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Editorial: Omics Technologies Toward
Systems Biology
Fatemeh Maghuly* and Gorji Marzban

Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences Vienna, Vienna, Austria

Keywords: multi-omics, data integration, functional genomics, intrinsic and extrinsic stressors, living organisms

Editorial on the Research Topic

Omics Technologies Toward Systems Biology

By the end of Twenty century, analytical methodologies were enabled to explore thousands of
biomolecules obtained from any given organisms. Moreover, numerous rising techniques
qualified our laboratories to produce enormous amounts of data at different levels by several
omics’ approaches with exceptional precision, resulting in development of databases and
resources (Kumar et al.). However, the dilemma of obtained data remains persistently
elaborating information due to the high number and volume. Besides, identification of
biomolecules without a comprehensive understanding of the complexity underlying the
cellular mechanisms would not deliver much information. Therefore, systems biology
employs multi-omics platforms and computational approaches for data integration in
different contexts (Krassowski et al.).

Nevertheless, analysis of different types of biomolecules requires extraction protocols compatible
with the analytical instrumentation. Therefore, to conduct multi-omics efficiency, aliquots of the
same sample are required for different extraction procedures optimized for different biomolecules,
thereby decreasing sample handling time and increasing throughput. Kang et al. adapted a biphasic
fractionation to extract proteins, metabolites, and lipids from one single sample (3-in-1) for liquid
chromatography-tandem mass spectrometry (LC-MS/MS). The results showed that their method
has great value to multi-omics and systems biology toward understanding the cellular networks,
traits and phenotypes.

On the other hand, the combination of multi-omics data provide useful insight into the flow of
biological information at multiple levels, thus can help to elucidate the complex mechanisms
controlling the biological condition. For example, Guo et al. combined transcriptome and
metabolome data obtained from clonally propagated plants at four developmental stages and
three different environments to identify the spatial-temporal variation of flavonoids biosynthesis
in leaves of Ginkgo. They indicated that flavonoids content varied considerably at different
developmental stages and environments. Therefore, they expect that the accurate selection of
planting region(s) and optimization harvesting time would substantially improve the production
and management of Gingko in an industrial manner.

In the frame of cell factories and selected targets, multi-omics and systems biology reflect a
challenging area for the engineering of cellular metabolism and maximizing the production of
valuable compounds through bioconversion. In silico experiments were shown to replace time
and laborious processes to win information about the cell networks. Tafur Rangel et al.
proposed that computational tools and metabolic modeling in combination with
transcriptomics can accelerate the optimization of cell factories by identifying key
metabolic engineering targets (genes/reactions) and not only by predicting mutants.
However, It depends on the level of completeness and accuracy of the metabolic model,
which could be improved by omics data.
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Dictated by the rapidly growing worldwide human population,
increased agricultural productivity is necessary to cope with the
food demand. In this context, multi-omics technologies have
helped plant biologists complete their understanding of plant
metabolism by reconsidering and identifying novel pathways.
Kumar et al. represented how this new knowledge can be utilized
to develop improved cultivars by targeting metabolic pathways
and use this information for re-domestication and de novo
domestication of wild relatives.

Considering that combination of two or more omics data sets
in data analysis, visualization and interpretation are essential to
determine the mechanism of a biological process; Krassowski
et al. provided an excellent overview of the current state of the
field, inform on available reliable resources, discuss findable,
accessible, interoperable, reusable research, and point to best
practices in benchmarking. They also addressed challenges
with biological complexity, acknowledged current tools
limitations, and concluded future perspectives in this field.

Accordingly, systems biology tools made it possible to develop
personalized medicine directly related to analyzing huge amounts of
data delivered by high throughput technologies. Pires et al. described
how to perform the translation from RNA-seq data into therapeutic
targets. They present an online platform using the MEAN stack
supported by a Galaxy pipeline for translating RNA-seq data into
protein targets suitable for the chemotherapy of solid tumors.

To gain new insight into the evolution of extremophiles and
the actual limits for life, in-depth knowledge of proteome-related
alterations in cell physiology is crucial. Furthermore, in extreme
environments, microbial extremophiles are of great interest to
understand stress adaptation and survival mechanisms.
Therefore, Tesei et al. pioneered the qualitative and
quantitative proteomic analyses on the mycelia, a lack fungi,
and supernatant of culture medium to show its ability to cope
with microgravity, which has significance to exobiology and
implications to planetary protection policies.

Given that acidification of arable lands is one of the biggest
problems of modern agronomy, Szurman-Zubrzycka et al.
studied the global transcriptome of root meristematic cells
from barley grown at low pH treated with aluminium. They
showed that low pH is a stress factor; however, aluminium causes
more changes at the transcriptome level by long term stress. Thus,
aluminium toxicity in acidic soils, resulting in inhibition of both
elongation and division rates of root cells, consequently reducing
water and nutrient uptake and finally reducing growth and yield.

Taking together, living organisms are innately exposed to a
wide range of intrinsic and extrinsic sources, causing damage to
the DNA, thereby promoting genomic instability. To escape the
harmful effects, organisms harbor several DNA damage repair
(DDR) pathways. Because plants are sessile, they have involved
highly conserved DDR pathways that share several components
with other organisms. In this manner, they maintain their genetic
integrity and transfer their accurate genetic information to
subsequent plant generations. Raina et al. summarized these
complex mechanisms by which plants repair their DNA from
severe exposure to both biotic and abiotic stresses and how lack of
the DDR pathway affects various developmental stages.

In addition, the sequencing of several genomes based on
comparative approaches and recent discoveries of Small Open
Reading Frames (small ORFs/sORFs/smORFs) peptides has been
recently described as essential players in biological processes and
opened new avenues for smORF research, reported as potential
non-functional or junk DNA. In this context, Guerra-Almeida
and Nunes-da-Fonseca represent intriguing questions to debate
further investigation and future perspectives for the non-
functional smORF peptides.

On the other hand, an effective high throughput functional
genomics tool for studying genes responsible for desired
phenotypes is required to facilitate genome-wide
investigations. TILLING (Targeting Induced Local Lesions IN
Genomes) is a powerful reverse genetics method in plant
functional genomics; however, one of the main challenges for
a successful TILLING experiment is that currently available
bioinformatic tools for variant detection are not designed to
identify mutations with low frequencies or to perform sample
identification from variants in overlapping pools. To overcome
this shortage, Gil et al. developed, through the Next Generation
Sequencing Experience Platform, two novel functionalities for
TILLING: a TILLING experiment simulator and a TILLING
detector. These new bioinformatic tools increase the precision
of TILLING experiments, which is useful for implementing
TILLING as a tool for functional genomics and breeding.

In this context, Guo et al. also identified loss-of-function
mutations in blast susceptible genes through TILLING by
sequencing. Furthermore, they suggested that identified
mutants might also provide enhanced immunity with severe
effects on protein function and resistance to wheat blast. Thus,
the study provides a new strategy, novel resistant lines, and
valuable gene resources to tackle disease-resistant wheat
breeding.

We wish to thank all contributors to this special issue and hope
that its appearance provides interest to users recent and novel
research trends in the application of omics technologies.
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INTRODUCTION

Small Open Reading Frames (small ORFs/sORFs/smORFs) are important sources of putative
peptides previously dismissed as being non-functional or junk DNA, as determined by early gene
prediction methods. In fact, smORFs of<100 codons are possible coding sequences but sufficiently
small to occur very frequently and randomly in genomes; thus, the detection of their coding
potential and functional assessment is similar to a walk in the dark. Furthermore, while dozens
of smORF peptides have been recently described as essential players in biological processes, many
are reported to be potential non-functional products of junk DNA under pervasive translation,
leading to the question: from what perspective is this lack of function assessed? In this context,
it was recently suggested that non-functional smORF peptides might play a major role during de
novo protein coding gene birth, but the evolutionary mechanism is still unclear. Thus, the role
of pervasive translation of smORFs in molecular evolution remains puzzling. Here, we present
interesting questions for debate and further investigation about the perspective of non-functional
smORF peptides as underappreciated hotspots of molecular evolution in eukaryotes.

SMALL OPEN READING FRAMES: A SUBTOPIC IN THE
DISCUSSION OF JUNK DNA FUNCTION

With respect to the evolution of molecular function, part of the DNA elements accumulate
mutations by genetic drift; thus, the evolution of these elements is non-adaptive and neutral (Ohta,
2002). In some cases, the amount of neutrally evolving elements in junk DNA are analogous to the
items on a menu available to natural selection (Knibbe et al., 2007; Faulkner and Carninci, 2009;
Lynch et al., 2011). Interestingly, it was reported by the ENCODE consortium (the Encyclopedia
of DNA Elements) that most of the human junk DNA exhibits some type of biochemical activity
(ENCODE Project Consortium, 2012), but lacking adaptive relevance and selective pressure
(Doolittle, 2013; Graur et al., 2013). Importantly, junk DNA represents 75–90% of the human
genome (Graur, 2017).

Part of the junk DNA menu is composed of neutrally evolving smORF peptides. For instance,
thousands of non-coding RNAs are generated by the extensive transcription coverage on junk
DNA (ENCODE Project Consortium, 2007). Increasing evidence shows that thousands of smORFs
undergo pervasive translation in transcripts annotated as non-coding or in untranslated regions
(UTR) of mRNAs (e.g., Aspden et al., 2014; Ingolia et al., 2014). Interestingly, non-coding RNAs
and ORFs lacking homologs were reported to be candidates for de novo evolution of protein
coding genes (Tautz and Domazet-Lošo, 2011). Moreover, it was recently suggested that neutrally
evolving smORF peptides might play a major role in this process (Ruiz-Orera et al., 2018), but the
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evolutionary mechanism remains to be determined (Ruiz-Orera
et al., 2018; Singh and Wurtele, 2020). In this context, two
previously proposed concepts used to discuss molecular function
evolution are at the core of the junk DNA debate: “causal roles”
and “selected effects” (Doolittle and Brunet, 2017), which will
be discussed here in the context of smORFs and protein coding
gene birth.

The “causal role” describes the activity performed by
a neutrally evolving element by chance. For example, a
hypothetical genomic sequence generated by a random
nucleotide mutation to resemble a TATA box may be recognized
and bound by transcription factors but does not trigger gene
transcription (Griffiths, 2009; Graur et al., 2013). In other words,
“causal roles” are non-adaptive phenotypes, their emergence is
random, and they tend to rapidly disappear during evolution.
On the other hand, “selected effects” describe the acquisition of
adaptive phenotypes based on natural selection (Graur et al.,
2013), such as canonical TATA boxes or ORFs that are translated
into important proteins. In other words, “selected effects” are
functionally relevant for cells.

Importantly, while natural selection drives adaptive evolution
(selected effects), it is widely accepted that genetic drift drives
junk DNA evolution, as well as the synonymous modifications in
coding DNA sequences (CDS) andmutations in UTRs of mRNAs
(Ridley, 2004).

DISCUSSION

Applying the aforementioned evidence and concepts, we
discuss here a possible eukaryotic mechanism by which
neutrally evolving smORFs advance proteome evolution and the
evolutionary significance of smORFs.

Firstly, part of the roles performed by neutrally evolving
smORF peptides possibly transit from “causal roles” to “selected
effects” under environmental pressure, thereby exposing their
neutral phenotypes to natural selection and triggering the
evolution of new coding genes. Thus, when neutral smORF
peptides are selected, they are no longer neutral (Ruiz-Orera
et al., 2018). In other words, neutral smORF peptides may be
special entrees on the junk DNA menu that are available for
natural selection (Figure 1A).

Upon smORFs being selected for, they probably contain
low adaptive relevance due to their non-coding transcript
characteristics, such as low translation rate, lack of 3′-terminal
processing and other suboptimal coding features (non-coding
RNA features are reviewed in Quinn and Chang, 2016). This
hypothesis is based on the fact that hundreds of smORFs
are described as highly conserved but display low expression,
low translation efficiency and are observed in transcripts with
non-coding characteristics (Cabili et al., 2011; Aspden et al.,
2014; Bazzini et al., 2014). However, the nearly neutral theory
(Ohta, 2002) suggests that non-coding parts of fixed smORF
transcripts are modified by random genetic drift, in some cases,
producing small advantageous (or disadvantageous) adaptive
effects throughout evolution; thus, we propose that, at a certain
point, these modifications refine and elevate the coding potential

of smORF transcripts and consequently enhance the adaptive
relevance of their peptides, as seen in a large number of important
smORF peptides recently discovered (e.g., Magny et al., 2013;
Anderson et al., 2015; Lauressergues et al., 2015; Nelson et al.,
2016; Pengpeng et al., 2017; Kim et al., 2018; Polycarpou-
Schwarz et al., 2018; Chugunova et al., 2019; Tobias-Santos et al.,
2019; Pang et al., 2020; Vassallo et al., 2020). Importantly, the
acquisition of several optimal coding features might be favored
after the smORF has been selected for, because modifications
driven by genetic drift could be fixed by natural selection if
they improve the translation efficiency of the newly selected
smORF. Before the smORF has been selected for, eventual
optimal coding features acquired in the nucleotide sequence
could rapidly disappear during genetic drift evolution without
fixation. Alternatively, nucleotide changes may negatively affect
the coding potential and silence a gene. Optimal coding features
include structural stabilization, emergence of Kozak consensus,
internal ribosome entry sites (IRES), coverage by enhancers and,
in some cases, the elongation of coding smORFs to enlarge
the CDSs (Figure 1B). Recently, Couso and Patraquim (2017)
proposed that at least a portion of functional smORFs are
potential de novo precursors of large CDSs via a stop codon
mutation pattern called “CDS elongation.”

Considering the supposition that the action of evolution is
gradual, we propose that the aforementioned process be called
“coding potential maturation” (Figure 1B). For example, smORF
translation is widely reported in transcripts with long non-coding
RNA (lncRNA) characteristics (Crappé et al., 2013; Ingolia et al.,
2014; Ji et al., 2015; Mackowiak et al., 2015; Li et al., 2018;
Lu et al., 2019). These lncRNAs exhibit smORF conservation
in divergent species, hinting at natural selection fixation and
indicating coding immaturity.

Another potential pathway of coding gene generation occurs
via alternative smORFs in UTRs or overlapping the reference
CDS of canonical mRNAs. In this scenario, alternative smORFs
undergo pervasive translation or the act of translation itself
is important for cis-regulatory purposes (Vanderperre et al.,
2013; Wu et al., 2020). If the “causal roles” performed by
neutrally evolving smORF peptides become “selected effects,”
the alternative smORFs would generate independent gene units
by retrotransposition, or they would be fixed as alternative
smORFs in the original transcripts (Figure 1B). Hence, during
retrotransposition events, at least a portion of the transcripts
investigated on the basis of pseudogenization may, in fact,
represent the maturation of new coding genes, as suggested by a
report that pseudogenes can be translated into highly conserved
smORF peptides (Ji et al., 2015).

smORFs might be sequence reservoirs potentially activated
during the evolution of new phenotypic variations, especially
during speciation. Importantly, speciation events have been
associated with the evolution of new molecular phenotypes
and new relationships with the environment (Bao et al.,
2018). Thus, the amount of junk DNA and lncRNAs in cells
deserves investigation not only as a random accumulation
of sequences and translational noise but also as a repository
of substrates to advance the evolution of new coding genes.
Interestingly, polyploidization, or whole genome duplication
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FIGURE 1 | Phenotype selection and coding potential maturation of smORF transcripts. (A) Transition of smORF peptides from “causal roles” to “selected effects”

after pervasive translation events. Pervasive translation of neutrally evolving smORFs possibly advances proteome evolution by exposing neutral

(Continued)
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FIGURE 1 | phenotypes to natural selection under environmental pressure. (B) Scheme for coding potential maturation, a hypothetical mechanism that increase the

translation efficiency of a mRNA after a smORF has been selected for (selected effect) in a transcript with suboptimal coding features. On the left, coding potential

immaturity; in the middle, coding potential maturation; on the right, coding potential maturity. During the coding potential immaturity phase, newly selected smORFs

are observed in transcripts with suboptimal coding features, either in long non-coding RNAs or as alternative smORFs in canonical mRNAs. Although canonical

mRNAs exhibit optimal coding features, alternative smORFs are usually secondarily or pervasively translated; thus, some alternative smORFs may reside in suboptimal

coding regions. During the coding potential maturation phase, natural selection and genetic drift may act in different parts of a transcript. While natural selection acts

by fixing the selected parts, genetic drift acts by changing the non-coding parts of a transcript, as postulated by the nearly neutral theory (Ohta, 2002). Natural

selection promotes fine-tuned adjustments to the selected phenotypes, such as synonymous mutations and CDS modifications. Genetic drift can establish adaptive

mutations in a transcript by evolving sequences that potentially increase smORF translation, such as the Kozak consensus, regulatory upstream ORFs, internal

ribosome entry sites (IRES) and increases in GC content. Additionally, other adaptive modifications not directly related to sequence mutations in transcripts might

increase smORF expression, such as the 5′ cap, 3′ poly(A) tail, cis-regulatory elements in the genome and, in the case of alternative smORFs, independent gene unit

generation by retrotransposition. Importantly, the acquisition of optimal coding features might be favored after the smORF has been selected for, because

modifications driven by genetic drift could be fixed by natural selection if they improve the translation efficiency of the newly selected smORF. Before the smORF has

been selected for, eventual optimal coding features acquired could rapidly disappear during genetic drift evolution without fixation. Alternatively, mutations evolved by

genetic drift can silence the gene. Finally, smORFs reach the coding potential maturity phase when optimal coding features are acquired and translation efficiency

increases. Consequently, the translation rate of smORF peptides is largely increased upon completion of the described process, contributing to the establishment of

molecular innovations and protein coding gene birth.

(WGD) events, have been correlated with an increase in the
adaptive potential of cells and organisms exposed to stressful
conditions (Van De Peer et al., 2017). Unfortunately, thus far,
studies ofWGD have neglected the role and retention of smORFs
during evolution, probably due to methodological difficulties in
smORF identification.

However, the sequencing of several genomes based on
comparative approaches has recently opened new avenues for
smORF research. For instance, recent evolutionary studies
performed by our group on the smORFs in the mille-
pattes/tarsalless/polished rice (mlpt) gene, the most well-known
smORF-containing gene in insects (Savard et al., 2006; Kondo
et al., 2007; Pueyo and Couso, 2008, 2011; Cao et al., 2017;
Ray et al., 2019), showed that a new ∼80 amino acid smORF
(smHemiptera) appeared during Hemiptera evolution (Tobias-
Santos et al., 2019). Thus, this smORF in the polycistronic mlpt
mRNA has been conserved for over 250 million years in the
group, and it is not present in the genomes of other insect orders.
We expect that new comparative analyses of genomes in the
future will yield additional examples of order-specific smORFs,
which might constitute an underappreciated reservoir of new
genes and evolutionary innovations.

In summary, the study of smORFs has been considerably
increasing during the last 5 years because of recent discoveries
of important smORF peptides. Accordingly, the advent
of ribosome profiling has allowed the discovery of many
neutrally evolving and potentially non-functional smORFs
undergoing pervasive translation, whose significance remains

to be determined (Crappé et al., 2013; Aspden et al., 2014;

Bazzini et al., 2014; Olexiouk et al., 2016). In this context,
the intriguing question is posed: why would cells spend
energy on transcription and translation of neutral and non-
functional elements? There is probably more than one answer;
however, considering the subjects discussed in this paper,
we propose the following perspective: what if the pervasive
translation of neutrally evolving smORF peptides composes
an elegant mechanism to advance proteome evolution,
especially during speciation events? If it does, then non-
functional smORF peptides display an important function in
an evolutionary sense. Based on this discussion, we suggest
that the concept of functionality be revised in the context
of smORFs.
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Ginkgo (Ginkgo biloba L.) is a high-value medicinal tree species characterized
by its flavonoids beneficial effects that are abundant in leaves. We performed a
temporospatial comprehensive transcriptome and metabolome dynamics analyses
of clonally propagated Ginkgo plants at four developmental stages (time: May to
August) across three different environments (space) to unravel leaves flavonoids
biosynthesis variation. Principal component analysis revealed clear gene expression
separation across samples from different environments and leaf-developmental stages.
We found that flavonoid-related metabolism was more active in the early stage of
leaf development, and the content of total flavonoid glycosides and the expression of
some genes in flavonoid biosynthesis pathway peaked in May. We also constructed
a co-expression regulation network and identified eight GbMYBs and combining with
other TF genes (3 GbERFs, 1 GbbHLH, and 1 GbTrihelix) positively regulated the
expression of multiple structural genes in the flavonoid biosynthesis pathway. We found
that part of these GbTFs (Gb_11316, Gb_32143, and Gb_00128) expressions was
negatively correlated with mean minimum temperature and mean relative humidity, while
positively correlated with sunshine duration. This study increased our understanding of
the molecular mechanisms of flavonoids biosynthesis in Ginkgo leaves and provided
insight into the proper production and management of Ginkgo commercial plantations.

Keywords: Ginkgo biloba, flavonoids biosynthesis, leaf development, transcriptome dynamics, temporospatial
variation

INTRODUCTION

Ginkgo (Ginkgo biloba L.) leaves contain a variety of medicinal compounds, which have been used
in healthcare and food industries. Flavonoids are the major bioactive ingredients in Ginkgo leaves,
including flavonols, flavones, and anthocyanins (Meng et al., 2019). These molecules have been
reported to have beneficial effects in preventing metabolic syndrome at different levels such as
early stage Alzheimer’s and cardiovascular diseases (Tian et al., 2017; Gruenwald et al., 2020).
Flavonoids also act as growth regulators controlling single organ and whole plant development
(Agati et al., 2012). Therefore, it is essential to understand the molecular mechanisms of flavonoids
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accumulation during Ginkgo leaves development to ultimately
improve the production and management of Ginkgo plantations.

Recently, considerable efforts have been dedicated to
improving Ginkgo leaves flavonoids for commercial production.
Studies showed that several agronomic measures could increase
the flavonoids content, such as alternative partial root-zone
irrigation (Wang et al., 2016), fertilization (Guo et al., 2016),
and foliar fertilization (Wu et al., 2020). Treatments with
salicylic acid, UV-B, and NaCl, all have shown a positive effect on
increasing Ginkgo leaves flavonoids content (Ni et al., 2017, 2018;
Zhao et al., 2020). More importantly, additional efforts have been
directed at the molecular level to achieve the same objective.
For example, transcriptome libraries have been constructed
for various Ginkgo tissues (Ye et al., 2019) and leaves with
different flavonoid contents (Wu et al., 2018), for improving the
understanding of flavonoid biosynthesis. Another strategy for
improving Ginkgo leaves metabolites yield is through genetic
engineering; however, detailed information on gene expression
profiling and transcriptional dynamics that regulate flavonoids
accumulation is scarce.

Leaves undergo a series of developmental and physiological
changes during their lifespans, involving complex, but
highly regulated molecular processes to maximize fitness
in a given ecological setting (Leopold, 1961; Fenner,
1998). It was found that leaves from the same Ginkgo tree
could exhibit differences in flavonoids content at different
developmental stages (young vs. mature leaves) (Guo et al.,
2020). Additionally, Ginkgo leaves from plants growing at
different elevations (different environments), and the same
growing period also displayed substantial differences in their
flavonoids accumulation (Zou et al., 2019). However, the
current understanding of flavonoids accumulation regulation
mechanism, which varies according to the development stage
and geographical distribution, is limited. Transcriptomes can
provide information regarding gene expression and regulation
at specific developmental stages or under specific physiological
conditions (Sato et al., 2011). Furthermore, integration of
different-omics data, such as metabolome, will help elucidate
the complex mechanism controlling flavonoid biosynthesis
(Weckwerth, 2008).

Here, we conducted comprehensive temporospatial
transcriptome and metabolome dynamics analyses of clonally
propagated Ginkgo plants at four developmental stages (May
to August) across three different environments (test-sites)
to unravel leaves flavonoids biosynthesis spatial-temporal
variation. The study-specific objectives are to: (1) quantify
the transcriptional responses to spatial (environmental cues)
and temporal (development stages) conditions; (2) explore the
association between flavonoids accumulation and expression
of flavonoid related structural genes; and (3) elucidate the
regulatory network involved in gene expression associated with
flavonoids biosynthesis. The broader aim of this work is intended
to improve our understanding of the transcriptional dynamics
that regulate flavonoids accumulation at the molecular level and
provide insightful information for enhancing flavonoids content
of Ginkgo leaves for the proper production and management of
Ginkgo commercial plantations.

MATERIALS AND METHODS

Plant Materials and Sample Collection
Generally, the optimum age of flavonoids production in Ginkgo
leaf-harvest plantations is trees under 5-year-old (Zou et al.,
2019), thus older trees are considered suboptimum. Therefore,
in the present study we utilized leaf samples collected from
2-year-old clonally propagated (grafted) Ginkgo trees. Trees
are spatially replicated over three test sites (i.e., different
environments) (Table 1). These sites are: (1) Yi Ning (YN),
located in northwestern China (lat.: 43.41◦N, long.: 81.11◦E),
characterized by a typical mid-temperate continental semi-arid
climate; (2) Pi Zhou (PZ), located in central China (lat.: 34.21◦N,
long.: 117.58◦E) characterized by a warm temperate monsoon
climate; and (3) Qu Jing (QJ), located in southern China (lat.:
25.52◦N, long.: 103.58◦E), characterized by a subtropical plateau
monsoon climate. In each site, the experiment is planted as a
complete randomized block design with three blocks (replicates),
each harboring 20 Ginkgo clones.

Samples were conducted between leaf expansion (May, after
majority of leaves expansion) and leaf “commercial” ripening
(August, before autumnal senescence). During this biological
window, Ginkgo leaves are at their substance’s peak activity
and are easy to harvest and store (Ellnain-Wojtaszek et al.,
2002). Leaves were collected on a clear day in the middle of
each month (May to August) to represent four temporal leaf
developmental stages. A single clone was randomly selected
across the three blocks (i.e., 3 biological replications) and the
collected leaf samples provided the material for the metabolomics
and transcriptomics analyses. Each sampled tree was represented
by three crown positions (top, middle, and bottom), each
provided a single complete and healthy leaf. In total, 36
samples (4 development stages × 3 environments × 3 biological
replicates) were used for the metabolomics and transcriptomics
analyses. Collected leaves were immediately preserved in liquid
nitrogen, freeze-dried, and kept at −80◦C until further use.
To measure the temporal variation in total flavonoid glycosides
(TFG) content, a monthly time series sampling was conducted
(at mid-month between May and August) on the PZ site and
nine leaves were randomly collected from the 20 Ginkgo clones
planted in each block. Additionally, to measure the spatial
changes of TFG content across environments, nine leaves were
randomly collected from the same 20 Ginkgo clones from the
three blocks and the same sampling scheme was conducted across
the three sites (sampling was conducted in mid-August). Leaves

TABLE 1 | Geographical distribution and climate factors [mean annual
temperature (MAT), mean annual precipitation (MAP), and mean annual sunshine
duration (MASD)] of the studied three test sites [Yi Ning (YN), Pi Zhou (PZ),
and Qu Jing (QJ)].

Site Latitude
(◦N)

Longitude
(◦E)

Altitude
(m)

MAT
(◦C)

MAP
(mm)

MASD
(h)

YN 43.41 81.11 820 5.2 331 7.1

PZ 34.21 117.58 44 14.5 845 5.9

QJ 25.52 103.58 2,160 14.1 1,067 6.5
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were oven-dried (70◦C, 48 h), crushed, sieved through a 100-
mesh sieve, and vacuum packed. All experiments were performed
with three biological replicates.

Total Flavonoid Glycosides Measurement
Ginkgo leaves flavonoids were extracted following the
Pharmacopoeia of the People’s Republic of China (PPRC)
procedures (Commision, 2010), and flavonoid glycosides content
were determined by high-performance liquid chromatography
(HPLC). In brief, approximately 0.5 g of oven-dried leaf powder
per sample was immersed in petroleum ether and refluxed at
70◦C for 2 h to remove impurities. Samples were then soaked
in methanol and each sample’s extract was evaporated on a
rotary evaporator after refluxed at 70◦C for 4 h. Subsequently,
the pellet was washed with 25 mL of a 25% methanol-HCl
(4:1, v/v) mixture and the eluent was collected and refluxed
for 30 min. After cooling to room temperature, the eluent was
brought to 50 mL with methanol, then used for determination
by HPLC. HPLC (Waters 1525, United States) conditions
were set as follows: the mobile phase was methanol and 0.4%
H3PO4 solution (56:44, v/v) at 1.0 mL min−1; the column
temperature was 30◦C; the detection was performed at 360 nm.
Quercetin, kaempferol, and isorhamnetin were selected as
standard substances following the supplier’s specifications
(Yuanye Biological Co., Shanghai, China).

Total flavonoid glycosides content = (quercetin +

kaempferol + isorhamnetin) × 2.51 (Commision, 2010).
Means and standard errors for each sample were calculated.
Differences among samples were determined using one-way
ANOVA and significant differences were detected (defined as
P < 0.05) using the least significant difference (LSD) test.

Metabolomics Analysis
The supernatant extraction for each sample was performed as
previously described (Guo et al., 2020). In summary, about 50 mg
freeze-dried sample was put into an EP tube after grinding. After
the addition of 1 mL of extract solvent (acetonitrile-methanol-
water, 2:2:1, containing 0.1 mg L−1 lidocaine as an internal
standard), the samples were swirled for 30 s, homogenized at
45 Hz for 4 min, and sonicated for 5 min in an ice water bath.
The homogenate and sonicate circle was repeated three times,
followed by incubation at −20◦C for 1 h and centrifugation at
12,000 rpm and 4◦C for 15 min. The resulting supernatants were
transferred to LC-MS vials and stored at−80◦C for later use. LC-
MS/MS analyses were performed using an UHPLC system (1290,
Agilent Technologies) with a UPLC HSS T3 column coupled to
Q Exactive (Orbitrap MS, Thermo). The mobile phase A was
0.1% formic acid in water for positive, and 5 mmol/L ammonium
acetate in water for negative, and the mobile phase B was
acetonitrile. The elution gradient was set as follows: 0 min, 1% B;
1 min, 1% B; 8 min, 99% B; 10 min, 99% B; 10.1 min, 1% B; 12 min,
1% B [see Supplementary Figure S1 for a UHPLC chromatogram
of standards and samples from Yi Ning (YN) site at different
sampling stages]. MS raw data files were converted to the mzML
format using ProteoWizard, and processed by R package XCMS.
OSI-SMMS (version 1.0, Dalian Chem Data Solution Information
Technology Co. Ltd.) was used for peak annotation after data

processing with an in-house MS/MS database. The metabolites
were mapped to the Kyoto Encyclopedia of Genes and Genomics
(KEGG) metabolic pathways to identify the substances in the
related pathways of flavonoid biosynthesis (ko 00941- ko 00944).

Transcriptomics Analysis
Total RNA extraction, library preparation, and sequencing for
each sample (36 libraries: four developmental stages in three
different environments with three biological replicas) were
performed as previously described (Guo et al., 2020). Total
RNA was extracted from the freeze-dried samples using Trizol
reagent kit (Invitrogen, Carlsbad, CA, United States) according
to the manufacturer’s protocol. RNA quality was assessed on
an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto,
CA, United States) and checked using RNase free agarose
gel electrophoresis. Then the enriched mRNA was fragmented
into short fragments using fragmentation buffer and reverse
transcribed into cDNA with random primers. Second-strand
cDNA were synthesized by DNA polymerase I, RNase H, dNTP
and buffer. Then the cDNA fragments were purified with
QiaQuick PCR extraction kit (Qiagen, Venlo, Netherlands), end
repaired, poly (A) added, and ligated to Illumina sequencing
adapters. The ligation products were size selected by agarose gel
electrophoresis, PCR amplified, and sequenced using Illumina
HiSeq2500. The Ginkgo Illumina raw sequencing data were
submitted to the NCBI BioProject database under project
number PRJNA657336.

An index of the reference genome was built, and paired-end
clean reads were mapped to the Ginkgo’s reference genome1

using Hisat2. The mapped outputs were processed via StringTie
software to obtain FPKM (fragment per kilobase of transcript
per million mapped reads) for all the Ginkgo genes in each
sample. Based on gene expression, principal component analysis
(PCA) and hierarchical clustering analysis were performed with
R packages, gmodels and pheatmap2, which were also used to
reveal the relationship among samples. The FPKM data were
directly used to estimate the differential expression of genes
(DEGs) between samples. FDR < 0.05 and | log2FC| > 1
were used as thresholds to identify significant DEGs. The Short
Time-series Expression Miner (STEM) software was used to
obtain the temporal expression profile of DEGs. Subsequently,
DEGs in enriched clustered profiles were used for KEGG
pathway enrichment analysis (Q value≤ 0.05) to assess metabolic
pathways and related gene functions.

Weighted gene co-expression network analysis (WGCNA)
was performed in the R environment. After filtering with the R
package DCGL, a total of 23,182 genes (FPKM > 0) were reserved
for subsequent analysis. The adjacency matrix between different
genes was constructed with a threshold power of 10. A dynamic
tree cut procedure (merge cut height = 0.70, min module
size = 50) in R package WGCNA was used to identify similar
modules in the hierarchical tree. The expression profile of module
genes in each sample was displayed by module eigengene, which
was defined as the first principal component of a given module.

1http://gigadb.org/dataset/100613
2https://cran.r-project.org/package=pheatmap
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The Pearson correlations between the eigengenes of each module
and the abundance of flavonoids were plotted by R package
ggplot2. Subsequently, we identified the encoding transcription
factor (TF) genes and the structural genes in the biosynthesis
pathways of related flavonoids from the target modules. The
gene regulatory networks were generated by Cytoscape software
(Version 3.7.1).

The promoter region of TF genes was analyzed for presence
of cis-acting regulatory elements by PlantCARE3 and visualized
by TBtools software. Additionally, to explore the regulatory
effect of environmental factors on the expression of TF genes,
Pearson’s product-moment correlation analysis was conducted
between TF genes expression and environmental factors during
development (daily meteorological data for each area from May
to August 20194).

Quantitative Real-Time PCR (qRT-PCR)
Analysis
Ten genes involved in flavonoid biosynthesis were randomly
chosen for validation by qRT-PCR. According to the
manufacturer’s instructions, cDNA was obtained using
MonScript RTIII All-in-One Mix with dsDNase kits (Monad,
China) and qRT-PCR analysis was carried out using an Applied
BiosystemsTM 7500 Real-Time PCR Systems (Monad, China).
Primers used were designed in Primer Premier 5 (United States),
and the primer sequences are provided in Supplementary
Table S2. Glyceraldehyde 3- phosphate dehydrogenase (GAPDH,
GenBank Accession No. L26924) gene was used as an internal
standard. The relative transcript abundance was calculated using

3http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
4http://data.cma.cn/

the 2−11CT method (Livak and Schmittgen, 2001). August
samples from YN, PZ, and QJ sites were used for qRT-PCR
analysis. As designed, each sample included three biological
replicates and three independent technical repetitions.

Statistical Analysis
All statistical analyses were conducted in R environment (R Core
Team, 2019). Differences among TFGs content were determined
using one-way analysis of variance (ANOVA) and significant
differences were calculated using the least significant difference
(LSD) test (defined as P < 0.05). The complex relationships
between gene expression profiles were intuitively displayed by
a PCA plot and a cluster heat map. Relationships between
expression of structural genes and abundance of flavonoids
were evaluated using the Pearson’s product-moment correlation
analysis (P < 0.05, significant correlation).

RESULTS

Changes in Total Flavonoid Glycosides
Content
Temporarily, TFG content showed a declining trend with
sampling time during the leaf development process. PZ site’s TFG
content time-course analysis showed the highest value occurred
in May, followed by a drastic drop in June (P < 0.05) and
a significant recovery in July (Figure 1A). Compared to May
samples, the TFG content of June, July, and August samples
decreased by 66.40, 15.98, and 21.50%, respectively (Figure 1A).
Spatially, apparent differences in TFG content were observed
across the three growing environments. Compared to August’s PZ

FIGURE 1 | Differences in total flavonoid glycosides (TFG) content among Ginkgo leaf samples. (A) Temporal differences in TFG content among developmental
stages in PZ site. (B) Spatial differences in TFG content in August-samples across the three environments. Measurements were performed in triplicates. Error bars
indicate standard deviations, and different capital and small letters represent a significant difference (P < 0.05) between developmental stages and environments,
respectively.
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FIGURE 2 | Temporospatial differences in gene expression profile. (A) Principal component analysis (PCA) plot showing clustering of leaf transcriptomes at four
developmental stages (temporal) under three different environments (spatial). Red squares, green triangles, and blue circles represent samples from YN, PZ, and QJ
sites, respectively. The change in color from light to dark represents the four leaf development stages (May to August). (B) Pearson product-moment correlation
coefficients and clusters of the RNA-seq data from leaf samples. The redder the rectangle, the stronger the correlation between the samples, whereas the bluer the
rectangle, the weaker the correlation.

and QJ samples, the TFG content of YN was larger by 52.67 and
140.45%, respectively (Figure 1B).

Changes in Gene Expression Profile
Through transcriptional dynamics analysis, we identified
approximately 2.0 billion clean reads from the 36 cDNA libraries
that were mapped to the Ginkgo genome. The mapping rates
of each library ranged from 91.14 to 95.39% (Supplementary
Table S1). Spatially, PCA analysis results showed clear separation
on the PC biplot, accounting for 61.1% of total gene expression
variance in the data set (Figure 2A). Samples were spatially
separated along the PC1 axis with YN, PZ, and QJ positioned on
the left, middle, and right, respectively (Figure 2A). Temporally,
within each site, the four developmental stage samples tended
to follow the same left-to-right trend along PC1, while this
trend did not persist for PC2 (Figure 2A). In the hierarchical
clustering analysis, we did not detect any evidence of clustering
among samples at either the different developmental stages
(temporal) or at any given environment (spatial) (Figure 2B).
Interestingly, PZ samples of the earlier stage (May) exhibited a
closer correlation with the YN samples, whereas the PZ samples
of a later stage (August) tended to correlate with the QJ samples,
suggesting that major transcriptional program differences existed
among development stages within each environment.

Differential Gene Expression During Leaf
Development
At each leaf developmental stage, we identified different
expression genes (DEGs) among samples from different
environments (Figure 3A). We found more DEGs differences
existed between QJ and YN samples (number of stage-specific

genes varied from 644 to 3,318), while fewer DEGs differences
between PZ and QJ samples (number of stage-specific genes
varied from 74 to 1,097). The variable number of DEGs
differences suggested that each stage of Ginkgo clones
development had an independent strategy in response to
their respective different environmental conditions.

To analyze the temporal expression pattern of DEGs, the
24,958 DEGs were further clustered by Short Time-series
Expression Miner (STEM) software. There were 8 identifiable
statistically significance (P < 0.05) temporal expression patterns,
which were divided into 5 clusters containing a total of 1,908
DEGs (Figure 3B). The expression of DEGs contained in the 0
profile was gradually down-regulated during leaf development,
while the temporal expression pattern of the 19 profile showed
an opposite pattern. The KEGG pathway enrichment analysis
of 1,908 DEGs revealed that 33 pathways were significantly
enriched, including a large number of secondary metabolites,
carbohydrate, and lipid metabolic pathways (Figure 3C).
In particular, the phenylalanine and flavonoid biosynthesis
pathways (ko 00940 and ko 00941) were enriched in several
profiles. Therefore, these results suggested that the expression
of some genes in the flavonoids-related biosynthesis pathways
varied as a function of environmental factors (spatial) and
developmental stages (temporal). The reliability of the RNA-
seq results and the differentially expression analysis was further
verified by qRT-PCR (Supplementary Figure S2).

Identification and Screening of Gene
Co-expression Modules
Twelve modules were identified in a dendrogram comprising
105 – 3,908 genes, and each module harbored genes encoding
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FIGURE 3 | Temporospatial expression pattern of differential expressed genes (DEGs). (A) Venn diagrams and column charts showing DEGs between samples from
different growth environments (spatial) at four development stages (temporal). The gray circle/rectangle represents the difference between samples from YN and QJ;
the blue one represents the difference between samples from PZ and QJ; the orange one represents the differences between the PZ and YN samples. (B) Profile
blocks with a colored background are significant clusters of the P ≤ 0.05, and the same color represents that the profiles are the same cluster. (C) An enriched
KEGG map shows significant pathways among the genes of eight profiles. The red rectangle represents a significant enrichment pathway (P < 0.05).
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FIGURE 4 | Identification and screening of gene co-expression modules. (A) Dendrogram showing modules identified by the weighted gene co-expression network
analysis (WGCNA) and clustering dendrogram of expressed genes; (B) The number of genes and transcription factors (TFs) contained in each module;
(C) Correlation coefficient between the abundance of flavonoids and module eigengenes presented with a color scale with red and blue representing positive and
negative correlations, respectively.

the number of transcription factors (TFs) varying from 7
to 210 (Figures 4A,B). In most modules, TF-encoding genes
accounted for more than 5% of the total genes, indicating
that the transcriptional activity was strictly regulated. Also,
the eigengene of each module was associated with the
abundance of 17 flavonoids revealed by Pearson product-
moment correlation coefficient analysis. Remarkably, three

modules (Black, Blue, and Brown) exhibited a strong correlation
(r > | 0.7|, P < 0.05) between gene expression and flavonoids
accumulation (Figure 4C).

To better understand the function of genes in these three
modules, we assigned the genes to KEGG terms. The top
20 enriched pathways in each module were revealed by
bubble maps. The genes from Black and Blue modules were
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significantly enriched in pathways related to translation,
folding, sorting and degradation, signal translation, amino
acid metabolism, and energy metabolism (Supplementary
Figures S3A,B). In these pathways, some unigenes encoding
glutathione S-transferase (GST), vacuolar sorting receptors
(VSR), multi-antimicrobial extrusion protein (MATE) were
found, which were thought to be involved in the transportation
of flavonoids from cytosolic biosynthesis to their vacuolar
accumulation (Petrussa et al., 2013). Notably, genes from
the Brown module were significantly enriched in pathways
related to secondary metabolites biosyntheses, such as
flavonoid biosynthesis and phenylpropanoid biosynthesis
(Supplementary Figure S3C). Interestingly, a large number of
genes encoding key enzyme (flavonoids-related structural genes)
had been identified in these pathways, including genes encoding
phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase
(4CH), chalcone synthase (CHS), chalcone isomerase (CHI),
flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR),
anthocyanin synthase (ANS), anthocyanidin reductase (ANR),
and UDP-glycosyltransferase (UGT).

Construction of Flavonoid-Related Gene
Regulation Network
After screening the target modules, we constructed the
biosynthesis pathways of six flavonoids (flavone, isoflavone,
flavanonol, anthocyanins, flavonol, and flavonol glycoside)
and identified the structural genes involved in these pathways
from the Brown module (Figure 5A). The developmental
stage specificity of the 12 flavonoids accumulation and the 15
structural genes expression was visualized (Figure 5B). We
found that three flavones (luteolin, apigenin, and vitexin), one
flavanonol (taxifolin), and two flavonol glycosides (astragalin
and rutin) had the highest accumulation in May. In contrast,
two isoflavones (daidzin and genistein), two anthocyanins
(cyanidin and delphinidin), and one flavonol glycosides
(isoquercitrin) had the lowest accumulation in leaves at the
same developmental stage. Additionally, the accumulation
of one flavonol (quercetin) was the highest in July (see
Supplementary Table S3 for quantitative values of the 12
identified flavonoids). The 15 structural genes identified in
the Brown module had similar developmental expression
patterns, with high expression in May and low expression in
August. Correlation analysis of transcriptome and metabolome
indicated that some structural genes were significantly correlated
with specific flavonoids (r > | 0.6|, P < 0.05). For example,
quercetin content was positively correlated with the expression
of a gene encoding FLS enzyme, while cyanidin content
was negatively correlated with the expression of some
genes encoding ANS, DFR, and UGT enzyme. Thus, these
structural genes may play crucial roles in the accumulation of
some flavonoids.

In Brown module, a total of 13 genes belonging to four
transcription factor families were identified, including those
encoding MYB (8 genes), ERF (3 genes), bHLH (1 gene), and
Trihelix (1 gene), which may be involved in the regulation
of flavonoids accumulation. To explore the regulatory effect

of TFs on flavonoid biosynthesis, a co-expression regulation
sub-network was established among TF genes and flavonoid-
related structural genes according to the correlation analysis
(Figure 6A). We observed that GbMYB (Gb_40628) had
the highest connectivity and was closely associated with 10
structural genes. Additionally, we observed that a structural
gene was regulated by multiple TFs simultaneously, such as
GbCHI (Gb_21115) was positively correlated with five GbMYBs
(Gb_11316, Gb_32143, Gb_33428, Gb_39081, and Gb_40628),
three GbERFs (Gb_00128, Gb_26438, and Gb_37188), and one
GbTrihelix (Gb_02053). Therefore, we suggested that these TFs
participated in the regulation of gene expression in the flavonoid
biosynthesis pathway.

Further, the correlation between genes encoding TFs and
climate factors was analyzed (Figure 6B). We found that
several GbMYBs (Gb_11316, Gb_26833, Gb_32143, Gb_33428,
and Gb_40628), GbERFs (Gb_26438 and Gb_37188), GbbHLH
(Gb_17233), and GbTrihelix (Gb_02053) were significantly
and negatively (r > | 0.6|, P < 0.05) correlated with mean
minimum temperature (Tmin); three GbMYBs (Gb_11316,
Gb_32143, and Gb_33428), one GbERF (Gb_00128), and one
GbTrihelix (Gb_02053) had significant negative correlations with
mean relative humidity (Hum); and two GbMYBs (Gb_11316
and Gb_32143) and one GbERF (Gb_00128) had significant
positive correlations with sunshine duration (SD). These results
suggested that the sunny environment was favorable to the
expression of genes encoding TFs, while conversely the cold and
humid environment was unfavorable to their expression. The
promoter analysis also supported our hypothesis, as multiple
light responsiveness (G-Box, Box 4, AE-box, I-box, L-box, Gap-
box, Box II, and G-box) and low-temperature responsiveness
(LTR) elements were found in the promoter regions of TF
genes (Figure 6C).

DISCUSSION

Flavonoids represent one of the main classes of secondary
metabolites that play an important role in plant defense
against environmental stresses (e.g., temperature, precipitation,
and light) (Akula and Ravishankar, 2011). Additionally,
flavonoids extracted are also beneficial compounds for human
health as cardioprotective, antihypertensive, and antioxidants
(Fuchs et al., 2016). While studying the metabolic process
of flavonoids in Ginkgo has been the subject of intense
investigations (Wu et al., 2018; Meng et al., 2019; Guo et al.,
2020), limited information is available at the genomic level.
In the present study, we investigated the temporospatial
(four leaves developmental stages and three contrasting test
sites) transcriptome and metabolome dynamics biological
processes to increase our understanding of Ginkgo’s flavonoids
regulatory networks and to provide additional information
of the molecular mechanisms of flavonoids accumulation
during its leaves development. We used clonally propagated
plant material, so the observed differences are attributable to
either time (four leaves developmental stages) or space (three
contrasting test sites).
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FIGURE 5 | Temporospatial expression patterns of flavonoid-related structural genes in different leaf developmental stages (temporal) and association analysis with
the accumulation of several kinds of flavonoids. (A) The biosynthesis pathways of several kinds of flavonoids. (B) The accumulation patterns of 12 flavonoids and the
expression patterns of 15 flavonoid-related structural genes in different growth stages and the association analysis between them. The change in color of
circle/rectangle from red to blue represents a gradual decrease in the abundance of flavonoids/expression of structural genes. The red line represents the positive
correlation between the expression of structural genes and the abundance of flavonoids, and the blue line represents the negative correlation between them (r > |
0.6|, P < 0.05).
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FIGURE 6 | Environmental factors may trigger the activation of TFs to control the expression of flavonoid-related structural genes. (A) The co-expression network
between TFs (blue circles) and flavonoid-related structural genes (red circles). The circle size is positively correlated with the connectivity of genes in the regulatory
network. (B) The correlation analysis between environmental factors and the expression of TF genes. The red and blue square indicate positive and negative
correlations between specific rows and columns, respectively. Climate factors include sunshine duration (SD), relative humidity (Hum), air pressure (Press), average
temperature (Tave), minimum temperature (Tmin), and maximum temperature (Tmax). (C) Cis-regulatory elements analysis of TF genes.

Temporospatial Gene Expression Profiles
Variation
We used the RNA-seq approach to detect changes in the
studied samples gene expression profiles and the principal
component analysis, PCA-plot, clearly showed a spatial
separation among samples growing at different environments,
suggesting that gene expression at the transcriptome level is
strongly influenced/modified by environmental conditions

(Figure 2A). Observations confirming previously held view that
transcriptional regulatory cascades may be key components of
differential resilience shown by plants to changing environments
(D’esposito et al., 2017). Furthermore, the four developmental
stages also were separated (PCA-plot: Figure 2A), suggesting
that the observed temporal differences provided a reasonable
description of transcription activities during leaf development
stages (Garg et al., 2017). Interestingly and more strikingly, the
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transcriptome from different spatial (environmental) samples
showed similar stage-specific expression patterns that were
gradually separated in the same direction (PCA-1) during leaf
development. These findings reflected the dynamic nature and
flexibility of gene expression in response to internal (genetic) and
external (environmental) cues at the transcription level during
leaf development (Bar and Ori, 2014).

Flavonoids Metabolism Is
Temporospatially Influenced
The observed differentially expressed genes (DEGs) among
spatially different samples (environments) were identified and
exhibited a collinear pattern with the environmental differences
between sites. As the environmental differences between sites
increase, this was accompanied by a concomitant increase in the
differences of DFGs of their respective samples. For example,
the difference between DEGs from YN and QJ sites was in
line with the observed differences between these two sites
environments (Figure 3A). Ginkgo may have developed a genetic
control system as a survival strategy in response to different
environments (Cho et al., 2018; Wang et al., 2020). Further,
the eight temporal expression patterns (DEG sets) identified by
STEM analysis (Figure 3B), contained genes significantly affected
by environmental (spatial) and developmental (temporal)
processes. The KEGG pathway enrichment analysis (Figure 3C)
indicated that the expression of genes from Profile 0 presented
a down-regulated trend with leaf development, and these
genes were significantly enriched in both phenylpropanoid and
flavonoid biosynthesis pathways (ko 00940 and ko 00941).
These results indicated that a set of genes related to flavonoid
biosyntheses, such as structural genes and TF genes, performed
the stage-specific (temporally sequenced) function under external
environmental stimuli. It has been reported that there is a
rhythm, a time-distribution character, to the biosynthesis and
metabolism of flavonoids in Ginkgo leaves (Cheng et al., 2012;
Sati et al., 2013). Our results indicated that flavonoid-related
metabolism was more active at the transcriptional level in the
early stage of leaf development, consistent with previous studies
(Yan et al., 2019; Zhu et al., 2020). These findings were also
confirmed by the result of HPLC analysis; where we found that
the content of TFG peaked in the early stage (Figure 1A). We
also found that samples from YN and QJ sites had the greatest
difference in TFG content (Figure 1B).

A Regulated Transcriptional Network for
Flavonoids Biosynthesis
Previous studies have focused on the identification of flavonoid-
related structural genes in Ginkgo leaves, such as genes encoding
PAL, C4H, 4CL, CHS, CHI, and F3H in early flavonoid
biosynthesis pathway, and genes encoding DFR, ANS, and ANR
in downstream steps of the pathway (Li et al., 2018; Wu et al.,
2018). In the present study, an intensive association network
was observed between the expression of 15 selected structural
genes and abundance of flavonoids (Figure 5B), suggesting that
these structural genes (GbANR,GbANS,GbC4H,GbCHI,GbCHS,
GbDFR, GbFLS, GbPAL, and GbUGT) may play crucial roles
in the accumulation of specific flavonoids. More specifically,

we identified one gene (Gb_41796) encoding PAL, which is
an upstream key enzyme and rate limiting of the flavonoids
biosynthesis pathway (Wang et al., 2014), whose expression
was positively correlated with the abundance of three flavones
(luteolin, apigenin, and vitexin), but negatively correlated with
the two isoflavones (daidzin and genistein). Additionally, we
found two genes encoding UGT (Gb_24439 and Gb_26148)
whose expression was significantly and positively correlated with
the abundance of flavonoid glycosides (astragalin), consistent
with and supporting previous studies (Cui et al., 2016; Zhu et al.,
2020). The accumulation of anthocyanins has been reported to
be positively correlated with the expression of GbDFRs (Ni et al.,
2020), while we found the gene encoding DFR (Gb_09086) was
negatively associated with cyanidin accumulation.

Flavonoids biosynthesis is mainly regulated by transcription
factors at the transcription level (Xu et al., 2014; Cao et al.,
2020). We constructed a co-expression regulation network
among TF genes and flavonoid-related structural genes to explore
their regulatory relationship (Figure 6A). We discovered eight
GbMYBs that positively regulated the expression of multiple
structural genes in the flavonoid biosynthesis pathway. MYB TFs
represent one of the largest families of a transcription factor
in plants, involving in the regulation of different biological
processes (Dubos et al., 2010). The large number of GbMYBs
in the Ginkgo genome indicated that each of them may
involve unique functions. Meng et al. (2019) found that the
GbMYB5 was involved in the positive regulation of flavonoid
biosynthesis, while Xu et al. (2014) suggested that the GbMYBF2
was responsible for repressing flavonoid biosynthesis. MYB
and bHLH can act individually or in concert with other TFs
to regulate a series of structural genes involved in flavonoid
metabolism (Terrier et al., 2009; Carletti et al., 2013). Similarly,
this co-expression network showed positive correlations between
GbERF, GbbHLH, and GbTrihelix and certain structural genes
associated with flavonoids.

TFs are considered as the major regulators of gene
expression in response to environmental changes. MYB, ERF,
and bHLH have been shown to play important roles in
regulating environmental stress responses (Nakashima et al.,
2009; Agarwal and Jha, 2010). In this study, we found that
some GbTFs expression was negatively correlated with mean
minimum temperature but positively correlated with sunshine
duration (Figure 6B). Meanwhile, we also identified abundant
light responsiveness elements and LTRs elements in GbTFs
promoter regions (Figure 6C). It has been confirmed in previous
studies, anthocyanins accumulation in Pinus contorta seedlings
grown under short sunlight was significantly lower than those
growing in the long sunlight area; long-term light irradiation
(16 h) on leaves of Ipomoea batatas generated a dramatic
increase in flavonoids content (Camm et al., 1993; Carvalho
et al., 2010). As the amount of sunlight increases, there is
a concomitant rise in temperature, and the composition of
flavonoids in Ribes nigrum has been found to be positively
correlated with temperature (Zheng et al., 2012). Our findings
further support that proper control of gene expression by
TFs was essential for the flavonoids biosynthesis, which played
an important role in response to environmental changes
(López-Maury et al., 2008).
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CONCLUSION

Our investigation of the temporospatial transcriptome and
metabolome dynamics biological processes provided new
insights into the biosynthesis of flavonoids in Ginkgo leaves.
We indicated that flavonoids content varied greatly at different
developmental stages (temporally) and in different growth
environments (spatially). Therefore, the careful selection of
planting region(s) and optimization of leaf harvesting time
are expected to substantially improve the benefits of Ginkgo
utilization as a non-timber forest product. We constructed
a co-expression regulation network and identified 13 TF
genes having crucial roles in controlling the transcriptomic
regulation of flavonoids by activating the expression of multiple
structural genes. These results provide candidate genes for future
enhancement of flavonoids production by genetic strategies
in Ginkgo. Furthermore, the large amount of data resources
generated will serve as the foundation for a system biology
approach to study the dynamics of leaf development and
flavonoids accumulation in other plants.
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Multi-omics, variously called integrated omics, pan-omics, and trans-omics, aims to
combine two or more omics data sets to aid in data analysis, visualization and
interpretation to determine the mechanism of a biological process. Multi-omics efforts
have taken center stage in biomedical research leading to the development of new
insights into biological events and processes. However, the mushrooming of a myriad
of tools, datasets, and approaches tends to inundate the literature and overwhelm
researchers new to the field. The aims of this review are to provide an overview
of the current state of the field, inform on available reliable resources, discuss the
application of statistics and machine/deep learning in multi-omics analyses, discuss
findable, accessible, interoperable, reusable (FAIR) research, and point to best practices
in benchmarking. Thus, we provide guidance to interested users of the domain by
addressing challenges of the underlying biology, giving an overview of the available
toolset, addressing common pitfalls, and acknowledging current methods’ limitations.
We conclude with practical advice and recommendations on software engineering and
reproducibility practices to share a comprehensive awareness with new researchers in
multi-omics for end-to-end workflow.

Keywords: machine learning, benchmarking, FAIR, integrated omics, multi-omics, reproducibility, visualization,
data heterogeneity

INTRODUCTION

In the last decade, the application of different individual omic studies (e.g., genomics, epigenomics,
transcriptomics, proteomics, metagenomics) that aimed at understanding a particular problem in
human disease (Karczewski and Snyder, 2018), agriculture (Ichihashi et al., 2020), plant science (Liu
et al., 2016), microbiology (Quinn et al., 2016), and the environment have been successful to a great
extent. These studies generate a plethora of data, which, with careful integration under a suitable
statistical and mathematical framework, can help to solve broader queries pertaining to basic and
applied areas of biology.

