
neighboring novel candidate genes. This effect needs to be further
evaluated. This study supported a precise genomic feature of
PIS phenotype in intersex goats from Europe and China and
provided new insights for future research on the molecular
genetic mechanism underlying female-to-male sex reversal
in goats.
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Following the successful creation of a biobank from two adult Thoroughbred mares,

this study aimed to recapitulate sample collection in two adult Thoroughbred stallions

as part of the Functional Annotation of the Animal Genome (FAANG) initiative. Both

stallions underwent thorough physical, lameness, neurologic, and ophthalmic (including

electroretinography) examinations prior to humane euthanasia. Epididymal sperm was

recovered from both stallions immediately postmortem and cryopreserved. Aseptically

collected full thickness skin biopsies were used to isolate, culture and cryopreserve

dermal fibroblasts. Serum, plasma, cerebrospinal fluid, urine, and gastrointestinal

content from various locations were collected and cryopreserved. Under guidance of

a board-certified veterinary anatomic pathologist, 102 representative tissue samples

were collected from both horses. Whole tissue samples were flash-frozen and prioritized

tissues had nuclei isolated and cryopreserved. Spatially contemporaneous samples

of each tissue were submitted for histologic examination. Antemortem and gross

pathologic examination revealed mild abnormalities in both stallions. One stallion

(ECA_UCD_AH3) had unilateral thoracic limb lameness and bilateral chorioretinal

scars. The second stallion (ECA_UCD_AH4) had subtle symmetrical pelvic limb ataxia,

symmetrical prostatomegally, and moderate gastrointestinal nematodiasis. DNA from

each was whole-genome sequenced and genotyped using the GGP Equine 70K SNP

array. The genomic resources and banked biological samples from these animals
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augments the existing resource available to the equine genomics community. Importantly

we may now improve the resolution of tissue-specific gene regulation as affected by sex,

as well as add sex-specific tissues and gametes.

Keywords: FAANG, horse, male, stallion, biobank

INTRODUCTION

Sex bias in animal model-based biomedical research has been
a focus area for the National Institutes for Health (NIH)
(Will et al., 2017). While the influence of sex on experimental
outcomes is undeniable, the adoption of sex as a consideration
for experimental design has been slow (Zucker and Beery, 2010).
Genomic regulation is particularly labile to the effect of sex
(Lee, 2018). With the intent of cataloging the functional and
regulatory elements of economically significant animal species,
there is need for the Functional Annotation of Animal Genome
(FAANG) project to diligently account for sex differences. This
is of importance to the equine industry in which sex of animal
is an important component of management and use, such as
predominance of females in polo competition and males in show
jumping (Fenner et al., 2019). The increased resolution of tissue
specific genomic, transcriptional, and epigenomic data will be
of significant benefit to the progress of equine genomics. In
particular, the ability to more precisely characterize regulation of
genomic regions associated with traits pertinent to equine health
and performance are made increasingly more possible (Kingsley
et al., 2019). The objective of the current study was to augment
the existing equine biobank with male samples. We report here
the addition of two male Thoroughbred horses to the biobank of
two female Thoroughbred horses initially established in 2016.

MATERIALS AND METHODS

Animals
Two Thoroughbred stallions (aged 3 and 4 years;
ECA_UCD_AH3 and ECA_UCD_AH4, respectively) were
donated for this project. ECA_UCD_AH3 had been in racing
training and sustained a career ending musculoskeletal injury
prior to donation. ECA_UCD_AH4 had not engaged in
racing training, and is a son of the reference genome donor
Twilight. Approval for all protocols was granted by the UC Davis
Institutional Animal Care andUse Committee (Protocol #21033).

Clinical Assessments
Complete physical examination (including complete blood
count and serum biochemistry) was performed and interpreted
by two board-certified internists (CJF and CGD) for both
stallions. Complete neurologic and lameness examinations were
performed by relevant recognized experts (CJF and SAK,
respectively) for both stallions within 24 h prior to euthanasia.
Complete ophthalmic examination of the anterior and posterior
segment (performed by KEK) as well as photopic and scotopic
electroretinography (ERG) was performed on both stallions
within 48 h prior to euthanasia.

Clinical Sample Collection
Serum and plasma samples were collected immediately prior to
euthanasia via an indwelling intravenous cannula. Heparin and
EDTA whole blood was centrifuged at 2,000× g for 10min at
4◦C. Plasma was harvested, flash frozen in liquid nitrogen and
stored at −80◦C. Whole blood in plain tubes was allowed to clot
for 30min at room temperature, with serum collected in the same
fashion as plasma.

Ejaculated sperm and seminal plasma were collected from
ECA_UCD_AH3 at the time of ophthalmic examination.
Ejaculated sperm was unable to be collected from
ECA_UCD_AH4. Seminal plasma was retrieved by un-
cushioned centrifugation at 2,000× g for 15min. The supernatant
was separated and centrifuged again before being passed through
a 20µm filter. The supernatant and sperm pellet were flash
frozen in liquid nitrogen and stored at−80◦C.

Immediately following euthanasia, the left testicle, epididymis,
and distal ductus deferens were removed from each horse.
The epididymes were removed and incised sharply transversely
at the cauda epididymis. Commercial semen extender was
flushed retrograde via the remaining ductus deferens. Recovered
spermatozoa were frozen in 0.5mL polyethylene straws by
controlled rate freezing protocol and stored in liquid nitrogen,
at 323 and 455.5 million sperm/mL for ECA_UCD_AH3 and
ECA_UCD_AH4, respectively.

Synovial fluid was collected aseptically (by centesis) from
the left middle carpal, radio-carpal joint and the left medial
compartment of the femoro-tibial joint from ECA_UCD_AH3
and the right middle carpal, radio-carpal joint and left medial
compartment of the femoro-tibial joint from ECA_UCD_AH4
immediately following euthanasia. A veterinary clinical
pathologist cytologically evaluated an aliquot of each sample
within 2 h of collection. The remaining sample was centrifuged
at 2,000× g for 10min at 4◦C, and the supernatant was flash
frozen in liquid nitrogen and stored at−80◦C.

Cerebrospinal fluid was collected aseptically via atlanto-
occipital centesis. A veterinary clinical pathologist cytologically
evaluated an aliquot of each sample within 2 h of collection. The
remaining sample was then processed in the same manner as
synovial fluid.

Peripheral Blood Mononuclear Cell
Collection
Whole blood was collected in EDTA tubes 24 h prior to humane
euthanasia. Using density gradient centrifugation, peripheral
blood mononuclear cells (PBMCs) were harvested as previously
described (Hida et al., 2002). Briefly, whole blood was overlayed
on a double gradient of 1,077 and 1,119 histopaque media
(Sigma-Aldrich). Then, samples were centrifuged at 700 g for
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30min with the enriched PBMC layer carefully removed, flash
frozen in liquid nitrogen and stored at−80◦C.

Tissue Specific Sampling
Full thickness skin biopsies were aseptically collected from the
area overlying the left gluteal muscles for dermal fibroblast
isolation and cultured as previously described (Raimondi et al.,
2011). Briefly, biopsies were washed in ice cold PBS with the
addition of penicillin and streptomycin. Fragments of the dermis
(2–3 mm2) were placed into a 24-well tissue-culture-treated plate
and covered in complete media (Dulbecco’s Minimum Essential
Medium, 20% fetal bovine serum, 2× non-essential amino
acids, 2mM L-glutamine, 2× penicillin/streptomycin, 2µg/ml
amphotericin B, and 1µg/ml fluconazole). At confluence, cells
were trypsinized, counted, and seeded in a 12-well plate. Cells
were passaged and frozen at passage three and four in a
DMSO-based cryoprotectant media and stored in liquid nitrogen
(Raimondi et al., 2011). DNA isolated from whole blood and
from cultured fibroblast cells of each horse were genotyped
and compared for 15 standard genetic markers (fourteen
microsatellites and one sex link marker amelogenin) routinely
tested for use in identify and parentage testing services as the UC
Davis Veterinary Genetics Laboratory.

A total of 102 issue samples were taken from all body systems
(Supplementary Table 1). Sample stations were arranged in
teams, with a veterinarian overseeing each team to ensure
appropriate tissue identification. Additionally, all tissues were
examined by a veterinary anatomic pathologist (VKA) for gross
abnormalities prior to collection (Supplementary Table 2).
Tissue samples were collected as previously described (Burns
et al., 2018). Briefly, samples from the most representative
portion of each tissue were collected and preserved in
10% buffered formalin for histopathology. Samples for
nuclei preparation and tissue banking were taken from sites
immediately adjacent (proximal and distal) to the representative
histopathology sections and flash frozen. Nuclei isolation was
performed as similarly to that described for the mare biobank,
with the exceptions of testis replacing ovary and C6 spinal cord
instead of T1 (Burns et al., 2018).

Genotyping and Whole-Genome
Sequencing
Genomic DNA was isolated from whole blood using a
previously validated technique (Burns et al., 2018). Whole-
genome sequencing using an Illumina NovaSeq (150 bp paired-
end reads) platform was performed at Admera Health, LLC
(South Plainfield, NJ), targeting 35X coverage for each horse.
Library preparation was performed using the KAPA library
quantification kit for Illumina (Roche Holding AG, Basel,
Switzerland). SNP genotyping was performed using the GGP
Equine 70K SNP bead chip array (Neogen GeneSeek, Lincoln,
NE). Genotype data were merged with those collected from the
prior sampling effort of Thoroughbred mares (Burns et al., 2018).
Marker positions were translated from EquCab2 to EquCab3
using the NCBI Genome Remapping Service (https://www.ncbi.
nlm.nih.gov/genome/tools/remap), removing markers that were
not mapped to any of the 31 autosomes. Using SNP data,

runs of homozygosity (ROH), a measure of diversity, was
quantified in DetectRuns (https://github.com/bioinformatics-
ptp/detectRUNS/tree/master/detectRUNS) using the method of
Marras et al. (2015). Analysis parameters required a minimum
of 15 SNPs, maxOpp Run = 1, max MIssRun = 1, maxGap =

10,000,000, minLengthBps = 100,000. Whole-genome sequence
data of the stallions and mares were processed and variants called
according to the pipeline outlined in Sieck et al. (2020), with the
exception of mapping to the EquCab3 reference genome (Burns
et al., 2018; Sieck et al., 2020). Bi-allelic autosomal SNPs were
extracted from the resulting vcf for ROH analysis in the same
manner as used for the SNP data.

Additionally, in an effort to provide extensive phenotyping
and genotyping for future studies on pigmentation biology,
both stallions were genotyped for coat color loci using the
commercially available horse full coat color and white pattern
panel (https://vgl.ucdavis.edu/panel/full-coat-color-pattern-
panel).

Pedigree Analysis
Individual inbreeding coefficients (F) were calculated from five-
generation pedigrees of both stallions and the previously sampled
mares (Burns et al., 2018) using Pedigraph (Garbe and Da, 2008).

Karyotyping
Sodium heparin stabilized whole blood samples were collected
7 days prior to euthanasia for karyotype characterization.
Karyotypes were generated for each horse using the previously
validated Pokeweed-stimulated lymphocyte culture (Raudsepp
et al., 2010). Thirty metaphase cells from ECA_UCD_AH3 and
ECA_UCD_AH4 were captured for analysis. Genomic DNA was
isolated from lymphocyte cultures for PCR detection of the sex
determining region Y (SRY) and androgen receptor (AR) genes,
as preciously described (Raudsepp et al., 2004).

RESULTS

Clinical Assessments
ECA_UCD_AH3 had several mild abnormalities apparent on
clinical examination, including a grade III/V left thoracic limb
lameness [AAEP scale (Baxter, 2020)] and chorioretinal scarring
of both eyes. Scoptopic ERG data for both horses is provided
in Supplementary Table 3. No other abnormalities were
detected antemortem for ECA_UCD_AH3. ECA_UCD_AH4
did not have clinically detectable lameness, however, a mild
grade I/V [Modified Mayhew scale (Furr and Reed, 2015)]
symmetrical pelvic limb ataxia was detected with a presumptive
neuroanatomical localization to the cervical spinal cord. No
other abnormalities were detected for ECA_UCD_AH4 on
clinical examination. No abnormalities were detected on
complete blood count or serum biochemistry for either stallion.

Clinical Sample Collection
Serum, plasma (collected in EDTA and heparin tubes), buffy coat
and urine were collected from both stallions. Seminal plasma
and ejaculated spermatozoa were obtained for ECA_UCD_AH3
only. Epididymal recovered spermatozoa from both stallions
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were successfully isolated and cryopreserved with adequate post
thaw kinematic parameters (Supplementary Table 4). Synovial
and cerebrospinal fluid samples were cytologically normal
(Supplementary Tables 5, 6). PBMCs were successfully collected
from both stallions.

Genotyping
Achieved coverage of the whole-genome sequence data was
38.7 and 37.5X for ECA_UCD_AH3 and ECA_UCD_AH4,
respectively. Relative to the reference genome, between 5.4
(ECA_UCD_AH3) and 3.8 (ECA_UCD_AH4) million variants
were observed. Data are publically available through the FAANG
consortium. Combining the 70K genotype data of the stallions
to that from the two mares and removing variants present on
sex chromosome data and on unmapped contigs, 59,823 variants
remained. The count of ROH per horse was similar (498–503)
for all four horses, except ECA_UCD_AH4 (280). However,
ECA_UCD_AH4 had a greater number of long (>8Mb) ROH
than all other horses (Supplementary Table 7). Considering
SNP data from WGS, between 1,822 (ECA_UCD AH1) and
2,867 (ECA_UCD AH4) ROH were observed. Five-generation
pedigree-based inbreeding estimates ranged from 0 (ECA_UCD
AH1) to 0.344 (ECA_UCD AH4).

Genetic profiles from cultured fibroblast cells matched to that
of the expected horse (15/15 markers matched for each horse,
presented in Supplementary Table 8).

ECA_UCD_AH3 is genetically defined as a bay horse (E/e
A/a) with one copy of dominant white 20 (N/W20), while
ECA_UCD_AH4 was gray with a bay base coat (E/e A/A)
before graying out and was homozygous for dominant white
20 (W20/W20) (all coat color genotypes are presented in
Supplementary Table 9).

Karyotype
Both stallions had a normal 64 XY male karyotype with no
apparent structural or numerical chromosomal abnormalities.
Both stallions were positive for the SRY and AR genes.

Tissue Specific Sampling
Sample collection commenced 30min following euthanasia and
was concluded within 3 h for all tissue samples. Samples from 102
tissues were collected and flash frozen (Supplementary Table 1).
Sixteen of these tissues also had nuclei isolated and cryopreserved
(Supplementary Table 1).

Pathology
Gross examination of ECA_UCD_AH3 was without
abnormality, except for a 15 × 2 × 1.3 cm firm area at the
caudal margin of the left caudal lung lobe. This area was
therefore avoided for sampling. Histologic examination
of the area identified locally extensive fibrosis, Type II
pneumocyte proliferation and alveolar histiocytosis, which
is consistent with a previous pulmonary inflammatory insult.
Mild lymphocytic inflammation was noted at several sections
of the gastrointestinal tract, but were considered incidental.
Gross examination of ECA_UCD_AH4 revealed marked
gastrointestinal nematodiasis throughout the large and small

intestinal segments. Gastrointestinal segments had marked
lymphocytic and eosinophilic infiltrates consistent with
gastrointestinal parasitism. ECA_UCD_AH4 had marked
prostatomegally grossly, but was without abnormality on
histopathology. There were no gross or histologic findings
of the central nervous system of ECA_UCD_AH4 that could
explain the mild sensory ataxia. There were no other significant
histologic abnormalities. Summary of all pathologic findings are
summarized in Supplementary Table 2.

DISCUSSION

We report the successful completion of the male equine biobank
for the FAANG consortium. This project has added 102 tissues
from two stallions in addition to seven body fluids, one cell
line and spermatozoa to the biobank for use by the equine
research community. This study recapitulated the guidelines of
the original equine tissue collection, demonstrating that this
method is repeatable and appropriate for this type of endeavor.

Stringent phenotype information both ante- and postmortem
are a critical feature of this biobank and lends strength to the
interpretation of results of subsequent studies using these tissues.
Similarly, it also establishes the boundaries for the interpretation
of data derived from this biobank. This is especially true
for the gastrointestinal tissues that had lymphocytic and/or
eosinophilic infiltrates. Previous tissue collection from both
mares also had a similar infiltrate pattern in the gastrointestinal
sections to the stallions described here (Burns et al., 2018).
While this makes the direct comparison between male and
female samples more consistent, it underscores the necessity
to perform detailed phenotypic characterization of the tissues.
The available phenotype information was expanded in this
data set with the addition of ERG measurements. Further, this
additional information enhances the ability to select tissue with
the most normal function or, at minimum, document pathology
that may affect future assays. In this case, the left retina from
ECA_UCD_AH3 with an abnormal waveform was not used for
the tissue bank, with the normal right retina retained.

The available whole-genome sequencing and SNP genotyping
data from these horses to accompany the biobank and pending
tissue-specific regulatory information will assist in future
genomic investigations. In this sampling effort, the availability of
a stallion closely related to the mare from which the reference
genome is based (Twilight) is expected to provide high accuracy
mapping and allow for more in depth investigations of achieved
vs. predicted inbreeding. The intentional inbreeding that resulted
in ECA_UCD_AH4 (by breeding record) was corroborated by
the frequency and relatively large ROH as identified in the
analysis of the SNP genotype data. This also highlights the
limitation of this biobank, as it is restricted to a single breed.
Future investigation may need to include more diverse biologic
replicates to account for between breed variations in gene
regulation (Li et al., 2012).

While the equine FAANG project has not progressed to
the level of the ENCODE project in humans, important
data have already been generated from the equine biobank
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(ENCODE Project Consortium, 2012). Histone modifications as
analyzed by chromatin immunoprecipitation sequencing have
been established for eight tissues from the original two mares
(Kingsley et al., 2019). The addition of repressive and enhancing
epigenetic marks to the catalog of equine genome regulation is of
great benefit to the equine research community. Sex-biased gene
regulation is strongly intertwined with epigenetic regulation,
especially as it relates to histone modifications (Tsai et al., 2009).
This reinforces the need for the equine FAANG project to
expand the existing biobank withmale samples. This undertaking
was no small feat and required the sacrifice of two additional
animals. However, the benefit to future equine genomic studies
is immense.

Although this study concludes the tissue collection arm of
the FAANG project, the work to annotate the equine genome
continues in earnest. This addition to the biobank expands the
list of tissues available to the equine research community. Groups
with specific interest in certain tissues are encouraged to contact
the corresponding author for availability, as the “adopt-a-tissue”
program successfully used with the original collection is also
available for these male samples.
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INTRODUCTION

The equine genetics and genomics research community has a long history of synergistic
collaborations for developing tools and resources to advance equine biology. Starting in 1995
with the first International Equine Gene Mapping Workshop supported by the Dorothy Russell
Havemeyer Foundation Inc. (Bailey, 2010), researchers collaborated to build comprehensive equine
linkagemaps (Guérin et al., 1999, 2003; Penedo et al., 2005; Swinburne et al., 2006), radiation hybrid
and comparative maps (Caetano et al., 1999; Chowdhary et al., 2002), physical marker and BAC
contig maps (Raudsepp et al., 2004, 2008; Leeb et al., 2006), reference genomes for the horse (Wade
et al., 2009; Kalbfleisch et al., 2018), and genotyping arrays to economically map and study traits of
interest for horse owners and breeders (McCue et al., 2012;McCoy andMcCue, 2014; Schaefer et al.,
2017). Continuing the legacy of community-based advancements, a new collective effort began in
2015 to functionally annotate DNA elements in the horse as part of the international Functional
Annotation of ANimal Genomes (FAANG) Consortium (Andersson et al., 2015; Tuggle et al., 2016;
Burns et al., 2018).

Reminiscent of the ENCODE project in humans and mice (Dunham et al., 2012), the ultimate
goal of the FAANG consortium is to annotate the major functional elements in the genomes of
domesticated animal species (Andersson et al., 2015). In particular, four histone modifications
were chosen by the consortium to characterize the genomic locations of enhancers (H3K4me1),
promoters and transcription start sites (H3K4me3), open chromatin with active regulatory
elements (H3K27ac), and facultative heterochromatin with inaccessible or repressed regulatory
elements (H3K27me3) (Andersson et al., 2015; Giuffra and Tuggle, 2019). The initial equine
FAANG efforts identified putative regulatory regions in eight prioritized tissues of interest (TOI) by
performing Chromatin Immuno-Precipitation Sequencing (ChIP-Seq) for the four target histone
marks (Kingsley et al., 2020). In that investigation, more than one million putative regulatory sites
were characterized across the equine genome. With more than 80 tissues, cell lines, and body fluids
stored in the equine biobank (Burns et al., 2018), further opportunities to expand the scope of
the annotation work exist. To leverage the benefits of the biobank, a collaborative sponsorship
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https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.649959
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.649959&domain=pdf&date_stamp=2021-03-26
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rbellone@ucdavis.edu
https://doi.org/10.3389/fgene.2021.649959
https://www.frontiersin.org/articles/10.3389/fgene.2021.649959/full


Kingsley et al. “Adopt-a-Tissue” Initiative in the Mare

program titled “Adopt-a-Tissue” was created to enable
researchers from across the globe to select and support
annotation of a tissue by the equine FAANG group. Through this
effort, four additional “Adopted” tissues— spleen, metacarpal
3 (MC3), sesamoid, and full thickness skin— were assayed by
histone mark ChIP-Seq to expand the tissue-specific annotation
resources for the entire equine research community.

METHODS

All ChIP-Seq assays were performed by Diagenode ChIP-Seq
Profiling Service (Diagenode, Cat# G02010000, Liège, Belgium).
Summarized experimental procedures are available in more
detail at the FAANG FTP portal hosted by EBI (ftp://ftp.
faang.ebi.ac.uk/faang/ftp/protocols/assays/ and ftp://ftp.faang.
ebi.ac.uk/faang/ftp/protocols/experiments/). Spleen samples
were processed following the assay procedures outlined in
UCD_SOP_ChIP-Seq_for_Histone_Marks_20191101.pdf.
Skin and both bone tissues were processed following
the experimental protocols outlined in UCD_SOP_ChIP-
seq_for_Histone_Marks_Skin_20201218.pdf and
UCD_SOP_ChIP-seq_for_Histone_Marks_Bone_20201218.pdf,
respectively. “Adopted” tissues, as summarized in
Supplementary Table 1, were collected from two Thoroughbred
mares (denoted as ECA_UCD_AH1 for SAMEA104728862 and
ECA_UCD_AH2 for SAMEA104728877) as part of the FAANG
equine biobank (Burns et al., 2018) following protocols approved
by the University of California, Davis Institutional Animal Care
and Use Committee (Protocol #19037).

Chromatin was isolated from the two bone tissues using
the TrueMicro ChIP-Seq kit (Diagenode Cat# C01010140)
and from spleen and skin using the iDeal ChIP-Seq kit for
Histones (Diagenode Cat# C01010059). Starting amounts for
each replicate varied by tissue with ∼100mg for spleen, 375–
770mg for MC3, 445–650mg for sesamoid, and ∼125mg for
skin. After homogenization, fixed samples were sheared with the
Bioruptor R© Pico (Diagenode Cat# B01060001) for 12 (spleen),
10–12 (MC3 and sesamoid), and 8 (skin) cycles of 30 s on and
30 s off. The amount of chromatin yield and thus chromatin per
IP varied by tissue. Spleen and skin had the greatest amounts (1.5
µg and 600 ng, respectively) per IP and MC3 and sesamoid had
the least (350 ng each). The following antibody concentrations
were used for MC3, sesamoid, and skin: 0.5 µg for H3K4me1, 0.5
µg for H3K4me3, 1µg for H3K27ac, and 1µg for H3K27me3. To
account for the greater amount of chromatin from spleen, twice
the amount of antibody was used for each mark compared to
the other three tissues. For all tissues, 10% of the total chromatin
from each replicate was saved for the input.

Libraries were prepared with the IP-Star R© Compact
Automated System (Diagenode Cat# B03000002) using the
MicroPlex Library Preparation Kit v2 (Diagenode Cat#
C05010013). Spleen, MC3, and sesamoid were sequenced as
50 base pair single-end (SE) reads on the HiSeq 4000 platform
(Illumina, San Diego, CA, USA). For these tissues, the broad
mark (H3K27me3) was sequenced to a minimum of 50M raw
reads while the remaining marks (H3Kme1, H3K4me3, and

H3K27ac) and the input were sequenced to a minimum depth of
30M raw reads. Due to advancements in sequencing technology,
skin tissue was sequenced as 50 base pair paired-end (PE) reads
on the NovaSeq 6000 (Illumina, San Diego, CA, USA). For skin,
the broad mark (H3K27me3) was sequenced to a minimum
of 100M raw fragments while the remaining marks (H3Kme1,
H3K4me3, and H3K27ac) and the input were sequenced to a
minimum depth of 40M raw fragments.

Methods for analyzing SE reads followed the procedures
described previously (Kingsley et al., 2020) and modifications
were made to the SE analysis methods to accommodate PE
data generated from skin. After trimming with Trim-Galore
version 0.4.0 (Martin, 2011; Andrews et al., 2012), reads were
aligned to EquCab3.0 (Kalbfleisch et al., 2018) with BWA-
MEM version 0.7.9a (Li and Durbin, 2009). Alignments in
BAM format were filtered using SAMtools version 1.9 (Li et al.,
2009). Reads were removed if they did not map, had secondary
alignments (including split hits), failed platform/vendor quality
tests, were identified as optical duplicates, or had an alignment
quality score <30. PE reads were also removed if the mates
did not map. PCR duplicates were marked with PicardTools
version 2.7.1 (Picard toolkit, 2019) and removed with SAMtools.
For peak-calling, MACS2 version 2.1.1.20160309 (Zhang et al.,
2008) was used to call peaks for all marks with PE data
denoted by a PE flag (-f BAMPE). SICERpy version 0.1.1
was also used to call peaks for H3K27me3 as it specializes
in broad peak calling (SICERpy, SICERpy, GitHub Repository;
Zang et al., 2009). To use SICERpy with the PE data,
the second read in each pair was removed and data were
processed as SE based on recommendations from the software
developers. Peak-calls were combined by identifying overlapping
regions of enrichment in both biological replicates where
at least one replicate was significantly enriched for a given
mark. Heatmaps and quality metrics were generated using
deepTools 2.4.2 (Ramírez et al., 2016), SPP 1.13 (Kharchenko
et al., 2008), and custom scripts. Detailed bioinformatic
workflows are available at ftp://ftp.faang.ebi.ac.uk/faang/ftp/
protocols/analysis/.

QUALITY ASSESSMENT

Library Complexity
Data were assessed for library complexity with metrics
established by ENCODE and endorsed by FAANG, including
nonredundant fraction (NRF), PCR bottleneck coefficient
1 (PBC1), and PCR bottleneck coefficient 2 (PBC2) (Landt
et al., 2012; Kingsley et al., 2020). All of the libraries prepared
surpassed the quality threshold for the PBC2 metric (PBC2 >

1), however, several marks and tissues fell below the quality
threshold for NRF and PBC1 (Table 1). For example, three of
the four marks for spleen passed all library complexity measures
while the H3K27me3 data from both biological replicates failed
NRF and PBC1. Additionally, both replicates for sesamoid and
MC3 passed all three metrics for H3K4me1 and H3K27me3
but fell below threshold for H3K4me3 and H3K27ac. All skin
libraries passed NRF and PBC1 thresholds with three exceptions:
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TABLE 1 | Quality metrics and peak-calling summary for each biological replicate.

Mark Tissue Replicate NRF PBC1 PBC2 NSC RSC JSD FRiP Peak calls

Threshold: (>0.5) (>0.5) (>1) (>1.05) (>0.8) (>0.05) (>0.01)

K4me1 Spleen AH1 0.65 0.64 2.82 1.03 0.98 0.39 0.20 84,146

K4me1 Spleen AH2 0.74 0.74 3.80 1.04 0.96 0.39 0.25 113,447

K4me3 Spleen AH1 0.62 0.64 2.98 2.67 1.44 0.62 0.57 28,735

K4me3 Spleen AH2 0.57 0.60 2.67 2.53 1.34 0.62 0.57 31,198

K27ac Spleen AH1 0.65 0.66 2.96 1.34 1.54 0.46 0.29 50,977

K27ac Spleen AH2 0.70 0.70 3.40 1.31 1.46 0.45 0.29 60,281

K27me3 OriginalSpleen AH1 0.43 0.42 1.79 1.01 0.64 0.02 0.05 1,136

K27me3 RepeatSpleen AH1 0.13 0.28 2.94 1.03 0.33 0.20 0.02 164

K27me3 MergedSpleen AH1 0.32 0.40 1.86 1.01 0.59 0.50 0.05 6,297

K27me3 OriginalSpleen AH2 0.44 0.43 1.82 1.01 0.67 0.05 0.08 6,647

K27me3 RepeatSpleen AH2 0.66 0.67 3.02 1.02 0.74 0.06 0.10 32,492

K27me3 MergedSpleen AH2 0.53 0.55 2.40 1.01 0.83 0.06 0.11 37,629

K4me1 Sesamoid AH1 0.63 0.63 2.64 1.02 0.63 0.31 0.08 43,397

K4me1 Sesamoid AH2 0.84 0.85 6.46 1.01 0.49 0.21 0.00 4

K4me3 Sesamoid AH1 0.37 0.39 1.79 2.33 1.26 0.57 0.48 19,617

K4me3 Sesamoid AH2 0.39 0.40 1.78 1.40 1.20 0.41 0.21 16,524

K27ac Sesamoid AH1 0.42 0.42 1.81 1.16 1.19 0.40 0.19 34,223

K27ac Sesamoid AH2 0.34 0.34 1.67 1.02 0.60 0.31 0.02 5,013

K27me3 Sesamoid AH1 0.68 0.68 3.11 1.01 0.48 0.25 0.06 1,840

K27me3 Sesamoid AH2 0.75 0.75 3.97 1.01 0.56 0.18 0.00 0

K4me1 MC3 AH1 0.74 0.74 3.76 1.02 0.68 0.12 0.09 56,238

K4me1 MC3 AH2 0.77 0.77 4.28 1.02 0.63 0.13 0.07 47,452

K4me3 MC3 AH1 0.14 0.27 2.91 2.73 1.22 0.48 0.50 19,209

K4me3 MC3 AH2 0.32 0.34 1.71 2.56 1.20 0.48 0.50 21,339

K27ac MC3 AH1 0.27 0.29 1.65 1.25 1.19 0.30 0.23 36,022

K27ac MC3 AH2 0.09 0.26 4.56 1.38 0.95 0.32 0.19 16,638

K27me3 MC3 AH1 0.57 0.58 2.36 1.01 0.55 0.25 0.10 17,001

K27me3 MC3 AH2 0.65 0.65 2.88 1.01 0.51 0.22 0.08 13,790

K4me1 Skin AH1 0.43 0.47 2.14 1.15 2.85 0.29 0.34 115,470

K4me1 Skin AH2 0.53 0.55 2.39 1.13 3.06 0.25 0.29 109,322

K4me3 Skin AH1 0.41 0.46 2.12 3.14 1.27 0.60 0.69 24,442

K4me3 Skin AH2 0.32 0.40 2.12 3.19 1.30 0.60 0.68 23,584

K27ac Skin AH1 0.50 0.53 2.30 1.51 1.45 0.41 0.47 58,278

K27ac Skin AH2 0.58 0.59 2.57 1.47 1.46 0.40 0.47 57,737

K27me3 Skin AH1 0.50 0.53 2.36 1.06 3.20 0.14 0.24 95,788

K27me3 Skin AH2 0.50 0.54 2.40 1.06 4.09 0.11 0.21 77,151

The summary includes six quality metrics—NRF, Non-Redundant Fraction; PBC1 and PBC2, PCR Bottleneck Coefficient 1 and 2; NSC, Normalized Strand Cross-Correlation Coefficient;

RSC, Relative Strand Cross-Correlation Coefficient; FRiP, Fraction of Reads in Peaks– and thresholds originally established by ENCODE, and the Jensen Shannon Distance (JSD).

Samples include all of the original spleen IP, the repeated spleen IP for H3K27me3, and the merged (original + repeated) spleen IPs for H3K27me3. Peaks used to determine FRiP

and peak numbers for H3K27me3 were called with SICER. All other peaks were generated with MACS2. Biological replicates are denoted as AH1 for SAMEA104728862 and AH2

for SAMEA104728877. Red highlighting indicates values below the quality thresholds.

both replicates for H3K4me3 and ECA_UCD_AH2 replicate
for H3K4me1.

In addition to quality metrics, sequencing data were evaluated
at several processing stages of the analysis including alignment
and PCR deduplication. All datasets generated high mapping
quality scores (>35) and exceeded the minimum sequencing
targets as described in the methods (Supplementary Table 2).
Skin and spleen tissues retained a high number of reads
for H3K4me1, H3K4me3, and H3K27ac after alignment,

filtering, and deduplication (>20M reads per replicate).
Although all three activating marks were sequenced to
the same target for both bone tissues, H3K4me1 retained
more than 20M reads per replicate while H3K4me3 and
H3K27ac fell below 20M processed reads per replicate
with the majority of reads removed by deduplication. More
than 40M reads remained for each H3K27me3 replicate
after processing with the exception of ECA_UCD_AH2
for sesamoid.
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IP Enrichment
Data were also evaluated for IP enrichment using a variety of
metrics to determine signal quality. Using normalized strand
cross correlation (NSC) and relative strand cross correlation
(RSC) assessments established by ENCODE (Landt et al.,
2012), all marks for skin tissue exceeded the minimum quality
threshold (Table 1). Additionally, the biological replicates for
H3K4me3 and H3K27ac from spleen and MC3, as well as the
H3K4me3 replicates for sesamoid, passed both cross-correlation
measures. Similar to the library complexity metrics, several
tissues fell below the quality thresholds (NCS > 1.05 and RSC
> 0.8) including H3K4me1 from sesamoid and MC3; H3K27ac
from ECA_UCD_AH2 sesamoid; and H3K27me3 from spleen,
sesamoid, and MC3. Alignments were also assessed using the
Jensen Shannon distance (JSD) to compare the distribution of
reads with that of the background (input). Using JSD, H3K27me3
from both spleen replicates had values below 0.05, which is
indicative of insufficient IP enrichment.

The final measure of IP enrichment evaluated the fraction
of reads in peaks (FRiP) by comparing the peak calls with the
read distribution for each sample. All tissues produced a high
proportion of aligned reads within peaks for H3K4me3, ranging
from 0.21 for sesamoid to 0.69 for skin. Similarly, MC3, skin,
and spleen generated high FRiP scores for H3K27ac (0.47–0.19),
and peaks from skin and spleen also scored well for H3K4me1
(0.47–0.29). Although lower than the values from skin and
spleen, FRiP scores from MC3 indicated sufficient enrichment
was obtained for H3K4me1 (0.07–0.09). For sesamoid tissue,
the ECA_UCD_AH2 replicate generated peaks with comparable
enrichment for H3K4me1, H3K27ac, and H3K27me3, while
the ECA_UCD_AH2 replicate scored below threshold for both
H3K4me1 and H3K27me3 (0.0005 and 0.0043, respectively).
Further, H3K27me3 peaks from skin generated a substantially
higher fraction of reads compared with MC3 and spleen (0.21–
0.24 vs. 0.05–0.10), although all three of these tissues obtained
sufficient enrichment based on this assessment.

Replicate Comparison
In addition to quality assessments for the read alignments,
peaks called from the biological replicates were compared.
For most of the marks, the percentage of genome covered by
peaks was consistent with previously reported values for the
TOI (Table 1). For sesamoid tissue, at least one replicate for
H3K4me1, H3K27ac, and H3K27me3 generated fewer peak calls
than expected based on results from the other replicate and
the MC3 replicates. Additionally, the initial data for H3K27me3
from both spleen replicates yielded fewer peaks in accordance
with the low complexity and enrichment scores for those
libraries. The Jaccard similarity coefficient identified the highest
correlation between the biological replicates for H3K4me3 across
all “adopted” tissues, ranging from 0.65 to 0.84 (Table 2), and
data from skin also showed high correlation for all marks
(0.44–0.84). Replicates for spleen and MC3 had moderate levels
of similarity for H3K4me1 and H3K27ac (0.32–0.58), while
the biological replicates for H3K4me1 and H3K27me3 from
sesamoid had no identity detected, consistent with the low-
scoring quality assessments.

Additional Data Collection
Due to insufficient enrichment and replicate identity, IP and
sequencing were repeated for H3K27me3 from both spleen
replicates. Unfortunately, the repeated ECA_UCD_AH1 data
had low library complexity and IP enrichment (Table 1 and
Supplementary Table 2). To achieve sufficient data for accurate
peak calling from spleen tissue, the first round of IP and
sequencing from ECA_UCD_AH1 for H3K27me3 and both
rounds from ECA_UCD_AH2 were used for combined peak
calling. Reads from the two input files for ECA_UCD_AH2 were
also merged. The number of combined peaks increased from
4,955 covering 1.98% from the first round of sequencing to
5,267 covering 2.18% of the genome when data were merged
(Table 2). Similar issues with enrichment prevented sufficient
signal for peak calling in sesamoid for three of the four marks,
and therefore, a second round of IP and quality evaluation of
ECA_UCD_AH2 sesamoid is underway for H3K4me1, H3K27ac,
and H3K27me3.

DATA METRICS

After combining replicates, the number of retained peaks for each
mark from the SE data ranged from 4,933 to 73,528 for spleen
and from 5,628 to 46,511 for MC3 (Table 2). For both tissues,
H3K4me1— the mark indicative of enhancers— was found to
have the highest number of peaks while the repressive mark
was found to have the lowest. This pattern is also consistent
with the TOI data (Kingsley et al., 2020). For PE skin data,
the number of combined peaks varied from 24,353 to 92,971
regions, and H3K4me3, which denotes promoters, was the mark
with the lowest number of peaks. Additionally, the amount
of the genome covered by H3K27me3 peaks was substantially
higher for skin compared to the other equine FAANG tissues
analyzed to date (6.28 vs. 2.94%), while the number of reads
retained for H3K27me3 from the PE data after filtering (42.8%)
was comparable to the average retained for all of the equine
H3K27me3 SE data (41.3%, PRJEB42315 and PRJEB35307).

Evaluating general enrichment patterns revealed that the
“adopted” tissues detected mark distributions for the activating
marks that were consistent with those identified previously for
the TOI (Supplementary Figures 1–3). Data for H3K27me3
from skin, however, generated strong enrichment around the
TSS and upstream of an average gene, while still maintaining a
similar level of relative enrichment for H3K27me3 distributed
throughout the rest of the gene body and downstream as
seen for other tissues (Supplementary Figure 4). Evaluation
of the spleen datasets detected the strongest H3K27me3
enrichment when combining the original ECA_UCD_AH1
dataset and the merged ECA_UCD_AH2 dataset (denoted
as “spleen” on Supplementary Figure 4). While enrichment
distributions for sesamoid tissue detected consistent patterns
for H3K4me1, H3K27ac, and H3K27me3, the relative level
of enrichment is lower than expected based on the other
tissues. In addition to genome-wide evaluations, the replicate-
combined peak calls were also manually evaluated across
a small number of well-characterized regions. Consistent
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TABLE 2 | Summary of the combined peak calls and replicate comparison.

Mark Tissue Combined peak number % Covered Jaccard similarity coefficient

H3K4me1 Spleen 73,528 2.98 0.44

H3K4me3 Spleen 28,661 1.56 0.80

H3K27ac Spleen 51,427 1.82 0.58

H3K27me3 MACS2 Spleen 7,349 0.09 0.01

H3K27me3 SICER Spleen 449 0.22 0.03

H3K4me1 MC3 46,511 1.16 0.32

H3K4me3 MC3 20,556 1.10 0.75

H3K27ac MC3 31,547 1.08 0.38

H3K27me3 MACS2 MC3 15,304 0.40 0.28

H3K27me3 SICER MC3 5,628 2.57 0.28

H3K4me1 Sesamoid 750 0.01 0.00

H3K4me3 Sesamoid 17,361 1.07 0.65

H3K27ac Sesamoid 13,160 0.67 0.08

H3K27me3 MACS2 Sesamoid 390 0.01 0.00

H3K27me3 SICER Sesamoid 703 0.26 0.00

H3K4me1 Skin 92,971 4.56 0.50

H3K4me3 Skin 24,353 1.60 0.84

H3K27ac Skin 54,946 3.38 0.67

H3K27me3 MACS2 Skin 51,480 6.02 0.44

H3K27me3 SICER Skin 11,764 6.28 0.44

The summary includes the combined number of peaks and the percentage of the genome covered by those peaks. The Jaccard Similarity Coefficient compares the two biological

replicates with 1 being perfectly concordant and 0 being entirely discordant. Peaks for H3K4me1, H3K4me3, and H3K27ac were called with MACS2.

with expectations, activating marks were detected at the
TSS and upstream of ubiquitously expressed genes such
as ACTB for all tissues (Supplementary Figures 5A,B).
Additionally, all “adopted” tissues lacked peaks indicative
of active transcription for a liver-specific gene known as CYP2E1
(Supplementary Figures 5C,D).

DISCUSSION

The ENCODE project profoundly impacted scientific
understanding of genome function in humans by enabling
researchers to explore previously impossible challenges, such
as charting genomic landscape shifts during development
and uncovering enhancer networks associated with disease
(Nord et al., 2013; Rhie et al., 2016). The advancements made
by ENCODE paved a path for the FAANG consortium to
characterize genomic function in numerous agricultural species
(Andersson et al., 2015; Tuggle et al., 2016; Giuffra and Tuggle,
2019), which will expand research opportunities across diverse
genera. As a part of the larger consortium, the equine FAANG
group established a community-based initiative to “adopt”
additional tissues for annotation. As a result of that expansive
collaborative effort, characterization of putative regulatory
regions was performed in spleen, sesamoid, MC3, and skin.
The four additional tissues are of major importance for equine
health and traits of economic impact. Specifically, research
on catastrophic fracture involving sesamoid and MC3 can

benefit from bone-specific annotations as recent advances in
treatment have focused on transgenically modified stem cell
therapeutics (Ball et al., 2019). Similarly, many diseases and
traits under artificial selection in horses, such as melanoma,
insect bite hypersensitivity, and coat colors including Appaloosa
spotting among others, involve skin tissue (Rieder et al., 2000,
2001; Bellone et al., 2008, 2013; Rosengren Pielberg et al.,
2008; Curik et al., 2013; Lanz et al., 2017). Several of these
characterized phenotypes have been associated with mutations
affecting gene expression (Rieder et al., 2000; Rosengren
Pielberg et al., 2008; Bellone et al., 2013), making regulatory
regions identified from whole skin a valuable resource for
equine researchers. The “Adopt-a-Tissue” effort fits into a

broader legacy of collaborative resource development that has

historically led to rapid advancements for equine genomics

and will continue to push equine science toward new frontiers.
In concordance with past community efforts, the high quality
data generated from the “Adopted” tissues are publicly available
to benefit all investigators and lead to further progress in
equine research.

Using quality metrics first standardized by ENCODE
(Dunham et al., 2012), we identified low IP enrichment
for the broad mark in spleen, sesamoid, and MC3 tissues.

Unlike the SE datasets, the skin replicates sequenced with PE

reads generated a higher enrichment signal for H3K27me3 as

determined by quality metrics and enrichment topology plots.
In particular, enrichment near the TSS was more strongly
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detected for skin than for any of the TOI or the other
“adopted” tissues, suggesting that PE reads may better evaluate
the broad repressive mark than SE datasets. With only one
tissue evaluated as PE, we cannot exclude the possibility
that this enrichment pattern may be skin-specific rather than
evidence of a better method for detecting H3K27me3. Although
enrichment difficulties have been previously recognized for the
broad domains like those of H3K27me3 (Landt et al., 2012;
Carelli et al., 2017), investigation of specific ChIP methods for
broad histone marks appear to be rare. O’Geen et al. (2011)
used both short and long sonication periods to account for
the different rates of shearing efficiency for compact versus.
open chromatin. They found that the larger DNA fragments
after sonication were more enriched for broad repressive histone
marks while smaller fragments were more likely to contain
active chromatin modifications (O’Geen et al., 2011). Their
work suggests that shorter sonication times and stringent size
selection may bias ChIP samples toward higher enrichment
of regions containing narrow marks at the expense of more
condensed areas with broad marks, yet current ChIP-Seq
standards do not encourage separate protocols for the different
mark topologies (Landt et al., 2012; ENCODE Guidelines
for Experiments Generating ChIP-seq Data, 2017). Instead,
advances in ChIP-Seq methods have focused on analysis and
software development to accommodate the different enrichment
levels expected from broad and narrow domains assayed with
the same protocol (Zhang et al., 2008; Zang et al., 2009).
Future investigations involving H3K27me3 and other broad
histone modifications may benefit from developing bench
protocols, including sequencing parameters, that are specific for
broad marks.

To account for insufficient H3K27me3 signal from spleen
tissue, IP and sequencing were repeated for both biological
replicates. By combining the reads from both sets of data for
ECA_UCD_AH2, we were able to obtain sufficient enrichment
for peak identification. These data support that combining
results from different IPs performed on the same tissue
sample can be a useful approach to obtain the enrichment
needed for annotation purposes. Study of the best means for
combining information from biological and technical replicates
for differential enrichment analyses suggests that combining
ChIP datasets without accounting for enrichment levels may
lead to more false negatives (Bao et al., 2013). Although our
data may not have captured all possible peaks, combining data
enabled detection of more H3K27me3 peak calls with higher
consistency than possible with the first dataset alone. Therefore,
the current peak calls can serve as the starting point for
spleen-specific annotations, which can be improved upon with
characterization of heterochromatin regions from additional
equine spleen samples.

The low quality metrics for three of the four marks from
ECA_UCD_AH1 sesamoid tissue indicated there was low IP
enrichment. To the best of the authors’ knowledge, the MC3
and sesamoid data generated here represent the first histone
mark peak calls from healthy, whole bone tissue. The overall
lower quality metrics for bone tissues support the difficulty of
working with these tissues, however, one of the two replicates for

sesamoid showed sufficient quality for all four marks, suggesting
the issue may be sample specific. To determine if any issues
arose during chromatin extraction or IP, further evaluation
of H3K4me1, H3K27ac, and H3K27me3 marks in sesamoid
tissue from ECA_UCD_AH1 is warranted. Additional data
generated from ECA_UCD_AH1 sesamoid tissue will be added
to PRJEB42315 when available.

Previous equine annotations were developed based on
homology and transcriptomics, leaving much of the genome,
especially noncoding regions, uncharacterized (Hestand et al.,
2015; Aken et al., 2016; Mansour et al., 2017). While valuable,
annotation of regulatory regions based solely on homology
with other species is not expected to be sufficient given the
evolutionary role of these elements within and among species
(Schmidt et al., 2010; McLean et al., 2011; Shibata et al.,
2012; Lowdon et al., 2016). With the first publication of the
equine FAANG data from eight prioritized tissues (Kingsley
et al., 2020) and the four “adopted” tissues presented in
this manuscript, researchers can begin to interrogate the role
of regulatory regions in equine traits, such as the recent
investigation of a novel 16KB deletion associated with an
ocular disorder known as distichiasis (Hisey et al., 2020). Future
annotations for the horse will include maps of regulatory states
characteristic of healthy tissue, making it a vital resource to
compare against disease states. The histone ChIP-Seq data
from the horse have already been integrated into a useable
annotation resource by a new project known as FAANGMine
(FAANGMine, FAANGMine). Similar to FlyMine (Lyne et al.,
2007), the project aims to combine the results from all of
the genomic assays used by the FAANG consortium into a
single resource for easier use. Thanks to these integration effort,
additional equine FAANGdatasets including the “adopted” tissue
peak calls will open up opportunities for variant investigations
in previously uncharacterized noncoding regions and expand
research opportunities in equine omics.
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Atlantic salmon (Salmo salar) is a major species produced in world aquaculture and
an important vertebrate model organism for studying the process of rediploidization
following whole genome duplication events (Ss4R, 80 mya). The current Salmo salar
transcriptome is largely generated from genome sequence based in silico predictions
supported by ESTs and short-read sequencing data. However, recent progress in long-
read sequencing technologies now allows for full-length transcript sequencing from
single RNA-molecules. This study provides a de novo full-length mRNA transcriptome
from liver, head-kidney and gill materials. A pipeline was developed based on Iso-seq
sequencing of long-reads on the PacBio platform (HQ reads) followed by error-
correction of the HQ reads by short-reads from the Illumina platform. The pipeline
successfully processed more than 1.5 million long-reads and more than 900 million
short-reads into error-corrected HQ reads. A surprisingly high percentage (32%)
represented expressed interspersed repeats, while the remaining were processed
into 71 461 full-length mRNAs from 23 071 loci. Each transcript was supported by
several single-molecule long-read sequences and at least three short-reads, assuring a
high sequence accuracy. On average, each gene was represented by three isoforms.
Comparisons to the current Atlantic salmon transcripts in the RefSeq database showed
that the long-read transcriptome validated 25% of all known transcripts, while the
remaining full-length transcripts were novel isoforms, but few were transcripts from
novel genes. A comparison to the current genome assembly indicates that the long-read
transcriptome may aid in improving transcript annotation as well as provide long-read
linkage information useful for improving the genome assembly. More than 80% of
transcripts were assigned GO terms and thousands of transcripts were from genes or
splice-variants expressed in an organ-specific manner demonstrating that hybrid error-
corrected long-read transcriptomes may be applied to study genes and splice-variants
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expressed in certain organs or conditions (e.g., challenge materials). In conclusion, this
is the single largest contribution of full-length mRNAs in Atlantic salmon. The results will
be of great value to salmon genomics research, and the pipeline outlined may be applied
to generate additional de novo transcriptomes in Atlantic Salmon or applied for similar
projects in other species.

Keywords: Atlantic salmon, transcriptome, full-length mRNA, hybrid error correction, PacBio Iso-seq, Illumina
sequencing

INTRODUCTION

Atlantic Salmon (Salmo Salar) is a species with significant
value both economically and scientifically. It is an important
aquaculture species, and there is also substantial commercial
harvesting of wild salmon (FAO, 2018). Both of these activities
benefit greatly from increased knowledge of salmon genetics,
aiding in breeding to improve yield, quality and welfare
for farmed salmon, and in monitoring the health of wild
populations (Yanez et al., 2014; Abdelrahman et al., 2017;
Houston and Macqueen, 2019).

Salmonids have undergone a relatively recent whole genome
duplication (WGD) event, (the salmonid-specific fourth
vertebrate whole genome duplication, Ss4R) approximately 80
million years ago (Allendorf and Thorgaard, 1984; Macqueen
and Johnston, 2014). They are now undergoing rediploidization,
which makes Atlantic salmon a model species useful for studying
post WGD phenomena like rediploidization and conservation
of partial tetrasomy (Lien et al., 2016; Campbell et al., 2019).
Smoltification, the process by which Atlantic salmon and
other anadromous salmonids adapt from life in freshwater
to saltwater (Hoar, 1988), represents another scientifically
interesting and unique developmental transformation that
would be of interest to study by omics-technologies. This
transition is also a management challenge in aquaculture due
to the high mortality rate associated with the post saltwater
transfer period (Hjeltnes et al., 2019). Infectious diseases
caused by various pathogens are also a major challenge
for the aquaculture industry and continues to lead to large
economic losses and reduced fish health (Hjeltnes et al., 2019).
High-quality transcriptomic resources are extremely valuable
when studying the underlying molecular processes governing
such developmental transformations, molecular details of
infectious diseases as well as in the study of the post WGD
phenomena. They are also very important resources for the
continuing knowledge-based aquaculture management to
improve fish welfare and ensure growth of the aquaculture
industry (Abdelrahman et al., 2017).

A chromosome level assembly of the Salmo Salar genome
has been publicly available since 2015 thanks to the efforts of
the International Cooperation to Sequence the Atlantic Salmon
Genome (ICSASG) (Lien et al., 2016), but the transcript-level
resources are limited. There has been some work on generating
full-length mRNA transcripts for Salmo Salar (Andreassen et al.,
2009; Leong et al., 2010). The vast majority of the protein
coding transcripts in the NCBI RefSeq database were, however,
annotated by use of in silico predictions from the genome

sequence supported and corrected by ESTs originating from
sequencing of cDNA libraries and high-throughput sequencing
(HTS) of transcriptomes on platforms producing short-read
data (at time of writing, 498 177 ESTs and 4 475 852
530 short-reads) (Hagen-Larsen et al., 2005; Adzhubei et al.,
2007; Koop et al., 2008; NCBI, 2015). While these methods
are useful for identifying the presence of particular gene
products, they are much less useful for characterizing transcript
isoforms (Conesa et al., 2016). Thus, the identification of
splice variants and possible misplacement of short transcript
sequences on the genome due to the existence of highly similar
ohnologous genes (resulting from the salmonid specific WGD)
are challenges not easily solved in Salmonids if relying on
short-read transcript sequencing alone (Leong et al., 2010;
Liu et al., 2012). A full-length protein coding transcriptome
from a species (the CDS as well as the 5′- and 3′UTRs)
and its repertoire of splice variants is an essential resource
to reliably annotate protein coding transcripts and understand
how such structural variants impact disease and economical
important traits in farmed animals (Abdelrahman et al., 2017;
Giuffra et al., 2019).

Long-read sequencing based on the PacBio Iso-Seq SMRT
sequencing technology produce full-length transcript sequences
(e.g., full-length mRNAs) by sequencing single molecules
(Rhoads and Au, 2015). This method solves the problems
associated with assembly of short-read HTS data by producing
reads that span the entirety of a protein coding transcript,
including the CDS and the 5′- and the 3′UTRs of mRNAs.
This method, thus, allows one to accurately identify different
splice variants and, in salmonids, would allow one to distinguish
between transcripts with highly similar ohnologous coding
sequences as the complete read (including the less conserved
3′UTR) is generated from a single molecule. Being able to
unambiguously characterize the 3′UTRs of specific transcript
variants would also benefit the study of regulatory elements
targeting these regions, such as microRNAs (Woldemariam
et al., 2019, 2020; Shwe et al., 2020). The vast majority of
the 3′UTRs in the present Atlantic reference transcriptome
(RefSeq) (NCBI, 2015) are, however, predicted from the
Atlantic salmon genome sequence with short-read support
(RefSeq XM entries).

The development of the PacBio Iso-Seq SMRT sequencing
technology has allowed for high-throughput long-read
sequencing suitable for sequencing the complete transcriptome
of a species or generate tissue specific transcriptomes to
study tissue specific gene expression (Wang et al., 2016). The
higher error-rates associated with long-read sequencing
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may be counteracted by generating a consensus out of
multiple reads from a single molecule (High-Quality reads)
applying the Iso-Seq method (Gordon et al., 2015; Rhoads
and Au, 2015). The error rate can be further improved
using graph-based hybrid error correction methods (Au
et al., 2012; Salmela and Rivals, 2014; Sahraeian et al., 2017).
This approach utilizes the long-reads as basis for short-read
alignment that include sequence error correction. Thus,
the long-reads provide the structural information of all
isoforms, while the long-read isoforms are error-corrected by
a much higher read number of short-reads with a superior
read accuracy. This allows for the generation of a de novo
full-length transcriptome with a quality comparable to any
reference resource without the use of the current genome
assembly as an error-correcting source (Feng et al., 2019).
This is particularly important in non-model species where
genome assemblies have, in general, considerable potential for
quality improvement.

The aim of this study has been to provide the first high-
quality full-length protein coding transcriptome resource for
Atlantic salmon. We have a particular interest in the study of
expression changes and regulation of gene expression during
smoltification and sea-water transfer as well as expression
changes and gene regulation in response to infectious diseases
(Woldemariam et al., 2019, 2020; Shwe et al., 2020). Two
of the samples included in this study were therefore selected
from a challenge study to reveal the full-length sequences of
mRNAs expressed in head-kidney when infected with salmonid
alpha virus (SAV) (McLoughlin and Graham, 2007; Andreassen
et al., 2017; Bernhardt et al., 2021). Samples from head-kidney
were chosen, as this is one of the main immune organ in
fish and frequently used in fish immunological studies of
gene expression (Bjørgen and Koppang, 2021). The samples
from the three different main stages of smoltification; pre-
smolt, smoltified fish and post sea-water transfer were chosen
from gills, liver and head-kidney. These are all important
organs in this developmental transition, and the samples were
from our recent and ongoing study of smoltification (Shwe
et al., 2020). The development and evaluation of a long-
read based transcriptome pipeline was another aim. We have
used a combination of existing tools for sequence analysis,
curation and annotation of PacBio Iso-Seq transcript data
applying both sequel I and sequel II platforms. The quality
of long-reads from the PacBio platform were then further
improved by use of additional transcript data generated
on the Illumina short-read platform. Applying hybrid error
correction algorithms that were complemented with in-house
developed scripts the sequence accuracy was increased. Finally,
after producing a high-quality transcriptome data set that
consisted of full-length mRNAs with complete CDSs, the
transcripts were functionally annotated. The pipeline processing
is independent of the Atlantic salmon genome sequence and
other transcript sources like RefSeq for error correction. This
allowed transcripts previously predicted from the genome
sequence and ESTs to be experimentally validated by a long-read
de novo transcriptome, and new splice variants and paralogs to be
reliably characterized.

MATERIALS AND METHODS

Fish Sample Materials
Table 1 gives an overview of the samples sequenced including
information about the experimental condition and their organ
type. The table also gives the unique labels used for each
sample in the following analysis. Two of the head-kidney
samples included in the study (SAV_Control and SAV_challenge,
Table 1) were from one healthy control fish and one fish
challenged with Salmonid Alphavirus, respectively. The challenge
trial was carried out at the Industrial and Aquatic Laboratory
(ILAB, Bergen High Technology Centre, Bergen, Norway) in
February/March of 2018 (Bernhardt et al., 2021). Post-smolt
fish from the breed SF Optimal (Stofnfiskur Iceland) were
challenged by cohabitation in saltwater with salmon shedders
(carrier fish) injected with salmonid alphavirus subtype 3 (SAV3)
from Norway (Taksdal et al., 2015). All the fish used in the
challenge trial were unvaccinated allowing the study of the
immune response following viral infection with SAV. All fish
tested negative for SAV3, Infectious salmon anemia virus (ISAV),
Infectious pancreatic necrosis virus (IPNV), Piscine myocarditis
virus (PMCV), Piscine orthoreovirus (PRV), and Salmon gill
poxvirus (SGPV) prior to the challenge trial confirming that the
control fish were healthy fish not infected by any of the fish virus
commonly seen in aquaculture industry. The average weight of
the fish was 110.9 g, and in the experimental period dissolved
oxygen was between 79–97%, water temperature was between
11.5–12.4◦C, and salinity was between 34.1–34.5h across the
tanks. Samples (challenged fish and control) were collected at
day 37 in the SAV challenge trial and fixed in RNA later
(Life Technologies, Carlsbad, CA, United States) immediately
after collection. A successful SAV3 infection was confirmed by
detection of the viral sequence in the challenge sample. The
experimental study was approved by the National Research
Authority in Norway (NARA). All salmon used for sampling in
the experiment were euthanized according to standard protocols
approved by the Norwegian Food Safety Authorities prior to
sampling. For simplicity, these two samples are referred to as
the SAV samples.

The nine remaining samples included were collected from
fish used in a study of miRNA gene expression changes during
smoltification and early saltwater period (Shwe et al., 2020).
Samples were taken from the head-kidney, gills and liver prior
to smoltification (day 0; HKU1, GiU1, LiU1), at the end of
the smoltification (day 81; HKU4, GiU4, LiU4), and 4 weeks
after sea water transfer (day 111; HKU7, GiU7, LiU7). The
liver and gill samples from day 0 were from one fish while
the head-kidney sample were from another. The three samples
from day 81 were from same fish and this was also the case
for the three samples from day 111. Details about smoltification
conditions and the sample collection is given in Shwe et al.
(2020). Shortly, fish were anesthetized by an overdose of MS-
222 (tricaine 123 methanesulfonate, 0.1 g/L) prior to sampling
and killed by a blow to the head. The tissue samples were
immediately collected, frozen in liquid hydrogen and stored
at −80◦C. All fish handling procedures complied with the
guidelines of the EU-legislation (2010/63/EU), as well as with
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TABLE 1 | Distribution of tissue types and experimental conditions of samples sequenced with sample labels as used in the final dataset.

Tissue type Pre-Smoltification1 Post-Smoltification1 Post-Seawater Transfer1 Control Adult2 SAV-challenged Adult2

Gill GiU1 GiU4 GiU7 − −

Liver LiU1 LiU4 LiU7 − −

Head-Kidney HKU1 HKU4 HKU7 SAV_Control SAV_Challenge

The smoltification samples1 are from a study of Shwe et al. (2020) while the challenge samples2 are from Bernhardt et al. (2021).

the Norwegian legislation. The experiment was considered as a
non-regulated procedure according to the National Legislation
on Animal Research since the fish had not been exposed to
any pain or distress. Thus, this experiment did not require
application for approval from the Norwegian Food Safety
Authority. For simplicity, these samples are referred to as the
smoltification samples.

PacBio Library Preparation and Iso-Seq
Sequencing, Illumina Library Preparation
and RNA Sequencing
The nine smoltification samples were all processed at the Earlham
Institute (Norwich, England). RNA extraction was performed
using the Qiagen RNeasy Mini Kit (Qiagen, Hilden, Germany),
with On-column DNase Digestion using the RNAse-Free DNase
Set, according to the manufacturer’s protocol. The total RNA
extracts were used for both PacBio long-read sequencing and
Illumina short paired-end sequencing. The PacBio non-size
selected Iso-seq library preparation was used for the for long-
read sequencing. The Express Template Prep 2 protocol requiring
RIN-values > 8 on the RNA-samples was applied, and each
of the nine samples were individually processed. The resulting
cDNA-adapter complexes from the nine samples were sequenced
on one PacBio Sequel II 8M SMRT Cell each. For short-read
sequencing on the Illumina platform, the automated NEBNext
Ultra II Directional RNA-Seq library kit with Poly-A selection
(New England Biolabs, Inc., Ipswich, MA, United States) was
used for library preparation, and the paired-end sequencing
(150 bp) was performed using one Illumina NovaSeq 6000 SP
flow cell for all nine samples multiplexed together.

The RNA extraction, library preparation and sequencing of
the two SAV samples was carried out by Genewiz Germany
GmbH (Leipzig, Germany). RNA was extracted with the RNeasy
Plus Mini Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s protocol and the samples used for sequencing
had a RIN > 8. For long-read PacBio Iso-seq sequencing, the
cDNA synthesis was performed using the SMRTer PCR cDNA
synthesis kit (Clontech Laboratories, Inc., Mountain View, CA,
United States) without size-selection, and the cDNA-adapter
complex was generated using the SMRTbell template prep kit
V1.0. (Pacific Biosciences of California, Inc., Menlo Park, CA,
United States). Each sample was sequenced using the PacBio
Sequel I. Each sample was sequenced on two 1M v2 SMRT cells
to compensate for the lower read count on the Sequel I compared
to the Sequel II. The short-read sequencing applied the NEBnext
Ultra RNA library preparation kit (New England Biolabs, Inc.,
Ipswich, MA, United States) in accordance with manufacturers

protocol. The paired-end (150 bp) sequencing was carried out on
the Illumina HiSeq 4000 platform.

Pipeline for Generation of a
Non-redundant de novo Transcriptome
Resource With Error-Corrected
High-Quality Long-Reads Free of
Interspersed Repeats
The Iso-Seq raw long-reads from the PacBio Iso-seq sequencing
were processed through the IsoSeq3 pipeline (PacBio, 2020) as
illustrated in Figure 1. SMRT link version 8.0 was used for the
smoltification samples, while 6.0 was used for the SAV samples,
as they were sequenced and processed before 8.0 was released.
Data from each sample was processed independently. Only High
Quality (HQ) reads, meaning they were supported by at least two
FLNCs and with a predicted sequence accuracy ≥ 99% (>Q20)
(fasta output, Figure 1) were used in our downstream analysis.

Cutadapt 1.18 (Martin, 2011) was applied for adapter removal
of Illumina reads and quality was checked with FASTQC
(Andrews, 2010; Figure 2, Cutadapt). The high quality paired-
end reads were applied for hybrid error correction of the Iso-Seq
generated HQ reads using version 0.9 of the LoRDEC algorithm
[Long-read De Bruijn Graph (DBG) Error Correction] (Salmela
and Rivals, 2014) with the Illumina reads originating from the
same sample, using k-mer size 21 and solidity threshold 3
(Figure 2, LoRDEC).

The error-corrected HQ reads (EC-HQ reads) were then
filtered using an inhouse python script which removed any EC-
HQ read that was less than 99% covered by the De Brujin
graph generated from the Illumina reads (Inhouse python script,
Figure 2). Internal sequence gaps not supported by the graph
were not allowed, while one percent or less of the terminal ends
were allowed to be without graph support with solidity threshold
3 (a strict filtering with 100% coverage would have demanded
at least three Illumina reads to start or end at the very 5′ or 3′
terminal bases in the HQ reads). The eleven sample files with the
filtered EC-HQ reads were concatenated, and each EC-HQ read
was given a new unique ID number. At the same time, the sample
origin and number of supporting FLNC sequences from IsoSeq3
for each new ID was noted in a separate file to make their sample
origin and FLNC support traceable (Figure 2, Inhouse Python
script). In practice, the error correction ensured that any base
pair in the long-reads were supported by at least three Illumina
reads (average phred quality 36) that consecutively covered the
long HQ reads. In cases where there were differences in single
base positions or small numerical differences in homopolymer
stretches between the HQ read and the supporting sections of the
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FIGURE 1 | The PacBio Isoseq3 pipeline for processing SMRT-sequencing data. Each Zero-Mode Wave (ZMW) provides information from a single DNA polymerase,
which sequences each cDNA-SMRTBell adapter repeatedly. Consensus: the CCS program generates a consensus sequence for each read that contains a
complete repeated insert-adapter complex. Demulitplex: lima filters away sequences with unwanted primer combinations, trims away the adapter sequences, and
orients the reads in the 5′→3′orientation. Refine: the refine program filters away concatemers, and sequences without polyA tails of at least 20 bp. Finally, it trims the
polyA tails from the remaining sequences. Cluster: Isoseq cluster performs conservative clustering of sequences and uses partial order alignment to generate a
consensus sequence for each cluster. The output is classified as High Quality or Low Quality based on the predicted accuracy. The final outputs are high quality and
low-quality sequences in fastq format. This figure is used with permission from Pacific Biosciences.

De Brujin graph, the HQ reads were in effect corrected by the
Illumina sequences.

All concatenated EC-HQ reads were searched against version
3.0 of the Dfam database (Hubley et al., 2016) using version
4.0.9 of Repeatmasker (Smit et al., 2013) as part of the OmicsBox
software package, using the RMBlast search engine with default

speed and sensitivity settings (Smith-Waterman score threshold
of 225). Any EC-HQ read that matched any of the interspersed
repeats present in bony fishes (Actinopterygii) were removed
using an inhouse python script (Repeatmasker, Figure 2).

A grouping of the EC-HQ reads likely to originate from
same genome locus was carried out applying cdna_Cupcake
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FIGURE 2 | Overview of the analysis pipeline from processing of sequences
up to a non-rendundant Error Corrected High Quality transcriptome. The
PacBio SMRT High Quality reads were the input from the PacBio platform.
The Illumina reads were first trimmed using cutadapt to remove the adapter
sequences. Subsequently, they were used to generate a De Bruijn graph for
LoRDEC to error-correct of the High Quality reads on a sample-by-sample
basis. Inhouse python script: The error-corrected reads were filtered based on
degree of Illumina support and coverage of the High Quality reads.
Repeatmasker was used to identify and remove reads containing known Long
Interspersed Repeats. Sequences that could be mapped accurately to the
Salmo salar or Salmo trutta genome were clustered using cdna_Cupcake,
while the remaining sequences were instead clustered using Cogent. All the
reads were additionally clustered using CD-Hit prior to annotation. The final
output was a non-redundant Error Corrected High Quality transcriptome.

version 12.1.0 (Tseng, 2020a) with minimap2 version 2.17 (Li
and Birol, 2018). The EC-HQ reads were aligned against the
ICSASG_v2 assembly of the Atlantic Salmon genome (RefSeq
accession no GCF_000233375.1) with default parameters, apart
from allowing up to 10 000 bp overhangs in the 5′ end and
1000 bp overhangs in the 3′ end. This allowed any EC-HQ
reads to be grouped by genome co-ordinates and assigned into
groups of transcripts originating from same locus. Furthermore,
reads with the same splice-pattern, representing the same

isoform, were clustered together keeping the longest one as the
representative isoform sequence of the cluster. The groupings
of clusters and genome mapping co-ordinates were retained in
the fasta headers as information that was utilized by downstream
applications (SQANTI3). The relaxed 5′ and 3′ overhang cutoffs
were used to allow shorter EC-HQ reads that represented
fragments of other full-length EC-HQ read transcripts to be
clustered together with the full-length transcripts representing
this isoform, rather than being erroneously identified as separate
isoform variants.

The EC-HQ reads which did not map well to the Atlantic
Salmon genome were mapped against the RefSeq version of
the fSalTru1.1 assembly of the Salmo trutta genome (RefSeq
accession no GCF_901001165.1) applying cdna_Cupcake and
same parameters. The remaining sequences that did not map to
either the Salmo salar or the Salmo trutta genomes were mapped
against the SAV genome (GenBank accession no. KC122923) as
one of the individual samples was SAV infected, and the matching
reads were discarded.

The remaining EC-HQ reads that did not map to either
of the Salmonid genomes were clustered using Cogent 6.1.0
using default parameters (Tseng, 2020b) (Cogent, Figure 2).
Cogent generates a pseudo-genome by attempting to recreate a
genome sequence that could give rise to all observed transcripts
in the dataset, and then clusters and groups the EC-HQ reads
into families using cdna_Cupcake. In this manner, the EC-
HQ reads that did not map well to either of the two genome
sequences were grouped into transcripts likely to be structural
variants from same gene.

All the EC-HQ reads, both the ones that were mapped to
either of the genome assembly sequences as well as those grouped
by Cogent were finally clustered with CD-Hit version 4.8.1 (Li
and Godzik, 2006; Fu et al., 2012) (CD-Hit, Figure 2). This final
clustering aligned any shorter EC-HQ read to a longer identical
isoform if present in the dataset. The settings used in CD-hit
alignment were:

1. Sequence identity threshold 0.99.
2. Local sequence alignment.
3. Cluster reads to most similar longer EC-HQ read if there

were more than one fitting the alignment criteria.
4. The short EC-HQ read must align with 99% of its length

to the longer (1% “uncovered” bases). If the shorter EC-HQ read
were larger than 3000 bp the 1% limit was replaced by 30 bp or
less uncovered bases.

5. The one long EC-HQ read that other shorter reads were
aligned to was allowed to have any amount of overhang.

This final clustering assured that identical structural variants
were aligned into a single representative EC-HQ read. In most
cases the ones aligned to a longer EC-HQ reads would be 5′
incomplete EC-HQ reads or EC-HQ reads with an incomplete
3′UTR due to mispriming in the cDNA synthesis. This assured
that every different structural isoform was represented by a single
full-length EC-HQ read. An inhouse python script was used
to identify FLNC support and contributing samples for each
non-redundant EC-HQ read following the final clustering. This
non-redundant EC-HQ read transcriptome was further analyzed
by classification of structural variants (Materials and Methods,
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FIGURE 3 | Overview of the annotation process. Transcripts that were clustered using the Salmo salar or Salmo trutta genomes were characterized against the
genome annotation for the corresponding species using SQANTI3. All the sequences were also used for open reading frame prediction using Transdecoder. The
sequences predicted to contain a complete coding sequence were Blasted against the RefSeq protein database and searched through the Interpro database to
retrieve gene names and functional annotation. The reads were filtered based on the SQANTI-classification, open reading frame prediction and support in the PacBio
sequencing data. Information from the structural classification path and the functional annotation path was added to the final filtered mRNA transcriptome.

“Classification of Structural Variants”) and functional annotation
(Materials and Methods, “Functional Annotation”).

Classification of Structural Variants
The EC-HQ reads that had been clustered by cDNA_cupcake
using the Salmo salar or the Salmo trutta genome were classified
and compared against the existing annotation for the respective
genomes. This analysis was carried out with SQANTI3 (v 1.0.0)
with default parameters (Tardaguila et al., 2018) (SQANTI3,
Figure 3). SQANTI3 compares each EC-HQ read to genome
annotation information on the locus where it maps. Based on
how the reads match to the genome annotation the comparisons

can give the following main category classification of each
EC-HQ read:

Full Splice Match (FSM) which is an identical match to a
transcript isoform present in the genome annotation with all the
same splice junctions and exons.

Incomplete Splice Match (ISM) representing an incomplete
but otherwise identical match to a known isoform. All the present
splice junctions match, but there are exons missing in either or
both ends of the EC-HQ transcript.

Novel In Catalog (NIC), a novel isoform with another
combination of exons than those isoforms annotated in the
genome, but with a combination of known splice-junctions from
previously annotated isoforms.
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Novel Not in Catalog (NNC), novel isoform containing at least
one splice junction not present in the annotation. Consequently,
these have at least one novel exon.

Intergenic, meaning a novel transcript that maps to a locus
with no previously annotated genes in the current version of the
Atlantic salmon genome.

Genic intron, meaning the transcript maps entirely within the
intron of an annotated gene in the Atlantic salmon genome.

Genic genomic, which means the transcript overlaps
annotated introns and exons.

Antisense, which means there is no annotated gene at the locus
on the strand where the transcript matches, but there is one on
the reverse strand.

Fusion, meaning the read spans across two different annotated
loci in the current genome annotation.

Sequences were not mapped against the Salmo trutta genome
if they were successfully mapped against the Salmo salar genome.
A structural classification indicating the EC-HQ was of any other
category than FSM in Salmo salar does therefore not exclude that
it would have mapped different (e.g., FSM) in Salmo trutta.

SQANTI also provides additional useful information like
number of exons, splice junction signals (canonical or not), CDS
length, polyA-signals upstream on 3′end and genomic percentage
of A’s downstream of a 3′ termination site (used to judge whether
there was cDNA synthesis mispriming).

Functional Annotation
All EC-HQ reads in the final non-redundant transcriptome
dataset (Figure 2) were subjected to functional annotation using
the OmicsBox software suite (Figure 3; BioBam, 2019). Coding
sequences were predicted with TransDecoder v5.5.0. (Haas et al.,
2013; Haas and Papanicolaou, 2015) using homology search
against Pfam 32 to confirm ORFs with a minimum length of
150 bp (termed complete CDS in the following manuscript if both
the start and stop codon were present in-frame in the CDS). The
search for ORFs was set to be strand specific, and the single best
hit was kept for further analysis.

All complete CDS sequences were fed into the functional
annotation workflow of OmicsBox (equivalent to the older
Blast2GO software) (Gotz et al., 2008) with the following
modified blast parameters: plastp-fast, species filter 89593
Craniata < chordates >, HSP-Hit coverage 70%. Default e-value
cutoff for the blastp step was 1.0E-3. The HSP-Hit coverage
criteria ensured that any hits were similar across the majority of
the sequence, rather than just containing a highly similar partial
sequence. Blast results were fed into the GO mapping and GO
annotation modules. The complete CDS were also searched for
functional motifs using InterProscan. The results were merged
into a final functional annotation file. This process allowed us
to identify mRNA transcript isoforms with complete coding
regions, identify genecodes where these could not be provided by
SQANTI, and provide functional descriptions of the proteins in
the GO framework as well as enzyme codes.

Sequences that were mapped onto the Salmo salar
mitochondrial sequence by SQANTI were also fed to
TransDecoder using the Vertebrate Mitochodrial genetic

code to search for ORFs. Any complete CDS from these
sequences were also functionally annotated as described above.

Additionally, for the transcripts in the final full-length mRNA
transcriptome (see section “Final mRNA Filtering Based on
Supporting Evidence, and TSA Submission”), we identified
subgroups of full-length mRNAs expressed in at least three
samples from a specific organ type, but not in any of the
other organ types in our materials. For these, we generated
multi-level GO charts, showing the most specific GO-terms
appearing in the dataset over the default abundance cutoffs
suggested by OmicsBox, in a non-redundant way. These cutoffs
were respectively 144 transcripts for gills, 98 in head-kidney,
and 116 in liver.

Final mRNA Filtering Based on
Supporting Evidence, and TSA
Submission
An inhouse python script (Filter, Figure 3) was used to
identify EC-HQ reads that represented mRNA transcripts. The
inhouse script filtered all EC-HQ reads, and only EC-HQ reads
predicted to contain a complete CDS by TransDecoder were
kept. Furthermore, they should be classified by SQANTI as full
splice match, novel in catalog, or novel not in catalog with
canonical splice junctions to be included. If classified differently
by SQANTI or only grouped by Cogent, a minimum support by
at least 5 FLNC reads was used as threshold for including such
structural isoforms in our final full-length mRNA transcriptome.
A somewhat stricter FLNC-support criteria, thus, was used for
isoforms with these structural classifications, as they did not have
the same level of support in the existing genome annotations
as the FSM, NIC, and NNCs described above (which only
required the minimum 2 FLNC support needed to be classified
as HQs). The script also collected all the structural and functional
annotation information for the filtered transcripts into a tsv file
(Supplementary File 1).

The PacBio and Illumina raw sequencing data was submitted
to NCBI’s SRA database, and the final transcript sequences
in our full-length mRNA transcriptome were submitted to
the Transcriptome Shotgun Assembly under the accession
GIYK00000000. The version described in this paper is the first
version, GIYK01000000.

Transcriptome Comparisons Applying
BLAST Analysis and SQANTI3
Annotations
Blast analysis was applied to find the degree of sequence similarity
between the final de novo mRNA transcriptome and the Salmo
salar mRNAs in the RefSeq database.

The complete set of RefSeq Salmo salar mRNA transcripts
was identified and downloaded as a full record fasta files using
a filtered nucleotide search through the NCBI RefSeq database.
These were searched against our full-length mRNA transcriptome
using blast 2.9.0 + with e-value cutoff 1e-15, and outputfmt
“6 std qcovhsp slen.” The same search settings were used in
the reverse comparison with our transcriptome as query against
the RefSeq sequences. An inhouse python script was used to
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filter the blast results. The filter classified transcripts into three
categories. Matches between query and subject meeting the
following criteria were categorized as identical isoforms: E-value
less than 10−50, percentage identity ≥ 99%, and either query
coverage per high-scoring segment pair >99% or alignment
length ∗ 100/subject length > 99. This ensured that any match
meeting the e-value and identity thresholds had a greater than
99% coverage of the query by the subject sequence, or a greater
than 99% coverage by the subject of the query sequence. These
thresholds ensured that matches categorized as identical isoforms
were consecutively matching sequences originating from the
same isoforms, but allowed either of them to differ in UTR
length compared to the other. Matches within this category
were further grouped depending on whether the RefSeq RNAs
had the longer UTR (query coverage per high-scoring segment
pair < 99%) or whether the matching mRNA in our full-length
mRNA transcriptome had the longer UTR (alignment length ∗
100/subject length < 99). The second category, named significant
hits, were all matches not meeting the identical isoform criteria,
but with an E-value of less than 10−15. The remaining query
sequences returning E-values more than 10−15 were categorized
as non-matching RefSeq mRNAs (or non-matching full-length
mRNAs in the reverse search).

The overlap between mRNAs in our dataset and the
genome-annotation based mRNAs (genome reference sequence
GCF_000233375.1) would be the number of sequences classified
as FSM by SQANTI3. These were retrieved from the final.tsv
file (Supplementary File 1). The number of FSM’s, the total
listed number of mRNAs given in the genome annotation report
(NCBI, 2015) and the total number of full-length transcripts in
the final mRNA dataset were used to generate the Venn diagram
in section “Clustering and Grouping of Unique EC-HQ Reads
Revealed That 22% of These Could Not Be Mapped to the Current
Atlantic Salmon Genome Sequence.”

RefSeq mRNAs with sequences that are mismatches if
compared with the correlated mRNAs (exons) in the Atlantic
salmon genome assembly was identified by adding the term ‘AND
“assembly gap:” [All Fields]’ to the search in the RefSeq database.
These represented RefSeq RNAs that are not supported by the
current genome sequence. Furthermore, the number of such
RefSeq mRNAs that are supported by our full-length mRNAs
was retrieved by searching their accession numbers among those
categorized in the identical isoform category described above.

RESULTS

Hybrid Error-Correction Increased the
Sequence Accuracy and Allowed for
Removal of Sequencing Artifacts
The results from the Pacbio sequencing and Illumina sequencing
are summarized in Supplementary File 2. As expected one
Sequel II cell generated about 4–7 times more HQ reads than
two Sequel I cells, but the percentage of HQ reads generated
from the CCS reads were similar. Also, the size distribution of
reads from the two platforms showed very similar distribution

(Supplementary File 3) indicating that the reads generated by
the two platforms were of equal quality. Following HQ filtering
there were a total of 2 080 166 HQ reads distributed across the 11
samples (Supplementary File 2). The number of Illumina reads
in all samples applied for error correction was more than 900
million with an average phred quality of 36. This resulted in a
total of 1 596 834 EC-HQ reads.

The coverage distribution by Illumina reads on the HQ reads
is illustrated in Figure 4, while the exact number of HQ reads
covered by a certain percentage of Illumina reads is given in
Supplementary File 4. The figure shows that the majority of
HQ reads were preserved (and error-corrected) by this filtering
process. More than 81% of the HQ reads had a coverage of 99%
or more, illustrating that most HQ reads were error-corrected
across their entire sequence. The main reason for being removed
was not a general poor coverage. Instead, the sequences that were
removed (23,3%) were heavily weighted toward high coverage
HQ reads (95–99% coverage), but with internal small gaps in
their Illumina read coverage. At 99% coverage there were, e.g.,
approximately 100 000 HQ reads with internal gaps not covered
by the De Brujin Graph (DBG). This could indicate that these HQ
reads were artifacts produced in the PacBio pipeline representing
contaminating genomic sequence or fusion products (different
transcripts fused together and SMRT-sequenced). This is the
most likely explanation since only smaller parts of the EC-
HQ sequences were not covered by the independent and much
“deeper” transcriptome sequences from the Illumina platform.
While the degree of single bp correction could not be directly
measured we did compare the CDS lengths before and after
error correction. This comparison revealed that 118 199 (7%) of
the reads increased ORF size after correction, 1 455 732 (91%)
had the same ORF length, and 22 903 (2%) had a shorter ORF.
A substantial portion of the reads were, thus, corrected and
75% of these increased the length of their CDS. The number
of short-reads applied for error correction was more than 927
million (Supplementary File 1). This is equal to 20% of all
short-reads used to annotate exome sequences in the current
genome assembly.

One Third of the Transcripts Were
Interspersed Repeats
The EC-HQ read dataset were analyzed by Repeatmasker
to identify transcripts originating from interspersed repeats
(Repeatmasker, Figure 2). After filtering out any EC-HQ read
matching interspersed repeats the dataset was reduced to a total
of 1 090 532 EC-HQ reads. This showed that about one third
(32%) of all transcripts in Atlantic salmon are simply expressed
interspersed repeats.

Clustering and Grouping of Unique
EC-HQ Reads Revealed That 22% of
These Could Not Be Mapped to the
Current Atlantic Salmon Genome
Sequence
The mapping of the EC-HQ reads to the Salmo salar genome
by cDNA_cupcake (Figure 2) showed an 89% success rate with
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FIGURE 4 | Distribution of coverage by LoRDEC for sequences with (orange bars) and without (orange bars) internal gaps in the coverage interval 75–100%.

972 904 of the EC-HQ reads mapped. These were reduced to
87 315 unique reads following CD-Hit clustering. Approximately
half (59 913 of 117 628) of the remaining EC-HQ reads
could, however, be cDNA_cupcake clustered to the Salmo trutta
genome. These were reduced down to 8721 unique reads by CD-
Hit. The remaining 57 715 EC-HQ reads were clustered using
Cogent, which were reduced to 16 367 unique reads by CD-
Hit. cDNA_Cupcake and Cogent also assigned a locus number
to each sequence. Thus, if they mapped to the same location
on the genomes or the Cogent pseudogenome in an overlapping
manner, they were grouped together as sequences that were likely
isoforms of the same transcript. Altogether, the cDNA_cupcake,
Cogent and final CD-Hit clustering reduced the complete dataset
to 112 404 unique EC-HQ transcripts (Final non-redundant EC-
HQ transcriptome, Figure 2). In summary, 78% of the unique
EC-HQ transcripts were mapped to the Salmo salar genome
while approximately 8% was mapped to the Salmo trutta. The
remaining 14% unique EC-HQ reads (clustered by Cogent) could
not be mapped to either of the two salmonid genomes. It is very
unlikely that eight percent of the transcripts would map well
in the Salmo trutta genome if the reason for mismatch against
the Salmo salar genome was low quality or error in the EC-HQ
reads. On the contrary, this indicated that there are missing or
misassembled sequences in the current Atlantic salmon genome
sequence that prohibited a successful mapping of a surprisingly
large proportion (22%) of the of the unique Atlantic salmon EC-
HQ reads. Following from this, errors in the genome sequence
would be the likely explanation for why 14% of transcripts
grouped by Cogent could not be mapped to the Salmo salar

genome sequence (or the Salmo trutta genome). The fact that
our final full-length transcriptome matches the current RefSeq
mRNAs much better than the transcripts (annotated exons)
in the genome sequence (identical isoforms vs. FSMs, section
“Full-length Transcriptome Comparison With the Transcript
Annotation of the Genome Applying SQANTI3”) also points to
incorrect annotation of splice products. The de novo full-length
transcriptome from this study may therefore aid to improve the
current transcript annotation in the genome sequence. In light of
this, the 22% of transcripts not currently mapped to the Atlantic
salmon genome sequence represents a very useful source for
long range linkage information that may be used to improve the
genome sequence assembly.

A de novo Transcriptome That Consisted
of 71 461 Full-Length mRNAs From 23
071 Loci
The 87 315 non-redundant EC-HQ reads that had been mapped
to the Salmo salar genome and the 8721 that had been mapped
to the Salmo trutta genome were structurally annotated using
SQANTI3 (Figure 3). The remaining sequences that had been
clustered by Cogent could not be meaningfully annotated in
this manner, but rather relied on the functional annotations
(OmicsBox, Figure 3) for RNA category classification. Complete
distribution of structural classifications for all non-redundant
EC-HQ reads is shown in Table 2.

All 112 404 unique sequences, regardless of clustering method,
were also used for ORF-prediction with Transdecoder, and
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further functional annotation by OmicsBox if they were predicted
to have a complete CDS. Following the last filtering step (Filter,
Figure 3), our final mRNA dataset consisted of 71 461 non-
redundant EC-HQ reads that, by use of SQANTI3 and our
OmicsBox criteria, were annotated as protein coding transcripts
with a complete CDS. These transcripts were predicted to stem
from a total of 23 071 loci, or likely loci in the case of Cogent
transcripts, with an average of three transcripts per locus. The list
of EC-HQ reads, along with SQANTI analysis outputs, sample
origin, FLNC support, gene descriptions, GO codes, enzyme
codes and TSA contig IDs are provided in Supplementary File 1.
Despite being classified as anti-sense, genic, intergenic or fusion
by SQANTI, these categories contained 2591 transcripts classified
by TransDecoder as having a complete CDS and with support
as full-length protein coding mRNAs by Pfam. An additional
4803 transcripts similarly classified as full-length protein coding
mRNAs by TransDecoder did not map to any of the Salmonid
genomes (clustered by Cogent). Sixty-seven percent of the
transcripts not mapped or mapped with a non-protein coding
category by SQANTI3 were also supported as protein-coding
transcripts by the following GO-annotation (section “More Than
80% of the Transcripts Were Assigned GO Terms and Subsets
Revealed Organ Specific Expression Patterns”) In summary, a
total of 71 461 of the unique transcripts (63%) were classified as
mRNAs while the remaining transcripts (37%) likely represented
some other kind of non-coding RNAs. The length distribution of
the mRNAs is given in Figure 5. The mRNA transcripts ranged
from 319 bases to 13 331 bases in length, with a median length of
1402 bp and a mean length of 3209 bp.

The EC-HQ reads in the final mRNA dataset categorized
as Full Splice Match (FSM) (final in Table 2) represented an
identical match to a known isoform in the current genome
annotations (Salmo salar or Salmo trutta) in terms of splice
pattern and sequence identity (SQANTI3 default 95% cutoff).
The majority of such matching transcripts in the current Atlantic
salmon annotation have been generated from predictions based
on the genome sequence with variable support from short
HTS reads or ESTs (96% of Salmo salar RefSeq mRNAs are
XM entries). The FSMs in our dataset, therefore, represents
experimental validation of 17 787 transcript isoforms by single

molecule sequenced full-length mRNAs. Surprisingly, there were
960 EC-HQ reads mapped as FSMs in the Salmo trutta genome.
Obviously, these are also true Atlantic salmon full-length
mRNAs, but inconsistencies in the current genome assembly of
Salmo salar prevented these transcripts from mapping to the
Salmo salar genome sequence.

The transcripts mapped as either Novel in Catalog (NIC),
or Novel Not in Catalog (NNC) with exons defined by
canonical splice junctions, represents novel isoforms not
currently annotated in the genome sequences. The NICs have
combinations of known splice sites which makes them isoforms
with new combinations of annotated exons. There were 17 039
such novel transcripts in the final dataset, approximately the
same number as all FSMs. There were an even larger number of
NNCs, a total of 25 581 transcripts, illustrating the capability of
long-read based methods to identify new isoforms not possible
to predict reliably using short-reads and the genome sequence
alone. Again, a substantial proportion (8,5%) of the transcripts in
these categories could only map to, and be classified by SQANTI3,
using the Salmo trutta genome.

The remaining SQANTI3 categories (ISM, antisense, genic,
intergenic, and fusion) comprised the smaller part of the final
mRNA transcriptome (a total of 5291 transcripts). Despite their
structural classification by SQANTI3 bringing into question
if these were true mRNAs, they were all supported as full-
length mRNAs by OmicsBox. Also, as a threshold of at least
5 supporting FLNCs was used to filter out possible artifacts
from these categories, they are likely to represent true Atlantic
salmon protein-coding transcripts. Although the ISM reads were
supported by the genome annotation as matching a known
transcript but missing exonic sequence in the 5′ or 3′ end (or
both), they all had a complete CDS. We did employ the more
conservative FLNC-support criteria (at least 5 FLNCs) for ISMs,
and given this threshold, it is less likely that they are incomplete,
but rather represent full-length mRNAs. A small number of ISM
sequences (3.7%) had 80% or higher A content in the 20 bases
immediately downstream of where they mapped in the genome
sequence. This could have allowed mispriming during cDNA
synthesis leading to incorrect 3′UTR lengths in these transcripts.
The fraction of transcripts grouped by Cogent with at least 5

TABLE 2 | Distribution of SQANTI-classifications and Cogent grouping for the non-redundant Error Corrected High Quality transcriptome (Figure 2) and filtered mRNA
transcriptome (Figure 3).

Structural Category Salmo salar Pre-filter Salmo salar Final Salmo trutta Pre-Filter Salmo trutta Final Cogent Pre-Filter Cogent Final

FSM 19837 17787 1073 960 − −

ISM 6080 2569 455 131 − −

NIC 18338 16218 946 821 − −

NNC 37411 22756 5443 2825 − −

Antisense 787 256 22 8 − −

Genic 942 385 24 5 − −

Intergenic 2331 828 263 80 − −

Fusion 1589 807 494 222 − −

Cogent − − − − 16367 4803

Sequences that could not be mapped to the Salmo salar or Salmo trutta genomes could not be classified using SQANTI. These are listed in the row Cogent. Pre-filter
refers to all non-redundant EC-HQ transcripts (output from pipeline Figure 2). Final refers to the final filtered mRNA dataset (output pipeline Figure 3).
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FIGURE 5 | The final full-length mRNA transcriptome distributed by transcript length. Each column shows the number of transcripts falling within the given 500 bp
length interval.

supporting FLNCs is approximately as large (4803 transcripts) as
those mapped to Salmo trutta. Again, this illustrates the ability of
long-read based transcriptome sequencing to identify transcripts
not detected by short-read supported genome predictions.

An overview of the number of FLNCs supporting each EC-HQ
mRNA in the final full-length mRNA transcriptome is given in
Figure 6. The figure illustrates that more than 74% had a support
of more than five FLNCs independent of category. This means
that approximately 70% of the FSM, NIC, and NNC categories
were supported by five or more FLNCs even if the inclusion
criteria for these categories was two or more FLNCs.

A python script was used to estimate the number of instances
were transcripts annotated as encoding the same gene by
SQANTI or OmicsBox had been assigned to different loci by
cdna_Cupcake, or different gene families by Cogent. In all,
12% of genes had at least two EC-HQ mRNA transcripts that
were mapped to different loci. This indicates that at least 12%
of the expressed genes were likely represented by multiple
paralogs in our dataset.

The transcripts have been deposited at DDBJ/EMBL/GenBank
as a Transcriptome Shotgun Assembly project under the
accession GIYK00000000. The version described in this paper is
the first version, GIYK01000000. The TSA Contig ID for each
sequence is listed in Supplementary File 1.

Comparisons Revealed That the de novo
Transcriptome Better Supported the
RefSeq mRNA Transcripts Than the
Genome Assembly Sequence
The current transcript information on Atlantic salmon mRNA
sequences is provided from two NCBI sources. One is the

transcript information (transcript and isoform variants defined
by their exons) given in the annotation to the current Salmo
salar reference genome sequence. The other source is the current
collection of Salmo salar mRNA transcripts in the RefSeq
database. Although these would be expected to correspond well,
they differ in the sequence information given for thousands of
transcripts. There are 4475 RefSeq mRNAs that are annotated
as either having a gap or additional sequence that is not
present in the current genome reference sequence. The long-
read based de novo mRNA transcriptome from the present study
could possibly aid to resolve what are the correct transcript
sequences. The single-molecule based method applied here is
also expected to be the superior one for isoform identification.
This potential for increasing the quality of annotated transcript
isoforms with our dataset was investigated by comparing our
long-read transcriptome to each of the available sources (the
RefSeq mRNA sequences and the annotation of transcripts in the
RefSeq genome sequence).

Full-Length Transcriptome and RefSeq Transcriptome
Comparisons Applying BLASTN
The Salmo salar mRNAs in RefSeq consist mostly of transcripts
that are predicted by use of the genome sequence but supported
and error-corrected based on EST and short-read sequences as
part of the NCBI Eukaryotic Genome Annotation pipeline1. All
97 604 Salmo salar mRNA sequences in the RefSeq database
were blasted against our dataset, classifying hits into three
categories (Figure 7). Identical isoforms [99% identity and
coverage of the shorter matching sequence by the longer
matching sequence (See section “Transcriptome Comparisons

1https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/
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FIGURE 6 | Distribution of Full-Length Non-Concatemer-support in the final mRNA dataset. Each column shows the number of transcripts in the final mRNA
transcriptome with a number of Full-Length Non-Concatemer reads supporting the long-reads.

Applying BLAST Analysis and SQANTI3 Annotations” for
more detail)]. The second category was significant hits, (all
transcripts with e-values smaller than a 1e-15, but not meeting
the very strict identical isoform criteria) and the third category
was termed non-matching RefSeq mRNAs (all transcripts with
e-values larger than e-15 or no hits). Filtering according to these
criteria, 24 415 (25%) of the RefSeq transcripts were in the
identical isoforms category, providing experimental validation
for a quarter of the isoforms in the RefSeq database by full-
length mRNAs from our long-read transcriptome. Furthermore,
there were around twice as many mRNAs with significant hits
(49 785) against our transcriptome, indicating that an additional
half of all RefSeq transcripts were present as splice variants
or paralogs in our dataset. Given that parts of the RefSeq
mRNA sequences are predicted from the genome sequence (96%
are XM entries), there is also a possibility that some of the
matches in the category significant hits are, in fact, identical
isoforms, but not meeting the very strict criteria we applied for
this category due to sequence errors. The 23 404 mRNAs in
the category of non-matching RefSeq-mRNAs likely represent
transcripts from genes not expressed in the organs included in
this study. The mRNAs in the category identical isoforms showed
a distribution of length differences with the longer transcript
being from the RefSeq dataset in 42% of cases, while the two
matching transcripts deviated by less than one hundredth of
their length in 28% of cases, and in the remaining 30% the
longer transcripts were from our de novo transcriptome. These

size differences were in most cases small and affected only the
UTRs, not the CDSs.

We also reversed the comparison, with a new blastn search
where our dataset was the query sequences against the Salmo
salar RefSeq mRNAs (Figure 8). This revealed how well our
transcriptome is represented in the current RefSeq transcriptome.
Notably, the number of sequences with at least one blast hit
meeting the identical isoforms criteria was lower when using
the full-length transcriptome as the query than when using the
RefSeq mRNAs as the query (20 582, Figure 8 vs. 24 415,
Figure 7). This indicates that some of our transcripts were
classified as identical isoforms to multiple sequences currently
listed separately in RefSeq (Figure 7). Some possible explanations
for this finding are that some sequences in RefSeq are redundant,
and/or that some of our transcripts have incomplete UTRs,
making them unable to distinguish between some RefSeq entries.
The comparison also showed that only 566 of our sequences did
not have a significant blast hit (<1e-15). The result from the
reversed blastn analysis, thus, indicated that our transcriptome,
having 99% support in RefSeq, consisted nearly exclusively of
transcript variants of known genes rather than there being
transcripts from novel genes (Figure 8). Taken together, the two
blast analyses showed that our full-length de novo transcriptome
validated 25% the of currently known Atlantic salmon transcripts
in RefSeq, provided a large number of new isoforms significantly
matching 50% of the known transcripts in RefSeq, but did not
discover many transcripts from novel genes (1%, Figure 8).
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FIGURE 7 | Pie chart showing the distribution of blast results when searching all Salmo salar RefSeq mRNAs against the final full-length mRNA dataset. Blue are
identical isoforms, orange are significant hits, gray are non-matching RefSeq mRNAs.

Full-Length Transcriptome Comparison With the
Transcript Annotation of the Genome Applying
SQANTI3
Figure 9 shows the distribution of shared isoform transcripts
when comparing our full-length transcriptome with the mRNAs
in the Salmo salar genome annotation. The figure illustrates
that 17 782 EC-HQ mRNA transcripts were full splice matches
(identical) to already annotated transcripts in the RefSeq version
of the Salmo salar genome assembly. The majority of mRNA
isoforms predicted in the Salmo salar genome annotation (81%,
Salmo salar mRNAs with no FSM in Figure 9) could not
be verified by our long-read mRNA transcripts. Furthermore,
there were 53 674 mRNAs in our final dataset (75%, Novel
mRNAs in Figure 9) that represented novel isoforms that mapped
to the genome (61%, non-FSM categories in Salmo salar in
Table 2), or mRNAs that did not map at all (14%, Salmo trutta
or Cogent categories in Table 2) due to inconsistencies at the
genome sequence level.

The fact that there were considerably fewer FSMs (19%,
Figure 9) than the number of identical isoforms (25%,
Figure 7) could indicate that the genome sequence is the
less reliable source for transcript sequences. This is also

supported by the fact that 14% of the mRNA transcripts
did not map at all (mapped to Salmo trutta or grouped by
Cogent). Furthermore, 1268 of the transcripts that did not
map to the Salmo salar genome were in the category identical
isoforms in the blast comparisons against the RefSeq mRNAs.
A similar comparison where the RefSeq transcripts not matching
the genome reference sequence (4475 transcripts, methods,
“Transcriptome Comparisons Applying BLAST Analysis and
SQANTI3 Annotations”) were compared to our de novo
transcriptome showed that 673 of these were in the category
identical isoforms. All together, these comparisons indicate
that the full-length de novo transcriptome may contribute
considerably in improving the current transcript annotation
quality and aid in improving the reference genome assembly.

More Than 80% of the Transcripts Were
Assigned GO Terms and Subsets
Revealed Organ Specific Expression
Patterns
Figure 10 shows the distribution of OmicsBox annotation results
in the final mRNA dataset. Eighty-two percent of the transcripts
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FIGURE 8 | Pie chart showing the distribution of blast results when searching the final full-length mRNA dataset against all Salmo salar RefSeq mRNAs. Blue are
identical isoforms, orange are significant hits, gray are non-matching novel mRNAs.

were successfully annotated with at least one GO term (GOs > 0,
Figure 10). The remaining 18% of the transcripts with no GO
terms were distributed into ones with significant blast hits, but
to proteins with no GO terms in the Gene Ontology database
(9%), while the other half did not have any significant hits in
the RefSeq protein database. Instead, they were supported as
protein-coding by their CDS length and the support in Pfam. The
functional annotation, including the GO terms and gene symbols
are included in Supplementary File 1. The distribution of the
number of GO terms assigned to each sequence showed that 50%
of the transcripts in the dataset were assigned between 2 and 5
GO terms, while 14% were assigned even more. Together there
was a solid level of functional annotation for about two thirds of
our dataset. A total of 46 769 of these were also annotated with
specific gene symbols based on the Blastp results from OmicsBox.

Ten percent of all FLNCs in the dataset were from only 17
mRNAs (listed in Supplementary File 5). This demonstrated
that there were a few highly expressed protein-coding transcripts
in the final mRNA transcriptome. The single most abundant
transcript, alb1, constituted 3,8% of all FLNCs on its own, and
the top five most abundant transcripts represented 6.5% of all
FLNCs. Serum albumin (alb1) and the two other top expressed
genes (fgg and itih3) were all encoding secretory proteins from
liver tissues. Other highly expressed genes like two splice variants

of actin (actb), selenoprotein P (SelP), and apolipoprotein Eb
(apoeb) were expressed in all tissues. A surprising finding
was that one of the highly expressed transcripts annotated as
complement factor H-like (cfhr5) did not map to the Atlantic
salmon genome sequence, but was a FSM in the Salmo trutta
genome. Furthermore, two other highly expressed transcripts
(prothrombin-like and transferrin A-like) were annotated as
fusion-products by SQANTI. Again, this is likely due to incorrect
genome-annotation rather than due to sequence artifacts, given
the high number of FLNCs supporting these transcripts in
several tissues.

The final mRNA transcripts were from three organs: liver, gills,
and head-kidney. Several of the highly expressed transcripts were
only present in liver samples, indicating that the transcriptome
pipeline could identify transcripts expressed in an organ specific
manner. Applying a conservative approach to identify such
organ specific transcripts, we searched the full-length mRNA
transcriptome for transcripts that were expressed in at least three
samples from one organ, while they were absent in samples
from either of the other two organs. This revealed that there
were 2717 transcripts expressed in gills only, either from genes
expressed only in gills (1811) or splice-variants expressed only
in gills (906). In liver there were 1784 transcripts, of which
1113 were from liver-specific genes and 671 were liver-specific
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FIGURE 9 | Venn diagram illustrating the number of identical isoforms (Full Slice-Match) shared among the mRNAs in the genome annotation and the final full-length
mRNA transcriptome. No FSM represents isoforms in the genome annotation with no identical match in the final full-length mRNA transcriptome. Novel mRNAs
refers to transcript isoforms in the final mRNA dataset without an identical match to the sequences annotated to the Salmo Salar genome assembly.

FIGURE 10 | Distribution of number of predicted Gene Ontology terms. Each column shows the number of transcripts falling within the given interval of Gene
Ontology terms identified for the transcript.

splice-variants. In head-kidney there were 1757 transcripts, 700
from head-kidney specific genes and 1057 were head-kidney
specific splice-variants. Figures 11–13 show the distribution
of the most specific common Biological Process GO terms
(see Materials and Methods “Functional Annotation”) for these
three organ-specific groups of mRNAs. Each GO term indicates

biological processes that are enriched among the organ-specific
transcripts. The GO-terms in gill transcripts clearly pointed
toward gill specific functions, such as ion transport and cell
surface receptor signaling pathway, genes which take part in
osmoregulation. Transcripts annotated as playing a role in system
development (e.g., the development of specific tissues types
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and regulation of DNA transcription) were also specifically
expressed in the gill samples (Figure 11). The head-kidney
in teleosts consists of several tissues with different distinct
functions such as excretion, steroid biosynthesis, and immune
response. Among the transcripts specifically expressed in head-
kidney were those involved in biosynthesis of macromolecules,
aromatic- and nitrogen compounds. Many were also annotated
as involved in organelle organization and transport (Figure 12).
There were 132 immune function and immune response genes
expressed only in head-kidney, although not recognized as a
uniform group of immune genes by the GO methods applied
here (most specific common GO terms). Some examples of
such transcripts include VIG2, different INFs, chemokines and
toll-like receptors. The transcripts in liver (Figure 13), showed
GO terms related to processes like metabolism, biosynthesis,
and blood coagulation (e.g., the highly expressed fgg and itih3).
Again, the transcripts exclusively expressed in this organ were, as
expected, among those coding for proteins associated with liver
function. Taken together, the results here showed the potential of
our transcriptome pipeline to identify genes and splice variants
that have particular organ-specific functions.

DISCUSSION

The Benefits of Applying Hybrid Error
Correction of Single Molecule
Long-Reads in Transcriptome
Sequencing
Our pipeline aimed to generate a full-length mRNA
transcriptome with reference level sequence accuracy from
a variety of organ samples by processing PacBio long-reads that
were hybrid error-corrected with Illumina paired-end reads
from the same samples. Similar approaches have been used
to generate high quality transcriptomes in other species (Feng
et al., 2019; Puglia et al., 2020), but this is the first of its kind
in Atlantic salmon. The strategy and the main functions of the
pipeline is illustrated in Figures 1–3. First, the initial generation
of consensus sequences from single molecules, removal of
artifacts, and conservative clustering were achieved by use of
the SMRTLink package IsoSeq3 (PacBio, 2020; Figure 1). This
processing corrects for much of the high raw error rate associated
with PacBio sequencing [estimated to be 11–14% (Roberts et al.,
2013)]. The output is sequences (termed HQ reads) that are
supported by at least two single sequenced molecules with a
predicted accuracy of at least 99%.

The initial examination of the HQ reads in the materials
indicated there were many cases of frame shift errors leading
to incorrect CDS’s or premature stop codons (data not shown).
While we could not conclude for certain that these were
sequencing errors in all cases, such errors were not unexpected
given a sequence accuracy of 99% and the fact that PacBio reads
are prone to numerical errors in homopolymers (Tedersoo et al.,
2018). This accuracy would not be sufficient for our purpose,
as we aimed to generate transcript sequences with a quality
equally as high as (or better than) the Atlantic salmon mRNAs in

RefSeq. Applying an approach where the long-reads were error-
corrected using short-read sequencing data followed by filtering
of sequences not supported by both datasets seemed to be the
better solution (Au et al., 2012). The error correction approach
takes advantage of the superior performance of the Pac Bio
platform to identify structural isoforms (and differ between very
similar paralogs) by long-read single molecule sequencing (Liang
et al., 2016) while the accuracy is expected to be greatly increased
due to a much higher read depth and phred quality contributed
by the shorter reads. Also, the kind of errors most frequently
acquired from the two platforms are not the same, and the
probability of acquiring the same contaminating sequence from
genomic DNA or other fusion artifacts when processing the same
sample in two independent cDNA synthesis and different library
prep methods is small. Together, transcript sequences generated
from separate processing methods of sample RNA likely reduced
the probability of retaining sequences with errors generated in
each of the two sample processing pipelines in the final filtered
EC-HQ reads (Figure 2).

A previous study (Sahraeian et al., 2017) comparing a variety
of tools for RNA-seq analysis identified LoRDEC (Salmela and
Rivals, 2014) as an efficient and accurate tool for hybrid error
correction, and LoRDEC was successfully implemented in our
pipeline. We applied a filtering of EC-HQ reads that assured that
long-reads with internal gaps not supported by the shorter reads
were removed. Together, the error correction approach with a
very solid short-read support and the additional lower threshold
for FLNC support assured that the final de novo transcriptome
sequences had, in agreement with findings in similar studies (Au
et al., 2012), an accuracy comparable with other Atlantic salmon
transcript reference sources.

This pipeline focused on characterization of protein coding
RNAs. The RepeatMasker software package was therefore
implemented in our pipeline to ensure the final sequences
would not contain transcripts from long interspersed repeats.
A third of the sequences were identified as some kind of long
interspersed repeat transcripts. This was a surprisingly large
proportion of all transcripts. Future transcriptome projects in
Atlantic salmon would benefit greatly from removing such
transcripts prior to cDNA synthesis and library prep (Zhulidov,
2004). Also, after filtering with RepeatMasker, a substantial
proportion (37%) of the unique EC-HQ reads were still not
classified as protein coding transcripts. This revealed that our
pipeline likely identified thousands of long non-coding RNAs
(lncRNA). Characterization of lncRNAs by long-read approaches
has emerged as the gold standard for studies of lncRNA (Wan
et al., 2019), and characterization of the Atlantic salmon lncRNAs
from these materials is now ongoing in a parallel project
(manuscript in prep).

The Full-Length mRNA Transcriptome
Substantially Increased Number of
Isoforms
Whether comparing our data with the genome sequence
annotation (SQANTI3) or the blast analysis against the Atlantic
salmon RefSeq mRNAs, about 70% of the final mRNA
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FIGURE 11 | Multilevel Gene Ontology chart, gill. The pie chart shows the most specific Gene Ontology terms occurring in at least 144 gill-specific transcripts in a
non-redundant way (see also Materials and Methods “Functional Annotation”).

