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Editorial on the Research Topic

Autoimmune Vasculitis - Advances in Pathogenesis and Therapies

Systemic vasculitis consists of a collection of heterogenous and rare autoimmune diseases, often
with severe life-threatening manifestations. In this Research Topic, we sought to demonstrate the
breadth of autoimmune vasculitis, the cutting-edge science being performed to better understand
these diseases, and the latest developments in therapies. We were not disappointed. Here, we present
28 articles from across the globe, covering 16 different forms of systemic vasculitis. These include in-
depth reviews, novel clinical observations, experimental mouse model studies, as well as the effect of
COVID-19 on patients with autoimmune vasculitis. Collectively, the articles in this Topic highlight
the complexities of these diseases, their similarities, and the strides that are currently being taken to
develop better treatments.

In the ANCA-associated vasculitides (AAV), Li et al. review the genetic associations including
both the MHC and non-MHC regions associated with AAV. They demonstrate that the MHC
associations provide an additional basis for further dividing the AAV into three subtypes, while
specific mutations in the immunoregulatory pathways provide a link to disease pathogenesis.
Nozaki provides an up-to-date review on the latest in AAV treatment with biologicals, while
O’Sullivan and Holdsworth expound on the relatively new phenomena of NETosis and how
understanding its mechanism of injury can lead to the identification of new therapeutic targets. In
original AAV research papers, Lin et al. correlate clinical observations of glomerular immune
deposition in this traditionally pauci-immune disease with poorer renal survival, and Zeisbrich et al.
identify PD-L1 on monocytes as a potential therapeutic target. In the study performed by Zeisbrich
et al., the surface expression of the immune checkpoint (PL-L1) on peripheral blood monocytes was
assessed in patients with AAV. Monocytes from AAV patients were found to have a lower
expression of PD-L1 compared to healthy controls caused by reduced expression of CMTMS,
which prevents PD-L1 from degradation. The lower expression of PD-L1 monocytes from AAV
patients led to an increased capacity to induce T cells activation and proliferation while inhibiting
lysosomal activity increased PD-L1 expression and reduced T cells stimulation by monocytes. This
study reveals a potential novel strategy for the treatment of AAV by increasing the expression PD-
L1 on monocytes.
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In anti-GBM disease, Shen et al. present an impressive study
of 60 ultra rare cases of atypical anti-GBM disease, i.e. these
patients have linear IgG deposits along their GBM but do not
have circulating anti-GBM antibodies in their blood. They found
that these atypical anti-GBM patients overall had a less severe
renal and pulmonary injury.

In Behcet’s disease, Perazzio et al. present an in-depth and
timely review of disease pathogenesis with a focus on the role of
innate immunity. The French Behcet’s Network conducted the
largest multicenter observational cohort study of apremilast, a
phosphodiesterase 4 (PDE4) inhibitor, to treat Behcet’s patients
with joint and mucocutaneous symptoms refractory to colchicine
and immunosuppressants. Overall, the network found that
apremilast was effective in refractory patients.

In Cogan’s syndrome, Venhoff et al. report that Certolizumab
pegol, a TNF-a-inhibitor, is effective and well tolerated in two
patients with Cogan’s syndrome during pregnancy. This first of
its kind study reveals the safety and efficacy of Certolizumab
pegol in pregnant patients with inflammatory diseases.

In cutaneous vasculitis, Wang et al. show that HMGBI1
blockade in a cutaneous reverse passive Arthus reaction mouse
model of disease vastly reduces disease severity. This finding
suggests that pursuing an anti-HMGBI1 biological treatment in
patients would be a promising strategy.

In Giant Cell Arteritis (GCA), we have in this Research Topic
three distinct reviews. Akiyama et al. review the latest innate and
adaptive immune pathways implicated in GCA; and point to
currently available drugs that would be efficacious at inhibiting
those pathogenic pathways. Robinette et al. provide a very
informative comparison of the similarities and differences in
immunopathology between GCA, polymyalgia rheumatica,
Takayasu Arteritis and clinically isolated aortitis. Reitsema et al.
focus their review on the recent developments in the role of CD8+
T cells in GCA as well as granulomatosis and polyangiitis (GPA).

In IgA nephropathy, Tang et al. apply single-cell RNA
sequencing to kidney biopsies from patients to understand the
pathways that lead to kidney injury. They show that tubule cells, in
particular, were enriched for the TNF signalling, IL-17 signalling
and NOD-like receptor signalling inflammatory pathways.

In Kawasaki Disease, Porritt et al. tested the role of anti-IL-1
treatment (anakinra) in suppressing disease using Lactobacillus
casei cell wall extract (LCWE) injection mouse model.
Interestingly, they found that although anakinra administration
suppressed IlI6 and Stat3 gene expression, disease was
not attenuated.

Currently, systemic vasculitis is divided into different diseases
based on clinical phenotype (1). The PedVas Initiative Investigators
performed RNAseq on blood to enable classification of the

autoimmune vasculitides based on disease aetiology. This is
important because classifying disease based on endotype can
inform treatment strategy. Based on whole blood gene expression
profiling, the investigators identified two distinct endotypes,
neutrophil degranulation and T cell receptor signalling. This
promising work can lead the development of targeted therapies
that treat the pathogenic mechanisms.

Lastly, in this COVID-19 era, there are two topical papers that
look at autoimmune vasculitis and COVID-19. Schramm et al.
present a case study of a patient with severe eosinophilic
granulomatosis with polyangiitis (EGPA) who contracted
COVID-19. They found no major complications despite the
patient being highly immunosuppressed. Chen et al. perform a
systematic review on cases of COVID-19 associated multisystem
inflammatory syndrome in children (MIS-C), which manifests as
a Kawasaki disease-like symptoms. Importantly, the authors
discuss the immunopathogenesis of COVID-19 associated
MIS-C and suggests potential life-saving treatments.

Opverall, the papers in this Research Topic highlight the global
effort taken to better understand the autoimmune mechanism of
systemic vasculitides. As editors, each based in a different
continent, we believe that the rarity of these diseases mean that
international collaboration is necessary for ultimately developing
cures for these severe diseases. Thus, we hope that this Topic
serves as an impetus that shows autoimmune vasculitis research
is active across the world and encourages vasculitis researchers to
initiate collaborations with each other.
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Immunosuppressive therapies increase the susceptibility of patients to infections. The
current pandemic with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) compels clinicians to develop recommendations for successful clinical management
and surveillance of immunocompromised patients at high risk for severe disease
progression. With only few case studies published on SARS-CoV-2 infection in
patients with rheumatic diseases, we report a 25-year-old male who developed
moderate coronavirus disease 2019 (COVID-19) with fever, mild dyspnea, and no major
complications despite having received high-dose prednisolone, cyclophosphamide, and
rituximab for the treatment of highly active, life-threatening eosinophilic granulomatosis
with polyangiitis (EGPA).

Keywords: COVID-19, SARS-CoV-2, vasculitis, eosinophilic granulomatosis with polyangiitis, EGPA,
immunosuppression, rituximab, cyclophosphamide

INTRODUCTION

With a wide range of clinical outcomes in coronavirus disease 2019 (COVID-19), from being
asymptomatic to fatal acute respiratory distress syndrome, questions have been raised about
the safety of immunosuppressive therapies (1). Individuals with anti-neutrophil cytoplasm
autoantibody (ANCA)-associated vasculitides require particular care, especially considering
the life-threatening course of disease with multi-organ manifestations. Pulmonary disease
manifestations and immunosuppression with glucocorticoids combined with cyclophosphamide
and/or rituximab are associated with infectious complications. Thus, inadequate immune response
to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in such patients may predispose
to severe COVID-19.
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FIGURE 1 | CT scans (coronal, axial) of the chest (A) after diagnosis of EGPA, unremarkable for pulmonary disease manifestation, (B) showing ground glass
opacities and interlobular septal thickening after diagnosis of alveolar hemorrhage by bronchoalveolar lavage, (C) demonstrating bipulmonary ground glass opacities
and consolidations with minor reticulation. Presence of reversed halo sign (arrow) as previously described in COVID-19 pneumonia.

CASE PRESENTATION

We report the case of a 25-year-old male with nosocomial
COVID-19 while receiving immunosuppressive treatment
for eosinophilic granulomatosis with polyangiitis (EGPA).
EGPA was newly diagnosed in early January 2020 when
the patient presented at the emergency room with sinusitis,
asthma, and a life-threatening myocardial infarction, resulting
in a decreased ejection fraction of 30%. Blood eosinophils
and serum concentrations of Immunoglobulin E (IgE) and
C-reactive protein (CRP) were increased, ANCA-testing
was negative, and a pulmonary CT scan unremarkable
(Figure 1A). Immediately initiated immunosuppression
with intravenous high-dose prednisolone and cyclophosphamide
showed adequate therapeutic response. With conversion to
oral glucocorticoid treatment at the end of January 2020, the
patient unexpectedly developed a serious relapse of disease with
peripheral neuropathy, pulmonary hemorrhage (Figure 1B)

and a second myocardial infarction. Thus, due to severity
and refractory disease the previously healthy patient was
continuously hospitalized from January to March 2020, receiving
intravenous cyclophosphamide (CYCLOPS-protocol, cumulative
dose 4.76 g), rituximab (4 x 375 mg/m?), and a long-term, slowly
tapered high-dose prednisolone treatment (up to 1 g/day).

On presumed day 0 of COVID-19 (ongoing oral treatment
with 60 mg prednisolone only, 9 days after last of five
cyclophosphamide infusions and 19 days after the last of
four rituximab infusions), he reported catarrh and a mild
cough. A SARS-CoV-2 real-time reverse transcription PCR
(rt-PCR) from oropharyngeal swab was positive (Figure 2A).
On day 3, treatment with hydroxychloroquine (for 6 days)
and lopinavir/ritonavir (for 8 days) was initiated while daily
prednisolone was reduced from 60 to 15 mg. He developed a
sore throat, hyposmia, headaches, myalgias, and diarrhea. Despite
rhonchi/crackles on auscultation and a CT scan consistent
with bilateral viral pneumonia (Figure 1C), the patient only
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FIGURE 2 | (A) Timeline of SARS-CoV-2 real-time reverse transcription PCR results (copy numbers) and numbers of immune cells during COVID-19. Colored bars
indicate treatment regimen employed pre and post SARS-CoV-2 infection. (B) Course of COVID-19 induced inflammation markers quantified in patient sera including
CRP, IL-8, procalcitonin (PCT), and body temperature (°C). Colored lines indicate patient symptoms related to SARS-CoV-2 infection. Vertical dashed line indicates
onset of COVID-19 related symptoms.

reported mild dyspnea. Short-term decrease of oxygen saturation
(minimal SaO, 85%) required oxygen supplementation for 3 days
(low flow 2 L/min). With spiking serum concentrations of
CRP (1259 mg/L, reference range <5 mg/L), procalcitonin
(0.56 ng/mL, reference range <0.05 ng/mL), and interleukin-
6 (IL-6, 320 pg/mL, reference range <7 pg/mL), concomitant
with decreasing CD4" and CD8" T-cell counts, the patient
developed fever (max. 39.1°C) on day 7 (Figure 2B). Anti-
IL6-receptor treatment was considered, however the patient
steadily recovered and was free of COVID-19 symptoms
2 weeks after onset. Nevertheless, subsequent oropharyngeal
swabs confirmed active SARS-CoV-2 infection with gradual
decrease of viral RNA. Relapsing neurological symptoms of
EGPA urged us to re-administer high-dose glucocorticoids and
cyclophosphamide on days 14 and 20, respectively, without
causing recurrence of COVID-19-related symptoms. Despite
severe immunosuppression and complete peripheral B-cell
depletion, SARS-CoV-2 RNA copy numbers in oropharyngeal
swabs were below the threshold for reliable detection on days 25,
26, and 29. By day 46, there were no antibodies to SARS-CoV-2
spike protein detectable by ELISA (EUROIMMUN). Remarkably,
interferon-gamma release upon polyclonal T-cell stimulation was
normal on day 36.

DISCUSSION

Given the high-risk profile with sustained cardiac dysfunction,
previous pulmonary hemorrhage, continued high-dose
glucocorticoids, B-cell depletion, decreased T-cell counts,

and secondary hypogammaglobulinemia (minimal IgG 4.47 g/L,
reference range >7 g/L), it is remarkable that our patient
overcame COVID-19 in a rather timely manner without
complications. The effects of potential anti-viral agents
hydroxychloroquine and lopinavir/ritonavir on the disease
course remain unclear. Despite initially higher than average
copies per oropharyngeal swab, which could be explained by
the effect of immunosuppression during virus contraction,
our patient showed a temporal pattern of viral load peaking
within the first week after onset of symptoms and gradually
declining over the following three weeks as previously described
in COVID-19 patient cohorts (2, 3). Our observations might
therefore suggest that a functional adaptive immune system
with an effective B-cell response is not required to survive
COVID-19. Moreover, our data points to an important role
of innate immune mechanisms and perhaps T cells for SARS-
CoV-2 control based on the coinciding increase of CD8" and
CD4™ T-cell numbers with declining viral RNA load. Notably,
antibodies may often be insufficient for viral clearance (4).
There is even evidence that antibodies against the SARS-
CoV-2 spike protein can exacerbate pulmonary inflammation
due to immunocomplex-mediated complement and Fcy
receptor activation with consecutive immune cell infiltration
(5,6).

While our knowledge of COVID-19 pathogenesis continues to
evolve, strategies to avoid unfavorable outcomes of SARS-CoV-
2 infection should continue to be mindful of potentially
greater adverse outcome caused by tempering existing
immunosuppressive or immunomodulatory treatment in
autoimmune diseases.
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Background: Atypical cases of anti-glomerular basement membrane (GBM) disease
had absent circulating antibodies but linear IgG deposits along GBM in the kidneys.
Herein, we reported the clinical-pathological features and outcome of these rare cases.

Methods: Linear IgG deposit along GBM were examined by immunofluorescence
on renal specimens, with exclusion of diabetic kidney disease. Circulating anti-GBM
antibodies were tested by commercial ELISA assay. Clinical, pathological and follow-up
data were retrospectively analyzed.

Results: From 2013 t0 2018, a total of 60 patients were diagnosed as atypical anti-GBM
disease. They had a male predominance, with an average age of 51.7 £+ 15.6 years.
Three (5.0%) patients had alveolar hemorrhage. Forty five percent of them presented with
acute kidney disease. All patients had linear IgG deposit along GBM, some in addition on
tubular basement membrane and/or Bowmans’ capsules. C3 deposition was found in
65.0% of the patients. 41.7% (25/60) of the patients showed crescent formation and the
percentage of crescent was (34.7 + 23.5)% in those patients. They had higher prevalence
of hematuria and C3 deposit, higher levels of serum creatinine, worse renal and patient
survival than those without crescent (P < 0.05). During the follow-up of 35.7 + 21.4
months, 14 (23.3%) patients progressed to ESRD. The serum creatinine on diagnosis
[per 200 wmol/L increase, HR (95% ClI): 2.663 (1.372, 5.172), P = 0.004], serum C3
[per 0.1 g/L increase, HR (95% ClI): 0.689(0.483, 0.984), P = 0.040] and the intensity
of kidney C3 staining [per 1+ increase, HR (95% CI): 2.770 (1.115, 6.877), P = 0.028]
were independent predictive factors for kidney outcome. Nine (15.0%) patients died of
all causes.

Conclusions: Atypical anti-GBM disease manifested milder kidney injury and scarce
pulmonary hemorrhage compared to the classical cases. Though heterogeneous, a
substantial number of the patients had complement activation and crescent formation.
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Patients having crescents presented with more severe clinical course and worse
outcomes. The poor kidney and patient prognosis emphasize prompt interventions from
physicians. The immunosuppressive intervention was not associated with kidney or
patient outcome. Further studies are needed to address the optimal therapeutic regimen.

Keywords: anti-GBM disease, crescentic glomerulonephritis, rapidly progressive glomerulonephritis, renal

outcome, renal pathology

INTRODUCTION

Anti-glomerular basement membrane (GBM) disease is a rare in
situ immune-complex vessel vasculitis that involves glomerular
capillaries or pulmonary capillaries, or both (eponymously
termed as Goodpasture syndrome) (1, 2). It is considered to be
a prototypical autoimmune disease characterized by the burst
of antibodies against the non-collagen domain one of a3 chain
of type IV collagen [a3(IV)NCI1] located in both GBM and
alveolar basement membrane (3). The disease is documented as
the most severe glomerulonephritis due to the rapidly progressive
renal impairments with large amount of crescent in glomeruli
and ~40~60% concurrence of lung hemorrhage including
lethal massive hemoptysis (4). To improve kidney and patient
outcomes, the combination regimen of plasmapheresis, steroids,
and cyclophosphamide is recommended to start up immediately
on diagnosis (5).

At present, the diagnosis of anti-GBM disease depends
on the detection of circulating anti-GBM antibodies and/or
linear IgG deposition along GBM on kidney biopsy (6).
Clinical routine assay to detect circulating antibodies is enzyme-
linked immunosorbent assay which utilizes recombinant human
a3(IV)NC1 or purified bovine GBM as solid-phase antigen
(7). The positive result is necessary for an early diagnosis and
quick start of intensive treatments including plasma exchange
and immunosuppressive therapy. However, in decades, atypical
presentations of anti-GBM disease have been reported in case
reports and case series (8-19), in which the circulating anti-GBM
antibodies were often undetectable by commercial ELISA and the
diagnosis was based on the linear deposit of immunoglobulins
along GBM on renal specimens. The atypical condition brought
challenges to the diagnosis and treatment of this aggressive
disease. Whether these atypical cases are a homogeneous subtype
of anti-GBM disease or a group of heterogeneous conditions
is still not clear, nor are the causes and roles of the deposited
antibodies in disease development. Therefore, it is of importance
to explore their clinical and pathological characteristics and
especially their outcomes from a large cohort.

In the present study, data from 60 consecutive “atypical”
patients diagnosed from 2013 to 2018 were retrospectively
screened, who presented with substantial linear deposits of IgG
along GBM on immunofluorescence and without detectable
circulating anti-GBM antibodies. We investigated the clinical-
pathological characteristics and attempted to identify the
predictive factors for kidney and patient survival in order to
provide some clues for the pathogenesis and treatment of this
rare entity.

MATERIALS AND METHODS

Patients

Sixty patients with atypical anti-GBM disease identified at
Peking University First Hospital were retrospectively analyzed
from January 2013 to December 2018. The diagnostic criteria
of “atypical anti-GBM disease” were defined as follows: 1.
Immunofluorescence of renal specimens exhibited substantial
linear deposit of IgG along GBM (staining intensity >14);
2. Detection of circulating anti-GBM antibodies were negative
examined by commercial ELISA kits (Euroimmun, Luebeck,
Germany); 3. Patients with diabetic kidney disease were excluded.
A study flow diagram is drawn to summarize the study procedure
(Figure 1).

Demographic, clinical, and laboratory data were collected
at the time of kidney biopsy and during follow-up. Renal
insufficiency was defined as the serum creatinine >133 pwmol/L
on diagnosis. All patients were followed up until they met the
endpoints. The primary endpoint (renal survival) was set as end-
stage renal disease (ESRD) defined as dialysis dependence for >3
months. Patients who had not progressed to ESRD before death
were treated as censored data when analyzing renal survival.

This study complied with the Declaration of Helsinki and
was approved by the Ethics Committee of Peking University
First Hospital.

Kidney Pathology

Kidney biopsy was performed in all the 60 patients. The
staining of IgG, IgA, IgM, C3, Clq, fibrinogen-fibrin related
antigen (FRA), albumin, IgG subclasses and light chains
were performed on frozen renal sections using fluorescein-
conjugated rabbit/mouse anti-human IgG, IgA, IgM, C3c, Clgq,
FRA, albumin, light chain, IgG subclasses antibodies (Dako,
Santa Clara, CA), and were evaluated under a fluorescence
microscope (Nikon, Tokyo, Japan). The grades of staining
intensity were ranged from 04 to 4+. Light microscopy and
electron microscopy examinations were performed as previously
showed (20). All the pathological evaluations were performed by
two renal pathologists blinded to each other.

Statistical Analysis

SPSS statistical software (version22.0, IBM) was applied for
statistical analysis. Quantitative data were presented as mean
=+ SD when complying with normal distribution, or as median
(1/4, 3/4) when disobeying normal distribution. Qualitative data
were presented as number (%). Comparison between continuous
variables was conducted by t-test for normally distributing
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Patients with linear or ribbon-like IgG staining
along GBM on renal immunofluorescence
from January 2013 to December 2018 (n=262)

Patients with negative circulating anti-GBM antibodies(n=162)

Excluded:

A4

- diabetic kidney disease(n=102)

Eligible patients(n=60)

Follow-up

|

}

ESRD (n=14)

Death(n=9)

FIGURE 1 | Flowchart of patient recruitment and follow-up.

data or non-parametric test for non-normally distributing data.
Differences between qualitative data were analyzed using x? or
Fisher exact test. Univariate survival analysis was operated using
both Kaplan-Meier analysis (log-rank test) and univariate COX
regression analysis to explore potential prognostic predictors.
Candidate variables were then enrolled together in a COX
regression models to undergo multivariate survival analysis.
Output results were exhibited as hazard ratios (HRs) along
with 95% confidence intervals (95% CIs). The difference was
considered statistically significant as P-value < 0.05.

RESULTS

The Demographic and Clinical Features of
Atypical Anti-GBM Patients

A total of 60 consecutive patients were retrospectively analyzed
in this study, fitting the criteria of “atypical anti-GBM disease”
from 2013 to 2018 (Table 1). They had a male predominance,
and the ratio of male to female was 2.3:1. The ages of patients
ranged from 19 to 87 years old, with an average age of 51.7 £ 15.6
years. 53.3% of patients were current or remote smokers. 13.3%
of patients displayed prodromal infections before disease onset.
5.0% of patients manifested hemoptysis.

Thirty eight (63.3%) patients exhibited hematuria and 4 of
them had macroscopic hematuria. Proteinuria existed in 56
(93.3%) patients and 26 of them reached nephrotic level. The
median level of proteinuria was 2.7 (0.8, 6.3) g/24 h. Nineteen
(31.7%) patients presented with nephrotic syndrome. 45.0%
(27/60) of patients presented with acute kidney disease(AKD),
among them 18.5% (5/27) underwent oliguria or anuria. The
median level of serum creatinine at diagnosis was 142.5 (87.8,

257.5) pmol/L, and over half of the patients (32/60, 53.3%)
showed renal insufficiency at presentation. The serum C3 level,
available in 52 patients, was normal in 49 and low in three. The
serum C4 level, available in 52 patients, was normal in 51 and
low in one. Anti-neutrophil cytoplasmic antibodies(ANCA) were
detectable in serum of 14.0% (7/50) of the patients, among whom
six were MPO-ANCA positive and one was PR3-ANCA positive.

Kidney Pathology

All patients exhibited visible linear deposit of IgG along GBM
with the intensity grade ranging from 1+ to 44. Linear deposit of
IgG could be observed at GBM (60/60, 100.0%), tubular basement
membrane (37/60, 61.7%) and/or Bowmans’ capsule (5/60, 8.3%).
In 41 patients who had IgG light chains examined, all have both
kappa and lambda chains deposit. IgG1 was the predominant
subclass (27/59, 45.8%), followed by IgG2 (21/59, 35.6%), IgG4
(11/59, 18.6%), and IgG3 (7/59, 11.9%). Coexistence of IgA and
IgM were shown in 27/60 (45.0%) and 33/60 (55.0%) patients.
Complement deposits including C3 and Clq were found in 39
(65.0%) and 10 (16.7%) patients, respectively (Table 2).

41.7% (25/60) of all cases were observed of crescent formation
and the percentage of crescent was (34.7 & 23.5)% in those
patients. Five of them had crescentic glomerulonephritis (defined
by diffuse crescents occupying >50% of the glomeruli). In
patients with crescents, the average proportion of cellular,
cellulofibrous, and fibrous crescents was 25.8, 52.8, and 21.4%,
respectively. 56.0% (14/25) of those patients showed crescents
in synchrony, the remaining showed a mixture of acute and
chronic lesions. There was a positive correlation between the
percentage of crescents and the serum creatinine at diagnosis (r
= 0.427, P = 0.001). Almost all patients showed tubular atrophy
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TABLE 1 | Demographic and clinical characteristics of patients with atypical
anti-GBM disease.

Characteristic Total patients (N = 60)

Demography

Male/female 42/18 (2.3/1)
Age, year 51.7+15.6
Clinical feature

Interval from onset to diagnosis, month 2.1(1.1,6.9)
Smoking, n (%) 32 (63.3)
Prodromal infection, n (%) 8(13.3)
Hemoptysis, n (%) 3(5.0)
aAKD and PAKI, n (%) 27 (45.0)
Oliguria/anuria, n (%) 5(8.3)
Hematuria, n (%) 38 (63.3)
Macroscopic hematuria, n (%) 4(6.7)
Proteinuria, n (%) 56 (93.3)

24 h Proteinuria, g/24 h 2.7 (0.8, 6.3
Nephrotic level proteinuria, n (%) 26 (43.3)
Nephrotic syndrome, n (%) 19 (31.7)
Serum albumin, g/L 34.2 (23.8, 41.2)
Serum creatinine on diagnosis, pmol/L 142.5 (87.8, 257.5)
Renal insufficiency, n (%) 32 (53.3)
Hemoglobin, g/L 118.1 £ 26.3

Serum C3, g/L*
Serum C4, g/L*
°ESR, mm/h

0.94 +0.26 (0 = 52)
0.25 4+ 0.07 (0 = 52)
36.5(17.0, 71.3) (1 = 52)

dANCA, n (%) 7 (14.0) (n = 50)
eMPO-ANCA/PR3-ANCA/both 6/1/0
Treatment

9ACEIs/"ARBS, n (%) 26 (43.9)
Immunosuppressive therapy, n (%) 34 (56.7)
steroids, n (%) 32 (563.3)
cytotoxic drugs, n (%) 18 (30.0)
Plasmapheresis, n (%) 4(6.7)
Outcome

Follow-up duration, month 357 £21.4
Progression to ESRD, n (%) 14 (28.3)
Death, n (%) 9 (15.0)
1-year renal survival, n (%) 50 (83.3)
1-year patient survival, n (%) 57 (95.0)

aAKD, acute kidney disease; PAKI, acute kidney injury; °ESR, erythrocyte sedimentation
rate; 9ANCA, anti-neutrophil cytoplasmic antibodies; ®MPO, Myeloperoxidase; PR3,
proteinase 3; 9ACEIs, angiotensin converting enzyme inhibitors; "ARBs, angiotensin
receptor blocker. "Normal range of serum C3: 0.6-1.5 g/L, normal range of serum C4:
0.12-0.36 g/L.

and interstitial fibrosis (58/60, 96.7%), interstitial inflammatory
cells infiltration (55/60, 91.7%) and arteriole injury (59/60,
98.3%). Electric dense deposit was observed in 33/59 (55.9%)
patients. Foot process effacement of podocyte appeared in
most of the patients (55/59, 93.2%). 58.3% (35/60) of all
patients combined with other glomerulonephritis, including
IgA nephropathy (12/60, 20.0%), membranous nephropathy
(8/60, 13.3%), membranoproliferative glomerulonephritis (6/60,

TABLE 2 | Pathological characteristics of patients with atypical anti-GBM disease.

Characteristic Total patients (N = 60)

Immunofluorescence
1gG linear deposition, n (%) 60 (100.0)
1.0(1.0,1.5)

60/37/5 (100.0/61.7/8.3)

Intensity (scale 0~4+)

Location (GBM/2TBM/Bowman’s
capsules), n (%)

1gG subclass (n = 59)

19G1/IgG2/1gG3/IgG4, n (%) 27/21/7/11 (45.8/35.6/11.9/18.6)

IgA deposit, n (%) 27 (45.0)
IgM deposit, n (%) 33 (65.0)
C3 deposit, n (%) 39 (65.0)
C1q deposit, n (%) 10 (16.7)
PFRA deposit, n (%) 20 (33.9)
Albumin deposit, n (%) 38 (63.3)
Light microscopy

Number of glomeruli 25.0 (19.8, 36.0)
Crescent formation, n (%) 25 (41.7)
Percentage of crescents, % 27.3 (0.0, 49.7)
CTA/IF, n (%) 58 (96.7)

Electron microscopy

Electric dense deposit, n (%) 33 (65.9) (n = 59)

Combined 9GN, n (%) 35 (68.3)

e|gAN (including THSP-GN), n (%) 12 (20.0)

IMN, n (%) 8(13.3)

"MPGN, n (%) 6 (10.0)

IAAV, N (%) 4(6.7)

IFSGS, n (%) 3(5.0

KTBMN n (%) 1(1.7)

TMA, n (%) 1(1.7)

aTBM, tubular basement membrane; PFRA, fibrinogen-fibrin related antigens;

CTA/IF tubular atrophy and interstitial fibrosis; 9GN, glomerulonephritis; €IgAN,
IgA nephropathy; "HSP-GN, Henoch-Schénlein purpura glomerulonephritis; 9MN,
membranous nephropathy; "MPGN, membranoproliferative glomerulonephritis; 'AAV,
ANCA-associated vasculitis; /FSGS, focal segmental glomerulosclerosis; KTBMN, thin
basement membrane nephropathy; ' TMA, thrombotic microangiopathy.

10.0%), ANCA-associated vasculitis (4/60, 6.7%), focal segmental
glomerulosclerosis  (3/60, 5.0%), thin basement membrane
nephropathy (1/60, 1.7%), thrombotic microangiopathy (1/60,
1.7%) (Table 2).

Treatment and Outcome

26/60 (43.3%) patients received only angiotensin converting
enzyme inhibitors (ACEIs) or angiotensin receptor blocker
(ARBs). Immunosuppressive therapies that were defined as
administration of steroids and/or cytotoxic drugs, were applied
in 34/60 (56.7%) patients. Among them, 16 patients received
administration of steroids combined with cytotoxic drugs, 16
patients received steroids alone and two patients received
cytotoxic drugs alone. In 18 patients who received cytotoxic
drugs, 14 of them were treated with cyclophosphamide (CTX),
the remaining with cyclosporine (two patients), tacrolimus (one
patient) and mycophenolate mofetil (one patient), respectively.
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FIGURE 2 | Renal survival of a Chinese cohort of 60 patients with atypical anti-GBM disease: Overall renal survival (A) and according to the renal deposit of C3 (B),
the crescent formation in glomeruli (C) and the administration of steroids or immunosuppressant (IS) agents (D).
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Plasma exchange was performed in 4/60 (6.7%) patients
(Table 1).

The follow-up ranged from 3 months to 89 months with
an average of 35.7 £ 21.4 months. During follow-up, 14/60
(23.3%) patients progressed to ESRD. The 1-year renal survival
rate was 83.3% (50/60). The prognostic values of clinical-
pathological parameters and therapeutic strategies for kidney
outcome were evaluated using Kaplan-Meier analysis (log-rank
test) and Cox regression analysis, shown in Figure 2, Table 3.
After univariate survival analysis, we found that the level of
serum creatinine on diagnosis, level of serum C3, intensity of
kidney C3 staining, kidney Clq positive staining, percentage
of crescents and plasmapheresis were potential risk factors for
ESRD. Multivariate analysis showed that serum creatinine on
diagnosis [per 200 pmol/L increase, HR (95% CI): 2.663 (1.372,
5.172), P = 0.004], serum C3 (per 0.1 g/L increase, HR (95% CI):
0.689 (0.483, 0.984), P = 0.040) and the intensity of kidney C3
staining (per 1+ increase, HR (95% CI): 2.770 (1.115, 6.877), P =
0.028) were independent predictive factors for kidney outcome.
Immunosuppressant therapies had no significant association
with kidney outcome.

Nine (15.0%) patients died during follow-up. The 1-year
patient survival rate was 95.0% (57/60). Four patients died of
severe pneumonia and respiratory failure. One died of acute
myocardial infarction. Four died of unknown reasons. In the nine

died patients, four were dialysis dependence lasting for more than
3 months before death and were regarded as meeting the primary
endpoint. The remaining five patients who did not progressed
to ESRD before death were treated as censored data when
analyzing renal survival. The predictive indicators for death were
evaluated using Kaplan-Meier analysis (log-rank test) and Cox
regression analysis, shown in Table 4. After univariate survival
analysis, we found that age, the intensity of kidney C3 staining,
and the percentage of crescents were potential risk factors for
death. However, multivariate analysis did not come out with any
independent predictive factors for death.

Comparison Between Atypical Anti-GBM
Patients With and Without Crescent

Formation

41.7% patients of the whole cohort presented with crescent
formation in renal histological examinations. The clinical and
pathological features of patients with and without crescent
formation were compared (Table 5). The patients with crescents
presented with more significant male predominance (84.0 vs.
60.0%, P = 0.046), higher levels of SCr at diagnosis [206.8 (123.9,
372.7) pmol/L vs. 109.9 (82.7, 161.5) pmol/L, P = 0.003], higher
frequency of kidney C3/IgA/IgM deposit (92.0 vs. 45.7%, P <
0.001; 64.0 vs. 31.4%, P = 0.012; 72.0 vs. 42.9%, P = 0.025), worse
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TABLE 3 | Potential prognostic factors for kidney outcome by univariate and multivariate COX regression analysis.

Variable Univariable analysis (N = 60) 2Multivariable analysis (N = 52)
P-value HR (95% CI) P-value HR (95% CI)

Gender (female) 0.528 0.663 (0.185, 2.379) - -

Age 0.151 1.026 (0.991, 1.063) - -

Hematuria (O = none; 1 = microscopic; 2 = macroscopic) 0.090 2.227 (0.888, 5.622) - -

Proteinuria (O = none; 1 = non-nephrotic; 2 = nephrotic) 0.327 1.566 (0.639, 3.839) - -

SCr on diagnosis (increased by 200 pmol/L) <0.001 2.355 (1.598, 3.471) 0.004 2.663 (1.372, 5.172)

Serum C3 (increased by 0.1g/L) (n = 52) 0.002 0.608 (0.445, 0.830) 0.040 0.689 (0.483, 0.984)

Kidney IgG staining >1+ 0.271 1.803 (0.631, 5.154) - -

1gG deposit on TBM and/or Bowman'’s capsule 0.272 0.555 (0.195, 1.585) - -

Kidney C3 staining intensity (increased by 1+) 0.006 2.170 (1.252, 3.762) 0.028 2.770 (1.115, 6.877)

Kidney C1q positive staining 0.041 3.126 (1.045, 9.353) 0.780 0.805 (0.175, 3.699)

Percentage of crescents (increased by 10%) 0.009 1.258 (1.059, 1.494) 0.775 0.940 (0.616, 1.435)

Combined with other GN 0.364 1.711 (0.536, 5.459) - -

ACEIs/ARBs 0.484 0.677 (0.227, 2.021) - -

Steroids 0.340 1.703 (0.570, 5.087) - -

Cytotoxic drugs 0.597 1.343 (0.450, 4.010) - -

Plasmapheresis 0.019 4.692 (1.295, 17.005) 0.849 0.749 (0.038, 14.796)

aMultivariable analysis was performed in a subgroup of 52 patients, of which the values of serum C3 were available at the presentation. Bold values represent P < 0.05.

TABLE 4 | Potential prognostic factors for patient outcome by univariate and multivariate COX regression analysis.

Variable Univariable analysis (N = 60) Multivariable analysis (N = 60)
P-value HR (95% CI) P-value HR (95% CI)

Gender (female) 0.461 0.552 (0.113, 2.684) - -

Age 0.028 1.054 (1.006, 1.105) 0.080 1.046 (0.995, 1.099)
Hematuria (O = none; 1 = microscopic; 2 = macroscopic) 0.634 1.291 (0.451, 3.695) - -
Proteinuria (O = none; 1 = non-nephrotic; 2 = nephrotic) 0.773 0.850 (0.281, 2.568) - -

SCr on diagnosis (increased by 200 pmol/L) 0.457 1.207 (0.735, 1.981) - -

Serum C3 (increased by 0.1 g/L) (n = 52) 0.057 2.010 (0.980, 4.120) - -

Kidney IgG staining >1+ 0.894 1.101 (0.267, 4.533) - -

IgG deposit on TBM and/or Bowman'’s capsule 0.377 2.032 (0.422, 9.797) - -

Kidney C3 staining intensity (increased by 1+) 0.012 1.937 (1.155, 3.248) 0.263 1.664 (0.682, 4.060)
Kidney C1q positive staining 0.710 1.347 (0.279, 6.500) - -
Percentage of crescents (increased by 10%) 0.016 1.272 (1.045, 1.547) 0.173 1.156 (0.938, 1.425)
Combined with other GN 0.755 0.811 (0.217, 3.030) - -
ACEIs/ARBs 0.191 0.351 (0.073, 1.688) - -

Steroids 0.140 3.269 (0.679, 15.741) - -
Cytotoxic drugs 0.812 1.183 (0.296, 4.735) - -
Plasmapheresis 0.628 1.673 (0.209, 13.396) - -

Bold values represent P < 0.05.

kidney survival (ESRD, 44.0 vs. 8.6%, P = 0.001) and higher
proportion of death (28.0 vs. 5.7%, P = 0.044). More patients
received immunosuppressive therapy in the group with crescent
formation (76.0 vs. 42.9%, P = 0.011). Besides, hemoptysis (three
cases) was only found in the patients with crescents.

DISCUSSION

To our best knowledge, the present study comprised the
largest cohort of atypical anti-GBM disease. Atypical anti-GBM

disease manifested milder clinical features and better kidney
outcomes compared to classical anti-GBM disease. Though
rather heterogeneous, a substantial number of the patients had
complement activation and crescent formation. Patients having
crescents presented with more severe clinical course and worse
renal and patient outcomes than those without crescents. It is
of note that nearly a quarter of these patients progressed to
ESRD and 9/60 patients died with a median follow up of 36
months. The poor kidney and patient prognosis, not favorable as
expected, emphasizes the attention to atypical anti-GBM disease
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TABLE 5 | Comparison of clinical and pathological features between patients with

and without crescents.

Characteristic With CGN? Without CGN P-value
(n = 25) (n = 35)
Clinical feature
Male/female 21/4 21/14 0.046
Age, year 52.4 +£16.8 512+ 149 0.784
Smoking, n (%) 18 (72.0) 14 (40.0) 0.014
Prodromal infection, n (%) 7 (28.0) 1(2.9) 0.015
Hemoptysis, n (%) 3(12.0) 0(0.0) 0.133
AKD or AKI, n (%) 14 (56.0) 13(37.1) 0.148
Oliguria/anuria, n (%) 2(8.0) 3(8.6) 1.000
Hematuria, n (%) 21 (84.0) 17 (48.6) 0.005
24 h Proteinuria, g/24h 3.8 (2.0, 6.9) 1.5(0.5,6.9) 0.089
Serum albumin, g/L 31.4 (23.9, 36.5) 36.2 (23.2,42.8) 0.195
SCr on diagnosis, pmol/L  206.8 (123.9, 372.7) 109.9 (82.7, 161.5) 0.003
ANCA, n/N (%) 6/24 (25.0) 1/26 (3.8) 0.081
Pathology
IgG deposit intensity (scale 1.0(1.0, 2.9) 1.0(1.0,1.5) 0.188
0~4+)
IgA deposit, n (%) 16 (64.0) 11 (31.4) 0.012
IgM deposit, n (%) 18 (72.0) 15 (42.9) 0.025
C3 deposit, n (%) 23(92.0) 16 (45.7) <0.001
C1q deposit, n (%) 6 (24.0) 4(11.4) 0.349
FRA deposit, n (%) 12 (48.0) 8(22.9) 0.042
Electric dense deposit, n/N 19/24 (79.2) 14/35 (40.0) 0.003
(%)
Treatment
ACEIs/ARBs, n (%) 6 (24.0%) 20 (57.1) 0.011
Immunosuppressive 19 (76.0) 15 (42.9) 0.011
therapy, n (%)
Steroids, n (%) 19 (76.0) 13 (37.1) 0.003
Cytotoxic drugs, n (%) 11 (44.0) 7 (20.0) 0.046
Plasmapheresis, n (%) 4(16.0) 0(0.0) 0.054
Outcome
Follow-up duration, month 27.4 £ 211 419+ 19.7 0.009
Progression to ESRD, n (%) 11 (44.0) 3(8.6) 0.001
Death, n (%) 7 (28.0) 2(5.7) 0.044
1-year renal survival, n (%) 17 (68.0) 33 (94.3) 0.012
1-year patient survival, n (%) 22 (88.0) 35 (100.0) 0.067

8CGN: crescentic glomerulonephritis. Bold values represent P < 0.05.

from physicians. Our study showed that the immunosuppressive
intervention was not associated with kidney or patient outcome.
In future, prospective and controlled studies might be needed to
address the optimal therapeutic regimen.

Our retrospective study unearthed that the clinical and
pathological features of patients with atypical anti-GBM disease
were rather heterogeneous, and milder than classical anti-GBM
patients. Less than half of the patients underwent a course of
AKD or AKI. Kidney injuries were much slighter than that in
classical anti-GBM disease, manifested as less crescent formation
and lower levels of SCr at presentation (21, 22). However, the
degree of kidney impairment varied as 1/5 of patients exhibited

SCr levels >300 wmol/L, while 1/2 of patients presented normal
kidney function. Although half of the patients were current or
former smoker, the manifestation of hemoptysis was rather rare
in these patients, in contrast to ~40-60% of classical anti-GBM
patients presenting pulmonary involvement (11). Distinguished
from mild to moderate proteinuria in classical anti-GBM disease
(7), the degree of proteinuria was much more severe in atypical
patients. Nearly half of the patients showed nephrotic-range
proteinuria and 1/3 of them suffered from nephrotic syndrome.
Almost all patients with atypical anti-GBM disease showed
tubular-interstitial and arteriole injury, which was less common
in typical anti-GBM disease. These histopathological features
implied a more chronic course in atypical anti-GBM disease.

In our cohort of atypical patients, around half of all cases had
crescent formation. Though less than classical patients (21), the
percentage of crescents were associated with serum creatinine
on diagnosis. A further comparison analysis showed that the
kidney outcomes of patients with crescents were worse than
those without crescents. Univariate survival analysis showed that
the percentage of crescents was associated with renal survival.
These results were similar to previous reports in classical anti-
GBM disease that the proportion of crescents was an independent
predictor for ESRD (23). It is of notice that nearly all patients
with crescents had positive C3 staining, in contrast to merely half
in patients without crescents. Moreover, higher level of serum
C was an independent protective factor and the intensity of
kidney C3 staining was an independent risk factor for kidney
outcome in this cohort. Renal C3 deposit generally implies the
activation of complement system in the kidneys, which promotes
the formation of membrane attack complex to damage the
tissues (24). As previously reported, almost all patients with
anti-GBM disease have C3 deposit in glomeruli (21). Therefore,
we speculated that the deposited linear IgG in a substantial
atypical anti-GBM patients might also act as “classical pathogenic
antibodies,” which causes the activation of complement resulting
in kidney injuries and crescent formation. However, the positive
rate of C3 staining is lower in patients with atypical anti-GBM
disease, which again reflects the heterogeneity in these patients
and summons further investigations on the renal complement
activation and its association with kidney outcome.

Previous studies have proven that the combination of
plasmapheresis, steroids and CTX could improve renal
and patient outcomes in classic anti-GBM disease (25-27).
However, there were no unified recommendations for the
treatment of atypical anti-GBM disease at present, given the
heterogeneity of these patients (15, 18, 28). Treatments varied
in different patients, which were highly dependent on the
clinical judgments by physicians. In our cohort, only half
of the patients received immunosuppressive treatments and
1/10 received plasmapheresis. Patients received steroids or
immunosuppressant agents were usually those presented with
more severe renal damage. A higher proportion of patients
receiving steroids or immunosuppressant agents presented with
crescent formation and renal dysfunction. The heterogeneity
of treatments made it difficult to investigate on the association
of immunosuppressive therapy and renal outcome in the
current study. Considering a relatively high incidence of
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complement activation and poor renal outcome, the role of
immunosuppressive treatment in atypical anti-GBM disease may
need to be further explored in future studies.

Concurrent AAV and MN in patients with anti-GBM
disease had been well-documented in previous articles (2), and
sporadically IgAN (29, 30), HSP-GN (31), TMBN (8), TMA
(32) et al. In our present study, a high proportion (58.3%) of
patients with atypical anti-GBM disease coexisted with other
glomerular diseases including IgAN, MN, MPGN, FSGS, TMBN,
AAV, and TMA. Typically, those diseases presented no linear
IgG deposit alongside GBM, therefore, we speculated that they
might have underlying relations with the occurrence of anti-
GBM disease in this rare entity. The local glomerular damage
caused by the already existing glomerular diseases exposed the
sequestered autoantigens in GBM and then elicited autoimmune
responses toward the GBM. Another explanation might be
that the anti-GBM antibodies elicited immuno-inflammatory
reactions in glomeruli, caused local tissue injury and facilitated
other glomerular diseases.

There were several underlying explanations for the absence
of circulating anti-GBM antibodies: (1) Instead of a3(IV)NCI,
antibodies of some patients recognized unconventional
antigens located on GBM which were beyond routine assays.
Serum anti-GBM antibodies could be detected by indirect
immunofluorescence using normal kidney tissues in a few
patients of our cohort, which collaborated this hypothesis
(data not shown). (2) Antibodies with low affinity could
only be discovered by higher sensitive assays such as western
blot and biosensor experiments rather than routine methods
(33). (3) Similar like other autoimmune diseases, during the
reconstruction of immune homeostasis in disease retrieval, the
production of antibodies paused and circulating antibodies
were obliterated by liver, but the tissue antibodies were hard to
eliminate and presented a longer half life time (34).

There are several limitations of this study. First of all,
the follow-up duration is short for survival analysis for this
rare disease. Secondly, the treatments of patients had a high
heterogeneity in our cohort, thus the role of immunosuppressive
therapy in patient and kidney survival might be underestimated
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The Anti-inflammatory Effects of
HMGB1 Blockades in a Mouse Model
of Cutaneous Vasculitis

Jin Wang?, Lixin Fu?, Hao Yang, Kai Cao, Qiaomei Sun and Tao Chen*

Department of Dermatovenereology, Chengdu Second People’s Hospital, Chengdu, China

In our previous study, we have found increased serum levels of HMGB1 in patients with
Henoch- Schonlein purpura (HSP), allergic vasculitis (AV), and urticarial vasculitis (UV)
and altered HMGB1 distribution in lesional skin in patients with HSP. HMGB1 plays
a pro-inflammatory role in the pathogenesis of HSP. To further investigate the role of
HMGB1 in the pathogenic mechanism of vasculitis, we investigated the anti-inflammatory
effects of HMGB1 blockades (including anti-HMGB1 mAb and glycyrrhizin) in a mouse
model of a cutaneous reverse passive Arthus (RPA) reaction. A total of 36 balb/c mice
were randomly divided into four groups: the control group, IC model group, HMGB1
monoclonal antibody (anti-HMGB1-mAb) group and the glycyrrhizin group, with nine
mice in each group. A cutaneous RPA reaction mouse model was established by
injections of the OVA antibody and the OVA antigen. Mice of the anti-HMGB1-mAb
group and glycyrrhizin group were pre-treated with anti-HMGB1 mAb or glycyrrhizin,
respectively, before the RPA reaction. Our results indicated that HMGB1 blockades
(anti-HMGB1 mAb and glycyrrhizin) obviously extenuated the severity of vasculitis skin
damage and improved the histological evolvement of inflammatory cells infiltration,
vascular fibroid necrosis, and vasodilation in a cutaneous RPA reaction mouse model.
In addition, HMGB1 blockades reduced the infiltration of neutrophils, DCs, and T cells
and decreased the mMRNA expression of IL-6 and CCL5 in skin lesions in the cutaneous
RPA reaction mouse model. We suggest that HMGB1 blockades may represent a new
direction for the treatment of cutaneous vasculitis.

Keywords: high mobility group box-1, glycyrrhizin, reverse passive arthus reaction, vasculitis, inflammation

INTRODUCTION

Vasculitis, that can occur in all sizes and types of blood vessels in almost all organs, is a procedure
of clinical pathology, characterized by an infiltration of inflammatory cytokines around the
blood vessel wall and blood vessels. Cutaneous vasculitis (CV) may be the most representative
symptom of the varying degrees of vasculitis or may be the part most associated with other
primary systemic diseases. It has been found in histology that CV is intimately related to
immunopathological mechanisms and may be caused by immune cells (such as neutrophils,
lymphocytes, or eosinophils) that mediate inflammation (1-3). It is well-established that the
production and release of proinflammatory cytokines such as TNF- a and IL-6 play crucial roles
in IC-induced inflammation (4-6).
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High mobility group box 1 (HMGBI), which is described
as a highly conserved non-histone DNA-binding protein, was
discovered to be a crucial cytokine that mediates the response
to infection, injury, and inflammation (7, 8). Antigen presenting
cells (APC) can activate immune responses against pathogens.
With the absence of pathogens, endogenous molecules (e.g.,
HMGBI is passively released from necrotic cells or secreted
by stressed cells to respond to cellular injury) activate APCs,
resulting in autoimmune diseases and transplant rejections (9,
10). It has been proven in our previous study that HMGBI is
involved in the pathogenesis of inflammatory and autoimmune
disorders, such as, Henoch- Schonlein purpura (HSP), allergic
vasculitis (AV), and urticarial vasculitis (UV). It also altered
HMGBI1 distribution in lesional skin in patients with HSP
(11-13). However, the function and mechanism of HMGBI in
vasculitis has not been clearly stated.

Glycyrrhizin is an active ingredient of licorice, and can
be extracted or chemically synthesized (14). Glycyrrhizin has
been confirmed to have both anti-inflammatory and anti-viral
influences by combining directly to HMGBI, and inhibits its
chemoattractant and mitogenic activities (15). Our previous
study found that glycyrrhizin suppresses TNF- « induced
chemokine production in HMEC-1 cells (16). We also found
that the serum HMGBI1 level of 16 Henoch- Schonlein
purpura patients was significantly lower after treatment with
glycyrrhizin (11).

Cutaneous reverse passive Arthus (RPA) reaction is a classical
animal model of CV, in which immune-complex-induced
endothelial inflammatory responses play essential roles (11). In
our research, the anti-inflammatory effects of HMGBI1 blockades
stems from an understanding of the biological basis of the
HMGBI inflammation, and we further investigate the role of
HMGBI in the pathogenic mechanism of vasculitis in a mouse
model of cutaneous reverse passive Arthus (RPA) reaction.

MATERIALS AND METHODS

Mice

Thirty-six balb/c mice aged from 6 to 8 weeks old were chosen in
this study from the Sichuan University Animal Center (Sichuan,
China) with free access to drinking water and food. All animal
procedures were approved by the Institutional Animal Care
and Use Committee of Chengdu Second People’s Hospital and
carried out in accordance with guidelines for the Care and Use of
Laboratory Animals of National Institute of Health.

Animal Model

A total of 36 balb/c mice were randomly divided into four
groups: the control group, IC model group, HMGBI monoclonal
antibody (anti-HMGB1-mAb) group and glycyrrhizin group,
with nine mice in each group. At the beginning of the experiment,
the mice of the anti-HMGB1-mAb group were injected i.p. with
anti-HMGB1 mAb (Sino Biological, Beijing, China) 2 mg/kg once
every other day three times. For the glycyrrhizin group, mice were
injected i.p. with glycyrrhizin (20 mg/kg; Nippon Kayaku, Tokyo,
Japan) once every day for 6 days. The mice of the control group

and IC model group, an equal volume of phosphate-buffered
saline (PBS) was injected i.p. once every day for 6 days.

A mouse model was established on the last day of treatment
mentioned above in each group. Mice were subjected to
intradermal injection of the OVA antibody. Tail vein injections
were given with the OVA antigen, some mice were injected by
tail vein with the OVA antigen and 1% Evan’s blue solution. Mice
in the control group were given an intradermal injection with
PBS solution on the back. The lesional skin on the back of the
mice and the extent of exudation of 1% Evan’s blue solution were
observed. After that, mice were euthanized. Tissue samples in
different groups were obtained.

Histological Examination and

Immunohistochemical Staining

According to standard techniques, hematoxylin-eosin (HE)
staining was performed on tissue sections of histological
observation and immunohistochemistry with CD3 (Abcam,
Cambridge, UK), CD11c (Beijing Biosynthesis, Beijing, China)
and myeloperoxidase (MPO; Beijing Biosynthesis, Beijing,
China). Morphological changes of skin lesions were observed by
light microscopy (BX60; Olympus, Tokyo, Japan).

Real-Time Quantitative Polymerase Chain

Reaction

Real-time quantitative polymerase chain reaction (qPCR) tests
were taken to detect the mRNA expression of IL-6 and CCL5
in the skin of every group. Total RNA in every groups was
extracted from the Trizol reagent (Invitrogen Corp, Carlsbad,
CA, USA) in conformity with the manufacturer’s instructions.
In the established model system, qPCR primers and the SYBR
Green Master Mix were used to carry out the experiments.
The following primers of IL-6 (MQP036632; GeneCopoeia,
Rockville, MD, USA) and CCL5 (MQP030981; GeneCopoeia,
Rockville, MD, USA) were used. In our established model, the
reference gene and glyceraldehyde 3-phosphate dehydrogenase
were analyzed by way of 2 2ACT and the expression levels
and fold changes of these cytokine controls were analyzed.
GAPDH was used as the internal reference gene. The reaction
conditions in this experiment were: pre-denaturation at 95°C
for 3min, denaturation at 95°C for 15s, annealing at 58°C
for 30s, and extension at 72°C for 30s for a total of
40 cycles.

Statistical Analysis

Mean =+ SD were used for all results; one-way analysis of variance
was used for statistical differences between groups. Data were
analyzed with the Graphpad Prism software (GraphPad Sotware,
La Jolla, CA, USA). Statistical significance was accepted at the
level of P < 0.05. All experiments were carried out at least
three times.
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FIGURE 1 | Mice were injected i.p. with PBS, anti-HMGB1 monoclonal antibody, or glycyrrhizin, respectively. Mice were subjected to intradermal injection of the OVA
antibody. Tail vein injections were given with the OVA antigen and 1% Evan’s blue solution. Mice in the control group were given an injection with the PBS solution on
the back. The macroscopic presentation of mice back skin was shown. IC showed obvious vasculitic lesions and Evan’s blue exudation on the back contrasting with
the other groups. IC, model control group; anti-HMGB1 mAb, anti-HMGB1 monoclonal antibody. n = 9 per group.

anti-HMGB1 mAb

glyeyrrhizin

RESULTS

HMGB1 mAb and Glycyrrhizin Obviously
Extenuated the Severity of Vasculitis Skin

Damage

We observed skin lesions in all groups on the back of the mice
and the extent of exudation of 1% Evan’s blue solution. As
presented in Figure 1, compared with the PBS control group,
the model group showed obvious vasculitic lesions and Evan’s
blue exudation on the back. While treatment with the HMGB1
monoclonal antibody and glycyrrhizin, the skin on the back of
the mice was significantly reduced in the local inflammatory
response compared with the model group.

Significant Improvement in Inflammatory
Cells Infiltration, Vascular Fibroid Necrosis,
and Vasodilation Treated With the HMGB1
Blockade

Morphological changes of skin lesions were observed by light
microscopy. During the histological examination, in contrast
with the PBS group, we found that there was more inflammatory
cell infiltration, vascular fibroid necrosis, and vasodilation in the
model group, nevertheless, there was a significant improvement
in the tissue treated with the HMGB1 monoclonal antibody and
glycyrrhizin as seen in Figure 2.

HMGB1 Blockade Reduces Inflammatory

Cell Infiltration in Vasculitis Mice Model

Immunohistochemistry was adopted to analysis the infiltration
of the inflammatory cells. In flagrant contrast with PBS group,
there was a marked reduction of lymphocytes, neutrophils, and
dendritic cells infiltrating the model group. However, compared

with the model group, the above inflammatory cells were
significantly reduced after treatment with the HMGBI antibody
and glycyrrhizin as shown in Figure 3.

The mRNA Expression of IL-6 and CCL5
Were Reduced Evidently in the HMGB1
Monoclonal Antibody Group and
Glycyrrhizin Group

As displayed in Figure 4, compared with the PBS group, the
results of QPCR demonstrated that the mRNA expression of IL-
6 and CCL5 had reduced evidently in the scathing tissue of the
HMGBI1 monoclonal antibody group and glycyrrhizin group (P
< 0.05), yet there was a marked increase in the control group.

DISCUSSION

The high mobility group box 1 protein (HMGB1) is universal in
all the cells of higher eukaryotes, is secreted by inflammatory cells
(such as: activated monocytes, macrophages, mature dendritic
cells, and natural killer cells), and may act as a potent mediator
of inflammation (17-20). Our previous work found that the
expression of HMGBI1 was elevated in a variety of vasculitis
diseases, and it was decreased in patients with HSP after
treatment (13). HMGB1 may play an important role in the
pathogenic mechanism of vasculitis. In this study, a HMGBI1
blockade was used to treat vasculitis in a mouse model of
cutaneous vasculitis. Then we detected that local skin lesions
and tissue inflammatory cell infiltration were both significantly
reduced. It meant that a HMGBI blockade can effectively
improve the clinical and pathological manifestations of vasculitis
in mice.
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FIGURE 2 | Shown as a histological examination, Phenotypical presentation of mouse back skin which was injected with PBS, anti-HMGB1 monoclonal antibody, or
glycyrrhizin, respectively, were applied and hematoxylin—eosin (HE) staining of tissue sections treated as described. There was more inflammatory cell infiltration,
vascular fibroid necrosis, and vasodilation in the model control group, compared with the other groups. n = 6 per group.
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FIGURE 3 | Results of immunohistochemical staining of four groups in CD3, MPO, and CD11c. Image shows high power (200x). More inflammatory cell infiltration,
vascular fibroid necrosis, and vasodilation in the IC when compared with the other groups. n = 6 per group. ‘P < 0.05, "P < 0.01, and "'P < 0.0001.
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FIGURE 4 | PCR was taken to detect the mRNA expression of IL-6 and CCL5. Total RNA were extracted from the Trizol reagent. In contrast with PBS, the mRNA
level of IL-6 and CCL5 was markedly higher in IC, yet there were reduced in other groups. n = 6 per group. P < 0.05 and “P < 0.01.

It is well-established that the production and release of  that the expression of related inflammatory cytokines IL-6 and
proinflammatory cytokines such as TNF- o and IL-6 play crucial =~ CCL5 were markedly increased in the skin samples of mice from
roles in IC-induced inflammation (4-6). In this study, we found  the IC group compared with the control group.
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The HMGBI protein is not only a nuclear factor but also
a secreted protein (8). It can stimulate activated monocytes,
neutrophils, and the production of IL-7, IL-8, TNFa, MMP,
and other pro-inflammatory cytokines, and can also promote
the development of various chemokines. HMGB1 can also
promote the local production of the tumor-necrosis factor (TNF),
interleukin-6 (IL-6), and interferon-y (7, 21). HMGBI1 can induce
phosphorylation of the inhibitor of kB-a (IkBa) and the nuclear
translocation of nuclear factor-kB (NF-kB) p65 in HMEC-1
cells. The signaling pathway leads to the activation of NF-
kB, which leads to an increased expression of CCL5, which in
turn triggers a subsequent inflammatory response, resulting in
more inflammatory cells infiltrating the damaged tissue, further
aggravating pathological damage (18, 22). Maeda et al. (23)
found that anti-HMGBI1 antibodies inhibited the production of
TNF-a and IL-6 by blocking extracellular HMGBI. In order
to find out whether it reduced the inflammatory response by
inhibiting HMGBI1, we used anti-HMGB1 mAb and the HMGB1
blocker compound glycyrrhizin to treat the mice model. Then, we
found the expression of related inflammatory cytokines IL-6 and
CCLS5 were significantly decreased after treatment, it may further
reduce the damage of vasculitis. That means that a HMGBI1
blockade can effectively inhibit the infiltration of inflammatory
cells and the expression of inflammatory cytokines in the skin
lesions of vasculitis mice (18, 19).
studies suggest that glycyrrhizin has anti-
inflammatory, antiviral, antimicrobial, antioxidative, anticancer
activities, and immunomodulatory effects (24, 25). In Japan, a
glycyrrhizin preparation called Stronger Neo-Minophagen C
(SNMC) has been used as an anti-allergic and anti-hepatitis
agent in clinical treatment for 60 years (26, 27). It has been
reported that glycyrrhizin can effectively inhibit the cytoplasmic
transduction of HMGBI. Our previous studies also found that
glycyrrhizin can target the inhibition of cytoplasmic transduction
in HMGBI1 and thus inhibit the expression of inflammatory
cytokines, and it has been proven that glycyrrhizin is a direct

Previous
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Understanding Behcet’s Disease
in the Context of Innate
Immunity Activation

Sandro F. Perazzio”, Luis E. C. Andrade’ and Alexandre W. S. de Souza

Division of Rheumatology, Universidade Federal de S&do Paulo, Sao Paulo, Brazil

Behcget's disease (BD) is a heterogeneous condition consisting of idiopathic systemic
vasculitis affecting large and small blood vessels of different types (i.e., arteries, veins, or
capillaries). The disease frequently occurs in young adults without gender predilection,
differently from several other autoimmune conditions. This challenging iliness has recently
been proposed by some authors as an example of complex autoinflammatory syndrome.
Although much remains unanswered about BD pathogenesis, recent understanding of
some aspects of innate immunity have clarified a few issues (and raised others). HLA-B*51
represents the strongest genetic risk factor for BD to date, albeit several other HLA-
independent loci have also been associated with the disease. The consistent hyper-
reactivity against Streptococcus sanguinis antigens and alterations in oral and gut
microbioma suggests that infectious agents may play an important role. Moreover,
functional abnormalities of pattern recognition receptors, especially Toll-like receptors in
monocytes, have been demonstrated in patients with BD and can be associated with the
development of the disease. Neutrophil hyperactivity is one of the most consistent findings
in BD pathogenesis, as demonstrated by exacerbated constitutive oxidative burst,
chemotaxis and NET formation. However, some studies suggest that the phagocyte-
activated status in BD is not primary to the disease itself, but rather restricted to a fraction
of patients with severe disease activity, and probably secondary to activating soluble
factors carried by serum/plasma from BD patients. Herein we review the state of the art on
BD etiopathogenesis with special emphasis on the participation of the innate
immune system

Keywords: Behget’s disease, innate immunity, phagocytes, neutrophil hyperactivity, alarmin, Streptococcus sanguinis

INTRODUCTION

Behget’s disease (BD) is an idiopathic systemic vasculitis affecting large and small blood vessels. It
was initially described as recurrent oral and genital ulcers associated with anterior uveitis with
hypopyon by Hulusi Behget (1) and Benediktos Adamantiades (2) in the 1930s. Progressively,
however, a variety of musculoskeletal, neurological, gastrointestinal and vascular manifestations was
associated to the syndrome.