Abbreviations: AI, artificial intelligence; API, application programming interface; DL, deep learning; EDA, exploratory data
analysis; FAIR, findable, accessible, interoperable, and reproducible; FDR, false discovery rate; GPU, graphics processing unit;
KEGG, Kyoto Encyclopedia of Genes and Genomes; ML, machine learning; MOFA, multi-omics factor analysis; NGS, next
generation sequencing; OR, odds ratio; PCA, principal component analysis; PMC, PubMed Central; QC, quality control; R,
statistical programming language R; SNF, similarity network fusion; TCGA, The Cancer Genome Atlas.
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More generally, performing multiple omics research often
means having datasets with very different data modalities
originating from varied assay types and increased dimensionality.
In a multi-omics workflow (e.g., while profiling RNA, protein,
or metabolites) the transcriptomics dataset, from RNA-seq
efforts, can generate hundreds to thousands of transcripts (and
the isoforms). In comparison, an individual researcher can
only profile a few thousand proteins (and the proteoforms)
or a few hundred identified metabolites (and features). Thus,
the information burden from the transcriptome can easily
overshadow the more actionable discoveries made from proteins
or metabolites that are closer to the phenotype (Fiehn, 2002).
This can add annotation bias and lead to enrichment of noise
if robust integrative frameworks for data handling are not
employed. Multi-omics aims to identify molecular markers
associated with biological processes by revealing the regulatory
units across diverse omics layers (e.g., obtained from DNA, RNA,
proteins, metabolites, etc.). Multi-omics provides insights in
understanding the mechanisms underlying biological processes
and molecular functions, interactions and cellular fate, whether
in vivo or in vitro, to reveal molecular phenotypes. Multi-omics
can support discovery of predictive or prognostic biomarkers
and/or potentially repurposed and novel drug targets in the era
of precision medicine. Thus, the ultimate purpose of applied
multi-omics is to increase the diagnostic yield for health, improve
disease prognosis and produce improved agricultural outputs via
robust understanding of genotype-to-phenotype relationship.

Figure 1 represents an artist’s depiction of the complexity
of multi-omics, a merger of omics-driven biology, data science,
informatics and computational sciences. In spite of such
challenges, the goal of multi-omics data is to support greater
understanding of the overall biological process by bridging the
gap of genotype-to-phenotype relationship.

We define multi-omics as three or more omic datasets coming
from different layers of biological regulation – not necessarily
within one level (exclusively derived from nucleic acid/DNA-
derived, i.e., epigenomics, transcriptomics, and genomics). We
have also not included proteogenomic that has immensely
contributed to our improved understanding of protein sequences
databases, gene annotations, gene models, and identification
of peptides by interrogating genomics and transcriptomics
while validating such protein data evidence using proteomics
(Nesvizhskii, 2014). Further, this review does not discuss how
other non-molecular data (i.e., phenotype data, clinical measures,
imaging etc.) can be integrated with multiple omics datasets, as
it entails a very different scope. While navigating this article, we
recommend the readers consult Box 1, which contains the terms
and concepts to support their understanding.

WHY IS MULTI-OMICS CHALLENGING?

Firstly, each individual omics analysis presents a multitude of
challenges (Gomez-Cabrero et al., 2014; Misra et al., 2019).
Multi-omics analysis inherits challenges from the single omics
datasets, and confounds further analyses with other new
challenges of the integration/fusion, clustering, visualization,

and functional characterization (Pinu et al., 2019; Jamil et al.,
2020). For instance, prior to integrating two or more omics,
analysts or investigators can face challenges in terms of data
harmonization (e.g., different data scaling, data normalization,
and data transformation needs pertaining to individual omics
dataset). Further, given dimensionality constraints posed while
integrating large multiple omics data sets (e.g., a large
population study with thousands of individual samples), the
computational burden and storage space requirements can be
limiting for a given study.

Even the identifiers (IDs) mapping – a prerequisite of
some integration methods – is not an easy task when
matching genes with associated transcripts or proteins (which
is not a one-to-one correspondence), or a substantial challenge
for other omics combinations, such as mapping genes to
associated metabolites. Moreover, annotation of the omic entities
(e.g., transcripts, proteins, and metabolites) with additional
information, such as pathway membership and molecular
characteristics, may require mapping IDs to various database
systems (e.g., RefSeq or KEGG). Some of which may not cover
all the omics of interest (e.g., metabolites are absent from
RefSeq), while others may present outdated IDs due to delays
after changes are made in the primary sources (e.g., KEGG
GENE being based on RefSeq). The repertoire of identified
and annotated molecules varies across omics, ranging from
very good coverage of the genome, through a not-yet-complete
picture of phosphoproteome and selective coverage of the
metabolome. The challenges of metabolite identification may act
as a bottleneck for advancement of the joint omics analyses.
On the statistical side, unsupervised multi-omics methods can
strengthen any signal, including systematic batch effect if
present before quantitative measurements are taken, such as
during sample acquisition, transport, processing logistics and
operations. Failure to correct for such unwanted sources of
technical variation, which may not be possible if the necessary
information was not recorded during the sample handling steps,
can misguide the overall integration process and impact the
downstream interpretations and inferences (Kellman et al., 2020).
Figure 2 exemplifies the complexity of individual omics data
heterogeneity and data sources in the multi-omics framework
in a human focused, biomedical study. In the section below, we
identify three of the major challenges and pitfalls that explain the
above scenarios:

Data Wrangling
Also referred to as “data munging,” includes various levels of
“transformation” and “mapping,” is critical to the multi-omics
field. Transformation is accomplished by data scaling,
normalization, and imputation that help harmonize different
omics data together. Category of “mapping” can be the process of
harmonization of IDs across various omics data types or simply
annotating data across available meta-data, a labor-intensive
process that requires massive one-to-one or one-to-many
relationship operations. Careful registration of samples and
robust metadata recording tables, with involvement of data
generation and analysis teams can help circumvent this challenge
and mitigate errors.
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FIGURE 1 | The complexity of multi-omics: merger of omics-driven biology, data science, informatics, statistics, and computational sciences.

Data Heterogeneity
Data heterogeneity is often another bottleneck while dealing with
multi-omics data as these are generated via varied technologies
(i.e., consider sequencing versus mass-spectrometry, or
microarray versus mass-spectrometry scenarios) and platforms
(i.e., targeted versus untargeted, high resolution versus single
cell). Pre-processing steps pertaining to individual datasets may
not help overall, especially when democratizing them under a
unified framework still remains challenging. However, some
tools have led to improved handling, such as similarity network
fusion (SNF) (Wang et al., 2014), mixOmics (Rohart et al., 2017),
Multi-Omics Factor Analysis (MOFA) (Argelaguet et al., 2018),
among others. Their utility depends on matrix factorization,
network fusion, canonical correlation, factor analysis, and are
used for downstream feature extraction and feature selection
purposes for phenotypic prediction. Efforts have focused on
dimension reduction (Meng et al., 2016), integration approaches
while running into multicollinearity (Meng et al., 2014), and
integration issues when dealing with multi-omics and non-omics
data (López de Maturana et al., 2019) as explained below.

Dimension Reduction and
Representation
Data representation, by means of dimensionality reduction
that intends to project relationships of features (e.g., SNPs,

transcripts, proteins, metabolites) across observations (e.g.,
samples, conditions, different omics layers) in a reduced space,
is a common practice a priori in multi-omics efforts. Typically,
following post-preprocessing after data normalization, data
representation is applied to identify outliers, technical sources of
variation – such as batch effects – and obvious biological patterns
at each level of analysis – such as feature identification, extraction,
and selection. This exercise aids in learning biological patterns
and relationships of the data in bias identification and mitigation
via appreciation of technical factors contributing to noise,
adjusting them via batch effect correction, and identification
of groups/sub-groups to confirm hypotheses of phenotypic
conditions of interest in a given study. This is achieved by
using clustering methods that are k-means, density-based, or
graph-based, followed by generating visual representations using
dimensionality reduction methods like principal component
analysis (PCA), t-distributed stochastic neighbor embedding
(t-SNE), and uniform manifold approximation and projection
(UMAP) to capture linear and non-linear relationships in
the data. However, this approach is often challenging given
the complexity of the analytical space and the study goals
due to latent patterns encoded in input samples originating
from different omics layers, technologies and platforms. Such
complexities in representation can be attributed to the lack of
optimal tunable algorithms both at mathematical and statistical
levels. These challenges are well documented in bulk gene
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BOX 1 | Terms, concepts, expressions, and definitions for clarity of readers foraying into multi-omics.

Terms, concepts,
expressions

Definitions

Multi-omics/panomics/
integromics/integrated omics
polyomics/transomics
cross-omics

An approach aiming to improve the understanding of systems regulatory biology, molecular central dogma and
genotype-phenotype relationship by combining 3 or more different omics data.

Multi-table, Multi-block Terms focusing on the format of the data rather than its nature, popular in chemoinformatics (among other fields); can (but does not
have to) imply a larger number of features than observations in the integrated tables/blocks.

Multi-view Method often used in the field of ML for learning heterogeneity in the data and identification of patterns. By comparison to multiple
cameras viewing an object from different angles, in omics context, the object can vary – whether it’s “cell,” “organism,” or just
“genome” viewed via different seq* techniques.

Multi-source This term encompasses datasets that are derived from multiple sources of molecular assays. This terminology is used, for example
by the joint and individual variation explained (JIVE) tool (O’Connell and Lock, 2016) during EDA.

Multi-modal A term often used in omics in reference to multiple measurements methods done at molecular level to gain holistic insights of
cellular machinery (e.g., one cell at a time). It is also popular in drug repositioning that involves integration of more nuanced
electronic health record (EHR) data integration.

Central dogma of molecular
biology

This is an explanation of the flow of genetic information within a biological system from DNA to RNA (transcription) to protein
(translation) to metabolites (enzyme catalysis).

Machine learning (ML) method Algorithm (a sequence of instructions) aimed at learning from data, with applications including exploration/dimensionality reduction
(unsupervised methods, e.g., PCA, matrix factorization) and classification/prediction (supervised or semi-supervised methods)

Deep learning (DL) method A subtype of ML using deep neural networks, composed of artificial neurons (signal aggregating or transforming units) arranged in
layers; the depth of the DL refers to the number of “hidden” layers between the “input” (exclusive) and “output” layers (inclusive).

Fusion (Baldwin et al., 2020) A specific type of integration that applies a uniform method in a scalable manner, to solve biological problems which the multi-omics
measurements target.

Exploratory data analysis (EDA) It is an approach that is heavily used in statistics, data science field during early data analysis steps often coupled with visualization.

Matrix factorization A class of ML algorithms based on matrix decomposition, i.e., representation of a data matrix by two or more matrices (factors) that
can be multiplied together to obtain the original matrix (or its approximation). It can be used for classification, prediction, or
exploration.

Data heterogeneity The data with a structural variation that can be explained by the composition of the analyzed dataset; encompasses both the
clinical heterogeneity (e.g., presence of two groups with different genetic make-up due to ancestral differences, or different
underlying etiologies of a disease) and technical heterogeneity (i.e., batch effects).

Meta-data A table of organized information and instructions that helps to summarize the data properties in order to make it findable and usable
for data analysis across same or multiple projects.

Git A version-control system for tracking changes in source code and other documents during software development. Platforms such
as Github and Gitlab are built on top of it.

expression studies that show that there is no single best latent
dimensionality or compression algorithm for analyzing gene
expression data (Way et al., 2020). Similarly, Hu and Greene
(2018) proposed having a third-party evaluation by methods
developers on unseen data while benchmarking autoencoder
(unsupervised neural network) methods in single cell RNA-
Seq (scRNA-seq) data for learning representations. These
issues substantially change the results while interrogating high
dimensional biological data. This problem is also applicable
and extendable in multi-omics analytical space given the
varied nature of data types in each omics layer with diverse
biological modalities, such as while integrating single cell genome
sequencing (genomics), RNA-Seq (transcriptomics), ATAC-
Seq (epigenomics) and/or Bisulfite-Seq (epigenomics) together
after pre-processing, batch-correction and normalization steps.
Additionally, the data is also challenging to integrate as the
relationship between multi-omics data layers can extend from
one-to-one and one-to-many to many-to-many. This is also a
very well-established concept in the Gene Regulatory Network
(GRN) area of Systems Biology where gene-to-gene relationship
establishments across various DNA, RNA, protein, metabolite,
etc. are often better associated and represented using non-linear

methods. Mutual Information (MI) based networks were found
to perform better than other methods in such areas (Liu, 2017).

In Figure 3, we demonstrate a flow diagram to adhere to best
practice guidelines in a multi-omics study for FAIR data sharing.

BEFORE YOU START: THE NEED FOR
CONSULTATION AND PILOT DATA
UPFRONT

Only a robust study design can lead to error-free execution of a
multi-omics workflow. Though there are several proposed study
design considerations and guidelines available for individual
omics in genomics (Honaas et al., 2016) and metabolomics (Chu
et al., 2019), such comprehensive guidelines are not developed
for multi-omic studies to our knowledge. It is not surprising
that the study design guidelines for individual omics vary in
scope and coverage since each omic field faces different challenges
and opportunities. Without proper experimental design, poorly
planned multi-omics efforts lead to analytical complexity, non-
informative inferencing, exclusion of tangible interpretations,
overriding true biological signals, and eventually feed into the
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FIGURE 2 | Example of complexity and interconnectivity of omics data sources in a multi-omics framework. A simple cellular endogenous metabolite, lactate is
biosynthesized enzymatically from pyruvate (another metabolite) with the help of lactate dehydrogenase (LDHA, a catalytic protein). In turn this LDHA can interact
with several known and unknown proteins through protein-protein interactions to regulate its own function, and itself is subjected to diverse post-translational
modifications (PTMs) that regulate its catalytic function. Lactate measurement through techniques such as in vivo brain imaging in human or other model animals can
generate lactate’s spatial distribution. Gut microbiome via Lactobacillus and other microbes can synthesize lactate and release into human physiological systems to
contribute to lactate levels. Lactate biosynthesis regulation can be due to various levels of genetic (e.g., SNPs, CNV, etc.), transcriptomic, post-transcriptomic (e.g.,
miRNA) and/or epigenetics (e.g., DNA methylation) changes on the LDHA gene. Though this is one of the well-studied set of multi-omics interactions, but one can
expect more complex and unknown interactions while integrating multi-omics datasets.

reproducibility crises plaguing high throughput omics domains.
Some of the considerations needed to overcome these issues
include: (a) careful assessment of statistical power and effect
size appropriate to the experimental design, (b) identification of
confounders (e.g., sex, age, input materials) inherent to the data,
biases (e.g., replicates: biological and technical) and sources of
variations (e.g., batch, analytical, unwanted) that are anticipated
in the course of data generation, (c) quality assurance (QA) and
quality control (QC) measures that are associated with individual
omics data generation and analytical platforms and (d) cross-
validation measures implemented in cases of unavoidable biases.

Sample Size and Statistical Power:
Challenges and Opportunities
Different omics data require different numbers of samples to
draw reliable conclusions. Reliability is dependent on false-
discovery rate (FDR), which is influenced by the number of
measured entities (i.e., transcripts/proteins/metabolites). Smaller
omics data generation platforms such as microRNAs may need
about 19 samples per experimental group to achieve a power of
0.8 at a fold change of 1.5 (Kok et al., 2018) with FDR < 0.1.
Whereas, a set of 10,000 transcripts, each with at least 10

counts, would require a minimum of 35 samples per group
for the same effect size at the same power and FDR control
level, as calculated with ssizeRNA (Bi and Liu, 2016) using
parameters pi0 = 0.8 disp = 0.1. The power calculation is not
equally easy for each of the omics. While many tools were
devised for transcriptomics/genomics power analysis, there are
fewer dedicated tools available for metabolomics and proteomics
studies. Only recently, a method to estimate an optimal sample
size for multi-omic experiments was proposed (Tarazona et al.,
2020) that addresses power calculation in multi-omics studies.
This is one of the first comprehensive work that performed
rigorous evaluations of relevant parameters across varied omic
technologies (both sequencing and non-sequencing/i.e., mass-
spectrometry based), built an open source tool (MultiPower1),
that will enable future researchers to perform power and sample
size estimation for their choice of multi-omics ED platforms
while designing future studies and projects.

Further, pending cost-benefit tradeoff considerations,
investigators typically decide on inclusion or exclusion of
an individual omics experiment in a multi-omics setup. In
certain cases, doubling the sample size is more informative than

1https://github.com/ConesaLab/MultiPower/
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FIGURE 3 | Flow diagram of best practice guideline in a multi-omics study for FAIR sharing. A multi-omic study entails data varied assays/sources/omics type, that
can be integrated using various framework and tools. This process (represented in block with light-green) can be computationally intensive. As a by-product we get
processed data, which can be taken forward to do multiple steps involving exploration, inferencing and interpretations. Sharing both the data and code alongside
compute environment allows interoperability and non-reinventing the wheel. Here (represented in third block with light-purple), describes the open sharing of different
components in a multi-omic project, the connected blocks that can eventually generate reproducible results in forms of reports for users.

inclusion of an additional omics assay. For example, since small
effects may not be clinically useful, increasing sample size may
not be prudent when looking for biomarkers where assessing
multi-omic panels may be more useful. When investigating
disease subtypes, or patient stratification, a larger sample size
may be desirable to achieve higher power in each of the subtypes.
Subtyping of complex disease may benefit from diverse omics
representation. Whereas, a study of biological mechanisms
may benefit from related omics for a focused analysis of
chosen omics types.

When planning a multi-omic analysis for a method that
requires matched samples from all available omics datasets, the
omic with the largest sample size requirement may dictate the
need for such a large sample size across all analyzed omics.
Here we provide two scenarios explaining the issue. For instance,
in scenario one, when a study recruits 20 patients, collecting
their biofluids for: genotyping, RNAseq, and metabolomics; and
receives 19 genotypes, 18 transcriptomes and 17 metabolomes,
one may incorrectly infer that the data is representative of 17
patients, but actually the failed samples (and QCs) originate from

different patients across platforms. In reality, the experiment may
result in only 14 patients with a complete set of measurements
post QC across all omics. In scenario two, one study can
recruit up to 100 patients but cannot afford to complete all
three experiments on every patient. Hence, the researchers
may decide to acquire data for 1000 genotypes, as those are
affordable, and then split the transcriptome and metabolome
equally to 70 a piece. This translates to matched samples
for only 70 patients, thereby indicating missingness of data
within and across omics layers. While the resulting missingness
appears suboptimal, the integrative multi-omic design may allow
researchers to decrease the sample size requirement; this is due
to the increased potential of integrative analysis (Rappoport
and Shamir, 2018). In this case, one can handle such sparsity
by making a trade-off between genes (highly variable) given
sample size is low or use sparsity methods in underlying available
multi-omics frameworks. Moreover, the researchers may not
consider each of the omics as equally important for their
biological question and may be willing to focus on observations
of larger effect sizes in an individual omics, which would drive
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up the cost of the project. One of the recent works on such
parameter harmonization and power size estimate in the realms
of multi-omics is very well captured and addressed elsewhere
(Tarazona et al., 2020).

Sample size is also an important consideration for multi-
omic studies of rare diseases or difficult-to-access tissue, such
as cerebrospinal fluid or endometrial tissue. These studies may
struggle to recruit larger numbers of patients, exacerbating the
disproportion between the number of samples and features. The
early integration multi-omics strategies may be a good fit for such
low sample-size experiments, as those allow to detect more subtle
effects if consistently present across analyzed omics (Rappoport
and Shamir, 2018). When choosing whether to include an
additional omics layer, we advise a thorough examination of
previous studies combining the omics intended for use, as the
cost/benefit trade-off while including an additional omic layer
may vary (information gain), the omic characteristics (e.g.,
signal/noise ratio) and the availability of validated computational
methods for specific omics type or in combination.

Consulting Platform Experts and
Incorporating Pilot Data
Given that the platform-specific characteristics–such as varying
dispersion rates–require tailored solutions, researchers may
require different parameters for RNAseq versus microarrays in
transcriptomics, for liquid chromatography-mass spectrometry
(LC-MS) versus aptamer-based proteomics or targeted versus
untargeted metabolomics. Expert consultation is prudent before
start of a pilot study to gauge the overall feasibility of the
experiments and capabilities of the individual platforms in
yielding optimal features (Tarazona et al., 2020), to design
the final multi-omics study (note: the number of features or
predictors in a given study is often denoted by ‘p’).

CURRENT STATE OF THE ART AND THE
TOOLS

Multi-omics approaches can broadly be categorized as:

(a) Supervised – classification tasks that include discrete
outcomes, such as disease/control status, and
prediction tasks like that of continuous outcome, (e.g.,
survival, pain score).

(b) Exploratory – unsupervised clustering (e.g., disease
subtype discovery) and relationship-based analysis (e.g.,
correlation/covariance and network models).

Even, over the past decade or so, a diverse array of multi-omics
tools have been developed (Misra et al., 2019; Subramanian
et al., 2020), some of which have gained popularity in recent
years, including: mixOmics (Rohart et al., 2017), SNF (Wang
et al., 2014), Paintomics (Hernández-de-Diego et al., 2018),
3Omics (Kuo et al., 2013), miodin (Ulfenborg, 2019), and MOFA
(Argelaguet et al., 2018), as evident from the growing number
of applications, user support requests, and citations. Table 1
presents types of tools and resources which are useful for

execution of a multi-omics workflow, together with the examples
for each of the categories.

ADVANCES AND LIMITATIONS IN
BENCHMARKING

The increasing reliance on computational methods necessitates
systematic evaluation (benchmarking) of the omics data analysis
tools and methods (Mangul et al., 2019). The key challenges
in omics-scale benchmarking of computational tools, include:
acquisition of “gold standard” datasets (providing unbiased
ground truth), incorporating new methods for establishing
benchmarks as they are published (continuous/extendible
benchmarks), and ensuring reproducibility in the context
of increasing complexity of the software involved (Mangul
et al., 2019; Weber et al., 2019; Marx, 2020). Each of these
challenges is amplified in the multi-omics field – matched omics
measurements are more difficult to obtain, novel methods can
rely on specific combinations of omics being available (limiting
opportunities for extending previous benchmarks) and software
requirements may increase in complexity as authors strive to
combine results of multiple state-of-the-art single-omics tools for
improved multi-omics performance.

Gold standard datasets that incorporate multiple omics and
provide unbiased ground truth are a prerequisite for proper
systematic evaluation of multi-omics methods. The Cancer
Genome Atlas (TCGA), which includes genomic, epigenomic,
transcriptomic, proteomic, and clinical data for 32 cancers (Blum
et al., 2018), is a landmark dataset for multi-omics methods
development. Our literature search reveals that references to
TCGA are enriched in the multi-omics computational method
articles compared to other article types (48.5% versus 19.7%,
OR = 3.83, p-value = 4.5 × 10−07, full-text analysis of the
open-access PMC subset; see below for methods). While many
other multi-omics datasets exist (e.g., for inflammatory bowel
disease2 or amyotrophic lateral sclerosis3); the community is yet
to decide on a suitable “gold standard” across varied disease and
tissue types, other than cancers. This process will require the
expertise of domain-experts and characterization of statistical
and technical properties of the datasets (e.g., presence of batch
effects, analysis of confounders) (Marx, 2020).

A handful of notable multi-omics benchmarks are available,
comparing: multi-omics and multi-view clustering algorithms
(Rappoport and Shamir, 2018), multi-omics dimensionality
reduction (Cantini et al., 2020) and multi-omics survival
prediction methods (Herrmann et al., 2020). All three
benchmarks were performed using the TCGA cancer data.
While it is beneficial to use the same dataset for comparison,
results obtained this way cannot be generalized beyond cancer
biology, nor applied to the integration of other omics –
such as metabolomics, or microbiome data – that are not
included in the TCGA. With new multi-omic tools being
developed, a comprehensive comparison against existing tools

2https://ibdmdb.org/
3http://data.answerals.org/
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TABLE 1 | A complied list of various resources for supporting FAIR and interactive multi-omics study.

Serial No Tools Purpose Link References (if any)

Popular/Emerging Multi-omics Tools

1 mixOmics A tool with a framework that provides wide
range of multivariate statistical methods for
exploratory data analysis (EDA). This
involves features identification, extraction
and selection.

http://mixomics.org/ Rohart et al., 2017

2 MOFA A probabilistic multi-omics factor
analysis-based framework that involves
EDA and data integration. (Unsupervised)

https://github.com/bioFAM/MOFA Argelaguet et al., 2018

3 SNF A multi-view network and fusion analysis
framework for feature extraction, pairwise
similarity, clustering, classification, etc.

https://cran.r-project.org/web/
packages/SNFtool/index.html

Wang et al., 2014

4 miodin A multi-level statistical framework involving
vertical and horizontal integration of
multi-omics data.

https://algoromics.gitlab.io/miodin/ Ulfenborg, 2019

5 Paintomics A web-based systems biology tool for
multi-omic integration and visualization
across multi-species.

www.paintomics.org Hernández-de-Diego
et al., 2018

6 3Omics A web-based application for integration and
analysis of multi-omics data.

https://3omics.cmdm.tw/ Kuo et al., 2013

Data Sharing

1 OmicsDI An aggregated database facilitating the
discovery of heterogenous published omics
datasets across studies.

http://www.omicsdi.org Perez-Riverol et al.,
2017

2 Zenodo A general-purpose open-access data,
softwares, etc repository that allows user to
obtain a citable DOI.

https://zenodo.org/ NA

3 OSF An open platform to enable collaboration by
registering research projects, materials,
data and documentation.

https://osf.io/ NA

Code Sharing

1 GitHub A version-controlled code sharing and
collaborative platform.

https://github.com/ NA

2 BitBucket https://bitbucket.org/ NA

3 GitLab https://about.gitlab.com/ NA

Workflow Sharing

1 Common Workflow
Language (CWL)

An open standard for describing analysis
workflows which makes them portable and
scalable across a variety of software and
hardware environments.

https://www.commonwl.org/ Amstutz et al., 2016

2 Nextflow An enterprise level workflow language for
writing scalable and reproducible scientific
pipelines.

https://www.nextflow.io/ Di Tommaso et al.,
2017

3 Snakemake A workflow language for writing scalable
and reproducible scientific pipelines.

https:
//snakemake.readthedocs.io/en/stable/

Koster and Rahmann,
2012

Environment Sharing

1 Conda A package manager and computation
environment management system.

https://docs.conda.io/en/latest/ NA

2 Bioconda A channel for the conda package manager
specializing in bioinformatics software.

https://bioconda.github.io/ Grüning et al., 2018

3 Docker A container platform that provided OS-level
virtualization for providing reproducible
computation environment.

https://www.docker.com/ NA

4 BioContainers A community-driven project that provides
docker based containerized bioinformatics
software.

https://biocontainers.pro/ da Veiga Leprevost
et al., 2017

5 renv A R-package that helps create reproducible
environments for R-based projects.

https://rstudio.github.io/renv/ NA

(Continued)
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TABLE 1 | Continued

Serial No Tools Purpose Link References (if any)

Data Visualization

1 Shiny A framework in R for doing GUI based
interactive applications.

https://shiny.rstudio.com/ NA

2 Plotly A cross language interactive plot library. https://plotly.com/ NA

3 bokeh A Python library for Interactive data
visualization in browser.

https://bokeh.org/ NA

4 D3,js A JavaScript library for producing dynamic,
interactive data visualizations in web
browsers.

https://d3js.org/ NA

5 Cytoscape A platform for network data integration,
analysis, and visualization.

https://cytoscape.org/ NA

is clearly missing, primarily attributable to limited availability
of “gold standard” data sets. Other than the widely used
multi-omics datasets from TCGA cancer patients, only limited
studies incorporate simulated datasets, such as the R InterSIM
package–which is also based on data dependence structure from
the TCGA cancer studies.

Even the evaluation of a method on real-world data can be
limited by the quality of the ground truth. One such scenario
is the multiple multi-omic methods benchmarking against breast
cancer subtypes that are primarily derived from a transcriptome
based PAM50 signature (Bernard et al., 2009; Mathews et al.,
2019). Such ground truth may favor the transcriptomic signal that
could explain the limited perceived benefit of the multi-omics
methods over single omics. Therefore, alternative strategies may
be beneficial in the evaluation of subtypes derived by multi-omics
methods (e.g., survival, drug response).

Given the limitations in the systematic characterization of
multi-omic tools and methods, researchers need to choose
tools that are either well benchmarked in appropriate scenarios
and/or evidenced in multiple observational studies and
systemically evaluated.

FAIRIFICATION OF MULTI-OMICS
EFFORTS

Reproducing results in the multi-omics domain is
understandably challenging because of the use of diverse
data analysis methods, tools, and statistical processing, but
as a research community we strive to make research efforts
conform to findability, accessibility, interoperability, and
reusability (FAIR) standards. Thus, the latest advancements
in data sharing and environment replication can be leveraged
to address this issue. In the following sections, we introduce
means and approaches to share data, code, workflow, and
environment while executing a multi-omics analysis to enhance
the FAIRness (Wilkinson et al., 2016) which is suboptimal in the
multi-omics field.

In order to determine the usage of multi-omics terms and
their variants in the literature, to capture the trends in similar
research domains, to identify their FAIRness in publications and
the overrepresentation of research areas in them, we performed

a systematic search (see Figure 4). We searched the PubMed
database for articles pertaining to multi-omics on 25th July
2020, using fourteen terms (multi| pan| trans| poly| cross-omics,
multi-table| source| view| modal| block omics, integrative omics,
integrated omics and integromics) including plural/singular and
hyphenated/unhyphenated variants and their combinations. The
search was automated via Entrez E-utilities API and restricted to
Text Words to avoid matching articles based on the affiliation of
authors to commercial entities with such names. Further, the full
text and additional metadata were retrieved from the PubMed
Central (PMC) database for the open access subset of articles.
Feature extraction was performed via n-gram matching against
ClinVar (diseases and clinical findings) and NCBI Taxonomy
(species) databases, while omics references annotation was based
on regular expressions capturing phrases with suffix “-ome” or “-
omic” (accounting for multi-omic phrases and plural variants).
All disease and species matches were manually filtered down
to exclude false or irrelevant matches and to merge plural
forms. The article type was collated from five sources: (a) MeSH
Publication Type as provided by PubMed, (b) community-
maintained list of multi-omics software packages and methods
available at https://github.com/mikelove/awesome-multi-omics
[accessed on 2020-06-24], (c and d) PMC-derived: Article Type
and Subjects (journal-specific) and (e) manual annotation of
articles published in Bioinformatics (Oxford, United Kingdom),
due to lack of methods subject annotations in PMC data for
this journal. The details and code are available in the online
repository: https://github.com/krassowski/multi-omics-state-of-
the-field.

The results of this systematic literature screen led to various
interesting conclusions, as shown in Figures 5A–E. Primarily, our
analysis revealed that multi-omic studies tend to focus on three
layers of omics encompassing transcripts, genes, and proteins.
This is followed by omics layers including metabolites and
epigenetic modifications and combinations thereof (Figure 5A).
A search of PubMed articles revealed that “multi-omics,” as a
terminology, is dominant over “integrated omics” and other
omics-associated terms with an incremental trend since 2010
(Figure 5B). The search for “-ome” and “-omic” terms suggested
that review articles tend to discuss the highest number of distinct
omics, while computational methods articles appear to discuss
the fewest, suggesting a potential disparity between the abilities
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FIGURE 4 | A systematic flow diagram to screen multi-omics literature in PubMed indexes articles (up to July 2020). This flow diagram represents the various steps
of inclusion and exclusion criteria used to identify varied characteristics and attributes associated with published multi-omics studies. A detailed self-explanatory
method with reproducible code are available at https://github.com/krassowski/multi-omics-state-of-the-field.

of available computational tools and the ambitions and needs of
the multi-omics community (Figure 5C). Of the disease terms,
the multi-omic studies most frequently featured “cancer” and
“carcinoma,” while among the searched species “human” and
“mice” dominated, indicating little representation of non-model
species, organisms and biological systems. Articles mentioning
“cancer” in title or abstract were overrepresented among the
multi-omic articles when compared to other articles from the
same time span, from the same journals and weighted by journal
frequency in the multi-omics subset (22.7% vs. 7.5%, OR = 3.04,
p < 10−104) (Figure 5D). Toward FAIR sharing of data and
code, “GitHub” appears to be the most popular platform, followed
by “Bioconductor” and “Comprehensive R Archive Network
(CRAN),” among many others (Figure 5E). Below we share few
topics contributing to FAIR approaches:

Data Sharing
Different public databases are in place aiming to store and
share specific kinds of omics data types as public repositories
[e.g., genomics data in NCBI-SRA (Leinonen et al., 2011), GEO
(Barrett et al., 2012) and EBI-ENA (European Bioinformatics
Institute, 2016), proteomics data at PRIDE (Vizcaíno et al., 2016)
and ProteomeXchange (Vizcaíno et al., 2014), or metabolomics
data at MetaboLights (Haug et al., 2013), Metabolomics
Workbench (Sud et al., 2016) and GNPS-MASSIVE (Wang et al.,
2016)]. Only recently, have there been efforts to link these
databases in a discoverable manner in the form of OmicsDI
(Perez-Riverol et al., 2017). Mostly, raw sequences or very specific
processed (count tables) data are being submitted to those

databases, whereas, the intermediate outputs and analysis files
are not shared, thus preventing reproducibility. The following
resources can alleviate such scenarios: (a) Zenodo: allows users
to upload raw data files, tables, figures and code. It supports code
repositories, with GitHub integration, in addition to providing
digital object identifiers (DOIs), and (b) OSF (Open Science
Framework) (Foster and Deardorff, 2017): provides users with a
platform where projects can be hosted with varied data types and
file formats and contains a built in version control system. It also
supports DOIs while promoting open source sharing that adheres
with the FAIR guidelines.

However, adoption of such resources appears low in the
multi-omics field as evident in our meta-analysis, with only 0.58%
of publications (20 out of 3455 screened) linking to Dryad, OSF
or Zenodo (Figure 5E).

Code Sharing
To enable FAIR sharing of code, a data analyst can explore one
of the multiple venues available that publicly hosts codebases.
These are: (a) GitHub, (b) Bitbucket, and (c) GitLab. All of these
platforms use the Git system to provide version control. Also,
native Markdown and Jupyter based notebooks render support
for providing an exploratory data analysis (EDA) narrative
alongside code and its output.

Workflow Sharing
As multi-omic analyses are often multi-step with each output
being the input of another, in order to increase the efficiency
workflows can be written with Domain Specific Languages (DSL)
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FIGURE 5 | Characterization of multi-omics literature based on a systematic screen of PubMed indexed articles (up to July 2020). (A) Combinations of omics
(grouped by the characterized entities) commonly discussed occurring together in multi-omics articles (intersections with ≥ 3 omics and at least 50 papers). The
proteins group (1) also includes peptides; the metabolites group (2) includes other endogenous molecules; the epigenetic group (3) encompasses all epigenetic
modifications. (B) Trend plot representing the rapidly increasing number of multi-omics articles indexed in PubMed (also after adjusting for the number of articles
published in matched journals – data not shown); the dip in 2020 can be attributed to indexing delay which was not accounted for in the current plot. (C) Distribution
of article categories that mention different numbers of omics; while it is understandable that multi-omics “Review” category discusses many omics, the
“Computational method” category articles appear to lag all other article category types. The detected number of omics may underestimate the actual numbers (due
to the automated search strategy) but should put a useful lower bound on the number of omics discussed. Bootstrapped 95% confidence intervals around the mean
are presented with the whiskers. (D) The number of articles mentioning the most popular clinical findings, disease terms (here screening is based on ClinVar diseases
list) and species (based upon NCBI Taxonomy database). Both databases were manually filtered down to remove ambiguous terms and merge plural/singular forms.
Only the abstracts were screened here. (E) The detected references to code, data versioning, distribution platforms and systems (links to repositories with deposited
code/data); both the abstracts and full-texts (open-access subset, 44% of all articles) were screened. No manual curation to classify intent of the link inclusion (i.e.,
to share authors’ code/data vs. to report the use of a dataset/tool) was undertaken. The details of the methods with reproducible code are available at
github.com/krassowski/multi-omics-state-of-the-field. The comprehensive search terms (see the online repository for details) were collapsed into four categories;
integrated omics (*) includes integromics and integrative omics, multi-view (**) includes multi-view| block| source| modal omics, other terms (***) include pan-, trans-,
poly-, cross-omics.
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such as: (a) Common Workflow Language (CWL) (Amstutz
et al., 2016), (b) Nextflow (Di Tommaso et al., 2017), (c)
Snakemake (Koster and Rahmann, 2012), and (d) Galaxy-
workflows (McGowan et al., 2020).

Environment Sharing
The entire data analysis environment can be created and shared,
saving time and aiding reproducibility (i.e., version control).
Even accessing the intrinsic versioning information of each tool
helps users in terms of interoperability, however, command
line version handling parameters (e.g., −v/−V) are sometimes
missing. The correction to a multi-omics clustering methods
benchmark highlights the need for specifying the computational
environment down to the processor architecture details (32 or
64 bit) (Rappoport and Shamir, 2019). As investigators attempt
to build upon state-of-the-art implementations from various
domains, like machine learning (ML), genetics, cell biology, the
dependency on tools using different programming languages is
incremental and some require a dedicated runtime environment
(e.g., R and/or Python). Dedicated tools can help researchers
who try to combine packages written in different languages
in a single analysis workflow by allowing transparent data
exchange and the use of interoperable functions across languages.
One example of such a tool is the Python-R interface rpy2
(rpy2, 2020), which found use in recent multi-omics tools (e.g.,
ReactomeGSA, Griss et al., 2020) and research scripts (Neyton
et al., 2019). However, the use of multiple complex runtime
environments can result in (version) conflicts if versions are not
properly matched. This hinders the reuse of proposed tools and
reproduction of published results. For example, each version of
rpy2 requires a specific version of Python and R. The problem
is not limited to Python → R workflow – the complimentary
R → Python interface, reticulate (Reticulate, 2020) can be
challenging to configure.

In order to ease the burden of interoperability and
reproducibility that investigators often face while analyzing
large multi-omics datasets with available algorithmic packages,
several environment sharing avenues can be implemented,
for example: (a) Conda (Conda, 2020): a cross-language tool
repository and environment management system. With a
shareable configuration (in yml format) file, an entire analysis
environment can be re-installed in another system. Bioconda
(Grüning et al., 2018) is a conda based project specifically
designed for bioinformatic tools. (b) Docker (Docker, 2020): a
ready to use lightweight portable virtual container, where an
environment can be established, with all the required tools,
for a particular analysis and shared. Specifically, bioinformatics
tools such as Biocontainer (da Veiga Leprevost et al., 2017)
are available. (c) Packrat (Packrat, 2020) (recently superseded
by renv) and checkpoint: dependency management packages
specific to R, which help to create isolated and portable
R environments. Checkpoint facilitated one of the previous
multi-omics benchmarking efforts (Herrmann et al., 2020).

Computational Power
Multi-omics analysis does not necessarily require high-
performance computational resources, unless performing large

scale consortia data extraction, transformation, load (ETL)
tasks across a few hundred-thousand samples. However, some
recent supervised multi-omics methods and packages can
be computationally expensive given the amount of training
that happens during the feature level analysis (e.g., Data
Integration Analysis for Biomarker discovery using Latent
Components (DIABLO), MOFA, etc.). Such bottlenecks can be
overcome using a higher end central processing unit (CPU),
high-performance computing cluster (HPC) and/or a cloud
resource. The requirement of storing large downloaded files can
be overcome using raw data streaming feature, however only a
few tools support such feature.

Regulatory and Ethical, Legal, and Social
Implications (ELSI) Issues
Additionally, multi-omics allows researchers to make more
inferences on individuals in the event of a security incident,
and labs/clinics that do translational research are often under
regulatory compliances that restrict any data upload to any
server for analysis when patient information is involved. There
are multiple regulatory compliance-related restrictions spanning
data security, ethical, personal information etc., that can serve
as bottleneck challenges. Alternatively, any researcher who
develops a multi-omics tool for the community and makes it
server/web/cloud-based should consider the needs of healthcare
researchers who will often encounter restrictions when uploading
such a dataset due to privacy concerns and other regulatory
checks. In such cases, researchers can explore and take resources
from non-open source enterprise level analytics platforms that
can be either cloud-based or stand-alone if such enterprise
platforms are Good Manufacturing Practices (GMP) certified,
adhering to Health Insurance Portability and Accountability
Act (HIPAA) and General Data Protection Regulation (GDPR).
There can be additional regulatory compliances, given the data
is produced by Clinical Laboratory Improvement Amendments
(CLIA) certified entities. If all such regulatory compliances are
in place, then patient data can be used in either a stand-alone
third-party platform or uploaded in a web/cloud-based server
for any analytics followed by inferencing under strict vigilance.
For example, some commercial companies that have such cloud-
based solutions include Amazon AWS, Google Cloud and MS
Genomics (Microsoft Genomics, 2020). All of these platforms,
together with other commercially available enterprise platforms
like KNIME (KNIME4Bio | KNIME, 2020), can provide the
necessary toolbox for multi-omics research and development.

APPLICATION OF MACHINE AND DEEP
LEARNING (ML/DL) IN MULTI-OMICS

Over the years, machine learning (ML) and/or deep Learning
(DL) have become increasingly popular in biomedical research
due to their ability to perform unsupervised and supervised
analyses using large datasets to provide logical or probabilistic
inference. In the current data-driven era, apart from the
large text mining exercises, pattern recognition and medical
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imaging, ML/DL growth has contributed to analysis of large-
scale high-dimensional data that are typically generated using
high throughput omics assays. Their use and challenges in
the multi-omics field are very well summarized in a recent
review by Mirza et al. (2019) that discusses topics of integrative
analysis encompassing dimensionality reduction/representation,
data heterogeneity, data missingness, class imbalance and
scalability issues. Other impressive applications of ML/DL are
often encountered in regulatory genomics to study DNA-protein
interactions and relationships. Some examples of relevant studies
and models related to regulatory genomics approaches are
available under http://kipoi.org/. However, much of ML/DL
newer bioinformatics applications are developed in varied forms
of supervised and unsupervised manner, such as specific neural
networks models have been built for feature identification,
extraction, and selection purposes. Some of these approaches in
the DL space are discussed in the review by Ching et al. (2018).
Such DL models have been extensively used for multi-omics
integration purposes to predict better molecular signatures
associated with improved patient survival and capture intricate
relationship patterns for better clustering over conventional
methods and drug response prediction. Such pattern extraction,
selection and representation are often difficult to achieve solely by
traditional linear modeling unless coupled with advanced non-
linear models. Some methods and tools from the multivariate
statistics/ML/DL area that have been developed for multi-
omics integration include: (a) Multi-Omics Model and Analytics
(MOMA), (b) Multiple Kernel Learning (MKL) (Wilson et al.,
2019), (c) DIABLO (Singh et al., 2019), (d) a multi-omics late
integration method (MOLI) (Sharifi-Noghabi et al., 2019), (e)
multi-omics deep learning method (DCAP) (Chai et al., 2019),
and (f) Multi-omics Autoencoder Integration (MAUI) (Ronen
et al., 2019). Partly this can be attributed to the reasons described
above and partly as described in the following paragraph.

Often simple models do not account for the principles of
dynamics and kinetics that underlie a set of biological processes.
Considering central dogma as the key hypothesis (Reinagel
and Speth, 2016) of molecular life, for the entire process from
replication through transcription to translation machineries that
are at play, each of these biological processes (i.e., a disease) have
pre and post events that are building more complex functions
at each step adding up to the biological stochasticity. These
stochastic events are often not well accounted for in simpler
models as researchers tend to overgeneralize using mathematical
modeling, calculus and/or statistics. Frequently, such strategies
are not adopted in multi-omics experimental design and also,
as datasets are not always longitudinal in nature, they can often
lead to biases or ineffective generalization or approximation in
multi-omics results. Another argument occurs when DNA and
RNA are assumed as distinct genetic materials. DNA and RNA
can work individually to bring about structural or functional
protein consequences that lead to a phenotypic change. This was
addressed to an extent by Koonin (2012), where central dogma is
challenged by “genetic assimilation of prion-dependent phenotypic
heredity,” and only a few phenotypes might fall under such
categories and phenomena. This can be due to (a) genetic insults,
like chromosomal instability and loss of function mutations

that directly impact the translational process, (b) insults to
RNA machinery without upstream DNA impact, while any
abnormalities in the RNA phase impinges the translational events
and (c) insults possibly seen in few systemic diseases where not
everything is reliant on DNA or germline mutations, but rather
due to abnormality in the underlying regulatory machineries
during transcription or pre-translation stages. Such events can
often be guided by upstream epigenetic insults like DNA
methylation, histone modifications or even specific enhancer
binding processes on a different gene promoter thus impacting
overall transcription and translation, leading to a phenotype.

Even at the level of proteins, the regulome is often guided
by protein-protein interactions, and those by kinases and
phosphatases, are barely predictable from the genome. Similarly,
regulations of metabolite levels (catabolic and anabolic processes
leading to their levels in a given system) are not predictable from
the enzyme levels, let alone their protein or DNA sequences.
These kinds of upstream processes are often not well captured
via omics technology, as our current models or frameworks
are yet to be fully optimized and cannot generalize at such a
level of non-linear system dynamic relationships that leads to
specific phenotypic processes (Reinagel and Speth, 2016). Taken
together, all of the above lead to the motivation of developing
more advanced variants of ML/DL-based tools in biomedical
research for multi-omics integration to improve understanding
of genotype to phenotype relationships. However, these methods
can be very computationally expensive and not robustly validated
as they will be under continuous development.

DATA VISUALIZATION TOOLS

Visual representation is one of the most important ways of
deriving interpretations and inferences with data in multi-
omics. With the advent of high-dimensional data generation
platforms, such as NGS technology and mass spectrometry,
such representation has become very popular. Currently, there
is a trend of developing dynamic web-based and stand-
alone applications among the larger research community in
diverse omics domains. These are often published alongside
code for reproducibility of the results as an additional
resource for other users in the research community to explore
and for hypothesis development. Visualization avenues of
multidimensional data in an interactive platform adheres to FAIR
standards. The need for joint visualization of multiple omics
datasets prompted the adoption of dashboarding applications,
such as BioTools (Biotools, 2020) and WilsON (WIlsON, 2020).
Dashboards display together multiple interactive panels with
high-dimensional data and are available for the majority of data-
exploration ecosystems (e.g., R, Python, Jupyter, Tableau). The
interactive visualization tools and dashboards can be installed
locally as stand-alone tools (e.g., in workstation/server) or can
be completely web-browser based (e.g., launched locally from a
server or a cloud-based platform).

Some of these popular tools that have found application
in multi-omics are: (a) R-based Shiny (Shiny, 2020) apps.
Numerous Shiny based apps help with exploratory data analysis
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for testing of hypotheses, given the end-user is able to grasp
the underlying statistical models/frameworks that perform a
required task of a specialized biological query. Such shiny
apps (Dwivedi and Kowalski, 2018; Kmezhoud/BioCancer, 2020;
WIlsON, 2020) can be launched both locally on a computer,
server or even hosted publicly catering to a larger community
of researchers. Binder (Jupyter et al., 2018) allows researchers
to quickly create the computational environment needed to
interact with research code and data shared online. Voilà
(Voilà, 2020) turns Jupyter notebooks into standalone web
applications. (b) Plotly (Plotly, 2020) (multiple languages; both
open source and commercial) includes several tools designed
for using these resources either in a stand-alone manner or
in conjunction with other available frameworks (Zeng et al.,
2019). In a way similar to Shiny, it supports creation of
complex dashboards when used with Python-oriented Plotly
Dash. (c) Python-based tools with or without integration
servers like bokeh (Bokeh, 2020) enables Python users to create
interactive web-based applications for end-users with front-
end. (d) Network and other advanced visualizations, including
JavaScript-based libraries such as D3.js (data-driven documents)
(D3.js, 2020), have functionality amenable for web-based network
tools creation. Cytoscape (Otasek et al., 2019; Cytoscape, 2020),
available both as a JavaScript library for online visualizations
(Cytoscape.js) and stand-alone application for EDA, is a popular
tool employed in the field of systems biology. Bacnet (BACnet
Stack, 2020) is another available framework for developing
custom multi-omics analysis websites including network and
other advanced visualizations.

COMPUTATIONAL RESOURCES
NEEDED FOR MULTI-OMICS ANALYSIS

In the following sections, we provide pointers for using
computational resources and expertise needed for executing a
multi-omics experiment.

Knowledge of Programming Languages
and Frameworks
Provided below are a few programming languages that are
relevant and applicable to experiments in multi-omics: (a) Bash
scripting and Python are useful for basic data pre-processing
and workflow organization, (b) C/C++/Java may be useful for
development of performant methods and algorithms, (c) R and
Python are de facto standard for statistical programming and
data visualization in the omics context and (d) Shiny/Bokeh
are visualization frameworks convenient for creating web-based
interactive multi-omics functions.

Computational Infrastructure
We advise learning to handle a standard Linux distribution,
enterprise-level or open-source cloud-based computational
interface, such as Google Colab in order to run
workflows/pipelines for EDA and launching softwares/tools
for performing any integrative multi-omics/bioinformatics
related tasks. These infrastructures can feed into varied analytical
tasks, such as data wrangling, data integration, data analytics,

data visualization, and functional analysis. Given such varied
data intensive tasks are associated with multi-omics analysis,
more often users need resources for stand-alone workstations
with well powered Central Processing Unit (CPU), servers
having Graphical Processing Unit (GPU) or high-end computing
infrastructures with Tensor Processing Unit (TPU). The need
of a GPU or TPU is however needed while running end-to-end
ML/DL models with high-volume features and parameters.

Databases, Visualizers and Portals
Numerous portals, databases, and data-centric tools can be
used for integrative multi-omics explorations. Examples of
those are cBioportal (Gao et al., 2013) (Cancer Bioportal);
Xena browser (Goldman et al., 2019) (UCSC Xena Browser
is an online exploratory tool for analyzing public and private,
multi-omic and clinical/phenotype datasets); ICGC Data portal
(Zhang et al., 2011) (International Cancer Genome Consortium
Data portal); ENCODE Data Portal (Davis et al., 2018)
[The Encyclopedia of DNA Elements (ENCODE) is a public
research project which aims to identify functional elements
in the human genome]; FANTOM5 (functional annotation of
the mammalian genome 5) (The FANTOM Consortium and
the RIKEN PMI and CLST (DGT) et al., 2014) and The
Human Protein Atlas (HPA) (Thul et al., 2017). It is also
important to gain basic knowledge of the underlying methods
employed in these large databases by reading the associated
manuscripts, frequently asked questions and tutorials/vignettes
in order to gain substantial knowledge before using them for
exploratory purposes.

FUTURE PROSPECTS AND
CONCLUSION

Challenges abound – from dealing with biological complexity,
to over-simplified models, to technological limitations associated
with data generation, to organization of high throughput
data for comprehensible visualization, to drawing meaningful
conclusions. In this treatise, we did not cover the success achieved
with multi-omics in various domains of microbial, plant, animal,
and biomedical research in recent times to keep the scope focused
and relevant to a diverse audience.

In this document, we have not touched upon several
upcoming and exciting areas of multi-omics research as they
are yet to mature. For instance, single-cell multi-omics are
currently driven with efforts mostly at the genomic (single cell
DNASeq), transcriptional (e.g., single cell/single nuclear) and
epigenomic (single ATAC-Seq, single cell bisulfite sequencing)
levels. They are currently in the early stages of inception and,
as more promising works will ensue, researchers will reach
precision with efficient capture of single cell proteomics and
metabolomics. Currently, some early single cell proteomics
work is emerging in the mass spectrometry driven omics area
of proteomics (e.g., SCOPE2) (Specht et al., 2019). Prevailing
challenges remain in terms of maximizing information from a
single cell (Macaulay et al., 2017) using current proteomics and
metabolomics strategies, where barely a handful of metabolites
are captured (Nemes et al., 2012). However, there are already
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some early exciting works of single cell multi-omics integration
methods available that are upcoming in manifold [e.g., MAGAN
(Amodio and Krishnaswamy, 2018), UnionCom (Cao et al.,
2020) and non-manifold – such as LIGER (Welch et al., 2019)
and MOFA+ (Argelaguet et al., 2020)]. Hopefully, these will be
addressed and covered in future multi-omics efforts.

From collective experience and evidence, the key to
effective exploratory data analysis, hypothesis generation and
interpretations is reliant – to an extent – on understanding
the underlying methods used to build or digest them and
draw inferences. With more high dimensional biological data
generation in various arms of biology, be it plant, microbial,
developmental/disease biology, and future implementation of
various multi-modal multi-omics, it will be more likely to
observe growth of such ML/DL methods. Hence, the applied
ML/DL community in the bioinformatics domain will have
to generate models that are interoperable, stable, and well
benchmarked at various regularizations (tunable) for users to
derive robust reproducible results. Alternatively, such ML/DL
developers and researchers can also clarify the uncertainty
bounds associated with their tools for the user community. As
a nascent field, there is a dearth of studies or benchmark tools
and resources to direct an upcoming community, but this review

serves as a guideline for future multi-omics researchers from a
computational standpoint.
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TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful reverse genetics
method in plant functional genomics and breeding to identify mutagenized individuals
with improved behavior for a trait of interest. Pooled high throughput sequencing
(HTS) of the targeted genes allows efficient identification and sample assignment of
variants within genes of interest in hundreds of individuals. Although TILLING has been
used successfully in different crops and even applied to natural populations, one of
the main issues for a successful TILLING experiment is that most currently available
bioinformatics tools for variant detection are not designed to identify mutations with low
frequencies in pooled samples or to perform sample identification from variants identified
in overlapping pools. Our research group maintains the Next Generation Sequencing
Experience Platform (NGSEP), an open source solution for analysis of HTS data. In this
manuscript, we present three novel components within NGSEP to facilitate the design
and analysis of TILLING experiments: a pooled variants detector, a sample identifier
from variants detected in overlapping pools and a simulator of TILLING experiments.
A new implementation of the NGSEP calling model for variant detection allows accurate
detection of low frequency mutations within pools. The samples identifier implements the
process to triangulate the mutations called within overlapping pools in order to assign
mutations to single individuals whenever possible. Finally, we developed a complete
simulator of TILLING experiments to enable benchmarking of different tools and to
facilitate the design of experimental alternatives varying the number of pools and
individuals per pool. Simulation experiments based on genes from the common bean
genome indicate that NGSEP provides similar accuracy and better efficiency than other
tools to perform pooled variants detection. To the best of our knowledge, NGSEP is
currently the only tool that generates individual assignments of the mutations discovered
from the pooled data. We expect that this development will be of great use for different
groups implementing TILLING as an alternative for plant breeding and even to research
groups performing pooled sequencing for other applications.
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INTRODUCTION

Targeting Induced Local Lesions in Genomes (TILLING) is
a powerful reverse genetics method used in plant sciences
which allows the identification of point mutations or SNPs,
introduced randomly throughout the whole genome by chemical
mutagenesis (Missirian et al., 2011). In brief, TILLING consists of
mutagenesis, DNA extraction and pooling of several individuals
of a population, PCR amplification of regions of interest, and
high-throughput mutation discovery in target genes (McCallum
et al., 2000). Despite newer technologies being available for
targeted modification of genes such as CRISPR-Cas, TILLING
remains a useful and effective functional genomics tool for
studying genes responsible for desired phenotypes because large
populations can be screened for mutations before bringing plants
to the field, thus reducing phenotyping costs, and it generates
genome-wide mutations allowing to target in multiple genes at
the same time (Irshad et al., 2020). With the advance in high-
throughput sequencing technologies and their current lower
costs, TILLING by Sequencing proves to be the best choice for
the identification of mutations and the corresponding mutant
individuals in pooled samples, and for linking the identified base
pair changes with their impact on specific traits (Tsai et al., 2011).

The application of bioinformatic tools contributes to virtually
all elements of the TILLING pipeline, including identification
of the genes in the species of interest, amplicon design, and
analysis of the effect of produced mutations in protein products
(Kurowska et al., 2011). The biggest bioinformatic challenge in
TILLING is variant calling in multidimensional experiments.
In essence, an efficient pipeline for detection must not only
call variants in each pool but triangulate the outputs per pool
to identify true variants and determine the individual carrying
each mutation based on the specific pooling design (Missirian
et al., 2011). Moreover, mutations produced through TILLING
are rare within the population. Hence, special efforts must be
taken to distinguish true variants from noise (Missirian et al.,
2011). While some of the available tools for variant calling are able
to detect variants in pooled samples (Huang et al., 2015), they are
not designed toward the posterior triangulation of the variants
detected from each individual pool. Moreover, most tools require
high coverages and high sequencing qualities to achieve good
accuracy (Missirian et al., 2011). Accuracy and efficiency vary
amply between software tools (Huang et al., 2015). As of today,
the only available tool specifically designed for variant calling
in TILLING experiments is CAMBa, which employs Bayesian
statistics for yielding the most probable mutations in a TILLING
experiment per individual (Missirian et al., 2011).

Since the advent of Next-Generation Sequencing (NGS), it
has been proposed that TILLING procedures could eventually
be carried out totally in silico (Wang et al., 2012; Chen et al.,
2014). As mentioned above, tools have been developed in the past
for in silico identification of candidate genes, such as CODDLE
(Slota et al., 2017), for analysis of the effects of putative or
detected mutations in TILLING populations such as PARSESNP
(Taylor and Greene, 2003), SAS (Milburn et al., 1998), or SOPMA
(Geourjon and Deleage, 1995), and for variant detection, such as
CAMBa and our own implementation. Nonetheless, to the best

of our knowledge there is no tool available for simulation of NGS
pool-sequencing in the context of multidimensional TILLING
experiments. This tool would be critical both for potential fully
in silico TILLING experiments, as well as for guiding the design
of in vivo procedures.