FIGURE 12 | Multilevel Gene Ontology chart, head-kidney. The pie chart shows the most specific Gene Ontology terms occurring in at least 98 head-kidney-specific
transcripts in a non-redundant way (see also Materials and Methods “Functional Annotation”).

transcriptome are novel isoforms. These novel isoforms are either
splice variants, (each locus had on average three splice variants)
or paralogs. This showed that our long-read transcriptome
sequencing approach led to a substantial increase in number of

Atlantic salmon transcript isoforms. Such high success rate in
discovery of novel isoforms agrees well with findings from similar
studies (Zhang et al., 2019). A cutoff of 5 supporting FLNCs
was implemented to filter the remaining transcript categories.
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FIGURE 13 | Multilevel Gene Ontology chart, liver. The pie chart shows the most specific Gene Ontology terms occurring in at least 116 gill-specific transcripts in a
non-redundant way (see also Materials and Methods “Functional Annotation”).

Although the standard cutoff recommended by the developer
is 10 FLNCs (Tseng, 2020a), other recent studies argue that 5
FLNCs is enough to support categories like fusion transcripts
(Nattestad et al., 2018). We concluded that the hybrid error
correction step with a minimum of three supporting Illumina
reads across the entirety of the sequence provided the additional
supporting evidence needed to accept the remaining SQANTI
categories and the Cogent transcripts when supported by 5
FLNCs. Although these were categorized as dubious mRNA
transcripts by SQANTI3 or not mapped at all, we find it likely
that these are also true full-length mRNAs, but that they are not
correctly annotated in the current genome sequence.

The Long-Read Transcriptome as a
Reference to Study Expression of Splice
Variants and Paralogs From Organs or
Particular Conditions
A large fraction of the contributing FLNCs in this study
belonged to a few transcripts with extremely high levels of
expression (10% of FLNC reads were from the 17 most abundant
transcripts). In future projects aiming to characterize all full-
length mRNAs in a sample material, removal of such transcripts
(as well as all interspersed repeats) would greatly increase the
likelihood of identifying the more rarely expressed transcripts
(Zhulidov, 2004).

The sequencing depth applying one Sequel II cell was
approximately eight times higher than from one Sequel I cell.
This is in agreement with other studies (Castaño et al., 2020;
Lang et al., 2020). Combining the high read depth from Sequel
II with normalization methods to remove abundant transcripts
one would expect most transcripts expressed in a sample to
be detected. The results from this study demonstrated that
our pipeline had the ability to identify a large number of
transcripts expressed uniquely in each of the three organ types
included in the materials. The following functional annotation
also showed that the most common GO terms annotated with
the transcripts were largely consistent with the function of
those organs. Furthermore, any materials investigated by this
long-read approach may not only identify genes expressed
uniquely, but also uniquely expressed splice variants. This was
also demonstrated in the group of transcripts uniquely expressed
in a single organ.

Full-length transcriptomes have a range of useful applications
(Oikonomopoulos et al., 2020). Among those mentioned, we
propose that our high-quality full-length transcriptomes may
serve as references in expression analyses. The Atlantic salmon
genome sequence may be less suitable as such a reference as a
very large proportion of the transcripts in this study did not
align properly. Differing between splice variants or paralogs by
aligning short-reads to the genome sequence would be prone to
error (if not impossible). Instead, the error-corrected long-read
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transcriptome representing unique well-characterized transcript
variants could be applied as a reference to which transcript
sequences from short-read sequencing platforms, that provide
greater read depth at affordable costs, could be aligned, counted
and analyzed by tools like DESeq2 (Love et al., 2014). The added
advantage of such analysis is that they would simultaneously
detect SNP-variation. The UTRs are a rich source for such
variation (Andreassen et al., 2010) and such mapping has the
potential to reveal allele specific transcription, be applied to
discover QTLs and even reveal causative variation leading to
phenotypic differences in groups compared.

In conclusion, the hybrid corrected long-read pipeline
employed here successfully generated high-quality full-length
mRNA transcripts. The long-read approach led to the detection
of novel splice variants and validated a quarter of all predicted
Atlantic salmon mRNAs by transcripts originating from single
molecule sequenced long-reads. Comprised solely of mRNAs
with complete CDSs, more than 80% were assigned GO terms,
and thousands of genes or splice variants from genes expressed
in an organ specific manner were identifies. This full-length
transcriptome will be an important resource for functional
genomics in salmon aquaculture research.
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Accessing Livestock Resources in
Ensembl
Fergal J. Martin* , Astrid Gall, Michal Szpak and Paul Flicek

European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge,
United Kingdom

Genome assembly is cheaper, more accurate and more automated than it has ever
been. This is due to a combination of more cost-efficient chemistries, new sequencing
technologies and better algorithms. The livestock community has been at the forefront
of this new wave of genome assembly, generating some of the highest quality
vertebrate genome sequences. Ensembl’s goal is to add functional and comparative
annotation to these genomes, through our gene annotation, genomic alignments,
gene trees, regulatory, and variation data. We run computationally complex analyses
in a high throughput and consistent manner to help accelerate downstream science.
Our livestock resources are continuously growing in both breadth and depth. We
annotate reference genome assemblies for newly sequenced species and regularly
update annotation for existing genomes. We are the only major resource to support
the annotation of breeds and other non-reference assemblies. We currently provide
resources for 13 pig breeds, maternal and paternal haplotypes for hybrid cattle and
various other non-reference or wild type assemblies for livestock species. Here, we
describe the livestock data present in Ensembl and provide protocols for how to view
data in our genome browser, download via it our FTP site, manipulate it via our tools
and interact with it programmatically via our REST API.

Keywords: Ensembl, genome browser, annotation, tutorial, livestock, farmed animals, Ensembl VEP, REST API

INTRODUCTION

Efficient management of livestock resources is key to global food security. Livestock production
represents the largest land use sector worldwide and employs almost a billion people globally (Hurst
et al., 2005; Abu Hatab et al., 2019). Livestock production is critical to developing countries, as it
acts both as a major source of income and a means to escape poverty (Otte and Upton, 2005) and
as a backup food source in the case of crop failures (Kabubo-Mariara, 2009; Rota and Sperandini,
2009). As the world’s population continues to grow, so too does the demand for livestock source
foods (LSFs). LSFs and other animal products account for approximately one-third of human
protein consumption (Popp et al., 2010). The average per capita meat consumption is projected
to grow from 34 kg in 2015 to 49 kg in 2050 (Yawson et al., 2017). At the same time, there is
increasing competition for the use of key resources such as land and water and a need to move
to less carbon intensive LSF production, especially in the face of climate change (Thornton, 2010;
Yawson et al., 2017). Over the past decade, genomics has emerged as a key tool in the effort to
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create more efficient LSF production, particularly the use of
genomic selection to improve breeding programs (Hayes et al.,
2009; Christensen et al., 2012; Cleveland and Hickey, 2013).

The livestock community has been at the forefront of
genomics in terms of generating high quality genome assemblies
and accompanying transcriptomic data, which are key to
generating detailed genome annotations and exploring genomic
variation among populations. Species such as pig, chicken, cow,
horse, sheep, goat, salmon and herring all have chromosome-
level genome assemblies, suitable for detailed annotation and
downstream analyses (Jiang et al., 2014; Lien et al., 2016; Bickhart
et al., 2017; Warren et al., 2017; Kalbfleisch et al., 2019; Pettersson
et al., 2019; Warr et al., 2020).

In addition to reference genomes, an increasing number of
alternative genome assemblies are available for analysis. Several
breed-specific genomes have been sequenced and assembled
including a large number of pig breeds (Fang et al., 2012; Li et al.,
2017; Warr et al., 2020), black Bengal goat (Siddiki et al., 2019),
Korean chicken (Sohn et al., 2018), and three strains of common
carp (Xu et al., 2019). Livestock species are often at the cutting
edge of genome assembly, exemplified by the recent trio binning
approach (Koren et al., 2018) used to fully separate the maternal
and paternal genomes from a Bos indicus × Bos taurus hybrid
individual (Low et al., 2020).

With this wealth of high-quality genome sequences, it is
crucial that the resulting genome annotation is carried out
and presented in a clear and consistent manner. Ensembl
is a genomics resource built to provide genome annotation
and enable consistent interpretation of genomic variation both
within and across species (Howe et al., 2021). The mission
of Ensembl is to accelerate downstream science by providing
pre-computed analyses, powerful genome interpretation tools
and numerous ways of interacting with data through our
extensive infrastructure. The data include genome sequences,
gene annotation (Aken et al., 2016), comparative analyses
(Herrero et al., 2016), variation (Hunt et al., 2018), and
regulatory data (Zerbino et al., 2015). Tools such as the Ensembl
Variant Effect Predictor (VEP; McLaren et al., 2016) and
BLAST/BLAT services allow further interrogation of both the
genome sequences and their annotations. Numerous ways are
available to interact with the data including our genome browser,
FTP site, REST APIs and BioMart querying tool.

In this article we present protocols for interacting with
livestock data in Ensembl. We will examine several different
livestock species from a variety of perspectives. These include
investigating a genomic region of the cow, exploring a gene
in chicken, viewing comparative data across pig breeds and
annotating variants in goat. For more large-scale analyses, we
provide examples of how to programmatically access the data and
download the associated annotation files. In summary, readers
will get a thorough understanding of the livestock data held in
Ensembl and how to work with it.

MATERIALS

Computer and Internet Connection.

An Internet browser: recent versions of Firefox, Chrome,
Safari, and Microsoft Edge are supported.

For working with the REST API, examples are presented in
Python 3.

METHODS

The following protocols use Ensembl release 101 (August 2020)1.
There may be updates to interfaces or data if a more recent
release is used.

Exploring Genes and Genomes
The most fundamental data in Ensembl are the genome
sequences and the gene annotation for each species. In this
section we will look initially at how to view and explore a
region of the cow genome and then examine a gene in the
chicken genome. This will form the basis for later explorations
of comparative and variation data, which build on data held in
the genes and genomes.

Browsing a Genome
Much of the annotation in Ensembl corresponds to an underlying
genomic region. Becoming familiar with how to browse these
regions is key to understanding the annotation available. The
following protocol describes how to examine a region of the cow
reference genome.

1. Getting started: The Ensembl genome browser can be
searched using a variety of terms including gene names,
genomic coordinates, variant IDs or phenotypes. Go to
the Ensembl’s homepage, www.ensembl.org, and locate two
search boxes: one in the upper right corner, and another in
the middle of the page. Both the main and the corner search
box can be used to search all species. Additionally, you can
also refine the main search by choosing species of interest
from a drop-down list.

2. Finding a region: Type “cow 2:20721000-20826000” into
either box and press the return key. A Location tab will
open with a “Region in detail” view displaying the region of
interest spanning the HOXD gene cluster involved in limb
development (see Figure 1). You will find available location
displays in the left-hand side menu with blue tool buttons
below. The “Region in detail” page has three images, each
more detailed than the last: (1) the chromosome view at
the top, (2) the 1MB region around the region of interest in
the middle, (3) the region of interest corresponding to the
specified genomic coordinates at the bottom. The region of
interest is indicated by a red box in all three images.

3. Getting help: To get page specific help, click on the
question mark (?) button next to the “Region in
detail” heading. A pop-up help window will open with
instructions on how to navigate this page. You will
find a description of the page with screenshots and a
tutorial video, as well as links to FAQ, glossary and the
Ensembl helpdesk.

1http://e101.ensembl.org
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FIGURE 1 | Location view of the HOXD gene cluster in cow. In the figure, various tracks are displayed including the main gene track, SNP data, constrained
elements and a GC content. Most tracks are disabled by default, tracks such as the tissue-specific short read alignments can be toggled on and off via the
“Configure this page” option in the left-hand menu.
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4. Navigating a region: There are several ways of navigating a
genomic region. By clicking over the region and dragging
the cursor, you can draw a box in all three images, which
opens a pop-up menu with options to “Mark region” and
“Jump to region.” You can also scroll along the genome
by using the “Scroll” arrow buttons in the middle image
or by changing the mouse click mode to “Drag” (double
headed arrow icon). The zoom scrollbar enables zooming
in and out. Scroll along the genome in the middle image
to change the current genomic location. As you scroll, the
image below greys out and two blue buttons appear with
options to “Update this image” or “Reset scrollable image.”

5. Customising the view: The data in this view is organised
in tracks plotted along the genome. You will find separate
tracks for different data types such as genes, SNPs,
structural variants or contigs representing the genome
assembly. Click on the “Configure this page” button on the
left to add more data to this view. A pop-up window with
a menu listing all currently active tracks will open. You
can find a list of all available tracks organised in different
categories on the left with a search box above (with the text
“Find a track”). Search for “Proteins from UniProtKB” and
turn it on as “Labels.” Click on the tick at the top left of the
pop-up window or anywhere outside to save and close. You
will find the protein track added to the view.

6. Exporting data: Click on the blue “Export data” button on
the left to download data for this region.

A data export window will open with different output format
options, including FASTA for sequences and various feature
formats such as BED, CSV, TSV, GTF, and GFF3.

Exploring a Gene
Gene annotation is one of the most commonly used annotation
types in Ensembl. It is a composite data type, representing
underlying transcripts, exons, and protein products. In this
section, we describe how to find and export information about
the SOX5 gene in the chicken genome.

1. Getting started: To search for a chicken gene, select
“Chicken” from the species selector drop down list above
the main search box on the Ensembl homepage, type the
gene name, “SOX5,” into the search box and click the
“GO” button. A list of search results restricted to chicken
and matching “SOX5” will be generated with the “SOX5
(Chicken Gene)” at the top.

2. Studying a gene: Click on the “SOX5 (Chicken Gene)” link
to open the Gene tab.
The Gene tab landing page contains summary
information on SOX5 including its Ensembl stable
ID (ENSGALG00000032768), gene description, genomic
position, and strand information, as well as the number
of transcripts and an option to show them in the tabular
format transcript table (see Figure 2). A graphical
representation of all transcripts can be found at the bottom
of the page. A number of gene-related displays providing
additional data can be found in the left-hand menu. The

gene overview at the top of this page is visible across all
subsequent views.

3. Exploring a gene sequence: Click the “Sequence” display in
the left-hand side menu.
A sequence view of SOX5 and its flanking region will be
displayed in FASTA format with all exonic sequences in
this region highlighted in peach colour. Exons of SOX5
will be indicated by brown bold lettering on top of the
peach highlight. You can manipulate this view and change
display options by clicking the blue “Configure this page”
button on the left. It will allow you to customise the
length of the flanking sequence and show genetic variants
in the sequence.

4. Downloading a gene sequence: The gene sequence can be
downloaded by clicking the “Download sequence” button
in the current “Sequence” view or by clicking the blue
“Export data” button on the left in any other view. This will
open a pop-up window with customisation options that
allow to choose different sequence types, the length of the
flanking region and the file format (FASTA or RTF).

5. Studying gene ontology (GO): You will find three GO
categories under “Ontologies” in the left-hand menu: “GO:
Cellular component,” “GO: Molecular function” and “GO:
Biological process.” Browse all three views to learn about
the gene function. GO terms describe the protein function
using standardised vocabulary:

(a) “GO: Biological process”: what does it do? Example:
“positive regulation of chondrocyte differentiation.”

(b) “GO: Molecular function”: how does it do it? Example:
“DNA binding.”

(c) “GO: Biological process”: where is it located? Example:
“nucleus.”

Each of the above GO categories lists terms associated with
transcripts of the SOX5 gene. The data are organised in a
tabular format containing the GO term accession number,
the corresponding description, evidence and annotation
source, along with the associated transcript stable IDs.
On exploring all three views, it emerges that SOX5 gene
encodes a nuclear transcription factor involved in the
regulation of chondrogenesis.

6. Exploring external resources: Click “External references” in
the left-hand side menu.
Links to external databases such as Expression
Atlas, NCBI, and WikiGene, as well as related
RefSeq and UniProtKB/TrEMBL accession numbers
can be found here.

7. Studying a transcript: Click the “Show transcript
table” button at the top of the page and go to the
Transcript tab by clicking the transcript stable ID link
“ENSGALT00000105978.1” in the table. The transcript
table is visible in any gene and transcript view. It lists all
transcripts of the gene of interest, their corresponding
name, stable ID, length, biotype and transcript flags
indicating transcript quality. You can hover the cursor
over the flags to find out more information. In this
case the chosen transcript named “SOX5-201” has a flag
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FIGURE 2 | Gene view of SOX5. The gene view tab shows a variety of information about the gene including details on the location, transcripts, orthologues, and
paralogues. The main gene track is shown in the bottom panel with red blocks representing the exons and connecting red lines representing the introns. In this
example a secondary track for liver transcriptomic data can be seen in blue. This and other tissue tracks are available via the “Configure this page” option in the
left-hand menu.

“APPRIS P1.” This means that it is predicted by the
APPRIS database (Rodriguez et al., 2018) to be the most
functionally important transcript of this gene based on
protein structure, functional features and information
from cross-species conservation. Similar to the Gene tab,
the Transcript tab is also composed of several displays
introducing different data types including “Sequence”
views and “Protein Information.”

8. Exploring exon sequences: Click “Exons” under “Sequence”
in the left-hand side menu to see exon information in
tabular format. The Exons view displays a table listing
exons, their order in the transcript, genomic position, start
and end phase, length, and sequence. Translated sequence
is marked in blue, untranslated region (UTR) in orange,
flanking sequence in green and introns in grey. This
transcript has a 5′ UTR spanning the entire first exon and

the beginning of the second exon. “Configure this page”
will allow you to customise this view.

Comparing Genes and Genomes
Ensembl has a powerful comparative genomes infrastructure to
deliver information about how genes and genomes relate to
one another across our supported species. Here, we describe
assessing comparative data, focusing on gene trees and whole
genome alignments.

Examining Genes Trees and Orthologous Genes in
Pig
A common way to assess the reliability of annotation of a
gene, both in terms of structure and function, is to examine
orthologous genes in other species. Genes that are present across
a broad range of species, with high sequence similarity and
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within syntenic regions, are likely to have equivalent functions.
Understanding the level of conservation of a gene across species
can assist with downstream inference and analysis. Here, we will
examine a highly conserved gene, FILIP1, in pig and explore
the associated gene tree as well as data for FILIP1 orthologues
in other species.

1. Getting started: Select “Pig” from the species selector drop
down list above the main search box on the Ensembl
homepage, type “FILIP1” into the search box and hit
the “GO” button.
A list of search results across all breeds will be generated.
In the left-hand menu you will see options for filtering
the search results. For species like pig, where there are
alternative breeds/strains available, we have a defined
reference. In general, for livestock species, the reference
chosen is based on feedback from the community. In the
case of pig, the current reference chosen by the community
is the Sscrofa11.1 assembly of the Duroc breed. Try
restricting the results to the FILIP1 gene in the reference
breed. First, in the left-hand menu under “Restrict breeds
to” click on “Pig reference.” Next, under “Restrict category
to” click on “Gene.” The initial results are now filtered
to just genes in the reference breed matching the name
“FILIP1.” You will now have two results representing the
FILIP1 and FILIP1L genes. Click on the “FILIP1 (Pig Gene,
Breed: reference)” link on top to go to the Gene tab. This
will present the gene view for the FILIP1 gene in the
reference pig genome.

2. Exploring a gene tree: In the left-hand side menu, click on
the “Gene tree” display. An image showing a phylogenetic
tree will be loaded. The current gene, marked in red,
is shown in the context of homologous genes found
across various clades including primates, rodents, birds,
reptiles and even non-vertebrates such as Caenorhabditis
elegans and Drosophila melanogaster (see Figure 3). Grey
funnels indicate collapsed nodes, which can be expanded
by clicking on them and selecting “expand this sub-
tree” from the pop-up menu. A graphical representation
of the protein alignment used to calculate this tree can
be found on the right. Green colour indicates aligned
sequences, while alignment gaps are shown in white.
A consensus alignment is displayed for collapsed nodes,
with two shades of green corresponding to the proportion
of aligned collapsed sequences. Black vertical lines mark
exon-intron boundaries.

3. Retrieving orthologues: Click “Orthologues” in the menu
on the left. This will load the orthology table.

4. The table lists FILIP1 orthologues found across a large
range of species. To make it easier to examine the data
click on the show details box beside “Laurasiatheria” in the
species set list. This will restrict the data in the orthologue
table below to just laurasiatherian species.

5. Examine the column headings in the orthologue table to
see the types of information available in the table. Some
columns have extra information that displays when the
mouse cursor is left over them.

6. Scroll down to the orthologue for horse. The sequence
identity of the pig FILIP1 gene with the horse FILIP1
gene is high. The query and target ID percentages, which
represent how much of the pig FILIP1 sequence matches
the horse FILIP1 sequence and vice-versa are both over
94%, indicating strong conservation. The gene order
conservation score, which represents conserved orthology
between the two nearest 5′ and 3′ genes flanking FILIP1,
and whole genome alignment coverage are both 100.
This implies strong gene order conservation and a high
coverage pairwise alignment of the broader underlying
genomic regions. As a result, the orthologue is listed as
high confidence, as indicated by a “Yes” in the “High
Confidence” column.

7. Exploring a protein alignment: Click on the “View
Sequence Alignments” link to open a pop-up menu with
options to view protein and cDNA alignment. Click “View
Protein Alignment.” An alignment of the gene of interest
and its orthologue will be displayed in CLUSTAL W
format. Click on the question mark button (?) next to the
“Orthologue alignment” heading for more information on
the conservation codes.

Viewing a Whole Genome Alignment of Pig Breeds
Ensembl provides a large number of pairwise and multiple whole
genome alignments. Every species has a pairwise alignment
against a reference species for its clade. The reference species
for mammals, birds and fish are human, chicken, and zebrafish,
respectively. For some species, additional pairwise alignments
are generated. For example, rodent genomes are aligned against
the mouse reference, while the pig reference has a pairwise
alignment to the USMARC pig assembly. In addition to the
pairwise alignments, various multiple whole genome alignments
are available, including the 57 mammals and the 95 amniota
vertebrates alignments.

Here, we will look at a multiple alignment generated for 13
pig breeds and three outgroup species: cow, horse, and sheep
(texel). Using the COL12A1 gene, we will see that this region is
generally well conserved across the alignment, however the gene
is truncated in the Tibetan breed. We will examine the alignment
for potential explanations for this truncation.

1. Getting started: From the Ensembl frontpage type “pig
1: 90744429-90875118” into the search box and click the
“GO” button. This will bring you directly to the genomic
location of the COL12A1 gene in the pig reference genome.

2. Using the left-hand side menu, click on “Alignments (text)”
under “Comparative Genomics” to access available whole
genome alignments for the pig reference genome.

3. Click on the “Select an alignment” button to see the
alignment selector tool.

4. Choose “16 pig breeds EPO-Extended” from the multiple
alignment category. This provides a multiple whole
genome alignment of all pig genomes in Ensembl and the
three outgroup species generated from the Enredo, Pecan,
and Ortheus pipeline (Paten et al., 2008). A graphical
representation of an expanded phylogenetic tree and
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FIGURE 3 | The FILIP1 gene tree. The pig FILIP1 gene is highlighted in red. Various other clades are collapsed into funnels to improve usability of the tree. Subtrees
can be expanded and collapsed by clicking on the corresponding node (represented by a square on the tree) and selecting the appropriate option from the menu.
The right-hand side shows a visual representation of alignment conservation of the corresponding protein sequences across the tree.

corresponding section of the whole genome alignment will
load, followed by a list of the aligned regions and a preview
of the sequence alignment.

5. Examine the list of aligned regions. The alignment from
the reference to the USMARC assembly is represented
by a single contiguous alignment block in the USMARC
assembly, reflecting the high-quality and contiguity of the
assembly. This is also true for the aligned regions of the
three outgroup assemblies (cow, sheep, and horse). For
other pig breeds, there are multiple alignment blocks due
to the lower contiguity and completeness of the assemblies.
In particular, the Tibetan and Wuzhishan alignments
are fragmented across multiple genomic regions,
implying the region is not correctly reconstructed in
these assemblies.

6. Click on the “View an image of this alignment” link, located
directly above the list of regions. This will load a more
detailed view of the COL12A1 gene structure across the
aligned regions, as shown in Figure 4.

7. Examine the gene structure across the breeds. Note that
the intron/exon structures are mostly well conserved
across breeds. Scroll down to the Tibetan copy of the
COL12A1 gene. Note that the gene is heavily truncated
in comparison to the other breeds. The alternating light
and dark blue bands represent the boundaries of different
alignment blocks and are labelled with the region of the
genome each block comes from. For the Tibetan breed the
annotated section of the gene lies on the AORO02005858.1
scaffold. The remainder of the alignment blocks are on the
AORO02052718.1 scaffold. This provides strong evidence
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FIGURE 4 | Genomic alignment of pig breeds centred on the COL12A gene. This figure shows only the first five alignments including the reference pig at the top, the
complete alignment contains all 13 pig breeds along with cow, horse, and sheep as outgroups. The pale orange highlighting in the background represents
conservation. Exonic regions are naturally more conserved across the alignment.

that parts or all of these two scaffolds should have been
joined in the Tibetan assembly. As a result of them not
being joined the COL12A1 gene is truncated at the end
of the AORO02005858.1 scaffold, where the majority of
the gene resides.

Viewing a Synteny Map of Pig Chromosome 6 to
Human
Whole genome alignments can also be used to generate synteny
maps between chromosomes of different species. These maps
show genomic regions in which genes occur in the same order in
two species. This view gives insight into how chromosomes have
diverged between two species and any two species with pairwise
whole genome alignments can be compared in this way. Here, we
will describe viewing a synteny map between pig chromosome 6
and the corresponding regions in the human genome.

1. Getting started: From the Ensembl homepage click the
dropdown box under the “All genomes” heading (the box
will have “–Select a species–” by default).

2. This will produce a list of species grouped under
headings, including major clades such as primates and
rodents. Scroll down to “Laurasiatheria” and click on
“Pig” to go to the species page for the reference
pig genome

3. From the species page select “View karyotype.” This
will give the karyotype view of all chromosomes
in the reference pig. Click anywhere within
chromosome 6 on the image of the karyotype to see a
pop-up window.

4. Select “Jump to region overview” in the pop-up window.
This will bring you directly to the Location tab of the
corresponding region on chromosome 6.

5. In the Location tab, select “Synteny” under the
“Comparative Genomics” section in the left-hand
side menu to bring up the synteny view for pig
chromosome 6. You will now see an image of a
synteny map between chromosome 6 in pig and the
various chromosomes in human that it maps to (see
Figure 5). The region you selected and the corresponding
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FIGURE 5 | A synteny map from pig chromosome 6 to human. Regions on pig chromosome 6 (located in the centre) are syntenic to multiple regions on human
chromosomes 1, 7, 16, 18, and 19 (shown on the left- and right-hand sides). Syntenic blocks are coloured according to the chromosome numbers for human. The
blocks are connected by lines, whereby black lines connect blocks with the same orientation and brown lines indicate blocks with the opposite orientation.

location in human are indicated by red boxes. Syntenic
blocks are shown in different colours and connected
by lines. You can change the chromosome or select

species other than human, where a pairwise whole
genome alignment is present, using the drop-down on
the right.
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Examining Genetic Variation and
Annotating Variants
Several livestock species including chicken, goat, pig, and salmon
have extensive variation data. Ensembl provides extensive views
via the bowser and also analysis of variant data via the Ensembl
Variant Predictor (VEP). In this section we will show how to
browse and analyse variant data in the goat genome.

Exploring Variation Data
Variation data can be accessed in a number of ways through
the browser including by selecting it in the configuration menu
and by navigating to the “Genetic variation” section in the
left-hand menu on the Location, Gene, and Transcript tab.
There are also example entry points on each species page and
support for searching variant identifiers from dbSNP and other
databases. Here, we will examine different aspects of variation
data including population frequencies, phylogenetic context,
and consequences.

1. Getting started: Type “rs666529295” into the main or the
upper right corner search box to search all species and hit
return. The search result page will return two hits with
“rs666529295 (Goat Variant, Breed: reference)” at the top,
click on this link.

2. Studying a variant: You will be taken to the variant
summary page containing variant overview information
such as the most severe consequence, variant
alleles as reference/alternative (here: “G/A”), highest
population minor allele frequency (MAF), genomic
location and strand.

3. Exploring variant allele frequencies: Click the “Population
genetics” icon or the link in the left-hand menu to display
allele frequencies from the NextGen Project (Alberto et al.,
2018). The pie chart shows the allele frequency across all
sequenced goat populations (see Figure 6). Click the “ + ”
next to “Sub-populations” to reveal the allele frequencies in
the included sub-populations.

4. Studying the phylogenetic context: Click “Phylogenetic
context” to see the conservation of this variant and its
flanking region across different taxa. Click “Select an
alignment,” then “Multiple.” This should show a list of
available multiple species alignments. Select “95 amniota
vertebrates Mercator-Pecan” and click “Apply” to load
the alignment. The resulting page displays a multiple
alignment of 10 bp around the focus variant. In this case
the variant is conserved across all taxa.

5. Transcript consequences: Click “Genes and regulation”
under “Genomic context” in the menu to see which genes
and transcripts are affected by this variant. In this case, we
can see that a transcript in the EDNRA gene is affected with
a consequence type of “Missense variant.” The location in
both the transcript and CDS sequence are shown, along
with the codon and amino acid changed. The Sorting
Intolerant From Tolerant (SIFT) pathogenicity prediction
score (Kumar et al., 2009) is “0,” indicating that the amino
acid substitution is predicted to be deleterious to the
function of the protein.

6. The Variant table: By clicking the Gene stable ID link
“ENSCHIG00000019737,” you can navigate directly to the
Gene tab and be taken straight to the “Variant Table”
display. This lists all variants in the Ensembl database
that fall within the EDNRA gene (including a 5 kb
flanking region). Data can be downloaded as a CSV file by
clicking the Excel icon.

7. Studying a phenotype: From the left-hand menu in the
Gene tab, click “Phenotypes” to explore the complete set
of phenotypes, diseases and traits associated with the gene.
This gene has been associated with “Coat colour, white
spotting, EDNRA-related” according to OMIA (Lenffer
et al., 2006). There are no variants for this gene currently
associated directly with phenotypes. Toward the bottom of
the page a list of phenotypes for orthologues of the gene
is provided to help cross-species phenotypic comparison.
Clicking on the link for any of the phenotypes listed on the
page will provide a list of other loci present in the species
that are associated with the same phenotype.

Annotating Variants With the Ensembl VEP
The Ensembl VEP (McLaren et al., 2016) classifies the impact
of variants on genes, transcripts, and protein sequences and
identifies known variants that match the input variants.

The Ensembl VEP is available as a web interface, a command
line tool and through a REST API endpoint. The web interface
is suitable for smaller amounts of data, while the command line
tools is suitable for large-scale analysis and offers maximum
flexibility, including the option to analyse variants for genomes
that are not in Ensembl. Here, we’ll look at the use of the point-
and-click web interface to analyse six goat variants input in
Variant Call Format (VCF).

1. From any page in Ensembl, click on the link to “VEP” at
the top of the page.

2. From the VEP page, click on “Launch VEP” in the “Web
interface” box to load the VEP input form (see Figure 7).

3. By default, human is selected as in the species list, click on
the “X” beside “Homo_sapiens” to remove human from
the species list. Now click “Add/remove species” to load
the species selector box. When it pops up, begin to type
“goat” and select “Goat reference (Capra_hircus)” and
click “Apply.” The reference goat genome should now be
selected in the VEP input form.

4. Copy the below variant data into the “Input data” box.
#CHROM POS ID REF ALT
4 171761. AG A
4 237277. A G
17 60280444. G A
17 60280445. C A
29 5900081. G T
29 5900083. G C
In this case we will run with default parameters, but the
reader is encouraged to take a look at the various options
available for configuring the VEP.

5. Click on the “Run” button. The display shows the status of
the job. It will say “Queued,” then switch to “Done” when
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FIGURE 6 | Exploring variation data in goat. Here, we see the view of population genetics data within the variant tab. Pie charts for the overall allele frequencies
along with frequencies for subpopulations are provided based off the NextGen Project data.

the job has finished. It is possible to save, edit, share or
delete a job by using the icons on the right. If multiple jobs
are submitted, they will appear in this table.

6. Click on “View Results” once the job is done. At the top
of the results page, three sets of summary information are
displayed (see Figure 8). The table shows that six variants
have been processed, none has been filtered out, three
existed already and that the variants overlap three genes
and three transcripts. Pie charts show the proportions of
total and coding consequences predicted: two missense
variants, one intron, frameshift, and synonymous variant
each, and one variant that introduces a stop codon. At
the bottom of the page, a table with detailed results is
displayed. It includes the alleles used for the predictions,
the location of the variants, their consequences and other
useful information.

Accessing and Downloading Large Data
Sets
Up until this point we have focused on viewing data relating
to individual loci in the context of the genome browser. To
enable analysis of data over larger regions we provide a number
of different methods for bulk data access. In this section, we

will focus on three different methods: creating queries in our
BioMart data exporter, programmatic access via our REST API
and downloading files via our FTP site.

BioMart: Retrieving NCBI Gene IDs, GO Terms, and
cDNA Sequences of Sheep Genes
BioMart (Kinsella et al., 2011) enables the creation of
complex queries on data in Ensembl. The results can then
be exported in different formats depending on the type
of data queries. The underlying databases can also be
accessed programmatically using R with the Bioconductor
package biomaRt (Durinck et al., 2005). Data retrieval
using BioMart is possible for medium to large datasets
with hundreds of entries, but it is not suitable for whole
genome-scale data.

The following BioMart queries first generate a CSV file
with NCBI gene IDs and GO terms for the sheep genes
ESPN, USH1C, CISD2, THRB, GIPC3, and BRCA2 (query #1
below) and the get their cDNA sequences in FASTA format
(query #2 below). In all BioMart queries a dataset must
be selected, filters set (input – here the six gene names)
and attributes (desired output) defined before the results can
be exported.

Frontiers in Genetics | www.frontiersin.org 11 April 2021 | Volume 12 | Article 650228108

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-650228 April 22, 2021 Time: 16:50 # 12

Martin et al. Accessing Livestock Resources in Ensembl

FIGURE 7 | The Variant Effect Predictor input form. The overlayed dialogue boxes provide a breakdown of the steps involved in submitting data to the VEP.

(1) Query 1: Click on “BioMart” at the top of any Ensembl
page to load BioMart. You should see an interface similar
to Figure 9.

1. Under “Dataset,” Choose the “Ensembl Genes” database
and the “Sheep (texel) genes (Oar_v3.1)” dataset from
the respective drop-down menu.

2. Click on “Filters” in the left panel. Expand the “GENE”
section by clicking on the “ + ” box. Select “Input
external references ID list” and paste “ESPN, USH1C,
CISD2, THRB, GIPC3, BRCA2” in the text box. Select
“Gene Name(s)” from the drop-down menu.

3. Click on “Count” to check the Filters. This
shows six genes.

4. Click on “Attributes” in the left panel. Expand the
“EXTERNAL” section by clicking on the “ + ” box.
Select “GO term accession,” “GO term name,” “GO
term definition” and “NCBI gene (formerly Entrezgene)
ID.” Then expand the “GENE” section by clicking on
the “ + ” box. The Ensembl “Gene stable ID” and

“Transcript stable ID” are pre-selected. In addition,
select “Gene name” to include the input in the CSV file.

5. Click “Results.” Select Export all results to “File” and
“CSV” from the drop-down menus. Click on the “Go”
button to export the file.

(2) Query 2: Click on “Attributes” again. Do not change
Dataset and Filters.

1. Select the “Sequences” attributes page at the top. Expand
the “SEQUENCES” section by clicking on the “+” box.
Select “cDNA sequences.” Then expand the “HEADER
INFORMATION” section by clicking on the “+” box.
As before, Ensembl “Gene stable ID” and “Transcript
stable ID” are pre-selected. Select “Gene name” to
include the input in the FASTA file.

2. Click “Results.” Select Export all results to “File” and
“FASTA” from the drop-down menus. Click on the “Go”
button to export the file.
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FIGURE 8 | The Ensembl Variant Effect Predictor results page. The summary information at the top shows the consequence information for the uploaded variants.
The results table at the bottom shows more detailed information for each uploaded variant including overlapping genes and transcripts.

REST API: Retrieving Homologues of a Horse Gene
The Ensembl REST API (Yates et al., 2015) is available at
rest.ensembl.org and its user guide, including a Getting Started
section, at http://github.com/Ensembl/ensembl-rest/wiki. Our
REST API consists of a variety of endpoints. Endpoints can be
considered parts of the API that allow retrieval of particular types
of data. The data these endpoints provide includes transcript
sequences, meta data, gene trees, variants, and a host of others.

The following Python script uses the GET
homology/symbol/:species/:symbol endpoint to retrieve
homologues of the horse BRCA2 gene and print information
about them in FASTA format. It uses a helper function to
make the request, check for errors and decode the JSON
response (the function returns text if the content_type is not
JSON). The function can be integrated in any script to simplify
these steps.

#!/usr/bin/env python
# Get the necessary Python modules
import requests, sys, json
# Define a helper function
def fetch_endpoint(server, request, content_type):

# Make the request
r = requests.get(server + request, headers = {"Accept":

content_type})
# Get the status of any failed query
if not r.ok:

r.raise_for_status()

sys.exit()
# Decode JSON, if used as content_type. If not, return text.
if content_type = = “application/json”:

return r.json()
else:

return r.text
# Define the gene name
gene = "BRCA2"
# Define the general URL parameters
server = “http://rest.ensembl.org/”
ext_hom = “homology/symbol/horse/”+ gene
con = “application/json”
# Submit the query by calling the helper function
get_hom = fetch_endpoint(server, ext_hom, con)
# Print some information about the homologues

for data in get_hom[“data”]:
for homology in data[“homologies”]:

source_id = homology[“source”][“id”]
source_species = homology[“source”][“species”]
source_seq = homology[“source”][“align_seq”]
target_id = homology[“target”][“id”]
target_seq = homology[“target”][“align_seq”]
target_species = homology[“target”][“species”]
print (“>,” source_id+ “ ”+ source_species+ “\n”+

source_seq + “\n>,” target_id + “ ” + target_species +“\n” +
target_seq)

Frontiers in Genetics | www.frontiersin.org 13 April 2021 | Volume 12 | Article 650228110

http://rest.ensembl.org
http://github.com/Ensembl/ensembl-rest/wiki
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-650228 April 22, 2021 Time: 16:50 # 14

Martin et al. Accessing Livestock Resources in Ensembl

FIGURE 9 | The BioMart web interface. Panel (A) shows the application of one commonly used filter, an external references identifier list, here consisting of six gene
names. The dataset size of six genes is displayed after clicking on “Count” at the top left. Panel (B) shows the selection of attributes, here “GO term accession,” “GO
term name,” and “GO term definition.” The complete list of attributes, i.e., what will be included in the results table, is shown on the left.

FTP: Downloading a GTF File for Atlantic Salmon
The Ensembl FTP site at ftp://ftp.ensembl.org/pub/can be
accessed using the command line, a script, rsync, a web browser
or FTP client. It provides files for all species in several formats,
such as FASTA, GTF/GFF3 and VCF for the current and previous
releases (going back to release 19). An overview of available data
can be found at https://www.ensembl.org/info/data/ftp/index.
html.

To download a GTF file with all annotated transcripts for
Atlantic salmon using a web browser:

1. Navigate to ftp://ftp.ensembl.org/pub/
2. Click on current_gtf and then on salmo_salar
3. Click on the file Salmo_salar.ICSASG_v2.100.gtf.gz

RESULTS

Here, we present a summary of some of the key livestock data
present in Ensembl, including the genomes, different annotation
types and FTP files.

Livestock Species in Ensembl
Ensembl contains a large variety of livestock species ranging from
cow, pig, and chicken to Arabian camel, African ostrich, and
Siberian musk deer. In addition, there are some species with
accompanying non-domesticated genomes, such as common and
wild mallard or domestic and wild yak. Table 1 shows ten

of the major livestock species in Ensembl along with some
accompanying information about the genome assembly and the
Ensembl release which included the most recent update to the
associated annotation.

Many of the livestock species, particularly the more recently
sequenced ones, have high quality genome assemblies based on
long read sequencing. Several species including chicken, cow,
goat, and pig have genome assemblies with a contig N50 of
over 10 Mb. That being said, there is considerable variability
in the quality of livestock assemblies in Ensembl as many
species were assembled using short read data. We see a range
of contig N50 values, from approximately 30 kb to over 48 Mb,
representing over a 1,000-fold variation in the level of contiguity
of these assemblies.

Gene and Transcript Annotation Across
Livestock Species
All livestock species have gene sets generated via the Ensembl
gene annotation system (Aken et al., 2016). The counts of the
coding and non-coding genes and transcripts across ten livestock
species are shown in Figure 10. Across clades a consistent pattern
emerges in terms of the expected number of protein-coding
genes. Birds, with their smaller genomes and low number of
repeat regions, have approximately 16,000 protein-coding genes,
while mammals have closer to 20,000. Fish gene counts are highly
variable, ranging between 20,000 and 60,000 protein-coding
genes, which is reflective of the multiple rounds of whole genome
duplication across fish species.
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TABLE 1 | Assembly statistics for ten reference livestock species in Ensembl.

Species Assembly Accession Contig N50 Date Release

Chicken GRCg6a GCA_000002315.5 17655422 2018-03-27 95

Duck CAU_duck1.0 GCA_002743455.1 88037 2017-11-03 96

Cow ARS-UCD1.2 GCA_002263795.2 25896116 2018-04-11 98

Goat ARS1 GCA_001704415.1 26244591 2016-08-24 92

Horse EquCab3.0 GCA_002863925.1 1502753 2018-01-05 98

Pig Sscrofa11.1 GCA_000003025.6 48231277 2017-02-07 98

Sheep Oar_rambouillet_v1.0 GCA_002742125.1 2572683 2017-11-02 101

Herring Ch_v2.0.2 GCA_900700415.1 1151065 2019-04-16 98

Seabream fSpaAur1.1 GCA_900880675.1 2862625 2019-07-30 99

Salmon ICSASG_v2 GCA_000233375.4 36085 2015-06-10 99

Date refers to the date the assembly was submitted to the public archives. Release is the Ensembl release number in which the annotation for the corresponding assembly
was most recently updated.

FIGURE 10 | Counts of coding and non-coding genes and transcripts for ten livestock species. Panel (A) shows the gene counts, while panel (B) shows the
transcripts counts for various livestock species from the bird, mammal and fish clades.
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Non-coding genes, which include pseudogenes, long and
short non-coding RNAs, are considerably more variable in
terms of overall counts. In particular, lncRNAs annotations
are highly variable as they are detected through transcriptomic
data and are often expressed at low levels and tissue-specific
(Uszczynska-Ratajczak et al., 2018). As a result, species with large
amounts of transcriptomic data, sampled across a broad set of
tissues and development stages, have considerably more lncRNA
annotations than species with a small amount of transcriptomic
data. Sequence similarity to species with entries in miRBase
(Kozomara et al., 2019) and Rfam (Kalvari et al., 2018) heavily
affects annotation of small ncRNAs, species with high sequence
similarity to species with good coverage in these databases will
generally have higher counts of sncRNAs.

Comparative Livestock Data
All livestock species are included as part of our protein and
ncRNA gene tree pipelines, which calculate gene tress across all
species in Ensembl.

Table 2 provides more information on the other comparative
data available across different sets of species. These data are
calculated for subsets of the species in Ensembl; the selection is
made based on the quality of the genome assembly and the clade
the species belongs to. For example, the high-quality 57 mammals
EPO alignments are clade-specific and require that the genome
assemblies used in the alignment are at the chromosome-level,
while the 111 eutherian mammals EPO-extended alignment is
a broader sampling of mammals and extends to lower quality
genome assemblies.

For pig, there are 13 breeds available in Ensembl and we
have generated additional breed-specific comparative resources.
Table 3 shows data for a 16 species EPO-extended alignment
between the 13 pig breeds, in addition to three outgroup species.
We have also generated a set of gene trees using these 16 species.

Variation Livestock and Companion
Animal Resources
Ensembl has variation data for ten livestock and companion
animal species, summarised in Table 4. Between 9,000 and 104
million short variants are available for each of these species; in
addition, structural variants are available for cow, dog, horse, pig,
and sheep. Sources of short variants for livestock and companion
animals in Ensembl are dbSNP, Pig SNP Consortium and EVA
study PRJEB34225, while all structural variants are imported
from DGVa. Sources of the phenotype data are OMIA, GOA
and AnimalQTLdb, while allele frequencies are from NextGen
Project, International Sheep Genome Consortium and EVA
studies PRJEB34225, PRJEB24066, and PRJEB9799. Similar to
the variant data, the amount of linked data available for the
different species varies significantly. The richest linked data sets
with all data types are available for Cow, Dog, Horse, and Sheep,
while the linked data sets for Atlantic salmon, Cat and Turkey
are most limited.

For each variant, we also identify all overlapping Ensembl
transcripts and provide the most severe consequence of the TA
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variant, as defined by sequence ontology2. For missense variants
of cat, chicken, cow, dog, goat, horse, pig, and sheep, SIFT
scores are provided to help assess the potential pathogenicity
of the variants.

Files Available for Livestock Species
Running analyses locally is made easier by the availability of data
that has been exported from the Ensembl database into popular
file formats for download. Files on the FTP site are organised by
releases, with older releases stretching back almost 20 years. As
such it is possible to retrieve files representing different reference
assemblies or annotations through time. Table 5 shows some of

2http://www.sequenceontology.org

the most popular files available on the FTP site along with a brief
description of their content.

DISCUSSION

Ensembl contains a wealth of livestock data that can be
accessed in a number of different ways as described in the
protocols presented here. The depth of available data reflects
the commercial value of applying genomics to understanding
these species and breeds and there is, of course, some variability
in the data available for different species. We have certain
key data types available for all livestock species including gene
annotations, gene trees, inclusion in whole genome alignments

TABLE 3 | Summary statistics of the pig breeds whole genome alignment.

Species – Genome len. Genome cov. Genome cov. Coding exon length Coding exon coverage Coding exon coverage

breed (gb) (gb) (%) (bp) (bp) (%)

Pig – Reference 2.50 2.35 93.82 35,828,571 34,187,392 95.42

Pig – USMARC 2.76 2.30 83.49 35,166,034 32,878,028 93.49

Pig – Wuzhishan 2.51 2.29 91.43 32,216,998 30,303,931 94.06

Pig – Tibetan 2.44 2.24 91.88 33,242,148 31,601,348 95.06

Pig – Meishan 2.47 2.29 92.96 34,405,547 33,144,362 96.33

Pig – Jinhua 2.45 2.30 93.54 34,359,345 33,112,715 96.37

Pig – Rongchang 2.46 2.30 93.47 34,688,475 33,474,298 96.5

Pig – Bamei 2.46 2.29 93.26 34,436,299 33,139,773 96.24

Pig – Largewhite 2.46 2.31 93.84 34,666,066 33,395,166 96.33

Pig – Pietrain 2.44 2.30 94.24 34,368,936 33,123,601 96.38

Pig – Berkshire 2.43 2.29 94.17 34,511,197 33,225,283 96.27

Pig – Hampshire 2.44 2.30 94.41 34,573,096 33,284,528 96.27

Pig – Landrace 2.44 2.30 94.1 34,646,469 33,337,432 96.22

Cow 2.72 2.52 92.83 34,983,666 33,272,562 95.11

Horse 2.51 2.28 90.93 37,559,221 34,821,694 92.71

Sheep (texel) 2.62 2.49 95 32,776,750 30,904,741 94.29

This alignment was initially generated in Ensembl release 98 and is composed of 11,721 blocks (up to 953,990 bp long). Cow, horse, and sheep were used as outgroups
in the alignment.

TABLE 4 | Variation data counts for livestock and companion animal species.

Species Short
variants

Structural
variants

Populations with allele
frequency data/Total
number of individuals

Variants with Phenotype data

Population
genotypes

Sample
genotypes

SIFT
scores

Phenotypes Gene
associations

Atlantic salmon 10.1 M ND 3/80 10.1 M 10.1 M ND ND ND

Cat 3.6 M ND ND ND ND 7 K 63 64

Chicken 24 M ND ND 3.2 M 3.2 M 229 K 225 5 K

Cow 104 M 18 K 1/8 10 K 10 K 2.1 M 549 98 K

Dog 5.9 M 104 K 1/219 727 K 727 K 50 K 257 258

Goat 37 M ND 5/195 ND ND 92 K 11 11

Horse 21 M 193 K 1/6 1.1 1.1 M 98 K 88 852

Pig 67 M 224 K ND 175 15 218 K 394 20 K

Sheep 61 M 2 68/633 147 64 222 K 172 2 K

Turkey 9 K ND ND 48 ND ND 29 42

The counts are based on Ensembl release 101. Sheep data are from the texel breed. Data sources: Short variants – EVA study PRJEB34225 (Atlantic salmon), dbSNP
and Pig SNP Consortium (Pig), dbSNP (others); Structural variants – DGVa (all); Allele frequencies – EVA study PRJEB34225 (Atlantic salmon), NextGen Project (Cow,
Goat), EVA study PRJEB24066 (Dog), EVA study PRJEB9799 (Horse), NextGen Project and International Sheep Genome Consortium (Sheep); Phenotypes – OMIA (Cat,
Dog, and Goat), GOA and OMIA (Turkey), AnimalQTLdb and OMIA (others). ND, no data.
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TABLE 5 | Selected files available on the Ensembl FTP site for livestock species.

Data File types Description

Genome sequences FASTA, EMBL, GenBank The non-redundant genome sequences (sometimes referred to as “toplevel”). Available in softmasked,
hardmasked, and unmasked variations

Transcript sequences FASTA Sequences for all transcript structures including any 5′ and 3′ UTR present. A cDNA file contains all
coding transcript sequences, while non-coding transcripts are represented in a separate ncRNA file

Peptide sequences FASTA Amino acid translations for each transcript with an annotated open reading frame

Gene annotation GFF3, GTF, EMBL, GenBank Files containing information on genes, transcripts exons and cds structures. The exact content varies
from between formats, with GFF3 and GTF being less verbose than EMBL and GenBank formats

Genome alignments lastZ Net, MAF Pairwise lastZ genome alignments are available for all species against the reference for their clade. EPO
multi-genome alignments are available for various clades including mammals and pig breeds

Variation data VCF, VEP cache Variation data is available in VCF format for several species including chicken, cow, goat, pig, and
sheep. VEP cache files allow local installation of the VEP to speed up the analysis by using the data
stored in the cache

Files can be found on ftp://ftp.ensembl.org/pub/, with files relating to the current release found in subdirectories prefixed with “current_.” Files from all previous releases
back to release 19 are also available.

and compatibility with tools such as our BLAST service and
the Ensembl VEP. In addition to this, there are a significant
number of additional data tracks, though this varies from species
to species. For example, while all livestock species have associated
transcriptomic data used to produce their gene annotations, the
amount of transcriptomic data varies considerably. For pig, there
is an extensive collection of both short and long read tissue data,
all of which are available in the browser as tissue-specific gene
tracks. For several species, we have variation data, with tracks
for SNPs and structural variants as well as an LD calculation
tool available for goat, salmon and sheep. With falling costs of
generating these data, we expect that data availability will become
more consistent across species. Ensembl will continue to integrate
new data in line with the needs of the livestock community.

Working with Ensembl can be divided into two major
approaches: working through the genome browser or fetching
data and running local analyses. These two approaches are often
done in tandem, with analysis starting in the browser, before
continuing on to large-scale local analyses using the REST service
and/or downloading files from the FTP site.

The browser provides access to many different views of the
underlying data. The gene and location views support access
to small scale information on a gene or set of genes, while
more specialised views such as the synteny view allow for cross
species comparisons across genomic regions. A knowledge of the
available views is key to utilising the browser fully. The default
option for each view tries to strike the right balance between
delivering key information without overloading the view with
too much visual noise. Additional tracks, that are not visible by
default, are accessible from the configuration menu. An example
of these are the transcriptomic data tracks, which are available in
the gene and location views. For species with transcriptomic data,
it is possible to switch on tracks showing the transcripts identified
in each tissue/development stage along with intron support
and BAM/BigWig coverage plots. These additional tracks can
provide valuable extra information for each locus. In addition to
understanding available views and tracks, efficiently working with
the browser benefits from knowledge of the supported tools. The
BLAST/BLAT service can be used to help identify unannotated
genes or exons in a genomic region of interest, while the Ensembl

VEP can be used to analyse uploaded variants against reference
genomes, annotations and linked data. BioMart is a powerful
tool for exporting complex data sets. Taking the time to become
familiar with the available tools, their strengths and limitations is
an important aspect of fully utilising the genome browser.

For large-scale or custom analyses, the path to interacting
with Ensembl generally shifts from the browser to programmatic
access via the API and bulk download of data via the FTP site.
A typical workflow could involve downloading the softmasked
genome sequences from the FTP site for a set of species to be
analysed, followed by fetching annotation data, such as the gene
sets, either from the files on the FTP site or via the REST API.
The REST API is a powerful method to subsample or filter the
data in various ways, such as only selecting genes on a certain
chromosome or fetching a particular subclass of genes such as
miRNAs. If no filtering or grouping of the data are required, the
corresponding FTP files are generally the most straightforward
and fastest way to get bulk access to annotation data. When
combined, the FTP site and REST API give access to the vast
wealth of data present in Ensembl. They act as a starting point for
local workflows and a better understanding of what can be fetched
directly from Ensembl can help accelerate downstream analysis.

While the protocols provided here give a comprehensive
overview of what data are in Ensembl and how to interact
with it, there is still much more to discover. Support is
available in a variety of ways including a dedicated email
helpdesk (helpdesk@ensembl.org) to field any inquiries about
Ensembl. We are currently running virtual training courses
during the COVID-19 pandemic, and will resume a full in-
person and virtual training programme, including webinars,
when possible. Our training materials are accessible online at
https://training.ensembl.org. Ensembl courses are also available
from the EMBL-EBI Train Online platform3. Tutorial videos and
recorded webinars can be found both on our YouTube4 and
Youku5 channels.

3https://www.ebi.ac.uk/training/online/
4https://www.youtube.com/user/EnsemblHelpdesk
5https://i.youku.com/i/UMzM1NjkzMTI0?spm=a2hzp.8244740.0.0
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We invite the community to contact us via our helpdesk to
ask questions regarding the use of our browser, tools and related
resources, to request training events or to suggest features which
would assist their work.
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Spermatogenesis relies on complex molecular mechanisms, essential for the genesis
and differentiation of the male gamete. Germ cell differentiation starts at the testicular
parenchyma and finishes in the epididymis, which has three main regions: head, body,
and tail. RNA-sequencing data of the testicular parenchyma (TP), head epididymis
(HE), and tail epididymis (TE) from four bulls (three biopsies per bull: 12 samples) were
subjected to differential expression analyses, functional enrichment analyses, and co-
expression analyses. The aim was to investigate the co-expression and infer possible
regulatory roles for transcripts involved in the spermatogenesis of Bos indicus bulls.
Across the three pairwise comparisons, 3,826 differentially expressed (DE) transcripts
were identified, of which 384 are small RNAs. Functional enrichment analysis pointed
to gene ontology (GO) terms related to ion channel activity, detoxification of copper,
neuroactive receptors, and spermatogenesis. Using the regulatory impact factor (RIF)
algorithm, we detected 70 DE small RNAs likely to regulate the DE transcripts
considering all pairwise comparisons among tissues. The pattern of small RNA co-
expression suggested that these elements are involved in spermatogenesis regulation.
The 3,826 DE transcripts (mRNAs and small RNAs) were further subjected to co-
expression analyses using the partial correlation and information theory (PCIT) algorithm
for network prediction. Significant correlations underpinned the co-expression network,
which had 2,216 transcripts connected by 158,807 predicted interactions. The larger
network cluster was enriched for male gamete generation and had 15 miRNAs with
significant RIF. The miRNA bta-mir-2886 showed the highest number of connections
(601) and was predicted to down-regulate ELOVL3, FEZF2, and HOXA13 (negative
co-expression correlations and confirmed with TargetScan). In short, we suggest that
bta-mir-2886 and other small RNAs might modulate gene expression in the testis and
epididymis, in Bos indicus cattle.

Keywords: bovine, RNA-sequencing, systems biology, spermatozoa, miRNA, bta-mir-2886, small RNAs,
spermatogenesis
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INTRODUCTION

Spermatozoid is the most specialized cell in mammalian
organisms. Spermatogenesis, the differentiation of male germ
cells, relies on a complex network of specialized molecular
mechanisms that are critical to male fertility (MacLean and
Wilkinson, 2005; Marengo, 2008; Hermann et al., 2018). During
spermatogenesis, three sequential phases of cell proliferation and
differentiation occur, where there is an extensive multiplication
and proliferation of spermatogonial stem cells, followed by
a meiotic division, and finally a remodeling of the nuclear
and cellular components forming sperm cells (Abou-Haila and
Tulsiani, 2000). Spermatogenesis starts with the multiplication
of spermatogonial stem cells followed by their meiotic division
into spermatids, which then differentiate into spermatozoa that
are released into the lumen of seminiferous tubules in the testis
(Staub and Johnson, 2018). Spermatozoa leaving the testis transit
through the epididymis, where they further mature, acquiring
motility and the ability to fertilize the egg (Cornwall, 2009).
The epididymis is composed of caput (head), corpus (body),
and cauda (tail), consisting of region-specific characteristics,
including a region-specific luminal protein profile (Cornwall,
2009). The spermatozoa from the testis pass to the epididymis,
which contributes to their maturation (Belleannée et al., 2012).
In the epididymis, secreted luminal proteins, water, and solute
balance contribute to the luminal environment necessary for
sperm maturation (Huang et al., 2006). Fully formed mature
sperm cells emerge from the tail epididymis and are stored until
the ejaculation event in the vas deferens.

Recently, Hombach and Kretz (2016) have proposed a role
for small RNAs in the testis and epididymis: they may be key
regulators of gene expression in spermatogenesis, as they are
in most cellular processes. RNA polymerase II transcribes small
RNAs, and because of this, their expression is mostly regulated
by mechanisms that regulate RNA polymerase II activity, such
as the interaction of transcription factors and specific DNA
sequences (Fuda et al., 2009). Some classes of small RNAs,
such as micro (miRNAs), small nuclear (snRNAs), and small
nucleolar (snoRNAs) RNAs, play a role in spermatogenesis
by being involved in meiosis (Pradillo and Santos, 2018).
Small RNAs regulate sperm maturation through mRNA-silencing
mechanisms (Nixon et al., 2019), such as destabilizing mRNAs via
deadenylation complexes (Bartel, 2018). In addition, miRNAs are
important to maintain the epididymis homeostasis and function
(Nixon et al., 2019). Small RNAs are present in epididymosomes
(Sullivan, 2016) and can modulate mRNA expression in
spermatozoa during the epididymal transit (Belleannée, 2015).

Considering the different roles played by the testis and
epididymis, some studies investigate the pattern of gene
expression of male tract reproductive tissues to shed light on
the biological processes related to each specific tissue. Among
these studies, there was a characterization of epididymis gene
expression in humans (Thimon et al., 2007; Browne et al., 2015)
and yak (Zhao et al., 2019). Guyonnet et al. (2009) have reported
the differences in the expression pattern between the testis and
epididymis in boar. However, knowledge of gene expression
patterns in the testis or epididymis of Bos indicus bulls is lacking,

and the hypothesized role of small RNAs in these tissues remains
to be confirmed.

By sampling biopsies from testicular parenchyma (TP), head
epididymis (HE), and tail epididymis (TE), we obtained different
cell groups that are representative of spermatogenesis in three
different stages. In the TP, Sertoli, Leydig, and differentiating male
germ cells represent a group of cells with the DNA still bound
to histones. In TE and HE, sperm cells are further along their
differentiation process, and protamines instead of histones are
observed, which is typical of mature sperm cells as described
before (Fortes et al., 2014). Therefore, when sampling these
tissues, we opened a window to investigate spermatogenesis.
Our aim was to combine RNA sequencing, differential gene
expression, functional enrichment, and co-expression analyses
to investigate potential transcript interactions in the male
reproductive system, using Bos indicus bulls as a model organism.

Studies on the testicular transcriptome, such as this one, are
not only useful for understanding male fertility but also very
helpful for genome annotation. Testicular tissue may be under
less evolutionary pressure and this can be promoting duplication
of protein-coding events and an overabundance of non-coding
RNAs (ncRNAs), and not all the protein-coding genes expressed
are functional (Soumillon et al., 2013). It is generally reported
that the testes have higher gene expression than other tissues
(Soumillon et al., 2013; Uhlén et al., 2015). The data reported
on this study is available through the Functional Annotation of
Animal Genomes (FAANG) Consortium for further research1.

MATERIALS AND METHODS

Samples and Data
All the experimental procedures were conducted and approved
by the ethics committee of the University of Queensland,
Brisbane, Australia (protocol number: ANRFA/SCMB/094/16).
Tissue samples were collected after euthanasia of cattle for
commercial purposes, as part of normal beef industry activities.
Testicular samples (n = 4) from mature Brahman bulls (approx.
2 years old) were collected shortly after slaughter and delivered
to the research team, who performed the biopsies. For each
bull, we performed three biopsies: testicular parenchyma (TP),
head epididymis (HE), and tail epididymis (TE). Each biopsy
(approximately 50 mg of tissue) was collected in Eppendorf tubes
with 1 ml of RNAlater R©(RNA stabilizing reagent, Ambion Inc.,
Austin, TX, United States). The biopsies were left to stabilize in a
cold room overnight. After that, the RNAlater R©fluid was pipetted
out, and the tubes with tissue samples were stored in a −80◦C
freezer until RNA extraction.

RNA Extraction and Integrity
Biopsy samples were homogenized with Precellys 25 system with
zirconium oxide beads (Bertin Technologies SAS, Montigny-
le-Bretonneux, France). Following homogenization, RNA was
extracted using the total RNA extraction protocol, with the
RNeasy kit (QIAGEN Pty Ltd., Melbourne, VIC, Australia). After

1https://data.faang.org/home
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DNAse treatment, using TURBO DNAse I, each sample was
purified using the Zymo Clean and Concentrator Kit as per the
manufacturer’s instructions (Zymo Research, CA, United States).
The RNA concentration was measured by a NanoDrop ND-1000
spectrophotometer (Thermo Fisher Scientific, Wilmington, DE,
United States). Samples without the optimal 260:280 ratio, which
was between 1.8 and 2.1, were excluded from the experiment.
The RNA integrity was verified by Agilent Bioanalyzer (Agilent,
Santa Clara, CA, United States), and only samples with an RNA
integrity number (RIN) above eight (RIN > 8) were used for
RNA sequencing. When needed, RNA extraction was repeated to
achieve this quality and integrity.

RNA Sequencing, Data Processing, and
Quantification
Library preparation and RNA sequencing were performed
following the standard Illumina protocols for the HiSeq platform
(Illumina, San Diego, CA, United States). The library prep
kit was the Illumina stranded total RNA kit with Ribo-Zero
Gold (Illumina, San Diego, CA, United States). Pair-end 125-
base pair (bp) sequencing was conducted across three lanes
of an Illumina HiSeq 2000 v4 analyzer (Illumina Inc., San
Diego, CA, United States) using standard protocols, generating
approximately 60 to 100 million reads per sample. All the samples
were run across all the lanes used, in order to avoid any lane
effect on our dataset. The quality control procedure included
removing adaptors and short reads. The software TrimGalore
0.4.5 was used for trimming adaptors and for the removal of short
reads, where one of the pair-end reads was shorter than 20 base
pairs2. Before trimming, all reads were 126-bases long, and after
trimming, lengths ranged from 20 to 126. Trimming was run in
paired mode to avoid unpaired reads after trimming. The quality
of trimmed reads was high as evaluated with FastQC 0.11.73, and
no quality cut off was required.

The sequencing reads were aligned to the Bos taurus genome
assembly (UMD 3.1 assembly available in Ensembl database)
using the HISAT2 v.2.1.0 (Kim et al., 2015) following the
mapping evaluation by Qualimap 2.2.1 (Okonechnikov et al.,
2016), reporting only known transcripts from the current bovine
annotation. The “reads per kilobase per million mapped reads”
(RPKM = total exon reads/mapped reads in millions × exon
length in kilobase) were calculated and log2 transformed for
data normalization (Mortazavi et al., 2008). To further normalize
the gene expression values, we used a mixed model approach
that considered the effects of library, tissue, and gene-by-tissue
interaction as previously detailed (Reverter et al., 2005; Cánovas
et al., 2014). In brief, the mixed model contained the sequencing
library treated as a fixed effect, while the interaction of tissue,
gene, and animal were fitted as random effects. Fitting this
animal, gene and tissue interaction is a robust methodology,
commonly used in gene expression experiments to reduce the
noise. We were able to fit tissue as we had three different tissues

2https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
3https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

per animal: TP, HE, and TE. The VCE6 software4 was used
to solve the mixed model equations and to estimate variance
components associated with random effects. The normalized
gene expression values were used in all subsequent analyses,
including differential gene expression.

Differential Expression Analysis
To identify differentially expressed (DE) transcripts (protein-
coding and small non-coding RNAs) in specific regions of
the epididymis (head and tail) and in the testis (testicular
parenchyma), we carried out pairwise comparisons among
the epididymis (head and tail) and testis (testicular
parenchyma) tissues.

Testis and epididymis expression data comprised over 21,000
transcripts, with at least 10 counts per million reads in the data.
Among expressed transcripts, 20,155 were small non-coding
RNAs (miRNAs, snRNAs, and snoRNAs) and protein-coding
RNAs (mRNA); for more detail, see Figure 1. Prior to differential
expression analysis, transcripts with less than two RPKM in at
least three samples were removed. After filtering, we considered
17,221 transcripts for differential expression and subsequent
analyses, which investigated the co-expression relationships
between protein-coding RNA (mRNA) and small non-coding
RNAs (miRNAs and snoRNAs) in testicular and epididymis
tissues. We performed differential expression analysis contrasting
the three tissues sampled, in pairwise comparisons: HE vs. TE,
HE vs. TP, and TE vs. TP. To identify the DE transcripts (mRNAs
and small RNAs), we used the Limma package in R (Ritchie
et al., 2015) to compute the moderated t-statistics, using the
empirical Bayes methods (eBayes) and the default parameters.
The DE transcripts with adjusted P value ≤ 0.05 (Benjamini and
Hochberg, 1995) and fold change≥ 2 were considered significant.
We generated three lists of DE transcripts, one for each pairwise
comparison: HE/TE, HE/TP, and TE/TP.

Functional Enrichment Analysis of DE
Transcripts
The three lists of DE transcripts were the target lists for functional
enrichment analyses. We performed the enrichment analysis
using the ClueGO v. 2.5.1 bioinformatics tool (Bindea et al.,
2009), a plug-in of the Cytoscape software (Shannon et al., 2003).
The background gene list for functional enrichment was based on
the Bos taurus genome, available as a default database in ClueGO.
In this analysis, we identified the gene ontology terms (GO
terms) and pathways [from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database] that were over-represented in the
target DE list. Redundant GO terms were clustered, considering
a Kappa score = 0.4, and adjusted P values ≤ 0.05 (Bonferroni
step-down method) were observed when reporting on significant
GO terms or pathways. To improve the functional annotation
of the DE transcripts, we cross-checked these lists with the
manually curated database for bovine transcription factors (TF)
(de Souza et al., 2018).

4https://www.openagrar.de/servlets/MCRFileNodeServlet/openagrar_derivate_
00022208/
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FIGURE 1 | Percentage of transcripts detected per annotation category, in all samples of the male reproductive tract (epididymis and testis) collected from four Bos
indicus bulls. The majority of the transcripts detected were protein coding mRNAs. The absolute number of transcripts detected per category is given in parenthesis,
next to its classification. Three types of small RNAs were detected: micro RNAs (miRNAs), small nuclear RNAs (snRNAs), and small nucleolar RNAs (snoRNAs).
Misc_RNA stands for miscellaneous types of RNAs.

miRNA Target Genes Prediction
We predicted the target genes for the DE miRNA using the
TargetScan function of R package hoardeR5. This function uses
all the information stored in the database targetscan.org (release

5https://cran.r-project.org/web/packages/hoardeR/index.html

7.2) that is available for the Bos taurus genome in terms of miRNA
data. TargetScan predicts the targets of miRNAs by searching for
the presence of conserved 8mer, 7mer, and 6mer sites that match
the seed region of each miRNA (Lewis et al., 2005). Release 7 of
TargetScan uses an improved method to predict targeting efficacy
(the context + + model) (Agarwal et al., 2015), uses 3′ UTR
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profiles that indicate the fraction of mRNA containing each site
(Nam et al., 2014), and uses updated miRNA families curated by
Chiang et al. (2010) and Fromm et al. (2015). Of note, TargetScan
is limited to known sites and 3′ UTR profiles and so it cannot
predict all possible interactions between miRNA and target genes.

Co-expression Network Analysis
We performed a co-expression analysis with the log-normalized
expression values of all transcripts (mRNAs and small RNAs
that were DE) using the partial correlation and information
theory (PCIT) algorithm (Reverter and Chan, 2008). Among
the significant correlations according to PCIT, we prioritized
the most extreme correlations (higher than 0.95 or lower than
-0.95) as stronger evidence of interaction between transcripts.
These significant and extreme correlations were used to
construct a co-expression network, visualized with the Cytoscape
software (Shannon et al., 2003). In the network, we marked
as attributes the small RNAs (miRNAs, snoRNA, and snRNA),
transcription factors (TFs), the tissue comparison in which the
transcript was DE, and the small RNAs presenting significant
regulatory impact factor (RIF) values for at least one tissue
comparison (Reverter et al., 2010). Also, we pointed out hub
transcripts in the network. Hubs are transcripts with higher
than the average significant correlations, beyond two standard
deviations (i.e., hubs are hyper-connected). In the same context,
hub centrality elements are transcripts in the network with
higher betweenness centrality than the average (more than two
standard deviations), meaning that they tend to link different
parts of the network.

Regulatory Impact Factor Analysis
The regulatory impact of each DE small RNAs over the DE genes
for the same comparison analysis was estimated with the RIF
algorithm (Reverter et al., 2010). The original application of the
RIF algorithm was to determine the regulatory impact of TFs
over selected genes (targets) related to a given trait through their
expression values between contrasting groups (Reverter et al.,
2010). In our experiment, for each pairwise comparison between
sampled tissues, we used the RIF algorithm to determine the
regulatory impact of each DE small RNA over the DE genes that
were identified in the same pairwise comparison. For example,
DE small RNA in the TP/HE comparison were tested as potential
regulators of the DE genes identified in the TP/TE analyses.
The RIF algorithm was selected for this analyses as its predicted
regulatory roles have been showcased and validated in previous
studies (Bottje et al., 2017; Nolte et al., 2019). A limitation of our
analyses is that in vitro validations for the predicted co-expression
and regulatory relationships were beyond the project scope. To
mitigate this limitation, we used RIF in combination with PCIT,
TargetScan, and in silico analyses of the minimum free energy of
miRNA-target hybridization.

Minimum Free Energy: miRNA and
Target Hybridization
The miRNA that were DE, significant according to RIF, and
had potential targets with negative co-expression correlations

were hypothesized as down-regulators of their targets. When the
hypothesis was supported by the identification of binding sites
confirmed with TargetScan, the miRNA were subjected to a final
analysis: we estimated the minimum free energy (mfe) of the
hybridization between the selected miRNA and their confirmed
target genes, using RNAhybrid tool (Rehmsmeier et al., 2004).
For this, we retrieved the miRNA mature sequence from the
miRBase sequence database6 and the cDNA sequences of the
genes from BioMart (Durinck et al., 2009). A transcript with a
mfe less than -20 kcal/mol can be considered a potential target
for the miRNA in question (Yen et al., 2019).

RESULTS

Samples from the head and tail epididymis (HE and TE)
and the testicular parenchyma (TP) of Bos indicus bulls were
used for RNA sequencing. A total of 3,826 DE transcripts
(mRNAs and small RNAs) were identified across the tissues in
three pairwise comparisons: HE/TE, HE/TP, and TE/TP. A co-
expression network was predicted and analyzed, with emphasis
on investigating potential regulators of DE genes in these tissues.
The network was enriched for male gamete generation and so we
infer that the potential regulators of the identified DE genes might
contribute to spermatogenesis.

Transcript Expression Patterns in Male
Reproductive Tissues
Reads from RNA-sequencing of HE, TE, and TP were mapped
to the genome, and the expression data was summarized per
transcript category (Figure 1). All samples considered, the RNA
sequencing data comprised of 85.0% mRNAs (17,899) and 10.7%
small RNAs, including 812 miRNAs, 746 snRNAs, and 698
snoRNAs. In the bovine reference genome, approx. 13% of all
transcripts are small RNAs, and so this is not too far from
the 10% identified here. Ribosomal RNA (rRNA) were not
well represented as expected in view of the library preparation
methods. The library preparation allowed quantifying the
expression of mRNAs and small RNAs, but it is also a limitation
of this study since it did not enrich for small RNAs and no
discovery of small RNAs was conducted. Mitochondrial RNA
is not included in Figure 1 because they were less than 1%
of the distribution. After the quality control, we kept 17,221
transcripts expressed that were quantified across tissues for
all subsequent analyses. The expression pattern of TP samples
was different from the epididymis samples (both HE and TE)
according to the principal component analysis (PCA) performed,
see Supplementary Figure 1.

Differentially Expressed Transcripts and
Functional Enrichment Analysis
The number of DE transcripts identified (FDR ≤ 0.05 and
log2 fold-change > 2) in each pairwise comparison between
HE, TE, and TP are reported in Table 1. The full details on
all DE transcripts are provided in Supplementary Table 1. In

6http://www.mirbase.org/
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TABLE 1 | Summarized differentially expressed (DE) genes and small RNAs in
each comparison of male reproductive (epididymis and testis) tissues of
Bos indicus bulls.

Differentially expressed (DE) HE/TE1 HE/TP2 TE/TP3 Total

mRNA 268 2,614 2,761 3,442

miRNA 10 108 111 144

snRNA 12 129 127 162

snoRNA 4 56 64 78

Total 294 2,907 3,063 3,826

1Comparison between HE and TE; 2comparison between HE and TP;
3comparison between TE and TP. HE, head epididymis; TE, tail epididymis; TP,
testicular parenchyma.

Supplementary Table 1, positive and negative signals of the log-
transformed fold change indicate if the transcript is up- or down-
regulated for the first tissue in each comparison (for HE/TE
and HE/TP comparisons, a positive fold change represents up-
regulation in HE; in TE/TP comparison, a positive fold-change
means the transcript was up-regulated in TE). Figure 2 showcases
the transcript expression patterns as volcano plots with the fold
change plotted against the significance for each transcript, in each
of the comparisons. We identified 40 DE transcripts that were in
common for all the comparisons (Figure 2D and Supplementary
Table 2). Our DE analysis identified a total of 3,826 transcripts
that were DE in at least one of the three comparisons.

Enriched GO terms and KEGG pathways for the total
of 3,826 DE transcripts are shown in Figure 3 (details in
Supplementary Table 3). The DE genes identified between HE
and TE formed a target list that was enriched for nine GO terms
and four KEGG pathways. The most significant GO term in the
HE/TE comparison was detoxification of copper ion (corrected
P = 2.62 × 10−7). DE genes identified between HE and TP
were enriched for 46 GO terms and one KEGG pathway. In the
third comparison, TE/TP, the DE genes were enriched for 36
GO terms and two KEGG pathways. When TP was compared
to the epididymis regions, some of the most significant GO
terms were gated channel activity, cellular protein modification,
male gamete generation, neuroactive ligand-receptor interaction,
spermatogenesis, and acrosomal vesicle (Supplementary Table 3).

Small RNAs With Regulatory Potential
and Co-expression Networks
Among the 3,826 DE transcripts, 384 were small RNAs and
3,442 were mRNA genes. We identified 71 small RNAs that
might modulate the DE genes, according to the significant RIF
score (RIF 1 or 2 higher than | 1.96|; Supplementary Table 4).
The expression pattern of these 71 small RNAs with regulatory
potential differed between samples, across the male reproductive
tract (Figure 4). Overall, we observed that small RNAs showed
an expression pattern in the testis that was different from their
epididymis expression. The difference between the head and tail
epididymis was less pronounced, and this is similar to the PCA
results for all transcripts.

The co-expression network was inferred using significant
correlations (> |0.95|). This meant that 3,639 transcripts were
nodes linked by 175,052 edges in the network, which is available

as a Cytoscape file (Supplementary Material, cys file). The co-
expression network was formed by multiple clusters, not all
connected to each other (Supplementary Figures 2, 3). A larger
cluster with 2,216 transcripts connected through 158,807 edges
was the prominent feature in the network. This large cluster
was functionally enriched for male gamete generation, germ cell
development, and sperm capacitation, among other GO terms
(Figure 5 and Supplementary Table 5).

In the large cluster of the co-expression network, the RIF
significant small RNA bta-mir-2886 was the hub. Significant
correlations suggested 601 co-expressed transcripts for bta-mir-
2886, including genes and other small RNA. This is the highest
number of connections for a RIF regulator in the network
(Supplementary Table 4). Considering the connections between
these 601 potential targets and their first neighbors, we observed
a total of 1,035 transcripts that were directly or indirectly
linked to bta-mir-2886 in the network (Supplementary Table 6).
Among the 601 directly co-expressed transcripts, we identified
one isoform of U4 spliceosomal RNA with significant RIF value
and 38 transcription factors (TF).

Considering the first neighbors of bta-mir-2886 in the
network, we identified a total of 241 negative correlations and
360 positive correlations. Among the negative correlations, 204
were mRNA genes. Only three of these potential targets were
confirmed to have a site for hybridization with bta-mir-2886
according to TargetScan. The confirmed targets were ELOVL3,
FEZF2, and HOXA13. All three had a mfe that is further evidence
for bta-mir-2886 acting as their down-regulator: −28.5 kcal/mol
for ELOVL3, -34.95 kcal/mol for FEZF2, and -35.75 kcal/mol for
HOXA13. All TargetScan results for bta-mir-2886 are provided in
Supplementary Table 7. TargetScan analyses of all DE miRNAs
were performed and provided evidence for 1,846 DE genes
that can be proposed as targets of miRNA regulation in the
male reproductive tract. However, TargetScan analyses could
not explain all the co-expression observed between miRNA
and genes. This result is expected, since co-expression is not
necessarily caused by direct hybridization and regulation, as there
are many – and complex – molecular mechanisms that can lead
to co-expression (Fionda, 2019).

DISCUSSION

Transcript Expression Patterns in Male
Reproductive Tissues
In this study, we identified 17,221 transcripts quantified in
bovine samples of the head and tail epididymis and the
testicular parenchyma (HE, TE, and TP). This amounts to
64% of the genome (or 17,221 of 26,740 transcripts). The
expression of a relatively large number of genes and small
RNAs confirmed previous reports that suggest the testis as a
good sample for functional genome annotation. In humans,
the testis expressed a larger number of genes in comparison
to other tissues (Uhlén et al., 2015). Harhay et al. (2010)
has shown a cluster of genes exclusively expressed in the
testis of bovine. The data we reported on is available through
the Functional Annotation of Animal Genomes (FAANG)
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FIGURE 2 | Transcript expression patterns displayed as volcano plots with the log2 fold change in the x-axis and the –log10 (P value) in the y-axis for three pairwise
comparisons: (A) quantified transcripts in the head versus tail epididymis comparison (HE/TE, in yellow). (B) quantified transcripts in the head epididymis versus
testicular parenchyma comparison (HE/TP, in pink). (C) quantified transcripts in the tail epididymis versus testicular parenchyma comparison (TE/TP, in blue). In
(A–C), the light shade dots represent the significantly different genes, while the dark shade dots are not significant. In (D), a Venn diagram summarizes the
significantly different transcripts identified in each comparison, including their overlaps.

Consortium for future reference and further use (see text
footnote 1). Herein, we focus on differential expression analyses,
functional enrichment, co-expression network analyses, and
regulatory impact metrics (RIF and additional in silico tests)
that point to potential modulators of transcription in male
reproductive tissues.

We identified 71 small RNAs with significant RIF values,
interpreted as potential contributors to the modulation of over
3,000 DE transcripts. The expression patterns of these 71
potential regulators were similar to the overall pattern observed,

with the testis expression contrasting with the epididymis
expression. The expression patterns in all epididymis samples
were relatively similar. These expression patterns might reflect
the specific function and distinguished cell populations of the
studied samples. In boar samples, Guyonnet et al. (2009) has
observed different patterns of gene expression in the testis
and epididymis. A different role for small regulatory RNAs
has been proposed, specific for each region of the male
reproductive system, associated with regional function. For
example, Guyonnet et al. (2009) has found that genes related
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FIGURE 3 | Enriched Genome Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways identified by the ClueGO software for each
comparison of differentially expressed (DE) analysis between the male reproductive tissues (HE/TE: head vs. tail; HE/TP: head vs. testicular parenchyma; TE/TP: tail
vs. testicular parenchyma) of Bos indicus bulls. (A) Enriched GO terms and KEGG pathways of HE/TE comparison. (B) Enriched GO terms and KEGG pathways of
HE/TP comparison. (C) Enriched GO terms and KEGG pathways of TE/TP comparison. GO terms and KEGG pathways are represented by circles.

to spermatogenesis are more prominent in the testis, compared
to the epididymis. Their observation corroborates our findings.
In the HE/TE comparison, only two of the 71 small RNAs
detected with RIF were DE and relatively fewer genes were DE.
Still, the epididymis regions have different roles in the biological
processes involved in sperm maturation and transit, and this has
been linked to the regionalization of gene expression patterns
(Guyonnet et al., 2009; Belleannée et al., 2012; Browne et al.,
2015). Our results indicated that specific small RNAs might play
regulatory roles that contribute to the regionalization of gene
expression in the reproductive system of Bos indicus bulls.

Detoxification of Copper Ion in the Head
Epididymis
The regionalization of gene expression in the reproductive
system can be discussed in light of the enriched GO terms
and pathways associated with the DE transcripts. The most
significant GO term in the HE/TE comparison was detoxification
of copper ion. Genes associated with detoxification of copper
ion were up-regulated in the head, including three members of
the metallothionein family: MT1A, MT2A, and MT1E (Wong
et al., 2017). These genes are involved in metal homeostasis
and metal detoxification (Schulkens et al., 2014) and can protect
cells from oxidative stress (Sutherland and Stillman, 2011). The
expression of MT1A, MT2A, and MT1E is up-regulated in the
presence of copper in adult human prostatic cell lines (Cu

treatment vs. untreated) (Bigagli et al., 2010). In dogs with
hepatitis, MT1A and MT2A expression levels decrease together
with a copper concentration in hepatic cells (Dirksen et al.,
2017). Protection from oxidative stress is important for sperm
cells; in fact, the molecular environment of the epididymis
is crucial for sperm maturation and capacitation (Belleannée
et al., 2012). Increased dietary copper is associated to improved
spermatozoa mobility and quality in bulls (Hidiroglou, 1979).
However, high levels of copper can affect cell homeostasis
and be detrimental to sperm quality and its fertilization
capacity (Roblero, 1996). High levels of copper can disturb
the integrity of the epididymis and affect sperm maturation
(Xu et al., 1985). In this context, our results point to MT1A,
MT2A, and MT1E as genes that may assist with copper
homeostasis in the head epididymis and might have a role in
sperm maturation.

The regionalization of gene expression in the male
reproductive system is likely a consequence of regulatory
mechanisms, including small RNAs that target genes post-
transcriptionally. Bta-mir-362 had a negative co-expression
correlation with MT1E and MT1A (lower than −0.95) and
might down-regulate these genes. Bta-mir-362 is reported to
contribute to spermatogenesis processes in pigs too (Ran et al.,
2018). In short, this miRNA might modulate genes involved
with detoxification of copper ion in the epididymis, and as a
consequence, it might affect sperm quality.
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FIGURE 4 | Heatmap of pattern gene expression of small RNAs (snRNAs and miRNAs) with regulatory potential, according to significant values in the regulatory
impact factor (RIF) metric. Small RNAs are shown on the Y-axis and the total of expression per biopsies of epididymis head (HE), epididymis tail (TE), and testicular
parenchyma (TP). The colors correspond to the intensity of expression per tissue. The intensity is scaled by the colors white, yellow, and green. The low expression is
represented by white, followed by salmon, yellow, and green (high expression).

Gated Channel Activity, Ions, and Water
Transport
In our study, the GO term gated channel activity and other terms
related to ion transport and channel activity were significant
for the comparisons between the epididymis and testis. In both
the HE/TP and the TE/TP comparisons, DE genes suggest that
ion channels are relevant to spermatogenesis. This result is in
agreement with previous knowledge, because ions such as Ca2+

and Na+ contribute to the acrosomal reaction, hyper-activation,
sperm capacitation, and sperm quality (Mirnamniha et al., 2019).

Differentially expressed and enrichment analyses suggest
regionalization of expression patterns in the male reproductive
system for genes that code proteins related to ion channels.
Specific proteins related to ion channels and solute transporters
are responsible for the epididymis homeostasis and for the
luminal environment that is adequate to sperm maturation
(Belleannée et al., 2012). In short, ion channels, anions, cations,
and water transport molecules (i.e., AQPs) are involved in the
control of the luminal fluid (Browne et al., 2015).

The DE genes ATP6V0A4, ATP6V0D2, ATP6V1G3, CFTR,
SCNN1G, and SCNN4A are related to ion channel activity and
were up-regulated in the epididymis when compared to the
testis. The ATP6V0A4, ATP6V0D2, and ATP6V1G3 genes were
up-regulated in both HE/TP and TE/TP comparisons. They
code for proteins that compose the subunit of vacuolar H + –
ATPase (V-ATPase) (Wagner et al., 2004). The V-ATPase is a

multi-subunit ATP-driven proton pump (Pamarthy et al., 2018),
with influence in the acidification of luminal fluid (Brown
et al., 1992; Roy et al., 2013) that may help sperm maturation
(Pamarthy et al., 2018). Failure in luminal fluid acidification can
result in poor sperm maturation and infertility (Breton et al.,
1996). In this context, a higher expression of these genes in the
epididymis suggests they are relevant to sperm maturation in
Bos indicus bulls.

The cystic fibrosis transmembrane conductance regulator
(CFTR) gene was up-regulated in the head epididymis when
compared to the testis. The CFTR channel is involved in sperm
capacitation (Touré, 2019) and can contribute to the Cl− and
bicarbonate fluxes (Touré, 2019). The DE gene SLC26A3, up-
regulated in the epididymis, is essential to bicarbonate fluxes and
interacts with the CFTR channel (Touré, 2019). The SLC26A3
knockout mice present lesions in the epididymis and sperm
reduction (El Khouri et al., 2018). CFTR and epithelial Na+

channel (ENaC) contribute to sperm capacitation (Visconti et al.,
2011; Sharma and Hanukoglu, 2019). ENaC is probably involved
in the uptake of Na+ ions from the epididymal lumen into
the cells. Like CFTR channels, ENaC channels are observed
in patterns along the length of the mouse and rat epididymis
(Sharma and Hanukoglu, 2019). Two genes that code for ENaC
proteins, SCNN1G and SCNN4A, were up-regulated in the
epididymis when compared to the testis. SCNN1G was up-
regulated in the head (HE/TP) while SCNN4A was up-regulated
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FIGURE 5 | Co-expression network large cluster of differentially expressed (DE) transcripts enriched for male gamete generation. (A) Node sizes are proportional to
the number of connections (highly connected nodes appear bigger). The nodes are the DE transcripts and the edges are the significant correlations (partial
correlation and information theory, PCIT > | 0.95|). Black borders represent hub transcripts. Red borders represent small RNAs with significant regulatory impactor
factor values. Node color: yellow for DE only in the head and tail epididymis comparison (HE/TE); pink for DE only in the head epididymis and testicular parenchyma
comparison (HE/TP); blue for DE only in the tail epididymis and testicular parenchyma comparison (HE/TP); orange for DE in the HE/TE and the HE/TP comparisons;
green for DE in the HE/TE and the TE/TP comparisons; purple for DE in the HE/TP and the TE/TP comparisons; and turquoise for DE in all comparisons.
(B) Enriched GO terms and KEGG pathways for the cluster represented in (A).

in both the head (HE/TP) and tail (TE/TP). The regional
regulation of genes coding for ENaC proteins might be an
evidence of their role in sperm maturation. The bovine DE
patterns discussed here conform to the expectations from studies
in other species and might reveal mechanisms that are relevant to
male fertility across mammals.

Another gene that was up-regulated in the head and tail
epididymis when compared to the testis was AQP9, an aquaporin.
Aquaporins (AQPs) are channels of proteins that facilitate the
movement of water across the plasma membrane and contribute
to epididymal sperm concentration (Belleannée et al., 2012;
Schimming et al., 2017). AQP9 has been previously reported as
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expressed in the epididymis and related to water resorption in the
proximal epididymis (Belleannée et al., 2012). Gene expression
patterns of AQPs have been related to disorders of the male
reproductive system in mammals (Huang et al., 2006). Therefore,
we hypothesize that AQP9 might affect water transport in the
epididymis in Bos indicus.

Small RNAs might modulate DE genes involved in gated
channel activity, ion channels, and water transport. We predicted
interactions between 24 small RNAs (15 miRNAs and 9 snRNA)
and the DE genes discussed above. For example, bta-mir-2886
was co-expressed with AQP9 and CFTR. The snRNA RF00026
(U6 spliceosomal RNA) was co-expressed with ATP6V0D2,
AQP9, CFTR, and SLC26A3. It is possible then that bta-mir-2886
and RF00026 among other small RNAs modulate gated channel
activity, ions, and water transport, affecting epididymis function.

Neuroactive Ligand-Receptors and
Spermatogenesis
Among the DE transcripts, we identified genes related to
prolactin, GABA, and muscarinic acetylcholine receptors, all part
of the enriched neuroactive ligand-receptor interaction pathway.
Overall, this pathway seems more important to testicular
function than to the epididymis, with a few exceptions as
discussed below.

Prolactin is a peptide hormone that acts via its transmembrane
receptor (Raut et al., 2019). In our study, nine DE genes
related prolactin signaling – PRL, PRLH, PRP1, PRP14, PRP2,
PRP4, PRP6, PRP8, and PRP9 – were up-regulated in the
testis when compared to the epididymis. Prolactin receptors are
expressed in the testis of humans (Jabbour and Kelly, 1997)
and bulls (Pratt et al., 2015). Prolactin signaling affects the
male reproduction system (Hermanns and Hafez, 1981) as it
interferers with steroidogenesis and spermatogenesis (Jabbour
and Kelly, 1997). Also, prolactin signaling relates to testosterone
concentration (Franchimont, 1983). In summary, the DE analyses
recapitulated some known biology of testicular function and
suggested prolactin genes that were regulated in male tissues.

GABA receptors were previously reported in the testis and
sperm of mice (He et al., 2001, 2003). We identified 10 GABA
receptors as DE genes in the HE/TP and TE/TP comparisons:
GABBR2, GABRA2, GABRA3, GABRA4, GABRA5, GABRB1,
GABRB3, GABRG2, GABRP, and GABRQ. Three receptors
(GABRG2, GABRB1, and GABRA5) had higher expression in the
epididymis, while the other seven were up-regulated in the testis.
In the testis, GABA receptors affect the Leydig cell function,
influence germ cell maturation (Geigerseder et al., 2003), and
regulate spermatogenesis (Geigerseder et al., 2003; Kanbara et al.,
2005; Du et al., 2013). The function of these DE GABA receptors,
with expression that is specific to each region of the male system
examined, requires further research.

Three DE genes, CHRM1, CHRM2, and CHRM3, are receptors
related to muscarinic acetylcholine signaling. Muscarinic
acetylcholine receptors (or MAChRs) are part of the regulatory
mechanisms in the male reproductive system (Borges et al.,
2001; Avellar et al., 2010). MAChRs regulate testicular cell
function (Borges et al., 2001) and can influence the luminal

fluid composition (Avellar et al., 2010). In our study, CHRM1,
CHRM2, and CHRM3 were up-regulated in the testis compared
to the epididymis, and so we suggested that MAChRs might
contribute to testicular function in Bos indicus bulls.

Among DE genes of the neuroactive ligand-receptor interaction
pathway, 10 were connected to the larger network cluster and
directly or indirectly linked to bta-mir-2886. The prolactin
signaling genes PR2, PRP14, and PRP9 were predicted to
interact directly with bta-mir-2886, while GABRA5 was a second
neighbor of this same miRNA. In short, it is possible that
bta-mir-2886 and other small RNAs regulate genes in the
neuroactive ligand-receptor interaction pathway that might affect
spermatogenesis.

Co-expression Network, Small RNAs,
and Male Gamete Generation
Differentially expressed transcripts associated with the GO term
male gamete generation were enriched in the comparisons
between the epididymis and testis, being the third most
significant term in both HE/TP and TE/TP comparisons. This
same GO term was significant for transcripts in the larger
cluster of the co-expression network. Four well-known regulators
of spermatogenesis were among the DE transcripts associated
with male gamete generation: RFX2, HORMAD1, CCDC36, and
DAZL. The gene RFX2 is an essential transcription factor
in the regulation of spermatogenesis (Kistler et al., 2015;
Pandey et al., 2019), which is expressed in spermatocytes and
spermatids in mice (Pandey et al., 2019). The RFX2-deficient mice
have completely blocked spermatogenesis (Kistler et al., 2015).
HORMADA1 is key during the meiosis and it possibly interacts
with CCDC36 (Stanzione et al., 2016). DAZL stands for “deleted
in azoospermia like,” and it codes for a RNA-binding protein
that is localized to the nucleus of spermatogonia, but relocates
to the cytoplasm during meiosis, where it persists in spermatids
and spermatozoa. DAZL is highly expressed in the testis of sheep
with sexual maturity (Yuan et al., 2020) and may have a role in
sex differentiation (Rossitto et al., 2015). All four genes were up-
regulated in the testis when compared to the epididymis, which
is expected since male gamete generation is a characteristic of the
testis. Two of these well-known regulators, RFX2 and CCDC36,
were also nodes in the larger network cluster.

In the larger network cluster, five out of 10 significant
GO terms were very specific to spermatogenesis: male gamete
generation, spermatid development, germ cell development,
acrosomal vesicle, and sperm capacitation. Therefore, the small
RNAs that were identified as potential regulators of this cluster
of highly connected DE genes might be proposed as potential
regulators of spermatogenesis. We identified 228 small RNAs
in the larger network cluster and 43 of these had significant
RIF values; they were 20 snRNAs, 8 snoRNAs, and 15 miRNAs.
One of the significant miRNAs was bta-mir-2886, up-regulated
in the epididymis for two pairwise comparisons (HE/TP and
TE/TP), with a high fold change in both (approx. 7). We propose
that bta-mir-2886, through its 601 co-expressed transcripts and
additional 434 first neighbors, might affect spermatogenesis in
Bos indicus bulls.
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In our study, most of the correlations between bta-mir-
2886 and predicted targets were positive, including for AQP9
and CFTR. We speculated that this miRNA might be indirectly
regulating the expression of co-expressed transcripts, with which
it presents positive correlations, by inhibiting their negative
regulators. This indirect mechanism was suggested previously
by Ritchie et al. (2009). We observed 204 predicted negative
correlations with bta-mir-2886. Among negative correlations, we
identified three genes that may be down-regulated by bta-mir-
2886, which were confirmed by TargetScan and had mfe below
-20 kcal/mol. They were ELOVL3, FEZF2, and HOXA13.

HOXA13 was among 23 genes of the Hox family that were
DE in our study. Hox family transcription factors are expressed
in the male reproductive tract (Lindsey and Wilkinson, 1996),
including the human testis (Zhu et al., 2016) and mice epididymis
(Bomgardner et al., 2003; Raines et al., 2013). Hox genes
act in spermatogenesis and sperm maturation (Lindsey and
Wilkinson, 1996). Zhu et al. (2016) have reported Hox genes as
regulators of meiosis in the human testis. Mutations in HOXA13
were associated to male infertility in mice (Post and Innis,
1999). Further studies could investigate the role of HOXA13
in bull fertility.

CONCLUSION

Our results indicate that bta-mir-2886, among other small
RNAs, are co-expressed with DE genes that may contribute
to spermatogenesis and sperm maturation in the testis and
epididymis of Bos indicus bulls. Although our study predicts
potential regulators of gene expression in the testis and the
epididymis of Bos indicus bulls, further work is necessary to
confirm our findings and detail the roles played by small RNAs
in spermatogenesis.
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Circular RNAs have been observed in a large number of species and tissues and
are now recognized as a clear component of the transcriptome. Our study takes
advantage of functional datasets produced within the FAANG consortium to investigate
the pervasiveness of circular RNA transcription in farm animals. We describe here the
circular transcriptional landscape in pig, sheep and bovine testicular, muscular and liver
tissues using total 66 RNA-seq datasets. After an exhaustive detection of circular RNAs,
we propose an annotation of exonic, intronic and sub-exonic circRNAs and comparative
analyses of circRNA content to evaluate the variability between individuals, tissues and
species. Despite technical bias due to the various origins of the datasets, we were
able to characterize some features (i) (ruminant) liver contains more exonic circRNAs
than muscle (ii) in testis, the number of exonic circRNAs seems associated with the
sexual maturity of the animal. (iii) a particular class of circRNAs, sub-exonic circRNAs,
are produced by a large variety of multi-exonic genes (protein-coding genes, long non-
coding RNAs and pseudogenes) and mono-exonic genes (protein-coding genes from
mitochondrial genome and small non-coding genes). Moreover, for multi-exonic genes
there seems to be a relationship between the sub-exonic circRNAs transcription level
and the linear transcription level. Finally, sub-exonic circRNAs produced by mono-exonic
genes (mitochondrial protein-coding genes, ribozyme, and sno) exhibit a particular
behavior. Caution has to be taken regarding the interpretation of the unannotated
circRNA proportion in a given tissue/species: clusters of circRNAs without annotation
were characterized in genomic regions with annotation and/or assembly problems of the
respective animal genomes. This study highlights the importance of improving genome
annotation to better consider candidate circRNAs and to better understand the circular
transcriptome. Furthermore, it emphasizes the need for considering the relative “weight”
of circRNAs/parent genes for comparative analyses of several circular transcriptomes.
Although there are points of agreement in the circular transcriptome of the same tissue in
two species, it will be not possible to do without the characterization of it in both species.

Keywords: circular RNA, annotation, sub-exonic circRNA, intronic circRNAs, parent genes, circular
transcriptome, exonic circRNA
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INTRODUCTION

The identification and functional characterization of all
transcripts in livestock species is one of the major goals of the
consortium for the Functional Annotation of Animal Genomes
(FAANG1). An animal genome contains 20,000 to 30,000 genes
but only a subset of these genes produce transcripts in a given
tissue. Developments in high-throughput RNA-seq technology
have enabled a deeper understanding of gene expression
functions. The classical approach for studying the transcriptome
uses the mRNA-seq protocol (sequencing of polyadenylated
RNAs). A large number of mRNA-seq studies have demonstrated
for example that part of the associated genes are transcribed in a
tissue specific manner (Soumillon et al., 2013). However, datasets
generated by mRNA-seq contain only a part of the transcripts.
To overcome this drawback, it is possible to sequence RNAs after
depletion of ribosomal sequences (total-RNA-seq) (Chen et al.,
2020). Studies using the total-RNA-seq protocol have shown
that a large number of protein-coding genes, long non-coding
(lnc) RNA genes and intergenic elements are expressed in a
tissue-specific manner (Soumillon et al., 2013; Clark et al., 2017;
Yang et al., 2020).

Since 2012, advances in high throughput sequencing revealed
the presence of circular RNAs (circRNAs) in total-RNA-seq
datasets in addition to linear transcripts (Salzman et al., 2012).
CircRNAs are probably a natural by-product of the transcription
process in all eukaryotes (see Kristensen et al. (2019) for a
review). To study circRNAs, it is important to identify the gene
that is likely to generate the considered circRNA alongside the
linear transcripts already described, namely the parent gene.
The majority of studies have focused on exonic circRNA that
are generated by the circularization of one or several exons
through a back splicing process: the end of an exon is joined
to the beginning of an upstream exon (Kristensen et al., 2019;
Li et al., 2019). Exonic circRNAs can be produced by coding
or non-coding genes (Salzman et al., 2012; Barrett et al., 2017;
Robic et al., 2020) and by some snRNA genes (Kaur et al., 2018;
Robic et al., 2020). Two types of circRNAs can be derived from
intronic sequences (see Robic and Kühn (2020) for a review):
(1) when intron lariats escape degradation due to the failure
of intron debranching (Zhang et al., 2013), they may become
circRNA precursors of lariat-derived circRNAs and (2) for very
rare introns we can observe the circularization of the entire
intronic sequences as intron circle (Taggart et al., 2017). These
two types of intron derived circRNAs can be grouped as “intronic
circRNAs.” Sub-exonic circRNAs have been characterized as
including only a part of the exon of some mono-exonic genes
(Robic et al., 2020). Up to now, only intronic circRNA from
protein-coding genes and only sub-exonic circRNAs from small-
non-coding (snc) RNA have been reported in pigs (Robic et al.,
2020). Understanding to what extent, these different subclasses
of circRNAs are produced and what kind of genes are able to
produce them is a question of interest.

In 2013, circRNAs were shown to have functional relevance
(Jeck et al., 2013; Memczak et al., 2013) as reviewed by

1www.animalgenome.org/community/FAANG/

(Chen, 2020; Xiao et al., 2020). Since the landmark discovery
of ciRS-7/CDR1as functioning as a miR-7 sponge in Hansen
et al. (2013), a lot of studies focused on circRNAs action as
microRNA decoys. However, as circRNA research expands, many
divergent views have emerged (reviewed by Li et al., 2019)
and our understanding of circRNAs, their production and their
function, remains limited. The diversity of functions assigned to
circRNAs is very large but concerns only some circRNAs. For
example, recent studies have highlighted that the presence of
a particular circRNA from SLC45A4 is essential to keep neural
cells in a progenitor state in the mammalian brain (Suenkel
et al., 2020). Recently, the regulatory functions of two circRNAs
produced respectively from a mitochondrial gene (Zhao et al.,
2020) and from an intron (Das et al., 2020; Stoll et al., 2020)
were characterized. These studies have also underlined the
need to work on the conservation of circRNAs, and beyond
exonic circRNAs.

The identification of circular RNAs in highly divergent species
raises interesting questions about their evolutionary history, and
functions (Wang et al., 2014; Ji et al., 2019; Zucko and Boris-
Lawrie, 2020). Li et al. (2019), who reviewed this topic, reported
wide discrepancies: some studies claimed that circRNAs are
evolutionarily highly conserved molecules, while others believe
they are species-specific. For our study, we take advantage
of functional datasets produced within partners and also the
FAANG consortium to study circular RNA in farm animals
(cattle, pig, sheep). We studied the pervasiveness of circRNA
transcription in three tissues (skeletal muscle, liver, and testis). As
the transcriptomes of these three tissues present specific features
(Yang et al., 2020), this choice seemed to us pertinent to compare
and analyze circRNA production.

MATERIALS AND METHODS

Data Collection
For this study, we collected total-RNA-seq data produced by
our groups and others from the literature. The whole dataset
contains 33 bovine tissues, 15 ovine tissues and 19 pig tissues
(Table 1). The considered datasets are originating from three
SRA projects for bovine tissue and from four SRA projects for
porcine tissues. All the ovine datasets were generated at Roslin
Institute in a unique SRA biological project PRJEB19199 (Clark
et al., 2017). We achieved to consider at least 70 giga bases (gb)
of sequencing data for each tissue in a given species. In the
following, a batch is defined as a collection of datasets from a
single tissue of animals from the same species, same sex, same
age, and originating from a unique SRA project. In Table 1,
these datasets are clustered in 17 batches and one singleton.
The dataset ssc_testis_1 was excluded from the batch, which
constituted datasets from the SRA project PRJNA506525, because
of its atypical behavior regarding the production of circRNAs
(Robic et al., 2019). Among the 48 animals from the SRA project
PRJEB34570 (Nolte et al., 2019), we chose six males and six
females to obtain two batches balanced on known physiological
traits. For bovine testis (Gao et al., 2019), we selected datasets
from bulls at 13 months of age (bta_testis_4-6), which is assumed
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TABLE 1 | Samples characteristics.

Datasets Species Tissue Age animal Sex animal Breed Reads PE (bp) SRA project gb

bta_liver_1-6 (1) cattle liver 18 months male Charolais X Holstein-F2 FBN (Nolte et al., 2019) 2 × 100 PRJEB34570 68.1

bta_liver_7-12 (1) cattle liver 3.5 years female Charolais X Holstein-F2 FBN (Nolte et al., 2019) 2 × 100 PRJEB34570 68.3

bta_liver_13-15 cattle liver "adult" male EMBL-2017 2 × 10 PRJEB13074 26.4

bta_muscle_1-6 (1) cattle muscle 18 months male Charolais X Holstein-F2 FBN (Nolte et al., 2019) 2 × 100 PRJEB34570 55.1

bta_muscle_7-12 (1) cattle muscle 3.5 years female Charolais X Holstein-F2 FBN (Nolte et al., 2019) 2 × 100 PRJEB34570 56.5

bta_testis_1-3 cattle testis 2 days male Angus Yangling (Gao et al., 2019) 2 × 150 PRJNA47564 46.5

bta_testis_4-6 cattle testis 13 months male Angus Yangling (Gao et al., 2019) 2 × 150 PRJNA47564 43.9

ssc_liver_5-7 (2) pig liver 2 years male EMBL-2019 2 × 150 PRJEB33381 46.0

ssc_liver_8-10 pig liver "adult" male EMBL-2017 2 × 100 PRJEB13074 26.6

ssc_muscle_2-4 (2) pig muscle 2 years male EMBL-2019 2 × 150 PRJEB33381 87.8

ssc_testis_1 (3)(4) pig testis 6 months male Pietrain (Pi) INRAE (Robic et al., 2019) 2 × 125 PRJNA506525 17.3

ssc_testis_2-7 (4) pig testis 6 months male 3 Pi & 3Pi X Large White INRAE (Robic et al., 2019) 2 × 125 PRJNA506525 115.2

ssc_testis_8-10 (2) pig testis 2 years male EMBL-2019 2 × 150 PRJEB33381 56.6

oar_liver_1-3 (1) sheep liver 2 years male Scot. Blackface x Texel Roslin (Clark et al., 2017) 2 × 125 PRJEB19199 90.8

oar_liver_4-6 (1) sheep liver 2 years female Scot. Blackface x Texel Roslin (Clark et al., 2017) 2 × 125 PRJEB19199 90.8

oar_muscle_1-3 (1) sheep muscle 2 years male Scot. Blackface x Texel Roslin (Clark et al., 2017) 2 × 125 PRJEB19199 99.4

oar_muscle_4-6 (1) sheep muscle 2 years female Scot. Blackface x Texel Roslin (Clark et al., 2017) 2 × 125 PRJEB19199 91.8

oar_testis_1-3 (1) sheep testis 2 years male Scot. Blackface x Texel Roslin (Clark et al., 2017) 2 × 125 PRJEB19199 92.9

Seven teen groups of datasets were collected, combining total RNAseq generated by our groups and others from the literature. Only groups of datasets generated by sequencing stranded RNA from healthy animals
and containing at least three datasets produced in parallel were selected. 1The animals from [bta_liver_1-6 and bta_muscle_1-6], [bta_liver_7-12 and bta_muscle_7-12], [oar_liver_1-6 and oar_muscle_1-6], and
[oar_liver_4-6, oar_muscle_4-6 and oar_testis_1-3] were the same and were presented in the same order. 2The three animals from [ssc_liver_5-7, ssc_muscle_2-4 and ssc_testis_8-10] were the same but they were
not presented in the same order. 3We chose to not associate the dataset ssc_testis_1 to other datasets from the SRA project PRJNA506525 because we know that this datasets is an outlier dataset in its origin group.
4Datasets ssc_testis_1-7 were obtained from corresponding animals previously called Animal−31, −05, −54, −16, −65, −73, and −93 in Robic et al. (2019).
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an age at the end of puberty (Rawlings et al., 2008; McGowan
et al., 2018), to represent data from pubertal testis.

To analyze the impact of read length on the circular RNA
detection, we produced 6 new datasets with 2 × 100 bp PE
(Paired- End) sequencing from the 6 datasets from cattle testis
samples, which had been previously sequenced for 2× 150 bp PE.

Reads Mapping
The RNA-seq reads were aligned to the following genome
reference assemblies: ARS-UCD1.2 (GCA_002263795.2),
Oar_rambouillet_v1.0 (GCA_002742125.1), Sscrofa11.1
(GCA_000003025.6) for cow, sheep and pig respectively.
We used the gene annotation (v-101) provided by Ensembl
(Ensembl-Websites: Cattle, 2021; Pig, 2021; Sheep, 2021).

RNA-seq reads were mapped to the genome reference
assemblies using the rapid splice-aware read mapper Spliced
Transcripts Alignment (STAR) (Dobin et al., 2013). Two
alignment modes were considered, single-end alignments (STAR-
SE option, mates of each pair were mapped independently)
and paired-end alignments (STAR-PE option). STAR was used
with the previously proposed parameters (Cheng et al., 2016)
that enable the highlighting of chimeric reads with only two
segments and with a minimal size for the smallest mapped
segment of 15 bp.

CircRNA Detection and Annotation
The first step in the detection of circRNAs is the identification
of reads containing a circular junction (see Gao and Zhao, 2018
for a review). The analysis of these reads allows to describe each
circRNA by the two points involved in the circular junction
(the genomic boundaries of the circularized transcript: two
genomic coordinates) and the strand. The second step of the
characterization of circRNAs is their annotation.