The epidemiology of BD exhibits an interesting geographic distribution throughout the ancient
“Silk route”, with higher prevalence in Turkey, Iran and Japan. The disease frequently occurs in
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young adults (mean age: 25-30 years old) (3). The lack of gender
predominance is one of the arguments favoring the non-
autoimmune nature of BD pathogenesis. This challenging
illness received special attention in the last years, culminating
with novel insights on the possible autoinflammatory
etiopathogenesis of the disease, which encouraged some
authors to consider BD as an example of complex
autoinflammatory syndrome (4). Much remains unanswered in
BD pathogenesis, as recent progress in the understanding of
some aspects of the innate immunity has raised unforeseen
questions. Herein we review the state of the art on BD
etiopathogenesis with special emphasis on the participation of
innate immunity activation.

THE IMMUNOGENETIC BASIS OF
BEHCET’S DISEASE

Histocompatibility Leucocyte Antigen
Histocompatibility leucocyte antigen (HLA)-B*51 represents the
strongest genetic risk factor for BD to date. It was initially
reported in the Japanese (5) and reproduced among several
other ethnic groups (6). A meta-analysis reported an overall
odds ratio of 5.78 (95% CI=5.00-6.67) for HLA-B*5] carriers to
develop BD, independently of the ethnicity (6). Similar results
were confirmed in two different genome-wide association studies
(GWAY) in Japanese (7) and Turkish BD patients (8). However,
recently other loci have been demonstrated to increase the risk of
BD as well. Kuranov et al. (9) studied HLA-B*51-negative
patients and showed a significant association of BD and HLA-
Bw4-801, an epitope present on B locus-derived proteins,
characterized by the presence of an isoleucine at amino-acid
position 80 in the ol helix of the HLA-B*04. Additionally, these
authors found an association with HLA-A*26 independent from
HLA-B*51, which was confirmed in other studies (8, 10). In
addition, Hughes et al. (10) demonstrated that HLA-A*03, B*15,
B*27, B*49 and B*57 also contribute to BD risk independently,
although this has not been replicated to the moment. Another
study identified additional independent risk factors for BD
located at HLAB/MICA and at the region between HLA-F and
HLA-A (11).

Other Genetic Risk Factors
GWAS in BD patients identified extra-HLA genetic risk factors.
By analyzing 311,459 SNPs in 1,215 BD patients and 1,278
controls, Remmers et al. (8) identified two novel susceptible
loci for BD: IL23R-IL12RB2 and ILIO0 (allele rs1518111 A,
associated with low mRNA and protein expression). Recently,
association between ILI0 polymorphisms and BD was also
demonstrated in Chinese patients (12). These data emphasize
the possible role of IL-10 in BD pathogenesis and raise the
question of possible participation of adaptive immunity,
especially Th17 and Treg cells, in BD (13).

Copy number variation (CNV) of Complement component
C4 genes was investigated in BD. In contrast to systemic lupus
erythematosus (14), there is an increased frequency of more than

2 copies of the C4A gene in BD patients and this represents a risk
factor independent from HLA-B*51 (15). Moreover, the authors
also demonstrated that BD patients with high C4A copy number
had increased production of IL-6, an important mediator of the
innate immunity acting as an acute phase reactant.

Another interesting observation is the presence of a specific
chromosomal abnormality in a number of patients with BD:
trisomy of chromosome 8 (16, 17). Considered a risk factor for
myeloid leukemia (18) and myelodysplastic syndrome (19),
appearing in 5-10% of patients, trisomy 8 also seems to play a
role in BD. As shown in a recent study, its frequency was
reported as high as 86% in patients with concurrent BD and
myelodysplastic syndrome (20). Apparently, these cases present
frequently with prominent gastrointestinal involvement and no
geographical preference (21). Interestingly, chromosome 8
harbors some pivotal genes related to innate immunity
modulation and NF-kB pathway activation, such as IKBKB.

ALARMINS AND MICROORGANISMS

Alarmins are a group of proteins with the ability of initiating the
innate immune response after quick release following cell
necrosis. Alarmins activate pattern recognition receptors
(PRR), such as Toll-like receptors (TLR), and are essential to
restore homeostasis after tissue damage. In fact, alarmins are
considered a subtype of DAMP (damage-associated molecular
patterns), which consist of stereotyped molecular patterns shared
by molecules originated after exposure to physical or chemical
agents capable of inducing tissue damage (e.g., radiation, heat
and cold, among others).

The High Mobility Group Box 1 (HMGB1) is probably the
most studied alarmin in systemic autoimmune rheumatic
diseases (22-26). Ahn et al. (27) demonstrated that HMGB1
serum levels are increased in BD patients, especially those with
gastrointestinal involvement. Conversely, our group found
higher HMGBI levels in BD patients compared to controls,
regardless of disease activity, disease manifestations or therapy
with prednisone and azathioprine (28). Han et al. (29) reported
increased serum levels of alarmin S100A12 in BD, independently
of disease activity, although at higher magnitude in active phase.
Accordingly, S100A12 serum levels decreased after the treatment
and the protein expression was increased in skin biopsies of
active erythema nodosum lesions from BD patients.

There is also some evidence regarding the role of
microorganisms on BD. The hyper-reactivity against Streptococcus
sanguinis antigens and the homology and potential cross-reactivity
of some of its proteins with human heat-shock proteins (HSP)
(30), as exemplified by the activation of T ¥8" cells by the
pathogen and HSP 60/65 kDa (31), suggest this infectious agent
might play an important role in BD pathogenesis (32). Herpes
simplex virus 1 (HSV-1), Staphylococcus aureus, Mycobacterium
tuberculosis and some Prevotella species have also been identified
as potential candidates (33). HSV-1 RNA and DNA were found in
increased frequency in cells from BD patients (34, 35). Moreover,
mycobacterial HSP peptides stimulate y0* T cells from BD
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patients, which, in turn, are increased in peripheral blood and
mucosal lesions (36). Despite these intriguing set of data, a direct
causal relationship between infectious agents and BD, as well
as the precise role of y8" T cells on the disease pathogenesis,
remain unclear.

TOLL-LIKE RECEPTORS AND OTHER PRR

Evidence of increased serum levels of alarmins and hyperactivity
against some microorganisms turns plausible the hypothesis that
PRR participate in BD pathogenesis. Indeed, functional
abnormalities of PRR and their activation cascades have been
identified in previous studies and can be associated with BD
development. Yavuz et al. (37) demonstrated that TLR6
expression is significantly increased in granulocytes from BD
patients after stimulus with Streptococcus sanguinis or HSP-60
compared to rheumatoid arthritis patients and healthy controls.
Interestingly, monocytes from BD patients presented lower
TLR2 expression after the same stimuli. Of interest, Neves
et al. (38) and Do et al. (39) showed that TLR2 and TLR4
expression in monocytes from BD patients was constitutively
increased; however, this finding was not observed in neutrophils
from these patients.

A recent GWAS with 2,461 BD cases and 2,458 healthy
controls showed protective TLR4 and NOD2 polymorphisms,
respectively associated with decreased response to
lipopolysaccharide and muramyl dipeptide (40). Furthermore,
a multicenter study with Chinese and Dutch patients has
provided evidence that polymorphisms in TLR2 are involved
in ocular BD susceptibility (41). A SNP of TIRAP, a MyD88-
adapter-like molecule with a regulatory role in TLR2 and TLR4
signaling, has been associated with BD in a British cohort (42),
but results were not replicated in Middle-Eastern, Turkish or
Italian patients (43).

Taken together, these findings implicate innate immunity and
bacterial sensing mechanisms as important players in BD
pathogenesis, with participation of diverse gene polymorphisms
according to different ethnicities, and represent a promising
investigational area in BD.

THE NF-xB PATHWAY

Downstream signaling leading to internalization of the two
nuclear factor kB subunits (p50 and p65) represents the
canonical signal transduction pathway after activation of
several PRR. Despite the inflammatory characteristics of BD
suggesting NF-kB hyperactivation in BD patients (44), there are
few studies in the area, but this has progressively been
changing lately.

Polymorphisms in NFKBI promoter (-94 insertion/deletion
ATTG) (45) and NFKBIA (rs696) (46) were demonstrated to
enhance the risk for BD in the Turkish population. It seems that
NEF-xB plays a pivotal role in controlling T cells apoptosis in BD.

Although CD95 is highly expressed on T cells from BD patients,
Todaro et al. (47) demonstrated decreased sensitivity to CD95-
induced apoptosis, possibly attributed to the inhibitory action of
anti-apoptotic genes (CFLAR, BCL2L1, BCL2, CASP3, CASPS)
and up-regulated expression of Ikk, IxB, and NF-xB.
Interestingly, thalidomide, a therapeutic agent used in severe
mucocutaneous manifestations of BD, and NF-«kB small
interfering RNA down-regulated cFLIP and Bcl-xL expression
levels, ultimately increasing activated T cells sensitivity to CD95-
induced apoptosis in BD.

Constitutive NF-kB canonical pathway hyperactivation in BD
phagocytes was previously reported by our group, as indicated by
the over-expression of phosphorylated p65 subunit (44). Similarly,
a monogenic form of an autoinflammatory disorder resembling
BD was described in five families carrying heterozygous germline
mutations of TNFAIP3, a potent inhibitor of the NF-«xB canonical
pathway (48). The mutant TNFAIP3-derived transcript A20 is not
capable of modulating intracellular signaling, ultimately
culminating in phagocyte hyperactivation and increased NF-«B-
mediated proinflammatory cytokines secretion. Moreover, carriers
of NFKBI variants have been reported to present a monogenic
BD-like disease, characterized by pathergy-like lesions and striking
macrophage inflammasome activation. Finally, an autosomal-
dominant mucocutaneous ulceration disorder was recently
associated with RELA mutations, encoding the NF-«kB subunit
P65 (49).

Previous studies further support the clinical overlap between
BD and other autoinflammatory diseases with shared
etiopathogenesis, such as familial Mediterranean fever (4, 50).
MEFV M694V mutation frequency is increased in Turkish BD
patients (40). Rare genetic variants of undetermined significance
in inflammasome components upstream of NF-«B have also
been found in BD patients, especially NOD2 and NLRP3 (51-53).
Some of these variants may contribute to the disease onset, but
others could be only single nucleotide polymorphisms without
any effect. Anyhow, inflammasome-activated NF-kf3 pathway
dysregulation seems to be a common finding in disorders with
BD-like phenotypes (54).

ENDOTHELIAL CELL DYSFUNCTION

As a pro-thrombotic condition, one would expect the existence
of some sort of endothelial dysfunction in BD. A study in
Turkish patients showed that patients with active disease
presented lower nitric oxide serum levels than those in
remission (55). Since endothelial cells are major producers of
nitric oxide, the authors suggested a putative dysfunction in these
cells. This would be probably mediated by increase in oxidative
stress due to augmented malondialdehyde (a metabolite of
polyunsaturated lipids oxidation by reactive oxygen species -
ROS) serum levels in active BD patients.

Fadini et al. (56) originally demonstrated a progressive
decrease of circulating endothelial progenitor cells in BD
patients, which might represent a vascular damage mechanism,
since these cells are involved in vascular homeostasis and repair.
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The authors also showed a positive correlation between the
number of endothelial progenitor cells and both BD activity
score and C-reactive protein.

A systematic review aimed to evaluate subclinical
atherosclerosis in BD by endothelial-mediated dilatation and
by measurement of intima media thickness (IMT) of carotid
arteries (57). Among nine studies, endothelial-mediated dilation
was demonstrated to be impaired in BD even in inactive state.
IMT was greater in BD patients, despite considerable variation
that reflects the clinical heterogeneity of the disease.

NEUTROPHIL HYPERACTIVITY

Clinical and pathological data strongly suggest that neutrophil
hyperactivity is a prominent feature in BD pathogenesis.
Exacerbated neutrophil activity can be determined by
evaluating oxidative burst, phagocytic and microbicide
activities, activation of intracellular signaling pathway, among
others. Takeno et al. (58) showed that ROS production is
increased not only in BD patients but also in asymptomatic
HLA-B*51 carriers and even in transgenic mice expressing HLA-
B*51. These observations suggest a mechanistic connection
between the already known immunogenetic background of BD
and its pathogenesis.

Carletto et al. (59) described that peripheral blood and skin
(obtained by cutaneous abrasion) neutrophils from patients with
active BD present higher migration capacity than those from
healthy controls and BD patients with inactive disease. The
increased migration capability was normalized when patients
attained remission, suggesting that this mechanism is involved in
the inflammatory state of the disease. In contrast, no significant
abnormalities were observed in other neutrophil functions, such as
adhesion or superoxide production after zymosan, phorbol-
myristate-acetate (PMA) or N-formylmethionine-leucyl-
phenylalanine (fMLP) stimuli. However, Yoshida et al. (60),
using a chemoluminescence method to determine the superoxide
production in 20 BD patients and healthy controls, demonstrated a
significantly higher superoxide production by neutrophils from BD
patients after the same stimuli used by Carletto et al. (59).

Eksioglu-Demiralp et al. (61) studied the oxidative burst after
stimuli with PMA or fMLP and the phagocytic activity against E.
coli in neutrophils from healthy controls, BD patients (HLA-B*51
carriers or not), septic patients and patients with inflammatory
arthropathy (namely, rheumatoid arthritis and ankylosing
spondylitis). Oxidative burst was decreased in stimulated
neutrophils from BD and septic patients, suggesting that
phagocytes were exhausted and hypo-responsive in vitro due to
previous in vivo hyper-activation. Interestingly, phagocytic activity
was significantly increased in septic and inflammatory arthropathy
groups, but did not differ between BD patients and healthy controls.

The same Turkish group published in 2002 another study
reassessing phagocytic activity and oxidative burst profile after
PMA stimulus of neutrophils from healthy controls, BD patients
and “inflammatory patients” (septic, primary vasculitis, systemic
lupus erythematous, osteomyelitis and pneumonia) (62).

Exclusively BD patients presented a decreased oxidative burst
after stimulus, which was inhibited by nitric oxide synthase
inhibitors, although significantly less than the healthy controls.
There was no difference in phagocytic activity among the groups.
Once again, the authors attributed the results to a possible in vivo
pre-activated/exhaustion state of BD neutrophils.

Altogether, these data support the concept that neutrophils
play a pivotal role in BD pathogenesis. However, there might be
other factors contributing to BD development, many of them still
unknown. It is unclear, for example, if the striking neutrophil
hyperactivation occurs constitutively or if it is secondary to a yet
unknown stimulus, such as bacterial (e.g.: Streptococcus) or viral
infections. Therefore, in an attempt to clarify this doubtful issue,
our group designed a study aiming to assess the classical phagocyte
functions (i.e., oxidative burst, in vitro cytokine production,
phagocytic and microbicide activities) before and after stimulus
with pathogens and several microbial components in 30 healthy
controls, 25 septic patients, 31 inactive, and 30 active BD patients
(63). We observed that phagocytes from BD patients with severe
manifestations exhibit significantly higher oxidative burst activity,
both before and after PMA stimulation, compared to cells from
patients with mild BD manifestations. Furthermore, we found
significant positive correlations between BD patients’ scores on the
simplified Behget s Disease Current Activity Form (BR-BDCAF), a
validated tool to measure disease activity, and Streptococcus
sanguinis-stimulated production of IL-23 by peripheral blood
mononuclear cells (PBMC) and IL-8 by neutrophils. In addition,
significant positive correlations were also found between BR-
BDCAF score and constitutive production of TNFo., IFNy, IL-6,
and IL-23 by PBMC. Thus, our study corroborates the
participation of phagocyte in BD pathogenesis by the evidence
that patients with severe BD exhibit phagocytic dysfunction and
some extent of constitutive activation.

In contrast, an important aspect of neutrophil biology has
largely been ignored despite the striking body of evidence of
involvement of these cells in BD: neutrophil extracellular traps
(NET) release. Our group originally showed an increased
constitutive NET release in BD patients (64). Interestingly,
NETosis was markedly stimulated by soluble CD40L, especially
from plasma of active BD patients. Similarly, Le Joncour et al.
(65) recently demonstrated that circulating NET components are
elevated in active BD patients, mainly in those with vascular
involvement, suggesting that NET may represent a potential
therapeutic target for BD-associated thrombotic risk.

Despite some controversy in the literature regarding
neutrophil dysfunction in BD (summarized in Table 1), the
bulk of evidence suggests that the activated status of phagocytes
in BD is not a constitutive feature, but rather restricted to a
fraction of severely active patients, and probably secondary to an
unknown soluble factor (Figure 1).

ROLE OF MONOCYTES IN BD

Like neutrophils, monocytes are important agents of the innate
immune system by means of their phagocytic activity, oxidative
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TABLE 1 | Controversies regarding phagocyte activity in Behget's disease (BD).

Author Year Brief description Reference

Takeno et al 1995 Increased oxidative burst in BD patients and HLA-B51 healthy controls. (58)

Sahin S et al 1996 Increased adhesion. (66)

Carletto Aetal 1997 Increased migration (active BD only). No difference regarding oxidative burst. (59)

Yoshida et al 1998 Constitutively increased oxidative burst in BD neutrophils. Increased oxidative burst in neutrophils from healthy controls after (60)
pretreatment with serum from BD patients.

Eksioglu- 2001 Decreased oxidative burst. No difference regarding phagocytic activity compared to healthy controls. 61)

Demiralp E et al

Atalay G et al 2002 Decreased oxidative burst (active BD only). No difference regarding phagocytic activity. (62)

Neves et al 2009 Both normal and BD neutrophils increased chemotactic capacity after incubation with BD plasma. No difference regarding (38)
chemotaxis.

Perazzio et al 2015 Increased oxidative burst (severe BD only). Positive correlation between activity score and constitutive or Streptococcus (44)
sanguinis-stimulated production of cytokines in vitro. No differences regarding phagocytic and microbicide activities.

Perazzio et al 2017 Plasma from BD patients exerted a stimulus on neutrophil extracellular traps release and oxidative burst, probably induced by (44)
sCD40L

Le Joncour et al 2019 Circulating neutrophil extracellular traps markers are elevated in BD and contribute to the procoagulant state (65)

Fizow,
(o
Treg ‘\:_-_’/' 121

T CD4*

IL17, IL21

Th1

IL8, TNFa
HSP 60/65

NEUTROPHILS

Neutrophil hyper activity
Oxidative burst increase
Increased chemotaxis

GENETIC FACTORS ENVIRONMENTAL FACTORS

= " o0 = 5
MICA*009 ql‘ 4+ LR v / %
HLA-B51 1L23 S. Mycobacterium HSV
~h ? IL10 ?
Unknown gene Unknown stimulus
l | iR
o=~ l 1 Ulcer
s NN oS. sanguinis

Y," Anti-endotelial cell antibody
£ ., «

@—> Unknown soluble factor
Adhesionmolecules

FIGURE 1 | Summary of the possible Behget's disease pathogenesis. Distinct T helper cells mainly Th1 and Th17 have the ability of stimulating T effectors and T
regulatory cells especially by the action of cytokines. Although some remain unknown, several genetic (e.g.: HLA-B*51, MICA, C4 copy number variation, among
others),,, and environmental factors (e.g., Streptococcus sanguinis, Herpes-simplex virus, mycobacteria, among others) are involved in the process, by facilitating the
activation of T cells. Similarly, the antigen presenting cells, especially macrophages from mucosa, stimulate immune cells by Toll-like receptors activation. All these
innate and adaptive immune pathways culminate with the sequential neutrophil activation, considered the most important element in BD pathogenesis. blue closed
arrows represent stimulation of a cell subtype mediated by cytokines, while red open lists represent inhibition.

burst and cytokine production. Thus, it is reasonable to suppose
that their function and response to stimuli may bear some
similarity to those of neutrophils, especially in diseases with
neutrophil hyperactivity.

Indeed, Gogus et al. (67) showed that monocytes from BD
and familial Mediterranean fever patients present higher
oxidative burst activity than those from rheumatoid arthritis
patients and healthy controls, especially when stimulated by

sodium monourate crystals. Moreover, interactions between
neutrophils and monocytes have received particular attention.
For example, peptides released from activated human
neutrophils stimulate monocyte adhesion and transmigration
as well as macrophage oxidative burst (68).

Interestingly, monocytes from BD patients present higher
expression of TLR2. Moreover, bacterial-derived lipoteichoic
acid activated TLR2 increases neutrophil chemotaxis and
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adhesion to endothelial cells (38). Furthermore, active DB is
associated with higher expressions of TLR2 and TLR4 in
monocytes, as well as with a higher frequency of pro-
inflammatory CD14"CD16" monocytes in the peripheral blood
compared to healthy controls (39). In vitro lipopolysaccharide-
stimulated monocytes from BD patients produced similar
amounts of TNFo compared to healthy controls cells; however,
a higher in vitro production of TNFo. was observed in monocytes
from clinically active BD patients in comparison to those from
quiescent BD patients (69). It would be intriguing to further
explore this aspect in BD since monocytes seem to play a role in
its pathogenesis as these cells may contribute to neutrophil
activation after bacterial triggers in BD patients.

SOLUBLE FACTORS AND
AUTOANTIBODIES

Cytokines and soluble receptors are major effectors of innate
immunity and some of them have already been associated with
BD pathogenesis. A previous study showed an increased
expression of Thl cytokines (IL-12, IL-18, and IFNYy) in skin
and oral ulcers from active BD patients (70). In fact, Yanaginori
et al. (71) demonstrated that stimulation with Streptococcal
antigens specifically increased gene and protein expression of
IL12p40, in conjunction with IL12p70 induction, in PBMC from
BD patients. This finding provides evidence for Thl-skewed
anti-bacterial host response mediated by IL-12 in BD patients.
Two studies showed that serum and cerebrospinal fluid (CSF)
levels of IL-15 and IL-18, two crucial Thl cytokines, were
increased in neuro-Behget patients (72, 73).

Moreover, in the strict context of innate immunity, some
studies showed that serum levels of IL-8, a potent neutrophil
activator and chemotactic factor, are increased in BD patients
(66, 74), especially in active disease (75). IL-8 levels were also
elevated in synovial fluid from BD compared to osteoarthritis
patients, which suggests an important role for this cytokine in
BD pathogenesis (76). Inflammasome or NF-xB-derived IL-1f,
TNFo, and IL-6 are also representatives of strictly innate
immunity soluble mediators and act individually or altogether
in systemic inflammation, inducing acute phase reactants and
phagocyte activation. These cytokines may play pivotal role on
BD etiopathogenesis, as therapeutical blockade is indicated by
current clinical guidelines (77). Among immunobiological
therapies for BD, certainly anti-TNF are the most frequently
prescribed and are indicated for refractory mucocutaneous
lesions, peripheral vascular symptoms (deep venous
thrombosis and arterial aneurisms) and as alternative for
parenchymal central nervous system and ocular manifestations.
Anti-IL-6 therapy has been indicated on refractory central
nervous system manifestations (78-80) and anti-IL-1B showed
promising results for severe ocular (81, 82) and mucocutaneous
clinical phenotype (83, 84).

Interestingly, Alpsoy et al. (85) demonstrated that IL8 gene
expression was increased in macrophages from BD patients and
healthy controls after incubation with serum from active BD

patients. Similarly, (85) several other studies demonstrated the
capacity of serum or plasma from BD patients to stimulate the
innate immune system. Yoshida et al. primed neutrophils from
healthy controls with BD serum and observed an increase in the
production of superoxide similar to that observed after stimuli
with zymosan, PMA or fMLP. (60). However, the absence of
objective BD disease activity determination was a caveat of that
study. Sahin et al. (66) demonstrated an increased adhesion
ability of normal neutrophils to human umbilical vascular
endothelial cells and increased expression of adhesion
molecules (CD11a, CD18, and ICAM-1) when exposed to BD
serum, compared to the stimulus of normal serum. However, the
authors could not find any difference between serum from
patients with active and inactive disease, possibly due to
similarly high IL-8 serum levels in both groups. Another study
from the same group showed that BD patients presented higher
monocyte expression of CD14, a monocyte-activating marker, as
well as higher soluble CD14 serum levels than healthy controls
(86). Furthermore, the supernatant of BD monocyte culture
significantly increased the adhesion ability of normal
neutrophils to endothelial cells in vitro. These results indicate
that BD monocytes are active and produce a milieu of pro
inflammatory cytokines, which may play a role in the chronic
inflammation of BD.

Neves et al. showed that chemotaxis was similar in
neutrophils from BD and normal controls after stimulation
with lipoteichoic acid (38). Interestingly, both healthy and BD
neutrophils presented increased chemotactic capacity when
incubated in the presence of BD plasma or stimulated with
C5a, B4 leukotriene or fMLP. Similarly to Sahin et al. (86), CD14
expression in monocytes and soluble CD14 serum levels were
increased in BD patients. Additionally, the authors showed a
positive correlation between BDCAF and soluble CD14 serum
levels, suggesting that the soluble proinflammatory factors
produced in BD correlate with disease activity.

Our group also demonstrated that NET release and oxidative
burst were stimulated with plasma from BD patients (64). In
addition, markedly elevated sCD40L serum levels in conjunction
with CD40L overexpression on CD4" T cells from BD patients
were observed. Interestingly, we originally described that both
NET release and oxidative burst were exacerbated by
recombinant sCD40L and decreased after sCD40L blockade,
suggesting a possible role of this mediator on BD pathogenesis.

Serum and plasma seem not to be the only carriers of soluble
factors related to phagocyte activation in BD. Chemokine levels
in aqueous humor are apparently also increased in BD patients
with ocular manifestations. El-Asrar et al. (87) demonstrated that
CXCL1 and CXCL10 were significantly higher in aqueous humor
of patients with BD compared to patients with Vogt-Koyanagi-
Harada disease and HLA-B*27-associated uveitis. Additionally,
CCR5 and CXCR3 had increased expression in biopsy specimens
of oral ulcers from BD patients compared to healthy controls
(88), and MIP-1f (macrophage inflammatory protein 1B) had
increased serum levels in BD (70), indicating a Thl-skewed
immune response on BD immunopathology. Interestingly,
another study showed increased expression of transmembrane
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CXCL16 on circulating plasmacytoid dendritic cells from BD
patients, which might contribute to the high serum IFN-o levels
seen in patients with BD (89).

Although BD is not a typical autoantibody-associated
condition, anti-o-enolase antibodies have been associated with
the disease. One study demonstrated that Streptococcus sanguinis
or BD serum stimuli increase o-enolase expression on human
microvascular endothelial dermal cells, a target for
autoantibodies observed in a fraction of BD patients (90).
Thus, hyper-expressed o-enolase could react to anti-o-enolase
antibodies present in BD serum, eliciting immune response (91).
Additionally, the same authors previously identified that
heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 is a
cross-reactive target of anti-o-enolase antibodies and that
Streptococcus sanguinis or serum from active BD patients are
capable of inducing in vitro expression of hnRNP A2/Bl in
human microvascular endothelial dermal cells (92). Orem et al.
(93) also described that plasma from BD patients impaired nitric
oxide production by human umbilical vascular endothelial cells,
suggesting an inhibitory effect over endothelial NO synthase.

Despite several pieces of evidence, the literature is still
controversial regarding the potential role played by a possible
soluble phagocyte- or endothelial-activating factor carried by
serum or plasma (Figure 1). As discussed above, it is unclear
whether phagocyte activation is constitutive in BD or secondary
to a soluble factor stimulation. Additionally, even considering
the existence of such a factor, the identity and the cells
responsible for its production remain unknown. Therefore, this
is an area of great interest and further research is warranted to
clarify these questions.

INNATE VERSUS ADAPTIVE IMMUNITY: A
PARADIGM FROM THE PAST

Although BD is considered an example of strong innate
immunity activation, it is important to highlight that not all
immune cells can be assigned strictly to either the innate or the
adaptive arm of the immune system. The existence of bridge
populations between the two classic arms of the immune system
expands the paradigm of innate versus adaptive immunity and,
thus, sheds doubt on the concept of “innate” versus “adaptive”
immune-mediated diseases. The modern understanding of the
immune system consists of an organizational continuum, rather
than a dichotomic system, especially due to the acknowledgment
of the bridge population subsets, which present functions
comprehending the innate and adaptive poles (94).
Macrophages, for example, can phagocyte and destroy
microorganisms by the induction of oxidative burst, but
bridges the gap between innate and adaptive immunity by
processing and presenting antigens to lymphocytes. Other
elements involved in the integration of innate and adaptive
immunity include NKT cells, ¥ T cells, CD8a T cells, and Bl
cells. In addition, innate lymphoid cells also produce large
amounts of cytokines attributed to adaptive immunity, such as
IENY, IL-4 and IL-17A.

This review refers mainly to the innate arm of the immune
system in BD. However, there are several pieces of evidence
supporting the participation of the adaptive immunity in BD
pathogenesis. Keller et al. (95) described a prominent
CD4"CXCL8"CCR6" T cell infiltrate in three different
“neutrophilic” diseases: BD, pustular psoriasis and generalized
exanthematous pustulosis. Interestingly, these cells produced
predominantly CXCL8 and GM-CSF, but not IL-5 and IFNy.
Therefore, it is possible that these cells constitute a different
subset of T cells, since their phenotype and functions differ from
those of other classical CD4" cells, such as Th1, Th2, Th17, and
are associated to a unique inflammation cascade that promotes
neutrophil hyperactivation.

Additionally, Thl cells producing TNFa, IENy, IL-8, IL-12,
CCR5, CXCR3, and MCP-1 (macrophage chemoattractant
protein 1) were reported in several BD lesions, including oral
and genital ulceration, pseudofolliculitis, pathergy pustules and
bowel ulcers (88, 96). Data regarding regulatory T (Treg) cells are
scarce and conflicting. Some studies demonstrated a high
number of Treg cells (CD4*CD25"€"Foxp3*) in peripheral
blood and cerebrospinal fluid (CSF) from BD patients (97-99).
On the other hand, one study reported a decreased frequency of
Treg in peripheral blood (100) and another one showed no
difference in Treg frequency between BD and healthy controls.
However, BD patients presented a decreased frequency of
activated Treg cells (CD45RA"CD25""") (101).

Th17 cells are also apparently important in BD pathogenesis,
especially by recruiting neutrophils via G-CSF (102). Indeed, the
percentage of peripheral Th17 cells and IL-17 production are
increased in active BD (103). Noteworthy, T yd and NKT cells are
also capable of IL-17 production and apparently are associated
with BD pathogenesis as well (104, 105). Geri et al. (101)
demonstrated an increase in the number of Th17 cells and a
reduction of Treg cells in the peripheral blood from BD patients,
as well as increased serum levels of IL-21 compared to controls.
In addition, healthy control CD4" T cells stimulated in vitro with
sera from active BD patients showed high IFNy and IL-17A and
decreased T reg cells differentiation compared to stimulus with
sera from BD patients in remission. Moreover, Bassyouni et al.
(106) showed that Th17 polarization in BD patients is induced by
high levels of the inflammatory mediator serum amyloid-A.
Thus, IL-17 axis seems to coordinate interactions between
lymphocytes and neutrophils in BD and may represent a
potential therapeutic target. In fact, the adaptive immune
system apparently can stimulate neutrophil functions, contributing
to the hyper-activated status of these cells. Figure 1 summarizes a
proposition for integrated pathogenesis of Behget's disease.

CONCLUSION

Understanding Behget’s disease pathogenesis is a pivotal step for
the development of novel and efficacious therapies. Nevertheless,
polygenic inheritance with the participation of several unknown
environmental factors contributes to heterogeneity among
patients and extra challenge for elucidating its pathogenesis.
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Evidence indicates that innate immunity is prominently involved
in BD, which is illustrated by the striking neutrophil
hyperactivity and its interaction with monocytes. However,
adaptive immunity also seems to be important in BD, with
particular emphasis on Thl and Th17 responses.

Key messages

1. Phagocyte hyperactivity, with increased oxidative burst and
chemotaxis, is a hallmark of Behget’s disease.

2. Soluble factors carried in the plasma contribute to phagocyte
dysfunction in BD

3. Innate and adaptive immunity play an important role in BD
pathogenesis and the IL-17 axis seems to play a pivotal role in
the integration of the two arms of the immune system in this
disease.
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Vasculitis can be a life-threatening complication associated with high mortality
and morbidity among patients with primary immunodeficiencies (PIDs), including
variants of severe and combined immunodeficiencies ((S)CID). Our understanding
of vasculitis in partial defects in recombination activating gene (RAG) deficiency,
a prototype of (S)CIDs, is limited with no published systematic evaluation of
diagnostic and therapeutic modalities. In this report, we sought to establish the
clinical, laboratory features, and treatment outcome of patients with vasculitis due
to partial RAG deficiency. Vasculitis was a major complication in eight (13%) of
62 patients in our cohort with partial RAG deficiency with features of infections
and immune dysregulation. Vasculitis occurred early in life, often as first sign
of disease (50%) and was complicated by significant end organ damage. Viral
infections often preceded the onset of predominately non-granulomatous-small
vessel vasculitis. Autoantibodies against cytokines (IFN-a, -w, and IL-12)  were
detected in a large fraction of the cases tested (80%), whereas the majority
of patients were anti-neutrophil cytoplasmic antibodies (ANCA) negative (>80%).
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Genetic diagnosis of RAG deficiency was delayed up to 2 years from the onset of
vasculitis. Clinical cases with sole skin manifestation responded well to first-line steroid
treatment, whereas systemic vasculitis with severe end-organ complications required
second-line immunosuppression and/or hematopoietic stem cell transplantation (HSCT)
for definitive management. In conclusion, our data suggest that vasculitis in partial RAG
deficiency is prevalent among patients with partial RAG deficiency and is associated with
high morbidity. Therefore, partial RAG deficiency should be included in the differential
diagnosis of patients with early-onset systemic vasculitis. Diagnostic serology may be
misleading with ANCA negative findings, and search for conventional autoantibodies
should be extended to include those targeting cytokines.

Keywords: vasculitis, primary immumunodeficiencies, rag deficiency, severe combined immunodeficiencies

(SCID), autoimmunity, combined immunodeficiency with granuloma and/or autoimmunity, atypical SCID

INTRODUCTION

The recombination-activating gene 1 (RAGI) and RAG2
encode lymphoid-specific proteins that are essential for V(D)]
recombination, promoting diversification the T and B cell
repertoire (TCR, BCR), and receptor editing (1, 2). First
described in 1996 by Schwarz et al. null mutations in the
RAGI/RAG2 genes result in T- and B-cell-negative SCID (3). The
spectrum of the disease was soon extended to include patients
with Omenn syndrome and leaky SCID (LS), with relative
recombinase activity lower than 5% resulting in the generation
of restricted, oligoclonal lymphocytes that are enriched for
self-reactive specificities (3, 4). Hypomorphic variants with
more preserved relative recombinase activity (in average 5-
30%), compared to OS and LS, result in a broader spectrum
of distinct phenotypes, including, combined immunodeficiency
with granuloma and/or autoimmunity (CID-G/A) (5, 6),
primary antibody deficiencies (7-9), idiopathic CD4™ T cell
lymphopenia (10), hyper-IgM syndrome (11), and sterile
chronic multifocal osteomyelitis (12). This highly vulnerable
patient population presents with a variety of autoimmune
and hyperinflammatory complications including refractory
cytopenias (84.1%), granulomas (23.8%), and inflammatory
skin disorders (19.0%) (13).

Vasculitis is observed in various chronic diseases; it is
characterized by inflammation of blood vessels, and is classified
into large, medium, and small vessel vasculitis, based on
the diameter of the affected vessels. While the inflammatory
process may be confined to a single organ or site, it may
also involve several organ systems, resulting in a vast variety
of clinical presentations. Although the specific pathogenesis
has yet to be identified, most vasculitides have complex
etiology, and both genetic and environmental factors appear
to contribute to the pathogenesis (14). In recent years,
vasculitis has been described as a feature of various forms of
PID, including those with pathogenic STAT1 gain-of-function
variants, adenosine deaminase 2 (ADA2) deficiency, X-linked
lymphoproliferative syndrome (XLP) type 1, Wiskott-Aldrich-
syndrome (WAS), TAP1/2 deficiency, complement deficiency,
and NOD?2 deficiency (15-21).

Systemic vasculitis has been described as severe complication
with significant end-organ damage in patients with partial RAG
deficiency (pRD) (13). However, our understanding of vasculitis
in RAG deficiency is limited, with no published systematic
evaluation of clinical evolution, diagnostic, and therapeutic
modalities. Herein we sought to describe the clinical, laboratory
features, and treatment outcome of patients with vasculitis due
to pRD.

MATERIALS AND METHODS

We maintain a curated patient database (IRB protocol
#Pro00025693) of 62 cases of RAG deficiency with
autoimmune/hyperinflammatory complications from which
we collected the following information: sex, age (current as of
March 2020, at clinical diagnosis of immunodeficiency and/or
autoimmunity, at molecular diagnosis of RAG deficiency,
and at death or HSCT), genotype (specific RAGI or RAG2
variants), immune phenotype (lymphocyte counts and function,
immunoglobulin levels, and autoantibodies), vasculitis (type,
age at onset, preceding infections if available, length, and
severity), other autoimmune/hyperinflammatory complications,
and therapies trialed (including response and complications)
(13). This database is continuously updated with relevant cases
following literature search and/or personal communication.
Patients with vasculitis were identified from our curated database
and physicians were individually contacted for additional
details. All patients remained deidentified and were previously
consented locally. A structured datasheet was utilized to
collect clinical information from the treating physician. All
patients were assigned as CID-G/A based on published criteria
by Delmonte et al. (22). Although we do acknowledge, that
currently CID-G/A has not been fully defined by either the
Primary Immunodeficiency Consortium (PIDTC) or the Expert
Committee of International Union of Immunodeficiency
Societies (IUIS) (23). In Table1 we provide detailed clinical
information on patients with vasculitis and pRD. Predicted
relative V(D)] recombination activity was recorded as previously
described (24, 25). Lymphocyte panel and immunoglobulin

Frontiers in Immunology | www.frontiersin.org

39

October 2020 | Volume 11 | Article 574738


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

610" uIssenuoI MMM | ABojounuill| Ul SJ8liuoI4

8E.¥/G 8OV | || 8WNIOA | 0202 1800100

TABLE 1 | Detailed clinical information on patients with vasculitis due to RAG deficiency.

ID Age Gene Mutation RAG RAG Type of Severity of Age at Diagnosis Autoantibodies Other Treatment Respose Overall Reference
activity phenotype vasculitis vasculitis onset Autoimmunity . . . to outcome
First- Second-Line Third-
of Line Line therapy  (cause of
vasculitis death)
Patient 1 6 RAGT a.W522C a. 41.6% CID-G/Al Henoch Severe/ 2.5yrs Serology  Anti-IFN-o/o, AIHA Steroids, — HSCT Good Deceased, Unpublished
yrs b.H994R schonlein multiorgan anti-IL12, VIG (MUD) 6yrs
b.n.a purpura (CNS Imaging Coombs+ (stroke)
vasculitis, p-ANCA
stroke)
Patient 2 2.7 RAG1T a.R396C a. 0.6% CID-G/Al Non- Severe/ 1.5yrs Serology  Anti-IFN-o/w, AIHA Steroids  Cyclophosphamide. HSCT Poor Deceased, Unpublished
yrs b.M435V b. 23.6% granulomatous-  multiorgan anti-IL12, rituximab (MUD) 2.7 yrs
small vessel (digital Imaging Coombs+ (idiopathic
vasculitis necrosis) pneumonia
Biopsy syndrome)
Patient 3 48 RAGT aM1V a.n.a. CID-G/Al Leukocytoclastic ~ Mild/skin only 8yrs Serology  Anti-IFN-a, None Steroids, — - Good Deceased, (1)
yrs b.R737H b. 0.2% vasculitis ANA, IVIG 48 yrs
Imaging anti-dsDNA, (COPD)
RF, anti-
Biopsy TG/TPO/TSHR
Patient 4 2 RAGT a.R841Q a. 0% CID-G/Al Non- Severe/ 0.5yrs Serology  APLA, AHA, ITP, Steroids, Rituximab - Good Deceased, ®)
yrs b.FO74L b. 56.5% granulomatous-  multiorgan Coombs+, AN, VIG 2yrs
small vessel (digital Imaging anti-platelet, inflamatory (enterobacter
vasculitis necrosis) anti-TPO myopathy, sepsis)
AlH
Patient 5 3.4 RAG2 a.G35A a.22.1% CID-G/Al n.a. Severe/ 0.5yrs n.a. - ITP Steroids, Alemtuzumab HSCT Good Alive Unpublished
yrs b.A456D b.n.a. multiorgan VIG (n.a.)
(n.a.)
Patient 6 15 RAGT a.fs188X a.2.7% CID-G/Al Non- Mild/ 12.5 Serology - Cutaneous Steroids, - - Good Deceased, (26)
yrs b.A444V b.1.4% granulomatous-  skin only yrs granulomatosis  IVIG 15 yrs
small vessel Imaging (pulmonary
vasculitis fibrosis)
Biopsy
Patient 7 5 RAGT ab.A444V  ab. CID-G/Al Kawasaki Mild/ 1.5yrs Serology  Anti-IFN-a, Macrophage Steroids - - Good Alive 28)
yrs 1.4% disease skin only ANA activation
syndrome
(MAS), SLE
Patient 8 7.5 RAGT ab.R699W  a.b. CID-G/Al Polyarteritis Severe/ 2.5yrs Serology - AIHA Steroids Cyclophosphamide. — Partial Alive 27)
yrs 19.3% nodosa multiorgan azathioprine
(digital Biopsy
necrosis)
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FIGURE 1 | Demographic and clinical characterization patients with vasculitis due to RAG deficiency. (A) Vasculitis is the fourth most common complication of pRD
with immune dysregulation in a cohort of 62 patients (modified from 13) (B) Clinical diagnosis of PID in years compared between patients with pRD (n = 8, circles =
severe/multiorgan, rectangle = mild/skin-only) or without (n = 54) vasculitis and RAG deficiency ("o < 0.05) (C) Percent of patients alive by age and annotate clinical
milestones (D) Kaplan-Meier curves comparing survival of RAG-deficient patients with (n = 8, dotted line) and without (n = 54, straight line) vasculitis (E) Overall
frequency of autoimmune complications besides vasculitis in adult patients with RAG deficiency, AIC... autoimmune cytopenia, Al... autoimmunity (F) Recombination
activity from all available RAG1/2 alleles (average of % wild-type protein). For the non-vasculitis control group only patients with CID-G/Al and AS phenotype were
considered. (circles = severe/multiorgan, rectangle = mild/skin-only) (ns statistically not significant, *p < 0.05, **p < 0.001).

levels were determined by clinical laboratory testing at the  assay, other autoantibodies were detected by Enzyme-Linked
patient’s home institution. Similarly, ANCA and antinuclear = Immunosorbent Assay (ELISA) as part of the routine medical
antibodies (ANA) were detected by indirect immunofluorescence  care (6, 9, 26-28). Anti-cytokine antibodies were detected by
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ELISA as previously described (29). For phenotypic description,
healthy age matched blood donors (n = 25), and RAG deficient
patients with similar clinical phenotypes (CID-G/A and
atypical SCID, n = 48) served as healthy and disease controls.
Statistical comparisons were performed by calculating the Mann
Whitney U-test using Prism Graphpad 8.4 software. Statistically
significant differences obtained in intergroup comparisons were
confirmed by Kruskal-Wallis one-way analysis of variance
using Prism Graphpad 8.4 software. Kaplan-Meier curves were
compared using a log-rank (Mantel-Cox) test. Values of p < 0,05
were considered as significant (ns statistically not significant,
*p < 0.05, p < 0.01, **p < 0.001, ***p < 0.0001).

RESULTS

Demographics and Clinical
Characterization of Patients With Vasculitis
due to RAG Deficiency

In our cohort of 62 patients with hypomorphic RAG variants
and autoimmune and/or hyperinflammatory complications,
we identified 8 patients (12.9%) with episodes of vasculitis
(Figure 1A). There was equal distribution of female (n
4) and male patients (n 4). The designated clinical
phenotype was combined immunodeficiency with granuloma
and/or autoimmunity (CID-G/A) in all 8 RAG deficient patients
with vasculitis based on criteria described above (22). Patients
with severe/multiorgan vasculitis were diagnosed with PID early
in life (n = 5, median age of 1 years; age range of 0.25-
2.5 years), in contrast patients with mild/ skin manifestation
(n = 3, median age 12.5 years; age range 5-20 years, p =
ns) and those without vasculitis (n = 48, median age 3 years,
age range 0-15 years, p = 0.0171) were diagnosed later in
life (Figure 1B). In 4 of 8 patients, vasculitis was the first
clinical signs of immune dysregulation. The median duration of
vasculitis episodes was 1.25 years, with no significant difference
between severe/multiorgan and mild/skin manifestations (data
not shown). Genetic diagnosis of underlying RAG deficiency
was obtained at the median age of 4.25 years (range: 1.5-
46 years) (Figure 1C). Besides development of vasculitis, the
majority (n = 6) of the patients developed autoimmune
complications. Cytopenia was the most common autoimmune
complication, being present in 50% of the patients in our
cohort, similar to other recently reported cohorts (21-77%) (13).
Systemic autoimmunity/inflammatory conditions were observed
in three patients, including inflammatory myopathy, cutaneous
granulomatosis, and macrophage activation syndrome (MAS),
and systemic lupus erythematodes (SLE). Only one patient
developed no additional autoimmune complications besides
vasculitis (Figure 1D).

The course of the disease was complicated by significant
end organ damage, which was associated with a high mortality
rate of 62.5% (5 of 8 patients) and a significantly reduced
(p = 0.0436) median survival of 15 years compared to non-
vasculitis pRD patients with immune dysregulation who had
a median survival of 21.1 years. Although not significant,
patients with severe/multiorgan vasculitis had overall reduced

median survival of 6 years compared to patients with mild/skin
limited vasculitis with a median survival of 15 years (Figure 1E).
Leading causes of death in RAG patients with vasculitis included
respiratory failure (idiopathic pneumonia syndrome post HSCT,
pulmonary fibrosis, chronic obstructive pulmonary disease (n
= 3), followed by sepsis with multi-organ failure (enterobacter
sepsis, n = 1) and stroke due to central nervous system (CNS)
vasculitis (n = 1) (Table 1).

The majority (n = 7) of the patients carried pathogenic
RAG] variants, while one patient was compound heterozygous
for pathogenic RAG2 variants. To our knowledge, this is
the first reported case of RAG2 deficiency and vasculitis.
There was no significant difference in the relative recombinase
activity level between RAG variants presenting with or
without vasculitis and between severe and mild vasculitis
manifestation (Figure 1F).

Detailed Clinical Description of Vasculitis
and Treatment Outcome in Patients With
RAG Deficiency

Childhood vasculitis is classified based on vessel size, including
large, medium, and small vessel vasculitis (30). Detailed clinical
information of vasculitis was available in 7 patients with
RAG deficiency. In our cohort, we observed predominately
non-granulomatous-small vessel vasculitis (n = 5), including
one case of Henoch-Schonlein purpura (IgA vasculitis), one
case of cutaneous leukocytoclastic vasculitis and 3 cases of
unspecified non-granulomatous-small vessel vasculitis. Two
patients displayed medium vessel vasculitis, one case of
childhood polyarteritis nodosa and one case of Kawasaki disease.
There were no cases of large vessel nor granulomatous-small
vessel vasculitis identified (Figure 2A). Vasculitis was diagnosed
based on clinical history, serology, imaging, and/or biopsy
(Table 1). The disease was complicated by severe end organ
complications. In particular, skin involvement was seen in all
seven patients, and digital necrosis in four CNS vasculitis
and cardiovascular complications were seen in one patient
each (Figure 2B).

Vasculitis may develop as a result of infectious or non-
infectious triggers (31). We therefore tried to correlate potential
infectious triggers with the onset of vasculitis. Five patients
developed vasculitis following viral infection (varicella
zoster virus, adenovirus, or respiratory syncytial virus) or
administration of attenuated vaccine (measles, mumps, and
rubella), four patients had bacterial infections (E. faecalis,
C. difficile, Enterobacteria, Streptococcus spp.), two patients
had fungal infection (Candida). No correlation of a potential
infectious trigger and development of vasculitis could be
identified in two patients (Figure 2C). The median duration
of time elapsed from viral infections or vaccination to the
development of vasculitis was 5 months (range 0-9 months,
n = 5) (data not shown).

In addition, we analyzed if autoantibodies associated with
systemic vasculitis can be used as a diagnostic biomarker in
RAG deficient patients. The majority of the patients were
anti-neutrophil cytoplasmic antibodies (ANCA) and antinuclear
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antibodies (ANA) negative (ANCA-negative: 5/6; ANA-negative:
5/7). However, 4 out of 5 patients were positive for anti-cytokine
antibodies (targeting IFN-a, -, and IL-12), confirming what has
been described in previous reports (29) (Figure 2D).

Topical and systemic steroids [+ immunoglobulin
replacement therapy (IgRT)] were used in all patients as
first line therapy and were sufficient to induce remission of
vasculitis limited to skin manifestations in three patients. First
(steroids, IVIG) and second-line treatment (cyclophosphamide,
azathioprine rituximab, and alemtuzumab) had limited
effectiveness in four patients with severe, systemic multiorgan
complications. Three patients were referred for HSCT as
third line therapeutic approach, leading to remission of
vasculitis in all of them (Figures2E,F). Comparisons of
overall survival between first/second line treatment and HSCT
revealed no statistically significant difference. Patients with
severe/multiorgan complications that underwent HSCT (n = 3)
had a median survival of 6 years, whereas patients with severe
complications that received first/second line treatment (n = 2)
had a median survival of 7 years. Patients with mild, skin-limited
vasculitis (n = 3) had a median survival of 15 years (Figure 2G).
RAG deficient patients with vasculitis (median survival 6 years)
that were treated with HSCT had an overall worse outcome
than patients without vasculitis that underwent HSCT (median
survival 21 years, p = 0,0018) (Figure 2H).

Phenotypic Description of RAG Deficient

Patients With Vasculitis

Next, we compared the immunologic phenotype of RAG
deficient patients with vasculitis to those without vasculitis and
healthy pediatric and adult controls. The dominant laboratory
feature among patients with vasculitis associated with pRD was a
severe T cell lymphopenia [mean T cell count: 220 cells/pl (range
65-727), p = 0.0073]. In comparison, T cell lymphopenia was
less pronounced in patients with pRD and immune dysregulation
but without vasculitis (mean T cell count: 635 cells/l; range
106-2,678). We observed a trend toward lower counts of CD4%
T cells (mean: 104 cells/pl; range: 30-611, p = 0.0577) and
of naive CD4" T cells (mean: 5 cells/pl; range 1.69-8.5, p =
0.0991) in vasculitis patients than in the non-vasculitis group
(CD4™ T cells, mean: 257 cells/jLl; range 66-958; naive CD4™
T cells, mean: 7 cells/pul; range 0.04-47), although this did not
reach significance. Interestingly, all patients with vasculitis were
severely CD8™ T cell lymphopenic with a mean of 81 cells/jl
(range 7-194, p = 0.0116) compared to the non-vasculitis group
(mean CD8V cells count: 304 cells/ul; range 11-1,731). B cell
counts were variably low compared to controls with a mean of
81 cells/pl (range 6-359). There was no significant difference
in NK cell numbers between different groups (Figure 3A). T
cell proliferation to phytohemagglutinin (PHA) was comparable
between patients with vasculitis (in average 25,601 cpm) and
patients without vasculitis (in average 21,000 cpm) (data not
shown). IgG levels could not be assessed because the majority
of the patients were on IgRT, and no native IgG levels were
recorded. IgA (85.2 mg/dl, 0-200) and IgM (112.6 mg/dl, 16-230)
serum levels were highly variable, and no significant difference to

non-vasculitis pRD patients could be observed. Elevated IgE was
detected in 4/6 of cases (Figure 3B).

DISCUSSION

In the last decade, the spectrum of PIDs has extended from
being defined by a susceptibility to infections alone to include
features of immune dysregulation (29). A recent study of
the French national PID registry observed a wide range
of autoimmune and autoinflammatory complication (26.2%)
among PID patients (32). All types of PIDs were associated
with a risk to develop immune dysregulation, although T-
cell PIDs and CVID appear to have the greatest risk (32).
Among PIDs with CID with immune dysregulation, partial RAG
deficiency is one of the most common entities (33, 34). Initially
found to account for T- and B-cell-negative SCID, pathogenic
RAG gene variants have been subsequently associated with a
broader spectrum of phenotypes, including autoimmunity and
immune dysregulation (13).

Herein, we have presented vasculitis as key component of
morbidity among patients with hypomorphic RAG variants.
Vasculitis was associated with a high mortality rate of 62.5%
and a reduced median survival of 15 years. Although RAG-
mutated patients with vasculitis were recognized earlier than
those without vasculitis, their overall survival and life expectancy
were severely reduced, confirming that autoimmunity worsens
the prognosis in patients with PIDs. Treatment strategies need
to be carefully examined to balance the efficacy and toxicity
of biologic and non-biologic immunosuppressive drugs in RAG
deficient patients.

Abnormalities of central and peripheral T and B cell
tolerance play key mechanisms in immune dysregulation in
patients with hypomorphic RAG variants. Central B cell
tolerance is affected by a failure to reexpress the RAG
complex during receptor editing of immature B cells in the
bone marrow (35). Peripheral B cell tolerance is disturbed
by an inability to deplete anergic self-reactive B cells due
to survival in a milieu with increased BAFF levels (36, 37).
Impaired B cell tolerance in RAG deficiency is highlighted
by a wide spectrum of serum autoantibodies, including
neutralizing antibodies against interferon-a, interferon-w, and
IL12 observed in our cohort. The majority of RAG deficient
patients with vasculitis were positive for anti-cytokine antibodies,
which were demonstrated to aggravate immune dysregulation,
hyperinflammation with increased type-1 interferon signature
and increased susceptibility to prolonged viral infection (29). As
an example, for hyperinflammation in the setting of infections,
it has been described for vaccine-derived rubella in cutaneous
granuloma formation in RAG deficient patients (38). While we
tried to correlate the development of vasculitis with potential
infectious trigger, further research needs to be done to identify
a causative trigger.

Recent studies have identified vasculitis as an uncommon
complication of PIDs, having been observed in 1-1.6% of
the patients reported in the French national PID registry and
in the USIDNET registry (32, 39). In contrast, we identified
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FIGURE 3 | Lymphocyte cell counts and serum immunoglobulins in patients with vasculitis due to RAG deficiency. (A) CD3* T cells, CD4* T cells, naive

CD4*+CD45RAT T cells, CD8* T cells, CD56™ NK cells, and CD19* B cells of age-matched healthy controls (n = 25), RAG deficient patients with (n = 8) without (0 =
46) vasculitis (B) Immunoglobulin titers of age-matched healthy controls (n = 25) RAG deficient patients with (n = 8) without (n = 46) vasculitis. Dashed line represents
normal values. Statistically significant differences obtained in intergroup comparisons were confirmed by Mann Whitney U-test. Values of p < 0.05 were considered as
significant (ns statistically not significant, *p < 0.05, *p < 0.01, **p < 0.001, ***p < 0.0001).
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vasculitis to be a prevalent complication among patients with
hypomorphic RAG variants and immune dysregulation (12.9%).
Similar to RAG deficiency, there are other PIDs specifically
associated with vasculitis. The differential diagnosis should
include ADA2 deficiency (40), CVID (38%) Wiskott-Aldrich
syndrome (WAS) (26%) (39). Unlike in ADA2 deficiency, where
stroke is predominant, in our cohort of 8 patients, only one
patient had a stroke.

We have recently reported that pathogenic variants in the
RAG genes can result in significant phenotypic variability,
and may occur in 1 in 500 patients with antibody deficiency,
including CVID (41). We therefore recommend that partial
RAG deficiency should be considered for patients with antibody
deficiency and vasculitis, especially when associated with
other autoimmune manifestations, and/or progressive T cell
lymphopenia. Autoantibodies that are frequently associated with
typical forms of vasculitis may be lacking in patients with
hypomorphic RAG variants, as indicated by the fact that the
majority of patients presented with ANCA negative small vessel
vasculitis. Therefore, conventional vasculitis autoantibody panel
should be extended to test for antibodies targeting cytokines, and
in particular IFN-q, -w, and IL-12 (29).

Given the importance of providing optimal care for patients
with PIDs, further prospective studies are needed to identify
potential pathogenic mechanisms and help guide in the
development of optimal treatment of vasculitis in patients with
RAG deficiency.
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Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease including the
cardiovascular system. Atherosclerosis is the most common cardiovascular complication
of SLE and a significant risk factor for morbidity and mortality. Vascular damage/protection
mechanism in SLE patients is out of balance, caused by the cascade reaction among
oxidative stress, proinflammatory cytokines, Neutrophil Extracellular Traps, activation of B
cells and autoantibodies and abnormal T cells. As a precursor cell repairing vascular
endothelium, endothelial progenitor cells (EPCs) belong to the protective mechanism and
show the reduced number and impaired function in SLE. However, the pathological
mechanism of EPCs dysfunction in SLE remains ill-defined. This paper reviews the latest
SLE epidemiology and pathogenesis, discusses the changes in the number and function
of EPCs in SLE, expounds the role of EPCs in SLE atherosclerosis, and provides new
guidance and theoretical basis for exploring novel targets for SLE treatment.

Keywords: atherosclerosis, endothelial cell, endothelial progenitor cell, pathogenesis, systemic lupus
erythematosus, IFN-I

INTRODUCTION

SLE is an immune complex-mediated autoimmune disease involving multiple systems. Its
prevalence and incidence rate can be as high as 241/100,000 per year and 23.2/100,000 per year,
and the rate of premature death is 2-3 times that of healthy people (1). Since 2000, the prevalence
rate of adult SLE in women has been 30-150/100,000, and the incidence rate is 2.2-23.1/100,000 per
year (2). SLE is also an autoimmune disease characterized by cardiovascular disease (CVD). A
multicenter study found that a quarter of the nearly 10,000 deaths from SLE were caused by CVD
(3). Current studies have demonstrated that the inherent factors of SLE are independent risk factors
for the premature occurrence of atherosclerosis in SLE patients (4). With the improvement of the
diagnosis and treatment, the early mortality of SLE patients has been dramatically reduced.
However, atherosclerosis is still one of the leading causes of death of late SLE patients. It is of
considerable significance to explore the natural course and mechanism of SLE combined with
atherosclerosis, find useful therapeutic targets, provide evidence for clinical intervention, and delay
the death of SLE.
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Vascular endothelial dysfunction is the starting point in SLE
atherosclerosis. Endothelial progenitor cells (EPCs) are closely
related to vascular endothelial function. Therefore, the
relationship between atherosclerosis and EPCs in SLE is a
research direction worth exploring. However, in recent
decades, there are few studies on the relationship between
atherosclerosis and EPCs in SLE, and the results are
controversial. This paper analyzes the changes in the number
and function of EPCs in SLE and reviews the potential role of
EPCs in SLE atherosclerosis.

MECHANISM OF ATHEROSCLEROSIS IN
SLE

Arteriosclerosis is a series of aggregation events of leukocytes and
vascular smooth muscle cells (VSMCs) in intima triggered by
endothelial dysfunction and lipoprotein retention, resulting in
fibrous plaques. Then fibrous plaques rupture, followed by
thrombosis. This process requires the immune response’s help
(5, 6). The abnormal immune response driven by SLE enhances
vascular injury mechanism and weaken repair mechanism,
breaking vascular dynamic balance which determines the
occurrence of CVD (Figure 1).

Oxidative Stress

Mitochondrial dysfunctions, abnormal bioenergetics/
immunometabolism and telomere/telomerase disequilibrium
endowed SLE patients with intense oxidative stress (7). Among the
three main targets of oxidative stress, oxidized lipids—oxLDL and
proinflammatory HDL (piHDL)—play a prominent role in

Injury mechanism

T cells
TFH, TPH, CXCRS-
CXCR3+PD1hiCD4+T helper

piHDL
oxLDL cell, B6.SLE CD4+T, CD4+
CXCR3 +T, CD4+ CCRS5 +T,
CDS8 + toxic T cell
Autoantibodies

antibody, AECA, AAVE, anti-
Annexin-V antibody, anti-FXa
antibody, anti-C1q antibody, anti-
hsp60/65 antibody

helper T cell.

: NET
aPL, anti-LPL antibody, anti-
oxLDL-IgG, anti-HDL antibody,
anti-ApoA1 antibody, anti-PON1 Cytokines

IL-1, IL-6, TNF-a,
IFNs, MIF, BAFF,
leptin

accelerating SLE atherosclerosis (8). OxLDL participates in many
stages of atherosclerosis, from endothelial dysfunction to plaque
rupture (6, 9). Normal HDL plays a role in protecting atherosclerosis
by promoting cholesterol outflow, inhibiting vascular inflammation
and scavenging oxidizing substances. However, lupus-altered HDL
shifts from a normal anti-inflammatory state to a proinflammatory
state, causing atherosclerosis (10). Increased piHDL weakens the
ability to prevent LDL oxidation (8).

Cytokines

Cytokines, the primary regulators of immune responses, regulate
and coordinate multiple stages of atherosclerosis. There is a
cascade reaction between these proinflammatory cytokines in
accelerating SLE atherosclerosis (Figure 2).