The development of new bioinformatic tools to increase the
precision of TILLING experiments is crucial, especially when
considering TILLING branching applications. Moreover, pooled
sequencing for variant discovery is used in other protocols related
to crop breeding and even in distant fields such as the study of
rare human genetic diseases. Pooled sequencing followed by the
identification of de novo variants has facilitated the typing of a
larger number of donors for stem cell transplants at the same
time, increasing the chance of finding a good match for recipient
patients (Lange et al., 2014) and can also improve diagnostics
rates of genetic disorders by increasing the number of probands
tested at a time at a reduced cost (Dashnow et al., 2019). In the
context of plant breeding, introducing natural or artificial allelic
diversity in crops is widely used to develop new varieties with
improved traits that meet the current global demands for food
production. Some examples are kernel hardness in wheat (Ma
et al., 2017), drought tolerance (Yu et al., 2012), and starch quality
(Raja et al., 2017) in rice, seed weight in chickpea (Bajaj et al.,
2016), and starch biosynthesis and herbicide tolerance in cassava
(Duitama et al., 2017).

We have developed, through the Next Generation Sequencing
Experience Platform (NGSEP), two new functionalities for
TILLING analyses: a TILLING experiment simulator and a
TILLING detector. The simulator is able to generate pool
reads derived from any set of genomic sequences, creating an
in silico population for the experiment with associated variants
assigned to specific individuals. The detector leverages NGSEP
variant detection to first call variants per pool, which are
then triangulated to perform identification of the individuals
associated with the discovered mutations.

RESULTS

Novel Functionalities for Simulation and
Read Analysis in TILLING Experiments
In a TILLING experiment, a mutagenic agent is used to
treat the seeds and induce random mutations across the
entire genome of a particular organism. One of the most
commonly used agents is ethyl methanesulfonate (EMS), which
induces 2 to 10 mutations/Mb of diploid DNA (Henry et al.,
2014). Mutagenized TILLING populations are analyzed for the
identification of the mutations generated across the individuals
of the population. If sequencing occurs after one round
of selfing (usually called generation M2), about half of the
mutations are heterozygous in the population. Although it is
technically possible to sequence independently and call variants
on each individual of the population, this procedure is not
cost effective given that most of the individuals will not carry
interesting mutations and promising individuals usually go over
further rounds of selfing to stabilize the mutation and its
potential phenotypic effect. Hence, the TILLING by sequencing
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design suggests a tridimensional pooled strategy in which each
individual is included in a unique combination of three different
pools, one per dimension (Figure 1). Pools are then sequenced
and mutations are identified in the pools. Taking into account
the mutation rate, it is very unlikely that two individuals carry
exactly the same mutation. Thus, individual assignments can
be performed looking for mutations consistently called in three
pools of different dimensions. This design allows to perform
mutation detection and individual assignment for hundreds of
individuals sequencing only the sum of the pools generated
for each dimension.

One of the main aspects to take into account for a TILLING
experiment is the design of the number of pools to include
in each dimension and the number of individuals per pool.
To provide a tool to explore in silico the behavior of a
TILLING experiment in different scenarios, we developed a
simulator of TILLING experiments based on a set of target
regions from a reference genome, a given population size, a
mutation rate, and a design of overlapping pools. Based on
this information, the simulator follows in silico the steps of
mutagenesis, sample pooling, and sequencing. Regions to be
amplified for each individual in the population were created
first as an exact copy of the reference and then mutations were
assigned randomly to each individual at a random position and
to a random base pair, distinct from the reference. According
to the pooling design, each individual was assigned to a row,
column and plate pool. Given the sensitivity limitation of the
variant calling process of mutations occurring at low frequencies,
the smaller the population and the number of samples per
pool, the higher the probability of calling true mutations.
Therefore, we proposed an experimental design of overlapping
amplicons per target gene for a population of 288 individuals.
By having pools of maximum 48 individuals (96 haplotypes)
we reduced the noise caused by the simulated and expected
sequencing errors.

Paired-end high throughput sequencing (HTS) reads were
simulated for each pool from the in silico mutated amplicon
sequences. Mimicking the actual sequencing process and the
known error rate patterns of Illumina, a read was generated
for each pool selecting a random amplicon within the pool.
A forward and a reverse read of a given length were then
simulated starting from each end of the selected amplicon. Given
a minimum and maximum error rate, the simulator generates
substitution errors at random according to a stepwise distribution
which starts from the minimum error rate at the 5’ end and ends
with the maximum error rate at the 3’ end of the read.

We tested the performance of our simulator by recording
the time and memory spent during different simulations varying
the number of individuals of the population, dimensions of the
pooling design, read lengths, and sequencing depths (Table 1).
In all cases, the simulator ran in less than 2 h, and in
less than 1 h for all cases of 50X and 10X coverage. In
general, time is affected mostly by the number of reads, with
simulations of similar coverages running faster with longer read
lengths. Memory requirements did not exceed 3 GB in any
case. This factor was mainly determined by the size of the
simulated population.

We also developed modifications of the core algorithm for
variants detection available in NGSEP and a new functionality to
perform the specific analysis of HTS data required by TILLING
experiments. From the algorithmic perspective, the discovery of
mutations within each pool is the most challenging part of the
analysis because mutations are expected to be carried by one or
at most two haplotypes within each pool. Hence, the variants
discovery module should be able to separate true variants with
allele frequencies of one divided by the number of haplotypes in
a pool from sequencing errors. As detailed in the next section, we
modified the Bayesian model implemented in NGSEP to identify
mutations in these circumstances. Once mutations are identified,
and taking into account the pooling strategy, the main outcome
of a TILLING experiment should not only be the identification
of true mutations but the identification of individuals carrying
these mutations. Hence, we developed a module that receives
the individual VCF files with variants called within each pool
and a text file with the configuration of samples included in
each pool, and performs the individual sample genotyping of the
mutations (also called triangulation). Taking into account that
each sample is included in a unique combination of pools, a
variant is assigned to a sample if and only if it is called in all pools
in which the sample was included. The triangulation module
traverses in parallel the pool VCF files and, for each mutation
identified in three pools of different dimensions, queries the
pool configuration information to determine which individual
is present in the three pools and assigns the mutation to such
individual. The output of this process is a VCF file with one
column per individual, which in simulation experiments can be
directly compared with the VCF gold standard file produced
by the simulator.

Variant Detection and Genotyping in
Polyploid Individuals and Pools
We modified the core module of NGSEP (the variants detector)
with two related goals: to improve the accuracy of variant calling
in polyploid individuals and to allow identification of variants at
different allele frequencies in pooled samples. First, sites in which
at least one allele different from the reference is observed with a
count at least 0.5/a were identified, where a is the total number of
haplotypes in the sample. For a pool of n individuals with ploidy
p, the total number of haplotypes a would correspond to n∗p.
For each selected site, the algorithm calculates the conditional
probability of the data assuming a homozygous genotype for
the allele with the highest read count and the conditional
probabilities of the data assuming each possible heterozygous
allele dosage for the allele with the second read count, from
1/a to 0.5. Both the homozygous genotype and the heterozygous
genotypes can be encoded as m copies of a major allele G1 and
a–m copies of a minor allele G2, where m ≥ 0.5∗a. A value of
m = a would correspond to a homozygous genotype. Similar to
the case of a single diploid individual, given a pileup position of
the genome and the set R of reads spanning that position, the
conditional probability of R given the genotype G = G1

m G2
a−m

can be calculated as the product of the conditional probability of
each read r ∈ R given G. Calling b the base pair of r spanning
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FIGURE 1 | Pooling strategy in a simulated TILLING experiment. Each colored rectangle represents a plate of 6 × 8 wells with 48 individuals; rows are represented
by the letters A to F and columns by the numbers 1 to 8. The tridimensional pooling strategy results in 20 pools. Row pools consist of individuals of each single row
of each plate (48 individuals). Column pools consist of individuals of each single column of each plate (36 individuals) and plate pools consist of the individuals of
each plate.

TABLE 1 | Running times (in seconds) and memory requirements (in MB) of three different TILLING experiment simulations ran by the simulator: 8 × 12 row by column
plates for 800 individuals, 8 × 8 plates for 800 individuals, and 6 × 8 plates for 288 individuals with a total of 300 mutations within the population.

Time (s) Memory (MB)

Dimension (row × column × plate) Population size Read length (bp) Depth Depth

10X 50X 100X 10X 50X 100X

8 × 12 × 9 800 200 404.04 1933.18 3961.07 2215.70 2215.70 2211.86

100 638.88 3315.90 6883.64 2215.70 2215.70 2211.84

8 × 8 × 13 800 200 281.81 1283.45 2660.51 2215.70 2215.70 2215.70

100 498.09 2389.13 4422.11 2215.69 2215.70 2211.84

6 × 8 × 6 288 200 146.75 721.99 1325.39 2139.41 2139.42 2139.46

100 245.22 1182.25 2509.16 2139.40 2139.42 2139.42

For each case, coverage of 10X, 50X, and 100X was tested, for 100 and 200 bp read length.

the analyzed position, e its error probability and f = m/a the
frequency of the major allele, the conditional probability P(b| G)
is given by this formula:

P
(
b|Gm

1 G
a−m
2

)
=


1− e, a = m ∧ b = G1
e
3 , b 6= G1 ∧ b 6= G2

f (1− e)+ (1−f )e
3 , a < m ∧ G1 = b(

1− f
)
(1− e)+ fe

3 , a < m ∧ G2 = b



Similar to the case with diploid individuals, a prior probability
P(G) can be calculated from previous knowledge on
heterozygosity rate. We set a non-informed prior in our
experiments with simulated and real data.

Comparison of Variant Calling Tools
Comparison of the performance of different variant calling tools
was carried out based on the simulated sequences. As observed
in the simulations and real data, the sequencing error rate
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becomes the most critical factor to determine the number of
total haplotypes (and by extension samples) that can be included
within each pool to be able to separate true mutations from
sequencing errors. Given an average sequencing error rate of 0.5%
we could achieve good accuracy with up to 64 diploid individuals
(128 haplotypes) per pool. Hence, we present here the results
of the simulation experiment with 288 individuals arrayed in 6
plates of 6× 8 rows by column set up (Figure 1).

The results of the variant detection step obtained with our
algorithm were compared with the results obtained from other
tools frequently used for variant detection, such as GATK
haplotype caller (McKenna et al., 2010) and Freebayes (Garrison
and Marth, 2012), as well as tools designed to identify low
frequency variants like Lofreq (Wilm et al., 2012), or to identify
variants in pools like CRISP (Bansal, 2010), and SNVer (Wei
et al., 2011). Freebayes was the only tool that did not identify
variants in any of the pools of the simulation experiments and was
not considered for further comparisons. Given that the output
VCF file generated by SNVer is outdated and could not be
modified to run the comparisons, this tool was also discarded for
comparison purposes. We were unable to run CAMBa (Missirian
et al., 2011) by ourselves nor received a response after trying to
contact the developers, so we omitted said tool.

We compared the tools in terms of their sensitivity, expressed
as the number of true positives divided by the sum of true positive
and false negative values. For each of the 20 pools, sensitivity was
calculated and compared between the four selected variant callers
and for each experiment varying the read depth (Figure 2A).
We also tried to calculate specificity but it was 100% in all cases.
CRISP consistently showed the lowest sensitivity among the tools
and read depths. Lofreq showed improved performance with
increasing read depth, showing the best results of all tools at a
coverage of 100X, but the worst sensitivity at a coverage of 10X.
GATK and NGSEP both showed consistent high sensitivities at
all read depths. While GATK shows slightly higher sensitivities
than NGSEP at 10X and 50X of coverage, NGSEP performs
slightly better than GATK at 100X coverage. We also compared
sensitivities in randomly selected pools by varying the total
number of haplotypes or ploidy (Figures 2B,C). At low coverage
(10X) Lofreq is the worst performing tool regardless of this
number. However, it performs two times better calling variants
in pools with less haplotypes. This is evident by the sensitivity
drop from 57% in the pool with 72 haplotypes (36 individuals)
to 23% in the pool with 96 haplotypes (48 individuals). However,
this tool outperforms CRISP and GATK in these two particular
pools selected for comparison at higher coverages (50X and
100X). Smaller variations in sensitivity were observed in the other
three tools when comparing specific pools with two different
ploidies at different read depth, with NGSEP and GATK showing
the most similar sensitivity values between both samples across
the coverage range.

We used our new functionality to identify the individuals
carrying mutations in a simulated population and compared
the ability of each variant caller to successfully call variants in
overlapping pools. Sensitivity was determined as the total number
of SNPs identified over the total number of SNPs that should
have been detected corresponding to the simulated mutations

(Figure 3). The sensitivity of Lofreq was zero at the lowest
simulated sequence coverage. This means that although the tool
is able to call variants in every pool as shown in Figure 2, those
are not found in the three pools that overlap and the SNP cannot
be assigned to any individual. Nevertheless, its performance
improved with increasing coverage calling between 80 and 93%
of the mutations that correspond to one single individual. CRISP
showed the poorest performance among the four compared
tools at read depths of 50X and 100X. It reached, however, a
sensitivity equal to and above 80% at the two highest read depths,
respectively. NGSEP and GATK are the best performing tools
regardless of read depth. However, with increasing read depth
both tools showed higher sensitivities, reaching 90.6 and 90.3%
at 100X, respectively. Although sequencing depth improves the
sensitivity of the tools, both NGSEP and GATK can detect
around 75% of low frequency SNPs in a mutated population and
those can be correctly assigned to mutated individuals at a read
depth as low as 10X.

Running times spent by each tool were compared to further
assess the performance of the variant calling process (Figure 4).
NGSEP was the most efficient tool even at the highest sequencing
read depth. GATK was the slowest of all tools taking up to 12 h
(∼40,000 s) to call variants in 20 pool samples of a population
of 288 individuals, while the other tools required a maximum of
1.5 h to perform the same job. NGSEP showed the most steady
time performance over increasing read depths. Variant calling
in the simulated experimental setup only took 6.2 min at 10X
coverage, 12.3 min at 50X and 21.2 min at 100X when running
NGSEP on a laptop.

Analysis of a Rice TILLING Population
We used the publicly available data of a sequencing experiment
of 44 pools from a rice TILLING population comprising 768
individuals and 32 gene fragments that added up to 42,034 bp.
Tsai et al., 2011 reported 122 mutations in overlapping pools
detected with the tool CAMBa (Missirian et al., 2011) in
this dataset. We identified 262 biallelic SNVs in those pools
using NGSEP, 1,852 with GATK, 751 with Lofreq and 0 with
CRISP. Despite having an acceptable to good performance on
simulated data, none of the SNPs called by CRISP passed
the quality filter using the rice population and the VCF files
could not be used for the triangulation process in which
mutations are assigned to individuals. We calculated exact
genomic positions for all SNPs reported by Tsai et al., 2011
to assess if the SNPs detected by NGSEP, GATK, and Lofreq
corresponded to the previously reported mutations including
the same expected effect on the corresponding gene based on
the annotation of the VCF files (Supplementary Table 1). The
three variant calling tools used to test the new triangulation
function of NGSEP identified more than 122 mutations. NGSEP
reported 262 mutations (Supplementary Table 2), GATK 1,852
(Supplementary Table 3), and Lofreq 751 (Supplementary
Table 4). We compared the results according to the number of
variants detected by each tool (NGSEP, GATK, and Lofreq in
this study and CAMBa in the previous study) and the type of
variant (or predicted effect) on the sequenced gene (Figure 5A).
The most common type of variant was intronic variants with
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FIGURE 2 | Sensitivity of variant calling per pool. (A) Sensitivity of variant detection in a simulated TILLING population comprising 288 individuals sequenced in 20
pools. The small points represent each single pool. The box plots represent the median and first and third quartiles of the sensitivity in all pools. The bigger black
point shows the average sensitivity of all pools per tool and read depth. (B) Sensitivity of variants detected in a randomly selected pool with 48 individuals (ploidy
equal to 96 haplotypes) at three different read depths. (C) Sensitivity of variants detected in a randomly selected column pool with 36 individuals (ploidy equal to 72
haplotypes).

90 mutations being identified by NGSEP, 577 by GATK, 279 by
Lofreq, and 40 by CAMBa. Missense and synonymous variants
were the second and third most common type of variants
identified by all tools. The least frequent type of variant was
mutations leading to a stop codon. Regarding the type of SNVs
identified in the mutated rice samples, the most common were
G to A and C to T transitions according to the results obtained
with NGSEP (32.4%) and CAMBa (66.9%). Conversely, AT
to GC transitions were the most frequent mutation type for
GATK (89.15%) and Lofreq (65.9%). These transitions were
found only in 27.9% of the mutations reported by NGSEP and
19% of the mutations reported by CAMBa. In accordance with
Tsai et al., 2011 G to C or C to G transversions were the
least common (<5.2% of all mutations for all tools). Overall,
there were more transitions than transversions (Supplementary
Table 5). Although NGSEP reported the highest percentage of
transversions (35.11%), looking at the number of pools where

these transversions are called, we found that transversions were
called in more pools than transitions (Supplementary Table 2).
Applying a filter keeping only variants called in at most six pools,
the percentage of GC > AT transitions increased to 47.13% for
NGSEP and the percentage of transversions reduced to 16.09%.
GATK and Lofreq also reduced the percentage of transversions
after this filter but preserved the excess of AT > GC transitions,
compared to the results originally reported using CAMBa.

In the previous study conducted by Tsai et al., 2011, the
mutations were categorized into homozygous, heterozygous,
implausible or false based on validation experiments, and not
tested for mutations that were not validated. We used these
categories to analyze how many of the mutations were found in
exactly three, more than three or less than three pools within
each category using NGSEP, GATK, and Lofreq (Figure 5B).
We found that within the validated mutations more than 67%
of them were assigned to exactly three pools by each tool,
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FIGURE 3 | Sensitivity in the identification of mutant individuals in a simulated TILLING population comprising 288 individuals sequenced in 20 pools and three
individual experiments varying the sequencing read depth. Sensitivity corresponds here to the number of SNPs detected by each tool divided by the total number of
SNPs in a gold standard.

FIGURE 4 | Running time of four variant detector tools for a simulated TILLING population comprising 288 individuals sequenced in 20 pools in three different
experiments varying sequencing read depth. The time represents the amount of seconds used by each tool to call variants in 20 pools.

which is the expectation for tridimensional pooling strategies.
In contrast, within the category containing implausible or false
positive mutations, less than 20% of the mutations were assigned
to exactly three pools, and found principally in less than three
pools (red bars in Figure 5B). Within the not tested category,
75, 71.9, and 68.8% of the mutations were assigned to exactly
three pools for NGSEP, GATK and Lofreq, respectively, and could
potentially be true mutations in the population. Considering
the number of variants assigned to a number of pools different
than three, GATK reported 12 validated variants in more than

three pools, whereas this number was only three for NGSEP and
Lofreq. Conversely, validated variants called in less than 3 pools
were only 5 for GATK, whereas this number was 15 and 17 for
NGSEP and Lofreq, respectively. This behavior is consistent for
the non tested variants and reflects that GATK predicted a much
larger overall number of mutations.

To further validate the performance of the new functionalities
in NGSEP using real data, we selected two of the genes for which
mutations have also been reported elsewhere and their effect
has been described. The inositol kinase-like gene Os09g34300
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FIGURE 5 | Mutations in a rice TILLING population. (A) Number of variants identified in a rice TILLING population comprised by 768 individuals categorized by the
type of variant. NGSEP, GATK, and Lofreq were the variant caller used in this study and variants reported by CAMBa were obtained from Tsai et al. (2011).
(B) Mutations called in pools by three software, NGSEP, GATK, and Lofreq, classified into three categories based on results by Tsai et al. (2011): Validated, which are
verified mutations; implausible or false, which are mutations found in non overlapping pools or are false positives; and not tested, which are not verified mutations.
Within the category of validated mutations, and possibly also within the not tested category, most of the mutations are expected to be assigned to three pools (blue
bars). In the implausible or false category most of the mutations should be found in <3 pools or >3 pools (red and yellow bars, respectively). (C) Example of a
missense mutation in gene Os09g34300. The mutation at position 2,044,087 on chromosome 9 results in the amino acid substitution from proline to leucine amino
acid at position 522 in the protein, leading to reduced phytic acid (lpa) content in the grains of the mutant plants with no negative effect on grain weight or delayed
seedling growth (Kim and Tai, 2014).

and the multidrug resistance-associated gene Os03g04920 are
both involved in the reduction of phytic acid (myo-inositol
1,2,3,4,5,6-hexakisphosphate) in rice seeds. Phytic acid is
considered an antinutrient because humans and other non-
ruminants are unable to efficiently digest it and it prevents
the absorption of important micronutrients in their intestines

(Perera et al., 2019). Four novel mutations obtained by TILLING
were reported by Kim and Tai (2014) within these two genes,
obtaining four low phytic acid (lpa) mutants, two of which
were similar to wild-type plants in seed weight, germination,
and seedling growth. One missense mutation in the last exon
of the gene Os09g34300 leading to the amino acid change
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P522L was identified by NGSEP, GATK, and Lofreq as well. This
mutation was also reported and validated in (Tsai et al., 2011)
and confirmed as a lpa mutant by (Kim and Tai, 2014) in the
laboratory, being a promising line for breeding in rice programs
aiming at developing varieties with improved nutritional quality.
Within this same gene, an intronic and a splice variant not
tested in the study of (Tsai et al., 2011) were also identified
using the three variant callers. The position and effect of the
mutation in the inositol kinase-like gene are schematically shown
in Figure 5C. Both of the reported mutations by (Kim and
Tai, 2014) within gene Os03g04920 that led to a lpa phenotype
and were also included in the list of mutations by (Tsai et al.,
2011) were identified by NGSEP, GATK and Lofreq as well.
Furthermore, from the seven validated mutations within this
gene, NGSEP, GATK, and LoFreq called five of them in exactly
three pools. From the six non tested variants, NGSEP and GATK
called five and Lofreq called four in exactly three pools.

DISCUSSION

Mutagenesis is a widely used experimental technique in
functional genomics because it allows to generate genetic
variability not present in natural populations in an unbiased
manner. The TILLING experimental setup reduces the cost
needed to identify mutations in candidate genes across
populations developed through mutagenesis and to perform the
identification of mutated individuals (Kurowska et al., 2011).
Functional effects of identified mutations can then be further
investigated using protein modeling or even through more
directed approaches such as CRISPR, besides the observation
of the expected phenotype. Although recent technologies have
been developed for targeted genome editing, including CRISPR,
the resulting organism is usually considered a genetically
modified organism (GMO) presenting an important problem
and limitation in plant breeding for the release of improved
varieties into the markets of countries with strict regulations
about GMOs. Mutagenesis, however, has been considered a safe
method to rapidly induce genetic variation and develop improved
varieties, that are not regulated by the GMO legislations (Holme
et al., 2019). Moreover, since TILLING samples come from a
population whose individuals (or their seeds) are readily available
for the researcher (Wang et al., 2012), individual identification
is particularly useful because it allows to perform validation of
the potential phenotype differences generated by the identified
mutations in the associated individuals, providing valuable
information for future plant breeding.

In this work, we presented new functionalities of NGSEP to
facilitate the data analysis steps required to obtain the expected
information from a TILLING experiment. First, we developed
an improved model to perform accurate variant identification
in pooled samples, which is useful for different applications of
HTS. Either in mutagenized or in natural populations, variants
could be quickly identified by bulk sequencing of large numbers
of individuals to avoid the costs of sample by sample barcoding
and library preparation. Germplasm banks are using pooled
sequencing to validate genetic stability of accessions avoiding

the cost of individual sequencing of potential clones (see for
example Rubinstein et al., 2019). Moreover, the same underlying
model to perform pooled genotyping might be useful to perform
individual genotyping in species with high ploidy such as sugar
cane, where genotyping by sequencing is preferred over SNP
arrays for variant detection (Manimekalai et al., 2020). We show
through simulation experiments that our model has comparative
accuracy and better efficiency compared to other solutions.
NGSEP showed consistently high sensitivities (above 80%) across
varying read depths (10X, 50X, and 100X) in variants called
in individual pools in simulated data. GATK also showed good
sensitivities in pool variant calling at different read depths.
Conversely, Lofreq and CRISP only showed good performances
(sensitivity > 75%) at higher read depths (50X and 100X).
Moreover, we show how different tools for regular variant
identification should be adapted to increase sensitivity in pooled
data. This is very important for mutagenesis experiments because
identification of mutations present in only one haplotype of the
pool is the most challenging case of pooled variant identification,
with different variant callers achieving different performances
depending on sequencing depth (Huang et al., 2015). Hence,
researchers struggle trying to adapt individual genotyping tools
to experimental setups including pooled sequencing.

Particularly for TILLING, we developed a functionality to
perform individual assignment of variants from the information
of individuals included in each pool. To the best of our
knowledge, NGSEP is currently the only open source software
able to perform this step of the analysis process. Moreover, both
the variant identification and the individual assignment can be
executed from the graphical interface of NGSEP. Finally, we
also built a functionality to perform simulations of TILLING
experiments. Besides being useful to perform benchmarking
of current and future analysis pipelines developed by different
research groups, the simulator can also be used to validate
the effectiveness of different pool configurations to achieve the
goals of the experiment, saving time and money in in vivo
analyses. This is particularly important given that preparation of
populations for TILLING analysis is a long and costly process
(Wang et al., 2012), so in silico experiments can help to make
large-scale TILLING procedures more cost-effective.

We analyzed a large rice mutant population for high
throughput mutation identification using the approach of
TILLING by sequencing and a tridimensional pooling strategy.
Using the publicly available sequences from a previous study
by Tsai et al. (2011) we compared the performance of four
variant calling tools, NGSEP, GATK, Lofreq, and CRISP. CRISP
was discarded from the comparisons using real data because
the SNPs called in pools did not pass the quality filter. In
the previous study, the authors reported 122 mutations in the
population using the tool CAMBa, developed by the same group.
After filtering by number of pools, with NGSEP we identified
87 mutations, which was the second closest result compared
to the previous report. On the other hand, GATK and Lofreq
identified 569 and 127 mutations, respectively. Considering the
small fragment of the genome that was targeted during the
TILLING experiment, the number of mutations reported by
GATK would represent an unexpectedly high mutation rate for
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the mutagenesis experiment (Till et al., 2007). Moreover, both
GATK and Lofreq reported an excess of AT > GC transitions
which was not observed in the results reported by NGSEP and
CAMBa. The analyzed rice population was treated by EMS
mutagenesis, which has a G-alkylating action favoring primarily
GC to AT base pair transitions. This corresponds to the result
obtained with NGSEP and the previous report from CAMBa. The
raw output of NGSEP showed a large percentage of transversions
(39.7%), while the other tools reported less than 22%. However,
most of the transversions were easy to filter out because they are
found in a large number of pools, which is not expected in a
TILLING experiment due to the low probability of finding a given
mutation in more than one individual. Possible explanations for
these variants are natural variation between the parent and the
reference genome or systematic errors producing consistent false
positive calls among pools.

From the set of validated mutations of the study carried
out by Tsai et al. (2011), NGSEP, GATK, and Lofreq detected
67.3, 69.1, and 63.6% of them. Assuming a 100% success rate
in the verification experiment, the performance of these tools in
terms of sensitivity is lower using real data than those obtained
using the simulated data of an artificial mutant population.
Nevertheless, considering that the tools called mutations in three
overlapping pools in less than 20% of the cases of implausible or
false positive variants (again assuming this classification is 100%
accurate) and that up to 75% of the not tested mutations in the
study by (Tsai et al., 2011) were called and identified in three
overlapping pools, the three tools show promising results for the
analysis of large TILLING populations. From these three tools,
NGSEP is the only one that offers the functionality of identifying
mutations in overlapping pools and assigning mutations to the
corresponding mutant individual in the population. Regarding
computational efficiency, NGSEP was the most efficient tool,
calling variants in all 44 pools of the rice TILLING population
comprising 768 individuals with average sequencing coverage
per pool ranging from 300X to 31,500X with the computational
resources of a laptop and in less than 2.5 h.

With an ever growing population, the demand for food
is increasing around the world. However, to increase crop
productivity in a timely manner as required by the necessity of
meeting the current global demands, it is critical to explore all
possible alternatives to develop plants that are higher yielding and
more resilient to climatic changes and their associated problems
such as the raise of different pests and diseases or variable abiotic
stresses such as drought, higher temperatures, and flooding,
among others. We expect that the new developments presented
in this manuscript will be useful for researchers implementing
TILLING and other experimental techniques for functional
genomics and breeding.

METHODS

Software Development and
Implementation Details
We implemented the TILLING simulator and the functionality
to perform individual assignments of discovered variants (also

called triangulation process) as new functionalities of NGSEP.
This allows to have these new functionalities integrated in the
same software solution implementing the variant discovery step.
Hence, the software is implemented in Java, following an object
oriented design. The algorithm to perform variant discovery
in pools was implemented within the general functionalities
of NGSEP to perform single sample and multisample variants
discovery. The new developed algorithm is activated when the
number of haplotypes in the pool is provided in the “ploidy”
option of these two functionalities. The three functionalities,
namely simulation, variant calling, and triangulation, can
be executed either from the command line or from the
graphical interface of NGSEP v4, built in JavaFX (manuscript in
preparation). NGSEP is distributed as an open source software
solution available in http://ngsep.sf.net.

In the simulation process, given the pool dimensions selected
by the user, the simulator will assign pools to each individual
distributing the samples in the plates (wells) from left to right
and from the top to the bottom, starting from the first plate
to the last one. Depending on the number of individuals and
plate size, some pools might contain less individuals than those
of a full plate. For example, if a 12 by 8 plate configuration is
selected, and the number of individuals is set to 100, then the
plate pool for the second plate will only have four individuals,
since the remaining 96 are located in the first plate. This implies
that different pools will have different numbers of samples and,
therefore, different numbers of total haplotypes. Although large
populations can be analyzed, pools containing more than 96
individuals should be avoided.

To simulate errors for each read, the range between the
minimum and the maximum rates is split into n intervals, where
n is the read length. For the nth base in each read, a random
decimal within the nth interval is selected and used as the error
probability. This number is converted to a quality score for the
fastq file. With the decimal selected, a random integer between 0
and 1 is generated, and if it is smaller than the latter, a random
base different from the correct one is placed in that position to
simulate an error.

The simulator produces a series of files with a given prefix. The
first one is a VCF file with the simulated mutations generated for
each individual. This file serves as a gold-standard for benchmark
experiments. The second is a csv file that indicates which row,
column and plate pool is associated with each individual in the
population. Two fastq files are generated for each pool according
to the current standard for paired-end sequencing. Read ids
include the associated individual from which it was obtained, the
pool number, and a unique identifier.

Data Sets
Simulated TILLING Dataset
We tested the newly added functions to NGSEP using two
datasets. The first one was derived from the simulator: we selected
eight genes in common bean (Phaseolus vulgaris L.) that are
considered to be important for agronomic traits in this crop such
as seed color, resistance to herbicides and tolerance to drought,
among others. For each gene, primers were designed using the
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online tool primer31 to generate amplicons that ranged from 279
to 621 bp and covered all exons in each gene when possible.
Overlapping amplicons were designed to improve coverage of the
target regions. The simulation was run for a population of 288
diploid individuals in 6 × 8 plates, with a read length of 100 bp
and coverage of either 10X, 50X, and 100X. The pool design and
population size leads to a total of 48 individuals per row and plate
pool and 36 individuals for the column pools (Figure 1).

Time and memory benchmarking of the simulator were
performed by running other two simulations, along with the
one mentioned above. For both of the other simulations we
considered a population of 800 individuals with 300 mutations,
one with an 8 × 8 plate design and another with an 8 × 12
design. Simulations were run on a Desktop Computer with an
Intel Core i7-6700 CPU @ 3.40 GHz, 16 GB of memory and
Windows 10 operating system. Times and memory usage were
recorded in Java.

Rice Dataset
The raw sequencing reads of a TILLING experiment described
in Tsai et al. (2011) were downloaded from the SRA NCBI
database (BioSample: SAMN00715843) and mapped to the rice
reference genome Oryza sativa v7.0. This experiment included
768 individuals sequenced in 44 pools with maximum 64
individuals per pool.

Read Mapping and Variant Calling
All reads in fastq format were mapped to the respective reference
genome of the corresponding organism, Phaseolus vulgaris for the
simulated data and Oryza sativa for public data, using NGSEP
option ReadsAligner with following parameters modified from
the default settings: -k 20 and -m 1. Obtained bam files were
then sorted by coordinate using Picard 2.23.02. Alignment rates
of 100% were obtained for all mapped reads.

For benchmarking TILLING variant calling and triangulation
through NGSEP, we tested a total of 5 additional variant callers
in the same datasets: CRISP (Bansal, 2010), Lofreq (Wilm et al.,
2012), Freebayes (Garrison and Marth, 2012), GATK (McKenna
et al., 20103), and SNVer (Wei et al., 2011). To the best of
our knowledge, the only tool capable of identifying mutant
individuals in overlapping pools is CAMBa (Missirian et al.,
2011). We were unable either to run CAMBa by ourselves nor
received a response after trying to contact the developers, so we
omitted said tool.

For a fair comparison between tools we adjusted different
parameters for variant calling as follows: CRISP, —use duplicates
was set to 1 and —qvoffset to 33. For LoFreq, we used the —
no-default-filter option and set -m to 20. For Freebayes, the —
pooled-discrete option was used and —min-mapping-quality was
set to 20. For GATK, we used the HaplotypeCaller algorithm
with option —heterozygosity equal to 0.5 and option —max-
reads-per-alignment-start set to 0. Finally, we ran SNVerPool
with default parameters. SNVer and CRISP allowed us to specify

1https://bioinfo.ut.ee/primer3/
2http://broadinstitute.github.io/picard/
3https://www.biorxiv.org/content/10.1101/201178v3

and include the ploidy of each pool (either 72 or 96 depending
on the specific pool) in the input file containing the names or
paths to the bam files of each pool. Freebayes and GATK were run
independently for each pool setting the ploidy to 72 for all column
pools and to 96 for the row and plate pools. Lofreq is designed to
call low frequency variants and does not have a ploidy option.
Finally, for NGSEP, we ran the SingleSampleVariantsDetector
functionality with options -h equal to 0.5, -maxAlnsPerStartPos
set to 0, -maxBaseQS set to 100 (for real data this option was set
to 30), and -psp. Ploidy was adjusted based on the specific pool as
explained for the tools above. The commands and parameters are
provided in Supplementary File 1.

Comparison of Variant Callers
Performance
Performance of four of the variant callers was determined in
terms of the time spent to call variants in all 20 pools of
an artificial mutant population comprising 288 individuals. All
tools were tested on a laptop with 4 GB memory, Intel Core
i5-7200U CPU @ 2.50 GHz × 4 and Ubuntu 20.04.1 LTS as
operating system.

Accuracy of four of the variant callers was determined in
terms of the number of variants correctly called in each pool.
First, the pool gold standard vcf was generated using the class
TillingIndividualVCF2PoolVCF in NGSEP. Then, the function
VCFFilter was used to generate the gold standard vcfs per pool
using the options -saf to provide the pool ID to be filtered out
each time and -fi to filter out sites in which only one allele was
observed. Finally, the function VCFGoldStandardComparator
was used to compare the vcfs obtained from the variant calling
step with the gold standard for the same pool. The output of this
comparison is a text file that includes the number of true positives
(TP), false negatives (FN), and false positives (FP) detected after
variant calling, among others. These values were used to calculate
the sensitivity of each tool expressed as TP/(TP+FN).

Identification of Individuals Carrying the
Mutations
With the exception of SNVer and CRISP, all variant callers
generate a single VCF per pool. The VCFs from SNVer and
Crisp include all the samples in one single file. The VCF
file generated by lofreq is outdated and does not provide the
genotypes per sample. We designed custom scripts to fix the
output files of lofreq and crisp. Once fixed, the output VCFs
obtained from CRISP were filtered using the option VCFFilter
from NGSEP to generate individual VCFs per pool from the
population VCF. The parameters used were -saf to provide
the pool ID to be filtered out from the original VCF and
-fir to remove sites in which only the reference allele was
observed. The output VCF obtained from SNVer does not
provide information about the observed allele frequencies per
sample and could not be fixed to generate a file that could be
filtered with NGSEP to generate the individual files. Once we
had the VCF files per pool from each tool, we triangulated the
output of each caller using the TillingPoolsIndividualGenotyper
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functionality. Briefly, the genotyper triangulates the calls of all
possible trios of pools (overlapping pools) and then assigns
mutations to each individual using the information of the row,
column and plate pool to which every member of the population
is associated, which was obtained from the simulation process.
The output VCF was then compared to the gold standard
VCF that contains the true mutations in each individual of
the population using the option VCFComparator in NGSEP.
Sensitivity was determined as the number of SNPs identified
by each tool over the total number of SNPs in the individual
gold standard VCF.

Analysis of TILLING Data
Variant calling in the rice TILLING population was performed
using NGSEP SingleSampleVariantsDetector, the GATK
HaplotypeCaller, Lofreq and CRISP modifying the same
parameters as for the simulated data. Ploidy was adjusted
according to the pooling strategy described in Tsai et al. (2011)
for row, column and dimension (plate) pools varying from 96
to 128. Single vcfs per pool were subjected to the triangulation
process using the functionality TillingPoolsIndividualGenotyper
providing a pools descriptor file that we generated based on the
size of the population (768 individuals) and sampling strategy
used in their study. The final vcf was annotated using the function
VCFAnnotate and filtered with the function VCFFilter in NGSEP
to keep only biallelic SNVs. Summary statistics were calculated
using the function VCFSummaryStats of NGSEP.
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One aspect of personalized medicine is aiming at identifying specific targets for therapy
considering the gene expression profile of each patient individually. The real-world
implementation of this approach is better achieved by user-friendly bioinformatics
systems for healthcare professionals. In this report, we present an online platform that
endows users with an interface designed using MEAN stack supported by a Galaxy
pipeline. This pipeline targets connection hubs in the subnetworks formed by the
interactions between the proteins of genes that are up-regulated in tumors. This strategy
has been proved to be suitable for the inhibition of tumor growth and metastasis in vitro.
Therefore, Perl and Python scripts were enclosed in Galaxy for translating RNA-seq
data into protein targets suitable for the chemotherapy of solid tumors. Consequently,
we validated the process of target diagnosis by (i) reference to subnetwork entropy,
(ii) the critical value of density probability of differential gene expression, and (iii) the
inhibition of the most relevant targets according to TCGA and GDC data. Finally, the
most relevant targets identified by the pipeline are stored in MongoDB and can be
accessed through the aforementioned internet portal designed to be compatible with
mobile or small devices through Angular libraries.

Keywords: systems biology, translational oncology, personalized medicine, Galaxy, MEAN stack, angular, protein–
protein network, Shannon entropy

INTRODUCTION

The worldwide estimate of people diagnosed with cancer was 18.1 million in 20171 and it is
predicted by the World Health Organization (WHO) to be 27 million new cases worldwide by
2030. On its own, breast cancer (BC) continues to be among the most frequent cancer around the
world alongside the prostate one. Moreover, BC, alone accounts for almost 2.1 million new cases
diagnosed annually worldwide, causing an estimate of 600,000 deaths every year (Bray et al., 2018).
Because of these dire statistics, BC has received huge attention from both the academic and the

1https://ourworldindata.org/cancer
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industry, which resulted in a large corpus of publication
(culminating at 25,000 in 20192) and publicly available datasets.

In addition, the well-known heterogeneity of breast cancer has
justified the genomic study of tumors on a large scale in search
for tumor subtypes that could allow a better understanding of the
tumor biology and could serve as support for the establishment
of genetic signatures, which, when validated in clinical trials,
could pave the way for an increasingly specific and more precise
treatment than the clinical parameters currently in use.

It is a more in-depth knowledge of tumor biology that has
allowed for greater individualization of available treatments and
has made it possible to overcome the relapse and resistance
eventually observed with traditional treatments (Naito and
Urasaki, 2018). In addition, clinical experience has shown that
knowledge of the individual characteristics of each tumor may
contribute to better therapeutic results with less toxicity.

According to the one-size-fits-all approach of chemotherapy,
treatment should fit every individual of a population. As a
consequence, it is intrinsically imprecise since it does not take
into account the genetic peculiarities of each patient. Thus, a
one-size-fits-all treatment approach does not work for everyone
and may cause harmful side effects. By contrast, personalized
oncology, which can be placed into a wider paradigm shift called
personalized medicine, involves the tailoring of medical treatment
to the individual characteristics or symptoms and responses of a
patient during all stages of care.

The paradigm of one-size-fits-all treatment is now undergoing
a shift toward personalized oncology with the identification
of molecular pathways predicting both tumor biology as well
as response to therapy. Most of those achievements have
been inserted into mathematical and computational models
by different groups, which can be used to test therapies and
hypothesis; the one presented herein fall into this category.

A new taxonomy of disease based on molecular and
environmental determinants rather than signs and symptoms
has been proposed (Collins and Varmus, 2015). The paradigm
revolution lies in the change from a clinician selecting a generic
therapy on a heuristic basis to one based on molecular facts, a
process called evidence-based medicine (Masic et al., 2008).

The tools of systems biology made it possible to analyze the
huge amount of data delivered by high throughput technologies
(broadly named Big Data, Willems et al., 2019). At the moment,
the most common strategy for implementing high throughput
technologies in oncology is to map mutations that promote
suppressor and oncogenes (Guo et al., 2014; Campbell et al.,
2020), which is a typical activity of pharmacogenomics. Briefly,
pharmacogenomics aims at understanding why individuals
respond differently to medicines on a genetic level. Consequently,
it enables one to predict an individual’s response to a drug
according to genetic information and allows one to choose
the most appropriate medication according to an individual’s
genetic composition. Furthermore, when the molecular diagnosis
is performed, targeted therapy is designed for acting on specific
molecular targets supposed to be relevant for the tumor under
consideration (Wilsdon et al., 2018). Notwithstanding all the

2https://pubmed.ncbi.nlm.nih.gov/?term=breast+cancer

knowledge we have gathered so far, the relevance of a drug target
is not obvious, and many criteria were pursuit in that quest
(Catharina et al., 2018).

The development of personalized medicine is directly
related to the availability of high-throughput technologies.
High-throughput techniques, such as microarray, RNA
sequencing (RNA-seq), and nanoString3 are important tools
for the characterization of tumors and their adjacent non-
malignant tissues (Finak et al., 2006). Therefore, these techniques
allow a better understanding of tumor biology (Carels et al.,
2020). In particular, RNA-seq analysis through in silico
methodologies demonstrated that each tumor is unique
considering the protein profile of their up-regulated genes
(Carels et al., 2015a).

Following the current state of the art, there are mainly two
types of omics tests: (i) prognostic tests, which predicts a clinical
outcome, and (ii) therapy guiding tests (theranostics), which
enable the identification of patient subgroups with a similar
response to a particular therapy (McShane and Polley, 2013). In
this report, we focus on theranostics.

A variety of multigene assays are in clinical use or under
investigation, which further defines the molecular characteristics
of the cancers’ dominant biologic pathways. Even if there has
been a growing use of biomarkers in clinical trials, the use of
single-marker and panel tests is still limited (Vuckovic et al.,
2016). Gaining insight into the molecular composition of each
tumor is recommended for eliminating the misuse of ineffective
and potentially harmful drugs.

Mapping gene alterations by reference to the genome
is generally performed to characterize indirect relationships
between tumor development and indels, mutations, hyper- or
hypo-methylation. By contrast, the description of transcriptome,
proteome, or metabolome allows the characterization of a
molecular phenotype. Interestingly, most companion diagnostics
(CD) for cancer characterization on the market are based
on mutation profiling. Accordingly, CDs are expected to
guide the application of a specific therapy supposed to be
efficacious for a given patient’s condition (Verma, 2012). As
a result, CDs allow the selection of a treatment that is
more likely to be effective for each individual based on the
genetic signatures of their tumors. Moreover, CDs are also
developed for better predicting the patient response to a
given treatment.

An approach based on molecular phenotyping recently
proposed was the identification of the most relevant protein
targets for specific therapeutic intervention in malignant BC
cell lines (Carels et al., 2015a) based on the diagnosis of up-
regulated interactome hubs. This strategy combined protein-
protein interactions (PPI) and RNA-seq data for inferring (i)
the topology of the signaling network of up-regulated genes in
malignant cell lines and (ii) the most relevant protein targets
therein. Hence, it has the benefit to allow the association of a
drug to the entropy of a target and, additionally, to rank drugs
according to their respective entropy by reference to their targets
(Carels et al., 2015b).

3https://www.nanostring.com
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Three concepts were considered in the approach followed
by Carels et al. (2015a): (i) A vertex with a high expression
level is more influential than a vertex with a low expression
level. (ii) A vertex with a high connectivity level (hub) is more
influential than a vertex with a low connectivity level. (iii) A
protein target must be expressed at a significantly higher level in
tumor cells than in the cells used as a non-malignant reference
to reduce harmful side effects to the patient after its inhibition. It
is worth mentioning that each combination of targets that most
closely satisfied these conditions was found to be specific for its
respective malignant cell lines. These statements were validated
in vitro on a BC model by Tilli et al. (2016). These authors
showed that the inactivation, by small interfering RNA (siRNA),
of the five top-ranked hubs of connection (top-5) identified for
MDA-MB-231, a triple-negative cell line of invasive BC, resulted
in a significant reduction of cell proliferation, colony formation,
cell growth, cell migration, and cell invasion. Inhibition of these
targets in other cell lines, such as MCF-7 (non-invasive malignant
breast cell line) and MCF-10A (non-tumoral cell line used as a
control), showed little or no effect, respectively. In addition, the
effect of joint target inhibition was greater than the one expected
from the sum of individual target inhibitions, which is in line with
the buffer effect of regulatory pathway redundancy in malignant
cells (Tilli et al., 2016).

The signaling network of a biological system is scale-free
(Albert et al., 2000), which means that few proteins have high
connectivity values and many proteins have low connectivity
values. As proven mathematically, the inhibition of proteins with
high connectivity values has a greater potential for signaling
network disruption than randomly selected proteins (Albert et al.,
2000). This evidence was proven in silico by Conforte et al. (2019)
in the particular case of tumor signaling networks.

In terms of systems biology, the inhibitory activity of a drug
may be modeled by the removal of its corresponding protein
target from the signaling network to which it belongs (Carels
et al., 2015b; Conforte et al., 2019). The impact of vertex removal
from a network can be evaluated by the use of the Shannon
entropy, which has been proposed as a network complexity
measure and applied by many authors to determine a relationship
between network entropy and tumor aggressiveness. Breitkreutz
et al. (2012), for instance, inferred a negative correlation between
the entropy of networks made of genes documented in the
Kyoto Encyclopedia of Genes and Genomes (KEGG4) database
considering cancer types and their respective 5-year survival.
The existence of this negative correlation was demonstrated later
on by Conforte et al. (2019) using RNA-seq data from bench
experiments stored in The Cancer Genome Atlas (TCGA now
hosted by the Genomic Data Commons Data Portal – GDC Data
Portal5).

The Shannon entropy (H) is given by formula 1

H = −
n∑

k=1

p
(
k
)

log2
(
p
(
k
))

(1)

4http://www.genome.jp/kegg
5https://portal.gdc.cancer.gov

where p(k) is the probability that a vertex with a connectivity
value k occurs in the analyzed network.

The process of multistep mining of high throughput data
can be cumbersome to handle by humans and needs translation
into machine language and automation (Deelman et al., 2009).
Thus, according to the scientific challenge, we developed codes in
Perl and Python. To deal with assembling a workflow based on
heterogeneous programming, i.e., a workflow including more than
one programming language, we chose Galaxy (Afgan et al., 2018)
that fit this purpose.

Since we believe that a molecular phenotyping strategy is
worthwhile for complementing the genotyping approach, we
described in this report how to perform the translation from
RNA-seq data into therapy targets based on the process described
in more detail in Conforte et al. (2019). The most relevant targets
stored in MongoDB can be accessed through an internet portal
written in JavaScript using the software bundle called MEAN
stack and portable to mobile and small devices through Angular
Flex-Layout library and Lazy loading6 strategies as described by
Fain and Moiseev (2018) and Holmes and Herber (2019).

MATERIALS AND METHODS

Galaxy Pipeline
TCGA Data
The gene expression data were obtained as RNA-seq files from
paired samples (control and tumor samples from the same
patient) and downloaded from TCGA7 in February 2016 and
from the GDC Data Portal8 in March 2020. The data selection
followed two criteria: (i) for each cancer type, approximately 30
patients with paired samples were required to satisfy statistical
significance; and (ii) the tumor samples had to be from a solid
tumor. The data from TCGA and GDC are given in Table 1.

In TCGA, gene expression values were given for 20,532
genes referred to as GeneSymbol, calculated by RNA-seq through

6https://en.wikipedia.org/wiki/Lazy_loading. Accessed on 14/10/2020.
7https://cancergenome.nih.gov/
8https://portal.gdc.cancer.gov/

TABLE 1 | RSEM-UQ from paired tumor-stroma data retrieved from TCGA and
FPKM-UQ from GDC.

Tumor type Abbreviation OS1 TCGA, n2 GDC, n

Stomach adenocarcinoma STAD 38 32 27

Lung adenocarcinoma LUAD 40 57 57

Lung squamous cell carcinoma LUSC 47 50 48

Liver hepatocellular carcinoma LIHC 49 49 50

Kidney renal clear cell carcinoma KIRC 63 71 71

Kidney renal papillary cell carcinoma KIRP 75 32 31

Breast cancer BRCA 82 72 46

Thyroid cancer THCA 93 57 56

Prostate cancer PRAD 98 51 50

1OS: 5-years overall survival taken from Liu et al. (2018) according to Conforte et al.
(2019), %. 2n: Sample size, number.
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expectation maximization (RSEM) (Mortazavi et al., 2008; Li
and Dewey, 2011). Since they were normalized according to
the upper quartile methods (formula 2) as reported in GDC
documentation9, we denoted them as RSEM-UQ. In the case of
GDC, gene expression values were given for 60,483 sequences,
calculated by FPKM and referred to as Ensembl accession
number. As those values were also normalized by upper quartile,
they were denoted, here, as FPKM-UQ. We considered RNA-
seq from BRCA and LUAD as non-significant because of
inconsistencies between raw counts file names, which led to a
final sample of 16 and 17 for LUAD and BRCA, respectively. The
14,126 genes for which the equivalence between GeneSymbols
and UniProtKB could be obtained went through further analysis.

Nnorm =
RCg ∗ 109

RCg75 ∗ L
(2)

where:
RCg : Number of reads mapped to the gene;
RCg 75: The 75th percentile read count value for genes in the

sample;
L: Length of the coding sequence in base pairs.

ArrayEXPRESS Data
Fastq files from RNA-seq of tumor-stroma paired samples from
14 PRAD10, and 18 non-small cell lung cancer (NSCLC)11, were
retrieved from ArrayEXPRESS12. These files were compared to
the proteins of the EBI’s interactome (see below) using BLASTx
and processed through our pipeline to measure the average
entropies of malignant up-regulated genes from both PRAD and
NSCLC. The statistical significance of average entropy differences
between PRAD and NSCLC was assessed through the Student’s
t-test using formula 3:

uobs =
|x̄1 − x̄2|√

SCE1
n1(n1−1) +

SCE2
n2(n2−1)

(3)

where:
x̄i: The average of sample i;
SCEi: the sum of squared differences of sample i;
ni: the size of sample i.
Because sample sizes of PRAD (n = 14) and NSCLC (n = 18)

were less than n = 20, uobs was compared to the theoretical value
t1−α /2 of the Student’s distribution using the k degree of freedom
calculated according to formula 4 (Welch, 1949; Dagnelie, 1970):

k =

[
SCE1

n1(n1−1) +
SCE2

n2(n2−1)

]2

1
n1−1

[
SCE1

n1(n1−1)

]2
+

1
n2−1

[
SCE2

n2(n2−1)

]2 (4)

with n1-1 < k < n1 + n2-2.

9https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_
Pipeline/
10https://www.ebi.ac.uk/ena/data/view/PRJEB2449
11https://www.ebi.ac.uk/ena/data/view/PRJNA320473
12https://www.ebi.ac.uk/arrayexpress/

Identification of Hubs Among Genes
Up-Regulated in Tumor Samples
To identify genes that were significantly differentially expressed
in the tumor samples of patients, we subtracted gene expression
values of control samples from their respective tumor paired
samples. The resulting values were called differential gene
expression. Negative differential gene expression values indicated
higher gene expressions in control samples, while positive
differential gene expression values indicated higher gene
expressions in tumor samples.

The histogram of differential expression was normalized
with the Python packages scipy. We used the probability
density and cumulative distribution functions, respectively
abbreviated as PDF and CDF, in the interval of differential
gene expression from −20.000 to +20.000, to calculate the
critical value corresponding to the one-tail cumulated probability
p = 0.975, which corresponded to a p-value α = 0.025. We
considered the genes as up-regulated when their differential
expression was larger than the critical value corresponding to
p = 0.975. The −20.000 to +20.000 range worked fine for the
p-value and normalization conditions presented in this report.
However, some normalization procedures flatten the probability
distribution with Bayesian functions for variance minimization.
Under these conditions, a p–value of 0.001 may represent a very
large critical value of 80,000 or more, which would induce the
scipy package to return “out of range.” To beat this challenge,
we introduced the possibility of tuning the −20.000 to +20.000
range to allow the user to try other normalization conditions
together with more restrictive p-values. However, for coherence,
all the data produced in this report were obtained with critical
values in the−20.000 to+20.000 range.

In a subsequent step, the protein–protein interaction (PPI)
subnetworks were inferred for the proteins identified as products
of up-regulated genes. The subnetworks were obtained by
comparing these gene lists with the human interactome.

The human interactome (151,631 interactions among 15,526
human proteins with UniProtKB accessions) was obtained from
the intact-micluster.txt file (version updated December 2017)
accessed on January 11, 201813.

We used the PPI subnetworks of up-regulated genes from
each patient to identify each vertex (protein) degree through
automated counting of their edges. These values were used
to calculate the Shannon entropy of each PPI subnetwork as
explained in the section “Shannon Entropy” below.

Shannon Entropy
The Shannon entropy was calculated with formula 1, where p(k)
is the probability of occurrence of a vertex with a rank order k
(k edges) in the subnetwork considered. The subnetworks were
generated automatically from gene lists found to be up-regulated
in each patient.

Validation Process
The diagnosis of up-regulated genes with a higher vertex degree,
which we considered as the most relevant target here, depends

13ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psimitab/intact-micluster.txt
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on how fastq and raw count files are processed. First, fastq reads
need to be transformed into raw counts and, second, raw counts
need to be normalized. For validating this process, we used
the data of RSEM-UQ from TCGA as available in 2016 that
we referenced to as TCGA RSEM-UQ below. When referring
to the FPKM-UQ files from GDC accessed in March 2020, we
denoted them as GDC FPKM-UQ. Since we had no access to the
raw counts files of TCGA, we used the data from GDC. GDC
provided the TCGA data in Bam format, raw counts, FPKM,
and FPKM-UQ files. Since we knew the correlation between the
entropy and the 5-years overall survival (OS) for nine cancer
types as established from TCGA RSEM-UQ (Conforte et al.,
2019), the validation challenge was (i) to normalize the GDC
raw counts files (we characterized this step as RPKMupper, see
the description below) from tumors of the nine cancer types; (ii)
to compare the RPKMupper normalization to the TCGA RSEM-
UQ for critical value, number of up-regulated genes, and the
correlation between entropy and 5-years OS as well as targets; (iii)
to compare RPKMupper, TCGA RSEM-UQ and GDC FPKM-UQ
for critical value, number of up-regulated genes, the correlation
between entropy and 5-years OS, and targets, and (iv) to optimize
RPKMupper by log transformation for target selection given the
maximization of the correlation coefficient of the relationship
between entropy and 5-years OS. Having this process validated,
it might be applied to any method of read counting from fastq file
by read mapping. This process is summarized in Figure 1.

As TCGA, GDC uses the RSEM methodology to map reads
to reference genes. Here, instead of using the human genome
sequence GRCh38.d1.vd114, we used the proteins sequences from
UniprotKB as a reference. Since only about 80% of the proteins
from the EBI’s interactome referenced by UniprotKB matched the
consensus coding sequences (CCDS)15 of Ensembl, we decided to
map reads in fastq files directly with the proteins sequences of
the intact-micluster interactome using BLASTx. Thus, in the first
instance, the exercise of validation concerned the processing of
raw counts into RPKM-UQ output.

For raw count normalization, we used a modified version of
the RPKM formula (5):

RPKM =
RCg ∗ 109

RCpc ∗ L
(5)

where:
RCg : Number of reads mapped to the gene;
RCpc: Number of reads mapped to all protein-coding genes;
L: Length of the coding sequence in base pairs.
RPKM is relative to the total number of reads, which is a

linear expectation. Quantile normalization (Bolstad et al., 2003)
forces the distribution of the normalized data to be the same
for each sample by replacing each quantile with the average
quantile across all samples. Instead, one may focus on a specific
quantile. For instance, the upper quartile normalization (Bullard
et al., 2010) divides each read count by the 75th percentile of
the read counts in its sample. However, the gene frequency (y)

14https://gdc.cancer.gov/about-data/data-harmonization-and-generation/gdc-
reference-files
15https://www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi

according to the gene expression (x) follows a power law (the
relationship of log(y) and log(x) is linear, data not shown) (see
also Balwierz et al., 2009; Awazu et al., 2018). RPKM, as defined
in formula 5, does not take the non-linearity associated to large
expression level into account. By contrast, the upper quartile
normalization enables us to take the non-linearity associated with
extreme expression values into account. Formula 5 can be written
as formula 6:

RPKMupper =
RCg ∗ 109

L ∗ (RCpc − (δ ∗ RCpc)))
(6)

where δ is a tuning factor.
For δ = 0, formula 6 is equivalent to RPKM (formula 5) and

for δ = 0.25, it is equivalent to a upper quartile normalization. In
this work, we used δ = 0.05 because it optimized the coefficient of
correlation between entropy and 5-years OS.