Standard CircRNA Detection and Quantification
The first approach for detecting circRNAs used the combination
of circRNAs detected by CIRCexplorer2 (CE2, Zhang et al.,
2016) and CIRI2 (Gao et al., 2015, 2018) which have become
reference tools for the identification of exonic circRNAs (Zeng
et al., 2017; Gao and Zhao, 2018; Hansen, 2018; Dodbele et al.,
2021). CE2 is able to use several aligners and our choice was to
use CE2 associated to STAR-PE (Dobin et al., 2013) alignment
mode (Zhang et al., 2016). It is important to note that we have
chosen more stringent parameters for the alignment performed
with STAR-PE than those suggested by Zhang et al. (2016) (see
above) for the detection of chimeric reads. As CE2 identifies
reads containing a circular junction within those reads that STAR
calls “chimeric reads” (CR), we will call these reads “circular
chimeric reads” (hereafter CCRs). CIRI2 (Gao et al., 2018) is
based on the bwa-mem aligner (Au et al., 2016) together with a
dedicated approach to align unmapped segments. CIRI2 was used
to identify the reads containing circular junctions with default
parameters. Reads containing a circular junction are called BSJ
(“back-spliced junction”) reads by CIRI2.

All circular RNAs identified by CE2 as generated from
backsplicing of two described exons were considered as exonic
circRNAs. Those annotated as “ciRNA” correspond to circRNAs

localized entirely in intronic sequences and with the circRNA 5′
junction site corresponding to the intron donor site. Although
the term “ciRNA” is the one proposed for intronic circular RNA
by Zhang et al. (2013), the location of the 3′ junction of these
circRNAs must be analyzed before to consider them as intronic
circRNA (Robic and Kühn, 2020).

Only circRNAs detected by both CE2 and CIRI2 were
considered for quantification as suggested previously by Hansen
(2018). A CIRI2 formatted list of circRNAs was provided
to CIRIquant (Zhang et al., 2020) to obtain an accurate
quantification of circRNAs. The quantitative measure is the
number of BSJ reads provided by CIRIquant. The expression
measure for each parent gene is simply the sum of expression
measure of the circRNAs it produces. In order to obtain, for
each circRNA of each parent gene, an average expression for
the tissue, the average expression over all animals was computed
after normalization by animal (TMM normalization provided by
edgeR, Robinson et al., 2010).

Detection of Orthologous circRNAs
Orthologous circular RNAs were identified based on nucleotide
sequence alignments. Each circRNA is represented by the
nucleotide sequence crossing the circular junction point (200bp,
100 bp on each side). Given the close evolutionary between
bovine and ovine we have limited the detection of orthologous
circRNAs to those two species. All circRNA bovine sequences
were aligned to ovine circRNA sequences and reciprocal best hits
were considered as orthologous circRNAs. For the parent genes,
the orthologs were defined as the Ensembl one-to-one orthologs.

Computational Approach for Exhaustive Detection
and Characterization of circRNAs Complementary to
Standard Tools
In this manuscript, we use CD as an abbreviation for our
dedicated approach to detect circRNAs. Our approach to identify
reads containing a circular junction is based on split alignment
as defined by Gao et al. (2018) and was originally proposed
by Memczak et al. (2013). This approach has previously been
described (Robic et al., 2020), and we underline only some
essential features. The focus of this alternative framework
method is limited to selecting reads that are mapped by
STAR-SE as CR with only two segments, and where both
segments are mapped to the same strand in inverted order.
To select CCRs, we extracted information from the tabular
file (chimeric.out.junction) provided by STAR, which contains
the mapping coordinates of each segment and mapping data
(CIGAR). An output file (BED format) containing a list
of circRNAs is obtained by clustering of CCR on genomic
coordinates. The second part of our approach consists in
proposing an annotation for the circRNAs detected. The
annotation was performed using the species corresponding gene
annotation from Ensembl and in particular, the list of exons and
the corresponding list of introns.

For the annotation purpose, we define the following classes:
(i) exonic, when both junctions correspond exactly to exon
boundaries, where both exons belong to the same gene. (ii) sub-
exonic, when both junctions fall strictly within a single exon.
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(iii) intronic, when both junctions fall within a single intron,
the 5′ junction corresponding to the intron donor site and the
3′ junction located not further than 60 bp away from the intron
acceptor site (Robic and Kühn, 2020). CircRNA from ribosomal
RNA genes were excluded from the list of sub-exonic circRNAs.
All circRNAs with a too small genomic size (when the genomic
size < (1/2 length of read + 5 nt)) were excluded from the
annotation process.

RESULTS

Circular RNAs: Detection and Annotation
Initial circRNAs Landscape Established by CIRI2 and
CIRCexplorer2
The detection pipelines detected on average 8,300 and 16,300
circRNAs per sample for CE2 and CIRI2 respectively. A first
analysis on six datasets showed that a very large part of exonic
circRNA (>90%) detected by CE2 was also detected by CIRI2,
while the fraction of ciRNAs (putative intronic circRNAs, see
Materials and Methods) proposed by CE2 and detected also by
CIRI2 was less than 2%. These observations underline the fact
that the detection of non-exonic circRNAs remains a difficult
task and at least subject of debate. As it is common practice
(Gong et al., 2020), initially recommended by Hansen (2018), we
considered only the circRNAs detected by both tools (Dodbele
et al., 2021). Moreover, we retained only circRNAs characterized
by at least four reads containing the circular junction, and this
threshold was applied after the intersection of CE2 and CIRI2
data (BSJs > = 4). On average and in each of the 66 datasets,
1,957 circRNAs were characterized by CE2+ CIRI2.

Using this strategy, we were able to characterize 12,589 exonic
circRNAs and 6 ciRNA in the bovine datasets (Supplementary
File 1). For pigs, the statistics were 14,137 and 1, for exonic
circRNAs and ciRNAs respectively. For sheep, we found 5,556
exonic circRNAs and 3 ciRNAs. A large variability between
datasets in this raw number of circRNAs detected was noted
(see Supplementary File 2). Before all further analyses, the
number of circRNAs identified in each of the 66 datasets was
corrected by the number of uniquely mapped reads by STAR
(Supplementary File 2). We compared this normalized number
of circRNA in each of the 66 datasets (Figures 1A-F). Since some
datasets differ by read length, in order to analyze the impact
of read length on the circular detection, we produced six new
datasets of 2 × 100 bp PE sequencing from the six bta_testis_1-6
datasets, which had been previously sequenced for 2 × 150 bp
PE. The detection of exonic circRNAs was performed by CE2,
and we observed a 10 to 20% loss of initial exonic circRNAs with
shortened reads (data not shown). This experiment shows that
even if the length of the reads has an impact on the detection
of exonic circRNAs, this impact is moderate. Therefore, the
difference of reads lengths from PE sequencing do not explain the
large differences observed between circRNA content of the two
batches generated from porcine liver at EMBL in two different
SRA projects (ssc_liver_8-10 (Figure 1C) and ssc_liver_5-7
(Figure 1D)). In bovine liver, the number of circRNAs also
appeared variable between SRA projects. We observed 13.94 to

17.98 circRNAs per million uniquely mapped reads (per million
reads for short) for the 12 first datasets (bta_liver_1-12), and 3.96
to 8.29 for the three others (bta_liver_13-15) (Figures 1A,C),
although all samples were sequenced in PE mode with 2× 100 bp.
For bta_liver_1_12, the circRNAs per million reads did not
differ much between samples, although the dataset included
physiologically very divergent animals, i.e., bulls at the end of
fattening and cows at the beginning of lactation. Also in porcine
testis, the number of circRNAs seemed very different in datasets
produced at EMBL (ssc_testis_8-10) to those produced at INRAE
(ssc_testis_2-7). However, in this comparison, the age of the
considered animals was different: datasets ssc_testis_8-10 were
obtained from adult boars (two years old), while ssc_testis_2-7
originated from pubertal animals (<6 months old).

The number of circRNAs detected in testis of very young bulls
seemed higher than in testis from pubertal animals (Figure 1F).
As these two datasets were included in the same SRA project
and absence of technical bias could be assumed, a statistical
analysis was performed (Supplementary File 3), which revealed
that the difference in the number of circRNAs was significant
(p-Value = 0.016). The number of circRNA in testis of pubertal
animals appeared similar in bovine and in pigs, and also the
number of circRNAs in testis of adult animals displayed a
similar level in pigs and sheep (Figure 1G), although these
datasets were not generated by the same sequencing lab. This
analysis underlines the importance to consider the age (or sexual
maturity) of animals for testicular datasets. Since the difference
between males and females was not statistically significant for
bovine liver and muscle from the same animals (bta_liver_1-
6 and _7-12; bta_muscle_1-6 and 7-12), we will no longer
differentiate between male and female datasets of this species-
tissue combination.

The number of circular junction reads associated with
the detection of a circRNA is commonly used to quantify
the expression of this circRNA. We chose to perform this
quantification by CIRIquant (Zhang et al., 2020), and each
circRNA characterized by the CE2 + CIRI2 approach was
associated with an expression level measured by the number
of BSJs. We considered the sum of the BSJs (corrected by
the number of reads uniquely mapped in the dataset) across
datasets grouped in the same batch as the expression of this
circRNA in the considered batch. We did a ranking of circRNA
expressions within each batch; this should enable comparisons
of ranking between batches. When we performed a pairwise
comparison of the Top-100 most highly expressed circRNAs
(Supplementary Table 1) between batches, we found different
degrees of overlaps between pairs (Figure 2A in blue). All
comparisons were performed within species, even though we
also looked at differences/similarities of the statistics between
species. Before comparing batches, we compared six pairs of
two randomly selected datasets from the batch bta_liver_1-12,
and on average 71% of overlaps were observed (six comparisons
performed: 63 to 79%). Similar levels of overlap were noted
when comparing the two different batches from bovine liver
(72%) and between the two batches from porcine liver (72%).
These scores showed that the identification of the most highly
expressed circRNAs (at least in liver) is not very sensitive to the
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FIGURE 1 | Number of circRNA characterized by CE2 + CIRI2. (A–G) These histograms represent the number of circRNA (per million of reads uniquely mapped)
characterized jointly by CE2 and CIRI2 and which are detected by at least 4 BSJs (CIRIquant). Histograms are regrouped by SRA projects. (A) The two bovine
batches produced at FBN. (B) the three ovine batches produced at Roslin Institute (C) The two batches produced by EMBL in 2017. (D) The two batches produced
by EMBL in 2019. (E) The batch of 6 datasets produced from porcine pubertal testes at INRAE. (F) The two batches of bovine testes produced by Yangling
University. (G) Comparison per tissue and species of the number of exonic circRNAs detected by CE2 + CIRI2 per million of reads uniquely mapped.

Frontiers in Genetics | www.frontiersin.org 6 May 2021 | Volume 12 | Article 665153137

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-665153 May 4, 2021 Time: 16:38 # 7

Robic et al. circRNAs, Annotations and Livestock Species

FIGURE 2 | Comparisons circRNAs and parent genes between datasets. The three diagrams depict analyses of exonic circRNAs characterized by CE2 + CIRI2. The
number of similarities (same circRNA or same parent gene) found for a comparison between two datasets was reported in a box. A-(boxes with a blue background):
The expression of a circRNA in a batch has been defined as the sum of the BSJs (normalized counts) observed in the different datasets of this batch. The circRNAs
were ranked on their expression to establish the Top-100 of circRNAs expressed in this batch (Lists of Top-100/circRNAs relative to these analyses were reported in
Supplementary Table 1). B-(boxes with a yellow background): The circRNA expression of genes in a batch has been defined as the sum of the BSJs (normalized
counts) from each circRNA produced by this gene observed in the different datasets of this batch. The parent genes were ranked on their circRNA expression to
establish the Top-100 of parent genes expressed in this batch (Lists of Top-100/genes relative to these analyses were reported in Supplementary Table 2).

source of data analyzed for circRNAs characterization. Between
muscle and liver, similar levels of overlap were noted in bovine
(23-33%) and in pigs (21-26%) (Figures 2A-1,2). In testis, we
noted a similar level of overlap between testis from pubertal
animals and muscle from other animals (cattle:18% and pigs:
20%). However, the level of overlap between testis and adult
muscle seemed to decrease with the age of testis, because we
observed a 32% overlap for testis from young animals (cattle),
and 17% for testis from adult pigs. These analyses demonstrate
the differences in the circRNA expression in testes in relation to
the age of the animals. Curiously, the levels of overlap between
testis/liver/muscle appeared higher in sheep (Figure 2A-3) than
in bovine (Figure 2A-1) or pigs (Figure 2A-2), probably because
of differences in genome annotation. These analyses underline
once again the importance to consider the age of animals for
testicular datasets, but attenuates the importance of the source
of datasets with respect to most highly expressed circRNAs.
However, it has to be considered that these analyses are restricted
almost exclusively to exonic circRNA.

When we examined the circRNAs detected jointly by CE2 and
CIRI2 and retained in our analysis (Supplementary List 1), we
noted that almost all are exonic circRNAs. As our purpose is
to study all types of circRNAs in three tissues of three species,
we included a dataset (ssc_testis_1) with a particular circRNA

content already explored in previous studies (Robic et al., 2019,
2020). This porcine testicular dataset is known to contain more
than 100 intron-derived circRNAs. The major intronic circRNA
described in this dataset was a lariat-derived circRNA from
the ATX2NL gene. CE2 was able to detect circRNAs from the
respective ATX2NL intron, but with six times less CCRs than
previously observed (Robic et al., 2020). CIRI2 did not detect
this intronic circRNA, probably because of its small size. CE2
was also able to detect the six intronic circRNAs from the
DNAH17 previously reported (Robic et al., 2019) but again with
a lower number of CCRs than expected. These observations
confirmed that CE2 is able to detect intronic circRNAs (Das
et al., 2020), but as suggested previously (Robic and Kühn,
2020), the strong requests on the two paired-end reads as
included in the CE2 algorithm could impair the characterization
of intronic circRNAs. The dataset ssc_testis_1 had also been
used to describe the first sub-exonic circRNAs (Robic et al.,
2020). These sub-exonic circRNAs were characterized by the
observation of reads containing a circular junction and spanning
parts of the single exon from mono-exonic genes classified as
small non-coding RNA. The genes involved were able to produce
several, potentially overlapping circRNAs from a single exon.
The production of a set of circRNAs by the mono-exonic gene
RMRP (orthologous gene of porcine/bovine/sheep RNase_MRP)
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was already highlighted in two species (Liu et al., 2020; Robic
et al., 2020). This gene was reported as able to produce several
dozens of sets of sub-exonic circRNAs in the dataset ssc_testis_1,
but only two sub-exonic circRNAs were found in the list of
circRNAs provided by CIRI2. From these data, we could conclude
that the lists of circRNAs obtained by the conservative approach
of CE2 + CIRI2 output fell short with respect to an exhaustive
circRNA detection in the three tissues under investigation.

Exhaustive Detection and Annotation of circRNAs
As our purpose was to study all types of circRNAs, we used
an alternative approach (CD) for the exhaustive detection
of circRNA (see section “Materials and Methods”). The next
objective was to further annotate the detected circRNAs as either
exonic, intronic and sub-exonic, and the remaining as undefined
or unannotated. Our objective was not to provide an alternative
list of exonic circRNAs to the one established by CE2 + CIRI2,
but only to identify a maximum number of exonic circRNA
as a prerequisite for an improved, subsequent analysis of the
other circRNAs. The criteria to annotate exonic circRNAs were
identical to those used by CE2, but for intronic circRNAs we
were more stringent (see section “Materials and Methods”). As
Liu et al. (2020) suggested that the production of sub-exonic
circRNAs was not limited to exons from mono-exonic and non-
coding RNA-genes, we integrated in our alternative approach
also the detection of sub-exonic circRNAs from all exons: from
coding and non-coding genes, from mono-exonic and multi-
exonic genes. To avoid including false positives in our analysis,
we disregarded very rare circularization events: circRNAs were
retained when they were characterized by at least 5 CCRs.
This choice was motivated by previous studies using a similar
approach for the detection of circRNAs (Robic et al., 2019,
2020). On average and in each of the 66 datasets, CD detected
65,500 circRNAs, and after the application of this threshold, 2,644
circRNAs were retained.

Results of the exhaustive detection of circRNA were shown
on Figure 3. The number of putative circRNAs detected by CD
appeared higher than circRNA detected by CE2 + CIRI2. This
difference was particularly marked on the datasets from bovine
and porcine muscle (Figures 1A,D, 3A,D). The next step was the
characterization of exonic circRNAs and they were indicated in
blue on the histograms presented on the Figure 3 (and were listed
in Supplementary List 2). For example, 10,351 exonic circRNAs
were characterized by CD in 18 porcine datasets (by at least
five CCRs in one dataset). Only 50 were never detected by CE2
or CIRI2 (10,358 and 9,940 were detected by CIRI2 and CE2
respectively). The number of exonic circRNAs detected by CD
(Figure 4A) appeared consistent with the number of circRNAs
(mainly exonic circRNAs) jointly detected by CE2 and CIRI2
(Figure 1G), even though on average, CE2 + CIRI2 detected
more circRNA than exonic circRNAs detected by CD.

Next, we proceeded to the identification, in the 67 (66 + 1)
datasets, of intronic circular RNA and sub-exonic circRNAs.
We detected only a very low number of introns associated
with intronic circRNA in several datasets (for example, intronic
circRNA were detected for zero to four introns in bovine muscle
datasets) (Supplementary List 3), and the dataset ssc_testis_1

turned out again as an outlier (132 introns concerned). In
contrast to previous studies, in which only mono-exonic non-
coding genes were considered, all sub-exonic circRNA, covered
by at least 5 CCRs, for all types of genes (mono- and multi-
exonic) were listed. The two ribozyme genes, RNase_MRP
and RNaseP_nuc, are the major small non-coding RNA gene
able to produce sub-exonic circRNA. For sub-exonic circRNA
assigned to multi-exonic genes, each exon involved produced
several, possibly overlapping, sub-exonic circRNAs. We noted
that several exons within a particular gene could contribute to the
production of sub-exonic circRNAs. For example, we observed
sub-exonic circRNAs from the nine exons of FGB and from 11 out
of the 15 exons of the ALB gene in bovine liver (Supplementary
List 4). Therefore, not only the snc genes contribute to sub-exonic
circRNA production but also protein-coding genes, lncRNAs and
pseudogenes (see below).

No antisense sub-exonic circRNA was detected in porcine
and ovine datasets, but we observed that four misc-RNA and
two ribozyme genes produced sense and antisense sub-exonic
circRNAs in bovine liver and/or testis. Antisense sub-exonic
circRNAs were never seen without the corresponding (from the
same exon) sense sub-exonic circRNAs.

Tissue Complexity
Analysis of the Number of circRNAs Characterized
We now turn to the comparison of the number of circRNAs
observed in liver, muscle and testis in the three species. The
circRNAs detected for each dataset by CD, number and associated
annotations, exhibit a much higher homogeneity within batches
than between batches, indicating that technical bias (library
preparation for example) might drive, in part, the observed
difference between tissues and species (Figure 3). We noted for
example large differences for sub-exonic, intronic and exonic
circRNAs number between two batches from porcine liver
(ssc_liver_8-10 and ssc_liver_5-7) and two batches from bovine
liver (bta_liver_1-12 and bta_liver_13-15) (Figure 4). We noted
also large differences of patterns between the two batches from
porcine testis (ssc_testis_2-7 and ssc_testis_8-10), but in this case
the different age of the animals might drive the differences. Once
again, in the CD analysis the number of exonic circRNAs in testis
of pubertal animals appeared similar in bovine (bta_testis_4-6)
and in pigs (ssc_testis_2-7) (Figures 1G, 4C), and in testis of
adult animals in ovine (oar_testis_1-3) and in pigs (ssc_testis_8-
10). Nevertheless, we noted that these datasets were generated by
different sequencing labs.

In order to avoid the potential technical bias mentioned above,
we compared batches originating from the same SRA project.
A significant difference was detected in the number of exonic
circRNA and in the number of CCRs associated with exonic
circRNAs between young and adult animal testes (p = 0.016 and
p = 0.011). These results confirmed data already observed with
circRNAs detected by CE2+ CIRI2 (p = 0.016). In cattle, (2× 12
datasets produced at FBN) and in sheep (2 × 6 datasets) we
were able to show that the liver transcriptome contains more
exonic circRNAs than muscle. The three comparisons (number
of exonic circRNAs detected by CD, number of CCRs associated
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FIGURE 3 | Number of circRNA characterized by CD. These histograms represent the number of circRNA (per million of reads uniquely mapped) which are detected
by at least 5 CCRs and annotated as exonic circRNA, intronic circRNAs, sub-exonic or unannotated. Histograms are regrouped by SRA projects. (A) The two bovine
batches produced at FBN. (B) the three ovine batches produced at Roslin Institute (C) The two batches produced by EMBL in 2017. (D) The two batches produced
by EMBL in 2019. (E) The batch of 6 datasets produced from porcine pubertal testes at INRAE. (F) The two batches of bovine testes produced by Yangling
University.

with exonic circRNAs detected by CD and number of exonic
circRNAs detected by CE2 + CIRI2) were statistically significant
in cattle (p = 3E-9, p = 3E-9, and p = 3E-9, respectively) and in
sheep (p = 0.0062, p = 0.019, and p = 0.0031). In contrast, we were
not able to confirm this difference in pig. All statistical analyses
were reported in Supplementary File 3.

Analysis of circRNAs Remaining Without Annotation
Among unannotated circRNAs, a large fraction of very small
circRNAs was detected especially in some datasets. For example,
in bta_muscle_1-12 we noted 19 to 32% of circRNAs with a
genomic size less than 55 bp. It would be necessary to examine
the underlying reads to understand this small size, and it is
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FIGURE 4 | circRNAs detected by CD. (A) Number of exonic circRNA detected by CD per million of reads uniquely mapped. (B) Number of intronic circRNA
detected by CD per million of reads uniquely mapped. (C) Number of sub-exonic circRNA detected by CD per million of reads uniquely mapped. (D,E) Relationship
between the detection of intronic and exonic circRNAs.
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possible that they are false positives. Thus, they were kept as
non-annotated circRNAs.

We noticed in porcine muscle that a large proportion
of circRNAs was not assigned to a specific chromosome,
but was localized on unassigned scaffolds. In ssc_muscle_3
and _4, more than 60% of the circRNAs were localized on
these unassigned scaffolds, while only 4.5% of all annotated
porcine genes are localized there. For example, in ssc_muscle_3
we counted 3,447 circRNAs localized on these unassigned
sequences among the total of 5,540 circRNAs characterized.
Even more specifically, 2,494 of them were localized on
AEMK02000489 and 930 on AEMK02000695. Except a few
sub-exonic circRNAs from a gene, which is probably not
fully included in the AEMK02000489 scaffold, these circRNAs
remained without annotation. These two scaffolds include only
51 and 16 kb of sequence, respectively, and several RNA
genes were suspected to be localized there. These observations
about circRNAs assigned to these two scaffolds confirm
that they included sequences that are transcribed in muscle.
Nevertheless, it cannot be excluded that these are only linear
transcripts associated with a bad assembly of the sequences in
these scaffolds.

More generally, we searched for circRNA clusters without
annotation along the chromosomes, because we suspected
that the analysis of clusters of unannotated circRNAs would
allow us to highlight regions with sequence/assembly/annotation
problems. The first example were 450 circRNAs in bta_muscle_6
(40% of unannotated circRNAs characterized in this dataset)
detected in the region BTA-2:18,1-18,3Mb. In ssc_muscle_2, we
noted 350 circRNAs without annotation in the region SSC-
15:84,23-84,49 Mb. The respective genomic sections contain the
Titin gene (TTN), which is an exceptional gene with probably
more than 350 exons spread over 300 kb (data from the Ensembl
annotation of the human genome), while only 7 or 13 exons
were identified in the TTN annotation of the pig and cattle
genomes (Ensembl v-102), respectively. In the sheep genome,
the TTN gene is not annotated in Ensembl (v-102), but in
the dataset oar_muscle_2, 200 circRNA without annotation
were detected (30% of unannotated circRNAs characterized
in this dataset) in the region suspected to contain this gene.
The second example was initiated by the characterization of a
cluster of circRNAs without annotation in several bovine liver
and muscle datasets. This region on BTA-27: 6.21-6.23Mb is
known to contain the Defensin gene cluster, which is extremely
expanded in ruminants. The assembly in this genomic region is
difficult due to a substantial number of copies of the same or
very similar sequences. In addition, it is assumed that bovine
individuals differ in the number of Defensin gene copies. In
sheep, this region is apparently not included in the reference
genome considered.

There are also regions, where not the genome assembly, but
only the annotation is deficient and the impact on the number of
detected circRNAs remaining without annotation is very limited.
For example in a region of BTA-7 (2,73-2,74 Mb) seven circRNAs
without an annotation were detected in bta_muscle_6. NCBI and
Ensembl do not annotate a gene there. However, RNA-seq data
displayed at NCBI would strongly support a gene annotation and

a new gene with a very large number of exons had been annotated
(Nolte et al., 2020).

To finish, a last example, one circRNA was detected only
in the dataset ssc_muscle_4 but with a very high number of
CCRs by CD (and with a very high number of BSJs by CIRI2).
This circRNAs could be explained by a fusion between one exon
from ENSSSCG00000029441 (probably MYH2) and one from
ENSSSCG00000018005 (MYH8). A potential fusion of exons
from two annotated genes would explain why the annotation-
dependent CE2 pipeline did not retain this circRNA. Even though
we cannot discard the hypothesis of a deficiency in genome
annotation, we believe rather this to be a structural alteration in
the respective genomic region restricted to this particular animal.

The above examples underline that the accuracy of the
reference assembly and of the annotation has a major impact
on the number of unannotated circRNAs preventing from
drawing any conclusion from the observed difference between
tissues and samples.

Intronic circRNAs
In bovine and porcine datasets, respectively 53 introns (from
53 genes) and 80 introns (from 79 genes) were able to
produce intronic circRNAs. A large part of intronic circRNAs
characterized in bovine and porcine datasets were mainly
detected in testicular datasets. In porcine datasets, the top-ranked
expressed intronic circRNA, from an intron of ATXN2L, has
ten times more CCRs than the second ranked one (PEX10).
This intronic circRNA was detected in each of the 18 porcine
datasets and is always among the strongest contributors of
intronic circRNAs. Even though ATXN2L was ranked at the
second position in terms of CCRs associated with intronic
cirRNAs in bovine testis, the landscape of the production of
intronic circRNAs in bovine testis is not dominated by the
production of a particular intron. The ATXN2L intron concerned
is in an orthologous position in pig and cattle. The orthologous
ovine gene is not annotated in the reference genome used
(Oar_rambouillet_v1.0).

The number of intronic circRNA (Figure 4B) seems to be
related to the number of exonic circRNA (Figure 4A) but not to
the number of sub-exonic circRNAs (Figure 4C). Specifically, the
number of CCRs associated to intronic circRNAs appears to be
correlated to the number of CCRs associated to exonic circRNA
in porcine and in bovine testis (Figures 4D,E). If we consider the
six bovine testicular datasets (from young and pubertal animals),
the correlation coefficient is 0.92. The correlation is similar
between the six porcine testicular datasets from pubertal animals
regardless of whether all introns with intronic circRNAs are
considered (Figure 4D) or if the ATXN2L intron with the highest
intronic circRNA expression is excluded (r = 0.88) (Figure 4E).
Excluding CCRs from ATXN2L enables a comparison of intronic
circRNA contents for bovine and porcine testis at the same scale.

So far, intronic circRNAs have been identified only from
coding genes (reviewed by Robic and Kühn, 2020), but the
current study shows that lncRNAs can also be involved
in the production of intronic circRNAs. In pigs, this
study highlighted that the lncRNAs ENSSSCG00000048463
and ENSSSCG00000041596 generated intronic circRNAs,
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however at a low expression level, with 6 and 11 associated
CCRs, respectively.

Analysis of the Production of Sub-Exonic circRNAs
To analyze the catalog of genes capable of producing sub-exonic
and/or exonic circular RNAs, we examined the 2 × 12 datasets
produced at FBN from bovine liver and muscle. We observe
that 1,914 and 839 genes are able to produce exonic circRNAs
in liver and muscle, respectively, while only 472 and 228 are
able to produce sub-exonic circRNAs in the respective tissues.
Only 124 genes produce both exonic and sub-exonic circRNAs
in liver, while in muscle we find only 37. The ability to produce
sub-exonic circRNA is therefore not related to the ability to
produce exonic circRNA.

The top-3 ranked genes producing sub-exonic circRNAs in
bovine liver are ALB, COX1 and FGB. In bovine muscle, we
could identify COX1, MYH1, MYH2, and ACTA1 among the top-
5 ranked genes producing sub-exonic circRNAs. In ovine muscle,
XIRP2, MYH1, ACTA1, and MYH7 are among the top-6 ranked
genes. Two myosin genes are found in the top ranking list of the
strongest contributors to sub-exonic circRNAs in porcine muscle.
In ovine liver, nearly half of the CCRs are assigned to sub-exonic
circRNAs produced by ALB. In the porcine liver, ALB, FGB, and
FGA are the top-3 genes producing sub-exonic circRNAs. In
porcine and ovine testis, the strongest contributor of sub-exonic
circRNAs is HSPCA. All these coding parent genes producing
a large number of sub-exonic circRNA are also known to be
among the top-ranked contributors of linear transcripts in the
respective tissue. The contribution of protein-coding genes to the
production of sub-exonic circRNAs represents a large fraction of
CCRs characterizing sub-exonic circRNAs (especially in bovine
liver and muscle). Moreover, the list of protein coding genes
providing the strongest contribution of sub-exonic circRNA
seems to be a direct reflection of the respective list for linear
transcript contribution. This would be a feature of sub-exonic
circRNAs that is not shared with exonic circRNA.

In previous studies, sub-exonic circRNAs had been searched
in mono-exonic nc genes (Robic et al., 2020). However, also
coding mono-exonic genes contribute to sub-exonic circRNA
production. Specifically, the gene COX1 is a mono-exonic gene
localized on the mitochondrial genome. It is among genes able
to produce a high number of sub-exonic circRNAs in bovine
and ovine liver and in bovine and ovine muscle, while in
pigs its contribution is insignificant (in liver and muscle). In
cattle, where 13 protein-coding genes are described on the
mitochondrial genome, 12 were identified as able to produce
sub-exonic circRNAs. All these 13 mitochondrial protein-coding
genes are mono-exonic genes (Taanman, 1999).

In spite of our new data on the contribution of coding
genes to circRNA production, non-coding genes were also
important contributors of sub-exonic circRNA in some datasets.
RNase_MRP is the strongest contributor of sub-exonic circRNA
in each dataset of ssc_testis_2-7. This observation confirms data
obtained previously on ssc_testis_1 (Robic et al., 2020). Among
the other 60 datasets, there is an important contribution of
RNase_MRP to sub-exonic circRNAs in oar_liver_5. We also
noted a significant contribution of RNaseP_nuc to subexonic

circular RNAs in bta_muscle_9 while no sub-exonic circular RNA
of this gene was detected in the other bovine muscle datasets.
Nevertheless, apart from the sub-exonic circRNAs produced by
ribozymes, we have to be careful with respect to the possible
production of sub-exonic circRNAs by sncRNAs. Some batches
seem to be very rich in some sncRNAs while others display
not a single read aligned on the respective reference genome
(data not shown). With the currently available data and metadata
descriptions, it is difficult to differentiate a tissue/age specificity
from a difference resulting from a technical bias e.g., the RNA
extraction methodology.

Our data show that genes able to produce sub-exonic circRNA
can be separated into two sub-groups. Mono-exonic and nc
genes were already described as being able to produce sub-exonic
circRNAs, and this study shows that mitochondrial genes, which
are protein-coding and mono-exonic genes, are also concerned.
Furthermore, this study demonstrates that multi-exonic genes,
in particular protein-coding genes, can also produce sub-
exonic circRNAs. In addition, the coding-genes that are major
contributors of sub-exonic circRNAs strongly contribute also to
the production of linear transcripts. All data were reported in
Supplementary List 4.

circRNAs and Non-coding Genes
The current knowledge about nc genes is still poor in the livestock
species investigated here, which has an impact on evaluating their
contribution to circRNA production. While there is a similar
number of protein-coding genes annotated in livestock and
human genomes (cow-21,861, pig-21,280, sheep-20,477, human-
20,448, Ensembl v-101), comparing the number of annotated
pseudogenes (cow-492, pig-1,626, sheep-830, human-15,217)
and of lncRNAs (cow-1,480, pig-6,790, sheep-2,229, human-
16,909) demonstrates that non-coding genes are still poorly
described in livestock species. This study shows that nc genes
can also contribute to the production of intronic, sub-exonic
and exonic circRNAs. For the production of intronic circRNAs,
the current study highlights only two lncRNAs, but for the
sub-exonic circRNAs, the contribution of non-coding genes is
unquestionable (Table 2). In cattle and pigs, 945 and 998 genes
were characterized as able to produce sub-exonic circRNAs
(Table 2), respectively. Among them, 4 and 18 were lncRNAs.
Surprisingly in sheep, where only 462 genes are characterized
as able to produce sub-exonic circRNAs, we found a relatively
higher number of lncRNAs (15). There is a much higher
number of lncRNAs involved in exonic circRNA production
in sheep compared to pigs considering the number of overall
annotated lncRNAs (CE2 + CIRI2, Table 3). For example,
in ovine testis, we observed that the strongest contributor of
exonic circRNAs in terms of BSJ (Supplementary Table 2)
is a lnc. This lncRNA was able to produce eleven exonic
circRNAs of which the three most expressed were ranked at
#2, #38, and #50 among the top-ranked exonic circRNAs in
ovine testis (Supplementary Table 1). This might be due to
fewer, but more precisely annotated lncRNA genes in sheep
including a higher number of described exons. All non-coding
genes, which were confirmed by both approaches (CE2 + CIRI2
and CD) as able to produce exonic circRNAs, are reported in
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TABLE 2 | Coding and non-coding genes are to produce sub-exonic circRNAs.

Genes concerned by
sub-exonic circRNAs

Protein-coding genes Long non-coding genes Pseudogenes Small
non-coding

genes

N. of genes
concerned

N. of exons
concerned

N. of genes
concerned

N. of exons
concerned

N. of genes
concerned

N. of exons
concerned

N. of genes
concerned

Cattle 945 908 1,451 4 4 3 3 30

11 misc_RNA,
2 ribozyme,

2 Snc,
2 Sca_RNA,

13 Sno

Pig 998 954 1,228 19 22 6 7 19

2 misc_RNA,
2 ribozyme,
2 Sca_RNA,

12 Sno,
1 Y_RNA

Sheep 465 434 569 15 20 7 9 9

1 misc_RNA,
2 ribozyme,
1 Sca_RNA,

5 Sno

Genes able to produce sub-exonic circRNAs were characterized using CD approach. Lists were available in Supplementary List 4.

TABLE 3 | Non-coding genes able to produce exonic circRNAs.

lncRNAs No. of
genes concerned

Pseudogenes No.
of genes

concerned

sncRNAs No. of
genes concerned

Cattle 6 0 1 Sno

Pig 32 7 1 Sno

Sheep 103 2 0

Only non-coding genes highlighted by both approaches used for circRNA detection
(CE2 + CIRI2 and CD) were considered as able to produce exonic circRNAs. Their
respective Ensembl_Id were reported in Supplementary File 4.

Supplementary File 4. Non-coding genes are also involved in
the production of exonic circRNA, not only lncRNAs but also
pseudogenes and snoRNAs (Table 3).

Comparison of Circular Transcriptomes
(exonic circRNAs)
Comparison of Circular Transcriptomes Between
Tissues
When we examined the number of genes producing the 100
strongest expressed exonic circRNAs (CE2 + CIRI2) of a
given batch (hereafter Top-100/circRNAs), we counted 87 to
89 distinct genes for the five porcine batches, and 92 to 93
for the three ovine batches. For four bovine batches 90 to 97
genes produced the 100 strongest expressed exonic circRNAs, the
exception was in muscle where only 83 distinct parent genes were
identified (Supplementary Table 1). As we previously proposed a
comparison based on the most highly expressed exonic circRNA
(Figure 2A), we propose now a comparison based on genes
with the highest expression in terms of BSJ. The Top-100 list
of parent genes most strongly producing exonic circRNAs was

established for each batch from the three species (hereafter
Top-100/genes, Supplementary Table 2), and analyzed. The
levels of overlap between testis/liver/muscle appeared higher
in sheep than in cattle or pigs (Figure 2B-3 in yellow). In
cattle, the levels of overlap observed for pairwise comparisons
of Top-100/genes (Figure 2B-1) were similar to those noted for
Top-100/circRNAs (Figure 2A-1 in blue). The main exception
is the overlaps between the two batches from bovine liver
(87% for Top-100/genes and 72% for Top-100/circRNAs). In
pigs, the level of overlap observed for pairwise comparisons
of Top-100/genes (Figure 2B-2) were almost systematically
higher than those noted for Top-100/circRNAs (Figure 2A-2).
On Top-100/genes, overlaps between the pubertal and adult
batches from porcine testis (84%) were better than the overlaps
observed between the two batches from porcine liver (74%
for Top-100/genes, Figure 2B-2). Exonic circRNA production
with high BSJ seemed focused on a group of genes that
produce several distinct exonic circRNAs with a balance of
circular isoforms which would be dependent on considered
tissue (Supplementary Table 1 and Supplementary File 5). One
example to illustrate this: The gene NUP210L was ranked at
the second position in terms of BSJs counts in porcine pubertal
testis, and 30 distinct exonic circRNAs were characterized with
a dominant form. In adult porcine testis this gene was ranked
at the third position with 23 circular isoforms characterized
but without dominant form. When we examined the Top-
100/genes established for the porcine batches (Supplementary
Table 2), we noticed that KANSL1L was among the strongest
producers of exonic circRNAs (CE2 + CIRI2) in the five
batches (#1 to #7). The bovine orthologous gene produced
also many exonic circRNAs, with the highest ranking noted
for testis from young bulls (#17) and the lowest ranking for
pubertal testis (#62).
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Impact of Genes Able to Produce Multiple Exonic
circRNAs
We further examined genes with multiple exonic circRNAs
characterized. The protein-coding gene SMARCC1 is able to
produce 41 distinct exonic circRNAs in the porcine testis
(CE2 + CIRI2) (Supplementary File 5). Less than 30 exons
were reported for this porcine gene (as in humans), which are
spread across 190 kb (Ensembl, v-102). In contrast, the bovine
SMARCC1 is able to produce only five distinct exonic circRNAs
in testis and no circRNAs from the ovine SMARCC1 gene were
identified. This result was confirmed among the exonic cirRNAs
characterized by CD. The strongest producer of distinct circRNAs
(Supplementary File 5) in bovine testis is DNAH14, but this
gene does not appear in the ovine and porcine lists, because of
poor knowledge (sequences/annotation) about this gene in these
species. In muscle, the gene producing the largest diversity of
circRNAs is the same in the three species (Supplementary File 5).
The Nebulin gene (NEB) is a gene with a large number of exons.
In humans, more than 180 exons were characterized in a region of
200 kb (Ensembl v-102). Among the three species investigated in
our study, the highest number of distinct exonic circRNAs from
this gene is noted for cattle. In the three species, NEB produced
this diversity of exonic circRNAs quasi-exclusively in muscle
(29/30 cattle, 15/16 pigs, 17/19 sheep). When we examined lists
of genes present in Top-100/genes (Supplementary Table 2), we
noticed that these lists contained mainly genes with multiple
exonic circRNAs characterized. NEB was a good example to
illustrate this. In porcine and ovine muscle, NEB was ranked
at the third position of genes expressing a high quantity of
circular transcripts where 16 and 19 circular isoforms were
respectively characterized (Supplementary Table 2). In pigs and
in sheep, a circular form among all exonic circRNAs from NEB
appeared dominant and this dominant form was ranked at #2
and #4 on the ovine and porcine Top-100/circRNAs in muscle
(Supplementary Table 1). These dominant alternative circular
transcripts are not pig-sheep orthologous circRNAs. In bovine
muscle, 30 distinct NEB circRNAs were characterized and this
parent gene was ranked at the second position in terms of BSJs
counts (Supplementary Table 2). Even though the expression of
the strongest expressed alternative form of NEB circRNA was 20
times higher than the lowest, there was not really a dominant
form in bovine muscle.

Comparison of the Circular Transcriptome Between
Species
The comparison of the expression profiles between species was
performed using two different approaches. First, a comparison
between the expression profiles of orthologous parent genes was
performed (see Methods). We observe here a clear correlation
between the expression profile between species for the same
tissue as exemplified by the comparison of sheep and bovine
tissues expression profiles (Figure 5A). Ranking the expression
profiles from highest to lowest for each species and each tissue
however underlines that this ranking is not strictly conserved
between the three species (Table 4). From the examination
of this table, it would be tempting to deduce (Table 4) that
for example (1) the circular transcripts expression of ovine

SUGT1 would be a differential characteristic with respect to pig
muscle (2) the circular transcripts expression of ovine TRDN
would be a differential characteristic with respect to bovine
muscle. When we examined respective annotations available,
this suggestion appeared possible for SUGT1. In contrast, this
suggestion did not stand up to the examination of the annotation
of the bovine TRDN gene. Moreover, when we examined
these data, we found no clear overlap as demonstrated by
two examples: (1) The NEB gene was ranked high across all
three species: at #3 on the ovine list and also #3 on the
porcine list and #23 on the bovine list. (2) In contrast, the
#8 of the ovine list (SLC9A2) was found at #60 and #2,854
on the bovine and porcine lists, respectively. The genes that
are the strongest producers of circRNA in sheep muscle are
not necessarily genes that produce a lot of circRNA in pig
or cattle muscle.

In order to bypass the limitation of comparing the expression
of parent genes, we identified directly orthologous circRNAs
based on sequence similarities (see Methods). From 3,899 ovine
circRNAs and 8,723 bovine circRNAs, we were able to identify
1,832 orthologous circRNAs (see Suppl_Lists-1). For comparison,
the Ensembl one-to-one ortholog set contains 16,110 orthologs,
among 21,861 bovine and 20,477 ovine coding genes. Again,
we observe a correlation between the expressions of circRNAs
between species for the same tissue (Figure 5B) suggesting
that, just as the linear transcriptome (Kryuchkova-Mostacci and
Robinson-Rechavi, 2016), the circRNA transcription profile is, at
least in part, conserved across species.

DISCUSSION

The imbalance between batches observed during the circRNA
characterization phase and other issues (e.g., incomplete genome
assemblies/annotations) precluded us to perform a global
comparison between tissues and between species. Instead, we
highlight a few examples to show different and sometimes
seemingly contradictory results to demonstrate the complex issue
of these comparisons.

Even though each of the datasets considered individually was
of correct quality, the agglomeration of datasets from different
origins proved to be difficult. This was a surprising outcome,
because many studies used a similar approach with mRNA-
seq datasets from different sources (Soumillon et al., 2013;
Fang et al., 2020). However, while it is difficult to compare
the number of circRNAs when datasets come from different
sources, the contents in circRNAs (the most expressed circRNAs
or the genes with the highest expressing of circRNA in terms
of BSJ) are quite comparable. We can put up the hypothesis
that protocols for RNA preparation and sequencing have a
significant impact on circRNA recovery. We assume that a subset
of circular RNAs may be present in tissues in a complex form
and that RNA purification methods may differ with respect to
their recovery (Pamudurti et al., 2017; Ragan et al., 2019). The
differences between RNA preparation protocols are not always
well explained but, for example, we are sure that there are
differences in the use or non-use of TRIzol, which exist between
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FIGURE 5 | Comparative analysis of the bovine and ovine transcriptomes. (A) Circular expression profiles of orthologous genes (measured as number of BSJs) were
compared in liver, and in muscle. (B) Expression profiles of orthologous circRNAs (measured as number of BSJs) were compared in liver, and in muscle. Only
genes/circRNAs with a substantial expression were kept for these correlation analyses (log10(BSJs) > 1.2 for each tissue and each species).

TABLE 4 | Strongest parent genes for cirRNA production identified in muscle.

Ovine gene Rank in
oar_muscle

Bovine orthologous gene Rank in
bta_muscle

Porcine orthologous gene Rank in
ssc_muscle

ENSOARG00020005060 SUGT1 1 ENSBTAG00000002137 382 ENSSSCG00000039338 –

ENSOARG00020003405 UBE3A 2 ENSBTAG00000002487 1,005 ENSSSCG00000004832 4

ENSOARG00020024247 NEB 3 ENSBTAG00000006907 23 ENSSSCG00000016397 3

ENSOARG00020019783 ANO5 4 ENSBTAG00000019394 392 ENSSSCG00000013344 1,673

ENSOARG00020010566 LMO7 5 ENSBTAG00000010693 2 ENSSSCG00000040184 386

ENSOARG00020016807 PPP2R3A 6 ENSBTAG00000023416 233 ENSSSCG00000033185 1,189

ENSOARG00020020875 TRDN 7 ENSBTAG00000038849 – ENSSSCG00000027613 263

ENSOARG00020002529 SLC9A2 8 ENSBTAG00000001706 60 ENSSSCG00000008153 2,854

ENSOARG00020012532 SENP6 9 ENSBTAG00000005869 1 ENSSSCG00000020702 733

ENSOARG00020003993 ANO6 10 ENSBTAG00000002902 130 ENSSSCG00000000804 –

ENSOARG00020021163 SLTM 11 ENSBTAG00000011319 853 ENSSSCG00000004592 20

ENSOARG00020002353 SNX13 12 ENSBTAG00000014074 207 ENSSSCG00000024761 273

ENSOARG00020006228 MYBPC1 13 ENSBTAG00000011392 3 ENSSSCG00005042452 –

ENSOARG00020025783 GOLGA4 14 ENSBTAG00000016563 377 ENSSSCG00000011243 –

ENSOARG00020017442 ZEB1 15 ENSBTAG00000020053 704 ENSSSCG00000011025 630

At left, the list is provided encompassing the top-15 parent genes for exonic circular RNAs with respect to the number of BSJs identified in sheep muscle. In the center
and on the right, the respective ranking is given for orthologous genes in the list of parent genes for exonic circular RNA in bovine and porcine muscle.
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batches for this study. For example, the RNA produced for the
ssc_testis_1-7 datasets was obtained from a dry-powdered tissue
sample before being treated with TRIzol (Robic et al., 2016).
In contrast, datasets generated at FBN or at Roslin Institute
were produced from a tissue sample homogenized directly in
TRIzol (Clark et al., 2017; Nolte et al., 2019). Moreover, an
additional on-column-purification step was performed for RNAs
extracted at FBN (bta_muscle_1-12) (Nolte et al., 2019) or at
INRAE (ssc_testis_1-7) (Robic et al., 2019). Some protocols are
described too succinctly to be sure that this type of additional
step did not performed. These observations demonstrate the need
for harmonized or at least fully described laboratory methods
attached as metadata to enable samples to be fully useful in
functional annotation of genomes as agreed upon in the global
FAANG initiative.

Although the diversity regarding the source of datasets had
somewhat limited our analyses, we were able to show that the
ruminant liver contains more exonic circRNA than muscle. In
testis, the number of exonic circRNAs seemed associated with the
age of the animals. In bulls, the testis contained more circRNAs
at birth than at puberty. An inverse dynamic was observed
in rat (Zhou et al., 2018; Gong et al., 2020). Nevertheless, at
birth, a rodent’s testis presents large differences with a bull
testis (Fujihara et al., 2011; McGowan et al., 2018; Picut et al.,
2018). When we compared the circRNA expression of two
datasets from the same tissue of the same species, we observed
differences, but much less than those between two tissues of
the same species. However, the similarities between species are
more difficult to quantify, because annotations relative to parent
genes are often deficient in at least one of the species considered.
The overlap between pubertal testis and testis at other stages
led to an intermediate value and showed that the testis is a
tissue with a maturation in progress. We showed that there are
points of agreement in the circular transcriptome of the same
tissue in two species, but also many divergences. Some of the
strongest parental genes for exonic circular RNAs may be also
among those genes, which produce a large quantity of circular
transcripts in several tissues. Nevertheless, this characteristic
of high circRNA expression across tissues may be limited to
one species (KANSL1L in pigs). Moreover, the parent genes
of exonic circRNAs are often capable of producing several
distinct circRNAs. This has an impact on the composition of
the circular transcriptome and the balance between the different
circular isoforms contributed also to the composition of circular
transcriptome. It seems that among these circular isoforms,
there may be a dominant form, but this is not a rule. The
balance between the different isoforms will have to be studied
in the future, as this seems to be a very specific question for
the circular transcriptome. Analyses presented here showed that
it is not enough to have a set of orthologous genes capable
of producing circRNAs to obtain a similar circRNA landscape
in the same tissue from both species. The fact that exonic
circRNAs can be produced from the same exons (orthologous
circRNA as found by Suenkel et al., 2020) or not appears at this
stage as a detail. For example SMARCA5 is known to produce
exonic circRNAs in connection with biological data in humans
(Kong et al., 2017) and pigs (Robic et al., 2019), but the exons

involved are different. One future direction might be to take
into account the relative “weight” of exonic circRNAs/parent
genes for comparative analyses of several circular transcriptomes.
Among lists of genes able to produce exonic circRNAs in one
species, we can find a proportion of genes, which are able to
produce exonic circRNAs also in a second species and in the same
tissue. Nevertheless, the relative contribution of those genes to
the second circular transcriptome is not predictable. There may
be points of concordance in the circular transcriptome of the
same tissue in two species, but it will be difficult to conclude
from one species to another demonstrating the need to conduct
a comprehensive characterization within each species. Besides,
we would like to emphasize that in this study we considered
circRNAs distinguishable by their circular junction. We know
nothing about the internal structure of circRNA and multiple
distinct circular RNAs can share the same circular junction
(Dodbele et al., 2021).

This study shows that multi-exonic genes can also generate
sub-exonic circRNAs. These multi-exonic genes were most often
protein-coding genes, but some lncRNA and pseudogenes were
also highlighted. Because the list of genes, which are the strongest
contributors of sub-exonic circRNAs (especially in bovine liver
and muscle), seems to be a direct reflection of the respective
list of contributors of linear transcripts, we suspect that these
circRNAs from multi-exonic genes are mostly the result of
splicing machinery errors or a destruction process of linear
transcripts. For sub-exonic circRNA from mono-exonic genes,
this current study confirmed the previous study (Robic et al.,
2020, which was based only on the ssc_testis_1 dataset) that
ribozymes and other snc-RNA genes are able to produce sub-
exonic circRNAs. We provide data supporting the production
of sub-exonic circRNAs by mitochondrial protein-coding genes,
which is new, but not a surprise. The transcription of these
mono-exonic genes does not require the splicing step (no
intronic sequence to be removed), and frequently sub-exonic
circRNAs include a notable part of potentially transcribed
sequences (unique exons). These genes have probably kept some
features of ancestral genes (prokaryotic genes) including the
production of circRNAs (Danan et al., 2012). It was already
described for ribozymes (Cervera and de la Pena, 2020). We
believe that it is a constitutive phenomenon relative to these
mono-exonic genes, where a part of transcripts is circular. We
cannot rule out the hypothesis that the transcripts of these
genes adopt the circular form for a better life span or a best
biological efficiency.

When we wanted to compare results between species, we
were confronted with problems related to the reference genome,
because some of the genes were not annotated with the same
quality in all species. We would like to emphasize that the
assignment of a given circRNA to a parent gene is dependent on
the knowledge of the genome and available annotation. We began
this study with strict constraints on the annotation of the parent
circRNA gene (see Materials and Methods). Although excellent
analyses to compare circular transcriptomes have recently been
published using a different approach (Ji et al., 2019), we still
believe that, especially in animal species, it is important to
perform comparative studies with only circRNAs with a clearly
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identified parent gene (Dong et al., 2017). Moreover, this
approach avoid also a large number of false positive circRNA
annotations (Kaur et al., 2018; Ragan et al., 2019). This study
shows that nc genes can give rise to intronic, sub-exonic and
exonic circRNAs. For exonic circRNAs, we were surprised to
observe the highest similarities between tissues and the smallest
number of distinct exonic circRNA in sheep. Our observations on
circRNAs showed that the ovine reference genome might suffer
from a deficit of described exons in protein-coding genes. The
ovine lncRNAs included in the genome annotation, however,
seemed to be better described than lncRNAs from pigs. We
would underline that the current knowledge about nc genes is
still poor in the livestock species investigated here (Gao et al.,
2019; Nolte et al., 2020). When we started this study, we assumed
that unannotated circRNAs would reveal the existence of new
exons/transcripts/genes, and we thought that the list contained
many circRNAs that could be annotated with a single effort
on genome annotation as suggested in a previous study (Robic
et al., 2020). Nevertheless, the current study revealed that the
vast majority of unannotated circRNAs were grouped in clusters
along the genome (especially in muscle). We showed that these
clusters pointed to genomic regions with problems regarding
gene annotation/assembly/sequences. In these genomic regions,
the problems are often multiple, and the identification of new
linear or circular transcripts seems to be a dangerous process, if it
is not associated with a real parallel effort on linear transcriptome
annotation and even an improved genome assembly.

This study highlights the importance of improving genome
annotation to better annotate circRNAs observed. To our
disappointment, not all detected circRNAs can directly
contribute to the annotation of new genes. Nevertheless, we
believe that a “wide-angle” approach to study circular RNAs can
help locate genomic regions with multiple problems. This study
highlights the importance of improving genome annotation to
better understand the circRNA production.
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Large-Scale Multiplexing Permits
Full-Length Transcriptome
Annotation of 32 Bovine Tissues
From a Single Nanopore Flow Cell
Michelle M. Halstead, Alma Islas-Trejo, Daniel E. Goszczynski, Juan F. Medrano,
Huaijun Zhou and Pablo J. Ross*

Department of Animal Science, University of California, Davis, Davis, CA, United States

A comprehensive annotation of transcript isoforms in domesticated species is lacking.
Especially considering that transcriptome complexity and splicing patterns are not well-
conserved between species, this presents a substantial obstacle to genomic selection
programs that seek to improve production, disease resistance, and reproduction.
Recent advances in long-read sequencing technology have made it possible to directly
extrapolate the structure of full-length transcripts without the need for transcript
reconstruction. In this study, we demonstrate the power of long-read sequencing for
transcriptome annotation by coupling Oxford Nanopore Technology (ONT) with large-
scale multiplexing of 93 samples, comprising 32 tissues collected from adult male
and female Hereford cattle. More than 30 million uniquely mapping full-length reads
were obtained from a single ONT flow cell, and used to identify and characterize the
expression dynamics of 99,044 transcript isoforms at 31,824 loci. Of these predicted
transcripts, 21% exactly matched a reference transcript, and 61% were novel isoforms
of reference genes, substantially increasing the ratio of transcript variants per gene,
and suggesting that the complexity of the bovine transcriptome is comparable to that
in humans. Over 7,000 transcript isoforms were extremely tissue-specific, and 61% of
these were attributed to testis, which exhibited the most complex transcriptome of all
interrogated tissues. Despite profiling over 30 tissues, transcription was only detected
at about 60% of reference loci. Consequently, additional studies will be necessary to
continue characterizing the bovine transcriptome in additional cell types, developmental
stages, and physiological conditions. However, by here demonstrating the power of ONT
sequencing coupled with large-scale multiplexing, the task of exhaustively annotating
the bovine transcriptome – or any mammalian transcriptome – appears significantly
more feasible.

Keywords: transcriptome, annotation, nanopore, cattle, tissue-specific, alternative splicyng, long-read
sequencing, full-length transcript
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INTRODUCTION

The proteome diversity observed in eukaryotes is largely
attributed to alternative transcript isoforms, which result from
use of alternate transcription start sites, polyadenylation sites,
and splice sites. In particular, the complexity of alternative
splicing seems to have increased during the course of evolution
(Keren et al., 2010), such that transcript isoforms exist for
the majority of genes in higher order eukaryotes (Pan
et al., 2008; Wang et al., 2008; Mercer et al., 2012). This
diversification of the transcriptome and proteome not only
drives adaptation and speciation (Harr and Turner, 2010;
Mudge et al., 2011), but also facilitates cellular diversity
and the development of complex organisms with tissues
and organs (Graveley, 2001; Linker et al., 2019). Indeed,
transcript isoforms and splicing patterns vary between cell
types, tissues, developmental stages, and environmental
conditions (Kalsotra et al., 2008; Wang et al., 2008; Vaquero-
Garcia et al., 2016; Zhang et al., 2016). Moreover, because
alternative splicing can fundamentally alter protein structure
and function, aberrant isoforms have been linked to
various diseases, including cancer (Paronetto et al., 2016;
Zhang et al., 2019).

More than 90% of human genes are subject to alternative
splicing (Pan et al., 2008; Workman et al., 2019); as such,
considerable efforts have been made by consortia such as
GENCODE to exhaustively annotate transcript isoforms in
humans and mice. However, projects seeking to annotate
the genomes of non-model organisms generally lack the
necessary resources for manual curation. Consequently,
transcriptome annotations for non-model organisms, including
species of high economic significance like livestock, are
often incomplete or inaccurate (Andersson et al., 2015;
Ungaro et al., 2017). Moreover, transcriptome complexity
and splicing patterns are not well-conserved between
species (Barbosa-Morais et al., 2012). Transcript structures
inferred from related species are therefore likely to be
insufficient or inaccurate.

Worldwide, over a billion cattle (Bos taurus) are raised for
meat and dairy production (Robinson et al., 2014), and although
selection programs have significantly benefited from genomics
tools in the past decade (Meredith et al., 2012; Saatchi et al.,
2012; Thompson-Crispi et al., 2014; García-Ruiz et al., 2016),
a comprehensive characterization of the bovine transcriptome
is essential to improve our understanding of the biological
processes that underpin complex traits like productivity,
efficiency, and disease resistance (Georges et al., 2019).

Until recently, transcriptome annotations – including that
of the bovine genome – were primarily based on short-
read RNA-seq data from next-generation sequencing (NGS)
platforms. The high throughput of these sequencers was optimal
for quantifying gene expression, but because of sequencing
length limitations, it is necessary to fragment RNA or cDNA
during library preparation. The resulting reads are generally
shorter (<200 bases) than most full-length transcripts, and
although several computational approaches have been developed
to reconstruct transcript structures from short-read RNA-seq

data, they do not always infer the correct structures (Grabherr
et al., 2011; Trapnell et al., 2012; Pertea et al., 2015;
Conesa et al., 2016).

Alternatively, long-read sequencing technologies, such as
Pacific Biosciences (PacBio) (McCarthy, 2010; Rhoads and Au,
2015) and Oxford Nanopore Technologies (ONT) (Bayega et al.,
2018), have made it possible to sequence reads up to 50 kb
in length, allowing for the sequencing of full-length transcripts
without the need for reconstruction. In recent years, PacBio
single-molecule real-time (SMRT) isoform sequencing (Iso-seq)
has been implemented to improve transcriptome annotations in
humans (Sharon et al., 2013; Tilgner et al., 2014), rabbits (Chen
et al., 2017), chickens (Thomas et al., 2014; Kuo et al., 2017),
pigs (Li et al., 2018; Beiki et al., 2019), and cattle (Rosen et al.,
2020). Indeed, the transcriptome accompanying the most recent
bovine genome assembly was curated from both short-read RNA-
seq and Iso-seq data (Rosen et al., 2020); however, the Iso-seq
dataset was limited, as it included fewer tissue transcriptomes
than the short-read RNA-seq data, and was of considerably
lower sequencing depth, producing only about a half a million
consensus reads.

An alternative long-read sequencing technology, ONT
sequencing, measures changes in ionic current as fragments
move through protein nanopores, and does not depend
on enzyme-based nucleotide incorporation or detection of
fluorescence (Ip et al., 2015). Due to its affordability and higher
throughput – the ONT PromethION generates 20 times more
reads per flow cell than the PacBio Sequel II (Garalde et al.,
2018) – ONT has been widely used for transcriptome annotation
in organisms ranging from yeast to humans (Sharon et al.,
2013; Tilgner et al., 2014; Oikonomopoulos et al., 2016; Byrne
et al., 2017; Jenjaroenpun et al., 2018; Kadobianskyi et al., 2019;
Seki et al., 2019; Sessegolo et al., 2019; Workman et al., 2019;
Müller et al., 2020; Sahoo et al., 2020), permitting the discovery
of isoforms that were difficult to observe from short-read
sequencing alone (Steijger et al., 2013; Venturini et al., 2018).

Despite the incorporation of Iso-seq data (Rosen et al., 2020),
the bovine transcriptome still only includes 1.59 transcripts
per gene on average, whereas the human genome annotation
accounts for an average of 3.78 transcript isoforms per gene
(Ensembl v101 annotations). This discrepancy suggests that
the transcriptomic complexity of the bovine genome has yet
to be fully characterized, and that current annotations are
likely missing information on rare and tissue-specific isoforms.
In this study, we coupled ONT sequencing with large-scale
multiplexing to identify and characterize the expression of
transcript isoforms in cattle. From a single ONT flow cell,
we obtained over 25 million full-length uniquely mapped
reads, allowing us to characterize the transcriptomes of 32
adult bovine tissues across four individuals. This powerful
approach paves the way for future transcriptomic studies,
facilitating research on a wider variety of cell types, physiological
conditions, and developmental stages. Moreover, the resulting
transcript predictions will help to inform selection programs
seeking to improve production traits, fertility, and environmental
adaptation – factors which are of considerable scientific and
economic interest.
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MATERIALS AND METHODS

Sample Collection
Tissue samples were collected from two male and two female
Line 1 Hereford cattle, aged 14 months old, which were provided
by the Fort Keogh Livestock and Range Research lab. Animals
were euthanized by captive bolt under USDA inspection at the
University of California, Davis, with all permissions obtained and
in concordance with Protocol for Animal Care and Use no. 18464
(approved by Institutional Animal Care and Use Committee
at the University of California, Davis). Samples were collected
within 1–2 h of euthanasia, flash frozen in liquid nitrogen, and
stored at –80◦C until processing.

RNA Extraction and Library Construction
Frozen tissues kept at –80◦C were homogenized with a mortar
and pestle in liquid nitrogen. Total RNA was extracted using
Trizol (Invitrogen, Carlsbad, CA, United States) followed by a
column clean-up using the Direct-zol RNA Mini Prep Plus kit
(Zymo Research, Irvine, CA, United States) and performing an
in-column DNA digestion. Integrity of the DNase-treated RNA
was verified on the Experion electrophoresis system (Bio-Rad,
Hercules, CA, United States). For each sample, 50 ng total RNA
was transferred to 0.2 ml PCR tubes and adjusted to a final
volume of 9 µl with nuclease free water. Reactions were prepared
(9 µl total RNA, 1 µl 10 µM VNP primer, 1 µl 10 mM dNTPs)
and incubated for 5 min at 65◦C, then snap cooled on a pre-
chilled freezer block. Strand-switching buffer (4 µl 5x RT buffer,
1 µl RNaseOUT, 1 µl nuclease-free water, and 2 µl 10 µM strand-
switching primer) was then added to the snap-cooled, annealed
mRNA, and incubated at 42◦C for 2 min. One µl of Maxima
H Minus Reverse Transcriptase was added, and reactions were
incubated at 42◦C for 90 min, 85◦C for 5 min, then held at 4◦C.
A round of PCR was used to introduce barcodes to the cDNA
using the Oxford Nanopore PCR barcoding expansion 1-96 kit
(Cat. No. EXP-PBC096). Barcoding PCR reactions were set up
for each cDNA (1 µl PCR barcode, 19 µl first-strand cDNA,
20 µl LongAmp Taq 2x master mix), and cycled for [3 min at
95◦C] x1 cycle, [15 s at 95◦C, 15 s at 62◦C, 7 min at 65◦C] x13
cycles, [15 min at 65◦C] x1 cycle, then held at 4◦C. Each barcoded
cDNA was purified in 1x Ampure XP Beads, eluted in 20 µl of
nuclease free water and quantified using Qubit. Barcoded cDNAs
were pooled in a final volume of 47 µl. The DNA Technologies
Core and Expression Analysis Laboratory at the University of
California Davis performed adapter ligation on the cDNA pool
with the SQK-DCS109 kit following manufacturer’s guidelines.
Finally, 50 fmol of adapter ligated library was loaded onto a
PromethION flow cell (vR9.4.1).

Pre-processing of ONT Sequencing Data
The quality of raw sequencing data, including read length and
average quality, was checked using Nanoplot (v1.0.0). Base calling
and demultiplexing (Supplementary Table 1) were performed
using ont-guppy-for-minknow (v3.0.5) and reads with a quality
score below 7 were discarded. Data were then processed with
Pychopper (v2.4.0) to identify and orient full-length reads;

these were then mapped to the ARS-UCD1.2 genome assembly
using minimap2 (v2.16r922) (Li, 2018) with options “-ax splice
-uf -k14 -G 1000000.” The maximum allowable intron size was
increased to 1 Mb, based on the longest intron observed in
the Ensembl (v101) annotation. Uniquely mapped reads with a
minimum quality score of 10 were extracted with Samtools (v1.7).

Preliminary Analysis of Gene Expression
Uniquely mapped reads were used to obtain raw gene expression
counts, based on the Ensembl v101 annotations for each species,
using HTSeq (v0.11.2) (Anders et al., 2015) with options “-i
gene_id –type = exon –stranded = yes –mode = intersection-non-
empty.” Raw gene counts were subjected to variance stabilizing
transformation (VST) with DESeq2 (v1.26.0) (Love et al., 2014)
for principal components analysis, conducted with the prcomp
function from the R package Stats (v3.6.3). Expression profiles of
the top 5,000 genes with the most variance in VST counts were
visualized with pheatmap (v1.0.12).

Predicting Transcript Isoforms
Uniquely mapped reads from all samples were pooled to predict
transcripts using the Pinfish pipeline (v0.1.0)1. Briefly, reads
with similar structure were grouped into clusters of three or
more alignments, with an exon boundary tolerance of 20 bp
and terminal exon boundary tolerance of 60 bp. These transcript
clusters were then polished and mapped back to the genome.
Polished transcripts were then grouped into “loci” based on
3′ ends and collapsed to remove likely products of RNA
degradation, using an internal exon boundary tolerance of
5 bp, a 3′-exon boundary tolerance of 100 bp, and a 5′-exon
boundary tolerance of 5,000 bp. Because of the high prevalence
of predicted single-exon transcripts, predicted transcripts were
then compared to the Ensembl (v101) and NCBI RefSeq (release
106) annotations using gffcompare (v0.12.1), and only single-
exon transcripts that demonstrated same-strand overlap with
reference exons of protein-coding genes, or which were strongly
supported (cluster size ≥ 100 alignments), were retained in
the final transcript set. The set of predicted transcripts was
converted to GTF format using gffread (v0.12.2) and visualized in
the Integrated Genomics Viewer (v2.8.9). To visualize repetitive
elements, the RepeatMasker track was downloaded from the
UCSC genome annotation database for the April 2018 ARS-
UCD1.2/bosTau9 assembly.

Comparing Predicted Transcripts to
Reference Annotations
Based on gffcompare class codes, predicted transcripts were
classified as known isoforms of a reference gene (class code
“ = ” when comparing to either annotation), novel isoforms of a
reference gene (class codes ‘c,’ ‘k,’ ‘j,’ ‘m,’ ‘n,’ or ‘o’ when comparing
to either annotation, never ‘ = ’), novel loci (class codes ‘i,’ ‘u,’ ‘y,’
or ‘x’ when comparing to either annotation, never ‘ = ,’ ‘c,’ ‘k,’ ‘j,’
‘m,’ ‘n,’ or ‘o’), or potential artifacts (class codes ‘e,’ ‘s,’ or ‘p’ when
comparing to either annotation, but never any other class codes).

1github.com/nanoporetech/pinfish
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Characterization of Predicted Transcripts
To determine the novelty of start and end sites of predicted
novel isoforms, the TSS and TES of predicted novel isoforms
were compared to the TSS and TES of the closest matching
reference transcripts (based on gffcompare output). The usage
of alternative polyadenylation sites for reference Ensembl
transcripts was determined using TAPAS (Arefeen et al., 2018)
with read length set to 750 bp, which was the mean read
length according to the Nanoplot report. As input for TAPAS,
genome-wide read depth was determined with Samtools (v1.7).
The prevalence of different alternative splicing events in the
final set of predicted transcripts was determined with SUPPA
(v2.3), using the function generateEvents to identify local events,
including skipped exons, mutually exclusive exons, retained
introns, alternative 5′ or 3′ splice sites, and alternative first and
last exons. Finally, the coding potential of predicted transcripts
was calculated with CPPred (Tong and Liu, 2019) using the
built-in human model with default parameters. To determine
if predicted intergenic transcripts (gffcompare class code ‘u’)
preferentially occurred near annotated genes, distance from
each predicted intergenic transcript to the nearest reference
gene was calculated using Bedtools closest (v2.26.0) with option
“-d.” For comparison, the genomic coordinates of predicted
intergenic transcripts were randomized with Bedtools shuffle
(excluding regions that were already annotated as genes by
Ensembl or NCBI), and these coordinates were also compared
to reference genes using Bedtools closest. The distance between
predicted intergenic transcripts and the closest reference genes
was compared to the distance between randomized coordinates
and the closest reference genes with an independent 2-group
Mann–Whitney U-test.

Inferring Biological Functions of
Predicted Transcripts at Novel Loci
To interpret the function of predicted transcripts at novel loci,
their sequences were compared against several databases. First,
sequences were compared against the NT (NCBI non-redundant
nucleotide, v5) database with BLASTN (v2.6.0), requiring a
minimum e-value of 1e-10 for matches. Then, sequences were
compared against the NR (NCBI non-redundant protein, v5)
and SwissProt (downloaded from NCBI, v5) databases with
Diamond BLASTX (v2.0.5.143), again setting the minimum
e-value to 1e-10. For transcripts with SwissProt matches,
the corresponding UniProt identifiers were associated with
functional terms using DAVID (v6.8), including KEGG terms,
GO “DIRECT” terms, and Clusters of Orthologous Groups of
proteins (COG) ontology terms.

Predicted Transcript Expression
Quantification
To determine the expression of predicted transcripts, reads
were directly mapped to the predicted transcriptome. Predicted
transcripts were converted from GTF to FASTA format with
the gffread utility (v0.12.2). Strand-corrected full-length ONT
reads (output of Pychopper) were then directly mapped to
the predicted transcriptome using minimap2 (v2.16r922) with

options “-t 10 -ax map-ont -p 0.” Alignments with a minimum
quality score of 10 were extracted with Samtools (v1.7).
From these alignments, expression of predicted transcripts in
transcripts per million (TPM) was determined with Nanocount
(v2.3.0). For the identification of tissue-specific transcripts,
samples with unclear identity were excluded. These samples
included those that did not cluster with biological replicates
(abomasum-F1, colon-F1, and lung-M1), tissues with unclear
identity because samples did not cluster together (esophagus, skin
and thyroid), and tissues with only a single replicate (duodenum-
M1, hypothalamus-M1, and uterine endometrium-F1).

Identification and Characterization of
Tissue-Specific Transcripts
The tissue specificity index (TSI) (Julien et al., 2012) for each
transcript was calculated as follows, such that xi was the average
expression (TPM) in a given tissue, and n was the number of
tissues:

TSI =
max

1≤i≤n
(xi)∑n

i=1 xi

Transcripts were then categorized as tissue-specific (TSI ≥ 0.8),
broadly expressed (TSI < 0.5), or biased toward a group of
tissues (0.5 ≤ TSI < 0.8). To interpret the biological significance
of tissue-specific transcripts, those with corresponding Ensembl
IDs were submitted to DAVID (v6.8) for functional enrichment
analysis, considering only GO “DIRECT” terms. In each case, the
top five most significant GO terms were reported (Benjamini-
corrected p-value < 0.05). Finally, to determine whether the
TSS used by tissue-specific transcripts were uniquely active in
that tissue, the coordinates of TSS (±50 bp) for tissue-specific
transcripts for a given tissue were extracted and compared to the
TSS (±50 bp) of every other predicted transcript using Bedtools
(v2.26.0) intersect, with option “-s” to only consider same-strand
overlap. The TSS from tissue-specific transcripts that did not
overlap any other TSS from the remaining set of predicted
transcripts were considered uniquely active in that tissue.

RESULTS

Total RNA was extracted from 93 biological samples and used to
generate cDNA libraries, which were multiplexed and sequenced
on a single PromethION flow cell. Samples consisted of 32 tissues
collected from two male (M1, M2) and two female (F1, F2) adult
Line 1 Hereford cattle. These animals were specifically chosen
for their relation to Dominette, the individual sequenced for the
original cattle reference genome. Sequencing yielded 53.7 million
reads, with a read length N50 of 893, average read length of
759 bases, and average quality of 8.8 (Supplementary Figure 1).
After demultiplexing, 35.3 million reads passed quality thresholds
(greater than Q7), and further processing yielded 30.3 million
full-length strand-oriented reads which were aligned to the ARS-
UCD1.2 assembly, resulting in 25.5 million unique alignments
that could be used for transcript prediction (Supplementary
Table 2). On average, about 270,000 reads were obtained per
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sample (Supplementary Table 2), and about 800,000 reads were
obtained per tissue (Supplementary Table 3).

A preliminary evaluation of gene expression was conducted by
counting alignments attributed to genes in the Ensembl (v101)
annotation (Supplementary Data 1). Principal components
analysis and hierarchical clustering of normalized gene
expression generally clustered samples by tissue and organ
system (Figure 1), with the exception of lung-M1, which was
attributed extremely few reads, abomasum-M1 and colon-F1,
which did not cluster with biological replicates, and esophagus,
skin, and thyroid samples, which clustered ambiguously. In
particular, male esophagus samples clustered with muscle,
whereas female esophagus clustered with skin and stomach
samples, suggesting potential sampling error during collection
of male esophagus. Samples of questionable origin, based on

aberrant clustering patterns, were excluded from tissue-specific
analyses, but retained in the complete dataset for predicting
transcript models. Brain and testis were among the most
informative tissues, based on transcriptomic complexity and
number of expressed loci (Supplementary Figure 2A).

Mapped reads from all samples were pooled to predict
transcript models using the Pinfish pipeline. Briefly, transcripts
were predicted from clusters of three or more alignments.
Predicted transcripts were then polished and collapsed to filter
out likely degradation products. In total, 244,945 transcript
models were predicted, consisting of 76,110 multi-exon and
168,835 single-exon transcripts. Multi-exon transcripts localized
to 23,694 loci, of which 13,053 (55%) corresponded to multiple
transcripts. Comparing the predicted multi-exon transcripts to
Ensembl and NCBI gene annotations revealed high precision,

FIGURE 1 | Preliminary analysis of transcriptomes. (A) Principal components analysis of VST-normalized gene counts. (B) Hierarchical clustering of samples based
on top 5,000 genes with highest variance in VST counts.
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particularly at the base and intron levels, with most reference
exons and introns captured by the predicted multi-exon
transcripts (Table 1).

Compared to multi-exon transcripts, single-exon transcripts
were supported by fewer reads (p < 2.2e-16; one-sided Z-test)
(Supplementary Figure 3A), and tended to not directly overlap
annotated exons, instead occurring predominantly within
reference introns (Supplementary Figure 3B). Consequently,
only single-exon transcripts that corresponded to annotated
protein-coding genes, or those which were supported by
more than 100 alignments (i.e., the top 1% most strongly
supported single-exon transcripts) (Supplementary Figure 4),
were retained in the final transcript set, which comprised 99,044
predicted transcripts (22,934 single-exon and 76,110 multi-
exon transcripts) belonging to 31,824 genomic loci. Although
only a small percentage of the retained single-exon transcripts
were predicted to be coding (5%), the expression patterns
of single-exon transcripts clearly distinguished brain tissues
from the others (Supplementary Figure 5), suggesting these
transcripts are biologically relevant. Expression of non-coding
transcripts also distinguished brain, as well as testis, from other
tissues (Supplementary Figure 6). Overall, transcript predictions
accounted for 72% (15,716/21,861) of protein-coding genes in the
Ensembl annotation and 78% (16,487/21,039) of protein-coding
genes in the NCBI annotation.

Comparing the predicted transcript set to either the Ensembl
or the NCBI annotations (Supplementary Data 2, 3) revealed
that most predicted transcripts either exactly matched a reference
transcript exon-by-exon, or demonstrated some same strand
overlap with reference exons (Figure 2A). In all, 21% of predicted
transcripts exactly matched a reference transcript from either
Ensembl or NCBI, 61% were considered novel isoforms of
reference genes based on same strand overlap of reference
exon(s), 6% did not correspond to a reference gene and were
considered novel loci, and 12% were classified as potential
artifacts, possibly due to mapping error, pre-mRNA fragments,
or polymerase run-on.

Considering the largest class of predicted transcripts were
novel isoforms of known genes, we then sought to quantify

the extent to which variation in transcription start sites, end
sites, alternative splicing, and alternative polyadenylation
sites contributed to transcriptome complexity. Transcript
degradation, especially at the 5′ end, is certainly a concern in
long-read transcriptomics, although the 3′ ends are considered to
be more reliable. The Pinfish pipeline used to predict transcripts
tries to take this limitation into account by collapsing transcripts
with similar exon structure and variable 5′ ends, within a 5,000 bp
5′ exon boundary tolerance. Considering all 5′ ends of predicted
transcripts (±100 bp), we found that 28% overlapped 5′ ends of
Ensembl or RefSeq transcripts (±100 bp), and 45% overlapped
TSS (±100 bp) identified by the 5′-complete sequencing
technique RAMPAGE (Goszczynski et al., 2020). Even when
predicted 5′ ends did not directly coincide with Ensembl,
RefSeq or RAMPAGE annotations (Supplementary Data 4),
they still preferentially occurred in the vicinity of RAMPAGE
TSS (39% of these 5′ ends occurred within 1kb of RAMPAGE
TSS) and were not biased downstream of RAMPAGE TSS
(Supplementary Figure 7), which would have been characteristic
of degradation. Most novel isoforms began within 2 kb of the
reference transcription start site (51%, 28,289 transcripts) and
terminated within 2 kb of the reference transcription end site
(58%, 31,913 transcripts) (Supplementary Figure 8). Additional
variation was present at TES, as alternative polyadenylation
sites were detected for 30% of reference Ensembl transcripts
(5,821/19,613 transcripts) (Supplementary Figure 9).

The main source of transcriptional variation resulted from
alternative splicing (Figure 2B). Alternative first exons were
common in predicted multi-exon transcripts, reflecting the use
of alternative promoters in different regulatory contexts. This
phenomenon was clearly reflected at the RSPH9 locus, which
encodes a component of motile flagella and is associated with
multiple transcript variants from alternative splicing in humans,
although only a single isoform had been annotated in cattle
(Figure 2C). Besides the alternative splicing evident at this
locus, three different transcription start sites were utilized,
resulting in ten isoforms, several of which demonstrated tissue-
specific expression patterns (Supplementary Figure 10). In a
given tissue sample, 10,844 ± 2,010 (S.D.) loci were expressed

TABLE 1 | Sensitivity and precision estimates of predicted multi-exon transcripts compared to reference multi-exon transcripts from the Ensembl (v101) and NCBI
(release 106) annotations.

Predicted vs. Ensembl Predicted vs. NCBI NCBI vs. Ensembl

Level Sensitivity Precision Sensitivity Precision Sensitivity Precision

Base 58.5 72.5 49.6 81.2 88.7 66.3

Exon 54.8 58.3 55.7 66.5 81.3 73.2

Intron 60.1 80.7 57.3 86.5 90.0 79.4

Transcript 29.3 12.9 24.6 20.2 48.8 26.7

Locus 52.6 47.9 62.7 56.8 75.6 76.9

Missed exons 53,069/171,341 (31.0%) 65,592/207,468 (31.6%) 8,891/222,022 (4.0%)

Novel exons 15,130/193,597 (7.8%) 8,366/203,236 (4.1%) 27,725/257,826 (10.8%)

Missed introns 48,381/151,779 (31.9%) 55,075/177,905 (31.0%) 3,643/195,870 (1.9%)

Novel introns 4,528/112,911 (4.0%) 2,447/117,961 (2.1%) 12,338/222,064 (5.6%)

Comparison excludes reference loci without predicted transcripts and predicted transcripts at novel loci.
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FIGURE 2 | Predicted transcripts capture transcriptome complexity. (A) Comparison of predicted isoforms to Ensembl and NCBI gene annotations. (B) Frequency of
alternative splicing events in predicted multi-exon transcript isoforms. (C) Predicted isoforms at the RSPH9 locus, which is thought to code for a component of motile
cilia and flagella. In humans, multiple splicing is known to produce transcript variants, but only one transcript had been annotated in cattle, according to both the
Ensembl and NCBI annotations. (D) Based on the predicted transcript set, number of expressed loci and ratio of expressed transcripts per loci, averaged per tissue.

with 1.35 ± 0.06 (S.D.) predicted isoforms expressed per
locus. Testis was the most informative tissue, with the most
expressed loci and highest ratio of expressed transcripts per gene,
whereas abomasum demonstrated the lowest transcriptomic
complexity (Figure 2D).

Given the large number of sampled tissues, tissue-specific
isoforms could be identified from this dataset with high
resolution. Tissue-specific transcripts are fundamental to
understanding the basis of biological differences between tissues,
and can serve as useful biomarkers (Stutterheim et al., 2008;
Prensner et al., 2013), as they are often implicated in tissue-
specific functions, development, and disease (Leucci et al., 2016).
To identify tissue-specific isoforms, the tissue-specificity index

(TSI) was calculated from the average expression of predicted
transcripts (transcripts per million; TPM) in each tissue with at
least two high-confidence biological replicates (adipose, bladder,
bone marrow, brain cortex, cecum, cerebellum, colon, heart,
ileum, isthmus, jejunum, kidney, liver, lung, mammary gland,
muscle, omasum, ovary, reticulum, rumen, spleen, testis, thymus,
trachea, and uterine endometrium) (Supplementary Data 5).
For a given transcript, the TSI varies between 0 (uniformly
expressed across all tissues) and 1 (uniquely expressed in a single
tissue). Transcripts that were only expressed in a single sample
were excluded from the tissue-specificity analysis.

Overall, the TSI demonstrated a bimodal distribution,
with most transcripts either broadly (TSI closer to zero)

Frontiers in Genetics | www.frontiersin.org 7 May 2021 | Volume 12 | Article 664260157

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-664260 May 14, 2021 Time: 17:50 # 8

Halstead et al. Annotation of 32 Full-Length Bovine Transcriptomes

or specifically (TSI closer to 1) expressed (Figure 3A).
This pattern was observed for both single- and multi-exon
transcripts (Supplementary Figure 11A). The TSI was closely
linked to the average expression across samples, with highly
expressed transcripts (average TPM ≥ 10) more often generally
expressed across many tissues, whereas moderately- (1≤ average
TPM < 10) and lowly expressed transcripts (average TPM < 1)
tended to be more tissue-specific (Figure 3B). Overall, 48,867
transcripts (74%) were widely expressed (TSI < 0.5), 7,066
transcripts (11%) were highly tissue-specific (TSI ≥ 0.8), and
10,203 transcripts (15%) demonstrated expression in a small
subset of tissues (0.5 ≤ TSI < 0.8). Interestingly, compared
with multi-exon transcripts, single-exon transcripts were more

likely to be brain-specific (Supplementary Figure 11B), and were
generally predicted to be non-coding (95%), which is consistent
with the central role of non-coding RNA in the brain (Guennewig
and Cooper, 2014). Transcripts with intermediate TSI scores
likely includes isoforms specific to higher-order structures from
which multiple tissues were sampled (e.g., brain, pre-stomach,
gastrointestinal tract), or tissues of similar embryonic origin
(e.g., ectodermal, mesodermal, endodermal) as has been observed
by previous transcriptomic studies in the pig (Perez-Montarelo
et al., 2012).

An overwhelming proportion of tissue-specific transcripts
(61%) were attributed to testis, and most of these were either
novel isoforms (49%) or novel loci (20%) (Figure 3C). More than

FIGURE 3 | Identification of tissue-specific isoforms. (A) Density plot of the tissue-specificity index (TSI) identified for each predicted transcript, based on average
transcripts per million (TPM) in each tissue. (B) Density plot of TSI for predicted transcripts with low (average TPM < 1), moderate (1 ≤ average TPM < 10), or high
expression (average TPM ≥ 10). (C) Number of tissue-specific transcripts (TSI ≥ 0.8) attributed to each tissue, categorized as known or novel isoforms, novel loci, or
potential artifacts. (D) The annotated transcript at the CRYM locus was expressed across a range of tissues, whereas novel isoforms were either testis- or
brain-specific. (E) Functional enrichment of genes corresponding to tissue-specific isoforms in brain cortex, kidney, liver, muscle, and testis. Top five most significant
gene ontology terms reported (Benjamini corrected p-value < 0.05).
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80% of the transcription start sites used by testis-specific isoforms
were only active in testis (Supplementary Figure 12), suggesting
pervasive use of alternative promoters in this tissue. This
alternative promoter usage was evident at the CRYM locus, with
a novel testis-specific isoform beginning at the third annotated
exon (Figure 3D). The remaining novel CRYM isoforms were
brain-specific, whereas the sole annotated transcript variant was
broadly expressed across tissues. This locus illustrated a broader
pattern: novel isoforms of annotated genes were expressed in
fewer tissues and at lower levels than previously annotated
isoforms (p < 2.2e-16; Welch two sample t-test) (Supplementary
Figure 13), suggesting that the reference genome annotations
failed to capture rare isoforms with potentially significant
biological functions. Indeed, genes with tissue-specific isoforms
were strongly biased toward tissue-specific functions (Figure 3E).

To gain some insight into the potential biological functions
of isoforms at novel loci, transcript sequences were compared
against several BLAST databases (Supplementary Data 6).
Strong matches (E-value < 1e-10) were identified for 93%
(5,944/6,370) of transcripts at novel loci when comparing
against the NT database (NCBI non-redundant nucleotide
sequences), 42% (2,678/6,370) against the NR database (NCBI
non-redundant protein sequences), and 12% (794/6,370)

against the SwissProt database (curated protein sequences).
Based on gene ontology (GO) terms and KEGG pathways
associated with SwissProt identifiers, transcripts at novel
loci are involved in a variety of biological functions, such
as lysine degradation, cAMP signaling, and phosphodiester
bond hydrolysis (Figure 4A). Of note, two of the top ten
most common biological process GO terms were related
to RNA-mediated transposition, indicating that some novel
transcripts could correspond to transposons that have not been
completely silenced.

The genomic distribution of novel loci was biased toward
contigs; whereas only 0.4% of all predicted transcripts
(342/99,044) localized to contigs, 7.7% of transcripts at novel
intergenic sites (126/1,628) were on contigs. Nevertheless, novel
intergenic transcripts preferentially occurred closer to annotated
genes (on average 60 kb away from an Ensembl transcript)
than would be expected by random chance (on average 140kb
away from an Ensembl transcript) (p < 2.2e-16; Independent
two-group Mann–Whitney U-test) (Supplementary Figure 14).
Transcripts at novel loci tended to be shorter than those
of annotated genes with fewer exons (Supplementary
Figure 15), despite the exclusion of most intergenic single-exon
predicted transcripts.

FIGURE 4 | Characterization of predicted transcripts at novel loci. (A) The top ten represented KEGG pathways and GO terms (separated into Cellular Component,
Molecular Function, and Biological Process terms) represented in transcripts at novel loci that corresponded to a UniProt identifier. (B) Coding potential of predicted
transcripts. (C) Novel non-coding antisense transcript at the CEP63 locus. (D) Highly expressed section of chromosome 16. RepeatMasker track shows repetitive
elements, which were depleted in the highly expressed region (highlighted in yellow).
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Nearly all predicted transcripts at novel loci appeared to
be non-coding (Figure 4B), which could partially explain the
lower number of matches in protein-based databases (NR and
SwissProt) as compared to the nucleotide-based database (NT).
For instance, transcription of the anti-sense strand at the CEP63
locus – a centrosomal protein crucial for division of brain cells –
produces short (∼2 kb long) non-coding transcripts (Figure 4C)
that are expressed in a mutually exclusive pattern with the
main CEP63 isoform (Supplementary Figure 16), potentially
suggesting that CEP63 expression is regulated by a previously
unannotated antisense non-coding RNA.

Of note, more than 1.5 million reads (6.5% of the entire
dataset), were aligned to a single 15 kb region on chromosome
16 (Figure 4D). Surprisingly, this region contained no RefSeq
transcripts, although the Ensembl annotation included three
single-exon transcripts that were predicted to code for NADH
hydrogenase and ATP synthase subunits. Considering this region
was strongly expressed across all samples (Supplementary
Figure 17), these transcripts likely serve fundamental biological
roles that remain to be established. Additionally, because gene
expression is generally normalized based only on reads that align
to the exome, the inclusion of these loci in future annotations
could improve estimates of gene expression in transcriptomic-
based studies.

DISCUSSION

Although long-read sequencing has been extensively
implemented for the study of transcription dynamics, resulting
datasets have generally either been limited by sample size
or sequencing depth. To address this limitation, here we
demonstrate that by coupling ONT sequencing with large-
scale multiplexing, we were able to profile the full-length
transcriptomes of 32 adult bovine tissues from a single ONT
flow cell. Of the nearly 100,000 predicted transcripts, over
60% were novel isoforms of reference genes, indicating that
the complexity of the bovine transcriptome is comparable
to what has been described in humans. Moreover, this high
percentage of novel isoforms is consistent with other studies
that have used long-read sequencing to improve annotations
in pigs (80% of identified transcripts were novel), rabbits
(66%), and cattle (60%) (Chen et al., 2017; Beiki et al., 2019;
Rosen et al., 2020). Compared to previous efforts to annotate
full-length bovine transcripts (Rosen et al., 2020), this study
leveraged a single ONT flow cell to interrogate more tissues
(32 versus 23) from multiple individuals (four replicates
versus one) at a greater sequencing depth (25 million versus
553,798 reads). In terms of cost, speed, and throughput,
these comparisons highlight the power of this method for
transcriptome annotation.

Overall, our transcript predictions substantially increased
the ratio of isoform variants per reference bovine gene from
1.59 to 3.57 (74,312 transcripts at 20,811 reference Ensembl
loci), which is consistent with the ratio observed in humans
(3.78 transcripts per reference Ensembl locus) (Supplementary
Figure 18). Although not all of the 5′ ends of predicted transcripts

directly overlapped Ensembl, RefSeq, or RAMPAGE TSS, the
corresponding transcripts (Supplementary Data 4) were not
disregarded. Just as this study cannot provide a comprehensive
catalog of full-length bovine transcripts, analysis of RAMPAGE
data may have missed credible TSS. Further efforts to annotate
regulatory elements in bovine tissues (i.e., by profiling chromatin
accessibility and histone modifications) should help to further
refine the 5′ ends of transcript models; however, these data are
not yet available for all tissues.

Notably, this study only profiled samples from a single
breed – Hereford – which was specifically chosen because it
is also the basis for the current bovine genome assembly.
Consequently, these data cannot account for the substantial
phenotypic and genetic variation observed between different
breeds and subspecies of cattle (Weigel et al., 2017). For
instance, taurine breeds are known to have higher fertility than
indicine breeds, whereas indicine breeds demonstrate higher
resistance to disease and parasites and thrive in hotter climates.
Although a recent study reported identification of haplotype-
specific transcripts by PacBio sequencing, the dataset was limited
to seven tissues from a Bos Taurus hybrid fetus (Low et al., 2020).
Moving forward, it will be of considerable scientific and economic
interest to continue investigating breed-specific transcriptomes,
with the goal of better understanding the biological mechanisms
that underpin phenotypic differences between animals.

Although this study interrogated over 30 adult tissues, the
resulting annotation is still far from exhaustive. Transcription
was only detected at about 60% of reference loci; the remainder
may not have been expressed in the sampled tissues, or may
have been expressed at such a low level that expression was not
detected due to lower sequencing depth per sample. On average,
we found each tissue expressed about 10,000 loci, although some
tissues – specifically brain and testis – demonstrated substantially
more complex transcriptomes. On the other hand, nearly 30%
of all reads attributed to abomasum samples originated from
LYZ2 (Supplementary Data 7), part of the lysozyme c family
of digestive proteins that play an important role in ruminant
digestion (Irwin, 2015). Such highly abundant transcripts can be
problematic for transcriptomic studies, as they make it harder
to detect rare transcripts with potential biological significance.
This problem is intensified for long-read sequencing methods,
which generally have lower throughput; however, it is possible
to specifically target such transcripts by hybridization, for
example by the CRISPR-Cas9 based method DASH (depletion
of abundant sequences by hybridization) (Gu et al., 2016) which
was recently employed to deplete hemoglobin transcripts prior to
ONT sequencing of polar bear blood (Byrne et al., 2019). To gain
a more complete picture of transcription in bovine abomasum
or blood – the latter of which was not profiled in this study – it
will likely be necessary to deplete abundant transcripts, such as
lysozyme and hemoglobin, in order to detect rarer isoforms.

Another potential limitation of our approach is that it was
based on cDNA, the generation of which is inherently limited by
the capacity of reverse transcriptase to amplify long transcripts.
As a result, it was difficult to capture full-length transcripts
for some of the longest genes, such as titin (TTN), which also
tended to produce fragmented Iso-seq reads (Rosen et al., 2020).
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In addition to fragment length limitations, PCR amplification
can also introduce substantial GC-content bias into libraries
(Mamanova et al., 2010), altering transcript abundance and
library complexity. Furthermore, by using oligo-dT primers for
cDNA generation, as opposed to random primers, our transcript
predictions are likely biased against RNAs that are generally
not polyadenylated (e.g., non-coding RNAs). Single-molecule
sequencing platforms, such as the MinION (Garalde et al.,
2018), avoid these PCR biases altogether by reading native
RNA nucleotides directly as they pass through a nanoscale
sensor. Moreover, direct RNA sequencing can identify post-
transcriptional events like ribonucleotide modifications, which
are increasingly recognized as key regulators of several biological
processes (Jantsch et al., 2018).

Nevertheless, native RNA long-read sequencing is somewhat
limited by throughput and transcript truncation. A single
MinION flow cell produces only about half a million aligned
reads (Soneson et al., 2019), as compared to the 30 million aligned
reads generated by this study from a single PromethION flow
cell. In addition, a significant portion of native RNA reads are
truncated during Nanopore direct RNA sequencing, especially
the last 10–15 nucleotides at the 5′ end (Soneson et al., 2019;
Workman et al., 2019). In theory, this issue could be resolved
by filtering out ONT reads that do not begin within defined
promoters, which were recently experimentally determined in
cattle (Goszczynski et al., 2020), but this approach would
undoubtedly reduce the quantitative nature of the data.

These limitations notwithstanding, as long-read sequencing
technologies continue to improve, both native RNA and single-
cell ONT strategies are likely to become increasingly accurate,
informative and practical, providing unprecedented insight
into transcriptome complexity and cell-to-cell heterogeneity
(Lebrigand et al., 2020). In fact, recent efforts to computationally
correct sequencing errors in ONT data are capable of reducing
the error rate from 14% (Workman et al., 2019) to about
1% (Sahlin et al., 2020), such that it should be possible for
future studies to use ONT sequencing for reference-free de novo
transcriptome analysis.

As it stands, we have demonstrated the potential for
multiplexing paired with ONT sequencing as a powerful
and accessible technique for isoform identification and
expression profiling. Nevertheless, to comprehensively capture
the transcriptomic complexity of the bovine genome, future
studies will need to continue to characterize transcript isoforms
in a broader range of tissues and cell types, representing
different developmental stages, disease states, and physiological
conditions. The ability to identify full-length transcripts from
nearly one hundred samples using a single ONT flow cell makes
the task of exhaustively annotating a mammalian transcriptome
significantly more feasible.
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The Ovine Functional Annotation of Animal Genomes (FAANG) project, part of the
broader livestock species FAANG initiative, aims to identify and characterize gene
regulatory elements in domestic sheep. Regulatory element annotation is essential for
identifying genetic variants that affect health and production traits in this important
agricultural species, as greater than 90% of variants underlying genetic effects are
estimated to lie outside of transcribed regions. Histone modifications that distinguish
active or repressed chromatin states, CTCF binding, and DNA methylation were
used to characterize regulatory elements in liver, spleen, and cerebellum tissues from
four yearling sheep. Chromatin immunoprecipitation with sequencing (ChIP-seq) was
performed for H3K4me3, H3K27ac, H3K4me1, H3K27me3, and CTCF. Nine chromatin
states including active promoters, active enhancers, poised enhancers, repressed
enhancers, and insulators were characterized in each tissue using ChromHMM. Whole-
genome bisulfite sequencing (WGBS) was performed to determine the complement
of whole-genome DNA methylation with the ChIP-seq data. Hypermethylated and
hypomethylated regions were identified across tissues, and these locations were
compared with chromatin states to better distinguish and validate regulatory elements in
these tissues. Interestingly, chromatin states with the poised enhancer mark H3K4me1
in the spleen and cerebellum and CTCF in the liver displayed the greatest number of
hypermethylated sites. Not surprisingly, active enhancers in the liver and spleen, and
promoters in the cerebellum, displayed the greatest number of hypomethylated sites.
Overall, chromatin states defined by histone marks and CTCF occupied approximately
22% of the genome in all three tissues. Furthermore, the liver and spleen displayed
in common the greatest percent of active promoter (65%) and active enhancer (81%)
states, and the liver and cerebellum displayed in common the greatest percent of
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poised enhancer (53%), repressed enhancer (68%), hypermethylated sites (75%), and
hypomethylated sites (73%). In addition, both known and de novo CTCF-binding motifs
were identified in all three tissues, with the highest number of unique motifs identified in
the cerebellum. In summary, this study has identified the regulatory regions of genes in
three tissues that play key roles in defining health and economically important traits and
has set the precedent for the characterization of regulatory elements in ovine tissues
using the Rambouillet reference genome.

Keywords: FAANG, epigenetics, ChIP-seq, WGBS, methylation, sheep, functional genomics, histone
modifications

INTRODUCTION

Regulatory element characterization and chromatin state
determination in relevant tissues was identified as a critical
need for implementing precision breeding within the livestock
industry by the Agricultural Animal Genomics Community
(Rexroad et al., 2019). To this end, the Functional Annotation of
Animal Genomes (FAANG) consortium and the Ovine FAANG
project members seek to molecularly define the epigenome in
food animals, including sheep (Andersson et al., 2015; Tuggle
et al., 2016; Giuffra et al., 2019). Modeled upon the ENCODE
project (The ENCODE Project Consortium, 2012), FAANG
aims to characterize the epigenome including chromatin histone
modifications and DNA methylation (Andersson et al., 2015).
The core objective of the Ovine FAANG Project Consortium is
to develop a deep and robust public database of transcriptional
regulatory features in the sheep genome.

Sheep production for meat, milk, and wool is an important
agricultural industry across the globe with more than one billion
sheep suited to a diverse range of climates (Hegde, 2019). This
diversity is reflected in genetic differences between sheep breeds
utilized for varied purposes (Meadows et al., 2008; Al-Mamun
et al., 2015). Populations bred for different environments and for
contrasting production traits provide the opportunity to study
a range of phenotypes within the species. Analysis of elements
that control gene expression in sheep tissues is needed as many
complex traits such as rumen fatty acid metabolism, lanolin and
wool production, growth, and carcass traits cannot be explained
solely by variation in transcribed regions (Jiang et al., 2014; Villar
et al., 2015; Clark et al., 2017; Kingsley et al., 2019). In vivo
analysis of regulatory elements will allow researchers to test
hypotheses of biological function of putative causal mutations
in relevant production tissues. Understanding the phenotypic
influences of genetic variance that lie in promoter and enhancer
regions is important for trait prediction and the improvement of
sheep production.

Functional variants that are causally implicated in phenotypic
variation are increasingly found to lie outside of transcribed
regions within DNA regulatory elements (Albert and Kruglyak,
2015; Xiang et al., 2019). These regulatory elements can be
defined by epigenetic analyses that have not been systematically
conducted in sheep. A library of putative regulatory elements in
the sheep genome was recently predicted using inference from
chromatin states defined in humans (Naval-Sanchez et al., 2018).

However, direct experimental characterization of regulatory
elements in individual ovine tissues is needed.

The work presented here represents the foundation in the
preparation for a deep survey using the same methodology
across tissues of the index animal from which the new sheep
reference genome was developed. Since the larger FAANG effort
has N = 2 for each tissue by design (i.e., a large array of
tissues from the individual from which the genome was derived),
the data collected here also provide a resource for evaluating
the larger effort by permitting estimation of interindividual
variation in the appearance and tissue distribution of regulatory
elements. Three tissues were selected for this study based on their
prominence in defining production traits and to span tissues of
endodermal, mesodermal, and ectodermal origin and because
each presents unique procedural challenges for performing
chromatin immunoprecipitation with sequencing (ChIP-seq)
assays. The liver is an endodermal-derived tissue that is a key
metabolic component of the alimentary system (Villar et al.,
2015) and contains a variety of complex carbohydrates that can
inhibit various enzymatic reactions required in the ChIP-seq
protocol. The spleen is a mesodermal-derived parenchymatous
organ important for immune cell production and maturation
and contains many natural deoxyribonucleases (DNase) which
can present challenges to obtaining sufficient yield of high-
quality DNA (Young and Sinsheimer, 1965). The cerebellum
is an ectodermal-derived tissue representative of brain tissue
and contains a high lipid content which can affect the
efficiency of DNA extraction. With these three varied tissues, we
developed workflows for assessing chromatin-associated histone
modifications, CTCF-binding sites, and DNA methylation to
define regulatory elements.

The histone modifications characterized in this study include
the trimethylation of histone 3 lysine 4 (H3K4me3) which
denotes promoters and acetylation of histone 3 lysine 27
(H3K27ac) which denotes active enhancers (Barski et al., 2007;
Wang et al., 2008). The monomethylation of histone 3 lysine
4 (H3K4me1) was characterized to explore poised enhancers,
and the trimethylation of histone 3 lysine 27 (H3K27me3)
was utilized to define repressed enhancers which silences gene
expression in broad regions (Barski et al., 2007; Wang et al.,
2008; Pauler et al., 2009). The CCTC-binding factor protein
(CTCF) is a key component of the anchors at topologically
associated domain boundaries (Lee and Iyer, 2012; Ghirlando and
Felsenfeld, 2016). Determination of CTCF and multiple histone
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modifications, referred to as marks, allowed us to take advantage
of the combinatorial nature of chromatin structure and gene
expression regulation (Jenuwein and Allis, 2001; Wang et al.,
2008) to categorize the sheep genome into chromatin states.

DNA methylation data derived from whole-genome bisulfite
sequencing (WGBS) were incorporated to validate regulatory
regions and chromatin states. In mammals, several groups have
identified CpG islands that lack methylation are located at
gene promoters (Deaton and Bird, 2011). Repressed promoters
are marked by higher degrees of methylation associated with
transcriptionally silenced gene expression (Weber et al., 2007).
Histone methylation and DNA methylation are co-dependent
epigenetic marks as enzymatic formation of one will guide the
formation of the other and H3K4me3 may physically inhibit
methylation of DNA during development (Meissner et al., 2008).
Histone methylations and DNA methylation serve as templates
for rebuilding one another during mitosis and meiosis and
further reinforce segmentation of the genome into functional
regions of active or repressed chromatin in adult somatic cells
(Cedar and Bergman, 2009) justifying the utility of combined
analysis in sheep.

Our objective for this study was to identify the locations
of gene regulatory elements in sheep by characterizing histone
modifications, CTCF binding, and DNA methylation for the
cerebellum, liver, and spleen. Defining regulatory elements in the
sheep genome will provide the basis for a greater understanding
of the mechanisms that underpin phenotypic variation in
important health and production traits in sheep.

MATERIALS AND METHODS

Sample Collection
Tissue was collected postmortem from two pairs of healthy
half siblings (one ewe and one wether per pair) totaling
four yearling crossbred sheep (Columbia, Polypay, Rambouillet,
Suffolk, Targhee) as approved by the Washington State University
Institutional Animal Care and Use Committee. Small pieces of
liver, spleen, and cerebellum tissues were collected within 30 min
postmortem, briefly rinsed with ice cold 1 × PBS, and promptly
snap frozen in liquid nitrogen. Samples were transferred from
liquid nitrogen directly into a−80◦C freezer for storage.

Chromatin Immunoprecipitation
Chromatin immunoprecipitation (ChIP) was performed
using commercial antibodies for the histone modifications
H3K4me3 (Abcam, cat. # ab8580), H3K4me1 (Abcam, cat. #
ab8895), H3K27ac (Abcam, cat. # ab4729), H3K27me3 (Abcam,
cat. # ab6002), and CTCF (Millipore, cat. # 07-729) with
SimpleChIP Plus Enzymatic Chromatin IP Kit according to
the manufacturer’s instructions (Cell Signaling Technologies
cat. # 9005, Danvers, MA, United States) (Barski et al., 2007;
Johnson et al., 2007; Mikkelsen et al., 2007; Robertson et al.,
2007; Park, 2009). Briefly, tissue was cross-linked with 37%
formaldehyde and disaggregated with a Dounce homogenizer.
After cell membrane lysis, micrococcal nuclease (MNase) was
added and incubated at 37◦C and 200 rpm for 20 min to shear

the chromatin. Next, the nuclear membrane was lysed, and the
sheared chromatin isolated by centrifuging at 15,000×g for
1 min at 4◦C. Chromatin was incubated with 1 µg of antibody
overnight at 4◦C in a Hula mixer for 16 h. The following
morning, protein G-coated magnetic beads were added and
incubated 2 h at 4◦C in the Hula mixer. The sample was washed
twice with a low salt and once with a high salt buffer. Cross-links
were reversed by incubating the sample at 65◦C for 30 min at
400 rpm in a thermomixer. Purification was performed with the
DNA Purification Buffers and Spin Columns Kit following the
manufacturer’s instructions (Cell Signaling Technologies, cat. #
14209, Danvers, MA, United States).

Chromatin Immunoprecipitation With
Sequencing Library Preparation and
Sequencing
Purified DNA samples were quantified using the Qubit dsDNA
HS Assay Kit (Thermo Fisher Scientific, catalog number Q32854,
Waltham, MA, United States). The DNA size and integrity were
verified using a Fragment Analyzer (Agilent, Santa Clara, CA,
United States). Libraries were prepared with the TruSeq ChIP
Library Preparation Kit (Illumina, Inc., catalog number IP-202-
1012, San Diego, CA, United States) for 75 base pair paired-end
reads following the manufacturer’s instructions and sequenced
to at least 20 million mapped reads for “narrow” histone marks
H3K4me3, H3K27ac, and CTCF libraries and at least 40 million
mappable reads each for “broad” histone marks H3K4me1 and
H3K27me3 libraries.

Whole-Genome Bisulfite Sequencing
Library Preparation and Sequencing
Whole-genome bisulfite sequencing was performed as a service
by Novogene (Beijing, China) on the liver, spleen, and cerebellum
in all four animals. Briefly, DNA extracted from these tissues
was subjected to agarose gel electrophoresis to test for DNA
degradation and potential RNA contamination. The DNA
was then quantified using a Nanodrop spectrophotometer
(NanoDrop Technologies, Rockland, DE, United States) and
a Qubit2.0 fluorometer (Life Technologies, Carlsbad, CA,
United States). Lambda phage DNA was spiked in as a negative
control for DNA methylation. Since lambda phage DNA lacks
DNA methylation, all the cytosines in its DNA should be
converted to uracil during bisulfite conversion. Any unchanged
cytosine in the lambda phage DNA can thus be used to determine
the efficiency of bisulfite conversion. For library construction,
DNA samples were fragmented into 200–400 bp using sonication
(Covaris S220, Woburn, MA, United States). Next, end repair,
A-ligation, and methylation sequencing adapter ligation
was performed. The adapter sequences were 5′ adapter (5′-
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA
CACGACGCTCTTCCGATCT-3′) and 3′ adapter (5′-GATC
GGAAGAGCACACGTCTGAACTCCAGTCACATCACGATC
TCGTATGCCGTCTTCTGCTTG-3′). Following this, the DNA
library was subjected to bisulfite treatment (EZ DNA Methylation
Gold Kit, Zymo Research, Irvine, CA, United States). Library
concentration was first quantified by Qubit2.0, diluted to 1
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ng/µl before checking insert size on Agilent 2100 (Agilent
Technologies, Santa Clara, CA, United States), and quantified
with more accuracy by quantitative PCR (effective concentration
of library > 2 nM). Libraries were then pooled per sample and
sequenced paired-end.