IFNs are divided into three classes: IFN-I (IFN-o, IFN-f,
IFN-§, IFN-¢, IFN-K, IFN-1, IFN-®), IFN-II (IFN-y), IFN-III
(IFN-AL, IFN-A2, IFN-A3). IFNs participated in the whole
process of atherosclerosis, especially IFN-I (15, 43-45). For
example, IFN-o. and IFN-y promote lipoproteins’ oxidation
(15, 16). IFN-o promotes endothelial dysfunction by
accelerating endothelial cells (ECs) apoptosis and damaging
EPCs, one of the vascular repair mechanisms (15, 46-53). IFN-
o enhances the expression of chemokine and adhesion molecules
without leukocytes adhesion (53); while IFN-y can regulate the
attraction and adhesion of leukocytes (54). IFN-o induces the
up-regulation of SR-A expression in monocytes/macrophages,
then promoting the lipid uptake and the formation of
macrophage-derived foam cells (55); IFN-y not only up-
regulates SR-A, but also up-regulate ACAT1 (56) and inhibit
specific anti-atherosclerotic MSRN proteins (APOE and C3) in
macrophages (57) to reduce cholesterol efflux. IFN-o. prevents
smooth muscle progenitor cell (SMPC) from maturation which

Protection mechanism

EPC

T cells

HDL Treg, iNKT

Autoantibodies
anti-oxLDL-IgM, anti-PC-IgM, anti-
MDA-IgM, anti-ApoB-100 antigens

p45 IgM and p210 IgG

A

FIGURE 1 | Imbalance of injury/protection mechanism of SLE arteriosclerosis. AAVE anti-vascular endothelial-cadherin antibody AECA anti-endothelial cell antibody
aPL antiphospholipid antibody BAFF B cell-activating factor EPC endothelial progenitor cell iNKT invariant natural killer T cell LPL lipoprotein lipase MDA
malondialdehyde; MIF, macrophage migration inhibitory factor; NET, neutrophil extracellular trap; PC, choline phosphate; TFH, follicular helper T cell; TPF, peripheral
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could give rise to macrophages and eventually foam cells (58);
IEN-y enhances VSMCs’ proliferation and migration (56). IFN-o
and IFN-y induce VSMC and macrophages apoptosis in
atherosclerotic plaques, contributing to plaque instability (59—
61). Moreover, IFN-o. inhibits the expression of type I collagen
gene COL1A1 in VSMCs (62) and induces the synthesis of TNF-
o, IL-12 and MMP-9 (63); while IFN-y inhibits the expression of
type I collagen gene COL1A2 in VSMCs (64) and induces the
synthesis of MMP-1, MMP-2 and MMP-9 (56). Besides, IFN-o.
forms an IFN-a-platelet-CD154-CD40 forward feedback loop to
promote thrombosis (65, 66).

Macrophage migration inhibitory factor (MIF) is an
inflammatory and chemokine-like cytokine and an upstream
regulator of innate immunity. MIF enhances LDL uptake (67),
recruits monocytes and T cells (68-70), migrates VSMCs (71),
resulting in plaques. MIF also increases the expression of MMP-1
and MMP-9, inducing plaques rupture (72, 73).

B-Cell Activating Factor (BAFF) is a critical factor in B cell
maturation, survival and function, and an independent factor in
accelerating SLE atherosclerosis (17). BAFF/BAFF-R axis
supports pathogenic B cells producing pathogenic anti-IgG-
oxLDL antibodies (74, 75), which is over-activated in SLE (76).
The co-expression of BAFF/TNFESF13B and APRIL/TNESF13 in
the plaque lymphocytes and macrophages up-regulate FURIN,
the primary Proprotein convertase subtilisin/Kexin (PCSK),
which inactivates lipases and regulates inflammation in

S IFNs — MIF

/,
/,
/
’
/
/
/
/

W)
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Cytokines o -
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FIGURE 2 | Cross-talk between oxidative stress, cytokines, NETS, activation of B cells and autoantibodies, and abnormal T cells in SLE. (A) Oxidative stress
promotes the production of IFN-I (11), NETs (12), autoantibodies (13), and the imbalance of Th17/Treg (14). IFN-o. and IFN-y promote lipids oxidative modification
(15, 16); BAFF promotes the production of autoantibodies (17), the release of NETs (18) and the activation of T cells (19); leptin promotes the production of
autoantibodies, the release of NET and the imbalance of Th17/Treg (20, 21). NET encourages oxidation HDL (22), the expression of IFN-a. (23) and IL-1B (24), and
activates NET-specific memory B cells to proliferate and secrete polyclonal IgG (25). Overactive T cells increase ROS (26) and cytokines, especially IFN-y; TFH (27,
28), CXCR5-CXCR3*PD1hiCD4*T helper cell (29), and peripheral helper T cell (TPH) (30) promote the differentiation of B cells and the production of antibodies. SLE-
related autoantibodies and immune complexes induce the release of NET (31); anti-ApoA1-IgG guides the expression of cytokines (32). Anti-PC-IgM increases Tregs
(83); anti-PC-IgM and anti-MDA-IgM reduce oxidative stress (34). (B) IFN-I (35, 36) and IFN-II (37) induce the expression and mobilization of BAFF. BAFF promotes
the activation of B cells by IFN (38). Moreover, IFN-I encourages the production of MIF (39). MIF/CD74 signal regulates BAFF (40, 41). Leptin enhances MIF-induced
inflammation (42). Besides, IFNs, MIF and leptin strengthen the expression of chemokine, adhesion molecule, TNF- o and ILs. BAFF, B cell-activating factor; MDA,
malondialdehyde; MIF, macrophage migration inhibitory factor; NET, neutrophil extracellular trap; PC, choline phosphate; ROS, reactive oxygen species; TFH,

atherosclerosis (19). And BAFF weakens EPCs’ function and
promotes EPCs’ apoptosis (77).

As an immunopotentiator (78), leptin significantly increases
the risk of atherosclerosis in SLE patients (79). And the serum
leptin level > 34ng/dL was significantly correlated with carotid
plaque (79). Leptin induces oxidative stress, increases MCP-1,
TNEF-0, IL-6 and endothelin-1, accompanied by the expression
of other EC adhesion molecules, MMPs and VEGF, which
damages VSMCs and ECs (80). And leptin promotes the
secretion of atherosclerotic factor (42, 81). Besides, leptin
promotes the production of autoantibodies, increases the
release of NET and imbalance of Th17/Treg in SLE (20).

Neutrophil Extracellular Traps (NETSs)

NET is a unique form of neutrophils death, characterized by the
extrusion of chromatin and a driver of SLE atherosclerosis (82—
87). NETs damages ECs. They promote vascular leakage and
endothelial-to-mesenchymal transition through the degradation
of VE-cadherin and the activation of B-catenin signaling (87);
they induce EC death through the activation of endothelial
MMP-2 (88). NETs also kill VSMCs (89). Moreover, NETs
mediate HDL’s oxidation, interfering with cholesterol outflow
(22). NETs induce the secretion of IFN-a (23) and IL-1f (24).
Serine proteases from NETs degrade tissue factor pathway
inhibitor (TFPI) (90) and promote FXII (91) that activate
coagulation cascade and thrombosis.
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The Activation of B Cells

and Autoantibodies

B cells mainly affect atherosclerosis by producing autoantibodies:
Bl cells secrete protective natural IgM and IgA antibodies,
whereas B2 cells produce pathogenic IgG antibodies. And the
tendency of overactive B cells to produce pathogenic IgG
antibodies is a potential risk factor for lupus-associated
atherosclerosis (17). In particular, antiphospholipid antibodies
(aPL) have been identified as independent predictors of
atherosclerotic plaque progression in SLE (92, 93).

Anti-HDL-IgG induces LDL to enter the ECs, which is a
major contributor to atherosclerosis in SLE. Recently, Kurien BT
et al. found that SLE RNP and anti-Ro/LaRNP antibodies
probably increase the level of anti-oxLDL antibodies (94).
Anti-HDL antibody, anti-ApoAl antibody and anti-PON1
antibody probably have a common atherogenic pathway—they
unbalance PON-1/MPO, which enhances lipids oxidative
modification and interferes with HDL’s anti-inflammation (95—
97). Besides, anti-ApoAl-IgG has two pathways that induce
atherosclerosis in a TLR2/TLR4/CD14-dependent manner: it
activates transcriptional nuclear factor NF-kB to guide the
expression of inflammatory factors; it provides an alternative
(or a concomitant) signal to PI3K in an Src-dependent pathway,
activates L-type Ca2" channels and potassium/calcium
exchangers, resulting in the depolarization of myocardial
plasma membrane (32). Anti-FXa-IgG unbalances hemostasis
and thrombosis by inhibiting the FXa enzyme (98) and promotes
endothelial dysfunction by enhancing FXa-PAR-mediated Ca2"
signal transduction (99). Recent studies have found that IgA-
AECA is involved in SLE endothelial damage by recognizing the
membrane proteins of ECs (100). Anti-Clq antibody plays a role
in atherosclerosis by reducing C1q’s level and protective effects
(101, 102), which polarizes macrophages towards an M2-like
anti-inflammatory phenotype (103) and improves macrophages’
survival and excretion (104).

There are potential protective autoantibodies in SLE patients,
such as anti-oxLDL-IgM, anti-ApoB100 antibodies, anti-choline
phosphate (PC) antibodies and anti-malondialdehyde (MDA)
antibodies. The first three have a synergistic effect: they reduce
the level of oxLDL, the uptake of oxLDL, and the formation of
foam cells (105-107). And Anti-PC-IgM increases Tregs in SLE
and atherosclerosis, reduces IL-17 and TNF-o, and makes
dendritic cells (DCs) immature (33). The combined application
of anti-PC-IgM and anti-MDA-IgM has a doubly preventive
impact on atherosclerosis (34). However, SLE patients showed a
low level of protective autoantibodies (34, 107). Some dietary and
metabolic factors may be responsible for the low levels of anti-
PC-IgM and anti-MDA-IgM (108).

SLE increases the risk of CVD by promoting pathogenic
autoantibodies and inhibiting potential protective autoantibodies.

The Abnormal T Cells

Abnormal T cell subsets are considered to be an essential factor
leading to endothelial dysfunction and CVD in SLE patients.
Tregs are protective T cells in atherogenesis, inhibiting
atherogenic T cell subsets and inflammation. And Treg/Th17

imbalance is common in SLE, becoming a risk factor for
atherosclerosis (109). In human circulation, atherosclerosis’s
severity is not directly related to the number of Tregs (110)
but is closely related to the dysfunction of Tregs (111). During
atherosclerosis, most Treg lost Foxp3 expression and its
immunosuppressive function, then transform into follicular
helper T cell (TFH) (112), which is used to stimulate the
formation of germinal center (GC) and the selection of high-
affinity B cells in GC (27). TFH has also been shown to accelerate
atherosclerosis, although not necessarily by inducing the
production of pathogenic IgG (112, 113). Besides, CD4™T cells
in peripheral blood of SLE patients highly express CCR5 and
CXCR3 promoting the migration of inflammatory T cells to the
arterial wall in a chemokine-dependent way (114, 115). In
particular, CCR5 is the critical factor for CD4+T cells homing
to atherosclerotic plaques (116).

A recent study has shown that Invariant natural killer T
(iNKT) in SLE patients has an anti-atherosclerotic phenotype
which induces macrophages to polarize into anti-inflammatory
and anti-atherosclerotic M2 phenotype (117). The protection is
triggered in early atherosclerosis but is lost or submerged in the
development of clinical atherosclerosis (117).

Oxidative stress, cytokines, NETSs, activation of B cells and
autoantibodies, and abnormal T cells in SLE interact with each
other, amplifying their pro-atherogenic effects (Figure 2). As a
result, the dynamic vascular homeostasis is broken in SLE
patients, characterized by enhanced injury mechanism and
weakened protection mechanism. Subclinical atherosclerosis in
SLE accelerates, even in environments with low disease
activity (92).

THE ROLE OF EPCS
IN ARTERIOSCLEROSIS

Atherosclerosis is a manifestation of the imbalance between
vascular injury and protection mechanisms, especially in
endothelial dysfunction. EPCs are the primary protection
mechanism for endothelial dysfunction, which promote
angiogenesis and maintains endothelial integrity with a series
of reactions. But the situation of this protection mechanism in
SLE is not optimistic.

Classification, Immunophenotype,

and Physiology of EPCs

Scientists have reached a consensus that EPCs isolated by cell
culture are distinguished into two different groups: myeloid
angiogenic cells (MACs), used to identify early EPCs (118);
endothelial colony forming cells (ECFCs), used to identify late
EPCs (119). They promote vascular repair through different
mechanisms (120). ECFCs, considered to be real EPCs, can
differentiate into ECs promoting vascular repair and
neovascularization (121), with the immunophenotype positive
for CD31, CD105, CD146, and negative for CD45, CD14 (120).
MACs can’t become ECs but secretes angiogenic cytokines to
promote angiogenesis through a paracrine mechanism (122),
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with the immunophenotype positive for CD45, CD14, CD31,
and negative for CD146, CD133, and Tie2 (120) (Table 1).

The Role of EPCs in Vascular Repair

After the injury, vascular repair occurs by accelerating the
replacement of ECs. Re-endothelialization is a self-repairing
process that maintains vascular endothelial protection after
injury, including the proliferation and migration of adjacent
intact ECs, resident EPCs and recruited EPCs. EPCs provide an
endogenous repair mechanism to counteract persistent cell
damage induced by risk factors. Scientists suggested EPCs are a
useful tool for the treatment of endothelial injury in regenerative
cardiovascular medicine (123-126). Thus, EPCs have been
studied as biomarkers for the diagnosis and prognosis of CVD
(127-129).

ECs

Healthy ECs protect atherosclerosis by promoting vasodilation,
antioxidant and anti-inflammatory and inhibiting leukocyte
adhesion and migration, and smooth muscle cell proliferation
and migration. Remarkably, ECs can repair themselves. VEGF

TABLE 1 | Classification, immunophenotype and physiology of EPCs.

Classification Physiology Immunophenotype

MACs Secreting angiogenic  Positive : VEGFR2,CD133,CD45,
cytokines CD115,CD14,CD31
Negative : CD146, CD34,Tie2
ECFCs Differentiating into ECs ~ Positive : VEGFR2,CD34,C D31,

CD105,CD146
Negative : CD133,CD45, CD115,CD14

activates Cdc-42 and Racl, mediates the formation of filamentous
pseudopodia and plate pseudopodia, leading to EC migration
(130). SDE-1 activates GPCR-dependent p110YPI3K, increases the
expression of FoxM1 in ECs, participates in the transcriptional
regulation of cell cycle progression genes, promoting the
proliferation of ECs (131). Also, FoxM1 promotes re-adhesion
between ECs through transcriptional control of B-catenin (132).
When cells exfoliate after injury, surrounding ECs proliferate and
migrate to coverage the basement membrane. However, mature
ECs have limited ability to replace damaged ECs. Compared to
ECs, EPCs show a higher proliferation potential, thus can serve as
an additional source of ECs.

EPCs

EPCs could differentiation into ECs. EPCs locate at the site of
vascular injury, restore endothelial integrity and participate in
neovascularization. The process of re-endothelialization includes
mobilization, chemotaxis, homing, proliferation and differentiation
(Figure 3). Early EPCs release growth factors, adhesion molecules
and chemokines to promote the proliferation, survival and migration
of late EPCs; late EPCs directly participate in the formation of
endothelium (133). EPCs also release exocrine bodies to respond to
injured ECs (134, 135).

Mobilization

The mobilization is the first step and is strictly regulated. EPCs are
mainly seen in the bone marrow and in an inactive state which
bind to bone marrow stromal cells (BMSCs) through the
interaction of integrins (04Pl and P3) and VCAM-1 (136).
Under hypoxia, hypoxia-inducible factor 1 (HIF-1) rapidly
increases, then weakens the interaction between EPCs and
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FIGURE 3 | The process of EPC re-endothelialization. Akt, Protein kinase B; BMSC, bone marrow stromal cell; CXCR4, chemokine (C-X-C motif) receptor 4; EC,
endothelial cell; EPC, endothelial progenitor cell; eNOS, endothelial nitric oxide synthase; FAK, focal adhesion kinase; HDAC3, histone deacetylase 3; HIF-1, hypoxia-
inducible factor 1; HoxA9, Homeobox A9; ICAM-1, intercellular adhesion molecule-1; mKitL, membrane-bound form of Kit ligand; MMP9, matrix metalloproteinase-9;
mTOR, mammalian target of rapamycin; PI3K, phosphatidylinositol-3-kinase; SDF-1, stromal cell-derived factor-1; sKitL, soluble Kit-ligand; VCAM-1, vascular cell
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BMSC through NO and MMP-9 in PI3K/AKt/eNOS-dependent
manner. Moreover, neutrophil elastase and cathepsin G prevent
EPCs from combining with BMSCs by cutting integrin and
VCAM-1; and they cooperated with MMP9 to degrade SDF-1
in peripheral blood matrix niches forming a high SDF-1
concentration gradient. Under the synergistic action of elastase,
cathepsin G and MMPs, EPCs are driven into the peripheral
circulation (137).

Homing

After entering the peripheral circulation from the bone marrow,
EPCs are summoned and stay at the site of endothelial injury in
the tissue. This process involves multi-step cascade adhesion and
signaling events, including chemotaxis, involvement, adhesion
and migration (138). The SDF-1/CXCR4 axis regulates the
downstream signal Rac, changes the polarity and cytoskeleton
of the cells, maintains the motor state of the transitional cells,
and navigates the EPCs to the target organ (139). Meanwhile,
integrin, p-selectin ligand and e-selectin ligand expressed on
EPCs interact with p-selectin, e-selectin and ICAM-1 expressed
on activated ECs, supporting EPCs adhesion and migration to
ECs (140, 141). Some studies have shown that SDF-1 increases
the expression of e-selectin in microvascular ECs and then
increases the adhesion of EC-EPC (142).

Differentiation

On the way to the target organ, EPCs begin to differentiate into
ECs. During differentiation, cytokines and shear stress trigger a
series of events, which cause EPCs to acquire some phenotypic
characteristics of ECs. Shear stress supports the differentiation
and proliferation of EPCs via VEGFR2, Tie2, Notch, and B1/3
integrin signaling (143). It stabilizes and activates histone
deacetylase 3 (HDAC3) through the VEGFR2/Tie2/Notch/
PI3K/Akt/mTOR pathway, which in turn deacetylated p53,
leading to increased cell cycle arrest protein p21 and
endothelial markers (144). The homeobox transcription factor
HoxA9 contributes to HDAC-mediated differentiation (145).
Histone deacetylase SIRT1, another downstream factor of
shear stress/PI3K/Akt pathway, is overexpressed in EPCs and
decreases histone H3 acetylation, upregulating endothelial
markers (146). Beside, integrins B1 and 3, also overexpressed,
enhance the expression of endothelial markers via paxillin/FAK/
RAS/ERK pathway (147-149).

Mobilized EPCs enter into the peripheral blood and build a
cell pool, repairing the endothelium by forming a patch at the site
of intimal injury. EPCs represent negative feedback in
intravascular homeostasis. The number and function of EPCs
are regulated by the same molecular pathway, so the decrease of
EPCs number is related to weakened function, and the increase
of EPCs number is related to enhanced function.

Changes in the Number and Function

of EPCs in SLE

There are 15 research articles about the number and function of
SLE EPCs by searching “(Endothelial Progenitor Cells) AND
(Lupus Erythematosus, Systemic)” in PubMed, which have
shown inconsistent results (Table 2). Most of the results on

the quantitative studies of SLE EPCs have shown a low level.
Four studies have shown different results. The difference in the
detection, quantification and identification of EPCs and the
active phase of SLE might explain the quantitative differences.
Studies on the qualitative of SLE EPCs also showed different
results. Ablin JN et al. shown enhanced adhesion of SLE EPCs
(156), while the others shown weakened proliferation/migration/
adhesion/differentiation (46-49, 77, 150, 153, 154, 157-159). The
different adhesion test and quantification seems to be the reason.

Causes of Reduced Number and Impaired
Function of EPCs in SLE

Although the results are controversial, we believe that SLE EPCs
show a trend of reduced number and impaired function. The risk
factors (IFN-I, BAFF, OPG, IL-10, IL-18) and protective factors
(Tang) both exist in SLE. The reduced number and impaired
function of SLE EPCs seem to be the result of the game between
the two sides.

There is no doubt that IFN-I accelerates SLE atherosclerosis,
whether in the initiation or development of the disease (15, 52).
The adult and mouse models’ researches conclude that IFN-I
accelerating SLE atherosclerosis by interfering with EPCs (15,
46-49, 51, 52, 160). Like adult-onset SLE, childhood-onset SLE
also shown reduced number and impaired function of EPCs
(150). But there was no significant correlation between IFN-I
activity and childhood-onset SLE subclinical atherosclerosis and
endothelial function (150). We need a longitudinal assessment in
the future to assess whether vascular damage in childhood-onset
SLE is related to IFN-I. Inflammatory body activation is a key
downstream pathway leading to vascular abnormalities. The
interaction between IFN-I and inflammatory factors mediates
reduced number and impaired function of SLE EPCs. IFN-o
down-regulates IL-1B and VEGF (52) and up-regulates IL-18
and its activator caspase-1 (51)— IL-1f promotes the
differentiation of EPCs (52); IL-18 inhibits the differentiation
of EPCs (51). IL10 inhibits EC differentiation and enhances IFN-
o-mediated EPC dysfunction (50). OPG plays a pathogenic role
in atherosclerosis. OPG binds to syndecan 4, the receptor of OPG
on EPC, then induces oxidative stress, causing apoptosis of EPC
(151). Spinelli FR et al. has observed that BAFF receptors are
expressed in both EPC and EC, and mediated the apoptosis of
EPC (77). The addition of BAFF inhibitor—belimumab—
restored the quantity and quality of EPCs in vivo and in vitro,
which further proved this point (77).

Tang, a specific T cell group expressing CD3, CD31 and
CXCR4, promotes early EPCs differentiation and activates locally
resident ECs (161). And the percentage of circulating Tang
increased in SLE patients (162-164). However, the chronic
inflammatory environment of SLE accelerates autoimmune
aging. Aging Tang (CD28null-Tang) is not protective but
cytotoxic, secreting inflammatory mediators and releasing
cytolytic molecules from intracellular particles to induce EC
damage and accelerates atherosclerosis in most SLE patients
(165). And the frequency of CD28null-Tang increased in SLE
patients with traditional CVD risk factors and active
diseases (165).
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TABLE 2 | Quantitative analysis of circulating EPCs between SLE and healthy control.

Results Research objects Surface labelings for the Detection methods Quantization methods References
determination of EPCs
Low level of EPCs in the 18 patients with SLE CD34* Flow cytometry Relative to the number of lymphocytes (77)
SLE group VEGFR2* Cell colony
132 children with SLE~ CD34" Flow cytometry Absolute count per unit of blood (150)
CD133 *
90 patients with SLE CD34* Flow cytometry Absolute count per unit of blood (151)
VEGFR2*
17 patients with SLE CD34* Flow cytometry Absolute count per unit of blood (152)
CD133"
VEGFR2*
/CD34*
VEGFR2*/CD133* VEGFR2*
70 patients with SLE CD34* Flow cytometry Absolute count per unit of blood (47)
VEGFR2* Cell colony
135 patients with SLE ~ CD34*CD133* Flow cytometry Absolute count per unit of blood (48)
Cell colony
44 patients with SLE CD34*CD133* Flow cytometry Absolute count per unit of blood (153)
15 patients with SLE CD34"VEGFR2* Flow cytometry Absolute count per unit of blood (154)
gld.apoE-/- mice Sca-1* Flow cytometry Relative to the number of lymphocytes (155)
VEGFR2*
gld.apoE-/- mice Sca-1* Flow cytometry Relative to the number of lymphocytes (46)
VEGFR2*
NZB/W mice CD34* Flow cytometry Relative to the number of lymphocytes (49)
VEGFR2*
No significant difference 31 patients with SLE Tie-1* Cell colony The number of colony (156)
VEGFR2*
CD31*
35 patients with SLE CD34* VEGFR2* Flow cytometry Relative to the number of lymphocytes (157)
Cell colony
31 patients with SLE CD34* VEGFR2* Flow cytometry Relative to the number of lymphocytes (158)
CD 133" Cell colony
Low level of CD34 19 patients with SLE CD133"VEGFR2" cells represent  Flow cytometry Absolute count per unit of blood (159)

+VEGFR2+ cells and high
level of CD133+VEGFR2+
cells in the SLE group

cells represent late EPCs

Therefore, we speculate that Tang activates the vascular
endothelial protective mechanism in the early SLE. With the
progress of the disease, the chronic inflammatory environment
of SLE not only accelerates the aging of Tang but also enriches a
variety of risk factors for EPCs, which leads to the dysfunction of
EPC in SLE patients.

THE ROLE OF IFN-I IN THE INJURY
OF EPCS IN SLE

The Immune Mechanism of IFN-I
Production in SLE

The IFN-I system in SLE is chronically active. pDCs
(plasmacytoid pre-dendritic cells) are the primary source,
which have high levels of interferon regulatory factor (IRF) 7,
facilitating rapid and large-scale IFN-o. generation (166). Up-
regulated interferon-induced genes such as MX1, ISG54, and
ISG56 and transcription factors of interferon pathway such as
IRF5, IRF7, IRAK1, TREX1, STAT4, and PTPN22 mediate
abnormal immune responses and the production of ICs,

early EPCs, and CD34"VEGFR2*

resulting in abnormal activation of pDCs (167). And other
immune cells such as neutrophils, NK cells, T cells, B cells and
platelets enhance IFN-I production by IC-stimulated pDCs; IFN-
I, in turn, stimulates the activation of these immune cells,
forming a self-magnifying pathogenic loop (65, 66, 168-173).
During exploring the signaling pathway, the increased
exposure of nuclear contents to corresponding nucleic acid
biosensors is the critical risk factors. Under normal
physiological conditions, self DNA/RNA exists in different cell
compartments and is isolated from the nucleic acid biosensor in
the cytoplasm. Due to the insufficient clearance of apoptotic/
necrotic cells, SLE patients are rich in endogenous free DNA/
RNA, which form ICs with anti-DNA/RNA antibodies (174).
Exogenous microbial DNA/RNA also induce autoimmune
response (175-177). Exposed RNA and DNA stimulate the
relevant nucleic acid biosensor in the form of ICs. DNA
biosensors are divided into two types: endosomal membrane
receptors and intracellular receptors (178). TLRY is the only
known DNA biosensor based on endosomes, which is mainly
expressed in pDCs. The DNA ICs are absorbed and transported
into the endosome through the Fcy Rlla in pDCs, activating
TLR9-MyD88-IRF7 pathway (166). Moreover, TLR9 can bind to
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the curli-DNA complex, composed of bacterial DNA and
amyloid protein curli—a component of bacterial biofilms (175,
176). Compared with TLRY, cytoplasmic DNA biosensors are
widely expressed in mammalian cells. Thirteen cytoplasmic
DNA biosensors have been found so far and cGAS is the most
important cytoplasmic DNA biosensor (178). cGAS binds to
cytoplasmic DNA to produce cGAMP, which then activates ER-
resident STING protein. The activated STING is transported
from the endoplasmic reticulum to the ER-resident Golgi
apparatus and recruits TBK1 to enter the endosome. TBK1
activates IRF3 and IRF7, leading to the expression of IFN-I
(179). Major RNA biosensors include TLR7 and RIG-I/MDAS.
TLR7 also belongs to the endosomal membrane receptor,
activated by single-stranded RNA. The UlsnRNA induces
PDCs to produce IFN-o through Fcy RIla-TLR7-MyD88-IRF7
pathway in SLE patients (180, 181). RIG-I/MDA5 signal is
mainly used to deal with viral infections. After recognizing
viral double-stranded RNA, intracellular RNA helicases (RIG-I
and MDAS5) undergo conformational changes to induce MAVS,
and activates IRF3/7 through TRAF6/3, resulting in the secretion
of IFN-I (182). Recent studies have shown that RIG-I/MDAS5
signal may reduce the degradation capacity of insoluble virus-like
aggregates, inducing a continuous increase of IFN-I (177).

The Pathways of IFN-I Damaging EPCs
IEN-I is one of the causes of impaired EPCs, but the specific
mechanism remains to be elucidated. IFN-I damages EPCs in
two ways: direct toxicity and indirect toxicity (Figure 4).

IFN-I actively induces the production of ELR-negative CXC
chemokines CXCL9, CXCL10 and CXCLI11, which mediate
angiostasis through the receptor CXCR3 (183). CXCR3 exists
in three different splice variants, CXCR3A, CXCR3B, and

CXCR3-alt (184). CXCR3A recruits leukocytes, especially in
Thl lymphocytes (185). CXCR3-alt has a higher affinity for
CXCLI11, but its role in angiogenesis remains to be determined
(186). Conversely, CXCR3B, expressed in ECs, is the main
angiostatic variant of CXCR3 and is the primary angiostatic
receptor for CXCL9, CXCL10, and CXCL11, inducing anti-
proliferation and anti-migration (187-189). CXCR3A and
CXCR3B differ for 52 amino acids at the NH2 end and couple
different types of G proteins, triggering different signal
transduction pathways, CXCR3A-Gi-PI3K-MAPK and CXCR3B-
Gs-AC-cAMP-PKA (187, 190). The coupling of CXCR3B with Gs
results in the selective activation of adenylyl cyclase (AC) and a
consequent increase of intracellular cAMP levels (187). Up-
regulation of cAMP in ECs directly activates PKA, inducing
apoptosis (191).

Moreover, IFN-I enhances the toxicity of ILs and BAFF, which
are EPC risk factor as well. IFN-I interacts with inflammatory
factor ILs to damage EPC synergistically. IL-10 enhances the effect
of IFN-o. on SLE EPC (50). IFN-I down-regulates angiogenic
molecules IL-1B and VEGF (52) and up-regulates IL-18 and its
activator caspase-1 (51), enhancing the anti-angiogenic effect.
There was a positive correlation between the levels of IFN-I and
BAFF in SLE (192). IFN-I induces the expression and mobilization
of BAFF in SLE monocytes and neutrophils (35, 36). The
expression of BAFF is directly induced by IFN-I through IRF1
and IRF2 (36). IFN-o stimulates the secretion of IL-17, then IL-17
and BAFF promote the survival and differentiation of B cells and
production of autoantibodies, which enhances IFN by pDCs,
forming a closed vicious circle (192).

Therefore, IFN-I has direct and indirect toxic effects on EPC,
resulting in endothelial dysfunction, which starts atherosclerosis
in SLE. It is proved once again that IFN-I plays a central
pathogenic role in SLE CVD.
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FIGURE 4 | The signal pathway of IFN-ldamaging EPC. AC, adenylyl cyclase; BAFF, B cell-activating factor; cAMP, cyclic adenosine monophosphate; cGAS, cyclic
guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase; CXCL, chemokine (C-X-C Motif) ligand; CXCR, chemokine (C-X-C motif) receptor;
EPC, endothelial progenitor cell; PKA, Protein kinase A; RIG-I, retinoic acid-inducible gene [; TLR, Toll-like receptor; VEGF, vascular endothelial growth factor.
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CONCLUSION

Long-term activation of IFN-I system in SLE induces the
expression of CXCL9/10/11, activating CXCR3B-Gs-AC-cAMP-
PKA signal pathway to promote the dysfunction of ECs and EPCs;
and CXCR3A-Gi-PI3K-MAPK signaling pathway to recruit
leukocytes into the inflammatory site. Besides, IFN-I enhances
the toxicity of other EPCs dysfunction factors, indirectly
accelerating arteriosclerosis. Overexpression of IFN-I through
the activation of TLR7/9 signal decreases the number and
function of EPCs and increases atherosclerotic lesions in SLE
patients (46), suggesting that targeted therapy of cGAS and RIG-I
signal pathway may have a potential therapeutic effect on SLE
atherosclerosis. Targeted therapy of the IFN-I system has a
potential therapeutic effect on early atherosclerosis in SLE patients.
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Transcriptome profiling approaches have been widely used to investigate the mechanisms
underlying psoriasis pathogenesis. Most researchers have measured changes in
transcript abundance in skin biopsies; relatively few have examined transcriptome
changes in the blood. Although less relevant to the study of psoriasis pathogenesis,
blood transcriptome profiles can be readily compared across various diseases. Here, we
used a pre-established set of 382 transcriptional modules as a common framework to
compare changes in blood transcript abundance in two independent public psoriasis
datasets. We then compared the resulting “transcriptional fingerprints” to those obtained
for a reference set of 16 pathological or physiological states. The perturbations in blood
transcript abundance in psoriasis were relatively subtle compared to the changes we
observed in other autoimmune and auto-inflammatory diseases. However, we did
observe a consistent pattern of changes for a set of modules associated with
neutrophil activation and inflammation; interestingly, this pattern resembled that
observed in patients with Kawasaki disease. This similarity between the blood-
transcriptome signatures in psoriasis and Kawasaki disease suggests that the immune
mechanisms driving their pathogenesis might be partially shared.

Keywords: psoriasis, transcriptomics, blood, Kawasaki disease, systems biology

INTRODUCTION

Inflammation has an important role to play as part of the host defense against infection. However,
prolonged or excessive inflammation can cause notable pathology (1-3). One example of such a
pathology is psoriasis, which affects ~100 million individuals worldwide (4). This common,
immune-mediated disease results in a unique skin barrier abnormality caused by excessive
epidermal proliferation and inflammation (5, 6). Psoriasis pathogenesis is likely driven by many
factors, including environmental triggers, genetic susceptibility, and even microbiome composition
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(1, 6, 7). At the cellular level, an interaction between innate and
adaptive immune responses, and the activation of Th17 and Thl
cells are key to the immunopathogenesis (8). Plasmacytoid
dendritic cells (DCs) found in psoriatic skin are activated by
antigens and subsequently release IFN-o. Meanwhile, myeloid
DCs secrete IL-23 and IL-12, which favors T-cell differentiation
into Th17 and Th1 pathways, respectively (9, 10). In turn, Th17-
derived cytokines including IL-17A and IL-22 play a dominant
role in driving keratinocyte activation and proliferation. Finally,
TNF-o secreted by DCs, Th17, and Th1 cells, and keratinocytes
in psoriatic skin amplifies and perpetuates inflammation.
Current treatment modalities include topical glucocorticoids,
vitamin D analogues, phototherapy, conventional
immunosuppressives (e.g., ciclosporin, methotrexate), and
various biologics that target TNF-o (e.g., infliximab), the IL-17
pathway (e.g., secukinumab), and IL12/IL-23 (e.g., ustekinumab)
(9-12). But despite such progress in understanding the
molecular mechanisms driving psoriasis, we are still far from
having a complete understanding of the immunopathogenesis
and developing highly effective therapeutics.

To gain a better understanding of psoriasis pathophysiology,
many researchers have compared the transcriptome profiles of
diseased vs. healthy skin tissues isolated from affected patients (13-
17). By contrast, only a few research groups have profiled genome-
wide transcript abundance in blood samples from patients (18,
19). Measuring transcript abundance in the blood might seem less
applicable to studies of skin diseases such as psoriasis; however, the
blood presents the advantage of being highly accessible and
amenable to serial sampling. Thus, blood transcriptional
profiling could be harnessed to monitor dynamic treatment
responses. Another advantage is the availability of numerous
public blood transcriptome datasets, which allows us to make
comparative analyses across various inflammatory diseases.

Here, we compared the blood transcriptome fingerprints of two
publicly available psoriasis datasets (18, 19) with those derived
from a collection of 16 reference patient cohort datasets (20). Our
functional interpretations relied on extensive annotations and
expression patterns observed in purified leukocyte populations.

METHODS

Collection of Public Datasets
The public datasets used in this re-analysis and interpretation
were available in the NCBI GEO repository (21) (Supplementary
Table 1). They include psoriasis blood transcriptome datasets as
well as a collection of reference transcriptome datasets used for
contextual interpretation. They are described in brief here:
Two psoriasis blood transcriptome datasets were identified
for which data analysis was performed as detailed below. Both
comprised control groups of subjects. Findings were reported in
the literature by their original contributors:

* The GSE55201 dataset contributed by Wang et al. was
generated using an Affymetrix U133 Plus (microarray) and
consists of profiles for 81 samples. The study examined the

role of IL-17 in ameliorating systemic inflammation and its
impact on psoriasis complications, such as atherosclerosis and
ischemic cardiovascular disease (19).

» The GSE123786 dataset contributed by Catapano et al. was
generated using an Illumina HiSeq 2000 platform (RNA-Seq)
and consists of profiles for 16 samples. This study examined
the involvement of IL-36 in extracutaneous manifestations of
psoriasis (18).

Other blood transcriptome datasets were used as reference:

* The GSE100150 dataset (20) contributed by our group was
generated using an Illumina HumanWG-6 v3.0 BeadChip
and consists of 16 reference patient cohorts encompassing the
profiles of 985 subjects/samples.

Two other reference datasets were used to functionally
interpret gene signatures:

» The GSE24759 dataset contributed by Novershtern et al. (22)
was generated using Affymetrix UI33A GeneChip and
consists of 211 samples. The samples were collected from 4
to 7 donors and a wide range of hematopoietic cell
populations from both adult and cord blood were profiled.

* The GSE60424 dataset (23) contributed by our group was
generated using an Illumina RNA-Seq platform and consists
of 134 subject/samples profiles. In this study, leukocyte
populations were isolated from the blood of healthy
individuals and patients with diabetes mellitus type 1,
amyotrophic lateral sclerosis, multiple sclerosis (MS; pre-
and post-interferon treatment) or sepsis.

Data Processing

The analysis workflow determines for each module the proportion
of its constitutive transcripts that significantly differ in comparison
with a given baseline (e.g., healthy controls). Thus, at the module
level, changes are expressed as the proportion of transcripts
constituting a given module being significantly increased (0 to
100%) or decreased (0 to —100%) compared with healthy controls.
By design, changes in abundance among transcripts within a given
module tend to be coordinated. However, when both significant
increases and decreases are observed for the same module, the
dominant trend is retained.

Data pre-processing steps for the two public psoriasis blood
transcriptome datasets were performed as follows: The Wang et al.
dataset (GSE55201) was generated using Affymetrix GeneChip
and normalized with GCRMA (24). The Catapano et al. dataset
(GSE123786) was generated via RNA-Seq data and the data are
presented as RPKM values (reads per kilobase of transcript, per
million mapped reads) after mapping with the HG38 genome
build; the read counts were calculated using htseq-count (25).

Transcriptional Module Repertoire
Analyses

Modular repertoire analyses were performed at the group level on
both GSE55201 and GSE123786 psoriasis datasets using the
BloodGen3Module R package: https://github.com/Drinchai/
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BloodGen3Module (26). The pre-determined repertoire of 382 co-
expressed blood transcriptional modules that served as a framework
for this analysis was described by Altman et al. (20). Briefly, it was
constituted based on co-expression observed across a collection of
16 reference datasets encompassing 985 unique blood
transcriptome profiles and 14,168 transcripts. A wide range of
immune states are represented in this collection of reference
datasets, including several infectious diseases, autoimmune
diseases, inflammatory disorders as well as cancer, pregnancy, and
solid organ transplantation. Because this module repertoire is
“fixed” and destined for reuse as a generic framework for blood
transcriptome analyses, considerable efforts were dedicated to its
annotation and functional characterization. This work included
functional enrichment analyses (ontologies, pathways, literature
terms), and the generation of heatmaps representing transcript
abundance patterns for reference datasets. The latter included, for
instance, profiling data from isolated leukocyte populations.
Interactive presentations were established to provide access to the
large compendium of analysis reports and heatmaps that were
generated as part of these annotation efforts. The presentation for a
subset of 21 modules associated with inflammation that will be
discussed in more detail as part of this work can be accessed via this
link: https://prezi.com/view/GkH4wHb0jhIbDGt7Ibwi/. A
demonstration video can be accessed via this link: https://youtu.
be/fTfqGhcCNdE. However, it should be noted that module
annotation has an element of subjectivity and is still a work-in-
progress. Additionally, some of the functional “labels” that have
been assigned are still tentative and subject to change as data
analyses and interpretations progress across several projects.

Blood Transcriptome Fingerprint
Visualizations

The percent of increased or decreased transcripts computed
per module were represented on a fingerprint grid plot. In
brief, modules occupy a fixed position on the grid and changes
for that module are indicated by a red spot (increased abundance
compared to controls) or a blue spot (decreased abundance
compared to controls). All fingerprints plots show changes in
transcript abundance in cases compared to respective healthy
controls (run concomitantly and matched for demographics).
Modules arranged on the same row belong to one of 38 “module
aggregates.” These aggregates are formed based on similarities in
the patterns of transcript abundance changes across the 16
reference datasets. Thus, a vertical reading of the grid across
the rows gives an indication of the patterns of change in a given
set of patients at the least granular level (aggregates). A second
horizontal reading within each row and across the columns gives
an indication of the changes occurring at a more granular level
(modules). Functional interpretations are indicated by a color
code that is overlaid on the grid plot (Supplementary Figure 1).
Because the positions of the modules on the grid are fixed,
different fingerprints generated for independent groups of
patients can be compared. Fingerprint grid plots for all of the
16 reference cohorts can be generated dynamically using a
previously developed app: https://drinchai.shinyapps.io/dc_
gen3_module_analysis/#.

Screening of Drug Targets

Transcripts among the A35 modules were screened for the
presence of drug targets using the “open targets platform” that
is available via the open targets consortium at https://www.
targetvalidation.org/ (27). The batch query functionality was
used. The transcripts encoding targets of existing drugs
(referred to in the results as “targets with clinical precedence”)
were retrieved (Table 1).

RESULTS

Blood Transcriptome Signatures of
Independent Psoriasis Datasets Share a
Similar Modular Component

We first aimed to determine whether we could measure robust
changes in transcript abundance in the blood of psoriasis
patients in comparison to heathy controls. We presumed that
such signatures, if present, could then be “benchmarked” against
that of other inflammatory or autoimmune diseases.

For this first step, we harnessed data from two psoriasis
blood transcriptome datasets of a relatively modest size that
have been published and made available via the NCBI GEO
repository (18, 19). The technology platforms used to generate
each dataset were quite dissimilar: Wang et al. used microarrays
while Catapano et al. performed RNA sequencing. We
previously showed that differences in transcript abundance
summarized at the level of coordinately expressed gene sets
(modules) are more amenable to cross-platform comparisons
than when differences are expressed at the individual gene level
(28). We therefore used a pre-determined repertoire of blood
transcriptome modules that was recently developed and
characterized by our group (20) (see Methods). Briefly, we
formed this repertoire on the basis of co-expression measured
across 16 reference patient cohorts, encompassing 985 unique
blood transcriptome profiles. Two-dimensional reduction
levels are built into the repertoire. The least reduced level has
382 variables, which are the modules that are constituted by sets
of genes. The most reduced level has 38 variables, which are
module aggregates that are constituted by sets of modules that
altogether encompass the 382-module repertoire. Changes
between cases and controls are expressed as a proportion of
the transcripts constituting a given module found to be
significantly increased (max +100%, all transcripts are
increased) or decreased (-100%). We thus determined
differences in transcript abundance for each of the 382
modules for the Wang et al. and Catapano et al. datasets. We
represented these differences on a fingerprint grid plot, where
the assignment of modules to a given position on the grid was
fixed (Figure 1).

The fact that positions of modules on the grid are fixed
ensures that the generated fingerprints are directly comparable.
Here, we found a good level of concordance between the two
datasets, with both predominantly showing changes for the 21
modules forming row A35 on the grid. At a high level, the
module aggregate A35 is functionally associated inflammation
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TABLE 1 | Transcripts comprised in aggregate A35 for which the gene products are targetable by existing drugs, and the drugs tested in psoriasis or Kawasaki disease

(see Methods).
ID Drug targets with clinical precedence Drugs tested with psoriasis as an indication and their Drugs Open targets report
corresponding targets (underlined) tested with
KD as an
indication
M15.84 MAPK14 MAPK14: BMS-582949 (phase Il), doramapimod (phase Il) None https://bit.ly/3iynGZF
M13.16  CASP4, CASP5, CSF2RB, CXCR2, KCNJ2, CXCR2: navarixin (phase ) None https://bit.ly/38x3sey
MGAM, NAMPT
M13.1 CASP1, FGR, FKBP1A, IMPDH1, MAPK1, RARA/RXRA: acitretin (phase V), tazarotene (phase V), None https://bit.ly/3iID3CW7
MAPKS, S1PR4, NCSTN, NOTCH1, PRKCD, etretinate (phase V), alitretinoin (phase Il); FKBP1A: tacrolimus https://bit.ly/3e5UqGp
RARA, RXRA, SELL, SYK, TNFSF13B (phase Ill); SELL: bimosiamose (phase Il); S1PR4: amiselimod https://bit.ly/3e3XQJF
(phase Il), PRKCD: sotrastaurin (phase Il); IMPDH1: https://bit.ly/2W76iSz
mycophenolate mofetil (phase ). https://bit.ly/38uAT18
https://bit.ly/3e17rkn
M15.37  IL1B, NDUFB3, NDUFBS: metformin (phase Ill) None https://bit.ly/3iBFByI
M15.113 BMX, IL1R1, MAPK14 None None
M12.10  ALOX5, IL13RA1, RAF1, TBXAST, TNFRSF1A None None
M13.12  CA4, F5, FCGR1A, HPSE, MMP9, TLR5 None None
M15.105 PSMB3 None None
M15.109 IL6R, NAMPT None None
M13.22  C5ART, FGR, HCK, HSPA1A, IFNART, IL8RA IL8RA (CXCR1): Navarixin (Phase II) None https://bit.ly/2ZLoOAV
(CXCR1), LY96
M14.28  None None None
M15.26  EGLN1, FKBP1A, HPSE, MCL1, TLR4 FKBP1A: tacrolimus (phase IIl) None https://Bit.ly/3e5UqGp
M14.65 CD14, IFNGR2, ITGB2 IENGR2: interferon gamma-1b (phase O, terminated)— None https://bit.ly/3f77kVR
actimmune (early phase )
M16.79  CASP4, IL10RB None None
M16.98 ADORAZ2B, CACNAT1E, VDR ADORA2B: caffeine (phase | completed) None https://bit.ly/38wYAGhH
VDR: calcipotriene (phase IV), calcitriol (phase Il), becocalcidiol
(phase lI), pefcalcitol (phase l), ergocalciferol (psoriasis vulgaris-
phase 0), cholecalciferol (phase 0)
M13.3 APH1B, CSF2RA, GBA, HDAC4, MAPK1, None None
OPRL1, PDK3, PIM3
M14.7 ECGF1, JAK2 JAK2: tofacitinib (phase Ill), baricitinib (phase ), ruxolitinib None https://bit.ly/3f6RIHf
(phase lI), lestaurtinib (phase Il), peficitinib (phase II)
M14.74  None None None
M15.43  COL18A1, MGC18216 (IGF1R), PTPRC, None None
TNFSF14, TXNRD1
M15.78  ANPEP, CSF3R, IL4R None None
M15.81  PIK3CD None None

(detailed below). In addition, the Catapano et al. dataset showed
increases for modules forming row A28. The module aggregate
A28 is functionally associated with interferon responses.
Notably, an interferon signature was also reported by
Catapano and colleagues (18), and seems to be associated with
generalized pustular psoriasis, which is a severe form of the
disease (1).

The fact that an increase in abundance of A35 modules was
observed in both datasets suggests that this modular signature
constitutes the main component of the blood transcriptome
fingerprint associated with psoriasis overall. At a high level,
seven of the 21 modules forming aggregate A35 were
associated with inflammation, three with neutrophils, two with
cytokines/chemokines, one with macrophages, and one with
protein synthesis (Figure 1). The remaining seven modules
were not associated with any given functional annotations due
to lack of convergence between the functional profiling results
obtained via different methodologies. The reports from gene
ontology (GO), pathway and literature keyword enrichment

analyses upon which these determinations were made (Figure
2), are available via an interactive presentation (https://prezi.
com/view/7Q20FyW6Hrs5NjMaTUyW/) and all functional
annotations of the A35 module are readily available (Table 2
and Supplementary File 1).

In summary, this step identified that modules forming aggregate
A35 are conserved between two independent psoriasis blood
transcriptome datasets. Notably, this convergence was evident
even though distinct technology platforms were used to generate
the respective datasets. Altogether, these findings indicate that a
blood transcriptional signature can consistently be observed in the
blood of psoriasis patients.

The Psoriasis Blood Transcriptome
Signature Is Associated With Neutrophils
and Inflammation

We next aimed to determine the relevance of the increase in A35
transcripts in the context of psoriasis pathogenesis. To do so, we
proceeded with the functional interpretations of this signature.
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gird are provided in Supplementary Figure 1.

FIGURE 1 | Blood transcriptome fingerprints of psoriasis. Differences in the levels of blood transcript abundance in patients with psoriasis and controls were
mapped on a grid for the two public datasets from Wang et al. (GSE55201: 30 controls and 51 subjects) and Catapano et al. (GSE123786: 7 controls and 9
subjects). Each position on the grid is occupied by a given module (pre-determined set of co-expressed genes). A blue spot indicates a module for which
constitutive transcripts are predominantly present at lower levels in patients vs. controls. Conversely, a red spot indicates a module for which constitutive transcripts
are predominantly present at higher levels in patients vs. controls. No spots on a white background indicate that there are no changes for the module in question. A
gray background means that there are no changes in the module at this position. The modules are arranged by rows in “module aggregates” and ordered by their
similarity in expression patterns across a set of 16 disease or physiological states (reference dataset collection). A consistent increase was observed for modules
constituting aggregate A35. This aggregate is highlighted on the grid and functional annotations are provided (bottom panel). Functional annotations for the entire

Frontiers in Immunology | www.frontiersin.org 66

November 2020 | Volume 11 | Article 587946


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Rawat et al.

A Psoriasis Neutrophil-Driven Inflammatory Signature

Zoom in Inflammation

20 [ el

100222228 D
A35 oYY o -, @
~ Q\ 4\ 4 A A

Blood module reperunire (Generation 3)

e N
& CC: C
oo

Mi698  Mi33 | Mi47 | Mia7s | Misa3 Mis78 | Miss:

Protein
Synthesis

Key
AP Antgon prosentaton
Be.Bcel's

W o Coltachson

ellcycie

WCO Celldeatn
CR: Gollospiration

I Co. Complement
K Cytokinesichemckines
Gyl Cytotoxclymphacylas
Ery. Ehrocyes
GT, Gene tiansarpton

Mo nfammasion

IFN: Interferon (Type I}
LA;Lymphacyla ackvaton

B L1 Lipic metabolism
WP Miochoncirial Stress:Proteasome

I Mo: Mo

Na: Neuvophilactvaton
wophil

M 0 Oxicatva phasphoryiaton

B 0s. Oxicatve swass.

B Pi; Platelet

PP, PlalelptProstaglardn
W Py Prostancios

T80
M gt TG beto
TNF

Supporting transcriptional
profiling data

123485678 910012131815 1617 18192021 2223 24 25 26 27 2829 30 31 32 33 34 35 36 3. 38 39 40 41 42

Nomodulo.

M13.12
Inflammation

point pofg

specifically inflammasomes,

Examples of

-Like Recep! o
TLRS, IL18R1, IL18RAP. IL1RN, as well as the inflammasomes.
ocuies AIM and NLRCA .

Other U
host-pathogen interaction (lterature clusters 3 & ). This its well
it transcript

it i odule is in
neutrophils as well as monocytes in the context of sepsis.
=

Supporting functional
enrichment data

Doxycyclin

=
- Receptors, Interleukin-18

B Tetracyclines
L | Blood-Brain Barrier

Acumenta Biotech
Literature Lab
bittp Zsewwacumenta com/literature-lab-1 ‘

[
I

Inflammatory Bowel Diseases
Colitis, Ulcerative

infliximab

adalimumab

Red = strong iati |

FIGURE 2 | Interactive presentation providing transcriptional profiing and functional enrichment data for modules constituting aggregate A35. An interactive
presentation has been developed that allows for exploration of the modules constituting aggregate A35. A gene list is provided for each module, along with gene
ontology, pathway or literature term enrichment results and transcriptional profiling data for the reference transcriptome datasets (circulating leukocyte populations,
hematopoiesis). A summary of the findings is also given. The interactive presentation is available via: https://prezi.com/view/7Q20FyW6Hrs5NjMaTUyW/. The
presentation provides zoom in/out functionalities for close-up examination of the text and figures embedded in the presentation.

Orange = moderate association |

‘ Interleukin-18
‘ Etanercep!

Interleukin-1alpha
Inflammasomes ~
Caspase 1

’ NLR
NOD-like Receptor
NLR Proteins

[ Morbeytes Cells
L

Mo nocytes
Monocyte Surface

The two converging themes that emerged through the
extensive annotation work mentioned above were “neutrophil”
and “inflammation.” For instance, enriched literature terms
included “neutrophil degranulation,” “inflammation,” and
“inflammasome.” Consistently, some of the genes in these
modules are most recognizable as being involved in
inflammatory processes, including those coding for
inflammasome components. For example, NLR protein families
were found across different modules within this aggregate,

including NLRX1, NLRC4, NLRP12. Furthermore, “neutrophil
activation involved in immune responses” (GO:0002283) was one
of the most over-represented GO terms, with 121/784 transcripts
forming modules belonging to aggregate A35. Thus, both gene
composition and functional enrichment analyses suggest that this
set of 21 modules constituting aggregate A35 is involved in
inflammatory processes.

To complement our functional profiling analyses, we
examined the expression patterns of the genes belonging to
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TABLE 2 | The 21 modules constituting aggregate A35.

ID Grid posi- Number of tran- Functional annotation Representative genes
tion scripts

M15.84 A35-1 20 Cytokines/chemokines S100P, TLR2, MAPK14, FCAR

M13.16 A35-2 39 Cytokines/chemokines BTNLS, CR1, FFAR2, FPR2, TLR6, ALPK1

M13.1 A35-3 137 Inflammation (innate immune response PYCARD, CLEC4A, SYK, CD300A, PRKCD, PELI1, LILRA2, MYD88, HSPA1B
activation)

M15.37 A35-4 33 Inflammation (leukocyte migration) LAT2, SLC7A8, IL1B, FPR2, SLC16A3, GPSM3

M15.113 A35-5 16 Inflammation SOCS3, RAB20, MAPK14, BMX, RASGRP4

M12.10 A35-6 53 Inflammation (neutrophil degranulation) CRISPLD2, ALOX5, LAMP2, RAB24, ITGAX, TIMP2, SIRPA, RNASES, LILRB3,

IGF2R

M13.12 A35-7 55 Innate immunity, myeloid cells, AIM2, TLR5, SIGLECS5, IL18RAP, IL18R1, S100A12, NLRC4, IRAK3, TNFAIP6,
inflammasomes CLECA4D, LILRA5, FCGR1A, FCGR1B

M15.105 A35-8 16 Inflammation (myeloid cells, arginase MAP3K3, TYROBP, PSMB3, LILRB2
pathway)

M15.109 A35-9 17 Inflammation (defense response, IL1RN, IL6R, TNFRSF10B, CR1, TLR8, FCGR2A
leukocyte migration)

M13.22 A35-10 65 Neutrophils (response to LPS) AKIRIN2, SLC11A1, C5AR1, LY96, TRIB1, LITAF, IFNAR1

M14.28 A35-11 20 Neutrophils (neutrophil degranulation) BST1, MMP25, SERPINAT1, FCER1G, ITGAM, SLC2A3, LILRA2, OSCAR

M15.26 A35-12 38 Neutrophils (activation, exocytosis) PREX1, CEACAM3, ATP8B4, PLAUR, RAB27A, HPSE, SIRPB1

M14.65 A35-13 15 Monocyte (host defense) ITGB2, CYBA, CD14, GNS, RAB7A, IFNGR2

M16.79 A35-14 27 Protein synthesis (secretion) PYCARD, CNN2, FAM49B, RHOT1, DNAJC5, GAPDH, MCU, LILRA5

M16.98 A35-15 18 TBD IL22, VDR, KREMENT, LOXL3, ADORA2B, MAK, TIFA

M13.3 A35-16 100 TBD (response to stress)? ERO1A, MAP3K2, G6PD, GADD45A, EDEM2, GBA, WIPI1

M14.7 A35-17 31 TBD MFN2, JAK2, BATF, TFE3, CPEB3

M14.74 A35-18 14 TBD MOSPD2, CD58, CKLF, CD53, TLE4, RNASEL

M15.43 A35-19 30 TBD (protein secretion)? RCN3, COP1, CARD16, CLEC4E, CAMK2G

M15.78 A35-20 20 TBD (signal transduction)? CSF3R, IL4R, SEMA4B, MKNK1, CREBRF, GPAT3, REM2

M15.81 A35-21 20 TBD (neutrophil degranulation) PKM, GAA, ALDOA, AGPAT2

Detailed information can be found in Supplementary File 1, and an interactive presentation that is accessible via this link: (https://prezi.com/view/GkH4wHbOjhIbDGt7Ibwi/;

demonstration video (https://youtu.be/0j-kcETtXAc). (Acronym TBD, to be determined).

module A35 in reference transcriptome datasets (see Methods).
In particular, a dataset that we previously generated and
deposited in the GEO showed that among circulating leukocyte
populations, the expression of A35 transcripts was predominant
in neutrophils [Linsley et al. (GSE60424) (23), http://sepsis.
gxbsidra.org/dm3/miniURL/view/Q0)] (Figure 3). In another
dataset, also contributed by our group, we found that the
expression of A35 transcripts was upregulated in neutrophils
exposed to plasma from septic patients in vitro (29); http://sepsis.
gxbsidra.org/dm3/miniURL/view/Q2.

Altogether, functional and gene expression profiles observed
in this reference dataset suggest that the A35 signature is
associated with neutrophil-driven inflammation.

The Blood Transcriptome Fingerprint of
Psoriasis Resembles That of Patients With
Kawasaki Disease
As mentioned, a benefit of examining transcriptome signatures
in blood rather than skin samples from patients with psoriasis is
that it lends itself to making comparisons across a wide range of
diseases. Carrying out such comparisons allows us to draw
parallels or identify differences with diseases for which the
pathogenesis might be better understood and managed clinically.
To achieve this, we compared the module repertoire
fingerprints of psoriasis with those of the 16 other diseases
comprising the reference collection of datasets used to
construct our module repertoire (20). As was the case for
psoriasis, we observed an increase in abundance of A35

modules in the blood repertoire fingerprints of systemic lupus
erythematous (SLE), systemic onset juvenile idiopathic arthritis
(SoJIA), and Kawasaki disease (Figure 4). In the case of SLE and
SoJIA, the increase in abundance of A35 transcripts was one of
many “perturbations” of the blood transcriptome repertoire,
which is consistent with the systemic inflammation that
characterizes these two diseases [for example: modules in
aggregates/rows A27-A29 (SLE) or A30-A38 (SoJIA)]. The
fingerprints of patients with acute infections (e.g., bacterial
sepsis, tuberculosis, or influenza infection) also showed
pronounced changes (such fingerprints can be generated
dynamically via our web application accessible at: https://
drinchai.shinyapps.io/dc_gen3_module_analysis/#). Notably,
the fingerprints of patients with sepsis closely resembled those
of patients with SoJIA. In both pathologies, other modules
functionally associated with inflammation, such as A33, also
showed a robust increase in abundance; such increases were not
observed in the context of psoriasis or Kawasaki disease. Indeed,
patterns of abundance of A33 and A35 modules across the 16
reference patient cohorts and two psoriasis datasets indicated
that A35 modules tend to be more ubiquitously increased in
comparison to A33 modules (Figure 5). The relative difference in
intensity of A33 and A35 signatures between the two psoriasis
datasets also suggests that those signatures might be non-
synonymous and represent distinct inflammation pathways.
Conversely, the Kawasaki disease blood transcriptome
repertoire fingerprint was more subtle and, like that of
psoriasis, was mostly restricted to an increase in abundance of
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FIGURE 4 | Blood transcriptional fingerprints of other autoimmune or autoinflammatory diseases. The differences in the levels of transcript abundance in the blood
of patients with Kawasaki disease (top), systemic lupus erythematous (middle), or systemic onset juvenile idiopathic arthritis (bottom) are mapped on a grid, as
described in Figure 1. The modules belonging to aggregate A35 are highlighted on this grid.
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A35 module transcripts (Figure 4). This finding might reflect the
fact that inflammation is typically localized at the onset of these
diseases: to the skin for psoriasis and the vasculature
endothelium for Kawasaki disease.

Taken together, these results suggest that the extent of
changes in blood transcript abundance tends to correlate with
the disease manifestation, from local (a low number of modules
perturbed) to generalized inflammation (a high number of
modules perturbed). Furthermore, the A35 transcriptional
modules constituted the least common denominator across
these inflammatory pathologies as it was the only set for which
increases in transcript abundance were observed in all these
immune-mediated diseases.

A35 Modules Comprise Transcripts Which
Are Targetable by Existing Drugs

The identification of a robust transcriptional signature in the
blood of psoriasis patients has several implications. For instance,
it opens up the possibility of including blood transcript profiling
assays in patient monitoring studies. For instance, such studies
might be designed to predict the risk of flares or to monitor
responses to therapy. We thus went on to examine the presence
of transcripts among A35 modules that encode molecules that
are targets for existing drugs and could be included in immune
monitoring panels.

Among the 784 transcripts constituting the A35 modules, 81
are encoding targets for existing drugs (see Methods) (Table 1).
Among these, we sought to identify targets for which drugs have
been tested in clinical trials for psoriasis (14 targets) or Kawasaki
disease (none). Notable examples for targets among A35
transcripts for which drugs have been considered for treatment
of psoriasis include JAK2. This member of the Janus kinase
family participates in signaling events downstream of a broad
range of cytokine and hormone receptors. Drugs targeting this
molecule that have been tested in the context of psoriasis include
tofacitinib, which seems to be safe and to confer a clinical benefit
(30, 31). Other immunosuppressive drugs have also been
evaluated, such as the selective, pan-protein kinase C inhibitor
sotrastaurin that inhibits the kinase PRKCD (32, 33).

Overall, we found that a sizeable number of transcripts
comprised in A35 modules encode targets for existing drugs: a
minority of these have already been tested in patients with
psoriasis. We posit that other suitable candidates might be
included in this list that have not yet been evaluated in the
context of psoriasis. Furthermore, given the parallels in the blood
transcriptome signatures of psoriasis and Kawasaki disease, there
is good cause to consider investigating repurposing drugs
showing clinical benefit in patients with psoriasis for the
treatment of patients with Kawasaki disease.

DISCUSSION

Involved skin tissue is the ideal sample source to investigate
psoriasis pathogenesis. However, despite being less relevant to
this disease, blood presents the advantage of being amenable to

repetitive sampling with minimal risk or discomfort. The blood
can also harbor information regarding the immune status of
affected patients. Such information can be obtained via blood
transcriptome profiling, whereby all RNA species that are
present in a given sample are measured simultaneously. Maybe
more importantly, vast amounts of blood transcriptome profiling
data are available in public repositories that can be used for
contextual interpretation and “benchmarking” of blood
transcriptional signatures.

Here, we compared the blood transcriptome fingerprints
derived from several inflammatory diseases with those derived
from patients with psoriasis. We found that blood transcriptome
profiling may indeed serve to assess the extent of systemic
involvement in these pathologies. Interestingly, we saw that the
repertoire of changes characterizing the psoriasis blood
transcriptome signature is much narrower than what is
observed in other systemic inflammatory diseases. We also
established that modules assigned to the aggregate A35 and
associated with neutrophil-driven inflammation are a hallmark
of the psoriasis blood transcriptome signature.