It appeared that in addition to the TCGA RSEM-UQ (accessed
in 2016), GDC (accessed in March 2020) implemented a
correction for false positive minimization (Anders and Huber,
2010; Love et al., 2014; Holmes and Huber, 2019). The result of
this minimization is a flatten power law of gene expression with
an effect similar to that of formula (7):

LogNorm = C ∗ xi ∗ (logb
(
logb(xi + 1)

)
+ 1) (7)

where:
C: is a constant that was set to 20 to optimize the coefficient of

correlation of the relationship between entropy and 5-years OS;
xi: is the RPKMupper value of the ith element;
b: is the base of the logarithm, which was set to 1.1.
As can be seen from formula 7, the FPKM-UQ output follows

a log-log relationship except for the variance that is stabilized by
a Bayesian process.

For assessing the efficiency of TCGA raw counts processing
according to formula 6, we tabulated the sample size of
subnetworks of up-regulated genes as well as the critical values
obtained for PDF = 0.975. This process was performed by
calculating RPKMupper on the raw counts available from GDC,
and compared the critical values to those obtained from GDC
FPKM and TCGA RSEM-UQ. We also compared the correlation
between entropy and 5-years OS obtained with raw counts
normalized with RPKMupper to that obtained by using the TCGA
RSEM-UQ. Finally, we compared the most relevant targets
obtained from both processes.

In the case of the GDC FPKM-UQ, one more step was
necessary since the raw counts sequentially processed through
formula 6 and 7 had to be compared to FPKM-UQ data available
from the GDC portal. Again, we compared the performance of
processing raw counts with formula 6 and 7 to GDC FPKM-UQ
data considering (i) the critical values for PDF = 0.975, (ii) the
subnetwork size of up-regulated genes, (iii) the correlation of
entropy vs. 5-years OS, and (iv) the list of most relevant targets
obtained through both processes.

Finally, we also compared the performance of sequentially
processing raw counts through formula 6 and 8 (formula 8 is
derived from Cloonan et al., 2008) by using the same measures
as just described (i to iv). We applied this formula because we
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FIGURE 1 | Process of Galaxy workflow validation.

noticed that it optimized the coefficient of correlation of the
relationship between entropy and 5-years OS.

Log2 = xi
(
logb(xi + 1)

)
(8)

where:
xi: is the RPKMupper value of the ith element;
b: is the base of the logarithm, which was set to 2.

Galaxy Scripts
Galaxy is a scientific open-source workflow platform that aims at
helping users to perform repetitive and complex operations over
large datasets. With Galaxy, users can visually create processing
pipelines reproducing the data flow over programs and datasets
that are viewed as interconnected box objects. Additionally,
Galaxy is written in Python and JavaScript, but has an XML like
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interface able to transfer the processing flux to other languages.
Galaxy comes with a rather large initial set of tools that can
be added to the desktop according to simulation demands.
Internally, every Galaxy tool is made up of a XML file that
describes its functionalities and interface. Once XML interfaces
are programmed, Galaxy is very simple to operate in an object-
oriented mode by linking input data with scripts together.

By means of a specific script (see below), Galaxy can store
data in MongoDB, which is a non-relational object-oriented
database (NoSQL) (Bradshaw et al., 2019). MongoDB can be
accessed through Angular, which serves as a frontend framework
for users (the physician or/and technician operating the system)
(Fain and Moiseev, 2018).

As outlined in the introduction of this report, our Galaxy
workflows are derived from the agglomeration of Perl scripts
(except for CVC.py) that were written for previous reports
(Carels et al., 2015a; Conforte et al., 2019). These tools are as
follow:

(1) Count Connections (CC) counts the number of connections
that each protein has with their neighbors in a subnetwork
of up-regulated genes. CC is an intermediate step to
compute the entropy.

(2) Critical Value Calculation (CVC) computes a critical value
according to the normal distribution that fits the observed
data and a probability level informed by the user. All genes
with expression values above the critical value, used here as
a threshold, are considered as up-regulated.

(3) Differentially Expressed Genes List (DEGL) computes de
differential gene expression between RNA-seq data from
tumoral and control samples (tumor minus control).

(4) Entropy Calculation (ETP) computes the Shannon entropy
corresponding to a subnetwork. Here, we typically
considered the subnetworks of genes that are up-
regulated in tumors.

(5) Translation of Gene Symbol into UniProt KB accession
numbers (GS2UP). Former TCGA data files identified
genes by gene Symbol, while the interactome from
EBI (the intact-micluster.txt file) uses UniProtKB
accession numbers. GS2UP translates the gene symbols to
UniProtKB accession numbers to build the subnetwork of
up-regulated genes.

(6) Translation from Ensembl into UniProt KB accession
numbers (Ensembl2UP). GDC data files identify genes
by reference to Ensembl, while the interactome from
EBI (the intact-micluster.txt file) uses UniProtKB
accession numbers. Ensembl2UP translates the Ensembl to
UniProtKB accession number to build the subnetwork of
up-regulated genes.

(7) Protein To Total Connections Sorted (PTTCS) sorts the
file of malignant up-regulated genes according to the
level of connectivity found for their respective protein in
descending order.

(8) Subnetwork Construction (SRC) computes a subnetwork
of proteins based on a gene list by reference to the
intaractome; here, the gene list is typically the list of up-
regulated genes.

(9) Reads Per Kilobase Million – Upper Normalization
(RPKMupper) computes de normalization of RNA-seq data
according to formula 6.

(10) Double Logarithm Transformation (LogNorm)
computes de normalization of RPKMupper data
according to formula 7.

(11) Base 2 Logarithm Transformation (Log2) computes de
normalization of RPKMupper data according to formula 8.

(12) PTTCS to MongoDB (P2M) computes the data
storage within MongoDB.

These tools can be downloaded from GitHub: https://github.
com/BiologicalSystemModeling/Theranostics under the MIT
License, however, the concept of theranostics based on this
approach is under the regulation of intellectual property number
BR1020150308191 for Brazil.

Pipeline Scaling
To investigate how the pipeline scales, we processed the GDC
raw counts data using an AMD Ryzen 9 3900X (4.6 GHz)
CPU with 20 threads dedicated to Galaxy and 64 GB RAM.
First, we chose LUSC and PRAD tumors as representing high
entropy (low OS) and low entropy (high OS) cancer types,
respectively. In these two cases, we could exactly compare their
scaling until 45 patients by increments of five. For STAD,
LIHC, THCA, and KIRC, we measured the processing time
for only two patient numbers (15 and 25). We also analyzed
the statistical significance of the difference in processing speed
observed for entropy and PTTCS pipeline for 25 patients with
the Student’s t-test. Considering the pipeline for hub diagnosis
from BLASTx output, we only had access to a small number
of patients, which limited the power of the experiment. We
compared 3, 6, 9, 12 patients in PRAD and NSCLC from
ArrayEXPRESS (see above).

Web Application
As outlined in the introduction, we aimed at releasing a tool
based on a phenotyping approach for the rational therapy of
cancer. At the moment, the current approach of cancer therapy is
still largely based on mutation mapping (genotyping approach),
but the potential benefits of integrating RNA-seq data must be
considered and this is the purpose of this report.

When producing a bioinformatic application, it is necessary to
validate it according to some objective criterion. As presented in
the previous section, we chose degree entropy as such a criterion
for the validation of the Galaxy pipeline. Galaxy enabled us to
test the performance of several configurations for optimizing
the correlation between the degree entropy of up-regulated
subnetworks and the patient’s 5-years overall survival.

However, a website is necessary to make this tool available
to the medical community and its development makes part of
another step of validation that is its acceptance by professionals.
Below, we briefly describe the technologies that we used to build
the web site and then described how we implemented them
through forms for data submission.
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MEAN Stack
Both MongoDB and Angular are part of the MEAN stack (MEAN
for M of MongoDB, E of Express.js, A of Angular, and N of
Node.js). The use of MongoDB with Node.js, its native driver,
is facilitated by the Mongoose16 library. Mongoose, amongst
other benefits, allows (i) the use of JavaScript as a programming
language, which save the need for database programming,
(ii) the modeling of data before their saving into MongoDB,
and (iii) the horizontal scaling17, which means that one can
expand storage capacity without the need of multiple structural
changes. This last feature decreases the cost of prototyping and
expansion. It also enables one to work with several database
connections simultaneously.

Node.js is part of the MEAN stack that we used to build the
backend of the web application; it is the server used to connect
the database and the frontend. Essentially, Node.js is a framework
that is used to create servers and has its own HTTP handler
(Holmes and Herber, 2019), which eliminates the need of other
intermediate libraries.

The MEAN also included Express.js, a JavaScript-based library
whose purpose is to facilitate the exploration of the Node.js
functionalities (e.g., creating routes).

In addition to JavaScript, Angular also allows programming in
TypeScript, which includes the concept of variable type and a set
of internal libraries (e.g., RxJS for asynchronous programming).
Furthermore, Angular offers compatibility with many web
development libraries, such as Bootstrap, jQuery, and Forms.

MEAN stack elements have JavaScript as a common
programming language and JavaScript Object Notation (JSON) as
a common file exchange format. Except for Angular which is a
frontend technology, MongoDB, Express.js, and Node.js run on
the server-side, as so they are generally classified as the ‘backend’
of a web application (Holmes and Herber, 2019).

Our web application has been deployed in a cloud
environment using Heroku18,19 by implementing the MEAN
stack (Holmes and Herber, 2019). The version of Angular that
we used here was CLI 8.3.23. In addition to those technologies,
we were also using NPM libraries designed to support the
MEAN stack. We used JavaScript for interfacing with MongoDB,
Express.js, and Node.js as well as several free packages available
in NPM to support these technologies20. For instance, we used
Visual Studio Code (version 1.48) as a programming platform
and Avast Secure Browser as a testing browser. Avast provides a
built-in test system for small devices such as smartphones.

Angular
After compilation, Angular generates Single Page Applications
(SPAs), which means that the code is sent to the browser at once
when the user accesses the page for the first time. The main
benefit of this approach is to create dynamic pages, improving the
navigation experience to the frontend user. Angular speeds up the

16https://mongoosejs.com/docs/
17https://docs.mongodb.com/manual/sharding/
18https://www.heroku.com/
19http://teranostico.herokuapp.com/
20https://www.npmjs.com/package/repository

server–client communication by avoiding multiple client accesses
and enabling complex calculations as well as data validations
within the client browser. Moreover, the main difference of
SPAs compared to a classic web application based on PHP
(i.e., static pages) is that it does not load the page when one
changes from page to page since all the code is already on
the browser. Therefore, the main benefits of Angular are that
(i) heavy calculations can be performed on the frontend side,
which can alleviate the computing charge on the server; (ii)
pre-validated data may be submitted to the server, avoiding
the need for back and forth validation process; (iii) TypeScript
(a superset of JavaScript) has the structures of a conventional
programming language with powerful build-in libraries (e.g.,
RxJS), which enables the performance of scientific calculations on
the frontend side if needed.

We also took advantage from the Angular library called
Angular Material21, which allows predefined functions such
as forms and themes. Angular Material can be used either
within the HTML language as predefined tags or within
TypeScript for dynamic pages (e.g., for Reactive forms). We used
Angular Material within TypeScript since it provides much more
programming freedom, e.g., form validation.

Node.js
One of the key features of Node.js is that it allows the usage
of JavaScript (or TypeScript) on the server-side. Until then,
JavaScript was restricted to browsers and this progress has been
possible due to the V8 Engine that compiles JavaScript code to
native machine code at runtime. We used the NPM repository to
install and manage all the Node.js (version 10.16.3) packages.

Node.js applications are stateless, which means that they do
not keep information about the user stored locally and for
that reason only require low amount of local RAM. Node.js
applications are also single thread, which means that they do not
stop the main thread as they result from users’ interactions.

We chose the JSON Web Token (JWT) approach to save the
user information temporally on the frontend. JWT is an encoded
string used when the frontend communicates with the server. The
benefits of JWT are (i) that it carries a server signature, which
must match whenever the user tries to communicate with the
server, and (ii) that an expiration date may be set, which implies
token refreshing.

Express.js
Express.js is a library whose purpose is to facilitate the
exploration of the Node.js functionalities (e.g., creating
routes and servers). Here, we used Passport.js22 together
with Express.js (version 4.16.1) to build user sections as
described by Holmes and Herber (2019).

MongoDB
MongoDB can be accessed through Angular using Node.js
as server; Angular serves as a frontend framework for
users (Fain and Moiseev, 2018). MongoDB is horizontally

21https://material.angular.io/. Accessed on 14/10/2020.
22http://www.passportjs.org/. Accessed on 14/10/2020.
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expandable23, which enables to expand storage capability
without extensive physical changes. This feature decreases
the cost of prototyping and posterior expansion. Another
interesting property of MongoDB is the MongoDB Atlas24, which
provides cloud storage.

The usage of MongoDB with Node.js is facilitated by the
Mongoose25 library. Mongoose, amongst other benefits, allows
(i) the usage of JavaScript as a programming language, which
saves the need for database programming, (ii) the modeling of
data before their storage into MongoDB, and (iii) the easier
exploration of the MongoDB horizontal scaling capability26.

Angular Flex-Layout
According to Fain and Moiseev (2018), we used a single
code to implement Responsive Web Design (RWD) to optimize
maintenance costs. This strategy allows the user interface layout
to change in response to the device screen size (desktop or
cell phone). RWD allows the interface simplification on small
devices by limiting the display of extra-small devices to key
functions (see Supplementary Figure 1 for screen size and
Angular screen size settings).

We tested the responsiveness of our portal on a desktop
computer using the built-in developer tool of Avast Secure
Browser. We also tested it on the following devices: Moto G4,
Galaxy S5, Pixel 2, Pixel 2 XL, iPhone 5/SE, iPhone 6/7/8,
iPhone 6/7/8 Plus, iPhone X, iPad, iPad Pro. However, the
Avast Secure Browser simulator does not necessarily consider
the operating system, and it may give an unexpected display in
uncommon devices.

Passport.js
For creating the user section, we used Passport.js27. Its main
benefits are the possibility of (i) creating customized login system
or use pre-defined ones, such as those of Facebook, for example;
and (ii) using it with JWT tokens due to their built-in libraries
that facilitate their use. To implement JWT within Passport.js,
we used express-jwt28, which allows the validation of JWT tokens,
including expiration date and abnormal tokens.

Forms
The function of the patient main form is to collect and to store
basic information regarding the patient and its tissue samples for
genetic analysis. This information is necessary for the posterior
retrieval from the system database of patients’ medical records.
Patient data are central to the system since they articulate genetic
analyses with medical records that must be encrypted (e.g.,
patient name, mother’s name, and patient id). The patient data
collected through the main form of the frontend are stored
together with genetic data from the backend within MongoDB.

23https://docs.mongodb.com/manual/sharding/. Accessed on 14/10/2020.
24https://www.mongodb.com/cloud/atlas. Accessed on 14/10/2020.
25https://mongoosejs.com/docs/. Accessed on 14/10/2020
26https://docs.mongodb.com/manual/sharding/. Accessed on 14/10/2020.
27http://www.passportjs.org/. Accessed on 16/10/20.
28https://www.npmjs.com/package/express-jwt. Accessed on 16/10/20.

The request for a genetic exam is of key importance when
it comes to the service provided. When physicians send tumor
samples, they will be asked to request their gene expression
analysis and provide patient information as well as medical
records (see Supplementary Figure 2).

The outcome form has such as (i) details of the treatment
applied, (ii) treatment benefits, (iii) whether the gene expression-
based recommendations were followed, and so forth (see
Supplementary Figure 3). The outcome form is essential for
establishing case statistics.

Angular provides two options when it comes to forms:
Template-Driven Forms and Reactive Forms29; we used
the latter. The main reason for this choice was that this
option provides (i) a set of built-in routines for form
validation, including error messages that can easily be
shown on the frontend, and (ii) the possibility of building
its own customized error handling routines. By error, we
mean any input to the form fields that does not fit what
is expected, e.g., e-mail out of the format or password that
does not match. We were also using form validators that
communicate with the server on the background side to check
data consistency.

Additionally, we used FormBuilder30 that is an Angular service
used for the programming of Reactive form. With FormBuilder,
one can construct JSON objects (our data format), validate
the inputs of the forms individually or as a group, and other
functionalities.

Encryption, Decryption, Hashing, and
JWT Coding
Since we are dealing with potentially sensitive information,
we followed standard practices to protect the information
submitted to the system and stored on our database. In
the current stage of development, we are using standard
libraries, which can be replaced by more secure ones as soon
as the platform scale up. In the current version, we are
using three different approaches to protect information from
potential unauthorized accesses: (i) encryption/decryption, (ii)
hashing, and (iii) JWT (e.g., communication with API31). For
encryption/decryption, we are using the library CryptoJS.32 The
‘secret’ is kept on the server using a library known as dotenv33,
which is largely used to store sensitive information in Node.js
applications. For hashing, we are using the library bcrypt34 in
the following configurations: bcrypt.genSalt(10, callback), the
first argument is the size of the salt and the second is the
function for hashing.

29Components in the Angular realm is a set of three files: CSS (appearance-related),
TS (typescript, coding), and HTML (classical static page design file). A page is built
from at least one component, which can independently interact with each one of
the others (see Fain and Moiseev, 2018 for a more detailed discussion).
30https://angular.io/guide/reactive-forms
31Application Programming Interface. These routines are designed to access the
database following some pre-defined rules such as token authentication.
32https://www.npmjs.com/package/crypto-js
33https://www.npmjs.com/package/dotenv
34https://www.npmjs.com/package/bcrypt
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The code for the web site can be downloaded from GitHub:
https://github.com/Teranostico under the MIT License.

RESULTS

Galaxy Pipeline
We validated and automated the process published by Conforte
et al. (2019). Thus, one sought to reproduce the results obtained
by Conforte et al. (2019) when the pipeline was fed with the same
data (TCGA RSEM-UQ). We indeed succeeded to reproduce the
correlation r = –0.68 between entropy and patient’s 5-years OS for
a probability of p = 0.975 in the determination of up-regulated
genes, which allowed us to test whether the maximization of r
really occurred for p = 0.975. To meet this challenge, we measured
the correlation coefficient for p = 0.97 and p = 0.98, and found
r = –0.53 and r = –0.60, respectively. The automated workflow is
given in Figure 2A.

As shown in Figure 2A, the input data collection represents
a collection of paired samples (tumors identified as 01A and
control identified as 11A) with the same list of genes (identified
by gene symbol) for each patient of the TCGA database.
Following the processing flux, the gene symbols are transformed
into UniprotKB accession numbers (GS2UP) to perform the
subtraction of the control RNA-seq expression data from that
of the tumor (DEGL). The calculation of the critical value that
identifies up-regulated genes is performed by the Python script
CVC. The critical value is calculated according to a probability
level chosen by the user and is used by the script SRC for
extracting the list of up-regulated genes. This list is used by the
CC script for counting the connections at each vertex of the
subnetwork of up-regulated genes. The connection count at each
vertex is necessary for computing the Shannon entropy of the
tumor subnetwork of up-regulated genes by the ETP script.

We validated the pipeline with the GDC raw counts comparing
their RPKMupper to the TCGA RSEM-UQ (Figure 2B without
the log transformation step). First, we computed the raw counts
according to RPKMupper excluding BRCA and LUAD because
of inconsistencies between file names available for FPKM-UQ
and raw counts. In both BRCA and LUAD, cleaning samples
for perfectly matched files led to sample size below n = 20,
which may bias comparison (sample size is considered to be
statistically trustworthy from at least n = 30 and needs correction
below this threshold). When we compared the critical values for
p = 0.975 considering the raw counts normalized with RPKMupper
(Table 2, column GDC RPKMupper), we found values similar to
those obtained by processing TCGA RSEM-UQ data (Table 2,
column TCGA RSEM-UQ).

We found that critical values for p = 0.975 of GDC FPKM-UQ
were ∼5 times larger (Table 2, column GDC FPKM-UQ),
on the average (Figure 2B without normalization and log
transformation steps), than those of TCGA RSEM-UQ (Table 2,
column TCGA RSEM-UQ and GDC RPKMupper). This difference
is due to the processing update performed during the data
transfer from TCGA to GDC portal involving the flattening of
the differential gene expression distribution.

When we successively computed GDC raw counts with
formula 6 (RPKMupper) and 7 (LogNorm), we found
critical values for p = 0.975 (Table 2, column GDC
RPKMupper + LogNorm) close to that of GDC FPKM-UQ
(Table 2, column GDC FPKM-UQ), suggesting a similar
behavior of differential gene expression flattening as the one
applied by the GDC data processing (Figure 2B).

The comparison of the size of subnetworks of up-regulated
genes in tumors is given in Table 3. The difference of subnetwork
size between GDC FPKM-UQ and GDC RPKMupper + LogNorm
samples, on one hand, and TCGA RSEM-UQ and GDC
RPKMupper samples, on the other hand, raised the question of
whether the large subnetwork size of GDC FPKM-UQ and GDC
RPKMupper + LogNorm might be trusted.

The subnetwork sizes obtained by successively processing
GDC raw counts with formula 6 and 8 (Table 4, column Node
number) were smaller and more realistic, representing between
∼2% and∼5% of the human proteome.

As explained above, we did not consider BRCA and LUAD for
comparison between RPKMupper and FPKM-UQ. However, the
FPKM-UQ correlation plot was similar to that of other authors
(data not shown).

The features of the linear regression between the subnetwork
entropies and the 5-years OS are given in Table 5 for the different
pipeline configurations tested here.

Interestingly all the combinations involving RPKMupper of
Table 5 resulted in a larger slope of the regression line; in other
word, they resulted in an increased statistical significance of the
regression line.

Compared to GDC RPKMupper (Figure 3A), the introduction
of the LogNorm in the workflow of Figure 2B resulted in a
systematic shift of entropies by as much as ∼1.5 bit toward
larger values (in the range of 3.6–4.0 compared to 2.0–2.5 in
Conforte et al., 2019), which denote a larger subnetwork of up-
regulated genes with larger number of hubs as a consequence
of the distribution flattening of differential gene expression. The
correlation obtained by successively processing raw counts with
RPKMupper and LogNorm (Figure 3B) was similar (r = –0.86
without BRCA and LUAD) to that obtained with GDC FPKM-
UQ (r = –0.76 without BRCA and LUAD) (Figure 3D). Finally,
it is the correlation obtained by successively processing raw
counts with formula 6 and 8 (Figure 3C) that showed the
best correlation coefficient and slope of the regression line
(r = –0.91).

The effect of LogNorm on distribution flattening of
differential gene expression when comparing RPKMupper to
RPKMupper + LogNorm was similar to that observed when
comparing TCGA RSEM-UQ (Figure 4A) to GDC FPKM-UQ
(Figure 4D), respectively.

When we compared the correlation coefficient according to
p for GDC FPKM-UQ data, we obtained r = –0.758, r = 0.763,
and r = 0.477 for p = 0.95, p = 0.98, and p = 0.99, respectively.
This result shows that the maximum of r was associated with
p = 0.98, but the difference with p = 0.975 was only 0.002 units of
the correlation coefficient, which confirmed that the peak around
the maximum of r was less sharp for GDC FPKM-UQ than for
TCGA RSEM-UQ since it spreads over p = 0.95 and p = 0.98.
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FIGURE 2 | Workflow for the validation of the correlation between the entropy of the subnetworks of up-regulated genes from different tumors and their respective
5-years OS. (A) TCGA. (B) GDC.

The flattening of the correlation peak according to the
probability density appeared as a consequence of the probability
density distribution shape. The distribution of FPKM-UQ values

was flatter in GDC FPKM-UQ (Figures 4D–F) compared to
TCGA RSEM-UQ (Figures 4A–C), which is reflected by larger
critical values associated with GDC (Table 2). The validation of
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TABLE 2 | Critical values of probability density for p = 0.975.

Cancer GDC RPKMupper TCGA RSEM-UQ GDC RPKMupper + LogNorm GDC FPKM-UQ

Type Av. StDev Av. StDev Av. StDev Av. StDev

PRAD 2661.73 498.89 2566.88 507.38 15558.79 1053.56 15809.77 779.91

LUAD 2897.95 437.50 3138.07 313.74 15720.85 1221.94 16340.59 860.48

LUSC 3532.06 426.30 3527.89 429.98 15775.55 857.31 16161.27 730.71

BRCA 3211.72 434.50 3024.87 465.83 15346.96 664.95 15923.64 682.80

KIRC 3133.16 236.39 3162.20 363.44 15820.34 742.76 16310.36 604.57

KIRP 3084.69 365.17 3089.64 390.28 15482.35 905.77 16165.59 597.30

THCA 2610.75 313.49 2590.59 406.12 14876.38 1089.35 15559.35 713.54

STAD 3330.13 444.58 3273.89 470.64 16511.00 865.11 16473.27 718.44

LIHC 3085.76 474.40 3409.36 468.48 16235.74 1087.23 15639.15 801.43

Average 3060.88 403.47 3139.90 420.79 15703.11 943.11 16042.55 721.02

St. Dev. 298.36 83.63 299.07 56.29 479.01 181.82 324.01 86.51

TABLE 3 | Size of subnetwork (vertex number) of genes up-regulated in tumors for a probability density of p = 0.975.

Cancer GDC RPKMupper TCGA RSEM-UQ GDC RPKMupper + LogNorm GDC FPKM-UQ

Type Av. StDv. Av. StDv Av. StDv. Av. StDv.

PRAD 269.19 62.01 254.20 40.66 5046.23 1209.45 4029.75 499.89

LUAD 290.35 58.66 276.35 49.07 4973.16 1203.25 4779.27 401.19

LUSC 345.21 48.50 317.12 48.33 5824.63 904.38 4981.60 460.49

BRCA 311.55 46.50 286.50 42.16 5305.85 1219.24 4816.61 361.22

KIRC 332.28 42.37 328.10 52.85 5117.83 881.77 4556.75 294.80

KIRP 313.48 49.64 303.22 41.14 4983.68 1136.93 4678.77 305.26

THCA 256.52 47.31 276.95 57.44 4016.13 948.02 4142.73 387.09

STAD 341.67 52.90 276.59 51.66 6773.41 928.62 4764.48 351.76

LIHC 352.74 68.99 256.24 85.31 7007.28 143.05 4522.08 400.83

Average 312.55 52.99 286.14 52.07 5449.80 1096.08 4585.78 384.72

St. Dev. 34.34 8.57 25.49 13.72 942.86 189.53 315.90 66.69

the mapping process of reads on the EBI interactome proteins
needed similarity comparison of fastq files using BLASTx.
We performed this validation by recycling the components of
Figure 2 for processing RNA-seq data as shown in Figure 5.

The workflow shown in Figure 5 needed to be fed with
BLASTx outputs. After mapping reads to their respective protein
sequences in the interactome, both tumor and control raw
count files were normalized (UTCENGupper) according to their
coding sequence size (RPKMupper step) and expression level using
formula 2. The rest of the pipeline is as in Figure 2 except for the
last step of sorting by decreasing level of connection (PTTCS) and
data storage in MongoDB (P2M).

The list of top-n connected up-regulated hubs is released
as output data from the workflow, and stored in MongoDB
(Figure 5) together with the patient’s clinical data. These data can
be formatted as a medical report by the JavaScript code within the
web page according to the user request.

Considering the entropies of subnetworks of NSCLC
up-regulated genes (x1 = PRJNA320473) and PRAD
(x2 = PRJEB2449), the uobs calculated with formula 3 with
x̄1 = 2.99475 and x̄2 = 1.66472, respectively, as well as
SCE1 = 10.31347 and SCE2 = 6.70566, respectively, was
5.00748. Since k was found to be 29.06411 (∼29) for the sample

sizes considered, the theoretical values of t for p = 0.975 and
p = 0.999 were 2.045 and 3.396, respectively. Because uobs > tth,
we rejected the null hypothesis of average equality for NSCLC
and PRAD and concluded that the entropy of NSCLC was

TABLE 4 | Critical values of RPKMupper + Log2 for a probability density of
p = 0.975 and vertex number of subnetworks of genes up-regulated in tumors.

Cancer Critical value Vertex number

Type Average StDev Average StDev

PRAD 7359.58 1019.74 884.69 248.58

LUAD 7985.00 1105.05 946.58 219.40

LUSC 9325.45 1187.62 1244,35 232,65

BRCA 8398.81 1232.49 1087.20 240.74

KIRC 8335.51 561.98 1035.82 143.58

KIRP 8299.87 777.86 1014.35 206.89

THCA 7210.95 706.19 775.96 140.05

STAD 9173.28 1154.74 1264.93 249.58

LIHC 8398.81 1232.49 1235.50 294.36

Average 8276.36 997.58 1054.38 219.53

St. Dev. 707.07 251.53 171.09 50.27
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TABLE 5 | The features of the linear regression between the entropy and the 5-years OS for p = 0.975.

Normalization method Coef. Correl. (with BRCA + LUAD) Coef. Correl. (without BRCA + LUAD) Regression (without BRCA + LUAD)

GDC RPKM –0.36 –0.55 –

GDC RPKMupper –0.68 –0.86 (Figure 3A) y = –0.0084x + 2.717

GDC RPKMupper + LogNorm –0.67 –0.85 (Figure 3B) y = –0.0090x + 4.473

GDC RPKMupper + Log2 –0.69 –0.91 (Figure 3C) y = –0.0096x + 3.460

GDC FPKM –0.11 –0.13 –

TCGA FPKM-UQ* –0.68 –0.64 y = –0.004x + 2.507

GDC FPKM-UQ –0.71 –0.76 (Figure 3D) y = –0.0039x + 4.025

*See Conforte et al., 2019.

FIGURE 3 | Correlation of subnetwork entropies vs. 5-years OS for p = 0.975. (A) GDC RPKMupper. (B) GDC RPKMupper + LogNorm. (C) GDC RPKMupper + Log2.
(D) GDC FPKM-UQ.

significantly larger than that of PRAD. This result is in agreement
with the negative correlations of Figure 3 and validates the
pipeline here presented.

As the methodology was validated, it could be used for the
diagnosis of the top-n most connected proteins within the list
of up-regulated genes in the tumor compared to the stroma. It
is important to underline that the entropy was used only for the
purpose of methodology validation.

A pipeline to identify the connection hubs is given in
Figures 6A,B, where the purpose of PTTCS is to compare
up-regulated genes to the list of vertex connections in the
interactome to rank them in decreasing order of connection
number in the output file. A priori, top-20 most connected
proteins among the up-regulated genes of tumors should be
enough to design a personalized treatment. However, this
number depends on drug availability.

The comparison of the most relevant targets associated with
the different normalization methods applied in this report is

shown in Table 6. Table 6 reports the number of tissues (#
column) where the gene of a given protein (Acc column) was
up-regulated among nine different tumors. For illustration, we
only kept genes up-regulated in at least 70% of tumor samples
of each cancer type (pink). The colors in the first column report
for the targets that are common between different sections (A to
E) of Table 6 (turquoise is for the genes common to Tables 6A–
E; blue is for the genes common to Tables 6A,B,D,E; yellow is
for the genes common to Tables 6A–C,E; mallow is for the genes
common to Tables 6A,B,E; and green is for the genes common to
Table 6D,E).

Tables 6A–E show that the most relevant targets are largely
shared among methods. In Tables 6C,D, target personalization
according to the tumor was lower than in Tables 6A,B,E.
Because of the larger average network size that it produced,
the normalization with RPKMupper + Log2 (Table 6E) showed
a larger targets number than TCGA RSEM-UQ and GDC
RPKMupper (Tables 6A,B), similar to those of Tables 6C,D
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FIGURE 4 | Critical value calculation (red dot line) by CVC script in TCGA (A–C) and GDC (D–F) in LUSC (TCGA-22-4593 sample). (A,D) Histogram of observed
differential gene expression distribution (tumor-control) of genes. (B,E) Function of density of probability. (C,F) Function of cumulated probability. The critical values
were 3,633.8 and 17,042.9 for TCGA and GDC, respectively.

but with a larger level of tumor personalization. Because of
the reasonable size of subnetworks and the best correlation
relationship between entropy and the 5-years OS it produced,
the successive processing through RPKMupper and Log2
normalization was considered here as the best compromise.

Scaling Analysis
The analysis of LUSC and PRAD over 45 patients showed
that the scaling of pipeline processing is linear and perfectly
predictable (Supplementary Table 1 and Figure 7A). In addition,
Supplementary Table 1 shows that the entropy pipeline takes
a systematically larger time to be completed for high entropy
cancer types than for low entropy cancer types. This is also true
for the hub diagnosis pipeline (PTTCS). A more careful analysis
for 25 patients for LUSC, STAD, LIHC, on one hand, and PRAD,
THCA, KIRC, on the other hand, showed that this assumption

is statistically significant (Figure 7B). Considering the pipeline
for hub diagnosis from BLASTx output, we found the time series
50, 94, 137, 187 and 53, 100, 145, 190, for PRAD and NSCLC,
respectively. These differences were not significant, but suggest
that this pipeline scales similarly to the PTTCS one.

Web Application
The web application implements the graphical interface that
allows the user to interact with the forms and their respective
accounts (i.e., private areas). As outline above, it is the server
that runs Galaxy and hosts MongoDB that stores the up-
regulated hubs and patient data introduced by the user, which are
necessary to produce the medical record. The frontend includes
a succession of forms for data introduction and a private area,
which allow access to patient data whenever necessary with
user’s privileges.
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FIGURE 5 | Workflow for collections of BLASTx output processing.

User Private Area
The private area is the section accessed by the user after logging
in (see the dashboard in Figure 8). The key advantages of a
private area are that (i) the user may access their information
any time, (ii) sections can be customized, with different levels
of privileges, (iii) they can be customized according to business
models (Blank and Dorf, 2012).

Dashboard
The dashboard (Figure 8) is the first page one sees when accessing
the platform after login in from the welcome page. On the
welcome page, users can register an account. The main goal of the
dashboard is gathering all the essential information contained in

the portal for the logged in user (e.g., forms to be submitted by
users). Thus, users can either introduce the data of their patients
or retrieve analysis reports, if they are physicians or administrate
the platform, if they are system administrators.

We implemented a simplified version for small devices to fit
their screen size and limit the system to the essential (Figure 8A).
The user is informed when using the system on small devices,
which is a benefit compared to Bootstrap. As a result of screen
simplification, most of the information from the desktop version
(Figure 8B) is omitted on small devices, which means that users
must access the platform either from desktops or middle size
devices (e.g., iPads) for a full-version.

Components
Components in Angular are a set of three types of files: CSS
(appearance-related), TS (typescript, coding), and HTML (classic
static page). A page is built from at least one component, which
can independently interact with each other (Fain and Moiseev,
2018). From a software engineering viewpoint, this technology
makes the pages more dynamic and faster, and its parts can
be easily reused on other pages. The main components of the
dashboard are the menu and central cards. The menu, located
upward, displays basic and customized information eventually
organized in options. The central cards, movable downward,
display information and make them available as active links (e.g.,
a list of forms submitted by the user).

Protecting Confidential and Sensitive
Information
Patients’ data are confidential and require protection as stated
by policies all over the world (e.g., Health Insurance Portability
and Accountability Act, HIPAA for the United States). Thus, new
users must first register and enter some basic information to gain
access to the server.

Login
The login card (Supplementary Figure 5) is a standard login
page. In the current frontend version, we are following a
simple login system strategy. Essentially, the user must enter
its e-mail and password as previously registered to log in and
access the dashboard.

Since we are storing JWT locally, it is up to the user to
decide when to log out. Normally, JWT expires after 15 min on a
standard basis; we set the expiration time to 1 day. This approach
avoids repeated login whenever the JWT expires.

Forms
In the current frontend version, we have two sets of forms: the
patient main form (Supplementary Figure 7) and the outcome
form (Supplementary Figure 8). The patient main form is
expected to be sent alongside the patient samples, which is
independent, while the outcome form is expected to be sent in
case of death (for documentation).

All the information related to a patient is stored in different
documents and is merged for display using a method called
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FIGURE 6 | Workflow for top-n most relevant hub target diagnosis in up-regulated genes of solid tumors. (A) TCGA. (B) GDC.

populate from Mongoose, which enable the information retrieval
from other related documents.

Because of this design, we created a header form (Figure 9),
whose function is to (i) collect encrypted patient id, (ii) provide
a password for encryption (optional), and (iii) provide privacy-
related options.

The form remains in contact with the server for validating
information on the background, while the user is filling out the

fields; most of the validations are done without communication
with the server.

Sensitive information are entered on the first page and
encrypted in a similar way to the data introduced through the
header. Any form can be recovered from a list of links that are
made available on the movable card on the dashboard.

Finally, a submission receipt is automatically generated upon
form submission (see Supplementary Figure 9), which provides
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TABLE 6A | Comparative pattern of distribution for the most relevant targets among solid tumors of nine cancer types according to TCGA RSEM-UQ normalization.

Acc PRAD LUAD LUSC BRCA KIRC KIRP THCA STAD LIHC # Av StDv

HSP90AB1 30.00 80.49 77.78 66.67 56.06 58.06 40.35 83.33 85.71 9 64.27 19.77

YWHAZ 72.00 85.37 93.33 88.89 33.33 29.03 28.07 56.67 36.73 9 58.16 27.26

FN1 26.00 56.10 44.44 77.78 87.88 51.61 85.96 53.33 32.65 9 57.31 22.30

ACTB 26.00 53.66 33.33 44.44 63.64 77.42 38.60 33.33 42.86 9 45.92 16.37

MYH9 14.00 43.90 37.78 33.33 48.48 25.81 43.86 80.00 53.06 9 42.25 18.55

VIM 32.00 12.20 11.11 11.11 93.94 96.77 47.37 23.33 28.57 9 39.60 33.73

RPL10 10.00 46.34 28.89 22.22 80.30 45.16 47.37 10.00 30.61 9 35.66 22.09

EEF1A1 12.00 21.95 24.44 22.22 68.18 22.58 78.95 16.67 22.45 9 32.16 23.93

PKM NA 92.68 100.00 77.78 77.27 74.19 68.42 70.00 14.29 8 71.83 25.71

HSPA5 60.00 87.80 71.11 77.78 42.42 25.81 NA 43.33 48.98 8 57.15 20.79

HSPB1 NA 41.46 80.00 22.22 42.42 93.55 38.60 40.00 73.47 8 53.97 24.94

HSP90AA1 26.00 65.85 73.33 66.67 NA 48.39 17.54 70.00 57.14 8 53.12 20.97

CLTC 14.00 73.17 24.44 33.33 NA 45.16 12.28 26.67 28.57 8 32.20 19.57

SFN NA 26.83 71.11 11.11 NA 16.13 NA 10.00 NA 5 27.04 25.52

LRRK2 NA NA NA NA 36.36 54.84 71.93 NA NA 3 54.38 17.79

VCAM1 NA NA NA 11.11 80.30 54.84 NA NA NA 3 48.75 35.00

EGLN3 NA NA 26.67 NA 95.45 NA NA NA NA 2 61.06 48.64

SYNPO NA NA NA NA 75.76 NA 10.53 NA NA 2 43.14 46.13

The numbers in the table represent the proportion (%) of tumors of a given cancer type that showed the gene among the top-20 most connected proteins of the
subnetwork of up-regulated genes. The pink color concerns up-regulated genes in at least 70% of tumor samples of each cancer type.

TABLE 6B | Comparative pattern of distribution for the most relevant targets among solid tumors of nine cancer types according to GDC RPKMupper normalization.

Acc PRAD LUAD LUSC BRCA KIRC KIRP THCA STAD LIHC # Av StDv

PKM 16.67 91.23 100.00 87.5 78.873 77.42 80.36 92.59 60.00 9 76.07 25.05

FN1 33.33 70.18 50.00 100 90.141 51.61 87.50 59.26 62.00 9 67.11 21.79

YWHAZ 29.17 63.16 100.00 77.5 50.704 48.39 32.14 70.37 74.00 9 60.60 22.82

UBE2I 10.42 71.93 54.17 47.5 52.113 77.42 83.93 66.67 42.00 9 56.24 22.28

HSP90AB1 54.17 47.37 75.00 57.5 40.845 38.71 19.64 81.48 80.00 9 54.97 20.94

NPM1 60.42 47.37 43.75 50 73.239 35.48 26.79 25.93 58.00 9 46.77 15.79

CTNNB1 27.08 71.93 20.83 27.5 16.901 9.68 69.64 66.67 56.00 9 40.69 25.01

CDKN1A 12.50 52.63 16.67 10 50.704 51.61 71.43 11.11 26.00 9 33.63 23.08

ACTB NA 36.84 37.50 75 61.972 77.42 33.93 44.44 80.00 8 55.89 19.86

HSP90AA1 27.08 29.82 72.92 70 NA 45.16 10.71 85.19 68.00 8 51.11 26.66

HSPB1 NA 21.05 77.08 40 32.394 77.42 16.07 29.63 64.00 8 44.71 24.70

RPL10 52.08 33.33 18.75 NA 78.873 32.26 28.57 14.81 44.00 8 37.84 20.55

VIM NA 24.56 NA 12.5 92.958 96.77 35.71 11.11 16.00 7 41.37 37.50

SKP1 12.50 22.81 NA 45 16.901 NA 12.50 11.11 80.00 7 28.69 25.51

TSC22D1 16.67 36.84 NA NA 12.676 9.68 69.64 NA 12.00 6 26.25 23.45

EGFR NA 10.53 39.58 NA 74.648 19.35 NA NA NA 4 36.03 28.47

The numbers in the table represent the proportion (%) of tumors of a given cancer type that showed the gene among the top-20 most connected proteins of the
subnetwork of up-regulated genes. The pink color concerns up-regulated genes in at least 70% of tumor samples of each cancer type.

the user with the information necessary for future access to the
forms submitted (see Supplementary Figure 10).

DISCUSSION

Galaxy Pipeline
In this report, we presented a workflow for processing RNA-seq
data that allows the rational diagnosis of top connected hubs
among genes that are up-regulated in tumors according to the

non-tumoral peripheral area (stroma). The use of the stroma
as a control to measure the malignant differential expression
via RNA-seq has been recognized to be equivalent to the use
of healthy tissues for this purpose (Finak et al., 2006). Of
course, many factors may promote cancer such as chemicals,
radiation as well as genetic defects in reparation and replication
molecular machinery. To gain inside into such a complex
problem as a molecular approach of cancer together with a still-
evolving protocol of RNA-seq treatment regarding normalization
procedure or error rate (Li et al., 2020), a robust measure was
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TABLE 6C | Comparative pattern of distribution for the most relevant targets among solid tumors of nine cancer types according to GDF FPKM-UQ normalization.

Acc PRAD LUAD LUSC BRCA KIRC KIRP THCA STAD LIHC # Av. StDv

HSP90AB1 81.25 90.91 87.23 86.11 77.46 74.19 64.29 92.59 94.00 9 83.12 9.78

TP53 81.25 75.76 68.09 66.67 78.87 87.10 85.71 66.67 54.00 9 73.79 10.78

TRAF2 45.83 66.67 70.21 83.33 84.51 87.10 35.71 100.00 86.00 9 73.26 20.95

YWHAZ 39.58 81.82 100.00 83.33 66.20 80.65 60.71 66.67 74.00 9 72.55 17.05

PPP1CA 58.33 72.73 78.72 97.22 46.48 61.29 83.93 55.56 74.00 9 69.81 15.84

TRIM27 79.17 90.91 42.55 75.00 52.11 64.52 60.71 66.67 70.00 9 66.85 14.39

FN1 39.58 60.61 42.55 97.22 91.55 54.84 87.50 55.56 32.00 9 62.38 24.08

GRB2 35.42 39.39 36.17 72.22 66.20 93.55 64.29 66.67 66.00 9 59.99 19.39

MAPK6 85.42 69.70 93.62 66.67 45.07 45.16 42.86 37.04 48.00 9 59.28 20.37

GOLGA2 85.42 57.58 59.57 63.89 56.34 67.74 44.64 48.15 46.00 9 58.81 12.75

SNW1 45.83 72.73 68.09 52.78 50.70 58.06 75.00 44.44 58.00 9 58.40 11.28

VCAM1 25.00 72.73 44.68 47.22 88.73 67.74 26.79 66.67 32.00 9 52.40 22.59

CDC37 39.58 27.27 29.79 41.67 70.42 54.84 51.79 74.07 74.00 9 51.49 18.31

MYC 70.83 33.33 63.83 19.44 85.92 77.42 32.14 48.15 30.00 9 51.23 23.95

IKBKE NA 81.82 76.60 66.67 45.07 80.65 64.29 62.96 58.00 8 67.01 12.44

OTUB1 35.42 69.70 91.49 80.56 21.13 NA 71.43 40.74 60.00 8 58.81 24.24

MDFI 45.83 84.85 87.23 25.00 16.90 NA 80.36 77.78 34.00 8 56.49 29.16

EGFR 27.08 39.39 78.72 NA 95.77 77.42 62.50 44.44 24.00 8 56.17 26.37

HSPB1 NA 45.45 42.55 50.00 40.85 64.52 23.21 37.04 72.00 8 46.95 15.43

YWHAB 22.92 39.39 40.43 77.78 NA NA 39.29 62.96 72.00 7 50.68 20.30

MAP1LC3B NA 27.27 NA 27.78 50.704 80.65 60.71 29.63 30.00 7 43.82 20.87

KDM1A 72.92 42.42 36.17 41.67 NA NA 28.57 40.74 40.00 7 43.21 13.94

WDYHV1 41.67 60.61 65.96 77.78 NA NA NA 33.33 66.00 6 57.56 16.73

KSR1 NA 30.30 19.15 84.507 NA NA 18.52 20.00 5 34.50 28.37

The numbers in the table represent the proportion (%) of tumors of a given cancer type that showed the gene among the top-20 most connected proteins of the
subnetwork of up-regulated genes. The pink color concerns up-regulated genes in at least 70% of tumor samples of each cancer type.

needed. We found this measure in the degree entropy. Entropy
offers the benefit to be independent of sample size. In this report,
we calibrated our approach by reference to OS, but after an
optimization round for the treatment of RNA-seq data, other
factors could be taken into account to understand how they
interact with the signaling network complexity.

Normalization of raw read counts account for (i) within-
sample effects induced by factors such as coding sequence
size (Oshlack and Wakefield, 2009), GC-content (Risso et al.,
2011), (ii) between-sample effects such as sequencing depth
(total number of molecules sequenced) (Robinson and Oshlack,
2010), and (iii) batch effect (Tom et al., 2017). As underlined
by Evans et al. (2018), “normalization methods perform poorly
when their assumptions are violated.” Thus, the exercise is to
“select a normalization method with assumptions that are met
and that produces a meaningful measure of expression for the
given experiment.”

Following these recommendations, we must first consider
that the purpose of our approach is to list the top-n most
relevant target among subnetworks of genes that are up-regulated
in tumor samples compared to their controls. Consequently,
the complexity of the up-regulated gene subnetwork must
be coherent with the 5-years OS. Indeed, our supporting
hypothesis is that the complexity of the malignant subnetwork
or the number of times that the malignant subnetwork
can reorganize itself after perturbation is in line with its

information content, i.e., its Shannon entropy. This is the
reason why it makes sense to optimize the normalization
process for maximizing the coefficient of correlation between
entropy and 5-years OS. We aimed to diagnose the subnetwork
complexity because it is correlated to the 5-years OS and this is
important for therapy’s success (whatever being performed with
drugs or biopharmaceuticals) in the context of a personalized
approach of oncology.

The PDF and CDF functions of the Python’s scipy package
allowed the calculation of the critical values given the density
of probability of non-differentially expressed genes. These
distribution are rather similar regardless of the RNA-seq
considered for a given normalization process. These genes are
thousands while the up-regulated ones are hundreds, which
makes critical value determined in this way rather precise
and reproducible. Concerning the statistical significance of the
method we applied, one has to say that we face a classification
problem. In such circumstances, one usually looks for the
optimization between false positive and false negative rates.
However, when dealing with medical purpose, one has to look to
bias the classification process toward the minimization of false-
positive rate to reduce toxic drug collateral effects to patients that
would derive from hubs still expressed at a significant level in the
stroma (this consideration does not concern drug toxicity due to
off-target effects). There is a compromise between minimizing
the false positive rate and the availability of hub targets for
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TABLE 6D | Pattern of distribution for the most relevant targets among solid tumors of nine cancer types according to successive processing through RPKMupper and
LogNorm normalization.

Acc PRAD LUAD LUSC BRCA KIRC KIRP THCA STAD LIHC # Av StDv

HSP90AB1 83.33 73.68 87.50 65.00 76.06 74.19 42.86 96.30 98.00 9 77.44 16.92

TP53 79.17 84.21 66.67 65.00 74.65 83.87 73.21 77.78 66.00 9 74.51 7.42

YWHAZ 47.92 70.18 100.00 87.50 63.38 67.74 46.43 77.78 86.00 9 71.88 17.97

TRAF2 47.92 47.37 72.92 85.00 84.51 87.10 26.79 96.30 86.00 9 70.43 23.85

FN1 43.75 70.18 52.08 100.00 90.14 54.84 87.50 59.26 62.00 9 68.86 19.43

PPP1CA 56.25 68.42 79.17 95.00 46.48 51.61 67.86 70.37 76.00 9 67.91 14.97

GRB2 43.75 43.86 39.58 87.50 71.83 87.10 46.43 81.48 94.00 9 66.17 22.45

MAPK6 85.42 66.67 95.83 65.00 49.30 58.06 42.86 55.56 72.00 9 65.63 16.92

GOLGA2 87.50 61.40 70.83 65.00 54.93 51.61 37.50 62.96 80.00 9 63.53 15.00

TRIM27 79.17 68.42 56.25 62.50 54.93 45.16 53.57 77.78 68.00 9 62.86 11.47

SNW1 39.58 54.39 72.92 47.50 43.66 45.16 44.64 74.07 82.00 9 55.99 15.94

HSCB 56.25 56.14 68.75 47.50 74.65 29.03 51.79 59.26 58.00 9 55.71 12.95

VCAM1 31.25 47.37 47.92 45.00 87.32 67.74 30.36 81.48 46.00 9 53.83 20.48

CDC5L 43.75 43.86 68.75 52.50 53.52 48.39 16.07 77.78 78.00 9 53.62 19.49

MYC 72.92 40.35 66.67 10.00 85.92 77.42 30.36 55.56 36.00 9 52.80 25.20

OTUB1 37.50 54.39 83.33 77.50 15.49 22.58 62.50 40.74 54.00 9 49.78 23.03

IKBKE 10.42 75.44 60.42 72.50 32.39 64.52 76.79 22.22 22.00 9 48.52 26.46

REL 35.42 29.82 45.83 52.50 26.76 32.26 25.00 70.37 16.00 9 37.11 16.58

EGFR 35.42 57.89 79.17 NA 95.77 67.74 53.57 51.85 44.00 8 60.68 19.55

MDFI 47.92 80.70 87.50 30.00 15.49 NA 82.14 81.48 26.00 8 56.40 29.80

GABARAPL2 37.50 22.81 NA 20.00 11.27 25.81 30.36 59.26 80.00 8 35.87 22.86

YWHAB 20.83 31.58 22.92 75.00 NA 16.13 32.14 22.22 28.00 8 31.10 18.57

LRRK2 NA 49.12 NA 15.00 83.10 87.10 89.29 22.22 14.00 7 51.40 34.87

LNX1 50.00 61.40 66.67 42.50 NA NA 48.21 29.63 44.00 7 48.92 12.32

MAP1LC3B NA 35.09 NA 17.50 42.25 80.65 46.43 62.96 52.00 7 48.13 20.16

The numbers in the table represent the proportion (%) of tumors of a given cancer type that showed the gene among the top-20 most connected proteins of the
subnetwork of up-regulated genes. The pink color concerns up-regulated genes in at least 70% of tumor samples of each cancer type.

therapy. A larger p-value (p > 0.025) would release a larger
list of up-regulated genes with more hub targets; a larger list
of potential drugs for the case under consideration, but also
a larger probability of toxic effects on the stroma. In contrast,
lower p-value (p < 0.025) will minimize toxic effect of therapy to
patient, but would also decrease the number of potential hubs for
therapy. Of course, this consideration neglects the tissue specific
expression of genes and a gene that is up-regulated in a tumor
compared to its stroma could also be up-regulated in another
tissue, on a normal basis. Here, we neglected this issue, but it
is possible to preferentially target tumors through nanoparticle
therapy or by local application.

As pointed out by Abbas-Aghababazadeh et al. (2018), it
is possible that some of the estimated latent factors are not
technical artifacts but rather represent true biological features
reflected in the data. The correction of these latent factors may
introduce unwanted biases. Here, we did not want to stabilize the
subnetwork size variance (Smyth, 2004; Cloonan et al., 2008; Love
et al., 2014; Holmes and Huber, 2019) because we believe that
it is part of the challenge. One cannot exclude the possibility of
network size varying among samples according to the specificities
of genome deregulation proper to a given tumor. Despite
commonalities that were recognized between tumors of the same
cancer type, many features such as gene demethylation, copy

numbers, somatic crossing over, and chromosome karyotype
contribute to the specificity of the molecular phenotype of a
tumor and it is the correct diagnosis of these specificities that can
make the difference in terms of patient benefits (Duesberg et al.,
2005; Ozery-Flato et al., 2011; Ogino et al., 2012; Grade et al.,
2015; Bloomfield and Duesberg, 2016; Ye et al., 2018; Xia et al.,
2019).

According to the considerations just outlined, the size of
the malignant subnetwork is also important because it directly
affects the number of targets available for therapy. The size of
the malignant subnetworks also depends on the normalization
process. There is a tradeoff between the size of the malignant
subnetwork and the level of tumor personalization that is
effectively reported by the top-n targets as a result of the
normalization process. From our perspective, the normalization
corresponding to GDC FPKM-UQ and RPKMupper + LogNorm
generate subnetworks that are too large since they represent
as much as 20% of the human proteome (>4,000 genes). By
contrast, subnetworks produced by GDC RPKMupper + Log2
normalization account for between 2 and 5% of the human
proteome, which seems to be more realistic (Danielsson et al.,
2013; Malvia et al., 2019).

The target lists that we found with the various normalization
methods presented here were consistent among one another and
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TABLE 6E | Pattern of distribution for the most relevant targets among solid tumors of nine cancer types according to successive processing through RPKMupper and
Log2 normalization.

Acc PRAD LUAD LUSC BRCA KIRC KIRP THCA STAD LIHC # Av StDv

HSP90AB1 77.08 66.67 85.42 94.00 64.79 64.52 35.71 96.30 94.00 9 75.39 19.73

YWHAZ 41.67 70.18 100.00 82.00 60.56 67.74 46.43 74.07 82.00 9 69.41 18.21

TP53 72.92 70.18 64.58 60.00 66.20 74.19 58.93 70.37 60.00 9 66.37 5.86

FN1 41.67 70.18 52.08 62.00 90.14 54.84 87.50 59.26 62.00 9 64.41 15.92

NPM1 72.92 68.42 72.92 60.00 85.92 41.94 51.79 59.26 60.00 9 63.68 12.98

YWHAG 52.08 40.35 87.50 68.00 52.11 80.65 10.71 59.26 68.00 9 57.63 22.91

CDC37 12.50 28.07 25.00 86.00 67.61 38.71 44.64 81.48 86.00 9 52.22 28.54

MAPK6 79.17 43.86 87.50 54.00 22.54 29.03 23.21 44.44 54.00 9 48.64 23.06

MYH9 39.58 40.35 37.50 62.00 43.66 12.90 23.21 81.48 62.00 9 44.74 20.98

PKM 14.58 73.68 41.67 22.00 47.89 32.26 78.57 51.85 22.00 9 42.72 22.68

HSPB1 NA 49.12 89.58 92.00 59.15 93.55 50.00 37.04 92.00 8 70.31 23.74

RPL10 66.67 56.14 45.83 74.00 88.73 54.84 44.64 NA 74.00 8 63.11 15.41

OTUB1 27.08 42.11 83.33 78.00 NA 16.13 48.21 66.67 78.00 8 54.94 25.35

YWHAB 14.58 35.09 39.58 84.00 NA 35.48 26.79 77.78 84.00 8 49.66 27.82

YBX1 31.25 21.05 66.67 56.00 49.30 41.94 NA 70.37 56.00 8 49.07 16.96

MYC 66.67 15.79 56.25 28.00 73.24 67.74 NA 40.74 28.00 8 47.05 21.80

EGFR 16.67 40.35 68.75 28.00 95.77 58.06 30.36 NA 28.00 8 45.75 26.53

CSNK2A1 20.83 21.05 85.42 30.00 11.27 41.94 NA 51.85 30.00 8 36.54 23.49

GRB2 NA 15.79 16.67 64.00 32.39 87.10 NA 48.15 64.00 7 46.87 26.75

TUBA1A NA 47.37 10.42 18.00 59.15 54.84 71.43 NA 18.00 7 39.89 24.06

LRRK2 NA 38.60 NA NA 57.75 67.74 76.79 NA NA 4 60.22 16.38

VCAM1 NA 10.53 10.42 NA 84.51 61.29 NA NA NA 4 41.69 37.27

LZTS2 NA 36.84 NA NA NA 29.03 71.43 NA NA 3 45.77 22.56

EGLN3 NA NA 22.92 NA 83.10 NA NA NA NA 2 53.01 42.56

The numbers in the table represent the proportion (%) of tumors of a given cancer type that showed the gene among the top-20 most connected proteins of the
subnetwork of up-regulated genes. The pink color concerns up-regulated genes in at least 70% of tumor samples of each cancer type.

with that of Conforte et al. (2019). The normalization method
corresponding to the best compromise according to subnetwork
size, correlation, and the target list was RPKMupper + Log2, and it
is that method that was, therefore, kept for new sample analyses.