Chromatin Immunoprecipitation With
Sequencing Data Quality Control,
Mapping, and Peak Calling
Quality control assessment of ChIP-seq reads was performed with
FastQC, and Trim Galore was used to trim adapter sequences
and low-quality bases. PCR duplicates were removed with Picard
and the remaining read pair sequences were then mapped to
the sheep reference genome Oar_rambouillet_v1.0 with Bowtie2
(Langmead and Salzberg, 2012; Broad Institute, 2019). Cross-
correlations were calculated using MACS2 predicted in Galaxy
Version 2.1.1.20160309.1 (Supplementary Figure 1) (Afgan
et al., 2018). Peaks for narrow histone marks H3K4me3 and
H3K27ac as well as transcription factor CTCF were called using
MACS2 with an input control and a false discovery rate of 0.05
(Zhang et al., 2008; Feng et al., 2012; Thomas et al., 2017). For
broad peak histone modifications H3K4me1 and H3K27me3,
SICER was implemented with the same input control and a false
discovery rate of 0.05 to better account for broader sequence
pileup distributions (Zang et al., 2009; Micsinai et al., 2012; Siska
and Kechris, 2017). The number of uniquely mapped sequences,
non-redundant fraction (NRF), and fraction of reads in peaks
(FRiP) for each ChIP-seq sample were calculated using Picard
(Heinz et al., 2010; Friedman and Alm, 2012; Landt et al., 2012;
Siska and Kechris, 2017; Afgan et al., 2018) (Supplementary
Table 1). Peak numbers were averaged across samples. Peaks
common to multiple samples were determined with BEDTools
intersect. The peaks common to three samples with the greatest
NRF were determined for H3K4me3 (F1, M1, and M2 for liver;
F2, M1, and M2 for spleen; and F1, M1, and M2 for cerebellum),
H3K27ac (F1, M1, and M2 for liver; F2, M1, and M2 for spleen;
and F1, M1, and M2 for cerebellum), H3K4me1 (F1, M1, and
M2 for liver; F2, M1, and M2 for spleen; and F1, M1, and M2
for cerebellum), H3K27me3 (F1, M1, and M2 for liver; F2, M1,
and M2 for spleen; and F2, M1, and M2 for cerebellum), and
CTCF (F2, M1, and M2 for liver; F2, M1, and M2 for spleen;
and F2, M1, and M2 for cerebellum). These consensus peaks were
compared with transcription start site locations identified with
CAGE assays from the ewe used to generate the reference genome
using the deepTools computeMatrix function, and heatmaps were
plotted with the plotHeatmap function (Ramírez et al., 2014;
Salavati et al., 2020). Furthermore, peaks were annotated with
the GTF file from the reference genome Oar_rambouillet_v1.0,
and peaks were categorized as near a transcription start site (TSS)
(+2 to−2 kb), exonic, intronic, near a transcription termination
site (TTS) (+1 to −1 kb), and intergenic using the Homer
annotatePeaks.pl function (Heinz et al., 2010). Furthermore,
normalized bigwig files depicting the sequence enrichment for
each library were directly visualized with integrative genomics
viewer (IGV) for some gene regions which are known to be active
and repressed in each tissue (Robinson et al., 2011). Spearman

correlations were calculated between sample BAM signal files
using deepTools in Galaxy Version 2.1.1.20160309.1 (Friedman
and Alm, 2012; Ramírez et al., 2014; Siska and Kechris, 2017;
Afgan et al., 2018).

DNA Methylation Data Quality Control,
Mapping, and Methylation Level
Characterization
The quality of raw sequences from WGBS was assessed
using FastQC v0.11.5. Adapters and low-quality bases (phred
score < 20) were trimmed using Trimgalore v0.4.5 with
default parameters. Cleaned data for each sample was aligned
to the sheep reference genome Oar_rambouillet_v1.0 using
Bowtie2 aligner within BSseeker2 v2.1.8 with default parameters
(Langmead and Salzberg, 2012; Guo et al., 2013). The
X-chromosome was removed from the analysis to make male
and female samples comparable. After mapping, BAM files
for the same individual sequenced on multiple lanes were
merged, fixmated, and sorted and PCR duplicates were removed
using Samtools v1.6 (Li et al., 2009). The methylation level
in each cytosine was determined using BSseeker2 with default
parameters. Basic statistics on methylation were determined
using the mstat function in CGmaptools v0.0.6 (Guo et al., 2018).
Regions of the genome hypomethylated and hypermethylated for
each sample were determined with methPipe v3.4.3 following the
manual with default parameters (Song et al., 2013).

Chromatin State and CTCF Motif
Analysis
Chromatin states were characterized by employing a hidden
Markov model in ChromHMM, which assessed signal overlap
between histone marks within a tissue and binned the genome
into a given number of chromatin states (Ernst and Kellis,
2010, 2012, 2017; Gorkin et al., 2017, 2020). The two male
samples (M1 and M2) exhibited the greatest NRF and Spearman
correlations and were therefore used in chromatin state analysis.
The LearnModel function in ChromHMM was implemented with
given chromatin states of two through 20 for each animal, and
the model with the optimal number of chromatin states was
examined using the CompareModels function in ChromHMM
(Gorkin et al., 2017, 2020). The optimal number of chromatin
states was determined as the model where the median Pearson
correlation for all states plotted against each chromatin state
model plateaued and were tightly correlated with the model with
the greatest number of states (Supplementary Figure 2) (Gorkin
et al., 2017, 2020). The consensus of chromatin states between
two animals (M1 and M2) was used to generate the heatmap
and for further comparative analyses. Location similarities and
differences between chromatin states, hypermethylated regions,
and hypomethylated regions were assessed with BEDTools
intersect within each tissue, and the consensus within each tissue
was used to examine chromatin state and DNA methylation
similarities and differences between liver, spleen, and cerebellum
tissues (Quinlan, 2014). An Upset R plot was generated to display
chromatin state similarities and differences between tissues
(Lex et al., 2014; Conway et al., 2017). Significantly enriched
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known and de novo CTCF motifs were identified and compared
with other species by implementing the findMotifs.pl script
in HOMER (Heinz et al., 2010). The proximity of annotated
TSS generated from CAGE data to promoter chromatin states
was examined with deepTools computeMatrix and plotHeatmap
functions (Supplementary Figure 7) (Ramírez et al., 2014;
Salavati et al., 2020).

RESULTS

Genetic regulatory elements were characterized across the sheep
genome in the liver, spleen, and cerebellum using CTCF
binding and ChIP-seq of four histone marks, as well as DNA
methylation status. Locating regulatory elements within and
between tissues will provide the basis for identifying variation
in these elements that may influence various phenotypic traits
in sheep. Furthermore, these results represent a resource for
estimating interindividual variation in the regulatory states of
tissues to provide context for the FAANG project that aims to
characterize these states in a broad array of tissues in a single
individual from which the reference genome was produced.

Mapping Summary and Statistics
Mapping statistics were calculated to assess the assay quality,
library preparation, and sequence coverage for each sample.
Across animals, ChIP-seq reads had a consistent average mapping
rate of 78.23, 78.39, and 76.82% to the Oar_rambouillet_v1.0
genome for the liver, spleen, and cerebellum, respectively.
The number of uniquely mapped paired-end reads averaged
40,757,252 for H3K4me3, 42,306,275 for H3K27ac, 53,171,657
for H3K4me1, 55,901,184 for H3K27me3, and 45,491,017 for
CTCF across all three tissues. The number of uniquely mapped
reads, NRF, and FRiP for each sample are displayed in
Supplementary Table 1.

Whole-genome bisulfite sequencing of cerebellum, liver, and
spleen samples from the four sheep generated a total of 986,
1,070, and 904 million paired end reads, respectively, with a read
length of 2 × 150 bp. The number of reads uniquely mapped
to the reference genome was 84.24, 78.86, and 82.48% for the
cerebellum, liver and spleen, respectively. The uniquely mapped
bases covered the reference genome (Oar_rambouillet_v1.0;
genome size ∼2.87 Gb) at an average depth of 21 × (range 18×
to 26×). Bisulfite conversion rate was∼99.9% for all the samples.
Mapping statistics for each tissue sample per sheep are displayed
in Supplementary Table 2.

Chromatin Immunoprecipitation With
Sequencing Peak Calling
The locations of sequence signal enrichment were identified
for all four histone marks and CTCF for each liver, spleen,
and cerebellum sample by mapping the reads to the reference
genome Oar_rambouillet_v1.0. The number of peaks normalized
by chromosome length (in Mb; Figure 1) and the width of
the peaks along the assembly were calculated from the mapped
read depth. For each mark, the percent of the total number of
peaks observed in the genome that lie on each chromosome is

plotted in Figure 1 which shows an overall even distribution
across chromosomes with some exceptions. The lowest number
of peaks was called in narrow mark H3K4me3 (means of 10,458
in the liver, 13,389 in the spleen, and 16,911 in the cerebellum),
with the lowest number of peaks per Mb on chromosomes 23
(2.77 peaks/Mb), 26 (2.64 peaks/Mb), and 16 (2.47 peaks/Mb)
in the liver, spleen, and cerebellum, respectively. The greatest
number of H3K4me3 peaks per Mb for the liver, spleen, and
cerebellum was on chromosomes 14 (6.16 peaks/Mb), 20 (5.17
peaks/Mb), and 11 (4.61 peaks/Mb), respectively. The average
widths of H3K4me3 peaks were 168, 178, and 313 bp for the liver,
spleen, and cerebellum. The mean number of peaks called for
the H3K27ac mark was 30,553 in the liver, 35,327 in the spleen,
and 35,877 in the cerebellum with the lowest number of peaks
called on chromosomes 10 (2.54 peaks/Mb), 26 (2.25 peaks/Mb),
and 6 (2.72 peaks/Mb) for the respective tissues. The greatest
number of H3K27ac peaks was called on chromosome 11 for all
three tissues, and peak widths averaged 239, 240, and 238 bp in
the liver, spleen, and cerebellum for this narrow mark. The final
narrow mark, CTCF, averaged 26,517 peaks in the liver, 28,362
in the spleen, and 26,244 in the cerebellum. The lowest number
of CTCF peaks were called on chromosome 24 (1.56 peaks/Mb
for the liver, 1.49 peaks/Mb for the spleen, and 2.05 peaks/Mb in
the cerebellum), and the greatest number of peaks were called on
chromosome 6 (5.50 peaks/Mb in the liver, 5.73 peaks/Mb in the
spleen, and 5.07 peaks/Mb in the cerebellum) for all three tissues.
The width of CTCF peaks was similar to other narrow marks,
with averages of 114 bp in the liver, 265 bp in the spleen, and
144 bp in the cerebellum.

The greatest number of peaks was called in broad mark
H3K4me1 (means of 47,828 in the liver, 33,931 in the spleen,
and 51,766 in the cerebellum), which is consistent with several
tissues in cattle (Fang et al., 2019). Chromosomes with the
lowest number of H3K4me1 peaks per Mb included 21 (2.34
peaks/Mb) for the liver, 26 (2.90 peaks/Mb) for the spleen, and
20 (3.12 peaks/Mb) for the cerebellum, and the greatest number
of peaks per Mb was on chromosome 7 (4.99 peaks/Mb for the
liver, 7.79 peaks/Mb for the spleen, and 4.98 peaks/Mb in the
cerebellum) for all three tissues. The average width of broad peak
H3K4me1 was greater than for the narrow peaks described above,
as expected, at 948 bp for the liver, 2,963 bp for the spleen, and
1,909 bp for the cerebellum. Lastly, the broad mark H3K27me3
had a lower average number of peaks called compared with
H3K4me1 (mean of 39,162 in the liver, 29,939 in the spleen,
and 26,244 in the cerebellum). The lowest number of H3K27me3
peaks per Mb of chromosome length were on chromosomes 26
(3.04 peaks/Mb), 24 (2.58 peaks/Mb), and 11 (1.84 peaks/Mb)
for the liver, spleen, and cerebellum, respectively. The greatest
number of peaks was on chromosome 13 (4.86 peaks/Mb) for
the liver and chromosome 6 for both the spleen (4.39 peaks/Mb)
and cerebellum (4.94 peaks/Mb). The average width of broad
H3K27me3 peaks was 440 bp in the liver, 2,143 bp in the spleen,
and 653 bp in the cerebellum. Peaks in common across the
animals were calculated for all five ChIP-seq experiments and
displayed for the liver, spleen, and cerebellum (Supplementary
Figure 2). Interestingly, half siblings (F1 and M1, F2 and M2)
displayed a greater number of peaks in common with each other.

Frontiers in Genetics | www.frontiersin.org 5 May 2021 | Volume 12 | Article 628849168

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-628849 May 18, 2021 Time: 13:59 # 6

Davenport et al. Epigenetic Annotation of Sheep Tissues

FIGURE 1 | The percent of the total number of peaks normalized per Mb on each chromosome for (A) H3K4me3, (B) H3K27ac, (C) H3K4me1, (D) H3K27me3, and
(E) CTCF averaged from all four animals (F1, F2, M1, and M2).

The proximity of H3K4me3 peaks to TSS was investigated by
comparing consensus H3K4me3 peaks and CAGE data generated
by Salavati et al. (2020). Not surprisingly, H3K4me3 peaks
were detected on both sides of the TSS in the liver, spleen,

and cerebellum tissues. The signal distributions and heatmaps
from 2 kb upstream and downstream of the TSS locations are
displayed in Figure 2. In addition, the consensus peaks for
H3K4me3, H3K27ac, H3K4me1, H3K27me3, and CTCF were
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FIGURE 2 | Signal of H3K4me3 ChIP-seq peaks 2 kb upstream and downstream of transcription start sites (TSS) identified by CAGE assays. (A) Liver H3K4me3
signal (from F1, M1, and M2 consensus peaks) near TSS annotated in the reference genome, (B) spleen H3K4me3 signal (from F2, M1, and M2 consensus peaks)
near annotated transcription start sites (TSS), and (C) cerebellum H3K4me3 signal (from F1, M1, and M2 consensus peaks) near annotated TSS.

annotated with the Oar_rambouillet_v1.0 genome annotation
file and these classifications are displayed in Supplementary
Figures 3–5. The histone modification H3K4me3 had the greatest
proportion of peaks annotated as near a TSS when compared
with other histone modifications in all three tissues. H3K27ac and
H3K4me1 histone modifications displayed intronic annotation
most commonly, and H3K27me3 and CTCF displayed mostly
intergenic peak annotation.

Visual Assessment of Sequence Pileup
The peak predictions were directly examined in the IGV
(Robinson et al., 2011) for regions known to be active or repressed
in the three tissues, to provide an evaluation of the success
of the process in properly classifying chromatin states. One
example of an expected active region for each liver, spleen, and
cerebellum tissue as well as one region expected to be repressed
in all tissues is displayed in Figure 3. Albumin (ALB), a gene

that encodes a plasma protein synthesized in hepatocytes and
expected to be active in the liver, has one promoter and two
enhancers annotated in humans that are within 2 kb upstream
from the start of the gene (Frain et al., 1990; Hayashi et al.,
1992; Bernardi et al., 2012; Fagerberg et al., 2014). Sequence
pileup for active histone marks in the liver was observed in all
four sheep that overlap with approximate locations of regulatory
elements of ALB in humans, and there were low levels of DNA
methylation in these regions (Figure 3A). The region upstream
of Solute carrier family 11 member 1 (SLC11A1), a gene expected
to be active in the spleen and encodes a membrane protein
involved with macrophage development, displayed sequence
pileup for active marks H3K4me3 and H3K27ac and low levels
of DNA methylation directly upstream (Figure 3B) (Hedges
et al., 2013). Paired box 6 (PAX6) is known to be involved in
the development of neural tissues and maturation of granule
neurons in the cerebellum and is known to have a promoter
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FIGURE 3 | Integrative genomics viewer (IGV) screenshot of sequence pileup normalized with the input control for active and repressive histone marks and DNA
methylation in two representative samples (M1 and M2) for (A) positive control Albumin (ALB) gene in the liver, (B) positive control Solute carrier family 11 member 1
(SLC11A1) in the spleen, (C) positive control Paired box 6 (PAX6) in the cerebellum, and (D) negative control REC8 gene (REC8) in all three tissues.
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and multiple enhancers both upstream and downstream of the
gene (Ha et al., 2015; Divya et al., 2016). Furthermore, PAX6
has greater expression in the cerebellum than other tissues in
sheep which is supported by the sequence pileup of active histone
marks H3K4me3 and H3K27ac, with some activity of H3K4me1
and little DNA methylation (Figure 3C) (Jiang et al., 2014).
In contrast, the REC8 meiotic recombination protein (REC8)
is a gene that encodes a meiosis-specific protein involved in
the synapsis of sister chromatids that is not expected to be
active in the liver, spleen, or cerebellum (Xu et al., 2005).
This gene location shows no sequence pileup in all four sheep
in the liver, spleen, or cerebellum and several methylated
regions (Figure 3D).

Variability in Histone Marks Between
Animals
Correlations were calculated for histone marks and for DNA
methylation between samples to evaluate interanimal variation
in sequence pileup signal for the liver, spleen, and cerebellum
(Friedman and Alm, 2012; Siska and Kechris, 2017). Correlations
of ChIP-seq data (Spearman) and DNA methylation data
(Pearson) averages for all four animals and males only (in
parentheses) are provided in Table 1. The narrow mark
H3K4me3 was moderately correlated between all four animals
in the liver (0.66) and spleen (0.54) and highly correlated in the
cerebellum (0.85). In males, H3K4me3 was highly correlated in
the liver (0.86), spleen (0.71), and cerebellum (0.88). The narrow
mark H3K27ac was highly correlated between samples across all
three tissues in the liver (0.89 overall and 0.95 in males), spleen
(0.78 overall and 0.84 in males), and cerebellum (0.70 overall
and 0.91 in males).

The broad mark H3K4me1 also showed high correlation in
two tissues, namely the liver (0.71 overall and 0.93 in males) and
cerebellum (0.82 overall and 0.91 in males), but the correlation
in the spleen was markedly lower (0.47 overall and 0.56 in
males), and overall, the correlations between the spleen samples
were lower than the liver and cerebellum for all four histone
marks. This is evident in H3K27me3 in the spleen (0.37 overall
and 0.44 in males) than in the liver (0.58 overall and 0.74 in
males) and cerebellum (0.72 overall and 0.83 in males). The
correlations of DNA methylation signal between samples ranged
from 0.70 to 0.76, with the liver and cerebellum displaying the
greatest correlation between the two males (0.76). However, sex
differences in correlations were not observed, as each female
has a moderate to high correlation with both the other female
(0.54–0.84) and both males (0.44–0.92) for each mark within
all three tissues.

Principal Component Analysis of DNA
Methylation
A principal component analysis was performed with the DNA
methylation data to investigate similarity and differences between
samples and tissues. Eigenvalues were calculated based on the
position of CG methylation signal in all animals for all three
tissues, and the first two eigenvalues (PC1 and PC2) were plotted
(Figure 4). Samples cluster distinctly by tissue type rather than
by sex or individual animal. The greatest spread of points within
a tissue was observed in the liver. The first eigenvalue (PC1,
27.56%) shows separation of the liver, spleen, and cerebellum.
The second eigenvalue (PC2, 12.16%) shows another dimension
of separation of the cerebellum and liver from the spleen.

Methylation Level at CG and Non-CG
Sites
Average methylation levels were calculated and compared in
each of the three tissues in both the CG and non-CG sites
(Figure 5A). Non-CG sites are defined as CHG and CHH where
H is either A/T/C. CG sites have an average methylation level
ranging between 70 and 81% across different tissues. Specifically,
cerebellum samples have an average methylation level of 81.4%,
whereas liver and spleen samples have an average methylation
level of 70.3 and 76.9%, respectively. The average methylation
level of cytosines at non-CG contexts (CHG and CHH) is nine-
fold higher in the cerebellum (1.7–2.1%) than in spleen and liver
samples (0.2%) (Figure 5B).

Chromatin State Assignment and
Correlation With Methylation Status
The relative positions of the combination of specific histone
marks provide a more complete definition of the overall
regulatory chromatin state than individual peak calling.
Regulatory elements were defined for two animals (M1 and M2)
using a hidden Markov model employed by ChromHMM which
assigns 200 bp bins across the genome to a given number of
chromatin states based on the combined histone modification
signal profiles (Ernst and Kellis, 2010, 2017). The genome
was categorized into two through 20 chromatin states using
ChromHMM. The optimal number of states was determined to
be nine, as it was the lowest number of states that had greater
than 0.95 correlation of all samples to 20 states, which captures
the complexity of the data with fewer states (see Supplementary
Figure 2) (Gorkin et al., 2017, 2020). These nine chromatin states
are categorized as follows: promoter, active enhancer, poised
enhancer, repressed enhancer, CTCF, and three or four states of

TABLE 1 | Average correlations of sequencing signal between all four animals.

Tissue H3K4me3 H3K27ac H3K4me1 H3K27me3 DNA methylation

Liver 0.66 (0.86) 0.89 (0.95) 0.71 (0.93) 0.58 (0.74) 0.72 (0.76)

Spleen 0.54 (0.71) 0.78 (0.84) 0.47 (0.56) 0.37 (0.44) 0.70 (0.74)

Cerebellum 0.85 (0.88) 0.70 (0.91) 0.82 (0.91) 0.72 (0.83) 0.73 (0.76)

Spearman correlations were used for ChIP-seq data and Pearson correlations were used for DNA methylation data. Parentheses indicate correlations between the
replicates used in the ChromHMM chromatin state analysis.
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FIGURE 4 | Principal component analysis plot based on CG methylation. Four animals are labeled as F1, F2, M1, and M2. The cerebellum, liver, and spleen samples
are labeled as C, L, and S, respectively.

FIGURE 5 | (A) Methylation level at CG compared with non-CG sites in the liver, spleen, and cerebellum and (B) methylation level at non-CG (CHG and CHH) sites in
each tissue enlarged.

quiescent/low signal. The consensus of chromatin states assigned
to both M1 and M2 was used for further analyses.

The signal of all the histone marks and the nine chromatin
states for each tissue is displayed as heatmaps in Figure 6.
Regions with primarily H3K4me3 signal often overlapping
with H3K27ac are considered promoters, regions with strong
H3K27ac signal are considered active enhancers, regions with
H3K4me1 often paired with weak H3K27me3 signal are
considered poised enhancers, and regions with strong H3K27me3

signal are considered repressed enhancers (Wang et al., 2008;
Creyghton et al., 2010; Core et al., 2014; Carelli et al.,
2018). All four of these categories of regulatory elements were
observed and displayed in the heatmaps, with the addition
of a weak poised enhancer state in the spleen and weak
repressed enhancer state in the cerebellum which both displayed
lower but still distinguishable signal. In addition, regions
with CTCF signal which overlap with other marks including
H3K4me1 and H3K27me3 were observed in the liver and
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FIGURE 6 | Chromatin state description and ChromHMM heatmap with histone mark signal overlap consensus from M1 and M2 compared with the number of
hypermethylated regions and hypomethylated region consensus per Mb for M1 and M2 for the (A) liver, (B) spleen, and (C) cerebellum.
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cerebellum. Lastly, quiescent/low states had very little signal in
any of the five marks.

The correlation of DNA methylation status with predicted
chromatin state was examined by estimating the number
of hyper- and hypomethylated regions per Mb within the
boundaries of the regulatory elements in the nine defined
chromatin states. The greatest number of hypomethylated
regions was observed in active enhancer regions in the liver
and spleen and in active promoter regions in the cerebellum,
as expected if our process was correctly identifying regulatory
elements and classifying them as actively transcribed genes. The
greatest number of hypermethylated regions was observed in
poised enhancers and CTCF in the liver, weak poised and poised
enhancer regions in the spleen, and poised enhancer regions
in the cerebellum, also consistent with the process correctly
classifying regulatory elements.

Distribution of Chromatin States in the
Genome and Proximity to TSS
The chromosomal segments spanned by regulatory elements,
as defined by the histone mark peaks, were combined and
summarized to estimate the overall extent and percent of the
genome representing regulatory elements and their chromatin
state among the three tissues examined. Chromatin states from
the ChromHMM analyses were categorized and combined into
promoter, active enhancer, poised enhancer including weak

poised enhancers, repressed enhancer including weak repressed
enhancers, and quiescent or low signal categories and averaged
for each tissue (Figure 7). Promoters comprise 2.95% of the
genome in the liver, 3.35% in the spleen, and 1.85% in the
cerebellum, and active enhancers occupy 5.04% of the genome
in the liver, 4.30% in the spleen, and 3.74% in the cerebellum. In
addition, 4.38% of the genome in the liver, 4.63% in the spleen,
and 2.68% in the cerebellum are categorized as poised enhancers,
while 7.78% of the genome in the liver, 4.96% in the spleen, and
9.89% in the cerebellum are considered repressed enhancers. The
percent of the genome that had primarily CTCF signal was 2.92%
in the liver, 3.19% in the spleen, and 2.94% in the cerebellum.
Cumulatively, states considered as enriched with histone mark
and CTCF signal intensity by ChromHMM, which includes the
promoter, enhancer, and CTCF functional elements, comprise
approximately 23.08% of the genome in the liver, 20.44% in
the spleen, and 21.10% in the cerebellum. Not surprisingly, the
largest percent of the genome, 76.91% in the liver, 79.56% in
the spleen, and 78.90% in the cerebellum, was categorized as
quiescent or low signal.

The locations of assigned promoter chromatin states were
compared with TSS generated from CAGE data for the liver,
spleen, and cerebellum. Both the signal distribution and heatmap
plots display a strong signal before and after the TSS in all
three tissues (Supplementary Figure 7). This signal is similar
to the distribution of the H3K4me3 peak signal before and after

FIGURE 7 | Percent of the genome in the liver, spleen, and cerebellum (from M1 and M2) assigned to each category of quiescent/low (gray), CTCF (black), repressed
enhancer (blue), poised enhancer (green), active enhancer (gold), and promoter (red) depicted visually in panel (A) the bar graph and numerically in panel (B) the
table.
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TSS, which is not surprising as the ChromHMM model assigns
promoter states based on the presence of H3K4me3 signal. It
is worth noting that the CAGE data used in this study were
generated from the reference genome animal, a Rambouillet,
which is different from the crossbred animals used in this study
and may explain some of the signal noise.

Similarities and Differences of Chromatin
States Between Tissues
Similarities and differences of promoters, enhancers, and
methylated regions within and between tissues were examined
and percentages of overlap are displayed in Figure 8. Active
promoters were 64.76% similar between the liver and spleen,
25.39% between the liver and cerebellum, and 35.69% between
the spleen and cerebellum. The liver had 81.09 and 51.10% of
active enhancers in common with the spleen and cerebellum,
respectively. The spleen and cerebellum had 53.85% similarity
of active enhancers. Poised enhancers were shared 51.90%
between the liver and spleen, 52.72% between the liver and
cerebellum, and 38.27% between the spleen and cerebellum.
The percent of repressed enhancers that overlapped between the
liver and spleen was 56.05%. The liver and cerebellum repressed
enhancers overlapped 67.90%, and the spleen and cerebellum
repressed enhancers overlapped 41.66%. Hypermethylated
genomic locations overlapped 4.42% and hypomethylated
regions overlapped 56.05% between the liver and spleen. The
liver and cerebellum displayed more similar hypermethylated
and hypomethylated regions, 75.42 and 72.89%, respectively,
than the spleen and cerebellum, 19.44 and 32.51%, respectively.

CTCF-Binding Motifs
The insulator CTCF is often present at the boundaries of
topologically associated domains (TADs), compartments of
chromatin interactions, across the genome (Beagan and Phillips-
Cremins, 2020). The location of significant (P < 0.00001)
CTCF-binding motifs both known from previous research and
de novo was identified across the genome in the liver, spleen,
and cerebellum (Heinz et al., 2010). Of these, 13 were present
in at least three animals (Table 2). Three motifs, MYB3R4,
MYB3R1, and Pdx1, were significantly enriched in the liver,
spleen, and cerebellum tissues. The liver and spleen exhibited
the most significantly enriched CTCF motifs in common (TAGL,
Six2, RRTF1, Sox6, SVP, and TGA2). One motif, ZBTB19, was
enriched in the spleen and cerebellum. The cerebellum had
three enriched motifs (Elk4, Pho2, and BZR1) not present in
the liver or spleen. In addition, de novo motifs were identified
in all three tissues. The top three most significant de novo
motifs per sample in the liver, spleen, and cerebellum are
reported in Tables 3–5, respectively. Of the total number of
de novo motifs, 16, 13, and 21 were identified as unique to
the liver, spleen, and cerebellum, respectively. Sixteen de novo
motifs were identified in both the liver and spleen, while the
cerebellum had only three de novo motifs in common with
the other tissues.

DISCUSSION

The goal of this study was to characterize regulatory elements
in ovine liver, spleen, and cerebellum using ChIP-seq and
WGBS. The three selected tissues, the liver, spleen, and

FIGURE 8 | Percent of overlapping promoter (red), active enhancer (gray), poised enhancer (green), and repressed enhancer (blue) chromatin state categories and
hypermethylated (purple) and hypomethylated (orange) regions between the liver, spleen, and cerebellum tissues of the consensus categories from M1 and M2. The
total number of chromatin states for each tissue is displayed in black horizontal bars.
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TABLE 2 | Known CTCF motifs present in the top 10 most significant motifs across multiple samples.

Known motif name Known motif Tissue Number of
samples

Mean P value Mean percent of target
sequences with motif

Mean percent of background
sequences with motif

MYB3R4 (MYB) Liver, spleen, and
cerebellum

7 1E-2612 13.54% 1.27%

TAGL1 (MADS) Liver and spleen 6 1E-2167 44.33% 18.98%

MYB3R1 (MYB) Liver, spleen, and
cerebellum

6 1E-1632 12.85% 2.42%

Pdx1 (homeobox) Liver, spleen, and
cerebellum

6 1E-1475 37.21% 17.82%

Six2 (homeobox) Liver and spleen 5 1E-1486 30.93% 13.64%

RRTF1 (APTEREBP) Liver and spleen 4 1E-1655 7.16% 0.55%

Sox6 (HMG) Liver and spleen 4 1E-931 40.23% 23.32%

ZBTB19 (Zf) Spleen and
cerebellum

4 1E-418 8.27% 3.07%

SVP (MADS) Liver and spleen 3 1E-1897 28.39% 9.82%

TGA2 (bZIP) Liver and spleen 3 1E-1792 16.14% 3.27%

Elk4 (ETS) Cerebellum 3 1E-61 3.69% 2.07%

Pho2 (bHLH) Cerebellum 3 1E-32 1.72% 0.92%

BZR1 (BZR) Cerebellum 3 1E-29 0.68% 0.25%

TABLE 3 | Top three de novo CTCF motifs present in each sample in the liver.

Animal De novo motif P value Percent of
target

sequences
with motif

Percent of
background
sequences
with motif

F1 1E-3278 31.57% 3.37%

1E-3012 23.91% 1.74%

1E-2873 23.31% 1.76%

F2 1E-1388 7.03% 0.62%

1E-1349 6.55% 0.54%

1E-1345 6.11% 0.45%

M1 1E-8604 21.40% 0.41%

1E-7739 26.14% 1.17%

1E-7299 21.19% 0.63%

M2 1E-10234 44.68% 4.07%

1E-8614 34.87% 2.59%

1E-8422 42.53% 4.89%

cerebellum, each represent a different developmental origin and
are important to metabolism, immune response, and motor
control, respectively. We have demonstrated the successful
application of the micrococcal nuclease ChIP protocol across
these tissues and the bioinformatic pipeline for the analysis of
ChIP-seq in sheep. Furthermore, this study has incorporated the
value of coupled histone modification and DNA methylation
data toward a better understanding of regulatory regions in
the sheep genome.

TABLE 4 | Top three de novo CTCF motifs present in each sample in the spleen.

Animal De novo motif P value Percent of
target

sequences
with motif

Percent of
background
sequences
with motif

F2 1E-12441 29.41% 0.72%

1E-12221 38.23% 2.03%

1E-12174 38.03% 2.01%

M1 1E-7022 24.88% 1.16%

1E-6916 30.15% 2.24%

1E-6704 25.65% 1.42%

M2 1E-5921 24.42% 0.88%

1E-5710 24.12% 0.93%

1E-5440 20.87% 0.61%

Micrococcal nuclease was used to shear the chromatin because
it provided a consistent and reproducible shearing across samples
and tissue types. A limitation of the micrococcal nuclease may be
increased likelihood of the appearance of duplicated reads due to
similarity of cut sites in the chromatin; however, several studies
have not found substantial bias when duplicates were removed
(Allan et al., 2012; David et al., 2017; Gutiérrez et al., 2017; Chereji
et al., 2019). Furthermore, shearing with micrococcal nuclease to
approximately 1–2 nucleosome lengths may contribute to slightly
different characteristics, including width, of peaks called from
these experiments.

Sequence read pileups were examined in IGV near genes
known to be active and inactive in humans and expected
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TABLE 5 | Top three de novo CTCF motifs present in each sample
in the cerebellum.

Animal De novo motif P value Percent of
target

sequences
with motif

Percent of
background
sequences
with motif

F1 1E-910 2.92% 0.01%

1E-756 2.50% 0.01%

1E-735 2.44% 0.01%

F2 1E-1078 3.49% 0.04%

1E-875 1.85% 0.00%

1E-842 2.01% 0.01%

M1 1E-946 1.42% 0.00%

1E-800 1.24% 0.01%

1E-697 1.25% 0.01%

M2 1E-677 1.02% 0.00%

1E-565 0.88% 0.01%

1E-509 0.80% 0.01%

to be conserved across species. This provided a means of
examining genes with known promoters and expression patterns
as positive and negative controls for both ChIP-seq experiments
and WGBS and provided insight into the potential similarity
of regulatory elements across species. Several genes known
to be active across different mammalian species in the liver,
spleen, and cerebellum showed a sequence pileup of active
histone marks which likely indicated the presence of active
regulatory elements. Inversely, genes known to be active during
meiotic processes and quiescent during adult stages in several
mammalian species showed no sequence pileup of histone
marks and presence of DNA methylation, which likely indicates
inactivity of regulatory elements.

Consistency of regulatory element identification by ChIP-
seq and DNA methylation for each tissue between the four
individual animals was evaluated by calculating Spearman
and Pearson correlations, respectively. Correlations between
samples for both ChIP-seq and DNA methylation were
within the ranges previously reported with sequence data
(Peng et al., 2010; Siska and Kechris, 2017). Furthermore,
correlations between ChIP-seq biological replicates have
been reported as low as 0.3–0.4, with technical replicates
reported as high as 0.9 (Friedman and Alm, 2012; Siska
and Kechris, 2017). The results for these sheep tissues
therefore achieve equivalent or improved results compared
with previously reported pipelines for regulatory element
identification and characterization and demonstrate a tissue-
specific moderate variation across biological replicates. The
spleen displayed the highest variation between biological
replicates, with correlations between 0.44 and 0.84 among
histone marks, although DNA methylation was consistent
across replicates including the spleen. Given that splenic

tissue is an acutely responsive immunological tissue, perhaps
it is not surprising that we observed greater variation in the
biological replicates.

The CG methylation signal for all four samples clustered
distinctly by tissue in a principal component analysis, indicating
clear differences in DNA methylation between tissues (Figure 3).
This finding is supported by others that have shown that
the greatest differences in methylation occur between tissue
types rather than between individuals (Pai et al., 2011;
Zhang et al., 2013) and consistent with the requirement for a
particular set of genes to be active and therefore demethylated
depending on tissue function. Cerebellum samples demonstrated
a higher level of both CG and non-CG methylation compared to
the liver and spleen. Brain tissues are known to differ from other
tissues in methylation patterns in other species, and furthermore,
the cerebellum has been shown to be different than other brain
tissues (Gibbs et al., 2010; Cantrell et al., 2019).

The enrichment of individual histone marks was examined
by identifying peaks in each sample. The number of peaks
identified in these sheep liver, spleen, and cerebellum samples
was consistent with other studies in sheep adipose, cattle liver,
cattle muscle, cattle rumen epithelium, human liver, and mouse
liver (Supplementary Table 3) (Villar et al., 2015; Zhao et al.,
2015; Naval-Sanchez et al., 2018; Fang et al., 2019). Many
chromosomes had differences in peak numbers normalized
by chromosome length between tissues, indicating potential
tissue specificity of some peaks. Narrow marks H3K3me3,
H3K27ac, and CTCF had a shorter average width than broad
marks H3K4me1 and H3K27me3, which may be influenced
by the program and statistical model used to call peaks as
well as by the shearing method (Zhang et al., 2008, 2009).
Because micrococcal nuclease was used for shearing, the length
of the narrow peaks more closely resembles the size of a
single nucleosome.

Trimethylation of histone 3 lysine 4 peaks were enriched
annotated TSS in all three tissues. The peaks and heatmap
signature signals are similar to several other ChIP-seq
experiments in human PBMCs and CD14+ cells, as well
as mouse liver (Schones et al., 2008; Quinodoz et al., 2014;
Uchiyama et al., 2018). Peaks from all histone modifications
and CTCF were also annotated with regions defined in
the Oar_rambouillet_v1.0 genome. In the liver, spleen, and
cerebellum, the most TSS were identified near (within 2 kb
of distance on either side) to H3K4me3 peaks, which is not
surprising. Many H3K27ac and H3K4me1 peaks, which indicate
the presence of active or poised enhancers, were located in
intronic regions. Repressed enhancers marked by H3K27me3
were located mostly in intergenic regions, along with CTCF,
which may be indicative of insulated TAD boundaries not in
close proximity of genes. Further work with additional animals
in combination with RNA expression and TSS analyses is needed
to examine regulatory element activity outside of previously
annotated regions of the sheep genome.

The genomic segments identified by histone mark peaks
were evaluated for overlap between marks and CTCF binding.
This broader view of the regulatory landscape lends a better
understanding of gene regulation at each location than individual
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marks (Park, 2018). Active promoters have been shown to exhibit
greater enrichment of H3K4me3 than other histone marks in
addition to the often present H3K27ac (Wang et al., 2008;
Creyghton et al., 2010; Carelli et al., 2018). However, if lysine
4 is monomethylated (H3K4me1), this indicates the presence
of a poised enhancer, in which enrichment of lysine 27 can be
acetylated or trimethylated depending on the state and activity
of the enhancer (Heintzman et al., 2007; Wang et al., 2008;
Creyghton et al., 2010; Carelli et al., 2018). Low H3K4me3
coincident with high H3K27ac signal has been reported to
be common at enhancers near genes undergoing highly active
transcription (Core et al., 2014; Carelli et al., 2018). Repressed
enhancers are generally characterized by H3K27me3 signal
(Carelli et al., 2018). However, H3K27me3 has also been shown
to be enriched near the promoter or gene body in genes being
expressed at a relatively low rate (Young et al., 2011; Flensburg
et al., 2014). The chromatin states characterized in this study
are similar to what others have previously described in cattle
(Fang et al., 2019). Furthermore, the weak poised enhancer
category detected in the spleen and the weak repressed enhancer
category detected in the cerebellum demonstrate that different
tissues may have varying chromatin states, which supports the
importance of characterizing chromatin states across tissues
within a species.

Hypermethylated and hypomethylated regions of the sheep
genome were defined across liver, spleen, and cerebellum tissues.
The number of hypermethylated and hypomethylated regions
per Mb in each of the nine chromatin states was quantified.
The data presented in this study demonstrate an enrichment
of hypermethylated regions in chromatin states with prominent
H3K4me1 (primarily poised enhancers) and hypomethylated
regions in active enhancers and promoters enriched with
H3K27ac and H3K4me3. These results agree with previous
research in humans and mice which indicate that active enhancer
activity is inversely correlated with DNA methylation (Aran
and Hellman, 2013; Barwick et al., 2016; Bell and Vertino,
2017). Interestingly, the presence of H3K4me1 was found to
be positively correlated with DNA methylation, specifically
intermediate methylation (25–75%), in mice (Zhang et al., 2009;
Teng and Tan, 2012; Sharifi-Zarchi et al., 2017). Furthermore,
enhancers enriched with H3K27ac and promoters enriched with
H3K4me3 had less DNA methylation than other regions (Sharifi-
Zarchi et al., 2017).

Approximately 20% of the sheep genome was assigned
to a chromatin state category including promoters; active,
poised, and repressed enhancers; and CTCF in the liver, spleen,
and cerebellum. In cattle, a previous study similarly assigned
approximately 30% of the genome to either a chromatin state
or areas with open chromatin in rumen epithelium (Fang et al.,
2019). The locations of many regulatory elements were similar
between the liver and spleen in this study; however, a greater
difference was observed in active enhancers and promoters
between the cerebellum compared with the liver and spleen. Since
distinct differences in gene expression and regulation have been
observed between the cerebellum and other tissues in sheep, this
difference is not surprising (Jiang et al., 2014).

The CCCTC-binding factor (CTCF) along with cohesins was
shown to be present at the boundaries of TADs in humans and
mice (Dixon et al., 2012; Phillips-Cremins et al., 2013; Rao et al.,
2014; Vietri Rudan et al., 2015; Szabo et al., 2019). Depending
on the cell type, 75–95% of TAD boundaries defined by Hi-
C chromatin capture have shown CTCF signal in mice (Bonev
et al., 2017; Szabo et al., 2019). The chromatin states in this study
that display primarily CTCF could be representative of these
domain boundaries; however, Hi-C data are required to confirm
which will be possible for the data produced in the FAANG
study of the reference ewe, where Hi-C data are also available. In
addition to helping define TAD boundaries, CTCF has also been
identified near enhancers and promoters within TADs in humans
and mice, which then form smaller loop domains with cohesins
and the protein YY1 (Phillips-Cremins et al., 2013; Weintraub
et al., 2017; Szabo et al., 2019). The chromatin state analysis
may be detecting some of these within-TAD loop interactions,
with overlap between CTCF and H3K27me3 as well as H3K4me1
signal shown in the chromatin state heatmaps in the liver and
cerebellum. Signal from CTCF, H3K27me3, and H3K4me1 marks
within one chromatin state was also observed in another study in
cattle rumen epithelial tissue and Madin–Darby bovine kidney
epithelial cells (Fang et al., 2019).

Motif analysis of CTCF resulted in both known and de
novo motifs identified in more than one tissue. A large
number of CTCF-binding motifs are similar in sequence
across mammalian species including cattle (Filippova et al.,
1996; Schmidt et al., 2012; Wang et al., 2018). Wang and
associates identified putative CTCF-binding motifs in the bovine
genome with 82 CTCF motif profiles with similar sequence
in human, mouse, dog, and macaque (Schmidt et al., 2012;
Wang et al., 2018). In this study, significant motifs identified
in ovine liver, spleen, and cerebellum were also identified
in human, mouse, fly (Drosophila melanogaster), and yeast
(Saccharomyces cerevisiae) within the HOMER motif database
(Heinz et al., 2010).

This experiment examines regulatory elements in multiple
sheep tissues and individuals with ChIP-seq and WGBS
methylation assays. These data provide putative categories of
biological functions for regulatory DNA and will facilitate the
identification of epigenetic variation that controls phenotypic
traits in sheep. Epigenetic annotation is especially important
for revealing the biology behind interesting complex traits
since genetic variation does not always reveal the entire story.
Epigenetic variation may play a larger role in traits uniquely
expressed in a specific tissue or recently evolved rare traits.
Identification of causal regulatory variants will allow more rapid
genetic improvement for health and production traits in the
meat, milk, and wool industries across sheep populations. Causal
variants have the highest utility across breeds and allow more
efficient assimilation of genetic markers into marker-assisted
selection and genomic selection algorithms. The protocols and
analysis pipeline optimized here for validation and the eventual
annotation of DNA regulatory elements are valuable resources
for the Ovine FAANG Project Consortium and the International
Sheep Genomics Consortium.
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The Galaxy platform for accessible, reproducible and collaborative biomedical
analyses: 2018 update. Nucleic Acids Res. 46, 537–544. doi: 10.1093/nar/gky379

Albert, F. W., and Kruglyak, L. (2015). The role of regulatory variation in complex
traits and disease. Nat. Rev. Genet. 16, 197–212. doi: 10.1038/nrg3891

Al-Mamun, H. A., Clark, S. A., Kwan, P., and Gondro, C. (2015). Genome-wide
linkage disequilibrium and genetic diversity in five populations of Australian
domestic sheep. Genet. Sel. Evol. 47:90. doi: 10.1186/s12711-015-0169-6

Allan, J., Fraser, R. M., Owens-Hughes, T., and Keszenman-Pereyra, D. (2012).
Micrococcal nuclease does not substantially bias nucleosome mapping. J. Mol.
Biol. 417, 152–164. doi: 10.1016/j.jmb.2012.01.043

Andersson, L., Archibald, A. L., Bottema, C. D., Brauning, R., Burgess, S. C., Burt,
D. W., et al. (2015). Coordinated international action to accelerate genome-to-
phenome with FAANG, the functional annotation of animal genomes project.
Gen. Biol. 16:57. doi: 10.1186/s13059-015-0622-4

Aran, D., and Hellman, A. (2013). DNA methylation of transcriptional enhancers
and cancer predisposition. Cell 154, 11–13. doi: 10.1016/j.cell.2013.06.018

Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., et al. (2007).
High-resolution profiling of histone methylations in the human genome. Cell
129, 823–837. doi: 10.1016/j.cell.2007.05.009

Barwick, B.G., Scharer, C.D., Bally, A.P., and Boss, J.M. (2016). Plasma cell
differentiation is coupled to division-dependent DNA hypomethylation and
gene regulation. Nat. Immunol. 17, 1216–1225. doi: 10.1038/ni.3519

Beagan, J. A., and Phillips-Cremins, J. E. (2020). On the existence and functionality
of topologically associating domains. Nat. Genet. 52, 8–16. doi: 10.1038/s41588-
019-0561-1

Bell, J. S. K., and Vertino, P. M. (2017). Orphan CpG islands define a novel class of
highly active enhancers. Epigenetics 12, 449–464. doi: 10.1080/15592294.2017.
1297910

Bernardi, M., Maggioli, C., and Zaccherini, G. (2012). Human albumin in the
management of complications of liver cirrhosis. Crit. Care 16:211. doi: 10.1186/
cc11218

Bonev, B., Cohen, N. M., Szabo, Q., Fritsch, L., Papadopoulos, G. L., Lubling, Y.,
et al. (2017). Multiscale 3D genome rewiring during mouse neural development.
Cell 171, 557–572. doi: 10.1016/j.cell.2017.09.043

Broad Institute (2019). Picard Toolkit. Cambridge, MA: Broad Institute.

Frontiers in Genetics | www.frontiersin.org 17 May 2021 | Volume 12 | Article 628849180

https://www.frontiersin.org/articles/10.3389/fgene.2021.628849/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.628849/full#supplementary-material
https://doi.org/10.1093/nar/gky379
https://doi.org/10.1038/nrg3891
https://doi.org/10.1186/s12711-015-0169-6
https://doi.org/10.1016/j.jmb.2012.01.043
https://doi.org/10.1186/s13059-015-0622-4
https://doi.org/10.1016/j.cell.2013.06.018
https://doi.org/10.1016/j.cell.2007.05.009
https://doi.org/10.1038/ni.3519
https://doi.org/10.1038/s41588-019-0561-1
https://doi.org/10.1038/s41588-019-0561-1
https://doi.org/10.1080/15592294.2017.1297910
https://doi.org/10.1080/15592294.2017.1297910
https://doi.org/10.1186/cc11218
https://doi.org/10.1186/cc11218
https://doi.org/10.1016/j.cell.2017.09.043
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-628849 May 18, 2021 Time: 13:59 # 18

Davenport et al. Epigenetic Annotation of Sheep Tissues

Cantrell, B., Lachance, H., Murdoch, B., Sjoquist, J., Funston, R., Weaber, R., et al.
(2019). Global DNA methylation in the limbic system of cattle. Epigenomes 3:8.
doi: 10.3390/epigenomes3020008

Carelli, F. N., Liechti, A., Halbert, J., Warnefors, M., and Kaessmann, H. (2018).
Repurposing of promoters and enhancers during mammalian evolution. Nat.
Commun. 9:4066. doi: 10.1038/s41467-018-06544-z

Cedar, H., and Bergman, Y. (2009). Linking DNA methylation and histone
modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304. doi: 10.
1038/nrg2540

Chereji, R. V., Bryson, T. D., and Henikoff, S. (2019). Quantitative MNase-seq
accurately maps nucleosome occupancy levels. Genome Biol. 20:198. doi: 10.
1186/s13059-019-1815-z

Clark, E. L., Bush, S. J., McCulloch, M., Farquhar, I. L., Young, R., Lefevre, L., et al.
(2017). A high resolution atlas of gene expression in the domestic sheep (Ovis
aries). PLoS Genet. 13:e1006997. doi: 10.1371/journal.pgen.1006997

Conway, J. R., Lex, A., and Gehlenborg, N. (2017). UpSetR: an R package for
the visualization of intersecting sets and their properties. Bioinformatics 33,
2938–2940. doi: 10.1093/bioinformatics/btx364

Core, L. J., Martins, A. L., Danko, C. G., Waters, C. T., Siepel, A., and Lis, J. T.
(2014). Analysis of nascent RNA identifies a unified architecture of initiation
regions at mammalian promoters and enhancers. Nat. Genet. 46, 1311–1320.
doi: 10.1038/ng.3142

Creyghton, M. P., Cheng, A. W., Welstead, G. G., Kooistra, T., Carey, B. W., Steine,
E. J., et al. (2010). Histone H3K27ac separates active from poised enhancers and
predicts developmental state. Proc. Natl. Acad. Sci. U.S.A. 107, 21931–21936.
doi: 10.1073/pnas.1016071107

David, S. A., Piégu, B., Hennequet-Antier, C., Pannetier, M., Aguirre-Lavin,
T., Crochet, S., et al. (2017). An assessment of fixed and native chromatin
preparation methods to study histone post-translational modifications at a
whole genome scale in skeletal muscle tissue. Biol. Proc. Online 19:10. doi:
10.1186/s12575-017-0059-0

Deaton, A. M., and Bird, A. (2011). CpG islands and the regulation of transcription.
Genes Dev. 25, 1010–1022. doi: 10.1101/gad.2037511

Divya, T., Lalitha, S., Parvathy, S., Subashini, C., Sanalkumar, R., Bindu Dhanesh,
S., et al. (2016). Regulation of Tlx3 by Pax6 is required for the restricted
expression of Chrnα3 in cerebellar granule neuron progenitors during
development. Sci. Rep. 6:30337. doi: 10.1038/srep30337

Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., et al. (2012).
Topological domains in mammalian genomes identified by analysis of
chromatin interactions. Nature 485, 376–380. doi: 10.1038/nature11082

Ernst, J., and Kellis, M. (2010). Discovery and characterization of chromatin states
for systematic annotation of the human genome. Nat. Biotechnol. 28, 817–825.
doi: 10.1038/nbt.1662

Ernst, J., and Kellis, M. (2012). ChromHMM: automating chromatin-state
discovery and characterization. Nat. Methods 9, 215–216. doi: 10.1038/nmeth.
1906

Ernst, J., and Kellis, M. (2017). Chromatin-state discovery and genome annotation
with ChromHMM. Nat. Protoc. 12, 2478–2492. doi: 10.1038/nprot.2017.124

Fagerberg, L., Hallström, B. M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg,
J., et al. (2014). Analysis of the human tissue-specific expression by genome-
wide integration of transcriptomics and antibody-based proteomics. Mol. Cell.
Proteom. 13, 397–406. doi: 10.1074/mcp.M113.035600

Fang, L., Liu, S., Liu, M., Kang, X., Lin, S., Li, B., et al. (2019). Functional annotation
of the cattle genome through systematic discovery and characterization of
chromatin states and butyrate-induced variations. BMC Biol. 17:68. doi: 10.
1186/s12915-019-0687-8

Feng, J., Liu, T., Qin, B., Zhang, Y., and Liu, X. S. (2012). Identifying ChIP-
seq enrichment using MACS. Nat. Protoc. 7, 1728–1740. doi: 10.1038/nprot.
2012.101

Filippova, G. N., Fagerlie, S., Klenova, E. M., Myers, C., Dehner, Y., Goodwin,
G., et al. (1996). An exceptionally conserved transcriptional repressor, CTCF,
employs different combinations of zinc fingers to bind diverged promoter
sequences of avian and mammalian c-myc oncogenes. Mol. Cell. Biol. 16,
2802–2813. doi: 10.1128/MCB.16.6.2802

Flensburg, C., Kinkel, S. A., Keniry, A., Blewitt, M. E., and Oshlack, A. (2014). A
comparison of control samples for ChIP-seq of histone modifications. Front.
Genet. 5:329. doi: 10.3389/fgene.2014.00329

Frain, M., Hardon, E., Ciliberto, G., and Sala-Trepat, J. M. (1990). Binding of a
liver-specific factor to the human albumin gene promoter and enhancer. Mol.
Cell. Biol. 10, 991–999. doi: 10.1128/mcb.10.3.991

Friedman, J., and Alm, E. J. (2012). Inferring correlation networks from genomic
survey data. PLoS Comput. Biol. 8:e1002687. doi: 10.1371/journal.pcbi.1002687

Ghirlando, R., and Felsenfeld, G. (2016). CTCF: making the right connections.
Genes Dev. 30, 881–891. doi: 10.1101/gad.277863.116

Gibbs, J. R., van der Brug, M. P., Hernandez, D. G., Traynor, B. J., Nalls, M.
A., Lai, S. L., et al. (2010). Abundant quantitative trait loci exist for DNA
methylation and gene expression in the human brain. PLoS Genet. 6:e1000952.
doi: 10.1371/journal.pgen.1000952

Giuffra, E., Tuggle, C. K., and Faang Consortium (2019). Functional Annotation
of Animal Genomes (FAANG): current achievements and roadmap. Ann. Rev.
Anim. Biosci. 7, 65–88. doi: 10.1146/annurev-animal-020518-114913

Gorkin, D. U., Barozzi, I., Zhang, Y., Lee, A. Y., Zhao, Y., Wildberg, A., et al. (2017).
Systematic mapping of chromatin state landscapes during mouse development.
bioRxiv [Preprint] doi: 10.1101/166652

Gorkin, D. U., Barozzi, I., Zhao, Y., Zhang, Y., Huang, H., Lee, A. Y., et al. (2020).
An atlas of dynamic chromatin landscapes in mouse fetal development. Nature
583, 744–751. doi: 10.1038/s41586-020-2093-3

Guo, W., Fiziev, P., Yan, W., Cokus, S., Sun, X., Zhang, M. Q., et al. (2013).
BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC
Genomics 14:774. doi: 10.1186/1471-2164-14-774

Guo, W., Zhu, P., Pellegrini, M., Zhang, M. Q., Wang, X., and Ni, Z. (2018).
CGmapTools improves the precision of heterozygous SNV calls and supports
allele-specific methylation detection and visualization in bisulfite-sequencing
data. Bioinformatics 34, 381–387. doi: 10.1093/bioinformatics/btx595

Gutiérrez, G., Millán-Zambrano, G., Medina, D. A., Jordán-Pla, A., Pérez-Ortín,
J. E., Peñate, X., et al. (2017). Subtracting the sequence bias from partially
digested MNase-seq data reveals a general contribution of TFIIS to nucleosome
positioning. Epigenetics Chromatin 10:58. doi: 10.1186/s13072-017-0165-x

Ha, T., Swanson, D., Larouche, M., Glenn, R., Weeden, D., Zhang, P., et al. (2015).
CbGRiTs: cerebellar gene regulation in time and space. Dev. Biol. 397, 18–30.
doi: 10.1016/j.ydbio.2014.09.032

Hayashi, Y., Chan, J., Nakabayashi, H., Hashimoto, T., and Tamaoki, T. (1992).
Identification and characterization of two enhancers of the human albumin
gene. J. Biol. Chem. 267, 14580–14585.

Hedges, J. F., Kimmel, E., Snyder, D. T., Jerome, M., and Jutila, M. A. (2013). Solute
carrier 11A1 is expressed by innate lymphocytes and augments their activation.
J. Immunol. 190, 4263–4273. doi: 10.4049/jimmunol.1200732

Hegde, N. G. (2019). Livestock development for sustainable livelihood of small
farmers. Asian J. Res. Anim. Vet. Sci. 3, 1–17.

Heintzman, N. D., Stuart, R. K., Hon, G., Fu, Y., Ching, C. W., Hawkins, R. D.,
et al. (2007). Distinct and predictive chromatin signatures of transcriptional
promoters and enhancers in the human genome. Nat. Genet. 39, 311–318.
doi: 10.1038/ng1966

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., et al. (2010).
Simple combinations of lineage-determining transcription factors prime cis-
regulatory elements required for macrophage and B cell identities. Mol. Cell 38,
576–589. doi: 10.1016/j.molcel.2010.05.004

Jenuwein, T., and Allis, C. D. (2001). Translating the histone code. Science 293,
1074–1080. doi: 10.1126/science.1063127

Jiang, Y., Xie, M., Chen, W., Talbot, R., Maddox, J. F., Faraut, T., et al. (2014). The
sheep genome illuminates biology of the rumen and lipid metabolism. Science
344, 1168–1173. doi: 10.1126/science.1252806

Johnson, D. S., Mortazavi, A., Myers, R. M., and Wold, B. (2007). Genome-wide
mapping of in vivo protein-DNA interactions. Science 316, 1497–1502. doi:
10.1126/science.1141319

Kingsley, N. B., Kern, C., Creppe, C., Hales, E. N., Zhou, H., Kalbfleisch, T. S.,
et al. (2019). Functionally annotating regulatory elements in the equine genome
using histone mark ChIP-Seq. Genes 11:3. doi: 10.3390/genes11010003

Landt, S. G., Marinov, G. K., Kundaje, A., Kheradpour, P., Pauli, F.,
Batzoglou, S., et al. (2012). ChIP-seq guidelines and practices of the
ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831. doi:
10.1101/gr.136184.111

Langmead, B., and Salzberg, S. (2012). Fast gapped-read alignment with Bowtie 2.
Nat. Methods 9, 357–359.

Frontiers in Genetics | www.frontiersin.org 18 May 2021 | Volume 12 | Article 628849181

https://doi.org/10.3390/epigenomes3020008
https://doi.org/10.1038/s41467-018-06544-z
https://doi.org/10.1038/nrg2540
https://doi.org/10.1038/nrg2540
https://doi.org/10.1186/s13059-019-1815-z
https://doi.org/10.1186/s13059-019-1815-z
https://doi.org/10.1371/journal.pgen.1006997
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1038/ng.3142
https://doi.org/10.1073/pnas.1016071107
https://doi.org/10.1186/s12575-017-0059-0
https://doi.org/10.1186/s12575-017-0059-0
https://doi.org/10.1101/gad.2037511
https://doi.org/10.1038/srep30337
https://doi.org/10.1038/nature11082
https://doi.org/10.1038/nbt.1662
https://doi.org/10.1038/nmeth.1906
https://doi.org/10.1038/nmeth.1906
https://doi.org/10.1038/nprot.2017.124
https://doi.org/10.1074/mcp.M113.035600
https://doi.org/10.1186/s12915-019-0687-8
https://doi.org/10.1186/s12915-019-0687-8
https://doi.org/10.1038/nprot.2012.101
https://doi.org/10.1038/nprot.2012.101
https://doi.org/10.1128/MCB.16.6.2802
https://doi.org/10.3389/fgene.2014.00329
https://doi.org/10.1128/mcb.10.3.991
https://doi.org/10.1371/journal.pcbi.1002687
https://doi.org/10.1101/gad.277863.116
https://doi.org/10.1371/journal.pgen.1000952
https://doi.org/10.1146/annurev-animal-020518-114913
https://doi.org/10.1101/166652
https://doi.org/10.1038/s41586-020-2093-3
https://doi.org/10.1186/1471-2164-14-774
https://doi.org/10.1093/bioinformatics/btx595
https://doi.org/10.1186/s13072-017-0165-x
https://doi.org/10.1016/j.ydbio.2014.09.032
https://doi.org/10.4049/jimmunol.1200732
https://doi.org/10.1038/ng1966
https://doi.org/10.1016/j.molcel.2010.05.004
https://doi.org/10.1126/science.1063127
https://doi.org/10.1126/science.1252806
https://doi.org/10.1126/science.1141319
https://doi.org/10.1126/science.1141319
https://doi.org/10.3390/genes11010003
https://doi.org/10.1101/gr.136184.111
https://doi.org/10.1101/gr.136184.111
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-628849 May 18, 2021 Time: 13:59 # 19

Davenport et al. Epigenetic Annotation of Sheep Tissues

Lee, B. K., and Iyer, V. R. (2012). Genome-wide studies of CCCTC-binding factor
(CTCF) and cohesin provide insight into chromatin structure and regulation.
J. Biol. Chem. 287, 30906–30913. doi: 10.1074/jbc.R111. 324962

Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., and Pfister, H. (2014). UpSet:
visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph. 20, 1983–
1992. doi: 10.1109/TVCG.2014.2346248

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009).
The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–
2079. doi: 10.1093/bioinformatics/btp352

Meadows, J. R., Chan, E. K., and Kijas, J. W. (2008). Linkage disequilibrium
compared between five populations of domestic sheep. BMC Genet. 9:61. doi:
10.1186/1471-2156-9-61

Meissner, A., Mikkelsen, T. S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., et al.
(2008). Genome-scale DNA methylation maps of pluripotent and differentiated
cells. Nature 454, 766–770. doi: 10.1038/nature07107

Micsinai, M., Parisi, F., Strino, F., Asp, P., Dynlacht, B. D., and Kluger, Y.
(2012). Picking ChIP-seq peak detectors for analyzing chromatin modification
experiments. Nucleic Acids Res. 40:e70. doi: 10.1093/nar/gks048

Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos,
G., et al. (2007). Genome-wide maps of chromatin state in pluripotent and
lineage-committed cells. Nature 448, 553–560. doi: 10.1038/nature06008

Naval-Sanchez, M., Nguyen, Q., McWilliam, S., Porto-Neto, L. R., Tellam, R.,
Vuocolo, T., et al. (2018). Sheep genome functional annotation reveals proximal
regulatory elements contributed to the evolution of modern breeds. Nat.
Commun. 9:859. doi: 10.1038/s41467-017-02809-1

Pai, A. A., Bell, J. T., Marioni, J. C., Pritchard, J. K., and Gilad, Y. (2011). A genome-
wide study of DNA Methylation patterns and gene expression levels in multiple
human and chimpanzee tissues. PLoS Genet. 7:e1001316. doi: 10.1371/journal.
pgen.1001316

Park, P. J. (2009). ChIP-seq: advantages and challenges of a maturing technology.
Nat. Rev. Genet. 10, 669–680. doi: 10.1038/nrg2641

Park, H. S. (2018). A short report on the markov property of DNA sequences
on 200-bp genomic units of roadmap genomics ChromHMM annotations: a
computational perspective. Genomics Inform. 16:e27. doi: 10.5808/GI.2018.16.
4.e27

Pauler, F. M., Sloane, M. A., Huang, R., Regha, K., Koerner, M. V., Tamir, I.,
et al. (2009). H3K27me3 forms BLOCs over silent genes and intergenic regions
and specifies a histone banding pattern on a mouse autosomal chromosome.
Genome Res. 19, 221–233. doi: 10.1101/gr.080861.108

Peng, S., Kuroda, M. I., and Park, P. J. (2010). Quantized correlation coefficient
for measuring reproducibility of ChIP-chip data. BMC Bioinformatics 11:399.
doi: 10.1186/1471-2105-11-399

Phillips-Cremins, J. E., Sauria, M. E. G., Sanyal, A., Gerasimova, T. I., Lajoie,
B. R., Bell, J. S. K., et al. (2013). Architectural protein subclasses shape 3D
organization of genomes during lineage commitment. Cell 153, 1281–1295.
doi: 10.1016/j.cell.2013.04.053

Quinlan, A. R. (2014). BEDTools: the swiss-army tool for genome feature
analysis. Curr. Protoc. Bioinformatics 47, 11.12.1–34. doi: 10.1002/0471250953.
bi1112s47

Quinodoz, M., Naef, F., Gobet, C., and Gustafson, K. (2014). Characteristic bimodal
profiles of RNA polymerase II at thousands of active mammalian promoters.
Genome Biol. 15:R85. doi: 10.1186/gb-2014-15-6-r85

Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A., and Manke, T. (2014). deepTools:
a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42,
187–191. doi: 10.1093/nar/gku365

Rao, S. S. P., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D.,
Robinson, J. T., et al. (2014). A 3D map of the human genome at kilobase
resolution reveals principles of chromatin looping. Cell 159, 1665–1680. doi:
10.1016/j.cell.2014.11.021

Rexroad, C., Vallet, J., Matukumalli, L. K., Reecy, J., Bickhart, D., Blackburn, H.,
et al. (2019). Genome to phenome: improving animal health, production, and
well-being - a new USDA blueprint for animal genome research 2018–2027.
Front. Genet. 10:327. doi: 10.3389/fgene.2019.00327

Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., et al.
(2007). Genome-wide profiles of STAT1 DNA association using chromatin
immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–
657. doi: 10.1038/nmeth1068

Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S.,
Getz, G., et al. (2011). Integrative genomics viewer. Nat. Biotechnol. 29, 24–26.
doi: 10.1038/nbt.1754

Salavati, M., Caulton, A., Clark, R., Gazova, I., Smith, T. P. L., Worley, K. C., et al.
(2020). Global analysis of transcription start sites in the new ovine reference
genome (Oar rambouillet v1.0). Front. Genet. 11:580580. doi: 10.3389/fgene.
2020.580580

Schmidt, D., Schwalie Petra, C., Wilson Michael, D., Ballester, B., Gonçalves, Â,
Kutter, C., et al. (2012). Waves of retrotransposon expansion remodel genome
organization and CTCF binding in multiple mammalian lineages. Cell 148,
335–348. doi: 10.1016/j.cell.2011.11.058

Schones, D. E., Cui, K., Cuddapah, S., Roh, T. Y., Barski, A., Wang, Z., et al. (2008).
Dynamic regulation of nucleosome positioning in the human genome. Cell 132,
887–898. doi: 10.1016/j.cell.2008.02.022

Sharifi-Zarchi, A., Gerovska, D., Adachi, K., Totonchi, M., Pezeshk, H., Taft, R.J.,
et al. (2017). DNA methylation regulates discrimination of enhancers from
promoters through a H3K4me1-H3K4me3 seesaw mechanism. BMCGenomics.
18, 964. doi: 10.1186/s12864-017-4353-7

Siska, C., and Kechris, K. (2017). Differential correlation for sequencing data. BMC
Res. Notes 10:54. doi: 10.1186/s13104-016-2331-9

Song, Q., Decato, B., Hong, E. E., Zhou, M., Fang, F., Qu, J., et al. (2013). A
reference methylome database and analysis pipeline to facilitate integrative
and comparative epigenomics. PLoS One 8:e81148. doi: 10.1371/journal.pone.
0081148

Szabo, Q., Bantignies, F., and Cavalli, G. (2019). Principles of genome folding
into topologically associating domains. Sci. Adv. 5:1668. doi: 10.1126/sciadv.
aaw1668

Teng, L., and Tan, K. (2012). Finding combinatorial histone code by semi-
supervised biclustering. BMCGenomics 13:301. doi: 10.1186/1471-2164-13-301

The ENCODE Project Consortium (2012). An integrated encyclopedia of DNA
elements in the human genome. Nature 489, 57–74. doi: 10.1038/nature11247

Thomas, R., Thomas, S., Holloway, A. K., and Pollard, K. S. (2017). Features that
define the best ChIP-seq peak calling algorithms. Brief. Bioinform. 18, 441–450.
doi: 10.1093/bib/bbw035

Tuggle, C. K., Giuffra, E., White, S. N., Clarke, L., Zhou, H., Ross, P. J., et al. (2016).
GO-FAANG meeting: a gathering on functional annotation of animal genomes.
Anim. Genet. 47, 528–533. doi: 10.1111/age.12466

Uchiyama, R., Kupkova, K., Shetty, S. J., Linford, A. S., Pray-Grant, M. G., Wagar,
L. E., et al. (2018). Histone H3 lysine 4 methylation signature associated with
human undernutrition. Proc. Natl. Acad. Sci. U.S.A. 115, E11264–E11273. doi:
10.1073/pnas.1722125115

Vietri Rudan, M., Barrington, C., Henderson, S., Ernst, C., Odom, D. T., Tanay,
A., et al. (2015). Comparative Hi-C reveals that CTCF underlies evolution of
chromosomal domain architecture. Cell Rep. 10, 1297–1309. doi: 10.1016/j.
celrep.2015.02.004

Villar, D., Berthelot, C., Aldridge, S., Rayner, T. F., Lukk, M., Pignatelli, M., et al.
(2015). Enhancer evolution across 20 mammalian species. Cell 160, 554–566.
doi: 10.1016/j.cell.2015.01.006

Wang, M., Hancock, T. P., Chamberlain, A. J., Vander Jagt, C. J., Pryce, J. E.,
Cocks, B. G., et al. (2018). Putative bovine topological association domains
and CTCF binding motifs can reduce the search space for causative regulatory
variants of complex traits. BMC Genomics 19:395. doi: 10.1186/s12864-018-
4800-0

Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., et al.
(2008). Combinatorial patterns of histone acetylations and methylations in the
human genome. Nat. Genet. 40, 897–903. doi: 10.1038/ng.154

Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Pääbo, S., Rebhan, M., et al.
(2007). Distribution, silencing potential and evolutionary impact of promoter
DNA methylation in the human genome. Nat. Genet. 39, 457–466. doi: 10.1038/
ng1990

Weintraub, A. S., Li, C. H., Zamudio, A. V., Sigova, A. A., Hannett, N. M., Day,
D. S., et al. (2017). YY1 is a structural regulator of enhancer-promoter loops.
Cell 171, 1573–1588.e28. doi: 10.1016/j.cell.2017.11.008

Xiang, R., Berg, I., MacLeod, I. M., Hayes, B. J., Prowse-Wilkins, C. P., Wang, M.,
et al. (2019). Quantifying the contribution of sequence variants with regulatory
and evolutionary significance to 34 bovine complex traits. Proc. Natl. Acad. Sci.
U.S.A. 116, 19398–19408. doi: 10.1073/pnas.1904159116

Frontiers in Genetics | www.frontiersin.org 19 May 2021 | Volume 12 | Article 628849182

https://doi.org/10.1074/jbc.R111.324962
https://doi.org/10.1109/TVCG.2014.2346248
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1186/1471-2156-9-61
https://doi.org/10.1186/1471-2156-9-61
https://doi.org/10.1038/nature07107
https://doi.org/10.1093/nar/gks048
https://doi.org/10.1038/nature06008
https://doi.org/10.1038/s41467-017-02809-1
https://doi.org/10.1371/journal.pgen.1001316
https://doi.org/10.1371/journal.pgen.1001316
https://doi.org/10.1038/nrg2641
https://doi.org/10.5808/GI.2018.16.4.e27
https://doi.org/10.5808/GI.2018.16.4.e27
https://doi.org/10.1101/gr.080861.108
https://doi.org/10.1186/1471-2105-11-399
https://doi.org/10.1016/j.cell.2013.04.053
https://doi.org/10.1002/0471250953.bi1112s47
https://doi.org/10.1002/0471250953.bi1112s47
https://doi.org/10.1186/gb-2014-15-6-r85
https://doi.org/10.1093/nar/gku365
https://doi.org/10.1016/j.cell.2014.11.021
https://doi.org/10.1016/j.cell.2014.11.021
https://doi.org/10.3389/fgene.2019.00327
https://doi.org/10.1038/nmeth1068
https://doi.org/10.1038/nbt.1754
https://doi.org/10.3389/fgene.2020.580580
https://doi.org/10.3389/fgene.2020.580580
https://doi.org/10.1016/j.cell.2011.11.058
https://doi.org/10.1016/j.cell.2008.02.022
https://doi.org/10.1186/s12864-017-4353-7
https://doi.org/10.1186/s13104-016-2331-9
https://doi.org/10.1371/journal.pone.0081148
https://doi.org/10.1371/journal.pone.0081148
https://doi.org/10.1126/sciadv.aaw1668
https://doi.org/10.1126/sciadv.aaw1668
https://doi.org/10.1186/1471-2164-13-301
https://doi.org/10.1038/nature11247
https://doi.org/10.1093/bib/bbw035
https://doi.org/10.1111/age.12466
https://doi.org/10.1073/pnas.1722125115
https://doi.org/10.1073/pnas.1722125115
https://doi.org/10.1016/j.celrep.2015.02.004
https://doi.org/10.1016/j.celrep.2015.02.004
https://doi.org/10.1016/j.cell.2015.01.006
https://doi.org/10.1186/s12864-018-4800-0
https://doi.org/10.1186/s12864-018-4800-0
https://doi.org/10.1038/ng.154
https://doi.org/10.1038/ng1990
https://doi.org/10.1038/ng1990
https://doi.org/10.1016/j.cell.2017.11.008
https://doi.org/10.1073/pnas.1904159116
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-628849 May 18, 2021 Time: 13:59 # 20

Davenport et al. Epigenetic Annotation of Sheep Tissues

Xu, H., Beasley, M. D., Warren, W. D., van der Horst, G. T., and McKay, M. J.
(2005). Absence of mouse REC8 cohesin promots synapsis of sister chromatids
in meiosis. Dev. Cell 8, 949–961.

Young, E. T., and Sinsheimer, R. L. (1965). A comparison of the initial actions of
spleen deoxyribonuclease and pancreas deoxyribonuclease. J. Biol. Chem. 240,
1274–1280.

Young, M. D., Willson, T. A., Wakefield, M. J., Trounson, E., Hilton, D. J., Blewitt,
M. E., et al. (2011). ChIP-seq analysis reveals distinct H3K27me3 profiles that
correlate with transcriptional activity. Nucleic Acids Res. 39, 7415–7427. doi:
10.1093/nar/gkr416

Zang, C., Schones, D. E., Zeng, C., Cui, K., Zhao, K., and Peng, W. (2009).
A clustering approach for identification of enriched domains from histone
modification ChIP-Seq data. Bioinformatics 25, 1952–1958. doi: 10.1093/
bioinformatics/btp340

Zhang, B., Zhou, Y., Lin, N., Lowdon, R. F., Hong, C., Nagarajan, R. P., et al. (2013).
Functional DNA methylation differences between tissues, cell types, and across
individuals discovered using the M&M algorithm. Genome Res. 23, 1522–1540.
doi: 10.1101/gr.156539.113

Zhang, X., Bernatavichute, Y. V., Cokus, S., Pellegrini, M., and Jacobsen, S. E.
(2009). Genomewide analysis of mono-, di- and trimethylation of histone H3

lysine 4 in Arabidopsis Thaliana. Genome Biol. 10:R62. doi: 10.1186/gb-2009-
10-6-r62

Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E.,
et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9:R137.
doi: 10.1186/gb-2008-9-9-r137

Zhao, C., Carrillo, J. A., Tian, F., Zan, L., Updike, S. M., Zhao, K., et al. (2015).
Genome-wide H3K4me3 analysis in angus cattle with divergent tenderness.
PLoS One 10:e0115358. doi: 10.1371/journal.pone.0115358

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Davenport, Massa, Bhattarai, McKay, Mousel, Herndon, White,
Cockett, Smith and Murdoch. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 20 May 2021 | Volume 12 | Article 628849183

https://doi.org/10.1093/nar/gkr416
https://doi.org/10.1093/nar/gkr416
https://doi.org/10.1093/bioinformatics/btp340
https://doi.org/10.1093/bioinformatics/btp340
https://doi.org/10.1101/gr.156539.113
https://doi.org/10.1186/gb-2009-10-6-r62
https://doi.org/10.1186/gb-2009-10-6-r62
https://doi.org/10.1186/gb-2008-9-9-r137
https://doi.org/10.1371/journal.pone.0115358
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-641788 June 10, 2021 Time: 17:15 # 1

ORIGINAL RESEARCH
published: 16 June 2021

doi: 10.3389/fgene.2021.641788

Edited by:
Christopher K. Tuggle,

Iowa State University, United States

Reviewed by:
Michelle Halstead,

Institut National de Recherche pour
l’Agriculture, l’Alimentation et

l’Environnement (INRAE), France
Eveline M. Ibeagha-Awemu,

Agriculture and Agri-Food Canada
(AAFC), Canada

*Correspondence:
Carrie J. Finno

cjfinno@gmail.com;
cjfinno@ucdavis.edu

Specialty section:
This article was submitted to

Livestock Genomics,
a section of the journal

Frontiers in Genetics

Received: 14 December 2020
Accepted: 21 May 2021

Published: 16 June 2021

Citation:
Peng S, Bellone R, Petersen JL,

Kalbfleisch TS and Finno CJ (2021)
Successful ATAC-Seq From

Snap-Frozen Equine Tissues.
Front. Genet. 12:641788.

doi: 10.3389/fgene.2021.641788

Successful ATAC-Seq From
Snap-Frozen Equine Tissues
Sichong Peng1, Rebecca Bellone1,2, Jessica L. Petersen3, Theodore S. Kalbfleisch4 and
Carrie J. Finno1*

1 Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis,
CA, United States, 2 Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA,
United States, 3 Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States, 4 Department
of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States

An assay for transposase-accessible chromatin with high-throughput sequencing
(ATAC-seq) has become an increasingly popular method to assess genome-wide
chromatin accessibility in isolated nuclei from fresh tissues. However, many biobanks
contain only snap-frozen tissue samples. While ATAC-seq has been applied to frozen
brain tissues in human, its applicability in a wide variety of tissues in horse remains
unclear. The Functional Annotation of Animal Genome (FAANG) project is an international
collaboration aimed to provide high quality functional annotation of animal genomes. The
equine FAANG initiative has generated a biobank of over 80 tissues from two reference
female animals and experiments to begin to characterize tissue specificity of genome
function for prioritized tissues have been performed. Due to the logistics of tissue
collection and storage, extracting nuclei from a large number of tissues for ATAC-seq
at the time of collection is not always practical. To assess the feasibility of using stored
frozen tissues for ATAC-seq and to provide a guideline for the equine FAANG project,
we compared ATAC-seq results from nuclei isolated from frozen tissue to cryopreserved
nuclei (CN) isolated at the time of tissue harvest in liver, a highly cellular homogenous
tissue, and lamina, a relatively acellular tissue unique to the horse. We identified 20,000–
33,000 accessible chromatin regions in lamina and 22–61,000 in liver, with consistently
more peaks identified using CN isolated at time of tissue collection. Our results suggest
that frozen tissues are an acceptable substitute when CN are not available. For more
challenging tissues such as lamina, nuclei extraction at the time of tissue collection is
still preferred for optimal results. Therefore, tissue type and accessibility to intact nuclei
should be considered when designing ATAC-seq experiments.

Keywords: FAANG, horse, cryopreserved, chromatin, epigenetics

INTRODUCTION

The completion of the equine genome assembly (Wade et al., 2009; Kalbfleisch et al., 2018) has
enabled research leading to novel discoveries concerning the health and reproduction of horses
(Finno and Bannasch, 2014; Ghosh et al., 2018; Raudsepp et al., 2019). However, despite having the
same genomic sequence, differential regulation of gene expression leads to tissue-specific profiles.
A lack of understanding of gene regulation has largely stalled research of complex traits in horses.
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In humans and mice, the Encyclopedia of DNA Elements
(ENCODE) project has provided an abundance of data for
understanding gene regulation and its role in complex diseases
and traits (Qu and Fang, 2013). Unfortunately, limited resources
are currently available in the horse. The Functional Annotation of
Animal Genome (FAANG) initiative (The FAANG Consortium
et al., 2015) is an international collaboration aimed to bridge
this gap between genotype and phenotype. The equine FAANG
project has successfully generated a biobank of over 80 tissues
and bodily fluids of two reference animals (Burns et al., 2018).
RNA-seq of 32 tissues (unpublished, data access: PRJEB26787),
as well as the identification of tissue specific histone marks for
eight prioritized tissues (Kingsley et al., 2019), from this biobank
has been performed. Additional projects are underway to identify
tissue specific chromatin states to integrate all of these datasets
and build a robust tissue specific functional annotation atlas in
the horse (Giuffra et al., 2019).

An important component of gene expression and regulation
is chromatin accessibility. Active genes and regulatory elements
are typically found within or near regions of the DNA accessible
to transcription factors. Therefore, identifying open chromatin
regions is a crucial step to identify and categorize tissue specific
regulatory elements in order to advance our understanding
of complex traits in the horse. An assay for transposase-
accessible chromatin with high-throughput sequencing (ATAC-
seq) (Buenrostro et al., 2015) is commonly used to identify
regions of open chromatin. A typical ATAC-seq protocol requires
nuclei extracted from fresh tissues. Halstead et al. (2020b)
proposed a modified ATAC-seq protocol to allow long-term
storage of cryopreserved nuclei (CN) extracted from fresh tissues.
Still, the intensive efforts needed to prepare and cryopreserve
nuclei during a large-scale tissue collection prove to be difficult.
Alternatively, Corces et al. (2017) successfully applied a modified
ATAC-seq (Omni-ATAC) protocol on frozen human brain
tissues. However, the applicability of Omni-ATAC has not been
tested in a wide variety of tissues in horse where nuclei extraction
may prove challenging. Additionally, it has been shown that
in cultured cells cryopreservation is preferable to flash-freezing
process in order to preserve native chromatin structures (Milani
et al., 2016). To our knowledge, no studies have investigated the
effect of snap freezing on tissues for ATAC-seq library generation
in comparison to CN preps. Additionally, the library preparation
step is a major source of variation in RNA-seq studies (McIntyre
et al., 2011), particularly at low read depth. As a result, RNA-
seq data generated from different laboratories or at different
times cannot often be directly compared. For a collaborative
project, it is important to assess the effect of technical variations
to better inform project planning and analytical decisions for
data integration.

To address these gaps of knowledge in the applicability of
ATAC-seq in snap-frozen horse tissues, and to provide a guide
for future ATAC-seq studies to assess chromatin accessibility,
we compared data from CN prepared from fresh tissue to that
of nuclei extracted from snap-frozen tissues collected from the
two mares from the initial equine FAANG biobank study (Burns
et al., 2018). In order for this comparison to be informative
and applicable to a wide range of tissues, we utilized both liver,

a highly cellular and homogenous tissue type, and lamina, a
relatively acellular tissue unique to the horse. Equine laminae
are highly vascularized interdigitated dermal and epidermal
tissues in the equine foot that form the attachment between
the hoof wall and the third phalanx. Inflammation of laminae
in horses (i.e., laminitis) is a devastating disease that impacts
many breeds of horses and often leads to euthanasia. Therefore,
gene regulation in laminae is of particular interest to equine
geneticists and veterinary practitioners as this debilitating and
life-threatening disease estimated to impact up to 34% of the
horse population (Wylie et al., 2011). Laminitis is also the
primary clinical consequence of equine metabolic syndrome
(EMS) (Durham et al., 2019). EMS is a complex syndrome that
requires constant veterinarian care and diet control, impacting
an estimated 18 to 27 percent of horse population (Durham et al.,
2019). Liver is the primary metabolic organ with a homogenously
cellular structure. Detailed knowledge of gene expressions and
regulations in healthy liver provides a baseline for studying
impaired metabolism in horses with EMS. Additionally, to assess
the effect of library preparation techniques, snap-frozen tissues
and CN from this pilot study were sent to two different core
laboratories for library generation and subsequent sequencing.
We hypothesized that (1) ATAC-seq using frozen tissues would
identify comparable peaks to those using CN from fresh tissues,
(2) libraries generated from liver will have better quality than
those from laminae, and (3) similar to what was found in RNA-
seq studies there will be a significant amount of variation between
the libraries generated by two laboratories.

MATERIALS AND METHODS

Tissue Collection and Nuclei Isolation
Liver and lamina tissues from two mares (AH2 and AH1) were
collected as described in Burns et al. (2018). Briefly, two healthy
adult Thoroughbred mares (AH1: 5 years old; AH2: 4 years old)
were closely examined by veterinarians prior to tissue collection.
Nuclei were isolated from liver and lamina tissues immediately
following tissue collection and cryopreserved following protocols
published in Halstead et al. (2020a) with some modifications for
lamina. Briefly, additional incubation periods with collagenase
were added to assist in homogenization (see Supplementary
Material). These are referred to as CN. Additionally, at time of
collection, approximately 1 g aliquots of tissue were snap frozen
in liquid nitrogen for nuclei extraction at a later time. These are
referred to as frozen tissue-derived nuclei (FTDN).

ATAC-Seq Library Preparation and
Sequencing
Both snap frozen tissues and CN were stored at −80◦C
for 3 years until shipped on dry ice overnight to two
commercial laboratories (L1 and L2) for library preparation.
Nuclei were extracted from frozen tissues using each laboratory’s
internally optimized protocol (see Supplementary Material).
Extracted Nuclei (FTDN) and CN were used to prepare ATAC
libraries (Supplementary Methods and Supplementary Table 1).
Libraries were sequenced on an Illumina HiSeq 4000, paired-end
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2× 75 bp (L1) or NextSeq 500, paired-end 2× 42 bp (L2) with a
targeted depth of 30 million read pairs.

ATAC-Seq Data Analysis
Read QC was carried out using FastQC (Andrews, 2010).
Adapters and low-quality ends were trimmed using TrimGalore
(Krueger, 2019) and Cutadapt (Martin, 2011). Reads were
then aligned to reference genome EquCab3 using BWA-MEM
algorithm from BWA (Li and Durbin, 2009) using default
parameters. Post-alignment filtering was employed to remove low
mapping quality reads, mitochondrial reads, and PCR duplicates
using Samtools (Li et al., 2009) and Sambamba (Tarasov et al.,
2015). Genome coverage was analyzed using deepTools (Ramírez
et al., 2016). Specifically, bamCoverage was used to convert
bam files to bigwig files, using RPKM to normalize coverage
with exact scaling (–normalizeUsing RPKM –exactScaling). Then
multibigwigSummary was used to calculate average coverage
across 1,000 bp windows (-bs 1,000). plotPCA was used to
calculate eigen values based on all genomic windows (–ntop 0)
and top 2 principle components were plotted using matplotlib
(Caswell et al., 2020). Custom scripts were used to analyze sample
correlation, clustering, and correlation with ChIP-seq data and
annotated genes using Python packages numpy (Harris et al.,
2020), scipy (SciPy 1.0 Contributors et al., 2020), pandas (Reback
et al., 2020), and matplotlib (Caswell et al., 2020). Open regions
were identified using HMMRATAC (–threshold 2 –score fc -u
20 -l 10) (Tarbell and Liu, 2019) and MACS2 (-q 0.05 -B –
broad -f BAMPE) (Zhang et al., 2008). Jaccard indices were
calculated using pybedtools (Quinlan and Hall, 2010; Dale et al.,
2011)Quinlan and Hall, 2010) for each pair of biologic replicates
with default parameters. More detailed pipeline is available at
https://github.com/SichongP/FAANG_ATACseq.

Histone ChIP-Seq Data Processing
Histone ChIP-seq data were downloaded from FAANG data
repository1 under accession PRJEB35307. Histone marks were
determined according to Kingsley et al. (2019) and compared
with open chromatin regions analyzed in this study for both
liver and lamina.

ATAC-Seq Peak Validation With Histone
Marks
ATAC-seq peaks called by HMMRATAC and MACS2 were
validated using histone ChIP-seq data following (Tarbell and Liu,
2019) with modifications to utilize available data in the horse.
First, the following sets of peaks were generated from Kingsley
et al. (2019) data:

Real positive set (RP): peaks from either H3K4me1 or
H3K4me3 that overlap H3K27ac peaks
Real negative set (RN): peaks from H3K27me3 data

Then, following metrics were calculated for each dataset:

TP = number of bases in called

ATAC − seq peaks overlapping RP

1https://data.faang.org/home

FP = number of bases in called

ATAC − seq peaks overlapping RN

Precision =
TP

TP + FP

Recall =
TP
RP

False Positive Rate (FPR) =
FP
RN

Increasing quality scores as produced by MACS2 or
HMMRATAC were used as the cutoff score to filter peaks
before the remaining peaks were used to calculate above metrics.
Changes in the metrics as the cutoff score increased were used
to identify the thresholds at which to filter final sets of open
chromatin peaks.

RNA-Seq Data Processing
RNA-seq reads from liver and lamina of the same two
animals were available from a separate project under European
Nucleotide Archive accession PRJEB26787. Briefly, RNA was
isolated from liver or lamina tissues using Trizol chloroform
phase separation followed by a column cleanup using Zymo
Research Direct-Zol Mini columns. TruSeq mRNA libraries
were prepared at Minnesota Genomics Center (Minneapolis,
MN, United States) and sequenced at 125 bp paired-end. These
reads were quantified against Equcab3 Ensembl annotated genes
(Kalbfleisch et al., 2018; Cunningham et al., 2019) using Salmon
(Patro et al., 2017) mapping-based mode. Transcript level counts
were aggregated into gene level using the R package tximport
(Soneson et al., 2015) and final counts were normalized using
the variance-stabilizing transformation method from DESeq2 vst
function (Love et al., 2014).

ATAC-Seq Peak Validation With RNA-Seq
Data
Ensembl annotated genes were classified as open or closed
depending on whether their presumed promoter regions (1 kb
upstream of annotated gene start) overlapped with identified
ATAC-seq peaks. These genes were then compared to their RNA
abundance estimated using FAANG data.

RESULTS

Libraries prepared by two laboratories (L1 and L2) using nuclei
isolated from snap-frozen tissues (FTDN) or cryopreserved from
tissues at time of collection (CN) from liver and lamina of
two animals (AH1 and AH2, Thoroughbred adult mares) were
sequenced at PE75 on an Illumina HiSeq 4000 (L1) or PE42 on
an Illumina NextSeq 500 (L2). Figure 1 shows a schematic of the
experimental design.
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FIGURE 1 | A schematic of the experimental design. All samples were
prepared at UC Davis prior to shipment to the core laboratories. Samples
used were obtained from an equine biobank of two horses (AH1 and AH2), as
previously described (Burns et al., 2018).

Library Fragmentation
ATAC-seq libraries are expected to present a laddering pattern
that corresponds to different nucleosome-bound fragments.
Supplementary Figures 1, 2 show fragment size distributions
of ATAC libraries as determined by sequencing and Agilent
Fragment Analyzer (L1) or TapeStation (L2) from L1 and L2,
respectively. In general, liver libraries showed distinguishable
laddering pattern while in lamina libraries, only the fragment size
corresponding to nucleosome-free fragments was observed.

Sequencing Read Lengths
Since libraries from L1 and L2 were sequenced at different lengths
(75 and 42 bp, respectively), we trimmed longer reads from L1
from 3′ down to 42 bp and compared read alignment statistics to
those obtained using full length reads (75 bp), after appropriate
quality trimming. There were no significant changes in read
alignment statistics, with less than 0.02% fewer reads aligned and
less than 0.3% fewer reads identified as duplicates for each library

after length trimming. Therefore, we proceeded with data analysis
using original full length reads from both laboratories.

Duplication Rate and Mitochondrial
Contamination
Overall, liver libraries have higher mitochondrial contamination
than lamina libraries, likely due to higher metabolic activities
in liver (Supplementary Figure 3A). Among liver samples,
CN libraries prepared by L1 contained 56 and 81% duplicates,
with 37 and 23% mitochondrial reads in AH1 and AH2,
respectively. In comparison, the CN libraries from L2 contained
31 and 24% duplicates, with 23 and 10% mitochondrial reads
from AH1 and AH2, respectively, (Supplementary Figure 3A).
It was suspected that the higher amount of mitochondrial
contamination contributed to the higher duplication rate and led
to lower library complexity. To test this hypothesis, resequencing
was performed for the liver CN libraries from L1. The number
of unique nuclear reads from AH2 largely remained unchanged
despite increasing read depth three-fold. For AH1, however,
twice the number of unique nuclear reads was obtained after
the total read depth was increased (Supplementary Figure 3B).
Both the fingerprint plot and fraction of reads in peaks (FRiP)
identified a decrease in enrichment for AH1 with increased
sequencing depth but little change for AH2 (Supplementary
Figure 3C and Supplementary Table 2). This suggests that, in
the AH1 library, while further sequencing increased the number
of unique reads, it did not substantially improve peak detection.
Lowered enrichment in the resequenced AH1 library suggests
that a majority of additional unique reads are less enriched
background reads. In the AH2 library, however, resequencing did
not significantly improve library complexity, due to more cycles
of amplification during library preparation and therefore, higher
PCR duplication rate in the library.

Genome Coverage and Enrichment
To assess which part of the ATAC-seq protocol contributed more
to library variations and complexities, we compared genome
coverage and enrichment (Figure 2). Principle component
analysis (PCA) revealed that liver libraries generally clustered
closely together, while more variation was observed for the
lamina libraries (Figure 2A). Within the lamina libraries, there
is a clear clustering based on which laboratory prepared the
libraries. The lamina libraries from L2 clustered closely with
each other and with liver libraries while the lamina libraries
from L1 clustered further away from liver libraries (Figure 2A).
Heatmaps of the genome coverage Pearson correlation showed
that liver CN libraries yielded well-correlated results, with the
exception of that from AH2 by L1 (Figure 2B). This is consistent
with low complexity of that library shown in Supplementary
Figure 3. On the other hand, little correlation is observed among
lamina library preparations (Figure 2B). Since no input libraries
were used for ATAC-seq experiments (Buenrostro et al., 2015),
synthetic Jensen-Shannon distance (SJSD) was used, together
with Area Under Curve (AUC) from fingerprint plots, to assess
the enrichment of each library (Figure 2C and Supplementary
Table 3). In general, liver libraries showed higher enrichment
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FIGURE 2 | Read coverage correlation between libraries. Read depth was normalized across all libraries. (A) Principal component analysis of genome coverage,
showing the first two principal components. (B) Pearson correlation of genome coverage in liver (left) and lamina (right) libraries. Linkage was calculated using
Farthest Point Algorithm. (C) Fingerprint plot of genome coverage in liver (left) and lamina (right) libraries. (D) Enrichment as measured by FRiP in each library.

than lamina libraries. Within liver libraries, CN libraries were
more enriched than FTDN libraries from L1, while both libraries
from L2 showed similar enrichment. Within lamina libraries,
both laboratories generated more enriched libraries from CN
than from FTDN. This is further exemplified in Figure 2D,
showing the FRiP in each library.

Peak Calling
To identify accessible chromatin regions, MACS2 (Zhang et al.,
2008) and HMMRATAC (Tarbell and Liu, 2019) were used
to call peaks and results from both programs were compared.
To control for sequencing depth, all libraries were down-
sampled to 60 million unique reads that are suitable for peak
calling using sambamba view function. Using MACS2 (-q 0.05
-B–broad -f BAMPE), 31,000–721,000 peaks were identified.
While using HMMRATAC (–threshold 2 –score fc -u 20 -
l 10), 14,000–514,000 peaks were identified. Overall, using
HMMRATAC, peaks identified from lamina libraries had lower
quality [fewer (Figure 3A) and shorter peaks (Figure 3B) with
lower scores (Figure 3C)] than those from liver libraries. For liver
libraries, CN generated comparable results to FTDN while, in
lamina libraries, CN outperformed FTDN (Figure 3D). Similar
results were obtained when peaks were called using MACS2
(Supplementary Figures 4A,D).

To better assess the quality of peaks, we used histone mark
ChIP-seq data generated from the same samples as described
in Kingsley et al. (2019). A set of metrics, precision, recall,
and false positive rate (FPR), were generated for different cutoff
scores as described in Methods. These metrics were then plotted
against cutoff scores. Consistent with the observation of peak
lengths and scores, peaks called using HMMRATAC from liver
libraries had higher precision and recall rates and lower false
positive rates (Figure 3E) than lamina (Figure 3F). Consistent
with observations of library quality, CN liver libraries of AH2
from L1 have lower recall and precision rates than that from L2 or
that of AH1, despite having same unique read depth (Figure 3E).
Comparing peaks identified by two programs, HMMRATAC
identified peaks with higher recall and precision rates than
MACS2 (Supplementary Figures 4E,F).

ATAC-Seq Peak Validation
Despite higher quality from L2 in liver AH2 CN library, L1
produced the only libraries from laminae with high quality peaks
(Figure 3F). Therefore, to maximize usable data, libraries from
L1 were chosen for all further analyses. HMMRATAC was used
as it produced generally better metrics and because it allowed
interrogation of nucleosome-bound regions vs. nucleosome-free
regions for future studies.
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FIGURE 3 | HMMRATAC peak calling statistics. (A) Number of peaks, (B) peak length distribution, (C) peak score distribution, and (D) percent of genome covered
by peaks for each library. (E,F) Peak metrics assessed using ChIP-seq dataset in liver (E) and lamina (F) libraries.

A cutoff score, where the precision and recall lines intercept,
was used for each sample set to filter peaks identified by
HMMRATAC. Final peak counts are shown in Table 1.
Consistent with previous observations, liver samples generated
the most high-quality peaks, while CN libraries outperformed
FTDN libraries. Using UpSetPlot (Nothman, 2020) based on
(Lex et al., 2014), we identified overlapping peaks in each
dataset (Figure 4A). AH1 liver CN library generated the
most unique peaks, consistent with the previous observation
that this library has highest library complexity. Since 17,347

unique peaks were identified from this library only, a precision
score of these unique peaks was calculated using histone
ChIP-seq data mentioned above. A precision score of 18.4%
was observed in these peaks, suggesting a high rate of false
positive peaks. This further highlights the importance of
replicates in an ATAC-seq experiment. FTDN libraries did
not yield significant number of unique peaks that were not
detected in CN libraries. Despite a relatively low quality of the
lamina libraries, 12,256 unique peaks were detected from the
lamina libraries.

TABLE 1 | Cutoff used to filter peaks and metrics of filtered peaks.

Tissue Rep Nuclei prep Cutoff score Count AvePeakLen MedianPeakLen Bases covered Confirmed count Jaccard index

Liver AH1 CN 6 61,473 2,937.0 2,600 180,547,240

3,
64

6

0.
05

Liver AH2 CN 16 3,810 2,428.8 2,090 9,253,670

Liver AH1 FTDN 6 22,588 3,701.6 3,300 83,611,751

18
,5

96

0.
35

Liver AH2 FTDN 6 33,782 3,059.1 2,650 103,343,612

Lamina AH1 CN 6 28,418 3,106.6 2,650 88,284,203

23
,4

39

0.
51

Lamina AH2 CN 4 30,906 2,883.5 2,480 89,117,724

Lamina AH1 FTDN 2 19,886 5,061.4 4,300 100,651,092

17
,6

19

0.
35

Lamina AH2 FTDN 2 33,762 3,361.9 3,010 113,504,835

Filtered peaks and their corresponding cutoff scores in each library. AvePeakLen, Average peak length; MedianPeakLen, Median peak length; Bases covered, number of
bases covered by all peaks in a library; Confirmed count, overlapping peaks in both biological replicates; Jaccard index, jaccard index of two biological replicates.
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FIGURE 4 | Filtered ATAC-seq peaks. (A) Intersection plot of quality filtered peaks from each library. Bottom left panel shows filtered peak count in each library;
bottom right panel shows different intersections (BedTools, 1 bp minimum) of peaks where filled dots indicate presence of peaks in corresponding library; Top panel
shows peak count in each intersection. (B) Relationship between promoter accessibility and gene expression (mean vst transformed count) in liver (top left) and
lamina (top right). Green cell in ATAC peaks indicate presence of ATAC peaks and black cells indicate absence. Bottom panel shows bigwig tracks of RNA-seq and
ATAC-seq read abundance (normalized using RPKM)near APO genes (left, liver specific) and F2RL1 (right, lamina specific) transcription start sites.

As an in silico validation of the results, peaks were overlapped
with Ensembl gene annotation for EquCab3 (Kalbfleisch et al.,
2018) at promoter regions (1 kb upstream of annotated
gene start) to classify each promoter as open or closed.
These classified promoter regions were then compared to
RNA abundance at the corresponding gene level (Figure 4B).
In liver, AH1 CN identified more open promoters where
RNA expression levels are high but the results from the
two assays (CN and FTDN) were highly comparable for

this sample in liver. Fewer peaks were identified from AH2
CN, due to low library quality and issues in repeat freeze
thaw cycles as outlined in the discussion. In lamina, CN
assays identified more open promoters than FTDN. Manual
inspection of some highly abundant genes in liver and laminae
validate accurate identification of open chromatin in each
tissue (Figure 4B).

Overall, our results confirm that extracting nuclei from snap-
frozen tissues for ATAC-seq library preparations negatively
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affects the library quality, resulting in fewer peaks detected.
However, when CN from freshly collected tissue are not available,
these data show that snap-frozen tissues can be used to prepare
ATAC-seq libraries to give reliable peak calls, with the caveat that
some regions of open chromatin will be missed. However, results
from laminae suggest that for more challenging tissue types, fresh
tissue extraction is a requirement.

DISCUSSION

In this pilot study, we compared two tissues (liver and laminae,
representing homogenous cellular and relatively acellular nuclei
extraction, respectively) from the equine FAANG project for
ATAC-seq library generation, using two nuclei extraction
methods. Nuclei extracted and cryopreserved immediately after
tissue collection and nuclei isolated from snap-frozen tissues
were used to determine suitable methods for performing ATAC-
seq to identify accessible chromatin regions in a wide variety
of equine tissues for functional annotation. Similar to what
was identified by Halstead et al. (2020a), we determined
that ATAC-seq can be used to characterize open chromatin
in animal tissue but optimization is necessary to have a
robust data set across tissues. Further, we found that while
CN generally yield more peaks, frozen tissues can still
be used to isolate nuclei and identify accessible regions.
However, the quality of libraries generated by the frozen
tissue protocol suffered when nuclei were extracted from a
more challenging, relatively acellular tissue, such as laminae.
Therefore, for challenging tissues, care should be taken at time
of collection to prioritize those tissues for nuclei extraction and
cryopreservation when possible.

We also showed that the frozen tissue protocol is more
prone to variations introduced at the library preparation step.
Specifically, FTDN liver libraries generated at two different
laboratories only have a moderate correlation (0.68 for AH1
and 0.76 for AH2). Our analysis suggests that, similar to
RNA-seq experiments, library preparation can introduce large
variation that will impact subsequent data quality, specifically
peak detection for ATAC-seq studies. However, since the two
commercial laboratories used different internally optimized
protocols, it is impossible to determine whether the variation was
protocol-specific or lab-specific. Nonetheless, it is advisable for
all ATAC-seq library preparations to be performed at a single site
using the same protocols to minimize variability in datasets when
trying to integrate information.

During library preparation, the CN aliquot from AH2
was partially thawed twice by L1 (first for an optimization
experiment (data not shown) and then a second time to
perform the data collection). The nuclei obtained during the
second partial thawing were used in this study. Due to the
precipitation of nuclei and contaminating mitochondria, this
was likely the cause of low quality observed in that library
preparation. The effect of different read lengths used by
two laboratories was investigated and deemed to have no
significant impact on read alignment. Our analysis suggested
a detrimental impact on data quality by this practice and

resequencing of this particular library also did not improve
data quality nor was this resequencing effort able to identify
more peaks. Therefore, it is advisable to avoid repeated partial
thawing of CN aliquots.

Library fragment size screening using gel electrophoresis
proved to be predictive of final fragment size distribution
in sequencing results and data quality. As indicated in
Supplementary Figures 1, 2, a strong signature corresponding
to nucleosome-free fragments without accompanying signatures
for nucleosome-bound regions does not necessarily mean a high
enrichment of nucleosome-free fragments. It could also indicate
high levels of mitochondria contamination or fragmentation of
chromatins before tagmentation, which are likely the cases in
lamina libraries from L2.

We identified 20–33,000 accessible chromatin regions in
lamina and 22–61,000 in liver, largely in line with observations
of liver ATAC-seq from studies in other species (Ackermann
et al., 2016; Foissac et al., 2019; Liu et al., 2019; Halstead et al.,
2020b). As a preliminary study, we opted to include laboratory
replicates in lieu of technical replicates in order to assess the effect
of technical variations introduced during the library preparation
step. Technical replicates would allow further validation of
tissue specific open-chromatin. Following ENCODE standard
(Landt et al., 2012) for ChIP-seq experiments, two biological
replicates were collected for the FAANG project. However, more
replicates would have allowed a more robust comparison between
different protocols.

In this study, we demonstrated the feasibility of using snap-
frozen tissues for ATAC-seq experiments for the equine FAANG
project. For acellular tissues, more optimization is required
for ATAC-seq experiments. We also showed that significant
variation can be introduced during library preparation. This
study provides important guidelines for planning future ATAC-
seq experiments using equine FAANG tissues. We will use the
guidelines established here to conduct ATAC-seq experiments on
six other prioritized tissues in the mares. Furthermore, following
these guidelines should enable the most meaningful integration
of datasets across studies thus building a reliable functional tissue
specific atlas of the equine genome which would advance our
understanding of complex traits in the horse.
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Supplementary Figure 1 | Fragment size distributions of libraries from L1 as
determined by sequencing and Fragment Analyzer.

Supplementary Figure 2 | Fragment size distributions of libraries from L2 as
determined by sequencing and tapestation.

Supplementary Figure 3 | Duplication and mitochondrial contamination rates.
(A) Total, mitochondrial, and unique nuclear read counts of all libraries; (B)
Comparison between first sequencing run (left) and combined reads
(right) from L1 liver CN libraries; (C) Fingerprint plot of L1 CN liver
libraries.

Supplementary Figure 4 | MACS2 peak calling statistics. (A) Number of peaks,
(B) peak length distribution, (C) peak score distribution, and (D) percent of
genome covered by peaks for each library. (E,F) Peak metrics assessed using
ChIP-seq dataset in liver (E) and lamina (F) libraries.
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The Functional Annotation of ANimal Genomes (FAANG) project is a worldwide

coordinated action creating high-quality functional annotation of farmed and companion

animal genomes. The generation of a rich genome-to-phenome resource and supporting

informatic infrastructure advances the scope of comparative genomics and furthers the

understanding of functional elements. The project also provides terrestrial and aquatic

animal agriculture community powerful resources for supporting improvements to farmed

animal production, disease resistance, and genetic diversity. The FAANG Data Portal

(https://data.faang.org) ensures Findable, Accessible, Interoperable and Reusable (FAIR)

open access to the wealth of sample, sequencing, and analysis data produced by

an ever-growing number of FAANG consortia. It is developed and maintained by the

FAANG Data Coordination Centre (DCC) at the European Molecular Biology Laboratory’s

European Bioinformatics Institute (EMBL-EBI). FAANG projects produce a standardised

set of multi-omic assays with resulting data placed into a range of specialised open

data archives. To ensure this data is easily findable and accessible by the community,

the portal automatically identifies and collates all submitted FAANG data into a single

easily searchable resource. The Data Portal supports direct download from the multiple

underlying archives to enable seamless access to all FAANG data from within the portal

itself. The portal provides a range of predefined filters, powerful predictive search, and

a catalogue of sampling and analysis protocols and automatically identifies publications

associated with any dataset. To ensure all FAANG data submissions are high-quality, the

portal includes powerful contextual metadata validation and data submissions brokering

to the underlying EMBL-EBI archives. The portal will incorporate extensive new technical

infrastructure to effectively deliver and standardise FAANG’s shift to single-cellomics, cell

atlases, pangenomes, and novel phenotypic prediction models. The Data Portal plays a

key role for FAANG by supporting high-quality functional annotation of animal genomes,

through open FAIR sharing of data, complete with standardised rich metadata. Future

Data Portal features developed by the DCC will support new technological developments

for continued improvement for FAANG projects.

Keywords: FAANG, functional annotation, phenotype to genotype, FAIR data, agricultural genomics, Data Portal,

open access, metadata validation
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INTRODUCTION

The Functional Annotation of Animal Genomes Project
(FAANG) is a coordinated action to improve availability of
high-quality functional annotation of farmed and companion
animal genomes (Andersson et al., 2015; Tuggle et al., 2016;
Giuffra et al., 2019; Clark et al., 2020). Rich genome-to-phenome
resources are of particular importance in domesticated animals
of commercial importance for efforts to increase agricultural
production, but the available resources also impact upon the
fundamental understanding of functional elements, biomedical
science, evolution, and the environment. The FAANG project
comprises multiple globally distributed consortia working across
a growing range of species and committed to high-quality data
production and interpretation. The FAANG Data Coordination
Centre (DCC) at the European Molecular Biology Laboratory’s
European Bioinformatics Institute (EMBL-EBI) ensures that all
data generated by the project is richly described, consistently
reported, openly available, reusable, and clearly presented
(Harrison et al., 2018). The FAANG Data Portal1 plays a pivotal
role by coordinating and presenting the wealth of data generated
by the project to the scientific community. Its primary purpose
is to provide a searchable, unified view of the multi-omic
FAANG data held across specialised EMBL-EBI archives. Its
web interface and Application Programming Interface (API)
supports the identification and download of FAANG generated
and associated community datasets, as well as exploring the
associated rich validated metadata, protocols, and publications.
Here we describe the key features of this rich genome to phenome
resource and look to future developments that will expand it as
research advances.

METHODS

The FAANG Data Portal1 comprises a modern technology
stack with a microservice architecture design. Establishing each
component as a separate microservice enables more flexible,
scalable, and faster maintenance and development of new
features. The front-end Data Portal is written in Angular, an
open-source web application framework. Continuous integrated
deployment is managed by Kubernetes, an open-source system
to manage the Docker containers which contain all of the
code and software required to launch and run the Data
Portal components (Figure 1). It is deployed on the EMBL-EBI
Embassy Cloud infrastructure2, enabling a flexible and efficient
use of computational resources. The selection of open-source
frameworks matches the FAANG projects and EMBL-EBI’s ethos
of open development. The code has permissive Apache 2.0
licencing to allow the community to reuse and benefit from any
of the codebase. The use of Kubernetes and Docker containers
would permit the Data Portal to be easily deployed onto other
cloud infrastructures, such as Google Cloud or Amazon Web
Services, if required, aiding long-term sustainability. Another
advantage of deployment on the EMBL-EBI Embassy Cloud

1https://data.faang.org
2https://www.embassycloud.org/

is that the underlying datasets are held in the same data
centres for rapid access. Metadata search, from both the Data
Portal and programmatic API, is supported by a local backend
Elasticsearch metadata database. The Elasticsearch database is
essentially a customised full-text search engine built explicitly for
indexing the FAANG metadata and supports partial word search
(through custom tokenisation) with high specificity. Rather than
hosting duplicate copies of the data, the underlying data files
remain located in the specialised data archives such as the
European Nucleotide Archive (Amid et al., 2020) and European
Variation Archive. The Data Portal includes direct links and bulk
download support to directly obtain the relevant data files. It also
supports its own FTP site for hosting protocol and presentation
files not suitable for archive submission including track hub
files. Track data hubs provide a mechanism to store third-
party genome annotations within specifically formatted files for
distribution and display. Track hub file formats are optimised for
display throughweb-based genome browsers. FAANGutilises the
Track Hub Registry3 to seamlessly enable FAANG community
generated trackhub annotations to be made discoverable for use
with the UCSC (Lee et al., 2020) and Ensembl Genome Browsers
(Yates et al., 2020). The Data Portal infrastructure is already in
place to support track hub submissions, utilising the FAANG
Data Portal FTP site and EMBL-EBI Track Hub Registry (https://
trackhubregistry.org/). Presentation and linking to FAANG track
hubs will be improved in future releases of the Data Portal, so that
track hubs are clearly associated with FAANG datasets and users
can more quickly view them in the UCSC (Lee et al., 2020) and
Ensembl Genome Browsers (Yates et al., 2020).