The role played by neutrophils in psoriasis pathogenesis has
received particular attention over recent years (34, 35).
Consistently, the data from our study suggest that blood
transcriptome profiling studies might be of value for further
patient-based investigations. While such an approach has been
relatively under-utilized in this context, our findings suggest the
possibility of employing blood transcriptional profiling as a
means to assess the extent of systemic inflammation in
psoriasis patients. Whether these measurements add value to
those obtained using more traditional inflammatory markers
(e.g., measurement of serum protein markers or neutrophil:
lymphocyte ratios) remains to be investigated. It may be
particularly relevant to assess utility of such blood transcriptional
markers for the evaluation of cardiovascular diseases (CVD) risk in
patients suffering from inflammatory disorders. Indeed, systemic
inflammation associated with psoriasis was recently linked with
development of CVD in this patient population (36, 37), while the
risk of cardiovascular symptoms in Kawasaki disease is well
established (38). And the question of the relative benefits of the
available psoriasis treatment options with regards to addressing
this risk remains to be fully addressed (36, 39).

Blood transcriptome profiling may also help stratify psoriasis
patients according to molecular/immunological types. Such
classification may be achieved through the delineation of
distinct, biologically relevant modular A35 “sub-signatures.”
For instance, our previous work identified distinct modular
interferon signatures that formed the basis of a stratification
system for SLE patients (20). Psoriasis classification might also be
informed by measuring the changes in the abundance of other
aggregates/modules. For instance, we observed changes in the
abundance of transcripts comprising the A33 and A28 modules,
(also associated with inflammation and interferon responses,
respectively) in either one of the two psoriasis datasets. This was
the case for A28 (interferon) in the GSE123787 fingerprints
(Figure 1), which is in line with the interpretation contributed
earlier by Catapano et al. (18).
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Some of our findings may also be relevant from a drug
discovery/repurposing standpoint. For one, a number of the gene
products comprising the A35 signature are targeted by drug
candidates for psoriasis treatment (Table 2). This finding
suggests that—according to the principle of “guilt by
association”—other valuable targets might be identified among
the genes constituting these modules. Secondly, similarities
observed between the psoriasis and Kawasaki disease fingerprints
suggest that the pathogenesis and/or pathophysiology of these
diseases might be driven, at least in part, by similar immune
mechanisms. Kawasaki disease, also known as mucocutaneous
lymph node syndrome, is a rare childhood disease that mostly
affects children <5 years old (38, 40). This disease presents as an
acute, self-limiting vasculitis that sometimes targets coronary
arteries and causes ischemic heart disease (41-43). The parallels
we drew between psoriasis and Kawasaki disease blood
transcriptional signatures are consistent with the growing body
of evidence showing that patients with Kawasaki disease can
develop psoriasiform eruptions (44-48). Among the treatments
approved for psoriasis, drugs inhibiting IL17 might be considered
good candidates for repurposing in Kawasaki disease (9, 49).
Independent reports have also associated Thl7 responses
(defined by IL17 production) with Kawasaki disease (50-53), and
IL17 is a known driver of neutrophil development, recruitment,
and activation (54, 55). We therefore posit that IL17 might
constitute one of the factors underpinning the A35 signature that
we identified here in patients with psoriasis and Kawasaki disease.

Several aspects of the benchmarking exercise that we have
conducted here across independent studies are inherently
limiting and need to be addressed in follow-on investigations.
First, while the use of respective healthy control groups
as common denominators permits comparisons across
independent studies, further investigations should comprise
cohorts of patients with psoriasis, Kawasaki disease, and
healthy controls. Samples should be collected and processed
using harmonized protocols and the generated data should be
analyzed concomitantly using the same platform (RNA-seq).
This approach would permit direct comparisons of psoriasis and
Kawasaki disease profiles while minimizing technical sources of
variation. Inclusion of healthy controls would help with the
interpretation of the data and would also permit future data re-
use and meta-analyses across independent studies.

Second, the cohort size should be sufficient to allow for
investigations into inter-individual variability. Such investigations
would permit, for instance, the identification of “endotypes” or
distinct molecular phenotypes within each patient population. The
relatively low cost of recently introduced RNA-seq protocols might
help realize such sample sizes (e.g., QuantSeq 3’ mRNA-Seq by
Lexogen: <$100/sample). Consolidating the results from multiple
studies would remain feasible but any level of coordination or
consultation between groups/centers could prove helpful.

Third, future studies are needed to clarify whether the A33/
A35 signature observed in patients with psoriasis or Kawasaki
disease is due to neutrophil priming secondary to inflammation
or is a causal component of psoriasis pathophysiology. It can be
difficult to ascertain in patient-based studies whether signatures

are merely associated with or drive pathogenesis. Monitoring
changes in transcript abundance at a high temporal frequency,
either prior to a worsening of the clinical course of the disease or
in response to therapy might provide useful indications in that
sense. From a practical perspective, such studies could be
implemented using protocols for at-home self-collection of low
blood volumes and RNA stabilization (56, 57).

Finally, investigations into immune changes in the periphery
and in bulk whole blood samples have inherent limitations. While
systemic inflammation and interferon responses can be measured
in whole blood, a dissection of the immune response at a more
granular level (e.g., cellular subsets) might not be possible. Indeed,
it is possible that we did not identify some responses associated
with psoriasis pathogenesis (e.g., T-cell responses) for this reason.
In addition, at least some immune responses may only be observed
in affected skin tissues. Studies harnessing single-cell RNA-seq in a
subset of patients are now warranted to further interrogate and
interpret the psoriasis immune signatures measured in the
peripheral blood.

Opverall, our study provides a proof-of-principle for the use of
fixed transcriptional module repertoires for blood transcriptome
signature “benchmarking” and cross-study comparisons. It
highlights the pertinence of using transcriptomic approaches
for monitoring systemic inflammation. And it may also provide
the necessary justification for further blood transcriptome
studies in the context of psoriasis and Kawasaki disease.
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Case Report: Effective and Safe
Treatment With Certolizumab Pegol
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Cogan’s syndrome is a rare autoimmune disease characterized by ocular inflammation
and audiovestibular manifestations. Treatment consists of systemic glucocorticoids and
other immunosuppressive agents including methotrexate, cyclophosphamide and TNF-
a-inhibitors. Due to potential ovarian or fetal toxicity immunosuppressive treatment
options are limited during pregnancies. Thus far there is a paucity of reports on
pregnancies in Cogan’s syndrome. With minimal transplacental transfer, Certolizumab
pegol is considered to be safe for the use in pregnant patients with underlying
inflammatory diseases. However, there is no literature on the use of this TNF-o-inhibitor
in Cogan’s syndrome in general and especially during gestation. Here we report three
pregnancies in two Cogan’s Syndrome-patients treated with Certolizumab pegol.
Treatment with Certolizumab pegol was effective and well tolerated in patients with
Cogan’s syndrome and seems to be a safe treatment option during pregnancy.

Keywords: Cogan’s syndrome, pregnancy, vasculitis, TNF-a inhibitor, Certolizumab pegol

INTRODUCTION

Cogan’s syndrome (CS) is a very rare chronic autoimmune disease characterized by ocular
inflammation and audiovestibular symptoms including tinnitus, vertigo and hearing loss (1). It
mainly affects young adults without gender predominance (2). Standard treatment consists of
systemic glucocorticoids that may be combined with glucocorticoid-sparing agents like
methotrexate, azathioprine, cyclosporine, cyclophosphamide or tumor necrosis factor-o. (TNF-ot)
inhibitors (2-4). Management of inflammatory diseases in general is particularly challenging in
female patients of reproductive age. On the one hand, adequate disease control at conception and
during pregnancy is crucial to ensure maternal and fetal health, on the other hand, available
treatment options are limited because of potential ovarian or fetal toxicity. Therefore, treatment
with cytotoxic or teratogenic substances like methotrexate or cyclophosphamide should be stopped
months before conception. Furthermore, TNF-o inhibitors are often discontinued after the first
trimester of pregnancy to limit placental transfer of the drug to the fetus (5). Monoclonal
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anti-TNF-o-antibodies of IgG1 isotype are actively transported
via the neonatal fragment crystallizable (Fc) receptor during the
second and third trimester) (6). Certolizumab pegol (CZP) is a
pegylated Fab fragment of a humanized anti-TNF-o-antibody,
approved for the treatment of rheumatoid arthritis and other
inflammatory autoimmune diseases. Because of the lacking Fc
fragment CZP does not bind to the neonatal Fc receptor and is
not actively transferred across the placenta (6). The CRIB study
in pregnant women receiving CZP for approved indications
showed no quantifiable CZP concentrations in the neonates at
time of delivery and during follow-up, indicating zero to minimal
placental transfer or fetal exposure during the third trimester (7).
Accordingly, CZP is considered safe for the use in pregnant
women (5). Cumulatively, only eight pregnancies in six female
patients with CS have been described in literature, with no
reports existing on the use of biological agents, e.g., CZP (8-
13). Here we report the first three pregnancies in two Caucasian
patients with CS who received CZP treatment in standard dose
with subcutaneous injections of 200 mg every other week.

Therapy in both patients was started after a risk-benefit
analysis, shared decision making and written informed consent.

CASE DESCRIPTIONS
Patient A

At the age of 27, patient (A) experienced several episodes of
steroid-sensitive hearing loss accompanied by vertigo and
tinnitus, as well as recurrent bilateral conjunctivitis and keratitis
(Table 1). The patient’s right-sided deafness was treated with a
cochlear implant. No further disease manifestations were
detectable. The initial immunosuppressive treatment consisted
of glucocorticoids in combination with azathioprine, which was
later switched to methotrexate due to adverse drug reactions.
Additionally, topical treatment with 5% dexpanthenol eye and
nose ointment (Bepanthen®) and eye drops with hyaluronic acid
for dry eyes were used during episodes of keratitis. Upon
incomplete therapeutic response, the treatment regimen was

TABLE 1 | Patients‘ characteristics and treatment information.

Patient A Patient B
Age at time of diagnosis (y) 28 30
Origin Caucasian / Europe Caucasian/Europe
Medical history Hypothyroidism No other diseases or comorbidities
Family history Inconspicuous Inconspicuous
Previous pregnancies None One pregnancy with an uncomplicated course

Smoking status

Body weight;

Body mass index (BMI)

Clinical manifestations
Vestibulo-auditory manifestations

Eye manifestations

General symptoms

Other physical examination including neurological status

Former smoker
69 kg ; 26 kg/m?2

bilateral hearing impairment,

unilateral hearing loss (right ear), bilateral
tinnitus, vertigo

Bilateral interstitial keratitis

Bilateral conjunctivitis

fever, weight loss, arthralgia
unremarkable

C-reactive protein serum concentration as biomarker for disease activity

CRP before CZP
CRP within the first 3 months of CZP
CRP during follow-up under CZP

Treatment before start of CZP
Topical treatment

Prednisolone treatment
intravenous bolus
initial oral dose
long term dose
treatment duration
Synthetic DMARDs

Biological DMARDs

28.3 mg/L

Normalization to values <5 mg/L

At normal dose <5 mg/L,

After dose reduction <10 mg/L,
After treatment cessation >10 mg/L

5% Dexpanthenol eye and nose ointment
(Bepanthen®),

Eye drops with hyaluronic acid for dry eyes
during episodes of keratitis

PRED 3x 250 mg
PRED 60 mg/day
PRED > 10 mg/day
32 months

AZA 100 mg/day
MTX 20 mg/week
ADA 40 mg EOW

and a healthy child
Non-smoker
55 kg; 20.7 kg/m?

bilateral hearing impairment, unilateral hearing
loss (left ear), bilateral tinnitus, vertigo

Bilateral conjunctivitis

subfebrile temperature, fatigue, myalgia
unremarkable

6 mg/L
Normalization to values <5 mg/L
Continuously <5 mg/L

Intratympanic steroid injection,

5% Dexpanthenol eye and nose ointment
(Bepanthen®),

Eye drops with hyaluronic acid for dry eyes
during episodes of conjunctivitis

PRED 3x 250 mg
PRED 15 mg/day
0

11 months

AZA 100 mg/day

ADA 40 mg EOW

ADA, adalimumab; AZA, azathioprine; BMI, body mass index; CRP, c-reactive protein; CZP, certolizumab pegol; DMARDs, disease modifying antirheumatic drugs, EOW, every other
week; IGRA, interferon-gamma release assay; MTX, methotrexate; PRED, prednisone; y, years.
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supplemented by adalimumab, a human recombinant IgGl
monoclonal antibody directed against TNF-o,, resulting in rapid
clinical response with good tolerability. Latent tuberculosis was
ruled out by chest X-ray and interferon-gamma release assay
(IGRA) prior to initiation of adalimumab. Due to a planned
pregnancy methotrexate was paused and adalimumab was
replaced by CZP in combination with low-dose prednisolone six
months before conception. The slightly overweight patient had
stopped smoking years before; a mild hypothyroidism was
adequately treated. Prior to conception and throughout
pregnancy CS was in clinical remission, and serum C-reactive
protein (CRP) concentrations were normal or only slightly
increased. Screening for antinuclear antibodies (ANA),
antiphospholipid antibodies (APA), rheumatoid factor (RF),
anti-neutrophil cytoplasmic antibodies (ANCA) was negative at
time of initial diagnosis and during follow-ups. Serum
concentrations of complement factors C3 and C4 as well as
immunoglobulins IgG, IgA and IgM were within normal ranges.
Results of tone audiometric monitoring remained stable during
follow-up. The patient experienced no complications during
pregnancy and delivered a healthy girl by spontaneous vaginal
delivery at gestational week 38 after a percentile appropriate
intrauterine development. Adherence to CZP was excellent
during pregnancy and the prednisolone dose was continuously
kept <5 mg/day. To prevent loss of bone mineral density 1000 IE
of vitamin D3 were substituted daily. CZP-treatment was well
tolerated without local reactions at the injection site or other
clinically relevant adverse events. Neither the child nor the mother
had any postpartum complications. After two years without
relevant CS activity, under continued combination therapy of
CZP and low dose prednisolone, the patient became pregnant
again and gave birth to a healthy boy after 40 unremarkable

TABLE 2 | Disease activity, course of pregnancy and nursing period.

gestational weeks (Table 2). Both children were formula-fed,
reached all developmental milestones, and did not develop any
serious infections or malignancies during the current follow-up
time of five years.

In total, the patient was continuously treated with CZP for
more than six years. Between her two pregnancies, the patient
tried to lower the CZP dose at least twice by extending the
application interval to three weeks. As these extensions of the
treatment interval resulted in no signs of clinical activity but
increased serum CRP concentrations, the CZP standard dosing
regimen was implemented again. A complete cessation of CZP
treatment more than a year after her second pregnancy led to
rising CRP serum concentrations up to 20 mg/L, accompanied by
fatigue and mild hearing impairments. Immediately after re-
initiated administration of CZP 200 mg every other week, in
combination with oral prednisolone 10mg/day for one week and
consecutive tapering, CRP levels were normal again and clinical
symptoms disappeared without any permanent damage.

Patient B

Three months after the delivery of her first child, the thirty-year-
old patient B experienced several episodes of mild conjunctivitis
of both eyes and bilateral hearing impairment with tinnitus, vertigo
and subsequent unilateral hearing loss (Table 1). Myalgias were
accompanied by an increase in serum concentrations of creatine
kinase and CRP. No further disease manifestations were detectable
by extensive physical examination including a detailed neurological
assessment. Screening for autoantibodies (ANA, APA, RF,
ANCA) was negative, and serum concentrations of C3, C4 and
immunoglobulins were within normal range. The conjunctivitis
with dry eyes was initially treated topically with 5% dexpanthenol
eye and nose ointment (Bepanthen®) and eye drops with hyaluronic

Patient A Patient B

Pregnancies
Prior pregnancies None One pregnancy

15t pregnancy 2" pregnancy 3" pregnancy
CS activity at conception complete remission complete remission complete remission
age at delivery (y) 32 35 33
pregnancy duration (gw) 38 40 41 +3
Mode of delivery spontaneous vaginal in labor spontaneous vaginal in labor spontaneous vaginal in labor
Child’s condition at birth healthy healthy healthy
APGAR score 10/10 9/10 10/10
Umbilical cord pH 7.25 7.29 7.22
Neonatal weight (g) 3270 3740 399
Neonatal length (cm) 54 54 57
Head circumference (cm) 35 33.5 36.5
Intrauterine development percentile-appropriate percentile-appropriate percentile-appropriate
Postpartum complications None None none
Treatment during pregnancy and nursing period
1 trimester CZP, PRED 5mg CZP, PRED 4mg CzP
2" trimester CZP, PRED 4mg CZP, PRED 4mg CzP
3 trimester CZP, PRED 4mg CZP, PRED 4mg CzP
Breast feeding no breast feeding no breast feeding yes (CZP continued)
Follow up after birth (m) 59 29 28
Total duration of CZP treatment (months) 74 41

APGAR, Appearance, Pulse, Grimace, Activity, Respiration Score; cm, centimeters; CS, Cogan’s syndrome; CZP, certolizumab pegol; g, gram; gw, gestational weeks, m, months, PRED,

prednisone; y, years.
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acid. The ear manifestations required stronger immunosuppressive
treatment with intratympanic steroid installation and systemic
prednisolone treatment in combination with azathioprine, which
subsequently had to be stopped because of hepatic side effects.
Second-line treatment with TNF-o blocking agent adalimumab was
effective and resulted in normalization of CRP levels, however, was
switched to CZP because of the patient’s desire to have children.
After an unremarkable pregnancy with normal fetal development,
she delivered a healthy boy in the 42" gestational week (Table 2).
Under continuation of CZP, her child was breastfed and displayed
normal development within the first two years without any notable
infections. Since initiation of treatment with TNF-o-inhibitors the
patient was in complete, relapse-free remission. The patient
continuously presented with normal CRP values and even showed
an improvement in tone audiometry of the inner ear hearing
threshold by 15-20 decibel hearing level compared to pre-
treatment values. Currently, the patient is still under treatment
with CZP to prevent relapse of disease.

DIAGNOSTIC ASSESSMENT

Before, during and after pregnancy the activity of CS was
regularly monitored by CRP serum concentrations, along with
clinical assessments including body weight, blood pressure and
pulse rate, subjective hearing levels and tone audiometry, if
necessary. In addition to the diagnostic parameters assessed
above, blood smear with differential leukocyte count, and
measurements of aspartate aminotransferase (AST), alanine
aminotransferase (ALT), lactate dehydrogenase (LDH), creatine
kinase (CK) and creatinine, together with urine analyses were
performed at least quarterly. The fetal development was
monitored by the patients’ gynecologists via ultrasound during
every trimester of pregnancy. At gestational week 20 the fetus was
screened for abnormalities and regular organ development.
Additional Doppler imaging of placental blood flow was
performed at specialized prenatal diagnostic centers twice during
pregnancy. After childbirth the Appearance, Pulse, Grimace,
Activity, Respiration (APGAR) score was assessed, and umbilical
cord pH, neonatal weight, length and head circumference were
measured. Developmental abnormalities were ruled out by regular
pediatric screening tests, which are provided after birth and within
the first years of life on a regular basis by the German health system.

DISCUSSION

Cogan’s syndrome is a systemic chronic inflammatory disease which
can lead to severe functional visual and hearing impairments. It
requires interdisciplinary clinical management and individualized
treatment approaches by all specialists involved (2-4). Even more
challenging is the adequate disease management in young female
patients wishing conception or with ongoing pregnancy. Due to its
systemic and inflammatory nature, pregnant patients with this
complex vascular disease require unique attention and continuous
clinical monitoring. The impact of a pregnancy itself on the course of

CS is fairly unknown. Also, evidence-based treatment guidelines for
CS are very limited with a paucity of randomized, double-blind trials
comparing the efficacy of immunosuppressive agents. The current
literature predominantly consists of retrospective chart analyses,
small case series and single case reports. A recent review collected
data on 87 adult CS patients and 17 pediatric patients (4) showing
that methotrexate (MTX) was the most frequently used second-line
therapy. Besides MTX there are reports on the successful use of
azathioprine, cyclosporine, and cyclophosphamide as steroid-
sparing immunosuppressive agents. However, immunosuppressive
agents like MTX, cyclophosphamide and mycophenolate are
contraindicated for their teratogenicity during pregnancy. More
recently biological agents, especially TNF-o. antagonists, and
particularly infliximab, have shown favorable outcome (2-4).

Half of previously reported CS patients did not need any
systemic immunosuppressive treatments throughout pregnancy,
instead intermittent topical treatment with ophthalmic steroids
was sufficient (10-13). Other pregnant patients in remission were
successfully treated with hydroxychloroquine, or a combination
therapy of either cyclosporine or intravenous immunoglobulin
application (IVIG) with azathioprine and prednisolone (8, 9, 12).
In contrast, our patients had the necessity of therapy escalation
to anti-TNF therapy prior to conception because of disease
activity and adverse effects. Accordingly, with its neglectable
to minimal transplacental transfer in the third trimester of
pregnancy (7), CZP was a particularly attractive second line
therapy to avoid inflammatory flares and thereby protect mother
and her unborn child. The European League Against
Rheumatism (EULAR) recommends certolizumab as most
favorable biological DMARD for the use throughout pregnancy
and lactation in patients with inflammatory rheumatic diseases
(5). Evidence for these recommendations is provided by two
prospective pharmacokinetic studies, CRIB (NCT02019602) (7)
and CRADLE (NCT02154425) (14). The CRIB study showed
CZP plasma concentrations within the expected therapeutic
range in 16 pregnant women at delivery, whereas no detectable
or only minimal CZP serum concentrations were found in
their newborns (7). The CRADLE study investigated CZP
concentrations in human breast milk to estimate the daily dose
of maternal CZP transferred to the infant by breast feeding (14).
In most breast milk samples no measurable CZP was detectable,
indicating no to minimal CZP transfer from maternal plasma to
breast milk. Additionally, CZP absorption by the infants via
breast milk is unlikely because of its low oral bioavailability. The
mean age of all patients included in the CRIB and the CRADLE
studies was approximately 30 years and therefore comparable to
the CS patients reported here. Of relevance, none of the patients
in these two studies had Cogan’s syndrome or any other form of
systemic vasculitis. The most frequent indications for CZP
treatment in CRIB/CRADLE were rheumatoid arthritis,
followed by Crohn’s disease, psoriatic arthritis and axial
spondyloarthritis (7, 14). Similar to our findings the gestational
age and weight at birth of all 16 newborns in the CRIB study were
within the expected range for healthy children (7). However, one
limitation of our report is the low number of patients included,
with CS being a very rare disease. Furthermore, we have no data
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on CZP pharmacokinetics in the three infants and their mothers.
Though, we have no indication to expect results that are relevantly
different to previously reported data in the CRIB and CRADLE
studies. The serological and clinical improvement in both mothers
before, during and after pregnancy reflects sufficient CZP serum
concentrations in our patients. The uncomplicated pregnancies
and the normal development of the children afterwards, without
any infectious or other complications, support our hypothesis that
the infants were exposed to relevant CZP doses during pregnancy
or lactation period.

Another important finding is the fact that decreasing the CZP
dose in patient A resulted in an increase of CRP serum
concentrations. Cessation of CZP treatment more than a year
after the second pregnancy, with the patient being in complete
remission, led to a relapse of CS with typical clinical symptoms
and high CRP concentrations.

Re-start of CZP lead to complete serological and clinical
remission without relevant side effects, which demonstrates the
long-term efficacy and safety of CZP in this patient. Also, the
chronic disease course in this patient illustrates that CS may need
long-term immunosuppressive treatment, occasionally even
requiring TNFo-inhibitor administration.

To our knowledge this is the very first report on both the
treatment with the monoclonal anti-TNFa-inhibitor CZP in CS
and the first report on biological treatment during pregnancies in
CS. In both of our patients CZP was effective and well tolerated
before, during and after pregnancies. CRP values normalized, and
tone audiograms showed stable or improved results compared to
pre-CZP-treatment findings. All three pregnancies were without
complications. All children were born healthy, at term, and
developed regularly during follow-up.

In summary, CZP was shown to be effective and safe in the
treatment of Cogan’s syndrome and should be considered as
potential treatment option during pregnancy.
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Abdominal aortic aneurysms (AAAs) are local dilations of infrarenal segment of aortas.
Molecular mechanisms underlying the pathogenesis of AAA remain not fully clear.
However, inflammation has been considered as a central player in the development of
AAA. In the past few decades, studies demonstrated a host of inflammatory cells,
including T cells, macrophages, dendritic cells, neutrophils, B cells, and mast cells, etc.
infiltrating into aortic walls, which implicated their crucial roles. In addition to direct cell
contacts and cytokine or protease secretions, special structures like inflammasomes and
neutrophil extracellular traps have been investigated to explore their functions in aneurysm
formation. The above-mentioned inflammatory cells and associated structures may initiate
and promote AAA expansion. Understanding their impacts and interaction networks
formation is meaningful to develop new strategies of screening and pharmacological
interventions for AAA. In this review, we aim to discuss the roles and mechanisms of these
inflammatory cells in AAA pathogenesis.

Keywords: abdominal aortic aneurysm, inflammation, T cells, macrophages, inflammasome, neutrophil
extracellular traps

INTRODUCTION

Abdominal aortic aneurysm (AAA) is one of the most common types of true aneurysms in the
world. AAA is defined when the maximal abdominal aortic diameter reaches 30 mm or 1.5 times of
the normal ones. The estimated AAA prevalence in men aged over 60 years is about 4-8%, and the
prevalence in women gets 0.5-1.5% or so (1). The major risk factors of AAA include cigarette
smoking, aging, male gender and corresponding family history (2, 3). The most common cause of
death for AAA patients is aneurysm rupture, which accounts for an approximately 60% of
mortality (4).

In the past decades, AAA has been regarded as a result of long-term atherosclerotic lesions,
which shares the same pathogenesis with other cardiovascular diseases (CVD), due to similar risk
factors such as male sex, tobacco consumption, family history, hyperlipidemia and elder population
(5, 6). However, diabetes mellitus (DM), a common comorbidity of atherosclerotic disease, is
conversely related to AAA development. Patients with DM have a reduction of morbidity by nearly
30 percent (7). Besides, in contrary to the infrarenal segment of aorta, which is the most commonly
involved part of AAA, the external iliac artery is often aneurysm-resistant, but it is strongly

Frontiers in Immunology | www.frontiersin.org 82

February 2021 | Volume 11 | Article 609161


https://www.frontiersin.org/articles/10.3389/fimmu.2020.609161/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.609161/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:caizhejun@zju.edu.cn
mailto:hz_zhiy@163.com
https://doi.org/10.3389/fimmu.2020.609161
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.609161
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.609161&domain=pdf&date_stamp=2021-02-03

Yuan et al.

Inflammatory Cells in AAA

vulnerable to atherosclerotic occlusive disease (8). Another
phenomenon is that the lipid profiles of patients with AAA are
not always abnormal like other CVD patients. These findings
indicate that the atherosclerotic lesion may be independent of
AAA formation.

Recent studies suggest the pathophysiology of AAA is a
multifactorial process consisting of inflammation responses,
matrix metalloproteinase (MMP) activation, oxidative stress,
intraluminal thrombus, smooth muscle apoptosis and
extracellular matrix (ECM) degeneration (9-11). The proteases
secreted by inflammatory cells can induce degradation of ECM. In
the meanwhile, due to destruction of ECM structure and loss of
resistance of tunica media, soluble blood components like
inflammatory cells are transferred and accumulated in tunica
media through the highly vascularized adventitia, resulting in
infiltration of inflammatory cells into the vascular media. These
processes together with platelet accumulation and coagulation
system activation promote intraluminal thrombosis, and
subsequently causes aortic dilation and increased vulnerability to
AAA rupture (12). Intraluminal thrombosis is capable to create an
inflammatory microenvironment containing neutrophils,
cytokines, proteases, and reactive oxygen species, and thereby
decrease aortic wall strength. These phenomena indicate that
inflammatory cells are in the central position of the whole
process. This review is an update of recent advances of
inflammatory cell-related mechanisms during AAA development.

INFLAMMATORY MICROENVIRONMENT

The aortic wall can be generally divided into three layers: tunica
adventitia, tunica media and tunica intima, of which tunica
adventitia is fully vascularized and permit leukocyte diapedesis.
The aortic wall inflammation is characterized as a multicellular-
participating process including mononuclear cell infiltration,
immunoglobulin (Ig) secretion and cytokine production,
suggesting that both innate and adaptive immune responses
are involved (13). The histological specimen of human aortic
aneurysm tissue reveals that there were a variety of inflammatory
cells gathering in the aortic wall. Recent studies showed that
perivascular adipose tissue (PVAT) played an essential role in the
process of in leukocyte infiltration. When the vascular damage
initiates, PVAT increases its volume and then upregulates the
expression of inflammatory factors such as resistin, leptin,
cytokines and chemokines (14), which induce infiltration of
inflammatory cells, including neutrophils, macrophages,
natural killer cells (NK cells), dendritic cells (DCs), T and B
lymphocytes and mast cells. All these inflammatory cells are
implicated in the formation of AAA (13), and the interactions
among them formed the inflammatory microenvironment of
aortic walls. For example, cytokines secreted by T cells are
essential for macrophage activation, while DCs and
macrophages can present antigens to T cells to stimulating
primary T cell responses (15). Decreasing the activity of
inflammatory cells may be a therapeutic strategy to treat non-
ruptured AAAs. Daphnetin was recently proved to be eligible to

suppress AAA generated with elastase by reducing the
infiltration and accumulation of inflammatory cells such as
macrophages, T cells and B cells (16). In addition, suppressing
the infiltration of CD11b" macrophage and CD4" T cell with
antagonism of toll-like receptor 2 significantly ameliorated
CaCl,-induced aneurysms (17). The fact that animals can
benefit from inhibitors of inflammatory cells independent of
models proved the central role of these cells in pathogenesis
of AAA.

INNATE IMMUNE CELLS

Macrophages

There are generally two origins of macrophages involved in the
pathogenesis of AAA: tissue-resident macrophages arising
from embryonic precursors, and monocyte-differentiated
macrophages from peripheral blood (18). Single-cell RNA
sequencing has revealed markedly expansion and activation of
aortic resident macrophages, blood-derived monocytes and
inflammatory macrophages in the samples of elastase-induced
AAA models (19). Tissue-resident macrophages are self-renewed
independently of bone marrow activity and can continuously
migrate to peripheral tissues. However, the circulating
monocytes are the major origin of macrophages gathering in
aortic walls (20).

Circulating monocytes originating from the bone marrow
play a critical role in encoding antimicrobial and phagocytosis-
related proteins (21). When the local environment undergoes
inflammatory changes, blood monocytes can be recruited to the
tissue and differentiated into macrophages. In response to
different inflammatory stimuli, blood monocytes migrate to the
tissue and differentiate into distinct macrophages subgroups,
including classically activated macrophages (M1 macrophages)
and alternatively activated macrophages (M2 macrophages) (22).
This process is termed as macrophage polarization. Interestingly,
these two subgroups of macrophages serve almost opposite roles
in the pathogenesis of AAA.

M1 macrophages are preferentially located in the tunica
adventitia of the aortic wall (20). They can be activated by the
stimuli like lipopolysaccharide (LPS) and IFN-y (23). By
upregulating massive inflammatory cytokines including TNEF-
o, IL6, IL12, IL1PB, chemokine (C-C motif) ligand 2, and nitric
oxide (NO) (24), M1 macrophages aggravate local inflammation
and promote the aortic dilation as well as vascular remodeling.
On the other hand, M2 macrophage polarization is typically
induced by Th2 cytokines like IL-4 and IL-13 (23, 25). By
mobilizing together with mast cells and NK cells, M2
macrophages can regulate angiogenesis, cell recruitment, and
collagen deposition (26). With the progression of AAA, the
aortic walls undergo a switch from M1 macrophage dominance
to M2 macrophage dominance, which reflects a compensatory
mechanism of the anti-inflammatory and tissue-repair effect of
M2 macrophages (20). The counteracting effects of M1 and M2
macrophages in AAA make them eligible for therapeutic
applications to control inflammation and destruction of aortic
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walls. Cheng et al. introduced Notch receptor inhibitors which
upregulated M2 macrophages and downregulated M1
macrophages to Apoe’ mice with AAA, and identified this
intervention remarkably ameliorated progression of AAA (27).

Neutrophils

Neutrophils are a kind of polymorphonuclear leukocytes, which
are consistently generated in the bone marrow from myeloid
precursors (28) Neutrophils are one of the most abundant
immune effector cells of the human immune system, whose
main functions include phagocytosis, degranulation, and
formation of neutrophil extracellular traps (NETSs) (29, 30).
Some studies suggest circulating neutrophils may be an
important contributor to AAA formation in the early phase.
Eliason et al. found AAA of wild-type animals (WT's) grew faster
than mice with neutropenia 4 days after elastase perfusion to
induce AAA, although there was not a significant difference in
the 7 day (31). A cohort study showed that there were strong
associations between elevated neutrophil counts and AAA (32).
Li et al. that identified FAM3D, a novel chemokine, was
strikingly upregulated in human AAA tissues, and Fam3d '~
mice had decreased levels of neutrophil infiltration than WTs.
Besides, administration of FAM3D neutralizing antibody
markedly suppressed AAA expansion (33).

The effective integrant of neutrophils is composed with
granules and secretory vesicles consisting of various enzymes
(28). There are three kinds of granules within neutrophils in
total. The azurophilic granules contain myeloperoxidase (MPO),

an enzyme essential for the oxidative burst, and other
components including defensins, lysozyme and some proteases
such as neutrophil elastase and proteinase 3 (34). The specific
(secondary) granules are peroxidase-negative and storage
lactoferrin, hCAP18, NGAL, lysozyme, and NRAMP-1 (35).
The last type is called gelatinase (tertiary) granules. Although
there are very few antimicrobials in gelatinase granules, they
contain a host of MMPs (34).

NETs are net-like structures protruding from cell membranes
of neutrophils or released from ruptured neutrophils (36). When
neutrophils are activated, a process named NETosis (Figure 1)
initiates. The first way of NETosis starts with nuclear
delobulation and decondense of chromatin, followed by
cellular depolarization and membrane rupture to release NETs.
Another kind of NETosis, which is termed as non-lytic form of
NETosis, proceeds with expulsion of chromatin and
degranulation (37). NETs may have several impacts on aortic
wall. To begin with, the proteases hanging on NETs like MMPs
can cause direct damage to aortic walls after chromatin are
cleaved by DNases (38). Besides, NETs can increase the
transcription of IL-6 and pro-IL-1B in macrophages, induce
Th17 cell differentiation and recruit more inflammatory cells
(30). Another possible effect of NETs on AAA pathogenesis is
promoting vascular occlusion. The net-like structure of NETs
can render blood cell gathering within the aorta and finally cause
thrombosis (36). NETs also help establish the bridge between
neutrophils and other immune cells. Cathelicidin-related
antimicrobial peptide exposed by NETs can bind to self-DNA

Nuclear membrane
degradation

Neutrophil

Nucleus

Chromatin
decondensation

Granule

Cell membrane lysis
and release of NETs

Proteases in granules

hanging on NET degrade
, | ECM of aortic wall, which |
Vv cause aortic structure <
destruction and dilation of
aorta

Non-lytic
NETosis

FIGURE 1 | The mechanism of NET formation and acting on aortic walls. There are two ways for neutrophil extracellular traps (NET) come into being. The first one is
called NETosis in which nuclei of neutrophils undergo delobulation, chromatin decondensation and nuclear membrane lysis. After that neutrophil granules adhering to
released chromatin enter extracellular spaces through ruptured cell membranes. The other way, which is a non-lytic form of NETosis, occurs after partial
depolarization of nuclei and render granules hanging on chromatin out of plasma without cell deaths. The proteases within granules can thereby directly degrade the
vascular structure and cause aortic dilation. Figures were produced using Servier Medical Art (www.servier.com).
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and subsequently recruit plasmacytoid DCs (pDCs) that induce
type I interferon synthesis (39).

Dendritic Cells

Dendritic cells (DCs) are a kind of antigen presenting cells (APC)
which are able to process and expose antigen components to T
lymphocytes, play a key role in the induction of innate immune
responses and are implicated in the immune tolerance to self-
antigens (40, 41). Krishna et al. indicated that depletion of
CD11c" cells can significantly decrease the maximum diameter
of AAAs 28 days after angiotensin II infusion (40), which
suggests that DCs may also have important impact on the
development of AAA.

DCs generally express CD11c and major histocompatibility
(MHC) class IT molecules. The four subsets of DCs are
conventional DCs (cDCs), Langerhans cells, monocyte-derived
DCs and pDCs (42). In that the main resident site of Langerhans
cells are the epidermis and mucosa, the effective types of DCs
on AAAs are cDCs, monocyte derived DCs and pDCs. All kinds
of DCs derive from macrophage and DC precursors (MDP),
which give rise to monocytes and the common DC precursors
(CDP) (43). CDP could further differentiate into pDCs and
pre-cDCs. pDCs are a special DC subset which can promote
antiviral responses and are also involved in pathophysiology
of autoimmune diseases (44). pDCs are able to produce
type I interferons, such as IFN-o and IFN-B, to promote
proinflammatory responses through activating effector T cell,
cytotoxic T cells, and NK cells (39, 45). These inflammatory cells
can further facilitate AAA development. cDCls and cDC2s
are two subsets differentiated from pre-cDCs. cDCls are well
known for their cross-presenting functions, and are involved in
immune responses to bacterial and viral infections. ¢cDC2s
are specialized for sensing danger signals and producing high
levels of IL-6 and IL-8 (46). These two phenotypes of ¢cDCs are
both characterized as regulatory mediators of immune responses.
¢DCl1 can activate CD8" T cells, promote T helper type 1 (Th1)
activation by MHC class I, and activate natural killer responses
with by IL-12 (47, 48). cDC2 can cross-present antigens to
induce the proliferation of Thl cells though MHC class II
molecules (49). Their effects enrich the communications in the
inflammatory microenvironment of AAA tissues. The process
that monocytes differentiate into DCs under the induction of
GM-CSEF plus IL-4 has been observed in vitro culture. Monocyte-
derived DCs have the potential to transform into cDCs, and
in vivo experiments showed they can induce Th1l and Th17 cell
polarizations (50). However, the detailed roles of DC subsets in
AAA need to be explored.

Mast Cells

Mast cells are widely distributed in the tunica adventitia and
media of aortic wall. The mast cell count is positively correlated
with the maximum of AAA diameter (51). The roles of mast cells
in AAA have been intensively discussed in Shi et al.’s review, that
elevated proteases of mast cells like chymase and tryptase in
patients with AAA, and these proteases contribute to leukocyte
adhesion and migration, vascular smooth muscle cells (VSMC)

apoptosis, foam cell formation, and expression of MMP and
cathepsins (52). Cathepsin is a kind of enzyme containing in mast
cells. Cathepsin C (Ctsc) acts as an upstream activator of
tryptases, chymases and other cathepsins by cleaving the
N-terminal pro-peptide of the zymogen forms of these proteases
(53). Cathepsin G has similar function with chymases, which can
generate angiotensin II from angiotensin I. Mice deficient of
Ctsc were resistant to elastase perfusion-induced AAA compared
with WT mice, and suffered from less transmural inflammatory
cell infiltration (54). However, controlling mast cells solely are not
efficient enough as a medical treatment option for aortic
aneurysms. A randomized clinical trial showed that pemirolast,
a potential mast cell stabilizer, could not inhibit the development
of AAA at several different doses, which may be due to the limited
influences of pemirolast on plasma tryptase concentration (55, 56).
In addition to directly suppress the activity of mast cells,
diminishing their impact like inducing VSMC apoptosis might
be an alternative way to treat AAAs. A master regulator of
autophagy and lysosome biogenesis named transcription factor
EB, for example, was shown to prevent VSMC apoptosis and
attenuate AAA development (57).

Natural Killer Cells

NK cells are lymphocytes which have important effects on innate
immune responses to tumors and infections (58). Although the
fraction of NK cells is not that high as T cells in AAA tissues, they
have an impact on aneurysm development both through causing
aortic wall damage and through accelerating atherosclerotic
changes (59-61). NKT cells, a special subtype of immune cells
that express both T cell receptor and markers characteristic of
NK cells, are amplified both in vivo and in vitro after injected
with Ang II. NKT cells exacerbate aneurysm progression
by increasing matrix degrading enzymes in VSMC and
macrophages, and by secreting cytokine downregulating VSMC
viability (62, 63). Forester et al. reveal peripheral level and
cytotoxicity of NK cells are increased in AAA patients than
control groups, and these NK cells retained amount and
cytotoxicity to destruct VSMC even after aneurysm repair (64).

ADAPTIVE IMMUNE CELLS
CD4* T Cells

The most predominant infiltrated inflammatory cells in AAA
specimens are T lymphocytes (65), and the majority are CD4" T
cells (mainly helper T cells). The distinct phenotypes and
functions of CD4" T cells are summarized in Table 1.
Depending on surface markers and functions, CD4" T cells
can be differentiated into diverse subsets in response to various
microenvironment stimuli, including Th1 cells, Th2 cells, Th17
cells, regulatory T cells and follicular helper T (Tth) cells (66).
Specifically, these CD4" T cells express various immune
molecules, including aff T cell receptors, T cell activation
markers, memory cell phenotypes (CD45RO"CD45R A~
CD62L7), and distinct patterns of cell surface molecules
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TABLE 1 | Differentiation, function, and role of various phenotypes of CD4+ T cells in AAA.

Th1 Th2
Activators IFN-y, IL-12 IL-2, IL-4
Affiliated cell Macrophage, CD8* T cell B cell, eosinophil, mast cell
Products IFN-y, IL-2 and TNF-B IL-4, IL-5, IL-6 and IL-10,
FasL
Role in AAA Activate macrophage, IMacrophage cytotoxicity

and MMP secretion,
TVSMC apoptosis

inhibit collagen synthesis

Th17 Treg Tfth
IL-1, IL-6, TGF-B TGF-B, IL-2 IL-21, Bel-6
Neutrophil B cell
IL-17, IL-21, GM-CSF TGF-B, IL-10, IL-35 CXCR3, IL-21

tMacrophage and
neutrophil recruitment

1T cell proliferation and
IFN-y production,
JInflammatory cell
chemotaxis, arterial wall
remodeling, and
angiogenesis

May upregulate
autoantibody secretion
through assisting B cell
proliferation

(including CD54, CD31, CD1la, CD29, CD44, CD95, and
CD27) (67).

Th1 and Th2 Cells

The most significant effect of CD4" T cells on AAAs rely on
cytokine secretions, such as Thl cytokines (IFN-y, IL-2 and
TNF-B) and Th2 cytokines (IL-4, IL-5, IL-6 and IL-10) (13, 67).
Some of these cytokines are associated with macrophage
activation, regulation of VSMC apoptosis and direct
destruction of aortic walls (68). Deletion of Il12b can inhibit
macrophage expansion, decrease production of cytokines like IL-
6 and TNF-o in the early stage of AAA, and suppress aneurysm
development (69). Another research determined a strikingly
higher level of circulating IL-4 in patients with AAA than
healthy individuals (70). Wanfen et al. showed that aneurysm
dilation and MMP secretion were prevented in Ifng deficient
mice (71).

Thl cells, Th2 cells also have effects on aortic wall
degradation. There are profound interactions between various
types of helper T cells and vascular smooth muscle cells
(VSMCs) through autoimmunity. Fas ligand (FasL) expressed
by Th2 cells are indicated to promote VSMC death (72). Besides,
TNF and IFN-vy released by Thl cells can further inhibit collagen
synthesis (73, 74). A study aiming to investigate the interactions
among immune cells in AAAs reveals that CD4" T cells could
promote VSMC proliferation through direct cell-to-cell contact
(60). VSMC, the main cellular constituent of the aortic wall (75),
subsequently induce NK cells aggregation and finally result in
VSMC apoptosis. Extracellular matrix (ECM) enables artery wall
to obtain the blood containing function, and the main
component of ECM, especially collagen and elastin, are
synthesized and processed by VSMC. Collagen defects can lead
to aneurysm rupture, while elastin depletions are associated with
continuous dilation (11). All these results demonstrate the
essential position of Thl and Th2 in aneurysmal diseases.

Th17 Cells

Th17 cells, the main origin of IL-17, are elevated in AAA tissues
(76). IL-17 secreted by Th17 cells mediates a quantity of immune
responses like neutrophil recruitments and plays a central part in
vascular superoxide production (77). This can sharpen oxidative
stress in aortic walls. Oxidative stress is one of the major
pathogenic factors of AAA, and a study proved riboflavin
(vitamin B2), a kind of antioxidant, could prevent aneurysm

formation in rat models (78), which suggests inhibiting oxidative
stress by controlling IL-17 synthesis and activity of Th17 cells
may be a potential therapeutic target for AAA patients.

Owing to their various cytokines in addition to IL-17, such as
IL-17F, IL-21 and granulocyte-macrophage colony-stimulating
factor (GM-CSF), Th17 cells have been implicated in several
autoimmune diseases, including inflammatory bowel disease,
multiple sclerosis and rheumatoid arthritis (79). Therefore, it is
rational to anticipate that Th17 cells is also probably of great
relevance to AAA. Ashish et al. showed that there is a evidently
higher expression of IL-17 in AAAs. Besides, Il17a”" mice are
relatively resistant to AAA, and plasma concentration of
inflammatory cytokines are also decreased, which proved the
proinflammatory and atherosclerotic properties of IL-17 (76).
Wei et al. introduced digoxin to antagonize retinoic acid-related
orphan receptor gamma thymus, a master transcription of Th17
cell differentiation, and found out that this can attenuate
aneurysm expansion in two different kinds of models with
AAA (80). These findings indicate the role of Th17 cells in
AAA development.

Tth Cells

Tth cells express CXCR5, a chemokine receptor that helps guide
cells into B cell follicles (81). Tth cells could provide assistant to B
cells activation through autocrine or interactions with B cells,
and are essential for formation and maintenance of germinal
centers (82). Tth cells have a role in atherosclerosis. Gaddis et al.
found that deletion of Bcl6, a transcription factor of Tth cells,
prevented plaque formation in Ldlr”~ murine models (83). This
finding suggests decreasing Tth cells activity may slow down the
exacerbation of aneurysms. However, the roles of Tth cells in
AAA need to be established.

Regulatory T Cells

Regulatory T (Treg) cells are a specific kind of CD4" T cells
which express forkhead box protein 3 (FOXP3) and regulate the
effects of other T cell subsets (84). Treg cells have an impact on
suppressing local inflammation, and compromised Treg
functions may promote AAA growth (85). The suppressive
effect is determined by acetylation levels of FOXP3, which is
lower in human aneurysm tissue. SIRT1 can specifically regulate
the acetylation of FOXP3 (86). Studies have shown that EX-527,
an inhibitor of SIRTI, can recover the acetylation levels of
FOXP3, increase the number of active Treg cells and bring
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back their suppressive functions on AAA (86). Zhou et al. found
that Treg cells could release IL-10 and thereby suppress
inflammatory cell chemotaxis, arterial wall remodeling, and
angiogenesis (87). Another study showed that the proportion
of Treg cells in peripheral mononuclear cells were markedly
decreased in AAA patients than controls (88). The average aortic
diameters of Foxp3”" mice were larger than WTs after CaCl,
induction, while infusion of normal Treg cells to Foxp3™™ mice
can render their similar aortic size with WTs after CaCl,
induction (88). Administration of IL-2 to expanse FOXP3"
Treg cells also reduced the incidence and mortality of AAA in
Apoe”’” mice with angiotensin I infusion (89). Besides, Treg cells
are an essential source of TGF-f3, which is a matrix-protecting
and anti-inflammatory cytokine in human. Wang et al.
concluded that systemic neutralization of TGF-B would
increase the activity of MMP-12 and subsequently contributed
to aneurysm progression and rupture (90). This growing body of
evidence suggests an important role of Treg cells in enhancing
inflammation and inducing AAA enlargement.

CD8" T Cells

CD8" T cells represent a considerable part of adaptive immunity.
According to the immune state, CD8" T cells can be generally
divided into effector cells and memory cells, which can provide
both immediate clearance and long-term protective effect on
killing tumor cells and virally infected cells (91). CD8" T cells are
found to be elevated in AAA wall and perivascular tissues (92).
Zhou et al. indicated that IFN-v released by CD8" T cells could
promote cellular apoptosis in vivo and MMP-producing
macrophage recruitment (93). CD8" T cells exert versatile
impacts on atherosclerosis. Chemokines like MCP-1 and
CCL-2, which can induce monocytes infiltration in
atherosclerotic lesions, were observed to be deceased in mice
depleted of CD8" T cell (94). However, CD8" T cells can
promote apoptosis of antigen presenting cells and suppress
functions of CD4" T cells, which can resist progression of
atherosclerosis (95). This discrepancy may result from
production of inflammatory cytokines and lysis of endothelial
cells by CD8" T cells. The pro-atherogenic and protective effects
of CD8" T cells may also regulate the enlargement of AAA, but
need to be further explored.

Yo T Cells

In contrast to oy T cells, Y0 T cells are independent of MHC class
II or B2 microglobulin for development and activation (96),
suggesting that they are eligible to generate rapid immune
responses in blood. ¥ T cells can produce various cytokines
including TNF-q, IL-17, IL-22, and IFN-y (97). Besides, Y0 T
cells also secrete chemokines, which influence recruitment of
other immune cells at the site of inflammation and modulate the
function of other innate and adaptive immune cells (97). These
features establish distinct role of yd T cells in sterile and non-
sterile inflammation. Y8 T cells were found to be present in
samples of AAA patients (98), so the special immune
properties of ¥ T cells may play of role in early stage of
aneurysm formation.

B Cells

B cells serve as essential functional parts in humoral immunity of
the adaptive immune system through secreting antibodies. B cell
can be divided into three subpopulations, including B1, B2 and
regulatory B cells (99). Schaheen et al. discovered that depletion
of B1 and B2 cells with anti-CD20 antibody significantly limit
AAA growth in animals treated with elastase perfusion or
angiotensin II-infusion (45). However, B2 cell refusion was
exhibited to ameliorate AAA exacerbation in B cell-deficiency
murine models (100). This anomalous phenomenon might be
due to upregulation of Treg cells and TGF-f despite of the
atherogenic effects of B2 cells (101), and also serves as another
proof that AAA is an inflammation-driven disease rather than
simple atherosclerotic lesions. The complex impact of B cells on
AAA development may need more studies to verify, such as
purely B1 cell deficiency murine models.

In addition to producing cytokines like TGF-B, the main
function of B cells is to secrete immunoglobulins. After
contacting with antigens, the activation-induced cytidine
deaminase (AID)-driven somatic hypermutation (SHM) of the
variable regions of immunoglobulin genes generate a number of
mutated B cells that can differentiate into immunoglobulin-
secreting plasma cells and memory B cells, which provide both
immediate and persistent effects on the same antigens (102).
Some of these B cells are overactive and produce autoantibodies
after stimulated by autologous components of human tissues,
and result in a variety autoimmune diseases including AAA (103,
104). Immunoglobulins were found widely deposited in mouse
AAA tissues, and these autoantibodies can not only induce
secretions of IL-6 and MMP-9 from T cells and macrophages,
but directly cause local destruction of aortic walls (105). For
example, B cell-derived anti-beta 2 glycoprotein I antibody was
shown to exacerbate HHcy-aggravated vascular inflammation
and AAA expansion (106). In addition, a study isolated
antiphospholipid (aPL) antibody (a kind of autoantibody able
to cause blood clots) from human AAA tissue, and found that
more aPL-positive patients underwent AAA progression that
aPL-negative patients (107). Another study purified antibodies
against Chlamydia pneumoniae outer membrane proteins
(OMPs) from serum of AAA patients, and used these
antibodies to analyze the aortic walls of AAA patients with
western blot and found positive reactions in all of the tested
samples, which could be an evidence of the association between
the Chlamydia pneumoniae OMP antigens and AAA (108).
Besides, some of the immunoglobulin subtypes can interact
with other immune cells. For instance, IgE can affect
macrophage polarization and induce mast cell activated to
synthesize various elastases (109, 110). These dramatically
increasing evidences indicate that B cell may be an ideal target
to treat AAA patients, and subsequent experiments confirmed
this hypothesis. Zhang et al. reported that vinpocetine could
alleviate AAA development by suppressing TNF-o-induced B
cell activation and proinflammatory mediator expression in
primary cultured macrophages both in vitro, and in vivo (111).
The interactions of between B cells and other immune cells are
illustrated in Figure 2.
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FIGURE 2 | Interactions of between B cells and other immune cells in AAA. B cells can differentiate into plasma cells and memory B cells under the stimulation of IL-
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OTHER INFLAMMATORY-INVOLVED
MECHANISMS

Matrix Metalloproteinases
MMPs have been implicated in the pathologic origin of AAAs.
MMPs have significant destructive effects on elastin fiber
integrity, and thereby cause elastin to lose its mechanical
properties (112). Several types of MMPs can be secreted by
AAA tissue, such as MMP-2, MMP-3, MMP-8, MMP-9,
MMP-12 and MMP-13 (113, 114). MMP-9 is the most
abundant elastolytic proteinase found in AAA tissue and is
predominantly expressed by macrophages infiltrated in AAA
(115). Several studies showed that Mmp9 and Mmp2 knockout
mice are protected from CaCl, challenging, indicating the
important role of MMPs in AAA developments (116). Besides,
targeted delivery of MMP inhibitors with nanoparticles was
shown to inhibit aneurysmal progression (113). Robert et al.
found that the relative resistant to AAA formation in Mmp9
deficient mice was related to the preservative structure of elastic
lamellae despite the presence of infiltrating mononuclear
phagocytes and neutrophils (115). It has also been found that
MMP-9 can hardly cause local tissue injury without the presence
of MMP-2, because MMP-2 can initiate cleavage of the triple-
helix-structured collagen into one-quarter and three-quarter
lengths, which complement the effects of MMP-9 (116).
Netrin-1, a neuronal guidance signal that can specifically
regulate the activity of MMP-3, was found to be elevated in
murine and human AAA tissues, and targeted depletion of Ntnl
in macrophages evidently decreased the risk of developing
murine AAA (117).

All of above mechanisms give MMP the potential to be a
target of screening and therapy for AAA patients. As a specific

history hallmark of aneurysm formation, fragmentation of ECM
by MMPs has been frequently studied to investigate particular
biomarkers in AAA patients (118). A meta-analysis including
eight case-control studies revealed strikingly increase of
circulating MMP-9 levels in AAA patients (119). Hovsepian
et al. found that the elevated MMP-9 had a sensitivity of 48% and
a specificity of 95% to establish AAA diagnosis (120). Several
other types, such as MMP-1, -2, -3, -7,-12 and -13 have been
shown to have an increased level accompanied with reduction of
their inhibitors by some researchers (121-123). Doxycycline is a
kind of tetracycline antibiotic which is capable to suppress a cast
of MMPs, and has been shown to be effective in reducing elastin
degradation and aneurysm development in murine AAA models
(1). Small randomized clinical trials showed doxycycline
suppressed the expansion of AAA (124). A meta-analysis,
however, concluded that patients with doxycycline prescription
had no significant growth rate reduction of aneurysm diameter
than control groups (125).

Inflammasomes

Inflammasomes are large multimolecular complexes that are able
to induce inflammation reactions and control the activation of
caspase-1, which regulates the proteolytic maturation of IL-1f
and IL-18 (126, 127). These intracellular molecular protein
scaffolds work through inducing pyroptosis (an inflammatory
form of cell death) and necroptosis (a lytic form of inflammatory
cell death) by cleaving the N-terminal of pro-IL-1f and pro-IL-
18 with caspase-1 (128). Five kinds of receptor proteins have
been identified so far to assemble inflammasomes, including
nucleotide-binding oligomerization domain (NOD), leucine-rich
repeat (LRR)-containing protein (NLR) family members NLRP]I,
NLRP3 and NLRC4, as well as the proteins absent in melanoma 2
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FIGURE 3 | Pathways of NLRP3 and AIM2 inflammasome activation. There are two distinct signals needed for inflammasome to be effective. Initially, pathogen-
associated molecular patterns (PAMPs) as the first signal binds to Toll like receptors (TLRs) and stimulate NF-xB, which increases downstream pro-IL-18 and pro-IL-
18 production. Then, efflux of K* and dsDNA are the second signals correspondingly to induce NLRP3 and AIM2 inflammasome formation. The pathway of NLRP3
inflammasome activation usually proceed under the assistant of cathepsin released by lysosome and ROS mtDNA from mitochondria. The final result of
inflammasome activation is cleaving pro-casp-1 into caspase-1, which transforms pro-IL-18 and pro-IL-18 to IL-1B and IL-18. These two effective cytokines are
secreted out and participate the inflammatory responses in aortic walls. Figures were produced using Servier Medical Art (www.servier.com).

(AIM2) and pyrin (126). It has been shown that inflammasomes
are involved in a cast of inflammatory disorders (126). Recent
works suggest that NLRP3 and AIM2 inflammasomes are
implicated in the pathogenesis of AAA, and we summarized
the process of these inflammasome activations in Figure 3.

A pilot study demonstrated an upregulation of the
inflammasome core components ASC (apoptosis associated
speck-like protein containing a caspase activation and
recruitment domain), caspase-1 and IL-1f in AAA tissue
compared to normal aortas and claimed AAA-associated
lymphoid cells could carry on inflammasome signaling (129).
Some subsets of inflammasomes like AIM2 were significantly
increased in circulating granulocytes, monocytes, B lymphocytes
of AAA patients, and IL-1P released by peripheral blood
mononuclear cells of AAA patients was significantly higher
than controls (130). Another study found expression of NLRP3
and AIM2 were notably lower in control samples than AAA.
However, with the AAA lesion progression, inflammasome
expressions decreased (131), which suggests the inflammasome-
induced signaling plays a more important role in early AAA
pathogenesis. Markus et al. found that necrotic cell debris from
autologous cells promotes AIM2 and NLRP3 inflammasomes in
VSMC of late stage AAA tissues, and thereby activates
downstream inflammatory attacks (132). Ren, et al. found that
NLRP3 inflammasomes directly activate MMP-9 by cleaving its

N-terminal inhibitory domain, so blocking the inflammasome
pathway with MCC950, a potent selective small-molecule
NLRP3-inflammasome inhibitor, could prevent aortic
aneurysm formation (133). Similarly, silencing of NLRP3 in
macrophages remarkably ameliorated AAA formation (134). In
the meanwhile, NLPR3, caspase 1, and IL-1B levels were
elevated in hyperhomocysteinemia (HHcy) models compared
with WTs, and administration of folic acid to reverse
the HHcy-accelerated AAA could alleviate activation of
inflammasomes in the tunica adventitia (134). These studies
demonstrate inflammasomes may be a promising target for
medical intervention of AAA.

PERSPECTIVES

AAA still remains to be a life-threatening disease. In the current
review, we summarized the updated pathogenic roles of
inflammatory cells in AAA development. The roles of T cells
and macrophages in AAA have been predominantly studied,
including inflammatory cytokines, MMPs, inflammasomes, etc.
However, how the other types of inflammatory cells influence
AAA are still not fully verified. Despite of the advances of
endovascular aneurysm repair and open surgery for large or
ruptured AAA, there is still lacking efficient medical therapy
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choices for asymptomatic patients. This review lists a
considerable number of pathways of inflammatory cell effects,
and provides evidences from studies that suppressing
corresponding pathways may influence the development of
AAA in murine models or patient samples in vitro.
These evidences not only prove the irreplaceable roles of
inflammatory cells in AAA, but provide new methods to
develop ideal drugs for researchers and physicians. Specific
targets, such as inflammatory cytokines and MMPs, have been
investigated for biomarker screening and possible medical
therapies for asymptomatic AAA. These novel applications
may serve as advanced strategies for early identification and
therapeutic intervention for AAA.

It should be noted that most studies on detailed cellular
mechanisms were conducted in animal models or in vitro
experiments, which could not entirely mimic the pathogenesis
of AAA in humans. Studies bridging pre-clinical mechanisms
and clinical data are needed. Furthermore, most of the animal
studies were only focused on the initiation of diseases, while how
to prevent AAA rupture in real-world patients are more
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Background: Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is
a small vessel vasculitis in adults and children that commonly affects the kidneys. Although
the frequent antigenic, and presumed pathogenic, targets of ANCA in AAV are proteinase-
3 (PR3) and myeloperoxidase (MPO), ANCA against lysosome associated membrane
protein-2 (LAMP-2), a lesser known ANCA antigen that is expressed on the glomerular
endothelium, are present in some adults with AAV-associated renal disease. LAMP-2-
ANCA has not been assessed in children with chronic systemic vasculitis, and, if present,
would be a potentially valuable biomarker given that treatment decisions for these
pediatric patients at diagnosis are largely informed by kidney function.

Methods: A custom ELISA, using commercially available reagents, was designed to
detect autoantibodies to human LAMP-2 in serum. Sera obtained from 51 pediatric
patients at the time of diagnosis of chronic primary systemic vasculitis (predominantly
AAV) were screened. LAMP-2-ANCA titers were evaluated for correlation with clinical
metrics of disease activity (pediatric vasculitis activity score [pVAS], C-reactive protein
[CRP] concentration, and erythrocyte sedimentation rate [ESR]), MPO- and PR3-ANCA
titers, and renal function (glomerular filtration rate [GFR], renal-specific pVAS, and serum
creatinine concentration).

Results: LAMP-2-ANCA (>1,000 ng/ml) were detected in 35% (n = 18) of pediatric
systemic vasculitis patients, of which, 10 (20% of all patients) were found to have high
positive titers (>1,500 ng/ml). Undetectable or negative titres (<500 ng/ml) were identified
in 12% (n = 6) of patients, those with titers between 500 and 1,000 ng/ml were considered
low with unknown clinical relevance (53%, n = 27). Although LAMP-2-ANCA titers did not
significantly differ between patients with AAV versus ANCA-negative vasculitis, only AAV
patients had high concentrations (>1,500 ng/ml) of LAMP-2-ANCA. LAMP-2-ANCA titers
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did not correlate with measures of disease activity (pVAS, CRP, or ESR) at the time of
diagnosis. In contrast, for patients with 12-month post diagnosis follow-up, a negative
correlation was observed between the change in GFR (from diagnosis to 12-month follow-
up) and LAMP-2-ANCA titer at diagnosis.

Conclusions: Moderate to high LAMP-2-ANCA titers were detected in 35% (18/51) of
children with chronic systemic vasculitis affecting small-to-medium vessels. Although the
highest concentrations of LAMP-2-ANCA in this population were observed in individuals
positive for classic ANCA (MPO- or PR3-ANCA), similar to previous reports on adult
patients, LAMP-2-ANCA titers do not correlate with classic ANCA titers or with overall
disease activity at diagnosis. Renal disease is a common manifestation in systemic small-
medium vessel vasculitis (both in adults and children, though more severe in children) and
our preliminary data suggest LAMP-2-ANCA at diagnosis may be a risk factor for more
severe renal disease.