To be coherent with former studies, we included LUAD
and BRCA, however, these two cancer types discredited the
analyses for two obvious reasons: (i) In the case of LUAD,
the samples of raw counts did not match those of FPKM-
UQ, which prohibit direct comparison between both datasets
and raised the question why FPKM-UQ normalization was
not performed on a large proportion of raw counts files
and why, on the other hand, other samples were taken into
account in the FPKM-UQ processing. This discrepancy may
explain why LUAD does not match the regression line in GDC
RPKMupper + Log2, while it does in GDC FPKM-UQ; (ii)
In the case of BRCA, after filtrating samples for matching
between raw counts and FPKM-UQ, the total sample size was
less than 20, which is not sufficient for statistical significance
given subtype heterogeneity. BRCA is composed of four subtypes
whose 5-years OS varies between 70 and 82%. Figure 3 shows
that depending on sampling, BRCA could very well match the
linear regression.

The relevance of inhibiting hub of connections has been
proven mathematically by Albert et al. (2000) and its benefit
for patients has been confirmed by Conforte et al. (2019)

through Shannon entropy analysis. The negative correlation
found between the subnetwork entropy and the 5-years OS is in
agreement with the results obtained later on from the modeling of
basins of attraction in BC with Hopfield network (Conforte et al.,
2020). This study revealed that five tumor samples converged
toward the basin of attraction associated with control samples
instead of the tumor ones. Those samples were associated with
a good prognosis, initial stages of tumor development, and four
of them presented the smallest subnetwork entropy among the
dataset of 70 tumor samples under study.

As the research concept has been validated through different
approaches, the workflow presented here was built with the
aim of automating the analysis, which will allow its translation
to the medical context. With that concern, the larger time
needed for entropy and PTTCS pipelines to be completed
when analyzing high entropy cancer types compared to the
processing time spent with low entropy cancer types suggests a
positive relationship between subnetwork complexity and their
processing time. If confirmed, this observation means that the
computation model, presented here, reproduces a main biological
feature of cancer that is the larger complexity associated with
subnetwork of up-regulated genes in aggressive tumors. In any
case, the difference in the processing time of the PTTCS pipeline
for high and low entropy cancers was not large (∼50 s for
25 patients).
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FIGURE 7 | Scaling of pipeline from Figure 2B (entropy) and Figure 6B (PTTCS) using GDC read counts (see data in Supplementary Table 1). (A) Linear scaling
for 5–45 patients in LUSC and PRAD as well as 15 and 25 patients for STAD, LIHC, THCA, and KIRC. (B) Statistical analysis of scaling for high entropy (H) cancer
(LUSC, LIHC, STAD) and low entropy (L) cancer (KIRC, PRAD, THCA) for entropy (gray) and PTTCS (white) pipelines. ∗∗Significant at α ≤ 0.01 for k = 4 degrees of
freedom. The horizontal bars are for the standard error of the mean (SEM).

We believe that our strategy will contribute constructively
to cancer treatment because the molecular phenotype of a cell
is directly connected to its genetic alterations, which is not
necessarily the case for genomic alterations. Genomic alterations
allow a diagnosis based on probabilistic data obtained with large
patient cohorts. By contrast, the molecular phenotype portraits
the cell or the genomic disease and points to proteins that should
be targeted in the first instance to disrupt malignant phenotypes
while affecting the healthy one the least possible.

The phenotype approach also reflects which genes that malign
cells most need to maintain themselves in the tissue given
its selective constraints. In any pathogenic relationship, one
distinguishes between primary and secondary determinants of the
disease (Yoder, 1980). The primary determinants are those that
make the relationship compatible (qualitative) and the secondary
determinants are those that deal with its quantitative expression
(virulence). Thus, the question to deal with, in the case of
cancer, is to target primary determinants. When considering
gene expression, one may reason that the heterogeneity is
something related to secondary determinants (it is not because
a cell is mutating that the new mutations are worse than the
previous ones). Actually, it has been well described that a tumor
developed by the accumulation of mutations in a small number
of key oncogenes or suppressor genes in stem cells and that the
probability of this event to occur is very low (Hornsby et al., 2007;

Belikov, 2017). Thus, there is a difference between these primary
mutations that allow the tumor to establish itself and the
secondary ones that may affect its aggressiveness. On the same
line, when one sequences the mRNA of a tumor area, one
takes the gene expression profile of many cells into account.
By consequence, secondary mutations promoting or inhibiting
a given gene in different cell lineages inside the same tumor
compensate themselves. By contrast, those genes that are key to
maintain a malignant cell line will be positively selected to remain
up-regulated in most cells and, therefore, if one detects a gene
that is up-regulated in a tumor by comparing its expression level
with the surrounding stroma, it means that it is essential for
malign cell survival.

Considering the number of hubs to target, the results obtained
by Conforte et al. (2019) suggest 3–10, on average. Other authors
already suggested such complex mixes (Calzolari et al., 2007,
2008; Preissner et al., 2012; Hu et al., 2016; Antolin et al., 2016;
Lu et al., 2017). Three to ten specific drugs may appear a small
number to control such a complex disease as cancer, but the
cell death induction may be explained by a cascading effect,
which is larger when targeting hubs as suggested before (Carels
et al., 2015a; Barabási, 2016; Tilli et al., 2016; Conforte et al.,
2019). According to Conforte et al. (2019), this cascading effect
would be inversely proportional to the tumor aggressiveness.
The pitfall is that the number of specific drugs for hub targets
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FIGURE 8 | Dashboard on (A) a desktop and (B) an extra small devices (Galaxy S5).

that are approved by FDA is still very small (Antolin et al.,
2016). While new drugs and biopharmaceuticals or products of
other strategies continuously appear, key targets remain the same.
Some are highly personalized and often secondary while others
are constant across tumor types or within a tumor type; these last
targets play, in most likelihood, a primary role in the disease and
it is essential to diagnose them (even if only for their prognostic
value). In addition, nothing prohibits the combination of specific
drugs with cytotoxic or hormonal treatments (Nikanjam et al.,
2016). The idea is to improve as much as possible the rational
drug use to maximize the patient benefit. Many patients are dying
from the toxic collateral effect of the chemotherapy; it would be
a great success if the use of specific drugs in a standard therapy
protocol could enable to decrease the dose of cytotoxic drugs
and improve the therapy acceptance by patients in some specific
cases in the context of theranostics. For this kind of exercise,
an automated pipeline is needed and a clinical trial testing the
validity of hubs as potential molecular targets is urgent.

The replication number that can be done for RNA-seq is
another limitation given the still high cost of this technology.
Thus, analyses as the one described in our manuscript are
expected to be done only once per time in a time series for
each patient. According to Barabasi’s theory (Barabási, 2016),
hubs with the same connection rate are expected to have the
same disarticulation effect on the signaling network. On a clinical

basis, p-values (here critical value) may be adapted to the
specific case of each patient. On the same line of reasoning,
our methodology can be easily adapted taking into account
more powerful bioinformatics tools and statistical analysis, but
this issue is beyond the scope of this report. For such a
methodology improvement, we believe that entropy is a good
measure because it is universal, robust, and not dependent
on sample size. Different combinations of normalization and
statistical analyses as those reported by Li et al. (2020) can be
compared in the same framework we presented here and in
Conforte et al. (2019), by looking at how they may maximize
the correlation coefficient of the negative relationship between
entropy and OS. Of course, this depends on accepting the
hypothesis that more aggressive tumors have more complex
signaling networks, but again, this statement has been repeatedly
claimed by several authors worldwide and along several years
(Teschendorff and Severini, 2010; van Wieringen and van der
Vaart, 2011; Breitkreutz et al., 2012; West et al., 2012; Banerji
et al., 2015). If this hypothesis is true, the negative correlation
between entropy and OS may serve as a calibration to study
the optimization of RNA-seq methodologies and the influence of
other factors in cancer development and dynamics.

Cancer is a genomic disease that affects DNA replication
checkpoints through mutations of key oncogenes and suppressor
genes (Lee and Muller, 2010). There are ten main hallmarks
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FIGURE 9 | Form header. A user is warned when leaving without saving the form. The patient password is encrypted and kept on the server using a specialized type
of file; nonetheless, users can choose their own passwords.

for cancer from which uncontrolled division is the key one
(Hanahan and Weinberg, 2011). When the disease is taken at
a late stage, it may have spread in the body through metastasis
and secondary tumors may have different molecular profiles.
In such late tumor stages, an approach of cancer therapy only
based on personalized oncology would in most likelihood be
unsuccessful (Ashdown et al., 2015). However, specific drugs
could increase the patient benefit by supplementing traditional
therapies based on cytotoxic drugs. As a consequence, the
maximum benefit of a personalized oncology approach of solid
tumor therapy based on a molecular phenotype diagnosis is in the
early stages of malign cell multiplication. Despite its limitations,
the phenotype approach of molecular diagnosis proposed here
is needed for rational drug (or biopharmaceutical) therapy to
maximize patient benefit.

At the moment, the methodology and the web site that
we described here can be assimilated to laboratory developed
tests (LDT). It is notorious that LDT for being a type of
in vitro diagnostic test designed, manufactured, and used within
a single laboratory is poorly supported by oncologists (8%) and
pathologists (12%) because of the legitimate fair of innovation.
Biomarkers and CDs strongly depend on the regulation by
official organizations for their acceptance by health decision-
makers (Novartis, 2020). However, barriers by regulation are no
reason to stop the innovation necessary for progress. Otherwise,
regulation fails with its purpose of protecting lives (see Carels
et al., 2020 for a review).

Web Application
System biology has gained considerable attention in medical
sciences in the last decade thanks to the ever-increasing computer
power. However, system biology models can be tricky to use or
to interpret by non-experts in modeling. A recurrent question is
how to integrate models into the physician daily lives such that
they could best participate in their decision-making process. One
potential solution, which seems to be the predominant one on
the current state of the art, is by packing algorithms into software
bundles and to make them available by user-friendly interfaces,
such that little, or even no, expertise is required to use them. This
is the paradigm we followed in this report.

The power and diversity of Angular programmed with
TypeScript enable to expand the functionalities of the prototype
proposed here in future versions, including the implementation
of heavy calculations on the frontend side.

We chose MongoDB for storing genetic and medical records
even if Galaxy has its own database system (postgreSQL). Our
choice of MongoDB was motivated by the care of keeping
coherence with MEAN stack, and also because of the power of
MongoDB for Big Data storage. In addition, MongoDB is a non-
relational database (NoSQL), which allows the storage of data in
different formats within the same database.

Our implementation of online forms offers the possibility
of creating new functions such as data validation. Data can
be validated by comparing frontend to backend information
through the database and making sure, for instance, that an
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entered e-mail does not already belong to someone else already
registered in the system.

Finally, one common concern on web-programming is to
minimize client communication with the server to maximize
performance. For such purpose, we implemented a process
of form validation on the frontend side. Since we are using
FormBuilder (see for more details Fain and Moiseev, 2018), there
are a set of built-in validation routines, and the possibility to
easily create customized validation, thus any specific demand
concerning data validation can be handled on future versions
using the current source code.

CONCLUSION

In a successive set of publications, we developed a rational
methodology for the diagnosis of connection hubs among
up-regulated genes of malignant subnetworks. This strategy
is an application of graph theory, whose relevance has been
mathematically proven by Albert et al. (2000). The inference of
this theory into biological systems performed by Carels et al.
(2015a) has been successfully validated on malignant cells by Tilli
et al. (2016) and extended to tumor tissues by Conforte et al.
(2019).

Here, in a translational oncology effort, we outlined a
workflow that automated that research and allows its application
to a large set of RNA-seq data to interact with public entities of the
oncological sector, such as pharmaceutical companies, hospitals,
diagnostic laboratories, public health care systems, and insurance
groups around the world.

We belief that innovation in new translational solutions, like
the one outlined here, is an imperative attribute of research
centers; however, other agents such as (i) pharmaceutical
companies may certainly help these initiatives with their
experience concerning regulation, market barriers, financial
support and (ii) startups whose processing speed and innovation
potential were already well-documented (Blank and Dorf, 2012).

Herein, we aimed at transcending basic cancer inferences to
bring a solution for clinical applications on a global scale.
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Black fungi are a group of melanotic microfungi characterized by remarkable
polyextremotolerance. Due to a broad ecological plasticity and adaptations at the
cellular level, it is predicted that they may survive in a variety of extreme environments,
including harsh niches on Earth and Mars, and in outer space. However, the molecular
mechanisms aiding survival, especially in space, are yet to be fully elucidated. Based
on these premises, the rock-inhabiting black fungus Knufia chersonesos (Wt) and
its non-melanized mutant (Mut) were exposed to simulated microgravity—one of
the prevalent features characterizing space conditions—by growing the cultures in
high-aspect-ratio vessels (HARVs). Qualitative and quantitative proteomic analyses
were performed on the mycelia and supernatant of culture medium (secretome) to
assess alterations in cell physiology in response to low-shear simulated microgravity
(LSSMG) and to ultimately evaluate the role of cell-wall melanization in stress
survival. Differential expression was observed for proteins involved in carbohydrate
and lipid metabolic processes, transport, and ribosome biogenesis and translation
via ribosomal translational machinery. However, no evidence of significant activation
of stress components or starvation response was detected, except for the scytalone
dehydratase, enzyme involved in the synthesis of dihydroxynaphthalene (DNH) melanin,
which was found to be upregulated in the secretome of the wild type and downregulated
in the mutant. Differences in protein modulation were observed between K. chersonesos
Wt and Mut, with several proteins being downregulated under LSSMG in the Mut when
compared to the Wt. Lastly, no major morphological alterations were observed following
exposure to LSSMG. Similarly, the strains’ survivability was not negatively affected. This
study is the first to characterize the response to simulated microgravity in black fungi,
which might have implications on future astrobiological missions.

Keywords: microgravity, black fungi, extremophiles, secretomics, proteomics, astrobiology, Knufia chersonesos
(syn. K. petricola)
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INTRODUCTION

Based on their nature as settlers in extreme environments,
microbial extremophiles are of great interest to studies aiming to
elucidate stress adaptation and survival mechanisms. Successful
examples of extremophiles can be found in the fungal domain,
alongside bacteria, and archaea, which for a long time were
considered to be the sole colonizers of habitats previously
considered uninhabitable. Some of these fungal extremophiles
show even higher resistance than that of prokaryotes (Shtarkman
et al., 2013; Aguilera and González-Toril, 2019). Black fungi in
particular represent a group of highly melanized microfungi,
whose ability to survive in a variety of extreme environments
has in recent decades attracted increasing attention (Selbmann
et al., 2005; Sterflinger, 2006; Gorbushina, 2007; Onofri et al.,
2007). Desiccation, low nutrient availability, excessive radiation,
extreme temperatures, salinity, and pH are some of the
multiple sources of stress characterizing the habitats where these
organisms have been shown to thrive (Gunde-Cimerman et al.,
2000, 2003; Selbmann et al., 2008). The highest diversity of
black fungi has especially been observed in rocky environments,
ranging from mountain summits to the Atacama Desert and
the Antarctic cold regions (Gonçalves et al., 2016; Ametrano
et al., 2019). Rock represents a harsh habitat and a quite
ancient niche for life, believed to reflect early Earth conditions,
and thus considered to be a model for extraterrestrial life
(Selbmann et al., 2014).

The discovery of melanized fungi in extreme environments
has prompted researchers to investigate microbial physiology
at the absolute edges of adaptability, aiming at a deeper
understanding of the limits for life (Dadachova and Casadevall,
2008; Tesei et al., 2012; Zakharova et al., 2013). Other studies have
focused on testing fungal survival in space conditions through
simulations in ground-based facilities or in space missions that
enabled the assessment of the habitability of extraterrestrial
environments and, hence, the possibility of life beyond Earth
(Scalzi et al., 2012; Onofri et al., 2019). Space and outer space
conditions are by definition hostile, as they include enhanced
irradiation, microgravity, and temperature extremes (Rabbow
et al., 2012, 2017; Senatore et al., 2018). Nevertheless, the isolation
of melanized fungi from spacecraft and space stations—e.g., the
International Space Station (ISS)—has been reported frequently
(Checinska et al., 2015; Checinska-Sielaff et al., 2019). In this
respect, a number of studies have examined the molecular
adaptations of ISS-isolated strains to space conditions, showing
alterations in metabolome and proteome (Knox et al., 2016;
Blachowicz et al., 2019b; Romsdahl et al., 2019). Investigations
of microbial survival in space are therefore relevant also in the
context of space missions, to prevent contaminations and to
develop strategies to reduce hazard, especially in the case of
opportunistic species (Urbaniak et al., 2019).

In black fungi, astrobiological studies have evaluated the
potential effects of Mars or ISS conditions on fungal viability and
metabolism. One investigation revealed that a rock isolate from
Antarctica, Cryomyces minteri, could survive simulated Martian
atmosphere and pressure, temperature fluctuations between−20
and 20◦C, ultraviolet radiation, and vacuum (Onofri et al., 2008).

Comparative 2D-PAGE proteomics was carried out for other
rock-inhabiting fungi (RIF) (i.e., Cryomyces antarcticus, Knufia
perforans, and Exophiala jeanselmei) exposed to these conditions
and showed a decrease in protein complexity, followed by
recovery of the metabolic activity after 1 week of exposure
(Zakharova et al., 2014). Further, survivability of C. antarcticus
in outer space was shown via colony counts following a 1.5-year-
long exposure on board the EXPOSE-E facility of the ISS (Onofri
et al., 2012). A more recent experiment of C. antarcticus exposure
on rock analogs under space and simulated Martian conditions
revealed only slight ultra-structural and molecular damage and
pointed out the high stability of DNA within melanized cells
(Pacelli et al., 2016). In other investigations, the resistance
to acute ionizing radiations was demonstrated in RIF (Pacelli
et al., 2017, 2018). Together, these studies have revealed the
ability of rock-colonizing black fungi to endure space conditions;
however, to date, reports that specifically evaluate the response to
microgravity have not been produced.

Microgravity is an important factor influencing microbial life
in space environments, a condition in which the gravity level
is almost zero but not neutralized. Due to the technological
and logistical hurdles linked to studies of microgravity in
space, different methods have been developed to simulate
microgravity and analyze microbial responses (Herranz et al.,
2013). Accordingly, the term low-shear simulated microgravity
(LSSMG) is used to describe the environmental condition
created by these devices, resembling the low-shear effects of
the fluid on the cells (Yamaguchi et al., 2014). Spaceflight and
ground-based microgravity analog experiments have suggested
that microgravity can affect microbial gene expression, cell
morphology, physiology, and metabolism, also triggering
increased virulence in pathogenic bacteria and fungi (Altenburg
et al., 2008; Taylor, 2015; Sathishkumar et al., 2016; Huang et al.,
2018). Although the effects of microgravity on microbes have
been studied for several years, only the responses of a few typical
prokaryotic and eukaryotic model organisms—e.g., Escherichia
coli, Candida albicans, Saccharomyces cerevisiae, Penicillium
sp., Aspergillus sp.—have hitherto been investigated (Huang
et al., 2018). Hence, studying the reaction of black fungi to
microgravity holds potential for the elucidation of the molecular
basis of tolerance in extremotolerant and extremophilic fungi,
and can also contribute to unearthing the biological uniqueness
of these species and their adaptability to space conditions.

In the present study, the qualitative and quantitative
proteomic characterization of a black fungus response to LSSMG
was carried out for the first time. The rock-associated Knufia
chersonesos (syn. Knufia petricola) was selected as the model
organism due to its reported poikilo-tolerance, e.g., the ability
to endure xeric conditions, desiccation, high UV-radiation and
temperatures (Sterflinger et al., 2012) and to feed on alternative
carbon sources like monoaromatic compounds (Nai et al., 2013)
and synthetic polyesters (Tesei et al., 2020). K. chersonesos
aptitude to withstand levels of gaseous ozone up to 11 ppm
was also shown (Tesei et al., unpublished). Furthermore, being
the only black fungus known to have a melanin-deficient
spontaneous mutant (Tesei et al., 2017), K. chersonesos allows
comparative studies attempting to evaluate the stress-protective
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role of melanin. Cultures of K. chersonesos wild type and
mutant were grown in HARVs and analyzed for changes at
the proteome—whole-cell proteome (mycelia) and secretome
(culture supernatant)—and at the morphological level, with
an eye toward the impact of cell-wall melanization on the
physiological response to the stress.

MATERIALS AND METHODS

Fungal Strains
The fungal strains used in this study included the non-pathogenic
rock-inhabiting fungus K. chersonesos MA5789 wild type (Wt)
and MA5790 mutant (Mut), both obtained from the ACBR
fungal culture collection of the University of Natural Resources
and Life Sciences, Vienna, Austria. The Wt, characterized by a
highly melanized mycelium, was isolated from red sandstone
in Ny London, Svalbard, Norway. The pink mutant, whose
pigmentation is due to unmasking of carotenoids resulting from
the lack of melanin, originated spontaneously under laboratory
conditions (Tesei et al., 2017). K. chersonesos (syn. K. petricola)
is an emerging model organism for analyses aiming at the
elucidation of the rock-lifestyle and RIF physiology (Nai et al.,
2013). Along with its ascertained thermo-, pH-, UV- and
desiccation tolerance (Gorbushina et al., 2008; Sterflinger et al.,
2012), the fungus was recently reported to have an aptitude
for using synthetic polymers as an alternative carbon source
(Tesei et al., 2020). These features and the ability to endure high
levels of gaseous ozone (Tesei et al., unpublished), altogether
make K. chersonesos particularly suited for astrobiology studies.
Further, the availability of a mutant strain allows comparative
studies attempting to evaluate the role of melanin in stress
protection. Fungal cultures were maintained in flasks containing
50 mL of 2% malt extract broth (MEB, pH 5, 2% malt extract,
2% glucose, 1% peptone) at 21◦C with shaking at 63 rpm
(Innova, Eppendorf). Cultures at exponential phase were used for
inoculation of media for all experiments.

Exposure to Low-Shear Simulated
Microgravity (LSSMG)
Fungal pellets were obtained from 5-day-old cultures by
centrifugation, washed in 1X phosphate-buffered saline (PBS;
Thermo Fisher Scientific) and subsequently mildly ribolyzed
(3 × 20”, speed 4; MP Biomedicals) to separate cells. As
clump-like growth is an inherent characteristic of black fungi,
mechanical disruption of cell clusters is a prerequisite for both
inoculation of cultures and cell counting (Voigt et al., 2020).
Following the cell count (Neubauer), the cell number was
adjusted to the initial concentration of 2 × 105 ml−1 with 10 mL
fresh 2% MEB and used as seed culture. High-aspect-ratio vessels
(HARVs; Synthecon Inc) were filled with the cell suspensions
(10 mL) and rotated at 30 rpm (initial rotation rate) in the vertical
axis to provide LSSMG conditions inside a chamber with 60%
humidity and 22◦C, for 7 days. Control runs were set up by
rotating the bioreactors in the horizontal axis to provide normal
gravity condition (1G) (Rosenzweig et al., 2010; Kim and Rhee,
2016). During cultivation, the rotation speed was adjusted to

43 rpm in order to keep the cells pellets orbiting within the
vessel in continual fall and to prevent their contact with the
vessel walls (Figures 1A,B). A total of two biological replicates
were maintained throughout the experiments. An additional
set of experiments identical to the conditions mentioned above
was established for measurement of cell concentration and
microscope observations. Cell concentration was assessed via
hemocytometer count at different time points until completion
of the experiment, using two biological replicates (i.e., biomass
from two different vessels) for each experimental condition.
Following removal of the vessel from the rotator base, samples
of cells were collected under sterile conditions in a laminar
flow hood using a luer-lock syringe and the syringe port in
the culture vessel. The sampling was carried out one vessel at
a time while the remaining vessels were kept rotating on the
rotator base. Cell survivability at the end of the LSSMG exposure
was assessed by enumeration of colony forming units (CFU)
using ImageJ software (Schneider et al., 2012), according to
Choudhry (2016).

Microscopy Studies
Scanning Electron Microscopy (SEM)
For SEM studies, samples from the two strains were collected
from all the established cultures—LSSMG and normal gravity
condition (1G)—at various timepoints, i.e., 1, 3, 5, and 7 days
from the beginning of the cultivation. A 1:10 dilution of
each sample was prepared using 1X phosphate-buffered saline
(PBS; Thermo Fisher Scientific) and thereafter transferred onto
electron microscopy coupons. For each sample, two biological
replicates (and two technical replicates each i.e., aliquots of 20 µl)
were prepared and let dry at 35◦C before examination. A Sirion
(FEI, Hillsboro, OR, United States) field-emission scanning
electron microscope (FE-SEM) was used for examination of the
fungal cells. No specimen preparation procedures, such as sample
coating with a surface-conducting (carbon or metal) layer, were
performed as they were not necessary when using the FE-SEM.
The samples were analyzed using an acceleration voltage of 10–
20 kV, beam current of 40–50 mA and positioning the detector
6–10 mm away from the coupon. Secondary electron images were
acquired in the high-vacuum mode. For each sample coupon, a
minimum of 10 fields was observed, and images were acquired
with various magnification (100×–5,000×).

Fluorescence Microscopy
For the cell integrity and viability assay, wheat germ agglutinin
(WGA) and propidium iodide (PI) in combination with
SYTO 9 were used. The carbohydrate-binding lectin WGA
has a known affinity for β-1,4-N-acetylglucosamine (GlcNAc)
oligomers present in the fungal polysaccharide chitin. PI, a
membrane impermeant dye that is generally excluded from viable
cells, was applied together with the nuclear and chromosome
counterstain SYTO 9 for a dead/live stain. 200 µl aliquots were
collected from all the established cultures after 1, 3, 5, and
7 days from the beginning of the cultivation. Fungal cells were
washed twice in 1X PBS and suspended in 500 µl. Following a
1:10 dilution, 100 µl cell suspension was incubated with 50 µl
Alexa Fluor 350 conjugate of WGA (Thermo Fisher Scientific)
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FIGURE 1 | Rotary Cell Culture System (RCCSTM, Synthecon) and High Aspect Ratio Vessels (HARVs) used in the LSSMG experiments. (A) Schematic diagram of
mechanical principle of the different RCCSs (design: Emily Klonicki). In normal gravity, the vessels (HARVs) rotate around a plane parallel to the gravity vector.
Microgravity is simulated by rotating the samples around a plane perpendicular to the gravity vector. (B) The RCCS used to generate 1G condition (control) on
ground (left); the RCCS used to generate LSSMG condition on ground (right); (C) Colony and cultural features of Knufia chersonesos MA 5789 (wild type, Wt) and
MA5790 (mutant, Mut) under LSSMG and 1G on the first and last day of cultivation. The HARVs provide oxygenation via a flat, silicon rubber gas transfer membrane
located at the base of the vessel and directly underneath the cultures.

and 15 µl of FungaLight containing equal amounts of PI and
SYTO 9 solution (Thermo Fisher Scientific), for 15 min at
room temperature in the dark. The chosen amounts of the
fluorescent probes are justified by the thickening and the increase
in melanization of the cell walls, which hindered the staining
process. Cell suspensions were mounted over glass slides and
analyzed under an Axioplane microscope equipped with an
AxioCam camera (Carl Zeiss). For each sample, two technical
replicates were prepared for observation.

Tandem Mass Tag (TMT)-Based
Quantitative Shotgun Proteomics
Sample Preparation
The content of each vessel was spun at 7500 × g (5810,
Eppendorf) and at 4◦C for 15 min to separate fungal cell
pellet (mycelium) from culture supernatant (secretome). Protease
inhibitors (10 µl:1 mL v/v, Halt, Thermo Fisher Scientific)
were thereafter added—and mixed with 1 mL 1 × PBS in
the case of biomass samples—and samples were stored at
−80◦C prior to protein extraction. Proteins were extracted

as previously described by Romsdahl et al. (2018) with some
modifications. In brief, 1 mL lysis buffer consisting of 100 mM
triethylammonium bicarbonate (TEAB) with 1:100 Halt Protease
Inhibitor Cocktail (Thermo Fisher Scientific) was added to
fungal cell pellets (i.e., ∼0.5 g) and culture supernatants (i.e.,
∼0.5 mL), the latter previously concentrated in a SpeedVac
system. Sample homogenization was achieved using a bead beater
(Bertin) at 4◦C (3 × 5500 rpm for 1 min., with 15 s. breaks
in between) and following centrifugation at 17,000 × g and
4◦C for 15 min, protein concentrations were determined by
BCA assay (Thermo Fisher Scientific). The protein extracts were
processed for a tandem mass tag (TMT) labeling as previously
described (Romsdahl et al., 2018). For each sample, 250 µg
proteins were precipitated in 20% TCA at 4◦C, reduced by tris(2-
carboxyethyl)phosphine (TCEP), alkylated with iodoacetamide
(IAA), and digested with Trypsin/LysC (Promega, Madison,
WI, United States) overnight at 37◦C. Peptide quantitation was
performed using the Pierce Quantitative Colorimetric Peptide
Assay (Thermo Fisher Scientific). The proteomic and secretomic
profiling of K. chersonesos Wt and Mut were carried out in two
separate TMT LC/MS experiments. A total of 40 µg peptides
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from each cell pellet sample or 13 µg peptides from each
culture supernatant were labeled with the Thermo Scientific
TMT10 plex (TMT10) Isobaric Mass Tagging Kit according
to the manufacturer protocol. Eight TMT tags were used to
label samples from the same experimental set. The TMT10-131
label was used as a reference that contained a pool of 5 µg
of peptides from all samples. All nine labeled-peptide samples
were combined into a single tube, mixed and fractionated using
the Pierce High pH Reversed-Phase Peptide Fractionation Kit
(Thermo Fisher Scientific). The fractionated samples were dried
using a SpeedVac concentrator and dissolved in 1% formic acid
prior to LC-MS/MS analysis.

LC-MS/MS Analysis
The samples were analyzed on an Orbitrap Fusion Lumos
mass spectrometer with a Dionex UltiMate 3000 RSLCnano
system, a 300 µm × 5 mm PepMap100 C18 precolumn, a
75 µm × 50 cm PepMap RSLC C18 analytical column, and
an Easy-Spray ion source (Thermo Scientific). The column
temperature was maintained at 45◦C, and the peptides were
eluted at a flow rate of 300 nL/min over a 110 min gradient,
from 3 to 30% solvent B (100 min), 30 to 50% solvent B (5 min),
50 to 90% solvent B (1 min), 90% solvent B (1 min), and 90%
to 3% solvent B (3 min). Solvent A was 0.1% formic acid in
water and solvent B was 0.1% formic acid in acetonitrile. The full
MS survey scan (400–1,600 m/z) was acquired in the orbitrap
at a resolution of 240,000 and with an automatic gain control
(AGC) target of 4 × 105. The maximum injection time for MS
scans was 50 ms. Monoisotopic precursor ions were selected
with charge states 2–7 within a ± 10 ppm mass window using
a 60 s dynamic exclusion. The MS2 scan (400–1,200 m/z) was
performed using the linear ion trap with the CID collision energy
set to 35%. The ion trap scan rate was set to “rapid,” with
an AGC target of 1 × 104, and a maximum injection time of
30 ms. Ten fragment ions from each MS2 experiment were then
simultaneously selected for an MS3 experiment. The MS3 scan
(100–500 m/z) was performed to generate the TMT reporter ions
in the orbitrap at a resolution of 30,000 and using HCD at a
collision energy setting of 65%, an AGC target of 5 × 104, and
a maximum injection time of 54 ms.

Quantitative Proteomics Analysis
All MS/MS spectra were analyzed using Proteome Discoverer
(version 2.2.0.388, Thermo Fisher Scientific) with the Sequest-HT
searching engines against an in-house annotated draft genome
sequence of K. chersonesos MA5789 Wt (GCA_002319055.1,
assembly ASM231905v1, NCBI) (Tesei et al., 2017) consisting
of 9.818 predicted protein coding gene models. The genome
was annotated using funannotate (v1.3.4) (doi: 10.5281/zenodo.
1284502), which combined predictions from ab initio gene
predictors with Augustus trained by BUSCO gene models
(fungi_odb9) (Zdobnov et al., 2017) and GeneMark.hmm (Ter-
Hovhannisyan et al., 2008) informed by protein evidence from
Swiss-Prot (Boutet et al., 2007) together into composite gene
models with EvidenceModeler (Haas et al., 2008). Functional
predictions for genes was assigned by protein homology to
Pfam (El-gebali et al., 2019), Swiss-Prot/UniProt (v 2018_05),

and EggNog (v1.10) databases (Huerta-Cepas et al., 2019). The
following parameters were selected for the search: A maximum
of two missed cleavage sites, a minimum peptide length of
six residues, 5 ppm tolerance for precursor ion masses, and
0.6 Da tolerance for fragment ion masses. The static modification
settings included carbamidomethyl of cysteine residues, and
dynamic modifications included oxidation of methionine, TMT
modification of lysine ε-amino groups and peptide N-termini,
and acetyl modification of protein N-terminus. A false discovery
rate (FDR) of 1% for peptides and proteins was obtained using
a target-decoy database search. The reporter ions integration
tolerance was 0.5 Da while the co-isolation threshold was
75%. The average signal-to-noise threshold of all reporter
peaks was greater than 10. The quantitative abundance of
each protein was determined from the total intensity of the
detected reporter ions. For statistical analysis, the sum of
reporter ion intensities for each protein was log2 transformed,
and the technical triplicate measurements for each protein
were averaged. Only the proteins that were identified with at
least one peptide and quantified in all technical (n = 3) and
biological replicates (n = 2), were considered for the statistical
analysis. Student’s t-test was performed to identify differentially
expressed proteins between each LSSMG-exposed and 1G-
exposed group as well as between all groups. To compare all
four experimental conditions, each condition was normalized
to the reference channel, which contained equal amounts
of peptides from each group. To evaluate changes between
treatment (LSSMG) and control (1G), the protein abundance
levels of each LSSMG-exposed sample were normalized to the
1G-exposed counterpart. Proteins with p-values of ≤0.05 were
further evaluated for increased or decreased abundance using
a cut-off value of ≥ ± 1.5-fold change (log2 fold change
of ≥± 0.584).

Protein Identification and Bioinformatics
Analysis
Protein identifications and functional insights were obtained
from searching for sequence homologs using OmicsBox v. 1.4.11
(BioBam Bioinformatics S.L). To characterize proteins with
respect to the biological process they are involved in, Gene
Ontology (GO) terms were assigned to domains. The sequences
were blasted (cloud BLASTP 2.10.0+, E-Value 1.0E-3, Filter:
Fungi), and the blast hits were mapped and annotated with GOs
using the GO database (Goa version 2019_111; E-Value 1.0E-6,
Filter GO by Taxonomy: taxa: 4751, Fungi) (Götz et al., 2008).
GOs were additionally assigned using InterProScan (IPS) to
retrieve domains/motif information in a sequence-wise manner,
and EggNOG using precomputed EggNOG-based orthology
assignments. Corresponding GOs were then transferred to the
sequences and merged with already existing GO terms. The
annotations were validated based on the True-Path-Rule by
removing all redundant terms to a given sequence. A GO-Slim
analysis was run to summarize the GO annotation using the
Aspergillus slim. Existing GO terms were additionally mapped to
enzymes codes, when possible. A pathway analysis was performed

1http://geneontology.org
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to retrieve metabolic pathways based on the GO terms and the
enzyme codes using the Load KEGG Pathway tool (Kanehisa
and Goto, 2000). To elucidate the identity of the uncharacterized
proteins, a search for homology was further performed in the
UniProtKB database2 (BLASTP parameters: E-Threshold: 10;
matrix BLOSUM62). In cases of blast results where the most
significant match was represented by an uncharacterized protein,
the first match in the list of homologous proteins where a
protein ID was available was considered. Information about the
predicted protein localization was obtained using BUSCA3, based
on the identification of signal and transit peptides, GPI-anchors
and alpha-helical and beta-stranded transmembrane domains
(Savojardo et al., 2018). Protein-protein interaction analyses
were performed using STRING v11.0 with high confidence
(0.70) (Jensen et al., 2009), selecting the proteome of the black
yeast Exophiala dermatitidis as reference database based on its
phylogenetic proximity to K. chersonesos (Tesei et al., 2020).

RESULTS

Growth Behavior
Cell concentration in the LSSMG-exposed and unexposed
samples was measured via hemocytometer at four different time
points: (1) start (seed, day 0), (2) acceleration phase (in between
lag and exponential phases, day 3), (3) exponential phase (day 5)
and (4) at the end of the experiment (stationary phase, day 7). In
K. chersonesos WtLSSMG,∼23.5-fold increase in cell concentration
was observed during acceleration phase when compared to the
original inoculum (2 × 105 cells/mL). Such an increase during
acceleration phase was also noticed in K. chersonesos MutLSSMG
(10-fold), K. chersonesos Wt1G (22-fold) and K. chersonesos
Mut1G (19-fold). During stationary phase the increase in cell
concentration was 28-fold (K. chersonesos WtLSSMG), 30-fold
(K. chersonesos MutLSSMG), 42-fold (K. chersonesos Wt1G), and
36-fold (K. chersonesos Mut1G) when compared to original
inoculum. Among LSSMG and Earth gravity grown cultures,
higher values were recorded at normal gravity condition. Overall,
only ∼one log growth in 7 days might be due to the clumping
nature of Knufia cells. Cell survivability in simulated microgravity
was measured by CFU using ImageJ software (Schneider et al.,
2012) according to established protocol (Choudhry, 2016) and
were: K. chersonesos WtLSSMG = 2.8× 106 cell/mL, K. chersonesos
MutLSSMG 2.5 × 106 cell/mL, K. chersonesos Wt1G 2.6 × 106

cell/mL, K. chersonesos Mut1G 2.3× 106 cell/mL (Supplementary
Table 1). Potential mechanical damages or cell lysis caused by
cell separation via mild bead beating (i.e., ribolyzer, 3 × 20 s,
speed 4) prior to cell count are to be excluded since optical
microscope observations and tests involving repeated bead beater
treatments indicated that it does not decrease cell viability.
However, underestimation of cell survivability by CFU due to
cell clumping, an inherent characteristic of black fungi, should
be taken into account.

2http://www.uniprot.org/blast
3http://busca.biocomp.unibo.it

Under LSMMG conditions, fungal cells showed an increased
clumping, resulting in the aggregation of cells to form a mycelial
growth in the center of the vessel. However, growth morphology
under Earth gravity resembled a biofilm of cells adhering to the
vessel’s oxygenation membrane (Figure 1C).

Microscopy
To evaluate the presence of LSSMG-dependent alterations
of fungal cell morphology in the melanotic (Wt) and non-
melanized spontaneous mutant (Mut) strain, we examined
cellular differentiation by growing cells at low density. In order
to analyze single cellular morphology of the Wt and Mut strain
before LSSMG-treatment, exponentially growing fungal cells
were spotted on top of aluminum coupons and visualized using
FE-SEM. The observation of the control fungal cell morphology
in non-coated FE-SEM specimens revealed that the Wt produced
biconcave cells, pseudohyphae and hyphae, while the mutant
showed smooth spherical cells, pseudohyphae and cell aggregates
(Figures 2, 3).

Low-shear simulated microgravity-exposed and 1G-exposed
fungal cells were collected at various time points, as described
in the section “Materials and Methods.” A detailed examination
of fungal cellular morphology in non-coated FE-SEM specimens
revealed 1G and LSSMG Wt and mutant strains showing
similar morphology at day 1 and 3. Remarkably, the 1G Wt
hyphae formation was delayed until day 7, whereas LSSMG
induced hyphae formation at day 5 (Figure 2). Notably, the
mutant showed no evidence of hyphae formation in LSSMG
condition, but the aggregation of cells was evident at day 3
and increased until day 7, similarly to what was observed
in the 1G cells (Figure 2). Furthermore, a closer observation
of Wt and mutant fungal cells in LSSMG and 1G condition
at 2500× magnification clearly shows that the Wt cells form
biconcave morphology compared to the mutant cells (Figure 3).
LSSMG treatment led to no significant change in cell size
relative to 1G conditions, in either strain (Supplementary
Table 2). Similarly, images of PI-SYTO 9 and WGA staining
generated by confocal microscopy did not reveal changes in
cell viability and integrity in response to LSSMG exposure.
Greatest fluorescence was seen with WGA at the beginning of
the cultivation, although increasing concentrations of the dye
were applied; this is most probably due to the thickening of the
cell wall and increase of melanization, which naturally occurs
in the fungus over the course of cultivation (Supplementary
Figure 1). Collectively, these findings uncover that the LSSMG
and 1G conditions did not influence the fungal cellular
growth and morphology.

Overview of Whole-Cell Proteome and
Secretome Analysis
The 16 samples, comprised of four experimental conditions
with two biological replicates each for each of the analyzed
strains, yielded 3777 proteins as detected by isobaric TMT
labeling-based LC-MS/MS. Of these, 3177 were in the whole-
cell proteome and 600 in the secreted fraction. Furthermore,
2602 proteins were unique to the proteome and 25 to the
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FIGURE 2 | Field emission scanning electron microscopy (FE-SEM) micrographs of Knufia chersonesos Wt and Mut on aluminum coupons during a 7-days
exposure to LSSMG or 1G (control). Arrows indicate hyphal growth in the wild type and dense cell aggregation in the mutant strain.

secretome, while 575 were found to overlap (Figure 4A).
A total of 3163 were identified by homology search. An
overview of the biological and molecular functions of the
detected proteins was obtained through an annotation statistics
analysis. Distribution of the GO terms for all 3 categories
(i.e., biological process BP, molecular function MF, and cellular

component CC), with the highest number of associated protein
sequences in the whole-cell proteome and the secretome, is
displayed in Supplementary Figures 2A,B. Several GOs were
common to proteome and secretome, whereas others were
instead unique to each set of proteins. GOs for different
types of cell metabolic processes were the most represented
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FIGURE 3 | FE-SEM micrographs of Knufia chersonesos Wt and Mut on aluminum coupons during a 7-days exposure to LSSMG or 1G (control). Details of cells
morphology are shown; arrows indicate biconcave cell morphology.

in both secretory and intracellular proteins, whereas BPs such
as response to chemical, cell cycle, and negative regulation
of cellular processes were found exclusively within the latter.
Conversely, proteins involved in cell communication and positive
regulation of cellular process could solely be detected in the
secreted fraction of the proteome. Proteins with hydrolase

activity (MF GO:0016787) represented the most abundant group
in the secretome and second most abundant in the whole-
cell proteome, immediately followed by proteins with organic
cyclic and heterocyclic compound binding, oxidoreductase and
transferase activity. In both sets of samples, proteins with
transcription and translation regulation activity were instead
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FIGURE 4 | Proteins identified and detected as regulated in the whole-cell proteome and secretome of Knufia chersonesos Wt and Mut following exposure to
LSSMG. (A) Overlap of proteins between whole-cell proteome and secretome, identified in two separate TMT LC/MS experiments. (B) Number of differentially
abundant proteins for each strain under LSSMG compared to 1G (control) (fold change of ≥ ± 1.5, p ≤ 0.05). (C) Heat map hierarchical clustering of co-varying
proteins quantified in each strain. The color key indicates the values that represented the protein abundance ratio (log2) and the number of proteins counted in each
value. A total of 6 runs – 3 technical replicates and 2 biological replicates – were performed for each sample. Wt, wild type; Mut, mutant; w-cp, whole-cell proteome;
s, secretome. Heatmaps were generated using R.

detected as the smallest groups. A distribution analysis for cellular
component GO terms indicated a prevalence of intracellular,
membrane, and cell wall proteins (i.e., CC GO: envelope) also
in the culture supernatant—i.e., the ratio of total proteins
with predicted extracellular to intracellular localization was
approximately 25%:75% in the wild type and 6%:94% in the
mutant—where the detection of cytoplasmic proteins is possibly
due to mechanical stress and cell death (Miura and Ueda,
2018). Nonetheless, the presence of these proteins in the secreted
fraction could also depend on active secretion of proteins
with no predicted signal peptide, i.e., non-classical protein
secretion, which has been recognized in various organisms
including fungi, bacteria and plants based on the large number
of leaderless proteins detected in extracellular compartments,
including extracellular vesicles (EVs) (Regente et al., 2012;

Vallejo et al., 2012; Sun and Su, 2019). The 25 proteins
uniquely detected in the secretome encompassed a number
of carboxylic ester hydrolases with predicted extracellular
localization alongside cytoplasmic, cell wall– and plasma
membrane-associated proteins (Supplementary Table 3).

In order to detect significant rearrangements in the protein
pool upon exposure to LSSMG, a quantitative analysis was
carried out by comparing experimental groups. The clustering
of the samples, biological and technical replicates included, was
confirmed by Hierarchical Cluster (HC) analysis (Figure 4C).
However, one of the LSSMG-exposed secretomes from
K. chersonesos Wt appeared to deviate from the biological
duplicate of the same condition. The number of differentially
abundant proteins for each strain is summarized in Figure 4
(fold change of ≥ ± 1.5, p ≤ 0.05), where (B) shows the count
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of regulated proteins following direct comparison of treatment
and control whole-cell proteome and secretome samples. The
mutant proteome contained the largest number of modulated
proteins (115) compared to the mutant secretome (71), the wild
type proteome (97), and the wild type secretome (11).

Effects of LSSMG on Knufia chersonesos
Whole-Cell Proteome
The proteomic quantitative analysis of LSSMG-exposed
K. chersonesos Wt and Mut revealed 54-up and 43-down and 45-
up and 70-down regulated proteins, respectively, when compared
to the 1G-exposed counterparts (fold change of≥± 1.5, p≤ 0.05)
(Supplementary Tables 4, 5). Distribution of over-represented
BP GO terms among differentially expressed proteins is
displayed in Figure 5A. Most significantly upregulated biological
processes included “lipid and carbohydrate metabolism” in
both strains (24 to 28% of all upregulated proteins). However,
15% of downregulated proteins were also in the carbohydrate
metabolism category. By contrast, proteins involved in lipid
metabolic processes were not found to be decreased. Further,
“transcription” (12%) and “transport” (27%) were additional
highly represented categories of upregulated proteins in the
wild type, whereas “transport” (28%) and “amino acid metabolic
process” (16%) were well represented categories of upregulated
proteins in the mutant.

Proteins involved in lipid metabolism included
CF317_002955-T1/C7ZGD6_NECH7—predicted to be
phospholipase A2—an acetyl-CoA desaturase (CF317_004579-
T1/A0A072PJ62_9EURO) and the uncharacterized protein
CF317_000532-T1/A0A0D2C8U2_9EURO upregulated in
both strains, along with an inositol-3-phosphate synthase
(CF317_006213-T1/A0A0D2GI50_9EURO), which was instead
solely observed in the mutant. These proteins participate in
cellular pathways for the biosynthesis of unsaturated fatty
acids (KEGG pathway 01040) and the metabolism of phospho-
and glycerophospholipids (KEGG 00564), inositol phosphate
(KEGG 00562), arachidonic and linoleic acid, among others
(Table 1; Passoth, 2017). Pyruvate metabolism (KEGG 00620),
glycolysis/gluconeogenesis (KEGG 00010) and starch and
sucrose metabolism, were possibly also involved in the response
to LSSMG, as revealed by the KEGG pathway analysis based on
the increased abundance of proteins like alcohol dehydrogenase
1 (CF317_005767-T1/A0A0N0NIW7_9EURO) and alpha/beta-
glucosidase agdC (CF317_006579-T1/A0A178BWA1_9EURO)
in the wild type. Glutamine synthetase and protein FYV10,
the first involved in glyoxylate and dicarboxylate metabolism
(KEGG 00630) and in nitrogen metabolism (Zhang et al., 2017)
and the latter mediating the degradation of enzymes of the
gluconeogenesis pathway (Braun et al., 2011), were instead
detected as upregulated in the mutant. Decreased levels of
a number of hydrolytic enzymes destined for secretion were
observed in the LSSMG-exposed proteomes for the carboxylic
ester hydrolases CF317_0002308-T1/A0A1J9RJA8_9PEZI,
CF317_007618-T1/A0A6A6HNE7_9PEZI, CF317_007621-
T1/A0A0D2AG04_9PEZI (in Wt) and CF317_002086-
T1/A0A0D2BHT9_9EURO (in Mut). The same was

observed for the cell wall–degradation enzymes endo- and
extracellular glucanases CF317_0009683-T1/W9ZBZ7_9EURO
and CF317_009779-T1/H6BQE2_EXODN (in Wt) and
the 3,2-trans-enoyl-CoA isomerase CF317_000932-
T1/A0A1C1D1N7_9EURO (in Mut), the latter of which is
involved in the metabolism of unsaturated fatty acids in beta
oxidation (Janssen et al., 1994).

A differential abundance of proteins involved in
transport was also observed (Table 1). Transmembrane
ammonium (CF317_007500-T1/A0A072PWW7_9EURO) and
iron transporters (i.e., HemS domain-containing protein
CF317_008807-T1/L7HNA7_MAGOY) and the choline
transport protein (CF317_009191-T1/A0A2P8A4S9_9PEZI)
were present in the LSSMG-exposed whole-cell proteome of both
strains, but they were more increased in the mutant (over 3-,
2. 4-, and 1.5-folds, respectively) than in the wild type (slightly
over 1.5-folds). Additionally, two AA permease 2 domain-
containing proteins (CF317_005369-T1/A0A0D2FEL3_9EURO
and CF317_002132-T1/A0A438N399_EXOME) responsible for
transmembrane amino acid transport were also upregulated
in the mutant, whereas proteins with a predicted role in
vesicle-mediated transport—i.e., VPS37 C-terminal domain-
containing protein (CF317_007988-T1/A0A0D2CPQ3_9EURO)
and WD_REPEATS_REGION domain-containing protein
(CF317_001709-T1/A0A438MTR2_EXOME)—were exclusively
detected in the wild type counterpart. Downregulated proteins
included POT family proton-dependent oligopeptide transporter
(CF317_001542-T1/A0A072P870_9EURO) and major
facilitator superfamily transporters (MFS) (CF317_001911-
T1/W9Z1V7_9EURO), involved in transportation of substrate
molecules, including sugars, drugs, metabolites, amino
acids, vitamins, and both organic and inorganic ions, or
small peptides (Pao and Paulsen, 1998). Together with
ABC transporters, MFS transporters are often detected
among the cell wall components undergoing changes in
response to the shift from normal gravity to microgravity
(Sathishkumar et al., 2016).

Low-shear simulated microgravity additionally triggered
upregulation of some proteins involved in cellular amino
acid metabolic processes and downregulation of others
(Table 1). Glutamate dehydrogenase was threefold and fourfold
upregulated in K. chersonesos Wt and Mut, respectively.
Together with the glutamine synthase, whose levels were
also found to be increased in the mutant, the enzyme is
reportedly involved in the primary nitrogen metabolism and
in the biosynthesis and metabolism of several amino acids
(i.e., arginine biosynthesis, glutamine, alanine and aspartate
metabolism) (Meti et al., 2011). Protein D-3-phosphoglycerate
dehydrogenase (CF317_004816-T1/A0A0D2CHE2_9EURO),
participating in cysteine, methionine, glycine, serine, and
threonine metabolism, was also more enriched in LSSMG-
exposed mutant samples. However, a higher number of enzymes
involved in cellular amino acid metabolic processes was found
to be decreased under LSSMG. Nine were downregulated
exclusively in the mutant, while protein CF317_006402-T1
was observed also in the wild type. According to the KEGG
analysis, some of these proteins are involved with more
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FIGURE 5 | Biological processes GOs categories of differentially expressed proteins in Knufia chersonesos under LSSMG. (A) Whole-cell proteome (B) Secretome.
Proteins with changed abundance (FC ≥ ± 1.5, p ≤ 0.05) were annotated with terms representing various biological processes using OmicsBox v. 1.4.11
(https://www.biobam.com). GO terms were thereafter summarized using sequence distribution/GO multilevel pie charts (Filtered by sequence count, Cutoff = 2).

than one pathway: 4 proteins are implicated in arginine
and proline metabolism (CF317_000519-T1, CF317_007970-T1,
CF317_007070-T1, CF317_008030-T1), 3 in tyrosine metabolism
(CF317_007412-T1, CF317_006402-T1, CF317_008924-
T1), and 2 in histidine metabolism (CF317_007412-T1,
CF317_006712-T1), arginine biosynthesis (CF317_002693-
T1, CF317_000519-T1) and phenylalanine biosynthesis and
metabolism (CF317_007412-T1, CF317_006402-T1). The
putative indoleamine 2,3-dioxygenase, involved instead in

tryptophan catabolic process to the NAD precursor kynurenine,
represented the most decreased protein in both strains, with an
over 2-fold downregulation.

Some proteins falling into the GO category “DNA-
templated transcription” were enriched exclusively in the
LSSMG-exposed wild type proteome. They were mostly
phosphatases—known to also regulate pathways important
for stress (Serra-Cardona et al., 2015)—having abundances
nearly 2.5-fold higher than in the control samples (i.e., Alkaline
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TABLE 1 | Most abundant biological process GO categories regulated under LSSMG in Knufia chersonesos Wt and Mut whole-cell proteome. Differentially expressed
proteins included in each category are also shown.