Metadata standards are held in GitHub in JSON schema for
ease of rendering on the Data Portal and use in the validation
system. This also allows anyone in the community to propose
a metadata change through a pull request. The validation and
submission brokering data processing is performed in python
with asynchronous data processing also hosted in an Embassy
Cloud instance with user interaction through the FAANG
Data Portal interface. Documentation is managed through a
readthedocs GitHub instance4 that allows updating site text
without the need for redeployment of the full Data Portal.

RESULTS

The FAANG Data Portal
The FAANG Data Portal’s primary function is to collate and
clearly present the wealth of FAANG data to the community.
FAANG data is divided into clear record sections within the
Data Portal comprising organism metadata BioSample records,
specimen metadata BioSample records, full datasets, individual
raw data files, and individual processed analysis files. The portal
enables browsing of any of these interconnected sections making
it possible to navigate to all of the data records that stem from
a given organism. The record table views (Figure 2) provide
preconfigured filtering to narrow down the search, for example,

3https://trackhubregistry.org/
4https://dcc-documentation.readthedocs.io/en/latest/faq/
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FIGURE 1 | FAANG Data Portal architecture with local Elasticsearch metadata database, python, and JSON-schema contextual validation and brokering of validated

data to underlying public archives.

by species or assay type. The filters show the number of records
in each field.

Tables are sortable by columns, and the filtered table can
be downloaded into CSV or tabular format. As well as the
data records, it is also possible to browse and search the
extensive collection of protocols. The FAANG data portal
automatically scans for publications associated with any of
the record identifiers contained in the FAANG Data Portal
and automatically downloads and links these publications to
their associated records. Other key Data Portal features include
global summary statistics, predictive text search, and detailed
documentation. The site is supported by an active helpdesk
backed by the EMBL-EBI FAANG DCC that supports users with
data validation, submission, and retrieval of data. Additionally,
the Data Portal collates relevant publicly available functional data
generated outside of the FAANG consortium into comparable
tables. When these data sets do not meet current stringent
FAANG standards, they are clearly labelled with a Legacy tag.

The identification and acquisition of data relevant to a user’s
scientific interests is the main use case for the portal. The site
provides extensive preconfigured filters for exploring data tables,
search functionality, and an API. For example, a user interested
in obtaining specimens from Equus caballus females from the
liver left lateral lobe can utilise the preconfigured filters on
the specimen data exploration table to select species, sex, and
organism part and exclude legacy data (Figure 3). The same

search is possible using the highly customisable API (https://
dcc-documentation.readthedocs.io/en/latest/api/) to return the
results programmatically. The current Data Portal search
function ranks data based on keyword prioritisation, so for
the above example the search would return a range of other
datasets that share one or more of the keywords. In a future
Data Portal release, the search page (https://data.faang.org/
search) will be updated to use an advanced query language that
would allow for more advanced text searches. Once records
of interest have been identified, data files can be downloaded
from within the data portal without having to navigate away
to the underlying archives. Continuing with the above example,
the 18 files that include Chip-Seq, methylation profiling, and
RNA-Seq can be initiated for download from within the Data
Portal from the specific specimen pages (https://data.faang.org/
specimen/SAMEA104728881).

A recent new feature is project-specific subportal views,
initially developed to support the EU-funded Horizon 2020
FAANG projects GENE-SWiTCH, BovReg, and AQUA-FAANG.
This feature is now available for any current or future FAANG
consortia. These project-specific portals distribute the full
functionality of the Data Portal with datasets pre-filtered to show
only those from the specific project (Figure 4). A customised
project page includes relevant information such as a social media
stream and can be further tailored with features to support
the project’s data presentation requirements. Project specific
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FIGURE 2 | FAANG Data Portal presenting rich ‘omic datasets to the community complete with preconfigured data filters, automated literature scraping, and direct

links to data files in underlying archives (https://data.faang.org/dataset).

portal pages are constructed using standardised files on GitHub5,
allowing for new project pages to be quickly established.

Metadata Validation and Data Submission
Brokering
Metadata validation is fully integrated into the FAANG Data
Portal with an improved web interface based on user experience
testing (Figure 5). The improvements further standardise
FAANG submissions, streamline the submission process, and
lower the barrier to open data sharing. At the same time,
we added fully brokered submissions into the underlying
data archives, whereby users who supply their EMBL-EBI
credentials can have submissions made on their behalf. This
simplifies and accelerates the submission of FAANG data.
The Data Portal includes clear guidance for using FAANG’s
rich metadata standards and provides an intuitive validation
interface that ensures every FAANG submission meets this
high standard by annotating and requiring improvements
prior to submission. A metadata spreadsheet accompanies
the data for each submission. This spreadsheet is validated
against the FAANG standards and then used to construct the
file format required for a brokered archive submission. The
Data Portal will also host the corresponding protocols in its

5https://github.com/FAANG/comm-data-portal-projects/tree/master/projects

FTP directory, thus ensuring long-term availability and cross
project standardisation.

The submission brokering service handles the full submission
process of sample metadata to the EMBL-EBI BioSamples
archive. For sequencing and analysis submissions, the submission
brokering system handles the metadata registration and study
creation and just requires additionally that the user uploads the
sequencing or analysis files direct to the European Nucleotide
Archive (ENA) FTP submission server. This ensures that
the files are available when the brokering system makes the
submission and can correctly associate the files with the
created study. FAANG supports all of the data types and
file formats currently accepted by the BioSamples and ENA
archives and periodically checks for the requirement to support
new technologies and file formats. The Data Portal handles
any immediate submission errors and presents them back to
the submitter. Errors subsequently discovered during post-
submission processing by the underlying archives go straight
to the submitters’ registered email address. Upon a successful
submission, the submitter is provided with a receipt that
contains all of the assigned identifiers for their submission,
which can then be referenced in their publications. Data
files typically appear on the FAANG data portal within
48 h, once they have been made publicly available by the
underlying archives.
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FIGURE 3 | FAANG Data Portal specimen table utilising filters to obtain specimens from Equus caballus females from the liver left lateral lobe (https://data.faang.org/

specimen?standard=FAANG&sex=female&organism=Equus%20caballus&organismpart_celltype=liver%20left%20lateral%20lobe).

Open-Access and FAIR Data
The DCC strives to meet the highest standards of open and
FAIR data recording (Wilkinson et al., 2016). All FAANG data
is easily findable as it is assigned a persistent globally recognised
identifier by the EMBL-EBI archives, to which the Data Portal
brokers submitted datasets. The FAANGmetadata standards and
associated validation tooling ensures that all data has associated
rich metadata, as it holds submission until all standards are
appropriately met. The data records are easily found on the
Data Portal using any of the interconnected identifiers or a
range of preconfigured filters or using the powerful keyword
search. The FAANG data is accessible by humans and machines
with the persistent identifiers linking directly to the underlying
data archives. The data is interoperable through use of open
and widely accepted data formats, and all records are ensured
to have met the high metadata standards that make extensive
use of ontologies for standardising data descriptions. The
Data Portal ensures data is reusable by associating mandatory
detailed user submitted sampling, sequencing, and analysis
protocols to each submitted data record. This provides highly
detailed information on each study’s methodology, and in
even greater detail than the already rich metadata records. A
specific protocol browsing page6 also assists the community

6https://data.faang.org/protocol/samples

in designing future experiments and further standardising
how FAANG data is generated for future compatibility of
comparative studies.

The FAANG data reuse policy is clearly associated with all
FAANG records, and the prepublication data policy is supported
through the clear labelling of data within the portal that has been
published and thus is free of constraint for further research use.
The automated association of publications with data records is
particularly important for users to know what records are free
from publication restriction in accordance with FAANG’s data
use policy7. This prohibits publication with obtained datasets
until the data owners themselves have first published. To aid this,
the Data Portal clearly displays with a green tick all datasets that
have an associated publication (Figure 2). All of the codes for the
FAANG Data Portal, data processing, and brokering are freely
available under an Apache 2.0 licence8.

Future Developments
The FAANG project is now moving into its next major phase,
with a greater focus on harnessing functional ‘omic data
from larger populations and leveraging recent technological

7https://www.faang.org/data-share-principle
8https://github.com/FAANG/dcc-portal-frontend/blob/master/LICENSE
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FIGURE 4 | Project-specific subportal views offer the full functionality of the FAANG site pre-filtered to data from a particular consortia (https://data.faang.org/

projects/BovReg).

advances such as single-cell ‘omics, species and tissue-cell
atlases, pangenomes, and novel phenotypic prediction models.
Collectively, these will further improve animal genome genotype-
to-phenotype annotation and its translation to industrial
applications to improve animal production. The Data Portal will
continue to evolve alongside the communities’ research priorities,
and the DCC will develop new infrastructure and site features
to effectively deliver and standardise these new data types. For
agricultural single-cell ‘omics and cell atlases, the DCC will take
advantage of the significant prior developments of the ENCODE
consortium (Davis et al., 2018) and Human Cell Atlas projects
(Regev et al., 2017).

The DCC and the wider FAANG bioinformatics community
are focussed on ensuring open reproducible science. There is

significant ongoing community effort to create reproducible
analysis pipelines. To support this, the Data Portal is already
preparing a functionality to link each analysis file to the
reusable pipeline that produced it. A new browser page
would also create a catalogue of standardised containerised
FAANG pipelines to users for further downstream analysis.
The Data Portal will look to develop links, wrappers, and
infrastructure to enable rapid launching of cloud-based analysis
through a range of providers. Discussions are ongoing to
support mirroring of FAANG datasets and host the FAANG
community’s curated bioinformatics pipelines. Alongside the
technical infrastructure and standardised pipelines, there is a
need to train the current and next generation of scientists to
effectively implement them. The FAANG Data Portal could
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FIGURE 5 | Data validation and submission brokering service flag metadata errors and improvements for correction before submission can be made (https://data.

faang.org/validation/samples).

release an online training resource that collates documentation,
videos, and webinars on FAANG analysis methods and protocols.
This will host resources produced by FAANG projects and
links to training upcoming courses. This training, and the
distributed data and analysis infrastructure, will be crucial for
the successful application of functional data to farmed animal
breeding programmes.

The current implementation of search within the data portal
is based on inclusive keyword ranking. It is powerful for simple
searches to get a view across the different FAANG data types
but lacks the desired specificity when multiple search terms
are provided. Currently specific multi-term searches need to be
performed using the preconfigured filters on the data exploration
tables (Figure 3) or using the API. To address this, an advanced
query language search will be developed that provides a similar
search customisation power to that available to programmatic
users in the API. The new query language search will allow
the user to search by multiple terms linked to specific fields to
accurately narrow the returned results to the desired data records.
This will mean that a search for “sex = female” and “species
= sus scrofa” will only returning female pig records, rather

than the current “female” and/or “sus scrofa” search that would
return any female or any pig records. This will complement the
existing API and data portal table filter searches that alreadymake
multiple-field/value search possible.

Automated and standardised visualisation of data across
species, systems, tissues, and cell types will also be a key focal
area. This includes both automated DCC-generated and user-
provided visualisations. FAANG comparative and phenotypic
datasets continue to increase in complexity, driving a need
to build open-source systems to interrogate and visualise
them for research and industrial applications. The Data Portal
will also support improved cross referencing and linking
to established biorepositories, breeding resources, and key
data resources of phenotypic, climate, and functional data.
Through its continued key role for FAANG, the Data Portal
will continue to support high-quality functional annotation
of animal genomes through open sharing of data complete
with FAIR standardised rich metadata, and new portal features
to support new technological developments for continued
improvement in functional annotation of farmed and companion
animal genomes.
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PROJECT LINKS

The FAANG Data Portal—https://data.faang.org/
The FAANG Data Portal frontend code—https://github.com/

FAANG/dcc-portal-frontend
The FAANGData Portal validation and file conversion code—

https://github.com/FAANG/dcc-validate-metadata
The FAANG metadata raw files—https://github.com/

FAANG/dcc-metadata
The FAANG Data Portal documentation—https://dcc-

documentation.readthedocs.io/en/latest/faq/.
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Michèle Tixier-Boichard1*†, Stéphane Fabre2, Sophie Dhorne-Pollet1, Adeline Goubil1,
Hervé Acloque1, Silvia Vincent-Naulleau3, Pablo Ross4, Ying Wang4,
Ganrea Chanthavixay4, Hans Cheng5, Catherine Ernst6, Vicki Leesburg7,
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In order to generate an atlas of the functional elements driving genome expression
in domestic animals, the Functional Annotation of Animal Genome (FAANG) strategy
was to sample many tissues from a few animals of different species, sexes, ages,
and production stages. This article presents the collection of tissue samples for four
species produced by two pilot projects, at INRAE (National Research Institute for
Agriculture, Food and Environment) and the University of California, Davis. There were
three mammals (cattle, goat, and pig) and one bird (chicken). It describes the metadata
characterizing these reference sets (1) for animals with origin and selection history,
physiological status, and environmental conditions; (2) for samples with collection
site and tissue/cell processing; (3) for quality control; and (4) for storage and further
distribution. Three sets are identified: set 1 comprises tissues for which collection can
be standardized and for which representative aliquots can be easily distributed (liver,
spleen, lung, heart, fat depot, skin, muscle, and peripheral blood mononuclear cells); set
2 comprises tissues requiring special protocols because of their cellular heterogeneity
(brain, digestive tract, secretory organs, gonads and gametes, reproductive tract,
immune tissues, cartilage); set 3 comprises specific cell preparations (immune cells,
tracheal epithelial cells). Dedicated sampling protocols were established and uploaded in
https://data.faang.org/protocol/samples. Specificities between mammals and chicken
are described when relevant. A total of 73 different tissues or tissue sections were
collected, and 21 are common to the four species. Having a common set of tissues
will facilitate the transfer of knowledge within and between species and will contribute
to decrease animal experimentation. Combining data on the same samples will facilitate
data integration. Quality control was performed on some tissues with RNA extraction
and RNA quality control. More than 5,000 samples have been stored with unique
identifiers, and more than 4,000 were uploaded onto the Biosamples database,
provided that standard ontologies were available to describe the sample. Many tissues
have already been used to implement FAANG assays, with published results. All
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samples are available without restriction for further assays. The requesting procedure
is described. Members of FAANG are encouraged to apply a range of molecular assays
to characterize the functional status of collected samples and share their results, in line
with the FAIR (Findable, Accessible, Interoperable, and Reusable) data principles.

Keywords: tissue sampling, repository, mammals, bird, cryopreservation, genome

INTRODUCTION

A coordinated genome-wide identification of functional elements
in multiple species represents an invaluable resource for
the dissection of genotype-to-phenotype relationships. The
Functional Annotation of Animal Genome (FAANG) initiative
(Andersson et al., 2015; Giuffra et al., 2019) supports the
international community in the production of comprehensive
maps of functional elements in the genomes of domesticated
animal species. An early aspiration of the FAANG Consortium
was to create a framework for organizing data standardization,
collection, and sharing from many groups (Tuggle et al.,
2016). The FAANG data portal1 has been established to ensure
high-quality and rich supporting metadata to describe its
farmed and companion animals, samples, and related data sets
(Harrison et al., 2018).

In order to generate an atlas of the functional elements driving
genome expression in different biological conditions, the FAANG
strategy has been to sample many tissues from different species,
sexes, ages, and production stages. A consensus was reached at
a workshop convened at Plant and Animal Genome (2014) as
reported by Andersson et al. (2015). Two FAANG pilot projects
[FRAGENCODE for INRAE (Institut national de la recherche
agronomique), France, and FarmENCODE for University of
California, Davis (UCD), United States] were initially funded to
support this effort. This article details the sampling and storage
procedures and describes the metadata collection of the reference
samples collections for four livestock species (cattle, pig, chicken,
goat) realized by these two pilot projects, as well as the guidelines
for their possible future use.

ANIMALS

Species and Population of Origin
A prerequisite was to sample species with high-quality genome
assemblies. Then, taxonomic diversity was considered: mammals
and birds have been sampled, and among mammals, ruminants
and non-ruminants have been selected. This article describes the
sampling done for Bos taurus, Capra hircus, Sus scrofa, and Gallus
gallus by INRAE and UCD.

A large choice of breeds is available within each species
worldwide. Well-characterized breeds were prioritized and
selected for sampling. Regarding cattle, Holstein breed is the most
widely used dairy cattle as is Hereford for beef cattle. Regarding
goat, one of the two mostly used dairy breeds (the Alpine)
was sampled, to allow for comparisons between two species

1https://data.faang.org/home

of ruminants for milking traits. Regarding pigs, the sampling
included Large White as a dam line and Yorkshire as a sire line.
Regarding chickens, the White Leghorn breed was chosen as it
provides the genetic basis for numerous experimental lines and
is widely used for white egg production. A control line from a
selection experiment was sampled, as well as an F1 crossbred
obtained from two highly inbred White Leghorn lines differing
in disease resistance.

Selection History of the Animal
Animals were chosen so as to be representative of their breed in
order to be used as a reference for future studies. They all had
a known pedigree, and some of them could also have produced
progeny. If possible, frozen semen was collected from males to be
able to produce progeny in the future.

Both sexes were sampled, two males and two females for each
genetic type (Table 1). Adult animals were sampled for all species,
considering they were in a stable period for gene expression.
They already had performance records, obtained in known
environmental conditions. A limited number of physiological
states were recommended in order to have more assays from
the same tissue in the same individual and have replicates across
laboratories and to maximize comparisons across species. For
Alpine goats and Large White pigs, blood cells were also sampled
at different ages in the young males, in order to allow for a
longitudinal analysis of immune traits in the same individual.
These young males were the progeny of the adult females that
were slaughtered or were closely related. For Large White pigs,
blood cells were sampled monthly from weaning at 1 month of
age until slaughter at 8 months of age. For Alpine goats, only two
blood samples could be collected in the young males.

Flock/Herd/Owner
Animals sampled by INRAE came from its experimental facilities,
except for the two Holstein bulls with registration numbers
FR2832014033 and FR4934530986 that were purchased from
a breeding center in France (Origen plus). There is no legal
uncertainty regarding the ownership of the biological material
sampled from experimental animals, neither for the bulls and
their semen, sold by Origen plus for research use, without any
further conditions.

For the UCD project, two bulls with registration number
of 43497294 and 43496857 and two heifers with registration
numbers of 43497060 and 43496864 were raised for 12 months
in animal facility at Fort Keogh Livestock and Range Research
Laboratory in the US Department of Agriculture–Agricultural
Research Service (USDA-ARS) and were then transferred to
Animal Facility at UCD for another 2 months before the samples
collection. Two male and two female chickens were raised
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TABLE 1 | Number of animals sampled according to species and sex, showing age at sampling according to sex, and reproductive stage for females.

Species Breed Female Age (days) Stage Male Age (days) Castrated male Age

Bos taurus Holstein 2 1250,
1532

Lactating 2 539,
602

– –

Bos taurus Hereford
(Line 1)

2 420 Post-ovulatory 2 420 –

Capra hircus Alpine 2 1697,
2072

Pregnant and
lactating

2 Days 49
to 246

–

Sus scrofa Large White 2 592,
595

lactating 2 Days 25
to 255

Sus scrofa Yorkshire 2 170

Gallus gallus White Leghorn 2 387 Laying 2 387

Gallus gallus White Leghorn F1
crossbred
(Lines 6x7)

2 140 Sexually mature but
not yet in lay

2 140

at the USDA, ARS, Avian Disease and Oncology Laboratory
(ADOL). Two littermate male pigs were provided by the
Michigan State University Swine Teaching and Research Center
in East Lansing, MI.

Environmental Conditions
Production System
Cattle: Holstein cows were provided by the INRAE facility Le
Pin (latitude 48◦44′6.6′ North; longitude 0◦9′58.8′′ East). They
were raised with a mixed system: in closed barns with freedom
of movement from November to April, on grassland from May
to October. Inside the barn, they were fed ad libitum with a
“winter” diet composed of 48% maize silage, 24% green silage
with dehydrated pulp, 21% concentrate, 7% rapeseed meal,
and 150 g minerals. On grassland, they received daily 2 kg of
concentrate with additional complementation with maize silage
if necessary. Hereford bulls and heifers were raised at the Fort
Keogh Livestock and Range Research Laboratory of USDA-
ARS (latitude 45◦47′15.4896′′ North, longitude 108◦29′21.4944′′
West) with the same mixed system. Inside the barn, they were
fed ad libitum with a bull’s ration of 20% corn, 10% hay, 5%
supplement, and 65% silage and a Heifer ration of 39.5% hay,
3.5% supplement, and 57% silage.

Goats: Alpine goats and bucks were provided by the INRAE
facility located in Bourges (latitude 47◦1′59.98′′ North; longitude
2◦39′0′′ East). They were raised in closed barns. Females were
fed ad libitum with dry hay composed of Dactylis and alfalfa.
Lactating females received in addition 1.2 kg of concentrate (19%
total proteins, 5.3% lipids, 26% starch, 9% raw cellulose, 1%
calcium) per day. Males were fed ad libitum with dry hay from
grass and received 0.6 kg of the same concentrate.

Pigs: Large White pigs were provided by the INRAE facility
located in Rouillé (latitude 46◦25′0.02′′ North; longitude 0◦3′0′′
East). They were housed in groups on straw and fed twice
a day with a complete diet (13.5% total proteins, 3% lipids,
6.8% raw cellulose, and 6% ashes, supplemented with minerals,
vitamins, and amino acids lysine and methionine) with a total
amount of 2.7 to 3.2 kg/day for females, according to pregnancy
stage, and of 2.7 to 3.5 kg/day for males according to body
weight. Water was provided ad libitum. Boars were isolated

at the time of semen collection. Two littermate castrated male
Yorkshire pigs were provided by the Michigan State University
Swine Teaching and Research Center in East Lansing, MI
(latitude 42◦44′15.5472′′ North; longitude 84◦29′′1.6368′′ West).
Following weaning at 21 days of age, pigs were housed in
groups of 10 with other castrated male pigs, on rounded metal
slat flooring with fiberglass-gated sides. Pigs were moved to a
grow-finish pen at 65 days of age in groups of 14 pigs, with
metal-gated sides and a fully slatted concrete floor. Pigs were
fed ad libitum with a commercial diet meeting or exceeding
the National Research Council (2012) nutritional requirements
for each stage of development. Feed was delivered using one
self-feeder per pen with 0.61 m of linear feeder space in
the nursery and 0.77 m of linear feeder space in the grow-
finish pen. Water was provided ad libitum with a single nipple
drinker in each pen.

Chickens: White Leghorn chickens were provided by the
INRAE experimental unit facility located in Nouzilly (latitude
47◦32′38′′ North; longitude 0◦44′41′′ East). Adults were kept
in individual cages for pedigree control and egg recording.
Females received 16 h of light per day in a single cycle, and
males received 10 h of light per day. Ambient temperature was
set at 20◦C for females and 19◦C for males. They were fed
ad libitum with a complete diet containing either 17.5% total
proteins (supplemented with methionine, lysine, cysteine), 3.3%
lipids, 2.6% cellulose, 40% starch, 13% ashes, and 4% calcium for
females, or 12.5% total proteins (supplemented with lysine and
methionine), 2.8% lipids, 4.2% cellulose, 4.4% ashes, and 0.75%
calcium for males (detailed list of compounds can be provided
upon request). The Line 6 × 7 F1 chickens were provided by the
USDA, ARS, ADOL (latitude 42◦44′15.5472′′ North; longitude
84◦29′1.6368′′ West) located in East Lansing, MI. Male adults
were housed in Horsfall-Bauer isolation units that received 8 h
of light per day and kept at 21–27◦C. They were fed ad libitum
“starter” feed crumbles.

Vaccination Program
Cattle: cows were vaccinated against pulmonary infections and
enteric diseases during the rearing phase, and each year thereafter
for enteric diseases, at the start of the winter period (Rispoval R©
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RS-BVD) and at the end of it (Coglavax R©). In addition, they were
vaccinated against neonatal diseases (Trivacton R© 6) in the last
month of pregnancy.

Female goats were vaccinated against blue tongue virus, and
a serological test was performed to check for the absence of
brucellosis. As kids, they received only a treatment against
coccidiosis (Vecoxan R© or equivalent).

Pigs were not vaccinated, but serological tests were performed
to check absence of brucellosis, parvovirus, Aujeszky virus, and
porcine reproductive and respiratory syndrome.

Chickens received a complete vaccination program
from hatch to the adult stage, with vaccinations against
Marek disease, Newcastle disease, Gumboro disease,
infectious bronchitis, rhinotracheitis, infectious anemia,
encephalomyelitis, coccidiosis, and egg drop syndrome
(detailed list of vaccines with the calendar can be provided
upon request).

Physiological Status at Sampling
Date of birth was recorded for each animal so that age at
sampling was precisely known (Table 1). Reproductive stage was
determined for females; early pregnancy stage was detected in
goats upon sampling the uterus (Table 1). Animals were fasted
for at least 12 h before slaughter.

TISSUE COLLECTION

For INRAE, collection took place after slaughter that was
realized according to the authorized practices, without chemical
anesthesia. As tissue sampling after death is not submitted to
an official permit, the ethical approval was needed in case of
blood sampling on live animals. For mammals, blood samples
were collected in the context of the approvals (APAFIS/project#):
334-2015031615255004_v4 and 333-2015031613482601_v4
(pigs), 3066- 201511301610897_v2 (cattle), 03936.02, and
8613-2017012013585646_v4 (goats). Chicken immune cells
were obtained from spleen sampled after slaughter (no need
for animal experiment authorization). For UCD, tissues
were collected following Protocol for Animal Care and Use
#18464, approved by the Institutional Animal Care and
Use Committee (IACUC), UCD. Collection protocols are
available from https://data.faang.org/protocol/samples, and
a link to each standard protocol is included along with
collection description.

For male Large White pigs, scalding was not performed
as slaughter took place in an experimental facility at INRAE.
Scalding was performed for Yorkshire pigs that were slaughtered
in a commercial slaughterhouse. Scalding may expose testis to
high temperature stress, but these pigs were castrated, so that no
effect of scalding was encountered.

Small cubes of 0.5 × 0.5 × 0.5 cm3 were sampled from
all solid tissues at INRAE (INRA_SOP_tissue_sampling_
1a_20160721.pdf) with a total of 2 to 20 replicates
from each tissue. At UCD, cross sections of tissue were
minced/homogenized using scalpel/scissors to collect
subsamples (UCD_SOP_50_TissueCollection_20160520.pdf).

In addition, for some complex tissues or special
cell preparations, specific protocols were developed:
they are mentioned in Tissue collection and listed in
Supplementary Table 1.

The aim of tissue collection was to cover a wide range of
tissues for a comprehensive approach of genome annotation.
Because of anatomical differences between species, particularly
between mammals and birds, some tissues were not collected
in all species. Parallel sampling by experts was performed to
minimize time to sample preservation; the order of sampling
was recorded because it provided an estimate of time elapsed
since death. It may be estimated that sampling time varied from
30 min for one chicken to 2 h for one cow. Tissues known to
be more susceptible to degradation, such as pancreas or brain,
were sampled first. Thus, the majority of tissues were sampled
within 30 min postmortem; it was shorter than 30 min for
pancreas (<10 min) and brain in mammals, as well as for all
tissues in chickens. It was within an hour for digestive and
reproductive tracts for cattle, sheep, and pig, except for Holstein
where it was up to 2 h.

To classify tissues into different sets, the following
parameters were considered including functional importance,
standardization of sampling, realized assays, and specific cell
preparations. As a consequence, several sets of tissues have been
identified (Table 2).

Set 1: The Standard Set
This set corresponds to the tissues for which collection is easy
to standardize and which will be studied with several assays. It
included liver, spleen, lung, heart, skin, fat depot, muscle, and
peripheral blood mononuclear cells (PBMCs, i.e., lymphocytes).

Liver samples were taken from the edge of the organ,
avoiding proximity with gallbladder and avoiding blood vessels.
Gallbladder was collected in the Hereford cow.

The entire spleen was extracted from the abdominal cavity for
mammals. Capsule part was removed, and cubes of 0.5-cm-long
edges were isolated from the bands. For birds, spleen tissue was
either processed the same (UCD project), or a specific procedure
was implemented to separate spleen cells from red blood cells,
in order to avoid contamination of immune cells by platelet cells
(INRA_SOP_chicken_splenocytes_sampling_20160721.pdf).

Lung samples were taken from the edge of the organ, avoiding
large bronchioles. Left and right lobes were separately collected
in the Hereford cow.

Heart muscle was collected for all animals, with separate
collection of left and right ventricles and atria at UCD.

In mammals, a large piece of skin (15× 10 cm) from the groin
of the right leg was extracted from the carcass. This location was
chosen to limit the presence of hairs or bristles. Nevertheless,
the entire piece of skin was shaved with a scalpel and finally
rinsed with phosphate-buffered saline (PBS) 1 × solution to
remove hairs. First, using a circular skin biopsy punch tool (8 mm
in diameter) and thereafter a scissor to separate epidermis and
dermis from subcutaneous fat tissue, individual skin biopsies
were isolated and frozen. When the coat color exhibited different
types of pigmentation, biopsies were sampled from contrasted
areas, either white or black areas in the Holstein and pale or
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TABLE 2 | List of tissues or tissue sections of a given organ, with number of aliquots in the collection, according to species and functional tract.

Tissue Tissue set Bos taurus Capra hircus Sus scrofa Gallus gallus Total Functional Tract

Abdominal fat 1 59 44 48 44 195 Adipose tissue

Subcutaneous fat 1 44 44 44 132 Adipose tissue

Heart 1 64 40 44 40 188 Cardio-respiratory tract

Lung 1 56 41 44 20 161 Cardio-respiratory tract

Trachea 2 8 4 8 20 Cardio-respiratory tract

Abomasum 2 24 24 Digestive system

Cecum 2 24 24 48 Digestive system

Colon 2 68 44 46 158 Digestive system

Duodenum 2 64 40 44 20 168 Digestive system

Esophagus 2 8 4 8 20 Digestive system

Gall bladder 2 8 8 Digestive system

Gizzard 2 39 39 Digestive system

Ileum 2 64 40 44 20 168 Digestive system

Jejunum 2 64 40 44 20 168 Digestive system

Liver 1 88 79 76 60 303 Digestive system

Omasum 2 8 8 Digestive system

Reticulum 2 8 8 Digestive system

Rumen 2 8 8 Digestive system

Salivary gland 2 8 8 Digestive system

Stomach 2 4 4 Digestive system

Pigment epithelium ey 2 8 8 Epithelium

Skin 1 96 48 44 40 228 Epithelium

Tongue superficial 2 8 8 Epithelium

Trachea epithelium 3 44 20 40 104 Epithelium

Bone marrow 2 52 43 47 16 158 Immune tissue

Lymph nodes 2 32 14 16 62 Immune tissue

Peyer’s patches 2 30 44 44 118 Immune tissue

Spleen 1 56 56 52 24 188 Immune tissue

Thymus 2 30 21 34 85 Immune tissue

Cerebellum 2 49 41 44 12 146 Nervous system

Frontal lobe (cortex) 2 68 44 48 16 176 Nervous system

Hypothalamus 2 16 8 12 12 48 Nervous system

Medulla 2 8 8 Nervous system

Olfactory lobe 2 32 20 44 96 Nervous system

Pons 2 8 8 Nervous system

Spinal cord 2 8 8 Nervous system

Thalamus 2 8 8 Nervous system

Cervical lining 2 4 4 Female reproductive system

Fornix vagina 2 4 4 Female reproductive system

Infundibulum oviduct 2 8 10 18 Female reproductive system

Isthmus fallopian tube/hen isthmus 2 13 10 23 Female reproductive system

Corpus luteum 2 22 19 2 43 Female reproductive system

Ovarian cortex 2 26 20 19 4 69 Female reproductive system

Ovarian follicle 2 4 10 14 Female reproductive system

Oviduct 2 16 22 22 60 Female reproductive system

Oviductal ampulla/hen magnum 2 18 10 28 Female reproductive system

Theca ovarian follicles 2 10 10 Female reproductive system

Uterus/shell gland 2 32 22 22 10 86 Female reproductive system

Uterovaginal gland 2 10 Female reproductive system

Prostate 2 4 4 Male reproductive system

Bulbourethral 2 4 4 Male reproductive system

Epididymis 2 34 10 10 54 Male reproductive system

Seminal vesicle 2 26 22 22 70 Male reproductive system

Spermatozoon 2 20 10 10 72 112 Male reproductive system

(Continued)
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TABLE 2 | Continued

Tissue Tissue set Bos taurus Capra hircus Sus scrofa Gallus gallus Total Functional tract

Testis 2 26 40 40 22 128 Male reproductive system

Vas deferens 2 4 7 11 Male reproductive system

Adrenal cortex 2 52 20 44 6 122 Secretory tissue

Pituitary 2 13 8 6 4 31 Secretory tissue

Mammary 2 24 29 20 73 Secretory tissue

Pancreas 2 52 44 48 24 168 Secretory tissue

Thyroid 2 16 7 9 32 Secretory tissue

Cartilage 2 52 44 47 27 170 Skeleton

Tongue muscle 2 8 8 Striated muscle

Diaphragm 2 8 8 Striated muscle

Dorsal muscle 1 40 40 40 120 Striated muscle

Pectoral muscle 1 32 32 Striated muscle

Sartorius muscle 1 36 36 Striated muscle

Bladder 2 8 2 10 Urinary tract

Kidney 2 16 4 16 36 Urinary tract

Renal cortex 2 40 36 40 116 Urinary tract

Renal medulla 2 44 40 44 128 Urinary tract

Ureter 2 4 4 Urinary tract

Urethra 2 8 8 Urinary tract

Grand total 1878 1204 1322 743 5137

sustained brown color in the Alpine goat. In chickens, sections
of 0.5-cm diameter were sampled from an unfeathered area on
the internal face of the leg.

Subcutaneous fat and perirenal abdominal fat were collected
for mammals. In addition, mesenteric adipose that lies with
layers of the peritoneal mesothelium connecting the small and
large intestine was collected at UCD. In chickens, abdominal
fat was collected around the gizzard (INRAE) or in the
abdominal cavity (UCD).

Muscle samples were taken from the longissimus lumborum
for all mammals and from two different muscles for chickens:
pectoralis major (“white fibers”) from the breast and sartorius
or semimembranosus (“red fibers”) from the leg. A section
from the center of each muscle was collected to avoid
adipose tissue and major connective tissue structures. In
addition, biceps femoris (bottom/outside round), gluteus
medius (top sirloin), longissimus dorsi (ribeye/loin),
and psoas major (tenderloin) were also collected in the
Hereford cow.

Blood was sampled using EDTA as anticlotting agent.
For mammals, whole blood was used to prepare peripheral
lymphocytes (called hereafter PBMCs). In order to get a
sufficient number of each type of cells, sampling was repeated
from the jugular vein between two and five times according to
age and species, in the weeks preceding slaughter. Blood was
immediately handled to separate PBMCs, as described in FAANG
protocols for cattle and goats (INRA_SOP_PBMC_purification_
cattle_caprine_20160504.pdf), and for pigs (INRA_SOP_PBMC_
seperation_swine_blood_20160504.pdf). As it was not
possible to immediately perform cell sorting after each
sampling, all PBMCs were frozen before sorting, in order

to standardize the preparation of defined populations
of lymphocytes.

Set 2: Tissues Requiring Specific
Sampling Protocols
Brain Tissues
These tissues are extremely sensitive to degradation. A specific
team needs to be in charge of sampling them in the shortest delay
after death. In mammals, the brain was separated in four regions:
cerebellum, frontal lobe, olfactory lobe, and hypothalamus
(INRA_SOP_cattlebrain_sampling_20171104.pdf). The pituitary
gland was sampled, and its posterior/anterior parts were
separated for Holstein only. In Hereford, the cortex was separated
in three subregions: frontal, parietal, and temporal. In addition,
pigment epithelium eye, spinal cord, medulla, pons, and thalamus
were collected too. In Yorkshire pigs, only cerebellum, cortex, and
hypothalamus were collected. In chickens, olfactory bulbs were
not dissected, and three parts were dissected: cerebellum, frontal
lobe, and hypothalamus. Pituitary was also sampled at INRAE.

Digestive Tract
Mammals
In the Hereford cow and the Yorkshire pig, parotid
salivary glands were collected and minced/homogenized
using scalpel/scissors. Tongue muscle was collected from
approximately halfway in the organ. Superficial tongue sample
was collected from the papillary epithelium using a scalpel to
separate it from the muscle.

The whole digestive tract was set on a table. The different gut
sections were identified, and 10- to 15-cm portions of each region
were isolated between two ligatures, after pushing the maximal
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amount of the content on each side. Then, each portion was
open and rinsed with PBS before sampling. Reticulum, rumen,
and abomasum were collected at UCD. At INRAE, duodenum,
jejunum, ileum, and colon were collected, keeping the mucosa
and the muscular layer together before transfer into individual
cryotubes, whereas at UCD, mucosa was scraped from the lumen
of the tissue using a clean glass slide. Tissue remaining after
mucosal scrapping was saved as smooth muscle sample. This
conditioning was applied to abomasum, duodenum, jejunum,
ileum, cecum, and colon for which three parts (whole, mucosa,
and smooth muscle) were collected. The caudal mesenteric node
was identified as the most distal lymph node of the mesenteric
chain, and square sections of 0.5× 1 cm were sampled.

Chicken
Caeca were sampled in place of colon, and gizzard was taken in
addition to gut sections. Portions were isolated in a similar way
as the one used in mammals, and sections were rinsed with PBS
before transferring to individual cryotubes. In addition, mucosal
scrapping was performed for half of the aliquots sampled for
duodenum, jejunum, and ileum.

Secretory Organs: Mammary Gland, Pancreas,
Kidney, Adrenal Glands, and Thyroid
A specific protocol was set up for mammary gland to
sample the secretory parenchyma (INRA_SOP_mammarygland_
sampling_20171104.pdf). All females were lactating, and the
mammary gland was sampled for the cow, goat, and sow.

The entire kidney organs were extracted from the carcass.
Capsule was first removed. Each kidney was separated by the
middle in two pieces to observe differently colored cortex and
medulla parts. Bands of 0.5 cm large were cut with scalpel
through the cortex part, and cubes with 0.5-cm-long edges
were isolated from the bands and frozen. Cubes of 0.5-cm-long
edges were individually dissected from the medulla apparent
pyramids. Ureter, bladder, and urethra were also collected in
the Hereford cow.

As chicken kidney does not have a similar cortex/medulla
structure, it was sampled as a homogenous tissue with
several aliquots.

Pancreas and thyroid were collected as quickly as possible
without being further dissected. Thyroid could not be found in
some individuals.

The cortex of the adrenal glands, which produces cortisol and
aldosterone, was dissected in mammals, whereas the whole gland
was sampled in chickens.

Reproductive Tract
Mammals
Ovaries underwent a specific dissection protocol, which allowed
separating ovocytes from granulosa cells (INRA_SOP_oocytes-
granulosa_mammals_sampling_20160721.pdf). In addition,
small cubes of 0.5-cm side were cut out from the ovarian
cortex and the luteal body (corpus luteum), rinsed in PBS, and
transferred individually to cryotubes. There was no luteal body
available for sampling in sows.

Uterus samples were taken in the main body of the uterus and
included both the mucosa and the muscular layer for all species.
Further dissection was implemented for the Hereford cow: tissues
from caruncular and intercaruncular regions were collected
separately; endometrium was collected by scraping the inner layer
of the uterus, and myometrium was isolated from serosa and
endometrium by scraping and scalpel. Fourteen sections were
then separated: ampula (contralateral to corpus luteum), ampula
(ipsilateral to corpus luteum), infundibulum (contralateral to
corpus luteum), infundibulum (ipsilateral to corpus luteum),
isthmus of fallopian tube (contralateral), isthmus of fallopian
tube (ipsilateral), uterine myometrium, ovarian section (without
corpus luteum), uterine endometrium – caruncular (contralateral
to corpus luteum), uterine endometrium – caruncular (ipsilateral
to corpus luteum), uterine endometrium – intercaruncular
(contralateral to corpus luteum), uterine endometrium –
intercaruncular (ipsilateral to corpus luteum), Fornix vagina, and
cervical lining.

Male reproductive tissues were dissected to separate testis
from epididymis and seminal vesicle. Testis was sampled as
small cubes or slices, and seminiferous tubules were also
dissected and pretreated to implement Hi-C protocol (see Specific
preparations). For boars and bucks, semen was obtained from
epididymis after slaughter and was conditioned with a tris, citrate,
and glucose solution supplemented with 15% (vol/vol) egg yolk
and 5% (vol/vol) glycerol as described in Pini et al. (2018). For
bulls, semen was collected in an accredited artificial insemination
center, which provided semen straws that were transferred into a
liquid nitrogen tank in order to preserve their fertilizing ability
for future functional studies and/or production of progeny.

At UCD, three sections of the epididymis were further
separated (caput, corpus, and tail), and prostate, vas deferens, and
bulbourethral gland were collected in cow.

Chicken
In females, theca and granulosa cells were separately dissected
from the largest follicles, ordered by decreasing size. In addition,
very small follicles were preserved in five aliquots.

The presence of an egg in the shell gland was recorded. Several
sections of the reproductive tract were sampled: infundibulum
(also called oviductal ampula, the closest section from the ovary,
where fecundation takes place), magnum (where the albumen is
produced), the isthmus, and shell gland (equivalent to the uterus).
In addition, glands located at the uterovaginal junction (between
the shell gland and the cloaca) were also sampled, as they play a
key role in the preservation of spermatozoa after insemination.

Six weeks before slaughter, adult males were trained for
2 weeks in order to collect semen by massage twice a week during
2 weeks. Semen volume, motility, and viability were recorded
for each ejaculate. Semen was then diluted with a cryoprotectant
agent and frozen in 0.5-mL straws, which were identified by
a color code and the unique animal number (INRA_SOP_
freezinggallussemen_20200401.pdf). Straws were stored in liquid
nitrogen to preserve fertilizing ability of spermatozoon.

At slaughter, as testes are internal organs of homogenous
structure, they were separated from vas deferens: small cubes
(0.5 cm3) were cut out either from testis or from vas deferens,
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rinsed in PBS and transferred individually to cryotubes. There are
no seminal vesicles in chickens.

Immune Tissues: Thymus, Bone Marrow, and Lymph
Nodes
In mammals, three types of lymph node were sampled: the
caudal mesenteric node, the node located at the trachea-
bronchial bifurcation, and the neck lymph nodes. Thymus was
collected. Yellow bone marrow cubes of 0.5-cm-long edges were
individually collected in the hemimedullary cavity of the tibia.
Peyer patches were sampled in cattle, except for Holstein females,
in pigs, and in goats.

In chickens, there are no lymph nodes, as well as no Peyer
patch. For this species, immune cells were separated from the
spleen, as described in Set 1: the standard set. Thymus and bone
marrow were collected.

Bone and Cartilage
In mammals, the tibia bone of the anterior right leg was extracted
from the carcass and cut by the middle in two pieces with a
butcher knife. In chicken, the whole tibia bone was cut in 10 small
pieces, which were stored in individual cryotubes.

Cartilage was sampled from the femur in mammal species, as
described in INRA_SOP_cartilage-sampling_20171117.pdf.

Set 3: Specific Cell Preparations
Immune Cells
CD4+ and CD8+ cells were sorted from PBMCs previously
prepared for mammals, following protocols adapted to each
species (INRA_SOP_sorting_cattle_CD_cells_20171201.pdf;
INRA_SOP_sorting_caprine_CD_cells_20171201.pdf; INRA_
SOP_sorting_swine_CD_cells_20160504.pdf). For chickens,
CD4+ and CD8β+ cells were sorted from purified spleen
cells, as described in INRA_SOP_sorting_chicken_CD_cells_
20180213.pdf. Alveolar macrophages were separated
according to a specific protocol that was applied to
mammals only (INRA_SOP_alveolar-macrophages_mammals_
sampling_20160721.pdf).

These cells have been stored in liquid nitrogen for
future studies.

Epithelial Cells
Tracheal epithelium was dissected from the trachea for
mammals only, (INRA_SOP_tracheal_epithelium_mammals_
sampling_20160721.pdf) and then stored at −80◦C, as other
tissues.

TISSUE CONDITIONING

Standard Procedure
Aliquots for homogenous tissues were stored without any buffer
into individual cryotubes and immediately snap frozen into
liquid nitrogen (INRA_SOP_tissue_sampling_1a_20160721.pdf)
on the collection site and then transported in dry ice and
placed at −80◦C for long-term conservation. Individual aliquots
were placed in a single tube, and supernumerary aliquots for

a given tissue were pooled, as described in INRA_SOP_tissue_
aliquots_sampling_1b_20160721.pdf.

Handling Cellular Heterogeneity Within a
Tissue
For very heterogeneous tissues, it is obvious that individual
aliquots would not be comparable. Thus, aliquots were not
stored individually but were pooled for future studies; this
was the case for hypothalamus, pituitary, lymph nodes,
spleen, thyroid, and thymus, as described in INRA_SOP_
tissue_aliquots_sampling_1b_20160721.pdf.

An additional option was to save tissue morphology for
further cellular dissection. For that aim, we used the Optimal
Cutting Temperature (OCT) compound to perform embedding
of a slice of tissue of 1 cm long, 0.5 cm wide, and
0.3 cm thick in a mold placed on dry ice, (INRA_SOP_
tissue_sampling_protocol_6_20180426.pdf). This was done on
one aliquot for most tissues, in order to make possible future
analysis on identified cell types using either histology or laser
microdissection. It was then stored at−80◦C.

Specific Preparations
Two types of specific analyses were planned for FAANG: Hi-C
and ATAC-Seq. Dedicated cell preparation was performed
on fresh samples at the site of sampling in view of HiC,
as described in INRA_SOP_liver_spleen_mammarygland_
forHiC_sampling_20160721.pdf and INRA_SOP_testis_forHiC_
sampling_20160721.pdf, or in view of ATAC-seq, as described in
INRA_SOP_ATAC-seq_AG_v1_20160805.pdf for liver, spleen,
and CD4+/CD8+ cells from pigs, goats, cattle, and chickens.

At present, ATAC-Seq analyses are known to be possible from
snap-frozen tissues. Thus, we can consider that most tissues from
this collection are now available for ATAC-seq analyses.

Altogether, 17 specific sampling or conditioning protocols and
four general sampling protocols can be found in https://data.
faang.org/protocol/samples.

USE OF THE SAMPLES

Sample Description
A total of 3,949 tissue aliquots from the FRAGENCODE
project are currently identified with a Biosamples ID (1,184
for cattle, 1,148 for goats, 1,188 for pigs, and 429 for
chickens; Supplementary Table 2), and a total of 462 samples,
with two or three aliquots each, from the FarmENCODE
project are available with Biosamples ID (SAMEA4454482-
4455404 for chickens, SAMEA4454615-4455481 for cattle, and
SAMEA4454570-4454614 for pigs; Supplementary Table 3).
Ontologies such as UBERON or BRENDA have been used to
describe the samples. Additional tissues are stored at INRAE,
which require additional curation to get a final ontology,
particularly for chicken female reproductive tract, as well as
for pigmented or non-pigmented skin in all species. The total
number of aliquots preserved is currently 5,137, representing 73
different tissues or tissue section, which can be grouped into 12
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FIGURE 1 | Distribution of number of aliquots available in Biosamples according to species and main tissue types.

main functional categories (Table 2). The number of aliquots is
shown in Figure 1 according to species and functional category.
There are 21 tissues collected for all four species, and 37 collected
for the three mammals. Cattle showed the highest number (67)
of tissues or tissue sections collected. Within a species and a
sex, the number of tissues was the same per individual. Females
had more subsections of the reproductive tract sampled than
males, so that the total number of samples was higher for females.
Chickens had a lower number of tissues sampled because of
anatomical differences (i.e., no lymph nodes, no mammary gland,
no subcutaneous fat in the White Leghorns) and also had a
lower number of aliquots because of the smaller size of tissues,
particularly for brain, but also for kidney, where cortex and
medulla are not distinguished as in mammals.

There is no ontology commonly used for breed name and
raising conditions; this remains to be validated and used at
the international level. A list of breeds can be obtained from
the Food and Agriculture Organization database2, but the
naming of breeds is not necessarily harmonized across countries.
Consequently, this information has been described with some
details in Animals of this article, which also provides the link to
the sampling protocols.

Quality Control
To validate sampling protocols and verify the RNA integrity,
RNA extraction was performed from an aliquot of different
tissues or cell types for liver, muscle, mammary gland, lung,
spleen, heart, and immune cells. Samples were homogenized in
TRIzol Reagent (Life Technologies, Carlsbad, CA, United States)
using an Ultra Turrax (IKA) set at 26,000 revolution/min.
Total RNAs were extracted according to the manufacturer’s
instructions (Life Technologies) using optional instructions.
Insoluble materials were removed after homogenization

2http://www.fao.org/dad-is/en/

by centrifugation at 12,000 g for 10 min at 4◦C before
adding chloroform.

RNA yield and purity were monitored by spectrophotometry
(NanoDrop ND-1000). RNA integrity was assessed using an
Agilent (Santa Clara, CA, United States) 2100 Bioanalyzer
and RNA 6000 nano kits. RNA quality was evaluated using
the RNA integrity number (RIN) value introduced by Agilent
(Schroeder et al., 2006). RIN values for liver RNA ranged
from 7.8 to 8.8 for mammals and from 8.8 to 9.1 in
chicken. For immune cells, higher RIN values were obtained
in mammals (from 7.7 to 9.7, with a majority of samples
with an RIN > 9) than in chickens (from 5.1 to 8.1), which
could be due to the more complex separation procedure
from spleen cells.

Transcriptome Studies
The FRAGENCODE project aimed at improving the genomic
annotation of four species (cattle, goat, chicken, and pig).
This was achieved by performing molecular assays on tissue
dissociated cells (liver) and on sorted primary cells (CD4+ and
CD8+ T lymphocytes) from two males and two females of each
species. These assays included RNA-seq, ATAC-seq, and Hi-C to
characterize the transcriptome, the chromatin accessibility, and
the genome 3D topology in these cells, respectively (Foissac et al.,
2019). Additional work was carried out using these RNA-seq
datasets for the annotation of long-non-coding RNAs (lnRNAs)
(Jehl et al., 2020).

The collection is being used to complete the reference
transcriptome of six tissues (cerebellum, lung, kidney, dorsal skin,
skeletal muscle, small intestine/Ileum), in addition to the liver
datasets reported by Jehl et al. (2020). This additional annotation
is being conducted in the frame of the H2020 FAANG project
GENE-SWitCH3.

3https://www.gene-switch.eu/
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The FarmENCODE project was initiated to functionally
annotate farm animal genomes (chicken, pig, and cattle),
particularly in the regulatory elements. The eight distinct tissues
(adipose, cerebellum, cortex, hypothalamus, liver, lung, skeletal
muscle, and spleen) from two males of each species have been
used to identify tissue-specific expressed mRNAs and lnRNAs
across three species (Kern et al., 2018). The ATAC-seq assay on
these eight tissues from pig and cattle was performed to analyze
chromatin accessibility conservation across mammals (Halstead
et al., 2020). Furthermore, ChIP-seq (four histone modification
marks and CTCF) assays across three species and DNase-seq in
chickens were performed to annotate dynamic chromatin states
across tissues and species (Kern et al., 2021).

PROCEDURE TO REQUEST SAMPLES

All tissue aliquots are available for any researcher, provided that
the work planned is scientifically sound or will be useful to
improve a methodology for FAANG, for example.

Because sanitary conditions have been recorded, health
regulations should not be a limitation to access to samples. Since
2014, an EU regulation makes it compulsory to comply with
the Nagoya protocol of the Convention on Biological Diversity,
regarding access and benefit sharing from the use of genetic
resources. In France, there is no access measure for genetic
resources from domestic animals, so there is no limitation to
access to these samples. United States is not party to the Nagoya
protocol, and there is no condition for access either.

The only request for a user of an FAANG sample described in
this article is to acknowledge the origin of samples by referring
to the present article and to share the results obtained with
all partners of the FAANG initiative. A moderate cost can be
requested to cover preservation and shipment costs, in order to
keep the tissue collection available in the long term.

For the INRAE collection, the procedure to request tissue
samples is to create an account on the CRB-Anim web portal,
https://crb-anim.fr/access-to-collection/#. The portal provides
access to the 3,949 tissue samples also declared in Biosamples.
Discovering the whole FRAGENCODE sample collections is
possible by a simple browse that will provide information about
species, breed, and sample type. You need to identify yourself
by creating an account in order to get more precise information
about the tissue type and to request samples of interest to you
with the advanced search procedure. For any specific question, a
contact address is available (contact-crb-anim@inrae.fr).

Access to the UCD collection is possible by contacting the
corresponding author from UCD and will be made available from
the CRB-Anim web portal in the course of 2021.

CONCLUSION

The FAANG tissue collection set up by INRAE and UCD
illustrates the concept of biobank for research in genomics of
domestic animals. Whereas the Biosamples database sets the
reference identification for biological samples that can be used

for research and makes possible to connect molecular data
with these samples, additional procedures set up by a biobank
are needed to manage the conservation and distribution of
samples to the scientific community. To facilitate sample sharing,
documenting sampling protocols as well as animal physiological
status and raising conditions is needed and has been described
in this protocol article. Combining different methods or types
of analyses on a limited set of reference animals avoids the
random noise due to variation among experiments and makes
proposing a reference data set for genome structure and function
possible. Furthermore, cryoconservation of spermatozoa enables
the production of progeny from these males, for which gene
expression profile will have been studied. Once a reference set
is defined, targeted experiments with additional sampling will
be able to identify deviations from the reference, as long as
sampling protocols as well as animal physiological status and
raising conditions are known. It is thus highly recommended to
upload all sampling protocols in https://data.faang.org/protocol/
samples. The preservation and distribution of reference samples,
as well as of samples from well-defined experiments, are
expected to decrease the number of animals included in future
experiments. At present, biobanking stem cells is becoming the
priority in order to facilitate the production of organoids, also an
alternative to in vivo experiments.
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Genetic variants which affect complex traits (causal variants) are thought to be found
in functional regions of the genome. Identifying causal variants would be useful for
predicting complex trait phenotypes in dairy cows, however, functional regions are
poorly annotated in the bovine genome. Functional regions can be identified on a
genome-wide scale by assaying for post-translational modifications to histone proteins
(histone modifications) and proteins interacting with the genome (e.g., transcription
factors) using a method called Chromatin immunoprecipitation followed by sequencing
(ChIP-seq). In this study ChIP-seq was performed to find functional regions in the bovine
genome by assaying for four histone modifications (H3K4Me1, H3K4Me3, H3K27ac,
and H3K27Me3) and one transcription factor (CTCF) in 6 tissues (heart, kidney, liver,
lung, mammary and spleen) from 2 to 3 lactating dairy cows. Eighty-six ChIP-seq
samples were generated in this study, identifying millions of functional regions in the
bovine genome. Combinations of histone modifications and CTCF were found using
ChromHMM and annotated by comparing with active and inactive genes across the
genome. Functional marks differed between tissues highlighting areas which might be
particularly important to tissue-specific regulation. Supporting the cis-regulatory role of
functional regions, the read counts in some ChIP peaks correlated with nearby gene
expression. The functional regions identified in this study were enriched for putative
causal variants as seen in other species. Interestingly, regions which correlated with
gene expression were particularly enriched for potential causal variants. This supports
the hypothesis that complex traits are regulated by variants that alter gene expression.
This study provides one of the largest ChIP-seq annotation resources in cattle including,
for the first time, in the mammary gland of lactating cows. By linking regulatory regions
to expression QTL and trait QTL we demonstrate a new strategy for identifying causal
variants in cattle.

Keywords: bovine, ChIP-seq, histone modifications, function, causal variants, differential binding, annotation,
ChromHMM
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INTRODUCTION

Finding the genetic variants which lead to different phenotypes
has been the goal of geneticists for many years. Bridging
the genotype to phenotype “gap” has linked genes to their
functions and identified causes of disease. In the dairy industry,
finding genetic variants which affect phenotypes would improve
selective breeding using genomic selection (MacLeod et al., 2016).
Genomic selection relies on associations between genotypes
and phenotypes to predict the phenotypes of animals. But
this association could be based on linkage disequilibrium (LD)
between a SNP and the causal variant rather than a direct
effect of the SNP itself. Therefore, identifying the causal variant
would prevent breakdown of LD over time and extend genomic
predictions to populations with different LD (Hayes et al., 2016).

Most traits of interest to the dairy industry are complex traits
which are predicted to have many causal variants of small effect
(Goddard et al., 2016). Because the individual effect of each causal
variant is small, these are difficult to find using classical genetics
methods, especially in a large long-lived mammal. Studies in
humans and other species have shown that trait-associated
variants from genome wide association studies (GWAS) are
enriched in functional regions of the genome, such as regulatory
or protein coding regions (Maurano et al., 2012; Schaub et al.,
2012; Trynka et al., 2013; Ma et al., 2015). Apart from genes, most
functional regions are not well annotated in the bovine genome
which has hampered attempts to ask the same question in cattle
(Koufariotis et al., 2014). However, two recent studies found that
functional regions identified in cattle were more likely to contain
QTL than other regions (Wang et al., 2017; Fang et al., 2019). This
reveals the exciting proposition that if functional regions can be
identified in the bovine genome, this can narrow down the space
in which we search for causal variants.

While genes can be broadly identified using sequence
homology, other types of functional elements do not have easily
identifiable features, lack sequence conservation and can be
located far from genes (Kellis et al., 2014). One study, using
homology with human regulatory regions, indicated that these
regions in cattle were enriched for QTL (Nguyen et al., 2018),
however, recent evidence showed that the use of functional
annotations predicted from humans in cattle is limited (Xiang
et al., 2019; Raymond et al., 2020). This suggests that identifying
functional regions directly in cattle is optimal. Accordingly, the
FAANG consortium for the Functional Annotation of ANimal
Genomes has been set up to jointly annotate functional regions
in livestock genomes by assaying directly for them in relevant
species and tissues (Andersson et al., 2015).

Some functional regions are marked by histone
modifications – post translational modifications to the histone
proteins which DNA is wrapped around in the cell (Zhou
et al., 2011). For example, the histone protein H3 has a tail
which can be modified by mono (H3K4Me1) or tri-methylation
(H3K4Me3) at its 4th lysine (Kimura, 2013). Numerous studies
(Bernstein et al., 2005; Roh et al., 2006; Heintzman et al., 2007)
have found that H3K4Me3 is found at promoters of genes, with
one study (Guenther et al., 2007) showing that up to 75% of
genes in human embryonic stem cells were marked by H3K4Me3

at their promoter. Other studies have found that H3K4Me1 also
marks promoters (Barski et al., 2007; Robertson et al., 2008)
and that the regulatory DNA sequences called enhancers, which
enhance the transcription of genes (Pennacchio et al., 2013), are
marked by H3K4Me1 and sometimes H3K4Me3 (Barski et al.,
2007; Robertson et al., 2008; Spicuglia and Vanhille, 2012). The
tail of histone H3 can also be modified by acetylation (H3K27ac)
or tri-methylation (H3K27Me3) at its 27th lysine (Kimura, 2013).
Studies have found that active genes and enhancers tended to
be marked by H3K27ac (Creyghton et al., 2010) while repressed
regions were marked by H3K27Me3 (Zhao et al., 2007; Tie et al.,
2009). Potential functional regions can also be marked by other
factors. The zinc finger protein CTCF (CCCTC-binding factor)
has many functions in the genome. CTCF acts as a transcription
factor which can block and activate gene expression, an insulator
by blocking interactions between enhancers and promoters,
and is involved in the machinery that regulates chromatin
conformation (Ong and Corces, 2014; Kim et al., 2015). Assaying
the location of these five marks should identify the location of
many functional regions in the bovine genome.

The locations of histone modifications and transcription
factors can be assayed across the genome using Chromatin
Immunoprecipitation followed by sequencing (ChIP-seq) (Park,
2009). Chromatin is fixed so that DNA is bound to the proteins
it is interacting with and antibodies are used to isolate the
protein of interest, such as a histone modification or transcription
factor. The DNA bound to these proteins is then sequenced
and aligned to the genome with reads forming “peaks” at the
location where the protein was bound. These peaks can be used
to annotate putative functional regions in the genome singularly,
or by combining data from several proteins (Park, 2009; Ernst
and Kellis, 2010). The height of the peaks (characterised by read
counts) is also useful. Peak height has been used to predict the
expression of nearby genes (Karlić et al., 2010) and variants which
associate with peak height have been shown to overlap with
variants associated with gene expression (McVicker et al., 2013).

Functional regions have been identified in the bovine genome
in liver (Villar et al., 2015), rumen epithelial cells (Fang et al.,
2019) and other tissues (Kern et al., 2021). However, functional
regions can vary between tissues (Kellis et al., 2014). This study
aimed to increase the catalog of functional regions in the bovine
genome by using ChIP-seq to assay the genomic locations of one
transcription factor and 4 histone modifications in 6 tissues in 2–
3 lactating Holstein dairy cows (Figure 1). This data was used
to annotate putative functional regions in the bovine genome
and identify tissue specific functional regions. We showed that
peak height in some regions correlated with the level of gene
expression in nearby genes. Lastly, we confirm that QTL and
eQTL are enriched in these putative functional regions.

MATERIALS AND METHODS

Chromatin Immunoprecipitation and
RNA Sequencing
Tissue from liver, lung, mammary gland, kidney, heart, and
spleen from three lactating Holstein dairy cows were sampled
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FIGURE 1 | Schematic of Study. Results from the study are outlined in purple
boxes while data sources contributing to the results are represented in blue.
RNA-seq and ChIP-seq data was generated from heart, liver, lung, kidney,
mammary gland, and spleen from the same three cows. The five functional
markers assayed were H3K4Me1, H3K4Me3, H3K27Me3, H3K27ac, and
CTCF. Details of causal variants are outlined in Table 1.

after euthanasia (Chamberlain et al., 2015; Dorji et al., 2020).
Ethics approval for the euthanasia and sampling of two of the
cows were obtained from Department of Jobs, Precincts and
Regions Ethics Committee (Application No. 2014-23). These
animals were euthanised out of line of sight of other animals
and sedated with 600mg of xylazine IV and 300mg of ketamine
before 1l of 25% magnesium sulphate was injected intravenously
until animal was deceased. The Third cow was not euthanised
for the purposes of this study but because she injured her
leg, for this reason the local Animal Ethics Commitee (DEPI
Agricultural Research and Extension Animal Ethics Commitee)
advised ethics approval was not required. This animal was
euthanised by captive bolt.

Tissues were dissected, snap frozen in liquid nitrogen and
stored at −80◦C until use. Frozen tissue was ground for 3 min
in the Geno/Grinder (SPEX SamplePrep). Ground, frozen tissue
was fixed for 10 min with 10% formaldehyde and chromatin
prepared using the Magnify Chromatin Immunoprecipitation
kit (ThermoFisher) as per the manufacturer’s instructions. Fixed
chromatin was sheared to 200–500 bp using the Covaris S2
(Covaris). Mammary and liver chromatin was sheared for 3 min,
duty cycle five, %intensity four and 200 cycles per burst 200. The

remaining tissue were sheared at duty cycle two, %intensity three,
200 cycles per burst for 5–15 min.

Chromatin immunoprecipitation was performed using the
Magnify Chromatin immunoprecipitation kit (ThermoFisher)
with some modifications. For the mammary and liver each
sample was immunoprecipitated in three separate reactions with
10 ul of chromatin and 0.25 ug or 0.5 ug of antibody for the
histone modifications and 10 µl of antibody for CTCF. Triplicate
samples were combined after de-crosslinking using MinElute
PCR purification kit (QIAGEN). For spleen, heart, kidney and
lung, 1.5–10 µg chromatin was used for immunoprecipitation
with 0.5–0.15 µg antibody (H3K4Me1, H3K4Me3, H3K27ac,
and H3K27Me3) per reaction or 10 µl of CTCF antibody. The
DNA obtained from ChIP was purified and concentrated using
Monarch Genomic DNA Purification Kit (New England Biolabs).

Sequence libraries for ChIP and a corresponding input sample
were prepared with the NEBNext Ultra II DNA Library Prep Kit
for Illumina (New England Biolabs) each with unique barcodes
as per the manufacturer’s instructions and run on the HiSeq 3000
(Illumina) in a 150 cycle paired end run.

Each library was sequenced to between 20 and 300 million
reads. Raw sequence reads were trimmed of adapters and poor-
quality ends using Trimmomatic (Bolger et al., 2014) removing
base pairs from the 3′ and 5′ ends of the sequence if their quality
was less than 20 and excluding trimmed reads with length less
than 50 bp. Trimmed reads were mapped to the bosTau8/UMD-
3.1.1 bovine genome with BWA mem using default settings (Li,
2013). Poor quality reads were removed with Samtools (Li et al.,
2009) using q > 15 and duplicate reads removed. ChIP and
input reads were used to call peaks with MACS2 default settings
(Zhang et al., 2008). Quality checks of peaks was performed
with deepTools plotFingerprint (Ramírez et al., 2016) and SPP
(Kharchenko et al., 2008).

RNA extraction and sequencing on the same six tissues in
the three cows was as described in Chamberlain et al. (2015)
and Dorji et al. (2020).

Profile Plots and Replicate Comparisons
Plots for the profile of ChIP-seq reads for each mark were
generated using deepTools (Ramírez et al., 2016). First bigWig
files were created from mapped ChIP and input reads using the
command bamCompare with bin size 10 and using the RPKM
option (Reads Per Kilobase of transcript, per Million mapped
reads) to normalise the number of reads between samples. Output
bigWig scores were the log2 ratio of ChIP to input. The command
computeMatrix was used to calculate scores at each mark around
transcription start sites (TSS) taken from Ensembl [Release 94
(Hunt et al., 2018)]. Active and inactive TSS were determined
using the RNAseq data described in Chamberlain et al. (2015).
Active TSS were defined when all samples had a count more than
200 at that gene and inactive when all animals had a count less
than 10. Matrices were visualised using the command plotProfile.

Similarity between samples was also calculated using
deepTools plotCorrelation (Ramírez et al., 2016). The command
multiBigWigSummary was used to summarise bigwig files across
each mark in bins of 100 bp. The command plotCorrelation
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was used to generate a heatmap of these values using Pearson
correlations.

Differential Binding Between Tissues
Differential binding (DB) between tissues was calculated using
edgeR (Robinson et al., 2010) for consensus peaks. To define
a set of consensus peaks for each mark each position in the
genome was defined as under a peak or not. Positions which
were under a peak in two or more samples were included in the
consensus peak dataset. Reads were normalised using edgeR and
DB tested by defining a design matrix for which the intercept
was the mean in all tissues. Peaks were considered significantly
differentially bound with a P value less than 0.05 and binding
greater than two-fold different to the average binding of that peak
in all other tissues.

TABLE 1 | Putative causal SNPs.

Dataset Number of
SNPs

Description References

Allele
specific
eQTL

1,100,446 Allele specific expression
QTL from white blood cells
and milk cells in 112
holstein cows (P < 0.0001)

Chamberlain
et al. (2018)

Exon eQTL 945,832 Exon expression QTL from
white blood cells, milk cells,
liver, and muscle in 209
holstein cows (P < 0.0001)

Xiang et al.
(2018); Xiang
et al. (2019)

Gene eQTL 110,200 Gene expression QTL from
white blood cells, milk cells,
liver, and muscle in 209
holstein cows (P < 0.0001)

Xiang et al.
(2018); Xiang
et al. (2019)

Conserved
regions

378,472 SNPs conserved in 100
species lifted over from
human to bovine genome

Xiang et al.
(2019)

SNP 80k 83,454 Top 80,000 sequence
variants ranked for their
contributions to 34 traits

Xiang et al.
(2019); Xiang
et al. (2021)

Splice QTL 1,112,324 Splice QTL from blood, milk
cells, liver, and muscle in
209 holstein cows
(P < 0.0001)

Xiang et al.
(2018); Xiang
et al. (2019)

Protein
Yield QTL

3,317 QTL from GWAS in 32,347
cows for protein yield with
P < 1 × 10−7

Xiang et al.
(2020)

Fat yield
QTL

4,815 QTL from GWAS in 32,347
cows for fat yield with
P < 1 × 10−7

Xiang et al.
(2020)

Milk Yield
QTL

6,883 QTL from GWAS in 32,347
cows for milk yield with
P < 1 × 10−7

Xiang et al.
(2020)

Fat
percentage
QTL

12,373 QTL from GWAS in 32,347
cows for fat percentage
with P < 1 × 10−7

Xiang et al.
(2020)

Protein
percentage
QTL

17,012 QTL from GWAS in 32,347
cows for protein
percentage with
P < 1 × 10−7

Xiang et al.
(2020)

Details of each SNP dataset used in enrichment analysis.

Correlation Between Peak Height and
Gene Expression Level
The correlation between consensus peak counts and gene count
for every peak within 100 kb of a gene TSS across 16 samples
(4 tissues X 3 cows and 2 tissues X 2 cows) for H3K27Me3
and H3K27ac or 18 samples (6 tissues X 3 cows) for the other
marks was calculated.

Counts for each set of consensus peaks (described above) were
calculated with DiffBind (Stark and Brown, 2011) and normalised
using Trimmed Mean of M-values (TMM) and full library size.
Normalised RNA-seq counts for each gene were used from
Chamberlain et al. (2015) and Dorji et al. (2020). Correlations
were calculated using corr.test in R.

Annotation With ChromHMM
Chromatin states were defined using ChromHMM (Ernst and
Kellis, 2012). Filtered and deduplicated input and ChIP-seq
bam files were binarized using the binarizeBam option with
default settings. Between five and 24 states were learned using
the LearnModel function of ChromHMM. A model with 7
states was chosen for further analysis as in this model each
state was unique.

To annotate, chromatin states were compared to known
regions in the genome using the OverlapEnrichment function
in ChromHMM. Locations of TSS and genes were downloaded
from Ensembl [release 94 (Hunt et al., 2018)]. The promoter
region was characterised as 2kb upstream of the TSS and
proximal regions as 8 kb upstream from the promoter start
site. Normalised read counts from RNA-seq data (Chamberlain
et al., 2015; Dorji et al., 2020) were used to define genes,
and their associated promoters and proximal regions, as active
or inactive. Active genes were defined when all animals had
a count over 200 in that tissue and for inactive genes all
animals had a count less than 10 in that tissue. We also
looked for tissue-specific active genes, these were when all
animals had counts above 200 in that tissue and below 10 in
all other tissues.

Enrichment of Putative Causal SNPs in
Functional Regions
Enrichment of putative causal SNPs in peaks, peaks which
correlated with gene expression, differentially bound peaks and
ChromHMM states was calculated. Enrichment was calculated
using the formula outlined in ChromHMM (Ernst and Kellis,
2012) and described below.

Enrichment = (C/A)/(B/D) where: A is the number of
positions under peaks, B is the number of positions that were
putative causal SNPs, C is the number of positions under peaks
and also a putative causal SNP and D is the number of positions
in the genome.

The significance of enrichment or depletion was calculated
using a hypergeometric test in R. A variety of putative causal SNP
datasets were used for enrichment analysis (Table 1). There were
no SNP on the X chromosome in the datasets so only autosomal
regions were tested. Total genome size was calculated as the sum
of chromosomes 1–29.
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Enrichment Based on Location in the
Genome
We tested whether enrichment of putative causal SNPs within
peaks changed depending on location in the genome. Enrichment
was calculated with only peaks and SNPs located within 100 kb
from a TSS, 100–200 kb from a TSS and so on up to a million
base pairs from a transcription start site. Transcription start
sites for each gene were taken from Ensembl [Release 94 (Hunt
et al., 2018)]. The distance to the nearest TSS for each peak was
calculated from the summit (as defined by MACS2) of narrow
peaks and the midpoint of broad peaks (halfway between the start
and end of the peak).

Filtering SNPs for Linkage Disequilibrium
To account for SNPs in high linkage disequilibrium (LD), the
GWAS SNP datasets were filtered for LD using plink (Purcell
et al., 2007). Within each 1mb window, with a moving step of
50 SNPs, SNPs were retained if they had pairwise r2 < 0.5.
Enrichment was calculated with these filtered SNP datasets as
described above.

RESULTS

Description of ChIP-seq Peaks
86 ChIP-seq datasets were generated as shown in
Supplementary Table 1.

Quality of the ChIP-seq assay was assessed by calculating
the Jensen-Shannon Distance (JSD) between the sample and
input and cross strand correlation metrics. All but two samples
exceeded ENCODE standards for cross correlation metrics
(NSC > 1.05 and RSC > 0.9, Supplementary Table 2). However,
we found JSD to be a more reliable metric, which was less
sensitive to read depth. All ChIP-seq data had a JSD between 0.23
and 0.5 (Supplementary Table 2).

After filtering of poor-quality reads and removal of duplicates,
between 24,847,326 and 316,216,350 mapped ChIP-seq reads
remained for each sample (Supplementary Table 2). To account
for bias in shearing, library preparation and mapping, an input
control using the same batch of sheared chromatin was also
sequenced for each sample. Mapped ChIP-seq and input control
bam files were used in MACS2 (Zhang et al., 2008) to call
between 31,303 and 871,452 peaks for each sample. The average

TABLE 2 | Summary of peaks.

Mark Average
number of
peaks

Average
mapped reads

Average% of
genome

Average size
of peaks

H3K4Me3 419,386 132,285,209 7 560

H3K4Me1 513,830 136,545,806 21 1,163

H3K27ac 493,905 154,628,688 10 583

H3K27Me3 555,459 127,247,856 21 1,049

CTCF 456,881 90,288,075 7 410

For each mark, the average number of peaks, mapped reads, percentage of
genome under peaks, and average size of peaks are reported.

size of peaks was 400 bp to 600 bp for peaks designated as
“narrow” in MACS2 (H3K27ac, H3K4Me3, and CTCF) and
1000 bp to 1100 bp for peaks called as “broad” (H3K4Me1 and
H3K27Me3, Table 2). An average of 13% of the genome was
under a peak in any one dataset. When considering narrow
peaks, the percentage of genome covered in each dataset was
strongly correlated with number of mapped reads (r = 0.715,
P < 0.001) but was less strongly correlated in broad peaks
(r = 0.363, P = 0.036). Number of peaks per dataset was also
strongly correlated with the number of mapped reads (r = 0.656,
P < 0.001) (Supplementary Figure 1).

Profile Plots and Replicate Comparisons
Profile plots display the normalised ChIP-seq signal above input
signal. As expected H3K4Me3 displayed the highest signal around
the TSS, followed by H3K27ac. The profiles for H3K4Me3,
H3K4Me1, and H3K27ac displayed a slight bimodal shape at the
TSS (Figure 2). When comparing the profiles around the TSS
of 475 active genes and 8,398 inactive genes, H3K27ac samples
showed high signal near the TSS of active genes while H3K27Me3
samples showed lower signal (Supplementary Figure 2).

We compared replicates within marks using Pearson
correlations. In general, all samples were strongly correlated
regardless of tissue or animal, however, there were some batch
effects (Supplementary Figure 3).

Differential Binding Between Tissues
Normalised ChIP-seq counts at consensus peaks in each tissue
were compared for differential binding. Peaks were defined as
differentially bound where the mean of the counts in one tissue
was significantly different (P < 0.05) and two-fold higher or lower
than the mean of the counts in all other tissues.

The largest number of differentially bound peaks were in
H3K27ac where almost 24% of peaks were different between
tissues (Table 3). Of the H3K27ac DB peaks, a large proportion
were higher in heart (Supplementary Figure 4).

Correlation Between Peak Height and
Gene Expression Level
We examined whether variation in peak height correlated with
variation in gene expression. Normalised ChIP-seq counts at
consensus peaks in each mark were compared to normalised gene
counts from RNA-seq in the same sample. Every peak within
100 kb of a gene was tested for an association between peak
height and gene expression. This resulted in more than 1 million
tests for each mark. It was not expected that there would be a
correlation between all these peak-gene pairs, however, it was
unknown which peaks were interacting with which genes, so it
was necessary to test them all. Although the sample size was
low (16 or 18 depending on the mark), there was a significant
(P < 0.05) correlation in 6–11% of peak-gene pairs, which is more
than the 5% expected by chance. Similarly, most correlations
were negative for H3K27Me3 and positive for all other marks
which would not be expected if the correlations were random
chance (Figure 3).
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FIGURE 2 | Distribution of ChIP-seq reads around the transcription start site (TSS). For each histone modification these plots show the normalised ChIP-seq signal
above input signal within 2 kb of the TSS.

TABLE 3 | Differentially bound peaks.

Mark Peaks tested Peaks DB Percentage peaks DB

H3K27ac 885,919 213,293 24.1

H3K4Me3 853,788 30,965 3.6

H3K4Me1 649,485 21,230 3.3

H3K27Me3 740,188 17,347 2.3

CTCF 961,881 93,473 9.7

Number of peaks tested as well as number and percentage of peaks differentially
bound (DB) between tissues (P < 0.05, fold change > 2).

Annotation With ChromHMM
Using the four histone modifications and CTCF seven
chromatin states were defined across the genome (Table 4)
using ChromHMM (47). When higher numbers of states were
tested ChromHMM defined states with similar functional
mark profiles at similar probabilities. To annotate the
seven states, we looked for enrichment within these states
within active and inactive genes, promoters and proximal
regions and used evidence from other studies of what
these marks represent. Between 1,169 and 1,826 genes
were defined as active in any one tissue and between
10,653 and 11,815 defined as inactive. There were between
six and 134 genes which were only active in one tissue
(Supplementary Table 4).

The seven states were annotated as inactive promoters,
repressed, no signal, hyperChIPable region, active enhancer,
permissive, and active promoter (Table 4). State 2 was annotated
as “repressed” as it had a high chance of observing the inactive
mark H3K27Me3 and was enriched in inactive genes (Figure 4).
State 1 was defined as “inactive promoter” because it was slightly
more enriched upstream of inactive genes (except for in liver)
consistent with inactive promoters and had a high probability of
observing H3K27Me3 but also H3K4Me1, H3K4Me3, and CTCF.
Two states (3 and 6) displayed low probability of any mark. State
3 was defined as “no signal” as it covered most of the genome
but was not highly enriched in any annotated regions suggesting
regions which were not functional at that time in these tissues.
State 6 was annotated as “permissive” as it was highly enriched
in active genes and regions proximal to active genes indicating a
more open, permissive state. State 5 was termed “active enhancer”
as it had a high probability of H3K27ac and H3K4Me1 (Table 4)
which is a combination thought to denote active enhancers (26).
This state was slightly enriched in active genes in all tissues
(Figure 4). State 7 had a high probability of observing H3K4Me1,
H3K4Me3, CTCF, and the activating mark H3K27ac (Table 4)
and was defined as “active promoter.” This state was enriched at
all regions 2 kb upstream of the TSS but was particularly enriched
upstream of active TSS (Figure 4). State 4 had a high probability
of observing all 5 marks at once and was enriched in both active
and inactive regions but did not show a consistent pattern in
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FIGURE 3 | Direction of significant correlations. The direction of correlations between ChIP-seq and RNA-seq counts for H3K27Me3, H3K27ac, H3K4Me1,
H3K4Me3, and CTCF.

TABLE 4 | Emission probabilities for seven states from ChromHMM.

State H3K27ac H3K4Me1 CTCF H3K4Me3 H3K27Me3

1 0.57 0.94 0.94 0.90 0.98 Inactive promoter

2 0.04 0.29 0.43 0.22 0.67 Repressed

3 0.00 0.00 0.00 0.00 0.00 No signal

4 0.99 0.99 0.94 0.92 0.98 HyperChIPable region

5 0.72 0.85 0.45 0.16 0.34 Active enhancer

6 0.03 0.04 0.01 0.00 0.00 Permissive

7 0.99 0.90 0.69 0.69 0.22 Active promoter

The emission probabilities for each mark in each state provided by ChromHMM.
Darker colour indicates higher probability. Annotations (last column) for each state
was based on location in the genome and known associations from literature.

any of the regions tested. We defined State 4 as “hyperChIPable
regions” as coined in a recent study (Massa et al., 2021).

Analysis of tissue specific genes was hampered by the
small numbers involved (Supplementary Table 4); Kidney,
lung and spleen only had 14, 11, and six active genes
identified as tissue specific. However, in mammary and
liver (26 and 134 tissue specific genes, respectively) active
tissue specific genes, promoters, and proximal regions
were enriched in “active promoters” similar to other active
genes, promoters, and proximal regions (Supplementary
Table 5). However, in heart, tissue specific active genes,
promoters and proximal regions were more enriched for
“hyperChIPable regions” than “active promoters” which was
not consistent with the other active genes, promoters, and
proximal regions.

Inspection of ChromHMM states near known genes showed
clear delineation between active and inactive genes in appropriate
tissues (e.g., Figure 5). Alpha S1 casein (CSN1) is a gene

known to be highly expressed in the mammary gland (Ibeagha-
Awemu et al., 2016). The gene expression data showed that it
is highly expressed in mammary tissue but not in the other
tissues studied here. Figure 5 shows mammary tissue is marked
by hyperChIpable (yellow), active enhancer (red) and permissive
(dark green) states, all active states, while the remaining tissues
are marked by inactive promoter (blue), repressed (purple), and
no signal (light green) states, all inactive states. State 7 is not
present, which is meant to be an active promoter state.

Enrichment of Putative Causal SNPs in
Functional Regions
Putative functional regions described above were tested for
enrichment of potential causative SNPs from 11 datasets that
included expression QTL, milk production trait QTL and sites
conserved across numerous species (see materials and methods
Table 1 for descriptions of the datasets).

Enrichment in Peaks
All putative causal variants were significantly overrepresented
in peaks (enrichment > 1) with average enrichment between
1.17 (for SNP80k) and 3.82 (for QTL Protein Yield) for each
SNP dataset (Figure 6 and Supplementary Table 6). The
narrow peaks (H3K4Me3, H3K27ac, and CTCF) had the highest
enrichment across all SNP datasets although the differences were
small. The QTL for protein yield had the highest enrichment
across all marks.

There was little variation in enrichment between tissues,
except in the milk production QTL results where H3K4Me3,
H3K27ac, and CTCF peaks in mammary gland consistently
had higher enrichment (e.g., Figure 6, Supplementary
Table 6). All enrichment was highly significant with P < 0.001
(Supplementary Table 6).
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FIGURE 4 | Enrichment of 7 Chromatin states in Mammary Gland at annotated regions of the bovine genome. For more details of enrichment at annotated regions
see Supplementary Figure 5.

Enrichment in Differentially Bound Peaks
Some differentially bound peaks were enriched for causal variants
and some were depleted (Supplementary Table 7). This was not
consistent across marks or across tissues. This likely reflects the
small numbers of peaks which were differentially bound in some
cases (Table 3) which increased the noise in the data.

Enrichment in Peaks Which Correlate With Gene
Expression
Peaks which correlate with gene expression may be affecting
gene expression and so are strong candidate regions for causal
variants. Filtering peaks for those correlated with gene expression
(Supplementary Table 8) improved enrichment for all SNP
sets except SNP 80 k and conserved regions (Figure 7 and

Supplementary Table 9). Enrichment was significant in all cases
with P < 0.001.

Enrichment in ChromHMM States
All the states defined by ChromHMM except state 3 (“no signal”)
were enriched for some causal SNP datasets (Figure 8). The
states with the highest enrichment were State 4 (“hyperChIPable
region”) and State 7 (“active promoters”) except for the 80 k
SNPs which were most enriched in State 1 (“inactive promoters”).
The highest enrichment was for QTL for protein yield in State
4 (“hyperChIPable region”), these QTL also had the lowest
enrichment in State 3 (“no signal”), where they were strongly
depleted. Most of the SNP datasets showed highest enrichment
in states 4 and 7, moderate enrichment in states 1,2,5, and 6 and
depletion in state 3. However, the 80 k SNP dataset showed low
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FIGURE 5 | ChromHMM states vary between tissues. Representation of
ChromHMM states in heart, kidney, liver, lung, spleen, and mammary gland
tissue near the transcription start site of CSN1, a gene highly expressed in the
mammary gland. “Inactive promoter” (blue), “Repressed” (purple) and “No
Signal” (light green) states are all inactive states, while “Active Enhancer” (red),
“HyperChIPable Region” (yellow), and “Permissive” (dark green) are all active
states.

to no enrichment in all states except State 1 and conserved SNPs
showed low to no enrichment in all states except 4 and 7. The
highest enrichment in State 4 was only slighter better than the

highest enrichment when considering peak regions defined by the
histone mark and was worse than when using peaks correlated
with gene expression. Depletion and enrichment were statistically
significant in most cases (Supplementary Table 10).

Consistent with results in peaks there was little variation in
enrichment between tissues in most of the SNP datasets except
for conserved regions and milk production QTL (Supplementary
Table 10). Conserved regions were largely similar between tissues
except for heart which had higher enrichment in State 1 than
the other tissues. State 1 in heart was also consistently more
enriched in all five milk production QTL SNP datasets than
the other tissues. State 7 in liver and in some cases mammary
displayed little to no enrichment for the milk production QTL
while the other tissues displayed high enrichment for these
QTL in this state.

Confounding Factors
Enrichment Based on Location in the Genome
One confounding factor of the enrichment analysis is that
potential causal SNP may be found within peaks because both
peaks and causal SNP may tend to be found close to genes. We

FIGURE 6 | Enrichment of causal variants within functional regions. (A) Enrichment of causal variants within peaks. Enrichment of each SNP dataset within each
histone modification or CTCF averaged across tissues. All values above 1 (indicated by the vertical black bar) are enriched for causal variants. Enrichment was
significant with P < 0.001 for all tests. (B) Enrichment of three sets of milk trait QTL within H3K27ac peaks. Peaks in mammary gland have the highest enrichment
for these milk trait QTL.
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FIGURE 7 | Enrichment of QTL for protein yield in peaks correlated with gene
expression. Enrichment of QTL for protein yield within peaks (black) and peaks
correlated with gene expression (blue) for each mark. Enrichment was
significant with P < 0.001 for all tests.

FIGURE 8 | Average enrichment of chromatin states for each SNP dataset.
Enrichment for each state averaged across tissues.

tested whether enrichment of potential causal SNPs in peaks
changed depending on the distance of the peaks from the nearest
gene and whether this explained the high enrichment seen

within peaks. Peaks and SNPs were split up into 10 groups of
100 kb increments (Supplementary Tables 11, 12) depending
on their distance to the nearest TSS and enrichment was tested
within these groups.

As distance from TSS increased the number of SNPs and peaks
in these regions decreased (Supplementary Tables 11, 12). In
general enrichment of most of the SNP datasets within peaks
remained constant regardless of location (Figure 9). However,
conserved SNPs were not enriched in any tissues or marks more
than 100 kb from TSS and Exon eQTL and Splice QTL were
not enriched further than 800 kb from TSS. Allele specific eQTL
remained enriched within peaks in all regions but the strongest
enrichment was between 0 and 100 kb from TSS (Figure 9). Milk
production QTL SNPs were not found more than 300 kb from
a TSS (Supplementary Table 11) so enrichment could not be
assessed beyond this, but peaks were enriched for SNPs up to this
point (Figure 9).

Filtering SNPs
Another confounding factor of this analysis is that high
enrichment might be driven by a group of SNPs all in high
LD with each other. To avoid this possibility significant milk
production QTL SNPs (P < 1× 10−7) were filtered to account for
linkage disequilibrium (LD pruning) where SNPs were retained
with r2 < 0.5 (Supplementary Table 13). Pruning improved
enrichment in peaks but not in peaks whose height was correlated
with gene expression (Figure 10). Pruning consistently improved
enrichment in State 1 and 4 but had mixed effects in other states.

DISCUSSION

This study presents the results of ChIP-seq for 4 histone
modifications and one transcription factor in six tissues from 3
lactating dairy cows. The ChIP-seq data was used to annotate
functional regions in the bovine genome and establish whether
functional regions are enriched for causal variants.

To confirm the quality of the ChIP-seq data we looked at
the intensity of ChIP signal for each histone modification within
2 kb of the TSS (Figure 2). All 4 histone modifications had
an increase at the TSS. H3K4Me3 had the highest intensity
consistent with expectations (Guenther et al., 2007) followed
by H3K27ac. Some studies show a bimodal distribution of
H3K4Me1 and/or H3K4Me3 signal at promoters (Barski et al.,
2007; Kingsley et al., 2020) but this is not always observed
(Hoffman et al., 2010; Bae and Lesch, 2020). In this study
only a very slight bimodal distribution in the profile of
H3K4Me3, H3K4Me1, and H3K27ac was observed. We also
plotted the profile of the active and inactive marks H3K27ac
and H3K27Me3 at active and inactive genes (Supplementary
Figure 2). H3K27ac had much higher signal than H3K27Me3
at active genes as expected (Barski et al., 2007) but there
was only a small difference between active and inactive gene
profiles in H3K27Me3. This modest difference has also been
found in other studies (Barski et al., 2007) with Mikkelsen
et al. (2007) finding that not all repressed promoters are
marked by H3K27Me3.
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FIGURE 9 | Enrichment of SNPs within peaks by distance to the nearest transcription start site. (A) Enrichment (averaged across all animals, tissues, and marks) of
SNPs within peaks at different distances from transcription start sites. Enrichment stays above 1 in all cases until 800 kb from the nearest transcription start site. (B)
Enrichment (averaged over all tissues and animals) of milk production QTL within peaks at different distances from transcription start site. Enrichment was not
calculated for protein and fat yield more than 300 kb from a TSS as there were less than 10 SNPs.

For each functional mark, peaks were called from ChIP DNA
sequence using MACS2. Up to 500,000 peaks were found for each
mark representing millions of functional regions in the genome
of dairy cows. Differentially bound peaks were also annotated.
Only very low numbers of peaks were different between tissues
in most of the marks except for H3K27ac (Table 3). This is
consistent with high correlation among all samples as observed
in Supplementary Figure 3. It is not surprising that H3K27ac
differed between tissues more than other marks because it is
thought to be associated with active promoters and enhancers
(Barski et al., 2007). However, work in other species suggests
that the enhancer associated mark H3K4Me1 should also display
some tissue specificity while marks such as H3K4Me3 are more
uniform (Heintzman et al., 2009; Shen et al., 2012). This study

did not find this. There were notable differences in the number
of differentially bound peaks between tissues. For example, 24%
of the H3K27ac regions tested were different in at least one tissue
but more than half of these differentiated regions were specific to
heart (Supplementary Figure 4). In addition, CTCF in mammary
and liver had extremely high numbers of down-regulated peaks
and very few up-regulated peaks, while kidney, lung and spleen
had the opposite. The addition of more samples in future will
likely improve this result.

To annotate peaks which are correlated with gene expression,
all peaks within 100 kb of a transcription start site were tested
for a correlation between read counts under the peak and in
the gene. As expected, most peak-gene pairs were not correlated,
however, there were more significant correlations than would
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FIGURE 10 | Enrichment of pruned SNPs within functional regions. Comparison of enrichment for all significant milk production QTL (P < 1 × 10−7) compared with
pruning SNPs at r2 < 0.5. All peaks and peaks correlated with gene expression (Correlated Peaks) for all 5 traits are shown as well as ChromHMM states.

be expected by chance. For most marks, a high proportion of
correlations were positive which would also not occur by chance.
The highest number of correlated peaks were from histone
modification H3K27ac (Figure 3), this is logical as this mark
has been found to correlate with active regions of the genome
(Wang et al., 2008; Cotney et al., 2012). Similarly, the majority of
H3K27Me3 correlations were negative (Figure 3), which is also
expected as this mark has been found to represent repression of
transcriptional activity (Barski et al., 2007; Cotney et al., 2012).

These peaks are important functional regions to annotate as
they indicate a potential functional link between significantly
correlated peaks and nearby gene expression.

ChromHMM (Ernst and Kellis, 2012) was used to combine
data from multiple marks and call seven chromatin states across
the genome. RNA-seq data from the same tissues were used to
annotate these states. The results show a demarcation between
active and inactive states consistent across multiple tissues.
For example, ChromHMM was able to differentiate State 3

Frontiers in Genetics | www.frontiersin.org 12 June 2021 | Volume 12 | Article 664379224

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-664379 September 8, 2021 Time: 15:32 # 13

Prowse-Wilkins et al. Causal Variants in Functional Regions

FIGURE 11 | An example of the utility of this data. Peak 118,300, whose location is shown in the upper panel, is significantly 2-fold higher in mammary gland than
other tissues and its height (not shown) correlates (r = 0.71, P = 0.002) with the expression of the gene PAEP. Three geQTL, shown in the red box in the upper and
lower panels, which correlate with the expression of PAEP in milk cells, can be found in this peak.

(“no signal”), which covered most of the genome, from State
6 (“permissive”), which was highly enriched at active genes,
even though they had very similar histone modification and
transcription factor occupancy. However, this was not always
consistent. State 7 (“active promoters”) was highly enriched at
active promoters but there was also some enrichment at inactive
promoters. Similarly State 2 (“repressive”) was depleted in active
regions but was only slightly enriched in inactive regions. Lastly,
State 1 which we called “Inactive promoters” was only slightly
enriched upstream of inactive genes. Genes were defined as
inactive when there was no RNA-seq counts from that gene which
is very stringent, so it is possible some of these genes were poised
or were not accurately annotated.

The remaining states were annotated based on information
from other studies. State 5 was labelled an “active enhancer”
because the marks present in this state reflect enhancer
conditions in other species (Heintzman et al., 2007; Creyghton
et al., 2010), however, we were unable to provide any genomic
evidence for this as enhancers are poorly annotated in the bovine
genome. State 4 (“hyperChIPable regions”) had all five marks
occurring in the same place and was found to varying degrees in
all genomic regions looked at. This phenomenon was described in
a recent study and was termed a “hyperChIPable” region (Massa
et al., 2021). However, this is not consistent with most other
published literature which suggests H3K27ac and H3K27Me3,
active and inactive marks, respectively, should not occur at the
same place in the genome (Tie et al., 2009). We hypothesise
this could occur for multiple, not mutually exclusive reasons. (1)
These regions are “poised” between active and inactive states in
the mass of heterogeneous cells in the tissue. (2) One or more
of the peaks are false positives found when the antibody binds
off-target (Jain et al., 2015). (3) High sequence depth is picking
up weak peaks which are not found at “normal” read depths (20
million reads are recommended by ENCODE (Landt et al., 2012),

our data is between 20 and 300 million reads). (4) These regions
represent an important functional region. It seems likely that
all 4 options are contributing to our observations including the
fact that some of these peaks are false positives. Despite this we
found these regions were highly enriched for putative causal SNPs
which suggests some function.

It is hypothesised that causal variants are found in functional
regions of the genome. To test whether this is true for this
study we tested multiple potential causal variant datasets for
enrichment in the functional regions described in this study. The
enrichment of ChIP-seq peaks for potential causal variants in
all datasets was significantly higher than random, although the
degree varied across datasets, tissues, and marks. ChIP-seq peaks
in mammary gland were particularly enriched for SNPs identified
in GWAS for milk production traits. This is consistent with other
studies showing trait-associated variants are enriched in peaks
from tissues associated with the trait (Ernst et al., 2011; Kundaje
et al., 2015). The ChromHMM state with a high probability of all
five marks occurring together (State 4-“ hyperChIPable regions”)
was also enriched for putative causal SNPs while the state with
no signal from any functional marks was depleted for all SNP
datasets tested. The highest enrichment was observed in peaks
which correlated with gene expression. Except for SNPs from
conserved regions and the 80 k SNPs, all SNP datasets were
highly enriched in these peaks. A potential causal mechanism
for these variants would be that they affect the functional mark
binding which in turn affects gene expression making these good
candidate SNPs for further investigation.

A limitation of the enrichment study is that none of
the SNPs tested were confirmed causal variants. Most were
SNPs which associate with a phenotype so may be in linkage
disequilibrium with a causal variant but are not the causal variant
themselves. This means that the enrichment of causal variants
(the proportion of which will be different in different datasets)
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will be diluted by the non-causal variants in the dataset, but it
could also mean that our functional regions were just enriched
for SNPs in linkage disequilibrium with causal variants. However,
the data shows that across multiple SNP datasets using different
methodologies there was consistent enrichment for these SNPs
within functional regions. This is consistent with studies in
human and cattle (Maurano et al., 2012; Schaub et al., 2012;
Trynka et al., 2013; Ma et al., 2015; Wang et al., 2017; Fang et al.,
2019).

Another possible limitation is that the peaks were enriched
because they and the SNPs tested were both near genes. This
would mean they are more likely to intersect because of similar
distributions in the genome rather than due to a causal variant
affecting functional mark binding (Cano-Gamez and Trynka,
2020). To test this, we split the genome into regions based on
how far each was from the nearest TSS and tested enrichment
with peaks and SNPs just within these regions. In most cases
SNPs were enriched in ChIP-seq peaks regardless of the distance
of the region being tested from a TSS. This suggests that the
enrichment observed was not just a function of proximity to
genes. Unfortunately, this could only be tested up to 300 kb in
the milk trait GWAS dataset as there were too few SNPs more
than 300 kb from a TSS. Due to the small number of SNPs in
the GWAS datasets and the fact that they mostly cluster together
we were concerned that multiple SNPs from few locations were
enriched in few peaks and these SNPs were all tagging one causal
variant. To account for this, SNPs were filtered for LD and only
the most significant was included from each LD region. This
reduced the number of SNPs dramatically but in most cases
filtering in this way either improved enrichment or did not
change it suggesting successful pruning of SNPs which were in
LD with the one causal variant and peaks were still enriched
for these variants.

To highlight the utility of the data generated, an example
of three SNPs which we hypothesise are good candidate causal
variants for important milk traits is shown (Figure 11). In a
gene expression QTL study in milk cells, Xiang et al. (2020)
found 531 SNPs which significantly associate with expression
of the progestagen-associated endometrial protein gene PAEP
(Ibeagha-Awemu et al., 2016). In this study, we filtered these
531 SNPs down to three (rs208362116, rs210272536, and
rs136737193) that were found in a H3K27ac peak which was
higher in mammary gland than the other five tissues. The height
of this peak also correlated with PAEP gene expression (r = 0.71,
P = 0.002). A genetic variant in this peak which altered its height
therefore may also alter PAEP gene expression. Further study
would be needed to verify this, but ChIP-seq data enabled us to
filter 531 SNPs down to three genetic variants with a potential
causal mechanism for altering gene expression.

Genomic selection will be more accurate over time and across
breeds if causal variants are included in predictive modelling
(MacLeod et al., 2016). It is thought that causal variants are
found in functional regions of the genome but until recently
(Villar et al., 2015; Fang et al., 2019; Kern et al., 2021) these
were not well annotated in cattle (Koufariotis et al., 2014; Nguyen
et al., 2018). This study annotated functional regions in six
tissues in 2–3 Holstein dairy cows using ChIP-seq for four

histone modifications and one transcription factor. This is the
first time this has been done in the mammary gland of a lactating
dairy cow. Although many histone modifications overlapped
between tissues, some regions showed a difference in binding
across tissues and some peaks were correlated with differences
in gene expression. Lastly, we confirmed that putative causal
variants were enriched in the functional regions discovered. This
confirms that future work should consider using these regions
when selecting SNPs for genomic selection (MacLeod et al., 2016;
Xiang et al., 2019).
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Supplementary Figure 1 | Pearson correlations of mapped reads with other
parameters. (A). The number of peaks found significantly increases as mapped
reads increases (r = 0.656, P < 0.001). (B). The percent of the genome covered
by narrow peaks significantly increases as mapped reads increase (r = 0.715,
P < 0.001). (C). The percent of the genome covered by broad peaks significantly
increases as mapped reads increase (r = 0.363, P = 0.036).

Supplementary Figure 2 | Comparison of profiles of H3K27Me3 and H3K27ac
at active and inactive genes. Normalised ChIP-seq signal above input signal of the
active (H3K27ac) and inactive (H3K27Me3) histone modifications within 2kb of
transcription start sites (TSS) for active and inactive genes in all six tissues.

Supplementary Figure 3 | Comparison of replicates in each mark. Pearson
correlations of replicates in each mark.

Supplementary Figure 4 | Direction of differential binding. Number of differentially
bound peaks with either higher (Up) or lower (Down) binding in heart, liver, kidney,
lung, mammary gland (MG), and spleen.

Supplementary Figure 5 | Enrichment of 7 Chromatin states in different tissues
at annotated regions of the bovine genome. Where state1 is “inactive promoter,”
state 2 is “repressed,” state 3 is “no signal,” state 4 is “hyperChIPable,” state 5 is
“active enhancer,” state 6 is “permissive,” and state 7 is “active promoter.” Darker
blue indicates higher enrichment.

Supplementary Table 1 | Summary of 86 ChIP-seq datasets. The number of
biological replicates is shown for each tissue-mark combination.

Supplementary Table 2 | Summary data for each ChIP-seq library. Information
on the number of mapped reads, quality and coverage of the genome for each
ChIP-seq dataset.

Supplementary Table 3 | Correlation between ChIP-seq and RNA-seq counts.
The number of tests for correlation between gene expression and peak height as
well as the number and percentage significantly correlated (P < 0.05) for each
mark. All peaks within 100 kb of a gene were tested.

Supplementary Table 4 | Active and inactive genes used for ChromHMM
annotation. The number of genes defined as active, tissue-specific active and

inactive based on normalised count data from RNA-seq in siz tissues
across three animals.

Supplementary Table 5 | Enrichment of 7 Chromatin states in different tissues at
annotated regions of the bovine genome. Where state1 is “inactive promoter,”
state 2 is “repressed,” state 3 is “no signal,” state 4 is “hyperChIPable regions,”
state 5 is “active enhancer,” state 6 is “permissive,” and state 7 is “active
promoter.” Darker green indicates higher enrichment.

Supplementary Table 6 | Enrichment of SNP datasets within peaks. The
enrichment of each SNP dataset within peaks for each sample. Significance of
enrichment or depletion was determined with a hypergeometric test. A summary
table is included to the right with average enrichment for each tissue. Darker green
indicates higher enrichment.

Supplementary Table 7 | Enrichment of SNP datasets within differentially bound
peaks. The enrichment of each SNP dataset within differentially bound peaks for
each sample with either higher (Up) or lower (Down) binding. Significance of
enrichment or depletion was determined with a hypergeometric test. A summary
table is included to the right with average enrichment for each tissue. Darker green
indicates higher enrichment.

Supplementary Table 8 | Number of peaks correlated with gene expression.
Number of peaks for each mark whose height correlated with gene expression.

Supplementary Table 9 | Enrichment of putative causal variants of peaks and
peaks correlated with gene expression. Enrichment of each SNP dataset within
peaks and peaks correlated with gene expression. Filtering for correlation with
gene expression increased enrichment for causal variants. Enrichment was
significant with P < 0.001 for all tests.

Supplementary Table 10 | Enrichment of SNP datasets within ChromHMM
states. The enrichment of each SNP dataset within each state in each tissue.
Significance of enrichment or depletion was determined with a hypergeometric
test. A summary table is included to the right with average enrichment
for each tissue.

Supplementary Table 11 | The number of SNPs in each dataset grouped by
distance to nearest transcription start site. For each SNP dataset we grouped
SNPs based on distance to nearest transcription start site in bins of 100 kb.

Supplementary Table 12 | The number of peaks grouped by distance to
transcription start site, averaged over samples. The average number of peaks,
grouped by distance to the nearest transcription start site, tested for enrichment.

Supplementary Table 13 | Number of SNPs in milk production QTL datasets
after filtering using r2.
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Pigs are a valuable human biomedical model and an important protein source
supporting global food security. The transcriptomes of peripheral blood immune cells
in pigs were defined at the bulk cell-type and single cell levels. First, eight cell types
were isolated in bulk from peripheral blood mononuclear cells (PBMCs) by cell sorting,
representing Myeloid, NK cells and specific populations of T and B-cells. Transcriptomes
for each bulk population of cells were generated by RNA-seq with 10,974 expressed
genes detected. Pairwise comparisons between cell types revealed specific expression,
while enrichment analysis identified 1,885 to 3,591 significantly enriched genes across
all 8 cell types. Gene Ontology analysis for the top 25% of significantly enriched genes
(SEG) showed high enrichment of biological processes related to the nature of each cell
type. Comparison of gene expression indicated highly significant correlations between
pig cells and corresponding human PBMC bulk RNA-seq data available in Haemopedia.
Second, higher resolution of distinct cell populations was obtained by single-cell
RNA-sequencing (scRNA-seq) of PBMC. Seven PBMC samples were partitioned and
sequenced that produced 28,810 single cell transcriptomes distributed across 36
clusters and classified into 13 general cell types including plasmacytoid dendritic cells
(DC), conventional DCs, monocytes, B-cell, conventional CD4 and CD8 αβ T-cells, NK
cells, and γδ T-cells. Signature gene sets from the human Haemopedia data were
assessed for relative enrichment in genes expressed in pig cells and integration of
pig scRNA-seq with a public human scRNA-seq dataset provided further validation
for similarity between human and pig data. The sorted porcine bulk RNAseq dataset
informed classification of scRNA-seq PBMC populations; specifically, an integration of
the datasets showed that the pig bulk RNAseq data helped define the CD4CD8 double-
positive T-cell populations in the scRNA-seq data. Overall, the data provides deep and
well-validated transcriptomic data from sorted PBMC populations and the first single-cell
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transcriptomic data for porcine PBMCs. This resource will be invaluable for annotation of
pig genes controlling immunogenetic traits as part of the porcine Functional Annotation
of Animal Genomes (FAANG) project, as well as further study of, and development of
new reagents for, porcine immunology.

Keywords: pig, immune cells, transcriptome, single-cell RNA-seq, bulkRNA-seq, FAANG

INTRODUCTION

A major goal of biological research is using genomic information
to predict complex phenotypes of individuals or individual
cells with specific genotypes. Predicting complex phenotypes is
an important component of broad Genome-to-Phenome (G2P)
understanding (Koltes et al., 2019), and investing in sequencing
of multiple animal genomes, including pigs (Sus scrofa), for
improved genome and cell functional annotation is key in solving
the G2P question (Andersson et al., 2015; Giuffra et al., 2019).
In addition to their major role in the world supply of dietary
protein, pigs have anatomic, physiologic, and genetic similarities
to humans and serve as biomedical models for human disease
and regenerative medicine (reviewed in Swindle et al., 2012;
Kobayashi et al., 2018). Thus, deep annotation of porcine genome
function would be a major milestone for addressing the G2P
question. A highly contiguous porcine genome assembly with
gene model-level annotation was recently published (Warr et al.,
2020). However, this annotation is based primarily on RNA
sequencing (RNA-seq) data from solid tissues, with few sample
types representative of immune cells, with the exception of
alveolar macrophages and dendritic cells (Auray et al., 2016).
Given the interaction of animal health and growth, any functional
annotation of the porcine genome will be incomplete without
deep analysis of expression patterns and regulatory elements
controlling the immune system.

The transcriptomes of circulating immune cells serve as a
window into porcine immune physiology and traits (Chaussabel
et al., 2010; Mach et al., 2013; Schroyen and Tuggle, 2015; Auray
et al., 2020). Blood RNA profiling has been used to understand
variation in porcine immune responses (Huang et al., 2011; Arceo
et al., 2013; Knetter et al., 2015; Munyaka et al., 2019) and genetic
control of gene expression (Maroilley et al., 2017). One goal of
such research is to develop gene signatures predictive of disease
states (Berry et al., 2010) and predict responses to immunizations

Abbreviations: AUC, area under the curve; ASC, antibody-secreting cell; B,
B-cell; bulkRNA-seq, bulk RNA sequencing; cDC, conventional dendritic cell;
DC, dendritic cell; DEGs, differentially expressed genes; DGE, differential gene
expression; Exp, experiment; FAANG, Functional Annotation of Animal Genomes;
FACS, Fluorescent activated cell sorting; G2P, Genome-to-Phenome; GO, gene
ontology; GSEA, gene set enrichment analysis/analyses; HBSS, Hank’s balanced
salt solution; HEGs, highly enriched genes; MACS, Magnetic activated cell sorting;
mDC/myDC, myeloid dendritic cell; n, negative; NK, natural killer; p, positive;
PBMC, peripheral blood mononuclear cell; PC, principal component; PCA,
principal component analysis; pDC, plasmacytoid dendritic cell; RF, random forest;
RIN, RNA integrity number; RNA-seq, RNA sequencing; scRNA-seq, single-cell
RNA sequencing; scREF-matrix, single-cell reference matrix; SEG, significantly
enriched genes; sPCA, supervised principal component analysis; SWC6, swine
workshop cluster 6.; T, T-cell.; TCR, T-cell receptor; TPM, transcripts per million;
t-SNE, t-distributed stochastic neighbor embedding; UMAP, uniform manifold
approximation and projection; UMI, unique molecular identifier; γδ, Gamma-
delta; αβ, alpha beta.

and/or infections (Chaussabel and Baldwin, 2014; Tsang et al.,
2014), as has been demonstrated in humans. Whole blood is easily
collected from live animals, but represents an extremely complex
mixture of cell types. Estimates of gene expression in mixed
samples are inherently inaccurate as cell composition differences
are difficult to adjust for, complicating the interpretation of
RNA differences across samples and treatments. Thus, starting
from whole blood transcriptomic data, it is nearly impossible
to link gene expression and regulation to a specific cell or
cell type. To determine direct regulatory interactions, we must
analyze specific cell populations and even individual cells. A cell
type-specific understanding of peripheral immune cell gene
expression patterns will thus enhance biological understanding
of porcine immunity, reveal targets for phenotyping, and provide
a comparison to other species.