Keywords: anti-neutrophil cytoplasmic antibody, ANCA-associated vasculitis, LAMP-2, lysosome-associated

membrane protein-2, pediatric, systemic vasculitis

INTRODUCTION

Anti-neutrophil cytoplasmic antibodies (ANCA) are a family of
autoantibodies that are reactive against multiple proteins that are
predominantly contained within intracellular granules of neutrophils
(1, 2). These autoantibodies were first observed in individuals with
glomerulonephritis (3) and forms of systemic small vessel vasculitis
(4, 5) that were subsequently named ANCA-associated vasculitis
(AAV). In AAV, there are two major classes of ANCA that are
defined by the antigenic target: PR3-ANCA directed against
proteinase-3 (PR3) and MPO-ANCA directed against
myeloperoxidase (MPO). PR3-ANCA and MPO-ANCA are
predominantly, but not exclusively, associated with different AAV
subtypes (respectively, granulomatosis with polyangiitis and
microscopic polyangiitis), and are used clinically to aid phenotype
classification. More recently, the presence and specificity (for PR3 or
MPO) of ANCA have helped to define disease-associated risks in
adult AAV subtypes that do not overlap with the phenotypic
classification (6). For example, patients positive for PR3-ANCA
often have a more relapsing disease course, increased risk of severe
inflammatory lung disease, and systemic disease involving multiple
organs at diagnosis (7, 8). In contrast, MPO-ANCA positive patients
are more likely to have more severe renal-limited disease (9, 10).
Some data on adult patients also supports the value of serially
measuring ANCA titers as a marker of disease activity (7, 11), but
whether ANCA are informative to organ-specific disease processes,
which is a primary determinant in treatment decisions, remains to be
shown. Although there is a high incidence of kidney disease in AAV,
MPO and PR3 are not expressed by the glomerular endothelium, the
primary site of injury in patients with renal involvement (10).

Abbreviations: AAV, ANCA-associated vasculitis; ANCA, anti-neutrophil
cytoplasmic antibody; GN, glomerulonephritis; GPA, granulomatosis with
polyangiitis; MPA, microscopic polyangiitis; LAMP-2, lysosome associated
membrane protein-2; MPO, myeloperoxidase; PAN, polyarteritis nodosa; PR3,
proteinase 3; pVAS, pediatric vasculitis activity score; UCV, unclassified vasculitis;
TOD, time of diagnosis.

Although MPO and PR3 released by neutrophils may associate
with the endothelium and in this manner target the endothelium for
ANCA-mediated damage, it is also possible that disease processes are
the result of the indirect action of ANCA, or are independent of
autoantibodies, as may be the case in patients with ANCA-negative
vasculitis (2).

A search for autoantigenic targets expressed on the membrane
of glomerular cells that may serve as a more direct target of
autoimmune processes led to the discovery by Kain et al. in 1995
(12) of antibodies against lysosome associated membrane protein-
2 (LAMP-2/CD107b). These LAMP-2-ANCA were detected in
adults with active necrotising and crescentic glomerulonephritis
(12) and whom were also frequently positive for PR3-ANCA or
MPO-ANCA. It was further demonstrated that one of the most
common ANCA recognition epitopes on LAMP-2 has 100%
homology with the Type I fimbriated bacterial adhesion protein,
FimH. Notably, FimH-immunized rats developed pauci-immune
focal necrotizing glomerulonephritis and ANCA to both rat and
human LAMP-2 (13). Despite this in vivo evidence of LAMP-2-
ANCA pathogenicity and subsequent findings of LAMP-2-ANCA
in cohorts of adults with small-to-medium sized vessel vasculitis
(12-15), other studies demonstrate similar LAMP-2-ANCA titers
in healthy individuals and patients (16). These contradictory
findings may reflect the absence of a standardized assay for
LAMP-2-ANCA, impact of immunosuppressive therapy on
ANCA titers, and patient selection criteria (17, 18).

The prevalence of LAMP-2-ANCA has not been assessed in
children with vasculitis due in large part to the rarity of the
disease relative to adult-onset vasculitis. The aim of this study
was to conduct a preliminary screen of a retrospective collection
of sera from pediatric patients with small-to-medium vessel
chronic primary systemic vasculitis for the presence of LAMP-
2-ANCA. Without a commercially available assay for LAMP-2-
ANCA, we designed a custom enzyme-linked immunosorbent
assay (ELISA) and quantified the concentration of LAMP-2-
ANCA in sera from 51 pediatric vasculitis patients at the time of
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diagnosis. Our findings demonstrate that LAMP-2-ANCA are
present in children with systemic vasculitis and provide
preliminary evidence that LAMP-2-ANCA titers at the time of
diagnosis can indicate worse renal outcomes.

MATERIALS AND METHODS

Pediatric Patients, Clinical Data,

and Samples

Patients described in this study were enrolled in the Pediatric
Vasculitis Initiative (PedVas), an international study on chronic
primary systemic vasculitis in children. Eligibility criteria for PedVas
have been described previously (19). The study protocol was
approved by the Children’s and Women’s Research Ethics Board
of the University of British Columbia [H12-00894] and the
respective ethical committees or IRBs at participating PedVas sites.
At the time of diagnosis, participating centres collected sera and
clinical data (including, but not limited to, positivity for PR3-ANCA
and MPO-ANCA, and glomerular filtration rate) as described (20).
Using entered information from participating sites, patients were
formally classified into small-to-medium vasculitis subtypes using a
pediatric modified algorithm of the European Medicines Agency
(EMA) (21). Disease activity at the time of sample collection was
calculated using the pediatric vasculitis activity score (pVAS) (22).
Pediatric inflammatory disease controls included five patients
diagnosed with an autoinflammatory disease/periodic fever
syndrome and followed at the BC Children’s Hospital, Vancouver,
BC. All inflammatory controls were enrolled in a research study
approved by Children’s and Women’s Research Ethics Board of the
University of British Columbia [H15-00351]. All participants
(pediatric vasculitis patients and autoinflammatory controls)
contributed blood in K,EDTA and/or serum separation tubes
(both from BD Biosciences, NJ, USA) during a flare in disease.
Blood was processed to serum and plasma according to standard
protocols from the manufacturer and aliquots were stored at —80°C.

Enzyme-Linked Immunosorbent Assays

Concentrations of C-reactive protein (CRP) were measured in sera
using a human CRP ELISA kit (ThermoFisher, MA, USA) according
to manufacturer’s instructions (23). Concentrations of PR3-ANCA
(ORGS518, Orgentec) and MPO-ANCA (425-2380, BioRad) were
measured according to manufacturer’s instructions and as described
previously (23). Concentrations of LAMP-2-ANCA were measured
by a custom indirect ELISA (Supplementary Figure S1) as follows:
Nunc MaxiSorp " flat-bottom 96-well plates (ThermoFisher, MA,
USA) were coated with 50 pl of 5 pug/ml recombinant human (rh)
LAMP-2 protein (R&D Systems, MN, USA) diluted in 02 M
carbonate-bicarbonate, pH 9.4 coating buffer (ThermoFisher, MA,
USA), and incubated overnight at 4°C. Wells were washed 3x with
250 pl/well wash buffer (WB; PBS containing 0.05% Tween®20
[FisherScientific, MA, USA]). Blocking buffer (BB; PBS containing
0.05% Tween®20 and 2% bovine serum albumin [MilliporeSigma,
MA, USA]) was added (300 ul/well) and incubated at room
temperature (RT) for 1 h. BB was discarded and standards/
samples were added without washing the plate. Sample (serum or

plasma) was diluted 1/10 in BB. Detection reagents were prepared in
PBS containing 0.01% Tween®20 and 0.4% BSA. Standards were
generated using anti-human LAMP-2 monoclonal antibody (H4B4)
(Invitrogen, CA, USA) serially diluted in BB, with optimal dilution
range of 50-1,000 ng/ml. Diluted standards and samples were plated
(100 ul/well) in duplicate and incubated at RT for 1 h. Wells were
washed 5x with 300 pl/well WB then incubated 1 h at RT with 100
ul/well of 1 ug/ml CaptureSelect™" biotin anti-IgG-Fc (multi-species)
conjugate (ThermoFisher, MA, USA). Wells were washed 5x with
300 pl/well WB then incubated at RT 30 min with 100 pl/well of 0.5
pg/ml horseradish peroxidase (HRP)-conjugated streptavidin
(ThermoFisher, MA, USA). Tetramethylbenzidine (TMB)
substrate solution (ThermoFisher, MA, USA) was added (100 pl/
well) and incubated for 30 min at RT. TMB stop solution
(ThermoFisher, MA, USA) was added 50 pl/well, and absorbance
read on the Tecan Infinite M200 spectrophotometer (Tecan,
Switzerland) at 450 nm, with a reference read at 620 nm. By
fitting the standard curve to a sigmoidal, 4 parameter logistic
regression (4PL) equation, unknown values with an absorbance
(Abs) at 450 nm (Abs,s,) were interpolated between 0.402 AU
(lower-limit) and 2.776 AU (upper-limit). Optimal sera dilution was
found to be 1/10 (data not shown). The ELISA was validated with
human sera from young-onset AAV patients, previously reported to
be positive (n = 5) or negative (n = 1) for LAMP-2-ANCA at the
Medical University of Vienna (13, 14).

Statistical Analysis

Statistical analyses were done using GraphPad Prism v8.0
Statistical Software (GraphPad Software, CA, USA). Group
differences were analyzed by ANOVA and subsequent two-
tailed t-tests. Correlations were assessed by Pearson correlation
coefficient. For all analyses, a confidence interval of 95% was
used; a p-value < 0.05 was considered significant.

RESULTS

LAMP-2-ANCA Are Present in Children
With Chronic Systemic Small-Medium
Vasculitis

A custom ELISA (described in methods and Supplementary
Figure S1) was designed to determine if LAMP-2-ANCA are
present in sera obtained from children with systemic vasculitis
affecting small-to-medium sized vessels, the most common of
which is ANCA-associated vasculitis (AAV). The ELISA was
validated with human sera from individuals with early-onset
AAV and known to be positive (n = 5, with high titers in two
samples and moderate-low titers in three samples) and negative
(n =1) for LAMP-2-ANCA (13, 14). Concentrations of LAMP-2-
ANCA in these samples as determined by the ELISA were as
expected; the negative sample contained the lowest calculated
concentration (229.8 ng/ml) of LAMP-2-ANCA, and titers in
the low-moderate to high-positive samples ranged from 828.3-
3,768.95 ng/ml (Figure 1A). Sera from five children with systemic
inflammation due to an autoinflammatory disease were screened
as controls; LAMP-2-ANCA concentration in 4/5 samples were on
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the lower end of the positive range (<1,062 ng/ml) (Figure 1A).
Using these interpolated measures and for the purpose of this
study, we reasoned that LAMP-2-ANCA concentrations <250 ng/
ml would be considered negative and <1,000 ng/ml were low titers
with unknown clinical relevance. Titers >1,000 ng/ml were
considered positive with high titer measuring >1,500 ng/ml.
Using these established boundaries, 51 pediatric patients
diagnosed with chronic primary systemic vasculitis affecting
small-to-medium sized vessels (Table 1A) were screened for
the presence of LAMP-2-ANCA. Of these, 19 patients were
positive for MPO-ANCA, 23 were positive for PR3-ANCA,
one patient had both MPO- and PR3-ANCA, and eight patients
were ANCA-negative. The mean age of onset of disease was 12.6
years, and the ratio of males to females was equally distributed
between groups. Similar to LAMP-2-ANCA-positive control sera,
LAMP-2-ANCA concentrations in pediatric vasculitis samples
ranged from undetectable (n = 4 patients) to levels over 3 pg/ml
(n = 3 patients) (Figure 1A). Overall, 12% (n = 6) had
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FIGURE 1 | Concentration of LAMP-2-ANCA in pediatric chronic small-to-medium vessel vasculitis patients. (A) LAMP-2-ANCA concentration (y-axis; ng/mL) in
serum of individuals with early-onset vasculitis that are known to be positive (n = 5) and negative (n = 1) for LAMP-2-ANCA (squares) (14), children with vasculitis
(n =51, circles), and children with systemic autoinflammatory disease (n = 5, triangles). (B) LAMP-2-ANCA concentration (y-axis; ng/mL) in pediatric patients
grouped (x-axis) based on positivity for MPO-ANCA (n = 19), PR3-ANCA (n = 23), or neither MPO- or PR3-ANCA (ANCA-, n = 7), and (C, D) LAMP-2-ANCA
concentration (y-axis; ng/mL) plotted against (C) MPO-ANCA (x-axis; U/L) (n =19) and (D) PR3-ANCA (x-axis; U/L) (n = 23). Bars show median. Horizontal line
divided low (<1,000 ng/mL) and moderate-high positive LAMP-2-ANCA (>1,000 ng/mL). Open symbols on the x-axis denote samples below the lower limit of
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detection of the assay (n = 4 patients with vasculitis, and n = 1 patient with autoinflammatory disease).

undetectable or negative (< 250 ng/ml) LAMP-2-ANCA and
53% (n = 27) were found to have low titers (<1,000 ng/ml) of
unknown clinical significance. The remaining 35% (n = 18) of
pediatric vasculitis patients had a minimum of 1,000 ng/ml of
LAMP-2-ANCA, with 56% of those individuals (and 20% of total
patients) having high-positive titers (>1,500 ng/ml).

Although the highest concentrations of LAMP-2-ANCA were
present in patients also positive for PR3-ANCA or MPO-ANCA
(compared to ANCA-negative patients), LAMP-2-ANCA titers
did not significantly differ between patients positive for the
classic ANCA subsets (MPO-ANCA, PR3-ANCA) or ANCA-
negative patients (n = 47, p = 0.5715) (Figure 1B). Moreover,
within the subset of ANCA-positive patients, there was no
correlation between LAMP-2-ANCA titers and titers (Table
1B) of either MPO-ANCA (n = 19, p = 0.6054, Figure 1C) or
PR3-ANCA (n = 21, p = 0.9897, Figure 1D). No correlation was
observed between LAMP-2-ANCA titer and age of onset or sex
(data not shown).
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TABLE 1A | Pediatric vasculitis cohort.

ID Diagnosis?® Onset® Sex ANCA Renal® Treatment?
1 UAAV 16 Male MPO No prednisone

2 MPA 15 Female MPO Yes prednisone

3 GPA 12 Female MPO Yes none

4 GPA iR Female MPO Yes prednisone

5 GPA 12 Female MPO No prednisone, methotrexate

6 ucv 17 Female MPO Yes prednisone, cyclophosphamide
7 GPA 15 Male MPO Yes none

8 GPA 5 Female MPO Yes prednisone, methotrexate, rituximab, azathioprine
9 GPA 16 Female MPO Yes none

10 GPA 2 Male MPO Yes none

11 GPA 13 Female MPO Yes none

12 GPA 17 Female MPO Yes prednisone, cyclophosphamide, rituximab
13 GPA 15 Male MPO Yes prednisone

14 ucv 17 Female MPO Yes none

15 MPA 16 Male MPO Yes none

16 MPA 17 Female MPO Yes cyclophosphamide

17 GPA 17 Male MPO Yes prednisone, cyclophosphamide
18 GPA 1 Female MPO Yes prednisone, rituximab

19 GPA 5 Female MPO Yes prednisone, cyclophosphamide
20 MPA 5 Female MPO Yes prednisone

21 GPA 10 Male PR3 Yes none

22 GPA 15 Female PR3 Yes none

23 GPA 13 Female PR3 Yes prednisone

24 GPA 15 Male PR3 Yes none

25 NA 17 Female PR3 Yes prednisone

26 GPA 12 Female PR3 Yes prednisone, rituximab

27 GPA 15 Male PR3 Yes prednisone

28 GPA 15 Female PR3 Yes prednisone, rituximab

29 UAAV 12 Female PR3 No prednisone, methotrexate

30 GPA 14 Male PR3 No prednisone, rituximab

31 GPA 14 Female PR3 Yes none

32 GPA 14 Female PR3 Yes prednisone, cyclophosphamide
33 UAAV 13 Male PR3 Yes prednisone

34 ucv 13 Female PR3 Yes prednisone, cyclophosphamide
35 GPA 12 Female PR3 Yes prednisone, cyclophosphamide
36 GPA 12 Female PR3 Yes prednisone, cyclophosphamide, rituximab
37 ucv 14 Female PR3 Yes prednisone

38 GPA 15 Female PR3 Yes prednisone, cyclophosphamide, rituximab
39 GPA 14 Female PR3 Yes prednisone, rituximab

40 GPA 15 Male PR3 Yes prednisone, rituximab

41 GPA 18 Male PR3 Yes prednisone, rituximab

42 GPA 16 Male PR3 Yes prednisone, rituximab

43 GPA 16 Male PR3 yes prednisone, rituximab

44 MPA 13 Male Both Yes none

45 UAAV 10 Female Negative No prednisone

46 UAAV 9 Male Negative No prednisone

47 cPAN 2 Male Negative Yes prednisone, infliximab

48 ucv 15 Female Negative Yes prednisone

49 GPA 7 Female Negative Yes none

50 ucv 4 Male Negative No prednisone

51 PAN 16 Female Negative No none

@According to the EMA classification algorithm (21). MIPA, microscopic polyangiitis; GPA, granulomatosis with polyangiitis; PAN, polyarteritis nodosa; uAAV, unclassified ANCA-associated
vasculitis, UCV, unclassified vasculitis. ®Age in years when symptoms associated with vasculitis first presented °Renal involvement determined by renal component of the pVAS => 4

9Current treatments at diagnosis, coincident with sample and data collection.

LAMP-2-ANCA Titers Do Not Correlate
With Clinical Disease Activity Measures
We next assessed whether concentrations of LAMP-2-ANCA
correlated with standard clinical measures of disease activity,
namely, C-reactive protein (CRP, mg/L), erythrocyte sedimentation
rate (ESR, mm/hr), and pediatric vasculitis activity score (pVAS).

ESR and pVAS were derived from clinical data entered at the
participating site, and CRP was measured in house by commercial
ELISA (see methods). Neither CRP (n =47, p = 0.3115) nor ESR (n =
41, p = 0.9707) were found to correlate with LAMP-2-ANCA titers
(Figures 2A, B). Likewise, LAMP-2-ANCA titers did not correlate
with the pediatric vasculitis activity score (pVAS, Figure 2C) (n = 46,
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TABLE 1B | Measures of disease activity, and LAMP-2-, PR3- and MPO-ANCA.

ID pVAS?®P CRP® (mg/L) ESR® (mm/hr) LAMP-2-ANCAP (ng/mL) MPO-ANCA (U/mL) PR3-ANCA (U/mL)
1 10 19.7 1 1,301.1 17,896.5 -

2 12 20.0 1 948.6 1,392.1 -

3 19 8.0 127 1,323.7 5,034.3 -

4 20 37 150 668.3 18,087.8 -

5 10 3.4 17 468.0 12,777.2 -

6 25 97 9 729.5 18,284.9 -

7 22 5.3 44 875.9 68,007.5 -

8 17 32.6 100 4,000.5 4,660.0 -

9 14 722.4 61 1,520.0 19,978.4 -
10 20 15.1 78 33,02.7 324.2 -

11 31 235 90 932.5 109.4 -
12 30 129.2 107 555.9 72413 -
13 21 244.7 nd® 809.1 364.0 -
14 18 23.4 nd® 693.9 663.1 -

15 16 163.3 130 ND? 21,974.3 -
16 21 14.3 100 337.1 1,746.9 -

17 20 6,332.1 104 1,979.9 4,404.1 -
18 19 38.7 nd® 284.7 28,25.2 -
19 16 122.9 nd® 928.1 12,609.5 -
20 14 313.6 140 1,208.4 38,083.8 -

21 20 23.9 16 1,950.2 - >10000
22 19 272.8 38 3,250.6 - 44,685.8
23 32 219.9 96 1,890.3 - 3,700.4
24 38 2,660.2 nd® 692.3 - >10000
25 18 8.0 23 ND? - 12,135
26 31 7.8 9 874.1 - 14,2631
27 21 7.3 nd® 460.0 - 550,151.0
28 21 7.2 18 678.0 - 4,713.3
29 7 80.4 26 464.8 - 6,472.5
30 21 116.3 36 405.6 - >10000
31 30 11.4 72 7776 - >10000
32 23 8.6 115 653.8 - >10000
33 21 79.7 140 758.6 - >10000
34 nd® 13.8 95 831.2 - 34447
35 21 9.2 170 1,212.6 - 6,351.7
36 19 28.6 120 937.2 - 10,196.8
37 23 24.8 nd° 434.9 - >10000
38 50 249.2 130 652.2 - 2,858.3
39 33 6.4 40 ND - 5,970.7
40 33 82.7 110 1,997.9 - 6,533.4
4 31 472.6 70 474.4 - 3,089.1
42 28 731.9 53 1,954.8 - 3,718.1
43 20 7.6 98 ND - 4,001.1
44 15 163.4 54 1,115.9 173.4 3,542.3
45 6 103.6 17 1,614.2 - -
46 5 70.8 87 186.3 - -
47 7 21.8 68 451 - -
48 15 790.2 15 1,266.8 - -
49 17 962.5 97 501.4 - -
50 12 128.4 78 1,089.7 - -

51 9 5.3 85 1,039.6 - -

ApVAS: pediatric vasculitis activity score.
P\Measurement taken at time of diagnosis.
°nd, not done; “ND, not detected (Abs.iso below the lower limit of detection).

p = 09737), a pediatric adaption of the adult BVAS, which is a
cumulative weighted score of disease activity of nine organ systems
(mean pVAS = 204 +/- 8.8 at TOD, n = 46) (22). Consistent with
these findings, LAMP-2-ANCA titers did not differ between samples
collected prior to or shortly after immune suppressive induction
therapy (n = 47, p = 0.2068) (Figure 2D).

LAMP-2-ANCA Titers Are Associated With
Worsening Renal Disease

Both adult and pediatric ANCA-associated vasculitides are
frequently associated with kidney disease. In our cohort,
eighty-four percent (n = 43) of patients screened for LAMP-2-
ANCA had renal involvement, as determined by the renal

Frontiers in Immunology | www.frontiersin.org

99

February 2021 | Volume 11 | Article 624758


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Gibson et al.

LAMP-2 Autoantibodies in Pediatric Vasculitis

B
5000
)
E 4000 °
g
~ [ ]
< 3000- *
O
4
< 2000 o ° 000
2 g y ® [ ]
= 10003, o° o PO
< See ° .‘..o e%e
0+—e—eT—*—g—o— |
N o &> &> S
ESR (mm/hr)
D
5000
z
£ 4000 u
3 3000 "
o
4
< 2000 n Emmg
uE_g
2 1000{ _of=_  u EgilEm
j L = " L L= L
0 & BBags——
2 Q’b
'b\ X
LS &(Q’b

FIGURE 2 | Comparison of LAMP-2-ANCA titer with standard clinical measures of disease activity. Concentration of LAMP-2-ANCA (y-axis; ng/mL) in pediatric
vasculitis patients plotted against (A) C-reactive protein (CRP) concentration (x-axis; mg/L) (n = 51), (B) erythrocyte sedimentation rate (ESR) (x-axis; mm/h) (n = 44),
and (C) pediatric vasculitis activity score (pVAS) (x-axis) (n = 51) at the time of diagnosis, and (D) blood samples taken prior to (naive, n = 14), or after (treated, n = 37),
induction of immune suppressive therapy. Bars show median. Horizontal line divided low (<1,000 ng/mL) and moderate-high positive LAMP-2-ANCA (>1000 ng/mL).
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Open symbols on the x-axis denote samples below the lower limit of detection of the assay (n = 4).

component of the pVAS being > 4 (Tables 1A, C). The renal
component of the pVAS takes into account renal hypertension,
glomerular filtration rate (GFR), and the presence of hematuria,
RBC casts, and proteinuria. Mean renal pVAS at the TOD was
114 +/- 8.3 (n = 50). As observed for overall score of disease
activity (total pVAS, Figure 2C), no correlation between LAMP-
2-ANCA and renal pVAS was observed (n = 46, p = 0.9734; data
not shown).

We next looked for correlations with individual indicators of
renal function: proteinuria, GFR, and serum creatinine
concentration. While no significant difference was observed,
the presence of proteinuria was found in all patients with high
LAMP-2-ANCA titers at the time of diagnosis (Figure 3A).
Similarly, no significant correlation was observed between GFR
at the time of diagnosis (Table 1C) and LAMP-2-ANCA titers
(r* = 0.0164, p =0.4767, n = 33; data not shown). In adults with
ANCA-associated vasculitis, poor renal outcomes are associated
with a negative change in GFR at 12 months (24), where negative
values indicate a decrease in kidney function. For a subset of our
pediatric patients (n = 27) that had follow-up clinical data, we
also observed a negative correlation between the change in GFR
(from time of diagnosis to 12-month follow-up) and LAMP-2-

ANCA titers (r* = -0.2111, p = 0.0314) (Figure 3B). Similarly,
there is a trending increase in LAMP-2-ANCA titers in patients
with worsening renal disease at 12 months, as determined by a
decrease in GFR > 10 ml/min/1.73m* (Figure 3C). As serum
creatine concentration at disease onset has been shown to be a
risk factor for end stage renal disease (10, 25), the correlation
with LAMP-2-ANCA was assessed, however, no correlation was
observed (n = 24, r* = 0.0625, p = 0.2387) (Figure 3D).

DISCUSSION

ANCA positivity and specificity for either PR3 or MPO aids
phenotype classification in adult and pediatric AAV, and in
adult-onset AAV is associated with general features of disease
course (7-10). Their utility as prognostic markers for renal
disease, which has a high prevalence among patients with
AAV, may have limitations given that MPO and PR3 are not
expressed on the glomerular endothelium. Unlike MPO or PR3,
a lesser known ANCA antigen, LAMP-2, is expressed on the
surface of the renal microvascular endothelium and LAMP-2-
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TABLE 1C | Renal metrics.

ID Renal pVAS?® GFR (mL/min/1.73m?)
TODP 12-month

1 0 119 97
2 28 9 85
3 26 20 34
4 20 56 96
5 0 nd® nd®
6 20 nd® nd°®
7 14 nd® nd®
8 10 nd® nd°®
9 4 102 93
10 4 99 nd®
11 28 2 nd°®
12 22 nd® nd°®
13 14 53 64
14 28 nd® nd®
15 10 54 62
16 12 8 nd°®
17 12 4 nd®
18 12 3 nd°®
19 12 6 27
20 12 13 58
21 6 94 nd°®
22 16 91 10
23 22 25 7
24 26 26 6
25 6 nd® nd®
26 6 182 148
27 6 146 130
28 10 112 90
29 0 nd® nd®
30 0 nd® nd°®
31 10 nd® nd®
32 10 nd® nd°®
33 10 121 67
34 24 0 62
35 10 147 113
36 24 5 22
37 10 97 94
38 12 80 nd®
39 10 133 93
40 12 142 108
4 12 10 nd®
42 12 49 nd°®
43 12 7 8
44 14 nd® nd®
45 0 136 111
46 0 nd® nd®
47 4 nd° nd°®
48 4 nd® 115
49 6 148 nd®
50 0 129 111
51 0 127 nd®

“Renal pVAS score at time of diagnosis.
PTOD, time of diagnosis.
°nd, not done.

ANCA have been detected in adults with AAV-associated renal
disease. The prospect of evaluating LAMP-2-ANCA for direct
role(s) in the pathogenesis of renal disease associated with
vasculitis or as a biomarker of glomerular damage (13) is
inviting, particularly in children with AAV that, compared to

adult-onset disease, present with more severe disease involving
multiple organs (19, 26) and more than half of patients
experience kidney damage early in disease course (27).

Herein, we conducted a preliminary screen of time of
diagnosis sera from children (n = 51) with primary systemic
small-to-medium sized vessel vasculitis (predominantly AAV)
for the presence of LAMP-2-ANCA. Using a custom, in-house
indirect ELISA, our data demonstrate that LAMP-2-ANCA are
present in pediatric vasculitis patients. The majority of
individuals were positive for low levels of LAMP-2-ANCA
(53%), the clinical utility of which is unknown. An additional
35% of patients in the cohort had moderate-high titers of LAMP-
2-ANCA (>1,000 ng/ml) and the remaining 12% of patients were
negative for LAMP-2-ANCA. LAMP-2-ANCA titers did not
correlate with positivity (or lack thereof) or titers of the classic
PR3-ANCA and MPO-ANCA. LAMP-2-ANCA titers were also
not correlated with elevated systemic disease activity as indicated
by a validated pediatric vasculitis clinical scoring algorithm,
pVAS, and general inflammatory markers, CRP and ESR.
LAMP-2-ANCA titers may however be informative of renal
function, which is affected in the majority of patients (84% in
this cohort). Increasing LAMP-2-ANCA titers were observed in
patients with declining glomerular filtration rate (GFR),
indicative of worsening renal disease one-year post diagnosis.

Within the cohort, 88% of patients were positive for LAMP-2-
ANCA with titers for the majority overlapping with concentrations
detected in a control (autoinflammatory) cohort. Titers in the
moderate to high range (>1,000 ng/ml), that, arguably, have a
higher likelihood of disease association, were identified in 35% of
patients in the cohort. The number of patients in our cohort with
“moderate-high titer” positivity falls between conflicting rates of
LAMP-2-ANCA positivity reported in two independent cohorts of
adults with AAV, ranging from 21% (16) to >80% positivity for
LAMP-2-ANCA (14). As summarized previously (18), these
variable prevalence rates could be due to characteristics of the
individual cohorts or assays used to assess LAMP-2-ANCA
concentration. LAMP-2-ANCA titers are highly sensitive to
immunosuppressive therapy, decreasing rapidly following
treatment induction (14). As may be expected, higher prevalence
rates of LAMP-2-ANCA were observed in patients with active
disease and not on treatment. While the majority of the pediatric
patients assayed in our study were not treatment naive, samples
were drawn early in disease course when disease activity was high.
This may explain why LAMP-2-ANCA titers in our cohort were
not significantly higher in the subset of treatment naive patients.

In the highest reported prevalence rate of LAMP-2-ANCA in
>80% of adults with AAV-associated renal disease, a recombinant,
non-glycosylated human LAMP-2 protein was utilized in the
immunoassays (14). While patient derived LAMP-2-ANCA have
previously been shown to bind epitopes within non-glycosylated
sites of the protein backbone (12, 13), non-human mammalian
protein expression systems, such as the mouse myeloma line used
to produce the rhLAMP-2 used in the described ELISA, may
induce glycosylation patterns not found in humans (18). This
potentially apparent glycosylation of LAMP-2 could block the
endogenous LAMP-2-ANCA epitope — another possible
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explanation to the varying prevalence rate of LAMP-2-ANCA
observed in our pediatric cohort compared to other cohorts.

Reported prevalence rates are also dependent on where the
positive and negative thresholds are drawn. While LAMP-2-
ANCA were detected in 88% of our cohort of pediatric vasculitis
samples, the majority were deemed low titers (<1,000 ng/ml).
Low LAMP-2-ANCA titers were also observed in pediatric
autoinflammatory controls, with one control having a high
titer (>1,500 ng/ml). The observation of high LAMP-2-ANCA
in a disease control cohort is similar to previous reports, where
LAMP-2-ANCA were detected in 10 - 16% of disease controls
(14, 16). These results are not unexpected, as it’s not uncommon
to detect autoantibodies in otherwise healthy individuals (28). In
particular, given the molecular mimicry hypothesis (13), an
individual with a previous Type I fimbriated bacterial infection
could theoretically develop antibodies to LAMP-2.

The presence of LAMP-2-ANCA in some healthy individuals
augments the importance of determining clinical utility of these
autoantibodies. This can be difficult for rare populations, such as
pediatric vasculitis, but our preliminary data suggest that, despite
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the lack of a correlation with markers of systemic disease activity
(pVAS, CRP, ESR), LAMP-2-ANCA titers at diagnosis were
negatively correlated with the change in GFR (from diagnosis to
12-months), a marker of renal function. As well, there was a
trending increase in LAMP-2-ANCA at diagnosis in patients with
worsening renal involvement at 12-month follow-up—patients with
higher LAMP-2-ANCA at diagnosis, generally had worsening renal
function after 12-months. Although sample numbers are a
limitation in our study, these data suggest that LAMP-2-ANCA
titers have potential utility as predictive marker of renal outcome.
In summary, a custom ELISA was designed to detect LAMP-2-
ANCA in serum. This ELISA was used to screen a cohort of
pediatric patients with AAV, to assess, for the first time, if LAMP-2-
ANCA are prevalent in pediatric vasculitis. While LAMP-2-ANCA
showed no correlation with MPO- or PR3-ANCA or markers of
disease activity, evidence suggests a possible role for LAMP-2-
ANCA as a predictive marker for renal outcome. As renal disease
is a common manifestation in both children and adults with
systemic small-medium vessel vasculitis, and often more severe in
children, a prognostic biomarker could be invaluable to help guide
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effective treatment. Screening of a larger pediatric cohort with
detailed follow-up will be necessary to elucidate the role of
LAMP-2-ANCA in renal outcomes in children with chronic
systemic vasculitis.
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Objective: Mucocutaneous and joint disorders are the most common manifestations in
Behcet’s syndrome (BS) and are frequently clustered in the so-called minor forms of BS.
There remains a need for safe and effective treatment for joint lesions in BS. We report the
long-term safety and effectiveness of apremilast in refractory joint and mucocutaneous
manifestations of BS.

Methods: French nationwide multicenter study including 50 BS patients with either active
joint and/or mucocutaneous manifestations resistant to colchicine and/or DMARDs.
Patients received apremilast 30 mg twice a day. Primary effectiveness endpoint was the
proportion of patients with complete response (CR) of articular symptoms at month 6
(M6), defined as resolution of inflammatory arthralgia and arthritis, with joint count equal to
zero.

Results: At inclusion, the median tender and swollen joint count was of 4 [2-6] and 2 [1-2],
respectively. The proportion of CR in joint disease at M6 was 65% (n = 15/23), and 17%
(n = 4/28) were partial responders. CR of oral and genital ulcers, and pseudofolliculitis at
M6 was 73% (n = 24/33), 94% (n = 16/17) and 71% (n = 10/14), respectively. The overall
response at M6 was 74% for the entire cohort and 70% for the mucocutaneous-articular
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cluster (n = 27). The median Behcet's syndrome activity score significantly decreased
during study period [50 (40-60) vs. 20 (0-40); p <0.0001]. After a median follow-up of 11
[6-13] months, 27 (54%) patients were still on apremilast. Reasons for apremilast
withdrawal included adverse events (n = 15, 30%) and treatment failure (n = 8, 16%).
Thirty-three (66%) patients experienced adverse events, mostly diarrhea (n = 19, 38%),
nausea (n = 17, 34%) and headache (n = 16, 32%).

Conclusion: Apremilast seems effective in BS-related articular disease refractory to
colchicine and DMARDs. Discontinuation rates were significantly higher than that reported

in clinical trials.

Keywords: Behcget, apremilast, efficacy, safety, joint, skin, cohort

INTRODUCTION

Behget’s syndrome (BS) is a chronic, relapsing, inflammatory
disease of unknown etiology, typically characterized by oral and
genital ulcers with several potential systemic manifestations (1).
Mucosa, skin, and joint involvement are among the most
frequently reported manifestations. These symptoms frequently
cluster in the so-called minor forms of BS (2, 3). Mucocutaneous
manifestations constitute the hallmark of the syndrome, with the
most common skin lesions being pseudofolliculitis and erythema
nodosum. Joint involvement, mainly arthralgia, involve half of
the patients, and may inaugurate BS (4). In contrast to major
organ involvement, mucocutaneous and articular manifestations
do not have a major impact on mortality (5, 6), but can be
extremely disabling. The main therapeutic goal for these patients
is to improve quality of life while minimizing side effects. Despite
a wide number of topical and immunosuppressive drugs
available in this context, their level of evidence remains limited
(7), and the recommended therapeutic lines (i.e., colchicine and
disease-modifying antirheumatic drugs - DMARDs) do not
effectively control all patients (8). Moreover, following a
phenotype-based treatment approach in BS, strategies effective
against both mucocutaneous and articular manifestations are
increasingly desirable (9).

Apremilast is an orally available small-molecule that
selectively inhibits phosphodiesterase 4 (PDE4), and ultimately
modulates both anti- and pro-inflammatory downstream
mediators. By increasing intracellular levels of cyclic adenosine
monophosphate (CAMP), apremilast upregulates interleukin-10
(IL-10) gene transcription, while inhibiting nuclear factor-xB
(NF-xB)-driven genes, such as tumor necrosis factor (TNF) (10).
Its efficacy has been proven in BS oral ulcers in phases II and III
randomized placebo-controlled clinical trials (11, 12), leading to
its approval by the FDA in 2019 (13). This effect was further
confirmed in short-term small case series (14-16). Nevertheless,
the efficacy of apremilast on other manifestations, and
specifically on the joints, is still lacking. In addition, the
prevalence and impact of its side effects in large real-life cohort
with long-term follow-up period has not been assessed.

The present study aims to further investigate the effectiveness
and safety of apremilast in a nationwide multicenter cohort of BS
patients with refractory joint and mucocutaneous manifestations.

PATIENTS AND METHODS

Patients

We conducted a nationwide observational cohort study within the
French Behget’s network. All patients were adults meeting the
criteria of International Study Group for Behget’s Disease (1), and
had either recurrent active joint and/or mucocutaneous
manifestations that were refractory to colchicine, conventional
synthetic (csDMARDs), and/or biological disease-modifying
antirheumatic drugs (bDMARDs). The study was conducted in
compliance with the Declaration of Helsinki, and no formal consent
from participants was required according to local ethics committees.
All data were collected from electronic medical records, including
demographic features, BS characteristics at diagnosis, and previous
treatments. Data on medications, safety, and disease activity, such as
oral and genital ulcers, cutaneous, and articular disease or any other
BS manifestations were collected at the time of apremilast initiation,
at months 3 and 6 (M3, M6), and at last visit (end of follow-up).

Design

Apremilast was administered orally by increasing the doses gradually
over 1 week up to a dose of 30 mg twice daily. Colchicine, prednisone
and other immunosuppressive therapies were allowed if given at a
stable dose over the month prior inclusion and during the study
period. Patients who needed temporary increase in prednisone dose
or any additional immunomodulatory therapy during the study
period were considered as non-responders to apremilast.

Study Endpoints

The primary effectiveness endpoint was the proportion of
patients with complete response of joint involvement at M6,
defined as resolution of inflammatory arthralgia/arthritis and
tender/swollen joint count (TJC, SJC) = 0. Secondary endpoints
included (i) the proportion of patients with a complete response
of ulcerations (defined as no oral and genital ulcers) (ii) the
proportion of patients with a partial response (defined as patients
who had a reduction of 50% or more in the number and
frequency of oral and genital ulcers, inflammatory arthralgia,
arthritis, and joint counts, and skin lesions); (iii) proportion of
non-responders (defined as treatment failure and/or the needed
for temporary increase in prednisone dose or any additional
immunomodulatory therapy during the study period); (iv)
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effectiveness on other BS manifestations (i.e., ocular, vascular,
neurological or gastrointestinal tract involvement); (v) the
overall response at M6 for the whole cohort and for the
mucocutaneous-articular phenotype (those interrupting
treatment before it, regardless of the reason, were considered
as non-responders); (vi) BSAS score (17) between baseline and
the end of follow up (EOF); (vii) relapse rate under apremilast;
(viii) steroids sparing effect of apremilast between day 0 and
EOF, and (ix) safety, as all adverse events were prospectively
collected during the follow-up.

Statistics

Data are presented as the median and interquartile range [IQR]
for continuous variables and as number (n) and percentage (%)
for qualitative variables. Wilcoxon signed rank test with
continuity correction was used to compare paired continuous
variables. P values less than 0.05 were considered significant.
Statistical analyses were performed using the software R
version 3.6.3.

RESULTS

Characteristics of BS Patients

We included 50 patients [27 (54%) females, with median age of
42 (34-48) years]. Main baseline and treatment characteristics
are summarized in Tables 1 and 2. All patients had active joint

TABLE 1 | Clinical and demographic characteristics of 50 patients with Behget's
syndrome.

Demographic features

Age, median [IQR] years 42 [34-48]
Female sex, n (%) 27 (54)
HLA-B51, n (%) 9 (39)
Disease duration, median [IQR] years 5 [1-9]

Clinical features at diagnosis

Oral ulcers, n (%) 49 (98)
Genital ulcers, n (%) 35 (70)
Pseudofolliculitis, n (%) 35 (70)
Erythema nodosum, n (%) 10 (20)
Positive pathergy test, n (%) 48

Arthralgia, n (%) 38 (76)
Arthritis, n (%) 13 (26)
Vascular involvement, n (%) 11 (22)
Ocular involvement, n (%) 9(18)
Gastrointestinal involvement, n (%) 48

CNS involvement, n (%) 3(6)

Disease status at the beginning of Apremilast

Oral ulcers, n (%) 47 (94)
- Number of lesions, median [IQR] 2 [2-3]
Genital ulcers, n (%) 23 (46)
- Number of lesions, median [IQR] 1[1-1]
Pseudo folliculitis, n (%) 18 (36)
Erythema nodosum, n (%) 5(10)
Joint involvement, n (%) 30 (60)
- Arthritis, n (%) 7 (14)

Eye involvement, n (%) 12
BSAS, median [IQR] 50 [40-60]

"HLA-B51 had been performed in 23 patients.
BSAS, Behget’s syndrome Activity Score; IQR, interquartile range.

and/or mucocutaneous manifestations resistant to colchicine
and/or DMARDs. The most common previous manifestations
of BS were oral ulcers (98%), arthralgia (76%), genital ulcers and
pseudofolliculitis (70%), vascular (22%), and ocular
involvement (18%).

Ninety-eight percent of patients had already received
colchicine, and 52% and 62% had been previously treated with
steroids or DMARDs, respectively. Before apremilast treatment,
BS patients had received a median number of previous treatment
lines of 2 [1-3].

At inclusion, 30 patients (60%) had refractory joint
manifestations with a median TJC and SJC of 4 [2-6] and 2 [1-
2], respectively. Forty-seven (94%) and 23 (46%) patients had
recurrent oral and genital ulcers, respectively. Pseudofolliculitis
was present in 18 (36%) patients and erythema nodosum in 5
(10%). Median BSAS was 50 [40-60].

At the time of apremilast initiation, 18 (36%) and 14 (28%)
patients continued to receive stable dose of colchicine, and
prednisone (median dose = 6 [5-15] mg), respectively. Three
(6%) patients pursued csDMARDs (i.e., methotrexate), and three

TABLE 2 | Treatments received as part of Behget's syndrome (BS) before and
during apremilast.

Previous treatments during disease course

Number of treatment lines, median [IQR] 2[1-3]

Colchicine, n (%) 49 (98)
Corticosteroids, n (%) 26 (52)
csDMARDSs, n (%)" 22 (44)
- Number of csDMARDs, median [IQR] 1[1-2]

PDMARDs, n (%)* 9(18)

- Number of bDMARDs, median [IQR] 1[1-5]

Medications in use before apremilast start

Colchicine, n (%) 29 (568)
- Median dose [IQR], mg 1.5[1-2]
Prednisone, n (%) 15 (30)
- Median dose [IQR], mg 6 [5-15]

¢csDMARDs, n (%)

- Methotrexate, n (%) 4

- Azathioprine, n (%) 3 (6)

- Thalidomide, n (%) 36

- Dapsone, n (%) 1
5
2
1
1
1

11 (22)
®)

SH®)

bDMARDS, n (%) (1
- Ustekinumab, n (%)

- Adalimumab, n (%)

- Certolizumab, n (%)

- Secukinumab, n (%)

Combination treatment with Apremilast

o

)

N B

ASROSRGSREN

(
(
(
@

Colchicine, n (%) 18 (36)
Prednisone, n (%) 14 (28)
- Median dose [IQR], mg 6 [6-15]
csDMARDs, n (%) 3 (6)
- Methotrexate, n (%) 3 (6)
bDMARDs, n (%) 3(6)
- Adalimumab, n (%) 1)
- Certolizumab, n (%) 1@
- Ustekinumab, n (%) 1@

"Previous csDMARDs included azathioprine, dapsone, hydroxychloroquine,
methotrexate, and thalidomide.

*Previous bDMARDs included anakinra, low-dose interleukin-2, secukinumab,
tocilizumab, anti-tumor necrosis factor (adalimumab, certolizumab, etanercept, and
infliximab), and ustekinumab.

bDMARDs, biologic disease-modifying antirheumatic drugs; csDMARDs, conventional
synthetic disease-modifying antirheumatic drugs; IQR, interquartile range.
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(6%) continued bDMARDs (i.e., adalimumab, certolizumab,
and ustekinumab).

Effectiveness

Six months after apremilast initiation, 65% of patients (n = 15/
23) presented complete response (CR) of joint involvement and
17% (n = 4/23) had partial response (PR), while 17% (n = 4/23)
were non-responders (Table 3). Median TJC and SJC remained
zero from M3 until the EOF. Among 22 patients at the EOF with
joint involvement, 12 (59%) were complete responders, two (9%)
partial responders and eight (36%) had no response.

Mucocutaneous response is shown in Table 4. The
proportion of complete responders for oral and genital ulcers
at M6 was 73% (n = 24/33) and 94% (n = 16/17), respectively. At
the EOF, no response was seen in 25% (n = 7/28) of oral ulcers
and 20% (n = 3/15) of genital ulcers. As for pseudofolliculitis,
71% (n = 10/14) were complete responders at M6, and
remarkably no patient had non-response during follow-up. For
the two patients with erythema nodosum, one had CR and the
other PR at M6. Noteworthy, the only patient presenting ocular
involvement at baseline experienced a complete resolution of his
refractory keratitis.

The overall response for the whole cohort at M6 was 74%
(CR =48%, PR = 26%). Regarding specifically the mucocutaneous-
articular cluster (n = 27), the overall response at M6 was 70%
(CR =30%, PR = 40%). Median BSAS significantly decreased from

TABLE 3 | Effectiveness of apremilast on articular manifestations.

Baseline M3 Mé EOF
n 30 27 23 22
Complete response, n (%) - 17 (63) 15 (65) 12 (55)
Partial response, n (%) - 3(11) 4(17) 29
TJC, median [IQR] 4 [2-6] 0[0-3] 0[0-2] 0 [0-3]
SJC, median [IQR] 2 [1-2] 0 [0-0] 0 [0-0] 0 [0-0]

EOF, end of follow-up; IQR, interquartile range; SJC, swollen joint count; TJC, tender joint
count.

TABLE 4 | Effectiveness of apremilast on mucocutaneous manifestations.

M3 M6 EOF

Oral ulcers

n 41 33 28

Complete response, n (%) 26 (63) 24 (73) 15 (54)

Partial response, n (%) 12 (29) 8 (24) 6 (21)
Genital ulcers

n 20 17 15

Complete response, n (%) 15 (75) 16 (94) 11(73)

Partial response, n (%) 3(15) 1(6) 1(7)
Pseudofolliculitis

n 16 14 11

Complete response, n (%) 11 (69) 10 (71) 7 (64)

Partial response, n (%) 4 (31) 4 (29) 4 (36)
Erythema nodosum

n 4 2 2

Complete response, n (%) 3(75) 1 (50) 1(50)

Partial response, n (%) 0 1 (50) 0

EOF, end of follow-up.

baseline to EOF (50 [40-60] vs. 20 [0-40]; p < 0.0001). Among BS
patients on steroids, median daily dose of prednisone significantly
decreased from baseline to EOF (6 [5-15] vs. 5 [5-9] mg; p =
0.021). Two (14%) patients discontinued corticosteroids.

A total of 14 patients (28%) experienced BS relapses while on
apremilast. Six of them had isolated mucocutaneous
reactivations, five presented articular and mucocutaneous
concomitant flares, and three experienced exclusively articular
activity. Median time to relapse was 6 [4-11] months. A patient
who had been presenting complete mucocutaneous response
until then developed an unprecedented ileitis after the sixth
month of treatment. No other major organ involvement was
observed during the study period.

Safety

Apremilast was discontinued in 23 patients (46%). Treatment
interruption was mainly due to side effects (n=15, 30%), and
treatment failure (n=8, 16%) (six relapses, one lack of response,
and one disease progression). Six patients (12%) presented an
early intolerance, with median time to treatment interruption of
7 [5-9] days. Among all AEs requiring discontinuation,
gastrointestinal disorders, headache, and sleep disorder were
the most frequent, reported in 10 (67%), nine (60%), and three
(20%) patients, respectively.

Apremilast dose reduction was tried in seven (14%) patients
presenting poor tolerance to conventional dosage despite good
initial response. After a median follow-up of 11 [6-13] months
for the entire cohort, 27 (54%) patients were still on apremilast.

Thirty-three (66%) patients experienced adverse events (AE),
with median time to onset of 4 [1-4] weeks. Most common side
effect included diarrhea (n = 19, 38%), followed by nausea (n =
17, 34%) and headache (n = 16, 32%). Adverse events frequency
is detailed in Table 5. Two (4%) patients experienced suicidal
ideation leading to treatment discontinuation, with one of them
being hospitalized for its management. Moreover, four (8%)
patients experienced infections, namely mycobacteria
reactivation, cat scratch disease, herpes simplex, and an acute
gastroenteritis. None of them were on concomitant DMARDs.

DISCUSSION

This multicentric study reports the largest real-life cohort of
patients with BS treated with apremilast. The main conclusions
drawn are: 1) 65% of BS patients with refractory joint
manifestations at 6 months had a complete response; 2)
Discontinuation rates were three times higher than that
reported in clinical trials; and 3) BS patients with refractory
skin disease respond to apremilast.

Management of mucocutaneous and articular symptoms in
BS can be challenging. Current recommendations place
colchicine as the first-line option, followed by several
DMARDs, such as azathioprine, thalidomide, interferon-alpha
and tumor necrosis factor inhibitors for refractory cases (8, 18).
While some of these drugs have conflicting results in terms of
efficacy, others have safety concerns, making management even
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TABLE 5 | Adverse events during apremilast treatment.

> 1 Adverse events, n (%) 33 (66)
Number of adverse events, median [IQR] 2 [1-3]
Time to onset, median [IQR] weeks 4 [1-4]
Adverse events leading to discontinuation, n (%) 15 (30)
Adverse events leading to hospitalization, n (%) 12

Adverse events frequency

Diarrhea, n (%) 19 (38)
Nausea, n (%) 17 (34)
Headache, n (%) 16 (32)
Abdominal pain, n (%) 10 (20)
Sleep disorder, n (%) 9(18)
Fatigue, n (%) 5(10)
Infection, n (%) 4 (8)

Suicidal ideation, n (%) 2 (4)

Depression, n (%) 2(4)

Anorexia, n (%) 2(4)

IQR, interquartile range.

more difficult (7). With the increasing availability of bDMARDs,
new targets have been assessed in BS recently. Ustekinumab - a
monoclonal antibody targeting interleukin-12 and -23 - was
evaluated in a prospective, open-label study, showing promising
results in mucocutaneous and articular manifestations resistant
to colchicine in BS (19). In a retrospective study, the anti-
interleukin-17 secukinumab was evaluated in the
mucocutaneous-articular cluster refractory to initial treatment,
revealing itself as a potential alternative in this subgroup (20).
Herein, we report encouraging data on apremilast for BS
refractory mucocutaneous-articular phenotype, notably
regarding joint disease. The proportion of patients
experiencing articular improvement at M6 was up to 82%,
with 65% of complete responders. After the first 6 months of
treatment, 64% of BS patients were still being improved. So far,
only one small study reported articular outcomes in 14 BS being
treated with apremilast. A complete response was obtained in
28% of cases over a 3-month period (16). In contrast,
apremilast’s efficacy has been better described in psoriatic
arthritis (PsA). Similar to our results, a real-life PsA cohort
showed that 61% of patients were responders at 6 months (21).
Another real-life study with 131 PsA patients highlighted 40% of
remission or low disease activity at 3 months and a drug-
retention rate of 72% at 6 months (22). In a pooled analysis
from clinical trials using the American College of Rheumatology
(ACR) response criteria, 55% and 26% of PsA patients receiving
apremilast maintained an ACR20 and ACR50 response at 1 year,
respectively (23). In clinical trials, 72% of PsA patients were still
on apremilast after a year. Despite its superiority against placebo,
apremilast is reported to have low to moderate efficacy when
compared to other bDMARDs in active PsA (24). The greater
efficiency highlighted in our study may lie in the fact that BS
presents with milder articular features (e.g., absence of bone
erosions, arthralgia rather than arthritis).

In the absence of phase IV studies, the long-term safety of
apremilast is unknown in BS. In BS clinical trials, most patients
(71%-91%) experienced at least one adverse event (11, 12).
Along this line, we found a similar frequency of AE (66%).

Despite this high rate, AEs leading to discontinuation in BS
controlled studies did not exceed 11% (11, 12). Strikingly, 30% of
our patients interrupted apremilast owing to poor tolerance, of
which 12% discontinuation as of one week. Another 16% ceased
treatment due to failure, which is also higher than the 2%-7%
seen in phase II/III placebo-controlled studies (11, 12). Indeed, a
gap between clinical trials and real-life studies has been noted in
other apremilast label indications. In PsA, pooled data from
phase III trials reported withdrawal due to AE in 7.6% of patients
over a l-year period (25). Conversely, real-life studies have
demonstrated higher rate of apremilast discontinuation
ranging from 20% to 38% (21, 26). This contrast seems less
pronounced in psoriasis, as 3-year pooled trial data showed 11%
of AE resulting in discontinuation (27), whereas in real-life
cohorts this rate varied between 16% and 19% (28, 29).
Interestingly, a network meta-analysis evaluating safety among
12 different bDMARDs in PsA pointed out apremilast as the only
medication with significantly higher chance of withdrawal due to
AE (30).

Regarding the type of AE, a similar profile was reported in BS,
PsA or psoriasis studies, with diarrhea, nausea, and headache
accounting for the most common events (11, 12, 14, 15, 25, 27).
Although gastrointestinal side effects represented the leading
symptom motivating discontinuation in our cohort, two patients
(4%) interrupted apremilast because of suicidal ideation. This
serious AE has been consistently reported in post-marketing
surveillance and continued pharmacovigilance is warranted (31).
Upper respiratory tract infection has been the most reported
infection in association to apremilast. Although we did not find
any cases of it, 8% presented infections in our study, notably one
mycobacterial reactivation. So far, no case of mycobacterial
infection has been reported under apremilast in BS. In a large
database cohort evaluating immunosuppressants infectious risk
among psoriasis and PsA patients, only two tuberculosis codes
were identified concomitantly to apremilast prescription over a
follow-up of 12,842 person-years (32).

Our study highlighted apremilast’s effectiveness in BS
refractory skin disease. Patients with pseudofolliculitis achieved
a sustained a complete response in nearly 70% over the study
period. Phase IIT placebo-controlled study did not show efficacy
of apremilast in BS skin disease (12), and two case series reported
contrasting responses (100% vs. 0%) (15, 16). In psoriasis skin
lesions, the long-term benefit of apremilast has been well
established. Over a 2-year period, up to 52% of psoriasis
patients maintained > 75% reduction in Psoriasis Area and
Severity Index (PASI) score from baseline (33). As BS share
several common features with psoriasis (34), it is not surprising
that apremilast could also work for BS manifestations other than
oral ulcers. Finally, we confirm the efficacy of apremilast on BS
oral ulcers consistently with phase III trial results (12). When
compared to these, we found slightly higher complete response
rates at 3 months for oral (63% vs. 53%) and genital ulcers (75%
vs 71%). Real-life case series had further confirmed this
significant impact on oral ulcers and demonstrated a positive
trend on genital ulcers in smaller samples (14-16).
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Our study has some limitations. The continuation of systemic
therapy (i.e., colchicine, DMARDs) at steady-state doses was
possible during apremilast treatment, and as there was no
protocol limiting its concomitant use, this could represent a
potential confounder in effectiveness evaluation. Nevertheless,
colchicine and DMARDs were already at their optimized dosage,
and only two patients needed additional combination therapy
during the study, being considered as non-responders. Moreover,
compared to the phase III trial where only 50% of patients had
been previously received colchicine (12), all of our patients were
refractory to colchicine, DMARDs, and/or prednisone.

In conclusion, this nationwide multicenter cohort study shed
new lights on the effectiveness and tolerability of apremilast in BS
patients with refractory joint and mucocutaneous
manifestations. Besides oral ulcerations, apremilast seems to
improve refractory joint and skin manifestations in those who
manage to persist on treatment. However, the discontinuation
rate was high mainly for safety issues. This raises the question of
whether this treatment can be used for long-term management
of BS.
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Objectives: Chronic primary vasculitis describes a group of complex and rare diseases
that are characterized by blood vessel inflammation. Classification of vasculitis subtypes
is based predominantly on the size of the involved vessels and clinical phenotype.
There is a recognized need to improve classification, especially for small-to-medium
sized vessel vasculitides, that, ideally, is based on the underlying biology with a view
to informing treatment.

Methods: We performed RNA-Seq on blood samples from children (n = 41) and from
adults (n = 11) with small-to-medium sized vessel vasculitis, and used unsupervised
hierarchical clustering of gene expression patterns in combination with clinical metadata
to define disease subtypes.

Results: Differential gene expression at the time of diagnosis separated patients into
two primary endotypes that differed in the expression of ~3,800 genes in children, and
~1,600 genes in adults. These endotypes were also present during disease flares, and
both adult and pediatric endotypes could be discriminated based on the expression of
just 20 differentially expressed genes. Endotypes were associated with distinct biological
processes, namely neutrophil degranulation and T cell receptor signaling.

Conclusions: Phenotypically similar subsets of small-to-medium sized vessel vasculitis
may have different mechanistic drivers involving innate vs. adaptive immune processes.
Discovery of these differentiating immune features provides a mechanistic-based
alternative for subclassification of vasculitis.

Keywords: vasculitis, neutrophils, transcriptome, inflammation, ANCA

Frontiers in Immunology | www.frontiersin.org 112

February 2021 | Volume 12 | Article 638571


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.638571
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.638571&domain=pdf&date_stamp=2021-02-22
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dcabral@cw.bc.ca
https://doi.org/10.3389/fimmu.2021.638571
https://www.frontiersin.org/articles/10.3389/fimmu.2021.638571/full

Gill et al.

Transcriptome Indicates Vasculitis Endotypes

INTRODUCTION

Vasculitis (1) is a group of complex rare diseases that are
characterized by inflammation in the blood vessel walls.
The disease can present in childhood and in adulthood,
and can be life- and/or organ-threatening. The primary
framework for classifying vasculitis syndromes is according to
the predominant size of the involved vessels (small, medium,
large), the clinical phenotype (pattern of organs affected), and
histopathology of involved vessels (2-5). Recently, distinctive
etiological/pathological processes have been incorporated in the
classification framework; for example, an association with anti-
neutrophil cytoplasmic antibodies (ANCA) against intracellular
granule proteins proteinase-3 (PR3) and myeloperoxidase
(MPO) enables classification of small-to-medium sized, ANCA-
associated vasculitis (AAV) (3, 4, 6, 7).

AAV  encompasses three specific diseases: microscopic
polyangiitis (MPA), granulomatosis with polyangiitis (GPA)
and eosinophilic granulomatosis with polyangiitis (EGPA).
An absence of specific classification criteria for MPA and the
considerable phenotypic overlap with GPA, however, makes it
challenging to distinguish GPA and MPA (6-8). In adult clinical
trials, they are frequently analyzed collectively for convenience
(9), despite important clinical and biological differences that
argue for tailored treatment. Specifically, some studies show that
GPA has a more refractory and relapsing disease course than does
MPA (10, 11), although in more recent studies the association
with relapse seems to be stronger with the presence of PR3-
ANCA. ANCA specificity (for PR3 or MPO) has been suggested
as an alternative to the clinical phenotype classification, or as a
“biomarker” in updated classification criteria for AAV. However,
PR3-ANCA, despite being predominantly associated with GPA,
is also present in one-quarter of patients with MPA. Similarly,
MPO-ANCA is differentially, but not exclusively, associated
with MPA (7, 12), and a proportion of patients with AAV do
not have ANCA to either PR3 or MPO. It is also noteworthy
that GPA and MPA have overlapping clinical features with
polyarteritis nodosa (PAN) (a medium-sized vessel vasculitis),
and other small-to-medium sized vessel vasculitides that remain
“unclassifiable” according to existing classification criteria.

Here, we considered if classification of small-to-medium sized
vessel vasculitides could be improved by a deeper understanding
of the molecular events underlying the disease and distinct
disease subsets. To explore this hypothesis, and despite the
disease being especially rare in children compared to adults, we
focused on a cohort of children and adolescents with small-
to-medium sized vessel vasculitis for mechanistic discovery.
The study of pediatric patients can be advantageous (13, 14);
children have limited confounding disease comorbidities and
may have more predominant genetic factors that lead to early

Abbreviations: AAV, ANCA-associated vasculitis; ANCA, anti-neutrophil
cytoplasmic antibody; ARChiVe, A registry for childhood vasculitis; BVAS,
Birmingham vasculitis activity score; DCVAS, diagnostic and classification
criteria for vasculitis; DE, differentially expressed; EMA, European medicines
agency; FDR, false discovery rate; GPA, granulomatosis with polyangiitis; MPA,
microscopic polyangiitis; MPO, myeloperoxidase; PAN, polyarteritis nodosa; PR3,
proteinase 3; PVAS, pediatric vasculitis activity score; UCV, unclassified vasculitis.

disease manifestations, compared to adults that have multiple
environmental factors contributing to the onset of disease,
which, for vasculitis, typically occurs after 50 years of age.
Using RNA-Seq on blood obtained from pediatric patients
with different clinically defined subtypes of small-to-medium
sized vasculitis, we were able to cluster patients into two
groups with distinct transcriptomic profiles and associated
immune processes. Individuals with adult-onset disease could
also be categorized in a similar manner, together suggesting
that both adult- and pediatric-onset small-to-medium sized
vessel vasculitides within the same disease “category” due to
overlapping clinical features, might have different endotypes
(15, 16).

MATERIALS AND METHODS

Participants

Patients described in this study were enrolled in the Pediatric
Vasculitis Initiative (PedVas) (17, 18) and included children (18
yrs of age and younger) and adults with small-to-medium sized
blood vessel vasculitis. Two pediatric cohorts were used for this
study: Cohort 1 contained a total of 30 patients that contributed
samples at diagnosis (n = 25) or relapse (n = 5); at the time of
sample and data collection, disease activity was high (indicated
by PVAS; see clinical data description) and this cohort was used
for initial transcriptomic discovery. Pediatric Cohort 2 consisted
exclusively of patients (n = 11) at relapse and was used to validate
gene expression patterns observed in Cohort 1. Major relapse
was defined as a new or recurrent appearance of life- or organ-
threatening disease activity that occurs more than 18 months post
diagnosis and requires a change in treatment. Adult participants
with chronic primary vasculiltis were first enrolled in DCVAS, the
Diagnostic and Classification Criteria for Vasculitis study.