Protein accession No.a Putative Protein function Protein relative abundance* p-value

Carbohydrate and lipid metabolic process

Wild type

CF317_003648-T1 GP-PDE domain-containing protein 1.1133 4.79E-02

CF317_002955-T1 Phospholipase A2 1.1032 3.26E-01

CF317_005767-T1 Alcohol dehydrogenase 1 0.8542 9.37E-02

CF317_006579-T1 Alpha/beta-glucosidase agdC 0.8177 6.11E-03

CF317_009031-T1 Carboxylic ester hydrolase 0.8024 4.22E-02

CF317_000532-T1 Uncharacterized protein 0.775 3.78E-01

CF317_007434-T1 Serine/threonine-protein kinase ppk6 0.6797 1.44E-01

CF317_004579-T1 Acyl-CoA desaturase 0.6334 1.95E-05

CF317_0002308-T1 Carboxylic ester hydrolase −0.6053 1.47E-02

CF317_0009683-T1 Endo-1,3(4)-beta-glucanase −0.6918 2.10E-02

CF317_007618-T1 Carboxylic ester hydrolase −0.7365 4.22E-02

CF317_009779-T1 Extracellular cell wall glucanase Crf1/allergen Asp F9 −0.8811 2.70E-01

CF317_009003-T1 Serine/threonine-protein kinase TOR −0.9558 9.75E-02

CF317_007621-T1 Cutinase −1.0366 7.69E-04

Mutant

CF317_009031-T1 Carboxylic ester hydrolase 1.1163 4.22E-02

CF317_007501-T1 Glutamine synthetase 0.9516 2.84E-01

CF317_006213-T1 Inositol-3-phosphate synthase 0.8851 2.34E-01

CF317_004579-T1 Acyl-CoA desaturase 0.8258 1.95E-05

CF317_000532-T1 Uncharacterized protein 0.7363 3.78E-01

CF317_007133-T1 Protein FYV10 0.6298 1.26E-02

CF317_002086-T1 AB hydrolase-1 domain-containing protein −0.6016 1.98E-01

CF317_009017-T1 NodB homology domain-containing protein −0.6135 5.38E-02

CF317_005813-T1 4HBT domain-containing protein −0.6213 7.10E-02

CF317_001523-T1 Glucose-6-phosphate 1-epimerase −0.6226 6.42E-02

CF317_000932-T1 3,2-trans-enoyl-CoA isomerase −0.6255 1.20E-02

CF317_009683-T1 Endo-1,3(4)-beta-glucanase −1.0502 2.10E-02

Transport

Wild type

CF317_004246-T1 Phosphate transporter 1.3345 4.85E-01

CF317_007988-T1 VPS37 C-terminal domain-containing protein 0.8635 5.08E-01

CF317_0005675-T1 Mitochondrial thiamine pyrophosphate carrier 1 0.7750 8.05E-03

CF317_001330-T1 Phosphate transporter 0.7548 1.35E-01

CF317_001709-T1 WD_REPEATS_REGION domain-containing protein 0.7277 5.37E-01

CF317_003773-T1 Zinc-regulated transporter 1 0.6633 1.42E-02

CF317_009191-T1 Choline transport protein 0.6590 9.34E-03

CF317_007500-T1 Ammonium transporter 0.6548 2.80E-01

CF317_008807-T1 HemS domain-containing protein 0.5860 2.75E-01

CF317_0006744-T1 Ribosomal protein L37e −0.6649 1.96E-01

CF317_0001542-T1 POT family proton-dependent oligopeptide transporter −0.6830 8.37E-03

CF317_0009683-T1 Endo-1,3(4)-beta-glucanase −0.6918 2.10E-02

CF317_001911-T1 MFS transporter, SP family, major inositol transporter −0.8427 1.84E-02

Mutant

CF317_007500-T1 Ammonium transporter 1.6152 2.80E-01

CF317_009191-T1 Choline transport protein 1.2684 9.34E-03

CF317_005369-T1 AA_permease domain-containing protein 0.9504 4.30E-01

CF317_003222-T1 CNT family concentrative nucleoside transporter 0.7381 4.62E-01

CF317_008807-T1 HemS domain-containing protein 0.7308 2.75E-01

CF317_002497-T1 SEC7 domain-containing protein 0.7191 7.38E-02

CF317_009070-T1 Stress response protein NST1 0.6604 1.86E-01

(Continued)
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TABLE 1 | Continued

Protein accession No.a Putative Protein function Protein relative abundance* p-value

CF317_002132-T1 AA_permease domain-containing protein 0.6505 4.55E-02

CF317_001911-T1 MFS transporter, SP family, major inositol transporter −0.7301 1.84E-02

CF317_001542-T1 POT family proton-dependent oligopeptide transporter −0.8932 8.37E-03

CF317_009683-T1 Endo-1,3(4)-beta-glucanase −1.0502 2.10E-02

Transcription, RNA and cellular amino acid metabolic processes

Wild type

CF317_004755-T1 Glutamate dehydrogenase 1.7627 3.54E-01

CF317_004246-T1 Phosphate transporter 1.3345 4.85E-01

CF317_008227-T1 Alkaline phosphatase 1.2107 4.76E-01

CF317_003892-T1 Alkaline phosphatase 1.0475 4.25E-01

CF317_005207-T1 Ribonuclease T1 0.9813 3.38E-01

CF317_005767-T1 Alcohol dehydrogenase 1 0.8542 9.37E-02

CF317_004551-T1 Carboxypeptidase 0.6315 5.66E-01

CF317_009661-T1 Fungal_trans domain-containing protein −0.5936 4.26E-01

CF317_009392-T1 Fungal_trans domain-containing protein −0.6382 1.93E-01

CF317_0006744-T1 Ribosomal protein L37e −0.6649 1.96E-01

CF317_000112-T1 60S ribosomal protein L34-B −0.7009 9.84E-02

CF317_000184-T1 Large subunit ribosomal protein L24e −0.7218 2.77E-01

CF317_003175-T1 Poly(A) polymerase −0.7450 9.79E-03

CF317_006402-T1 4-hydroxyphenylpyruvate dioxygenase −0.7730 4.57E-04

CF317_009779-T1 Extracellular cell wall glucanase Crf1/allergen Asp F9 −0.8811 2.70E-01

CF317_009003-T1 Serine/threonine-protein kinase TOR −0.9558 9.75E-02

CF317_002178-T1 Indoleamine 2,3-dioxygenase −1.1838 5.88E-04

Mutant

CF317_004755-T1 Glutamate dehydrogenase 1.9810 3.54E-01

CF317_007501-T1 Glutamine synthetase 0.9516 2.84E-01

CF317_001165-T1 Malic enzyme 0.6220 4.41E-01

CF317_004816-T1 D-3-phosphoglycerate dehydrogenase 0.6044 5.51E-03

CF317_002693-T1 Ornithine transcarbamylase −0.5899 2.51E-02

CF317_000519-T1 Arginase −0.6439 1.12E-02

CF317_006712-T1 Histidinol dehydrogenase −0.6459 2.39E-02

CF317_008030-T1 D-amino-acid oxidase domain-containing protein −0.6799 2.92E-02

CF317_008924-T1 Homogentisate 1,2-dioxygenase −0.6970 5.01E-01

CF317_007970-T1 Multifunctional fusion protein −0.7153 4.07E-01

CF317_000649-T1 Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial −0.7416 1.03E-02

CF317_007412-T1 Histidinol-phosphate aminotransferase −0.7514 5.09E-02

CF317_003892-T1 Alkaline phosphatase −0.8825 4.25E-01

CF317_007070-T1 Multifunctional fusion protein −0.9090 6.03E-02

CF317_003175-T1 Poly(A) polymerase −0.9882 9.79E-03

CF317_006402-T1 4-hydroxyphenylpyruvate dioxygenase −1.1274 4.57E-04

CF317_002178-T1 Indoleamine 2,3-dioxygenase −1.4328 5.88E-04

Response to stress and chemical

Wild type

CF317_004755-T1 Glutamate dehydrogenase 1.7627 3.54E-01

CF317_006388-T1 Nitric oxide dioxygenase 0.9459 3.16E-01

CF317_005767-T1 Alcohol dehydrogenase 1 0.8542 9.37E-02

CF317_003242-T1 Catalase −0.6330 7.85E-02

CF317_009003-T1 Serine/threonine-protein kinase TOR −0.9558 9.75E-02

CF317_007018-T1 3-phytase −0.9947 4.67E-04

CF317_000687-T1 Catalase −1.1410 6.34E-02

Mutant

CF317_004755-T1 Glutamate dehydrogenase 1.9810 3.54E-01

CF317_006388-T1 Nitric oxide dioxygenase 0.7290 3.16E-01

(Continued)
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TABLE 1 | Continued

Protein accession No.a Putative Protein function Protein relative abundance* p-value

CF317_004909-T1 Adenylosuccinate synthetase −0.6917 8.11E-02

CF317_007970-T1 Multifunctional fusion protein −0.7153 4.07E-01

CF317_008612-T1 Aldedh domain-containing protein −0.7312 2.05E-01

CF317_007412-T1 Histidinol-phosphate aminotransferase −0.7514 5.09E-02

CF317_008426-T1 Glutathione reductase −0.7680 8.19E-02

CF317_007018-T1 3-phytase −0.8087 4.67E-04

CF317_000687-T1 Catalase −0.8987 6.34E-02

CF317_008773-T1 Catalase-peroxidase −0.9459 3.42E-02

Proteolysis

Wild type

CF317_008840-T1 Carboxypeptidase 1.0950 6.46E-01

CF317_004157-T1 Peptidase_M14 domain-containing protein 0.8180 2.52E-01

CF317_008998-T1 Putative fumarylacetoacetate hydrolase 0.7082 7.54E-02

CF317_000103-T1 Zinc carboxypeptidase 0.6512 1.88E-01

CF317_004551-T1 Carboxypeptidase 0.6315 5.66E-01

Cytoskeleton and organelle organization

Wild type

CF317_009683-T1 Endo-1,3(4)-beta-glucanase −0.6918 2.10E-02

CF317_009003-T1 Serine/threonine-protein kinase TOR −0.9558 9.75E-02

Mutant

CF317_008503-T1 Thiamine thiazole synthase 0.8255 2.30E-01

CF317_007856-T1 WD_REPEATS_REGION domain-containing protein 0.7141 1.88E-02

*Log2 fold change of SMG-exposed compared to unexposed proteome (p ≤ 0.05).
aProtein accession number in the K. chersonesos database of ab initio translated proteins.

phosphatase CF317_008227-T1/A0A0D2BGD8_9EURO
and CF317_003892-T1/A0A0D2BGD8_9EURO) (Table 1).
Within the same category, downregulation was observed
for a putative serine/threonine-protein kinase TOR and two
trans domain-containing proteins involved in DNA binding
and transcription. Decreased levels of structural protein
constituents of the large ribosomal subunit—i.e., ribosomal
protein L37e, L34-B and L24e—were instead detected upon
LSSMG exposure exclusively in the wild type, alongside
the upregulation of the ribonuclease T1 (CF317_005207-
T1/W9XBV2_9EURO) involved in RNA degradation. Also
significantly decreased was poly(A)polymerase (CF317_003175-
T1/A0A1C1CN69_9EURO), an important component in mRNA
synthesis, responsible for the addition of the 3′ polyadenine tail
to a newly synthesized pre-messenger RNA.

In the group of proteins involved in response to stress and
chemical, most of the modulated proteins were decreased
by LSSMG exposure (Table 1). Downregulated stress
response proteins included catalases (i.e., CF317_000687-
T1/R8BNJ4_TOGMI, levels 2.7- and 1.9-fold lower than in
the unexposed wild type and mutant proteome, respectively;
CF317_003242-T1/R4XE87_TAPDE and CF317_008773-
T1/U1G9G0_ENDPU), notably involved in the response
to oxidative stress, and the 3-phytase CF317_007018-
T1/A0A0D2IHR9_9EURO—a phosphatase enzyme with
a predicted role in counteracting phosphate deficiency
and osmotic stress (Belgaroui et al., 2018)—in both strains.
Further, the glutathione-recycling enzyme glutathione reductase

(CF317_008426-T1/A0A0D1ZJU8_9EURO) (Couto et al., 2016),
the histidinol-phosphate aminotransferase (CF317_007412-
T1/H6BQ73_EXODN) and the adenylosuccinate synthetase
(ASS; F317_004909-T1/W9W243_9EURO), showed lower levels
in the mutant under LSSMG conditions. The latter, best known
as the first enzyme in the de novo synthesis of AMP from inosine-
5′-monophosphate (IMP), is responsive to salt stress, as reported
in plants (Zhao et al., 2013). Among the proteins with increased
abundance in both fungal strains, was glutamate dehydrogenase
(CF317_004755-T1), involved in amino acid metabolism and for
which a stress-dependent regulation has been demonstrated (e.g.,
abiotic stress generated ROS) (Skopelitis et al., 2006). Further,
the putative cytosolic nitric oxide dioxygenase (CF317_006388-
T1/S7Z8A1_PENO1)—reported to play a role in nitric oxide
detoxification mechanisms by the conversion of this signaling
molecule to nitrate (Cánovas et al., 2016)—was present in the
wild type and mutant LSSMG-exposed proteomes at levels
around 2-fold higher than that of the unexposed ones. Along
with the above-mentioned proteins, a number of enzymes,
specifically peptidases involved in proteolysis, were found
to be upregulated exclusively in K. chersonesos wild type
(Table 1). The putative carboxypeptidase CF317_008840-
T1/W9XS38_9EURO and CF317_004157/W2S3B3_9EURO;
and CF317_000103/A0A6A6DDQ8_9PEZI and
CF317_004551/A0A0D2GVY9_9EURO, known to catalyze
reactions that are important to various physiological processes,
such as the cell cycle, cell growth and differentiation, apoptosis,
and stress response (Neto et al., 2018), were 2-fold and
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1.5-fold upregulated, respectively. Lastly, proteins involved
in cytoskeleton and organelle organization showed opposite
regulation in the two K. chersonesos strains: The first was
decreased in the wild type, whereas the latter was upregulated in
the mutant (Table 1).

Effects of LSSMG on Knufia chersonesos
Secretome
The proteomic characterization of K. chersonesos secretome
upon exposure to LSSMG for 7 days revealed solely 9-up and
2-down regulated proteins in the wild type and 23-up and
48-down regulated proteins in the mutant, when compared
to the 1G-exposed counterparts (fold-change of ≥ ± 1.5,
p ≤ 0.05) (Figure 4B). Among these proteins, the ratio of
proteins with predicted extracellular to intracellular localization
was approximately 20%:80% in both wild type and mutant
(Supplementary Tables 6, 7). Out of 14 proteins with predicted
signal peptides in the mutant secretome, 12 were regulated
following LSSMG-exposure. In the wild type secretome, 2 out
of 61 proteins with predicted extracellular localization were
regulated in response to microgravity.

The distribution of differentially expressed proteins among
BP GO terms is presented in Figure 5B. In the wild type, the
regulated proteins were prevalently involved in transport and
metabolic processes, whereas in the mutant strain, regulated
proteins were mostly involved with biological processes such
as carbohydrate and lipid metabolism (15 proteins), response
to chemical and stress (13 proteins), translation, and ribosome
biogenesis and transcription (15 proteins). Interestingly, the
majority of proteins involved in the above-mentioned GO
BP categories exhibited downregulation in LSSMG-exposed
secretomes of the mutant and exhibited upregulation in
the wild type (Table 2). One protein exhibiting opposite
regulation in the two analyzed strains, was the putative scytalone
dehydratase CF317_002654-T1, homolog of Phialophora
attinorum A0A0N1P280_9EURO. This enzyme, which is
reportedly involved in the biosynthesis of dihydroxynaphthalene
(DNH) melanin from endogenous substrate (Eisenman and
Casadevall, 2012), was 1.5-fold increased in the wild type and
1.6-fold decreased in the melanin-deficient mutant. In the wild
type, upregulated proteins also included the adenylosuccinate
lyase CF317_004119-T1 and the M20_dimer domain-containing
protein (Carboxypeptidase S) CF317_006825-T1, both
implicated in amino acid (alanine, aspartate and glutamate)
metabolism (KEGG pathway pae00250), and the plasma
membrane ATPase CF317_002664-T1, partaking in oxidative
phosphorylation (Table 2). Also in the wild type, the casein kinase
I 1 CF317_004827-T1 and the histone H2A CF317_001633-T1,
both involved in DNA repair (Skoneczna et al., 2018), were
found in the LSSMG-exposed secretome at levels 1.7- and 1.6-
fold higher than in the unexposed one. The two downregulated
proteins were protein CF317_008131-T1, homolog of the
arabinan endo-1,5-alpha-L-arabinosidase from Aspergillus wentii
DTO 134E9, and protein CF317_002949-T1, homolog of the
feruloyl esterase A0A177BY00_9PLEO from Paraphaeosphaeria
sporulosa, both with a predicted extracellular localization

and reportedly involved in polysaccharide degradation
(Tesei et al., 2020).

In the K. chersonesos mutant, LSSMG triggered the
upregulation of just a low number of proteins. The malate
dehydrogenase CF317_003266-T1/A0A1C1CNC5_9EURO,
1,3-beta-D-glucan-UDP glucosyltransferase CF317_000614-
T1/A0A438MTW5_EXOME and alpha, alpha-trehalase
CF317_004588-T1/H6C927_EXODN, involved in the
metabolism of starch, sucrose, and sphingolipids, were 2.
4-, 1.9-, and 1.8-fold upregulated, respectively. Conversely,
proteins with decreased abundance encompassed, among
others, enzymes catalyzing different steps throughout the
process of glycolysis/gluconeogenesis (KEGG pathway
hsa00010)—such as the putative phosphotransferase
CF317_008448/W2RU25_9EURO, the phosphoglycerate kinase
CF317_004751/W2RJE3_9EURO and the 2-phosphoglycerate
dehydratase CF317_003513/H6BNI5_EXODN—fructose and
mannose (hsa00051), pyruvate (hsa00620) and glycerolipid
metabolism (hsa00561), and the pentose phosphate pathway
(hsa00030) (i.e., phosphotransferase, epimerase domain-
containing protein CF317_008979 and 6-phosphogluconate
dehydrogenase, decarboxylating CF317_005481). Further, the
CF317_007096/A0A0U1M0E3_TALIS 6-phosphofructo-2-
kinase, acting as an activator of the glycolysis/gluconeogenesis
pathway (Raben and Wolfgang, 2019), was the most decreased
protein in the GO category of carbohydrate and lipid metabolism,
with a 3-fold downregulation.

Increased levels of proteins with a role in the response to
stress and chemicals (Table 2) were observed in the exposed
secretomes for the plasma membrane protein CF317_000051-
T1/A0A178DA36_9EURO with reported phosphatase activity
and the guanine nucleotide-binding protein subunit beta
CF317_007665-T1/A0A0D2CV56_9EURO with a role in signal
transduction, among others. However, as already observed for
the whole-cell proteome, the majority of proteins involved in
stress response showed decreased abundance upon exposure to
LSSMG. The DNA-repair protein histone H2A (CF317_001633-
T1), upregulated in the wild type secretome, was at least twofold
downregulated in the mutant, together with the nucleoside
diphosphate kinase CF317_007147-T1/A0A178C9G0_9EURO.
The latter, ubiquitous enzyme involved in nucleotides
biosynthetic process (Janin and Deville-Bonne, 2002), has
been shown to participate in the metabolism of selective drugs
like Isoniazid and Fluorouracil (KEGG map00983) in Homo
sapiens. The same was observed for the S-formylglutathione
hydrolase, whose activity is mainly linked to methane metabolism
and the recycling of glutathione in cell detoxification pathways
(Haslam et al., 2002; Yurimoto et al., 2003). Similarly, the
thioredoxin domain-containing protein CF317_000980-T1
and the 6-phosphogluconate dehydrogenase, decarboxylating
CF317_005481-T1/A0A0N0NLG1_9EURO, both involved in
cell redox homeostasis and glutathione metabolism (Li et al.,
2019), showed an around twofold downregulation.

Also in the categories of transcription, translation, and
ribosome biogenesis, downregulated proteins outnumbered
the upregulated ones (Table 2). The most increased
protein (almost twofold) was the putative D-amino-acid

Frontiers in Genetics | www.frontiersin.org 15 March 2021 | Volume 12 | Article 63870896

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-638708 March 12, 2021 Time: 16:14 # 16

Tesei et al. Proteomics of Microgravity-Exposed Black Fungi

TABLE 2 | Most abundant biological process GO categories regulated under LSSMG in Knufia chersonesos Wt and Mut whole-cell secretome. Differentially expressed
proteins included in each category are shown.

Protein accession No.a Putative Protein function Protein relative abundance* p-value

Carbohydrate and lipid metabolic processes

Wild type

CF317_004827-T1 Casein kinase I 1 0.656 4.63E-02

CF317_002949-T1 Feruloyl esterase −0.859 1.16E-03

CF317_008131-T1 Arabinan endo-1,5-alpha-L-arabinosidase −0.998 4.32E-02

Mutant

CF317_003266-T1 Malate dehydrogenase 1.244 3.48E-02

CF317_000614-T1 1,3-beta-D-glucan-UDP glucosyltransferase 0.893 2.26E-02

CF317_004588-T1 Alpha, alpha-trehalase 0.813 2.42E-02

CF317_003037-T1 Acyl-CoA-dependent ceramide synthase 0.797 1.16E-03

CF317_000059-T1 PSDC domain-containing protein −0.634 7.14E-03

CF317_004317-T1 3′(2′),5′-bisphosphate nucleotidase −0.650 4.52E-02

CF317_008979-T1 Epimerase domain-containing protein −0.727 2.36E-02

CF317_003714-T1 Mannitol-1-phosphate 5-dehydrogenase −0.739 9.36E-05

CF317_008448-T1 Phosphotransferase −0.790 4.34E-04

CF317_003513-T1 2-phosphoglycerate dehydratase −0.870 1.53E-03

CF317_006165-T1 Esterase/lipase −0.917 9.78E-03

CF317_003202-T1 Concanavalin A-like lectin/glucanase −0.918 4.79E-02

CF317_005481-T1 6-phosphogluconate dehydrogenase, decarboxylating −0.960 7.57E-04

CF317_004751-T1 Phosphoglycerate kinase −1.143 8.27E-04

CF317_007096-T1 6-phosphofructo-2-kinase −1.494 5.59E-03

Transport

Wild type

CF317_001911-T1 MFS transporter, SP family, major inositol transporter 0.747 2.92E-02

CF317_002664-T1 Plasma membrane ATPase 0.702 3.25E-02

CF317_004827-T1 Casein kinase I 1 0.656 4.63E-02

Mutant

CF317_000614-T1 1,3-beta-D-glucan-UDP glucosyltransferase 0.893 2.26E-02

CF317_001401-T1 t-SNARE coiled-coil homology domain-containing protein 0.843 4.08E-02

CF317_004472-T1 Endoplasmic reticulum transmembrane protein 0.742 4.09E-04

CF317_006347-T1 Inorganic phosphate transport protein PHO88 0.588 4.10E-02

CF317_002531-T1 Putative inorganic phosphate transporter C8E4.01c −0.591 1.01E-03

CF317_007808-T1 NTF2 domain-containing protein −0.756 2.95E-02

CF317_008448-T1 Phosphotransferase −0.790 4.34E-04

Transcription, RNA and cellular amino acid metabolic processes

Wild type

CF317_001633-T1 Histone H2A 0.752 9.78E-03

CF317_002935-T1 Aromatic amino acid aminotransferase 0.633 1.18E-02

Mutant

CF317_008030-T1 D-amino-acid oxidase domain-containing protein 0.783 1.10E-02

CF317_003734-T1 Ribosomal_L23eN domain-containing protein 0.771 4.09E-02

CF317_007665-T1 Guanine nucleotide-binding protein subunit beta 0.775 2.98E-03

CF317_005931-T1 Aspartate–tRNA ligase 0.742 2.84E-02

CF317_004317-T1 3′(2′),5′-bisphosphate nucleotidase −0.650 4.52E-02

CF317_003885-T1 Putative RNA-binding protein −0.668 4.83E-03

CF317_001861-T1 40S ribosomal protein S20 −0.709 4.62E-03

CF317_008924-T1 Homogentisate 1,2-dioxygenase −0.730 4.76E-02

CF317_005516-T1 60S ribosomal protein L7 −0.734 1.03E-03

CF317_008448-T1 Phosphotransferase −0.790 4.34E-04

CF317_004501-T1 40S ribosomal protein S24 −0.796 1.53E-02

CF317_001633-T1 Histone H2A −1.084 9.78E-03

CF317_007960-T1 60S acidic ribosomal protein P1 −1.277 9.18E-03

(Continued)

Frontiers in Genetics | www.frontiersin.org 16 March 2021 | Volume 12 | Article 63870897

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-638708 March 12, 2021 Time: 16:14 # 17

Tesei et al. Proteomics of Microgravity-Exposed Black Fungi

TABLE 2 | Continued

Protein accession No.a Putative Protein function Protein relative abundance* p-value

CF317_008933-T1 Elongation factor EF-1 beta subunit −1.706 2.09E-02

CF317_000379-T1 Elongation factor EF-1 gamma subunit −1.838 2.56E-03

Response to stress and chemical

Wild type

CF317_001633-T1 Histone H2A 0.752 9.78E-03

CF317_004827-T1 Casein kinase I 1 0.656 4.63E-02

Mutant

CF317_000051-T1 Plasma membrane phosphatase required for sodium stress response 0.906 1.73E-02

CF317_004588-T1 Alpha, alpha-trehalase 0.813 2.42E-02

CF317_007665-T1 Guanine nucleotide-binding protein subunit beta 0.775 2.98E-03

CF317_006969-T1 HRXXH domain-containing protein 0.696 4.88E-02

CF317_004317-T1 3′(2′),5′-bisphosphate nucleotidase −0.650 4.52E-02

CF317_003570-T1 S-formylglutathione hydrolase −0.720 1.69E-02

CF317_008979-T1 Epimerase domain-containing protein −0.727 2.36E-02

CF317_003714-T1 Mannitol-1-phosphate 5-dehydrogenase −0.739 9.36E-05

CF317_003513-T1 2-phosphoglycerate dehydratase −0.870 1.53E-03

CF317_005481-T1 6-phosphogluconate dehydrogenase, decarboxylating −0.960 7.57E-04

CF317_000980-T1 Thioredoxin domain-containing protein −0.983 2.08E-02

CF317_001633-T1 Histone H2A −1.084 9.78E-03

CF317_007147-T1 Nucleoside diphosphate kinase −1.745 8.70E-04

Biological processes and secondary metabolic process

Wild type

CF317_001633-T1 Histone H2A 0.752 9.78E-03

CF317_004119-T1 Adenylosuccinate lyase 0.703 1.58E-02

CF317_006825-T1 M20_dimer domain-containing protein 0.588 1.22E-02

CF317_002654-T1 Scytalone dehydratase 0.587 3.70E-02

CF317_002949-T1 Feruloyl esterase −0.859 1.16E-03

Mutant

CF317_000614-T1 1,3-beta-D-glucan-UDP glucosyltransferase 0.893 2.26E-02

CF317_006969-T1 HRXXH domain-containing protein 0.696 4.88E-02

CF317_003885-T1 Putative RNA-binding protein −0.668 4.83E-03

CF317_002654-T1 Scytalone dehydratase −0.679 3.70E-02

CF317_006992-T1 Serine/threonine-protein kinase −0.682 2.90E-02

CF317_008448-T1 Phosphotransferase −0.790 4.34E-04

CF317_003513-T1 2-phosphoglycerate dehydratase −0.870 1.53E-03

CF317_000980-T1 Thioredoxin domain-containing protein −0.983 2.08E-02

CF317_006154-T1 Pyruvate decarboxylase −1.138 6.87E-03

CF317_003229-T1 Putative versicolorin reductase −1.176 2.61E-03

CF317_007960-T1 60S acidic ribosomal protein P1 −1.277 9.18E-03

CF317_006677-T1 HIT domain-containing protein −1.770 8.90E-03

*Log2 fold change of SMG-exposed compared to unexposed proteome (p ≤ 0.05).
aProtein accession number in the K. chersonesos database of ab initio translated proteins.

oxidase (DAO) domain-containing protein CF317_008030-
T1/A0A0D1YYX4_9EURO, also involved in penicillin and
cephalosporin biosynthesis (KEGG 00311). Elongation
factor EF-1 beta and gamma subunit (CF317_008933-T1
and CF317_000379-T1), homologs of Exophiala dermatitidis
CBS 525.76 H6BVG8_EXODN and H6BY84_EXODN proteins
and involved in purine metabolism (KEGG 00230), were
detected in the mutant LSSMG-exposed secretome at levels
at least 3.5-fold lower than that of the unexposed ones.
Further, four ribosomal proteins—i.e., 40S ribosomal protein

S20 and S24 (CF317_001861-T1 and CF317_004501-T1);
60S ribosomal protein P1 and L7 (CF317_007960-T1 and
CF317_005516-T1)—showed decreased abundance.

Additionally downregulated in response to LSSMG
were the uncharacterized HIT domain-containing protein
CF317_006677-T1 (over 3-fold regulated) and the putative
versicolorin reductase CF317_003229-T1 (over 2-fold regulated),
the latter known to mediate aflatoxins biosynthetic processes
(Nakamura et al., 2011). Modulation was also observed in
proteins involved in transport such as the above-mentioned

Frontiers in Genetics | www.frontiersin.org 17 March 2021 | Volume 12 | Article 63870898

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-638708 March 12, 2021 Time: 16:14 # 18

Tesei et al. Proteomics of Microgravity-Exposed Black Fungi

1,3-beta-D-glucan-UDP glucosyltransferase CF317_000614-T1
with a role on starch and sucrose metabolism, the endoplasmic
reticulum transmembrane protein CF317_004472-T1, and the
inorganic phosphate transport protein PHO88 CF317_006347-
T1, which all appeared to be upregulated. Conversely, the
transmembrane transporter “putative inorganic phosphate
transporter C8E4.01c” CF317_002531-T1, the uncharacterized
NTF2 domain-containing protein CF317_007808-T1, and the
glycolytic enzyme phosphotransferase CF317_008448-T1 were
detected as downregulated.

Knufia chersonesos Wt and Mut Exhibit
Opposite Regulation of Several
Differentially Expressed Proteins
The comparative analysis of all examined samples to a
reference sample—a pool of all established experimental
conditions—revealed qualitative and quantitative differences
between K. chersonesos Wt and Mut at the proteome and
secretome level. This was especially evident when examining
the top 10 differentially regulated proteins i.e., the 10 most
up- and downregulated proteins at each experimental condition.
A number of these proteins were found to undergo opposite
modulation in the two strains, mainly in the whole-cell proteome.
Distribution of the top differentially regulated whole-cell proteins
is summarized in Supplementary Table 8: out of 41 different
proteins, 6 were found to be top regulated in wild type and
mutant under both normal gravity and microgravity condition,
10 only in the Wt and 10 exclusively in the Mut. Around
25% represented ribosomal proteins; 10% were proteins whose
identity or function could not be elucidated after homology
search; and the remaining proteins were involved in RNA
binding, transcription, translation, transport, and carbohydrate
metabolism. Out of the 49 top differentially regulated proteins
from the secreted fraction, 2 were found in both strains at all
experimental conditions, 17 only in the Wt and 17 only in the Mut
(Supplementary Table 9). Similar to what was observed for the
proteome, 26% of the detected proteins were ribosomal, followed
by enzymes involved in carbohydrate metabolism (18%)—
secreted esterases and lipases included—and in transport (10%).

Altogether, the eight top differentially regulated proteins
common to wild type and mutant in both normal gravity
and microgravity—i.e., the large subunit (LSU) ribosomal
proteins L28 (CF317_000935-T1), L32 (CF317_002712-T1), L35
(CF317_001879-T1) and L36 (CF317_007709-T1), the small
subunit (SSU) ribosomal protein S30 (CF317_005321-T1),
the U1 small nuclear ribonucleoprotein C (CF317_001622-
T1), the murein transglycosylase (CF317_006383-T1) and
the uncharacterized protein CF317_007965-T1—displayed an
LSSMG-dependent regulation that also appeared to be specific
to the Wt strain (Supplementary Figure 3). As shown in
Supplementary Figure 3, all proteins that are upregulated
in the Wt strain appear to be downregulated in the Mut
strain and vice versa.

A protein-protein interaction analysis was performed to verify
the occurrence of these 8 proteins in common pathways, using
STRING. A 6-node network was obtained for the proteins

which matched homologs (sequence homology) in the STRING
database (Supplementary Figure 4) and an interaction was
confirmed for ribosomal proteins S30 (homolog of E. dermatitidis
XP_009156842.1) and L35 (homolog of XP_009155966.1). As
a component of the SSU, S30 has a role in mRNAs binding
and selection of cognate aminoacyl-transferase RNA (tRNA),
whereas L35 is required for polymerization of the amino acids
delivered by tRNAs into a polypeptide chain (Ben-Shem et al.,
2011). The involvement of protein L35 in cell growth regulation
and apoptosis has additionally been reported (Bommer and
Stahl, 2005). The proteins’ functional link (combined score:
0.999) was supported by evidence such as the co-expression
of orthologs (score 0.963) and their interaction in other
organisms (experimental/biochemical data, score: 0.904). Further
interactions could not be detected possibly because functional
characterization of these proteins in E. dermatitidis is yet to be
thoroughly achieved.

Knufia chersonesos Wt and Mut
Comparative Analysis Under Normal
Gravity (1G)
A comparative analysis of wild type and mutant was performed to
evaluate different responses at the proteome and secretome level
under control condition, i.e., normal gravity. The analysis of the
whole-cell proteome yielded a total of 100 proteins with increased
and 40 proteins with decreased abundance in K. chersonesos Mut,
compared with the wild type (fold change of ≥± 1.5, p ≤ 0.05).

As shown in Supplementary Figure 5A, “protein translation,”
“organelle organization,” and “regulation of biological processes”
were detected as the prevalent processes in the mutant,
encompassing more than 50% of all upregulated proteins. This
includes several ribosomal proteins and ribonucleoproteins.
Ribosomal proteins L32 (CF317_002712), L36 (CF317_007709),
S30 (CF317_005321) and L37 (CF317_004524-T1) and the small
nuclear ribonucleoprotein C (CF317_001622-T1) were among
the most upregulated proteins, being present in the mutant at
level 8.7 to 3.6 (3.1 to 1.85 log2 fold change) higher than in the
wild type (Supplementary Table 10). Increased levels were also
observed for proteins involved in RNA metabolic processes and
in transcription such as the U3 small nucleolar RNA-associated
protein 11 (A0A0D2DFT3_9EURO), the U6 snRNA-associated
Sm-like protein LSm4 (CF317_002219-T1) and the pre-mRNA-
splicing factor isy1 (CF317_006097-T1),—partaking in nucleolar
processing of pre-18S ribosomal RNA and in pre-mRNA
splicing (Zhou et al., 2014)—the transcription factors C2H2
and RfeG (CF317_009591-T1 and CF317_000265-T1) and the
2′-phosphotransferase (CF317_002731-T1). Protein modulation
also affected enzymes involved in the oxidative phosphorylation,
whose levels resulted to be increased in K. chersonesos Mut, i.e.,
the cytochrome c oxidase assembly factor 6 (CF317_000645-T1
and CF317_000273-T1), cytochrome b-c1 complex subunit 7
(CF317_008279-T1), NADH dehydrogenase ubiquinone 1 alpha
subcomplex subunit CF317_000197-T1. Regulation of proteins
involved in chemical and stress response was also observed. The
histone H2A (CF317_001633-T1)—reported to have a role on
DNA repair (Moore et al., 2007)—and the Nuclear transcription
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factor Y alpha (CF317_006017-T1)—with multiple roles in
development and stress response (Zhao et al., 2017)—were found
at levels at least 1.6-fold higher than in the melanized counterpart.
Conversely, downregulated processes at normal gravity condition
prevalently encompassed carbohydrate, lipid and general cellular
metabolism (Supplementary Figure 5A). Decreased levels
were observed for glycoside hydrolases and esterolytic enzymes
including the alpha-galactosidase (CF317_004369-T1) and
cutinases (CF317_007621-T1)—levels 9.7- and 7-fold lower
than in the wild type—for the glucan 1,3-beta glucosidase
(CF317_002004-T1; 1.69-folds decreased) and for the murein
transglycosylase (CF317_004960-T1, CF317_003460-T1,
CF317_006383-T1; 1.83-, 2- and 4-fold decreased), enzymes
responsible for polymers and microbial degradation by cleavage
at the peptidoglycan or the cell wall polysaccharides level
(Lincoln et al., 1997). Additionally, proteins involved in
lipid metabolic process—i.e., acetyl-CoA C-acetyltransferase
(CF317_005988-T1), isocitrate lyase (CF317_004212-T1) and
lipase (CF317_005885-T1)—and in protein catabolism—i.e.,
proteasome subunit alpha type (CF317_008861-T1), proteasome
endopeptidase complex (CF317_004788-T1) and peptidase
S53 domain-containing protein (CF317_005049-T1)—showed
decreased levels between 1.8- and 1.5-fold.

At the secretome level, the quantitative analysis of
K. chersonesos Mut v/s Wt under normal gravity conditions,
resulted in the detection of 104 proteins with increased and 87
proteins with decreased abundance in the mutant secretome.
Of these proteins, 24% have predicted extracellular localization
based on the presence of a signal peptide (Supplementary
Table 11). Distribution of over-represented biological process
GO terms among differentially expressed proteins is displayed
in Supplementary Figure 5B. Most of proteins upregulated in
the mutant were involved with carbohydrate metabolism and
regulation of biological process (24% of all upregulated proteins),
transport (9%), response to stress (8%) and transcription
(8%). A number of hydrolases required for the breakdown
of β-glucan chains and other cell-wall components— i.e.,
carboxylic ester hydrolyses (CF317_004653-T1, CF317_008040-
T1, CF317_002308-T1, CF317_005799-T1), feruloyl esterase
(CF317_002949-T1), alongside glucan 1,3-beta-glucosidase
(CF317_002004-T1), murein transglycosylase (CF317_006383-
T1) and cutinase (CF317_007621-T1) which were downregulated
in the mutant proteome—were present in the secretome at levels
comprised between 1.5- and 4-folds higher than in the wild type
(Supplementary Table 11). The same for mannan endo-1,6-
alpha-mannosidase (CF317_001276-T1) and chitin deacetylase
(CF317_003258-T1), which play multiple roles in the function of
the fungal cell wall (Spreghini et al., 2003; Mouyna et al., 2020). In
the category transport, the multicopper oxidase (CF317_009669-
T1; 1.9-fold), the chloride channel protein (CF317_004136-T;
1.7-folds) and the nitrate/nitrite transporter (CF317_004846-T1;
1.6-fold) represented the most upregulated proteins. Increased
levels of stress-response proteins were observed for the Histone
H2A protein (CF317_001633-T1; 1.7-fold)—found to be
overexpressed also in the mutant proteome—alongside the redox
protein thioredoxin (CF317_006109-T1; 1.7-fold), catalase A
(CF317_009216-T1; 1.7-fold) and the housekeeping enzyme

nucleoside diphosphate kinase (CF317_007147-T1; 2.3-fold),
whose involvement in the signaling pathway of oxidative
stresses has been reported (Desorption et al., 2000). Normal
gravity condition was also characterized by increased levels of
peptidyl-prolyl cis-trans isomerase (CF317_005659-T1), EF-1
gamma subunit (CF317_000379-T1), and alkaline phosphatase
(CF317_008227-T1; CF317_003892-T1), all involved in
transcription. Conversely, decreased levels were observed in the
secretome almost exclusively for proteins involved in translation
and ribosome biogenesis (Supplementary Figure 5B). Out
of 87 downregulated proteins, more than 50 encompassed
ribosomal proteins. Of these, the most downregulated ones—
the 60S ribosomal proteins L32 (CF317_006070-T1), L35
(CF317_001879-T1) and L33-A (CF317_005595-T1)—were
present at levels below 5-fold than their counterparts in the wild
type secretome. Other proteins were prevalently involved in
stress/chemical response, e.g., plasma membrane phosphatase
(CF317_000051-T1), CipC-like antibiotic response protein
(CF317_003991-T1), small heat shock protein (SHSP) domain-
containing protein (CF317_001628-T1). These findings pose
interesting questions regarding the presence of intracellular
proteins in K. chersonesos secretome: while it may be indicative
of cell lysis during cultivation, it may also suggest that ribosomal
and other non-classical secretory proteins are found in the
culture supernatant due to EVs-mediated secretion (Sun and Su,
2019). The co-isolation of these and classical secretory proteins
during sample preparation can occur if no prior separation of
the vesicle containing fraction from the secretome, is performed
(Vallejo et al., 2012).

DISCUSSION

To date, investigations into the responses of microorganisms to
space and Mars-like conditions have been performed with few
black fungi species; some of them involved stress simulation
in ground-based facilities (Pacelli et al., 2017), while others
carried out the exposure of fungal strains inside or outside the
International Space Station (Onofri et al., 2012, 2019; Pacelli et al.,
2016).

With only one exception (Zakharova et al., 2014)—the
comparative study of 2D protein patterns under Mars-like
conditions—the majority of astrobiological work carried out
with black fungi has mainly focused on the analysis of
ultrastructural alterations and DNA integrity. Hence, this study
represents the first qualitative and quantitative proteomic
characterization of a black fungus response to simulated
space conditions, i.e., microgravity, which has significance to
exobiology and implications to planetary protection policy. In-
depth understanding of proteome-related alterations in cell
physiology is crucial to gaining new insight into the evolution
of extremophiles and the actual limits for life. Further, the
comparative analysis of a melanin-deficient mutant and the
wild type is important to evaluate the role of melanization in
stress survival.

Under microgravity conditions, a development toward a more
clump-like growth was observed in both K. chersonesos Wt and
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Mut and may be due to the low shear and low turbulence
suspension culture environment created by LSSMG. However,
morphological differences were not detected via FE-SEM in
cells grown under LSSMG compared to those grown in 1G.
This is not surprising, as black fungi reportedly resort to
strategies to minimize efforts at both the morphological and
physiological level when exposed to stress conditions (Sterflinger,
2006). Microcolonial growth and the switch among different
growth forms—i.e., budding and hyphae formation—ensure
that these organisms have a lifestyle versatility to cope with a
variety of stress in their natural habitats (Sterflinger et al., 1999;
Gostinčar et al., 2011). Unaltered morphology upon exposure to
LSSMG was previously described in filamentous fungi in both
suspension (e.g., Aspergillus niger and Penicillium chrysogenum)
(Sathishkumar et al., 2014) and agar cultures (A. niger,
Candida albicans) (Yamazaki et al., 2012), albeit LSSMG-induced
phenotypic changes have been to date substantiated by a higher
number of studies on fungal species e.g., Pleurotus sp., Candida
sp., Cladosporium sp., Ulocladium sp., Basipetospora sp., etc
(Miyazaki et al., 2010; Searles et al., 2011; Gomoiu et al., 2013).
Interestingly, the sole morphological response to microgravity
detected in the present study was the early switch to hyphae
formation observed in K. chersonesos Wt (at day 5 instead of
day 7, as in normal gravity; Figure 2). This is consistent with
previous reports of increased filamentous growth under LSSMG
in the opportunistic fungal pathogen C. albicans (Altenburg
et al., 2008). The observation of early hyphal development
in non-pathogenic species in response to LSSMG is rather
suggestive of biofilm formation as a strategy for enhanced
resistance to stress and for the forage for nutrients (Searles
et al., 2011). Both LSSMG-cultured K. chersonesos Mut and
their 1G controls showed extensive cell self-aggregation, i.e., cell
clumping and occasional filamentation that are characteristics
of black fungi (Nai et al., 2013). Significant variations were
also not found in the total cell number, and cell size was
not affected by microgravity in both strains (Supplementary
Tables 1, 2), unlike what has been documented by studies
on a variety of bacteria (Huang et al., 2018) and yeasts
(Crabbé et al., 2013).

The results of proteomics analysis revealed that exposure
to LSSMG altered the proteome and secretome of both
K. chersonesos Wt and Mut when compared to the 1G
counterparts, having an impact on different pathways.
Interestingly, the mutant response mainly involved protein
downregulation, which might suggest a general slowing of
the metabolic rate (Figure 4B). In contrast, more subtle
rearrangements in the protein repertoire were observed in the
wild type, especially in the secreted fraction, which possibly
reflect a fine-tuning of the regulation of protein expression.
Regardless, both strains showed increased abundance of proteins
involved in carbohydrate metabolism, especially at the whole-cell
proteome level (Figure 5A). Glycolysis/gluconeogenesis and
pyruvate metabolism were found to be promoted in the wild
type, whereas the glyoxylate shunt, ancillary cycle to TCA cycle
and essential for growth on two-carbon compounds (Lorenz and
Fink, 2001), was upregulated in the mutant. Similar alterations in
carbohydrate metabolism were previously observed in melanotic

filamentous fungi exposed to simulated Mars conditions (SMC)
or to ISS-conditions (Romsdahl et al., 2018, 2019; Blachowicz
et al., 2019a). Here, increased abundance was also observed for
several starvation-induced glycoside hydrolases with roles in
nutrient acquisition from biopolymers and in the recycling of
cell wall components to support cell maintenance. Starvation
response was thereby suggested as crucial adaptation to space
conditions, especially oligotrophy. Conversely, one characteristic
of both K. chersonesos Wt and Mut was decreased levels of
glycoside hydrolases and cell wall–degradation enzymes such
as the endo-1,3(4)-beta-glucanase (CF317_0009683-T1) and
the extracellular cell wall glucanase Crf1 (CF317_009779-T1).
The same was observed for carbohydrate-active enzymes
like cutinases and for lipases at both the proteome and the
secretome level, which suggests that, under space conditions,
black fungi opt for strategies different than those adopted by
filamentous fungi.

GO analysis and pathways prediction further revealed
upregulation of proteins involved in the biosynthesis of
unsaturated fatty acids (USFA) and in the metabolism of
phospho- and glycerophospholipids. This may be explained
by modifications in membrane lipid composition aimed at
maintaining membranes stability against stress (Xia et al., 2019).
More specifically, an LSSMG-dependent increase in membrane
fluidity attributable to a higher USFA/SFA ratio was previously
demonstrated by studies in plain lipid membranes, various
microorganisms e.g., Escherichia coli and plants upon exposure
to microgravity (Sieber et al., 2014; Kim and Rhee, 2016;
Kordyum and Chapman, 2017). Potentially, this could affect
the function of membrane-integrated proteins, thereby leading
to altered transporter activity. Whether the activity of uptake
transporters is altered in microgravity conditions is currently
unknown (Eyal and Derendorf, 2019). However, similarly to
what was observed in other fungi e.g., C. albicans (Crabbé
et al., 2013) and bacteria e.g., Bacillus subtilis (Morrison et al.,
2019) in space, K. chersonesos Wt and Mut ion-channels and
integral membrane proteins were found to be upregulated. The
increased abundance of specific transporters generally maximizes
the uptake of nutrients (e.g., phosphate and nitrogen). As such, it
possibly represents an adaptive response to temporary starvation
caused either by zones of nutrient depletion developing around
the colony or by the partial loss of contact of the cells with
the culture medium, which may occur under microgravity
conditions (Mazars et al., 2014; Senatore et al., 2018). Other types
of transporters—i.e., ammonium transporters and permeases
for transmembrane amino acid transport—could provide a
link between nitrogen assimilation and proteins synthesis
(Martzivanou et al., 2006). Indeed, upregulation of proteins
involved in amino acid biosynthesis and metabolic processes
was recorded under LSSMG conditions, but a higher number
of these proteins was found to be decreased, especially in the
mutant proteome.

Decreases in the levels of structural ribosomal proteins
involved in cytoplasmic translation (i.e., L23a, L37a, and L34)
and of the poly(A)polymerase, as well as the increase in
RNA degrading ribonuclease T1, were additionally detected
in microgravity. Together, the regulation of these proteins
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may suggest that protein translation via ribosomal translational
machinery is reduced upon exposure to LSSMG, a phenomenon
that has been indicated as a widespread response to microgravity,
space, and Mars-like conditions not only in fungi (Sheehan et al.,
2007; Willaert, 2013; Feger et al., 2016; Kamal et al., 2018, 2019;
Blachowicz et al., 2019a). Remarkably, in our study, a decrease
in translation and ribosome biogenesis was only observed in
the wild type whole-cell proteome and, to a minor extent, in
the mutant secretome (Figure 5B). However, ribosomes are
very dynamic organelles and additional tests will be needed
to confirm that the 2-fold regulation of the above-mentioned
proteins is actually indicative of reduced protein synthesis
under microgravity.

In a similar fashion, proteins taking part in functional
organization of cell organelles and cytoskeleton—for which a
wide spectrum of microgravity-dependent changes has been
reported (Zhang et al., 2015)—showed opposite regulation
in the wild type and the mutant. The same was observed
in the secretome for the DNA-repair Histone H2A and the
scytalone dehydratase, the latter involved in the biosynthesis
of DNH melanin from endogenous substrate (Eisenman and
Casadevall, 2012), which were upregulated in the wild type
and downregulated in the mutant. This is suggestive of
increased measures for cell protection and is in line with
the fact that melanin pigmentation and enhanced melanin
synthesis is most often a feature of fungi living on space
stations (Dadachova and Casadevall, 2008; De Middeleer
et al., 2019). Further, versicolorin reductase (CF317_003229-
T1), a protein mediating aflatoxins biosynthetic processes, was
also decreased only in the mutant. Although production of
aflatoxins in K. chersonesos has hitherto not been reported,
this finding can be indicative of reduced production of
allergenic or toxic metabolites (e.g., polyketides). Also in
the mutant, the upregulation of hydrolytic enzymes such
as the alpha, alpha-trehalase suggests a recourse to store
carbohydrates as a carbon source. By contrast, production of
compounds that increase the osmotolerancy (e.g., trehalose)
represents a quite common protective measure implemented by
microorganisms under microgravity and other types of stress
(Willaert, 2013).

Opposite protein regulation was especially evident when
examining the top 10 proteins differentially regulated in
both strains at all experimental conditions, which included
several ribosomal proteins (Supplementary Figure 3). These
discrepancies suggest that strategies to cope with suboptimal
conditions of growth may be strain-specific and that diverse
rearrangements of proteome repertoire are possibly related to
the presence or absence of melanin in the cell wall. Indeed,
differences between wild type and mutant proteomic profiles
were even observed at normal gravity condition. Proteins
involved in translation, transcription and RNA metabolic process
were significantly more upregulated in the mutant proteome
than in the wild type (up to 9-fold, as in the case of ribosomal
proteins L32, L36, S30 and L37), whereas the mutant secretome
showed increased abundance of a number of hydrolases required
for the breakdown of biopolymers and cell wall components
(Supplementary Figure 5).

A number of proteins differentially expressed under simulated
microgravity were involved in stress response, including
glutamate dehydrogenase (GDH; CF317_004755-T1) and nitric
oxide dioxygenase (NOD; CF317_006388-T1), over-represented
in the proteome of both fungi, and chemical stress component
proteins with proteolytic and phosphatase activity. While its
role as a stress-responsive enzyme was speculated for GDH (i.e.,
ROS) (Skopelitis et al., 2006), NOD participates in mechanisms
of detoxification of nitric oxide, a gas with multiple roles in
cellular metabolism ranging from defense to signaling. The
observation of peptidases, which were enriched in K. chersonesos
Wt proteome under exposure to LSSMG, may instead suggest
the removal of damaged proteins to enhance cellular fitness
and maximize survival (Bonham-Carter et al., 2013; Zhang
et al., 2015). In this respect, it should be noted that a role
of altered gravity in the breakdown of protein structures has
been previously reported (Trotter et al., 2015). However, a
major part of detected stress response proteins involved in cell
redox homeostasis, glutathione metabolism and recycling and
osmotic stress defense—i.e., catalases, glutathione reductases, 3-
phytases and s-formylglutathione hydrolases—appeared to be
decreased under exposure to LSSMG. As previously suggested
in plants (Zhang et al., 2015), downregulation of general
stress response proteins under microgravity might indicate
an impaired activation of the defense response components.
However, decreased levels of common stress proteins and lack
of a heat shock response (HSP) represent a key component
of black fungi response to a variety of suboptimal conditions
of growth and have been attributed to an energy-saving
strategy that relies on a fine-tuning regulation of protein
abundance (Tesei et al., 2012, 2015; Zakharova et al., 2013, 2014;
Blasi et al., 2017).

One further interesting aspect was the high number of
proteins traditionally recognized as cytoplasmic in K. chersonesos
secretome, especially in the mutant (i.e., 6% of total secreted
proteins with predicted signal peptide v/s 25% in the wild type;
20% of regulated secreted proteins had signal peptides in both
strains). Such a discrepancy between wild type and mutant was
also reported in a study of K. chersonesos secretome aimed
at the screening for novel polyesterases (Tesei et al., 2020),
hence it seems to suggest that a low number of extracellular
proteins may be a peculiarity of the mutant secretome. The
presence of cytoplasmic proteins in the culture supernatant
may indicate that the mutant is more prone to cell lysis than
the wild type (Miura and Ueda, 2018). However, given that
proteins with no signal peptide (leaderless) can also be found
in the secreted fraction as a result of non-classical protein
secretion, e.g., via EVs-mediated pathways (Vallejo et al., 2012;
Sun and Su, 2019), it may as well indicate co-isolation of
vesicle proteins and classical secretory proteins during sample
preparation procedures. These proteins (e.g., ribosomal proteins,
proteins involved in carbohydrate metabolism, response to stress,
signaling, cell division and transport, etc.), for which vesicular
transport might be the only route of extracellular delivery, are
generally predicted as non-secretory (Bleackley et al., 2019).

Together, the aspects of protein modulation observed
in K. chersonesos Wt and Mut suggest that the basic
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energy metabolism was upregulated in the Wt strain. Here,
rearrangements of the protein repertoire resembled the classic
response to microgravity, but with no evidence of significant
activation of stress components or starvation response. The
mutant mostly engaged in protein downregulation, without
affecting their cell growth and survivability. This study therefore
indicates the ability of black fungi to cope with microgravity
conditions and suggests that cell wall melanization may
ultimately influence the metabolic response to microgravity.
Point mutation will be needed to confirm whether mutagenesis
played a role in protein downregulation in K. chersonesos Mut.
To further our understanding about the impact of microgravity
on ribosome biogenesis and protein translation, future work
shall involve proteomics workflows such as radio-labeled protein
expression assays.
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Selecting appropriate metabolic engineering targets to build efficient cell factories
maximizing the bioconversion of industrial by-products to valuable compounds taking
into account time restrictions is a significant challenge in industrial biotechnology.
Microbial metabolism engineering following a rational design has been widely studied.
However, it is a cost-, time-, and laborious-intensive process because of the cell network
complexity; thus, it is important to use tools that allow predicting gene deletions. An
in silico experiment was performed to model and understand the metabolic engineering
effects on the cell factory considering a second complexity level by transcriptomics
data integration. In this study, a systems-based metabolic engineering target prediction
was used to increase glycerol bioconversion to succinic acid based on Escherichia coli.
Transcriptomics analysis suggests insights on how to increase cell glycerol utilization to
further design efficient cell factories. Three E. coli models were used: a core model, a
second model based on the integration of transcriptomics data obtained from growth in
an optimized culture media, and a third one obtained after integration of transcriptomics
data from adaptive laboratory evolution (ALE) experiments. A total of 2,402 strains
were obtained with fumarase and pyruvate dehydrogenase being frequently predicted
for all the models, suggesting these reactions as essential to increase succinic acid
production. Finally, based on using flux balance analysis (FBA) results for all the mutants
predicted, a machine learning method was developed to predict new mutants as
well as to propose optimal metabolic engineering targets and mutants based on the
measurement of the importance of each knockout’s (feature’s) contribution. Glycerol
has become an interesting carbon source for industrial processes due to biodiesel
business growth since it has shown promising results in terms of biomass/substrate
yields. The combination of transcriptome, systems metabolic modeling, and machine
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learning analyses revealed the versatility of computational models to predict key
metabolic engineering targets in a less cost-, time-, and laborious-intensive process.
These data provide a platform to improve the prediction of metabolic engineering
targets to design efficient cell factories. Our results may also work as a guide and
platform for the selection/engineering of microorganisms for the production of interesting
chemical compounds.

Keywords: systems metabolic engineering, transcriptomics, machine learning, adaptive laboratory evolution,
metabolic modeling resources/frameworks

INTRODUCTION

Shifting from petrochemical sources to renewable, abundant,
and inexpensive feedstocks to obtain valuable chemicals has
become a promising goal for the chemical industry (Vlysidis
et al., 2011). The biodiesel industry has increased in the
last years by using renewable raw materials, but it generates
large amounts of glycerol, which has become a burden. The
bioconversion of glycerol is a potential route to increasing
the use of bio-based succinic acid, a critical building block
chemical with an attractive market. The availability of three
pathways for succinic acid production (Figure 1; Chen et al.,
2013a), the adaptability to different environments, and the
accessibility of metabolic engineering and omics tools make
Escherichia coli an attractive cell factory. However, some
challenges, such as low growth rate and yield, the use of a rich
medium, the generation of by-products, and various anaerobic
requirements, need to be overcome for bio-based succinic acid
production, considering cost-effective issues, as compared with
the petroleum-based approach.

The main goal of using microbial cell factories is to design
cheap and high-yield biotechnology-based conversion processes.
A significant problem to be solved is how to enhance cell
growth while using its capabilities to obtain a high-yield target
chemical product. A classical approach for that is adaptive
laboratory evolution (ALE), which is based on the selection
of microorganisms with superior production capability after
random mutagenesis screening. Another approach to strain
improvement is metabolic engineering, which uses genetic
manipulation to optimize the production of desired compounds.
Metabolic engineering selects targets that increase productivity
based on the rationality of trial-and-error development cycles
and an understanding of the routes playing a significant role
in the synthesis. Strain design with this method has been
extensively applied to use and/or produce interesting compounds
(Kern A. et al., 2007; Chen et al., 2013a,b; Förster and Gescher,
2014; Woo and Park, 2014), including bio-based organic acids
by substrate transport enhancement, gene overexpression, and
deletion (Shams Yazdani and Gonzalez, 2008; Zhang B. et al.,
2012; Buschke et al., 2013; Förster and Gescher, 2014; Yin et al.,
2015; Zhu and Jackson, 2015). However, making the strain
industrially competitive requires much time, effort, and high cost
(Rangel et al., 2020).

When DNA was discovered in the last century, a new approach
called metabolic network modeling for the study of cellular

metabolism was developed (O’Brien et al., 2015). It allows to
determine how several pathways in a cell can interact, as well
as to elucidate basic microbial processes (Haggart et al., 2011).
The first genome-scale metabolic network was described in
1999, and in 2002, the use of metabolic modeling to analyze
recombinant pathways was reported (Carlson et al., 2002).
Several models have been developed ever since with significant
accuracy and useful predictions (Portela et al., 2013) that can
be used to guide experimental studies (Pharkya and Maranas,
2006; O’Brien et al., 2015). COnstraints-Based Reconstruction
and Analysis (COBRA) methods make it possible to predict,
given a cellular objective function, attractive targets to increase
or maximize biochemical yields, and to determine perturbations
after genetic manipulations of the cell (Kim, 2012; Ruckerbauer
et al., 2015). OptKnock, OptStrain, OptForce, and OptReg
are some COBRA methods developed to predict metabolic
engineering targets for cell optimization by using gene–protein
reaction (GPR) relationship (Burgard et al., 2003; Pharkya
et al., 2003; Pharkya et al., 2004; Pharkya and Maranas, 2006;
Ranganathan et al., 2010).

OptKnock applies a flux balance analysis (FBA) approach
for simulating genome-scale metabolic models (GEMs). It
assumes that each organism’s metabolic network has been
tuned through evolution for some objective function, be it a
maximal growth rate or energy efficiency (e.g., minimal ATP
utilization). While this assumption may be valid for wild-
type (WT) organisms that have evolved over many hundreds
or thousands of generations, it may be less appropriate for
engineered mutants (KO) because they have been engineered in a
controlled environment and unexposed to the same evolutionary
forces. Hypothesizing that mutant organisms are unable to
immediately adapt their metabolic network to achieve the WT
objective function, computational tools such as minimization of
metabolic adjustment (MOMA) were developed (Segre et al.,
2002). This approach is mathematically formalized as a quadratic
programming (QP) problem, finding a suboptimal flux profile
that is a minimal Euclidean distance from the WT (WT-FBA) and
the genetically perturbed (KO-FBA) organisms. FBA combined
with MOMA evaluation after OptKnock prediction could provide
a more accurate prediction of the immediate metabolic response
to KO than FBA does on its own. However, a large list of knockout
combinations could be obtained when computational tools are
used, and select which test in a lab can be laborious.

Several approaches to optimize cell factories have been
developed, but conventional and computational approaches
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FIGURE 1 | Succinic acid pathways from glycerol in Escherichia coli. The three pathways for succinic acid production are indicated by the thick red (the
PEP–pyruvate–oxaloacetate node—the reductive TCA branch), yellow (the oxidative TCA branch), and blue (the glyoxylate shunt) arrows. Relevant biochemical
reactions are represented based on the ID BIGG database names (King et al., 2016).

have not always been successful due to unexpected changes
in the cell where an intracellular complex interconnected
network of genes, proteins, and reactions exists. Systems
metabolic engineering has emerged as an approach that
integrates metabolic engineering and combined metabolic and
“omics” network models. This approach could be beneficial
for genome-scale modeling because it reduces the solution
space and generates accurate predictions (Nordlander et al.,
2008; Feist et al., 2010; Blazier and Papin, 2012; Machado and
Herrgård, 2014; Rangel et al., 2020). Mainly considering that
under certain environmental conditions, there are a limited
number of reactions that are active according to transcriptional
responses and other regulation phenomena to provide beneficial
improvements for the cell bioconversion process (Fong and
Marciniak, 2003; Fong et al., 2005; Lee and Palsson, 2010;
Conrad et al., 2011; Wang et al., 2011; Zhang J. et al., 2012;
Bao et al., 2014).

In this study, systems metabolic engineering for
overproduction of succinic acid from glycerol in E. coli
ATCC 8739 was used through integration of transcriptomics
data to metabolic models and classification tree analysis using the
random forest to classify gene targets predicted by OptKnock.
Our strategy took advantage of transcriptomics data obtained
from an evolved E. coli in glycerol and an optimized culture
media. These data were subsequently integrated into a metabolic
network model to predict targets using OptKnock. Predicted
combinations were then evaluated using FBA, flux variability

analysis, and MOMA to determine the effects of gene reaction
knockout in the cell. Finally, predicted target reactions were
evaluated using random forest to determine the importance of
each target using succinic acid production, growth rate, and
Euclidian distance between the WT strain and each mutant as
response variables.