Predominant immune cell populations in porcine peripheral
blood mononuclear cell (PBMC) preparations are comprised
mainly of monocytes, B-cells, and T-cells, with minor fractions
of dendritic cells (DCs), natural killer (NK) cells, and NKT-cells
also present. Porcine peripheral T-cell populations (reviewed in
Gerner et al., 2009, 2015) and DCs (Summerfield et al., 2015;
Auray et al., 2016) are readily described based on phenotype,
though deeper characterization of porcine immune cells could
improve identification of valuable reagent targets and biological
understanding of porcine immunity. T-cell populations are
commonly grouped as αβ or γδ T-cells according to T-cell
receptor (TCR) chain expression and further divided based on
CD2, CD4, CD8α, and/or CD8β expression. Pigs have a unique
CD2− γδ T-cell lineage contributing to higher percentages of
circulating γδ T-cells (Takamatsu et al., 2006) and unique αβ

T-cells expressing both CD4 and CD8α (Zuckermann, 1999).
Relatively little is known about different circulating B-cell
populations in pigs, as reagents for phenotyping are limited.

Various technical approaches can be used to enrich or isolate
specific cell populations, improving resolution of cell types for
deeper interrogation of gene expression. Flow cytometry is used
to characterize cells based on expression of cell type-specific
protein markers, and live cells can be sorted by magnetic-
and/or fluorescence-activated cell sorting (MACS/FACS) for
use in subsequent assays. MACS/FACS enrichment followed by
transcriptomic analysis can provide additional insight of gene
expression in specific cell types, but cells expressing the same
combination of markers are often still a heterogeneous mixture
(Sutermaster and Darling, 2019). Some major subtypes of porcine
immune cell populations can be labeled for cell sorting by existing
antibody reagents (Gerner et al., 2009), but some subtypes such as
B-cells lack these resources.

An exciting alternative to sorting specific cell types for
transcriptomic analysis is single-cell RNA-seq (scRNA-seq).
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Many scRNA-seq approaches do not require prior
phenotypic/functional information or antibody reagents
but instead rely on physical partitioning of cells to uniquely
tag transcripts from individual cells and sharpen resolution
of subsequent transcriptomic analysis to single cells (Liu and
Trapnell, 2016; Vieira Braga et al., 2016; Zheng et al., 2017).
scRNA-seq methods have been applied to human PBMCs (Zheng
et al., 2017) and provide more accurate and detailed analyses
of transcriptional landscapes that can identify new cell types
(Villani et al., 2017) when compared to other transcriptomic
approaches. There are limitations to scRNA-seq, with tradeoffs
in total genes detected per cell vs. total cells captured for analysis,
depending on the approach used (Wilson and Göttgens, 2018).

To deeply annotate the porcine genome for peripheral
mononuclear immune cell gene expression and further inform
phenotype and function of the heterogenous pool of immune
cells in PBMC preparations, two approaches were used to
isolate peripheral immune cells for RNA-seq. MACS followed
by FACS was used to enrich for eight PBMC populations using
population-specific cell surface markers, and RNA isolated from
enriched populations was used for bulk RNA-seq (bulkRNA-
seq) or a NanoString assay to evaluate gene expression. PBMCs
were also subjected to droplet-based partitioning for scRNA-
seq. Gene expression patterns of porcine immune cells using
different approaches were compared to each other and to
multiple human datasets. Complementary methods provided
an improved annotation and deeper understanding of porcine
PBMCs, as well as explicated datasets for further query by the
research community.

MATERIALS AND METHODS

Animals and PBMC Isolation
Four separate PBMC isolations were performed, with different
animals used in each experiment. Cells were used for bulkRNA-
seq, targeted RNA detection (NanoString), or scRNA-seq. PBMCs
from experiments were used as follows: Experiment A (ExpA)
for bulkRNA-seq of sorted populations from two ∼6-month-old
pigs (A1, A2); Experiment B (Exp B) for NanoString and scRNA-
seq from three ∼12-month-old pigs (B1, B2, B3); Experiment
C (ExpC) for scRNA-seq from three ∼12-month-old pigs (C1,
C2, C3); Experiment D (ExpD) for scRNA-seq from two ∼7-
week-old pigs (D1, D2). All pigs were crossbred, predominantly
Large White and Landrace heritage. All pigs from experiments
A, B, and C were male. In experiment D, animal D1 was female,
and animal D2 was male. All animal procedures were performed
in compliance with and approval by NADC Animal Care and
Use Committee. PBMCs were isolated, enumerated, and viability
assessed as previously described (Byrne et al., 2020).

Enrichment and Sorting Eight Leukocyte
Populations by MACS/FACS
Peripheral blood mononuclear cells were labeled with biotin
labeled anti-porcine CD3ε (PPT3, Washington State University
Monoclonal Antibody Center) for 15 min at 4◦C, mixing
continuously. Cells were washed with Hank’s Balanced Salt

Solution (HBSS), incubated with anti-biotin microbeads
(Miltenyi Biotec), placed on LS columns, and separated into
CD3ε+ and CD3ε− fractions according to manufacturer’s
directions (Miltenyi Biotec). CD3ε+ and CD3ε− fractions
were each fluorescently-sorted into four subpopulations
based on surface marker expression shown in Figure 1
and Table 1. For NanoString assays, B-cells were sorted as
CD3ε−CD172α−CD8α−; CD21 was not used for sorting. Each
fraction for FACS was confirmed CD3ε+ or CD3ε− by labeling
with anti-mouse IgG1-PE-Cy7 to detect anti-CD3ε antibody
used for MACS. Cells were sorted into supplemented HBSS using
a BD FACSAria II with 70 mm nozzle. After sorting, cells were
pelleted and enumerated as described above. Sorted cell purity
was >85% for each population. Cells were stained, sorted, and
further processed within 10 h of collection keeping cells on ice
between processing steps.

RNA Isolation for
BulkRNA-Seq/NanoString
BulkRNA-seq: after FACS, cells were pelleted, enumerated, and
immediately lysed in RLT Plus buffer. RNA extractions were
performed using the AllPrep DNA/RNA MiniKit (QIAGEN)
following manufacturer’s instructions. Eluted RNA was treated
with RNase-free DNase (QIAGEN). RNA quantity/integrity were
assessed with an Agilent 2200 TapeStation system (Agilent
Technologies). Samples used had RNA integrity numbers
(RINs) ≥ 7.9. From ExpA, only one RNA sample for
NK cells was used.

For NanoString assay: after FACS, cells were pelleted,
enumerated, and immediately stored in Trizol. RNA extraction
was performed using the Direct-zol RNA MicroPrep Kit (Zymo)
with on-column DNase treatment following manufacturer’s
instructions. RNA quantity and integrity were assessed as
described above, with RINs ≥ 6.9. RNA was preserved at −80◦C
until further use.

BulkRNA-Seq Library Preparation and Data Analysis
RNA was fragmented and 15 libraries prepared using the TruSeq
Stranded Total RNA Sample Preparation Kit (Illumina). Libraries
were diluted and pooled in approximately equimolar amounts.
Pooled libraries were sequenced in paired-end mode (2× 150-bp
reads) using an Illumina NextSeq 500 (300 cycle kit).

Preprocessing, Mapping, Alignment, Quality Control
Data processing was performed as previously reported (Herrera-
Uribe et al., 2020) using R v4.0.3. Sscrofa 11.1 genome and
annotation v11.1.97 were used. Counts per gene of each sample
in the two count tables were added together to get the final count
table. Given that different types of immune cells have different
transcriptome profiles (Hicks and Irizarry, 2015), YARN (Paulson
et al., 2017), a tissue type-aware RNA-seq data normalization
tool, was used to filter and normalize the count table. Genes with
extremely low expression levels (<4 counts in at least one cell
type) were filtered out using filterLowGenes(). The final count
table contained 12,261 genes across 15 samples, which was then
normalized using normalizeTissueAware(), which leverages the
smooth quantile normalization method (Hicks et al., 2018).
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FIGURE 1 | Representative plots for fluorescence-activated cell sorting (FACS) isolation of 8 leukocyte populations from pig peripheral blood mononuclear cells
(PBMCs). Porcine PBMCs were first subjected to magnetic-activated cell sorting (MACS) to enrich for CD3ε + and CD3ε– fractions. (A) Cells in CD3ε+ MACS fraction
were FACS gated on FSC vs. SSC, doublets removed (not shown), and CD3ε+ cells were isolated into 4 population: SWC6+ γδ T-cells (gate 1), and the SWC6− cells
sorted as CD4+CD8α− (gate 2), CD4+CD8α+ (gate 3), CD4−CD8α+ (gate 4) T-cells. (B) Cells in CD3ε− MACS fraction were FACS gated on FSC vs. SSC, doublets
removed (not shown), and CD3ε− cells were isolated into 4 populations: CD172α+ myeloid lineage leukocytes (gate 5), CD8α+CD172− NK cells (gate 6), and the
remaining CD8α− CD172α−, cells were isolated as CD21+ (gate 7) and CD21− (gate 8) B-cells. Table 1 outlines abbreviations and sort criteria for each population.

Data quality control was performed using DESeq2 (v1.24.0)
(Love et al., 2014) within RStudio s (v1.2.1335). Regularized
log-transformation was applied to the normalized count table

with the rld function. Then principal component analysis
(PCA) and sample similarity analyses were carried out and
visualized using plotPCA() and distancePlot(), respectively.
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Heatmaps to display enriched genes were created using pheatmap
(v1.0.12) within RStudio.

Cell Type-Enriched and Cell Type-Specific Gene
Identification
The normalized count table was used for differential gene
expression (DGE) analysis with DESeq2 by setting the
size factor for each sample to 1. A generalized linear
model was fitted for each gene in the count table, with
negative binomial response and log link function of the
effect of cell types and pig subjects. nbinomWaldTest() was
used to estimate and test the significance of regression
coefficients with the following explicit parameter settings:
betaPrior = FALSE,maxit = 50000,useOptim = TRUE,useT
= FALSE,useQR = TRUE. Cell type-enriched genes and cell
type-specific genes were identified using the results function
separately. A gene was labeled as cell-type enriched if the
expression level (averaged across replicates) in one cell type
was at least 2× higher than the average across all remaining
cell types and adjusted p-value < 0.05. A gene was labeled as
cell type-specific if the averaged expression level in one cell type
was at least 2× higher in pairwise comparison to the average
in each other cell type and adjusted p-value < 0.05 (Benjamini
and Hochberg, 1995). Heatmaps to display specific genes were
created as mentioned above.

For cross-species comparison, human hematopoietic cell
(Haemopedia) RNA-seq expression data (Hilton Laboratory
at the Walter and Eliza Hall Institute1) was used. Only
orthologous genes with one-to-one matches between human and
pig [orthologous gene list obtained from BioMart (Durinck et al.,
2009)] were compared. Orthologous gene transcript per million
(TPM) values from naive and memory B-cells, myeloid dendritic
cells (myDC), myeloid dendritic cells CD123 + (CD123PmDC),
plasmacytoid DC (pDC), monocytes, NK cells, CD4T and CD8T
cells from healthy donors were used (Choi et al., 2019). Spearman
rank correlation analyses was performed to identify correlation
between orthologous gene expression levels (absolute TPM) in
pig and human sorted populations. Significance level was set at

1https://www.haemosphere.org/datasets/show

p < 0.05 and level of Spearman’s rank correlation coefficient
(rho) was defined as low (<0.29), moderate (0.3–0.49), and strong
(0.5–1) correlation.

Gene Ontology (GO) Enrichment Analysis
Metascape analysis (Zhou et al., 2019) was performed for GO
analysis of the top 25% enriched genes and specific genes
identified as described above, with threshold p-value < 0.01.
Several terms were clustered into the most enriched GO term.
Term pairs with Kappa similarity score > 0.3 were displayed as
a network to show relationship among enriched terms. Terms
associated with more genes tended to have lower p-values. All
networks displayed were visualized using Cytoscape. All Ensembl
Gene IDs with detectable expression level in each cell type were
used as the background reference.

NanoString Assay and Data Analysis
A total of 230 test genes with nine housekeeping genes, eight
positive and nine negative control genes were chosen for gene
expression quantification on the NanoString nCounter analysis
system (NanoString Technologies) using custom-made probes.
The custom designed CodeSet was selected from genes and
pathways associated with porcine blood, lung, lymph node,
endometrium, placenta or macrophage response to infection with
a porcine virus (Van Goor et al., 2020). RNA samples were diluted
to 25–100 ng/ul in RNase-free water, and 5 ul of each sample
was used in the assay using manufacturer’s instructions with the
nCounter Master kit.

The nCounter analysis system produces discrete count
data for each gene assayed within each sample. We used the
NanoString software nSolver Analysis Software (v3.0, NanoString
Technologies), following manufacturer’s instructions. The
nSolver corrected for background based on negative control
samples, performed within-sample normalization based
on positive control probes, and performed normalization
across samples using the median expression values of
housekeeping genes (GAPDH, HMBS, HPRT1, RPL32, RPL4,
SDHA, TBP, TOP2B, YWHAZ), providing confidence in our
normalization method.

TABLE 1 | Abbreviations and phenotype information of pig sorted immune cells.

Gatea Population Abbreviation Marker Clone Fluorophore Company (Catalog #)b FACS Sort Criteria

CD3ε + MACS Fraction

− − Anti mouse IgG1 RMG1-1 PE-Cy7 BioLegend(406614) −

1 SWC6gdT SWC6gdT MAC320 APC BD(561482) CD3ε+SWC6+

2 CD4T CD4 74-12-4 FITC BD(559585) CD3ε+SWC6−CD4+CD8α−

3 CD4CD8T CD4CD8α 74-12-4/76-2-11 FITC/PE BD(559585)/BD(559584) CD3ε+SWC6−CD4+CD8α+

4 CD8T CD8α 76-2-11 PE BD(559584) CD3ε+SWC6−CD4−CD8α+

CD3ε − MACS Fraction

5 Myeloid CD172 74-22-15A FITC BD(561498) CD3ε−CD172α+CD8α−

6 NK CD8α 76-2-11 PE BD(559584) CD3ε−CD172α−CD8α+

7 CD21pB CD21 BB6-11C9.6 AF647 Southern Biotech(4530-31) CD3ε−CD172α−CD8α−CD21+

8 CD21nB − − − − CD3ε−CD172α−CD8α−CD21−

aRefers to gate in Figure 1. bReagents listed in Materials and Methods.

Frontiers in Genetics | www.frontiersin.org 5 June 2021 | Volume 12 | Article 689406234

https://www.haemosphere.org/datasets/show
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-689406 June 17, 2021 Time: 18:49 # 6

Herrera-Uribe et al. Porcine Immune Cell-Type Reference Datasets

All statistical analyses were performed using the
statistical programming language R v3.5. Raw count
data were normalized using normalizationFactors() and
NanoStringDataNormalization() from NanoStringDiff (v1.1.2.0)
(Wang et al., 2016). One gene (ISG20) without detected
expression in any samples was removed. Hierarchical clustering
and PCA suggested there were substantial hidden variations
among the expression data. Surrogate variable analysis has been
shown to be a powerful method to detect and adjust for hidden
variations in high throughput gene expression data (Li et al.,
2014; Qian Liu, 2016), so surrogate variable analysis was applied
to remove further hidden variations in the gene expression data
using svaseq() from sva (v3.30.1) (Leek et al., 2012). A full model
with cell subpopulations and RINs as independent variables, and
a reduced model with RINs as the only independent variable
were used. Three surrogate variables were estimated and used to
adjust for the hidden variations.

Gene expression values were transformed to log2(TPM) using
voom() from limma (Law et al., 2014). Linear mixed effect models
were used to fit the transformed gene expression data by using
lmer()in lme4 (Bates et al., 2015). The model included fixed effect
for cell subpopulation, RIN, the three surrogate variables, and
random effect for each animal. One minus Spearman correlation
coefficient was used as distance measure for gene clustering, and
Euclidian distances was used for sample clustering.

Additionally, Spearman correlation analysis was performed
to assess the correlation between bulkRNA-seq and NanoString
results. The significant level was set at p < 0.05, and the level
of Spearman’s rank correlation coefficient (rho) was defined as
described above.

scRNA-Seq Library Preparation
Peripheral blood mononuclear cell isolation experiments were
performed at different times and samples sequenced in different
runs. For ExpB, 1 × 107 viable PBMCs per animal were
cryopreserved according to 10× Genomics Sample Preparation
Demonstrated Protocol, shipped on dry ice to University of
Minnesota’s Core Sequencing Facility, and thawed, partitioned,
and scRNA-seq libraries prepared. For ExpC/ExpD, freshly
isolated PBMCs were transported on ice to Iowa State University
Core Sequencing Facility for partitioning and library preparation.
Partitioning and library preparation were performed according
to Chromium Single Cell 3′ Reagent Kits v2 User Guide (10×
Genomics). For all experiments, 100 base paired-end reads were
sequenced on an Illumina HiSeq3000 at ISU Core Sequencing
Facility. One sample from ExpB was omitted from further
analyses due to poor sequence performance.

scRNA-Seq Data Analysis
Read Alignment/Gene Quantification
Raw read quality was checked with FASTQC2. Reads 2 (R2)
were corrected for errors using Rcorrector (Song and Florea,
2015), and 3′ polyA tails > 10 bases were trimmed. After
trimming, R2 > 25 bases were re-paired using BBMap3. Sus

2https://www.bioinformatics.babraham.ac.uk/projects/fastqc
3https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/

scrofa genome Sscrofa 11.1 and annotation GTF (v11.1.97) from
Ensembl were used to build the reference genome index (Yates
et al., 2020). The annotation file was modified to include both
gene symbol (if available) and Ensembl ID as gene reference
(e.g., GZMA_ENSSSCG00000016903) using custom Perl scripts.
Processed paired-end reads were aligned and gene expression
count matrices generated using CellRanger (v4.0; 10×Genomics)
with default parameters. Only reads that were confidently
mapped (MAPQ = 255), non-PCR duplicates with valid barcodes,
and unique molecular identifiers (UMIs) were used to generate
gene expression count matrices. Reads with same cell barcodes,
same UMIs, and/or mapped to the same gene feature were
collapsed into a single read.

Quality Control/Filtering
All quality control/filtering steps were performed using R v3.6.2.
CellRanger output files were used to remove ambient RNA from
each sample with SoupX (Young and Behjati, 2020) function
autoEstCont(). Corrected non-integer gene count matrices were
outputted in CellRanger file format using DropletUtils (Lun
et al., 2019) function write10xCounts() and used for further
analyses. Non-expressed genes (sum zero across all samples) and
poor quality cells (>10% mitochondrial genes, < 500 genes,
or < 1,000 UMIs per cell) were removed using custom R scripts
and Seurat (Stuart et al., 2019). Filtered count matrices were
generated using write10xCounts() and used for further analyses.
High probability doublets were removed using Scrublet (Wolock
et al., 2019), specifying 0.07 expected doublet rate and doublet
score threshold of 0.25.

Integration, Visualization, and Clustering
Integration, visualization, and clustering were performed
with R v3.6.2 and Seurat v3.2.0. Post-quality control/filtering
gene counts/cells from each sample were loaded into a Seurat
object and transformed individually using SCTransform().
Data were integrated with SelectIntegrationFeatures(),
PrepSCTIntegration(), FindIntegrationAnchors(), and
IntegrateData() with default parameters. PCA was conducted
with RunPCA(), and the first 14 principal components (PCs)
were selected as significant based on <0.1% variation of
successive PCs. Significant PCs were used to generate two-
dimensional t-distributed stochastic neighbor embedding
(t-SNE) and uniform manifold approximation and projection
(UMAP) coordinates for visualization with RunTSNE() and
RunUMAP(), respectively, identify nearest neighbors and
clusters with FindNeighbors() and FindClusters() (clustering
resolution = 1.85), respectively, and perform hierarchical
clustering with BuildClusterTree(). Counts in the RNA assay
were further normalized and scaled using NormalizeData() and
ScaleData().

Differential Gene Expression (DGE) Analyses
Differential gene expression analyses were performed with R
v3.6.2 and Seurat v3.2.0. Normalized counts from the RNA
assay were used for DGE analyses. Differentially-expressed genes
(DEGs) between pairwise cluster combinations were calculated
using FindMarkers(). DEGs in one cluster relative to the
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average of all other cells in the dataset were calculated using
FindAllMarkers(). The default Wilcoxon Rank Sum test was used
for DGE analyses. Genes expressed in >20% of cells within one of
the cell populations being compared, with | logFC| > 0.25, and
adjusted p-value < 0.05 were considered DEGs.

Gene Set Enrichment Analyses (GSEA)
Enrichment of gene sets within our porcine scRNA-seq dataset
were performed using AUCell (v1.10.0) (Aibar et al., 2017).
Enriched genes in sorted porcine bulkRNA-seq populations were
identified as described in preceding methods. Log2FC values were
used to curate gene sets of genes enriched in the top 25, 20, 15,
10, 5, or 1% of bulkRNA-seq populations. Gene sets from human
bulkRNA-seq cell populations (Choi et al., 2019) were recovered
by performing a High Expression Search on the Haemosphere
website4, setting Dataset = Haemopedia-Human-RNASeq and
Sample group = celltype. Gene sets for CD4:+ T-cell; CD8: + T-
cell; Memory B-cell; Monocyte; Myeloid Dendritic Cell; Myeloid
Dendritic Cell CD123 + ; Naïve B-cell; Natural Killer Cell;
and Plasmacytoid Dendritic Cell options corresponded to CD4T,
CD8T, MemoryB, Monocyte, mDC, CD123PmDC, NaïveB, NK,
and pDC designations, respectively. Genes with high expression
scores >0.5 (lower enrichment level) or >1.0 (higher enrichment
level) were selected and filtered to include only one-to-one
gene orthologs as described in preceding methods. Human
gene identifiers were converted to corresponding porcine gene
identifiers or gene names used for scRNA-seq analyses.

Within each cell of the finalized scRNA-seq dataset, gene
expression was ranked from raw gene counts. Area under the
curve (AUC) scores were calculated from the top 5% of expressed
genes in a cell and the generated gene sets. Higher AUC scores
indicated a higher percentage of genes from a gene set were
found amongst the top expressed genes for a cell. For overlay of
AUC scores onto UMAP coordinates of the scRNA-seq dataset, a
threshold value was manually set for each gene set based on AUC
score distributions. For visualization by heatmap, AUC scores
were calculated for each cell, scaled relative to all other cells in
the dataset, and average scaled AUC scores were calculated for
each cluster. R v4.0.2 was used.

Deconvolution Analysis (CIBERSORTx)
To deconvolve cluster-specific cell subsets from bulkRNA-seq
of sorted populations, CIBERSORTx (Newman et al., 2019) was
used to derive a signature matrix from scRNA-seq data. 114 cells
were taken from each cluster using the Seurat subset() function
and labeled with corresponding cluster identities. Cluster-labeled
cells were used to obtain a single-cell reference matrix (scREF-
matrix) that was used as input and run on CIBERSORTx online
server using “Custom” option. Default values for replicates (5),
sampling (0.5), and fraction (0.0) were used. Additional options
for kappa (999), q-value (0.01), and No. Barcode Genes (300–
500) were kept at default values. CIBERSORTx scREF-matrix was
used to impute cell fractions from the bulkRNA-seq of sorted
cell population “mixtures.” The mixture file (TPM values) was
used as an input and run on CIBERSORTx online server using

4https://www.haemosphere.org/searches

the “Impute Cell Fractions” analysis with the “Custom” option
selected, and S-mode batch-correction was applied. Cell fractions
were run in relative mode to normalize results to 100%. The
number of permutations to test for significance were kept at
default (100). Resulting output provided estimated percentages
of what scRNA-seq clusters defined each bulkRNA-seq sorted
cell population.

Reference-Based Label Transfer/Mapping and de
novo Integration/Visualization
R v3.6.3 and Seurat v3.9.9.9010 were used for the analyses
described in this section. A CITE-seq dataset of human PBMCs
(Hao et al., 2020) was used to transfer cell type annotations
onto our porcine scRNA-seq dataset. Due to the cross-species
comparison, we distilled human reference and pig query datasets
to only include 1:1 orthologous gene, and human reference
dataset was re-normalized and integrated mirroring previous
methods (Hao et al., 2020). Each sample of the porcine query
dataset was separately normalized using SCTransform. Anchors
were found between the human reference and each pig query
sample using FindTransferAnchors. Identified anchors were used
to calculate mapping scores for each cell using MappingScore.
The mapping scores provided a 0–1 confidence value of how
well a porcine cell was represented by the human reference
dataset. Prediction scores were calculated using available level 2
cell types from the human reference dataset. Prediction scores
provided a 0–1 percentage value for an individual cell type
prediction, based on how many nearby human cells shared the
same cell type annotation that was predicted. Predicted cell
annotations were projected back onto original UMAP of the
porcine dataset. Cluster-averaged prediction and mapping scores
were also calculated.

In order to identify cells from the porcine dataset that were not
well represented by the human reference dataset the two datasets
were integrated to perform de novo visualization by merging the
two datasets and their respective sPCAs to create a new UMAP.
From two-dimensional de novo UMAP, porcine cells that did not
overlap with human cells were identified.

Cluster Subsetting
For deeper analyses of only subsets of clusters in the scRNA-
seq dataset, cells belonging to only selected clusters were
place in a new Seurat object using subset(). Genes with zero
overall expression in the new data subset were removed
using DietSeurat(), and counts were re-scaled with ScaleData().
Original cluster designations and PCs were left intact. UMAP/t-
SNE visualization, hierarchical clustering, and DGE analyses were
re-performed as described in the original analyses. Pairwise DGE
analyses were not re-performed. R v4.0.2 was used.

Random Forest (RF) Modeling
Random forest modeling was performed with R version 4.0.4. The
RF models provided an estimate of cluster similarity based on
error rates. The R packages caret5 and ranger6 were used to create

5https://cran.r-project.org/web/packages/caret/caret.pdf
6https://cran.r-project.org/web/packages/ranger/index.html
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RF models trained on cluster identities of cells. A normalized
count matrix was used as input data for RF models. Each cell
was labeled by its previously defined cluster. Two different types
of models were created: (1) pairwise models where training data
included only cells from two different clusters (ex. Clusters 0
and 3); (2) models where training data included cells from all
clusters of a specified dataset (ex. all γδ T-cell clusters). Each
model was trained on the cluster identity of each cell, with trees
created = 500, target node size = 1, variables = 14,386, variables
to sample at each split (Mtry) = 119. Each tree in the model is
grown from a bootstrap resampling process that calculates an
out-of-bag (OOB) error that provides an efficient and reasonable
approximation of the test error. Variable importance was used to
find genes or sets of genes that can be used to identify certain
types of cells or discriminate groups of cells from one another.
RF models are advantageous because they can provide ranked
lists of genes most important for discriminating cells between
different clusters. This method was used to identify groups of
important genes to supplement single DGE analyses. Variable
importance was assigned by measuring node impurity (Impurity)
and using permutations (Permutation). Features that reduced
error in predictive accuracy are ranked as more important. High
error rate in the model suggests cells from the groups being
compared are more similar to each other, whereas low error rate
suggests cells from each cluster are unique.

Gene Name Replacement
Several gene names/Ensembl IDs used for data analysis were
replaced in main text/figures for the following reasons: gene
symbol was not available in the annotation file but was available
under the gene description on Ensembl, gene symbol was
updated in future Ensembl releases, or multiple Ensembl IDs
corresponded to a single gene symbol. Affected genes included:
ABI3 = ENSSSCG00000035224, ABRACL = ENSSSCG0000000
4145, ANP32E = ENSSSCG00000035209, AP3S1 = ENSSSCG0000
0037595, AURKA = ENSSSCG00000007493, BANF1 = ENSSSCG0
0000012961, BUB1B = ENSSSCG00000004782, CBX3 = ENSSSC
G00000016711, CCDC12 = ENSSSCG00000011329, CCL23 = EN
SSSCG00000033457, CD163L1 = ENSSSCG00000034914, CDC2 =
ENSSSCG00000010214, CDNF = ENSSSCG00000039658, CE
P57 = ENSSSCG00000014969, CLIC1 = ENSSSCG00000039071,
CMC2 = ENSSSCG00000032060, CR2 = ENSSSCG00000028674,
CRIP1 = ENSSSCG00000037142, CRK = ENSSSCG00000038989,
DBF4 = ENSSSCG00000020870, DEK = ENSSSCG00000001075,
DHFR = ENSSSCG00000031117, EEF1A1 = ENSSSCG000000044
89, KIF23 = ENSSSCG00000004969, FAM72A = ENSSSCG00
000039370, FCGR3A = ENSSSCG00000036618, GBP1 = ENSSSC
G00000024973, GBP7 = ENSSSCG00000006919, GFER = ENSSS
CG00000008035, GGCT = ENSSSCG00000016679, GIMAP4 = EN
SSSCG00000027826, GINS1 = ENSSSCG00000034913, GTSE1 =
ENSSSCG00000000002, GZMA = ENSSSCG00000016903, H1-
2 = ENSSSCG00000037565, HMGB1 = ENSSSCG00000009327,
HMGB3 = ENSSSCG00000035908, HMGN1 = ENSSSCG00000
033733, HMGN5 = ENSSSCG00000032946, HNRNPA2B1 = ENS
SSCG00000036350, HNRNPAB = ENSSSCG00000014031, HO
PX = ENSSSCG00000008898, IDI1 = ENSSSCG00000029066,
IFITM1 = ENSSSCG00000014565, IGLL5 = ENSSSCG0000001

0077, JPT1 = ENSSSCG00000017213, KLRB1B = ENSSSCG0000
0034555, KLRC1 = ENSSSCG00000000640, KLRD1 = ENSSSCG0
0000026217, KNL1 = ENSSSCG00000039107, LSM4 = ENSSSC
G00000034314, LSM5 = ENSSSCG00000026064, MAGOHB =
ENSSSCG00000000635, MAL = ENSSSCG00000040098, MAN
2B1 = ENSSSCG00000013720, MDK = ENSSSCG00000013260,
MKI67 = ENSSSCG00000026302, MYL12A = ENSSSCG0000000
3691, NT5C3A = ENSSSCG00000022912, NUSAP1 = ENSSSC
G00000035544, NUTF2 = ENSSSCG00000030295, PPIA = ENS
SSCG00000016737, PRIM1 = ENSSSCG00000026055, PRKCH =
ENSSSCG00000005095, PTTG1 = ENSSSCG00000017032, RPL
14 = ENSSSCG00000011272, RPL22L1 = ENSSSCG00000036114,
RPL23A = ENSSSCG00000035080, RPL35A = ENSSSCG0000004
0273, RPS15A = ENSSSCG00000035768, RPS19 = ENSSSCG000
00003042, RPS27A = ENSSSCG00000034617, RPS3 = ENSSSCG
00000014855, RPS8 = ENSSSCG00000003930, RRM2 = ENSSSCG
00000031741, S100B = ENSSSCG00000026140, SEPHS1 = ENSS
SCG00000031659, SIRPA = ENSSSCG00000028461, SKA1 = EN
SSSCG00000004518, SLA-DQA1 = ENSSSCG00000001456, SLA-
DRA = ENSSSCG00000001453 (listed as HLA-DRA in the
gene annotation used), SLA-DRB1 = ENSSSCG00000001455,
SLPI = ENSSSCG00000022258, SNRPG = ENSSSCG00000024776,
SPIB = ENSSSCG00000034211, TACC3 = ENSSSCG00000008677,
TMSB15B = ENSSSCG00000012517, TMSB4X = ENSSSCG0000
0012119, TUBA1C = ENSSSCG00000000194, TXN = ENSSSCG
00000005453, WEE1 = ENSSSCG00000013411, WIPF1 = ENS
SSCG00000027348, YBX1 = ENSSSCG00000028485.

RESULTS

BulkRNA-Seq Revealed Common and
Distinct Transcriptomes in Circulating
Immune Cells
Eight immune cell populations (Table 1) were sorted by cell-
surface marker phenotypes for transcriptomic profiling by
bulkRNA-seq (Figure 1) using primarily criteria previously
outlined (Gerner et al., 2009), with some modifications. Our
protocol utilized an antibody reactive to swine workshop cluster 6
(SWC6) protein to identify γδ T-cells, but the antibody only labels
CD2− γδ T-cells (Yang and Parkhouse, 1996; Davis et al., 1998;
Stepanova and Sinkora, 2013; Sedlak et al., 2014). CD2+ γδ T-cells
were likely sorted into the CD3ε+CD4−CD8α− fraction that
was not retained or the CD8T (CD3ε+CD4−CD8α+) population
(Davis et al., 1998; Stepanova and Sinkora, 2013; Sedlak et al.,
2014). A pan-B-cell marker for pigs is not currently available,
so B-cells are often characterized through a series of negative
gates. Cells in the CD3ε− fraction were considered B-cells
if they also lacked expression of CD172α and CD8α. B-cells
characterized in this manner were further terminally sorted into
B-cell populations with or without CD21 (complement receptor
2) expression (CD21pB and CD21nB, respectively; Figure 1, gates
7 and 8 respectively). We acknowledge that the CD21nB gate
likely contained other circulating cell types that were not sorted
through positive gating approaches.
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Transcriptomic profiles of sorted cell populations were
constructed by bulk RNA-seq, and relationships among porcine
immune cell transcriptomes were assessed and visualized
through dimensionality reduction and hierarchical clustering
(Figures 2A,B and Supplementary File 1). Specifically, T-cell
populations (SWC6gdT, CD4T, CD4CD8T, CD8T), B-cell
populations (CD21pB, CD21nB), myeloid leukocyte populations
(Myeloid), and a single NK cell population (NK) were well
separated from each other (Figure 2A) by PCA. Replicates
of specific sorted cell populations clustered most closely
together, while within T-cell populations or B-cell populations,
considerable transcriptional similarity was observed (Figure 2B).

The total number of expressed genes in each sorted
population was similar (Supplementary File 1). Significantly
enriched genes (SEGs) with expression significantly different
and at least 2× greater than the average of all other cell
populations (see Methods) were identified for each sorted
population (Supplementary File 2). Notably, around 11–23%
of SEGs are not fully annotated (no symbol/gene name) in the
Sscrofa 11.1 genome and annotation v11.1.97. However, there
is evidence of 1:1 orthology within Ensembl for 5–14% of these
unannotated genes (Table 2). The SWC6gdT population had
the highest number of SEGs (3,591), while the NK population
had the fewest (1,885) (Table 2). SEG lists were queried for
corresponding protein targets used to sort cells, if known, to
confirm enrichment of expression of genes corresponding to
protein phenotypes (Figure 2C). Expression of SIRPA∗ (encoding
CD172α) had the highest fold-change in the Myeloid population,
and CR2 (encoding CD21, ENSSSCG00000028674), was highest
in the CD21pB population, as would be predicted based on
protein phenotypes. The two CD4+ T-cell populations (CD4T
and CD4CD8T) had the highest fold-change for CD4. The
CD8T population had the highest fold-change for CD8A, with
CD4CD8T and NK populations also having near a log2FC
enrichment value of 5, in line with these populations also
expressing CD8α. The SWC6gdT population had the highest
fold-change for TRDC, though CD8T and CD21nB populations
also had enrichment for TRDC. As noted previously, it’s unlikely
our sorting for γδ T-cells based on SWC6 captured all γδ

T-cells, thus some γδ T-cells may be represented in other sorted
populations. Thus, the CD8T population is likely comprised not
only CD8α+ αβ T-cells, but also potentially SWC6− γδ T-cells
expressing CD8α.

A subset of SEGs (25% highest log2FC values) for each sorted
population, referred to as highly enriched genes (HEGs) that
distinguish different circulating pig immune cell populations,
were used for data visualization and GO analysis. The log2FC
values for HEGs were clustered and visualized in Figure 3
(four CD3ε− populations) and Supplementary Figure 2 (four
CD3ε+ populations). GO analyses using HEG lists for each
cell population indicated enrichment for biological processes
characteristic of each respective cell population, depicted as
networks of similar terms (Figures 3E–H, Supplementary File
3, and Supplementary Figures 2E–H). Terms for Myeloid
HEGs included Myeloid leukocyte activation and response to
bacterium (Figure 3E), and terms for NK HEGs included
positive regulation of cell killing and natural killer cell

FIGURE 2 | Transcriptional expression patterns of immune cells are distinct
and cluster more by progenitors. (A) Principal component analysis of
transformed RNA-seq reads counts for whole transcriptomes. Axis indicate
component scores. (B) Heat map depicting hierarchical clustering of
sample-to-sample distance. Gene expression for whole transcriptomes were
used to calculate sample to sample Euclidean distance (color scale) for
hierarchical clustering. (C) Heatmap showing cell-type enriched gene values
(Log2FC) between sorted immune cells. Gene coding proteins that were used
for cell sorting were display.

mediated cytotoxicity (Figure 3F). Many terms enriched for
CD21pB HEGs overlapped with those for CD21nB HEGs,
as 38% of HEGs were shared between these populations
(Figures 3C,D). Thus, top GO terms for B-cells, including
adaptive immune response and B-cell proliferation were present
in both populations (Figures 3D,G). However, some GO
terms were unique to either B-cell population. GO related
to B-cell activation, such as positive regulation of B-cell
activation/proliferation processes associated with B-cell receptor
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signaling, were identified exclusively for CD21pB HEGs. For
CD21nB HEGs, processes associated with humoral immunity
and red blood cell processes such as coagulation or platelet
activation were noted, which could indicate contamination of
different cell types given the non-specific cell sorting approach
used for CD21nB cells (Figure 1). For all sorted T-cell
populations (CD8T, CD4T, CD4CD8T and SWC6gdT), HEG
lists showed overlap (Supplementary Figures 2A–D). GO terms
included T-cell activation, T-cell receptor signaling pathway,
cytokine-cytokine receptor interaction and biological processes
related to cytotoxicity activity (Supplementary Figures 2E,F).
Overall, GO exploration of HEGs for sorted populations
provided evidence that sorted immune cells represented expected
immune cell functions.

The TPM values of expressed genes in sorted porcine
cells were compared with orthologous human genes
expressed in sorted human naïve hematopoietic cells from
the Haemopedia (Choi et al., 2019) in order to identify
cell-specific transcriptome similarities across species.
Gene expression correlations assessed by Spearman’s rank
correlation indicated highly significant and moderately
strong correlations (rho = 0.30–0.43, p < 2.2e−16) between
porcine and anticipated corresponding human immune cell
populations (Supplementary Figure 3 and Supplementary
File 4). A closer evaluation of genes reported as canonical
cell markers for different mouse and human peripheral
immune cell populations and expression of those genes
in each of the sorted porcine populations revealed several
commonalities. Specifically, genes such as EBF1, CD19,
MS4A1, CD79B, PAX5, HLA-DOB (in CD21nB, CD21pB);
CD28 (in CD8T, CD4T, CD4CD8T); CD5 (in CD8T, CD4T,
CD4CD8T, SWC6gdT); GZMA, GNLY, CCL5, KLRK1,
KLRB1, CD244 (in NK, CD8T); and VLDLR, NLRP3,
CD14, STEAP4, CD163, DEFB1 (in Myeloid) for human cells
showed specific enrichment in respective porcine populations
(Supplementary Figure 4). Thus, additional query confirmed
sorted porcine immune cell populations were equivalent to
human counterparts in many ways.

TABLE 2 | Cell type-enriched and cell type specific genes identified in pig
sorted immune cells.

Cell type Enriched
genes
(SEG)

Top 25%
SEG

Number of
genes without
gene name in
the top 25%

SEG list

Number of
top 25% SEG
without gene

name that
have

orthologs in
human

Specific
genes

SWC6gdT 3591 898 141 15 8

CD8T 3318 830 150 19 2

CD4CD8T 2271 568 85 7 0

CD4T 2606 533 95 13 0

NK 1855 464 100 9 29

Myeloid 3440 860 102 15 397

CD21pB 2383 596 124 9 5

CD21nB 2456 614 146 7 0

High Homogeneity Amongst Sorted
T-Cell and B-Cell Populations and
Transcriptomic Distinctions in Myeloid
and NK Populations
Pairwise DGE analyses between the cell populations identified
genes with transcript abundance at least 2× higher in one
population than in all other populations (adjusted p-value < 0.05,
see Methods) which we define as cell type-specific. Consistent
with PCA (Figure 2A), more cell type-specific genes were
identified in the Myeloid population than in NK, T or B-cells.
In total, we identified 2, 5, 8, 29, and 397 cell type-specific genes
for CD8T, CD21pB, SWC6gdT, NK, and Myeloid populations,
respectively (Table 2 and Supplementary Figure 5). GO analyses
using cell type-specific genes for the Myeloid population resulted
in enrichment of terms such as Myeloid leukocyte, cytokine-
cytokine receptor interaction, and pattern recognition receptor
activity (Supplementary Figure 5 and Supplementary File 3).
Next, we determined if the cell type-specific genes identified were
present in the list of HEGs for each population. In total, 2, 2, 5,
14, and 271 cell type-specific genes were identified in respective
HEG lists for CD8T, CD21pB, SWC6gdT, NK, and Myeloid
populations, respectively (Table 3), indicating the most highly-
enriched cell type-specific genes were present in NK and Myeloid
populations. Cell type-specific genes could not be identified
for the remaining three sorted populations (CD4T, CD4CD8T,
and CD21nB) using the criteria described above, indicating
between-population transcriptional heterogeneity even for these
enriched populations.

We then explored immune cell transcriptomic patterns to
identify genes that could expand our knowledge of pathways
active in specific cell populations, as well as predict new genes
suitable to use for molecular analyses in immunology studies.
Of interest, we found a remarkably high number of HEGs in
our Myeloid population (Table 3), including immune-related
genes involved in TLR signaling (CD14, CD36, TLR2/3/4/8/9,
NOD2) and cytokine activity (CSF1R, CSF2RA, CSF3R, IFNGR1,
IL1B, IL1RAP, CXCR2, CCL21, CCL23, TNFRSF1B, IL1R2,
TNFSF13, TNFSF13B, TNFRSF21, CXCL16, CCR2). In NK cells
fewer specific genes were detected than the Myeloid population
(Table 3), with genes such as OTOP2, OTOP3, OSPBL3, LY6D,
RET related to cytotoxic activity, a typical characteristic of NK
cells (Rusmini et al., 2013; Rusmini et al., 2014; Belizário et al.,
2018; Costanzo et al., 2018; Tu et al., 2018; Upadhyay, 2019),
although their function in porcine NK cells is unexplored. In
CD21pB cells, the gene for CD21 (CR2*) used for sorting the
B-cell populations was predicted to be a HEG. The SWC6gdT
population showed specific expression of AVCR2A, which is a
Th17 cell specific gene in mice (Ihn et al., 2011) and regulates
the proliferation of γδ T-cells in murine skin (Antsiferova et al.,
2011). The CD8T population specifically expressed TMIGD2
(a CD28 family member) and JAML, which encode T-cell
transmembrane proteins (Zhu et al., 2013; Alvarez et al., 2015;
Krueger et al., 2017).

*Refer to gene name replacement in Materials and Methods section
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FIGURE 3 | Top 25% highly enriched genes in CD3− sorted cells. Heatmap showing in decreasing order the top 25% of highly enriched genes in (A) myeloid,
(B) NK, (C) CD21pB, and (D) CD21nB-cells. Ontology enrichment clusters of the top 25% highly enriched genes of (E) myeloid, (F) NK, (G) CD21pB, and
(H) CD21nB cells. The most statistically significant term within similar term cluster was chosen to represent the cluster. Term color is given by cluster ID and the size
of the terms is given by –log10 p-value. The stronger the similarity among terms, the thicker the edges between them.
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TABLE 3 | Specific highly enriched genes in myeloid, NK, CD21pB, SWC6gdT, and CD4CD8T-cells.

Group Total
genes

Gene names

Specific Myeloid + Top
25% myeloid

271 SLC18A1, ENSSSCG00000025687, KLHL13, PAK1, C1RL, MITF, SIRPB2, ENSSSCG00000014997, HNMT, C5AR1, A2M,
TEK, SEL1L3, TSPAN13, ENSSSCG00000035960, ENSSSCG00000039214, ENSSSCG00000003226, APOE, CHST15,
DNM1, GAS2L1, SERPING1, COL18A1, CDS1, ENSSSCG00000016184, CRHBP, KCNE3, NCAM1, ABHD12,
ENSSSCG00000001850, ENSSSCG00000023479, ASAH1, FN1, ENSSSCG00000003554, ENSSSCG00000038429, GAA,
ECE1, SLC46A2, UBTD1,CEBPD, CTSB, ENSSSCG00000031640, ENSSSCG00000037466, PLAC9, CCDC60, DOPEY2,
TALDO1, ADAMTSL4, ENSSSCG00000034555, STK3, ENSSSCG00000021675, FAM129B, SIGLEC1, SULF2, TRPM2, MGP,
CMKLR1, TNFRSF19, DOCK4, ENSSSCG00000027991, ULBP1, SLC11A1, SFXN3, TNFSF13, ENSSSCG00000013380,
CD68, KCNQ1, RPS6KA2, CD14, MCF2L, ENSSSCG00000037541, ENSSSCG00000015839, PAM, SERPINB8, TSPAN12,
F13A1, SASH1, C9orf72, PLCB4, SH3PXD2B, BLVRA, CXCL2, ADAM28, GPBAR1, CHI3L2, SNX9, LGALS3, SLC2A6,
ENSSSCG00000035675, EHD4, ENSSSCG00000039758, UNC13A, ENSSSCG00000038418, C2, PLA2G7, FUCA1,
ENSSSCG00000037426, ENSSSCG00000025271, ABCA9, RASGRP4, SLC7A7, VCAN, SLC39A8, ADAP2, SMIM5, DAGLA,
RAB11FIP5, ZNF768, ENSSSCG00000007644, CTNND1, ENSSSCG00000022258, ENSSSCG00000017754, STXBP1,
ENSSSCG00000027665, MANSC1, RND2, IGSF6, BMX, NLRP12, TPST1, NOD2, TREM1, SEMA6B, JDP2, FAM111B,
CIDEB, ENSSSCG00000033457, MMP19, SGK3, CTTNBP2NL, MAPK4, PLAUR, INSIG1, RNASE4, FLVCR2, SCARF1,
BCL2L14, ENSSSCG00000026196, MCTP1, WLS, ENSSSCG00000017920, PLOD1, CHPT1, PRCP,
ENSSSCG00000013842, SH2D6, CA13, PLCB2, CAPN3, PRAM1, ENSSSCG00000038616, ALOX5, GPNMB, ACVRL1,
SMIM3, GPR137B, LAMP1, NR1H3, ARL11, ITGB4, CYSLTR2, CCSER1, NCF2, GPCPD1, PDXK, NACC2, FOLR1, ADGRL2,
MERTK, OLFM1, PLXNC1, ECM1, LRRC25, IFIT2, CORO1B, ASAP3, SLC43A3, STEAP4, CAMKK1, CTSS, TMEM47, TTLL7,
AKR7A2, ENSSSCG00000036342, VIM, TLR8, LIN7A, MPP1, TBXAS1, LIPA, DRAM1, MRC2, TGM3, HEXB, GALM, EREG,
JPH4, ANG, QPCT, PPT1, ARRDC4, RAB31, ABHD17C, NFAM1, TLR3, LTB4R, HSD3B7, VDR, ENSSSCG00000010497,
CD163, OSCAR, DSC3, LRP6, ENSSSCG00000031951, ENSSSCG00000028635, PSAP, SCPEP1, EPB41L2, ZDHHC9,
IL1R2, EXPH5, ENSSSCG00000023264, IFIT5, AGPAT2, NKD2, GUCY1B1, GLUL, COL14A1, TNFRSF1B, SLC16A3, GRN,
ENSSSCG00000013100, CEBPA, OLFML2B, TLR4, XG, CCL21, ATF6, SLC49A3, HFE, ACVR1B, IFNGR1,
ENSSSCG00000022925, SERPINB10, TCF7L2, ENSSSCG00000008769, ENSSSCG00000016093, UNC93B1, TIMP2,
RAMP2, F11R, LGALS8, ENSSSCG00000032723, CFP, ZNF385A, CLIC2, TDRD1, HIP1, ENSSSCG00000026653, GSDMD,
CSF1R, NAGK, GAB1, PGD, ENSSSCG00000034639, LRPAP1, DAPK1, ENSSSCG00000039956, GPAT3, GALNTL5,
ENSSSCG00000029414

Specific NK + Top 25%
NK

14 OTOP2, B3GNT7, OSBPL3, NR4A3, IGF2BP2, OTOP3, ENSSSCG00000010703, LY6D, RET, TUBB6,
ENSSSCG00000033385, ENSSSCG00000036743, PTH1R, SUSD1

Specific CD21pB + Top
25% CD21pB

2 GP2, CR2

Specific SWC6gdT +
Top 25% SWC6gdT

5 TMEM87B, ACVR2A, ENSSSCG00000028443, SLC4A4, CASS4

Specific CD8T + Top
25% CD8T

2 TMIGD2, JAML

Finally, we compared pair-wise transcriptome differences
between our porcine sorted CD4T and CD8T populations
(Supplementary File 2) with the comparable populations from
a previous study (Foissac et al., 2019). Even though the sorting
approaches were different, 85% of the genes more highly
expressed in CD4T compared to CD8T, respectively, were
detected by Foissac and colleagues in their respective CD4+ to
CD8+ comparison. Similar overlap was found (87%) for the genes
more abundant in the “CD8 + high” list, while little overlap
was found in the inverse comparisons (2.5 and 1%), strongly
indicating these cell type gene expression patterns were similar
between studies. However, given the lack of identification of cell-
type specific genes for CD4T and CD8T populations, shared gene
expression patterns may not be surprising.

NanoString Assay Validated
BulkRNA-Seq
RNA abundance of each gene target (Supplementary File 5) in
each sample was used to perform a hierarchical clustering analysis
(Supplementary Figure 6). Similar to relationships observed
in the bulkRNA-seq dataset, biological replicates clustered

most closely together. T-cell populations (SWC6gdT, CD4T,
CD4CD8T, CD8T) were more similar to each other than to other
populations, with the exception of NK cells. RNA abundance
for the genes encoding the marker proteins used for sorting
cell populations confirmed cell identity in NanoString assays
(Supplementary Figure 7). RNA abundance for each tested
gene and cell population is included in Supplementary File
5. To validate gene expression levels calculated by bulkRNA-
seq, a Spearman rank correlation analysis was performed
between expression values determined by bulkRNA-seq and
NanoString (Supplementary Figure 8). Highly significant and
strong correlation (rho = 0.62–0.88, p-value < 2.2e−16) was
observed for all sorted cell types (Supplementary File 4). Overall,
gene expression estimates in the bulkRNA-seq dataset were
confirmed by using the NanoString assay.

Defining the Transcriptomic Landscape
of Porcine PBMCs at Single-Cell
Resolution
Single-cells from PBMCs of seven conventional pigs
were partitioned, sequenced, clustered, and visualized
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(Supplementary File 6). In total, the final dataset included 28,810
cells, and each cell was assigned to one of 36 transcriptionally
distinct clusters, with 9,176–12,683 genes detected within
each cluster (Figure 4A, Supplementary Figures 9A–C; and
Supplementary File 6). For identification of general cell types
in each cluster, expression levels of genes known to be active in
distinct porcine immune cell populations were mapped across
single-cell clusters (Figures 4B,C). The 36 clusters were deduced
to 13 general cell types (Figure 4D) as described below.

Monocyte clusters (13, 19, 20, 25, 27) expressed CSF1R and
genes associated with microbial recognition (CD14, CD163,
NLRP3, TLR4), reported as highly expressed by porcine
monocytes (Auray et al., 2016). DC clusters (30, 32) expressed
porcine pan-DC marker FLT3 and were further classified as
conventional DCs (cDCs; cluster 30) by elevated expression
of FCER1A and MHCII-encoding genes (SLA-DRB1∗, SLA-
DRA∗) and pDCs (cluster 32) by elevated expression of TCF4,
XBP1, CLEC12A, CD93, IRF8, CD4, and CD8B (Auray et al.,
2016). Co-stimulatory gene CD86 was expressed by all monocyte
and DC clusters as reported (Auray et al., 2016). SIRPA∗,
encoding CD172α is expressed by porcine monocytes/DCs
(Piriou-Guzylack and Salmon, 2008; Auray et al., 2016) and
used to sort myeloid leukocytes for bulkRNA-seq above, was
minimally expressed in DC clusters.

B-cell clusters (2, 7, 8, 10, 11, 15, 16, 23, 26, 33) expressed
CD79A, CD19, and PAX5 (Faldyna et al., 2007; Piriou-Guzylack
and Salmon, 2008; Bordet et al., 2019). Antibody-secreting cells
(ASCs; cluster 29) expressed IRF4 and PRDM, genes ascribed
to immunoglobulin secretion (Shi et al., 2015; Liu et al., 2020).
Detection of CR2∗, the gene encoding CD21 protein, was very
low in any cluster.

Expression of CD3E, which encodes pan-T-cell CD3ε protein,
identified T-cell clusters (0, 3, 4, 5, 6, 9, 12, 14, 17, 18, 21,
22, 24, 28, 31) (Gerner et al., 2009). Cluster 1 cells largely
lacked CD3E, CD5, and CD6 expression, while expressing CD2,
CD8A, PRF1, NK receptor-encoding genes KLRB1 (CD161) and
KLRK1 (NKG2D), and NK receptor signaling adaptor molecules
HCST (DAP10) and TYROBP (DAP12), corresponding to a
NK cell designation (Denyer et al., 2006; Piriou-Guzylack and
Salmon, 2008; Gerner et al., 2009; Toka et al., 2009). γδ T-cells
were identified by TRDC expression, encoding the γδTCR δ

chain, and were subdivided into two major subtypes based
on presence/absence of CD2 expression (Piriou-Guzylack and
Salmon, 2008; Gerner et al., 2009; Stepanova and Sinkora, 2013;
Sedlak et al., 2014). Clusters 6 and 21 were identified as CD2−
γδ T-cells and clusters 24 and 31 as CD2+ γδ T-cells. Clusters
expressing CD3E but not TRDC were considered αβ T-cells and
were further subdivided based on CD4 expression (0, 3, 4, 28
classified as CD4+ αβ T-cells) or CD8A and CD8B expression (9,
12, 14, 18, 22 classified as CD8αβ+ αβ T-cells) (Piriou-Guzylack
and Salmon, 2008; Gerner et al., 2009). Clusters 5 and 17 were
more difficult to fully classify and likely represented a mixture
of cells, with some but not all cells expressing CD3E. Cells in
clusters 5 and 17 largely lacked expression of CD5, CD6, TRDC,
CD4, and CD8B but did largely express CD2, CD8A, KLRB1, and
KLRK1 and were therefore characterized as a mixture of CD8α+

αβ T- and NK cells.

Cells in cluster 34 could not be characterized well enough
to broadly classify as myeloid, B, T, or NK lineage leukocytes
based on the porcine cell markers described and remained
unclassified. Cluster 35 expressed HBM and AHSP, indicating
erythrocytes. Clusters 34 and 35 were still included in further
scRNA-seq analyses; however, results pertaining to these clusters
were not discussed.

Gene Signatures of BulkRNA-Seq
Populations Had Limitations in Resolving
Single-Cell Identities
Gene set enrichment analyses (GSEA) using SEG lists defined
at different levels of enrichment for each sorted bulkRNA-
seq population (Supplementary File 3, see Materials and
Methods) was performed to identify which scRNA-seq
clusters were likely represented (Figures 5A,B, Supplementary
Figure 10A, and Supplementary File 8). Some gene sets had high
relative enrichment in anticipated corresponding scRNA-seq
clusters, such as Myeloid gene sets to monocyte/DC clusters,
CD21nB/CD21pB gene sets to B-cell clusters, and SWC6gdT
gene sets to CD2− γδ T-cell clusters. Interestingly, highest relative
enrichment (2.51) for the top 1% of CD21nB SEGs was noted for
ASCs in cluster 29, followed by erythrocytes in cluster 35 (1.68).
Within sorted NK and T-cell populations, some gene sets showed
high relative enrichment for their anticipated corresponding
clusters in the scRNA-seq dataset. We also noted off-target
relative enrichment for gene sets in clusters not anticipated to be
included in specific sorted cell populations. Cluster 28 had lower
relative enrichment for CD4T and CD4CD8T SEG lists at top
5–25% SEG levels (−0.02 to 0.73) than did several non-CD4+
αβ T-cell clusters. Similar phenomena were observed for CD8T
top 5–25% SEG lists, whereby clusters 1, 24, and 31 had higher
relative enrichment for CD8T SEG lists (0.69 to 1.56) than did
clusters 14 or 18 (−0.04 to 0.95 relative enrichment) that were
anticipated to be included in the CD8T population. Clusters 24
and/or 31 showed off-target relative enrichment for all T/NK
gene sets to various degrees, though these cells would not be
expected to make up a sizeable portion of any of those sorted
cell populations.

Further comparison of porcine bulk and scRNA-seq data
by CIBERSORTx deconvolution analysis largely supported
our single-cell cluster designations by predicting which
clusters proportionally represented the bulk RNA-seq data
(Supplementary Figure 10B and Supplementary File 7).
Several clusters with poor AUCell enrichment for anticipated
bulkRNA-seq gene sets in Figures 5A,B, such as cluster 28,
were predicted to constitute considerable proportions of their
anticipated cell populations by CIBERSORTx deconvolution
analysis. Additionally, clusters that demonstrated off-target
enrichment by AUCell analysis, such as clusters 1, 9, 22, 24, and
31, were not predicted to be largely present in those off-target
populations using CIBERSORTx. However, CIBERSORTx failed
to predict many single-cell clusters to have notable abundances
in any bulkRNA-seq populations, such as clusters 8, 19, 26,
32, and 34 having <3.33% predicted abundance for any one
bulkRNA-seq sample.
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FIGURE 4 | Classification of porcine PBMC scRNA-seq clusters based on known cell type-specific gene expression. (A) Two-dimensional UMAP visualization of
28,810 single cells from porcine PBMCs classified into 36 designated clusters. Each point represents a single cell. Color of the point corresponds to transcriptional
cluster a cell belongs to. Cells more transcriptionally similar to each other belong to the same cluster. (B) Visualization of selected cell type-specific gene expression
overlaid onto two-dimensional UMAP coordinates of single cells. Each point represents a single cell. Color of the point corresponds to relative expression of a
specified gene (bottom left of each UMAP plot) within a cell. Gray corresponds to little/no gene expression, while navy corresponds to increased gene expression.
(C) Dot Plot visualization of selected cell type-specific gene expression for each single-cell cluster shown in A. Clusters are listed on the x-axis, while selected genes
are listed on the y-axis. The size of a dot corresponds to the percent of cells in a cluster that expressed the gene. The color of a dot corresponds to the average
relative expression level for the gene in the cells expressing the gene within a cluster. Color bar below the x-axis corresponds to porcine cell type each cluster was
classified as. (D) Two-dimensional UMAP visualization of single cells from porcine PBMCs classified into major porcine cell types. Each point represents a single cell.
Color of the cell corresponds to porcine cell type the respective cluster was designated as based on gene expression patterns for the cluster it belonged to in (C).
Seven PBMC samples used for scRNA-seq analysis were derived from each of three separate experiments (experiment B, n = 2; experiment C, n = 3; experiment D,
n = 2). Between 3,042 and 6,518 cells were derived from each PBMC sample. *Refer to ‘Gene name replacement’ methods.

Additional GSEA comparing gene sets derived from public
bulkRNA-seq data of sorted human PBMC populations with
porcine single-cell gene expression profiles informed cluster
identity as it relates to human immune cells (Figure 5C,
Supplementary Figures 10C,D, and Supplementary File 9).

High relative enrichment for human monocyte gene sets in
porcine monocyte populations, human CD123PmDC gene sets
in porcine cDCs, and human pDC gene sets in porcine pDCs
was observed, in general consensus with gene expression profiles
of anticipated corresponding porcine single-cell clusters. NaiveB
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FIGURE 5 | Enrichment of gene signatures from bulkRNA-seq in porcine single-cell clusters. (A) Gene set enrichment scores calculated by AUCell analysis of
enriched gene sets from the top 25% of SEGs in pig bulkRNA-seq sorted populations overlaid onto cells of the porcine scRNA-seq dataset visualized in
two-dimensional UMAP plot. Each point represents a single cell. The color of the point corresponds to the AUC score calculated for each respective cell. Higher
AUC scores correspond to a greater percentage of cells from a gene set being detected in the top 5% of expressed genes in a cell. A threshold for AUC score
detection within each gene set was set as shown in Supplementary Figure 10A and is indicated by a horizontal line on the gradient fill scale for each plot.
(B) Relative average gene set enrichment scores of scRNA-seq clusters calculated by AUCell analysis of enriched gene sets from porcine bulkRNA-seq sorted data.
Scores are relative to other cells within a single gene set comparison (across a row of the heatmap) and are not calculated relative to scores across different gene

(Continued)
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FIGURE 5 | Continued
sets (across columns in the heatmap). Gene sets were created from the top 1, 5, 10, 15, 20, or 25% of SEGs from sorted populations, as determined by highest
log2FC values in the porcine bulkRNA-seq data. The number of genes included from the bulkRNA-seq dataset and the number and percent of genes detected in the
scRNA-seq dataset is listed on the right of the heatmap. A color bar under scRNA-seq cluster IDs indicates the cell type classification, as according to Figure 4D.
(C) Relative average gene set enrichment scores of scRNA-seq clusters calculated by AUCell analysis of enriched gene sets from human bulkRNA-seq sorted data.
Scores are relative to other cells within a single gene set comparison (across a row of the heatmap) and are not calculated relative to scores across different gene
sets (across columns in the heatmap). Gene sets were created from genes with high expression scores >0.5 or >1 for each respective sorted population of cells,
with a greater high expression score indicating greater enrichment. The number of genes included from the bulkRNA-seq dataset and the number and percent of
genes detected in the scRNA-seq dataset is listed on the right of the heatmap. A color bar under scRNA-seq cluster IDs indicates the cell type classification, as
according to Figure 4D.

cell gene signatures had positive relative enrichment in all porcine
B-cell clusters except cluster 33 at both the 0.5 and 1.0 resolution
level, while the MemoryB cell signature had highest relative
enrichment scores for B and ASC clusters at the 0.5 level, with
little relative enrichment at the 1.0 level (likely due to a limited
number of genes in the gene set). Human T/NK gene sets
had off-target enrichment very similar to patterns observed in
GSEA with porcine gene sets. Overall, GSEA between human
bulkRNA-seq gene signatures and gene expression profiles of
porcine scRNA-seq data supported many of the same findings
when comparing between porcine bulkRNA-seq gene sets and
gene expression profiles of porcine scRNA-seq data. Results
indicated limitations of gene profiles obtained from sorted
bulkRNA-seq populations in accurately describing/accounting
for transcriptional heterogeneity resolved by scRNA-seq.

Integration of Porcine and Human
scRNA-seq Datasets to Further Annotate
Porcine Cells
We examined porcine single-cell identities by comparing the
porcine scRNA-seq data to a highly annotated scRNA-seq dataset
of human PBMCs, providing a higher level of resolution than
available with bulkRNA-seq. Transfer of more highly specified
human cell type labels onto porcine cells could reveal the
most likely human counterparts for these porcine populations.
Mapping scores were further calculated to determine how well
porcine cells were truly represented by the human dataset
(Figure 6A, Supplementary Figures 11A,B, and Supplementary
File 10).

Many porcine clusters had >95% of cells mapping to a
specific human cell type, with average mapping scores >0.9,
including monocyte, pDC, cDC, and ASC clusters, suggesting
high congruency between pig and human for these cell types
(Figure 6B). All porcine B-cell clusters, omitting cluster 33,
mapped primarily to human B-cell clusters, but average mapping
scores were slightly lower (0.80–0.87), indicating less ideal
representation in the human data. In addition, every porcine
B-cell cluster had overlap with all three human B-cell types
(Figure 6A). Of the porcine CD4+ αβ T-cells, most cluster 0 cells
were predicted as human CD4 naïve cells, clusters 3 and 4 cells
as human CD4 T central memory (TCM) cells, and cluster 28
cells as human CD4 proliferating cells. From porcine CD8αβ+

αβ T-cells, clusters 14 and 18 were largely assigned as human
replicating cell types, while 90% of cluster 9 cells were predicted
as human CD8 T effector memory (TEM) cells. Highest cluster

12 predictions were mainly to human CD4/CD8 naïve T-cells,
and cluster 22 cells predicted to match a range of human cell
populations, with the largest percentage predicted as human
CD8 TEMs. Porcine CD8α+ αβ T/NK and NK clusters had
predictions split primarily across human CD8 TEM and NK
designations. Porcine CD2+ γδ T-cell clusters 24 and 31 had 74
and 98%, respectively, of cells predicted as human CD8 TEM,
NK, or γδ T-cells. Porcine CD2− γδ T-cell clusters 6 and 21
had the majority of cells predicted as human CD4 TCM, innate
lymphoid cell (ILC), or γδ T-cells, though the average mapping
scores were lower for those assigned as CD4 TCM (0.73–0.74)
or gdT (0.74–0.78) than those assigned as ILCs (0.82–0.83)
(Supplementary File 10). Overall, cross-species comparison to
a well-annotated human scRNA-seq dataset helped elucidate
porcine cell type identities at a higher resolution than porcine
or human bulkRNA-seq datasets (Figure 5), though some
discordance was clearly still present.

Several porcine clusters had low mapping scores to a
human cell type, indicating the porcine cells may not be
well represented by the human reference dataset (Figure 6B
and Supplementary File 10). Therefore, de novo visualization
was performed on the combined human and porcine data,
to identify cells in the pig dataset not well represented in
the human data (Figures 6C,D). Porcine clusters could be
identified that had low similarity to human cells, and vice
versa (Figure 6C). Specifically, porcine clusters 6, 16, 21, and
33 weakly overlapped human cells in the two-dimensional de
novo visualization (compare 6C and 6D) and had lower average
mapping scores to any human cell type (Figure 6B). Further
inspection revealed clusters 6 and 21 to be CD2− γδ T-cells
(identified in Figures 4B,D) and their limited representation in
human dataset is discussed further below. In contrast, clusters
16 and 33 were B-cells, and to further understand their limited
representation compared to other porcine B-cells, clusters 16
and 33 were compared by pairwise comparisons to all remaining
B-cell clusters (2, 7, 8, 10, 11, 15, 23, 26; Supplementary
File 6). Pairwise comparisons revealed significantly increased
expression of 33 genes in cluster 16 and 282 genes in cluster
33 relative to every other B-cell cluster (Table 4). Compared
to other porcine B-cell clusters, cluster 16 had significantly
greater expression of several genes associated with B-cell
activation (such as BHL, ITGB7, JCHAIN, ZBTB38) (Castro
and Flajnik, 2014; Kreslavsky et al., 2017; Delecluse et al.,
2019; Wong and Bhattacharya, 2020), while many genes with
significantly increased expression in cluster 33 were associated
with cellular replication and/or division, such as HIST1H2AB,
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FIGURE 6 | Integration of porcine and human scRNA-seq datasets to further annotate porcine cells. (A) Mapping scores calculated to determine how well porcine
cells were represented by the human dataset. The human cell type specific frequency (size of the circle) and mapping score for that human cell type (color) are
shown for each porcine scRNA-seq cluster. Porcine cell type classifications (color) are shown below the porcine scRNA-seq cluster IDs. (B) Mapping scores
calculated to determine how well porcine cells were represented by the human dataset. The mapping scores for each porcine scRNA-seq cluster is represented by a
box and whiskers plot. Porcine cell type classifications (color) are shown below the porcine scRNA-seq cluster IDs. (C) To identify cells in the porcine dataset that
were not well represented in the human dataset, a de novo visualization of the merged porcine and human data was performed. The porcine (pink) and human (gray)
were plotted together using UMAP. An overlap of both porcine and human cells is shown as (dark red). Clusters of porcine cells that are not well represented in the
human data can be observed by pink regions in the plot. (D) Two primary regions of porcine cells that were not well represented in the human data were identified in
(C). In order to clarify which porcine scRNA-seq clusters were represented in these regions, the porcine cluster IDs were projected onto the UMAP and cells from
four clusters overlapping the identified regions were colored as dark red.
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TABLE 4 | Genes with significantly increased expression in cluster 16 or 33 relative to every other B-cell cluster (2, 7, 8, 10, 11, 15, 23, 26) by every pairwise differential
gene expression analysis. Underlined genes had significantly increased expression in both cluster 16 and 33.

Cluster with greater gene
expression relative to all
other B-cell clusters

Genes

Cluster 16 ABRACL*, ACTG1, ANXA2, BHLHE41, BIRC5, CA8, CD52, CDK2AP2, CFD, CLIC1*, DUT, DYNLL1, ENSSSCG00000037141,
ENSSSCG00000039490, GAPDH, H2AFZ, HINT1, HIST1H2AB, HMGB1*, HMGB2, HMGN2, ITGB7, JCHAIN, LSM5*, PCLAF, PCNA,
S100A11, SPCS1, SRSF10, STMN1, TUBB, TYMS, ZBTB38

Cluster 33 ACTG1, AHCY, ANP32E*, ANXA2, AP3S1*, ARL6IP1, ASF1B, ASPM, ATAD2, ATAD5, ATP5MC3, AURKA*, AURKB, BANF1*, BBS7,
BIRC5, BRCA1, BUB1, BUB1B*, BUB3, CALM3, CBX3*, CBX5, CCDC167, CCDC34, CCNB1, CCNB2, CCNE2, CDC2*, CDC20,
CDC25B, CDC45, CDCA3, CDCA5, CDCA7, CDCA8, CDK2, CDK4, CDKN2C, CDKN3, CDT1, CENPA, CENPE, CENPF, CENPM,
CENPN, CENPS, CENPT, CENPU, CENPW, CEP55, CEP57*, CIP2A, CKAP2, CKAP2L, CKAP5, CKS1B, CKS2, CLIC1*, CLSPN,
CMC2*, COX17, COX5A, CSPP1, CTCF, CXXC1, CYB5B, DBF4*, DDX39A, DEK*, DEPDF1B, DHFR*, DIAPH3, DLGAP5, DNMT1,
DTYMK, DUT, DYNLL1, E2F2, E2F8, ECT2, ENSSSCG00000034527, ENSSSCG00000037071, ENSSSCG00000037185, ERH,
ESCO2, E2H2, FABP3, FAM72A*, FBXO5, GAPDH, GFER*, GGCT*, GINS1*, GINS2, GMNN, GON7, GPN3, GTSE1*, H1-2*, H2AFV,
HSAFY, H2AFZ, HDGF, HELLS, HINT1, HIST1H1D, HIST1H1E, HIST1H2AB, HIS1H2AG, HIST2H2AC, HMGA1, HMGB1*, HMGB2,
HMGB3*, HMGN2, HMGN1*, HMGN5*, HMMR, HNRNPA2B1*, HNRNPAB*, HNRNPS, HNRNPH1, HSP90AA1, HSPA4L, IDI1*, JPT1*,
KIF11, KIF15, KIF18A, KIF20A, KIF20B, KIF22, KIF23*, KIF2C, KIF4A, KIFC1, KNL1*, KNSTRN, KPNA2, KPNB1, LGALS1, LMNB1,
LSM2, LSM3, LSM4*, LSM5*, LSM6, LSM8, LYAR, MAD2LA, MAGOHB*, MAZ, MCM3, MCM4, MCM5, MCM6, MCM7, MDH1,
MELK, MIS18A, MKI67*, MND1, MNS1, MPHOSPH9, MSH6, HTFR1, MTHFD1, MXD3, MYBL2, NANS, NASP, NCAPD2, NCAPD3,
NCAPG, NCAPG2, NCAPH, NCAPH2, NDC80, NEK2, NRM, NSD2, NT5C, NUCKS1, NUDC, NUF2, NUSAP1*, NUTF2*, NXT2, ORC1,
ORC6, PBK, PCLAF, PCNA, POC1A, POLR2K, POMP, POP7, PPIA*, PRIM1*, PRR11, PTBP1, PTMA, PTTG1*, RACGAP1, RAD21,
RAD51, RAD51AP1, RAN, RANBP1, RBMX, RFC3, RFC4, RHNO1, RNASEH2B, RPA2, RPA3, RRM2*, S100A11, S100A6, SEPHS1*,
SFPQ, SGO1, SGO2, SHCBP1, SIVA1, SKA1*, SKA2, SLBP, SMC1A, SMC2, SMC3, SMC4, SNRPA1, SNRPD1, SNRPD3, SNRPE,
SNRPF, SNRPG*, SPC24, SPC25, SPTSSA, SQLE, SRSF10, SRSF1, SRSF7, STMN1, SUZ12, SYNE2, TACC3*, TCF19, TEX30, TK1,
TMEM258, TMPO, TMSB15B*, TOP2A, TOPBP1, TPX2, TRA2B, TRIM28, TRIM59, TTK, TUBA1B, TUBA1C*, TUBB, TUBB4B, TYMS,
UBALD2, UBE2C, UBE2S, UBE2T, UHRF1, USP1, UXT, VIM VRK1, WEE1*, YBX1*, YEATS4, YWHAQ, ZNF367

*Refer to gene name replacement in Materials and Methods section.

HMGB2, STMN1, MKI67, PCLAF, UBE2C (Dabydeen et al., 2019;
Giotti et al., 2019).

Different Activation States of Porcine
CD4+ αβ T-Cells Based on CD8α

Expression
We further compared scRNA-seq gene expression profiles
amongst only CD4+ αβ T-cell clusters to gain functional
inferences and correspondence to CD8α− vs. CD8α+ phenotypes
that were used to sort CD4+ αβ T-cells for bulkRNA-seq.
CD4+ αβ T-cell clusters (0, 3, 4, 28) were comprised of 5,082
total cells (Figure 7A). Hierarchical clustering and pairwise
DGE (Supplementary File 7), as well as random forest (RF)
analyses, a deep-learning classification method, (see Methods;
Supplementary File 11), cumulatively revealed clusters 3 and 4
to be the most transcriptionally similar to each other. Clusters 3
and 4 had the smallest hierarchical distance, fewest DEGs (67),
and largest RF error rate (19.5) between them, while cluster 28
was the most distantly related to the other 3 clusters (Figure 7B).

CD8A gene expression was detected in a subset of cells in
the CD4+ αβ T-cell clusters (3.5, 13.1, 20.9, 39.7% of cells in
clusters 0, 3, 4, 28, respectively; Figure 7C). CD8A expression
was significantly greater in clusters 4 and 28 compared to
cluster 0 by pairwise DGE analyses (Supplementary File 7)
but not in cluster 3 compared to 0, due to not meeting a
minimum threshold of cells (20%) expressing the gene in either
cluster implemented for DGE analysis. However, cluster 3 had
significantly greater expression of CD8A compared to cluster 0
when removing the minimum cell expression threshold (average

log2FC = 0.37, adjusted p-value = 5.52 × 10−21). GSEA of DEGs
identified by pairwise DGE analysis of CD4T and CD4CD8T
populations recovered from bulkRNA-seq (Supplementary File
2) revealed genes significantly enriched in CD4T compared to
CD4CD8T populations were relatively enriched in cluster 0,
while genes significantly enriched in CD4CD8T compared to
CD4T populations showed greater relative enrichment in clusters
4 and 28 and to a lesser extent in cluster 3 (Figure 7D and
Supplementary File 12).

The top genes contributing to overall transcriptional
heterogeneity amongst four clusters of CD4+ αβ T-cells, as
determined by RF analysis (Figures 7E,F and Supplementary
File 13), highly overlapped with genes identified in overall
DGE analysis (Figure 7G and Supplementary File 13). Of
eight genes with mutually highest permutation and impurity
scores from overall RF analysis (Figures 7E,F), one gene had
significantly greater expression in cluster 0 compared to all other
clusters (RPS3A), while the other seven genes had significantly
greater expression in clusters 3, 4, and 28 compared to cluster 0
(FCGR3A∗, TMSB10, COX1, S100A6, GPX1, CRIP1∗, S100A11),
as determined by pairwise DGE analyses (Supplementary File 7).

Genes associated with a naïve phenotype, including CCR7,
SELL, LEF1, and TCF7 (Szabo et al., 2019; Kim et al., 2020)
had significantly increased expression in cluster 0 (Figure 7G
and Supplementary Files 9, 13), in line with the result obtained
by comparing to human scRNA-seq data that indicated a good
alignment of cluster 0 with human naïve CD4 T-cells (Figure 6A).
From Figure 6A, clusters 3 and 4 aligned with human CD4
Tcm (central memory) cells, and cluster 28 aligned with human
CD4 proliferating cells. Correspondingly, genes associated with
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FIGURE 7 | Transcriptional heterogeneity of porcine CD4+ αβ T-cells at single-cell resolution. (A) Two-dimensional t-SNE plot of 5,082 cells belonging to clusters
designated as CD4+ αβ T-cells (clusters 0, 3, 4, and 28) in Figure 4D. Each point represents a single cell. Color of the cell corresponds to transcriptional cluster a
cell belongs to. Cells more transcriptionally similar to each other belong to the same cluster. (B) Transcriptomic relationship amongst CD4+ αβ T-cell clusters as
calculated by three methods: hierarchical clustering (as seen by hierarchical trees on both axes), pairwise random forest analyses (as seen on top right diagonal); and
pairwise DGE analyses (as seen on bottom left diagonal). Longer branches on the hierarchical tree corresponds to greater hierarchical distance. Lower numbers of
DEGs by DGE analysis and higher out-of-bag (OOB) error rates from random forest analyses indicate greater pairwise transcriptional similarity. (C) Visualization of
CD8A expression overlaid onto t-SNE coordinates of single CD4+ αβ T-cells. Each point represents a single cell. Color of the point corresponds to relative expression
of CD8A within a cell. Gray corresponds to little/no gene expression, while navy corresponds to increased gene expression. (D) Relative average gene set enrichment
scores of CD4+ αβ T-cell clusters calculated by AUCell analysis of DEG sets from pairwise DGE analysis of the CD4T and CD4CD8T populations from porcine
bulkRNA-seq. Scores are relative to other cells within a single gene set comparison (across a row of the heatmap) and are not calculated relative to scores across
gene set (across columns in the heatmap). (E,F) Genes with the largest effects in discriminating CD4+ αβ T-cells by cluster identities were determined, as indicated
by high permutation (E) and/or impurity scores (F) calculated from a trained random forest model. Average relative expression for each of these genes within clusters
is also depicted by a heatmap. (G) Dot plot of up to the top 20 DEGs having logFC > 0 from overall DGE analysis of only CD4 + ab T-cell clusters. Clusters are listed
on the y-axis, while selected DEGs are listed on the x-axis. The size of a dot corresponds to the percent of cells in a cluster that expressed the gene. The color of a
dot corresponds to the average relative expression level for the gene in the cells expressing the gene within a cluster. *Refer to ‘Gene name replacement’ methods.

activation, such as ITGB1, CD40LG, IL6R, and MHC II-
associated genes (CD74, SLA-DRA, SLA-DQB1, SLA-DRB1∗,
SLA-DQA1∗) (Grewal and Flavell, 1996; Gerner et al., 2009;
Zemmour et al., 2018; Zhu et al., 2020) had significantly greater

expression in clusters 3, 4, and/or 28, and cluster 28 expressed
many genes specific for cellular replication and division (PCLAF,
BIRC5, TK1, PCNA) (Dabydeen et al., 2019; Giotti et al., 2019;
Figure 7G and Supplementary Files 9, 13). Overall, we leveraged
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single-cell gene expression profiles to confirm likely identity of
cluster 0 as naïve CD4+CD8α− αβ T-cells and clusters 3, 4, and
28 as potentially previously activated CD4+CD8α+ αβ T-cells.

Heterogeneity Between/Amongst CD2+

and CD2− γδ T-Cells
Clusters predicted to be porcine γδ T-cells were examined to
reveal transcriptional distinctions within this cell type. Four
clusters containing 2,652 cells were previously identified as
CD2− γδ T-cells (clusters 6, 21) or CD2+ γδ T-cells (clusters
24, 31) (Figure 8A). We could further segregate these clusters
by CD2 and CD8A expression into CD2−CD8α− (clusters 6,
21), CD2+CD8α− (cluster 24), and CD2+CD8α+ (cluster 31)
designations used to functionally define porcine γδ T-cells
previously (Stepanova and Sinkora, 2013; Sedlak et al., 2014;
Figure 8B).

CD2− γδ T-cell clusters 6 and 21 were most closely related
to one another by hierarchical clustering, had the fewest
pairwise DEGs (30), and had the highest pairwise RF analysis
error rate (23.5), indicating clusters 6 and 21 to be the most
transcriptionally similar γδ T-cell clusters of the four clusters
(Figure 8C and Supplementary Files 7, 14). CD2+ γδ T-cell
clusters 24 and 31 were most similar to each other by hierarchical
clustering, had the second fewest pairwise DEGs (236), and
had the second highest pairwise RF error rate (5.12), indicating
clusters 24 and 31 to be most similar to each other. When
performing pairwise comparison between any CD2− and CD2+
γδ T-cell clusters, the number of DEGs increased and RF error
rates decreased, indicating greater transcriptional differences
between cells of the CD2− and CD2+ γδ T-cell lineages than
amongst them (Figure 8C and Supplementary Files 7, 14).

The top genes contributing to overall transcriptional
heterogeneity amongst γδ T-cell clusters, as determined by
RF analysis (Figures 8D,E and Supplementary File 14),
overlapped with genes identified with significant and highest
logFC expression in overall DGE analysis (Figure 8F and
Supplementary File 14). Six of the top seven genes with mutual
highest impurity (the best features that correctly split the data)
and permutation scores from RF analysis (Figures 8D,E) were
also DEGs between both CD2− compared to both CD2+ γδ

T-cell clusters by pairwise DGE analysis (Supplementary File
7), again indicating large transcriptional differences between
CD2− and CD2+ γδ T-cells. In total, 31 genes had significantly
greater expression in both CD2− γδ T-cell clusters compared
to both CD2+ γδ T-cell clusters, and 49 genes had significantly
greater expression in both CD2+ γδ T-cell clusters compared to
both CD2− γδ T-cell clusters (Table 5), as determined using the
pairwise DGE analyses (Supplementary File 7).

Intra-lineage heterogeneity of CD2− γδ T-cells (between
clusters 6 and 21) and CD2+ γδ T-cells (between clusters 24
and 31) demonstrated additional complexity beyond the inter-
lineage heterogeneity between CD2− and CD2+ γδ T-cells.
Pairwise comparison between clusters 24 and 31 (Supplementary
Data 8) revealed 80 genes with significantly greater expression
in cluster 24 (CD2+CD8α− γδ T-cells) and 156 genes with
significantly greater expression in cluster 31 (CD2+CD8α+ γδ

T-cells). Genes with the greatest logFC expression (logFC > 1.5)

in cluster 31 compared to cluster 24 were related to cellular
activation and/or effector functions (CCL5, GNLY, FCGR3A∗,
KLRK1, GZMA∗, NKG7, FCER1G, GZMB) (Rincon-Orozco et al.,
2005; Pizzolato et al., 2019; Szabo et al., 2019). Of the 30 DEGs
between clusters 6 and 21 (Supplementary Data 8), three genes
had significantly greater expression in cluster 6, while 27 genes
had significantly greater expression in cluster 21. Several genes
with greater expression in cluster 21 encoded for activation-
or stress-induced molecules, including GPX1, LGALS1, ITGB1,
LTB, several genes encoding for S100 proteins (S100A4, S100A6,
S100A10, S100A11), and genes related to MHCII presentation
(CD74, SLA-DRA∗) (Blaser et al., 1998; Ware, 2005; Gerner et al.,
2009; Steiner et al., 2011; Kesarwani et al., 2013; Siegers, 2018).
Genes encoding transcriptional regulators playing important
roles in cell fate determination, including ID3 and GATA3,
had greater expression in cluster 6, while ID2 expression was
significantly greater in cluster 21 (Blom et al., 1999; Zhang et al.,
2014; Rodríguez-Gómez et al., 2019).7

DISCUSSION

We present the first comprehensive annotation of the
global transcriptome of all major circulating porcine blood
mononuclear cells. We applied bulkRNA-seq to determine
transcriptomes of eight sorted PBMC populations and scRNA-
seq to annotate transcriptomic diversity of PBMCs into
transcriptionally distinct clusters. Deep RNA sequencing
detected significant heterogeneity between sorted populations
except for T-cell populations, while further heterogeneity was
unmasked by scRNA-seq. Collectively, the data sets revealed
specific immune functional expression patterns and highlighted
substantial diversity in some subsets, such as T-cells. The
combined approach helps to unite porcine transcriptomics
and cellular immunology, as transcriptional differences and
functional relationships of porcine immune cells have remained
unclear due to lack of sufficient reagents to label distinct porcine
immune cell populations. While cross-species comparisons have
been done with many RNA-seq datasets of partially purified cell
populations (Kapetanovic et al., 2013; Herrera-Uribe et al., 2020),
our new porcine data demonstrates global similarity to human
bulkRNA-seq and scRNA-seq transcriptomes that can be used
to further unravel porcine cell function and extend comparative
immune investigation.

Gene expression patterns from the bulkRNA-seq datasets
revealed distinct transcript profiles enriched in biological
pathways characteristic of each respective cell population, based
on previous findings in pig and other species (Alter et al., 2004;
Palmer et al., 2006; Wang et al., 2008; Foissac et al., 2019; Monaco
et al., 2019; Summers et al., 2020). However, bulkRNA-seq data
from the porcine sorted populations had limited ability to identify
genes with specific transcriptional patterns for some sorted
lymphocyte populations. The transcriptomes of eight different
cell types we provide include three types of transcriptomes that
have not reported before in pig, including NK, CD21pB and
CD21nB. Lists of SEGs, pairwise DGE between all populations

7http://biocc.hrbmu.edu.cn/CellMarker/#
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FIGURE 8 | Transcriptional heterogeneity of porcine γδ T-cells at single-cell resolution. (A) Two-dimensional t-SNE plot of 2,652 cells belonging to clusters
designated as CD2− γδ T-cells (clusters 6, 21) or CD2+ γδ T-cells (clusters 24, 31) in Figure 4D. Each point represents a single cell. Color of the cell corresponds to
transcriptional cluster a cell belongs to. Cells more transcriptionally similar to each other belong to the same cluster. (B) Visualization of selected gene expression
overlaid onto t-SNE coordinates of single γδ T-cells. Each point represents a single cell. Color of the point corresponds to relative expression of a specified gene (top
left of each t-SNE plot) within a cell. Gray corresponds to little/no gene expression, while navy corresponds to increased gene expression. (C) Transcriptomic
relationship amongst γδ T-cell clusters as calculated by three methods: hierarchical clustering (as seen by hierarchical trees on both axes), pairwise random forest
analyses (as seen on top right diagonal); and pairwise DGE analyses (as seen on bottom left diagonal). Longer branches on the hierarchical tree corresponds to
greater hierarchical distance. Lower numbers of DEGs by DGE analysis and higher out-of-bag (OOB) error rates from random forest analyses indicate greater
pairwise transcriptional similarity. (D,E) Genes with the largest effects in discriminating γδ T-cells by cluster identities were determined, as indicated by high
permutation (D) and/or impurity scores (E) calculated from a trained random forest model. Average relative expression for each of these genes within clusters is also
depicted by a heatmap. (F) Dot plot of up to the top 20 DEGs having logFC > 0 from overall DGE analysis of only γδ T-cell clusters. Clusters are listed on the y-axis,
while selected DEGs are listed on the x-axis. The size of a dot corresponds to the percent of cells in a cluster that expressed the gene. The color of a dot
corresponds to the average relative expression level for the gene in the cells expressing the gene within a cluster. *Refer to ‘Gene name replacement’ methods.

and cell type-specific genes data sets presented here, could be
used for further analysis in other pig or even in cross-species
comparisons. Notably, we were able to identify a large number
of HEGs in the Myeloid population. Some HEGs in Myeloid
cells were reported as a Myeloid cell markers in pig (e.g., CD14
and CD36) (Fairbairn et al., 2013) and other HEGs may be
considered as new potential cell markers. Also, in comparison
to sorted CD4T and CD8T populations reported in a previous
porcine RNA-seq study (Foissac et al., 2019), we observed
concordant transcriptional patterns in essentially equivalent

populations. However, we extended transcriptional annotation
to two additional T-cell populations (CD4CD8T, SWC6gdT),
thus identifying transcriptional differences across more T-cell
populations. We demonstrated the utility of an established
NanoString CodeSet (Van Goor et al., 2020; Dong et al., 2021)
to validate RNA-seq results and further profile porcine sorted
PBMC populations. At the bulk RNAseq level, we concluded
substantial transcriptional heterogeneity was present across
sorted T-cell and B-cell populations, as fewer enriched or cell
type-specific genes were detected. As described below, the lack of
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TABLE 5 | Genes differentially expressed between both CD2− γδ T-cell clusters (clusters 6 and 21) and both CD2+ γδ T-cell clusters (clusters 24 and 31).

Population with greater
gene expression

Genes

CD2− γδ T-cells (clusters 6, 21) AP3S1*, ANXA1, BLK, CAPG, CDNF*, CD163L1*, EMP3, ENSSSCG00000032017, ENSSSCG00000033734, FCER1A, GATA3,
IL6R, ITM2B, LGALS1, LTB, MAN2B1*, MYL12A*, PARK7, PIK3AP1, PLEKHF2, PPP1CC, RCAN3, RHEX, RPS19*, SAMSN1,
SELL, SLC25A24, SRGN, TIMP1, VIM, YBX3

CD2+ γδ T-cells (clusters 24,
31)

ABI3*, ACTG1, ARPC1B, ARPC5L, BIN1, CAMK4, CCDC12*, CD2, COTL1, CTSD, DYNLRB1, ENSSSCG00000023584,
ENSSSCG00000027196, ENSSSCG00000029596, ENSSSCG00000038825, FAM49B, FSCN1, FYB1, GBP7*, GIMAP4*, H2AFV,
IFITM1*, IFI6, IKZF2, IKZF3, IL2RB, ISG15, ITGA4, ITGB2, ITM2C, KRAS, LCK, MAGOHB*, NT5C3A*, PIK3R1, PRKCH*, PSIP1,
PTPRC, RESF1, S100A1, SLC9A3R1, SMC4, SNRK, STK17B, STMN3, TRAT1, UBAC2, WCR1, WIPF1*

*Refer to gene name replacement in Materials and Methods section.

identification of cell type-specific genes was likely caused by the
lack of further sub-setting during sorting to separate functionally
distinct cells. However, we were able to find several specific
transcriptional patterns in B- and T-cells using bulkRNA-seq,
and some of the identified genes encode for transmembrane
proteins. Beyond further description of well-annotated genes,
we also demonstrated that up to 18% of our predicted cell-
type specific and enriched genes are currently poorly annotated,
i.e., genes with no recognized human ortholog. These data
thus increase the functional annotation of these genes, as co-
expression patterns linking such genes with known genes can
be an important component for Gene Ontology classifications
and disease-association gene prediction (van Dam et al., 2018),
and is an important proposed outcome of the FAANG project
(Giuffra et al., 2019).

Comparison of our sorted population expression patterns
to a similar human RNA-seq dataset revealed both similarities
and differences between species. While we compared the
transcriptomes of the sorted cells with human populations that
were isolated using similar cell markers, we cannot exclude that
we are biasing this comparison due to different immunoreagent
markers used across species. However, we did find similar
transcriptional patterns across immune cell populations that are
intrinsic to a lineage, such as the porcine Myeloid population
correlating with the human myDC123 population, in agreement
with other studies (Auray et al., 2016).

Previous global gene expression studies using either porcine
whole blood or specific immune cell types have failed to
thoroughly describe all major PBMC populations (Freeman et al.,
2012; Dawson et al., 2013; Mach et al., 2013; Auray et al., 2016;
Foissac et al., 2019). Providing the transcriptomes of bulk sorted
cell populations will be readily useful to the majority of porcine
immunology research labs that use sorting techniques to analyze
porcine immune cell function and RNA expression patterns, as
new lists of co-expressed genes in these cell populations are now
available. However, our combined analysis of such bulkRNAseq
data with the scRNAseq data demonstrated that the former
approach has significant heterogeneity, limiting the ability to
resolve specific cell types for deeper transcriptional interrogation.
A combined analysis provided evidence confirming our
hypothesis that scRNA-seq would lead to identification
of more specific and novel transcriptional signatures to
improve annotation and understanding of circulating porcine
immune cells.

Single-cell RNA-sequencing provides many noted benefits in
transcriptomic analysis, however there are limitations to the

approach. Of benefit, scRNA-seq captured transcriptomes of
cells excluded from our bulkRNA-seq analysis, as scRNA-seq
approach did not rely on protein marker expression and selection
of sorting criteria based on specific marker phenotypes. As
mentioned above, scRNA-seq also established that greater levels
of cellular heterogeneity exist, since sequencing was resolved
to the level of individual cells rather than a sorted population.
We recognize the scRNAseq-predicted clusters may contain
transitory cell states that may be very challenging to further study
for the relationship between cellular function and transcriptional
patterns (Bassler et al., 2019). Further, we assumed single-cell
gene expression profiles would be indicative of protein expression
for cell type-specific markers; however, gene expression for many
such markers, including SIRPA∗ and CR2∗ that encode proteins
used for bulk RNA-seq cell sorting, was sparse. Sparsity of
data is a known limitation of the scRNA-seq approach utilized
herein, while methods such as imputation have been proposed to
improve sensitivity (Andrews et al., 2021). We chose not to use
imputation due to our current inability to estimate effects on cell
patterns through comparison to an external reference (Andrews
et al., 2021). Thus, these limitations made it difficult to decipher
between low- and non-expression for some genes of interest,
including canonical markers used for identifying cell types in
the immunology literature. Instead, reliance on gene expression
profiles of multiple markers was used. For example, SIRPA∗
expression was observed at low levels in monocyte clusters
but was virtually absent in DC clusters, though both porcine
monocytes and DCs express CD172α protein. Because DCs
express CD172α at lower levels than monocytes (Piriou-Guzylack
and Salmon, 2008; Auray et al., 2016), SIRPA∗ expression in DCs
may have been below our limit of detection using scRNA-seq,
as it was insufficiently expressed in DCs but not in monocytes.
We utilized a droplet-based partitioning method for scRNA-seq
that can detect a large number of cells but a lower number
of transcripts per cell. By this method, we could retain a large
number of cells (>25,000 cells from seven samples) at the expense
of limited sequencing depth per cell (minimum of 500 unique
genes and 1,000 unique transcripts per cell). Utilizing higher
sequencing depth per cell or different partitioning platforms
for scRNA-seq that have more efficient transcript capture per
cell will be beneficial for deeper analysis of specific cells/genes
of interest. It is likely some gene expression profiles are not
predictive of protein expression, due to post-transcriptional
regulation mechanisms. Using newly available co-expression lists
to formulate more refined cell sorting regimens and scRNAseq
analysis of such sorted populations will also increase the ability
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to define transcriptomes of such cell types (Nestorowa et al.,
2016). It was notable that the lists of genes predicted to be
significantly enriched in the 36 scRNAseq clusters had overall a
very similar fraction of poorly annotated genes (average of 18%;
cite in Supplementary File 6) to those predicted for bulkRNAseq,
indicating that even the genes with expression patterns predicted
to be more discriminatory contribute a similar level of genome
annotation improvement.

We used multiple methods to compare these high-
dimensional expression datasets to further interpret genes
predicted to be different between sorted cell populations,
between clusters, or between human and pig. GSEA and/or
deconvolution analyses of bulkRNA-seq to scRNA-seq datasets
was only partially effective in correlating sorted populations
with assumed corresponding clusters in the scRNA-seq dataset
(regardless of inter-species or intra-species comparison). At a
higher level of resolution, both methods were able to assign
most corresponding cell-type designations between scRNA-seq
and bulkRNA-seq data. However, several different scRNA-seq
clusters were not predicted to make up a large portion of
any bulkRNA-seq sample. While methodology could account
for these differences, it is more likely that CIBERSORTx was
unable to discriminate between certain clusters due to their high
similarity. For example, cells that could have been predicted to
be assigned to cluster 8, which makes up a large proportion of
the scRNA-seq data, may have been assigned to other similar
B-cell clusters. The ability to discriminate between similar
clusters may have been impacted by down sampling each cluster
to include the same number of cells for the analysis. Overall,
deconvolution was useful in assigning cell type level data but in
some instances, it could not fully deconvolute bulk RNAseq to
the cluster specific level.

Integration of porcine PBMC scRNA-seq with a human PBMC
scRNA-seq dataset did allow further resolution of porcine cluster
annotations and yielded high confidence of homology between
many porcine and human single cell populations. While we
cannot completely discount the potential for recognized cell
types in our scRNA-seq dataset not being present in sorted
populations used for bulkRNA-seq (or vice-versa), it seems more
likely this is similar evidence to that described above indicating
that the same level of resolution simply was not captured by
bulkRNA-seq and could not well represent all cell types found
in the scRNA-seq data. Integration with another scRNA-seq
dataset, even when accounting for cross-species comparison, was
in many ways more informative for further annotating porcine
single cells, highlighting the enhanced ability of scRNA-seq to
define cellular landscapes. Moreover, cross-species integration
extended our knowledge of comparative immunology between
humans and pigs, as we could identify most similar human
counterparts by reference-based prediction. Conversely, we also
identified clusters of CD2- γδ T-cells (clusters 6 and 21) and
B-cells enriched for activation or cycling-specific genes (clusters
16 and 33) that were more prevalent in porcine data by de
novo visualization of single cells using the combined human
and porcine scRNA-seq data. CD2− γδ T-cells are frequent in
porcine circulation but are reported absent in humans and mice
(Stepanova and Sinkora, 2013), and our analyses supported the
presence in pigs but not humans. On the other hand, B-cells with

transcriptional profiles characteristic of activated or cycling cells,
similar to porcine clusters 16 and 33, likely still occur in humans,
albeit with low prevalence in circulation. B-cell ontogeny and
activation are less fully understood in pigs than in humans, and
it’s possible peripheral B-cells in clusters 16 and 33 arise from a
developmental, activation, or circulation process specific to pigs.
In pigs, the majority of leukocytes exit lymph nodes through the
vasculature and directly re-enter the blood rather than efferent
lymph, as observed in humans (Sasaki et al., 1994; Saalmüller
and Gerner, 2016). Thus, it’s possible the different patterns of
egress for activated cells leaving sites of immune induction might
contribute to a higher frequency of activated B-cells entering
circulation in pigs compared to humans.

While we did not perform deeper biological query of all
cell types identified in our scRNA-seq dataset, we did attempt
to deduce biological significance for the different CD4+ αβ

T-cell populations that have unique aspects in pigs. Deeper
query of CD4+ αβ T-cells was performed, as there is functional
interest in determining activation states of porcine CD4+ αβ

T-cells based on CD8α expression, which may be gained upon
activation and retained in a memory state (Summerfield et al.,
1996; Zuckermann, 1999; Saalmüller et al., 2002; Gerner et al.,
2009). We found it difficult to identify CD4+ αβ T-cell clusters
as CD8α+ or CD8α− due to sparsity in CD8A expression but
could leverage comparison of CD4T and CD4CD8T populations
from bulkRNA-seq to formulate gene sets enriched in each CD4
expressing T-cell population. GSEA helped identify one cluster
of CD4+CD8α− αβ T-cells that corresponded mostly to human
naïve CD4 T-cells, while three clusters of CD4+CD8α+ αβ T-cells
corresponded to human memory or proliferating CD4 T-cells.
Collectively, these data reinforce previous porcine literature,
elucidate parallels to human cells, and provide greater insight
into the spectrum of activation states present in CD4+CD8α+ αβ

T-cells. Future analysis of activated T-cells or trajectory analysis
may provide even further insight on the transition of activation
states in porcine peripheral T-cells.

Pigs are a ‘γδ high’ species, named as such because they
have a higher proportions of γδ T-cells in circulation, largely
attributed to the presence of CD2− γδ T-cells that are absent in
humans and mice (Stepanova and Sinkora, 2013). Three major
γδ T-cell populations are characterized in pigs: CD2−CD8α−

γδ T-cells that express SWC6 and CD2+CD8α−/+ γδ T-cells
that do not express SWC6, where CD2−CD8α− γδ T-cells
become CD2+CD8α+ upon activation (Stepanova and Sinkora,
2013; Sedlak et al., 2014). As our sorting strategy for bulkRNA-
seq utilized an anti-SWC6 antibody rather than a pan-γδ

T-cell-specific antibody; thus, γδ T-cells for bulk RNA-seq
included CD2−CD8α− γδ T-cells in the SWC6gdT population
or CD2+CD8α+ γδ T-cells found in combination with
CD4−CD8α+ αβ T-cells in the CD8T population. CD2+CD8α−

γδ T-cells were expected to be excluded in cell sorting. In
future sorting strategies, it may be beneficial to utilize a pan-
γδ T-cell reactive antibody and/or identify CD4−CD8+ αβ

T-cells with anti-CD8β antibody, which should not label with
CD2+CD8α+ γδ T-cells (Gerner et al., 2009). though this may
still exclude potential CD4−CD8α+CD8β− αβ T-cells, such as we
observed in clusters 5 and 17. Despite limitations in sorting, the
bulkRNA-seq profiles were still informative when comparing to
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scRNA-seq data. The highest relative enrichment of SWC6gdT
gene signatures was detected in CD2− γδ T-cell clusters, while
CD2+ γδ T-cell clusters showed relative enrichment to a
lesser level, indicating some conserved gene expression between
CD2−and CD2+ γδ T-cells. Comparison between CD2+ γδ T-cell
clusters further supported previous biological understanding,
where CD2+CD8α+ γδ T-cells had greater expression of
genes related to cellular activation and cytotoxicity relative to
CD2+CD8α− γδ T-cells (Yang and Parkhouse, 1997; Stepanova
and Sinkora, 2013; Sedlak et al., 2014). On the other hand,
CD2− γδ T-cells are less well described than CD2+ γδ T-cells,
largely due to lack of comparable populations in humans or
mice that may be used for biological inference. Integration with
human scRNA-seq data supported previous observations of the
absence of CD2− γδ T-cells in humans, as close counterparts
for CD2− γδ T-cell clusters could not be found by de novo
visualization, and reference-based integration indicated closest
human counterparts to be a mixture of primarily γδ T-cells, ILCs,
and CD4 TCMs, and mapping scores were highest for human ILCs
rather than γδ T-cells, indicating human ILCs to be the closest,
albeit still poor, human match. Nonetheless, we were able to
highlight transcriptional distinctions that better annotate CD2−
γδ T-cells, including DEGs between CD2− and CD2+ γδ T-cells
that defined the two γδ T-cell lineages and between two clusters
of CD2− γδ T-cells that have not yet been described.

CONCLUSION

This study provides a first-generation atlas annotating circulating
porcine immune cell transcriptomes at both the cell surface
marker-sorted population and single-cell levels. These findings
illuminate the landscape of immune cell molecular signatures
useful for porcine immunology and a deeper annotation of
the genome, a goal of the FAANG project. These results also
provide useful resources to identify new porcine cell biomarkers
for discrimination and isolation of specific cell types, urgently
needed in the field.
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In addition to their common usages to study gene expression, RNA-seq data
accumulated over the last 10 years are a yet-unexploited resource of SNPs in numerous
individuals from different populations. SNP detection by RNA-seq is particularly
interesting for livestock species since whole genome sequencing is expensive and
exome sequencing tools are unavailable. These SNPs detected in expressed regions
can be used to characterize variants affecting protein functions, and to study cis-
regulated genes by analyzing allele-specific expression (ASE) in the tissue of interest.
However, gene expression can be highly variable, and filters for SNP detection using
the popular GATK toolkit are not yet standardized, making SNP detection and genotype
calling by RNA-seq a challenging endeavor. We compared SNP calling results using
GATK suggested filters, on two chicken populations for which both RNA-seq and
DNA-seq data were available for the same samples of the same tissue. We showed,
in expressed regions, a RNA-seq precision of 91% (SNPs detected by RNA-seq and
shared by DNA-seq) and we characterized the remaining 9% of SNPs. We then studied
the genotype (GT) obtained by RNA-seq and the impact of two factors (GT call-rate and
read number per GT) on the concordance of GT with DNA-seq; we proposed thresholds
for them leading to a 95% concordance. Applying these thresholds to 767 multi-tissue
RNA-seq of 382 birds of 11 chicken populations, we found 9.5 M SNPs in total, of
which ∼550,000 SNPs per tissue and population with a reliable GT (call rate ≥ 50%)
and among them, ∼340,000 with a MAF ≥ 10%. We showed that such RNA-seq data
from one tissue can be used to (i) detect SNPs with a strong predicted impact on
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proteins, despite their scarcity in each population (16,307 SIFT deleterious missenses
and 590 stop-gained), (ii) study, on a large scale, cis-regulations of gene expression,
with ∼81% of protein-coding and 68% of long non-coding genes (TPM ≥ 1) that can
be analyzed for ASE, and with ∼29% of them that were cis-regulated, and (iii) analyze
population genetic using such SNPs located in expressed regions. This work shows that
RNA-seq data can be used with good confidence to detect SNPs and associated GT
within various populations and used them for different analyses as GTEx studies.

Keywords: RNA-seq, SNP calling, genotype calling, SNP annotation, allele-specific expression, livestock, chicken

INTRODUCTION

RNA-seq is currently the method of choice to study
transcriptome expression in replacement of gene chips
(Mortazavi et al., 2008). This technology is commonly used
to study gene expression patterns in a variety of organisms
including plant, animal or human groups to better understand
the genetic mechanisms intervening in the determinism of
phenotypes (Gondret et al., 2017), diseases (Savary et al., 2020)
or response to environmental changes (Jehl et al., 2019) among
others. The RNA-seq has other more specific applications taking
advantage of its sequencing step. For example RNA-seq allows
transcript and gene modeling as shown by long non-coding
atlas reported in different species (Derrien et al., 2012; Jehl
et al., 2020). It also allows to combine SNP information, at the
RNA level with gene expression to study the variation which
affects gene-expression levels: it is a powerful technology to
identify such expression quantitative trait locus (eQTL) either
through GWAS mapping (if the individual number is sufficient)
or through allele-specific expression (ASE) analysis as shown
by growing number of studies on a variety of species since the
beginning of the RNA-seq technology in the 2010s (Montgomery
et al., 2010; Pickrell et al., 2010; Battle et al., 2013; Lagarrigue
et al., 2013b; Chamberlain et al., 2015; Deelen et al., 2015; The
GTEx Consortium, 2020), among them the famous studies from
the human GTEx consortium (The GTEx Consortium, 2020).
Finally RNA-seq allows RNA editing analysis, a phenomenon
resulting in nucleotide changes observed at RNA level, occurring
after its transcription from DNA level (Kleinman et al., 2012). In
these two last applications, RNA-seq is in general combined with
DNA-seq used for genotyping individuals. However, RNA-seq
can also detect genomic variations in expressed regions like
DNA-seq, as described by Piskol et al. (2013). It is particularly
interesting in non-model species (wild or domesticated, for
example livestock species) in which no exome capturing tools
have been developed as an alternative to DNA-seq data, which
remains costly to generate and store. In this context, RNA-seq
presents several advantages compared to the DNA-seq. First,
the number of RNA-seq data sets publicly available is much
higher than the number of DNA-seq data sets, for many species
(chicken, pig, cow, and other non-model species) since these
data have accumulated over the past several years and continue
to accumulate in different populations and within populations.
Moreover, within populations, different conditions are studied,
increasing the number of studied animals, allowing to better

detect, in a given population, variants with low frequencies.
Second, RNA-seq data allows studying coding region variations
that have potential functional impacts. Some of these SNPs can
induce a loss of the protein function. These loss-of-function
variants are extensively studied because of their possible
contribution to phenotypes (Genome Aggregation Database
Consortium et al., 2020). In addition, they represent a powerful
source of information to understand gene functions (Genome
Aggregation Database Consortium et al., 2020). However, these
loss of function SNPs are rather rare because purged by negative
selection in natural populations but can be detected with a
certain number of samples. In well-known model-species or
human, these coding region variants are accessible using whole
exome sequencing (WES), as shown by the recent work of the
Genome Aggregation Database (gnomAD) (Lek et al., 2016).
This consortium analyzed 125,748 human exomes (and much
fewer whole genomes: 15,708) from public sources and identified
443,769 high-confidence predicted loss-of-function variants,
defined in the work of gnomAD as being either gain of stop
(non-sense variants), frameshift or splice site variants. For
non-model species such as livestock species, for which the WES
method is usually not available, RNA-seq can thus fulfill the same
objective, with a similar advantage that is, producing a smaller
data volume, thus facilitating data storage and decreasing costs
(Battle et al., 2013). Third, RNA-seq data provides expression
levels of loci harboring SNPs, allowing to study allele-specific
expression as we previously mentioned, and hence, to study
cis-regulation on a large scale, in multiple tissues and multiple
populations. Fourth, the transcribed regions are well spread over
the genome and much more numerous than previously thought.
Thousands of novel long non-coding genes exist across the
genome, as highlighted by the ENCODE project (Derrien et al.,
2012). RNA-seq data can therefore provide sets of numerous
and well distributed SNPs throughout the genome. Finally, these
data could be used to study population genetic diversity from a
different point of view compared to the SNP chips, by offering
various sets of SNPs with more or less severe functional impacts
and not neutral SNPs.