Clinical Data

Physicians collected data from pediatric participants (see Table 1
for Cohort 1 and Supplementary Table 1 for Cohort 2) (12,
17, 18) and entered it into A Registry of Childhood Vasculitis
(ARChiVe), the RedCap data collection platform for PedVas.
Generation of a pediatric vasculitis activity score (PVAS) (19)
was a component of data entry; active and inactive disease was
defined as a PVAS of > 2 and < 2, respectively. The subtype
of vasculitis was determined by a pediatric modified algorithm
of the European Medicines Agency (EMA). ANCA status was
reported by the participating site and validated in serum
samples using a standard ELISA for anti-PR3 antibody (ORG518,
Orgentec) and anti-MPO antibody (425-2380, BioRad). For adult
patients, clinical data (Table 2) were collected through DCVAS.
All DCVAS clinical data was reviewed independently by a panel
of experts 6 months after the baseline assessment to provide
a definitive, agreed diagnosis in accordance with the DCVAS
protocol. For patients with GPA, MPA, and EGPA, there was
~25% rejection of the submitting physicians original diagnosis
following the review.
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RNA Sequencing and Analysis

Blood (2.5 ml) was collected from study participants in Tempus
Blood RNA tubes (Applied Biosystems™, CA, USA) at the
time of diagnosis or flare (flare; >18 months post diagnosis
with a major change in the PVAS and sustained escalation of
treatment) when disease activity was high (pediatric vasculitis
activity score [PVAS] range 5-33). Extracted RNA (Tempus Spin
RNA Isolation Kit, Thermo Fisher) underwent PolyA enrichment
(NEBNEXT Poly(A) mRNA magnetic isolation kit, New England
BioSciences), RNA-Seq library preparation (75bp or 100bp single
end, KAPA Stranded total RNA kit, Roche) and was sequenced
on an Illumina Genome Analyzer IIx or an Illumina HiSeq 2500.
Fastq files were checked for quality (FastQC v0.11.8 and MultiQC
v0.8) and aligned to the human genome (Ensembl GRCh38.93)
using STAR v2.6 (20). HTSeq-count (HTSeq 0.61p1) was used
to generate read count tables (21). Read counts from globin
genes were removed bioinformatically and batch correction for
sequencing date [shown to contribute to variance by the R
package eigenR2 (22)] was performed using the ComBat function
of the SVA package (23). Raw RNA-Seq counts were normalized
for library size and heteroskedasticity by variance stabilizing
transformation (vst). Differential gene expression analysis was
performed using DESeq2 package v1.14.1 (24, 25). Pathway
over-representation analysis was conducted in the ReactomePA
v1.26.0 package for R (26) and network visualization was
conducted using NetworkAnalyst (27). Differentially expressed
genes identified by Grayson et al. (28) in nasal brushings from
adults with GPA (compared to controls) were obtained and
analyzed with ReactomePA. Entrez IDs and Ensembl IDs were
then used to compare microarray probeset labels (28) to RNA-
Seq data.

Statistics

Differential gene expression from DESeq2 analysis of RNA-Seq
data was defined as a > =+ 1.5-fold change (FC) and <0.05 false
discovery rate. Pathway enrichment analysis in ReactomePA used
hypergeometric overlap and p-values were adjusted for multiple
testing using false discovery rate. Significant enrichment was
defined as a false discovery rate < 0.05. Rotation gene set testing
(ROAST) (29) and competitive gene set testing (CAMERA) (30)
were used to determine whether the 20 gene signature, identified
in pediatric patients at diagnosis, was also significantly different
in pediatric patients in relapse and in adult patients. Clinical
metadata (see Supplementary Table 2) were analyzed using the
Description of Categories and Multiple Factor Analysis (MFA)
functions from the FactoMineR package for R (31).

Data Availability

RNA-Seq data have been submitted to the Gene Expression
Omnibus data sharing repository, and are accessible through
GEO Series accession number: GSE129752.

RESULTS

Whole Blood Gene Expression Patterns
Delineated Distinct Endotypes of Pediatric

Small-to-Medium Sized Vessel Vasculitis

To identify the underlying molecules and pathways associated
with different pediatric small-to-medium vessel vasculitides, we
sequenced the whole blood transcriptomes of the 30 children
and adolescents in Cohort 1. Study samples were collected from
the majority at first disease onset and included EMA-defined
subtypes of GPA (n = 16), MPA (n = 4), PAN (n = 2),
unclassified ANCA-associated vasculitis (unclassified AAV; n =
7), and unclassified (ANCA-negative) vasculitis (UCV; n = 1).
Unsupervised hierarchical clustering of global gene expression
(without consideration of EMA classification) placed the samples
into two major and one minor cluster (Figure 1 and Table 1).

Distinct patterns of whole blood gene expression and a total of
3,809 genes were differentially expressed (£ 1.5 FC, FDR < 0.05)
between the two major clusters. One major cluster (A) contained
samples (n = 13) from 4 male and 9 female patients: 9 with
GPA, and 4 with unclassified AAV (uAAV). PR3-ANCA were
present in 9 of the 13 ANCA-positive individuals in this group.
The other major cluster (B) contained samples (n = 14) from 5
male and 9 female patients: 5 with GPA, 4 with MPA, 2 with PAN,
2 with uAAYV, and 1 with UCV. All patients with MPA and PAN
were in this cluster and MPO-ANCA were present in 7 of the 13
ANCA-positive individuals in this group.

Patients in cluster A had greater overall disease activity
(Supplementary Table 2: mean PVAS = 21, p-value = 0.013
compared to cluster B mean PVAS = 14, p-value = 0.006), and
specifically, higher disease activity in the respiratory domain
(mean chest PVAS = 4, p-value = 0.022). These children (cluster
A) were also diagnosed at significantly older ages (mean age =
14, p-value = 0.015) and showed significantly greater neutrophil
counts than patients in cluster B (mean neutrophil count in
Endotype A = 10.4, p-value = 0.018) (Supplementary Table 2
and Supplementary Figure 1).

These clusters (A and B) were consistent with the
predominant EMA subtype in each cluster, that is, GPA in A and
MPA/PAN in B, although overlap was observed especially for
patients with GPA (Figure 1 and Table 1). These data together
with the distinct patterns of whole blood gene expression
associated with each major cluster suggests that the four EMA-
defined (phenotypically classified) subtypes of small-to-medium
sized vessel vasculitis in our cohort may fall under two major
endotypes, A and B. The final, minor cluster contained three
samples; 2 from patients with GPA and one from a patient with
uAAYV, and they could conceivably represent a rarer endotype.

Neutrophil Degranulationand T
Lymphocyte Activation Were Associated
With Pediatric Vasculitis Endotype A and B,

Respectively

Among the 3,809 differentially expressed (DE) genes between
Endotype (cluster) A and Endotype (cluster) B, a total of
2,217 genes were expressed higher in Endotype A (relative to
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Endotype B) and 1,592 genes were expressed higher in Endotype
B (relative to Endotype A). Genes with higher expression in
Endotype A were involved in Toll-like receptor (TLR) signaling,
interleukin signaling, Rho GTPase signaling, cellular senescence,
and neutrophil degranulation (Supplementary Figure2 and
Supplementary Table 3A). Within the latter pathway, 178 of
the 479 known neutrophil degranulation genes (~37%) were
differentially expressed (FDR adjusted p-value for significance
of association = 1.1 x 107°%). Functional interactions
between the encoded proteins are shown in a protein:protein
interaction network in Figure 2. Related, gene expression of

biomolecules (including 16 histone genes, S100A8, S100A9,
and PADI4) that are associated with neutrophil extracellular
traps (NETs) (32) were higher (FDR < 0.05) in Endotype A
compared to Endotype B.

In contrast, genes with elevated expression in Endotype B
were associated with T cell receptor (TCR) signaling, RNA
processing, interferon (IFN) signaling and the differentiation and
regulation of T cells and NK cells (Supplementary Figure 2 and
Supplementary Table 3B). Dysregulated pathways in this cluster
included: phosphorylation of CD3 and TCR zeta chains, PD-
1 signaling, co-stimulation by the CD28 family, TCR signaling,
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TABLE 1 | Characteristics and classification of Cohort 1 pediatric vasculitis patients.

ID 3Endotype PEMA °ANCA Time Sex d0rgan system involvement °PVAS
C1 Patient 3 Endotype A GPA PR3 Diagnosis Female Skin, ENT, lung, CNS, MSK, renal 33
C1 Patient 23 Endotype A GPA PR3 Relapse Female ENT, lung, renal 8
C1 Patient 24 Endotype A GPA PR3 Relapse Female Skin, eye, ENT, lung, MSK, renal 19
C1 Patient 6 Endotype A GPA PR3 Diagnosis Female Skin, eye, ENT, lung, MSK; renal 30
C1 Patient 25 Endotype A GPA PR3 Diagnosis Female Lung, renal 19
C1 Patient 7 Endotype A GPA PR3 Diagnosis Male Skin, lung, MSK, renal 21
C1 Patient 17 Endotype A GPA PR3 Diagnosis Male ENT, lung, renal 26
C1 Patient 11 Endotype A GPA MPO Diagnosis Female Skin, ENT, lung, renal 30
C1 Patient 22 Endotype A GPA MPO Diagnosis Female Skin, lung, renal 20
C1 Patient 14 Endotype A UAAV PR3 Diagnosis Male Eye, ENT, renal 21
C1 Patient 21 Endotype A UAAV PR3 Diagnosis Female Lung, renal 23
C1 Patient 13 Endotype A UAAV MPO Diagnosis Female Renal 18
C1 Patient 19 Endotype A UAAV MPO Diagnosis Male Skin, ENT, lung 10
C1 Patient 10 Endotype B GPA MPO Diagnosis Female Lung, MSK 10
C1 Patient 15 Endotype B GPA MPO Diagnosis Female ENT, renal 17
C1 Patient 1 Endotype B GPA PR3 Diagnosis Female Skin, ENT, lung, renal 23
C1 Patient 8 Endotype B GPA PR3 Diagnosis Female Skin, lung, MSK, renal 21
C1 Patient 29 Endotype B GPA PR3 Relapse Male ENT, lung, renal 10
C1 Patient 20 Endotype B MPA MPO Diagnosis Female Renal 12
C1 Patient 28 Endotype B MPA MPO Diagnosis Female Skin, MSK, renal 16
C1 Patient 16 Endotype B MPA MPO Diagnosis Male Skin, eye, renal 16
C1 Patient 12 Endotype B MPA PR3 Diagnosis Male Eye, renal 15
C1 Patient 4 Endotype B PAN NEG Diagnosis Female Skin 9
C1 Patient 26 Endotype B PAN NEG Diagnosis Male Skin, eye, ENT 12
C1 Patient 30 Endotype B UAAV MPO Relapse Female Eye, renal 19
C1 Patient 9 Endotype B ucv NEG Diagnosis Male Eye, MSK 5
C1 Patient 18 Endotype B UAAV PR3 Diagnosis Female ENT 7
C1 Patient 27 other GPA PR3 Diagnosis Female Skin, ENT, lung, MSK, renal 32
C1 Patient 2 other GPA MPO Diagnosis Male Skin, lung, cardiac, renal 20
C1 Patient 5 other UAAV MPO Relapse Female Lung 11

aHjerarchical cluster (Endotype A, light grey; Endotype B, dark grey) based on RNA-sequence analysis.  European Medicines Agency classification (GPA, blue; MPA, green; unclassified,
white). °PR3 and MPO indicate positivity for, respectively, anti-PR3 (yellow) and anti-MPO (red) antibodies. NEG means that neither anti-PR3 nor anti-MPO antibodies were detected.
JENT = ear, nose, throat; MSK = musculoskeletal; CNS = central nervous system. ¢PVAS is the pediatric vasculitis activity score of disease activity at the time of sample collection.

and immunoregulatory interactions between lymphoid and non-
lymphoid cells. Children in Endotype B had a moderate but
significantly lower ratio of Th1:Th2 cells marker expression
(TBX21:GATA3) (p-value = 0.038 by Wilcoxon test) compared
to Endotype A (Figure3 and Supplementary Figure 3), and
a much overall higher ratio of expression of the Th2 marker
GATA3 (p-value = 3.0 x 107°). Individuals in Endotype B also
had a higher expression ratio of the Treg marker FOXP3 (p-value
=0.014).

Endotypes Present at Diagnosis Also
Defined Inflammatory Mechanisms at
Relapse

To determine if the endotypes (and immunologic pathways)
identified in Cohort 1 were associated with subsequent
relapses in disease post diagnosis, we performed RNASeq
on samples collected from a smaller cohort of pediatric

patients (Cohort 2, n = 11) during a major disease relapse.
Using unsupervised hierarchical clustering of RNASeq
data as was done with Cohort 1, patients in Cohort 2
also sorted into two major clusters, ‘Relapse cluster 1’
and ‘Relapse cluster 2. Two outlier samples did not fall
into either cluster and did not cluster with each other
(Supplementary Figure 4A).

Relapse cluster 1 contained 4 patients: 2 with GPA, 1 with
uAAV, and 1 with UCV. ANCA status was unknown for 1 patient
and the remaining 3 patients were all positive for PR3-ANCA.
Relapse cluster 2 contained 5 patients: 3 with GPA and 2 with
MPA. This cluster contained 4 ANCA-positive patients: 3 with
MPO-ANCA and 1 patient with both MPO- and PR3-ANCA.
We noted that all patients (4/4) in relapse cluster 1 were female,
and suggest that this is a reflection of Cohort 2 being small,
and predominantly female (7/11 patients); a separation of sexes
between Endotypes A and B was not observed in Cohort 1, which
was larger and balanced between male and female patients.
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FIGURE 2 | NetworkAnalyst visualization of Reactome pathway “neutrophil
degranulation” genes with elevated expression in individuals from Endotype A.
All genes with significantly higher expression in Endotype A that appeared in
the Reactome PA category “neutrophil degranulation” (R-HSA-6798695) were
visualized as a protein:protein interaction network using NetworkAnalyst. The
color of each node reflects fold change between Endotypes A and B where
green indicates higher expression in Endotype A. Gray nodes are genes that
are not themselves differentially expressed (DE) but interact with other DE
neutrophil degranulation genes. The size of each node (gene) reflects the
number of documented interactions with other DE genes in the network. Thus,
the largest circles have the greatest number of DE interacting partners and are
predicted to be the most important regulators (“hub proteins”) of this network:
inflammatory biomarker S100A8/A9, mitogen-activated protein kinases
MAPK1 (ERK2) and MAPK14 (p38 MAPK), heat shock protein HSPA1B, the
lysosome-associated glycoprotein LAMP2, tubulin TUBB4B, and Toll-like
receptor protein TLR2 and its regulator/adaptor TOLLIP.

Using the more than 1,000 genes that were differentially
expressed between relapse clusters 1 and 2, we performed
Reactome analysis and compared pathway enrichment
in the “relapse clusters”, (Supplementary Figure4B and
Supplementary Table 4) to those in the “diagnosis clusters”
(i.e., Endotype A and Endotype B from Cohort 1). Our results
revealed an overlap in enriched pathways between relapse cluster
1 and Endotype A, and between relapse cluster 2 and Endotype
B, suggesting that the same driving mechanisms (behind the
distinct Endotypes) are present at diagnosis and disease relapse.

Pediatric Derived Molecular Pathways and
Endotypes Defined Adult-Onset

Small-to-Medium Sized Vessel Vasculitis

Unsupervised hierarchical clustering of RNASeq data from a
small subset of adult vasculitis patients (n = 11, Table 2) also
sorted into two distinct endotypes (Adult Endotype A and
Adult Endotype B; Supplementary Figure 5A). Adult Endotype

A contained 5 patients: 2 with MPA, 2 with GPA, and 1 with
complex vasculitis (labeled COMP/GBM). Of these, 2 were
positive for MPO-ANCA and 3 for PR3-ANCA. Adult Endotype
B also included 5 patients: 1 with GPA, 1 with eosinophilic GPA
(EGPA), 2 with MPA, and 1 with leucocytoclastic cutaneous
vasculitis (labeled OSV). Three adult Endotype B patients
were ANCA negative, 1 was positive for MPO-ANCA, and
1 was positive for PR3-ANCA. A total of 1,682 genes were
differentially expressed between Adult Endotypes A and B.
Similar to the pediatric endotypes, Adult Endotype A was
enriched for neutrophil degranulation pathways, IL-4 and IL-13
signaling, and antimicrobial peptides, while Adult Endotype B
was enriched for T cell receptor signaling, IL-2 signaling, CD28
dependent PI3K/AKT signaling, and translocation of ZAP-70 to
the immunological synapse (Supplementary Figure 5B).

Due to the small cohort size, we also compared our results to
a transcriptomic study by Grayson et al. (28) that identified 339
genes significantly DE in nasal brushings from adult GPA patients
compared to healthy controls. Of these DE genes, 141 were highly
expressed in pediatric Endotype A (Fisher’s Exact test: p-value =
2.2 x 10716, 0dds ratio = 7.6), and 62 were also highly expressed
in Adult Endotype A (Fisher’s Exact test: p-value = 2.2 x 10716,
odds ratio = 5.2). An overlap in Reactome pathways enriched
in the nasal brushing dataset and Endotypes identified from our
dataset were also observed (Supplementary Figure 5C).

Together, these findings indicate potentially common
mechanisms between pediatric and adult vasculitis endotypes
and suggest that gene signatures and disease processes in affected
tissues may be evident in blood.

Differential 20-Gene Signature Defines
Pediatric and Adult Vasculitis Subtypes

The differential gene expression patterns in Endotypes A and
B, consistent in both the pediatric and adult cohorts, suggested
fundamentally different disease mechanisms associated with each
endotype. We therefore asked whether a small set of DE genes
could reliably separate individual samples into the respective
Endotypes (A and B). A 20 gene signature was identified from
pediatric Cohort 1 (see Figure4 and Materials and Methods)
that, using hierarchical clustering, placed all samples within the
same pediatric Endotypes as the full RNA-Seq dataset (Figure 4A
and Supplementary Figure 6).

This 20 gene signature, when applied to pediatric Cohort 2
(relapse samples; Figure 4B) and the adult cohort (Figure 4C),
also separated samples into the same Endotypes A and B as the
entire RNA-Seq dataset with the exception of only 2 samples
from the relapse cohort. The application of gene set significance
testing, using both ROAST and CAMERA, showed that this
20 gene signature was also significantly differentially expressed
between Endotypes A and B at relapse (ROAST p-value =
6.6 x 107%, CAMERA p-value = 1.1 x 107%). Similarly,
the gene sets were also highly significantly different between
endotypes (ROAST p-value = 4.10 x 10-%, CAMERA p-value
= 7.72 x 107%) in the adult cohort. Among the 20 gene
signature identified in both pediatric and adult RNA-Seq data,
25% (5/20) of these genes were differentially expressed (28) in
nasal brushings from adults with GPA.
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FIGURE 3 | Expression ratios of T cell related genes for pediatric vasculitis Endotypes A and B. Relative abundance and ratios (y-axis) of the expression of genes for T
cell markers in Endotype A and Endotype B patients (x-axis). T cell marker genes included CD3E (present in all T cells), CD8A (CD8+ cells), CD4 (CD4+ cells), TBX21
(Th1 cells), GATA (Th2 cells), FOXP3 (Tregs), and RORC (Th17 cells). Gene expression ratios were calculated from variance stabilized counts. Significance of the ratio
between the clusters is reported within each boxplot and was determined by the Wilcoxon Rank Sum test. Additional data shown in Supplementary Figure 3.

TABLE 2 | Characteristics and classification of adult vasculitis patients.

ID aCluster bPhysician SANCA Sex d0rgan systems involved °BVAS
diagnosis

Adult Patient 2 Adult Endotype A GPA PR3 Female Systemic, skin, eyes, ENT, chest, abdominal, renal 45

Adult Patient 5 Adult Endotype A GPA PR3 Male ENT, chest, renal 18

Adult Patient 3 Adult Endotype A COMP/GBM PR3 and GBM Male Systemic, ENT, renal 19

Adult Patient 4 Adult Endotype A MPA MPO Female Systemic, skin, abdominal, renal 26

Adult Patient 6 Adult Endotype A MPA MPO Male Systemic, skin, renal 17

Adult Patient 8 Adult Endotype B MPA PR3 Male Lungs, kidneys 16

Adult Patient 9 Adult Endotype B MPA MPO Female Systemic, skin, eyes, abdominal, chest, renal 31

Adult Patient 7 Adult Endotype B GPA NEG Male Lungs

Adult Patient 10 Adult Endotype B osv NEG Male Systemic, skin

Adult Patient 11 Adult Endotype B EGPA NEG Male ENT, chest, abdominal, neurological 25

Adult Patient 1 other MPA MPO Male Systemic, renal, ENT 18

aHjerarchical cluster based on RNA-sequence analysis (Endotype A, light grey; Endotype B, dark grey). PClassification by expert consensus: (GPA, blue; MPA, green; EGPA, COMP
and OSV are white) COMP/GBM = complex, anti-glomerular basement membrane disease, OSV = other small vessel vasculitis (leucocytoclastic cutaneous vasculitis). °PR3 and MPO
indicate positivity for, respectively, anti-PR3 (yellow) and anti-MPO (red) antibodies. NEG means that neither anti-PR3 nor anti-MPO antibodies were detected. °ENT = ear, nose and
throat. BVAS is the Birmingham vasculitis activity score of disease activity.

DISCUSSION classified as having the same disease. For pediatric patients,
classification is even more challenging. Even relatively
Despite step-wise improvements in classification criteria  recent pediatric adaptations of the American College of

for small-to-medium sized vessel vasculitis, the ability to
use current classification systems to accurately diagnose,
prognosticate and tailor treatment remains limited due
to overlapping clinical features, unclassifiable patients
and variable disease trajectories/outcomes of patients

Rheumatology (ACR) criteria (originally based on adult
data) (3, 4) fail to uniquely classify 25% of pediatric
patients (12).

In this study, we investigated a biological basis to differentiate
small-to-medium sized vessel vasculitis in children. Our results
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FIGURE 4 | Hierarchical clustering of vasculitis patients based on expression data from 20 genes. Hierarchical clustering (hclust function of R) was performed using
the average linkage method with Euclidean distances calculated from vst counts. The variance for all genes (as batch corrected vst counts) was calculated separately
for major clusters. Genes with the lowest within-group variance, an absolute FC > 2 between the clusters, the 50% least variable genes in both clusters, and an
overall average count of at least 100 were selected and assessed for their ability to separate samples into the same clusters as the entire gene dataset. The heatmap
represents expression (variance stabilized counts) of each of 20 genes (y-axis, right) that were (a) maximally divergent between Endotypes A and B (i.e.: significantly
DE with a FDR adjusted p-value <0.05 and fold change >1.5) and (b) had low variance within each cluster to minimize the margin of error for testing individual
samples. (A) Pediatric Cohort 1 patients (n = 27, x-axis) in Endotypes A (blue) and B (green). (B) Pediatric Cohort 2 patients (n = 9, x-axis) in relapse Endotypes A
(blue) and B (green). (C) Adult patients (n = 10, x-axis) in Adult Endotypes A (blue) and B (green).

demonstrate that the majority of patients fell into two primary  of adult patients at diagnosis of a variety of clinically-defined
groups with distinctive gene expression patterns and clinical  vasculitides affecting small-to-medium sized vessels.

phenotypes that were predominantly, but not exclusively, either The concept that mechanistic differences may enable
GPA or MPA. The groups differed in the expression of  separation of complex diseases into different “endotypes” has
approximately one-third of all expressed human genes and could ~ been demonstrated in other chronic inflammatory diseases, for
be discriminated based on the differential expression of just 20  example, asthma (15) and diabetes (16) that have a singular
“biomarker” genes. These transcriptome-based signatures, which ~ “disease category” yet intrinsic heterogeneity in symptoms
were elucidated from predominantly disease-onset (diagnosis) and outcomes. In our cohort, the transcriptome-defined
pediatric samples, were also found in a small cohort of pediatric ~ endotypes were not significantly associated with MPO/PR3
patients experiencing a relapse in disease, and in a small cohort =~ ANCA positivity or EMA classification for GPA, indicating
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differentiating biological factors between endotypes that
are not apparent based on current clinical classification or
ANCA status. Of interest, unbiased cluster analysis of clinical
metadata, including data used in the EMA classification
algorithm, organized patients in our cohort into two “new”
clinically-defined groups (Supplementary Figure7) that had
substantial overlap with RNASeq data-defined endotypes. In one
clinical cluster, 10/13 patients were associated with Endotype
A (correlation analysis p-value = 0.0018), and in the other
clinical cluster, 12/17 patients were associated with Endotype
B (correlation analysis p-value = 0.0037). Although a much
larger cohort is required for validation, the data suggest that
these underlying biologic mechanisms (endotypes) might each
associate with a unique clustering of patients according to
clinical symptoms.

Endotype A was associated with pathways reflecting
neutrophil degranulation while Endotype B demonstrated a
gene expression pattern indicative of T cell activation. In AAV,
both innate and adaptive immune processes are, as the name
suggests, involved in disease pathogenesis (i.e., by the action
of autoantibodies against neutrophil proteins). Our evidence
however, suggests that these different arms of the immune
system predominate in different subsets of patients, as opposed
to operating in concert across all individuals regardless of
subtype, and seemingly independent of ANCA specificity.

Neutrophil degranulation, a common feature of many
inflammatory disorders, including severe asphyxia in asthma,
acute lung injury, rheumatoid arthritis, and septic shock (32), was
associated with Endotype A. The gene encoding a protein from
the neutrophil degranulation pathway, glycogen phosphorylase
L (PYGL), was one of the top 20 most significantly DE genes
between the endotypes (p-value = 1.85 x 10~%, mean fold
change of genes in pathway = 2.17). Consistent with the role of
neutrophil degranulation in lung disease, Endotype A patients
had higher component PVAS for respiratory involvement
(chest score: Supplementary Table 2). In contrast, there was no
significant association between either endotype and renal-specific
PVAS despite a large majority of patients with GPA and MPA
having renal involvement. Moreover, pulmonary disease, and
specifically, the involvement of granulomatous inflammation,
occurs more frequently (twice as often) in GPA compared
to MPA. Neutrophil degranulation can lead to neutrophil
extracellular traps (NETs) (32, 33) that play a role in the capture
and killing of bacteria and have been described in adult AAV
(34, 35). NETs contain a variety of biomolecules (36) including
DNA, histone proteins, S100 proteins, MPO and PR3. Consistent
with the role of NETS in bacterial infections, genes involved in the
recognition and uptake of bacteria, including TLR- and NOD-
like receptor signaling, and FcyR-mediated phagocytosis were
enriched in Endotype A; notably FcyRIIA and the phagocytic
pathway downstream of this receptor were significantly (p-value
= 0.025) enriched in Endotype A.

Endotype B contained all MPA/PAN patients, which is
noteworthy given that MPA and PAN, prior to the identification
of ANCA, were considered manifestations of the same disease
in different sized blood vessels. Patients within Endotype B
differentially expressed many genes associated with T cell

receptor (TCR) signaling and the differentiation and regulation
of T cells and NK cells. T cell surface protein CD4 was one of
the top 20 DE genes showing higher expression in Endotype B.
The expression of genes in the MHC class II pathway responsible
for CD4" T helper cell activation were also elevated. The MHC
class II pathway can be triggered either by endocytosed antigens
or misfolded proteins (autoantigens) as is the case with certain
types of arthritis (37, 38). These are interesting observations,
since Th2 and Treg cells are involved in the prevention of
autoimmune diseases (39), suggesting that the mechanism of
pathogenesis in Endotype B might trigger immune regulatory
responses to a greater extent. Given that specific Th2 populations
can play a role in several inflammatory diseases [e.g., ulcerative
colitis (40), chronic allergic inflammation (41) and eosinophilic
gastrointestinal disease (42)], inflammation in patients associated
with this Endotype could also be driven by a similar mechanism
involving highly activated T cells, and an imbalance of Th2 cells
that is pathogenic.

Our results also demonstrated that pediatric gene expression
patterns involving neutrophil degranulation and T cell activation
were present in blood samples from adults with vasculitis and
showed significant overlap with findings from a published study
of gene expression in nasal tissue from adults with GPA (28). The
latter observation is consistent with the notion that inflammatory
mechanisms in AAV are independent of the organ systems
involved (43).

It is important to note that therapy was initiated in the
majority of patients prior to sample collection and many
treatments, notably corticosteroids, can influence gene
expression. The nature of treatment, dose and route of
administration varied considerably among patients and was
consistent with our previous report of treatment variability
in clinical practice (44). Despite this, it should be noted
that no association was observed between endotype and
receipt of corticosteroids by multi-factor analysis (31)
(Supplementary Table 2). In contrast, we found a significant
correlation between patients in Endotype B and the receipt
of non-biologic immunosuppressive treatment. However, it
would be difficult to conclude that these treatments are driving
differences in gene expression between groups given that factors
other than the nature of the disease, including cost, accessibility
of drugs, and physician experience influence treatment choice
(44). It is also equally likely that inflammatory mechanisms, as
observed by differences in gene expression, respond to different
pharmacological agents, leading to improved patient outcomes
and preferred use by physicians.

In summary, we have classified pediatric and adult patients
with small-to-medium sized vessel vasculitis (AAV, PAN and
unclassifiable disease) into two distinct endotypes based on
whole blood gene expression profiling. These data may argue
for categorization of vasculitides based on biologic mechanism,
however it remains to be proven if transcriptome-defined
groups have clinical utility. Exploration of links between
treatment outcomes particularly relapsing or refractory disease,
and the pathogenic mechanisms identified by transcriptomics,
will be the subject of future analyses of pediatric and adult
vasculitis patients.
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Giant cell arteritis (GCA) is a granulomatous systemic vasculitis of large- and
medium-sized arteries that affects the elderly. In recent years, advances in diagnostic
imaging have revealed a greater degree of large vessel involvement than previously
recognized, distinguishing classical cranial- from large vessel (LV)- GCA. GCA
often co-occurs with the poorly understood inflammatory arthritis/bursitis condition
polymyalgia rheumatica (PMR) and has overlapping features with other non-infectious
granulomatous vasculitides that affect the aorta, namely Takayasu Arteritis (TAK) and the
more recently described clinically isolated aortitis (CIA). Here, we review the literature
focused on the immunopathology of GCA on the background of the three settings in
which comparisons are informative: LV and cranial variants of GCA; PMR and GCA;
the three granulomatous vasculitides (GCA, TAK, and CIA). We discuss overlapping and
unique features between these conditions across clinical presentation, epidemiology,
imaging, and conventional histology. We propose a model of GCA where abnormally
activated circulating cells, especially monocytes and CD4* T cells, enter arteries after
an unknown stimulus and cooperate to destroy it and review the evidence for how this
mechanistically occurs in active disease and improves with treatment.

Keywords: vasculitis, CIA, LVV, Takayasu, PMR, temporal arteritis, GCA, giant cell arteritis

INTRODUCTION

Giant cell arteritis (GCA) is a granulomatous systemic vasculitis of people age 50 or older that
affects large- and medium-size arteries (1, 2). Vascular inflammation has two major patterns, which
overlap in a clinical spectrum. The first and classic pattern, originally described by Horton in 1932,
involves inflammation of the extracranial branches of the carotid artery with predilection for the
temporal artery and is called cranial GCA. The second pattern involves the aorta and its proximal
branches, particularly the axillary, subclavian, and proximal brachial branches, and is called large-
vessel GCA (LV-GCA) (3). While autopsy studies in the 1970s demonstrated LV involvement in
patients with cranial-GCA (4, 5), advances in imaging in the past decade have reemphasized the
frequent co-occurrence of subclinical LV with cranial disease and have identified the less common
entities of isolated cranial- and LV-GCA (6). Along with Takayasu arteritis (TAK), a systemic
vasculitis that occurs mostly in women under age 50, and clinically isolated aortitis (CIA), a
vasculitis restricted to the aorta, GCA is one of three non-infectious granulomatous vasculitides
with prominent aortic involvement (1).

GCA is medical emergency due to its ability to cause irreversible vision loss and requires prompt
diagnosis and initiation of treatment. Individual patient presentations vary depending on the
complement of cranial or large vessels that are involved, yet patients often share common systemic
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features. These include laboratory evidence of systemic
inflammation, constitutional symptoms, and polymyalgia
rheumatica (PMR), a condition characterized by pain and
stiffness in the neck, shoulders, and pelvic girdle that often co-
occurs with GCA (7, 8). Mechanistic understanding of both GCA
and PMR has been limited by the lack of consensus diagnostic
criteria. However, GCA is better characterized than PMR due to
the historical de facto diagnostic gold standard being temporal
artery biopsy (TAB), which has created a more homogenous
clinical group and also provided a vital source of tissue for
research purposes. Immunosuppression with glucocorticoids
(GQ) is the cornerstone of treatment for both GCA and PMR.
As most patients have disease flares with GC tapering and
require prolonged treatment, steroid sparing agents have been
sought, with methotrexate identified as providing benefit in PMR
and likely some in GCA, and targeted blockade of IL-6R with
tocilizumab (TCZ) providing benefit in GCA. Multiple other
drugs are being studied in clinical trials in GCA (9-12).

Here, we the current understanding of the
immunopathology of GCA on the background of the three
settings in which comparisons are informative: LV and cranial
variants of GCA; PMR and GCA; and the three granulomatous
vasculitides (GCA, TAK, and CIA). We also discuss clinical
presentation and epidemiology of disease, and the growing
role of advanced imaging for clinical and research use. We
identify areas of uncertainty and discuss possible mechanisms of
disease pathogenesis.

review

CLINICAL PRESENTATION

Systemic inflammation is a cardinal feature of GCA, as well
as PMR and TAK. Clinically, many patients experience non-
specific constitutional symptoms including fatigue, anorexia,
weight loss, fever, and night sweats. Laboratory evidence of
inflammation includes anemia, thrombocytosis, and elevations in
the inflammatory markers erythrocyte sedimentation rate (ESR)
and/or C-reactive protein (CRP). Patients with CIA lack systemic
features, according to the most commonly used definition of CIA
(7,8, 13, 14).

Cranial symptoms of GCA are the classic presentation
of disease and account for the majority of the 1990 ACR
classification criteria (7). Inflammation of medium-size arteries
causes pain and tenderness in the artery wall itself and
leads to vascular stenosis and ultimately occlusion, causing
symptomatic ischemia. Ischemic symptoms include headache,
jaw claudication, and acute onset visual disturbances (7), and
are inversely correlated with the degree of systemic inflammation
(15, 16). More rarely, scalp or tongue necrosis, sensorineural
hearing loss, and even vertebrobasilar stroke can occur. The most
commonly feared complication is irreversible vision loss, which
occurred in 15-35% of patients prior to widespread recognition
of GCA and emergent use of GC (2, 17, 18).

LV-GCA often presents with non-specific systemic symptoms,
leading to delayed diagnosis (19, 20). Features suggestive of
LV-GCA in patients with PMR include the need for unusually
high doses of GC, bilateral diffuse lower extremity pain, pelvic

girdle pain, and inflammatory low back pain (20). LV-GCA can
also cause ischemic symptoms corresponding to supra-aortic
vessel stenosis with resultant limb claudication or dizziness.
Physical signs can include vascular bruits, loss of carotid or
radial pulses, and/or discordant blood pressures (19, 21). These
overlap with the symptoms and classification criteria for TAK
(13). Rather than causing ischemia in downstream organs,
inflammation of the aorta under the stress of high-pressure
gradients generated by the heart leads to dilatation in 32% of
patients with GCA, aneurysm formation in 2-10% patients, and
ultimately may progress to dissection (22-24). Thus, LV-GCA
is typically identified on imaging or in surgical specimens from
repairs of aneurysms or dissections. In the case of surgical tissue,
GCA must further be differentiated from CIA by evidence of
systemic features or evidence of disease in arteries other than
the aorta.

EPIDEMIOLOGY

GCA is the most common form of vasculitis in patients over
age 50 with most being much older. PMR is 3-10 times more
common than GCA and is the second most frequent rheumatic
disease of elderly after rheumatoid arthritis (2). Forty-sixty
percent of patients with GCA have symptoms of PMR while 16—
21% PMR have GCA (25, 26). Age >50 is a defining feature
of both GCA and PMR, and both peak around age 75, with
the exception that patients with LV-GCA are typically younger
between 50 and 65 (2, 3, 24, 27, 28). Other granulomatous
vasculitides affecting the aorta also occur earlier; CIA has a mean
diagnosis of age 65 while TAK peaks between 15 and 29 (14, 29).
All conditions are more common in women, with increasing
frequency from CIA and PMR (2:1), to cranial-GCA (almost 3:1),
to LV-GCA (3:1), and finally to TAK (9:1) (3, 14, 26-30).

The incidence of cranial-GCA and PMR is most frequent in
patients of Northern European ancestry. Overlapping incidence
of GCA between Northern Europe at 14.6-43.5/ 100,000 and the
ancestrally similar Olmstead County, Minnesota at 19.8/ 100,000
suggest a genetic predisposition (26, 27). In other populations,
GCA occurs between 1.1 and 11.1/100,000 (26, 31-33), though
there are no studies from Africa, South America, or the majority
of continental Asia and the Middle East. It was previously
thought that GCA was uncommon in African Americans (31).
However, this has not consistently been shown in the literature,
likely reflecting the ancestral heterogeneity within racial groups
within the United States and perhaps under recognition of GCA
in African Americans due to the misconception they are not
affected (34-38). TAK is less common than GCA, with highest
incidence in Asia, South America, and Turkey at 1-2/1,000,000
(39). The true incidence and demographics of LV-GCA and CIA
are unknown but appear to be intermediate between cranial-GCA
and TAK, at least in the United States (40).

While the increased frequency of GCA in patients of Northern
European ancestry suggests a genetic predisposition, genetic
studies have generated limited insight into pathophysiology of
disease. An early reported and consistently reproduced finding
is the association with MHC class II HLA DRBO04, specifically

Frontiers in Immunology | www.frontiersin.org

February 2021 | Volume 12 | Article 623716


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Robinette et al.

GCA Immunopathology Across Disease Spectra

the *0401 and *0404 alleles, with cranial- and LV-GCA as well
as PMR (3, 41-44). Indeed, large immune-focused genotyping
arrays performed on patients with TAB-confirmed cranial-GCA
and TAK identified the HLA locus as the only locus to achieve
genome-wide significance for association with GCA, and one
of two loci with genome-wide significance in TAK (45, 46). In
GCA, the majority of this association was due to HLA-DRBI
and HLA-DQAI1, with a minor contribution from MHC class I
HLA-B. The opposite pattern was found for TAK (47). Strong
class II associations suggest a key role for antigen presentation
by MHC class II to helper CD4™ T cells in GCA, and multiple
studies have suggested changes to the MHC class II peptide-
binding groove, however, the specific antigens recognized by
CD4*F T cells in GCA remain unclear (41, 46). Likewise, TAK
has more cytotoxic CD8" T cell infiltration than GCA that may
explain its association with class I (48). When data from GCA and
TAK studies were combined in a meta-analysis, the only non-
HLA SNP that reached significance was in IL12B, encoding the
p40 portion of the IL-12 (p35p40)/IL-23 (p19p40) heterodimeric
proteins that is shared by both cytokines (47). Yet, clinically
targeting p40 with ustekinumab in two open-label trials has
shown mixed results in GCA (49, 50). Collectively, epidemiologic
data emphasizes the importance of old age, female sex, and
genetics with GCA though how these factors contribute to disease
pathogenesis remains largely unclear.

IMAGING

In 2018 the European League Against Rheumatism (EULAR)
issued guidelines for use of imaging in LVV for the first
time, recommending early imaging as the diagnostic test of
choice to replace TAB in all cases of clinically suspected
GCA (51). Currently, there are four major imaging modalities
used in clinical practice (Table 1): ultrasound, MRI, CT, and
['8F]-fluorodeoxyglucose (FDG) positron emission tomography
(PET) (6, 51). PET is combined with another technique, most
often CT. All four modalities assess vascular wall thickness
and a marker of inflammation that differs between techniques
(Table 1). Ultrasound assessment is limited to superficial arteries
and patients with GCA have non-compressible hypoechoic wall
thickening called the “halo sign” (51). Compared to ultrasound,
MRI angiography and CT angiography have increased vascular
resolution, facilitating assessment of luminal irregularities such
as vascular stenosis, aneurysm, and occlusion. Special MRI
contrast sequences can also assess cranial vasculature (55, 56).
PET is a very sensitive technique that detects inflammation
through the surrogate marker of increased glucose metabolism
via FDG uptake and has been particularly important to define
GCA and PMR. In 1999, a small prospective PET study first
demonstrated LV enhancement in patients with GCA and,
surprisingly, equally in those with PMR (57). Most subsequent
studies are retrospective raising the possibility of selection
bias. However, additional small prospective PET studies have
demonstrated LV FDG uptake in 66.7-83% of patients with
cranial GCA (54, 58) and 14-31% of patients with PMR (59,
60). Corresponding to limb girdle symptoms, patients with
PMR show additional FDG uptake in periarticular regions
to the hip and shoulder, ischial tuberosities, sternoclavicular

joints, and trochanteric and interspinous bursa (61). Pathologic
correlates to large vessel imaging studies are not intentionally
obtained. Supporting the concept that imaging findings do reflect
active vascular inflammation, some studies have reported that
inflammatory markers correspond to the degree of LV FDG
uptake (54, 62, 63), which is also reduced with treatment (58, 64,
65). However, low grade enhancement may persist with normal
inflammatory markers (66). Multiple prospective serial studies
have now shown this does not appear to predict clinical relapse
and may rather represent vascular remodeling (58, 65, 67).
Preliminary data suggests there may be an imaging cut-off that
can distinguish ongoing inflammation from vascular remodeling,
as well as from LVV mimics such as atherosclerosis, and is an
ongoing area of research (68, 69).

Large vessel imaging patterns can also help differentiate
between TAK and LV-GCA in patients who are at the border
of age around 50 (Figure 1A). Indeed, a large imaging cohort
study recently identified six patterns of LV involvement that were
different between diseases (70). Favoring TAK were involvement
of the abdominal aorta, renal, and mesenteric arteries; bilateral
carotid and subclavian arteries; and isolated left subclavian
artery. Favoring GCA were involvement of bilateral axillary and
subclavian arteries; diffuse disease including the aorta and its
proximal branches; and minimal disease without clear pattern.
Additionally, vascular damage with stenosis, aneurysm, or
occlusion is more common in TAK while vascular inflammation
alone is more common in GCA (70). Extracranial carotid arteries
involved in cranial-GCA are rarely affected by TAK. Scans
obtained for other reasons may also incidentally reveal CIA in
the arch and descending thoracic aorta (14).

Imaging has been instrumental to define GCA but provides
little insight into pathophysiology. EULAR recommends using
ultrasound and MRI to diagnose cranial-GCA, with no
preference in technique for LV-GCA. The optimal use and
interpretation of LV imaging in clinical practice is rapidly
evolving and is thus far uncertain.

HISTOPATHOLOGY

Normal arteries have three layers separated by dense elastic
fibers (Figure 1B). From the lumen outward, these include
the tunica intima, internal elastic lamina (IEL), tunica media,
external elastic lamina, and tunic adventitia. Intima and media
are predominantly composed of endothelial cells and vascular
smooth muscle cells (VSCM), respectively (71). Their thickness
and complexity increases in large elastic vessels with proportional
increase in stromal cells and extracellular matrix, especially
within the elastic lamellae-rich media (71). The adventitia
contains a dense network of elastin and collagen connective tissue
produced by fibroblasts and is interdigitated with progenitor
cells, adrenergic nerves, and immunosurveillant tissue resident
myeloid cells called vascular dendritic cells (vasDC) (72, 73). It
is also the site of the vasa vasorum, a microvascular network
composed of endothelial cells and pericytes that supplies oxygen
and other nutrients to the vascular wall (72). As large arteries
require increased nutritional support due to their size, vasa
vasorum extend further into the media in these vessels. Outside
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TABLE 1 | Characteristics of imaging modalities clinically used to support a GCA diagnosis.

Ultrasound

MRI

CT

FDG-PET

Vasculature examined Superficial cranial, carotid,

and axillary arteries
Marker of inflammation “Halo sign” —vascular
edema

Advantages Low cost, non-radiating

Disadvantages Operator dependent, limited

to superficial arteries

EULAR GCA recommendation Cranial-GCA, LV-GCA

Cranial arteries, all large
arteries

Contrast enhancement

Vascular resolution,
non-radiating

Reduced accessibility, high
cost, highest number of
patient contraindications

Cranial-GCA, LV-GCA

All large arteries

Contrast enhancement

Vascular resolution, second
lowest cost

Reduced accessibility,
radiation

All large arteries; emerging use in cranial
arteries

FDG uptake—glucose metabolism

Exam sequence not limited to vasculature
and may detect mimics such as cancer,
emerging use in flare

Lowest accessibility, highest cost,
radiation when combined with CT

Sensitivity? Pooled: 77%P Pooled: 73%°
(95% Cl: 62-87%) (95% Cl: 57-85%)
Specificity? Pooled: 96%° Pooled: 88%P°

(95% Cl: 85-99%)

(95% Cl: 81-92%)

LV-GCA LV-GCA
73%° 67-71%
85%° 91-100%

aCompared to clinical diagnosis of GCA. Caveats include that clinical diagnosis by ACR criteria favors cranial-GCA and there are fewer studies prospectively assessing sensitivity and

specificity of CTA and PET.

bData from a recent meta-analysis (52).
¢(53).

d(53, 54).

the artery proper lie more connective tissues supported by a
network of small non-muscular blood vessels (74).

Temporal Arteries

GCA is a multi-focal, segmental destructive panarteritis (75-
78) (Figure 1B). There is a transmural inflammatory infiltrate
with greatest density between the adventitia and media that is
composed predominantly of CD41 T cells and macrophages,
with few B cells and eosinophils; mature neutrophils are rare and
when abundant suggest an alternative diagnosis (79, 80). Despite
the name, giant cells themselves occur to a variable degree and
are prominent in ~50% cases at the intima-medial junction
around a deranged IEL. In the media there is laminar necrosis
with loss of VSCMs and neoangiogensis; fibrinoid necrosis does
not occur (79). The intima has features of vascular remodeling
with hyperplasia and fibrosis, and occasionally thrombosis and
recanalization, especially above sites of active inflammation.
More active disease has a more diffuse and intense inflammatory
infiltrate and greater number of giant cells, while quiescent
disease has a scant infiltrate with fewer giant cells (81). At the end
of this spectrum is “healed arteritis,” when the features of vascular
damage and remodeling are seen in the absence of inflammatory
cells (78).

Three other patterns of inflammation associated with GCA
and PMR have also been described, together referred to
as “restricted inflammation” (RI). These include small vessel
vasculitis (SVV) involving the vessels in connective tissue beyond
the adventitia, vasa vasorum vasculitis (VVV), and inflammation
limited to adventitia (ILA) (82). Giant cells and granulomas
are not present. In their limited description, SVV consisted of
slightly more T than B cells and few macrophages (74), while
VVV showed approximately equivalent infiltration of T cells, B
cells, and macrophages (83). The extent to which these patterns

are reported and their role in GCA diagnosis is controversial
(82, 84). Recently, a retrospective clinicopathologic study with
advanced imaging found that patients with RI had fewer cranial
symptoms, less systemic inflammation, and less halo sign on
ultrasound (82). However, there was no difference in visual
symptoms including permanent vision loss or the degree of LV
involvement between RI and classic GCA. In an accompanying
systematic literature review, the positive predictive value for RI
was 23%, highest for ILA with 67% for GCA and 95% for PMR
(82). Notably, other forms of vasculitis, infection, and certain
hematologic malignancies can present with RI and particularly
with SVV (85, 86).

Large Vessels

Large vessel pathology in GCA is less well-studied. Historically,
patients with LVV have often been described to have TAK
and patients with CIA may be aberrantly reported as having
GCA (87). However, pathologic characteristics of GCA can be
disentangled by the few studies that concurrently report TAB,
which confirm histopathology is largely the same across vessel
sizes (4, 81, 88, 89). Compared to TAB, the aorta has reduced
adventitial inflammation with the majority of inflammatory
infiltrate in the media; mild adventitial fibrosis is also occasionally
seen (4, 88) (Figure 1C). Interestingly, patients with aortic
dissection tend to have more diffuse involvement than seen on
necropsy, suggesting more robust aortic inflammation in these
patients (4, 89). CIA is histopathologically identical to GCA
(14, 88). Few studies have directly compared TAK and GCA
histopathology, but TAK has more inflammation and fibrosis in
the adventitia and media, resulting in thicker walls (40, 48, 88,
90). There is also increased invasion of CD8T T cells, B cells,
and y3T cells and more giant cells compared with GCA (48, 91)
(Figure 1C).
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artery as indicated in (A) with normal vessel on the left and the inflammatory infiltrate and vascular remodeling found in cranial-GCA on the right. (C) Cartoon
representing a cross section through the thoracic aorta as indicated in (A) with TAK on the left, normal in the middle, and LV-GCA on the right.
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PATHOPHYSIOLOGY OF GCA

Clinical features, epidemiology, imaging, and conventional
histology give important information about GCA, PMR, TAK,
and CIA, but little insight into pathophysiology. For that, we
must rely on a small number of techniques, each with its
own strengths and limitations, predominantly based on the
characterization and manipulation of patient-derived peripheral
blood mononuclear cells (PBMCs) and TAB tissue. Based on
our review of data from these studies, here we envision the
sequence of events that occurs in GCA, starting with initial
immune activation, followed by arterial infiltration, damage, and
repair response. We propose the following general model of
the pathophysiology of GCA: Overlapping patterns of activation
in circulating PBMCs seen between GCA and PMR suggest
that immune activation precedes vascular damage. Pathologic
analysis suggests vascular damage initiates in the adventitial
vasa vasorum microvasculature because inflammation is never

restricted to intima (85). The initial trigger for vascular injury
in GCA is unknown but appears to involve interactions between
pathologically activated circulating cells, especially CD4™" helper
T cells and monocytes, and multiple vascular cell types.
Upon breach of vascular immunoprivilege, recruitment of these
abnormal monocytes and CD4" T cells, especially IFN-y-
producing Th1 cells, cooperate to mediate vascular injury and
repair. The sequence of recruitment is also unknown, but once
initiated, multiple interconnected positive feedback loops sustain
it in the vasculature and also likely feedback to amplify systemic
immune activation.

Immune Activation and Circulating
Leukocytes

Systemic inflammation is a core feature of GCA and PMR that
is largely driven by IL-6, with elevated plasma levels in both
conditions (92, 93). IL-6 is a pleotropic cytokine professionally
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produced by monocytes, macrophages, and dendritic cells
within the immune system—as well as by other cells including
endothelial cells, VSMCs, fibroblasts, and B cells—as an early
signal of tissue damage (94, 95). Monocytes appear to be
the primary source of IL-6 among PBMCs of patients with
GCA and PMR (93, 96), though the contribution from other
non-circulating cell types has not been assessed and is likely
significant. In the immune system, IL-6 has a key role in
CD4™ helper T cell differentiation, promoting the development
of Th17 and T follicular helper (Tgm) cells, while inhibiting
that of regulatory T cells (Tyeg) due to opposite effects of
the IL-6-induced pioneering transcription factor STAT3 in the
generation of these cell types during inflammation (94, 95, 97).
In the liver, IL-6 stimulates production of acute phase response
proteins including CRP and fibrinogen, with resultant elevation
of ESR. IL-6 levels are tied closely to clinical symptoms of GCA
and are higher in patients who experience more relapses, with
levels rising concurrently with symptoms during relapse (93,
98). Consistent with the negative association between systemic
inflammation and cranial symptoms, patients with higher

serum IL-6 have fewer ischemic complications even during
relapse (98-100). Whether this reflects a biologic difference
or increased clinical detection remains unclear. Beyond IL-6,
other cytokines are not reproducibly systemically elevated across
studies; multiple studies have shown circulating TNF and IFN-y
levels are unchanged (15, 92, 93, 101).

Patients with GCA and PMR have abnormally activated
PBMCs, particularly among CD4™ T cells, which are skewed
toward effector cells. Although unchanged in number,
polarization of CD4" T cells is aberrant. Both conditions
share increased frequency of IFN-y * Thl cells and a STAT3-
activation pattern with increased IL-17" Th17 cells and reduced
Treg (92, 101-103); IL-21" Tpy cells are also elevated in GCA
but untested in PMR. Th17 cells are stimulated by the cytokines
IL-23 and IL-1B and are pathologically associated with multiple
autoimmune diseases. Th1 cells develop downstream of STAT4-
activating IL-12, which also stimulates their production of the
signature cytokine IFN-y, a well-known driver of granulomatous
inflammation in infections such as M. tuberculosis (104, 105).
In humans, the majority of Try cells also respond to IL-12 and

Frontiers in Immunology | www.frontiersin.org 129

February 2021 | Volume 12 | Article 623716


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Robinette et al.

GCA Immunopathology Across Disease Spectra

can co-produce IFN-vy, like Thl cells; these cells accumulate in
a multitude of inflammatory diseases and provide B cell help. T
cell production of IL-21 can also enhance cytotoxicity of CD8 T
cells and NK cells (106). In GCA, in vitro culture of patient T cells
with IL-21 further engenders more Th1 and Th17 differentiation
(102). Beyond polarization, GCA and PMR share an increased
frequency of senescent T cells (107). Studies in PMR are more
limited, but GCA patients have other evidence of increased
activation. These include a shift from central memory CD4" T
cells to effector memory and terminally differentiated effector
memory cells; higher expression of HLA-DR and NOTCH]I,
which has a pleomorphic pro-inflammatory function in mature
T cells; and a gene expression signature enriched for T cell
receptor signaling (102, 108-110).

In comparison, other circulating lymphocytes appear to be
less impacted, though comprehensive assessment using high-
dimensional analyses is lacking. CD8% T cells from GCA and
PMR patients have increased oligoclonality, and many but not all
studies report lower numbers; at least in GCA, they also express
higher HLA-DR (102, 111-115). In some studies, there is a global
reduction in the number of B cells, while NK cell numbers are
unchanged (102, 116).

In the myeloid compartment, prominent changes include
increased numbers of circulating monocytes and immature
neutrophils. Monocytosis of classical CD1478" CD16!° cells
is present in both GCA and PMR (93, 117). In GCA, these
cells are phenotypically identical to healthy controls (118,
119). However, they are transcriptionally primed in circulation,
expressing higher levels of pro-inflammatory cytokines IL6, IL1B,
and IL-12/23 components IL23A (p19), IL12A (p35), and ILI2B
(p40) as well as extracellular matrix-degrading (ECM) gelatinases
MMP2 and MMP9 (96, 101, 118). Surprisingly, left shift with
increased circulating immature neutrophils was recently shown
to be the major cellular difference by mass cytometry (CyToF)
between untreated GCA patient and healthy control PBMCs (80).
Collectively, these data suggest there is increased bone marrow
myelopoiesis and/or recruitment in active disease. Whether PMR
patients have the same transcriptional changes to monocytes or
cellular distribution remains to be seen.

Initiating Arterial Inflammation

Two major challenges to understanding GCA pathogenesis
are the absence of a commonly used mouse model and the
lack of availability of sequential patient samples. Given these
challenges, mechanistic insights rely on three human systems
based on temporal artery: (1) observations from TAB; (2)
manipulation of TAB or normal arteries in Matrigel (120); or
(3) manipulation of TAB or normal arteries in chimeric mouse
systems (121). The chimeric systems are the most complex and
have evolved over time. One currently used system involves three
sequential steps to produce inflammation, which may rely in
part on alloreactivity (“subcutaneous-chimera”): (1) implantation
of a human artery segment as a subcutaneous graft on the
lower midback of a highly immunocompromised NOD.Cg-
Prkdcsd T12rg"™ Wil/Sz] (NSG) mouse that lacks all lymphocytes
and has severely defective myeloid cells; (2) stimulation with
lipopolysaccharide (LPS), activating xenograft vasDC to adopt a

pro-inflammatory CD83" CD86™ phenotype and produce T-cell
recruiting chemokines; and (3) adoptive transfer of PBMCs from
treatment-naive allogeneic GCA patients, generating immune
infiltration that histologically and transcriptionally resembles
GCA (103, 121). Additional mechanistic insights can also
be learned from another chimeric vascular allograft rejection
model, where human coronary artery xenograft surgically
replaces the mouse infrarenal aorta (“interposition-chimera”)
(122). Similar to subcutaneous-chimeras, this model uses highly
immunocompromised CB17.Cg-Prkdc*®Lyst?8~//Crl mice that
lack T and B cells through the same Prkdc mutation but differ
in the mechanism of impaired NK and granulocyte function.
After adoptive transfer of PBMCs from allogeneic blood donors,
these mice develop xenograft vascular inflammation even in
the absence of LPS over a similar time course. However,
inflammation is more histopathologically similar to TAK, with
prominent adventitial and intimal CD4" and CD8" T cell
invasion and hyperplasia; unlike TAK and GCA, very few
leukocytes invade the media, myeloid infiltration is rare, IEL are
preserved, and neovascularization does not occur (123).

Arterial invasion requires activation of both circulating
and vascular cells. Emphasizing the importance of pathogenic
circulating cells, in subcutaneous-chimeras, normal human
PBMCs cannot typically invade artery grafts even in the presence
of LPS (109). Meanwhile, GCA-derived alloreactive T cells cannot
invade artery grafts in the absence of LPS (121). Some of these
effects may be caused by recruitment and duration of contact
with the subcutaneous graft because normal human T cells—but
not myeloid cells—can invade the interposition-chimera allograft
without further stimulus downstream of endothelial antigen
presentation to CD4™ and CD8™ T cells (122, 124). Interestingly,
upon co-implantation of TAB fragments from GCA, PMR, or
control patients into NSG mice, T cells recirculate from GCA
arteries and invade PMR but not normal arteries in the absence
of LPS, suggesting PMR vessels have lost immunoprivilege (121).
PMR vasDC have a partially activated CD83TCD86™ phenotype
on TAB. However, whether vasDC cause the arterial leakiness
in PMR or GCA vessels is unclear because adoptive transfer of
GCA T cell alloreactive clones in subcutaneous-chimeras in the
absence of LPS also induces a CD83" vasDC phenotype, but T
cells do not invade (121). Thus, while LPS stimulation can breach
immunoprivilege in transplanted arterial sections via vasDC
activation and perhaps prolonged contact with allogeneic T cells,
this may not be the initiating event of vascular damage in GCA.
These data also suggest—despite some overlapping phenotypes
in PBMCs—that pathogenic differences occur between GCA and
PMR cells that can facilitate entry into PMR primed vessels.

IFN-y can independently break vascular immunoprivilege.
Incubation of normal artery in Matrigel with IFN-y induces
VSMC expression of several chemokines including monocyte-
recruiting CCL2 as well as Thl- and CD8" T cell-recruiting
CXCL9, CXCL10, and CXCL11 (125). It also induces VSMC
ICAM-1 expression, an adhesion molecule that binds leukocyte
integrins and, when expressed by endothelial cells, facilitates
vascular transmigration. Remarkably, addition of healthy control
PBMC:s results in invasion of macrophages—but not healthy T
cells—that subsequently become giant cells (125). Endothelial
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expression of HLA-DR is also induced by IFN-y (122, 124), but
whether pathogenic GCA PBMCs facilitate T cell entry has not
been tested. This axis may also be important in early vascular
injury in GCA, as TAB shows increased ICAM-1 expression by
VSMC:s in regions of structurally normal skip lesions and as well
as by endothelial cells in the vasa vasorum (126, 127). Notably,
other cytokines such as macrophage-derived TNF and IL-1f can
also induce ICAM-1 expression on endothelial cells in vitro as
well as enhance its upregulation by IFN-y (128). Interestingly,
ILIB is increased in PMR TAB compared to controls (129).
Thus, local induction of cytokines from activated circulating cells
may similarly prime segments of vasculature for inflammatory
cell entry, though the mechanism of tissue tropism to the LV
vasculature with this lens remains to be explored.

The Feed-Forward Inflammatory Infiltrate
On TAB, activated memory CD4" T cells massively invade
GCA arteries, where they polarize even further into effector
cells compared to PBMC, homing mostly to the adventitial-
medial border but present in all three layers. These express a
broad repertoire of T cell receptors with a minimal degree of
clonal expansion (130, 131). While a comprehensive assessment
of infiltrating T cells is lacking, there are varying degrees of IFN-
vy, IL-17, IL-21, and IL-9 produced. The balance of polarization
differs between patients and is functionally relevant because
cranial ischemic symptoms correspond to increased Th1 function
on TAB (99, 132, 133). Indeed, ischemia positively correlations
with: (1) the Thl signature cytokine IFN-y, (2) its activator IL-
12p35, and (3) the downstream number of giant cells (99, 132,
133). In contrast, patients with higher expression of the Th17
signature cytokine IL-17A have fewer relapses and more systemic
symptoms (134, 135). Consistent with this, in interposition-
chimeras, IL-17 blockade does not impact intimal hyperplasia but
does reduce IL6 (136). Though minimally described, TAB with RI
also reflect different T cell composition. Compared to transmural
inflammation, SVV has low levels of IL-17 and intermediate
levels of IL-9 while VVV/ILA has the opposite pattern (135); the
distribution of IFN-y has not been described. VVV further lacks
NOTCHI™ infiltrating T cells (109). Thus, T cell polarization
differs between clinical and pathologic phenotypes, but how
different signature cytokines affect pathogenesis largely remains
to be explored.

Myeloid cells also diffusely infiltrate all three layers of the
artery on TAB and densely populate granulomas around the
IEL. These include three populations: a smaller CD16~ CCR2"
CX3CR1~ cells that produce IL-6 and IL-1£8 and phenotypically
resemble circulating monocytes; CD16TCCR2™CX3CR1"
macrophages that produce MMP9, MMP2, VEGE, and the potent
mesenchymal mitogen PDGF; and giant cells that functionally
overlap with CX3CR1T macrophages but express the above
effectors to an even greater degree by immunohistochemistry
(96, 117, 137, 138). Other myeloid generated cytokines elevated
in TAB that contribute to the pro-inflammatory environment
include TNE IL-12, and IL-23 (101, 139, 140). Co-culture of
human peripheral blood monocytes with aortic adventitial
fibroblasts induces their differentiation into macrophages that
produce MMP9 (141). In other biologic conditions, various

cytokines can stimulate macrophage fusion into giant cells—
including IFNy, IL-1B, and IL-6—but correlation between IFN-y
levels and number of giant cells on TAB suggest this is the
primary mechanism in GCA (99, 142). Collectively, these data
suggest monocytes that are transcriptionally primed to produce
pro-inflammatory cytokines and gelatinases in circulation are
recruited from the peripheral blood, differentiate in the inflamed
vessel into macrophages, and further combine to form giant cells
in response to IFN-y. However, it is also possible that monocytes
and macrophages are independently recruited to inflamed vessels
from the circulation.