MATERIALS AND METHODS

Strains and Culture Conditions
E. coli ATCC 8739 was used in this study. It was obtained
commercially from the American Type Culture Collection
(ATCC). A glycerol-based medium containing the following
components (per liter) was used as the reference culture
condition: 5 g of yeast extract, 2.5 g of NaCl, 5 ml of trace metal
solution [0.55 g/L CaCl2, 0.10 g/L MnCl2 4H2O, 0.17 g/L ZnCl2,
0.043 g/L CuCl2 2H2O, 0.06 g/L CoCl2 6H2O, 0.06 g/L Na2MoO4
2H2O, 0.06 g/L Fe(NH4)2(SO4)2 6H2O, 0.20 g/L FeCl3 6H2O],
5 ml of MgSO4 (1 M), and 30 g of glycerol. A 50 ml culture
was carried out in a 250 ml baffled-conical Erlenmeyer flask and
cultivated aerobically at 37◦C and 200 rpm.

Two conditions were evaluated in this study: an adapted E. coli
on high glycerol concentrations (30, 40, 50, 60 g/L) and an
optimized culture condition. For the first condition, four E. coli
cultures were continuously subcultured each for 72 h in Luria–
Bertani (LB) medium (5 g/L of NaCl, 10 g/L of tryptone, and
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5 g/L of yeast extract, supplemented with 30, 40, 50, or 60 g/L).
After every three subcultured rounds (216 h), the concentration
of tryptone was decreased from 1 until reaching 0 g/L. Then, 10
subcultured rounds each for 72 h were carried out. During the
complete experiment, a 50 ml culture was carried out in a 250 ml
non-baffled-conical Erlenmeyer flask and cultivated aerobically
at 37◦C and 200 rpm. For each subcultured round, an OD ∼0.33
600 nm was considered as inoculum starting point. At the end of
each tryptone decreasing, 1 ml of culture was kept at –80◦C and
used for further evaluation of growth and glycerol uptake. For
the optimized culture condition, the glycerol-based medium was
supplemented with 1 g of NH4Cl, 6 g of Na2HPO4, and 3 g of
K2HPO4 at the same conditions as the reference culture.

Differential Expression Analysis
RNA-Seq was carried out in triplicate for all conditions. For the
adapted strain, the culture conditions for RNA-Seq were the same
as those for the optimized culture medium condition. To harvest
cells for total RNA purification, the culture sample was first
treated with RNAprotect Bacteria Reagent (Cat No./ID: 76506),
and enzymatic lysis and proteinase K digestion of the bacteria
were carried out following the manufacturer’s protocol. Then,
the Qiagen RNeasy Mini kit (Cat No./ID: 74104), following the
manufacturer’s protocol, was used to obtain the total RNA for
further analysis. Each sample was treated with DNase following
the protocol in order to remove the DNA. The samples were sent
to commercial RNA-Seq services for further sample processing
and sequencing (Genewiz, South Plainfield, NJ).

Clean, raw data was obtained by removing the reads
containing adapters using Trimmomatic. The sequence RefSeq:
NC_CP010468 was employed for mapping. RNA reads were
mapped using the software bowtie2, and featureCounts was
employed to read counts. SARTools (Statistical Analysis of
RNA-Seq data Tools) (Varet et al., 2016) was used for
statistical RNA-Seq analysis. Differentially expressed genes
(DEGs) were identified using the DESeq2 R Package. The
functional classification of the DEGs was performed using Gene
Ontology (GO) analysis by Blast2GO (Götz et al., 2008). The data
discussed in this publication have been deposited in NCBI’s Gene
Expression Omnibus (Edgar, 2002) and are accessible through
GEO Series accession number GSE140847.

Genome-Scale Metabolic Network
Reconstruction
In order to obtain metabolic engineering targets to overproduce
succinic acid from glycerol, two E. coli models were used:
EColiCore2 (ECC2) (data under peer review) and iTA1338 for
E. coli ATCC 8739 (Supplementary File 1). Gene associations for
both models were modified to ECOLC_RS number based on the
sequence RefSeq: NC_CP010468 to facilitate the integration of
transcriptomics data. Extensive manual curation was conducted,
including (i) adding/eliminating transport reactions and
extracellular metabolites and (ii) filling pathway gaps. GapFind
and GapFill, two optimization problems that search for root
metabolite problems that are not connected in the network and
that solve them, were used to fill gaps in iTA1338, including

biomass reaction BIOMASS_Ec_iML1515_WT_75p37M
(Supplementary File 1). All optimization problems were solved
using the COBRA Toolbox v.3.0 (Heirendt et al., 2019).

Transcriptomics Integration and
Metabolic Engineering Target Prediction
The gene inactivity moderated by metabolism and expression
(GIMME) (Becker and Palsson, 2008) method was used to
integrate transcriptome data with the E. coli metabolic model.
This method then minimized the usage of low-expression
reactions while keeping the objective (e.g., biomass) above
a certain value. Expressed genes were considered according
to their expression level with log2 fold change (FC) ≥ |1|.
Next, according to the GPR rules and the defined gene
expression states, a specific activity state for each reaction
was identified. Finally, a specific context model was obtained
from the transcriptomic data. Metabolic engineering targets
were obtained using OptKnock. However, MOMA was used
to understand the probability of those mutants predicted
to be adapted and to reach the optimal state (predicted
succinic and growth flux) considering the Euclidean distance. It
because OptKnock predicts an optimal state, but after genetic
manipulation cell are not in this state. The maximum uptake
rate of glycerol was set to 13.3 mmol/g DW h−1. The OptKnock,
GIMME, and MOMA methods were conducted using COBRA
Toolbox v.3.0 (Heirendt et al., 2019) in MATLAB 2017b
and Gurobi 8.0.1.

Machine Learning to Determine Potential
Metabolic Engineering Targets
Random forest models are supervised machine learning
approaches, which have the advantage of giving a summary of
the importance of each variable. This approach is based on a
randomized variable selection process. An estimation of variable
importance is provided by IncNodePurity, which measures the
decrease in tree node purity that results from all splits of a
given variable over all trees (Li et al., 2015). For interpretation
purposes, this measure can be used to rank variables by the
strength of their relation to the response variable (Li et al.,
2015). A matrix of binary values was built from m mutant
predicted and n reactions in the set of possible reactions to
be knocked out. In this matrix, one represents the presence
of one specific reaction to be deleted in the mutant and zero
the absence in the combination of reactions to be deleted
in the mutant. The matrix was partitioned into training and
test sets; the training set was used to build a random forest
model to predict succinic acid production, growth rate, or
the growth rate Euclidean distance between the mutant and
WT strains as response variables. For the training set, succinic
acid production, growth rate variable response was initially
predicted using FBA, and the growth rate Euclidean distance
between the mutant and WT strains was predicted using
MOMA. Next, the model performance was assessed using the
testing set. Finally, we used the random forest to determine
the importance of each target reaction over the three evaluated
response variables.
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RESULTS

Glycerol Consumption of E. coli After
Adaptive Laboratory Evolution
Luria–Bertani is one of the most common cultures used
industrially for the growth of E. coli. In order to increase glycerol
consumption by E. coli on LB media, an ALE experiment was
carried out. Results obtained in this study, before the ALE
experiments, suggest that even when high cell density cultures
are reached, a low consumption of glycerol is observed. For all
the four conditions (supplementation of 30, 40, 50, or 60 g/L
of glycerol), a growth curve was carried out, showing that a
maximum of 7 g/L consumption of glycerol could be achieved
naturally by E. coli. Nevertheless, after the ALE experiments, an
increase of 3 g/L in the glycerol consumption was observed for
the strain growing in a supplementation of 30 g/L of glycerol.
Despite this data showing an increase of around 30% in glycerol
consumption, it is far below that obtained in the optimized
culture, which reaches a consumption of 30 g/L of glycerol (data
under peer review).

Transcriptional Response of E. coli for
Aerobic Glycerol Consumption
A cell is considered a complex system where a large number
of processes are carried out. These processes then involve an
interaction between genes, transcripts, proteins, metabolites,
and reactions, among others (Lee et al., 2012; Furusawa et al.,
2013; Rangel et al., 2020). Metabolic models are reconstructed
by using genome information; however, it is well known that
metabolism is given by environmental conditions by passing
through a cell regulation process. This causes some genes to
be turned on and off under certain conditions. To determine
which reactions are active to obtain high accurate models, two
transcriptomic profiles were obtained from an ALE experiment
and an optimized culture medium.

DEGs were determined using the DESeq2 statistical package
after filtering out low count reads with an average value of <100.
Significant DEGs were defined as those whose abundance had at
least a log2 fold change [(log2 FC) > | 2|] between the reference
condition (glycerol-based medium) and a chosen experimental
condition (optimized culture medium and evolved strain) at a
false discovery rate (FDR)-corrected P < 0.05. Relevant genes
with log2 FC > | 1| for glycerol metabolism or under the same
regulon were taken into account. Figure 2 shows the distribution
of DEGs using a log2 FC ≥ |2| for one strain growing in the
optimized culture medium and one evolved strain growing in the
same optimized medium. This analysis determined that 478 genes
were differentially expressed, with 222 genes downregulated and
256 upregulated for the optimized medium, and 431 DEGs for the
evolved strain, of which 223 genes were downregulated and 208
genes were upregulated. When comparing DEGs in the optimized
medium and those in the evolved strain, 59 downregulated genes
were found to be unique in the evolved strain and 58 unique genes
for the optimized medium. In this context, 47 and 95 upregulated
genes were found to be unique in the evolved strain and the
optimized medium, respectively (Figure 2).

DEGs were classified into the following three groups using GO
analysis: biological processes, molecular functions, and cellular
components. The shared downregulated genes predominantly
included those involved in the metabolic process (cellular,
organic substances, nitrogen compounds, and primary metabolic
processes), chemicals, stress and stimulus responses, and
heterocyclic compound systems. Between downregulated genes,
we found phoB and phoR, which are involved in phosphorous
uptake and metabolism since, under excess phosphorous, PhoR
inactivates phoB (Makino et al., 1989). Figure 3 shows the
level 2 GO terms for unique down- and upregulated genes in
both conditions using Blast2GO (Götz et al., 2008). The 117
unique downregulated genes at log2 FC ≥ |2| and an adjusted P
≤ 0.05 were classified into 15 functional groups. Two GO terms,
signaling and locomotion, were only present for the evolved
strain, and one GO term, multiorganism processes, was only
present for the optimized culture condition in downregulated
genes (Figure 3A).

GO analysis revealed that shared upregulated DEGs (Figure 2)
are involved mostly in the metabolic process (51%), including
GO terms such as cellular, organic substances, primary, and
nitrogen compound processes; 11% of the upregulated genes were
associated with biosynthetic processes and the establishment
of localization. The main GO terms for molecular functions
were those involved in a binding activity (66%), counting
ions, heterocyclic compounds, organic cyclic compounds, small
molecules, and protein binding, followed by transferase activity
(10%) and transmembrane transporter activity (9%). About 42%
of the DEGs categorized in cellular functions were implicated in
membrane GO terms, with 17% in the cell periphery and 16%
in the cytoplasm.

Glycerol metabolism in E. coli is mediated by glp operons. In
consequence, transcriptomic analysis shows shared upregulation
of glpBCFKQTX genes. The changes in bacterial gene expression
in response to glycerol utilization are summarized in Table 1.
During glycerol utilization, GlpF permease facilitates glycerol
entry into E. coli for further transformation into glycerol-
3-phosphate (Gly-3-P) by GlpK under aerobic conditions.
Comparing glpK expression with the values obtained for other
genes in the glp regulon showed that glpK was one of the most
highly expressed genes. However, a difference of ∼1 log2 FC
between the evolved strain and the optimized culture condition
was exhibited in the glpFKX operon (Table 1). As a consequence
of the regulatory network, an increase in the expression of
glpX was detected (2.76 log2 FC), which is part of the glpFKX
operon and works as an alternative fructose-1,6-bisphosphatase
involved in gluconeogenesis by catalyzing the hydrolysis of
fructose-1,6-bisphosphate to fructose 6-phosphate (Booth, 2014).
Overexpression of glpX has been shown to increase hydrogen
production (Kim et al., 2011). Additionally, transcriptomic
analysis showed upregulation of both flavin oxidases glpD and
glpABC.

The electron-transport chains of E. coli are composed of
many different dehydrogenases and terminal reductases. Glycerol
metabolism in E. coli uses oxygen as the main electron acceptor,
but it could also employ fumarate under anaerobic conditions
by encoding a fumarate reductase complex under anaerobic
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TABLE 1 | Differential expression of genes involved in glycerol metabolism.

RefSeq tag (ECOLC_RS) Gene name Old locus tag Product Log2 FC Exp 3 Log2 FC evolved

01540 glpD EcolC_0288 Aerobic glycerol-3-phosphate dehydrogenase 1.69 1.21

07540 glpC EcolC_1408 Anaerobic glycerol-3-phosphate
dehydrogenase subunit C

2.61 3.59

07545 glpB EcolC_1409 Anaerobic glycerol-3-phosphate
dehydrogenase subunit B

2.87 3.74

07550 glpA EcolC_1410 Sn-glycerol-3-phosphate dehydrogenase
subunit A

1.28 2.00

07555 glpT EcolC_1411 Glycerol-3-phosphate transporter 5.41 4.36

07560 glpQ EcolC_1412 Glycerophosphoryl diester phosphodiesterase 5.25 5.52

22045 glpF EcolC_4091 Aquaporin 4.17 3.03

22050 glpK EcolC_4092 Glycerol kinase 5.36 4.37

22055 glpX EcolC_4093 Fructose-1,6-bisphosphatase 2.76 2.05

10840 fumA EcolC_2018 Fumarate hydratase 1.46 −0.60

20740 frdA EcolC_3856 Fumarate reductase flavoprotein subunit 0.68 1.71

20745 frdB EcolC_3857 Fumarate reductase iron-sulfur subunit 0.89 1.87

20750 frdC EcolC_3858 Fumarate reductase subunit C 0.74 1.72

20755 frdD EcolC_3859 Fumarate reductase subunit D 0.16 1.09

conditions (Jones and Gunsalus, 1987; Cecchini et al., 2002).
Table 1 shows log2 FC for fumA and frdABCD genes in
E. coli. The fumA gene was encoded for abundant fumarase,
predominantly expressed in the optimized culture medium (1.55
log2 FC), but not for the evolved strain (−0.53 log2 FC). FumA
has been reported to be predominantly expressed under aerobic
conditions (Chen et al., 2012). Under aerobic conditions, the
catalysis of succinate to fumarate interconversion is mediated
by the succinate dehydrogenase complex encoded by sdhABCD
(Cecchini et al., 2002). However, in this study, sdhABCD genes
were not found to be differentially expressed in any of the culture
conditions. Interestingly, among the upregulated genes in the
adapted strain, a difference of ∼1 log2 FC in the expression of the
fumarate reductase genes (frdABCD), which is used in anaerobic
growth, was observed over the optimized culture condition.

The maltose operon of E. coli consists of genes that encode
proteins involved in the uptake and metabolism of maltose
and maltodextrins. These genes have been found to be highly
associated with upregulation under glycerol utilization as a
carbon source, and changes in the level of glpK transcription
had a significant effect on malT transcription (Chagneau et al.,
2001). In this study, malEFKMTPQ genes were shown to be
upregulated in both conditions. For malT, the log2 FC was more
highly expressed in the optimized culture condition than in the
evolved strain. The same behavior was observed for glpK. Thus, a
high expression of this regulon in this study could be presumably
linked to the high expression of the glpK gene since they showed
similar log2 FC.

As a result of glycerol metabolism, acetate is mainly generated.
In our analysis, the phosphate acetyltransferase encoded by
pta, which catalyzes the reversible conversion between acetyl-
CoA and acetylphosphate (Lin et al., 2005; Blankschien et al.,
2010), was found to be upregulated (∼2.30 log2 FC). Also, the
atpABCDEFGH genes have a role in the generation of ATP
from ADP and phosphate. These genes were observed to be
upregulated, with similar log2 FC, except for atpA, which had a

difference of around 1 log2 FC in the optimized culture medium
with respect to the evolved strain.

Predicting Potential Metabolic
Engineering Targets for Succinic Acid
Overproduction
Genome-scale metabolic models (GEMs) are defined as a
complete set of reactions involved in cell metabolism, given
by genome annotation, regardless of whether the annotated
metabolic genes are expressed in a given environment. This
assumption could be correct in genome-scale models because
core models represent the central metabolism, but the full
potential of GEMs remains unexploited mainly (Ataman et al.,
2017). To avoid this situation and to evaluate the effects of using
a core or a large model to predict metabolic engineering targets,
three models were used: a core model (ECC2) and two models
obtained after the integration of transcriptomics data that can
help to elucidate the actual state of the metabolic network in vivo
for further metabolic engineering.

Metabolic Model Reconstruction and
Transcriptomics Integration
For the integration process, a reconstruction of the metabolic
model for E. coli ATCC 8739 was carried out based on the iEcolC
1368 (Monk et al., 2013), iEC1349_Crooks (Monk et al., 2016),
and iML1515 models (Monk et al., 2017). Extensive manual
curation was conducted to fill pathway gaps. Transport and
exchange reactions were added or eliminated, enabling nutrient
uptake and by-product secretions. Finally, the resulting model
was designated iTA1338, and it involved 2,032 metabolites,
2,804 reactions, and 1,338 genes (Supplementary File 1). After
that, using GIMME, context-specific metabolic networks were
constructed departing from the iTA1338 model for two types
of strains: (1) WT E. coli ATCC 8739 growing in an optimized
culture medium (iTA818) (Supplementary File 1) and (2) E. coli

Frontiers in Genetics | www.frontiersin.org 7 March 2021 | Volume 12 | Article 633073113

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-633073 March 22, 2021 Time: 13:41 # 8

Tafur Rangel et al. Systems-Based Metabolic Engineering for Bio-Factories Design

ATCC 8739 strains evolved to grow on glycerol (iTA821)
(Supplementary File 1). Manual curation was carried for the
iTA821 model based on GapFind and GapFill results.

Figure 4 illustrates the number of reactions obtained for
each model after transcriptomic integration. The same growth
rate was observed after integration; however, flux distribution
in 24 reactions was exhibited (Figure 4B). The reactions
only present in iTA821 are mainly associated with the inner
membrane transport (14). Other unique reactions in iTA821
were mapped to be linked to the citric acid cycle, cofactor and
prosthetic group biosynthesis, glutamate metabolism, inorganic
ion transport and metabolism, the nucleotide salvage pathway,
oxidative phosphorylation, and pyruvate metabolism, among
others. Unusual reactions of iTA818 were mainly associated with
transport, including the transport outer membrane porin (218),
transport inner membrane (50), and transport outer membrane
(15), followed by cell envelope biosynthesis (37), the nucleotide
salvage pathway (24), glycerophospholipid metabolism (14),
alternate carbon metabolism (12), and cofactor and prosthetic
group biosynthesis (7), among others.

In silico Systems Metabolic Engineering
Targets Prediction
To predict E. coli strains that overproduce succinic acid from
glycerol, OptKnock was used (Burgard et al., 2003). Before
predicting the reaction target to overproduce succinic acid, both
metabolic networks were preprocessed. The goal of preprocessing
was to obtain a smaller set of selected reactions that could serve
as valid targets for gene knockouts. First, all reactions displaying
maximum and minimum fluxes equal to zero were removed from

the set of potential reactions to be knocked out. Next, all reactions
that had been experimentally found to be essential for growth
were removed from consideration (Joyce et al., 2006). Also, the
reactions that were found to be computationally essential were
not considered, as well as non-gene-associated reactions.

Ten OptKnock rounds of mutant prediction were carried out.
In each round, the set of reactions was set up to 1, 2, 3, . . . 10,
and 100 mutants were requested per round. ECC2, iTA818, and
iTA821 models were used to predict mutants of succinic acid
overproducers; 811, 806, and 785 possible mutants were obtained
from the ECC2, iTA818, and iTA821 models, respectively
(Supplementary File 2). Figure 5 describes the frequency of the
reactions predicted in all the possible mutants. It can be seen that
30 reactions were above the average frequency. Reactions acetate
kinase (ACKr), fructose 6-phosphate aldolase (F6PA), fumarase
(FUM), pyruvate dehydrogenase (PDH), pyruvate formate lyase
(PFL), phosphotransacetylase (PTAr), succinate dehydrogenase
(SUCDi), triosephosphate isomerase (TPI), glycerol-3-phosphate
dehydrogenase-NADP (G3PD2), and glycerol dehydrogenase
(GLYCDx) were frequently predicted for the all models. It is
important to mention that G6PDH2r, LDH_D, PGL, and POX
were not predicted to be part of models iTA818 and iTA821
after integration.

Interestingly, in the complete set of reactions predicted, PDH
was the most frequent target reaction, followed by FUM in all
the models (Figure 5), and minimal variations in the knockout
frequency were observed for these reactions. Figure 5A shows
the plot of the first two principal components of the principal
components analysis (PCA), representing the variability of 89%
of the data. This analysis shows how PDH and FUM knockouts
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FIGURE 5 | Metabolic engineering targets predicted by OptKnock. (A) Frequency of reactions predicted by OptKnock for each model, with combinations of
knockouts from 1 to 10 reactions per mutant. (B) PCA for metabolic targets predicted. (C) PCA for models using predicted targets.

are closely related to succinic acid overproduction from glycerol.
Regions of high variability are clustered along with the first
principal component, presenting a value of zero for the first
principal component. This indicates that the factors that make
up the first principal component are critical for high titers.
The contributions of different models to the first two principal
components of the PCA are shown in Figure 5B, and they are
indicative of the relative influence on the variability in knockout
predictions given by transcriptomic integration.

A cluster analysis between the reaction frequency for each
k deletion showed that elimination of acetate, formate, and
lactate by-products mediated by POX, PFL, and LDH_D is highly

related to PDH and FUM deletion (Figure 6). This phenomenon,
probably due to PDH deletion, results in reduced conversion of
pyruvate to acetyl-CoA, which is the main substrate in ACKr and
PTAr reaction to generate acetate (Figure 1), a competitive by-
product on succinate production (Blankschien et al., 2010). Then,
if PDH deletion is not carried out, ACKr and PTAr knockouts
would become essential to increasing succinate production, as
well as minimizing costs in the separation process (Kurzrock and
Weuster-Botz, 2010; López-Garzón and Straathof, 2014).

Since metabolic manipulation of cells results in a stressful
process, the negative impact of deletions on the maximum
growth rate can be observed. To determine the effects of reaction
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knockouts over the cell, FBA was carried out and Euclidean
distance was calculated for each mutant predicted. Figure 7
illustrates the relationship between the number of knockouts,
succinic acid production, and growth rate using FBA and the
Euclidian distance between the WT and mutant strains using
MOMA. It can be seen that the number of reactions knocked is
highly related to high succinic acid production rates due to the
elimination of competitive by-products, such as acetate, formate,
and lactate, requiring at least three to four deletions. The highest
succinate production (∼8.5 mmol/g DW h−1) was observed in
mutants predicted in ECC2 when 9 or 10 reactions were deleted.
However, this implies a substantial reduction in the growth rate
to ∼4% compared with the WT strain. Thus, selecting these
mutants is unrealistic for the industrial production of succinic
acid. The same behavior in the reduction of the growth rate
was observed for those mutants that required more than six
deletions in mutants predicted in iTA818 and iTA821. In contrast,
a considerable reduction in the growth rate (28% of the WT
growth rate) as well as an increasing succinic acid production
rate (around 30% more than those with 9–10 knockouts) for
those mutants with six knockouts was observed. In addition, it
was observed that there is no direct correlation, in the same
magnitude for all the mutants, between the Euclidean distance
and the numbers of knockouts in each mutant. However, Figure 7
shows amplifications in the Euclidian distance between the
WT and the mutants when succinate production and knockout
numbers increase and growth rate decreases.

Identification of Critical Metabolic
Targets and Potential Mutants
OptKnock results are a large list of knockout combinations where
maximum product synthesis occurs at a maximum growth rate
reachable (Burgard et al., 2003). However, it has been observed

that the optimal solution of the target given by OptKnock is
not necessarily growth-coupled, and some mutants predicted do
not increase the product target. Consequently, selecting a mutant
to be tested in the lab could be really difficult and probably
result in a laborious process. Assuming that each mutant product
growth “coupled” predicted will result in a successful biological
production, these mutants can ensure high productivity over time
and initially solve this situation (Shabestary and Hudson, 2016).
To identify growth-coupled production solutions, a COBRA
Toolbox function was used to verify the minimum and maximum
production rates given a set of reactions to be knocked out. As
a result, the same minimum and maximum flux for the desired
product should be obtained when the maximum growth rate
is achieved. One thousand seven hundred ninety-nine (1,799)
mutants were predicted to be growth-coupled, 539 to be growth-
coupled non-unique (maximum flux - minimum flux > 0.1), and
64 mutants were categorized as not growth-coupled (maximum
flux < 0.1). For the mutants categorized as growth-coupled non-
unique, an FBA was carried out to predict the succinic acid
production rate (Figure 7), where 279 mutants were predicted
to have a difference between the maximum production rate
predicted by the function and FBA < 2, resulting in 2,078 in silico
mutants that overproduce succinic acid.

In order to filter and select potential mutants to be tested
in the lab, a random forest model to predict the importance of
each reaction knockout was developed based on the OptKnock
predictions. Each possible combination of reactions using binary
values that increase the succinic acid production was associated
with the flux of the extracellular succinic acid and biomass
reaction obtained by FBA and the Euclidian distance obtained
by MOMA. The dataset was divided into two groups: 70% for
training and 30% for the test. Following feature selection and
cross-validation, a robust model that associated any combination
of 58 reaction variables to a predicted growth rate and succinic
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FIGURE 7 | Relationship between the number of knockouts, succinic acid production, growth rate, and flux difference.

acid production ratio was obtained. A measure of the importance
of the contribution of each feature to the random forest model
is shown in Figure 8 indicated by IncNodePurity. This model
exhibited a mean square error (MSE) value of 0.293 when using
the reaction flux of EX_succ_e flux obtained by FBA as a variable
response. For growth rate (biomass reaction) as a response
variable, the MSE value was 0.0002. Finally, when the Euclidian
distance for each mutant was used as the response variable, the
MSE value was 9,175.158, indicating that the Euclidian distance
is not a good response variable to predict cell behavior when
using the random forest model. Moreover, this result allows the
use of machine learning models to predict the largest number of
mutants than those obtained by OptKnock in terms of growth
rate and succinic acid production since OptKnock is more time-
consuming.

Figure 8A shows that PFL, LDH_D, GLYCDx, G3PD2, PDH,
and POX are the most important reactions to increase the amount
of succinic acid. These reactions are mainly associated with
the GldA–DhaKLM fermentative route and the Gly-3-P route
(Figure 1) in glycerol utilization (Blankschien et al., 2010), as well
as acetyl-CoA generation given by the PDH knockout. In around
24% of the mutants predicted, a combination of GLYCDx and
G3PD2 reactions was found to increase succinic acid production.
However, POX and LDH_D reactions were not present in iTA818
and iTA821 models, and PDH, G3PD2, and PFL were also found
to be the most important reactions, predicted to have an effect on
growth rate (Figure 8B).

The pyruvate dehydrogenase complex is a critical connection
point between glycolysis and the TCA cycle, both of which
function during aerobic respiration through catalyzing the
conversion of pyruvate to acetyl coenzyme A (acetyl-CoA)
(Schutte et al., 2015). PDH deactivation results in PFL carrying
the flux from pyruvate to acetyl-CoA (Khodayari et al., 2015).
Simple reaction knockouts show that PDH deletion results in a

growth rate reduction of ∼5%. Additionally, five reactions (FUM,
GAPD, PGK, PGM, and TPI) were predicted to have the most
significant reduction (8–10%) in growth rate during glycerol
utilization. Of those reactions, only FUM has a significant
positive effect over succinate production when this deletion was
carried out alone. However, in mutants in which both FUM
and PDH were predicted (59.45%), TPI appeared in around
12.60% (Figure 5). Then, the deletion of genes associated with
TPI in addition to FUM and PDH reactions could negatively
affect growth rate.

DISCUSSION

Glycerol metabolism in E. coli has been described in the literature
(Murarka et al., 2008; Booth, 2014). However, cell changes
are carried out as a response to stressful situations. In this
study, two conditions were tested for transcription response in
E. coli to further integrate to metabolic network modeling. Gene
expression-wide analyses reveal how cells have the ability to avoid
glycerol toxicity, increasing consumption. The most striking
response to glycerol consumption and the possible mechanism to
optimize succinic acid production from glycerol were revealed by
the combination of the transcriptome, metabolic modeling, and
machine learning analyses.

After glycerol incorporation in the cell mediated by GlpF,
glycerol can be metabolized through two pathways. The first is
mediated by the glycerol kinase GlpK through phosphorylation
of glycerol to Gly-3-P, followed by GlpD activity under aerobic
conditions, leading to dihydroxyacetone phosphate (DHAP)
(Figure 1). The alternative pathway consists of an oxidation
step by glycerol dehydrogenase (GldA) to yield dihydroxyacetone
(DHA), followed by phosphorylation by DHA kinase (DhaK) to
yield DHAP as well. In this study, overexpression of glpK was
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FIGURE 8 | Top 20 node purities obtained using random forest for reactions predicted by OptKnock. (A) Reaction knockout importance on succinic acid production.
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observed in both conditions, with a difference of around 20%.
This result is not surprising since the GlpK-mediated reaction
is a rate-limiting step in glycerol utilization (Herring et al.,
2006). However, it has been observed that under the optimized
culture conditions, the glycerol utilization rate is higher than
that in the evolved conditions, suggesting that other mechanisms
should exit in the cell to enhance glycerol utilization. Gly-3-P
is the first intermediate between the glycerol pathway and the
TCA cycle, as well as between the biosynthesis and catabolism
of lipids; however, accumulation of Gly-3-P can become toxic.
Thus, it is carefully regulated (Booth, 2014). The export of Gly-
3-P could be mediated by phoE and ompF membrane porins;
however, downregulation of phoE (−8.67 and −9.04 log2 FC for
the optimized culture and the evolved strain, respectively) and

upregulation of ompF (log2 FC 2.43) in the optimized culture
suggest that it could play an essential role in E. coli ATCC 8739
glycerol metabolism at high uptake rates avoiding toxicity.

The marked upregulation of glpQ (5.351 and 5.597 log2
FC for the optimized culture and evolved strain, respectively),
which catalyzes the hydrolysis of glycerol-phosphodiesters to
alcohol plus Gly-3-P together with ompF, could explain the
partially higher transcript abundance of glpT since the externally
generated (or supplied) Gly-3-P activates GlpT (Wong and
Kwan, 1992; Lemieux et al., 2005). This protein exchanges
Gly-3-P for phosphate, avoiding the toxicity of both Gly-3-P
and the inorganic phosphates (Booth, 2014). As a result and
considering that phosphate is necessary to increase glycerol
utilization, autoregulation of the PhoB/PhoR two-component
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regulatory system needs to be down-expressed. Downregulation
of PhoB/PhoR was observed in this study, which could explain
the achievement of optimal density (Gao and Stock, 2013), as well
as contribute to the regulation of glycerol phosphate metabolism
(Baek and Lee, 2007).

The transcriptional analysis also identified the differential
expression of both flavin oxidases glpD and glpABC. Once Gly-
3-P is in the cytoplasm, it is oxidized to dihydroxyacetone
phosphate by one of two flavin-dependent oxidases encoded by
glpD or glpABC genes under aerobic or anaerobic conditions,
respectively (Blankschien et al., 2010; Booth, 2014). In the
presence of oxygen or nitrates, GlpD transfers electrons to
the respective terminal oxidized. In contrast, under anaerobic
conditions, the GlpABC system transfers the electrons to
fumarate or nitrates (Unden and Bongaerts, 1997). GlpD
upregulation was expected since culture conditions were under
aerobic conditions, but a higher expression of the glpABC
system was surprising. Overexpression of glpABC under aerobic
conditions could be elucidated because of the activation of
fumarate reductase enzymes (Table 1) in the evolved strain
as a result of high cell densities during the ALE process.
However, in glycerol fermentation studies, the 1frdA mutant
has been shown to be beneficial for glycerol fermentation
because it prevents the negative impact of hydrogen by
maintaining suitable redox conditions (Murarka et al., 2008).
Moreover, its activity could be supported by sdhABCD since
they are structurally and functionally homologous (Guest, 1981).
Therefore, we hypothesized that frdABCD upregulation could
be the reason why enhancement in glycerol utilization was not
observed in the evolved strain, even when an optimized culture
medium was employed.

Insights on the molecular adaptive responses of E. coli to
glycerol consumption revealed by the transcriptional datasets
identified a marked hdeAB upregulation only in the evolved
strain. This is attractive since HdeAB are periplasmic proteins
that play a role in optimal protection at low pH (Masuda and
Church, 2003; Kern R. et al., 2007). Therefore, differences in
hdeAB upregulation in the evolved strain and the optimized
culture medium probably occur because acetate is the main
product in glycerol utilization, and under ALE conditions, pH
was not controlled. Moreover, the addition of a phosphate buffer
system using the salts Na2HPO4 and KH2PO4 provides the
culture medium used directly for the optimized condition with
a buffering capacity.

It was observed that the main and preferable route for glycerol
consumption is the pathway mediated by GlpK since this gene
was highly overexpressed in high glycerol consumption cultures.
Moreover, glpK deletion has also been observed to be essential for
glycerol utilization as the sole carbon source (Velur Selvamani
et al., 2014). Then, the deletion of this gene could result in a
non-effective bioconversion process. As a result, this gene should
not be taken into account for engineered E. coli strains using
glycerol as the carbon source even when the GLYK reaction was
repeatedly predicted to be knocked by OptKnock in ECC2 and
iTA821 since two pathways for glycerol utilization in E. coli exist.

Based on OptKnock and random forest model predictions,
four critical control points, glycolysis, pyruvate metabolism, the

pentose phosphate pathway, and the TCA cycle, are associated
with the overproduction of succinic acid. FUM and SUCDi
appear to be the most significant keys in the TCA cycle for
succinate overexpression. The results of this study suggest that
they are mutually exclusive. Parallelly, the knockout of by-
products such as acetate, formate, and lactate by deleting POX,
ACKr, PTAr, PFL, and LDH_D was highly predicted to be
knocked out. Those results are interesting since one of the
bottlenecks for industrial production of bio-based products is the
elimination of by-products, which could facilitate the recovery
and purification process. These results and those obtained in the
transcriptional responses suggest that deletion of the pta needs
to be, almost as mandatory, carried out since acetate production
becomes a competitive pathway in glycerol metabolism for
succinic acid production (Zhang et al., 2010).

The pyruvate dehydrogenase complex is a critical connection
point between glycolysis and the TCA cycle, both of which
function during aerobic respiration through catalyzing the
conversion of pyruvate to acetyl coenzyme A (acetyl-CoA)
(Schutte et al., 2015). PDH deactivation results in PFL carrying
the flux from pyruvate to acetyl-CoA (Khodayari et al., 2015).
Simple reaction knockouts show that PDH deletion results in a
growth rate reduction of ∼5%. Additionally, five reactions (FUM,
GAPD, PGK, PGM, and TPI) were predicted to have the most
significant reduction (8–10%) in growth rate during glycerol
utilization. Of those reactions, only FUM has a significant positive
effect over succinate production when this deletion was carried
out alone. These results indicate that those mutants predicted by
OptKnock, where FUM and PDH are predicted, need to betested
in the lab because it has been observed that a low growth rate
could negatively affect the profitability of industrial bio-based
production products (Chen et al., 2013a; Tafur Rangel et al.,
2018). However, in mutants in which both FUM and PDH were
predicted (59.45%), TPI appeared in around 12.60% (Figure 5).
Then, the deletion of genes associated with TPI in addition to
FUM and PDH reactions could negatively affect the growth rate.
This is because in the absence of TpiA, DHAP is converted
to methylglyoxal, which, even at submillimolar concentrations,
is a toxic compound (Booth, 2014). DHAP is the result of
the alternative pathway on glycerol metabolization consisting
of an oxidation step by glycerol dehydrogenase (GldA). DHAP
must be transformed into the general glycolytic pathway
through isomerization by triosephosphate isomerase (TpiA) as
glyceraldehyde-3-phosphate (GA3P). Therefore, deletion of tpiA
could result in growth inhibition and cell death in the presence
of glycerol as the only carbon source (Velur Selvamani et al.,
2014). However, since FBA is not able to capture regulation, this
situation could not be predicted by OptKnock.

Finally, computational models suggest that deletions of just
six to seven reaction knockouts are beneficial for industrial
production since the growth rate does not decrease extremely.
It is important to consider that a similar succinate production
could be achieved if six to eight reactions are knocked out
for all models. An assumption using optimization methods to
predict cell capabilities is that the cell could quickly adjust the
metabolism to maximize growth under certain conditions. This
affirmation could be true for WT strains because FBA predicts an
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optimal condition. However, in metabolically engineered strains,
the cell attempts to compensate for the genetic changes carried
out by the fewest changes in gene regulation until it achieves an
optimal state that could be predicted using FBA (Senger et al.,
2015). Then, FBA in engineered strains predicts a long-term
evolved state. Thus, an alternative to evaluate unevolved mutants
is the MOMA method (Segre et al., 2002). MOMA solves this
problem by finding the solution that is most similar to the WT
state (maximization of WT growth rate). Figure 7 shows a jump
in the Euclidian distance between the WT and mutant strains
when succinate production increases. This result could imply that
after genetic manipulation, microbial cell factories require to be
evolutionarily engineered. ALE studies have shown to provide the
cell with the ability to grow under selection pressure to go up
from a suboptimal state to optimal growth rate predicted using
in silico models (Ibarra et al., 2002). Moreover, since OptKnock
seeks to maximize the flux of a target chemical while maximizing
the growth rate, our predictions could be beneficial for further
ALE experiments because microbial cell factories have naturally
evolved to maximize the growth rate. Thus, the succinic acid
production rate would increase as biomass formation increases
(Shabestary and Hudson, 2016) by using ALE rounds after
metabolically engineering cells (Graf et al., 2019).

CONCLUSION

By adopting tools from various disciplines, computational
methods for systems metabolic engineering have been developed
to understand cell behavior and how level systems (RNA,
proteins, and metabolites, among others) can interact inside
the cell for industrial purposes. In the same way, E. coli
has been extensively studied to become a cell factory for the
production of useful bio-based chemicals and materials through
its native capabilities. However, there are some challenges that
still need to be overcome.

This study proposes that computational tools can accelerate
the optimization of cell factories by identifying metabolic
engineering targets (genes/reactions) and not just by predicting
mutants that may be biologically unviable. Therefore, systems
metabolic engineering reduces time in rational strain design and
guides in the selection of metabolic engineering targets based
on cell behavior under experimental conditions. Simultaneously,

departing from traditional computational tools, new methods
such as machine learning could be proposed as an interesting
alternative for the reduction of computational demand. However,
these techniques are dependent on the level of completeness and
accuracy of the metabolic model considered, which could be
improved by using omics data.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material. The RNA datasets
presented in this study can be found in the NCBI’s Gene
Expression Omnibus database and are accessible through GEO
Series accession number GSE140847. Further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

AT: conceptualization, methodology, software, validation,
investigation, visualization, formal analysis, and writing—
original draft preparation. WR, DM, and CO: investigation.
RC: methodology, software, and writing—review and editing.
JG: supervision and writing—review and editing. AG:
conceptualization, supervision, and writing—review and editing.
All authors contributed to the article and approved the
submitted version.

FUNDING

This research was supported by the Gobernación del Cesar
Program of Science, Technology, and Innovation for Higher
Education through Ph.D. scholarships from the Colombian
Ministry of Science, Technology, and Innovation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.633073/full#supplementary-material

REFERENCES
Ataman, M., Hernandez Gardiol, D. F., Fengos, G., and Hatzimanikatis, V.

(2017). redGEM: Systematic reduction and analysis of genome-scale metabolic
reconstructions for development of consistent core metabolic models. Senger
RS, editor. PLoS Comput. Biol. 13:e1005444. doi: 10.1371/journal.pcbi.1005444

Baek, J. H., and Lee, S. Y. (2007). Transcriptome analysis of phosphate starvation
response in Escherichia coli. J. Microbiol. Biotechnol. 17, 244–252.

Bao, H., Liu, R., Liang, L., Jiang, Y., Jiang, M., Ma, J., et al. (2014). Succinic
acid production from hemicellulose hydrolysate by an Escherichia coli mutant
obtained by atmospheric and room temperature plasma and adaptive evolution.
Enzyme Microb. Technol. 66, 10–15. doi: 10.1016/j.enzmictec.2014.04.017

Becker, S. A., and Palsson, B. O. (2008). Context-specific metabolic networks are
consistent with experiments. PLoS Comput. Biol. 4:e1000082. doi: 10.1371/
journal.pcbi.1000082

Blankschien, M. D., Clomburg, J. M., and Gonzalez, R. (2010). Metabolic
engineering of Escherichia coli for the production of succinate from glycerol.
Metab. Eng. 12, 409–419. doi: 10.1016/j.ymben.2010.06.002

Blazier, A. S., and Papin, J. A. (2012). Integration of expression data in genome-
scale metabolic network reconstructions. Front. Physiol. 3:299. doi: 10.3389/
fphys.2012.00299

Booth, I. R. (2014). Glycerol and methylglyoxal metabolism. EcoSal. Plus 1, 1–8.
Burgard, A. P., Pharkya, P., and Maranas, C. D. (2003). OptKnock: a bilevel

programming framework for identifying gene knockout strategies for microbial
strain optimization. Biotechnol. Bioeng. 84, 647–657.

Buschke, N., Schäfer, R., Becker, J., and Wittmann, C. (2013). Metabolic
engineering of industrial platform microorganisms for biorefinery applications
- Optimization of substrate spectrum and process robustness by rational and
evolutive strategies. Bioresour. Technol. 135, 544–554. doi: 10.1016/j.biortech.
2012.11.047

Frontiers in Genetics | www.frontiersin.org 14 March 2021 | Volume 12 | Article 633073120

https://www.frontiersin.org/articles/10.3389/fgene.2021.633073/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.633073/full#supplementary-material
https://doi.org/10.1371/journal.pcbi.1005444
https://doi.org/10.1016/j.enzmictec.2014.04.017
https://doi.org/10.1371/journal.pcbi.1000082
https://doi.org/10.1371/journal.pcbi.1000082
https://doi.org/10.1016/j.ymben.2010.06.002
https://doi.org/10.3389/fphys.2012.00299
https://doi.org/10.3389/fphys.2012.00299
https://doi.org/10.1016/j.biortech.2012.11.047
https://doi.org/10.1016/j.biortech.2012.11.047
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-633073 March 22, 2021 Time: 13:41 # 15

Tafur Rangel et al. Systems-Based Metabolic Engineering for Bio-Factories Design

Carlson, R., Fell, D., and Srienc, F. (2002). Metabolic pathway analysis of a
recombinant yeast for rational strain development. Biotechnol. Bioeng. 79,
121–134. doi: 10.1002/bit.10305

Cecchini, G., Schröder, I., Gunsalus, R. P., and Maklashina, E. (2002). Succinate
dehydrogenase and fumarate reductase from Escherichia coli. Biochim.
Biophys. Acta - Bioenerg. 1553, 140–157. doi: 10.1016/s0005-2728(01)00
238-9

Chagneau, C., Heyde, M., Alonso, S., Portalier, R., and Laloi, P. (2001). External-
pH-dependent expression of the maltose regulon and ompF gene in Escherichia
coli is affected by the level of glycerol kinase, encoded by glpK. J. Bacteriol. 183,
5675–5683. doi: 10.1128/jb.183.19.5675-5683.2001

Chen, X., Xu, G., Xu, N., Zou, W., Zhu, P., Liu, L., et al. (2013b). Metabolic
engineering of Torulopsis glabrata for malate production. Metab. Eng. 19,
10–16. doi: 10.1016/j.ymben.2013.05.002

Chen, X., Zhou, L., Tian, K., Kumar, A., Singh, S., Prior, B. A., et al. (2013a).
Metabolic engineering of Escherichia coli: a sustainable industrial platform for
bio-based chemical production. Biotechnol. Adv. 31, 1200–1223. doi: 10.1016/j.
biotechadv.2013.02.009

Chen, Y. P., Lin, H. H., Yang, C. D., Huang, S. H., and Tseng, C. P. (2012).
Regulatory role of cAMP receptor protein over Escherichia coli fumarase genes.
J. Microbiol. 50, 426–433. doi: 10.1007/s12275-012-1542-6

Conrad, T. M., Lewis, N. E., and Palsson, B. O. (2011). Microbial laboratory
evolution in the era of genome-scale science. Mol. Syst. Biol. 7:509. doi: 10.
1038/msb.2011.42

Edgar, R. (2002). Gene Expression Omnibus: NCBI gene expression and
hybridization array data repository. Nucleic Acids Res. 30, 207–210.

Feist, A. M., Zielinski, D. C., Orth, J. D., Schellenberger, J., Herrgard, M. J., and
Palsson, B. O. (2010). Model-driven evaluation of the production potential for
growth-coupled products of Escherichia coli. Metab. Eng. 12, 173–186. doi:
10.1016/j.ymben.2009.10.003

Fong, S. S., Joyce, A. R., and Palsson, B. Ø (2005). Parallel adaptive evolution
cultures of Escherichia coli lead to convergent growth. Genome Res. 15, 1365–
1372. doi: 10.1101/gr.3832305

Fong, S. S., and Marciniak, J. Y. (2003). Description and interpretation of adaptive
evolution of Escherichia coli K-12 MG1655 by using a genome-scale in silico
metabolic model. Society 185, 6400–6408. doi: 10.1128/jb.185.21.6400-6408.
2003

Förster, A. H., and Gescher, J. (2014). Metabolic engineering of Escherichia coli for
production of mixed-acid fermentation end products. Front. Bioeng. Biotechnol.
2:16. doi: 10.3389/fbioe.2014.00016

Furusawa, C., Horinouchi, T., Hirasawa, T., and Shimizu, H. (2013). Systems
metabolic engineering: the creation of microbial cell factories by rational
metabolic design and evolution. Adv. Biochem. Eng. Biotechnol. 131, 1–23.
doi: 10.1007/10_2012_137

Gao, R., and Stock, A. M. (2013). Evolutionary tuning of protein expression levels
of a positively autoregulated two-component system. PLoS Genet. 9:e1003927.
doi: 10.1371/journal.pgen.1003927

Götz, S., García-Gómez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J.,
et al. (2008). High-throughput functional annotation and data mining with the
Blast2GO suite. Nucleic Acids Res. 36, 3420–3435. doi: 10.1093/nar/gkn176

Graf, M., Haas, T., Müller, F., Buchmann, A., Harm-Bekbenbetova, J., Freund, A.,
et al. (2019). Continuous adaptive evolution of a fast-growing corynebacterium
glutamicum strain independent of protocatechuate. Front. Microbiol. 10:1648.
doi: 10.3389/fmicb.2019.01648

Guest, J. R. (1981). Partial replacement of succinate dehydrogenase function by
phage- and plasmid-specified fumarate reductase in Escherichia coli. J. Gen.
Microbiol. 122, 171–179. doi: 10.1099/00221287-122-2-171

Haggart, C. R., Bartell, J. A., Saucerman, J. J., and Papin, J. A. (2011). Whole-
genome metabolic network reconstruction and constraint-based modeling.
Methods Enzymol. 500, 411–433. doi: 10.1016/b978-0-12-385118-5.00021-9

Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., et al.
(2019). Creation and analysis of biochemical constraint-based models using the
COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702.

Herring, C. D., Raghunathan, A., Honisch, C., Patel, T., Applebee, M. K., Joyce,
A. R., et al. (2006). Comparative genome sequencing of Escherichia coli allows
observation of bacterial evolution on a laboratory timescale. Nat. Genet. 38,
1406–1412. doi: 10.1038/ng1906

Ibarra, R. U., Edwards, J. S., and Palsson, B. O. (2002). Escherichia coli K-12
undergoes adaptive evolution to achieve in silico predicted optimal growth.
Nature 420, 186–189. doi: 10.1038/nature01149

Jones, H. M., and Gunsalus, R. P. (1987). Regulation of Escherichia coli fumarate
reductase (frdABCD) operon expression by respiratory electron acceptors and
the fnr gene product. J. Bacteriol. 169, 3340–3349. doi: 10.1128/jb.169.7.3340-
3349.1987

Joyce, A. R., Reed, J. L., White, A., Edwards, R., Osterman, A., Baba, T., et al. (2006).
Experimental and computational assessment of conditionally essential genes in
Escherichia coli. J. Bacteriol. 188, 8259–8271. doi: 10.1128/jb.00740-06

Kern, A., Tilley, E., Hunter, I. S., Legiša, M., and Glieder, A. (2007). Engineering
primary metabolic pathways of industrial micro-organisms. J. Biotechnol. 129,
6–29. doi: 10.1016/j.jbiotec.2006.11.021

Kern, R., Malki, A., Abdallah, J., Tagourti, J., and Richarme, G. (2007). Escherichia
coli HdeB is an acid stress chaperone. J. Bacteriol. 189, 603–610. doi: 10.1128/
jb.01522-06

Khodayari, A., Chowdhury, A., and Maranas, C. D. (2015). Succinate
overproduction: a case study of computational strain design using a
comprehensive Escherichia coli kinetic model. Front. Bioeng. Biotechnol.
2:76. doi: 10.3389/fbioe.2014.00076

Kim, J. (2012). Development and Applications of Integrated Metabolic and
Transcriptional Regulatory Network Models. Madison, WI: University of
Wisconsin–Madison.

Kim, Y. M., Cho, H. S., Jung, G. Y., and Park, J. M. (2011). Engineering the pentose
phosphate pathway to improve hydrogen yield in recombinant Escherichia coli.
Biotechnol. Bioeng. 108, 2941–2946. doi: 10.1002/bit.23259

King, Z. A., Lu, J., Dräger, A., Miller, P., Federowicz, S., Lerman, J. A., et al.
(2016). BiGG Models: a platform for integrating, standardizing and sharing
genome-scale models. Nucleic Acids Res. 44(D1), D515–D522. doi: 10.1093/nar/
gkv1049

Kurzrock, T., and Weuster-Botz, D. (2010). Recovery of succinic acid from
fermentation broth. Biotechnol. Lett. 32, 331–339. doi: 10.1007/s10529-009-
0163-6

Lee, D. H., and Palsson, B. O. (2010). Adaptive evolution of escherichia coli K-12
MG1655 during growth on a nonnative carbon source, L-l,2-propanediol. Appl.
Environ. Microbiol. 76, 4158–4168. doi: 10.1128/aem.00373-10

Lee, J. W., Na, D., Park, J. M., Lee, J., Choi, S., and Lee, S. Y. (2012).
Systems metabolic engineering of microorganisms for natural and non-natural
chemicals. Nat. Chem. Biol. 8, 536–546. doi: 10.1038/nchembio.970

Lemieux, M. J., Huang, Y., and Wang, D. N. (2005). Crystal structure and
mechanism of GlpT, the glycerol-3-phosphate transporter from E. coli.
J. Electron. Microsc. (Tokyo). 54(Suppl. 1), 43–46.

Li, J., Poursat, M. A., Drubay, D., Motz, A., Saci, Z., Morillon, A., et al. (2015).
A dual model for prioritizing cancer mutations in the non-coding genome
based on germline and somatic events. PLoS Comput Biol. 11:e1004583. doi:
10.1371/journal.pcbi.1004583

Lin, H., Bennett, G. N., and San, K.-Y. (2005). Metabolic engineering of
aerobic succinate production systems in Escherichia coli to improve process
productivity and achieve the maximum theoretical succinate yield. Metab. Eng.
7, 116–127. doi: 10.1016/j.ymben.2004.10.003

López-Garzón, C. S., and Straathof, A. J. J. (2014). Recovery of carboxylic acids
produced by fermentation. Biotechnol. Adv. 32, 873–904. doi: 10.1016/j.
biotechadv.2014.04.002

Machado, D., and Herrgård, M. (2014). Systematic evaluation of methods for
integration of transcriptomic data into constraint-based models of metabolism.
PLoS Comput. Biol. 10:e1003580. doi: 10.1371/journal.pcbi.1003580

Makino, K., Shinagawa, H., Amemura, M., Kawamoto, T., Yamada, M., and Nakata,
A. (1989). Signal transduction in the phosphate regulon of Escherichia coli
involves phosphotransfer between PhoR and PhoB proteins. J. Mol. Biol. 210,
551–559. doi: 10.1016/0022-2836(89)90131-9

Masuda, N., and Church, G. M. (2003). Regulatory network of acid resistance genes
in Escherichia coli. Mol. Microbiol. 48, 699–712. doi: 10.1046/j.1365-2958.2003.
03477.x

Monk, J. M., Charusanti, P., Aziz, R. K., Lerman, J. A., Premyodhin, N., Orth, J. D.,
et al. (2013). Genome-scale metabolic reconstructions of multiple Escherichia
coli strains highlight strain-specific adaptations to nutritional environments.
Proc. Natl. Acad. Sci. U.S.A. 110, 20338–20343. doi: 10.1073/pnas.1307797110

Frontiers in Genetics | www.frontiersin.org 15 March 2021 | Volume 12 | Article 633073121

https://doi.org/10.1002/bit.10305
https://doi.org/10.1016/s0005-2728(01)00238-9
https://doi.org/10.1016/s0005-2728(01)00238-9
https://doi.org/10.1128/jb.183.19.5675-5683.2001
https://doi.org/10.1016/j.ymben.2013.05.002
https://doi.org/10.1016/j.biotechadv.2013.02.009
https://doi.org/10.1016/j.biotechadv.2013.02.009
https://doi.org/10.1007/s12275-012-1542-6
https://doi.org/10.1038/msb.2011.42
https://doi.org/10.1038/msb.2011.42
https://doi.org/10.1016/j.ymben.2009.10.003
https://doi.org/10.1016/j.ymben.2009.10.003
https://doi.org/10.1101/gr.3832305
https://doi.org/10.1128/jb.185.21.6400-6408.2003
https://doi.org/10.1128/jb.185.21.6400-6408.2003
https://doi.org/10.3389/fbioe.2014.00016
https://doi.org/10.1007/10_2012_137
https://doi.org/10.1371/journal.pgen.1003927
https://doi.org/10.1093/nar/gkn176
https://doi.org/10.3389/fmicb.2019.01648
https://doi.org/10.1099/00221287-122-2-171
https://doi.org/10.1016/b978-0-12-385118-5.00021-9
https://doi.org/10.1038/ng1906
https://doi.org/10.1038/nature01149
https://doi.org/10.1128/jb.169.7.3340-3349.1987
https://doi.org/10.1128/jb.169.7.3340-3349.1987
https://doi.org/10.1128/jb.00740-06
https://doi.org/10.1016/j.jbiotec.2006.11.021
https://doi.org/10.1128/jb.01522-06
https://doi.org/10.1128/jb.01522-06
https://doi.org/10.3389/fbioe.2014.00076
https://doi.org/10.1002/bit.23259
https://doi.org/10.1093/nar/gkv1049
https://doi.org/10.1093/nar/gkv1049
https://doi.org/10.1007/s10529-009-0163-6
https://doi.org/10.1007/s10529-009-0163-6
https://doi.org/10.1128/aem.00373-10
https://doi.org/10.1038/nchembio.970
https://doi.org/10.1371/journal.pcbi.1004583
https://doi.org/10.1371/journal.pcbi.1004583
https://doi.org/10.1016/j.ymben.2004.10.003
https://doi.org/10.1016/j.biotechadv.2014.04.002
https://doi.org/10.1016/j.biotechadv.2014.04.002
https://doi.org/10.1371/journal.pcbi.1003580
https://doi.org/10.1016/0022-2836(89)90131-9
https://doi.org/10.1046/j.1365-2958.2003.03477.x
https://doi.org/10.1046/j.1365-2958.2003.03477.x
https://doi.org/10.1073/pnas.1307797110
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-633073 March 22, 2021 Time: 13:41 # 16

Tafur Rangel et al. Systems-Based Metabolic Engineering for Bio-Factories Design

Monk, J. M., Koza, A., Campodonico, M. A., Machado, D., Seoane, J. M., Palsson,
B. O., et al. (2016). Multi-omics quantification of species variation of Escherichia
coli links molecular features with strain phenotypes. Cell Syst. 3, 238–251.e12.