Despite the aforementioned advantages RNA-seq is not yet
often used for SNP detection in coding regions. Indeed, SNP
detection and genotype calling by RNA-seq present three main
challenges. First, the transcriptome is composed of mature
transcripts (i.e., spliced), making mapping of RNA-seq reads
that overlap exon-exon junctions, more difficult, compared to
DNA-seq read alignment (Pan et al., 2008). However, RNA-seq
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mapping methods seem to be well mastered in recent years, even
though it is important to remain cautious for SNPs detected
close to exon-exon junctions (Peng et al., 2012; Lagarrigue et al.,
2013b). Second, RNA editing, by definition, could represent a
strong limitation for SNP detection by RNA-seq, mainly because
it introduces variations at the RNA level, which are absent at the
DNA level. Nevertheless, as we will discuss later, RNA editing
has such features that it only slightly impedes reliable RNA-
seq based variation detection in standard conditions. Third,
genes exhibit highly variable expression levels, leading to the
read depths ranging from a few reads to millions of reads,
contrarily to the DNA-seq which offers a rather homogeneous
read depth across the genome (see Figures 1A,B). Indeed, coding
and non-coding transcripts can be expressed at vastly different
levels, ranging from few copies to millions of copies per cell, in
different cell types and developmental or physiological stages.
Moreover, the transcriptome is also composed of a small portion
of immature under processing transcripts (composed of exons
and introns), less supported by reads but enriched in introns
that are more variable in sequence compared to exons (Sims
et al., 2014). In summary, these variations in read depth from one
gene to another, and within a gene (between introns and exons)
constitute a major challenge for SNP detection (see Figures 1A,B,
left), and more importantly, for individual genotype calling
(see Figures 1A,B, right). Indeed, reliable SNP detection at the
population level benefits from the information accumulation
born by the reads across individuals, in contrast to genotype
calling. This last point might explain why only few studies have
used RNA-seq data for variant detection and genotype calling
since the first publications. Consequently, neither the number of

SNPs that could be detected using RNA-seq, nor the percentage of
individuals with a given genotype (a prerequisite for computing
allelic frequencies), are known. To our best knowledge, since
Piskol et al. (2013), less than a dozen studies were focused
on large-scale SNP detection tools from RNA-seq data (Quinn
et al., 2013; Tang et al., 2014; Wang et al., 2014; Wolfien et al.,
2016; Oikkonen and Lise, 2017; Cornwell et al., 2018; Adetunji
et al., 2019). The reference tools for read mapping and variant
detection have been evolving very rapidly, and these studies have
tested different tools, and among them, only Adetunji et al.,
2019 (Adetunji et al., 2019) used the most recent tools proposed
by ENCODE for RNA-seq data, i.e., STAR (Dobin et al., 2013)
for read mapping and GATK (Van der Auwera et al., 2013) for
variant detection. Three of the above-mentioned studies were
interested in determining the concordance of SNP and genotype
detection between RNA-seq and DNA-seq, the latter being the
gold standard for SNP detection. However, these studies used
only few samples (from 1 to 4) and had not at their disposal
both RNA-seq and DNA-seq data on the same tissues of the
same individuals.

In this context, this work aims at detecting SNPs from RNA-
seq data in chicken. The first goal was to set up a procedure
allowing SNP detection and genotype (GT) calling from RNA-seq
data using reference tools (STAR for read mapping and GATK
for SNP detection). We tested the SNP reliability according
to three filters suggested by the GATK team and compared
the detected SNPs with those obtained using DNA-seq data.
This comparison was performed in two independent chicken
populations for which RNA-seq and DNA-seq data were available
on the same biological samples (i.e., the same tissue of the same

FIGURE 1 | Toy example with simulated data illustrating the need for read depth (DP) filters in RNA-seq and differences with DNA-seq. (A) DNA-seq data offers a
globally homogeneous genome coverage (20X in our case), all SNPs are therefore detected by GATK at the individual level with a DP of 20 reads on average (“DP
per individual”), and at the population level with a DP of 6 × 20 = 120 reads on average (“DP in the population resulting from the addition of ”DP per individual”). All
genotypes (GT) can therefore be computed at the individual level (“GT per individual”), resulting in a genotype call rate of 100% for every SNP (“GT in the
population”). (B) RNA-seq data offers a heterogeneous coverage of the genome depending on the expression of the genes harboring the SNPs. At the population
level, 4 SNPs having a sufficiently high DP are detected by GATK. At the individual level, SNP 1 shows good read coverage across all samples whereas SNP 3 is on
a gene that has a lower expression, in particular in the stress (ST) condition compared to the control (CT). SNP 4 is on an overall very lowly expressed gene. In terms
of genotype (GT) per individual, some cannot be provided by GATK (noted “./.”) because of a too low DP (i.e., 5 reads, see brown GT and DP) and are not
considered for the GT call rate. For SNP 3, most of the individuals from the ST condition have no GT and for SNP 4, only one GT is called whereas in both case the
SNP is detected at the population-level. “GT in the population” provides for each SNP their call-rate for the genotypes (CR): SNP 1 has 100% of the samples with a
GT whereas SNP 4 has 16% and cannot be used to compute meaningful genotype frequencies.
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individuals). In this paper, the workflow was used at the tissue
level to provide results for RNA-seq experimental settings with
only one analyzed tissue which represent a quite common case.
This, however, corresponds to the least favorable case compared
to multi-tissue experimental projects, since it does not allow
cumulating the sequences from tissues per individual. We then
analyzed the effects on the number of detected SNPs by this
workflow performed at the tissue level when using additional
tissues of a same population.

Because a large proportion of SNPs detected by RNA-seq was
reliable, we further applied this procedure to 11 different chicken
populations: a population derived from the wild Red Jungle Fowl
population, an Egyptian Fayoumi population, six commercial
and experimental laying hen populations and three commercial
and experimental broiler populations. Our three goals were to
(i) provide an estimation of the number of SNPs and GT that
can be detected using RNA-seq data per tissue and population,
(ii) present an overview of the predicted consequences of the
SNPs located in coding regions, in particular, the number of
high-confidence predicted loss-of-function variants, as defined in
the work of gnomAD, and finally (iii) give an overview of the
potential of RNA-seq for allele-specific expression (ASE) analysis
by estimating the number of genes that could be analyzed for ASE
with the number of SNPs detected per gene. We then identified
the cis-regulated genes in the liver of 2 of the 11 populations using
the phASER tool (Castel et al., 2016) and the proportion of cis-
regulated hepatic genes shared by the two populations. Finally,
we illustrated the possibility of using RNA-seq data to explore
genetic diversity between populations using different hepatic
RNA-seq SNP sets with variable percentage of severe predicted
protein consequence.

MATERIALS AND METHODS

RNA-Seq and DNA-Seq Data
Raw data of both DNA-seq and/or RNA-seq are available
on the ENA and SRA archives under accession numbers:
PRJEB28745 (RpRm DNA-seq and RNA-seq, Novo1 and Novo2,
RNA-seq); PRJEB43829 (FLLL, DNA-seq); PRJNA330615
and PRJNA248570 (FLLL, RNA-seq); PRJEB26695 (red
jungle fowl, RNA-seq); PRJEB34341 (Naked neck, RNA-
seq); PRJEB34310 (Fayoumi, RNA-seq); PRJEB27455 (FrAg,
RNA-seq); PRJEB43662 (Cobb, RNA-seq); PRJNA612882 (HerX,
RNA-seq) (Fu et al., 2015). RNA sequencing was conducted
on all samples using an Illumina HiSeq (Illumina, California,
United States) system, with 2 × 150 bp or 100 bp. Libraries
were prepared following Illumina’s instructions by purifying
poly-A RNAs (TruSeq RNA Sample Prep Kit). Illumina
adapters containing indexing tags were added for subsequent
identification of samples.

For the comparison of SNPs detected by RNA-seq versus
DNA-seq, we used two populations for which both data types
were obtained from same liver samples collected on the same
birds. The population A was composed of 15 birds from an
experimental layer population (RpRm, PRJEB28745) composed
of birds diverging for feed efficiency (Rp and Rm) after a 40-year

diverging selection (Bordas et al., 1992). The population B was
composed of 8 birds from an experimental broiler population
(FLLL, PRJNA330615) composed of birds diverging for body fat
content (FL and LL) (Roux et al., 2015).

For the rest of the work, we used RNA-seq data from 11
populations (see Additional File 1 for the detail of the number of
birds, the tissues and the number of samples): a red jungle fowl
population (called RJFh with 36 birds and 3 tissues); 3 broiler
populations, the FLLL presented previously but here extended
with 32 birds and 2 tissues) and two commercial ones, the Cobb
500 (Cobb Vantress, named Cobb with 48 birds and 2 tissues) and
a 3-way cross produced by Heritage Breeders, LLC (named HerX,
23 birds and 1 tissue), 6 layer populations with 2 commercial
brown-egg subpopulations from the Novogen company, Novo1
with 32 birds and 1 tissue and Novo2 with 40 birds and 2 tissues,
2 experimental brown-egg populations with the RpRm presented
previously but here extended (with 88 birds and 5 tissues)
and an experimental dwarf chicken layer line homozygous for
the Naked Neck mutation (named LSnu with 16 birds and 2
tissues) and 2 other layer populations with a leghorn breed
(FrAg) with 4 birds and 2 tissues) and the Fayoumi (FAyo), an
Egyptian breed with 16 birds and 2 tissues; finally an experimental
population (Rmx6) issued from crosses between 2 experimental
lines (Frésard et al., 2014) with 19 embryos harvested from the
same batch at embryonic day 4.5 (stage 26).

RNA-Seq Read Mapping and Variant
Detection
For all samples, RNA-seq variants were detected using the
snakemake (Koster and Rahmann, 2012) pipeline, available at
this reference: (GitLab, 2019). For each population, samples
were analyzed by tissue. FASTQ files were trimmed for Illumina
adapter using TrimGalore version 0.4.5 (Krueger, 2021).
STAR v.2.5.2b (Dobin et al., 2013) was used with default
parameters for the read mapping on the Gallus_gallus-5.0
reference genome, after the multi-sample 2-pass mapping
procedure, with a GTF file enriched in long non-coding genes
[available on http://www.fragencode.org (LNChickenAtlas);
Section: Galgal5—Ensembl v94; Genome annotation:
LNCextendedEns94.gtf.gz; (Jehl et al., 2020)]. Uniquely mapped
reads (selected on a mapping quality score equal to 255) were
then post-processed following the GATK best practices for
RNA-seq data [duplicates were marked, reads overlapping
intron were split and mapping quality score were reassigned,
indel were realigned and base were recalibrated thanks to
the known variants from Ensembl v94’s dbSNP (Ensembl,
2018)]. Variant detection was done for each sample using the
“HaplotypeCaller” function of GATK (McKenna et al., 2010;
DePristo et al., 2011; Van der Auwera et al., 2013) 3.7.0 with
option “—stand_call_conf 20.0,” “—min_base_quality_score
10” and “—min_mapping_quality_score 20” (which are
the defaults values), generating one gVCF file per sample.
The “GenotypeGVCFs” function was then used with option
“—stand_call_conf 20.0,” to jointly genotype all these samples
into one VCF per tissue. The VCF file obtained at the end of
the pipeline was then used as the input to two other steps,
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FIGURE 2 | Workflow used to detect SNPs from RNA-seq data. The input files are indicated in gray. GATK filters: QD quality depth, FS: Fisher strand and
SnpCluster: 3 or more SNPs in a sliding window of 35 bp. This last criterion was used only for tagging and not for filtering SNPs. For each SNP, are given the
genotype (e.g., 0/0) for 3 individuals and under each genotype the associated read number (e.g., 90).

as summarized in Figure 2. First, biallelic SNPs were then
extracted using the “SelectVariant” function with option
“—selectType SNP—restrictAllelesTo BIALLELIC.” Variants
were also filtered using “VariantFiltration” with two of the three
suggested filters, “QD < 2” and “FS > 30,” as we discussed in
the Results and Discussion section. Finally, we selected the SNPs
with genotypes associated with each individual and that met
the criteria established in results and Discussion section, i.e.
(5.reads.DP) genotype CR ≥ 20% and CR ≥ 50%. Genotype and
allele frequencies were then computed, making possible to work
on SNPs selected on the minor allele frequency (MAF). These
VCF files containing the SNP with their associated genotypes
can be used for allele specific expression (ASE) analysis in each
tissue of interest.

It is important to note that all previous treatments were
conducted in this paper at the tissue level to provide SNP
detection results for RNA-seq experimental settings with only
one analyzed tissue, which is quite common and corresponds
to the least favorable case. This implies that we had one bird’s
genotype per tissue. For the multi-tissue analysis step of this
paper, gVCF files generated per tissue were combined and
genotypes were computed from all the tissues information using
“CombineGVCFs” and “GenotypeGVCFs” generating per bird
as many genotypes as tissues analyzed. Genotype concordance
between tissues for a same bird was very high (∼99% of SNPs)
and increased with coverage (see result section). Therefore, for
the rare cases of discordance, we kept the genotype of the tissue
with the highest coverage when they were different. However,
outside from this study, for projects in which RNA-seq of
different tissues per animal are available when the SNP detection
analysis is started, we advise users of our pipeline to define in the
first step a sample as a specific individual. This strategy allows
to gain power in SNP detection by gathering all BAM tissue
files per animal.

DNA-Seq Read Mapping and Variant
Detection
DNA-seq read mapping and variant detection were performed
using standard tools. The BWA-MEM algorithm (Li, 2013)

from BWA-0.7.17 was used with default parameters for the
read mapping on the Gallus_gallus-5.0 reference genome
(GCA_000002315.3). Variant detection was done for each
sample using the “HaplotypeCaller” function of GATK
(McKenna et al., 2010; DePristo et al., 2011; Van der
Auwera et al., 2013) 3.7.0 with option “-variant_index_type
LINEAR,” “-variant_index_parameter 128000,” “-mmq 30”
and “-mbq 10 2,” generating one gVCF file per sample.
The “CombineGVCFs” and “GenotypeGVCFs” (with
“stand_call_conf 20.0” option) functions were then used to
combine these gVCF into one VCF per population (one VCF
for the 15 RpRm and one VCF for the 8 FLLL). Biallelic SNPs
were then extracted using the “SelectVariant” function with
option “—selectType SNP—restrictAllelesTo BIALLELIC.”
Variant were filtered using “VariantFiltration” with all the
recommended filters for DNA-seq: “FS > 60.0,” “QD < 2.0,”
“SOR > 3.0,” “MQ < 40.0,” “MQRankSum < −12.5” and
“ReadPosRankSum <−8.0.”

Gene and Exon Expression
Quantification
Gene expression was quantified with RSEM (Li and
Dewey, 2011) v.1.3.0, at the gene-level, using the
GTF file LNCextendedEns94.gtf.gz available on http:
//www.fragencode.org (LNChickenAtlas; section Galgal5)
and corresponding to the genes from the Ensembl annotation
used as reference, extended with lncRNAs loci available in
other public databases (NCBI, NON-CODE, etc.) (Muret
et al., 2017). To compute expression at the exon level, we
used FeatureCount v1.6.2 (Liao et al., 2014) with options -t
“exon” and -g “exon_id.” We defined for each exon a metric
called RpKb (Read per Kilobase) as the mean number of reads
mapped at the exon divided by its length in kilobases. To
define an expression threshold, we compared the expression
of exons to the expression of a set of randomly selected loci
in the genome as done previously in Jehl et al. (2020). The
background noise corresponds to the expression of a set of
artificial loci randomly distributed across chicken chromosomes
1–33 using the “shuffle” function from the BEDTools suite
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v2.29 (Quinlan and Hall, 2010). These artificial loci had the
same length distribution as the LNC genes known to be the less
expressed compared to PCG and were positioned at a distance
of at least 5kb of the closest known transcribed regions. The
expression of these randomly selected regions was well below
the expression of the exons. We set as an expression threshold
for the exons a log10(RpKb + 1) value of 0.5, corresponding
to the first quartile of expression in both RpRm and FLLL (see
Additional File 2).

Variant Functional Predictions
Variant Effect Predictor (VEP) v92 (McLaren et al., 2016) with
the GTF file enriched in long non-coding genes (“—gtf”) was
used for effect prediction of 9,496,283 SNPs. “—everything” and
“—total_length” options were applied to respectively, obtain SIFT
score predictions and length of cDNA, CDS and proten positions
(Ng, 2003; Sim et al., 2012).

Detection of Homopolymers and
Exon-Exon Junctions
Regions with 5 or more repeated nucleotides (homopolymers)
and regions spanning 5 bp of each extremity of a junction were
detected using home-made scripts.

Hierarchical Clustering Analysis
The hierarchical clustering was performed on a set of 67,341
SNPs obtained using liver RNA-seq data from the 10 populations
presented in Table 1 (liver unavailable for Rmx6). This set
corresponds to the SNPs common to the 10 populations and
passes the GT criteria (see “Results and discussion”) for each
population. The analysis was produced by using the function
“snpgdsHCluster” of the R (R Core Team, 2019) package
SNPRelate v1.8.0 (Zheng et al., 2012).

Allele-Specific Expression (ASE) Analysis
Prior to the quantification of allele specific expression, sequences
need to be aligned against masked version of the genome to avoid
favoring reference alleles. At the population level, polymorphic
(allele frequency < 100%) and bi-allelic filtered (GATK—FS and
QD criteria) SNP were extracted using the GATK “SelectVariants”
tool. These last variants were then used to mask the reference
genome using “maskfasta” tool from the BEDTools suite v2.29.
Tissue sample sequence were aligned to this masked version of
the genome using the multi-sample 2-pass mapping procedure
of STAR 2.6. Non-duplicated (“MarkDuplicates” function from
GATK 4.1.2, with “READ_NAME_REGEX” set to null) properly
paired (if paired sequences) uniquely mapped reads (samtools
1.9 with –f 2 and –q 255 options) were selected. “SplitNCigar”
tool from GATK were finally used to split alignment overlapping
exon/intron junction and rescaled mapping quality. The phASER
tool (Castel et al., 2016) and its downstream tool phASER
Gene AE were used to detect ASE among the liver samples
of the RpRm and FLLL populations. Briefly, phASER phases,
in each sample, SNPs from a user-provided VCF, using the
reads from the previously processed BAM file of the sample.
This produces a list of haplotypes upon which phASER counts
the number of reads associated to each “super-allele.” Then,
in each sample, phASER Gene AE selects one haplotype
per gene, using the genes’ boundaries from a user-provided
BED file, allowing the study of the gene’s ASE using the
selected haplotype.

Using base quality of 10, and mapping quality of 20, we
provided a VCF containing the SNP that met the criteria
established here. After selection of one haplotype per gene using
phASER Gene AE, we considered only the genes represented
by a haplotype with at least 10 reads associated to at least 1
super-allele. To assess ASE in each sample, we screened for read
number imbalance between the super-alleles using a binomial test

TABLE 1 | SNP counts per population retained at each step of the selection.

Population Total SNP Selected GT Selected GT and MAF ≥ 10%

Pop. #ind. #smpl. #tiss. Livera Multi-tiss.b b/a Liverc Multi-tiss.d d/c c/a d/b Livere Multi-tiss.f f/e e/a f/b

RJFh 36 72 3 1,050,035 2,604,288 2.48 265,750 578,726 2.18 0.25 0.22 152,029 319,268 2.10 0.14 0.12

Cobb 48 96 2 3,771,992 5,464,266 1.45 949,127 1,678,364 1.77 0.25 0.31 558,020 952,445 1.71 0.15 0.17

FLLL 32 64 2 1,729,800 2,033,207 1.18 535,228 1,109,324 2.07 0.31 0.55 368,280 714,523 1.94 0.21 0.35

HerX 23 23 1 1,332,709 1,332,709 1.00 481,314 481,314 1.00 0.36 0.36 307,859 307,859 1.00 0.23 0.23

Novo1 32 32 1 1,459,352 1,459,352 1.00 447,594 447,594 1.00 0.31 0.31 264,804 264,804 1.00 0.18 0.18

Novo2 44 104 2 1,289,199 2,146,975 1.67 390,195 738,109 1.89 0.30 0.34 243,892 449,446 1.84 0.19 0.21

RpRm 112 286 5 1,841,778 4,032,988 2.19 555,928 1,279,458 2.30 0.30 0.32 307,049 631,868 2.06 0.17 0.16

Rmx6 19 19 1 – 2,123,217 – – 715,822 – – 0.34 – 483,379 – – 0.23

FrAg 4 7 2 1,247,253 1,732,440 1.39 784,397 1,055,772 1.35 0.63 0.61 520,277 583,742 1.12 0.42 0.34

Lsnu 16 32 2 1,487,176 2,284,902 1.54 590,399 836,800 1.42 0.40 0.37 384,720 534,938 1.39 0.26 0.23

Fayo 16 32 2 1,320,244 2,033,207 1.54 496,412 698,932 1.41 0.38 0.34 288,464 396,446 1.37 0.22 0.19

Mean 1,652,954 2,477,050 1.54 549,634 874,565 1.64 0.35 0.37 339,539 512,611 1.55 0.22 0.22

Union 382 767 5,490,587 9,496,283 1,685,406 3,276,615 1,255,554 2,243,766

Intersection 221,374 241,960 67,341 73,223 2,442 1,442

In columns—Pop., population; #ind., bird number; #smpl., sample number; #tiss., tissue number; Multi-tiss., Multi-tissues. Superscripts are used to show which ratio are
presented. Total SNP: SNPs detected at the population level (i.e., with at least one ALT allele); Selected GT: SNPs with at least 50% of genotypes (CR ≥ 50%) and 20%
of GT with reads ≥ 5 reads [(5.reads.DP)genotypeCR ≥ 20%, see “Results and discussion”]; Selected GT with minor allele frequency (MAF) ≥ 10%.
In lines—Union: SNPs detected in at least one population; Intersection: SNPs detected in each of the 10 populations (i.e., each population has at least one ALT allele).
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(binom.test R function) with the null hypothesis that, for a given
gene, each super-allele had the same number of associated reads.
P-values were corrected using the Benjamini-Hochberg method
(Benjamini and Hochberg, 1995) with a false discovery rate of
0.05. We considered a gene to be ASE if it presented a significant
read number imbalance in at least 2 samples.

RESULTS AND DISCUSSION

SNP Detection by RNA-Seq: Genome
Location
We compared the repartition of the SNPs detected by DNA-
seq and RNA-seq among different genomic regions (Figure 3A).
The chicken genome is composed at equal parts of intergenic
(50%) and genic (50%) sequences, with 43% of introns and 7%
of exons. As expected, DNA-seq SNPs were mostly distributed
across the non-coding part of the genome (46% in intergenic
regions, 52% in introns) and at a lower proportion (2%)
in exonic regions. This distribution is expected since coding
regions are generally under stronger selection pressure than
non-coding regions (Zhao et al., 2003). With RNA-seq (all
the samples being systematically treated with DNAse), we
expected to find most of the SNPs in exonic regions, which
represent the majority of expressed regions. However, the

majority of the detected SNPs were located in intronic (61%)
and intergenic (29%) regions. Higher SNP counts in intronic
regions can be explained by the presence of unspliced transcripts
(premature transcripts), very lowly expressed compared to
spliced transcripts, but sufficiently to be supported by reads,
and by the lower selection pressure on these regions compared
to the exons. SNPs located in “intergenic regions” are likely to
be located in new genes or in not yet annotated part of genes
(particularly 3′UTR and 5′UTR). Within exons, the proportion
of SNPs in 3′UTR, 5′UTR and CDS were similar between
RNA-seq and DNA-seq (32, 7, 61%), but significantly different
from the proportion of these regions in the genome (20, 5,
75%) showing a lower selection pressure in 3′UTR regions
than in CDS regions.

SNP Detection by RNA-Seq:
Concordance With Those Detected by
DNA-Seq
We detected SNPs using either RNA-seq or DNA-seq data
obtained from the liver of the same 15 laying hens (see population
A in Figure 3B, left). We found 7,786,492 biallelic SNPs using
the DNA-seq data filtered with the standard criteria of GATK
(see section “Materials and Methods”) and considered them as
reliable. Using the RNA-seq data filtered with some of the filters

FIGURE 3 | Differences and common features of SNPs detected by RNA-seq and DNA-seq. (A) Percentage of the genome comprising each type of feature (top)
and the proportion of SNPs detected by DNA-seq (middle) and RNA-seq (bottom) across these genomic features. (B) Number of SNPs detected by DNA-seq only
(yellow set), RNA-seq only (blue set) and by both methods (gray set) at the whole genome level (left) and expressed exon level (right) in two independent populations
A (n = 15, layers) and B (n = 8, broilers). (C) Left: Percentages of SNPs in SNP clusters (i.e., 3 or more SNPs in a sliding window of 35 bp, as per GATK definition), in
junctions, homopolymers, in population A by DNA-seq only, RNA-seq only and both methods (common). Middle: Number of SNPs detected in 5′ and 3′UTR by
gene (Y-axis) and the gene number (vertical numbers) in population A. The ratio “RNA-seq specific SNPs/DNA-seq specific SNPs” is indicated at the top of each
plot. Right: read supporting SNP distribution at the population level in DNA-seq or RNA-seq data. (D) Evolution of the number of detected SNPs as a function of the
number of expressed genes using one tissue alone or groups of tissues. Tissues used were liver (figured as a liver), blood (figured as a blood drop) and
hypothalamus (figured as a brain).
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suggested by GATK (see section “Materials and Methods” and
comments below), we found 1,369,740 SNPs. As expected, the
number of SNPs detected with RNA-seq is much lower than that
in DNA-seq, because only variants present in transcribed regions
were detected. Note that the impact of all these filters on the SNP
number was provided in the Additional File 3 for DNA-seq and
RNA-seq and was quite low, more than 98% of SNP were kept
after filtering whatever the population.

To provide a meaningful comparison of both methods, we
used the SNPs detected in expressed exons, assessed using RNA-
seq with the metric described in section “Materials and Methods.”
We detected in population A 147,474 expressed exons among the
162,145 exons of the 16,814 expressed genes (on average 8.8 exons
per gene). As shown in Figure 3B right, in these exons, 85.2%
of the 234,500 SNPs detected by DNA-seq were also detected
by RNA-seq. In population B, which was composed of only 8
broiler chickens, we found that 65.7% of the SNPs detected with
DNA-seq in the expressed exons were also detected by RNA-seq.
Assuming SNPs detected by DNA-seq represent the “truth,” these
percentages represent the sensitivity, or recall, of RNA-seq for
SNP detection. This difference in RNA-seq sensitivity between
populations A and B is likely due to the number of samples
per population (15 versus 8), that affects the extent to which
reads at each position are accumulated across the samples (see
Figure 1).

Concerning the precision of RNA-seq, among the 220,503
SNPs detected by RNA-seq in population A, and the 262,599
SNPs from population B, 90.6 and 91.3%, respectively, were
detected by DNA-seq 20X showing a reasonable precision of
RNA-seq for the SNP detection. These results are consistent with
the findings of Guo et al. (2017), who compared the percentage
of SNPs detected using RNA-seq versus exome sequencing and
found around 85% concordance. Regarding the 9.4% (20,818
SNPs) RNA-seq specific SNPs, we analyzed different factors that
could underlie their detection to highlight those that should
be treated with caution (Figure 3C) and verify these factors
in DNA-seq variants set or in the set of variants called by
both methods. We consider the SNPs detected by DNA-seq as
true since DNA-seq are now routinely used for SNP detection
with the well-proven GATK filters. First, we observed that a
large proportion of RNA-seq specific SNPs (46.6%) and DNA-
seq specific SNP (40.0%) belonged to a “SNP cluster” (i.e., 3
or more SNPs in a sliding window of 35 bp, as per GATK
definition) (Figure 3C). This filter is one of the three filters
proposed by GATK for RNA-seq SNP detection, but not for
DNA-seq detection and the GATK team notes that these filters
are not definitive and should be validated by users. Therefore,
in the light of these observations, we decided not to remove
the “SNP clusters” from our RNA-seq dataset as for DNA-seq
dataset, but only to flag them as belonging to a so-called SNP
cluster. Indeed, this filter removed 39,783 true SNPs (i.e., True
positives detected by both DNA-seq and RNA-seq methods) and
consequently the benefit of the precision increase (from 90.6 to
93.5) by removing “SNP clusters” was too small relatively to the
recall decrease (from 0.85 to 0.68). The 20,818 RNA-seq specific
SNPs can be explained by other factors of lowest impact: (i) 5.09%
were located at 5 bp or less of an exon-exon junction, versus
3.55% for those detected only by DNA-seq; the corresponding

ratio, that is significantly greater than 1 (1.4, p ≤ 10−17, χ2

test), was expected since RNA-seq deals with spliced transcripts
(Figure 3C) and therefore RNA-seq read mapping by the aligner
is more complicated and more error-prone than DNA-seq read
mapping. Since most of them are also observed in DNA-seq, we
consider that the SNPs in the vicinity (i.e., 5 bp) of the junctions
can be kept, but should be validated by another technique.
Note that these SNPs represent only 0.48% of the total SNPs
detected by RNA-seq. (ii) 3.1% were located in low complexity
regions, defined as repetition of at least 5 identical nucleotides,
versus 3.4% for the ones detected only by DNA-seq (Figure 3C).
(iii) 2.7 and 5.5 SNPs per gene for RNA-specific SNPs were
observed in 5′UTR and 3′UTR regions, respectively, with a fewer
3′UTR SNPs compared to those detected by DNA-seq only (0.5,
p ≤ 10−16, χ2 test) (Figure 3C). This may be due to the fact
that mature transcripts undergo exonucleases action, degrading
their 3′ extremities and causing their absence in RNA-seq libraries
(Gallego Romero et al., 2014). (iv) Last, another factor that could
be responsible for these RNA-seq specific SNPs is RNA editing,
however, according to the literature, it is unlikely that most of
the remaining SNPs are due to this mechanism. In mammals,
in which RNA editing is well studied, Adenosine-to-Inosine (A-
to-I) editing due to ADAR1 and ADAR2 enzymes is the most
common editing form and mostly occur in inverted pairs of
Alu interspersed repeats (Porath et al., 2014). In chicken Alu-
like family of interspersed repeats also exist and they are called
CR1 (Olofsson and Bernardi, 1983). These editing events tend
to occur in clusters, a phenomenon called hyper-editing that
introduces ≥ 20 mismatches in the sequencing reads (Carmi
et al., 2011), that are therefore discarded by the aligner either
because of a multi-mapping or no mapping. The prevalence of
editing is still discussed: RNA editing is rarely detected when
standard mapping filters are used, as shown in mice (Lagarrigue
et al., 2013a) and chickens (Frésard et al., 2015; Roux et al., 2016;
Shafiei et al., 2019), with less than 200 events, and in humans
(Kleinman et al., 2012; Tan et al., 2017) with less than 1000
events per tissue. By contrast, RNA editing is frequently detected
when working in repeated regions and rescuing unaligned reads
(Picardi et al., 2017). Finally, we observed that SNPs detected
only by one method were supported by significantly less reads
(either of RNA- or DNA-seq) than the SNPs detected by both
methods (Figure 3C).

SNP Detection by RNA-Seq: Impact of
the Number of Tissues That Are Analyzed
Using blood and hypothalamus samples collected on the same
15 animals (population A), we studied the effect of detecting the
SNPs in more than one tissue. RNA-seq from each tissue was not
generated at the same time and have been analyzed separately
at different occasions. Results are displayed in Figure 3D. We
detected 1,369,740 SNPs in the liver (as previously stated),
1,481,627 in the blood and 1,511,909 in the hypothalamus, while
16,814 genes were expressed in liver, 16,346 in blood, and 19,733
in hypothalamus. As expected, using combinations of two or
three tissues, the number of detected SNPs increased in relation
with the number of expressed genes (spearman correlation = 0.96,
p = 3 × 10−3) by cumulating the information on all tissues
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in which a same gene is more or less expressed. Note that
here, we have used our pipeline in a sub-optimal manner,
by analysing RNA-seq data per tissue instead of combining
the tissues together to increase detection power and reliability.
For projects in which RNA-seq from different tissues per
animal are all available before SNP detection analysis, we advise
users to pool for each animal the RNA-seq files. For SNPs
detected in more than one tissue, the concordance between
genotypes detected in different tissues was very high, 98.9%
without read filtering. Considering genotypes supported by at
least 5 reads (respectively 10 reads) the concordance raised
to 99.5% (respectively 99.9%).

Genotype (GT) Calling by RNA-Seq
Importance of Genotype Call Rate (CR)
and Read Depth at the Individual Scale
for Selecting SNPs With Enough Reliable
Genotypes for in fine Calculating
Genotype and Allele Frequencies
While reliable SNPs can be detected in the population thanks to
some individuals that bear them, it does not necessarily mean that
there are enough reads for each individual to produce a genotype
(GT). This was exemplified in Figure 1B by the brown cells (SNPs
3 and 4), for individuals 4 and 5 (“stress” group) for SNP 3 or most
of the individuals of the population for SNP 4. These cases are
quite frequent in practice because of gene expression variability
between individuals in a given tissue, especially when different
conditions are analyzed or also when a SNP is located in an intron
of an immature transcript (weakly abundant compared to the
mature transcript). Therefore, genotype call rate (CR), defined as
the percentage of individuals with a genotype in the population,
can be highly variable (e.g., from 16 to 100% in Figure 1B, right)
from one SNP to another, depending on the number of reads

observed in each individual (DP per individual). With 20X DNA-
seq data, most of the SNP have a genotype CR close to 100%, as
depicted in Figure 1A.

These observations indicate that a genotype can be observed
with a certain call-rate but its reliability will depend on the DP
supporting it. The GT reliability was estimated by the genotype
concordance between RNA-seq and DNA-seq, assuming that GT
detected by DNA-seq represents the truth. This concordance
corresponds to the precision of RNA-seq for GT calling. We
tested the RNA-seq precision according to different criteria. First,
we conjointly studied in Figure 4A the effects of the criteria
“genotype CR” and “DP supporting the genotype” on the RNA-
seq precision (genotype concordance between RNA-seq and
DNA-seq). We found a concordance (of roughly 90%) when no
threshold was applied on the DP (purple line); it increased to
around 95% for a CR ≥ 20% with a DP ≥ 5 reads and over 97%
for a CR ≥ 20% with a DP ≥ 10 reads. We then evaluated the
impact of the CR alone (without a DP threshold, x-axis) versus
the CR with a DP≥ 5 reads (y-axis), on the genotype concordance
between RNA-seq and DNA-seq (solid green isoclines) and on
the number of SNPs selected according to the different criteria
(dashed blue isoclines) (Figure 4B).

Interestingly, only the CR with DP≥ 5 reads have an effect on
the genotype concordance and the percentage of selected SNPs,
while no such effect is observed for the no DP filtering CR (x-
axis) comprised between 0 and 50%, as shown by the horizontal
isoclines. Hence, we propose for our subsequent analysis on
different RNA-seq datasets to select SNPs within the red surface
of Figure 4B with a (5.reads.DP) genotype CR ≥ 20% ensuring
a concordance (precision) of almost 95% and a CR ≥ 50%
ensuring a sufficient number of GT per SNP to calculate the allelic
frequencies. We can note that most of the SNPs on this surface
have a genotype concordance of more than 97%. We can also note
in most of the populations analyzed in the next section that more
than 98% of SNPs with (5.reads.DP) genotype CR ≥ 20% have a
CR ≥ 50% (Additional File 4).

FIGURE 4 | The passage from SNP to GT necessitates a read depth threshold. (A) Evolution of the percentage of genotype concordance between RNA-seq and
DNA-seq (y-axis) for the 15 RpRm birds as a function of genotype call rate in the population (CR: x-axis) supported by at least 5 (light green), 10 (light blue), or 20
(dark blue) reads or without read filter (purple curve). The red lines correspond to the criteria used in the further analysis (CR ≥ 20% with a DP ≥ 5 reads) and the
corresponding RNA-seq precision. (B) Isoclines of the percentage of genotype concordance between RNA-seq and DNA-seq (solid green lines) and of the
percentage of SNPs selected out to the original set (dashed blue lines) according to the CR with no read filter (x-axis) and the CR with at least 5 reads [(5.reads.DP)
genotype CR (%), y-axis]. Red surface: SNPs selected after filtering on (5.reads.DP) genotype CR ≥ 20% and a CR ≥ 50%.
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Number of SNPs and Genotypes
Detected by RNA-Seq in 11 Populations
As shown in Table 1 which gives an overview of the SNP diversity
in 11 chicken populations, we detected between 1.1 and 3.8 M
SNPs per population using liver RNA-seq datasets. Using all
the tissues available (1–5 tissues depending on the population),
we detected more SNPs, consistently with our previous result
(see Figure 3D): between 1.7 and 5.5 M SNPs with a fold
increase of × 1.18 to × 2.48 depending on the number and
nature of analyzed tissues. Across populations and using all
tissues, we found a total of 9.5 M SNPs having at least one
alternative allele in at least one population (SNP union), and
241,960 SNPs that had at least one alternative allele in each of
the 11 populations (SNP intersection). The union of our SNPs
contains 23% (2,175,528) yet-unreported SNPs in the reference
Ensembl v94 dbSNP database [(Ensembl, 2018): 21 M SNPs]. The
intersection of our SNPs contains 5.1% (12,203 SNPs) of the SNPs
present in the 600K genotyping array (Kranis et al., 2013).

We then filtered SNPs on genotype call rate and read depth
(Table 1, “Selected GT”) and found between around 0.4 and 1.7
M SNPs using all tissues, 37% of the SNPs observed previously.
These results on 11 populations show that a large number of SNPs
(two thirds) were detected at the population level thanks to the
accumulation of reads across all individuals of the population,
but that within each individual, read counts are not sufficient
to reliably determine a genotype. Nevertheless, the number of
SNPs with a genotype per population remains in the order of
magnitude of several hundred thousand to a few millions with
a union of 3.3 M and an intersection of 73,223 SNPs. In the liver,
for which data was available in all but one population (Rmx6),
the union and intersection are of the same order of magnitude:
1.7 M and 67,341 SNPs, respectively. After selecting for a MAF
(minor allele frequency) ≥ 10% in order to discard rare SNPs
or those resulting from sequencing errors, the number of SNPs
was halved in all populations with a grand total of 2.2 and 1.3 M
for the multi-tissue and liver union, respectively. As expected, the
intersection drastically decreased to approximatively 2,000 SNPs,
since this set corresponds to the SNPs with a MAF≥ 10% in each
of the 11 populations. The list of the 9.5 M of SNPs including
3.3 M with a GT and 2.2 M with MAF ≥ 10% is available on
http://www.fragencode.org/lnchickenatlas.html.

Rare Deleterious Variants Detection in
the Populations
We predicted the impacts of the 9,496,283 SNPs detected in
at least one population using the VEP tool (McLaren et al.,
2016) which predicts the potential consequences of the SNPs
in each of the transcripts carrying them: we found 33,304,412
consequences. As expected, the vast majority of the SNPs affected
non-coding regions (Figure 5A) and among the 472,319 SNPs
affecting a coding-region, a majority were synonymous (63%) or
non-deleterious missense (28%) as shown in Figure 5B.

Among all these predictions, we focused on the predicted
consequences with the most severe putative impacts as defined by
the gnomAD consortium, which only considers the PCG (Protein
Coding Genes) (Genome Aggregation Database Consortium

et al., 2020): variants in the splice regions, start and stop codon
loss or stop codon gain even if the severity of the latter depends
on its position in the coding sequence. We also added missense
variants with a SIFT score ≤ 0.05. As reported by gnomAD (The
GTEx Consortium, 2020), these SIFT-deleterious SNPs generally
have a low frequency in the populations and can be mistaken
for sequencing errors. Hence, it is crucial to select SNPs with
genotypes (as defined previously) and a MAF ≥ 10% in at least
one population (i.e., the ALT allele observed for example at
least 4 times in a population of 16 individuals as for FAyo and
LSnu populations) to make sure that the deleterious allele is not
spurious. Thanks to our data from 382 individuals from the 11
populations, we listed a total of 25,344 strong predicted impacts
(Figure 5C), corresponding to 14,496 SNPs and 67,58 genes,
among them were 590 predictions of stop gained (404 genes),
8,126 of a coding or non-coding gene splice site change (donor
and acceptor), 16,307 SIFT-predicted deleterious missenses and
321 other predictions (start lost, stop lost). Out of these 25,344
deleterious-predicted impacts, we found 5,654 (22%) predictions
corresponding to 2,872 (20% of 14,496 SNPs) variants in 1,884
genes for which the homozygous ALT/ALT genotype was absent,
in all populations in which the ALT allele was detected and,
respectively, 7,740 (31%) predictions corresponding to 4,072
(28% of 14,496 SNPs) variants in 2,515 genes with ALT/ALT
frequency ≤ 5%. The analysis of tolerated missense SNP show
that the higher the SIFT score (i.e., tolerated variant), the lower
the percentage of SNP with a low frequency (≤ 5%) of ALT/ALT
genotype (Figure 5D). The same analysis performed with 217,119
synonymous variants showed lower percentages with 9% SNPs
with ALT/ALT genotype absent and 13% SNP with ALT/ALT
frequency ≤ 5%. Such results are compatible with a homozygous
state which is lethal or strongly negatively selected (28 versus
13%, p ≤ 10−20, χ2 test), suggesting an important role for the
genes associated to these variants with severe-predicted impact.
Such variants obtained using RNA-seq data constitute a new
complementary resource to Ensembl dbSNP allowing to explore
variants (deleterious or not) according to their genotypic and
allelic frequencies in different populations of a farm species.
For example, two deleterious missense SNPs (SIFT-score = 0)
are presented in Figure 6. One is already reported in dbSNP
(Ensembl genome browser 94, 2020) and affects XBP1 protein
by changing a positive charged amino acid (Arginine, R) into
an aromatic and hydrophobic amino acid (Tryptophan, W)
(Figure 6A). This SNP is observed in two of the ten analyzed
populations, FLLL and Novo2, with 5 and 10 heterozygous
birds among 48 and 40 animals analyzed, respectively, whereas
no ALT/ALT homozygous birds were observed (Figure 6B).
This gene is ubiquitously expressed in chicken as in human
(Figure 6C). It codes the “Tax-Responsive Element-Binding
Protein 5” transcription factor which has important cellular and
physiological roles related to the “unfolded protein response”
pathway in the endoplasm reticulum [(Lee et al., 2003) and
for review (Glimcher et al., 2020)] and also to hepatic insulin
resistance (Zhou et al., 2011).

The second SNP, not reported in dbSNP, affects the SERGEF
protein (alias DelGEF) by changing an aromatic, hydrophobic
and positive charged amino acid (Histidine, H) into an
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FIGURE 5 | Annotation of 9,496,283 SNPs using Variant effect Predictor (VEP) (McLaren et al., 2016). (A) Distribution of variant effect predictions among non-coding
(light gray), splice regions related to coding and non-coding genes (orange) and coding (green) regions. (B) SNP annotation in coding regions: synonymous (dark
gray), non-deleterious (light blue) and deleterious (blue) missenses, and consequences affecting stop (red) and start (orange) codons. Total number of consequences
are indicated between parentheses. (C) Annotation of SNPs predicted as deleterious and filtered according to the GT criteria (as defined previously) and a
MAF ≥ 10% in at least one population. (D) Percentage of SNP with a very low frequency (≤ 5%) of ALT/ALT genotype for three SNP sets: (1) = the 25,344
deleterious SNP described on the left; (2) = the tolerated SIFT-missense SNP according to the SIFT score and (3) = the synonymous SNP set. The splice sites
correspond to the donor or acceptor splice sites of coding and long non-coding genes.

unchanged amino acid (Tyrosine, Y) (Figure 6A). This SNPs
was observed in two populations, LSnu and Fayoumi, with
6 and 3 heterozygous birds among 16 animals, respectively,
whereas no ALT/ALT homozygous birds were observed. This
gene is also relatively ubiquitously expressed in chicken as in
human (Figure 6C). The functions of this gene, which codes
the “Secretion Regulating Guanine Nucleotide Exchange Factor”
seem to be poorly known: 9 publications found in PubMed
with the key words, SERGEF or DELGEF. As illustrated by
these two examples (XBP1 and SERGEF), the analysis of various
populations allowed to increase the number of rare deleterious
variants detected.

Potential for Allele-Specific Expression
Analysis in Various Populations
Allele-specific expression (ASE) analysis requires a heterozygous
SNP in the expressed feature, to test an eventual imbalance in the
expression between the two parental chromosomes. Usually, the
expression is evaluated using RNA-seq and the SNPs are detected
using DNA-seq, which is expensive when working on a dozen
or more individuals. Since we have shown that RNA-seq allows
detecting a large number of reliable SNPs in expressed regions,

we studied in this section, the potential of RNA-seq data for
performing ASE analysis. To this end, the Figure 7A provides
the average numbers of genes across various populations, having
at least one SNP with different filters (SNPs with an associated
GT, a MAF ≥ 10% and an heterozygous status in at least 25%
of the population). We also indicated the average SNP number
per gene (column “S/g”) to give an idea of the RNA-seq potential
to test ASE along the gene. We indicated the results for two
types of genes: the protein-coding genes (PCG) and the long
non-coding genes (lncRNA), which are increasingly considered
as important regulators of gene expression but are also known
to be less expressed than PCG (Derrien et al., 2012; Muret et al.,
2017; Le Béguec et al., 2018). This is the reason why we studied
two expression thresholds: 0.1 and 1 TPM commonly used when
working on lncRNA and PCG, respectively. Finally, results in
Figure 7A are presented either for SNPs detected in exons (i.e.,
mature transcripts) (top) or for SNPs detected in exons or introns
hence including immature transcripts (bottom).

The first key result is that the number of genes with at
least one SNP are similar in both cases (exons only versus
exons + introns), meaning that there are enough SNPs to
study ASE in exonic regions only, i.e., mature transcript, despite
a much lower number of SNPs per gene when SNPs are
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FIGURE 6 | Two examples of deleterious missense SNPs impacting two protein coding genes (XBP1 and SERGEF). (A) genomic position of the SNP with its
identifier (SNPid) in Ensembl dbSNP and its impact on the protein with SIFTsc.: SIFT score, codon/modified codon, amino acid/modified amino acid and its position
in the protein. (B) pop.: population with the individual size (# ind.) observed per population and the frequencies of the alleles and genotypes. (C) Tissue expressions
[log10(TPM + 1)] in chicken using two datasets composed of 21 tissues (ERP014416) (left) and 5 tissues RpRm population) (right) and in human through the 53
tissues from the GTEX consortium (The GTEx Consortium, 2020). Abbreviations for the 21-tissue dataset: burs, bursa of Fabricius; cctl, cecal tonsils; crbl,
cerebellum; duod, duodenum; fatG adipose tissue around the gizzard; hard, harderial gland; hert, heart; ileu, ileum; kdny, kidney; livr, liver; lung, lung; mscB breast
muscle; optc, optical lobe; ovry, ovary; pcrs, pancreas; pvtc, proventriculus; skin, skin; spln, spleen; thym, thymus; thyr, thyroid gland; trch, trachea; and for the
5-tissue dataset: adip, abdominal adipose tissue; blod, blood; embr, 4.5 day embryos; hypt, hypothalamus; livr, liver; for more details in these 3 datasets and
associated samples see Jehl et al. (2020). Black dashed line: gene expression with TPM ≥ 1 and red dashed line: TPM ≥ 0.1.

only selected in exons (Figures 7A,B). When working with
exonic SNPs, there are on average 17–28 SNPs without filter
(8–10 SNPs after all filters) per gene showing the possibility
to test ASE along genes. Despite a lower exonic length in
lncRNA compared to the PCG (Figure 7B), this number is
higher for lncRNA compared to PCG (22–28 versus 15–17)
probably due to lower selective pressure on lncRNA compared
to PCG. The second key result, after applying 2 filters (GT
and MAF ≥ 10%), is that 81% of PCG (9,232) and 68%
of lncRNA (2,028) expressed at TPM ≥ 1 are analyzable
for ASE. These numbers decreased a little after applying an
additional filter related to the heterozygosity percentage, with
72% of PCG and 56% of lncRNA (i.e., about 10,000 genes).
The variability of this “ASE analyzable genes” percentage is

moderate (Additional File 5): on average 72% from 65 to 89%
with an except for the “RpRm” (48%) probably due to its high
consanguinity and its large size, the filter of 25% of heterozygosity
impacting more the populations with a larger sample size. The
same tendencies regarding the percentage of genes that can be
analyzed were observed for the PCG (TPM ≥ 0.1) and for
lncRNA (both for TPM ≥ 0.1 and ≥ 1) (Additional File 5).
We can note that the selected lncRNA percentage satisfying
the filters is always lower than the selected PCG percentage
(−15% for genes with an expression ≥ 1TPM and −30%
for genes with an expression ≥ 0.1TPM). This is mainly due
to the lower expression of lncRNA compared to PCG (Jehl
et al., 2020; Figure 7B), despite higher sequence variability for
the former.
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FIGURE 7 | Overview of the analyzable genes for allele-specific expression in the liver of various populations for two gene biotypes, Protein Coding Gene (PCG) and
Long Non-Coding gene (lncRNA), at two gene expression thresholds (0.1 TPM and 1 TPM) and for 3 filters. (A) Average numbers for all populations analyzed here.
These average numbers are provided for both PCG (blue) and lncRNA (red) biotype, with minimum expression of 0.1 or 1 TPM (“expr. threshold”), and considering
only the SNPs in exons (top part) or in the whole gene, i.e., in both exons and introns (bottom part). (B) Feature of lncRNA and PCG. (C) Percentage of gene with a
significant allele specific expression in two populations RpRm (in left) and FLLL (in right) in comparison to the expressed gene number. Venn diagrams provide the
number of ASE genes (in at least 2 individuals) shared by RpRm and FLLL populations. (D) Overview of the ASE of ACOT1L (left) and INRAGALG00000008929
(right). For each ASE sample, absolute values of the log2 allelic fold-change are represented at the gene-level (left of the panels) and for each SNP located in the
haplotype used by phASER (right). Boxplot of the read number associated to each SNP are represented (bottom), in purple for the SNP located in exons and in gray
for those in introns. FC, fold-change; chr, chromosome.

Cis-Regulated Genes in the Liver of Two
Populations
To provide an estimation of the number of cis-regulated genes
in one tissue, we performed an ASE analysis of the liver
samples of the RpRm and the FLLL populations using phASER

and its downstream tool, phASER Gene AE, that phase SNPs
at the gene level (see also section “Materials and Methods”).
Using exonic and intronic SNPs and selecting genes having
one haplotype with at least 10 reads, we found for genes
with an hepatic expression ≥ 1 TPM, that in average 29%
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of the expressed PCG or lncRNA genes were cis-regulated
(∼34% for RpRm and ∼23% for FLLL) (Figure 7C). For
lncRNA with hepatic expression ≥ 0.1 TPM which represents
most of this biotype, we found a lower percentage of cis-
regulated genes (21%) because they are less expressed and
some of them did not have more than 10 reads for at least
one “super-allele” analyzed by phASER (see section “Materials
and Methods”). Interestingly, among these cis-regulated genes,
∼50% and 37% are shared by both populations for the
protein-coding genes and long non-coding genes, respectively
(Figure 7C). Two examples of cis-regulated genes are provided in
Figure 7D with a PCG, ACOT1L (ENSGALG00000008752), and
a lncRNA, INRAGALG000000089295. Overall, these numbers
are consistent with the literature: Zhuo et al. (2017) found that
15% of the genes were cis-regulated in chicken embryo liver, and
Lagarrigue et al. (2013b) found a similar number in mice liver. In
humans, the GTEx consortium (The GTEx Consortium, 2020)
found that 26% (4,415) of the expressed genes (17,243) were
cis-regulated in the liver.

Diversity Exploration Using RNA-Seq
Variants
Finally, we explored genetic links between populations using
the genotypic frequencies of SNPs detected by RNA-seq, which
represent a set of SNPs, which may be under a larger selective
pressure than those used in genotyping SNP chips. Indeed, the
latter are considered as having a neutral effect, while most the
SNPs present in our data are located in expressed regions and
affect proteins to some extent (from almost neutral synonymous
to deleterious stop gained).

The classification in Figure 8 was produced using the
intersection of SNPs with GT of the 10 populations with a
liver presented in Table 1 (67,341 SNP set). This classification
is consistent with the known chicken population history,

FIGURE 8 | Hierarchical clustering of 10 chicken populations using the
67,341 SNP intersection set with GT obtained using liver RNA-seq data. The
hierarchical clustering was performed using the “snpgdsHCluster” from the
package SNPRelate v1.8.0 (see also section “Materials and Methods”).

indicating that these SNPs detected by RNA-seq and their
associated genotypes allow distinguishing different populations.
The classification separated clearly the RJFh (red circle arc
with a Red Jungle Fowl population, used here to represent
the “ancestral” population), then the broilers (blue circle arc),
the brown-egg layers (dark green circle arc), and the cream-
or white-egg layers (brown circle arc with Fayoumi breed and
Fr-Ag population which is an experimental leghorn line). We
also observed the expected sub-groups within these 3 types of
populations: the commercial lines (Novo1 and Novo2 for the
layers, Cobb and HerX for the broilers) separated from the
experimental lines (RpRm for the brown-egg layers, FLLL for
the broilers). Interestingly for these 2 last populations, this SNP
set shows a clear distinction between two subpopulations that
have been divergently selected for a specific trait: Rp and Rm
divergent for the residual feed intake and FL and LL divergent
for body fat whereas the two Novogen populations (Novo1 and
Novo2) are not distinct. We can note that the SNPs predicted
as “missense” by VEP and “deleterious” by SIFT provide the
same classification between the populations as the one shown in
Figure 8 (data not shown).

CONCLUSION

We show here that RNA-seq data, which are cheaper to
generate and store compared to DNA-seq data, can be a
reliable resource for performing different analyses based on
polymorphism detection. By comparing DNA-seq and RNA–seq
results generated from the same animals in two independent
chicken populations, this study provides a workflow to produce
reliable SNPs and genotypes from RNA–seq data. We ran
through this pipeline 767 RNA–seq of 382 birds from 11
populations and provided a per-population estimation of the
average genotyped SNPs count per tissue (more than 550,000)
and an overview of the predicted consequences of SNPs located
in coding regions. In particular, thanks to this large RNA-seq
dataset, we identified 440 genes containing a stop-gained impact,
known to be rare because of their potentially severe impact,
especially when located in the first third of the coding sequences
(133 genes). In a companion study (Degalez et al., submitted),
we checked the possible existence of more than one SNP in a
given codon, that could “rescue” a stop-gained situation. We
then gave an overview across 11 populations of genes that could
be analyzed for ASE, i.e., having at least one SNP allowing
to distinguish expression from both chromosomes. We applied
phASER on liver RNA-seq data of two populations and identified
around 21 to 30% of cis-regulated genes depending on the
analyzed population and the gene biotype (PCG versus lncRNA),
these results were consistent with other studies conducted
in other species.

This study represents a first step to more ambitious projects
that could analyze tens of thousands of available RNA-
seq datasets to build a GTEx-like atlas reporting cis- and
trans- genetic associations with gene expression, as previously
performed in human (The GTEx Consortium, 2020) and more
recently in cattle (Liu et al., 2020).
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While the chicken (Gallus gallus) is the most consumed agricultural animal worldwide,
the chicken transcriptome remains understudied. We have characterized the
transcriptome of 10 cell and tissue types from the chicken using RNA-seq, spanning
intestinal tissues (ileum, jejunum, proximal cecum), immune cells (B cells, bursa,
macrophages, monocytes, spleen T cells, thymus), and reproductive tissue (ovary).
We detected 17,872 genes and 24,812 transcripts across all cell and tissue types,
representing 73% and 63% of the current gene annotation, respectively. Further
quantification of RNA transcript biotypes revealed protein-coding and lncRNAs specific
to an individual cell/tissue type. Each cell/tissue type also has an average of around 1.2
isoforms per gene, however, they all have at least one gene with at least 11 isoforms.
Differential expression analysis revealed a large number of differentially expressed
genes between tissues of the same category (immune and intestinal). Many of these
differentially expressed genes in immune cells were involved in cellular processes relating
to differentiation and cell metabolism as well as basic functions of immune cells such as
cell adhesion and signal transduction. The differential expressed genes of the different
segments of the chicken intestine (jejunum, ileum, proximal cecum) correlated to the
metabolic processes in nutrient digestion and absorption. These data should provide a
valuable resource in understanding the chicken genome.

Keywords: transcriptome, chicken, reproduction, intestinal cells, immunology

INTRODUCTION

In the United States, over nine billion broiler chickens, which is estimated to be about 19 billion
kilograms of chicken products, are produced per year (NCC, 2019). Egg production totaled about
99.1 billion in 2019 in the United States (UEP, 2019). Apart from the important role in food
production, the chicken has been used as an animal model to benefit key areas in functional
human research including immunology (Glick et al., 1956), vaccine development (Matthews, 2006),
reproduction (Nap et al., 2003, 2004; Bédécarrats et al., 2016), and nutrition (Klasing, 1984; Shang
et al., 2018). The process to improve the annotation of the chicken is ongoing since it was first
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sequenced in 2004. As sequencing and data science technologies
rapidly evolve, new tools allow for a more accurate representation
of the chicken genome. The Functional Annotation of Animal
Genomes (FAANG) project was launched to comprehensively
characterize the genome of farm animals to address the
sustainable agriculture of farmed animals (Giuffra et al., 2019).
The current study under the FAANG project focuses on the
accurate annotation of the coding and long non-coding (LNC)
RNA transcripts of various cells and tissues.

The chicken karyotype consists of 38 autosomes and 2 sex
chromosomes (Z and W). The first drafted chicken genome
was sequenced using whole-genome shotgun sequencing of
a female Red Jungle Fowl, which is the closest wild variant
of the domestic chicken and was 1.05 Gb in length (Hillier
LaDeana, 2004; Schmid et al., 2000). The current version of
the chicken genome (Gallus_gallus-6.0; GCCA_000002315.5)
was sequenced using the combined long single-molecule
sequencing technology, and improved BAC and physical
maps (Warren et al., 2017). This resulted in the increase of
genome size to 1.21 Gb, accounting for micro-chromosomes
that were not accounted for or incorrectly assembled in the
previous version (Cheng and Burt, 2018). The coding and
non-coding regions, as well as the regulatory elements, of the
chicken genome is the current focus in annotation studies.
Annotation of chicken genes is performed computationally
from reference genomes of species that are better annotated.
This method is successful in identifying conserved genes across
species. However, it is challenging for non-conserved genes
because of the relative physiology of the chicken compared
to other species, in addition to different genome size, and
differences in intron/exon organization between species
(Shepard et al., 2009). Our annotation of the chicken genome
has 16,779 protein-coding genes (28,345 transcripts) and
7,577 lncRNA and other RNA biotypes (10,943 transcripts).
Of the 39,288 unique transcripts, 72.1% are protein-
coding, 22.6% are lncRNAs, 2.9% are miRNAs and 2.4%
are other RNA biotypes.

While the central dogma has established that coding RNAs
are translated into proteins, there continues to be a growing
interest in the function of ncRNAs, some of which are not
transcribed by RNA polymerase II (Mattick and Makunin,
2006). Recently, it was discovered that ncRNA plays a
regulatory role in many biological processes (Zhang et al.,
2009). Long non-coding RNAs (lncRNAs), which are non-
protein-coding RNAs more than 200 nucleotides in length,
play a role in post-transcriptional epigenetic regulation (Quinn
and Chang, 2016). In chickens, lncRNA regulates a host
of biological functions, including intramuscular adipogenesis
(Zhang et al., 2017a,b), sperm motility (Liu et al., 2017),
cholesterol synthesis (Muret et al., 2017), and embryonic
development (Roeszler et al., 2012). In Avian leukovirus-J (ALV-
J) infection, lncRNA regulates macrophages by targeting genes
involved in apoptosis, inflammation, and cytokine-cytokine
interactions (Dai et al., 2019). A subtype of lncRNA, named
long intergenic non-coding RNA, has been implicated in Marek’s
disease (Han et al., 2017). Therefore, a comprehensive annotation
of lncRNA expression in the chicken will reveal regulatory

processes relevant to health and disease in an agriculturally
important species.

In this study, we aimed to contribute to the catalog of
transcriptomic differences of relevant chicken cells and tissues.
We focused on multiple immune, intestinal, and reproduction-
related tissues and cells. Specifically, tissue-specific immune cells
(lung macrophage, spleen T cells, peripheral monocytes, and
B-cells), immune organs (bursa and thymus), intestinal sections
(jejunum, ileum, and proximal cecum), and ovary of the female
reproductive tract were analyzed. The primary immune organs,
the bursa, and thymus, are the origin of B cells and T cells
in chickens, respectively (Cooper et al., 1966). The proximal
cecum is located in the intestine at the ileocecal junction between
the ileum and colon, is also the secondary immune organ in
chickens due to the presence of mucosal-associated lymphoid
tissues (MALT), such as the cecal tonsils. The findings described
here will be useful toward a complete annotation of chicken tissue
and cellular transcriptomes.

MATERIALS AND METHODS

Experimental Animals
The animal procedure was approved and conducted according
to guidelines established by the Western University of Health
Sciences, Pomona, California (WesternU) Institutional Animal
Care and Use Committee, protocol R17/IACUC/058. The F1
crosses of Line 6 and Line 7 from the Avian Disease and Oncology
Laboratory (ADOL) were used in this study (Stone, 1975; Briles
et al., 1977; Bacon et al., 2000). The two lines have identical
major histocompatibility complex (MHC) B∗2 haplotype, but
present different disease susceptibility to Marek’s Disease Virus
(Line 63: MDV-resistant and Line 72: MDV-susceptible) (Liu
et al., 2001). The F1 crosses of these lines have been used in
other annotation studies by the FAANG consortium; therefore,
it is used in this study to allow for a better comparison of the
data. The chickens were held in open cages in the vivarium
of the University Research Center at Western University. In
addition to daily health monitoring, fresh food and water were
provided ad libitum. Room temperature was adjusted to and
maintained at 32◦C until 3 weeks of age. To minimize the risk
of pecking disorders, chicks were kept under restricted lighting
conditions throughout the study. Peripheral blood was collected
from jugular or wing web veins. Experimental animals were
euthanized by insufflation of isoflurane.

Sample Collection
All assays were performed in at least duplicates.

Immune tissue (thymus and bursa), intestinal tissues
(jejunum, ileum, and proximal cecum), and reproductive tissue
(ovary) were collected and flash-frozen in liquid nitrogen for
later use. Tissue immune cells (lung macrophage, and spleen
CD3+ T cells) were collected from the organs homogenized and
filtered through 70 µm nylon cell strainers.

Tissue macrophages and T cells were extracted using magnetic
beads (Dynabeads FlowComp Flexi, Invitrogen, Carlsbad, CA,
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United States) coated with biotinylated-mouse-anti-chicken-
monocyte/macrophage-monoclonal antibodies (Clone KUL-
1, Cat. No. 8420-08, SouthernBiotech) and biotinylated-
mouse-anti-chicken-CD3-monoclonal antibodies (Clone AV-
20, Cat. No. 8200-08, SouthernBiotech, Birmingham, AL,
United States), respectively.

Peripheral blood B cells were collected from the blood
(Collisson et al., 2017). Briefly, the blood was diluted in an
equal volume of PBS and layered slowly over Ficoll-Histopaque
(1.083 g/mL) (Sigma-Aldrich, St. Louis, MO, United States), and
then centrifuged for 35 min (400 × g at 23◦C with the brake
off). The interface containing the peripheral blood mononuclear
cells (PBMCs) and B cells were collected. Peripheral blood B cells
were extracted using magnetic beads (Dynabeads Pan Mouse IgG,
Invitrogen, Waltham, MA, United States) coated with unlabeled-
mouse-anti-chicken-Bu-1a/b-monoclonal antibodies (Clone AV-
20, Cat. No. MCA5764, Bio-Rad, Hercules, CA, United States).
Peripheral blood monocytes were collected from PBMCs. Briefly,
after density gradient separation using Ficoll-Histopaque as
described above, the monocytes were extracted from the
PBMC using magnetic beads coated with unlabeled-mouse-anti-
chicken-KUL01 monoclonal antibodies (SouthernBiotech).

The metadata and associated protocols concerning the 20
tissues have been deposited in the Biosamples database with the
identifiers SAMA8868413 to SAMA8868433.

RNA Extraction and Library Construction
Total RNA from tissues and immune cells was collected
using a modified Trizol/Chloroform method. Briefly, a second
chloroform phase extraction and a second ethanol wash were
included in the modified method. The total RNA from tissues
was purified, and DNase treated using the Direct-zol RNA
Miniprep Plus (Zymo Research, Irvine, CA, United States). The
total RNA from immune cells (lung macrophage, spleen T cells,
peripheral blood B cells, and peripheral blood monocytes) were
not purified using the Direct-zol RNA miniprep Plus due to the
lower concentration of the immune cell RNA compare to the
tissue RNA. The total RNA from immune cells was DNase treated
after extraction. Quality control of the total RNA was performed
fluorometrically using the Qubit RNA HS Assay Kit and Qubit
3 (Thermo Fisher Scientific, Waltham, MA, United States) and
RNA 6000 Nano Kit and Bioanalyzer 2100 (Agilent, Santa Clara,
CA, United States). Total RNA with RNA integrity number
(RIN) above 8.0 were used in the stranded library generation
process using the Zymo-Seq RiboFree Total RNA Library Kit
(Zymo Research). ERCC RNA Spike-In Controls (Invitrogen)
were used to create a standard baseline measurement of RNA.
Ribosomal-RNA (rRNA), globin, and overrepresented transcripts
were removed, and sequencing adaptor ligation of the cDNA
was removed by size selection and PCR enrichment. Libraries
were barcoded with P5 and P7 index sequences according to the
manufacturer’s protocol.

RNA-Sequencing
Libraries were pooled and sequenced on HiseqX-PE150 by
Novogene Bioinformatics Technology Co. (Beijing, China).

Libraries were sequenced to an average depth of 43.7 million
paired reads per library.

Bioinformatics Analyses of
RNA-Sequencing Data
Raw reads were trimmed with TrimGalore (v0.4.1, parameters: –
clip_R2 2) (Martin, 2011). Trimmed reads were mapped and
quantified using STAR (v2.6.1c) and RSEM (v1.3.1) using the
function rsem-calculate-expression (parameters: –star –sort-
bam-by-coordinate) and the reference file Ensembl annotation
release GRCg6a, Ensemble annotation release 98, genome-build-
accession NCBI:GCA_000002315.5 (Li and Dewey, 2011). Read
counts (raw, trimmed, aligned) can be found in Supplementary
Table 1. Transcriptomes were assembled using StringTie (v2.1.4)
and gffCompare (v0.11.6, parameters -R -r) (Pertea and Pertea,
2020). Counts of genes and transcripts from Figures 2, 3B,C were
obtained from the output of gffCompare.

Euclidean distance, pairwise correlations, and PCA plots
were generated by pcaExplorer (Marini and Binder, 2019).
PCA was performed using all expressed genes, used the gene
counts from the RSEM quantification, and the gene counts
were first normalized with DESeq2 (v1.30.0) (Love et al.,
2014). Heatmaps were generated with Morpheus1 (Gould, 2016).
Shannon’s entropy calculations were performed with the BioQC
function entropyDiversity (Zhang et al., 2017a). Count matrices
inputted to BioQC were normalized with DESeq2 and used
counts from the RSEM output. Isoform entropy had an additional
filter, requiring that the isoform’s gene be expressed in at least two
cell types. For all analyses, isoforms were considered expressed
if they had an average TPM greater than 0.5 across replicates
from the RSEM quantified counts were included. Sashimi plots
were generated with ggsashimi (parameters: -M 10 -C 3 -O 3 –
shrink –alpha 0.25 –base-size = 20 –ann-height = 4 –height = 3 –
width = 18) (Garrido-Martín et al., 2018). Browser shots were
generated using the UCSC genome browser (Kent et al., 2002).
BigWig files for the UCSC genome browser were generated from
the mapped bam files using deepTools bamCoverage (v3.5.0)
(Ramírez et al., 2014). Transcription start site (TSS) annotations
for head-to-head (H2H) detection was obtained from the UCSC
table browser using the settings “clade: Vertebrate,” “genome:
Chicken,” “assembly: Mar. 2018 GRCg6a/galGal6,” “group: Genes
and Gene Predictions,” “track: Ensembl Genes,” and “table:
ensGene.”

Extended lncRNA analysis was performed using the
annotation from Jehl et al. (2020) 2(LNCextendedEns101.gtf.gz).
Reads were pseuo-aligned to this reference first be converting
the reference to a fasta file with gffread. Then a kallisto index was
generated with kallisto index (parameter: –make-unique) and
sample TPMs were obtained with kallisto quant. A TPM > 0.5
was used for an expression threshold. BioQC entropyDiversity
was used to calculate the most specific lncRNAs by tissue type.

Differential gene expression was calculated using DESeq2
(v1.30.0) (Love et al., 2014). Genes with an adjusted p-value
less than 0.05 were considered differentially expressed. GO

1https://software.broadinstitute.org/morpheus
2http://www.fragencode.org/lnchickenatlas.html
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biological processes were calculated using WebGestalt (Liao
et al., 2019) with an FDR threshold of 0.05 for determining
GO category overrepresentation. WebGestalt was run with the
basic parameters “Gallus gallus,” “Over-Representation Analysis
(ORA),” “Gene Ontology, and “Biological Process.” “genome” was
selected as the reference set. Figures 5C, 6C and Supplementary
Figure 3B directly use these GO terms. Figures 5B, 6B display
the weighted set cover, which reduces redundancy of the
categories displayed. Full GO categories corresponding to the
weighted set covers are provided in Supplementary Tables 5,
6. Venn diagrams were generated with Intervene (Khan and
Mathelier, 2017). All tools used the default parameters unless
otherwise indicated.

RESULTS

Sample Clustering and PCA
Ten cell and tissue types were profiled with RNA-sequencing with
the goal of determining coding and primarily lncRNA expression,
as well as isoform usage. All samples were compared to one
another using Euclidean distance (Figure 1A) and principal
component analysis (PCA) (Figure 1B) using the R package
pcaExplorer (Marini, 2016). Replicates of the same tissue had
the smallest Euclidean distance between one another (Figure 1A)
and the highest Pearson correlation scores, except for the
macrophages that seem to be somewhat distant in the second
PCA dimension, and the highest Pearson correlation scores
(Supplementary Figure 1). All expressed genes (Figure 1B) were
used for PCA. Samples appear to form three distinct clusters
based on functional category: immune system [B cells, bursa,
macrophage (lung), monocytes (blood), T cells (spleen), thymus],
reproductive tissue (ovary), and intestinal tissue (jejunum, ileum,
proximal cecum). To identify genes highly specific to tissue or
cell types, Shannon’s entropy was calculated for each gene across
all cell types, obtaining a specificity score for each gene. The
expression of the 2000 most specific genes was visualized in a
heatmap (Figure 1C), revealing that macrophage cells have the
most specific gene expression, while ileum tissue and monocytes
have the least. When the next 2000 most specific genes are
visualized (Supplementary Figure 2A) we begin to see less tissue-
specific expression and see genes that are expressed in a small
subset of cell types, compared to the 1000 least specific genes
(Supplementary Figure 2B), which show more uniform gene
expression across all tissue and cell types. A UCSC browser
shot of gene expression across all cell and tissue types shows
the uniformity of expression among some genes and variable
expression among others (Figure 1D).

Transcriptome Coverage and Biotype
Detection
Among all samples, 73.4% (17,872) of all known chicken
genes and 63.2% (24,812) of all known transcripts from
Ensembl annotations were detected (genome build GRCg6a)
(Figure 2A). Tissue and cell type-specific gene, transcript,
and lncRNA counts are provided in Table 1. Between 9,839
(monocyte) – 14,418 (thymus) genes and 11,522 (monocyte) –

17,794 (proximal cecum) transcripts were detected in each
sample (Figure 2B). Out of the fifteen transcript biotypes
(protein_coding, lncRNA, miRNA, pseudogene, misc_RNA,
snoRNA, snRNA, scaRNA, rRNA, processed_pseudogene,
IG_V_gene, Mt_rRNA, Mt_tRNA, ribozyme, sRNA) in the
Gallus gallus reference annotation, fourteen were found in each
of the sample types. The largest number of transcripts detected
was from protein-coding RNA and lncRNA (Figure 2C). Among
all samples, 28,345 (90.0%) protein-coding transcripts were
detected. More recently, an extended lncRNA annotation was
released (Jehl et al., 2020). For this extended analysis, we used
the genome annotation file for LNC-enriched Ensembl RNAs,
which showed that 3,723 lncRNAs were identified among all cell
and tissue types. Even though our library preparation method
did not enrich for small RNAs, a low level of these transcripts
was detected (Figure 2D). Additionally, protein-coding and
lncRNA expression unique to each cell or tissue type was
detected (Figure 2E and Supplementary Table 2). All cell and
tissue types had a greater number of unique protein-coding
genes, except for the ovary tissue, which had a higher number
of unique lncRNAs. Lung macrophage expressed the most
unique protein-coding genes (653), whereas jejunum tissue
(28) and monocytes (19) expressed the fewest. For jejunum
tissue, this may be attributable to the fact that other intestinal
tissues, the proximal cecum and the ileum, were included
in the analysis and may have more similar gene expression
profiles than other tissues included in this study. The number of
lncRNAs per tissue ranged from 464 [monocyte (blood)] to 2,179
[macrophage (lung)] (Supplementary Figure 3A and Table 1).
Many of these lncRNAs were specific to a single tissue, with
tissue-specific lncRNAs ranging from 4 [monocyte (blood)] to
408 [macrophage (lung)] (Supplementary Figures 3B,C and
Supplementary Table 2). Since we did not sequence samples
to a depth of 100 million aligned reads as recommended by
FAANG for novel gene annotation, we did not attempt to
discover new genes.

Isoform Characterization
Alternative splicing is a primary mechanism for diversifying
protein expression. After constructing transcript isoforms from
short-read sequencing, Shannon’s entropy calculations revealed
unique isoforms to each cell and tissue type were found among
a set of 500 isoforms (Figure 3A and Supplementary Table 3).
The highest number of unique isoforms was found in T cells.
The lowest was in monocytes, B cells, and ileum tissue. When
expanded to view expressions of the top 1,000 isoforms with
the highest specificity, isoforms are less specific to a single
cell or tissue type (Supplementary Figure 2C). In contrast,
when the 1,000 isoforms with the least entropy are observed,
we see uniform expression among most cell and tissue types
(Supplementary Figure 2D). Each cell and sample type has
an average of 1.14 (ovary) – 1.24 (spleen T cell) isoforms per
gene (Figure 3B). Histograms allow us to further visualize the
distribution of isoform counts per gene in each tissue (Figure 3C
and Supplementary Figure 4A). Most genes express only a
single isoform of around 10,000 for each cell and tissue type.
Between 1396 (blood monocyte) – 2667 (proximal cecum) genes
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FIGURE 1 | Overview of tissue RNA-sequencing results. (A) Sample to sample distance heatmap quantifying the Euclidean distance between each sample.
(B) Principal component analysis using all genes for all samples. (C) Expression of the 2000 genes with the highest Shannon’s entropy values. Rows sorted using
Euclidean distance. (D) UCSC browser shot of RNA-seq data showing variable expression among samples.

per cell type express two isoforms. A small subset of genes
expressed more than four isoforms of a gene (Figure 3C,
Supplementary Figure 4A insets, and Supplementary Table 3).
There were 204 genes with four or more isoforms expressed
among all cell and tissue types. The gene with the most
isoforms is ST6GAL1, which has 10 isoforms in spleen T
cell tissue. They fall into the GO biological process categories
“localization within membrane,” “activated T cell proliferation,”
and “cell migration” and the GO molecular function category
“kinase binding” (Supplementary Figure 4B). To visualize
differential splice junctions, a sashimi plot was generated for
each sample (Figure 3D and Supplementary Figure 5A) for the
gene PDGFRB (ENSGAL00000030613). Bursa, ileum, jejunum,

ovary, proximal cecum, and thymus tissue express nearly all
exons, whereas B cells, macrophages, monocytes, and T cells
express a subset of exons. A UCSC browser shot of the gene
PDGFRB (ENSGAL00000030613) also assists visualization of
these differences in isoform expression of a single gene among
different tissue and cell types (Supplementary Figure 5B).

Co-expression and Mono-Expression on
Forward and Reverse Strands
A subset of expression will occur within the same genomic
coordinate range on strands opposite to one another. Co-
expression of this kind can serve as a feedback mechanism to
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FIGURE 2 | Gene and transcript characterization. (A) Percentage of annotated chicken genes and transcripts detected across all samples. There are 24,356 genes
and 39,288 transcripts in the Gallus gallus GRCg6a Ensembl annotation. (B) The number of genes and transcripts detected per cell type. Gene counts range
between 9,839 [monocyte (blood)] – 14,418 [thymus]. Transcript counts range between 11,522 [monocyte (blood)] – 17,794 [proximal cecum]. (C) Breakdown of
transcript types detected per cell type, by percentage. (D) Counts of low abundance transcript biotypes with less than 3% representation (all transcript biotypes,
except lncRNA and protein-coding RNA). (E) The number of protein-coding RNAs and lncRNAs unique to each sample type.

regulate the expression of one another, particularly between
lncRNAs and protein-coding transcripts. An example of
this is the expression of the protein-coding gene FRMPD4
(ENSGALT00000049598) occurring on the strand opposite
to the lncRNA gene ENSGALT00000098634 (Figure 4A).
Co-expression was determined by locating genes whose
5′UTR-3′UTR sequences were overlapping by at least one
base pair on opposite strands of one another. The number
of co-expressed pairs ranged from 371 (monocyte) to 621
(thymus) (Figure 4B and Supplementary Table 4). The
majority of pairs were both protein-coding genes for all
cell and tissue types (range: 307–454) (Figure 4C). The
next most common pairing was protein coding-lncRNA
co-expression (range: 10–51). A small number of instances
were lncRNA-lncRNA co-expression (range: 0–6). Also
present were interactions between other biotypes (miRNA,

pseudogene, misc_RNA, snoRNA, snRNA, scaRNA, rRNA,
processed_pseudogene, IG_V_gene, Mt_rRNA, Mt_tRNA,
ribozyme, sRNA) (range: 11–19).

Also of interest is mono-expression: when two genes occur
within the same genomic coordinates range on opposite strands
of one another, but only one of the genes is expressed. The
number of mono-expressed pairs ranged from 145 (lung
macrophage) to 435 (ovary) (Figure 4D). Similar to co-expressed
genes, the most common pairing were pairs of protein-coding
genes (range: 102–278), followed by protein coding-lncRNA
mono-expression (range: 9–63), then lncRNA-lncRNA mono-
expression (range: 1–15) (Figure 4E). There were also
instances of mono-expression between other biotypes (miRNA,
pseudogene, misc_RNA, snoRNA, snRNA, scaRNA, rRNA,
processed_pseudogene, IG_V_gene, Mt_rRNA, Mt_tRNA,
ribozyme, sRNA) (range: 8–16) (Supplementary Table 4).
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TABLE 1 | The number of transcripts, genes, and lncRNA by tissue.

Type Tissue # of # of # of Extended lncRNA

transcripts genes lncRNA analysis #

Immune B cell 16,170 12,945 648 958

Bursa 13,825 11,442 608 1,433

Monocyte
(blood)

17,794 14,380 316 464

Macrophage
(lung)

11,522 9,839 868 2,179

T cell (spleen) 16,703 13,642 731 1,630

Thymus 17,639 14,240 757 1,718

Intestinal Jejunum 15,172 12.820 398 1,311

Ileum 15,924 13,940 710 1,007

Proximal
cecum

17,619 14,418 690 1,746

Reproductive Ovary 16,255 13,585 1,063 925

Similar to co-expressed genes are head-to-head (H2H) genes.
These genes are located on opposite strands and their TSSs
are within 1 kb of each other. We detected 2,628 H2H genes
in the Gallus gallus genome annotation. Out of these, 1,590
were detected within our cell/tissue samples (Supplementary
Figure 6A). All of the H2H genes are between protein-coding
genes. At the cell/tissue level, we detected between 812 [monocyte
(blood)] and 1,146 (bursa) total H2H genes expressed. A small
subset of these is unique to a single cell/tissue type, with a
range between 2 [monocyte (blood)] and 44 [macrophage (lung)]
(Supplementary Figures 6B,C and Supplementary Table 4).
We also examined mono-expressed H2H genes (Supplementary
Figures 6B,C) and detected between 1020 (bursa) and 1114
(ovary) H2H expressed genes at the cell/tissue level. Similar to co-
expressed H2H genes, mono-expressed H2H genes have a small
subset that is unique to each cell/tissue type, ranging between 3
(ileum) and 54 [T cell (spleen)] (Supplementary Table 4).

DEG Analysis on Immune and Intestinal
Samples
In addition to determining genes and isoforms highly enriched
for cell- or tissue-specific expression, we identified genes
differentially expressed between related cells or tissues.
Differentially expressed genes (DEGs) were computed for
six cell/tissue type comparisons using Deseq2. Three of these
comparisons were among immune cell samples. There were
4911, 5907, and 3951 DEGs for the comparisons B cells vs.
monocytes, B cells vs. bursa tissue, and bursa tissue vs. thymus
tissue, respectively (Figure 5A and Supplementary Table 5).
A weighted set cover analysis in WebGestalt (Liao et al.,
2019) was performed to reduce redundancy and find the most
representative GO biological process categories among sample
comparisons (Figure 5B). The GO category “response to stress”
was the only category shared among all three comparisons. When
we compare the DEGs across all three comparisons, we find that
there is a subset of genes that are shared across multiple sample
comparisons, however, there is a sizable number of genes unique
to each tissue comparison (Figure 5C and Supplementary

Table 5). This was also reflected in similarities between enriched
GO categories, which shared 33 categories between all three
comparisons. Additionally, we see unique sets of genes among
the top 10 DEGs for each comparison (Figure 5D).

Differentially expressed gene comparisons were also
performed for three comparisons among intestinal samples.
There were 3903, 2306, and 4270 DEGs for the comparisons
of jejunum tissue vs. ileum tissue, jejunum tissue vs. proximal
cecum tissue, and ileum tissue vs. proximal tissue, respectively
(Figure 6A and Supplementary Table 6). A weighted set cover
analysis was again performed (Figure 6B). There were no
overlaps of enriched GO categories in the weighted set cover
or among the sets of all GO terms enriched for each cell type,
despite seeing 332 differentially expressed genes shared between
all tissue comparisons (Figures 6B,C and Supplementary
Table 6). Separating both DEG GO analyses, immune and
intestinal, by upregulated and downregulated genes yields similar
results (Supplementary Tables 7, 8). Among the sets of the top
10 differentially expressed genes for each tissue comparison,
we observe the genes APOA4 and LCT are present for tissue
comparisons of jejunum vs. ileum and jejunum vs. proximal
cecum (Figure 6D). Additionally, the tissue comparisons
jejunum vs. ileum and ileum vs. proximal cecum share the five
differentially expressed genes MT-ND2, ND1, ND4, ND6, and
SNORA73.

Overrepresented KEGG pathways were also identified
using WebGestalt for both of these immune and intestinal
tissue comparisons. Each set of DEGs has a unique set of
modified pathways, however, there are some overlaps between
comparisons (Supplementary Figures 7A–C). In particular, in
the immune system comparisons, the pathways “cell cycle” and
“DNA replication” are enriched in the DEG sets for both the B
cell vs. bursa and bursa vs. thymus comparisons (Supplementary
Table 9). In the intestinal system comparisons, the “peroxisome”
pathway is enriched in the DEG sets for jejunum vs. ileum and
jejunum vs. proximal cecum. Additionally, the “spliceosome”
pathway is enriched in the DEG sets for the jejunum vs. ileum
and the ileum vs. proximal cecum. Out of all comparisons, the
jejunum vs. proximal cecum has the most enriched pathways,
many of which are involved in various metabolism and
biosynthetic functions (Supplementary Figures 7D–F and
Supplementary Table 10).

DISCUSSION

Side-by-side comparisons of transcriptomes were made for
some of the immune cells and tissues, as well as intestinal
tissues, to gain additional biological insight. B cells were
compared to monocytes from peripheral blood, B cells with
bursa, bursa with the thymus. The most significant (P-value)
differentially expressed genes were highlighted in the results
(Figure 5D). In the comparison between the monocytes and
B cells, CSF1R, GSTA3, LY86, S100A6, TGFβ1, and VCAN
were highly expressed in monocytes. Colony-stimulating factor-
1 receptor (CSF1R) is a major stimulator of macrophage
maturation from monocytes (Gan et al., 2020; Peng et al., 2020;
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FIGURE 3 | Isoform characterization. (A) Expression of the 500 isoforms with the highest Shannon’s entropy values. Rows sorted using Euclidean distance. Isoforms
have been filtered for genes that have a TPM of at least 0.5 in at least two cell types. (B) The average number of isoforms per gene for each cell type. (C) Histogram
of isoform counts per gene. The cutout plot in the upper-right corner is a zoomed-in section for 4+ isoforms per gene. (D) Sashimi plots of splice junction variance
for macrophage (lung) cells and ovary tissue for gene PDGFRB (ENSGAL00000030613), which has a single annotated transcript ENSGALT00000067683.

Wu et al., 2020). Glutathione S-transferase α3 (GSTA3), for
glutathione metabolism, is expressed in the macrophages against
reactive oxygen species (ROSs) (McNeill et al., 2015). After
phagocytosis of antigen or dead cells, macrophages release
ROSs to destroy the ingested molecules through respiratory
burst. Therefore, it is logical that monocytes have a higher
expression of GSTA3 to control the over-production of ROSs.
Lymphocyte antigen 86 (LY86), also known as Myeloid
Differentiating Protein-1 (MD1), activates toll-like receptors in

innate immune cells (Candel et al., 2015). S100A6 (calcyclin)
has been implicated in cell differentiation and apoptosis
(Donato et al., 2017). Transforming growth factor-β1 (TGFβ1)
is produced by monocytes to regulate chemotaxis (McCartney-
Francis et al., 1990; Sato et al., 2000). Versican (VCAN) is a
chondroitin sulfate proteoglycan involved in cell proliferation
(Zhang et al., 1998) and is produced by leukocytes to regulate
inflammation (Wight et al., 2014). Due to the constant
flux in monocyte development in the peripheral blood, it
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FIGURE 4 | Forward–reverse strand co-expression. (A) Example of co-expressed transcripts on the forward and reverse strands. ENSGALT00000049598/FRMPD4
(reverse strand) and ENSGALG00000098634 (forward strand) are overlapping in their genomic coordinates. (B) The number of co-expression occurrences in each
tissue type. (C) Co-expression counts of protein-coding RNAs and lncRNAs. (D) The number of mono-expression occurrences in each tissue type.
(E) Mono-expression of protein-coding RNAs and lncRNAs.

explains the higher expressions of Ly86, S100A6, TGFβ1, and
VCAN in monocytes.

DENND5B, HVCN1, and IKZF3, and POU2AF1, BACH2,
and IRF4 expression were significantly upregulated in the B
cells compared to monocytes. The role of DENN Domain
Containing 5B (DENND5B) on B cells is unclear. B cell
antigen receptor (BCR) signaling requires the internalization
of BCR with Hydrogen Voltage-Gated Channel 1 (HVCN1)

to regulate ROS production (Capasso et al., 2010). The
Ikaros Family of Zinc-finger Protein-3 (IKZF3) is involved
in early B cell development and its expression is increased
progressively throughout B cell development (Ferreirós-Vidal
et al., 2013). The POU Class 2 Homeobox Associating Factor
1 (POU2AF1) promotes B cell development and maturation
(Zhao et al., 2008). BACH2 is involved in proliferation
of B cells (Miura et al., 2018) and IRF4 is essential for
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FIGURE 5 | Differentially expressed gene (DEG) analysis on immune samples. (A) Heatmaps of DEGs in three cell type comparisons: B cells vs. monocytes (4911
DEGs), B cells vs. bursa tissue (5907 DEGs), bursa tissue vs. thymus tissue (3951 DEGs). Samples were clustered both by column and by row using Euclidean
distance based on log-transformed TPM value. (B) Enriched GO biological process categories for each sample using weighted set cover filtering in WebGestalt.
“Overlap” quantifies the number of DEGs present in that GO set. (C) The numbers of DEGs overlapping between-sample comparisons. (D) Log2 fold-change of top
10 upregulated and downregulated DEGs for each sample comparison.

lymphocyte function and involved in the development,
affinity maturation, and terminal differentiation of B cells
(Mittrücker et al., 1997).

APOA1, PTPRF, and RARRES1 had higher expression in
the B cells compared to bursa in this study. The bursa of
Fabricius is a unique organ near the cloaca of the birds for B
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cell development and production (Glick et al., 1956). APOA1,
short for Apolipoprotein A-1, is a major component in high-
density lipoprotein (HDL) for lipid transport in the plasma.
Interestingly, APOA1 was one of the most abundant proteins
identified in the bursa in early embryonic development (Korte
et al., 2013). However, the bursas sampled for this study were
more mature, which might explain that the gene expression was
lower. It is not clear what the role of APOA1 in B cells might be.
PTPRF, short for Protein Tyrosine Phosphatase Receptor Type
F, regulates Wnt signaling, which mediates B cell differentiation
(Qiang et al., 2003; Gan et al., 2020). RARRES1 (Retinoic Acid
Receptor Responder 1), also known as Tazarotene-induced gene
1 protein/RAR-responsive protein TIG1, facilitates retinoic acid
synthesis from β-carotene (precursor of vitamin A) (Chung and
Lo, 2007; Mihály et al., 2011). Vitamin A and retinoic acid are
essential for B cell development and antibody production (Ross
et al., 2011), as well as monocyte differentiation into macrophages
(Gundra et al., 2017).

BHLHE41, short for Basic Helix-Loop-Helix Family Member
E41, is a regulator of B cell development, which is consistent with
our data showing that BHLHE41 is more expressed in bursa than
in more mature peripheral B cells (Kreslavsky et al., 2017). The
Cytohesin 1 interacting protein (CYTIP) regulates lymphocyte
cell adhesion (Boehm et al., 2003), an important function of
B cells. cFos is involved in immune receptor interaction (Bush
and Bishop, 2008). The transcription factor, NR4A2, limits B
cell activation when the secondary T cell signaling is absent
(Tan et al., 2020).

We identified several non-coding RNAs with higher
expression in the bursa than B cells, particularly Metazoa_SRP,
SCARNA13, and U3. Metazoa_SRP encodes for a signal
recognition particle RNA that is predominantly studied in
archaea, bacteria, fungi, and protozoa species (Rosenblad
et al., 2004; Dumesic et al., 2015). Little is known about
the Metazoa_SRP gene in animals but it is thought to be
involved in the translocation of RNA between the endoplasmic
reticulo-membrane and cytosol (Shan and Walter, 2005) and
post-translational transport of proteins to the ER (Abell et al.,
2004). SCARNA-13, (small Cajal body-specific RNA-13), is a
regulatory RNA. These small RNAs regulate gene expressions in
the Cajal bodies by controlling small nucleolar RNA such as the
U3 (Richard et al., 2003; Allantaz et al., 2012).

In the comparison of the bursa and thymus DEGs, higher
expressed genes in the thymus are essential genes for T cell and
thymic development, such as CD247 (Lundholm et al., 2010),
CD28 (Lenschow et al., 1996), CD3E (Call et al., 2002), CD4
(Zhang et al., 2009; Zhu et al., 2009), DNTT (Su et al., 2004,
2005), LCK (Van Laethem et al., 2013), LEF1 (Xing et al., 2019),
RAG1 (Xing et al., 2019), TRAT1 (Mijušković et al., 2015), while
the BCL11B transcription factor is involved in both B and T
cell (Avram and Califano, 2014). Genes higher expressed in
bursa included CXCR5, TNFSF13B, AICDA, and SH2D6 (or
BLNK). CXCR5 plays an important role in the migration of
B and T cells to secondary lymphoid organs (Legler et al.,
1998) and has previously been shown to be highly expressed in
bursa (Annamalai and Selvaraj, 2011). TNFSF13B is a cytokine
that belongs to the tumor necrosis factor (TNF) ligand family

and is also known as B cell-activating factor (BAFF). It is
expressed in B cell lineage cells and has been shown to play
an important role in the proliferation and differentiation of
B cells (Mackay et al., 1999). AICDA, the gene coding for
AID (activation-induced cytidine deaminase), is essential for
immunoglobulin (Ig) gene somatic hypermutation (SHM) and
class switch DNA recombination (CSR). AID expression is
induced by activated B-cell CD40 signaling, critical for germinal
center reaction (Park et al., 2009). Finally, SH2D6 or BLNK,
functions as a central linker protein, downstream of the B-cell
receptor (BCR). Activation leads to a multitude of signaling
pathways and regulating biological outcomes of B-cell function
and development (Ishiai et al., 1999).

In summary, many of these genes were mostly involved in
cellular processes relating to differentiation and cell metabolism
as well as basic functions of immune cells such as cell adhesion
and signal transduction. This was to be expected, as there was
no explicit immunological stimulus involved, the transcriptome
rather represents the baseline activity at the time sampled.
Nevertheless, it was notable that DEGs in the comparison
between bursa and thymus that were upregulated in the thymus
were related to T cell differentiation and maturation. On the
other hand, genes differentially upregulated in B cell vs. bursa
or bursa vs. thymus, are mostly involved in B cell development
and differentiation, or activation. Genes differentially regulated
in B cells and monocytes are involved in specific functions
of the cell types.

While the chicken ileum was previously profiled (Kuo et al.,
2017), the jejunum and cecum were not studied previously. We
included the top ten genes of the differential expression analyses
between tissue types based on levels of significance. Hierarchical
clustering showed clear discrimination between the different
parts of the intestine (Figure 6A). Of the 3,903 DEGs of the
jejunal and ileal cells, the number of genes involved in steroid
metabolism is the most different between jejunal and ileal tissues.
Lipid metabolism of fat in the diet requires steroid biosynthesis
of molecules such as bile acid from the pancreas into the small
intestine (Dawson and Karpen, 2015). The bile acid emulsifies
lipid molecules, which travel through the small intestine and
allow fatty acids to be absorbed. Consistent with the observation
in rats, absorption of steroidal hormones decreases throughout
the small intestine (Nakayama et al., 1999). Unsurprisingly, bile
acid absorption can be twice as high in the jejunum than in
the ileum (Krag and Phillips, 1974; Aldini et al., 1996). This
further confirms the higher lipid metabolism of the jejunum than
the ileum in chickens (Tancharoenrat et al., 2014). Of the a06
DEGs of the jejunum and proximal cecum, the number of genes
involved in the oxidation-reduction process, lipid metabolic
process, and cell adhesion were the most different. The primary
role of the jejunum is the digestion and absorption of nutrients.
In contrast, the ceca are blind-sacs in the chicken intestine that
play multiple roles in nutrients absorption including bacterial
fermentation of small molecules and biosynthesis of short-
chain fatty acids (propionic and butyric acids) (Clench, 1999).
The proximal cecum contains the cecal tonsils, which are the
largest gut-associated lymphoid tissues (GALT) in chickens that
demonstrate protective immune responses in the intestinal tract
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FIGURE 6 | Differentially Expressed Gene (DEG) Analysis on Intestinal Samples. (A) Heatmaps of DEGs in three cell type comparisons: Jejunum vs. Ileum (3903
DEGs), Jejunum vs. Proximal Cecum (2306 DEGs), Ileum vs. Proximal Cecum (4270 DEGs). Samples were clustered both by column and by row using Euclidean
distance based on log transformed TPM value. (B) Enriched GO Biological Process categories for each sample using weighted set cover filtering in WebGestalt.
“Overlap” quantities the number of DEGs present in that GO set. (C) The numbers of DEGs overlapping between sample comparisons. (D) Log2 fold-change of top
10 upregulated and downregulated DEGs for each sample comparison.

(Heidari et al., 2015). Therefore, it is logical that the DEGs of
these metabolic functions are more pronounced in the jejunum
than in the cecum. Of the 4,270 DEGs between the ileum and

cecum, the DEGs corresponding to cellular respiration were the
most different. This could be expected as bacteria fermentation
produces high levels of short-chain fatty acids in the cecum,
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which can be used as energy by the intestinal cells (Murugesan
et al., 2014). Due to the relative size and metabolic demands
of the ileum compared to the cecum, much energy is needed
from aerobic respiration and mitochondrial electron transport to
produce adequate energy in the ileum.

Interestingly, the comparisons of the jejunum to the ileum
and the proximal cecum revealed differential expression of
LCT, the gene encoded for lactase production, which is lower
in the jejunum compared to that in the ileum and proximal
cecum (Figure 6D). Since chickens are not mammals, the
expression of the lactase gene is perplexing. The expression
of the lactase gene in chickens has been debated in the past
(Hamilton and Mitchell, 1924). Several hypotheses had been
proposed about the presence of the lactase gene in chickens.
The presence of the lactase gene could be due to (1) bacterial
fermentation of lactase in the intestine, (2) evolutionary artifacts,
or (3) improper annotation of the gene in chickens that
could have the same sequence but functionally different in the
chicken compared to mammals. An early study using based
on the disappearance of lactase in vitro showed that lactase
was assimilated in the crop but not in the proventriculus
or the intestine (Plimmer and Rosedale, 1922). However, the
assumption of the disappearance of lactase as evident of lactose
digestion is flawed because it does not account for the microbial
degradation of lactose. Later, molecular cloning confirmed
lactase expression in the chicken intestinal tract as well as
in mussel (Freund et al., 1997). Based on our sequencing
results, we cannot conclude whether this is due to evolutionary
artifacts, evolutionary converged traits with separate lineages,
or genes with the same sequence but with completely different
functions, or otherwise.

Among the DEGs from the intestinal tract, APOA4 is
responsible for lipid metabolism (Tso et al., 2004; Wang et al.,
2020) and lipid-soluble vitamin metabolism such as retinoic
acid (vitamin A) (Hebiguchi et al., 2015). Coincidentally,
APOA4 and retinoic acid-binding protein-2 (RBP2), and
beta-carotene oxygenase 1 (BCO1) had higher expressions in
the ileum compared to the jejunum. Mitochondrial NADH
dehydrogenase (MT-ND2), NADH dehydrogenase-1 (ND1),
NADH dehydrogenase-4 (ND4), NADH dehydrogenase-5
(ND5), and NADH dehydrogenase-6 (ND6) relate to the electron
transport chain that generates cellular energy in the form of
ATP through oxidative respiration (Weiss et al., 1991). These
energy metabolic genes had higher expression in the ileum
compared to the jejunum and in the proximal cecum compared
to the ileum, suggesting higher energy production through
aerobic respiration in these tissues. The Transmembrane
Serine Protease 15 (TMPRSS15) is an enteropeptidase secreted
from the pancreas that catabolizes trypsinogen to trypsin
and chymotrypsinogen to procarboxypeptidase for protein
digestion in the intestine (Zhang et al., 2009). Expression of
TMPRSS15 was higher in the ileum than the jejunum, suggesting
the increasing rate of protein digestion throughout the small
intestine. Consistent with a previous study on ion transport
in the intestine (Wingate et al., 1973), several ion transporter
genes, Solute Carrier Family 5 Member 12 (SLC5A12) for
sodium and glucose co-transport, Solute Carrier Family 26

Member for chloride transport, and Solute Carrier Family 10
Member A2 for sodium and bile acid co-transport had higher
expression in the jejunum than the ileum. Metallothionein-
4 (MT4) is a tissue-specific binding protein for zinc and
copper for sequestering the trace minerals from pathogens
and regulating the intra- and extra-cellular concentrations
(Sakulsak, 2012). Expression of MT4 was higher in the jejunum
in the current study.

Several of the DEGs highly expressed in the proximal cecum
are involved in lipid metabolism, including APOA4 and APOB
(major components of lipoproteins) (Schianca et al., 2011),
Beta-carotene Oxygenase-1 (BCO1) (lipid-soluble vitamin A
metabolism), CUBN (lipoprotein endocytosis) (Christensen and
Birn, 2002), and SLC26A9 (bile metabolism) (Li et al., 2016).
Surprisingly, APOB is higher expressed in the ileum than
the proximal cecum. Adenosine deaminase (ADA) is involved
in purine metabolism for nucleotide synthesis (Ikehara and
Fukui, 1974) and is abundant in lymphocytes (Sakumi and
Sekiguchi, 1989). Bacteria in the intestine are essential for vitamin
absorption for the host (Ikehara and Fukui, 1974; LeBlanc
et al., 2013). Therefore, it is consistent that TM4SF4, which is
involved in thiamine (vitamin B1) metabolism, displayed higher
levels of expression in the proximal cecum. The DEAD/DEAD-
Box Helicase-60 is involved in innate immunity (Perčulija and
Ouyang, 2019). The mucosal-associated lymphoid tissue (MALT)
in the proximal cecum is the secondary lymphoid organ of
the chicken, and the cecum houses microbiota that regulates
metabolism (Polansky et al., 2016). This could explain the higher
expression of the DEAD/DEAD-Box Helicase-60 (DDX60),
Adenosine deaminase (ADA), and Liver Enriched Antimicrobial
Peptide 2 (LEAP2) in the proximal cecum.

The potassium inwardly rectifying channel subfamily J
member 15 (KCNJ15) (Yuan et al., 2015), ryanodine receptor
2 (RYR2) (Jiang et al., 2004), and the bestrophin family anion
channel (BEST4) (Fischmeister and Hartzell, 2005) for ion
exchanges were upregulated in the jejunum compared to the
proximal cecum. The carbonic anhydrase (CA4) utilizes zinc to
produce carbonic acid for maintaining acid-base balance (Sly
and Hu, 1995). Glutathionase (CTH) utilizes glutathione for
antioxidant production against reactive oxygen species (ROS)
(McBean, 2017). Since the jejunum is responsible for nutrient
absorption, whereas the cecum is a blind sac that is involved
in immunity, it is conceivable that these genes are higher
expressed in the jejunum compared to the proximal cecum.
In addition, two transcription factors were upregulated in the
jejunum: transcription factor CP2 like 1 (TFCP2L1) and paired
box family of transcription factor (PAX5). The former is involved
in epithelial cells’ development consistent with the high turnover
of intestinal epithelial cells (Werth et al., 2017). However, the
latter is involved in B cell development (Nutt et al., 1999).
CD72 regulates B cell development and signaling and it showed
higher levels of expression in the jejunum compared to the
proximal cecum (Kumanogoh et al., 2000). CYP4B7 belongs
to the cytochrome P450 family detoxification enzyme (Alber
et al., 2020). The higher expression in the jejunum is consistent
with its digestive functions. Three trace mineral-related genes
had higher expression in the ileum than the proximal cecum:
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selenoprotein (SELENOP1), metallothionein-4 (MT4), and zinc
finger protein 593 (ZNF593). N-myc downregulated gene family
(NDRG4) regulates smooth muscle cells (Qu et al., 2016).
Similar to NDRG4, ZNF593 regulates muscle cell differentiation
(Lynch et al., 2019). Consistently, NDRG4 and ZNG593 are
less expressed in the proximal cecum because the primary
function of the cecum is thought to be related to modulate
immunity and metabolism through the microbiota; whereas
the jejunum and ileum are primarily responsible for digestion
and absorption of nutrients that require contraction of smooth
muscles during peristalsis.

In summary, we were able to correlate most of the differential
expressed genes in the intestine to mostly metabolic processes
related to nutrient digestion and absorption. Several genes in
the distal part of the intestine were particularly implicated
in vitamin metabolism. This was not surprising because
vitamin metabolism requires the microbiota, which is more
abundant in the distal intestines. Genes involved in energy
metabolism are also abundant in the cecum, which suggests that
microbial contribution of energy production in the intestine is
especially important.

In the current study, whole transcriptome RNA-seq of
immune, intestinal, and reproductive cells and tissues were
sequenced. The Ensembl chicken annotation release 98
(GRCg6a, genome-build-accession NCBI:GCA_000002315.5),
contains 16,779 protein-coding genes, 7,577 non-coding genes,
and 39,288 gene transcripts. Of the non-coding genes, 5,504
were long non-coding genes; 10,301 lncRNAs are annotated
when considering Jehl et al. (2020). From 10 diverse cell and
tissue types, we recovered 73% of annotated genes and 63%
of known transcripts. Of annotated genes, 90% of coding
genes are expressed in the 10 cell and tissue types studied
here, while only 36% of annotated lncRNAs are expressed.
The potential regulatory role of lncRNAs may explain the
limited expression, and suggest a more cell- or tissue-specific
role. We found that biosamples often expressed hundreds
of cell- or tissue-specific coding genes and lncRNAs. While
many genes are commonly expressed in multiple samples, we
also determined that over 500 isoforms of genes are uniquely
expressed. Each cell and tissue type only expressed an average
of 1–2 gene isoforms; however, each biosample type had at
least one gene with 11 or more isoforms expressed in the cell
or tissue type. We did not attempt to annotate novel genes
base due to our current sequence depth per sample. Analysis
of differentially expressed genes revealed biological processes
that are consistent with a function in the cells or tissues of
interest. Continued investigation of these genes should further
our understanding of disease susceptibility/resistance, feed
conversion, and egg production. Collectively, these data provide
a deeper understanding of the chicken transcriptome in a cell-
and tissue-specific manner. We have provided lists of unique
transcripts, genes with high isoform count, sense-antisense
co-expression pairs, and differentially expressed genes in
our Supplementary Tables as a resource to the community.
Additional samples from the FAANG and greater community
will continue to advance efforts toward a comprehensive catalog
of the chicken transcriptome.
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Supplementary Figure 1 | Pairwise correlations. Pearson correlation plot of all
genes in a sample for each pairwise comparison generated with pcaExplorer.
Plots use a subset of 1000 genes and use log2 normalized gene counts for plot
axes and values, respectively.

Supplementary Figure 2 | Gene and isoform expression specificity. (A) Top
2000–4000 most specific genes. (B) The 1000 least specific genes. (C) The top
1000 most specific isoforms. (D) 1000 least specific isoforms. Rows sorted by
Euclidean distance. (C,D) Isoforms have been filtered for genes that have a TPM
of at least 0.5 in at least two cell types. Matrix entries that have no expression of
that isoform’s gene are colored black.

Supplementary Figure 3 | Extended lncRNA analysis. (A) Total lncRNA counts
using the extended lncRNA annotation. (B) Cell/tissue-type specific lncRNA
counts using the extended lncRNA annotation. (C) Top 1000 most specific
lncRNAs for the extended lncRNA annotation.
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Supplementary Figure 4 | Isoform histograms. (A) Histogram of isoform counts
per gene for tissues not included in Figure 3B. The cutout plot in the upper-right
corner is a zoomed-in section for 4+ isoforms per gene. (B) GO biological
process and molecular function analysis for genes with 4+ isoforms.

Supplementary Figure 5 | Extended isoform visualization. (A) Additional sashimi
plots from PDGFRB in Figure 3D. (B) Browser shot of the same annotated isoform
for the gene PDGFRB.

Supplementary Figure 6 | H2H transcripts. (A) Percent of total co-expressed
H2H transcripts (2,628) detected across all cell/tissue types. (B) Total H2H
transcript counts by cell/tissue type. (C) Cell/tissue type-specific H2H
transcript count.

Supplementary Figure 7 | Enriched pathways. (A–C) Enriched KEGG pathways
for the immune comparisons in Figure 5 (FDR < 0.05). (D–F) Enriched KEGG
pathways for the intestinal comparisons in Figure 6 (FDR < 0.05).

Supplementary Table 1 | Sequencing read counts.

Supplementary Table 2 | Cell type specific transcripts and lncRNAs (related to
Figure 2). (Sheet 1) Protein coding RNAs. (Sheet 2) lncRNAs. (Sheet 3) Extended
lncRNA analysis transcripts.

Supplementary Table 3 | Isoforms (related to Figure 3). (Sheet 1) Isoforms from
specificity plot (Figure 3A). (Sheet 2) Genes with 4+ isoforms per tissue/cell type
(cutouts in Figure 3C and Supplementary Figure 4A).

Supplementary Table 4 | Co-expressed and H2H pairs (related to Figure 4 and
Supplementary Figure 6). (Sheet 1) Co-expressed transcript pairs. (Sheet 2)
Mono-expressed transcript pairs. (Sheet 3) Co-expressed H2H transcript pairs.
(Sheet 4) Mono-expressed H2H transcript pairs.

Supplementary Table 5 | Immune differential expression and GO results (related
to Figure 5). (Sheet 1) B cell vs. monocyte DESeq2 results. (Sheet 2) B cell vs.
bursa DESeq2 results. (Sheet 3) Bursa vs. thymus DESeq2 results. (Sheet 4) B cell

vs. monocyte WebGestalt (GO) results. (Sheet 5) B Cell vs. bursa WebGestalt (GO)
results. (Sheet 6) Bursa vs. thymus WebGestalt (GO) results.

Supplementary Table 6 | Intestinal differential expression and GO results (related
to Figure 6). (Sheet 1) Jejunum vs. ileum DESeq2 results. (Sheet 2) Jejunum vs.
proximal cecum DESeq2 results. (Sheet 3) Ileum vs. proximal cecum DESeq2
results. (Sheet 4) Jejunum vs. ileum WebGestalt (GO) results. (Sheet 5) Jejunum
vs. proximal cecum WebGestalt (GO) results. (Sheet 6) Ileum vs. proximal cecum
WebGestalt (GO) results

Supplementary Table 7 | Separate up/down regulated immune DEGs. (Sheet 1)
B cell vs. monocyte WebGestalt (GO) results – UPREGULATED DEGs ONLY.
(Sheet 2) B cell vs. monocyte WebGestalt (GO) results – DOWNREGULATED
DEGs ONLY. (Sheet 3) B cell vs. bursa WebGestalt (GO) results – UPREGULATED
DEGs ONLY. (Sheet 4) B cell vs. bursa WebGestalt (GO) results –
DOWNREGULATED DEGs ONLY. (Sheet 5) Bursa vs. thymus WebGestalt (GO)
results – UPREGULATED DEGs ONLY. (Sheet 6) Bursa vs. thymus WebGestalt
(GO) results – DOWNREGULATED DEGs ONLY.