Multiple cell types generate positive feedback chemokine
loops that enhance T cell and myeloid recruitment. In
subcutaneous-chimeras, vasDC produce CCL19 and CCL21 as
well as its receptor CCR?7, trapping them in the artery upon
activation (73). They also produce CCL20 and attract cells
expressing CCR6, a phenotype shared by many infiltrating T
cells on TAB as well as by Th17 and Th1/Th17 precursors in
GCA patient peripheral blood (92, 143, 144). Notably, a variety
of cells including DC, macrophages, Th17 cells, and VSMC can
produce CCL20 and while it is overexpressed on TAB, the cellular
source has not been shown (134, 136, 145). VSMC are a nexus for
accentuating inflammatory signals: macrophage-generated TNF
stimulates macrophage-attracting CX3CL1 in vitro; macrophage-
expressed PDGF induces monocyte-recruiting CCL2 in Matrigel;
Th17-produced IL-17 causes Th1/Thl7-recruiting CCL20 in
vitro and in interposition-chimeras; and Thl-derived IFN-y
provokes CX3CL1 plus Thl-, CD8" T cell- and monocyte-
recruiting chemokines, as previously described (125, 136, 146,
147). Finally, when co-cultured, fibroblasts induce monocyte
expression of monocyte-recruiting CCL2 (141). Thus, upon entry
of T cells and monocytes in the blood vessel, interactions with
resident vascular cells perpetuate inflammation.

T cell interactions with other vascular cells also enhance

inflammation. Endothelial cells in the vasa vasorum
pathologically express Jaggedl on TAB. This can be
experimentally reproduced in vitro by GCA plasma and

mitigated by anti-VEGE consistent with the increased
systemic levels of VEGF in patients with GCA. In vitro and
in subcutaneous-chimeras, Jaggedl ligates NOTCH1 expressed
by circulating T cells and enhances their polarization to Thl cells
and, to a lesser extent, Th17 cells (103, 109). Upon entry into the
vessel, T cells interact with vasDC. In normal artery specimens,
these constitutively express PD-L1, a molecule that restrains
PD-17 T cells generated during chronic immune stimulation
(148). In GCA TAB, vasDC upregulate antigen presentation
machinery of HLA-DR, CD83, and CD86 but downregulate
PD-L1; meanwhile, vascular invasive but not circulating T
cells highly express PD-1 (73, 121, 148). Blocking PD-L1 in
subcutaneous-chimeras results in exuberant inflammation,
suggesting physiologic PD-1LT vasDC restraint is lost in GCA
immunopathology (148). Thus, inflammatory changes to other
cell types augment the pathogenicity of pre-activated T cells.

Vascular Injury and Repair
Macrophages drive vascular injury largely via gelatinases. In
normal vessels, VSMC constitutively produce pro-MMP2 and
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its inhibitor TIMP2 resulting in a quiescent vessel without
proteolysis (149). With inflammation, macrophage- and giant
cell-derived MMP2 and MMP9 outpace inhibitors, resulting in
progressive degradation of ECM that is consequently more easily
infiltrated by T cells (118, 149). Destruction occurs locally around
macrophages as demonstrated by the restriction of MMP9 and
proteolysis to the adventitia in ILA on TAB (118). Giant cells
are gelatinase factories and, taking residence along the IEL,
cleave and destroy it. The mechanisms that drive VSMC laminar
necrosis are poorly described, but likely also involve myeloid
mediators because, like IEL degradation, it does not occur in
interposition-chimeras that lack myeloid recruitment (122, 123).
Macrophages and Thl inflammation launch vascular
remodeling, resulting in intimal hypertrophy and
neovascularization. In response to a variety of mitogenic signals
in Matrigel but most robustly to PDGE healthy contractile
VSMC become proliferative, invasive myointimal cells (146).
These leave the media and invade the intima where they produce
the vascular ECM proteins collagen I and III, generating the
hypertrophic neointima (138, 146). TAB levels of PDGF and IFN-
y correspond to the degree of intimal hyperplasia, which in turn
correlates with ischemic symptoms as the macrolumen becomes
progressively stenotic (138). While macrophages and giant cells
at the media/intimal border both produce PDGEF, recombinant
IEN-y can also directly stimulate VSMC to produce PDGF
as well as upregulate its receptor in interposition-chimeras
that lack PBMC adoptive transfer, resulting in neointimal
hyperplasia even in the absence of cellular infiltration (150).
Both macrophage and T cell pathways are likely active in GCA.
Patients with ischemic symptoms also have higher plasma levels
of endothelin 1 (ET-1), a potent vasoconstrictor physiologically
generated by endothelial cells. Interestingly, ET-1 is expressed by
infiltrating immune cells on TAB and can redundantly generate
intimal-invasive myointimal cells from VSMC in Matrigel (151).
The degree of intimal hyperplasia further correlates with the
degree of neovascularization in the intima and media, and in
turn, to levels of VEGF on TAB, suggesting this process is driven
by hypoxia (152). However, neovascularization co-localizes
with macrophage- and giant cell-rich areas on TAB (152).
Thus, the extent of neovascularization likely reflects the degree
of macrophage and giant cell activation through multiple
mechanisms including their production of VEGF. Collectively,
vascular remodeling results in thickened blood vessels that
cause symptomatic ischemia and generates a conduit for further
inflammatory cell entry through leaky neovasculature (127).

Treatment Effects

Glucocorticoids are the standard therapy for GCA and PMR.
Consistent with the need for higher doses in GCA than PMR,
systemic changes occur first while local changes seen in TAB
generally take much longer. Plasma IL-6 is strongly inhibited
after a single dose of GC, but the median time to normalization is
4 weeks (93). Though systematic sequential immunophenotyping
of PBMCs during treatment has not been reported, B cells
appear to be the first to respond and normalize after 2 weeks,
a time course consistent with changes in mobilization (116).
After 3 months of treatment, Th17 cell frequency, and CD4"

but not CD8" T cell HLA-DR expression return to normal
(92, 101, 102). Monocyte numbers are also reduced at this time
but remain higher than healthy controls (117). Furthermore,
after 3-9 months of treatment, monocyte expression of IL6 and
Th17-activating ILIB and IL23A normalize while expression of
Thl-inducing and activating IL12A and IL12B remain elevated
(101). Consistent with this, among CD4™ T cells, Th1 take longer
to respond, normalizing with full disease remission (101, 102).
Finally, CD8" T cell numbers take up to 2 years to return to
baseline numbers (111). Indeed, in patients diagnosed with GCA
for at least 2 years, increased circulating CD4™ T cells, reduced
CD8" T cells, and the corresponding increased CD4"/CD8*
ratio but not inflammatory markers or monocytes numbers
have recently been shown to be associated with thoracic aortic
dilatation compared to controls (22).

Reports of TAB re-biopsy after GC treatment reveal similar
results to PBMCs with initial control of Th17 pathways, and later
reduction in Th1 pathways, as well as a prolonged timecourse of
vascular healing. Compared to TAB with active GCA, re-biopsies
at 3-9 months phenocopy peripheral blood and show profound
reduction in IL6, IL1B, IL23A, and IL17 while ILI2A IL12B, and
INFG are unchanged (101). In another study, patients with paired
re-biopsy at 1 year demonstrated a global reduction in all tested
cytokines including IL1B, IL6, IL23A, IL12A, IL12B, and IFNG as
well as MMP9, though patients with more relapses showed higher
levels of IL12B and IFNG (139). Consistent with this prolonged
time course, a prospective study of 40 patients re-biopsied at 3,
6, 9, and 12 months found active arteritis in 7/10, 9/12, 4/9, and
4/9 samples, respectively, despite normalization of inflammatory
markers and clinical symptoms. There was also a time-dependent
increase in vascular remodeling (153). Thus, GC quickly control
Th17 signatures in circulation and TAB, likely reflecting loss
of STAT3 activation from monocyte-derived IL-6. Meanwhile,
Th1 pathway takes longer to respond, consistent with prolonged
monocyte production of STAT4-activating IL-12, which may
drive relapse and ongoing vasculitis in some individuals. Finally,
vascular remodeling continues after active inflammation resolves,
like the prolonged FDG signal on PET imaging.

Multiple other treatment modalities have been tested for
GCA in randomized clinical trials. In the GIACTA trial, targeted
blockade of IL-6R with TCZ demonstrated superiority to a course
of GC alone in achieving steroid-free remission at 1 year, as
defined by lack of clinical flare and normal level of IL-6-induced
CRP, becoming the first non-steroid FDA-approved treatment
for GCA (11). Interestingly, fewer patients with relapsing disease
responded to TCZ than patients with untreated disease, raising
the possibility that these patients may have more Thl driven
disease. Furthermore, one patient in the TCZ every-other-week
arm developed the ischemic complication of anterior ischemic
optic neuropathy. In another study, a patient with highly active
disease that normalized on TCZ—but who died unrelated to
GCA after 6 months of therapy—had widely active vasculitis
on autopsy (154). Though GCA-related adverse events were not
statistically different between groups in GIACTA, these raise the
question if TCZ controls vascular-level inflammation or if it
blocks systemic manifestations of flare, which may further differ
between newly diagnosed and relapsed patients.
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Further insights to this question are suggested by the differing
results of the two open-label studies of anti-p40 ustekinumab.
In the initial promising Irish trial, all patients recruited had
relapsing disease and ustekinumab was successful in achieving
GC-reduction without flare, albeit with persistent low GC dose in
the majority of patients. Notably, of 10 patients with LV disease
in this study, eight underwent reimaging by CT angiography,
which demonstrated not only a halt to further vascular damage
but improvement of wall thickening in all patients and complete
resolution in four (49). In the American trial, both newly
diagnosed and relapsing patients were recruited and all patients
were required to end GC at 6 months, resulting in clinical
flare across the majority of patients with elevated inflammatory
markers and PMR symptoms; though data was not shown for
relapse between newly diagnosed vs/ relapsing patients they were
stated not to be different (50). Vascular imaging follow up was not
reported (50). Consistent with molecular studies, these differing
trial results suggest a degree of independence between systemic
symptoms of flare downstream of IL-6 and vascular damage in
relapsing patients downstream of IL-12. While GC controls both
endotypes, targeted therapies directed at either can fail; however,
only low dose GC may be required to control the IL-6 axis, as in
PMR, at least in patients with relapsing disease. These data also
emphasize that long-term follow up of TCZ-treated patients and
further clinicopathologic correlation will be important and the
utility of a randomized trial for ustekinumab in GCA patients
with relapsing disease. Similar to GC, blocking STAT activation
directly with JAK inhibitors would allow combinatorial blockade
of IL-6 and IL-12/23 without GC side effects and is theoretically
compelling. Indeed, multiple JAK inhibitors are currently in
clinical trials (12).

Beyond IL-6, another potential emerging treatment is to
target T cell overactivation directly. Indeed, abatacept (CTLA-
4:Fc) was superior in achieving relapse-free survival at 1 year
in a phase 2 trial (155). Other targeted therapies using TNF
blockade with infliximab, adalimumab, or etanercept have been
ineffective (156-158).

Comparison to TAK and CIA

Due to relative lack of tissue compared to GCA, less is known
about the immunopathology of TAK, and that of the more
recently-described entity CIA remains virtually unexplored.
Consistent with overlapping but distinct pathology, TAK
shares several features in common with GCA but differs in
cytotoxic mediators (Figure 2). Like GCA, changes to circulating
inflammatory cells also reflect those in the tissue. Systemically,
patients with TAK share elevated systemic levels of IL-6 and
increased circulating classical monocytes, Th17 cells, and Thl
cells with fewer Treg (159-161). In tissue, memory CD4% T
cells—including Thl and Th17 subsets—are likewise the most
prevalent invasive cell type, with equal macrophage infiltration
between conditions (48, 162). Interestingly, in the opposite
pattern of GCA, peripheral Th1 cells respond better to steroids
than Th17 cells, which remain elevated despite clinical remission
(162). Unlike GCA, patients with TAK also have elevated
systemic TNF and consistent with this, TNF inhibitors are at
least modestly clinically effective (161, 163). The major difference

between TAK and GCA is among non-CD4" lymphocytes, as
B cells and CD8T T cells are elevated in peripheral blood and
tissue. As suggested by genetic HLA class I associations, CD8" T
cells seem particularly relevant, rising in circulation during flares
and found actively killing vascular cells on electron microscopy
(91, 159). Interestingly, GCA patients with relatively higher
levels of CD8T T cell invasion also have more severe disease,
though in this condition it may also reflect the degree of Thl
inflammation given mutual dependence of CD8" T cells on the
positive-feedback IFN-y-CXCR3 recruitment loop (114).

PERSPECTIVES AND FUTURE
DIRECTIONS

GCA is a complex disease because it lies at the interface of
two clinical spectra—the pathologically similar granulomatous
vasculitides and the clinically overlapping GCA and PMR—
each of which have historically been imprecisely defined
based on clinical phenotypes and therefore often overlap
in the literature (Figure2). Additionally, emerging results
from advanced imaging and pathologic analysis show two
additional spectra—LV- and cranial-GCA and histologic RI—
that demonstrate even greater overlap with PMR than previously
recognized. Compounding this complexity is the clinical need to
treat GCA emergently and the recent transition from pathology
to imaging for diagnosis, which respectively limit the availability
of untreated patient PBMCs and tissue specimens for research.

Despite phenotypic similarities between TAK and GCA,
the multiple differences between affected patients—in age,
demographics, vascular distribution, genetics, histopathology,
and immunophenotype—suggest that these are distinct
disease entities with some degree of convergence (Figure 2).
Furthermore, most shared features between TAK and GCA are
not unique to vasculitis. In fact, the common vascular condition
of abdominal aortic aneurysm (AAA), a permanent dilatation to
the aorta that affects 1-2% of men age 65 and 0.5% of women
age 70, shares most features: elevated systemic levels of IL-6;
monocytosis; medial invasion of memory CD4"T T cell and
macrophages; and vascular remodeling with dissolution of the
elastic lamellae, loss of VSCM, and neoangiogenesis (164-169)
(Figure 2). This suggests despite different triggers of vascular
injury, many pathways of arterial damage converge, though
some differences persist and may inform our understanding of
disease mechanisms. For example, granulomatous inflammation
likely reflects the higher vascular IFN-y and macrophage
invasion in GCA, CIA, and TAK compared to AAA, while
changes to circulating T cells reflect higher systemic levels of
IL-6 (164, 167, 169, 170). Likewise, the prominent fibrosis in
TAK appears to be an important distinction and may represent
a novel disease target. Interestingly, the comparison of AAA
is particularly relevant for GCA as they share several other
epidemiologic features, including old age with rare incidence
below age 50, increased prevalence in Northern Europe, and
smoking as a core risk factor for aneurysm development
(24, 166). Thus, these unexplained risk factors in GCA may
represent common mechanisms of vascular risk.
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The heterogeneous and overlapping patterns of pathologic RI,
LV-involvement, and PMR with GCA remain a mystery. One
possibility is that RI and PMR represent more subtle degrees of
vascular injury that jointly affect the microvasculature, including
that of large arteries. In some patients who experience an
unknown stimulus, this may progress to more fulminant disease.
Supporting this, a recent report demonstrated a key role for
NOTCHS3 signaling between the arterial microvasculature and
synovial sublining fibroblasts to generate synovitis in rheumatoid
arthritis (171). Indeed, microvascular endothelial cells upregulate
the NOTCH3 ligand Jaggedl in GCA, though whether this also
occurs in PMR synovitis has not been tested (103). Furthermore,
subtle microvascular changes may explain the ability of GCA T
cells to recirculate into PMR arteries in early experiments (121).
Alternatively, the regulatory logic of CD4™ T cells may differ in
LV-GCA and/or RI. For example, several lines of evidence suggest
that a Thl signature favors vascular damage and ischemia.
Mechanistically, this is an especially feed-forward module in
the vasculature through cyclical recruitment of Thl, myeloid
cells, and CD8" T cells that ultimately propagates stenotic
tissue remodeling through macrophage activation and giant cell
formation. However, the role of other helper T cell modules such
as Th17 in GCA is less clear—despite the evidence that they
are also present systemically and in vascular tissue. Though it is
possible circulating Th17 and Try cells may simply represent off-
target STAT3 activation of IL-6, another possibility is that this
module corresponds more to LV inflammation. Supporting this,
patients with LV disease typically have more systemic symptoms,
as do patients with increased IL-17 on TAB. Furthermore, mice
lacking the Rac activator Def6, a negative regulator of IRF4,
spontaneously develop granulomatous aortitis due to aberrant
T cell production of IL-21 and IL-17 (172). Given the more
recent emphasis on LV-GCA, radio-pathologic correlation has
not yet been performed but would be interesting. Comprehensive
assessment of the immune infiltrate in RI is more easily achieved.

Since the discovery of GCA, the trigger for vascular
inflammation has been questioned. Here, we propose a model
where systemic changes in the circulation precede vascular
injury and are required for disease initiation. In this model,
systemic activation likely initiates in myeloid cells—perhaps
monocytes—leads to circulating CD4%T T cell polarization
downstream of the pioneering transcription factors STAT3 and
STAT4. However, recently published data suggests myeloid
activation may be even further upstream, as early as the
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Autoimmune diseases can afflict every organ system, including blood vessels that are
critically important for host survival. The most frequent autoimmune vasculitis is giant cell
arteritis (GCA), which causes aggressive wall inflammation in medium and large arteries
and results in vaso-occlusive wall remodeling. GCA shares with other autoimmune
diseases that it occurs in genetically predisposed individuals, that females are at higher
risk, and that environmental triggers are suspected to beget the loss of immunological
tolerance. GCA has features that distinguish it from other autoimmune diseases and
predict the need for tailored diagnostic and therapeutic approaches. At the core of GCA
pathology are CD4" T cells that gain access to the protected tissue niche of the vessel
wall, differentiate into cytokine producers, attain tissue residency, and enforce
macrophages differentiation into tissue-destructive effector cells. Several signaling
pathways have been implicated in initiating and sustaining pathogenic CD4" T cell
function, including the NOTCH1-Jagged1 pathway, the CD28 co-stimulatory pathway,
the PD-1/PD-L1 co-inhibitory pathway, and the JAK/STAT signaling pathway. Inadequacy
of mechanisms that normally dampen immune responses, such as defective expression of
the PD-L1 ligand and malfunction of immunosuppressive CD8" T regulatory cells are a
common theme in GCA immunopathology. Recent studies are providing a string of novel
mechanisms that will permit more precise pathogenic modeling and therapeutic targeting
in GCA and will fundamentally inform how abnormal immune responses in blood vessels
lead to disease.

Keywords: T cell, macrophage, vasculitis, NOTCH, endothelial cell, PD-L1, CD8 Treg, exosome

INTRODUCTION

Giant cell arteritis (GCA), also known as “temporal arteritis,” is an autoimmune disease that
exclusively affects the elderly host (1). The disease preferentially involves the thoracic aorta and its
major branch vessels, including the temporal artery and vessels supplying the optic nerve and the
retina. Accordingly, the clinical manifestations of GCA include life-threatening complications, such
as aortic dissection, aortic aneurysm, and blindness due to ischemia of the optic nerve. Globally, the
highest incidence rates of GCA occur in Northern Europe, including Iceland, Norway, Sweden, and
Denmark. High disease risk in Northern European populations has supported the concept that both
genetic and environmental factors shape disease susceptibility. Genome-wide association studies
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have confirmed earlier data that polymorphisms in the major
histocompatibility complex (MHC), specifically the Human
leukocyte antigen (HLA)-DR region confers the highest risk
(2, 3). Amongst non-HLA regions, PLG and P4HA2 appear to
play a role as risk determinants (Table 1) (4). PLG (plasminogen)
and P4HA?2 (Prolyl 4-hydroxylase subunit alpha-2) are involved in
vascular remodeling and neoangiogenesis, suggesting relevance of
these processes in GCA pathogenesis. Of interest, a distinct set of
genetic polymorphisms have been implicated in Takayasu arteritis
(TAK) (5, 6), an autoimmune large vessel vasculitis that shares
many similarities with GCA but preferentially affects young Asian
women. In TAK, HLA-B has been shown to have the strongest
disease association (Table 1). Like in GCA, patients with TAK

have enrichment of genetic polymorphism in non-HLA regions;
include such functionally related to activation of cytotoxic
lymphocytes, e.g. natural killer cells and CD8" T cells.
Differences in disease risk genes in GCA and TAK indicate that
different pathomechanisms may contribute to autoimmune and
auto-inflammatory diseases of the large arteries (7-9).

The vasculitic lesions of GCA are composed of tissue-
infiltrating and tissue-resident innate and adaptive immune
cells; mostly, CD4" T cells, dendritic cells, macrophages,
histiocytes, and multinucleated giant cells (10, 11) (Figure 1).
Recent advances in understanding the pathogenesis of GCA
have provided important insights into disease-inducing and
-sustaining mechanisms. Key pathogenic elements include a

Panel (D) Infrequent CD8" T cells within the T cell infiltrates (x100).

FIGURE 1 | Giant Cell Arteritis in the Temporal Artery. Classic histopathologic and immunophenotypic findings of temporal arteritis in a 78-year old woman
presenting with headaches. Panel (A) Transmural arterial inflammation with marked luminal narrowing caused by intimal proliferation which creates a slit-like lumen.
Multinucleated giant cells are concentrated in the medial layer (H&E x125) Panel (B) CD68-positive histiocytes accumulating within the medial and adventitial layers of
the artery with only scattered histiocytes in the intimal layer (x100). Panel (C): CD4* T cells with a similar pattern of distribution as the CD68" macrophages (x100).

TABLE 1 | Gene regions associated with large vessel vasculitis.

Reported year Population The number of participants Gene region

2017 European ancestries 2134 GCA patients HLA-DRA/HILA-DRB1, PLG, P4HA2
9125 controls

2018 Japan 415 TAK patients HLA-B, FCGR3A, IL12B, DUSP22, PTK2B, KLHL33, LILRA3, chr21q22
2170 controls

2015 Turkey and North America 693 TAK patients HLA-B/MICA, IL6, RPS9/LILRB3, chr21q22

15636 controls
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vascular and an extravascular disease component, with site-
specific immune processes relevant for disease inside and
outside of the vascular wall. Also, it is now appreciated that
the vessel wall has unique structural barrier features that make it
an immuno-privileged tissue site, protecting it from unwanted
immune responses. Breakdown of this immune privilege require
aggressive immune responses that first must overcome the
natural protection inherent to life-sustaining arteries. Studies
of persistent vasculitis in GCA patients have stressed the
autonomy of tissue-residing inflammatory infiltrates, building
significant challenges for the elimination of vascular wall
inflammation. Another hurdle in treating GCA relates to the
functional heterogeneity of vasculitic effector cells, which lends
stability to the inflammatory lesions and renders them resistant
to targeted immunosuppression. The granulomatous nature of
the vessel wall lesion has nurtured discussions that infectious
microorganisms may serve as the vasculitogenic antigen, but
reproducible data implicating a viral or bacterial antigen are
missing (9). Other environmental triggers, such as air pollutants
etc are insufficiently explored. The extravascular component of
GCA is poorly understood. Clinically and diagnostically, it is
characterized by intense acute phase responses, resulting in
elevated Erythrocyte Sedimentation Rate (ESR) and C-reactive
protein (CRP). Patients also complain about constitutional
symptoms and proximal myalgias that are promptly responsive
to glucocorticoids and the recently approved anti-interleukin
(IL)-6 receptor antibody tocilizumab (12). However, fluctuations
in acute phase reactants, as captured by measurement of ESR and
CRP, can occur despite persistence of vessel wall inflammation
(13). The lack of reliable disease biomarkers capturing vessel wall
inflammation is problematic in managing GCA.

The present review will focus on recent advances in
understanding the dysfunctional innate and adaptive immune
responses that cause autoimmune vasculitis, with a focus on how
the arterial wall immuno-privilege is broken, how vascular
inflammation is sustained and how abnormal immunity
maintains vascular remodeling. Progress in understanding
pathogenic cascades will inevitably broaden the therapeutic
armamentarium that is so urgently needed to improve
management of vasculitis.

INNATE IMMUNITY IN GCA

Monocytes and Macrophages as Disease
Drivers in GCA

The three-layered walls of the muscular and elastic arteries are
free of inflammatory cells and protected by immune privilege.
Inaccessible tissue sites, e.g. in the testis and the eye, prioritize the
integrity of life-sustaining organs over localized immunity.
Maintenance of such privileged sites involve a combination of
mechanisms, including physical barriers, lack of antigen-
presenting cells and counter regulatory processes dampening
immune stimulation. In the case of GCA, the immune privilege is
lost and both, innate as well as adaptive immune cells enter the
privileged site (Figure 1). In the three-layered arteries, composed

of the intimal layer, the medial smooth muscle cell layer and the
supportive adventitial layer, access to the vessel wall occurs
through the adventitial vasa vasorum network.

Recent work has described a molecular defect in circulating
blood monocytes from GCA patients, which endows these cells
with tissue invasive capabilities. Specifically, GCA monocytes
spontaneously produce high amounts of the metalloproteinase
MMP-9 and digest the basement membrane to overcome the
barrier between vasa vasora capillaries and extracellular tissue. By
blocking the proteinase activity of MMP-9 with a monoclonal
antibody, Watanabe et al (14). implicated GCA monocytes in the
breakdown of the basement membrane and in paving the way for
both innate and adaptive immune cells into the wall (Figure 2).
Remarkably, T cells failed to invade the tissue site unless they were
accompanied by MMP-9-producing monocytes. Besides MMP-9,
GCA monocytes produced high amounts of MMP-2 and -7
transcripts, while MMP-1, -3, -8, -10, or -12 transcripts were
indistinguishable in GCA and control monocytes.
Metalloproteinases are critically important in several physiologic
and pathologic processes (15, 16) and it likely that inappropriate
MMP-9 production is not an exclusive problem in GCA. However,
the upregulation of MMP-9 already in monocytes clearly
distinguishes GCA patients from healthy individuals.

Once circulating monocytes have differentiated into
macrophages, the propensity to produce excess MMP-9
continuously is a distinguishing feature of macrophages that
reach the adventitial and medial layer of the artery (14). Also,
multinucleated giant cells (MNG), the hallmark cell of GCA
lesions, have a particularly strong signal for MMP-9, indicating
that the metalloproteinase critically affects events that lead to the
formation and the destructive potential of the granulomatous
lesions (Figure 2). A typical feature of GCA is the thinning of the
medial layer, presumably by injuring vascular smooth muscle
cells and the fragmentation of the elastic laminae that separate
the media from the intima. Here, local delivery of MMP-9 by
tissue-invasive monocytes/macrophages emerges as a pinnacle
event. The media of a healthy artery is essentially impenetrable, a
barrier that must be overcome by pathogenic macrophages
endowed with MMP-9-dependent elastolytic and gelatinolytic
activities (17, 18). Thus, abnormal programming of monocytes
represents an upstream disease element, facilitating initial
entrance and maneuvering of inflammatory cells in the arterial
wall. This pathomechanism may be particularly important in the
aorta of GCA patients, prone to dissection and aneurysm
formation (Figure 3).

How aberrant MMP-9 production in GCA monocytes and
macrophages is induced has remained unresolved, but this is a
defect that is a prerequisite of disease and is present early in
the disease process. MMP-9 continues to participate in the
granulomatous inflammation in established and in late disease
(Figure 2). The aberrant production of MMP-9 in monocytes
and macrophages of GCA patients seems to be combined
with upregulation of MMP-2, suggesting a coordinated
pathomechanism that affects families of enzymes (14, 19).

Macrophage populations that settle in the granulomatous
lesions are highly heterogenous. Early studies have given rise
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FIGURE 2 | Key Pathogenic Steps in Giant Cell Arteritis. 1. The protective shield of the artery wall breaks when immune cells leave the vasa vasorum and invade
into the tissue. An essential checkpoint is the digestion of the vascular basal lamina, facilitated by MMP-9-producing monocytes. 2. Vasculitic T cells follow, and
macrophages (histocytes) and T cells form granulomatous infiltrates in the adventitia and media. 3. MMP-9-producing macrophages destructs the elastic laminae
and eventually, tissue-damaging multinucleated giant cells emerge. 4. T cells encounter DC that lack the immunoinhibitory ligand PD-L1 and enter unopposed and
persistent activation. 5. Wall-residing DC provide chemokines and cytokines to enhance immune cell recruitment. 6. Chronically stimulated T cells differentiate into
multifunctional effector cells providing an array of effector cytokines. They also acquire tissue residence and replenish the lesion from within. 7. Macrophages are
functionally heterogenous, but their functional commitment is directly related to their positioning in the vessel wall. Macrophage products include chemokines and
cytokines, tissue-damaging mediators (ROS, MMP-9) as well as growth factors (VEGF, PDGF). 8. Continuously stimulated T cells and macrophages elicit a
maladaptive response-to-injury presenting as vessel wall remodeling, with wall vascularization and intimal hyperplasia.

to the concept that geographical mapping of the macrophages  macrophage-derived vascular endothelial growth factor (VEGF)
and functional commitment are linked. Macrophages in the  isinstrumental in providing a potent growth factor for endothelial
media and at the media-intima border are most disease  cells (23). Interestingly, multinucleated giant cells possess the
relevant. The fragmentation of the lamina elastica interna, the  ability to synthesize VEGF. VEGF is elevated markedly in the
formal landmark separating the vascular smooth muscle cell ~ circulating blood of GCA patients (24-26), where this
(VSMC)-rich media from the intima, remains a hallmark of  angiogenesis factor functions as a regulator of endothelial cells
disease. The tissue-destructive potential of medial macrophages  and promotes endothelial cell-T cell interaction (24). However, the
rests on the production of MMP-9, but also on the release of  precise cellular source of the circulating VEGF in GCA patients
reactive oxygen species (ROS) (20). The tissue-damaging features ~ has not been determined. A close correlation between tissue site
of medial macrophages are counterbalanced by their ability to ~ and macrophage functional commitment in the vasculitic lesions
provide growth factors and angiogenic cytokines (Figure 2).  has recently been confirmed by Jiemy et al, who showed that
Platelet-derived growth factor (PDGF)-producing macrophages =~ MMP-9" macrophages were placed at areas of tissue destruction,
and multinucleated giant cells sitting at the fragmented elastic =~ while FRB+ macrophages were positioned in the hyperplastic
lamina are critically important in driving the wall remodeling  intima (27).

process, including the growth of neointima (21). Several cell GCA is not the only vasculitis in which macrophages are key
types, including myofibroblasts, dedifferentiated VSMCs, and  pathogenic effector cells. Rather, accumulation of highly
mesenchymal stem cells fuel the formation of the neo-tissue that ~ activated macrophages in the disease lesions is a feature of
occupies the artery’s lumen and blocks blood flow (22). PDGF  other granulomatous diseases, including the small vessel
has been implicated in facilitating proliferation and directed  vasculitis granulomatosis with polyangiitis (GPA). Specifically,
migration of precursor cells. This maladaptive wound healing  overrepresentation of MMP-9 producing macrophages appears
process is only possible with sufficient neoangiogenic activity. ~ to be common between GCA and GPA (28). GPA is an

While intramural vessels are usually restricted to the adventitia, =~ autoimmune vasculitis of small blood vessels, typically
inflamed temporal arteries contain networks of newly formed  associated with tissue destruction due to granuloma formation.
capillaries, penetrating the media as well as the intima (21). Here, = Neutrophils forming neutrophil extracellular traps (NETSs) are
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FIGURE 3 | Giant Cell Arteritis in the Aorta. Biopsy sample from surgically removed aortic wall of a patient undergoing emergency aortic repair. (A, B) Hematoxylin
and eosin staining showing typical granulomatous inflammation with rings of predominantly lymphocytes and macrophages around necrotic medial tissue (A x60;
B x200). (C) CD3* T cells form a collarette of inflammation enclosing the necrotic aortic wall (x100). (D) CD68* histiocytes palisade at the edge of the damaged
tissue (x200). (E) CD4* T cells are the dominant T cell subset within the granulomatous infiltrates (x100). (F) Infrequent CD8" T cells in the aortic wall (x100).

believed to function as an inflammatory nidus. In a subset of
GPA patients the disease predominantly manifests in the head
and neck (H&N), presenting with bony erosions of the orbital
and sinus walls, septal perforations, saddle-nose deformities, middle
ear damage and epiglottitis, all related to uncontrolled destruction
of bone, cartilage, and connective tissues. In mechanistic studies,
NETs released from H&N GPA neutrophils functioned as powerful
stimulators of macrophages, inducing MMP-9 production (28).
Such MMP-9 high-producing macrophages possess tissue-
destructive capabilities (28), and MMP-9-producing macrophages
and multinucleated giant cells dominate the granulomatous tissue
infiltrates in naso-sinal biopsies from H&N GPA patients (28).
These data implicate degradation of collagen IV in basement

membranes and digestion of extracellular matrix in the
pathologic events leading to GPA.

Given the similarities in GCA and GPA, dysregulation of
MMP-9 production may be a fundamental pathomechanism,
shared amongst vasculitides and shared by diseases with
granulomatous inflammation. So far, none of the genetic
polymorphisms predisposing to either GCA or GPA have been
connected to the functional domain of metalloproteinases.

Macrophages from GCA patients have been functionally
compared to those of another vasculopathy, namely coronary
artery disease (CAD). CAD is now accepted as an inflammatory
blood vessel condition that progresses over decades and causes
the formation of atherosclerotic plaques in the subendothelial
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space of susceptible arteries (29). In the atherosclerotic plaque,
highly activated macrophages take up deposited lipoproteins and
modified lipids to transform into the pathognomonic foam cells.
Giant cell formation occurs in just a subset of patients with
atherosclerotic lesions. Thus, in GCA and CAD macrophages
perform fundamentally different functions. Comparison of
monocytes and monocyte-derived macrophages from GCA and
CAD patients has demonstrated that these myeloid cells have
distinct molecular signatures. CAD macrophages are prone to
produce high amounts of inflammatory cytokines, such as IL-13
and IL-6, even more so than GCA macrophages (30). Another
distinguishing features between the two diseases is the expression
of the co-inhibitory ligand PD-L1, which is distinctly low in
GCA, but high in CAD (30). Notably, macrophages from both
patient populations abundantly produced chemokines (CXCL9,
CXCL10), supporting a role in cell recruitment and assembly of
the vessel wall lesions (Figure 1B). Metabolic conditioning was
identified as the underlying mechanism. While CAD
macrophages were programmed to uptake and utilize glucose,
this was not the case for GCA macrophages. Addiction to glucose
is one of the driving forces in CAD macrophages, dictating the
dynamics of the glycolytic pathway, the setting of mitochondrial
activity, the production of reactive oxygen species and ultimately,
the secretion of IL-6 (31). The low glycolytic activity in GCA
monocytes may be part of a broader metabolic program, as
fasting blood glucose, cholesterol and triglyceride levels have
been described to be negatively associated with the development
of giant cell arteritis (32).

In summary, “trained immunity” in GCA leads to monocyte
instruction, changing their metabolic circuitry and their functional
differentiation. The concept of “trained immunity” is well
understood in non-vasculitic cardiovascular disease (33-36) and
relates to the concept that monocytes, macrophages, dendritic cells,
and NK cells can be imprinted by encountering inflammatory
stimuli, undergoing a priming process that changes their response
to subsequent challenges. It is now recognized that the “training” is
imprinted into the epigenome. In GCA monocytes, a lead
abnormality is the high expression of MMP-9, a protease that
takes center stage when inflammatory cells leave the blood stream
and enter the “forbidden territory” of the vessel wall. Also affected is
the expression of co-inhibitory ligands and the commitment to
cytokine production. The training of monocytes has profound
consequences for their later life as macrophages. They continue to
produce MMP-9, now enabling them to destroy the tissue
microenvironment. Functional analysis of lesional macrophages
has emphasized their tissue repair capabilities, including the
production of growth and angiogenesis factor, all promoting the
maladaptive remodeling process in the GCA-affected artery
(Figure 2).

Vascular Dendritic Cells (DC) as
Presenters of Vasculitogenic Antigens

DCs are part of the innate immune system and are indispensable
for the induction of adaptive immune responses. Specifically,
DCs are needed to present antigen for T cell priming and are
thought to be the principal initiators of T cell immunity (37, 38).

Besides their role in presenting exogenous antigens, such as
microbial antigens and allergens, DCs are also instrumental in
the handling of self-antigens and thus determine the fate of auto-
reactive T cells. In addition, activated DCs are an important
source of cytokines and chemokines, orchestrating the assembly
of inflammatory infiltrates. Finally, they finetune T cell activation
by providing both co-stimulatory and co-inhibitory signals for T
cells (37, 38). Critically involved in activating naive T cells, DCs
function in secondary lymphoid organs, such as lymph nodes
and the bone marrow. In the case of medium and large arteries,
they possess their own tissue residing DCs, so-called vasDCs (39,
40) (Figure 4). Such vasDCs are believed to have two disease
relevant functions in GCA; (a) guarding the vessel wall immune
privilege, possibly by providing tolerogenic signals, and (b)
presenting vasculitogenic antigens in the vessel wall infiltrates
(39, 40). Healthy temporal arteries possess vasDCs positioned at
the adventitia-media junction (Figure 4). In the inflamed artery,
DCs may move into other tissue niches to join macrophages in
presenting antigen to T cells that are distributed throughout the
vessel wall. vasDCs placed in the granulomatous infiltrates
produce chemokines, such as CCL19, 20, and 21, and strongly
express the co-stimulatory molecule CD86 (41-43) (Figure 5).
The disease relevance of the CD28-CD86 co-stimulatory
pathway was recently demonstrated in a study exploring
CD28-blocking antibodies (44). Lesional T cells were found to
be dependent on CD28-mediated co-stimulation, even more so
than normal control T cells. Blocking the CD28-CD86 receptor
ligand interaction had profound inhibitory effects on the
vasculitic process (44). Not only was co-stimulation relevant in
determining the strengths of T cell activation, it regulated the
amount of pro-inflammatory effector cytokines produced in the
vasculitic lesions. Most importantly, inflammation-induced
remodeling of the vessel wall, involving intimal hyperplasia
and neoangiogenesis, required crosslinking of CD28 by CD80/
CD86 (44). Taken together, by controlling in situ co-stimulatory
signals, vasDC ultimately shape several dimensions of the
vasculitic process (Figures 2 and 4).

The dynamics and intensities of T cell activation not only
depend on co-stimulation but are equally shaped by co-
inhibitory signals. In healthy arteries, vasDC express the
inhibitory ligand PD-L1, effectively dampening T cell
triggering. It is now recognized that a defect in this co-
inhibitory pathway is a hallmark of GCA (45). Specifically,
DC-Sign* vasDC in healthy temporal arteries not only express
CD80/CD86, but also PD-L1 (Figures 2 and 5). Crosslinking of
the PD-1 receptor on T cells may indeed be one of the
mechanisms through which vasDC protect the tissue niche and
interrupt in situ immune activation. In GCA, vasDC lack PD-L1,
suspending a negative feedback mechanism that halts
inappropriate T cell stimulation. The PD-L1%° phenotype is
shared amongst patient-derived DC and macrophages (30),
indicating a fundamental breakdown of this important
immune checkpoint. The lack of PD-L1 in inflamed arteries
does not explain why essentially all CD4" T cells in the lesions
are strongly positive for PD-1 (45). Possible explanations are that
under physiologic conditions negative signaling induced by
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FIGURE 4 | Innate Immune Cells in Giant Cell Arteritis. Tissue sections from temporal artery biopsies were stained for the dendritic cell (DC) marker DC-SIGN

(A) and the macrophage marker CD68 (B) and visualized by immunofluorescence imaging. Nuclei marked by DAPI. In the healthy artery, the autofluorescent lamina
elastica interna separates the media and intima. DC-SIGN* dendiritic cells are positioned at the adventitial-medial border. In the vasculitis-affected artery, DC-SIGN*
dendritic cells expand in the adventitia. CD68" macrophages are essentially undetectable in the healthy artery but occupy all wall layers of the GCA artery. Int, intima;
Med, media; Adv, adventitia. Scale Bar; 50 um.

T-cell co-stimulation T-cell co-inhibition

Healthy CD86 _ gm0 © Healthy

Enhanced T cell effector function Unopposed T cell effector function

FIGURE 5 | Abnormal T cell Activation in GCA. The intensity and duration of adaptive immunity depends on the availability of specific antigen, but also on a
mixture of positive (co-stimulatory) and negative (co-inhibitory) signals, that modulate the T cell receptor activation cascade. Patients with GCA have
abnormalities in the CD28 co-stimulatory pathway and in the co-inhibitory PD-1/PD-L1 pathway, resulting in sustained and unopposed activation of pathogenic
T cells. Under physiologic conditions, CD28 on T cells recognizes CD80/86 on antigen-presenting cells (e.g. dendritic cells; DC), prolonging and intensifying T
cell activation. Signaling through this pathway is intensified in GCA. Under physiologic conditions, PD-1 on T cells recognizes PD-L1 on antigen presenting cells
(e.g. macrophages; Mac), resulting in dampening of T cell activation. In GCA, PD-L1 is expressed at very low levels, disrupting this negative signal, and boosting
T cell effector functions.
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tissue-expressed PD-L1 prevents access of T cells to the tissue
niche and that this mechanism is defective in PD-L1' hosts.

The PD-1/PD-L1 immune checkpoint is a critical regulator of
immunity and is now one of the most important therapeutic targets
in cancer patients (46). PD-1/PD-L1 deficiency in GCA has two
clinically relevant consequences (47). First, excessive activity of this
checkpoint is linked to insufficient anti-tumor immune responses.
Tumors aberrantly express PD-L1 and utilize this mechanism to
escape from anti-tumor T cell immunity. The defect of PD-1/PD-
L1 signaling in GCA and the excess of PD-1/PD-L1 signaling in
cancer patients raises the question whether GCA patients have a
natural protection from malignancy. Epidemiological studies
support the concept that GCA patients die from cancer less than
expected (48, 49). If the broken PD-1/PD-L1 checkpoint has
beneficial effects for GCA patients, then therapeutic efforts to
restore the checkpoint could be effective to inhibit vasculitis
while enhancing the risk for malignancy. This is not a trivial
consideration, given the advanced age and the age-related cancer
risk in patients with GCA. Vice versa, weakening the PD-1/PD-L1
checkpoint is the therapeutic goal in the widespread application of
checkpoint inhibitors in patients with malignancies. This
therapeutic intervention should place the host at risk to develop
vasculitis. In support of this concept, numerous case reports have
described aggressive aortitis and vasculitis in checkpoint inhibitor
treated individuals (50, 51). In a human artery-SCID mouse
chimeric system, in which human arteries are engrafted into
NSG mice and vasculitis is induced by adoptive transfer of
peripheral blood mononuclear cells of GCA patients, injection of
a PD-1 blocking antibody produced aggressive vessel wall
inflammation and vascular remodeling (45). More importantly,
healthy mononuclear cells were able to induce vasculitis, if the
checkpoint was blocked. This mimics conditions in checkpoint
inhibitor treated cancer patients and emphasizes the risk of such
cancer patients to come down with iatrogenic vasculitis.

Recent data suggest that a second immunoinhibitory
checkpoint involving V-domain Immuno-globulin-containing
suppressor of T cell activation (VISTA) may be less functional
in GCA (52). Hid Cadina et al. have reported that VISTA+ Th
cells are reduced in the blood of GCA patients but enriched in the
inflamed temporal arteries.

Taken together, DC and other antigen-presenting cells make
critical contributions to GCA, not only by in situ antigen
presentation, but by distorting the threshold settings for T cell
activation (Figures 2, 4 and 5). GCA DC drive vasculitis by
expressing CD86, amplifying disease-relevant enhancement of T
cell immunity. At the same time, they fail to dampen lesional T
cells by lacking PD-L1 on their surface. PD-L1'° DC allow tissue
entrance and persistence of highly activated effector T cells. The
disbalance between robust co-stimulation and ineffective co-
inhibition sets the stage for uncontrolled T cell immunity, with
all the sequelae of a maladaptive response-to-injury. This
scenario also presents an untapped therapeutic opportunity:
treating GCA by interrupting excess co-stimulation or by
reinstating co-inhibition (Figure 5). To which degree DC
participate in the extravascular disease pathways of GCA is
currently unknown. It is possible that DC in the circulation or

in non-vascular tissues also have disease relevance and that they
collude with abnormal T cells to render individuals susceptible to
vasculitis (40).

Other Innate Cell Types

Other types of innate immune cells, such as neutrophils,
eosinophils and NK cells are typically scarce or absent in the
vasculitic lesions of GCA (53). Indeed, eosinophilic
inflammation should prompt the search for an alternative
diagnosis, such as eosinophilic granulomatosis with
polyangiitis. In rare cases, temporal arteritis can be attributed
to an alternative vasculitis and atypical features on histologic
examination are often the first clue (54, 55). Neutrophils may
have a role in extravascular GCA. In the peripheral blood of GCA
patients, decrease of suppressor neutrophils has been reported to
accelerate effector T cell proliferation (56). GCA shares with
other vasculitides the presence of immature neutrophils in the
peripheral blood, which tightly correlated with inflammatory
activity. In an in vitro co-culture system, such immature
neutrophils produced abundant reactive oxygen species that
caused protein damage and injured the endothelial barrier
permeability (57). Mast cells may play an active role in vessel
wall inflammation and have been described as one of the cellular
sources of VEGF in temporal arteritis lesions (58).

ADAPTIVE IMMUNITY IN GCA

GCA is an HLA class II associated disease and the dominant cell
type in the vasculitic lesions are CD4" T cells, moving the
adaptive immune system into center stage (Figures 1 and 3).
Immunophenotyping of inflamed arteries demonstrates that
CD4" T cells outnumber CD8" T cells (Figures 1 and 3), a
feature which distinguishes GCA and Takayasu arteritis (9). In
line with the observation that HLA class I molecules seem to be
important as disease risk markers in Takayasu arteritis, the
cytotoxic functions of CD8" T cells have been implicated as a
relevant disease mechanism in this vasculitis (9). However,
recent data have assigned a disease relevant role to CD8" T
cells in the periphery. Specifically, CD8" T cells with regulatory
function, CD8" Treg cells, are defective in GCA patients, failing
to dampen CD4" T cell function in vasculitis (59, 60).

Granulomatous infiltrates are typically composed of CD4" T
cells and macrophages and contain few B cells (61). Accordingly,
autoantibodies seem to play no role in GCA. Cellular
accumulations reminiscent of tertiary lymphoid aggregates,
including B cells and plasma cells, have been seen in GCA
affected aortic tissues (62). Whether they have functional
relevance remains to be determined, but B cells are not
recognized as drivers of the typical granulomatous reaction
causing GCA. It is to be expected that systemic inflammation
and the acute phase reaction typical for extravascular GCA leads
to shifts in the distribution of circulating B cells (63). However,
the biological relevance is unknown.

Sharing of T cell receptor sequences in independent tissues
sites affected by GCA has nurtured the concept that antigen
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recognition is central in the emergence of the granulomatous
lesions (64, 65). The nature of a causative antigen, however, has
remained speculative. A tempting speculation is the proposal to
implicate viral infections. Elderly individuals harbor a spectrum
of chronic viral infections and the immune aging process makes
them more susceptible to reactivation (66). Thus, it has been
proposed that varicella zoster may be the underlying trigger of
GCA, but carefully designed studies have refuted this theory (67—
69). Recent observations that cancer patients treated with
immune checkpoint inhibitors are at high risk to develop
therapy-induced vasculitis (9, 50, 51) have emphasized the role
of antigen-nonspecific mechanisms. If unleashed, polyclonal T
cell populations appear to be able to promote vasculitis.

At the current stage of knowledge, T cells in GCA patients
make several mistakes that culminate in loss of tolerance and the
establishment of chronic-persistent inflammatory infiltrates in
the wall of susceptible arteries.

Peripheral CD4+ T Cells in GCA Patients

The hallmark abnormality in circulating CD4" T cells from GCA
patients is the aberrant expression of NOTCHI (24, 70) (Figure
2). NOTCHI is an oncogene, most notably, NOTCHI mutations
are present in the majority of patients with T cell acute
lymphocytic leukemia (71). NOTCH signaling controls cell fate
decisions and is needed for the specification of T cells; directs cell
proliferation, differentiation, and cell death (72, 73). In GCA,

NOTCHI1 expression on circulating CD4" T cells has been
implicated in enabling their transition from the blood into the
tissue, representing a major tolerance defect in this disease.
CD4"'NOTCHI1" T cells from GCA patients recognize
aberrantly expressed JAGGED1 on the surface of vasa vasorum
endothelial cells (24), facilitating their invasion into the vessel
wall (Figure 2). Targeting the NOTCH1-JAGGEDI1 interaction
was sufficient to suppress vasculitic activity (24), placing this
receptor-ligand interaction at the top of GCA pathophysiology.
A prerequisite for the transmigration from the capillary lumen
into the perivascular space is the action of MMP-9-expressing
monocytes, which first must digest the basal lamina to pave the
way for T cells (14) (Figure 2). In the absence of monocytes or
macrophages, GCA T cells fail to invade into 3D extracellular
matrix. The dependence of T cells on pathogenic monocytes/
macrophages exemplifies the co-occurrence of abnormalities in
the innate and adaptive immune system steering inflammatory
cells into an immunoprivileged tissue site.

Tissue-Residing CD4™ T Cells in GCA
Lesions

Lesional CD4" T cells in the vasculitic wall have two major
abnormalities; they are pluripotent effector cells, supporting a
multitude of inflammatory effector pathways and they can self-
renew to sustain the wall infiltrates and turn acute vasculitis into
chronic-persistent disease (Figures 5 and 6).

T cell-EC interaction
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FIGURE 6 | Pathogenic role of T cells in GCA. The shift from protective to pathogenic immunity in GCA involves multiple processes. Four major abnormalities have
been molecularly defined (1). In GCA patients, CD4+ T cells aberrantly express NOTCH1, which facilitates T cell-endothelial communication, tissue entry and
uncontrolled T cell expansion (2). Excess CD28-dependent signaling imprints a metabolic signature that sustains pro-inflammatory T cells (3). Such T cells supply a
multitude of effector cytokine to stimulate macrophages and vascular cells (4). A critical feature of disease-promoting CD4* T cells is the ability to establish tissue
residency in the vessel wall. Tissue-resident memory CD4" T cells render the lesion autonomous and ensure chronicity of disease.
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The vast majority of lesion-residing CD4" T cells are strongly
positive for PD-1 (45) (Figure 5). On human T cells, PD-1 is an
activation marker, but more importantly, has been implicated in
tumor evasion mechanisms and in exhaustion of chronically
stimulated T cells (74). CD4" T cells trapped in the arterial wall
are not exhausted, nor are they senescent. Rather, their
accumulation is a consequence of insufficiency in PD-L1
expression (see above). Both, vascular DC, and macrophages
are distinctly low for PD-LI, disrupting a negative signal to
PD-1" T cells. The entry of T cells into the wall and
the accumulation/retention of T cells in the wall are both
dependent on PD-L1 (45).

Besides expressing surface PD-1, lesional CD4" T cells are
polyfunctional (45) (Figure 6). A multitude of T cell effector
cytokines have been mapped to the lesions, including IL-2, IFN-
v, IL-17, IL-21, IL-9, IL-22, and GM-CSF (Figure 6). It has not
been clarified whether the polyfunctionality occurs on the level of
individual cells or the T cell population. IFN-y-producing CD4"
T cells represent the dominant T cell subset in inflamed temporal
arteries (11, 75). IFN-y-producing CD4" T cells are expanded in
the peripheral blood of GCA patients and are resistant to
corticosteroid therapy (75). IFN-y has all the characteristics of
a critical effector cytokine, as it activates macrophages, DC, and
endothelial cells. Interestingly, IFN-y" CD4" T cells map
preferentially to the adventitia of GCA-affected temporal
arteries (76). How they guide the activity of the granulomatous
infiltrates needs to be clarified. However, the geographical
distance to migrating myofibroblasts may be important, as
IFN-vis considered to inhibit proliferation of mesenchymal cells.

In contrast to their resistance to corticosteroids, IFN-y" T cells are
dependent on Janus kinase (JAK) and signal transducer and activator
of transcription (STAT) signaling and this dependence creates a
vulnerability that can be therapeutically exploited. Inhibiting the
JAK/STAT signaling pathway with a small molecule inhibitor
targeting JAK1/3 is highly effective in suppressing vasculitis,
including the IFN-y-producing CD4" T cells (77). These data have
raised the possibility that IFN-y production is part of a feed forward
loop, as IFN type II is a potent inducer of JAK/STAT signaling (78).
Tissue transcriptomic studies have indicated that STAT target genes
are strongly upregulated in the lesions, including target genes of IFN
type 1 and type 2.

IFN-y-producing CD4" T cells are accompanied by subsets of
lesional T cells that produce IL-17, IL-21, and IL-9 (79, 80).
Likely, each of these T cell lineages makes a specialized
contribution to the disease process, but mechanistic studies
detailing this are not yet available. IL-17" T cells in GCA
lesions have been reported to be highly sensitive to
corticosteroid therapy, disappearing upon initiation of this
immunosuppressant (75) and are thus different from IFN-y" T
cells, that persist over prolonged periods despite steroid therapy
(75). Th17 cells may thus be easily controllable and may not have
much value as a therapeutic target.

IL-21-producing CD4" T cells are abundant in the tissue
lesions and in the blood of patients with GCA and appears to be
sensitive to glucocorticoid treatment (79). IL-21 is reported to
play a role in supporting Thl and Th17 responses and

suppressing FOXP3" T regulatory cells in GCA (79), but the
precise pathogenic role of IL-21 remains unclear.

IL-9 is a pleiotropic cytokine, with the potential to drive both
pro-inflammatory and anti-inflammatory responses (81). High
expression of IL-9 was reported in temporal artery biopsies (80),
but how this cytokine influences vasculitic immune responses
is unknown.

IL-22 is believed to mediate the crosstalk between immune
cells and stromal cells (82). IL-22 has been encountered in
temporal artery biopsies and is strongly linked to vasculitis
(83). Little is known so far how stromal cells are involved in
the disease process, but they are ultimately important in wall
remodeling. Whether IL-22-dependent immunity is relevant in
the maladaptive wound healing response awaits clarification.

The T cell effector cytokine GM-CSF is considered an
important regulator of macrophages (84) and could provide
effective T cell-macrophage communication in the
granulomatous infiltrates (84). Indeed, macrophages activated
by GM-CSF acquire numerous effector functions, enabling them
to amplify tissue inflammation. GM-CSF is the product of a
specialized T cell subset that has high disease relevance in
multiple sclerosis (85, 86).

Tissue-Resident Memory T Cells in the
Inflamed Artery

Despite the physiological ability of host immune protection by
trafficking of memory T cells around the body, recent studies have
revealed that specialization of pathogenic memory T cells into
unique tissue-resident subsets may drive regional autoimmunity
(87, 88). Long-lasting immunity causing temporal artery damage is
mediated by tissue resident memory T cells (44, 77). Data from re-
engraftment studies have revealed that vasculitis-causing T  cells
acquire tissue residency and build autonomous, self-sufficient
inflammatory lesions (77), where repopulation of inflammatory
CD4" T cells is maintained from tissue-resident memory
populations (Figure 6). Further, metabolic analysis of tissue
resident memory T cells in the vasculitic wall lesions has yielded
evidence for high glycolytic activity resulting from CD28-dependent
signals and fulfilling the energy demand of repopulating effector T
cells (44). Those tissue-residing T cells are polyfunctional and steroid
therapy resistant. In fact, a study analyzing temporal artery biopsies
before and up to 12 months after steroid therapy found that half of
GCA patients still have ongoing vessel wall inflammation after one
year of immunosuppression (13).

CD8" T Cells in GCA
Early studies examining frequencies of circulating CD8" T cells
in GCA gave rise to the hypothesis that a reduction of CD8" T
cells is typical for active untreated GCA (89). This hypothesis was
called into question by later studies (90). A recent manuscript
described altered gene expression profiles in blood CD4 and in
CD8 T cells in a cohort of 16 GCA patients that were monitored
by longitudinal expression profiling (91).

A clue towards an entirely new disease mechanism in GCA CD8
T cells has come from studying the T cell aging process. T cell aging
leads to a maladaptive response that directly contributes to chronic
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TABLE 2 | Potential therapeutic targets in giant cell arteritis.

Targets

mTOR signaling

VEGF signaling

Pathogenic role in vessel wall inflammation

T cell proliferation and survival;

Metabolic control of T cell effector differentiation
and of T cell functions;

Endothelial cell homeostasis;

Maintenance of vasa vasora;

Pathogenic wall vascularization;

Induction of co-stimulatory ligands (Jagged1);

Drugs

Rapamycin

Bevacizumab

NOTCH signaling T cell fate decisions;

T cell co-stimulation;

DAPT

T cell clonal expansion and survival;

T cell tissue invasion;

Trafficking of intracellular vesicles;

JAK-STAT signaling
CD28-AKT signaling

PD-1/PD-L1 signaling Deficient co-inhibition;

Failure of negative signaling;

Type | and type Il IFN-dependent responses;

Uncontrolled co-stimulation;
Metabolic programming of effector T cells;

Tofacitinib
Baricitinib
Abatacept
Anti-CD28
PD-L1 Fc
PD1 agonists

Inappropriate T cell expansion, survival and effector functions;

MMP-9 production

Destruction of the arterial wall tissue barrier;

MMP-9 blockade

Structural damage to the vessel wall;

inflammatory disease (92). CD8" T cells are well-known to age
faster than CD4" T cells and a hallmark of T cell aging is the loss of
naive CD8" T cells (93). In fact, older individuals fail to generate
CD8" CCR7" T regulatory cells, rendering them susceptible to
unopposed immune reactivity (59). Age-dependent decline of
protective immunity and rise of dysfunctional immunity may be
one of the reasons that GCA occurs exclusively in individuals older
than 50 years of age. Indeed, loss-of-function of protective CD8"
Treg cells is associated with aging (59). Mechanistically, CD8" T
regulatory cells suppress activation and expansion of CD4" T cells
by releasing exosomes that contain preassembled NOX2 membrane
clusters which are taken up by CD4" T cells (59). Defective CD8" T
regulatory cells in GCA patients lose the ability to package NADPH
oxidase into immunosuppressive exosomes. A recent study has
identified the molecular mechanism leading to CD8" Treg cell
failure in GCA patients (60). The inability of GCA CD8" Treg cells
to release NOX2-containg, immunosuppressive exosomes was
mechanistically connected to abnormalities in endosomal
trafficking. Specifically, due to aberrant NOTCH4 signaling, GCA
CD8" Treg cells changed the profile of RAB GTPases, which
promoted NOX2 trapping in an intracellular compartment of
early and recycling endosomes (60).

These studies have identified a novel molecular abnormality
linking T cell aging, Treg cell failure and susceptibility to
vasculitis. Implicating RAB GTPases and intracellular vesicular
trafficking in disease pathogenesis opens new conceptual and
therapeutic opportunities.

FROM BENCH TO BEDSIDE: POTENTIAL
THERAPEUTIC TARGETS IN GCA

Glucocorticoids (GC) remain the standard therapy, possibly because
of their untargeted immunosuppression and the multiplicity of

pathogenic pathways contributing to GCA (Figures 2, 5, 6). GC
are highly effective in suppressing extravascular GCA, flattening
the acute phase response, clinical symptoms, and abnormal
laboratory parameters (94). To examine the remission-inducing
potential for the vessel wall component of the disease, we have
utilized a dual-biopsy approach. 40 patients with a positive temporal
artery biopsy received standard doses of prednisone and were re-
biopsied on the collateral side at 3, 6, 9 or 12 months (13). About
50% of patients had active vasculitis after 12 months of GC therapy
(13). Patients with a positive second biopsy had excellent clinical
and laboratory responses and were clinically indistinguishable from
patients in whom the second biopsy was negative. Thus, GC therapy
is highly efficient for extravascular GCA and insufficiently treats
vascular GCA. Also, clinical assessment and monitoring of
sedimentation rate and CRP are not able to assess the
inflammatory load in the vessel wall. Overall, new therapeutic
approaches are needed to treat GCA, probably in form of
combination therapy. The resistance of the vascular component,
likely a consequence of the ability of the disease lesions to become
autonomous, emphasizes the need for more efficient
immunosuppression that can be given over extended time periods
in elderly individuals. New therapeutic strategies need to go hand-
in-hand with the development of diagnostic tools that allow
quantification of vessel wall inflammation.

Tocilizumab, an anti-IL-6 receptor antibody, has shown
efficacy in suppressing ESR and CRP, helping to spare GC
dosing to manage the acute phase response (95). However, it
remains unknown whether inhibiting IL-6 signaling has
beneficial effects on vessel wall inflammation itself. In fact,
discrepancies between vascular and extravascular inflammation
in large vessel vasculitis has been increasingly recognized and
represents the most challenging problem in the management of
this autoimmune vasculopathy (96). Disease flares are frequently
observed even in GCA patients treated with tocilizumab plus GC
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that have reached normal acute-phase reactant levels. Further,
disease progression of local vessel wall inflammation has been
reported in patients with Takayasu arteritis on tocilizumab
treatment although they were clinically asymptomatic and had
normal laboratory findings (97-99). Patients with Kawasaki
disease on tocilizumab treatment have been reported to
develop giant coronary aneurysms despite clinical and
laboratory improvements (100). These data are in line with the
concept that correcting downstream inflammatory parameters is
insufficient to reset upstream abnormalities in the immune
system of the patients. Here, progress made in understanding
the immune signaling networks underlying vascular
inflammation needs to guide the exploration of novel
therapeutic interventions, including those intended to control
the inflammatory attack of the vessel wall. One possible approach
is to target key effector cells in the vascular lesions, e.g.
macrophages. Currently ongoing trials with the GM-CSF
receptor blocker mavrilimumab are designed to disrupt the
inappropriate macrophage activation in the lesions. An
alternative approach is to interfere with disease relevant
signaling pathways, which may be shared by several cell
populations relevant in the disease process.

Here, we have summarized the signaling pathways that are
now understood to contribute to the immunopathogenesis of
GCA and may serve as therapeutic targets (Table 2).

mTOR Signaling

The serine/threonine kinase mTOR (mechanistic target of
rapamycin) is designed to integrate environmental signals to
coordinate cellular response patterns. mTOR is a critical
signaling hub in all cell types relevant for vasculitis, including
T cells, which rely on mTOR activity for their development,
differentiation functional fitness. mTOR signaling guides effector
cell fate decisions, a fundamental abnormality in T cells from
GCA patients. mTOR has also been implicated in controlling the
suppressive activity of regulatory T cells and regulates the
process of T cell exhaustion. Aberrant mTOR activation is a
hallmark abnormality in CD4" T cells from GCA patients, both
in circulating as well as lesional T cells (24, 101). mTOR signaling
may also be a driving force in endothelial cells of microvessels
that provide access to the vessel wall and function as partners of
effector T cells (101). mTOR functions as a sensor of nutrient
resources, particularly amino acid supply (102). GCA T cells
utilize a highly activated glycolytic program to support their
effector functions and sustain their self-replicative potential (44).
Inhibiting mTOR signaling may therefore disrupt an array of
disease-relevant T cell functions. The wall remodeling process is
dependent on cellular growth and expansion, with multiple cell
types involved. mTOR activity may represent a common
denominator driving cellular activity of diverse pathogenic
population and as such represent a unifying target to
treat vasculitis.

VEGF-NOTCH Signaling

Serum VEGEF levels are highly elevated in patients with GCA,
indicating the critical role of angiogenesis and endothelial cell
function in this autoimmune vasculitis (21, 24). Endothelial cells

lining the vasa vasorum are the gate keeper of the vessel wall
and this barrier has been overcome to enter the tissue niche
(8). Also, the remodeling process is particurly dependent on
neoangiogenesis within the wall layers. Macrophages,
multinucleated giant cells, and mast cells have been identified
as a cellular source of VEGF in GCA. VEGF functions not only as
an angiogenic factor but also activates endothelial cells,
upregulating Jaggedl expression on adventitial vasa vasorum
endothelial cells, thus turning the EC into an engaged partner to
interact with NOTCH 1 receptor-expressing T cells (24). The
surplus of VEGF promotes endothelial cell proliferation and
sustains formation of new capillaries (103, 104). Anti-VEGF
treatment is widely applied in the therapy of malignant tumors
and has become a promising treatment to inhibit aberrant
neovascularization in ocular disease (105). The NOTCH
signaling pathway has been investigated as a therapeutic target
to block proliferative activity in malignant cells (106). Here, GCA
displays abnormalities that are shared between cancer and
autoimmunity, encouraging the exploration of anti-angiogenic
and anti-proliferative interventions in GCA. Stopping
angiogenesis may have benefit in dampening wall remodeling.
Inhibiting NOTCH signaling may prevent aberrant cellular
activation for multiple disease relevant cell populations.

JAK-STAT Signaling

Transcriptomic analysis has shed light on ongoing JAK-STAT
signaling in inflamed temporal arteries, implicating mostly Type
I and Type II IFN-dependent responses (77). Type II IFN-
regulated inflammation is in line with the critical position of
IFN-y in disease pathogenesis. Little is known about a potential
role of IEN type I. Notably, upregulation of Type I and Type II
IFN as upstream inducers of pathogenic immunity has also been
reported for Takayasu arteritis (107). We have published a proof-
of-principle study showing that treatment with tofacitinib, a
selective JAK1 and JAK3 inhibitor, is highly efficient in
suppressing vessel wall inflammation (77). Unexpectedly,
interfering with JAK-STAT signaling was highly successful in
interrupting both intimal hyperplasia and wall capillarization in
the human artery -SCID chimera model (77). Recently reports
suggest that tofacitinib may have a place in managing patients
with refractory Takayasu arteritis (108). These data support the
concept that autoimmunity in the wall of large arteries relies
disproportionally on JAK-STAT signaling and that therapeutic
opportunities lie in dampening excessive activity in these
fundamental signaling pathways.

T-Cell Co-stimulation and Co-inhibition

GCA is a granulomatous vasculitis, defining T cells and
macrophages as the key pathogenic drivers. The intensity and
duration of T cell activation is not only dependent on antigen
recognition, but equally important are co-stimulatory and co-
inhibitory signals. Recent data support a role for CD28-mediated
co-stimulation in several domains of the disease process,
including T cell expansion, survival, and metabolic fitness.
Randomized controlled trials have reported the efficacy and
safety of abatacept, CTLA-4Ig, that blocks T cell co-stimulation
in patients with GCA (109). However, these clinical trials have
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focused on assessing inflammatory markers (ESR, CRP) and
clinical relapses, which all reflect activity in the extravascular arm
of GCA. Data are needed to understand whether blocking CD28
co-stimulation has beneficial effects for chronicity of vascular
inflammation and the adverse remodeling process of the vascular
wall. Proof-of-principle studies in humanized mice are
encouraging, emphasizing the dependence of wall
inflammation on CD28-mediated co-stimulatory input (44).

Under physiologic conditions, co-stimulatory signals are
offset by co-inhibitory signaling. Amongst the inhibitory
pathways, the PD-1/PD-L1 pathway is best known due to the
aberrant expression of PD-L1 on tumor cells, which paralyses
anti-tumor T cell responses. The PD-1/PD-L1 pathway is
deficient in GCA due to the low PD-L1 expression on the
patients’ dendritic cells and macrophages (45). Numerous
therapeutic antibodies are in use to disrupt PD-1/PD-L1
signaling in cancer patients, but so far, no therapeutics are
available to strengthen PD-1 signaling. Options include
agonistic anti-PD-1 antibodies, transferring negative signals
into T cells or replacing the lacking PD-L1 with soluble PD-L1
fused to an Fc domain.

Excess Production of the
Metalloproteinase MMP-9

Breakdown of the basal lamina, enabling the transition of
macrophages and T cells out of the blood stream into the
extracellular space of the vessel wall, is an early pathogenic
event in GCA and depends on MMP-9-mediating digestion of
the protective basal membrane (14). In a preclinical model
system, treatment with an antibody blocking MMP9 activity
was sufficient to halt vasculitis and prevent vessel wall
remodeling (14). An appealing aspect of targeting MMP-9 lies
in the potential to stop invasion of the vessel wall while
protecting the immunocompetence of the host. MMP-9 was
detected in three cell populations: monocytes, macrophages,
and multinucleated giant cells. Interfering with the activity of
MMP-9 would thus provide opportunities to target innate
immunity in GCA, while preserving adaptive immunity. Also,
MMP-9 participates in very early steps of autoimmune vasculitis
and may be able to terminate invasion of the artery. At the same
time, MMP-9 is a key molecule in the destruction of elastic
membranes and may be particurly important in complication of
GCA aortitis, such as wall dissection and aneurysm formation
(14). Finally, MMP-9 blocking agents may be best placed in
combination therapies that use a two-pronged approach to have
an impact on the complex pathogenesis of GCA.

IL-12/IL-23 Signaling

A hallmark of GCA is the recruitment and retention of highly
differentiated effector T cells that become part of the granulomas
(Figure 5). The differentiation process depends upon lineage-
inducing cytokines, such as IL-12 and IL-23, which are major
regulators of T cell fate. IL-12 and IL-23 have been implicated in
promoting Thl and Th17 lineage commitment in both GCA and
Takayasu arteritis (75, 110). In situ IL-12 and IL-23 heterodimers
have been reported in temporal arteritis lesions (111). In

addition, genome-wide association studies have categorized IL-
12B as a susceptibility gene for Takayasu arteritis (112, 113).
Ustekinumab, a monoclonal antibody that inhibits both IL-12
and IL-23 signaling by binding to the common p40 subunit, has
been tested in patients with GCA and Takayasu arteritis (114,
115). A prospective, open-label trial of ustekinumab in 13
patients with active new-onset or relapsing GCA was
prematurely closed because patients could not reach
prednisone-free remission (116). Blocking IL-12/IL-23 should
interfere with the differentiation program of naive into memory/
effector T cells, a process that may precede the onset of vasculitis.
Given the autonomy of the vascular lesions (see above tissue-
resident memory T cells), interfering with the IL-12/IL-23
pathway may need to be combined with blocking the primary
seeding of the vessel wall.

CONCLUSIONS

Autoimmune disease infrequently targets arteries, but
autoimmune vasculitis is a dangerous disease due to the high
potential for life-threatening complications. Large arteries, such
as the aorta, respond to autoimmune attack with loss of wall
integrity, clinically presenting as dissection, aneurysm formation
of rupture (Figure 3). In medium arteries, wall inflammation
results in a maladaptive remodeling process that occludes the
lumen and causes tissue ischemia (Figure 1). The pathologic
lesion is a granulomatous reaction, often with formation of
multinucleated giant cells (Figures 1 and 3). The molecular
signature of disease-relevant monocytes and macrophages
includes the aberrant production of the metalloproteinase
MMP-9 and the selective loss-of-function of the inhibitory
ligand PD-L1. In the vasculitic lesions, macrophages are critical
effector cells, supplying cytokines, metalloproteinases and
angiogenic factors. The therapeutic targeting of pathogenic
macrophage functions is only superficially explored but holds
promise to provide entirely new strategies for anti-vasculitic
immunotherapy (Figure 2).

As documented by the granulomatous nature of autoimmune
vasculitis, GCA is ultimately a disease of misdirected adaptive
immunity. The master regulators of the faulty immune response
are CD4" T cells that enter a protected tissue niche, take tissue
residence, gain autonomy, and differentiate into multiple classes
of differentiated effector T cells (Figure 6). Accordingly, the
vasculitic lesions are rich in a spectrum of effector cytokines,
including IL-2, IL-9, IL-17, IL-22, GM-CSF, IEN-Y, and IL-21.
Each of these effector cytokines contributes in its own right,
multiplying the pathogenic potential of T cell accumulations
forming within the layers of the arterial wall. The multiplicity of
effector T cell populations makes a single causative antigen
highly unlikely.

The molecular signature of pathogenic CD4" T cells in GCA
includes the aberrant expression of the NOTCH1 receptor, and
the reliance on CD28 costimulatory signaling unopposed by PD-
1 inhibitory signaling (Figures 2 and 6). GCA patients have
metabolically active CD4" T cells with persistent mTORC1
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activation. These T cells are powerful drivers of pathogenic
cascades that finally lead to wall destruction or to intimal
hyperplasia and luminal occlusion. The complexity of GCA
pathogenesis offers multiple intersection points that should
allow to broaden the diagnostic and therapeutic approach to
this difficult-to-manage autoimmune disease (Figure 6; Table2).
A major hurdle lies in the split of the disease process into an
extravascular and a vascular component which are at least to a
large extent independent of each other. Extravascular and
vascular GCA follow different trajectories, relate to different
pathogenic mechanisms and ultimately, require different
diagnostic and therapeutic schemes.

Several unanswered questions remain. How does the aging
process of the vessel wall and the immune system conjoin to
render the host susceptible to GCA? How does the tissue
microenvironment create the stringent tissue tropism of this
autoimmune disease? Are there vasculitogenic antigens or is the
fundamental abnormality solely a defect in threshold setting of
CD4" T cells? How do CD4" T cells engage vascular stromal cells
to cause intimal hyperplasia? What is the underlying mechanism
driving T cell polyfunctionality? What are the pathogenic
processes underlying extravascular GCA? A new conceptual
approach to this autoimmune and autoinflammatory condition
will pave the way to the development of novel diagnostic and
therapeutic modalities.
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Coronavirus disease-19 (COVID-19) in children is usually mild but some are susceptible
to a Kawasaki disease (KD)-like multisystem inflammatory syndrome in children (MIS-C)
in the convalescent stage, posing a need to differentiate the phenotype, susceptibility,
autoimmunity, and immunotherapy between KD and MIS-C, particularly in the upcoming
mass vaccination of COVID-19. Patients with MIS-C are prone to gastrointestinal
symptoms, coagulopathy, and shock in addition to atypical KD syndrome with
fever, mucocutaneous lesions, lymphadenopathy, and/or cardiovascular events. MIS-C
manifests KD-like symptoms that alert physicians to early recognize and adopt the
KD treatment regimen for patients with MIS-C. MIS-C linked to COVID-19 teaches
us infection-associated autoimmune vasculitis and vice versa. Studies on genetic
susceptibility have identified certain human leukocyte antigen (HLA) locus and toll-like
receptor (TLR) associated with KD and/or COVID-19. Certain HLA subtypes, such as
HLA-DRB1 and HLA-MICA A4 are associated with KD. HLA-B*46:01 is proposed to
be the risk allele of severe COVID-19 infection, and blood group O type is a protective
factor of COVID-19. The autoimmune vasculitis of KD, KD shock syndrome (KDSS),
or MIS-C is mediated by a genetic variant of HLA, FcyR, and/or antibody-dependent
enhancement (ADE) resulting in hyperinfammation with T helper 17 (Th17)/Treg
imbalance with augmented Th17/Th1 mediators: interleukin-6 (IL-6), IL-10, inducible
protein-10 (IP-10), Interferon (IFNy), and IL-17A, and lower expression of Treg-signaling
molecules, FoxP3, and transforming growth factor (TGF-B). There are certain similarities
and differences in phenotypes, susceptibility, and pathogenesis of KD, KDSS, and
MIS-C, by which a physician can make early protection, prevention, and precision
treatment of the diseases. The evolution of immunotherapies for the diseases has shown
that intravenous immunoglobulin (IVIG) alone or combined with corticosteroids is the
standard treatment for KD, KDSS, and MIS-C. However, a certain portion of patients
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who revealed a treatment resistance to IVIG or IVIG plus corticosteroids, posing a need
to early identify the immunopathogenesis, to protect hosts with genetic susceptibility,
and to combat Th17/Treg imbalance by anti-cytokine or pro-Treg for reversal of
the hyperinflammation and IVIG resistance. Based on physiological and pathological
immunity of the diseases under genetic susceptibility and host milieu conditions, a
series of sequential regimens are provided to develop a so-called “Know thyself, enemy
(pathogen), and ever-victorious” strategy for the prevention and immunotherapy of KD

and/or MIS-C.

Keywords: Kawasaki disease, multisystem inflammatory syndrome in children, susceptibility, autoimmunity,
immunotherapy, coronavirus disease-19

PHENOTYPE OF KAWASAKI
DISEASE-LIKE MULTISYSTEM
INFLAMMATORY SYNDROME IN
CHILDREN DIFFERENT FROM KD

Coronavirus disease-19 (COVID-19) is usually mild in children
(1-3). However, 3-6 weeks after the disease or exposure
to persons with COVID-19, some children are affected by
multisystem inflammatory syndrome in children (MIS-C) (4-9).
Those with MIS-C frequently have gastrointestinal symptoms,
coagulopathy, and shock in addition to atypical Kawasaki
disease (KD) symptoms with intractable fever, mucocutaneous
lesions, lymphadenopathy, and/or cardiovascular events
(4-8), which alert physicians to early recognition and
adopt the KD treatment regimen for them (4-9). MIS-C
occurring 3-6 weeks after contracting COVID-19 suggests
that MIS-C is an infection-associated autoimmunity. The
life-threatening infection-associated hyperinflammatory
syndrome does not completely respond to
immunoglobulin (IVIG) therapy, which is a standard treatment
for KD. IVIG plus corticosteroids (4-8) or/and blockade of
interleukin-1 (IL-1) or IL-6 action (9) have been used to treat
patients with MIS-C. Now the questions remains, who are
susceptible, what is (are) the trigger(s), how to predict and
differentiate between KD and MIS-C, and which regimen is
the optimal therapy for KD or MIS-C based on mechanistic
infection immunity?

Kawasaki disease (KD) is a hyperinflammatory febrile
vasculitis in children below 5 years of age, with at least four of
the five clinical symptoms/signs: skin rashes (>90%), bilateral
conjunctival injection (>90%), oral mucosal changes (>90%),
peripheral extremity changes, and cervical lymphadenopathy (at
least 1.5cm in diameter), which might develop weeks after a
mild respiratory or gastrointestinal symptom (10-12). Those
with <4 criteria for KD are classified as incomplete or atypical
KD. Children in the extremes of the age spectrum (<6 months
old, or >5 years old) tend to have atypical KD associated with
delayed diagnosis and treatment (13, 14). Atypical presentation
of KD in children may be associated with a higher risk of
coronary arteritis because of a delayed diagnosis and treatment
(14, 15). KD is previously called mucocutaneous lymph node
syndrome by Tamisaku Kawasaki in 1974 (10), in regard to

intravenous

vasculitis including coronary arteritis and aneurysm (10-15).
The hyperinflammatory response of KD is related to infection,
autoimmunity, and/or genetic susceptibility (10-12). KD is more
prevalent in East Asia, such as Japan, China, Korea, and Taiwan
(10-12, 16-18). The incidence of KD varies from country to
country, e.g., 4.5 per 100,000 children younger than 5 years of age
in India, 25 per 100,000 in the USA, 56 per 100,000 in Taiwan,
and over 250 per 100,000 people in Japan (17, 18).

Recently, a surge in the prevalence of KD-like illness in
children has been found with the COVID-19 outbreak in
the USA, UK, France, Spain, and Italy (4-9, 19). COVID-
19 can cause acute respiratory distress syndrome (ARDS),
carditis, thrombosis, and/or shock in adults, but generally, induce
mild symptoms in infants and children (1-3). The COVID-
19-associated MIS-C occurs in older children and tends to
manifest with gastrointestinal symptoms, coagulopathy, and
shock in addition to the KD symptoms. Patients with KD
usually have thrombocytosis (10-15), but patients with MIS-
C have high, normal, or low platelets (4-9), which may
be related to coagulopathy or microangiopathy. The MIS-
C is similar to KD shock syndrome (KDSS) occurring in
relatively older children with atypical KD, showing shock,
thrombosis, and IVIG resistance (20-22). The immune response
in MIS-C is different from that in COVID-19. COVID-19
is contagious but MIS-C is not. MIS-C is due to post-
infection autoimmunity because it occurs 3-6 weeks after the
exposure to COVID-19 or persons with COVID-19. Patients
with MIS-C have a unique serology with anti-S antibodies
(IgG, IgM, and IgA) but not anti-N antibodies, in contrast,
patients with COVID-19 have both anti-S and anti-N antibodies
(23). The skin, gastrointestinal, and shock symptoms in MIS-
C are sometimes undifferentiated from those in toxic shock
syndrome (TSS), but the medical history is different because
TSS is related to superantigens of bacteria which are usually
associated with bacterial infections, surgical wound, or usage of
tampons (24).

The COVID-19-related MIS-C, representing atypical KD
syndrome in older children at a median age of 8 years (6, 9),
is prone to IVIG resistance and life-threatening cardiovascular
events, such as myocardial infarction, thrombosis, and/or shock
(4-9, 19), which is the most life-threatening morbidity in
children during the COVID-19 pandemic.
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SIMILARITIES AND DIFFERENCES AMONG
KD, KDSS, AND MIS-C

There are some overlapped and different symptoms and signs
among KD, KDSS, and MIS-C in regard to age, sex, race, severity,
and treatment responses (Table 1). Patients with KD usually have
vasculitis in mucocutaneous regions (>90% of eyes, lips, and/or
skin symptoms) and coronary arteritis, but few patients have
myocarditis (~5%) and shock (~7%) (10-12). In contrast, KDSS
frequently shows myocarditis, thrombosis, and shock (20-22).
The KDSS is associated with a higher rate of IVIG treatment
resistance, with older age and more serious hypotension,
skin rash, leukocytosis, neutrophilia, and hypoalbuminemia,
especially frequently found in Hispanics (20, 22). Patients with
MIS-C more frequently have a shock, myocarditis, thrombosis,
and gastrointestinal symptoms (4-9). Both patients with KDSS
and MIS-C more frequently require intensive care supports, such
as inotropic agents, ventilation support, anti-thrombotic therapy,
and additional anti-inflammatory therapies (4-9, 19-22). KD is
prevalent in Eastern Asia (10-12) but MIS-C is more frequently
found in Western countries, especially Afro-Caribbean (4-9, 19).
The mean age of patients with KD is 2.5 years, and that of
patients with KDSS is 3.7 years (22). In the largest cohort report
of 186 Afro-Caribbean patients with MIS-C, the median age is
8.3 years (9), showing prominent gastrointestinal symptoms and
thrombosis with variable platelet counts (high, normal, or low).
In fact, KDSS is a severe form of KD with hypotension,
coagulopathy, more cardiovascular involvement, and IVIG
resistance, initially recognized in 2009 (20). In a retrospective
analysis of 103 patients with KDSS, abnormalities in the coronary
arteries were 65% and the mortality rate was 6.8% (22). Before
the institution of IVIG therapy for KD, the KD mortality
and cardiac morbidity were 2 and 20%, respectively. After
the institution of the IVIG treatment for KD, the mortality
decreased below 0.1% and coronary artery aneurysm downed to
<4%. The MIS-C mortality ranges between 0 and 10% (average,
2%). KD is not contagious although many infections, such

as Staphylococcus aureus, streptococci, rhinovirus, coronavirus,
enterovirus, chlamydia, or Epstein-Barr (EB) virus had been
associated with KD. About 40% of patients with KD have reactive
skin erythema and/or scaling at the Bacillus Calmette-Guérin
(BCG) inoculation site (11), suggesting the autoreactive antigen
for KD may cross-react with the antigen of BCG, or the BCG
reactivation is a bystander of hyperinflammatory reaction of
KD. It is highly suspicious that the MIS-C is a severe KD-
like vasculitis mediated by a COVID-19-induced autoimmune
reaction. This is not the first time that human coronavirus
(HCoV) is correlated to KD. In 2005, Esper et al. (25) reported
that a novel human coronavirus called human coronavirus New
Haven (HCoV-NH) was associated with an outbreak of KD
in New Haven, showing RT-PCR detection of the positivity at
8/11 vs. 1/22 in a case-control study. This association of KD
with HCoV was not replicated in a study at Taiwan using 53
consecutive KD samples in which no detectable HCoV-NH or
HCoV-NL63 was observed in nasopharyngeal secretions (26).
They, however, did not measure the serum antibodies against
HCoV-NH or HCoV-NL63. These studies suggest that children
in Western countries are susceptible to coronavirus-related KD-
like vasculitis and children in Asian countries are susceptible to
non-coronavirus-related KD vasculitis.

In laboratory data as shown in Table 2, patients with KD
tend to have thrombocytosis, and patients with KDSS or MIS-
C tend to have varied platelet counts. C-reactive protein (CRP)
and procalcitonin levels are much higher in patients with KDSS
or MIS-C. The ferritin levels are also higher in patients with
KDSS or MIS-C. Lymphopenia is often prominent in patients
with COVID-19 or MIS-C (1-9, 19), but not in patients with
KD or KDSS (10-12, 20-22). Coagulopathy is also more often in
KDSS or MIS-C (9, 19-22, 27, 28). Ferritin (>500-1,000 ng/ml)
and D-dimer (>1,000-4,000 ng/ml) levels are much higher in
children with KDSS and MIS-C (9, 19-22, 27, 28). Cytokine
storm in the blood is quite similar between KD and MIS-
C, showing augmented hypercytokinemia in IL-6, IL-10, IL-17,
inducible protein-10 (IP-10) (CXCL10), and MCP-1 (CCL2),

TABLE 1 | Demographic data and phenotypes of Kawasaki disease (KD) and multisystem inflammatory syndrome in children (MIS-C).

Phenotypes KD COVID-19 Mild in Children MIS-C Multisystem
KD KDSS

Skin/mucosa (%) >90 >90 Few 50-60

CAL (%) 20 65 Rare 29-80

Myocarditis (%) 5 20 Rare 65

Shock (%) 7 100 Rare 60

Age range (Median) (year) 0.5-5.0 (2.0 2-12 (3.5) 0-18 2-18 (8.3)

Sex Male Female Both Both

Race Asian Hispanic All races Afro-Caribbean

IVIG resistance 15% 40% - 80% (add on steroid)

Fatality (%) <0.1 0-6.8 <0.1 0-10(2)

Pathogen Unknown Unknown SARS-CoV-2 SARS-CoV-2 associated

KDSS, Kawasaki disease shock syndrome; COVID-19, coronavirus disease-19; CAL, coronary artery aneurysm, IVIG, intravenous immunoglobulin; SARS-CoV-2, severe acute respiratory

syndrome coronavirus-2.
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TABLE 2 | Laboratory data of KD, COVID-19, and MIS-C.

Laboratory data Kawasaki disease COVID-19 mild in children MIS-C multisystem
KD KDSS

Platelets >350,000/pl High or Low Normal High, normal, low

CRP (mg/dl) 50-150 >100 <50 >100

Procalcitonin (ng/ml) >0.5 >1.0 <0.25 >1.0

Ferritin (ng/ml) 100-200 500 <100 >1,000

Lymphopenia Rare Rare Some Moderate

Coagulopathy No Some Rare Often

D-dimer (ng/ml) <1,000 >1,000 <1,000 >4,000

Cytokines IL-6, IL-17, IP-10 IL-6, INFy, IL-10 IL-6, IFNy, IL-8 IL-6, IP-10, IL-10

Anti-S antibody (%) NT NT 100 >80

KDSS, Kawasaki disease shock syndrome; IL, interleukin; IFN, Interferon; IF, inducible protein; NT, not tested.

especially higher IL-6 and IL-10 levels in KDSS (27), and IL-10
and TNF-a levels in MIS-C (28). Over 80% of patients with MIS-
C have detectable anti-S antibody against spike (S) antigen of
severe acute respiratory syndrome coronavirus-2 (SARS-Cov-2),
but less than one-third have detectable RNA of the virus (4-9).
Apparently, MIS-C is mediated by a skewed immune response
toward T helper 17 (Th17) reaction in the convalescent stage
of COVID-19.

IMMUNOPATHOGENESIS OF KD AND
MIS-C

A patient with a viral infection usually has normal or lower
leukocyte counts, and low CRP and procalcitonin levels unless
he/she also has superimposed bacterial infections. However,
regardless of whether COVID-19 is contagious or MIS-C is
not contagious, lymphopenia and elevated CRP are found in
both conditions in children. Apparently, SARS-CoV-2 induces
a proinflammatory reaction in the acute stage of COVID-19
and a hyperinflammatory reaction of vasculitis (4-9, 19) with
augmented levels of Th17 and Thl mediators in MIS-C (28).
There are many unsolved issues on the immunopathogenesis
of KD and MIS-C. It is debatable whether MIS-C and KD
are post-infectious hyperinflammation, autoinflammatory, or
autoimmune disorders (29-34). Current autoimmune concepts
have limitations to explain the pathogenesis of variant systemic
vasculitis syndrome, which is not contagious but infection-
associated hyperinflammation in the convalescent stage (29).
Inflammation-inducing substances, not only those originating
from pathogens, including toxins and pathogen-associated
molecular patterns (PAMPs), but also those originating from
injured or infected-host cells including pathogenic proteins,
pathogenic peptides, and damage-associated molecular patterns
(DAMPs), especially in intracellular pathogen infections,
such as virus, chlamydia, BCG, and SARS-CoV-2, may alter
the immune responses based on “the protein-homeostasis-
system hypothesis” (30). Given the fact that marked different
incidences in KD and MIS-C across the populations may be

explained by colonization states of pathogens (31), and an
imbalance of regulatory and cytotoxic SARS-CoV-2-reactive
CDA4T cells in COVID-19 (32), we focused on the imbalanced
Th17/Treg regulation for explanations of the same and different
manifestations among KD, KDSS, COVID-19, and MIS-C in this
perspective article.

We have studied the immune responses of KD for over
two decades and look into those related to COVID-19 in
the literature in order to explore the link and implication
for effective prediction, prevention, and treatment of KD and
MIS-C. Literature and clinical experience of KD management
prompt early recognition of the KD-like vasculitis in MIS-C
for IVIG immunotherapy and beyond, vice versa, information
accumulated in MIS-C suggest that KD-like vasculitis is an
infection-associated autoimmunity (32-34). Another possibility
is an antibody-dependent enhancement (ADE) of FcyR-mediated
autoimmunity that has been reported in SARS-CoV-2 infection
(35) and also reported in SARS-CoV-1 infection (36). In
a genetic association study of FcyRIIA polymorphisms with
the severity of SARS-CoV-1 infections, Yuan et al. (37)
found that variant FcyRIIA-R/R131 in the intensive care unit
(ICU) subgroup of patients with SARS was significantly more
frequent than in normal controls. We have previously studied
immunopathogenesis of SARS-CoV-1 infection and found that
SARS-CoV-1 infection caused an early innate augmentation
with adaptive immunosuppression and then induced a late
exacerbation (38, 39). To address the hyperinflammatory
reaction of KD, we first demonstrate that overexpression of
inducible nitric oxide (NO) synthase associated with elevated
blood NO levels is present in patients with KD before IVIG
therapy (40), and that the T-cell activation marker CD40L
is prominently expressed on T cells and platelets in children
with KD, which is reversed after IVIG therapy (41). This is
comparative to the dynamic time course of immune responses
of KD validated by a kinetic immunopathology in a series
of autopsy classifications of early necrotizing vasculitis with
innate phagocyte activation followed by a remodeling of adaptive
immunity with lymphocyte infiltration in the convalescent
stage (42).
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Before the era of IVIG therapy, the rate of coronary artery
aneurysm was 25% and mortality was 1-2% (10, 42-44) in
patients with KD, after the institution of IVIG therapy the rate
of coronary artery aneurysm downs to 3-4% and mortality
to <0.1% (42, 43). Now the challenge for the KD treatment
is IVIG resistance in 15-20% of KD patients, which requires
additional immunotherapy. Similarly, KDSS and MIS-C have
even higher IVIG resistance rates and more frequently require
combined therapy with IVIG and steroid pulse therapy (19-
22, 28). Interestingly, corticosteroids treatment before the IVIG
institution era showed an exacerbated morbidity of coronary
artery aneurysms in 64.7 vs. 20% treated with antibiotic alone or
11% treated with aspirin alone (44). Parameters in patients with
IVIG resistance are persistent fever and elevated IL-6 levels (45).
Furthermore, skewed T-cell polarization toward Th2 response
favors the outcomes of IVIG therapy. A higher eosinophil
count associated with a higher IL-5 level is a favorable marker
for the success of IVIG treatment. In contrast, lower initial
eosinophil counts and lower IL-4 and IL-5 levels are associated
with IVIG-resistance (46). Patients with KD have prominent
Th17 immune responses with augmented IL-6, IL-10, G-CSE
and IL-17A levels, and lower Treg pathway transcription factor
FoxP3 expression before IVIG treatment (47). The augmented
cytokine storm declines and the Treg cell increases after
IVIG treatment.

The Th17 polarization with elevated IL-6, IL-17A, and G-
CSF levels is correlated to a higher neutrophils vs. lymphocytes
(N/L) ratio in KD patients complicated with IVIG resistance and
coronary arteritis (48), which is similar to the severity of COVID-
19 associated with an increase in neutrophils and decrease in
lymphocytes and elevated INF-y, IL-6, and IL-8 levels (49, 50).
The cytokine profile in MIS-C is different from that in severe
COVID-19 in higher IL-10 and TNF-a levels (28). It is shown
that IL-6 together with TGF-f induces Th17 differentiation from
naive T cells (51), whereas IL-6 inhibits TGF-B-induced Treg
differentiation via degradation of FoxP3 (52), suggesting that
higher IL-6, IL-10, and IL-17A but lower FoxP3 and TGF-f
expression in patients with KD or MIS-C is involved in the
Th17/Treg imbalance. This is further supported by our finding
that DNA polymorphisms of TGEF-B-signaling pathway genes,
e.g., TGF-B2 and SMAD3, were associated with the susceptibility
of KD (53), and the Th17/Treg imbalance could also be mediated
by epigenetic regulation of DNA methylation and/or micro RNAs
(miRNAs) on innate and adaptive immune genes as a biomarker
of KD (54-59). In HumanMethylation450 BeadChips assay, we
have found that DNA hypomethylation on the promoter CG
sites of many immune activation genes in leukocytes of patients
with KD before IVIG treatment (54-57). The hypomethylated
genes were associated with augmented gene (mRNA) expression,
particularly the toll-like receptors (TLRs). The TLRI1, 2, 4, 5,
8, and 9 receptor genes were significantly hypomethylated and
associated with augmented mRNA expression (55). Similarly,
other innate immunity genes, e.g., FcyR2A, IL-10, and S100A8
were also hypomethylated before IVIG treatment (54-57).
Importantly, we found that the CpG site methylation changes
>20% in the acute stage of KD were mainly hypomethylated
(97%) genes but only 3% hypermethylated genes (56). After IVIG

treatment, the hypomethylated genes and augmented mRNA
expression reversed (54-57).

Moreover, it is found that miRNA expression is also a good
biomarker of KD, which differentiated KD from other febrile
diseases by a set of 4 miRNA expression at Cr (miR-1246)-Cr
(miR-4436b-5p) and Cr (miR-197-3p)-Ct (miR-671-5p) (58).
The miRNA control of Treg expression in patients with KD has
been characterized before and after IVIG treatment (59). The
epigenetic control of Treg development and maintenance has
been defined predominantly via FoxP3 expression (60). These
epigenetic profiles and functional markers of different Treg
population (tTreg, iTreg, and pTreg) tend to have a promising
role as specific mechanistic biomarkers for the prediction and
prevention of Th17-mediated autoimmunity (61-63). The study
model can be applied to study the epigenetic biomarkers and
therapeutic targets of MIS-C and KD with and without shock
syndrome by potential immunotherapy of cytokine inhibitor,
DNA methylation, and/or miRNA expression in addition to IVIG
with and without corticosteroids. The immunopathogenesis of
KD and MIS-C probably progresses from an early Th17 response,
followed by a later T-regulatory response. In the early Th17
response before IVIG treatment, the Treg pathway signals are
depressed, and the reciprocal Th17/Treg imbalance reverses after
IVIG treatment (47, 54-59). This is supported by the fact that
the corticosteroids treatment alone in the acute stage was useless
and even harmful in the 1970s (10, 44); instead, the combination
of IVIG with corticosteroids showed a better response than the
IVIG therapy alone in the 2010s, especially in the patients with
IVIG resistance (64). Based on the rationales described above,
we postulate that there are two phases during the development
of KD or MIS-C syndrome; the early Th17 reaction and late Treg
resolution stage have different immunopathogenic processes with
individual biomarkers and require different immunotherapies.

BOTH KD AND MIS-C OCCUR IN
CHILDREN AND ADULTS

A population-based surveillance system called COVID-19-
associated hospitalization surveillance network (COVID-NET)
analyzed 576 hospitalized COVID-19 pediatric patients and
showed the prevalence of COVID-19 in children increased from
0.1 per 100,000 to 8 per 100,000 with the progress of COVID-19
pandemic, in which a race disparity in hospitalization deviated to
Hispanic children, and nine (10.8%) of 83 admitted children had
MIS-C (65), suggesting MIS-C may attribute to one-tenth of the
admitted severe COVID-19 in children. MIS-C is rare or sporadic
in adults (66, 67). COVID-19 deserves further studies on the
autoimmunity under endogenous or exogenous milieu because it
might directly trigger autoinflammatory conditions by molecular
mimicry or cause autoimmunity in predisposed individuals in
other environmental conditions (68). The algorithm for diagnosis
and treatment of complete and incomplete KD in children has
been proposed to diagnose and treat KD in adults (67, 68), and
MIS-C in adults (67, 68).

Some adults have been diagnosed with atypical or incomplete
KD, contemporarily or retrospectively (69, 70), and occasionally
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caused sudden death (71) or sequelae of the KD from Children
(72). MIS-C has also been demonstrated in certain adults (67,
68). The autopsy of patients with COVID-19 showed a severe
endothelial injury associated with the detectable intracellular
virus, disrupted cell membranes, and widespread thrombosis
with microangiopathy in the lungs (73, 74). The alveolar
microthrombi were nine times more in patients with COVID-
19 than in patients with influenza (75), and viral particles were
detected in epithelial cells and endothelial cells of the lungs
(73, 74). Micro-embolism and thrombosis indicating vasculitis
and coagulopathy are similar between fatal patients with COVID-
19 with ARDS and fatal patients with SARS (75, 76). Pathological
findings of autopsy in KD are vasculitis with leukocyte
infiltration, called periarteritis nodosa-like arteritis, coronary
thrombosis with macrophage and lymphocyte infiltration, and
aneurysm, but not pulmonary vasculitis (42, 77, 78). Autopsy
features in MIS-C have not been characterized yet. We anticipate
that abnormal proinflammatory insults with skewed Th17/Treg
imbalance in MIS-C will be seen in the lesions of the
cardiovascular system but not in the lesions of pulmonary
vessels. The pathology in the COVID-19-induced ARDS showing
pulmonary involvement with detectable viral RNA and thrombo-
emboli in autopsy is different from the pathological finding
in KD showing sterile vasculitis, leukocyte infiltration, and
aneurysm, indicating immunity to infections in the former vs.
autoimmunity in the latter, which could occur in both children
and adults.

GENETIC SUSCEPTIBILITY OF KD AND
MIS-C

No specific genes have been linked to the susceptibility of MIS-
C. The siblings of patients with KD are 10 times more likely
to have KD. Several susceptibility genes (e.g., ITPKC, CASP3,
CD40, and ORAII) have been linked to KD (79), and KD
is also associated with the human leukocyte antigen (HLA)-
BW22]2 subtype, which is found specifically in Japanese and not
in Caucasians (80). In patients with KD with coronary artery
lesions (CAL), the frequency of HLA-DRB1*11 is significantly
increased and that of HLA-DRB1*09 is decreased (81); In fact,
HLA subtypes linked to KD are different between children in
Asia and those in Western countries (82). We have previously
found that HLA-DRBI was associated with KD susceptibility
(83). To search for the risk allele(s) of major histocompatibility
complex (MHC) class 1, HLA-MICA (MHC class I chain-related
gene A) locus, we found that the HLA-MICA A4 allele was
significantly associated with the coronary artery aneurysm in
patients with KD (84), and it has been validated in a genome-
wide association case-control study in a Taiwanese population
(85). We also found that DNA polymorphisms of TGF-f2 and
SMAD?3 are associated with the susceptibility of KD (53), and a
dominant T allele of rs2243250 in the IL-4 gene conferred a great
protective effect against the development of CAL in patients with
KD (p = 0.006) (86). Taken together, this suggests that a specific
HLA subtype could present a viral antigen peptide to T cells
and induce a skewed Th17-Th1/Th2-Treg development involved
in the altered hyperinflammation in KD. Although there is no

any genetic association with MIS-C in the literature, the HLA-
B*46:01 has been proposed to be associated with the severity
of COVID-19 in a computational simulation by using SARS-
CoV-2 whole-genome peptides for simulating their binding to
145 MHC class I HLA-A, -B, and -C genotypes, in which HLA-
B*15:03 shows the greatest capacity to present highly conserved
SARS-CoV-2 peptide which is shared among common human
coronaviruses, suggesting that it could enable cross-protective
T-cell-based immunity (87). Deletion or mutation of TLR7,
which is a single-stranded RNA virus sensor in endosomes
for induction of interferons (IFNs), contributes to the severity
of COVID-19 in young adults (88). In contrast, imiquimod,
a TLR agonist is proposed to enhance the defense against
COVID-19 (89). Taken together, we would propose to clarify
whether an HLA subtype, such as HLA-B*46:01 together with a
TLR7 variant induces an augmented proinflammatory reaction
under conditional milieu and alters the epigenetic control of
FoxP3 expression resulting in the Th17/Treg imbalance in KD
and/or MIS-C.

Interestingly, different blood group subtypes have also been
shown to be associated with the susceptibility of COVID-19
(90-92). Initially, a report from Wuhan, China described blood
group A subjects were more susceptible to COVID-19, and
the presence of anti-A antibody was probably protective (90).
Furthermore, another report from China showed that females
but not males, with blood group A are susceptible to COVID-
19 (91). In contrast, later in the USA, the other report described
that B and AB blood groups were susceptible to the infection but
not severity (92). The reproducible result among the studies is
that the O blood group population is less susceptible to COVID-
19 (90-92), but it remains controversial whether blood groups
A and/or B population are susceptible to and/or vulnerable to
severity. Perhaps, the differences are related to different studies
in different races.

We are currently studying the association of MHC genotypes,
haplotypes, and antigen presenting pocket prediction with KDSS
and/or MIS-C via a consortium in Taiwan. Hopefully, the
more the cases of MIS-C identified the more the opportunity
to identify the association of KDSS or MIS-C with HLA
subtypes in the COVID-19 outbreak or the COVID-19 mass
vaccination. We could also study whether different H2 subtypes
interacting with viral antigen under host situations lead to
altered immunity contributing to KDSS or MIS-C in a mouse
model using vaccine antigens with and without adjuvant. This
experimental study would test whether the HCoV associated
KD-like hyperinflammation is related to different races with
varied HLAs by which different antigens induce altered immune
responses because of different HLA subtypes and environments.

EVOLUTION OF IMMUNOTHERAPIES FOR
KD AND MIS-C

Since MIS-C reveals KD-like syndrome fulfilling complete or
incomplete criteria, a physician could rapidly recognize and
adopt the treatment regimen of KD for MIS-C, and mitigate
the life-threatening disease. The treatment of KD in the acute
febrile stage has evolved from corticosteroids, IVIG, and aspirin
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to a combination of IVIG, aspirin, and steroids through the past
50 years (10, 44, 64). Although long-term aspirin, whether it
is high (anti-inflammatory) or low (antiplatelet) dose, does not
appear to lower the frequency of coronary abnormalities (42),
a low dose aspirin and/or antithrombotic treatment with low
molecular weight heparin or warfarin is prescribed according
to the progress of coronary aneurysm in the convalescent stage
(42, 93). A combination of IVIG and corticosteroids significantly
reduced the risk for coronary artery lesions compared with
IVIG alone (7.6 vs. 18.9%; OR: 0.3; 95% CI 0.20-0.46) in a
meta-analysis (64). Different dosing of IVIG for KD has been
clarified (94), and different dosing of corticosteroids in the
clinical trials at different countries explained the overall varied
benefits on the outcomes of IVIG and corticosteroids in coronary
artery aneurysm (64, 95). In pneumonia-associated ARDS, early
treatment with corticosteroids and/or IVIG may reduce the
aberrant immune responses that have been described (30). This
may be also applicable to the treatment of COVID-19-related
ARDS. For instance, a combination of pulse corticosteroids
and IVIG therapy has been shown to rescue patients with
tocilizumab-resistant severe COVID-19 (96). High dose IVIG
regimen (2 gm/Kg) is largely demonstrated as more effective
(42, 94), however, early IVIG therapy for KD within 4 days did
not provide better protection from the development of CAL
(97, 98). Whether the earlier and higher doses of immunotherapy
for MIS-C and KD responsible for better outcomes deserves
further studies.

Intravenous immunoglobulin resistance in the acute stage
is frequently associated with the development of CAL in
patients with KD. A few different scoring systems have been
developed to predict IVIG resistance (99-101), and to provide
a precise anti-inflammatory regimen, such as to infliximab
(or anakinra) in addition to aspirin, IVIG, and corticosteroids
therapy (101). Unfortunately, a scoring system (Kobayashi Score)
which is successfully used to predict and prevent CAL in Japan
(99) performs poorly in sensitivity and specificity in Western
countries (100). MIS-C is IVIG resistant in most patients,
therefore IVIG plus corticosteroids is used to treat the life-
threatening condition (4-9, 96).

Certain unique complications of KD, such as shock,
macrophage activation syndrome (MAS), or coronary aneurysm
are usually associated with IVIG resistance and require additional
anti-inflammatory regimens, such as cyclosporin, anti-IL1, or
anti-IL6 treatment (101, 102). It is reasonable to add anti-IL6
for KD or MIS-C for IVIG resistance because serum IL6 levels
correlate with IVIG resistance (45, 103). However, in a study
of four patients with IVIG-resistant KD who are responsive to
anti-IL6 treatment but affected by coronary artery aneurysms
in 2 of them (104). The patients with KD with IVIG-resistance
usually respond to anti-TNF, anti-IL-1, or steroid pulse therapy
(101-104). Furthermore, anti-cytokines, such as tocilizumab and
anakinra or anti-coagulopathy regimens have been used for
COVID-19 hyperinflammatory syndrome in adults and resulted
in favorable outcomes (105, 106), and are suggested to be used
in MIS-C with IVIG resistance (9, 19, 28). Apparently, a scoring
system based on symptoms and biochemistry to predict IVIG
resistance may not be enough. Some studies had identified IVIG

resistance associated with elevated IL-6, IL-10, and/or TNF-a
levels in KD with and without shock syndrome (27, 45, 48),
and we showed that lower IL-5 levels associated with lower
eosinophil number was correlated to IVIG resistance (46), and
allele rs2243250T of the IL-4 gene conferred protection against
coronary artery lesions in KD (85). Patients with KD or MIS-C
in different countries or races may require varied criteria for the
prediction of the resistance to IVIG or anti-cytokine treatment.
A new scoring system should include conventional symptoms
and individuals’ immunological parameters to provide a better
guide to decrease IVIG resistance and increase effectiveness
of the additional anti-inflammatory therapy. In addition to
hyperinflammation and shock syndrome, patients with KDSS
(20-22) or MIS-C (9, 19) usually manifest with coagulopathy,
embolism, and thrombosis. It remains to be determined whether
the embolism, thrombosis, and/or coagulopathy in MIS-C
require certain anti-thrombotic therapy, and whether patients
with MIS-C with coronary involvement require a long term
aspirin treatment, which is a regimen for treating patients with
KD who develop coronary abnormalities (42, 93).

MECHANISTIC IMMUNOTHERAPIES OF
MIS-C BASED ON INFECTION IMMUNITY
AND AUTOIMMUNITY

Until July 2020, more than 1,000 cases of MIS-C had been
reported (107). However, the definition and treatment regimens
are not standardized yet! While COVID-19 remains pandemic,
MIS-C cases will increase further. It is also a concern that
this augmentation of Th17/Treg imbalance in MIS-C after
COVID-19 may be extended by a COVID-19 mass vaccination
in which the vaccine antigen with adjuvant may increase the
risk of MIS-C. Both KD and MIS-C are non-contagious but
potentially virus or antigen- (PAMP-) induced autoimmunity
in genetically susceptible individuals. Patients from different
genetic backgrounds and environments including pre-existing
subneutralized antibodies or abnormal autoantibodies directed
against different compartments, such as endoglin, EDIL3, and or
casein kinases of endothelial cells, and so on, may influence the
development of MIS-C or KD (108). Both patients with MIS-C
and KD have augmented IL-6, IL-17A, and IP-10 production (27,
28,45, 108), but the levels of SCE, TWEAK, and ADA significantly
decreased in patients with KD but not in patients with MIS-C
(108), suggesting they have similar immune activation pathways
but different regulatory (suppressive) pathways. Taken together,
we postulate immunopathogenesis of the COVID-19 associated
MIS-C begins with innate immunity of SARS-CoV-2 infection
to cells via ACE2 (Figure 1A), followed by adaptive immunity
of COVID-19 with antigen presentation through HLA for T-
cell differentiation toward an effective immunity or altered Th17
response (Figure 1B), and leading to individual autoimmunity
with MIS-C in the convalescent stage (Figure 1C).

As shown in Figure 1A, the SARS-CoV-2 virus enters the
host cells via ACE2 where a serine protease cleaves the viral
spike (S) protein and allows the virus to fuse with the plasma
membrane for internalization (109). Host RNA sensing receptors,
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FIGURE 1 | Immunotherapies of multisystem inflammatory syndrome in children (MIS-C) based on infection immunity and autoimmunity. (A) Innate immunity of severe

cleaves the viral spike (S) protein and allows the virus to fuse with the plasma membrane for internalization. Host RNA sensing receptors, such as RIG-1 (DDX58),
Toll-like receptor-3 (TLR3), TLR7, and/or TLR8, detect the internalized virus and induce the production of interferons (IFNs) via MyD88, TRIF (TICAM1), IRF3, and/or
IRF7 pathways, promote production of proinflammatory cytokines via MAPK (e.g., p38) and NFkB pathways. Normally, the host RNA sensing receptor(s) of RIG-1 and
TLRY7 signaling pathways will mediate an effective induction of IFNs for virus clearance. While the virus hijacks RNA sensing receptors and pathways or activates
casein kinase 2 (CK2) for filopodial protrusion of budding viral particles, the virus multiplies rapidly and the infection spreads systemically. (B) Adaptive immunity of
coronavirus disease-19 (COVID-19). Upon antigen presentation for T-cell adaptive immunity via human leukocyte antigen (HLA), an optimal adaptive immunity with
T-cell immunity and B-cell production of neutralizing antibodies (Abs) for virus clearance is normally elicited. While the initial virus load is high, or the TLR is either of
congenital deficit or of acquired deficit as in the elderly, or the viral glycoproteins (antigens) could suppress the MyD88, TRIF, IRF3, and/or IRF7 signaling pathways, the
antigen-presenting cells (APCs) are hijacked and present the viral antigen with an altered signal for the polarization of naive T helper cells (Tho) toward Th17 response
with inflammatory cytokines production, but not Treg regulation for a proper Th1 cell immunity and/or Th2 humoral (B cell) response for neutralizing antibody
production. (C) Individual autoimmunity with MIS-C. In convalescence, most patients recovered due to efficient adaptive immunity of Th1 cell immunity and Th2
neutralizing Abs unless individual subjects with genetic susceptibility or altered endogenous milieu. For instance, the viral antigens (PAMPS) interact with individual HLA
subtype(s) of APCs and induce altered autoimmunity with Th17/Treg imbalance and augmented cytokine storm of IL-6, IL-17A, and/or IL-10 expression or abnormal
autoantibodies resulting in MIS-C with systemic vasculitis, thrombosis, and shock, as seen in MIS-C. In addition, certain host milieu, e.g., abnormal homeostasis of
vitamins and microbiota which could compromise Treg responses and enhance Th17/Treg imbalance. Alternatively, altered FcyR or subneutralized IgG antibodies
might induce antibody-dependent enhancement (ADE) of immune reaction, and autoantibodies to form immune complex or to bind endothelial cells and induce
abnormal hyperinflammation. In summary, the autoimmune vasculitis of KD or MIS-C can be mediated by a genetic variant of HLA, FcyR, and/or ADE resulting in
hyperinflammation with Th17/Treg imbalance. (D) Prevention of MIS-C can be made based on infection immunity and autoimmunity described above. A series of
sequential steps ([1]-[8]) as indicated can be utilized to prevent the life-threatening MIS-C.
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. The SARS-CoV-2 virus enters host cells via ACE2 where a serine protease

such as RIG-1 (DDX58), TLR3, TLR7, and/or TLRS, detect the
internalized virus, induce IFN production via MyD88, TRIF
(TICAM1), IRF3, and/or IRF7 pathways, and promote the
production of proinflammatory cytokines via MAPK (e.g., p38)
and NFkB pathways (110, 111). A virulent virus can hijack RNA
sensing receptors and pathways or activate casein kinase 2 (CK2)
for the enhancement of budding viral particles (112). While the
initial virus load is low or the virus belongs to a less virulent
strain, the host RNA sensing receptor(s) of RIG-1 and TLR7
signaling pathways will mediate an effective induction of IFNs

and antigen presentation for an optimal adaptive immunity with
T-cell immunity and B-cell production of neutralizing antibodies
(Abs) for virus clearance. Alternatively, while the virus load is
high, or the TLR?7 is either of congenital deficit (88) or of acquired
deficit as in the elderly (113), or the viral glycoproteins (antigens)
could suppress the MyD88, TRIE, IRF3, and/or IRF7 signaling
pathways (111, 114), the antigen-presenting cells (APCs) are
hijacked and present the viral antigen with an altered signal
for the polarization of naive Th cells (Tho) toward Thl17
response with inflammatory cytokines production, but not Treg
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regulation for a proper Thl cell immunity and/or Th2 humoral
(B cell) response for neutralizing antibody production. The
virus will multiply effectively, and a large number of antigens
(PAMPs) will be released to augment Th17/Treg imbalance and
promote cytokine storm, leading to ARDS with neutrophilia and
lymphopenia, epithelial cell damage, vascular leakage, and/or
coagulopathy in COVID-19 (Figure 1B).

In convalescence (Figure 1C), most patients recovered due
to efficient adaptive immunity of Thl cell immunity and
Th2 neutralizing antibodies. While the viral antigens (PAMPs)
interact with certain HLA subtype(s) of APCs and induce
altered autoimmunity with Th17/Treg imbalance, in which
an augmented cytokine storm of IL-6, IL-17A, and/or IL-10
expression and abnormal autoantibodies could result in MIS-
C with systemic vasculitis, thrombosis, and shock as seen in
MIS-C. The abnormal virus-host response may not only depend
on genetic variants, e.g., HLA subtypes (87) and TLR7 variants
(88), but also host milieu, e.g., homeostasis of vitamins and
microbiota which could maintain better Treg responses for anti-
inflammatory reactions (115-117). Alternatively, altered FcyR or
subneutralized IgG antibodies might induce ADE of immune
reaction. ADE resulting from the interaction of the FcyRIIA
with a variant polymorphism had been found in SARS-CoV-1
infections (118), and a similar mechanism has been demonstrated
in vitro in COVID-19 (119). It is possible that the autoimmune
vasculitis of KD or MIS-C is mediated by a genetic variant of
HLA, FcyR, and/or ADE resulting in hyperinflammation with
Th17/Treg imbalance. However, the Th17/Treg imbalance may
be different between MIS-C and KD because the Th17 mediators
were elevated in both the diseases but the immunosuppressive
mediators: SCF, TWEAK, and ADA were lower in KD than in
MIS-C (108). In patients with KD or MIS-C with failure of
IVIG and corticosteroids treatment, additional immunotherapies
might be applicable by targeting different Th17/Treg imbalances.

Therapeutic Perspectives of MIS-C

Based on the postulated immunopathogenesis of COVID-19
associated MIS-C described above, we could make a series of
sequential steps ([1]-[8]) to prevent the life-threatening MIS-C
as indicated in Figure 1D and as described below:

[1] Blocking virus entry by neutralizing Abs. In a meta-analysis
of 12 controlled trials with more than 4,000 participants,
transfusions of convalescent plasma with neutralizing Abs
interrupted the virus-ACE2 interaction. The treatment in
hospitalized COVID-19 patients reduced the mortality rate
by 57% (10 vs. 22%; OR: 0.43, p < 0.001) (120). Similarly,
convalescent plasma or neutralizing monoclonal antibodies
(MoAbs) have also rescued patients with Ebola (121), SARS
(122), and Middle East respiratory syndrome (MERS) (123).
Thus, early administration of hyperimmune or recombinant
MoAbs with neutralizing Abs directed against SARS-CoV-2
should be able to decrease virus load and raise better immune
response toward balanced Th17/Treg reaction resulting in
less severity and less autoimmunity.

Decreasing viral load. There are many in vitro studies
showing that several potential anti-COVID-19 agents could

(2]

(4]

block the entry, replication, and/or shedding of SARS-CoV-
2 (112, 124). The decrease of viral replication and shedding
could be made by the inhibition of virus-cell fusion, virus and
host proteases, lysosome acidification, RNA synthetase, and
virus budding (124, 125). A proper regimen (e.g., remdesivir,
avigan, or silmitasertib) to decrease the virus transmission
between the infected and non-infected cells may enhance
immune response and mitigate the possible autoimmunity.
A combination of neutralizing MoAbs and anti-virus agent
may induce a synergistic effect.

Screening genetic variants. Similar to KD which has been
linked to certain alleles of HLA subtypes in regard to
disease susceptibility and severity, the severity of COVID-
19 has been proposed to be associated with HLA-B*46:01
in a computational simulation by using SARS-CoV-2 whole-
genome peptides for simulating their binding to 145 MHC
class I HLA-A, -B, and -C genotypes (87). Moreover, a
recent report showed that a mutant (D839Y/N/E) from
a European strain of SARS-CoV-2 could serve as a
superantigen to induce T-cell receptor activation, resulting
in hyperinflammatory response, which may be implicated
in the development of MIS-C as well as cytokine storm in
adult patients with COVID-19 (126). Deletion or mutation
of TLR7 has also been attributed to more severity of COVID-
19 in young adults (88). Further studies to identify the
risk genetic variants for severity and/or autoimmunity of
COVID-19 would help develop a screening genetic test for
protecting susceptible children from contacts of COVID-19
and incubate better Th17/Treg balance by nurturing internal
milieu with proper homeostasis of vitamin D, vitamin A, and
microbiota (104-106).

Targeting cytokine storm. In an early trial with anti-IL6R for
patients with COVID-19 hospitalized with cardiopulmonary
exacerbation showed potential benefits in decreasing CRP
levels, fever, and severity (127). However, later randomized
trials demonstrated no significant effects on the severity or
fatality of COVID-19 (128). Taken together, aiming at a
single target of one cytokine action may be ineffective but a
combined regimen or sequential targeting may be required
for eliminating the cytokine storm mediated by a couple
of hyperinflammatory cytokines in COVID-19 or MIS-C.
Th17 mediators, II-6 and IL-17A and Thl down-stream
mediators, TNF-a and IP-10, more prominently increased
in KD than in MIS-C (27, 28, 45, 108), suggesting that
targeting IL-17A by Secukinumab or anti-TNFa could be
considered in patients with KD with IVIG resistance or
with KDSS. Children with MIS-C, who did not have IL-
17A or TNFa overexpression (108), may be treated with
a combination of IVIG, corticosteroids, and recombinant
IL-1-receptor antagonist, Anakinra.

Balancing Th17/Treg immune response. Abnormal immune
regulation has been shown in patients with KD or
MIS-C (46-50). Both genetic and epigenetic alterations
in Treg pathways have been demonstrated in patients
with KD (53-56). The induction and/or stabilization
of Treg cell development is affected by endogenous
milieu, such as vitamins and metabolites from microbiota
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(115-117,129-131). Vitamin D levels have been shown
lower in many patients with COVID-19 and associated with
increased inflammatory cytokines and an increased risk of
pneumonia (129). The lower vitamin D concentration is
not only linked to higher severity of COVID-19 (130, 131),
but also associated with an increase in thrombotic episodes
(132, 133), which are frequently observed in COVID-19
associated MIS-C (4-9). Vitamin D deficiency has been
also shown to be associated with KD with IVIG resistance
(134). Moreover, microbiota have recently been shown to
coordinate adipocyte-derived mesenchymal stem cells to
combat autoimmunity of Type 1 diabetes in mice (135),
and mesenchymal stem cells (MSC) or their exosomes
have been proposed to eliminate hyperinflammation of
COVID-19 (136, 137). We have also recently shown that
exosomes derived from MSCs (MSC-EVs) could rescue
inflammatory neuropathic pain (138). Evidence accumulated
has demonstrated that the effects of MSCs and exosomes
derived from MSCs are useful in treating inflammatory
diseases and fibrosis (139, 140). This regimen may be
suitable for not only cytokine storm but also post-infectious
pulmonary fibrosis. In addition, epigenetic modulations of
FOXP3 expression by DNA methylation and/or miRNA
expression (54-60), may also be applicable to correct the
Th17/Treg imbalance.

[6] Targeting ~ADE  and  autoantibodies. = ADE  of
immunopathology has been concerned to potentially
happen in dengue virus, Zika virus, Ebola virus, respiratory
syncytial virus (RSV), and coronaviruses (119). The potential
ADE in MIS-C could be treated by using IVIG with and
without corticosteroids as shown in patients with MIS-C
(4-9), or might be rescued by the elimination of the
glycosylation site at N297 of the IgG Fc portion or by a
mutation in the Fc region resulting in an effective antibody
neutralization but not ADE (119). Several autoantibodies,
such as autoantibodies to MAP2K2, CSNK1A1, CSNK2A1,
and CSNKIEl were notably found in patients with
MIS-C, and autoantibodies directed against EDIL3 were
exclusively found in patients with KD (108), suggesting these
autoantibodies might be used as biomarkers for differential
diagnosis and their anti-idiotypic antibodies might be used
for prevention of autoimmune vasculitis.

[7] Targeting signal transduction pathways. COVID-19 has been
shown to induce hyperactivation of TLR-mediated MAPK
pathway and CK2-mediated filopodial protrusion of viral
shedding (112). Inhibition of p38 activation has been shown
to decrease viral replication and cytokine induction in in
vitro cell model (112). This is further supported by a
recent report showing autoantibodies to MAP2K2, and three
members of the casein kinase family (CSNK1A1, CSNK2A1,
and CSNKI1E1) are notable in children with MIS-C (108).
Inhibitors of the phosphokinases which are activated in an in
vitro model of SARS-CoV-2 infection, including CK2, CDK,
AXL, and PIKFYVE kinases, may possess antiviral efficacy.
A combination of different inhibitors of the kinases may
have a synergistic effect on anti-viral and anti-inflammatory
responses. A recent study showed a combination of a viral
protease inhibitor, GC376, and the RNA-dependent RNA

synthetase inhibitor, remdesivir, offered sterilizing additive
effects (125). In addition, a proteasome inhibitor MG132
which could inhibit IL-6/TGF-p-mediated downregulation
of FOXP3 protein may potentially raise the Treg activity (60).
[8] Anti-hemophagocytosis. Hemophagocytosis syndrome also
called MAS usually occurs in patients with autoimmune
disorders (141, 142). Interestingly, patients with KDSS (20-
22) or MIS-C (9, 19) can have IVIG resistance associated
with the hemophagocytosis with anemia, elevated Thl
mediator, such as IFNy, associated with hyperferritinemia
and hypertriglyceridemia. In this situation, a combination
of IVIG with cyclosporin-A, anti-TNF-a, and/or MSC
administration may be required (9, 30, 98-101).

In summary, the autoimmune vasculitis of KD, KDSS, or MIS-
C is mediated by a genetic variant of HLA, FcyR, and/or ADE
resulting in hyperinflammation with Th17/Treg imbalance with
augmented Th17/Thl mediators: IL-6, IL-10, IP-10, IFNy, and
IL-17A, and a lower expression of Treg-signaling molecules,
FoxP3 and TGF-f, and other suppressive immune mediators.
Th17/Treg imbalances among them share similar activation
pathways but different regulatory (suppressive) pathway. Based
on the similar and different immunopathogenesis, we can make
early protection, prevention, and precision treatment of the
diseases beyond IVIG and corticosteroids therapies. Evolution of
immunotherapies for the diseases has shown that IVIG alone or
combined with corticosteroids is the standard treatment for KD,
KDSS, and MIS-C. However, some patients are resistant to these
therapies, and these susceptible individuals must be detected and
given the treatment which can render an early block of viral
entry, viral replication and/or shedding, and combat Th17/Treg
imbalance by anti-cytokine or pro-Treg for reversing the
hyperinflammation and IVIG resistance. Clarifying phenotypes,
genetic susceptibility, and hyperinflammatory mechanisms of
KD, KDSS, and MIS-C with and without IVIG resistance may
help develop a so-called “Know thyself, enemy (pathogen) and
ever-victorious” strategy for prevention and immunotherapy for
KD and/or MISC.
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