Supplementary Table 8 | Separate up/down regulated intestinal DEGs. (Sheet 1)
Jejunum vs. ileum WebGestalt (GO) results – DOWNREGULATED DEGs ONLY.
(Sheet 2) Jejunum vs. proximal cecum WebGestalt (GO) results – UPREGULATED
DEGs ONLY. (Sheet 3) Jejunum vs. proximal cecum WebGestalt (GO) results –
DOWNREGULATED DEGs ONLY. (Sheet 4) Ileum vs. proximal cecum WebGestalt
(GO) results – UPREGULATED DEGs ONLY. (Sheet 5) Ileum vs. proximal cecum
WebGestalt (GO) results – DOWNREGULATED DEGs ONLY.

Supplementary Table 9 | Immune pathway results. (Sheet 1) B cell vs. monocyte
WebGestalt (pathway) results. (Sheet 2) B Cell vs. bursa WebGestalt (pathway)
results. (Sheet 3) Bursa vs. thymus WebGestalt (pathway) results.

Supplementary Table 10 | Intestinal pathway results. (Sheet 1) Jejunum vs. ileum
WebGestalt (pathway) results. (Sheet 2) Jejunum vs. proximal cecum WebGestalt
(pathway) results. (Sheet 3) Ileum vs. proximal cecum WebGestalt
(pathway) results.
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Most single-nucleotide polymorphisms (SNPs) are located in non-coding regions, but
the fraction usually studied is harbored in protein-coding regions because potential
impacts on proteins are relatively easy to predict by popular tools such as the Variant
Effect Predictor. These tools annotate variants independently without considering the
potential effect of grouped or haplotypic variations, often called “multi-nucleotide
variants” (MNVs). Here, we used a large RNA-seq dataset to survey MNVs, comprising
382 chicken samples originating from 11 populations analyzed in the companion paper
in which 9.5M SNPs— including 3.3M SNPs with reliable genotypes—were detected.
We focused our study on in-codon MNVs and evaluate their potential mis-annotation.
Using GATK HaplotypeCaller read-based phasing results, we identified 2,965 MNVs
observed in at least five individuals located in 1,792 genes. We found 41.1% of them
showing a novel impact when compared to the effect of their constituent SNPs analyzed
separately. The biggest impact variation flux concerns the originally annotated stop-
gained consequences, for which around 95% were rescued; this flux is followed by
the missense consequences for which 37% were reannotated with a different amino
acid. We then present in more depth the rescued stop-gained MNVs and give an
illustration in the SLC27A4 gene. As previously shown in human datasets, our results in
chicken demonstrate the value of haplotype-aware variant annotation, and the interest
to consider MNVs in the coding region, particularly when searching for severe functional
consequence such as stop-gained variants.

Keywords: MNV, SNP, variation, rescued stop-gained, SLC27A4, FATP4

INTRODUCTION

Next-generation sequencing has given access to genomes at the nucleotide level through DNA-seq
but also specifically to expressed regions by whole-exome sequencing (WES, originally focusing
on exonic parts of the genome) or RNA-seq. These data enable us to call genetic variations by
spotting differences between aligned reads and the species reference genome or among aligned
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reads. Among these genetic variations, single-nucleotide
polymorphisms (SNPs) are the most frequent and most studied
variations. Although most variations are located in non-coding
regions, the most analyzed lie in protein-coding regions where
their potential impact(s) on the protein are relatively easy to
predict. For example, in a study using 60,706 human exomes, the
Exome Aggregation Consortium (ExAC) identified 3,230 genes
with near-complete depletion of predicted protein-truncating
variants. Of these genes, 72% have not been related to any
known human disease phenotype (Lek et al., 2016). Different
popular tools have been developed this last decade to predict
SNPs’ effects on proteins such as Variant Effect Predictor (VEP)
(McLaren et al., 2016), SnpEff (Cingolani et al., 2012), or
ANNOtate VARiation (ANNOVAR) (Wang et al., 2010). But
these tools consider each variation location individually, as if it
they were specific to “reference” nucleotides. However, SNPs can
be grouped by two or more coexisting variants present in the
same haplotype (in the same individual), in which case they are
called “multi-nucleotide variants” (MNVs). An example of MNV
in one individual (with two nearby SNPs) is given in Figure 1.
When such MNVs occur within a codon, the amino acid
modification caused by this MNV may be different from protein
change resulting from each constituent SNPs taken individually,
leading to a risk of erroneous functional consequence prediction,
as depicted in Figure 1. MNV identification tools have been
developed using different methods for phasing SNPs [MAC (Wei
et al., 2015), varDic (Lai et al., 2016), COPE (Cheng et al., 2017),
BCFtools (Danecek and McCarthy, 2017), and MACARON
(Khan et al., 2018)] and have been applied to different human
genetic variant datasets [1,000 Genomes Project dataset (Cheng
et al., 2017; Danecek and McCarthy, 2017; Khan et al., 2018;
Wang et al., 2020), ExAC (Lek et al., 2016), The Cancer Genome
Atlas (Lai et al., 2016), or gnomAD consortium (Wang et al.,
2020)], mainly based on exomes.

To our knowledge, no study has been conducted on MNVs
in livestock species. The aim of this paper is to focus on
MNVs occurring in protein-coding regions to provide examples
and evaluate the functional consequences of resulting mis-
annotations. Considering this aim, we used 9.5M SNPs recently
detected in 382 chickens from 767 multi-tissue RNA-seq,
enriched by construction in expressed regions and therefore
in protein-coding regions. From this 9.5M SNPs, we focused
on the 3.3M SNPs with reliable genotypes [see the companion
paper (Jehl et al., 2021)]. MNV identification requires properly
phased variants, i.e., to be located either on the same haplotype
(called therefore MNV) or on two different haplotypes (a case
of individual SNPs) (see Figures 1A,B). Different SNP phasing
strategies exist: (i) population-based phasing, using statistical
inference of phase from haplotypes shared among individuals of
a large genotyped population; (ii) family-based phasing, which
analyzes the co-transmission of variants between parents and
offsprings; and (iii) read-based phasing, which evaluates whether
close variants are present on the same reads in the DNA-seq
or RNA-seq data. Read-based phasing is particularly relevant
for close variants, making this method appropriate for MNV
analysis in codons, in which variants fall within a maximum
distance of 2 bp from one another. Therefore, in this study,

we have chosen to identify MNVs by using the read-based
phasing provided by the HaplotypeCaller tool of the GATK
toolkit, in the VCF file through additional fields (Figure 1C,
with the PID and PGT fields) recently added by the common
variant caller (DePristo et al., 2011; Van der Auwera et al., 2013;
McKenna et al., 2020).

MATERIALS AND METHODS

SNP Dataset
The 3,276,615 SNPs analyzed in this study have been detected
following the method presented in the companion paper (Jehl
et al., 2021) using 767 multi-tissue RNA-seq of 382 birds
from 11 chicken populations (see Additional File 1). This
SNP set corresponds to the union of the SNPs with reliable
genotypes found in each population (list available on http://www.
fragencode.org/lnchickenatlas.html). Briefly, variant detection
was performed for each sample using the HaplotypeCaller
tool of GATK toolkit (DePristo et al., 2011; Van der Auwera
et al., 2013; McKenna et al., 2020) 3.7.0 with options
“--stand_call_conf 20.0,” “--min_base_quality_score 10,” and
“--min_mapping_quality_score 20” (which are the defaults
values). The “GenotypeGVCFs” function was then used with
the option “--stand_call_conf 20.0,” to jointly genotype all these
samples into one VCF per tissue. First, biallelic SNPs were
then extracted using the “SelectVariant” function with option
“--selectType SNP –restrictAllelesTo BIALLELIC.” Variants
were filtered using “VariantFiltration” with “QD < 2” and
“FS > 30.” Considering genotypes, variants were selected with
a “(5.reads.DP) genotype CR ≥ 20%” and a “CR ≥ 50%.”
The 11 populations include a red jungle fowl population (RJFh),
three broiler populations with one experimental line (FLLL)
and two commercial ones (Cobb, HerX), six layer populations
with two brown-egg commercial lines (Novo1 and Novo2),
two brown-egg experimental populations (RpRm and LSnu),
two white-egg or cream-egg experimental populations (FrAg
and FAyo), and finally a cross between white- and brown-egg
experimental lines (Rmx6).

Analysis of the Functional Impact of
Each Individual SNP in the Coding
Regions
VEP v92 (McLaren et al., 2016) with a GTF file enriched in
long non-coding genes (“--gtf”) was used for effect prediction
of each SNP, with “--everything” and “--total_length” options
to respectively, obtain SIFT score predictions and lengths of
cDNA, CDS, and protein positions (Ng and Henikoff, 2003;
Sim et al., 2012).

MNV Calling and Recalculation of
Consequences
The script to detect the MNV and to calculate the consequences
is available in Additional File 2.
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FIGURE 1 | Example of MNVs: predicted impact on the associated protein (A) and how to identify them (B,C). (A) Example of an MNV composed of two nearby
SNPs in one codon and its four potential haplotypes in the population and their predicted impact on the associated protein. In contrast to other haplotypes,
haplotype no. 2 contains two variants (T and A) and corresponds to an MNV. (B) The IGV (Integrated Genome Browser; Robinson et al., 2011) screen shot indicates
the principle of read-based phasing of SNPs: short read mapping against the reference genome of the heterozygous individual allows us to phase both SNPs giving
two haplotypes: C with T (reference alleles) on one side and T with A (alternative alleles) on the other side. When translated, these two haplotypes correspond to a
leucine or a STOP codon and not to a simple amino acid change (LEU→ GLU) if the two haplotypes had been composed by only one reference and one variant as
shown in (A). (C) Information (PID and PGT) provided by GATK in the VCF files about the phased SNPs according to the read-based phasing shown in (B).

Detection of SNPs Located in the Same
Codon
With the information produced by VEP, an ID composed
of the “transcriptID” and the “position of the SNP in
the coding sequence (expressed in codon number)” was
created for each consequence. Through this approach, the
same codon of the same transcript supporting at least two
different SNPs will have the same ID. Thus, only duplicated
IDs were kept as they correspond to those containing
two or more SNPs.

Detection of Co-located SNPs Carried by the Same
Haplotype (MNV)
To test if the SNPs located in the same codon were also
present in the same haplotype, the VEP file generated in the
previous step and the VCF file were joined by the “SNPid”
key, equivalent to “CHR_POS_REF/ALT.” The resulting file
(VEP merged to VCF information) contained SNPs on the
same codon with additional information about their phase
(PID and PGT). Finally, the SNPs which were phased (i.e.,
same PID) and co-located in a codon were extracted: they
correspond to MNVs containing two or three phased SNPs
in the same codon.

Recalculation of the Consequences
With the R package Biostrings v2.50.2 (Pagès et al., 2021), the
associated amino acids were produced for each MNV, and with
the same strategy as VEP being adopted, the MNV consequences
were established.

Analysis of MNV Functional Impacts and
Comparison With the Constituent SNP
Impacts
To compare MNV and independent SNP consequences, we
selected only the most impactful consequence per codon for
these constituent SNPs using the following order of priority from
severe to weak consequences: (1) stop-gained, (2) stop-lost, (3)
start-lost, (4) missense_variant, (5) stop-retained_variant, and (6)
synonymous_variant.

For MNVs with a missense annotation corresponding to a
missense annotation for both constituent SNPs, we distinguished
two cases:

– missense MNV with an amino acid different from those
predicted by the constituent SNPs (SNP1: Missense A;
SNP2: Missense B→MNV: Missense C) and

– missense MNV with an amino acid common to one of
two amino acids predicted by the constituent SNPs (SNP1:
Missense A; SNP2: Missense B→MNV: Missense A or B).

In order to visualize the results, we produced an alluvial plot
using the R “alluvial” package v0.1-2 (Bojanowski, 2020).

GO or KEGG Term Enrichment Analysis
The enrichment analysis of Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) terms in the gene
set of interest was performed using the STRING v11.0. tool
(Szklarczyk et al., 2019), and a GO or KEGG term was found
significantly enriched if the BH-adjusted p ≤ 5%.
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DNA Sequencing of SLC27A4
Five microliters of DNA samples was mixed with 5 µl of GoTaq
Flexi Buffer 5 × , 2 µl of MgCl2 solution (25 mM), 0.125 µl
of GoTaq DNA polymerase (5 U/µl) (Promega, catalog number:
M891), 0.5 µl of dNTPs 10 mM, 12.5 µl H2O, and 1.25 µl of
specific reverse (CATTCCCGTAGTGCCAGAGG) and forward
primers (GCACTTTCTGGTGCAAAGCA) at 10 µM. Reaction
mixtures were then incubated in a T100 thermal cycler (Bio-
Rad, Marne la Coquette, France) for 30 cycles with 30 s at 94◦C,
30 s at 60◦C, and 30 s at 72◦C. The amplification products were
then deposited on a 2% agarose gel and sent for sequencing
(Genoscreen) to verify their location on the chicken genome.

RESULTS AND DISCUSSION

Read-Based Phasing for Identification of
MNVs
Using 3.3M SNPs previously detected from 767 multi-tissue
RNA-seq of 382 animals from 11 chicken populations and
therefore enriched in coding regions [see the companion paper
(Jehl et al., 2021), section “Materials and Methods”], we identified
260,919 unique SNPs in 26,702 transcripts corresponding to
15,835 genes out of 19,545 protein-coding genes (Figure 2, right
part—in yellow).

As shown in Figure 2 (left part—in green), we then defined
an MNV in a codon as a group of two or three phased SNPs,
i.e., existing on the same haplotype in the same individual. We
found 11,183 SNPs (4.3% of the SNPs in codons) as constituent
variants of 5,533 MNVs, which corresponded to 4,415 transcripts
and 2,916 genes. Most of them (98%: 5,416) contained two SNPs
with similar proportions (1/3) by constituent SNP position in the
codon (1–3, 1–2, and 2–3, Figure 2, left). In order to ensure the
reliability of the MNVs, we selected MNVs observed in at least
five individuals. Out of the 5,416 MNVs with two SNPs, 2,965
MNVs were present in at least five individuals, corresponding
to 2,636 transcripts and 1,792 genes. No GO terms or KEGG
terms were found as significantly enriched for this gene list,
suggesting that no specific biological pathway was impacted
by MNVs. Table 1 gives the distribution of MNVs and their
consequences according to the individual number supporting the
MNV (ranging from 2 to 100 individuals). We can note that 31%
of the 5,416 MNVs with two SNPs are observed only in a single
individual and are here considered as erroneous, likely due to
sequencing errors.

Functional Impact Comparison of MNVs
and Their Component SNPs
Focusing on the 2,965 MNVs present in at least five individuals,
we then compared their functional consequences with those of
the 5,930 constituent SNPs as illustrated by the right part of
the workflow provided in Figure 2. For such a comparison,
we retained for each MNVs, the most severe consequence
of the constituent SNPs according to the order indicated in
Figure 2 (bottom right). The alluvial plot in Figure 3 depicts
the consequence variations before (left) and after (right) taking

the MNV impacts into account, according to the different
consequence categories; the details of impact variation per MNV
are given in Additional File 3 for the whole 2,965 MNV set. We
can observe in Figure 3 that the biggest change in variant impacts
concerns the originally stop-gained consequence categories, for
which 95.6% were re-predicted as missense (green flux: 87
out of the 91 stop-gained initially predicted). The second and
third biggest fluxes concern missense consequence categories, for
which 37.3% had a different predicted amino acid (violet flux:
1,038 MNVs out of the 2,780 initial missenses), and 3.0% became
synonymous variants (blue flux: 83 MNVs out of the initial
missenses). The distribution of re-prediction fluxes is provided
in Table 1 as a function of the individual number supporting
the MNV among the 382 individuals analyzed. Among the 87
rescued stop-gained observed in five individuals, half (47) are
observed in at least 15 individuals and are present on average in
five populations (see Additional File 4). Out of the MNVs, the
proportion of rescued stop-gained MNVs (2.9%), defined as at
least one of the individual SNPs creating a nonsense mutation
but not the resulting MNV, is in the same order of magnitude
as the one reported by the gnomAD consortium with 1,821
rescued stop-gained MNVs out of 31,575 human MNVs (5.8%)
(Wang et al., 2020). Genes with a stop-gained MNV rescued in
the missense variant are available in Additional File 4 with the
population affected and the individual number per population
carrying these MNVs. To a lesser extent, nine missenses were
re-predicted as stop-gained, which would have gone unnoticed
without re-prediction. After a deeper investigation with the
IGV browser, these re-predicted stop-gained variants seem to
be present since they were not located in a potential exon
skipping. Finally, this stop-gained category drastically declined
by 86% (from 91 to 13) after considering MNVs, whereas the
synonymous category was increased by twofold (from 79 to 159).
These different category changes after considering MNVs have
a major impact on variant interpretation and thus are critical for
accurate variant annotation. More broadly, when the MNVs were
considered together, the resulting functional impact differed from
the independent impacts of the individual variants in 41.1% of
the analyzed MNVs. This large percentage of mis-annotations
is relatively consistent with ∼60% of reannotations in human
MNVs recently reported by the gnomAD consortium in coding
regions (Wang et al., 2020). Such results show the importance
of paying attention to these MNVs as highlighted by McLaren
et al. (2016): “Current annotation tools, including the VEP,
annotate each input variant independently, without considering
the potential compound effects of combining alternate alleles
across multiple variant loci.”

Example of an Erroneously Predicted
Stop-Gained
As an example of erroneously predicted stop-gained, we present
the case of the SLC27A4 gene, which is located on the reverse
strand of chicken chromosome 17 (ENSGALG00000004965)
(Figure 4A). In this gene, two SNPs rs316701182 and rs15031398,
already reported in the Ensembl SNP database (Ensembl,
2018), were respectively, predicted as a stop-gained variant
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FIGURE 2 | Workflow of MNV detection in coding regions and functional consequence prediction. Left: MNV detection from 3.3M SNPs previously identified using
RNA-seq of 382 chickens (companion article; Jehl et al., 2021). Right: MNV constituent SNP selection and protein impact selection of these SNPs separately
analyzed by VEP.

TABLE 1 | Occurrences for each type of re-prediction according to the number of individuals carrying the MNV.

SNP annotation → MNV annotation Number of individuals carrying the MNV

1 2 3 4 5 10 15 20 30 50 100

Eased impact

Missense → Synonymous 110 91 86 86 83 76 74 74 72 66 54

Stop_gained → Missense 194 118 102 99 87 63 47 39 33 27 14

Equal impact

Stop_lost → Stop_lost 8 4 4 4 4 2 2 2 2 1 0

Start_lost → Start_lost 19 11 11 11 11 8 7 6 5 3 1

Synonymous → Synonymous 95 84 81 78 76 69 63 58 54 45 32

Missense → Missense 4,932 3,425 3,107 2,854 2,688 2,162 1,876 1,652 1,369 1,083 716

Stop_gained → Stop_gained 12 6 5 5 4 3 2 2 2 1 0

Aggravated impact

Stop_retained → Stop_lost 1 0 0 0 0 0 0 0 0 0 0

Synonymous → Missense 15 6 6 4 3 2 1 1 1 1 1

Missense → Stop_gained 30 13 11 10 9 6 4 3 3 2 1

Total MNVs 5,416 3,758 3,413 3,151 2,965 2,391 2,076 1,837 1,541 1,229 819

The column in bold corresponds to MNVs observed in at least five individuals (MNV set used in Figure 3).

(TGA; stop-gained) and a synonymous variant (CGC; arginine)
when compared to the reference haplotype (CGA; arginine)
(Figure 4B). These SNPs were present in the FLLL population
with frequencies > 20% and interestingly with contrasted
frequencies between FL (fat line) and LL (lean line), two
subpopulations divergently selected for adipose tissue weight
(Leclercq et al., 1980). The rs15031398 SNP is absent in FL
(Figure 4B); in the LL population in which we observed both
SNPs (Figure 4C), we did not find any animal with the TGA

(stop-gained) haplotype (composed of one variant only), with
the rs316701182 T variant being always associated with the
rs15031398 C variant within the “TGC” MNV. The absence of
TGA (stop-gained) haplotype is consistent with several SLC27A4-
knockout mouse studies which report prenatal lethality (Gimeno
et al., 2003) or neonatal lethality (Herrmann et al., 2003; Moulson
et al., 2003; Lin et al., 2010; Tao et al., 2012). The SLC27A4
gene codes fatty acid transport protein 4 (FATP4), which is
particularly involved in the uptake of long-chain fatty acids
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FIGURE 3 | Comparison of the functional impact of MNVs (right) and their component SNPs (left) for each of the 2,965 MNVs. Left: The consequence originally
predicted for the component SNPs, the most severe impact being retained by the codon (see Figure 2 or the text for the order). Right: The new prediction
associated with the MNVs. For each category of functional predictions of the component SNPs (left), the numbers and percentages are given with new predictions
due to the associated MNV. The two slashes indicate that the scale has been adapted (reduction by five times) for better readability.

FIGURE 4 | SLC27A4 with an MNV composed of two phased SNPs observed in the experimental divergent lean line (LL). (A) Exon structure of the SLC27A4 gene
and the MNV location. (B) For the two SNPs (SNP1: rs316701182 and SNP2: rs15031398) related to the MNV of interest, the allele position (on the Galgal5
genome), functional impact on the associated protein, and frequencies in the FLLL population are indicated, and the two FL and LL subpopulations are divergently
selected on abdominal fat weight. (C) Effects of the four haplotypes related to SNP1 and SNP2 separately analyzed by VEP and frequencies in LL (n = 12) and FL
(n = 12) subpopulations and focus on the percentage of observed haplotypes in the two FL and LL subpopulations. The haplotypes were determined through the
IGV browser of mapped RNA-seq reads against the chicken genome. (D) Tissue expression of the gene in a chicken RNA-seq dataset composed of 21 tissues (Jehl
et al., 2020).
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(LCFAs); this gene is highly expressed in various chicken tissues
as shown in Figure 4D with an expression > 10 TPM in the liver,
ovary, optical system, skin, and intestine (ileum). Interestingly,
FATP4 is thought to play a major role in dietary fatty acid
uptake in intestinal epithelial cells (Hirsch et al., 1998) and in
physiological uptake across cell membranes of LCFAs, which are
key metabolites for energy generation and storage; it is viewed as
a target to prevent or reverse obesity (Hirsch et al., 1998; Schaffer,
2002). FATP4 could be then related to the lean phenotype of
the LL population for two reasons. First, the “TGC” (cysteine)
MNV haplotype is reported as a severe change by the SIFT
software package compared to the reference “CGA” (arginine)
haplotype, suggesting a severe impact on the FATP4 protein
function. Second, this “TGC” MNV haplotype is absent in FL
birds, whereas it is frequent (42%) in 12 LL birds, with a higher
frequency than expected (Figure 4C). We confirmed these results
by extending this analysis to 58 birds (29 birds per line) using
PCR amplification of the region of interest followed by Sanger
sequencing. No rs15031398 was identified in the FL line. In the LL
line, we observed 12 birds carrying the “TGC” MNV haplotype
(three homozygous and nine heterozygous) and no bird with the
TGA (stop-gained) haplotype. These results suggest a strong but
not lethal impact of the MNV haplotype on the FATP4 protein
function, which could then participate to the lean phenotype of
the LL line. However, a genetic association study is needed to
support a potential causal link between the FATP4 dysfunctional
MNV and a low adiposity in the LL line compared to the FL line.

CONCLUSION

We have shown that MNVs represent an important class of
genetic variations since they have a significant impact on
polymorphism functional interpretation with roughly 40% of
MNVs in our dataset inducing reannotation. These reannotations
show a decreased impact severity of MNVs when compared to
their constituent SNPs, at least for the stop-gained category. As
previously demonstrated in human studies, our results in chicken
demonstrate the value of haplotype-aware variant annotation
and the interest to consider MNVs in coding region particularly
when focusing on severe functional consequences such as stop-
gained. We illustrated such a case with an erroneous stop-gained
annotation found in the chicken SLC27A4 gene.
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Rainbow trout is an important model organism that has received concerted international
efforts to study the transcriptome. For this purpose, short-read sequencing has
been primarily used over the past decade. However, these sequences are too
short of resolving the transcriptome complexity. This study reported a first full-length
transcriptome assembly of the rainbow trout using single-molecule long-read isoform
sequencing (Iso-Seq). Extensive computational approaches were used to refine and
validate the reconstructed transcriptome. The study identified 10,640 high-confidence
transcripts not previously annotated, in addition to 1,479 isoforms not mapped to the
current Swanson reference genome. Most of the identified lncRNAs were non-coding
variants of coding transcripts. The majority of genes had multiple transcript isoforms
(average ∼3 isoforms/locus). Intron retention (IR) and exon skipping (ES) accounted
for 56% of alternative splicing (AS) events. Iso-Seq improved the reference genome
annotation, which allowed identification of characteristic AS associated with fish growth,
muscle accretion, disease resistance, stress response, and fish migration. For instance,
an ES in GVIN1 gene existed in fish susceptible to bacterial cold-water disease (BCWD).
Besides, under five stress conditions, there was a commonly regulated exon in prolyl
4-hydroxylase subunit alpha-2 (P4HA2) gene. The reconstructed gene models and
their posttranscriptional processing in rainbow trout provide invaluable resources that
could be further used for future genetics and genomics studies. Additionally, the study
identified characteristic transcription events associated with economically important
phenotypes, which could be applied in selective breeding.

Keywords: rainbow trout, transcriptome, PacBio, Iso-Seq, long reads, alternative splicing, alternative
polyadenylation, exon usage

INTRODUCTION

Rainbow trout is one of the most important fish species that significantly contributes to the
aquaculture industry of the United States and has been extensively used as a model organism
for biomedical research. International efforts have been ongoing over the years to develop
genomic and transcriptomic resources for this species (Salem et al., 2010, 2015; Ali et al., 2014;
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Berthelot et al., 2014; Al-Tobasei et al., 2016). The Sanger
sequencing approach has been considered as the gold standard
for sequencing full-length (FL) cDNA clones and genome
annotation (Denoeud et al., 2008). This approach was previously
used with the 454 pyrosequencing technology to assemble the
rainbow trout transcriptome yielding transcripts with an average
length below 1 kb (Salem et al., 2010). Sanger sequencing
fell behind when cheaper short-read technologies came out to
refine the rainbow trout transcriptome (Fox et al., 2014; Salem
et al., 2015). The rainbow trout genome assembly (Berthelot
et al., 2014), released in 2014, failed to completely cover and
adequately anchor a high percentage of genes to chromosomes.
More recently, the genome assembly and gene spaces were
further refined (Pearse et al., 2020). Despite the accumulation
of massive short-read data over recent years, the lack of FL
transcripts has been a significant limitation to define alternatively
spliced and polyadenylated transcripts leading to incorrect or
incomplete gene annotations (Au et al., 2013; Abdel-Ghany
et al., 2016). Transcript reconstruction methods for short reads
achieved good precision at the exon level, but the accuracy
was low to assemble complete transcripts even in species with
simple transcript structures (Steijger et al., 2013). Short reads can
accurately identify splice sites but are limited to infer splice site
usage and discover transcript isoforms (Steijger et al., 2013; Wang
et al., 2016).

Alternative splicing (AS) is a predominant phenomenon in
eukaryotic genomes that increases the repertoire of proteins
without increasing the number of genes (reviewed in Kornblihtt
et al., 2013). In humans,∼95% of the multi-exonic genes undergo
AS (Pan et al., 2008; Barash et al., 2010) and, thus, facilitate
the evolution of complex functional transcriptomes capable
of regulating various molecular, cellular, and developmental
processes (Kalsotra and Cooper, 2011; Seo et al., 2013). In
Drosophila, the DSCAM gene alternatively splices to generate
more than ∼38,000 isoforms equivalent to ∼2.5 the number of
genes in the fly (Schmucker et al., 2000). The biological functions
of multiple isoforms are poorly explored; however, some studies
provided evidence for the mechanistic regulatory role of AS. For
example, the Bcl-x gene of the fruit fly generates two transcript
isoforms coding for antagonistic proteins where one isoform
activates apoptosis and the other inhibits it (Li et al., 2004).
In humans, AS due to skipping exon 7 of the SMN (survival
motor neuron) has been demonstrated to directly correlate with
spinal muscular atrophy (Zhou et al., 2008). Conversely, the
inclusion of exon 10 in tau transcript due to abnormal splicing
has been implicated in tauopathies (Zhou et al., 2008). Clinical
strategies are underway to target aberrant AS associated with
human diseases (Zhou et al., 2008, 2012).

In addition to AS, recent RNA sequencing studies showed
that alternative cleavage and polyadenylation contribute to
transcriptome complexity and diversity in higher organisms (Wu
et al., 2011; Sherstnev et al., 2012). Although RNA-Seq provides
massive depth and understanding of the transcriptome, RNA-
Seq protocols are behind in resolving transcript termini (Steijger
et al., 2013). Therefore, other methods for sequencing 3′ and
5′ ends were adopted to retrieve requisite information. Cap
analysis for gene expression (CAGE) sequencing has been used

to annotate transcription start sites (TSSs) (Main et al., 2013;
Boley et al., 2014), whereas deep 3′-sequencing (3′-seq) was used
to define transcript termini and reveal unexpected alternative
polyadenylation (APA) patterns (reviewed in Miura et al., 2014).
In the human complex transcriptome, 54% of genes have multiple
TSSs (Tyner et al., 2017). Precise promoter annotation will help
to investigate the 5′ untranslated region (UTR) differential usage
and the functional impact of genetic variation on gene expression.
For instance, a regulatory single nucleotide polymorphism
creates a new TSS causing thalassemia (De Gobbi et al., 2006). 3′
UTRs are the major mediators for posttranscriptional regulatory
mechanisms, and therefore, gain or loss of regulatory elements
such as microRNA binding sites, due to APA, can affect transcript
stability and translational efficiency (reviewed in Miura et al.,
2014). Although specialized methods in resolving transcript
termini are available, none of the technologies mentioned above
provides insights into the complete transcript structure.

The single-molecule real-time (SMRT) Iso-Seq of Pacific
Biosciences (PacBio) allows a comprehensive analysis of the
transcriptome. Unlike short-read RNA-Seq, Iso-Seq can capture
full-length sequences, thereby improves gene annotation and
accurately identifies transcript isoforms and gene fusions
(Nudelman et al., 2018; Feng S. et al., 2019; Tian et al.,
2019). Besides, long-read sequencing provides clear evidence for
posttranscriptional processes such as APA and splicing events
(Treutlein et al., 2014; Abdel-Ghany et al., 2016). Thus far, long-
read sequencing has not widely been used in fish, with few reports
in Danio rerio (Nudelman et al., 2018), Lateolabrax maculatus
(Tian et al., 2019), Misgurnus anguillicaudatus (Yi et al., 2018),
Gymnocypris selincuoensis (Feng X. et al., 2019), and Salmo
salar (Ramberg et al., 2021). Conducting similar analyses in other
species will contribute to understanding AS and the regulatory
roles of APA and reveal the evolutionary conservation of splice
isoforms (Abdel-Ghany et al., 2016).

In this study, PacBio long-read transcriptome sequencing was
applied to improve the rainbow trout transcriptome annotation
and yield a catalog of high-confidence transcript isoforms. We
sequenced 14 tissues from three doubled haploid YY males
from the Swanson River clonal line to achieve high coverage
of transcript isoforms. In parallel, short-read RNA-Seq datasets
were used to validate splice sites and AS events. The study
findings revealed that intron retention (IR) is the most frequent
AS event. The corrected PacBio transcriptome has been used
to study the plasticity in exon usage in association with several
physiological conditions of the fish. This study demonstrated
the utility of PacBio Iso-Seq platform to characterize FL
cDNA sequences and identify novel genes/isoforms, improving
genome annotation and extending our knowledge/understanding
of the rainbow trout transcriptome beyond the currently
available resources.

RESULTS AND DISCUSSION

Iso-Seq Analysis Pipeline
Large-scale sequencing is essential for gene discovery and
genome annotation; however, the sequencing depth, sequence
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completeness, and cost are the main limitations of sequencing
technologies (Wang et al., 2016). EST sequences and 454
pyrosequencing were previously used to assemble the trout
transcriptome (Salem et al., 2010). Sanger sequencing is relatively
expensive and generated sequences shorter than 1 kb. The
454 pyrosequencing produced ∼1.3 million reads (344 bp long
on average) shorter than the EST sequences (Salem et al.,
2010). Recently, Illumina short-read sequencing provided high
sequencing depth, which assisted in refining the transcriptome
(Berthelot et al., 2014; Salem et al., 2015; Pearse et al., 2020)
and providing insights into transcriptional networks (Ali et al.,
2018; Paneru et al., 2018) and gene structure (Berthelot et al.,
2014; Pearse et al., 2020). However, short-read RNA-Seq breaks
the continuity of the transcript and, therefore, fails to reconstruct
the actually expressed transcripts and impairs our understanding
of the functional aspects of isoform diversity (Steijger et al.,
2013; Tilgner et al., 2014). More recently, PacBio Iso-Seq has
been extensively used to identify FL transcripts and improve
genome annotation (Abdel-Ghany et al., 2016; Wang et al.,
2016; Nudelman et al., 2018; Feng S. et al., 2019; Feng X.
et al., 2019; Tian et al., 2019). To characterize the rainbow trout
transcriptome using Iso-Seq, RNA samples were isolated from 14
tissues in addition to a pooled RNA sample from fertilized eggs at
different embryonic developmental stages. Tissues were collected
from three doubled haploid fish to reduce heterozygosity but
maintain tissue specificity. Twenty samples from two fish were
barcoded and sequenced on four SMRT cells. To obtain a higher
yield per tissue, 15 samples from one more fish were sequenced
using SMRT cell per tissue. To reconstruct a high-confidence
FL transcriptome, the ToFU pipeline (Isoseq3 v3.2.2) (Gordon
et al., 2015) was used as illustrated in Figure 1. PacBio sequencing
yielded a total of 6,776,786 reads of inserts (RoIs). Circular
consensus sequencing (CCS) reads were generated and classified
into 5,411,377 (79.9%) full-length non-chimeric (FLnc) reads of
length ranges from 50 up to 25,831 bp (avg. = 2.3 kb). FLnc reads
were defined as sequences having 5′ and 3′ barcoded primers and
the poly(A) tail. Reads lacking any of these requirements were
classified as non-full length (nFL) and were excluded from the
analyses. In sea bass (Lateolabrax maculatus), 42.5% of the reads
were classified as FL (Tian et al., 2019). The high percentage of
the FLnc reads (79.9%) indicates high integrity of the trout RNAs
used in the current Iso-Seq study.

The iterative clustering for error correction (ICE) algorithm
was used in the Iso-Seq pipeline to obtain clusters of FL reads
and then compute FL consensus isoform sequences (Figure 1).
High-quality consensus sequences (452,955 FLnc) were mapped
to the rainbow trout genome (NCBI Omyk_1.0) (Pearse et al.,
2020) using the minimap2 alignment tool. A total of 451,178
reads (99.61%) were mapped to the reference genome, suggesting
that the error rate of PacBio raw data, if any, was successfully
corrected by the ICE as previously reported (Gordon et al.,
2015). The percentage of unmapped reads (0.4%) was lower
than that (3.6%) reported for zebrafish (Nudelman et al.,
2018). The mapped reads were collapsed using the Cupcake
tool, yielding 108,501 non-redundant isoforms (average length
∼2.8 kb) exhibiting alignment identity ≥ 0.95 and alignment
coverage ≥ 0.99. To avoid truncated transcripts, incomplete

retrotranscription reads differing only in the exonic structure
of the 5′ ends were considered redundant, and only the
longest isoform was retained. Although the high mapping
percentage was achieved, we noticed small indels accumulated
in 33.6% of the collapsed transcripts (avg.∼1.6 indels/transcript)
(Supplementary Table 1). Small indels were previously reported
in 56.2% of the FL transcripts identified from a mouse neural
differentiation PacBio dataset (Tardaguila et al., 2018). Previous
efforts indicated that correction of indels with matching short
reads decreased the number of transcripts harboring indels to
16% but was not satisfactory for open reading frame (ORF)
prediction (Tardaguila et al., 2018). Thus, in our study, we
used a reference-guided error correction; all collapsed isoforms
were mapped back to the genome by SQANTI2, which returned
a corrected PacBio reference transcriptome. In a previous
study, a hybrid error correction approach using short reads
and TAPIS (reference-guided error correction) yielded a 96%
mapping percentage compared with 95% using TAPIS suggesting
achievement of a high alignment rate without Illumina short
reads (Abdel-Ghany et al., 2016).

Filtration and Characterization of the
PacBio Isoforms
Tardaguila et al. (2018) recommended applying quality filters
on the PacBio sequencing data to avoid potential technical
artifacts due to reverse transcriptase (RT) template switching
and off-priming. RT switching is enhanced by RNA secondary
structures, which allow RTs to jump without terminating
cDNA synthesis leading to gaps that could be interpreted
as splicing events. Additionally, the oligo(dT) primer may
anneal to non-poly(A) tail in A-rich regions of the template
resulting in false cDNA molecules. To investigate the possible
intrapriming, the percent of genomic “A’s” in downstream
20 bp from the TTS were calculated. Thus, we adopted
various approaches to remove potential technical artifacts
from the PacBio transcriptome, including short-read support
(Accession # PRJNA389609, PRJNA380337, PRJNA227065,
and PRJNA259860), intrapriming, and RT-switching activities
(Supplementary Figure 1). Overall, quality filters removed
31,641 transcripts (Supplementary Figure 2). The remaining
transcriptome had 76,860 transcripts encoded by 24,729 (95.9%)
known genes and 1,068 (4.1%) novel genes when compared
with the RefSeq annotation reference (Supplementary File 1). In
total, 65,670 ORFs of length ≥ 100 amino acids were predicted
(Supplementary File 2). The predicted ORFs were mapped to
the Swiss-Prot, TrEMBL, and Pfam protein domain databases
(Supplementary Table 2). A total of 62,951 (96%) transcripts
had homology with at least one database entity, whereas 49,690
(76%) transcripts had significant matches in the three databases
(E-value < 10−5). Among all collapsed isoforms in our data,
there were 2,719 (∼4%) transcripts with predicted ORFs and no
matches to any of the protein databases.

Notably, 11,190 transcripts (14.6%) had no ORFs greater
than 100 amino acids long, suggesting that they are non-
coding transcripts. To confirm the non-coding potential of
those transcripts, they were searched against rainbow trout
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FIGURE 1 | Bioinformatics pipeline to reconstruct the rainbow trout transcriptome from the Iso-Seq dataset. CCS.bam file contains circular consensus sequence
(CCS) reads, flnc.bam contains full-length non-chimeric (FLnc) reads, SJ.out.tab contains high confidence collapsed splice junctions (tab-delimited format), and
polyA.list contains a list of polyA motifs to find upstream of the 3′ end site. “hq” stands for high quality.

pre-miRNAs (459 records) (Juanchich et al., 2016) and all the
miRNA stem-loop sequences (38,589 sequences) available in the
miRbase and Rfam (E-value ≤ 1e-10). A total of 489 transcripts
exhibited homology with 92 miRNA precursors (Supplementary
Table 3). There were 10,701 transcripts without homology with
miRNA precursors and other non-coding RNA families in Rfam.
Those transcripts were processed for lncRNA prediction as we
previously described (Al-Tobasei et al., 2016). In total, 4,292
transcripts had a coding score ≤ 1 (Supplementary Tables 4,
5) and, therefore, were considered as lncRNAs. Interestingly,
∼59% of these lncRNAs were non-coding variants of protein-
coding transcripts, missing 5′ exons and/or 3′ fragments than
their coding transcript counterparts (Supplementary Table 4).
Conversion of protein-coding RNA to non-coding RNA has
been reported in some bifunctional coding genes, including
activating signal cointegrator 1 complex subunit 3 (ASCC3)

(Williamson et al., 2017), steroid receptor RNA activator 1
(SRA1) (Hube et al., 2006), and Protein Phosphatase 1 Nuclear
Targeting Subunit (PNUTS) (Grelet et al., 2017). For instance,
the ASCC3 mRNA switches to a shorter non-coding isoform due
to alternative last exon splicing (Williamson et al., 2017). The
short non-coding isoform has opposite effects on transcription
recovery in response to UV-induced DNA damage (Williamson
et al., 2017). LncRNA–mRNA hybrid genes need an in-depth
investigation to unveil their biological regulatory mechanisms.

The final corrected transcripts were compared to the RefSeq
genome annotation (Release 100; GCF_002163495.1) (Figure 2
and Supplementary Tables 1, 6). There were 32,364 (42.1%)
full splice match (FSM) isoforms that perfectly matched
reference transcripts at all splice junctions (Supplementary
Table 1). About 25.4% of the zebrafish long-read dataset
showed an exact match to the RefSeq annotated transcripts
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FIGURE 2 | (A) Length distribution of FL transcripts obtained from Iso-Seq data compared with RefSeq transcripts. (B) Distribution of the number of exons in the
long-read sequences and RefSeq transcripts. (C) Sashimi plot showing an example of novel transcript isoforms on Omy14, detected by the PacBio Iso-Seq
(long-reads track). The bottom (empty) track shows no corresponding annotation for these isoforms in the RefSeq reference. The top three tracks show short reads
from three tissues precisely mapped to the exonic structures of the long-read track.

(Nudelman et al., 2018). This result suggests the presence of a
significant fraction of undiscovered transcriptional diversity in
the current RefSeq annotation. Also, 17.4% incomplete splice
match (ISM) transcripts were identified as partially matching the
reference genome. In zebrafish, 14.8% ISM transcripts lacking
5′– and 3′ end exons were identified (Nudelman et al., 2018).
Furthermore, 31,125 (40.5%) novel isoforms were identified
in this study. Remarkably, the PacBio isoforms had a fewer
average number of exons (avg. 8.8 vs. 11.7 exons) and isoforms
per gene compared with the RefSeq transcripts (avg. 3 vs. 4.7
isoforms). We also noticed that novel genes, compared with
the RefSeq annotation, tend to have a single multi-exonic (avg.
3.6 exons) isoform per gene. The distribution of isoforms per
gene and transcript lengths by structural categories are shown in
Supplementary Figures 3a–c.

Notably, the PacBio isoforms (2.8 kb) are significantly
shorter than the RefSeq transcripts (3.2 kb) on average (t-test,
p = 3.05 × 10−243). The distances of 3′ end and 5′ end of FSM
and ISM transcripts from the annotated polyadenylation and
transcription start sites were calculated, respectively (Figure 3).
Within 20 nt upstream of the annotated polyA site, only 41%
of FSM transcripts had an exact or close to complete overlap
with the 3′ end of matched reference transcripts (Figure 3A).
In contrast, ∼15% of FSM transcripts showed a complete or
close to complete overlap with the annotated 5′ end (Figure 3B).

Additionally, it was obvious that more than 50% of 3′ ends of ISM
sequences were falling short within 1 kb upstream of the reference
annotated 3′ end (Figure 3C). Most of the ISM transcripts had
short 5′ ends, particularly within 1 and 10 kb downstream of the
reference 5′ end (Figure 3D). This result agrees with the notion of
less control over the completeness of 5′ ends during cDNA library
preparation. The imperfect matches between both ends of the
PacBio FSM transcripts and reference transcripts may indicate
APA/alternative TSS events (Tardaguila et al., 2018). Further
investigation using specialized methods in resolving transcript
termini is warranted.

Alternative Splicing and Polyadenylation
Modes
Splice junctions were classified as canonical and non-canonical
according to the dinucleotide pairs at the beginning and end of
the encompassed intron (Tardaguila et al., 2018) (Supplementary
Table 6). Junctions harboring GT-AG, GC-AG, and AT-AC were
considered canonical, whereas other possible combinations were
non-canonical splicing. Junctions in the reference were described
as known junctions; otherwise, they were considered novel
junctions. In total, 203,490 splice junctions from the collapsed
isoforms were identified. Most of the identified splice junctions
were from the known category (90.3%) (Figure 4A). Out of
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FIGURE 3 | Distance of PacBio transcript ends relative to the reference genome polyadenylation and transcript start sites. (A) At the 3′ end, ∼41% of FSM
transcripts had an exact or close to complete overlap with the matched reference transcripts. (B) At the annotated 5′ end, ∼15% of FSM transcripts showed a
complete or close to complete overlap with the matched reference transcripts. (C) More than 50% of 3′ ends of ISM sequences fell short within 1 kb upstream the
reference annotated 3′ end. (D) More than 25% of ISM transcripts had short 5′ ends at 10 kb downstream of the reference 5′ end.

183,785 known splice junctions, 183,655 (99.9%) were canonical,
and only 130 (∼0.1%) were non-canonical. In humans, canonical
splice junctions were identified in more than 99.9% of all introns
(Cocquet et al., 2006; Parada et al., 2014). Of note, novel junctions
were found far from the TSS compared with known junctions
(Figure 4B); ∼99.3% of the known canonical junctions were
supported by short reads, whereas ∼57% of the novel canonical
junctions were validated (Supplementary Figure 4). Notably, less
than 1% of the novel non-canonical junctions were supported
by short reads (Supplementary Figure 4). Following filtration,
96.7% of the remaining novel non-canonical junctions were
supported with short reads. Splice junctions are described in
detail in Supplementary Figures 4, 5.

Reconstruction of the rainbow trout transcriptome revealed
that 20,431 loci (79.2%) are multi-exonic (avg. ∼9.6 exons).
As shown in Figure 4C, AS events were extracted from the
annotation file generated from the PacBio dataset (Figure 4D).
A total of 33,383 AS events were identified from the PacBio
dataset. IR was the most abundant AS event (34.15%) followed
by exon skipping (ES) (12.34%) (Figure 4D). On the contrary,
in the RefSeq annotation, ES was the most frequent event
(24.44%), whereas IR was the least represented one (8.15%)
(Figure 4D). Differences may be due to RefSeq annotation
being combined from many tissues and different experimental
conditions. A recent study reported 16–20% of IR of the genes
in mouse and human cortex (Jeffries et al., 2020).
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FIGURE 4 | (A) Most of the identified splice junctions were from the known canonical category (90.3%). (B) Novel splicing junctions tend to be far from the RefSeq
transcription start site (TSS) compared with known junctions. (C) Types of AS. (D) Intron retention was the most frequent AS event in the corrected PacBio
transcriptome and RNA-Seq data. In contrast, exon skipping (ES) predominated the RefSeq.

To validate the PacBio findings, the frequency of six types
of AS (alternative 3′ splice sites; alternative 5′ splice sites; ES;
multiple exon skips, ME; mutually exclusive exons, MX; and IR)
was evaluated by RNA-Seq dataset generated from 13 tissues
(Accession # PRJNA389609). In agreement with the PacBio data,
IR was the most frequent event (36.3%), suggesting the reliability
of the findings obtained from PacBio. IR and ES were reported
as major AS forms in eukaryotes, with ES higher in animals
and IR frequent in all eukaryotes, including plants (Grau-Bove
et al., 2018). Our findings improved the transcriptome catalog
for rainbow trout.

Furthermore, the availability of a PacBio-improved genome
annotation facilitated the identification of differentially regulated
AS patterns among tissues. Short-read datasets from nine
tissues, collected from two Swanson fish (Berthelot et al., 2014;
Salem et al., 2015), were mapped to the Swanson reference
genome. A total of 156 differentially regulated events were
identified (Supplementary Tables 7, 8). Of them, 33.3% were
IR, whereas 21.8% were ES. The splicing event was considered
as tissue specific when the event counted in a tissue was at
least eight-fold higher than the other tissues (log2 FC > 3;
adj. p-value < 0.05). A total of 66 splicing events in 44
unique genes were identified as tissue specific (Supplementary
Tables 7, 8). Of them, 39.4% were IR, whereas 21.2% were ES.

Brain and white muscle had 89% of the tissue-specific splicing
events (Supplementary Table 7 and Figure 5A). Similar to our
findings, Rodriguez et al. (2020) reported a high abundance of
tissue-specific alternative forms in nervous and muscle tissues.
A few tissue-specific splicing events were identified from liver,
head kidney, and stomach. It is worth mentioning that no
differentially regulated/tissue-specific events were identified in
spleen, kidney, intestine, and gill when independently compared
with other tissues. The top tissue-specific AS patterns in
muscle were identified in genes encoding cold shock domain-
containing protein E1 (CSDE1) and phosphate carrier protein,
mitochondrial (SLC25A3) (Figure 5B). CSDE1 is critical for the
efficient formation of stress granules (Youn et al., 2018). SLC25A3
transports inorganic phosphate (Pi) across the mitochondrial
membranes, which is necessary for the final step of oxidative
phosphorylation. Pathologic variants of the SLC25A3 have been
reported in association with skeletal myopathy phenotype in
humans (Mayr et al., 2011; Bhoj et al., 2015). In comparison,
the top tissue-specific AS forms in the brain were identified
in genes coding for protein tweety homolog 1 (Ttyh1) and
ras-related protein Rab-6A (Rab6a) (Figure 5B). In mammals,
the expression of the Ttyh1 gene is mainly restricted to
nervous tissue, where it revealed a role in cell adhesion and
as a transmembrane receptor (Matthews et al., 2007). Rab6a
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FIGURE 5 | (A) MA plots showing major regulated AS forms (IR and ES) in brain and white muscle compared with eight other tissues. The red dots represent the
differentially regulated AS forms at adjusted p ≤ 0.05. (B) Top tissue-specific AS patterns in brain and white muscle.

knockdown led to defects of the cytoskeletal structures in
mice (Ma et al., 2016). Tissue-specific alternative forms were
previously identified in genes related to cytoskeleton, cell-cell
adherens junction, focal adhesion, and structure of muscle
fibers (Rodriguez et al., 2020). Further investigation is needed
to study the role of tissue-specific AS forms in muscle and
brain development.

PacBio sequencing generates FL transcripts containing
poly(A) tails, which help to detect APA sites accurately. We
searched for possible motifs within 50 nt upstream of the
polyadenylation sites. We detected 14 poly(A) signals located
within ∼18 nt upstream of the polyadenylation cleavage
site (Supplementary Figure 6). The AATAAA (60.6%) and
ATTAAA (19.8%) were the most frequent motifs in the PacBio
transcriptome (Supplementary Figure 6), suggesting that these
motifs are essential for polyadenylation. AATAAA is a well-
known conserved poly(A) signal in plants (Feng S. et al., 2019)
and animals (Proudfoot and Brownlee, 1976).

Reconstruction of Coding Regions From
the Unmapped/Poorly Mapped Reads
There were 103,193 reads that were unmapped or poorly mapped
to the genome and filtered out due to low alignment identity and
coverage. The COding GENome reconstruction Tool (Cogent)
was used to reconstruct coding regions from the unmapped
and poorly mapped reads, generating 10,057 gene families and
8,636 unassigned sequences (Tseng, 2020). All coding bases
in isoforms transcribed from a single locus were combined,

yielding a reconstructed contig representing each gene family. All
reconstructed sequences (n = 30,445) (Supplementary Files 3, 4)
were employed as a reference to realign the unmapped/poorly
mapped reads and make them suitable to be processed through
the ToFU pipeline, which filters out reads exhibiting identity less
than 0.95 and alignment coverage below 0.99 to each gene family
locus. Afterward, redundant isoforms were successfully collapsed
into 60,926 FL isoforms (avg. length = 2.9 kb), harboring 41,414
ORFs (Supplementary File 5 and Supplementary Figure 7).
Collapsed isoforms were annotated as shown in Supplementary
Tables 9–11. Remarkably, when all collapsed reconstructed
transcripts were mapped to the Swanson genome sequence, only
388 (0.64%) transcripts were mappable at identity ≥ 0.95 and
coverage≥ 0.99. In contrast, when the 60,926 reads were mapped
to the newly released genome sequence of rainbow trout Arlee
strain [USDA OmykA_1.1 assembly (GCF_013265735.2)], 35,218
(∼58%) transcripts were mappable, suggesting the reliability of
the Cogent reconstructing the coding sequences and perhaps
a necessity to improve the current version of the Swanson
strain genome reference of this study. It is worth mentioning
that the contiguity of the Arlee genome assembly has recently
been improved using long reads. Furthermore, the Bionano
optical mapping and Hi-C proximity ligation sequence data
were used to join the Arlee contigs into scaffolds, which were
then anchored to and ordered on chromosomes using genetic
linkage information. The Swanson genome assembly has 139,799
unplaced scaffolds compared with 939 scaffolds in the Arlee
assembly (Gao et al., 2021).
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rnaQUAST 1.2.01 was used to further assess the PacBio
transcriptome quality compared with Swanson RefSeq
(Bushmanova et al., 2016). The collapsed isoforms were
mapped to the Swanson trout reference genome using GMAP
and BLAT to match the alignments to the reference coordinates

1https://de.cyverse.org/

(Supplementary Tables 12, 13). Based on the common
alignment output, a total of 1,479 collapsed transcripts showed
no significant alignment with the Swanson trout genome; of
these, 346 transcripts (23%) had significant hits with the Arlee
strain (identity ≥ 0.95 and coverage ≥ 0.99), suggesting those
transcripts are missing in the Swanson RefSeq annotation; 8,348

FIGURE 6 | (A) Cogent contig shows chromosome NC_035105.1 (Omy29) missing ∼3.2 kb. Cogent contig shows that the genomic scaffold NW_018576547.1 is
placed on Omy29. The reconstructed contig aligns to chromosome Y on Arlee assembly, which provides evidence for the accuracy of Cogent reconstruction.
(B) Cogent contig shows chromosome NC_035087.1 (Omy11) missing ∼2.5 kb. Cogent reconstructed one contig to which three scaffolds were mapped in this
order, namely, “NW_018554259.1,” “NW_018611425.1,” and “NW_018611250.1” and validated by Arlee assembly. (C) The reconstruction reveals several discrete
misassemblies on Omy18 (NC_035094.1) and anchors three scaffolds to the chromosome. Arlee assembly was used to validate the reconstruction. Strand
orientations are provided on the right side of the figure. Cogent contigs and Arlee loci have the same strand orientations.
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unannotated transcripts did not match any reference transcripts.
The mapping revealed 15,120 misassembled transcripts (mapped
to a different chromosome, strand, reverse order, etc.). To prove
that the misassembled transcripts are not due to a high error rate
in the PacBio sequencing, we mapped the ∼15K misassembled
transcripts to the Arlee and Atlantic salmon genome sequences.
A total of 9,935 (∼66%) and 1,209 (∼8%) transcripts matched
the Arlee and Atlantic salmon genomes at identity ≥ 0.95 and
coverage ≥ 0.99. For instance, Iso-Seq identified seven isoforms;
Cogent resolved it to one contig. Mapping the contig back
to NC_035105.1 (Omy29) showed a misassembly where the
strand orientation is opposite, and Omy29 is missing the first
∼3.2 kb of the contig (Figure 6A). The Arlee assembly provided
evidence for the presence of the 3.2 kb on the Y chromosome
(Figure 6A) and, in turn, the accuracy of our reconstructed
contig. Similarly, the reconstruction yielded a contig mapped
to Omy11, which lacks ∼2.5 kb (Figure 6B). The contig also
maps to three unplaced genomic scaffolds: “NW_018554259.1,”
“NW_018611425.1,” and “NW_018611250.1” (Figure 6B). Also,
Iso-Seq identified six transcripts that Cogent reconstructs into
a single contig. The reconstructed Cogent contig, mapped to
Omy18 and three scaffolds, showed that scaffold order should
be “NW_018606141.1” followed by ”NW_018537055.1” and
“NW_018599262.1” (Figure 6C). Overall, Arlee assembly
provided evidence for the accuracy of contig reconstruction,
suggesting the necessity to refine the gene models in the current
Swanson genome assembly.

The completeness of the PacBio transcriptome was assessed
using Benchmarking Universal Single-Copy Orthologs (BUSCO)
(Seppey et al., 2019). BUSCO v5.1.2 checked for single
and duplicate orthologs for members of the Actinopterygii
lineage. A total of 3,640 BUSCO groups were searched to
assess the transcriptome completion. Overall, 89% annotation
completeness was achieved. BUSCO alignments revealed 8,679
well-mapped FL transcripts and 2,564 FL unmapped/poorly
mapped collapsed transcripts that have hits to 2,662 and 1,185
orthologs, respectively. Remarkably, the unmapped and poorly
mapped transcripts had hits to 564 orthologs with no matches
in the well-mapped transcripts. Our results showed that the
characterization of the rainbow trout transcriptome is close
to complete and that sequencing more tissues from different
biological conditions may help identify more FL transcripts to
complete the genome annotation.

Alternative Splicing, Polyadenylation,
and TSS Associated With Economically
Important Phenotypes
AS and APA are interesting complexity aspects of the
eukaryote transcriptome. The mechanism of AS and APA
generates more transcripts per gene locus and, thus, expands
the proteome diversity. Previous studies showed that the
posttranscriptional mechanisms play important roles in immune
responses (Martinez and Lynch, 2013), muscular atrophy (Lorson
et al., 1999), cancer (Hube et al., 2006), and neurological disorders
(Zhou et al., 2008). Therefore, we used DEXSeq to profile
differential exon usage (DEU) in rainbow trout across different

biological conditions using publicly available data (see “Materials
and Methods” section) to identify AS and APA associated with the
studied phenotypes. Change in relative exon usage could be due
to (1) a change in the rate of exon splicing (i.e., AS), (2) a change
in usage of alternative TSS, or (3) a change in usage of APA sites.

Fish Growth and Muscle Accretion
To identify AS and APA events contributing to fish growth
and muscle accretion, RNA-Seq data previously generated from
fish families exhibiting extreme whole-body weight (WBW) and
muscle yield phenotypes (Ali et al., 2018) were mapped to the
rainbow trout genome using TopHat2. DEU analysis revealed
two exons differentially spliced in fish families showing divergent
WBW phenotypes (Supplementary Table 14). The spliced
transcripts are coding for the negative elongation factor C/D
(NELFCD) and titin genes. The differentially used exon (DUE) in
NELFCD (NC_035093.1 :41691708-41692396) was upregulated
in fish families with low WBW (Supplementary Figure 8).
Knockdown of NELFCD suppressed cancer cell proliferation
in vitro (Song et al., 2018). Conversely, the DUE in titin (exon9)
was upregulated in fish families with high WBW. Titin guides the
assembly of myofibrils from premyofibrils. In zebrafish, knockout
of titin from two titin homologs developed exon-dependent
phenotypes of variable severity, including susceptibility to
biomechanical stresses and degeneration during development
explained by the exon usage hypothesis (Shih et al., 2016).
Additionally, a single exon (NC_035087.1:57851656-57851747)
was significantly DU and upregulated in fish families showing
high muscle yield (Supplementary Figure 8 and Supplementary
Table 14). This exon is in a novel isoform coding for THO
complex subunit 5 homolog (THOC5). THOC5 is an essential
element for normal proliferation and differentiation processes
(reviewed in Tran et al., 2014). Depletion of THOC5 in the
embryonic fibroblasts inhibited cell growth (Guria et al., 2011).
It is noteworthy that all identified DUEs were in the perfectly
mapped transcripts.

To identify AS and APA events involved in muscle atrophy
associated with sexual maturation, RNA-Seq data previously
generated from gravid and sterile rainbow trout were used
(Paneru et al., 2018). A total of 747 DUEs (adj. p-value < 0.05)
were identified (Supplementary Table 14). The eukaryotic
translation initiation factor 4E binding protein 2 (EIF4EBP2)
had the most significant DUE (exon3; log2 FC = 4.4; adj.
p-value = 4.44E-47) in the sterile fish relative to gravid fish.
EIF4EBP2 is known to inhibit protein synthesis, and the
mTOR signaling pathway inactivates it to stimulate cell growth
and metabolic process (Ding et al., 2018). Since this exon
is highly used in sterile fish, we speculate that this exon is
likely inactivating the EIF4EBP2. Conversely, mucosa-associated
lymphoid tissue lymphoma translocation protein 1-like (MALT1)
and four other genes had exons totally absent in the sterile
fish. MALT1 is a signaling component with protease functions
(Coornaert et al., 2008). A total of 258 exons in the reconstructed
poorly mapped/unmapped transcripts were DU (Supplementary
Table 15). Of them, MHC class I heavy chain (PB.5976)
(Figure 7A) and protein-tyrosine kinase 2-beta (PB.17301) were
at the top of the list. Gene enrichment analysis revealed that
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the isoforms harboring DUE are significantly enriched in the
ribosome KEGG pathway and have GO terms belonging to
translation (Supplementary Table 14).

Disease Resistance
Flavobacterium psychrophilum, the causative agent of BCWD,
causes worldwide economic losses to the aquaculture
industry (Nematollahi et al., 2003). Resistance to BCWD
was demonstrated to be a moderately heritable trait that
responds to selection (Silverstein et al., 2009; Leeds et al.,
2010). Selective breeding programs have the potential to
improve heritable phenotypes through existing genetic variation
among individual animals or families (Ali et al., 2020). To
gain insights into the molecular mechanism associated with
resistance BCWD, RNA-Seq datasets previously generated from
two genetic lines exhibiting contrasting resistance to BCWD
(Marancik et al., 2014) were used for exon usage analysis
(Supplementary Tables 14, 15). On day 1 post-infection,
77 exons were DU in the resistant and susceptible genetic
lines. Of them, the first exon in a gene encoding interferon-
induced very large GTPase 1 (GVIN1) was upregulated in
the resistant line (log2 FC = 18.0). GVIN1 was differentially
expressed among survivors of three carp clones following
herpesvirus (CaHV) challenge (Lu et al., 2019). DEU analysis
of all transcriptomic datasets from resistant and susceptible
genetic lines showed that, regardless of the infectious status and
days of infection, the GVIN1 exon (Figure 7B) was completely
absent in the susceptible line (log2 FC = 20.9; Supplementary
Table 14). To further validate these data, the GVIN1 exon
was amplified by qPCR; the exon expression level in the
resistant line exceeded that from the susceptible line by about
25-fold (Supplementary Figure 8). Transcript abundance
analysis revealed that one of the three transcripts harboring
the GVIN1 exon was the most upregulated transcript in the
resistant line (log2 FC = 2.5) compared with the susceptible
line (Supplementary Table 17). The GVIN1 DUE encodes 670
amino acids representing 36% of the whole ORF (1,836 amino
acids long). These results suggest a role for GVIN1 in disease
resistance to BCWD.

Among all datasets from resistant and susceptible genetic
lines (eight RNA-Seq dataset/genetic line), 238 DUEs were
identified in the reconstructed unmapped/poorly mapped contigs
(Supplementary Table 15). For instance, exon 3 in three isoforms
coding for dystrophin was completely absent in resistant fish
and showed log2 FC = –13.6 when compared with fish from
the susceptible line (Supplementary Figure 8). In addition, an
exon in a non-coding transcript (Figure 7C) and an exon in a
transcript encoding microfibril-associated glycoprotein 4 were
alternatively polyadenylated in fish showing divergent resistance
to BCWD. In Oreochromis niloticus, a microfibril-associated
glycoprotein 4 has demonstrated agglutination and opsonization
capability to bacteria (Wu et al., 2020). A small/partial IR event
was detected in a transcript coding for pentraxin-related protein
PTX3 (Figure 8). The latter is a mediator of innate resistance to
bacterial pathogens (Doni et al., 2019).

Our results indicate substantial genetic variation among fish
from the resistant and susceptible lines explained by DUEs.

Fish Migration
To identify the molecular mechanism driving fish migration,
we sought to compare the brain transcriptome at the time of
smoltification (i.e., the physiological transition into seagoing
forms) to an early time point during the second year of
development in both male and female anadromous fish. For
this purpose, an RNA-Seq dataset was obtained from Hale et al.
(2016). A total of 533 and 349 DUEs belonging to the well-
mapped and reconstructed reads were identified in anadromous
female fish during smoltification (24 months) compared with
20-month-old presmolt fish (Supplementary Tables 14, 15).
The DUEs were not identified in the resident rainbow
trout population simultaneously (Supplementary Table 14),
suggesting a potential role in fish migration. The list of DUE
included downregulation of the first exon of an isoform encoding
glycogen phosphorylase B (log2 FC = –16.9; Supplementary
Tables 14, 15). During migration, muscle proteins in salmon
act as a fuel and a carbon skeleton source to maintain the
hepatic glycogen levels (Halver and Hardy, 2002). Hepatic
glycogen content in Atlantic salmon after seawater entry became
much lower (Plisetskaya et al., 1994). This may explain the
complete absence of the glycogen phosphorylase exon at the
24-month-old fish. Also, the upregulation of two exons in a
gene coding for E3 ubiquitin-protein ligase RNF115, which is
involved in protein ubiquitination, may provide evidence of
the role of proteins as a fuel source during migration. Our
analysis revealed enrichment of the DUE-harboring isoforms
in carbohydrate metabolism and ribosome KEGG pathways.
Up on smoltification (24 months), the usage of two small
exons belonging to the gamma-aminobutyric acid receptor-
associated protein (GABARAP) and serine/threonine-protein
phosphatase 2A catalytic subunit alpha isoform (PPP2CA)
dramatically decreased. GABARAP has a role in increasing
the activity of the major inhibitory neurotransmitter (GABA),
which is associated with behavioral traits in mice and Atlantic
salmon (Thornqvist et al., 2015). Hypomethylated cytosines
associated with PPP2CA were previously identified in 20-month-
old fish relative to 8-month-old fish (Gavery et al., 2019). We
noticed exceptional upregulation of two exons in novel isoforms
expressed from a gene encoding Ig mu chain C region membrane-
bound form (Figure 7D). Changes in immune response in
migrating salmon were previously reported not to be due
to infection but rather to the life history of salmon (Dolan
et al., 2016). Upregulated exon was identified in a transcript
encoding unconventional myosin-VIIa, which is required for
sensory perception of the light stimulus (Ahmed et al., 2001) and
sound (Weil et al., 1995). Migratory salmon rely on the sensory
system (Farrell, 2011). Several other DUEs were identified in
transcripts encoding proteins with a role in maintaining the
nervous system such as Aladin (Tullio-Pelet et al., 2000); Na/K
ATPase alpha subunit isoform 1b (Peng et al., 1997; Edwards
et al., 2013); glycerophosphodiester phosphodiesterase 1 (Yanaka,
2007); protein-arginine deiminase type-2 (Asaga and Ishigami,
2007); lysyl oxidase homolog 2A (Du and Zhu, 2018); glutamate
receptor ionotropic, kainate 2 (GRIK2) (Martin et al., 2007);
and ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase
1 (Husain et al., 2008).
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FIGURE 7 | (A) Variable exonic features of isoforms transcribed from a gene encoding MHC class I heavy chain showed opposite usage patterns in atrophying
muscle during sexual maturation; (B) the first exon in a gene encoding GVIN1 revealed exceptional downregulation in fish from the susceptible genetic line for
BCWD; (C) a non-coding transcript was alternatively polyadenylated in fish showing divergent resistance to BCWD; and (D) exceptional upregulation of two exons in
novel isoforms, encoding Ig mu chain C region membrane-bound form, in anadromous female smolts (24-month-old) compared with presmolts (20-month-old).
Differentially used exonic features are shown in pink at the bottom of each panel.

A total of 1,163 and 164 DUEs in the well-mapped and
reconstructed reads, respectively, were identified among
20– and 24-month-old anadromous males (Supplementary
Tables 14, 15). Functional annotation analysis showed
that the DUE-harboring transcripts are enriched in brain
development, axon extension, response to activity, ATP
binding, and tricarboxylic acid cycle. Remarkably, only
10 DUEs were common between male and female smolts.
The list included protocadherin alpha-C2 (PCDHAC2) and
GRIK2. PCDHAC2 is involved in establishing and maintaining
complex networks of neuronal connections in the brain (Wu
and Maniatis, 1999), and GRIK2 has GO terms related to
the detection of cold stimulus involved in thermoception.
Atlantic salmon smolts start their migration at a water
temperature of 5◦C and reach a peak of migration at water
temperature > 8◦C (Whalen et al., 1999). The current study
showed sex-biased exon usage and suggests a role for AS in

regulating the developmental plasticity in anadromous fish
toward smoltification.

Response to Stress
Under intensive rearing conditions, fish experience diverse
stressors, which negatively affect fish health, growth, and filet
quality. Understanding the molecular mechanisms underlying
stress responses will help to develop strategies that target
improving animal welfare and aquaculture industry profitability.
Therefore, we investigated DUEs in rainbow trout fish under five
different stress conditions. For this purpose, RNA-Seq datasets
were downloaded from the NCBI SRA (PRJNA312486). A total
of 665, 37, 286, 554, and 124 DUEs were identified in fish
exposed to high salinity, high temperature, low temperature,
reused water, and crowding, respectively (Supplementary
Table 14). Under all five stress conditions, there was a single
common DUE (NC_035086.1:9191793-9192329) belonging to
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FIGURE 8 | A small/partial intron retention event in a transcript isoform coding for pentraxin-related protein PTX3 (red triangle). Two short-read datasets from a
BCWD-resistant genetic line (red panels) showing no intron retention and two sets from a susceptible genetic line showing intron retention (blue panels).

transcript isoforms encoding prolyl 4-hydroxylase subunit alpha-
2 (P4HA2) (Figure 9). Prolyl hydroxylation is a posttranslational
modification to modulate protein folding and stability (Xiong
et al., 2018). Prolyl 4-hydroxylase requires ascorbate to catalyze
hydroxylation of proline residues in newly synthesized collagen
chains to form 4-hydroxyproline. The hydroxylated residues
stabilize the collagen triple helices under different physiological
conditions (Pihlajaniemi et al., 1991). For instance, it was
reported that stressed animals have a low concentration of
ascorbic acid, which is not sufficient for collagen hydroxylation.
This abnormal collagen affects the basement membrane structure
of epithelial layers, causing skin lesions and blood vessel fragility
(Pandey, 2007).

Three DUEs were identified in response to at least four
stressors. Of them, delta-1-pyrroline-5-carboxylate synthase
(P5CSA) and heat shock protein HSP 90-alpha (HSP90α) had an
upregulated DUE in response to high salinity, low temperature,
reused water, and crowding. In plants, P5CSA is induced in
response to salt stress (Yoshiba et al., 1995) and water deprivation
(Sharma et al., 2011). Pollutant-exposed fish hepatocytes induced
HSP90α, which enabled the hepatocytes to become tolerant to
oxidative stress (Padmini and Usha Rani, 2011). Conversely,
two novel antisense transcripts had a downregulated DUE
in response to high temperature, low temperature, reused
water, and crowding.

A total of 24 DUEs were identified in response to at
least three stressors. For instance, six exons were DU in
response to high salinity, reused water, and crowding such as
angiomotin, adenylate cyclase type 2, and lysine-specific histone
demethylase 1A. Salt adaptation in teleost fish modulates the
adenylate cyclase activity (Guibbolini and Lahlou, 1987). Acute
stress in mouse models was regulated by the lysine-specific

demethylase 1 (Longaretti et al., 2020). Fish differentially used
three common exons when they were subjected to extreme
temperatures. Two of them were belonging to transcripts
encoding myozenin-2 and P4HA2, and a single DUE belonged
to two non-coding antisense transcript isoforms. Transcripts
undergoing posttranscriptional events in response to stress
are enriched/involved in glycolysis and protein processing in
the endoplasmic reticulum (Supplementary Table 16). Stress
levels are often assessed according to plasma glucose and
lactate levels (Arends et al., 1999; Acerete et al., 2004).
Endoplasmic reticulum stress in the hepatopancreas of white
shrimp was reported in response to low temperature (Fan
et al., 2016). Our findings provide a basis for further
investigation of molecular response to stress in rainbow trout,
leading to better breeding practices to improve aquaculture
production efficiency.

CONCLUSION

Iso-Seq data were used to construct a high-confidence FL
transcriptome for rainbow trout. The study identified ∼76K
FL transcripts that are well-mapped to the current Swanson
reference genome and contain ∼65K ORFs longer than 100
amino acids. We identified 1,068 (4.1%) novel gene loci not
previously annotated in the RefSeq reference. Additionally,∼60K
FL isoforms that were either poorly mapped or unmapped
(∼1.4K transcripts) to the current genome were reconstructed
into 30,445 Cogent contigs. Unlike the RefSeq annotation, PacBio
and RNA-Seq data revealed that IR is the most frequent AS event
in the rainbow trout. The PacBio-improved transcriptome was
used to identify AS and isoform expression associated with fish
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growth and muscle accretion, disease resistance, migration, and
stress response. The improved transcriptome provides an avenue
for future genetics and genomics studies to enhance aquaculture
production efficiency.

MATERIALS AND METHODS

Production of Doubled Haploid Fish
Fish from the Swanson clonal line were obtained from the
Washington State University (WSU) trout hatchery. Fish were
produced as previously described (Scheerer et al., 1986; Young
et al., 1996; Robison et al., 1999). Androgenesis was used
to produce first-generation homozygous fish where eggs were
gamma-irradiated before fertilization (Young et al., 1996;
Robison et al., 1999). Sperms were collected from sexually
matured homozygous males to perform another cycle of
androgenesis producing homozygous clones (Scheerer et al.,

1986). Three fish were dissected to collect tissues for Iso-
Seq. Tissues included white muscle, red muscle, kidney, head
kidney, spleen, stomach, gill, testis, heart, bone, skin, brain, liver,
and intestine. Also, fertilized eggs at different developmental
stages were collected.

Library Preparation and Sequencing
RNA was isolated from frozen tissues using TRIzol reagent
(Life Technologies, Carlsbad, CA, United States) according to
the guidelines of the manufacturer. RNA integrity was checked
using Bioanalyzer (Agilent, Santa Clara, CA, United States2).
RNA samples with RIN > 9 were used for Iso-Seq library
preparation. The Clontech SMARTer PCR cDNA Synthesis
Kit was used for first-strand cDNA synthesis according to
PacBio instructions.

2https://www.agilent.com/

FIGURE 9 | A single exon (NC_035086.1:9191793-9192329) in an isoform encoding prolyl 4-hydroxylase subunit alpha-2 (P4HA2) was differentially used under all
five studied stress conditions [(A) crowding, (B) high salinity, (C) high temperature, (D) low temperature, and (E) reused water]. Differentially used exonic features are
shown in pink at the bottom of each panel.
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Following PCR cycle optimization, a large-scale PCR was
performed to generate double-stranded cDNA for SMRTbell
library construction. AMPure PB Bead Purification of large-
scale PCR products was performed and exonuclease was used
to remove failed ligation products. AMPure PB beads were
used to purify SMRTbell templates twice. The sequencing
libraries were prepared by annealing a sequencing primer and
binding a polymerase to SMRTbell templates. In total, 19 SMRT
cells were sequenced.

Iso-Seq Analysis Pipeline
The pipeline included three initial steps: generation of CCS
subreads, classification of FL reads, and clustering of FLnc
reads. Polished CCS subreads were generated, using CCS v4.0.0,
from the subreads bam files with a minimum quality of 0.9
(–min-rq 0.9). The default minimum number of FL subreads
(n = 3) required to generate CCS for a zero-mode waveguide
(ZMW) was used. FL transcripts were determined when the
sequences had the poly(A) and the 5′ and 3′ cDNA primers.
Lima v1.10.0 and isoseq3 refine v3.2.2 were used to remove
the primers and poly(A) tails, respectively. The clustering
algorithm ICE was used to obtain high-quality FL consensus
sequences. The consensus transcripts were mapped to the
Swanson rainbow trout reference genome (Pearse et al., 2020)
using minimap2-2.17 (r941) (-ax splice -uf –secondary = no
–C5 –O6,24 –B4) (Li, 2018). SAM files were sorted and
used to collapse redundant isoforms using Cupcake v9.1.13.
Unmapped and poorly mapped isoforms were used as input
to Cogent v6.0.04 to reconstruct the coding genome. The
reconstructed contigs were used as a fake genome to process
and collapse the unmapped and poorly mapped reads through
the ToFU pipeline.

Transcriptome Characterization
SQANTI2 v6.0.0 was used to characterize and curate the
long-read transcriptome (Tardaguila et al., 2018). The
Swanson rainbow trout reference genome sequence [Omyk_1.0
(GCF_002163495.1)], annotation file (GTF), and quantification
data were used as input to SQANTI2 to characterize/classify
the collapsed isoforms and assess the quality of the sequencing
data and the preprocessing ToFU pipeline (Gordon et al.,
2015). A reference-guided error correction was implemented.
Transcripts were classified into eight structural categories.
Transcripts having splice junctions in a complete match with
the reference transcripts were labeled as “FSM,” whereas
transcripts with partial consecutive matches with the annotated
transcripts were labeled as “ISM.” Novel isoforms of known
genes were classified into Novel in Catalog “existing in the RefSeq
annotation” (NIC) if containing a combination of annotated
donor/acceptor sites or into Novel Not in Catalog (NNC) if
at least containing one unannotated donor or acceptor site.
In addition, “Genic Genomic” isoforms partially overlap with
exons/introns of an annotated gene, whereas “Fusion” transcripts
span two annotated loci. Transcripts in novel genes, compared

3https://github.com/Magdoll/cDNA_Cupcake
4https://github.com/Magdoll/Cogent

with the RefSeq annotation, were classified as “intergenic” if
existing outside the body of known genes, “Genic Intron” if
completely contained within a known intron, and “Antisense”
if overlapping the complementary strand of a known transcript.
Potential artifacts were removed using SQANTI machine
learning classifier. Transcripts flagged as intrapriming and
RT-switching candidates were filtered out. The GeneMarkS-T
(GMST) algorithm was implemented to predict ORFs from the
corrected transcripts (Tang et al., 2015). Predicted ORFs were
mapped to the Pfam protein domain database, Swiss-Prot, and
TrEMBL database. The Database for Annotation, Visualization
and Integrated Discovery (DAVID) v6.8 was used for gene
enrichment analysis (FDR< 0.05) (Huang da et al., 2009).

AStalavista5 was used with the raw annotation file generated
from the Iso-Seq data to identify and classify AS events. SplAdder
(Kahles et al., 2016) was used to identify AS events in rainbow
trout tissues using bam files generated from the RNA-Seq datasets
(Accession # PRJNA389609 and PRJEB4450) mapped to the
trout genome. The frequencies of the six AS events (IR, ES,
MX, ME, alternative 3′ splice sites, and alternative 5′ splice
sites) and significant quantitative differences among tissues were
determined from the SplAdder output files.

Non-coding RNA
Transcripts lacking ORFs or harboring ORFs less than 100
amino acids long were considered as potential non-coding
transcripts. Those transcripts were aligned to all miRNA stem-
loop sequences in miRbase6 (release 22.1) and trout miRNA
precursors (Juanchich et al., 2016) to identify pre-miRNAs.
Also, putative non-coding transcripts were aligned to Rfam
database to identify miRNAs and other non-coding classes.
The remaining transcripts that did not match miRbase, trout
miRNA precursors, and Rfam and longer than 200 bp were
assessed for coding potential using CPC (CPC score ≤ 1)
(Kong et al., 2007) and CPC2 web servers (Kang et al.,
2017). Transcripts that were evaluated as non-coding were
considered as putative lncRNA transcripts. Finally, these
transcripts were aligned to the previous lncRNA assembly from
rainbow trout (Al-Tobasei et al., 2016) using BLASTn (E-
value 1e-5).

Differential Exon Usage Analysis
FastQC v0.11.9 was used to check the quality of the RNA-
Seq datasets generated from rainbow trout fish under
different biological conditions. Low-quality sequences were
trimmed/removed using Trimmomatic v0.36 (Bolger et al.,
2014). High-quality reads were mapped to the reference
genome sequence by TopHat2 (Kim et al., 2013) with the
default parameters.

DEXSeq package (v1.34.1) (Anders et al., 2012) was used to
infer the DEU in the RNA-Seq datasets (Liu et al., 2014; Marancik
et al., 2014; Hale et al., 2016; Ali et al., 2018; Paneru et al., 2018).
DEXSeq counts the number of reads mapped to each exon (or
part of an exon) in all samples. To infer changes in the relative

5http://astalavista.sammeth.net/
6http://www.mirbase.org/
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exon usage, DEXSeq considers the change in the ratio of the
number of reads mapped to an exon to read counts mapped to
other exons of the same gene across conditions. DEXSeq uses
two python scripts to prepare the GFF file and count the mapped
reads. The first script, dexseq_prepare_annotation.py, was used to
convert the GTF file with gene models into a gff file with collapsed
exon counting bins. The second python script, dexseq_count.py,
uses the sorted BAM/SAM alignment files to count the number
of overlapping reads with each exon counting bin defined in the
prepared GFF file. Default parameters were implemented in the
DEXSeq analyses.

RT-PCR Validation of PacBio Isoforms
and DEU
Reverse transcription (RT)-PCR was carried out to validate
the long-read isoforms and to quantify exon usage as
previously described (Ali et al., 2018). Primers used for
RT-PCR analysis were designed using Primer3. First-strand
cDNAs were synthesized using a Verso cDNA Synthesis
Kit (Thermo Scientific, Hudson, NH, United States)
following the instructions of the manufacturer. Each qPCR
reaction contained a template (100 ng/µl), forward and
reverse primers (10 µM working solution), and SYBR
Green master mix (Bio-Rad, Hercules, CA, United States).
Nuclease-free water was added to each reaction to achieve
a final reaction volume of 10 µl. Quantification was
performed in triplicates. β-Actin gene was used as an
internal standard for normalization of expression. The
PCR for all reactions started with 95◦C for 30 s followed
by 40 cycles. Each cycle lasted 15 s at 95◦C, 30 s at the
appropriate annealing temperature for each primer, and 30 s
at 60◦C. The expression was quantified using the delta delta Ct
(11Ct) method.
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Cattle (Bos taurus) is one of the most widely distributed livestock species in the
world, and provides us with high-quality milk and meat which have a huge impact
on the quality of human life. Therefore, accurate and complete transcriptome and
genome annotation are of great value to the research of cattle breeding. In this study,
we used error-corrected PacBio single-molecule real-time (SMRT) data to perform
whole-transcriptome profiling in cattle. Then, 22.5 Gb of subreads was generated,
including 381,423 circular consensus sequences (CCSs), among which 276,295 full-
length non-chimeric (FLNC) sequences were identified. After correction by Illumina
short reads, we obtained 22,353 error-corrected isoforms. A total of 305 alternative
splicing (AS) events and 3,795 alternative polyadenylation (APA) sites were detected
by transcriptome structural analysis. Furthermore, we identified 457 novel genes, 120
putative transcription factors (TFs), and 569 novel long non-coding RNAs (lncRNAs).
Taken together, this research improves our understanding and provides new insights
into the complexity of full-length transcripts in cattle.

Keywords: cattle, PacBio single-molecule long-read sequencing, full-length transcript, alternative splicing,
alternative polyadenylation, long non-coding RNA

INTRODUCTION

Cattle (Bos taurus) are an agriculturally important species that provide human beings with large
quantities of high-quality protein. As a typical ruminant animal, cattle still play a great role
in sustainable agriculture since they can effectively utilize pastures, silage, and high-fiber crop
residues. Nowadays, genomic information plays an important role in accelerating the molecular
breeding process of cattle, so an accurate and complete reference genome and annotation are
essential for genetic mechanism research, Quantitative trait locus (QTL) mapping, and genomic
selection of important production traits for cattle breeding. The latest reference genome assembly
(ARS-UCD1.2) was first reported in 2018, assembling 2.7 Gb of the genome (Rosen et al.,
2020). The annotation of the ARS-UCD1.2 assembly (NCBI release 106), resulted in 21,039
protein-coding genes, 9,357 non-coding genes, and 4,569 pseudogenes (Rosen et al., 2020).
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This assembly has a higher sequence continuity and accuracy
than the previous reference (UMD3.1.1), and the protein models
predicted in ARS-UCD1.2 assembly annotation are generally
more complete than in UMD3.1.1 annotation (Zimin et al.,
2009; Rosen et al., 2020). However, due to the diversity of
cattle breeds, there are distinct genetic characteristics and
allelic variations between breeds, so more genomic information
is needed to explore to complete the annotation of the
structural and functional of the current cattle reference genome
(Crysnanto and Pausch, 2020).

The next-generation sequencing (NGS) technologies, such
as the Illumina platform, has stimulated the construction
of genome and transcriptome resources for many species
(Lan et al., 2012; Li et al., 2012; Oono et al., 2013; Du
et al., 2017; Carruthers et al., 2018). NGS is accurate,
cost-effective, and supported by a wide range of analysis
software and pipelines. However, natural nucleic acid polymers
span eight orders of magnitude in length, and sequencing
them in short amplified fragments complicates the task of
reconstructing and counting the original molecules (Conesa
et al., 2016; Amarasinghe et al., 2020). Therefore, it is difficult
to accurately reconstruct expressed full-length transcripts,
predicting splice isoforms and analyzing the transcriptome
diversity based on NGS reads (Wang L. et al., 2019). The
third-generation sequencing (TGS) technologies, which include
Pacific Biosciences single-molecule real-time (SMRT) and
Oxford Nanopore Technologies (ONT) nanopore sequencing
technology, can avoid the disadvantages of NGS technology
and obtain high-quality long-read transcripts due to their
ability to sequence reads up to 50 kb (Jia et al., 2018;
Zuo et al., 2018). Then, we can obtain more complete
transcripts and analyze structural variations in the genome and
transcriptome (Eid et al., 2009; Koren et al., 2012; Sharon
et al., 2013; Tilgner et al., 2015; Amarasinghe et al., 2020).
However, the long-read sequencing technologies still have
some limitations, such as higher error rates and relatively
low throughput (Wang et al., 2016; Wang X. et al., 2019).
Several studies have indicated that the error rate for SMRT
sequencing (15%) is higher than the Illumina platform (1%)
(Weirather et al., 2017; Amarasinghe et al., 2020). Moreover,
NGS and TGS technologies have different error models. The
Illumina short reads mainly contain miscalled bases with
increasing frequency toward read ends, while SMRT sequencing
generates primarily insertion-deletion errors in a random pattern
(Hackl et al., 2014; Beiki et al., 2019). Fortunately, some
research has shown that the accurate and abundant NGS
reads can be used to correct errors in TGS and improve
the accuracy of long reads sequencing (Sharon et al., 2013;
Xu et al., 2015).

Recently, the strategy of combining SMRT sequencing
and Illumina RNA-seq data to detect structural variation,
novel genes, or isoforms and reveal functional variety at the
transcriptional level has become more prevalent (Amarasinghe
et al., 2020). According to this strategy, 24,797 alternative
splicing (AS) and 11,184 alternative polyadenylation (APA)
events were detected in rabbit (Chen et al., 2017). In
pig, researchers detected 28,127 novel isoforms from 26,881

novel genes based on the high-quality full-length isoforms.
Meanwhile, they identified more than 92,000 novel AS events
and found intron retention (RI) and exon skipping (ES)
were the main AS events in AS model (Li et al., 2018).
Another pig study observed many unique transcripts and
extended more than 6,000 known gene borders, and the
extensions were verified by independent ChIP-seq, 3′-RNA-
seq experiment, and human CAGE data (Beiki et al., 2019).
In maize, many unique isoforms and higher isoform densities
were detected with SMRT sequencing, and 867 novel lncRNAs
were identified which had a much longer mean length than
those identified by Illumina short-read sequencing (Wang et al.,
2016). These findings have provided important information
for improving genome annotation and gene models for
different species.

To improve the transcriptional information and explore
the complexity of cattle transcriptome, we generated
high-quality FLNC reads in the present study by PacBio
SMRT sequencing. We first used Illumina short reads to
correct the relatively high error rates of SMRT long reads.
Then, AS and APA events were detected to explore the
structural complexity of transcripts. We predicted the novel
genes and annotated them using seven databases, and the
transcript factor (TF) and lncRNAs were investigated.
Accordingly, our research contributed to the exploration
of the splice isoforms and transcriptome diversity of
cattle, increased our understanding of the structure of
the transcript, and facilitates the further study of the
genetics of cattle.

MATERIALS AND METHODS

Collection of Samples and RNA
Preparation
The sample collection experiment was conducted on the
farm of Hanjiang Beef Cattle Co., Ltd. (Hubei, China). The
use of animals and private land in this study was approved
by their respective legal owners. The cattle were raised in
the same feeding strategies and conditions. Three unrelated
male Simmental beef calves were collected at 0 days of
age. The calves were stunned by electrical shock and killed
while unconscious. Then, six tissues, consisting of cerebrum,
rumen, liver, spleen, renal cortical, and longissimus muscle,
were sampled for each cattle, snap frozen, and stored in
liquid nitrogen until use. Subsequently, all 18 samples
were subjected to RNA extraction using TRIzol reagent
(Takara, Dalian, China) according to the manufacturer’s
instructions. The RNA concentration was measured using
Qubit R© RNA Assay Kit in Qubit R© 2.0 Fluorometer (Life
Technologies, Carlsbad, CA, United States). RNA integrity
and purity were assessed using the Nanodrop ND-1000
spectrophotometer (NanoDrop Technologies, Wilmington,
DE, United States) and RNA Nano 6000 Assay Kit of the
Agilent Bioanalyzer 2100 system (Agilent Technologies,
Palo Alto, CA, United States), respectively. Qualified
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RNA samples were then used for further cDNA library
construction and sequencing.

SMRT Library Preparation and PacBio
Sequencing
One microgram for each RNA sample was equally pooled
together and prepared for PacBio SMRT library construction.
Full-length cDNA was synthesized by use of the Clontech
SMARTer PCR cDNA Synthesis Kit (TaKaRa, Dalian, China),
and cDNA fraction and length selection (<4 kb and >4 kb)
was performed using the BluePippinTM Size Selection System
(Sage Science, Beverly, MA, United States). Then, one SMRT
bell library was generated using the Pacific Biosciences DNA
Template Prep Kit 2.0 (Pacific Biosciences, CA, United States)
according to the standard method. All the samples were pooled
onto one SMRT cell library, so SMRT data of different tissues
were not available, and tissue-specific analysis of isoforms was not
possible. Finally, SMRT sequencing was performed on the Pacific
Bioscience Sequel platform.

Illumina cDNA Library Construction and
NGS Analysis
All the 18 RNA samples were prepared for Illumina unstranded
cDNA library construction. Briefly, polyadenylated RNA was
isolated and fragmented into ∼200 bp fragments. The first and
second cDNA strands were synthesized successively. The repaired
and purified double-stranded cDNA fragments were selected by
size. Then, the qualified and amplified mRNA libraries were
finally sequenced on an Illumina NovaSeq 6000 platform, and
150 bp paired-end raw short reads were generated. The raw
short reads were subjected to quality filtering using NGS QC
Toolkit (v2.3.3) (Patel and Jain, 2012), for which we trimmed
the first five bases from the 5′ end of the reads and removed
reads consisting of the low-quality bases (QA ≤ 30) >20%
or ambiguous bases >1%. To produce corrected PacBio long
reads, Illumina clean reads are used for independently assembling
transcripts using Hisat2 (v2.1.0) and Stringtie (v2.1.1) (Kim et al.,
2015; Pertea et al., 2015).

Quality Filtering and Error Correction for
PacBio Long Reads
The PacBio raw data were processed using the SMRTlink
(v7.0) software with parameters: minReadScore = 0.75,
minLength = 200. Circular consensus sequences (CCSs)
were generated from subread BAM files (parameters: min_length
200, max_drop_fraction 0.8, no_polish TRUE, min_zscore
–9999, min_passes 2, min_predicted_accuracy 0.8, max_length
18,000) and then a BAM file of CCS was generated. By
searching for the 5′ and 3′ adapters and the poly(A) tail,
the CCS was classified into full length and non-full length
(NFL) reads. Full-length reads with all the three elements
and any additional copies of the adapter sequence within
the DNA fragment were classified as FLNC. We then used
ICE (Iterative Clustering for Error Correction) to identify
the consensus isoforms that formed FLNC and polished the
consensus isoforms with NFL reads to obtain high-quality

isoforms with post-correction accuracy above 99% using Quiver
(parameters: hq_quiver_min_accuracy 0.99, bin_by_primer
false, bin_size_kb 1, qv_trim_5p 100, qv_trim_3p 30). Next,
the Illumina clean data generated above was used to correct
nucleotide indels and mismatches in consensus reads with the
LoRDEC software (v0.7) (Salmela and Rivals, 2014). LoRDEC
uses a hybrid error correction strategy that builds a succinct
de Bruijn graph representing the Illumina short reads, and
seeks a corrective sequence for each erroneous region in the
PacBio long reads by traversing chosen paths in the graph (Fu
et al., 2019). Then, a high-quality PacBio corrected consensus
reads dataset without redundant isoforms was constructed.
Finally, we used the method proposed by Salmela and Rivals
(2014) to evaluate the PacBio data error rate before and after
error correction.

Mapping to the Reference Genome and
Structural Analysis of Genes
Corrected isoforms were aligned to the cattle reference genome
(ARS-UCD1.2) with the Genome Mapping and Alignment
Program (GMAP, version: 2017-06-20) using the following
parameters: –no-chimeras, –cross-species, –expand-offsets 1 -
B 5 -K 50000 -f samse -n 1 (Wu and Watanabe, 2005). The
genome annotation file (NCBI release 106) was used for gene and
transcript determination. Genome-guided construction of the
full transcriptome was successful. Transcripts structure analysis
was performed using the TAPIS pipeline (Version 1.2.1) (Abdel-
Ghany et al., 2016). AS events including IR, ES, alternative 3′
splice site (Alt.3′), alternative 5′ splice site (Alt.5′), mutually
exclusive exon (MEE), alternative first exons (AF), and alternative
last exons (AL) were identified and classified using SUPPA
(v2.3) (Alamancos et al., 2015). Among them, IR is defined
as when one intron is retained within a longer exon and
flanked by two shorter exons simultaneously. ES is defined
as when an exon is absent in some transcripts but present
in others. If an intron is excised at more than one site and
linked to its 5′ or 3′ exons with different boundaries, they
are considered as the Alt. 5′ and Alt. 3′ (Chen et al., 2017).
Alternative terminal exon regulations including AF or AL are
types of AS, which couples with alternative transcription start
sites and APA, respectively (Lian et al., 2020). APA events
were analyzed by TAPIS described previously. The transcription
factors (TFs) were predicted using the animalTFDB 2.0 database
(Zhang et al., 2015).

Due to the limitation of library construction, we can only
obtain lncRNA containing polyA tails. The following four tools
were combined: Coding Potential Calculator (CPC) (Kong et al.,
2007), Coding–Non-Coding Index (CNCI) (Sun et al., 2013),
PLEK (Li et al., 2014), and Pfam database (Finn et al., 2016).
They were used to sort non-protein-coding RNA candidates
from putative protein-coding RNAs in the transcripts. Putative
protein-coding RNAs were filtered out using minimum length
and exon number thresholds. The transcripts longer than 200 bp
with more than two exons were selected as lncRNAs candidates
and then screened using CPC/CNCI/PLEK/Pfam, as these tools
can distinguish protein-coding from the non-protein-coding
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genes. Only the transcripts identified in the four databases were
regarded as lncRNAs.

Novel Gene Prediction and Functional
Annotation
Here we defined a novel (compared to NCBI gene-build) gene
as a gene putatively encoding a detected transcript that does not
match any annotated gene in the cattle reference genome (ARS-
UCD1.2). To obtain comprehensive annotation information,
functional annotations of the novel genes were conducted using
the following seven databases: NR (NCBI non-redundant protein
sequences); NT (NCBI non-redundant nucleotide sequences);
Pfam (Protein family); KOG (EuKaryotic Ortholog Groups of
proteins) (Tatusov et al., 2000); Swiss-Prot (a manually annotated
and reviewed protein sequence database); KO (KEGG Ortholog
database) (Kanehisa et al., 2004); and GO (Gene Ontology). We
used the software of BLAST and set the e-value “1e-10” in the NT
database analysis. We used the software of Diamond BLASTX
and set the e-value “1e-10” in the NR, KOG, Swiss-Prot, and
KEGG database analyses. We used the software of Hmmscan
in the Pfam database analysis. For each transcript searched in
the four databases, functional information for the best-matched
sequence was assigned to the query transcript.

RESULTS

General Properties of PacBio
Sequencing
To reveal the complexity of the transcriptome in cattle, six tissues
(cerebrum, rumen, liver, spleen, renal cortical, and longissimus
muscle) were collected and a pooled RNA sample of them
was sequenced with the Pacific Bioscience Sequel platform to
accurately capture full-length sequences and uncover full-length
splice variants. With SMRT sequencing, 23.6 Gb of raw data
consisting of 441,444 raw polymerase reads was generated. Then,
a total of 14,750,730 subreads (22.5 Gb) were obtained, with an
average read length of 1,526 bp and N50 of 2,367 bp. To provide
more accurate sequence information, CCS was generated from
subreads that pass at least 2 times through the insert, and a total of
381,423 CCSs were obtained. In all, 286,688 CCSs were identified
as full-length reads, and 276,295 were identified as FLNC reads
with low artificial concatemers. The mean length of FLNC reads
was 2,241 bp. The length distribution of the subreads, CCSs,
FLNC reads is shown in Figure 1 and Table 1.

Error Correction of PacBio Long Reads
Using Illumina Reads
The FLNC reads with similar sequences were clustered together
using the ICE (Iterative isoform-clustering) algorithm, and each
cluster was considered as a consistent sequence. Combined with
NFL sequences, the Quiver program was used to polish the
consistent sequences in each cluster. To further correct the
relatively high error rates of PacBio long reads, we generated
∼981.4 million clean reads of NGS sequencing clean data. Then,
the Illumina short reads were used for correcting the consensus

isoform sequences of PacBio long reads. The LoRDEC software
was used to correct polished consensus sequences, resulting in
22,353 corrected sequences, with an N50 length of 2,921 bp and
a mean read length of 2,379 bp (Table 1 and Figure 1D). To
calculate the error rate, the raw and corrected PacBio long reads
were aligned to the cattle reference genome (ARS-UCD1.2) with
BLASR (Chaisson and Tesler, 2012). The error rate is defined
as the sum of the numbers of bases of insertions, deletions,
and substitutions in the alignment divided by the length of
aligned regions for each read. After calculation, the error rates
of PacBio long reads before and after error correction were 9.72
and 2.84%, respectively.

Genome Mapping
We compared all the corrected sequences against the cattle
reference genome using GMAP software. A total of 21,863 reads
(97.81%) were mapped to the reference genome. According to
mapping results, these reads could be divided into four groups:
unmapped, multiple mapped, mapped to “+” and mapped to
“−” (Table 2 and Figure 2A). The unmapped group consisted of
490 reads (2.19%) with no significant mapping to the reference
genome. The multiple mapped group consisted of 1,583 reads
(7.08%) showing multiple alignments. The group of results
mapped to “+” consisted of 10,778 reads (48.22%) that were
mapped to the positive strand of the reference genome, and
the group of results mapped to “−” consisted of 9,502 reads
(42.51%) which were mapped to the opposite strand of the
reference genome. The curve of the corrected isoform numbers
reached a saturation level (Figure 2B), and high-quality reads
(i.e., with coverage and identity values over 98%) accounted for
over 90% (Figure 2C).

Gene Structure Analysis
Gene structure analysis was performed using the TAPIS
pipeline. The GMAP output file and genome annotation (NCBI
release 106) file were used for gene and transcript isoforms
determination. Reads that were mapped to different exons in
known gene regions were considered new isoforms, and isoforms
spanning two or more genes are removed from downstream
splice isoform analysis. Then, 4,862 isoforms were identified,
and they can be divided into three types: (1) 2,104 isoforms
of known genes; (2) 2,250 novel isoforms from known genes;
and (3) 508 novel isoforms from novel genes (Figure 2D and
Supplementary Table 1). Also, 457 novel genes (Supplementary
Table 2) were identified and they were annotated using the Nt,
Nr, Swissprot, GO, KOG, Pfam, and KEGG databases. A total of
63 genes had hits on all 7 databases, and 457 had hits on at least 1
database (Figure 3A and Supplementary Table 3). We analyzed
homologous species by comparing the novel genes to the NR
database, and the results showed that the largest five number of
the novel genes were distributed in Bos taurus (64), Bos mutus
(28), Bos indicus (20), Ovis aries (12), and Macaca fascicularis (10)
(Figure 3B). By using all annotated genes in the cattle genome
as background, GO analysis showed that “Cell,” “binding,”
and “cellular process” were ranked as the most enriched
items in the “cellular components,” “molecular functions,” and
“biological process” categories, respectively (Figure 3C). KOG
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FIGURE 1 | Length distributions of PacBio SMRT sequencing. (A) Number and length distributions of 14,750,730 Subreads sequences. (B) Number and length
distributions of 381,423 CCS sequences. (C) Number and length distributions of 276,295 FLNC sequences. (D) Number and length distributions of 22,353
corrected sequences.

TABLE 1 | Summary of reads from PacBio SMRT sequencing.

Polymerase read Subreads CCS FLNC Corrected consensus

Number 441,444 14,750,730 381,423 276,295 22,353

Mean length 53,457 1,526 2,396 2,241 2,379

N50 109,539 2,367 2,963 2,725 2,921

TABLE 2 | Comparisons of PacBio and Illumina sequenced data for read mapping.

Terms PacBio sequenced data Illumina sequenced data

Number of reads Percentage (%) Number of reads Percentage (%)

Total mapped 21,863 97.81 954,571,462 97.27

Multiple mapped 1,583 7.08 23,405,640 2.38

Uniquely mapped 20,280 90.73 931,165,822 94.88

Reads map to “+” strands 10,778 48.22 465,119,568 47.39

Reads map to “−” strands 9,502 42.51 466,046,254 47.49
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FIGURE 2 | Genome Mapping and Alignment Program (GMAP) analysis of SMRT sequencing. (A) GMAP mapping statistics of the corrected sequences.
(B) Saturation curve of corrected sequences, x-axis represents numbers of full-length non-chimera (FLNC) reads, y-axis represents numbers of genes. (C) Range of
mapping coverage and identity, x-axis represents the scale ranges, y-axis represents the percentages. (D) Classification of transcript isoforms identified.

analysis showed the novel genes were assigned to 17 functional
clusters, and the “general function prediction only,” “translation,
ribosomal structure and biogenesis,” and “cytoskeleton” ranked
as the top three largest categories (Figure 3D). The KEGG results
demonstrated that the novel genes were mapped to 90 KEGG
pathways (Figure 3E).

Analysis of AS and APA Events
One of the most important advantages of PacBio sequencing is
its ability to identify AS events by directly comparing different
isoforms of the same gene. Here, AS events were analyzed with
SUPPA software. Seven AS events (IR, SE, Alt.3′, Alt.5′, MX, AF,
and AL) were identified. A total of 305 AS events were found
based on the PacBio SMRT reads (Supplementary Table 4). Two
kinds of events, skipped exons (95) and retained introns (83),
were much more common than other AS events (Figure 4A).
PacBio sequencing also enables the investigation of the APA
sites. In our study, 3,795 poly(A) sites were identified among the
2,643 genes in the cattle reference genome, 1,929 genes showed
1 poly(A) site, and 21 genes contained at least 5 poly(A) sites
(Figure 4B and Supplementary Table 5). The average number
of poly(A) sites per gene was 1.43.

Identification of TF and lncRNA
Transcription factors (TFs) play important regulatory roles
in animal growth and development. In this study, they were
identified and classified with the animalTFDB 2.0 database.
A total of 120 putative TFs from 24 families were identified,
of which 11 TFs were identified as novel. The numbers of TFs
enriched were as follows: zf-C2H2 (45), ZBTB (14), TF_bZIP
(9), bHLH (8), and MYB (6) (Figure 5 and Supplementary
Table 6). Based on the prediction of CPC, CNCI, PLEK, and
Pfam databases, 2086 transcripts were considered as putative
non-coding RNAs. Finally, 588 transcripts found in all 4
prediction results were considered as lncRNAs and 569 (96.8%)
of them were novel lncRNAs (Figure 6A and Supplementary
Table 7). Length distribution analysis of the lncRNAs revealed
that their lengths ranged from 0.2 to 7.65 kb and the mean
length was 1.51 kb (Figure 6B). The lncRNAs predicted have
fewer exons when compared to the mRNAs and 541 (92%)
of the lncRNAs were single exons (Figure 6C). Additionally,
the identified lncRNAs were further classified into four types,
including 205 antisense lncRNAs (34.86%), 171 sense intronic
lncRNAs (29.08%), 106 sense overlapping lncRNAs (18.03%), and
106 lincRNAs (18.03%) (Figure 6D).
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FIGURE 3 | Function annotation of novel genes. (A) Function annotation of novel genes in all databases (NR, NT, Pfam, KOG, Swiss-Prot, KEGG, and GO). (B) Nr
Homologous species distribution diagram of novel genes. (C) Distribution of GO terms for all annotated transcripts in biological process, cellular component, and
molecular function. (D) KOG enrichment of novel genes. (E) KEGG pathways enrichment of novel genes.

DISCUSSION

RNA sequencing (RNA-seq) has become a ubiquitous tool for
transcriptome-wide analysis of differential gene expression and
transcript structure. However, the major limitation of short-read
is the difficulty in accurately reconstructing expressed full-length
transcripts from the assembly of reads, which are useful for
functional studies of important genes (Conesa et al., 2016).

Developments in sequencing technology have produced
long-read sequencing technology or TGS, which offer many
advantages over short-read sequencing and can effectively
solve the above limitation. As a representative of long-read
sequencing, PacBio SMRT sequencing can capture full-length
transcripts without the need for further assembly, which makes
it an effective method to analyze full-length sequence, AS events,
APA sites, lncRNAs, and gene structure at the transcriptome
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FIGURE 4 | Identification of AS and APA events based on the SMRT sequencing. (A) Number and categories of the AS events identified. (B) Distribution of the
number of poly(A) sites per gene.

FIGURE 5 | Identification of transcription factors based on the SMRT sequencing.

level (Rhoads and Au, 2015; Feng et al., 2019). Furthermore, with
continuing progress in accuracy, throughput, and cost reduction,
long-read sequencing has become an option for a broad range
of applications in genomics and transcriptomics for model and
non-model organisms (Amarasinghe et al., 2020).

In this study, we used PacBio SMRT sequencing to assess
the Simmental cattle transcriptome by pooling RNA samples
from different tissues together. Then, a total of 22.5 Gb of
subreads data were obtained and 381,423 CCSs were generated.
By detecting the sequences, 276,295 were identified as full-
length non-chimeric (FLNC) reads, which accounts for 72.44%
of all CCSs. After removing redundant sequences, the consensus
sequences were obtained. Meanwhile, we acquired paired-end

reads on the Illumina platform, from which ∼981.4 million
clean reads were retained after quality filtering. These short reads
were subsequently used for correcting the consensus isoform
sequences of SMRT sequencing data. Finally, combined SMRT
with Illumina data, 22,353 corrected consensus reads were
obtained in total. After mapping the consensus reads against the
cattle reference genome, the mapping rate was 97.81%, which
shows the high quality of the sequencing data.

We used the TAPIS pipeline to perform transcripts structure
analysis. After further correction and clustering to eliminate
redundancy, we finally got 4,862 high-quality isoforms, among
which 2,104 (43.27%) isoforms were classified as known isoforms
from known genes, 2,250 (46.28%) were classified as novel
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FIGURE 6 | Identification of lncRNA based on the SMRT sequencing. (A) Venn diagram of lncRNA predicted by CNCI, CPC, PLEK, and Pfam tools. (B) Length and
density distribution of annotated lncRNA, novel lncRNA, and mRNA identified. (C) Comparison of exon number of annotated lncRNA, mRNA, and novel lncRNA.
(D) Classification of the types of lncRNA.

isoforms from known genes, and 508 (10.45%) were novel
isoforms from novel genes. AS is a crucial transcriptional
regulation mechanism for increasing the structural and
functional polymorphism of transcripts and proteins. Here, we
found 305 AS events using PacBio sequences. The types of most
AS were ES and IR. Previous studies have indicated that APA
of RNA influenced gene function by changing transcriptome
complexity and gene expression. Our study also provides a
comprehensive genome-wide APA map draft consisting of 3,795
poly(A) sites from 2,643 genes. These results may underestimate
the true number of APA genes because of the low expression of
proximal poly(A) sites.

Long non-coding RNAs (LncRNAs) are important regulators
of gene expression and are involved in a wide range of
biological processes, such as cell proliferation differentiation and
modification of chromatin. Several studies have been conducted
to identify lncRNAs in cattle, but most of them were performed
based on NGS data (Billerey et al., 2014; Koufariotis et al., 2015;
Kern et al., 2018). In our study, 569 novel lncRNAs (mean
length 1.51 kb) were identified based on PacBio sequencing data.
These newly identified lncRNAs will provide additional valid

candidates for future functional characterization. Besides, we
used the animalTFDB 2.0 database to perform TFs prediction
and classification, and then 120 putative TFs from 24 families
were identified.

Taken together, our study generated a large number of gene
models and alternative isoforms that have not been annotated yet
and provide a general encyclopedia of gene transcriptions. These
findings refined the annotation of the reference genome and
are beneficial for characterizing full-length transcripts of cattle,
which are useful for further genetically molecular breeding of
cattle. Of course, this profiling of cattle transcriptome would not
be exhaustive due to the limited number of sequencing samples.

CONCLUSION

Overall, we analyzed the full-length transcriptome of cattle
with PacBio SMRT sequencing. Based on full-length transcripts,
many AS events, APA sites, novel isoforms, novel lncRNAs,
and TFs provide a more comprehensive foundation to explore
cattle transcriptome diversity. Our results may provide valuable
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information for improving cattle draft genome annotation,
optimizing the genome structure, and fully characterizing the
cattle transcriptome.
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