Monk, J. M., Lloyd, C. J., Brunk, E., Mih, N., Sastry, A., King, Z., et al. (2017).
iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol.
35, 904–908. doi: 10.1038/nbt.3956

Murarka, A., Dharmadi, Y., Yazdani, S. S., and Gonzalez, R. (2008). Fermentative
utilization of glycerol by Escherichia coli and its implications for the production
of fuels and chemicals. Appl. Environ. Microbiol. 74, 1124–1135. doi: 10.1128/
aem.02192-07

Nordlander, B., Krantz, M., and Hohmann, S. (2008). Hog1-mediated metabolic
adjustments following hyperosmotic shock in the yeast. Current 20, 51–79.
doi: 10.1007/4735_2007_0256

O’Brien, E. J., Monk, J. M., and Palsson, B. O. (2015). Using genome-scale models to
predict biological capabilities. Cell 161, 971–987. doi: 10.1016/j.cell.2015.05.019

Pharkya, P., Burgard, A. P., and Maranas, C. D. (2003). Exploring the
overproduction of amino acids using the bilevel optimization framework
OptKnock. Biotechnol. Bioeng. 84, 887–899. doi: 10.1002/bit.10857

Pharkya, P., Burgard, A. P., and Maranas, C. D. (2004). OptStrain: a computational
framework for redesign of microbial production systems. Genome Res. 14,
2367–2376. doi: 10.1101/gr.2872004

Pharkya, P., and Maranas, C. D. (2006). An optimization framework for identifying
reaction activation/inhibition or elimination candidates for overproduction in
microbial systems. Metab. Eng. 8, 1–13. doi: 10.1016/j.ymben.2005.08.003

Portela, C., Villas-Bôas, S., Rocha, I., and Ferreira, E. C. (2013). Genome scale
metabolic network reconstruction of the pathogen Enterococcus faecalis. IFAC
Proc. Volumes 46, 131–136. doi: 10.3182/20131216-3-in-2044.00067

Ranganathan, S., Suthers, P. F., and Maranas, C. D. (2010). OptForce: an
optimization procedure for identifying all genetic manipulations leading to
targeted overproductions. PLoS Comput. Biol. 6:e1000744. doi: 10.1371/journal.
pcbi.1000744

Rangel, A. E. T., Gómez Ramírez, J. M., and González Barrios, A. F. (2020).
From industrial by-products to value-added compounds: the design of efficient
microbial cell factories by coupling systems metabolic engineering and
bioprocesses. Biofuels Bioprod. Biorefin. 14, 1228–1238. doi: 10.1002/bbb.2127

Ruckerbauer, D. E., Jungreuthmayer, C., and Zanghellini, J. (2015). Predicting
genetic engineering targets with Elementary Flux Mode Analysis: a review of
four current methods. N. Biotechnol. 32, 534–546. doi: 10.1016/j.nbt.2015.
03.017

Schutte, K. M., Fisher, D. J., Burdick, M. D., Mehrad, B., Mathers, A. J., Mann, B. J.,
et al. (2015). Escherichia coli pyruvate dehydrogenase complex is an important
component of CXCL10-mediated antimicrobial activity. Infect. Immun. 84,
320–328. doi: 10.1128/iai.00552-15

Segre, D., Vitkup, D., and Church, G. M. (2002). Analysis of optimality in natural
and perturbed metabolic networks. Proc. Natl. Acad. Sci. U.S.A. 99, 15112–
15117. doi: 10.1073/pnas.232349399

Senger, R., Yen, J., Tanniche, I., Fisher, A., Gillaspy, G., and Bevan, D. (2015).
Designing metabolic engineering strategies with genome-scale metabolic flux
modeling. Adv. Genomics Genet. 5:93. doi: 10.2147/agg.s58494

Shabestary, K., and Hudson, E. P. (2016). Computational metabolic engineering
strategies for growth-coupled biofuel production by Synechocystis. Metab. Eng.
Commun. 3, 216–226. doi: 10.1016/j.meteno.2016.07.003

Shams Yazdani, S., and Gonzalez, R. (2008). Engineering Escherichia coli for the
efficient conversion of glycerol to ethanol and co-products. Metab. Eng. 10,
340–351. doi: 10.1016/j.ymben.2008.08.005

Tafur Rangel, A. E., Camelo Valera, L. C., Gómez Ramírez, J. M., and González
Barrios, A. F. (2018). Effects of metabolic engineering on downstream

processing operational cost and energy consumption: the case of Escherichia
coli’s glycerol conversion to succinic acid. J. Chem. Technol. Biotechnol. 93,
2011–2020. doi: 10.1002/jctb.5432

Unden, G., and Bongaerts, J. (1997). Alternative respiratory pathways of
Escherichia coli: energetics and transcriptional regulation in response to
electron acceptors. Biochim. Biophys. Acta - Bioenerg. 1320, 217–234. doi:
10.1016/s0005-2728(97)00034-0

Varet, H., Brillet-Guéguen, L., Coppée, J. Y., and Dillies, M. A. (2016). SARTools:
a DESeq2- and edgeR-based R pipeline for comprehensive differential analysis
of RNA-Seq data. Mills K, editor. PLoS One 11:e0157022. doi: 10.1371/journal.
pone.0157022

Velur Selvamani, R. S., Telaar, M., Friehs, K., and Flaschel, E. (2014). Antibiotic-
free segregational plasmid stabilization in Escherichia coli owing to the
knockout of triosephosphate isomerase (tpiA). Microb. Cell Fact. 13:58. doi:
10.1186/1475-2859-13-58

Vlysidis, A., Binns, M., Webb, C., and Theodoropoulos, C. (2011). A techno-
economic analysis of biodiesel biorefineries: assessment of integrated designs
for the co-production of fuels and chemicals. Energy 36, 4671–4683. doi: 10.
1016/j.energy.2011.04.046

Wang, Y., Manow, R., Finan, C., Wang, J., Garza, E., and Zhou, S. (2011).
Adaptive evolution of nontransgenic Escherichia coli KC01 for improved
ethanol tolerance and homoethanol fermentation from xylose. J. Ind. Microbiol.
Biotechnol. 38, 1371–1377. doi: 10.1007/s10295-010-0920-5

Wong, K. K., and Kwan, H. S. (1992). Transcription of glpT of Escherichia coli K12
is regulated by anaerobiosis and fnr. FEMS Microbiol. Lett. 94, 15–18.

Woo, H. M., and Park, J. B. (2014). Recent progress in development of synthetic
biology platforms and metabolic engineering of Corynebacterium glutamicum.
J. Biotechnol. 180, 43–51. doi: 10.1016/j.jbiotec.2014.03.003

Yin, X., Li, J., Shin, H. D., Du, G., Liu, L., and Chen, J. (2015). Metabolic engineering
in the biotechnological production of organic acids in the tricarboxylic acid
cycle of microorganisms: advances and prospects. Biotechnol. Adv. 33, 830–841.
doi: 10.1016/j.biotechadv.2015.04.006

Zhang, B., Skory, C. D., and Yang, S. T. (2012). Metabolic engineering of
Rhizopus oryzae: effects of overexpressing pyc and pepc genes on fumaric acid
biosynthesis from glucose. Metab. Eng. 14, 512–520. doi: 10.1016/j.ymben.2012.
07.001

Zhang, J., Wu, C., Du, G., and Chen, J. (2012). Enhanced acid tolerance in
Lactobacillus casei by adaptive evolution and compared stress response during
acid stress. Biotechnol. Bioprocess Eng. 17, 283–289.

Zhang, X., Shanmugam, K. T., and Ingram, L. O. (2010). Fermentation of glycerol
to succinate by metabolically engineered strains of escherichia coli. Appl.
Environ. Microbiol. 76, 2397–2401.

Zhu, Q., and Jackson, E. N. (2015). Metabolic engineering of Yarrowia lipolytica for
industrial applications. Curr. Opin. Biotechnol. 36, 65–72. doi: 10.1016/j.copbio.
2015.08.010

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Tafur Rangel, Ríos, Mejía, Ojeda, Carlson, Gómez Ramírez
and González Barrios. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 16 March 2021 | Volume 12 | Article 633073122

https://doi.org/10.1038/nbt.3956
https://doi.org/10.1128/aem.02192-07
https://doi.org/10.1128/aem.02192-07
https://doi.org/10.1007/4735_2007_0256
https://doi.org/10.1016/j.cell.2015.05.019
https://doi.org/10.1002/bit.10857
https://doi.org/10.1101/gr.2872004
https://doi.org/10.1016/j.ymben.2005.08.003
https://doi.org/10.3182/20131216-3-in-2044.00067
https://doi.org/10.1371/journal.pcbi.1000744
https://doi.org/10.1371/journal.pcbi.1000744
https://doi.org/10.1002/bbb.2127
https://doi.org/10.1016/j.nbt.2015.03.017
https://doi.org/10.1016/j.nbt.2015.03.017
https://doi.org/10.1128/iai.00552-15
https://doi.org/10.1073/pnas.232349399
https://doi.org/10.2147/agg.s58494
https://doi.org/10.1016/j.meteno.2016.07.003
https://doi.org/10.1016/j.ymben.2008.08.005
https://doi.org/10.1002/jctb.5432
https://doi.org/10.1016/s0005-2728(97)00034-0
https://doi.org/10.1016/s0005-2728(97)00034-0
https://doi.org/10.1371/journal.pone.0157022
https://doi.org/10.1371/journal.pone.0157022
https://doi.org/10.1186/1475-2859-13-58
https://doi.org/10.1186/1475-2859-13-58
https://doi.org/10.1016/j.energy.2011.04.046
https://doi.org/10.1016/j.energy.2011.04.046
https://doi.org/10.1007/s10295-010-0920-5
https://doi.org/10.1016/j.jbiotec.2014.03.003
https://doi.org/10.1016/j.biotechadv.2015.04.006
https://doi.org/10.1016/j.ymben.2012.07.001
https://doi.org/10.1016/j.ymben.2012.07.001
https://doi.org/10.1016/j.copbio.2015.08.010
https://doi.org/10.1016/j.copbio.2015.08.010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-637141 March 29, 2021 Time: 17:31 # 1

REVIEW
published: 06 April 2021

doi: 10.3389/fgene.2021.637141

Edited by:
Fatemeh Maghuly,

University of Natural Resources
and Life Sciences, Vienna, Austria

Reviewed by:
Uday Chand Jha,

Indian Institute of Pulses Research
(ICAR), India

Atsushi Fukushima,
RIKEN, Japan

*Correspondence:
Rakesh Kumar

rakeshkumar@cuk.ac.in
Anirudh Kumar

anirudh.kumar@igntu.ac.in

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Systems Biology,
a section of the journal

Frontiers in Genetics

Received: 02 December 2020
Accepted: 02 March 2021

Published: 06 April 2021

Citation:
Kumar R, Sharma V, Suresh S,

Ramrao DP, Veershetty A, Kumar S,
Priscilla K, Hangargi B, Narasanna R,
Pandey MK, Naik GR, Thomas S and

Kumar A (2021) Understanding Omics
Driven Plant Improvement and de
novo Crop Domestication: Some

Examples. Front. Genet. 12:637141.
doi: 10.3389/fgene.2021.637141

Understanding Omics Driven Plant
Improvement and de novo Crop
Domestication: Some Examples
Rakesh Kumar1*†, Vinay Sharma2†, Srinivas Suresh1, Devade Pandurang Ramrao1,
Akash Veershetty1, Sharan Kumar1, Kagolla Priscilla1, BhagyaShree Hangargi1,
Rahul Narasanna1, Manish Kumar Pandey2, Gajanana Ramachandra Naik1,
Sherinmol Thomas3 and Anirudh Kumar4*

1 Department of Life Science, Central University of Karnataka, Kalaburagi, India, 2 International Crops Research Institute
for the Semi-Arid Tropics, Hyderabad, India, 3 Department of Biosciences & Bioengineering, Indian Institute of Technology
Bombay, Mumbai, India, 4 Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India

In the current era, one of biggest challenges is to shorten the breeding cycle for rapid
generation of a new crop variety having high yield capacity, disease resistance, high
nutrient content, etc. Advances in the “-omics” technology have revolutionized the
discovery of genes and bio-molecules with remarkable precision, resulting in significant
development of plant-focused metabolic databases and resources. Metabolomics has
been widely used in several model plants and crop species to examine metabolic
drift and changes in metabolic composition during various developmental stages and
in response to stimuli. Over the last few decades, these efforts have resulted in
a significantly improved understanding of the metabolic pathways of plants through
identification of several unknown intermediates. This has assisted in developing several
new metabolically engineered important crops with desirable agronomic traits, and has
facilitated the de novo domestication of new crops for sustainable agriculture and food
security. In this review, we discuss how “omics” technologies, particularly metabolomics,
has enhanced our understanding of important traits and allowed speedy domestication
of novel crop plants.

Keywords: omics, metabolomics, de novo domestication, crop improvement, domesticated-genes

INTRODUCTION

The process of crop domestication began approximately 12,000 years ago, and was an important
milestone during human civilization and led the foundation of modern agriculture. In the 21st
century, most of the cultivated crops are domesticated from their wild ancestral progenitors (Meyer
et al., 2012). During the domestication process plants were selected based on visible traits guided
by needs of the time which led to the selection of only few desired alleles and dilution of the genetic
variation present within the crop (Figure 1). For example, in cereals like wheat and rice, traits
such as increase in the number of seeds per plant, uniform seed maturation, and non-shattering of
seeds were preferred over the size of kernels during early domestication (Si et al., 2016). However,
the selection of such traits varies greatly from plant to plant or between crops. For instance, in
fleshy fruits or berries such as tomato, eggplant and apple, the size of the fruits and berries were
preferred over overall yield (Zhu et al., 2018). Likewise, in tuber producing plants such as potato
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the tuber size is one of the preferred traits (Fernie and Yan, 2019).
Surprisingly, cultivated plant species represent only 250 fully
domesticated species among 2500 species, which have undergone
the process of domestication, and represent 160 plant families
(Smýkal et al., 2018). This proportion is even starker considering
the total plant diversity available for the cultivation or those,
which are already being cultivated in different places (semi-
cultivated species). For example, around 400,000 semi-cultivated
plant species are currently known which can be utilized for
designing future crops (Smýkal et al., 2018; Fernie and Yan, 2019).

The process of domestication of a species is a very slow
and steady process. In fact, the modern cultivars available
were generated following a long series of events: (a) Neolithic
Revolution, (b) Columbian Exchange, (c) Industrial Revolution,
(d) Green Revolution, and (e) Genomic Revolutions (Smýkal
et al., 2018). Presently, to feed an ever-growing global population
in the face of climate change is challenge for agriculture especially
due to reduction of the arable lands due consistent conversion
of lands into semi-arid areas and nutrient deficient land along
with increase in soil pH or salinity. Therefore, a more rapid
method of developing elite climate smart cultivars with desired
traits is required. This could be achieved through integrated
OMICS approaches, which include genomics, transcriptomics,
proteomics, metabolomics and phenomics integrated with
bioinformatics analyses (Kumar et al., 2017, 2018; Sharma
et al., 2021). Plant OMICs based research have played very
important role in deciphering metabolic pathways and their
molecular regulators, which govern key traits and several
plant developmental processes (Kumar et al., 2017; Razzaq
et al., 2019). In the past decade there has been a significant
progress in the field of both sequencing (van Dijk et al.,
2018; Kumar et al., 2020; Schmidt et al., 2020) and analytical
methods for the detection of molecules (Ren et al., 2018;
Gilmore et al., 2019; Macklin et al., 2020), which has not
only improved detection throughput but also the accuracy
and the sensitivity (Kumar et al., 2017; Chiang et al., 2018;
Qi et al., 2019).

In the past, for the selection of traits breeding programs
involved phenotypic selection of plants (which are guided by
metabolic pathways) (Kiszonas and Morris, 2018). For instance,
during the Green Revolution (from 1960 to 1980), development
of semi-dwarf high yielding varieties of rice and wheat involved
phenotypic selections of improved lines which actually involved
selection of gibberellic acid pathway genes including the GA20
oxidase and DELLA protein encoding genes (Silverstone and
Sun, 2000). In fact, most of the traits, which were targeted
for the Green Revolution, are controlled by one or more
metabolic pathways. Therefore, precise editing of these metabolic
pathways can help in the development of varieties in a very
short time (Rodríguez-Leal et al., 2017; Zhang Y. et al., 2018;
Fernie and Yan, 2019). Previously, most of the reviews on
plant omics have focused on the instrumentation involved and
results obtained by different researchers (Kumar et al., 2017;
Mangul et al., 2019; Misra et al., 2019; Tang and Aristilde,
2020). In this review, we represent how this omics knowledge
can be utilized for development of improved cultivars by
targeting metabolic pathways and also emphasize the use of this

information for de novo domestication of wild ancestral species
for sustainable food security.

ROLE OF OMICS DATA IN
UNDERSTANDING PLANT TRAITS

Genomics plays an important role in the identification of
quantitative trait loci (QTLs) and genes controlling important
traits, particularly in domesticated crops (Fernie and Yan,
2019). Moving forward, great insights have been gleaned from
genome sequencing and re-sequencing programs examining
wild ancestral species of domesticated crops (Unamba et al.,
2015). In plant genomics, Next Generation Sequencing (NGS)
has played a very important role and provided opportunities
in the field of functional genomics due to the availability of
reference genomes for several model and crop plant species.
These resources combined with high quality re-sequencing offers
huge potential for discovery of causal genes and mechanisms
associated with the key agronomic traits (Thudi et al., 2016; Chen
et al., 2019; Varshney et al., 2019). Re-sequencing also enriched
the availability of SNPs data and can be utilized for genomics-
based studies such as GWAS (genome wide association study)
and QTL-seq (Kumar et al., 2020), both of which are useful tools
for trait mapping (Rivas et al., 2011; Zhu et al., 2011; Zhang
et al., 2021). With the advent of these technologies combined
with advances in metabolomics such as integration of GWAS
with metabolomics efficient means for dissecting underlying
molecular mechanisms involved in the growth and development
are available (Table 1; Fang and Luo, 2019).

Sequencing and QTL-seq Based Trait
Discovery
Presently, QTL-seq is one of the most successful approach
developed for the gene discovery and trait dissection (Kumar
et al., 2020; Pandey et al., 2020). This approach offers preliminary
idea for positional cloning for linked genetic factors or
genes, and it has excellent success in marker-assisted selection
for crop improvement programs (Xu F. et al., 2015). With
the advancements in NGS technologies new approaches like
quantitative trait locus sequencing (QTL-seq) has been utilized
for exploring rapid QTL or gene identification (Takagi et al.,
2013). In QTL-seq approach, the extreme highest and lowest
genotypes are selected from the mapping population for target
traits, followed by mixing an equal amount of DNA from
each bulk to build up two extreme bulk (High bulk and low
bulk). Then, each bulk is sequenced and assembled and gene
annotation is performed. This approach combined with Bulked
segregant analysis, accompanied by whole genome re-sequencing
technologies, is more effective and capable than the previous
QTL detection methods (Takagi et al., 2013). Utilizing QTL-seq
approach several QTLs and genes for different rice phenotypes
(Takagi et al., 2013; Daware et al., 2016; Ogiso-Tanaka et al.,
2017; Yang et al., 2017; Kadambari et al., 2018; Qin et al.,
2018; Bommisetty et al., 2020; Nubankoh et al., 2020), soybean
(Song et al., 2017; Zhang X. et al., 2018), chickpea (Singh et al.,
2016; Deokar et al., 2019), tomato (Illa-Berenguer et al., 2015),
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FIGURE 1 | Representation of domestication process and the loss of useful genetic variation due to selective breeding and selection of few alleles.

groundnut (Kumar et al., 2020; Luo et al., 2019; Zhao et al., 2020),
have been effectively identified. This approach has also been
deployed across in several crops due to its inherent ability to
understand both qualitative and quantitative traits (Table 2). For
instance, Kumar et al. (2020) identified the role of two genes
RING-H2 finger protein and zeaxanthin epoxidase in fresh seed
dormancy in groundnut; both genes are known to control abscisic
acid (ABA) accumulation. Very recently, Ramos et al. (2020)
identified three QTLs (genomic regions) viz QtlPC-C04, QtlPC-
C11 and QtlPC-C14 (linked to genes R1R2R3) associated with
resistance to Phytophthora capsici Leonian which causes crown
rot in squash (Cucurbita moschata). The most significant benefit
of whole genome sequencing is that it allows the identification of
causative mutations in target chromosomal regions. Additionally,
this method identifies molecular markers which are located inside
the harboring chromosomal region that can also be used to
narrow down the genomic region which will help in mining the
trait linked genes.

RNA-seq Based Trait Discovery
Advances in RNA sequencing (RNA-seq) technologies and
approaches have made significant impact toward trait discovery,
and have enabled plant developmental studies characterizing
expression patterns of all the functional genes as well as
regulatory RNAs (Nayak et al., 2019). RNA-seq is a more
robust approach for precise measurement of transcripts and
has been widely used for transcript profiling in several plant
species (Cloonan et al., 2008; Wang et al., 2009). This data is
vital for improving genome annotations, and offers precise gene
position information for functional characterization and genome
editing. The RNA-seq approach has been deployed for molecular
characterization of several important agronomic traits such as
seed size (Wan et al., 2017), seed coat color (Wan et al., 2018),
seed coat cracking (Wan et al., 2016), seed and bud dormancy
(Qi et al., 2015; Zhu et al., 2015; Khalil-Ur-Rehman et al.,
2017), fatty acid biosynthesis and oil quality (Nayak et al., 2019),
nutritional quality traits (Reddy and Ulaganathan, 2015), etc.,
which can offer precise gene information for developing designer
crops for future. Also, RNA-seq have been used to understand
the molecular mechanisms associated with salt tolerance in rice
(Zhou et al., 2016; Lei et al., 2020); Chinese rye grass (Sun et al.,

2013), and maize (Liang and Schnable, 2016). In wheat, RNA-seq
study reported the drought responsive molecular pathways along
with key candidate genes and molecular markers in the root
tissue (Iquebal et al., 2019). RNA-seq has also been shown to be
highly useful in combination with other -omics methods for gene
discovery and pathway investigations.

Proteomics Enabled Genetic Trait
Understanding
Knowledge of proteomics is being used to map the translated
genes and loci controlling the expression of respective genes.
It helps in identification of proteins responsible for bringing
intricate phenotypic variations. High throughput proteomics
has gone beyond the identification of individual proteins, to
quantitative profiling, post translational modification studies,
signaling, protein–protein interaction and many more areas.
Photosynthesis plays major role in biomass production and yield.
Change in protein profile studies was performed in chlorophyll
deficient Brassica napus leaves which established the relationship
between chlorophyll biosynthesis and photosynthesis (Chu et al.,
2015). Xylem sap proteomics has revealed several insights related
to cell wall formation (Zhang M. et al., 2014), leaf senescence
(Wang et al., 2012) biotic and abiotic stress response (Alvarez
et al., 2008; González et al., 2012), cell to cell communication
(Agrawal et al., 2010), and root–shoot communication (Krishnan
et al., 2011). The enhanced level of redox proteins, stress
and defense related proteins, calcium ion regulation proteins,
signaling G-protein and RNA metabolism related proteins were
induced in phloem sap study. Recently, proteomics study
revealed that low light stress obstructs carbon fixation and
OsGAPB overexpression augment tolerance to low light stress
conceivably by increasing CO2 assimilation and chlorophyll
accumulation in rice (Liu et al., 2020). Interestingly, simultaneous
upregulation of both biotic and abiotic stress responsive protein
has been observed during bacterial blight infection in rice, which
indicate the activation of common pathway (Kumar et al., 2015).
Whereas in case of rice-M. oryzae interaction PBZ1, OsPR-10,
SalT, Glu1, Glu2, and TLP proteins were up-regulated (Kim et al.,
2004). iTRAQ proteomics study of Oryza officinalis provided
evidences that proteins related to biosynthesis of secondary
metabolites and carbon metabolism were mostly enriched after
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TABLE 1 | List of selected studies involved mQTL and mGWAS approach.

Plant Population/
accessions

Approach Tissue Study Significant outcome References

Apple
(Malus domestica)

Prima × Fiesta LC-MS Fruit mQTL Identified 669 mQTLs, includes a major mQTL
hotspot on LG16 contains gene leucoanthocyanidin
reductase belong to the phenylpropanoid pathway.

Khan et al., 2012

Arabidopsis
thaliana

Col-0 × C24 (RIL), ILs GC-MS Leaf mQTL Identified 385 mQTL for 136 metabolites Lisec et al., 2009

A. thaliana accessions LC-MS Leaf mGWAS Identification of 123 mQTL and 70 candidate genes Wu et al., 2018

314 natural accessions GC-MS Leaf mGWAS Identify two candidate genes (AT5G53120 and
AT4G39660) involved in the β-alanine metabolic
pathway

Wu et al., 2016

Bay × Sha (RIL) GC-MS Leaf mQTL Identified 11 mQTL clusters linked to the plant
central metabolism.

Rowe et al., 2008

RILs and ILs GC-MS Seedling mQTL Identified 153 QTLs for augmented additive (Z1)
and 83 QTL for dominance effects (Z2) in RIL

Lisec et al., 2009

96 accessions HPLC-DAD Leaf mGWAS Identified two major QTLs controlling glucosinolate
variation; and AOP and MAM as candidate genes

Chan et al., 2010

313-ecotype association
panel

LC-MS Seed mGWAS Identified two significant associated genomic
regions (One region is linked with serine-related trait
and second region is linked with four
histidine-related traits)

Angelovici et al.,
2017

Col-0 × C24 GC-MS Seed mQTL Identified 786 mQTLs and candidate genes
including bZIP10 as regulator of seed metabolism

Knoch et al., 2017

Barley
(Hordeum vulgare)

Diverse set of barley
accessions

LC-MS Flag leaf mGWAS Reported three mQTLs for metabolites
(γ-tocopherol, glutathione, and succinate content)
involved in antioxidative defense

Templer et al., 2017

Maresi × CamB (RIL) LC-MS Leaf mQTL Identified 138 mQTLs for 98 traits. Annotation of
mQTL identified genomic region with stress
response related genes

Piasecka et al., 2017

Qingke and barley
accessions including wild

LC-MS Leaf and
Seed

mGWAS Identified 90 significant mGWAS loci for variation of
phenylpropanoid content

Zeng et al., 2020

Blueberry
(Cyanococcus)

886 blueberry genotypes GC-MS Fruits mGWAS Identified 519 significant SNPs linked to 11 volatile
organic compounds

Ferrão et al., 2020

Maize
(Zea mays L.)

By804 × B73 (RIL) GC-MS Seedling,
Leaf, Kernel

mQTL Detected 297 QTL and candidate genes to the
amino acid biosynthetic and catabolic pathways,
tricarboxylic acid cycle and carbohydrate
metabolism

Wen et al., 2015

Inbred lines GC-MS Leaf mGWAS Identified 26 distinct metabolites strong
associations with leaf complex trait such as dry
mass, lignin composition etc.

Riedelsheimer et al.,
2012

Inbred lines HPLC Grain mGWAS Identified ZmVTE4 haplotype and three new gene
targets for increasing antioxidant and vitamin E
levels. Also identified two additional genes,
ZmHGGT1 and one prephenate dehydratase
parolog that modestly contribute to tocotrienol
variation

Lipka et al., 2013

Inbred lines UP-LC Kernel mGWAS Identified 74 loci functionally associated with kernel
oil content and fatty acid composition; Also
identified genes involved in oil biosynthesis
(DGAT1-2, FATB and FAD2), members of the oil
metabolic pathway (FAD2, LCACS, ACP, and
COPII) and one transcription factor (WRI1a)

Li et al., 2013

Inbred lines HPLC Kernel mGWAS Nine carotenoid compounds measured in grain
samples, the most abundant was zeaxanthin;
Identified 58 candidate genes involved in
biosynthesis and retention of carotenoids in maize.

Owens et al., 2014

Inbred lines and RIL
population

LC-MS Mature
Kernel

mGWAS Identified 1,459 significant locus–trait associations
across three environments through
metabolite-based genome-wide association
mapping, identified potential causal variants for five
candidate genes involved in metabolic traits

Wen et al., 2014

(Continued)
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TABLE 1 | Continued

Plant Population/
accessions

Approach Tissue Study Significant outcome References

Inbred diversity panel LC-MS Kernel mGWAS Identified 19 modules which shows significant
associations with genetic control of biochemical
networks within the kernel.

Shen et al., 2013

513 diverse inbred lines
association panel

GC-MS Seedling,
Leaf, Kernel

mGWAS Identified 153 significant loci linked to primary
metabolism

Wen et al., 2018

Potato
(Solanum
tuberosum)

Diversity panel LC-MS Tuber mGWAS Identified 472 features in which significant SNPs
have been associated to glycoalkaloids
(α-chaconine, β-chaconine, and α-solamarine)
reported on chromosomes 2, 7, and 8

Levina et al., 2020

C (S. phureja × S.
tuberosum) × E
(S. vernei× S. tuberosum)

GC-MS Tuber mQTL Identified 87 mQTLs associated to primary
metabolism

Carreno-Quintero
et al., 2012

Rapeseed
(Brassica napus)

EXPRESS × SWU07 (DH) NIRS Seed mQTL Identified four QTLs for Glucosinolates content
between

He et al., 2018

Tapidor × Ningyou7 (DH) HPLC Leaf and
Seed

mQTL 105 mQTLs related to glucosinolate biosynthesis in
rapeseed seed and leaves have been observed

Feng et al., 2012

Rice
(Oryza sativa)

ZS97 × MH63 (RIL) LC-MS Flag leaf,
germinating
Seed

mQTL Identified 1,884 mQTLs in flag leaf and 937 mQTLs
in germinating seed samples

Gong et al., 2013

Sasanishiki × Habatak
(BIL)

GC-MS,
LC-MS,
CE-MS

Seed mQTL Identified 802 mQTLs for 759 metabolic traits;
including mQTL hotspot on chromosome 3
regulating amino acids content

Matsuda et al., 2012

Landraces accessions
and subpopulations rice
subspecies indica and
japonica

LC-MS Five-leaf
stage

mGWAS Identified 36 candidate genes controlling
metabolites level and nutritional composition

Chen et al., 2014

Landraces accessions LC-MS Leaf/
seedling

mGWAS Identified 323 associations, demonstrating that
phytochemicals produced in rice cultivars are
diverse

Matsuda et al., 2015

Landraces and elite
varieties of indica and
japonica

LC-MS Grains mGWAS More than 30 candidate genes were identified,
associated with metabolic and/or morphological
traits.

Chen et al., 2016

156 Landrace LC-MS Leaf/root
and other
tissue parts
of rice

mGWAS Identified two spermidine
hydroxyl-cinnamoyltransferases (Os12g27220 and
Os12g27254) that might underlie the natural
variation levels of spermidine conjugates in rice

Dong and Wang,
2015

ZS97 × MH63 (RIL) LC-MS Leaf and
Seed

mQTL Provided over 2,800 highly resolved metabolic
quantitative trait loci for 900 metabolites;
associated 24 candidate genes to various
metabolic quantitative trait loci by data mining,
including ones regulating important morphological
traits and bio-logical processes

Gong et al., 2013

Three CSSL populations
(N/Z, M/Z, and A/Z)

LC-MS Flag leaf mQTL Identified 1,587 mQTL, of which 684 in (A/Z), 479 in
(M/Z), and 722 in(N/Z) have been detected among
three CSSL population

Chen et al., 2018

Lemont × Teqing (RIL) GC-MS Leaf mQTL Identified two mQTL hotspots which have opposing
effects on carbon and nitrogen rich metabolites,
and regulate carbon and nitrogen partitioning.

Li et al., 2016

Strawberry
(Fragaria ×
ananassa)

F. x ananassa
232 × 1392 (F1)

LC-MS Fruit mQTL Reported 309 mQTLs for 77 polar secondary
metabolites.

Pott et al., 2020

232 × 1392 (F1) GC-MS Fruit mQTL Reported 133 unique mQTLs for 44 traits with
PVE% range from 9.6% to 46.1%. RNA seq
analysis identified candidate gene
Mannose-6-phosphate isomerase responsible for
natural variation in L-ascorbic acid in fruit

Vallarino et al., 2019

Tomato
(Solanum
lycopersicum)

Introgression lines LC-MS Fruit mQTL Detected 216 canalization metabolite quantitative
trait loci (cmQTLs) for secondary metabolites and
93 cmQTLfor primary metabolites.

Alseekh et al., 2017

(Continued)
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TABLE 1 | Continued

Plant Population/
accessions

Approach Tissue Study Significant outcome References

Introgression lines UPLC Fruit mQTL Identified 679 mQTLs for primary metabolites and
secondary metabolites

Alseekh et al., 2015

Introgression lines GC-MS Seed mQTL Identified 46 mQTLs in IL population and propose
post transcriptional regulation

Toubiana et al., 2012

Tomato accessions
including wild

GC-MS Fruit mGWAS Identified a total 44 loci associated with 19 traits,
including sucrose, ascorbate, malate and citrate
levels.

Sauvage et al., 2014

Tomato accessions
including wild

GC-MS Fruit mGWAS Identified 388 suggestive association loci (including
126 significant loci) for 92 metabolic traits including
nutrition and flavor-related loci by genome-wide
association study

Ye et al., 2019

IL12-3 × M82 LC-MS Fruit and
leaf

mQTL Reported 1528 mQTLs in fruit and 428 mQTL in
leaf; Major mQTL involved in the regulation of
diacylglycerols and triacylglycerols have been
detected on chromosome 12

Garbowicz et al.,
2018

76 ILs + recurrent parent
M82

LC-MS Seed mQTL Identified 338 mQTL for flavonoids, steroidal
glycoalkaloids, and specialized metabolites content

Alseekh et al., 2020

IL4-4 × M82 GC-MS, HPLC,
LC-MS

Fruit mQTL Identified 72 mQTL, where major mQTLs linked to
twenty genes which have a broad effect on several
metabolic pathways.

Liu et al., 2016

ILs GC-MS Fruit mQTL Reported 889 fruit traits related mQTLs and 326
yield-related traits mQTLs

Schauer et al., 2006

IL and heterozygous ILH GC-MS Fruit mQTL Identified 332 putative mQTL associated with
metabolite accumulation (174 mQTLs is dominantly
inherited, 61 mQTLs is additively inherited and 80
mQTLs is recessively inherited and negligible
number of mQTL showing the feature of over
dominant inheritance)

Schauer et al., 2008

S. lycopersicum
(M82) × S. pennellii Ils

GC-MS,
LC-MS,
HPLC-PDA,
NMR

Fruit mQTL Detected mQTL for carotenoids and tocopherols Perez-Fons et al.,
2014

Wheat
(Triticum aestivum)

KN9204 × J411 (RIL) LC-MS Kernel mQTL Identified 1005 mQTLs and 24 genes candidate
gene related to grain related traits

Shi et al., 2020

Excalibur × Kukri (DH) LC-MS Flag leaf mQTL Identified mQTLs for 238 metabolites across 159
intervals on genetic map; two mQTLs on
chromosome 7A coordinating the genetic control of
various metabolites

Hill et al., 2015

Winter elite lines (135) GC-MS,
LC-MS

Flag leaf mGWAS Identified significant associations 17 SNPs with six
metabolic traits, namely oxalic acid, ornithine,
L-arginine, pentose alcohol III, L-tyrosine, and a
sugar oligomer (oligo II)

Matros et al., 2017

Natural accessions LC-MS Mature
seeds

mGWAS A total of 1098 mGWAS associations were
detected with large effects, within which 26
candidate genes for flavonoid decoration pathway

Chen et al., 2020

Doubled haploid lines GC-MS Flag leaf mQTL Identified 112 mQTLs for 95 metabolites, of which
43 are known compounds

Hill et al., 2013

planthopper infestation (Zhang et al., 2019c). Several proteomics
and transcriptomics study conducted on seed dormancy study
revealed the important role of antioxidant mechanism, protein
thiol and redox regulation along with hormonal signaling in rice,
wheat and barley (Hu et al., 2015). Mass spectrometry (MS) based
proteomics study demonstrated the cultivar specific induction
of proteins in salt stress condition such as glutathione-based
detoxification of ROS was highly induced in tolerant variety
whereas proteins involved in iron uptakes were more expressed
in salt sensitive variety in barley (Witzel et al., 2009). Similarly,

the role of OsCYP2 in moderating the antioxidant enzymes
was established in transgenic rice overexpressing cyclophilin
during salt stress (Ruan et al., 2011). Seed proteomics of various
developmental stages during different stresses have revealed
the process involved in seed dormancy, seed germination, and
seed development (Finnie et al., 2011). Proteomics related to
environmental changes and abiotic stress focused on water supply
responsive proteins in wheat against drought, high temperature,
low temperature, frost, salt and heavy metals have been carried
out (Yang et al., 2011; Han et al., 2013; Kosová et al., 2013;
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TABLE 2 | List of important QTL-seq studies in crop plants.

Crop Population Target Trait QTL/Gene mapped References

Oryza sativa IR 64 × Sonasal Grain Weight Two genes LOC_Os05g15880 (glycosyl hydrolase) and
LOC_Os05g18604 (serine carboxypeptidase)

Daware et al., 2016

Nipponbare × BIL-55 Late heading under
short-day conditions

Zinc finger B-box domain containing protein
(Os04t0540200-01), WD40-repeat-domain–containing
proteins (Os04t0555500-01, Os04t0555600-01,
Os04t0564700-01), flowering locus D (Os04t0560300-01),
CCAAT-binding-domain–containing protein
(Os06t0498450-00)

Ogiso-Tanaka et al.,
2017

H12-29 × FH212 Grain Length and
Weight

qTGW5.3 (1.13 Mb) Yaobin et al., 2018

LND384 × INRC10192 Plant height asd1 (67.51 Kb) Kadambari et al., 2018

M9962 × Sinlek Spikelet fertility qSF1, qSF2, and qSF3 (LOC_Os01g59420,
LOC_Os02g31910, LOC_Os02g32080,
LOC_Os03g50730)

Nubankoh et al., 2020

BPT5204 × MTU3626 Grain weight qGW8 (LOC_Os08g01490 (Cytochrome P450), and
LOC_Os08g01680 (WD domain, G-beta repeat
domain containing protein)

Bommisetty et al., 2020

Triticum aestivum GY448 × GY115 Awnless trait Qal.nwipb-5AL (25-bp indel in B1 gene promoter region) Wang et al., 2021

Zea mays CMS-C lines × A619 Fertility Restoration qRf8-1 (17.93-Mb) Zheng et al., 2020

Brassica napus Huyou19 × Purler Branch angle Branch angle 1 (BnaA0639380D, a homolog of AtYUCCA6) Wang et al., 2016

Cabriolet × Darmor Vernalization FLOWERING LOCUS C (BnaFLC.A02) and FLOWERING
LOCUS T (BnaFT.A02)

Tudor et al., 2020

Brassica rapa Zicaitai × Caixin Purple Trait BrMYBL2.1 gene Zhang X. et al., 2020

Glycine max Zhonghuang × Jiyu 102 Seed cotyledon color qCC1 (30.7-kb) and qCC2 (67.7-kb) Song et al., 2017

CSSL3228 × NN1138–2 Plant height Glyma.13 g249400 candidate gene Zhang X. et al., 2018

Arachis hypogaea ZH8 × ZH9 Testa color AhTc1, encoding a R2R3-MYB transcription factor Zhao et al., 2020

ICGV 00350 × ICGV 97045 Fresh seed dormancy RING-H2 finger protein and zeaxanthin epoxidase Kumar et al., 2020

Yuanza 9102 × Xuzhou 68-4 Shelling percentage Nine candidate genes in 10 SNPs Luo et al., 2019

Cicer arietinum ICC 4958 × ICC 1882 100-seed weight Two genes Ca_0436 and Ca_04607 Singh et al., 2016

ICCV 96029 × CDC Frontier
and ICCV 96029 × Amit

Ascochyta blight Six candidate genes on chromosomes Ca2 and Ca4 Deokar et al., 2019

Solanum lycopersicum Three populations (12S139,
12S143 and 12S75)

Fruit weight and
locule number

Three fruit weight (fw1.1, fw3.3, fw11.2) and one locule
number (lcn6.1) QTLs

Illa-Berenguer et al.,
2015

Cucumis melo MR-1 × M1-32 Stigma Color GS8.1 (268 kb) MELO3C003149, MELO3C003158, and
MELO3C003165

Qiao et al., 2021

Cucumis sativus PM-R × PM-S Powdery mildew
resistance

Two QTLs pm5.2 and pm6.1 (CsGy5G015660) Zhang et al., 2021

Alvarez et al., 2014; Capriotti et al., 2014; Kang et al., 2015). These
studies offered novel insights and better understanding of crop
physiology and metabolism during various kinds of stresses.

Metabolomics Based Trait Understanding
Holistic metabolomics based to study trails in plants were
started late, particularly this approach was started through the
introduction of untargeted metabolome detection (Alonso et al.,
2015). Several studies have been reported where a particular
metabolic pathways have been mapped (Sharma et al., 2021). For
instance, the substantial changes in the various phytohormones
was investigated in poplar leaf (Novák et al., 2008), rice various
aerial organs (Kojima et al., 2009), rosemary leaves et al. (Müller
and Munné-Bosch, 2011), Arabidopsis developing seeds (Kanno
et al., 2010), strawberry fruits (Gu et al., 2019), potato tuber
(Peivastegan et al., 2019), wheat developing seeds (Matsuura
et al., 2019), watermelon fruit (Kojima et al., 2021), etc. The
targeted approach has been also applied to explore the carotenoid

pathway (Fernandez-Orozco et al., 2013; Kim et al., 2016; Mibei
et al., 2017; Yoo et al., 2017; Price et al., 2018; Di Lena et al., 2019),
flavonoid pathways (Karimi et al., 2011; Dong X. et al., 2014;
Torres et al., 2019), amino acids (Torres et al., 2019; Praveen et al.,
2020), and fatty acids (Talebi et al., 2013; Vidigal et al., 2018).
Such profiling studies has helped in improving several important
traits in plants by targeting specific pathways. Almost 10 years
back Liu et al. (2011) targeted fatty acids biosynthesis pathways
for enhancing biofuel production. Very recently and fatty acid
desaturase 2 was targeted in several crops such as canola (Okuzaki
et al., 2018), peanut (Yuan et al., 2019), rice (Abe et al., 2018),
false flax (Morineau et al., 2017), and Soybean (Wu et al., 2020),
for enhanced production of oleic acid (C18:1), respectively.

Several un-targeted metabolomics approach has been utilized
to target multiple class of metabolites (amines, sugars, organic
acids, etc.) from a sample extracted from various tissues of the
model and crop plants such as Arabidopsis, apple, groundnut,
kiwi fruit, alpine bird’s-foot-trefoil, strawberry, grapes, mango,
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maize, medicago, orange, pear, sunflower, soybean, tomato, rice,
white lupin, etc. (Sharma et al., 2021). Now, the targeted and
un-targeted metabolomics approach have been coupled with
genomics data for carrying out metabolomics-based quantitative
trait locus (mQTL) and metabolic genome-wide association
studies (mGWAS) studies (Wen et al., 2015; Chen et al.,
2016); which simultaneously identifies the genomic region,
causal genes and key metabolites and associated metabolic
pathways that govern particular trait in plants. Recently,
Li K. et al. (2019) identified 65 primary metabolites viz 22
amino acids, 21 organic acids, 12 sugars, four amines and six
miscellaneous metabolites in the leaf of teosinte (an ancestor
of maize) and identifies advantageous genes present in the
wild relative associated with grain yield and shape trait in
maize. In tomato, for one of the important trait accumulation
of secondary metabolite in fruit was analyzed, and reported
several subset of mQTLs- including mQTLs associated with acyl-
sugar, hydroxycinnamates, naringenin chalcone, and a range of
glycoalkaloids (Alseekh et al., 2015). Likewise, there are several
studies which identified key genomic regions, candidate genes
and mQTLs related to important traits through mQTL and
mGWAS based studies including some domesticated traits, this
was extensively reviewed by Sharma et al. (2021).

Previously, a combined transcriptome, proteome and
metabolomics approach was used to investigate the ripening
process with a final aim of extending tomato fruit shelf life
(Osorio et al., 2011). This study showed a strong relationship
between metabolites and their associated transcripts controlling
ripening such as sugars, organic acids, and cell wall metabolism
pathways. Similar studies have been done for banana which
led to identification of genes including ERF1B, fructose-1,6-
bisphosphatase and polygalacturonase as key regulators of pulp
ripening (Li T. et al., 2019). Recently, a combined transcriptome
and metabolome study was deployed to study the molecular
aspects of resistance and the interaction between Trichoderma
harzianum strain T22 with tomato during defense responses
against aphids (Coppola et al., 2019). This study demonstrated
the importance of plant transcription factor families such
as ZIP, MYB, NAC, AP2-ERF, and WRKY in biotic stress
resistance. These examples show the potential of the -omics
studies, working in tandem to characterize complex molecular
interactions. These data have been used for the development
of several gene expression/proteome/metabolome atlases to
facilitate omics-driven crop improvement (Table 3).

MOLECULAR REGULATIONS OF
DOMESTICATION RELATED TRAITS:
SELECTED EXAMPLES

Over the past two decades the molecular regulation and the
associated metabolic pathways of several agronomic traits has
been revealed because of intensive research and the deployment
of omics tools (Table 4). For the major domesticated traits
their associated genes pathways have been linked with metabolic
networks; however, more focused research is required to
understand their specific role in particular metabolic pathways.

Here, we review progress in omics-based investigations of several
important domestications related traits.

Transcriptional Control for Loss of Seed
Shattering Trait in Cereal
From an evolutionary viewpoint, natural selection allows wild
plant species to have specific functions to disperse seeds and
fruits. Although from the agronomic viewpoint, natural seed
dispersal is an undesirable trait in crops as it leads to significant
seed loss in harvest. Consequently, natural seed dispersal was
strongly chosen against by ancient humans to ensure productive
cultivation during the domestication period (Purugganan and
Fuller, 2009; Lenser and Theißen, 2013). The non-shattering
traits were considered as the landmark of domestication in
seed crops, as it makes the domesticated species mostly rely
on human activity for propagation and enables the fixation of
other domestication traits (Purugganan and Fuller, 2009). Seed
crops have established their reduction of seed shattering ability
independently and it is a convergent morphological adaptation
to artificial selection (Purugganan and Fuller, 2009; Olsen and
Wendel, 2013).

In cereal, seed shattering or fruit dehiscence is enacted
through an abscission layer in the lemma-pedicel joint. Various
transcription factors (TFs) coding genes were found in rice
(Oryza sativa), which are involved in decreasing seed shattering.
Shattering4 (Sh4) encodes the TF with Myb3 homology and is
important for the formation of a functional abscission layer in
the pedicle (Li et al., 2006). A single change of amino acid in
DNA binding domain of Sh4 is intimately linked to the reduced
seed shattering in domesticated rice. Also, the expression of the
domesticated allele has been substantially reduced compared to
the wild allele (Li et al., 2006). Thus, the combination of coding
and regulatory alteration of Sh4 seems to affect the formation
of the abscission layer, and consequently tries to weaken the
shattering phenotype (Li et al., 2006). qSH1 is a major QTL on
chromosome 1 involved in seed shattering in rice. The main gene,
qSH1, codes a homeobox transcription factor-like BEL1 which is
homologous to AtRPL (Konishi et al., 2006). A single nucleotide
polymorphism (SNP) in the 5′-regulatory region effectively
nullifies qSH1 expression in the preliminary abscission layer in
the early development stage and contributes to non-shattering
traits of rice (Konishi et al., 2006). Interestingly, the regulatory
SNP in the homologs of RPL promoter are also amenable for
distinct structures of seed dispersal based on natural selection of
Brassica species with diminished replum development (Arnaud
et al., 2011). These studies show a notable convergent mechanism
where the same regulatory SNP could describe developmental
variations in seed dispersal structures, which are important
for both domestication and natural selection in distant species
(Arnaud et al., 2011; Gasser and Simon, 2011). SH5 is another
homeobox type BEL1 gene with a high qSH1 homology. SH5
has been expressed in the abscission layer (Yoon et al., 2014).
Knockout of SH5 inhibits abscission layer formation and prevents
seed shattering. Over-expression of SH5 leads to higher seed
shattering, a consequence of decreased pedicel lignin levels (Yoon
et al., 2014). The regulatory pathway of abscission layer formation
has recently been expanded to include Shattering abortion 1
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TABLE 3 | List of gene-expression, proteome and metabolome atlas developed in plant.

Plant name Scientific name Tissue/cell
type

Gene/Proteins/
Metabolites

Citations DOI

Gene expression atlas Genes

Chickpea Cicer arietinum 27 15,947 Kudapa et al., 2018 10.1111/pce.13210

Peanut Arachis hypogaea 19 NA Sinha et al., 2020 10.1111/pbi.13374

Soybean Glycine max 14 66210 Libault et al., 2010
Severin et al., 2010

10.1111/j.1365-313X.2010.04222.x
10.1186/1471-2229-10-160

Wheat Triticum aestivum 32 94,114 International Wheat Genome
Sequencing Consortium (IWGSC)

10.1126/science.aar7191

Rice Oryza sativa 40 ∼30,000 Jiao et al., 2009 10.1038/ng.282

Maize Zea may 11 22,151 Sekhon et al., 2013 10.1371/journal.pone.0061005

Bryophyte Physcomitrella patens 10 ∼32500 Ortiz-Ramírez et al., 2016 10.1016/j.molp.2015.12.002

Proteome atlas Proteins

Arabidopsis Arabidopsis thaliana 9 13,029 Baerenfaller et al., 2008 10.1126/science.1157956

Rice Oryza sativa 3 2,528 Koller et al., 2002 10.1073/pnas.172183199

Wheat Triticum aestivum 24 46,016 Duncan et al., 2017 10.1111/tpj.13402

Metabolome atlas

Arabidopsis Arabidopsis thaliana Wu et al., 2018 10.1016/j.molp.2017.08.012

(SHAT1), an AP2 transcription factor encoding gene (Zhou
et al., 2012). SHAT1 is needed for seed shattering by specifying
abscission layer. Sh4 positively regulates the SHAT 1 expression
in the abscission layer. qSH1 expression is lost in abscission layer
in both the shat1 and sh4 mutant background, indicating qSH1
acts downstream of the shat1 and sh4 in the abscission layer
establishment (Zhou et al., 2012). Intriguingly, qSH 1 is also
needed in the abscission layer for expression of SH1 and Sh4. Thus
the qSH 1 possibly takes part in a positive feedback loop of SH1 and
Sh4 by establishing the SHAT1 and Sh4 expression in the abscission
layer (Zhou et al., 2012). While SH5 and SHAT1 play a role in
differentiating the abscission layer, the question remains whether
both are artificially selected domestication genes. Like rice, decrease
of seed shattering in domesticated sorghum is a result of loss of
abscission in the joint that connects the seed hull with the pedicel. In
sorghum, seed shattering is regulated by a single gene, Shattering1
(Sh1), which encodes a transcription factor YABBY. The non-
shattering trait can be accounted for by any one of the three
different loss-of-function mutations selected independently during
sorghum domestication process (Lin et al., 2012). The notable
mutations in Sh1 orthologs in rice and maize may be related to the
shattering decrease in these crops (Lin et al., 2012). Whether Sh1
has been rewired into an SH5-directed seed shattering network
in rice remains to be investigated in the future. In a wild relative
of sorghum (Sorghum propinquum), seed shattering is conferred
by the SpWRKY gene. It is believed that SpWRKY controls cell
wall biosynthesis genes negatively in the abscission layer. Even
so, SpWRKY was not crafted by artificial selection to contribute
to the non-shattering characteristic for domesticated sorghum
(Tang et al., 2013). These above studies together have raised a
fascinating potential that the convergent domestication of non-
shattering crops may have achieved the same underlying genetic
goals by parallel selection (Lenser and Theißen, 2013).

In domesticated wheat (Triticum aestivum) free-threshing
trait (loss of spike shattering tendency) is conferred by important
Q gene (Simons et al., 2006). Q-gene encodes the AP2-family

transcription factor. The domesticated Q allele is abundantly
transcribed than the wild q allele. Besides, both alleles differ
in single amino acid, which significantly improves the homo-
dimerization ability of the cultivated allele (Simons et al., 2006).
Similar to Sh4, the development of the free-threshing character
in cultivated wheat might also have been due to the combination
of the coding and regulatory changes in the cultivated gene. The
difference of expression between Q and q seems more significant
as it can clarify the free threshing character in cultivated wheat
(Simons et al., 2006; Zhang et al., 2011). Even though mutation
which gives rise to Q has a significant effect on the process of
wheat domestication, as it helps farmers to harvest the grain more
effectively, the exact cellular cause contributing to free-threshing
character is still unclear. Similar research has been progressed in
non-cereals crop such as overexpression AtFUL to make the pods
shattering resistance in Brassica juncea (Østergaard et al., 2006).

Cross-Talk Between Phytohormones and
Related Genes Regulating Seed
Shattering and Dehiscence Zones (DZ)
Hormonal homeostasis and interactions have been found
recently as direct downstream effects of the core genetic network.
As an example indehiscent (IND) expression is involved in
the formation of local auxin minimum at the margin of the
valve by regulating the auxin efflux in the separation layer
cells (Sorefan et al., 2009). Further findings reveal that another
b-HLH class SPATULA (SPT) transcription factor, required for
carpel fusion early in the female reproductive organ development,
may interact physically with IND (Girin et al., 2011). Auxins
and cytokinins play an antagonistic role in plant growth and
development (Bishopp et al., 2011). This scenario also indicates
that the cytokinin signaling pathway is active at the valve
margins and such a signaling pathway is interrupted in the
shp1/2 and ind mutant. Consequently, local application of
cytokinins in the fruit development can help to restore valve
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TABLE 4 | List of genes domesticated in the past and associated metabolic pathways.

Crops Traits Domesticated
Genes

Involvement in the metabolic pathways References

Rice Plant architecture sd1 Encodes gibberellin 20-oxidase (Gibberellin pathway gene) Spielmeyer et al., 2002

Seed shattering sh4 Abscisic acid response elements (ABREs) have been identified which is
involved in ABA hormone signal pathways

Yan et al., 2015

qSH1 APETALA2-like transcription factor SUPERNUMERARY BRACT (SNP)
positively regulates the expression of two rice genes, qSH1 and SH5
(SNB-involved regulating pathway)

Jiang et al., 2019

Awn LABA1 / An-2 An-2 encodes a cytokinin synthesis enzyme that modulates awn length Gu et al., 2015; Hua
et al., 2015

qAWNL2 N.A Amarasinghe et al., 2020

Seed and hull
color

Rc and Rd Involved in proanthocyanidin synthesis via the flavonoid pathway Sweeney et al., 2006;
Furukawa et al., 2007

Seed dormancy
Sdr4

Zinc finger protein, OsVP1 activates Sdr4 expression to control rice
seed dormancy via the ABA signaling pathway

Sugimoto et al., 2010;
Chen et al., 2020

Grain size qSW5/GW5 GW5/ qSW5 involved in brassinosteroid signaling pathway to regulate
grain width and weight (Novel nuclear protein)

Shomura et al., 2008;
Weng et al., 2008; Liu
et al., 2017

Gn1a Encodes cytokinin oxidase Ashikari et al., 2005

Maize Plant architecture tb1 (teosinte
branched1)

Two maize mutants, teosinte branched1 (tb1) and grassy tillers1 (gt1),
have been shown affected in the regulation of auxin biosynthesis
pathway

Doebley et al., 1997;
Whipple et al., 2011

br2 Gene modulates the transport of auxin Zhang et al., 2019b

Inflorescence
architecture

ra1 (ramosa1),
Tga1

RA1 involved in the ramosa pathway (Transcription factor) Sigmon and Vollbrecht,
2010

Grain filling ZmSWEET4c Hexose transporter, SWEET4c is important for the Glc to the starch
biosynthesis in the endosperm during embryogenesis

Sosso et al., 2015

Wheat Vernalization Vrn2 (ZCCT1
and ZCCT1)

Likely to coordinate with GA, ABA, cytokinin, and JA signaling pathway Yan et al., 2004; Deng
et al., 2015

Vrn1 Central gene in vernalization pathway similar to APETALA of
Arabidopsis. Linked with GA, ABA, Cytokinin, and JA signaling pathway

Yan et al., 2003; Deng
et al., 2015

Free threshing Q and
homeologs

Involved in secondary cell wall synthesis pathways and regulation of
chemical composition of glumes

Zhang Z. et al., 2020

Plant architecture Rht-1 Repressor of gibberellic acid pathway Thomas, 2017

Sorghum Plant architecture dw3 Gene modulates the transport of auxin Multani et al., 2003

Grain
pigmentation

Tannin1 (Tan 1) Tan1 gene, encoding a WD40 protein, that regulate the tannin
biosynthesis

Wu et al., 2012

Barley Inflorescence
architecture

Vrs2 Vrs2 expression influences the expression of genes that regulate
biosynthesis and metabolism of auxin and cytokinin (Transcription
factor, HD-ZIP)

Komatsuda et al., 2007;
Youssef et al., 2017

Naked
(free-threshing)
grains

Nud ERF family transcription factor gene regulating a lipid biosynthesis
pathway (Transcription factor)

Taketa et al., 2008

Soybean Determinate
growth habit

Dt2 Plant height of semi-determinate plants is associated with GA signaling Zhang et al., 2019a

Tomato Fruit size fw2.2 Similar to human RAS, SlKLUH is the causal gene for the fw3.2 QTL
and encodes a CYP450 of the 78A class

Frary et al., 2000

SUN Regulating auxin biosynthetic and responsive pathway Xiao et al., 2008; Wang
et al., 2019

Mustard Flowering Time BrFLC1 Interacts with the vernalization pathway (MADS-box transcription factor)
and coordinate with gibberellic acid pathway

Yuan et al., 2009

margin formation and further enhance dehiscence in shp1/2
and ind mutants, suggesting that cytokinins play a crucial role
in valve margin differentiation (Marsch-Martínez et al., 2012).
Recent studies reveal gibberellins (GAs) are also involved in the
establishment of separation layer cell identity, in addition to
auxins and cytokinins (Arnaud et al., 2010). As per the “relief
of restraint” model, GA-mediated degradation of DELLA protein

is important for GA signaling and also necessary to trigger
expression of downstream genes (Harberd, 2003; Sun and Gubler,
2004). GA3ox1, which facilitates the final step in bioactive GAs
synthesis, is shown as the direct target of IND. ALC interacts
physically with DELLA repressors and local GAs production
destabilizes the DELLA protein and relieves ALC to play its
role in SL cell specification (Arnaud et al., 2010). In summary,
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these findings show that many phytohormones participate in
the DZ specification and indicate that precise balance between
biosynthesis and response is important. Notwithstanding the
studies where the function of hormones in the development
of DZ have been elucidated, very few studies about how such
hormonal signals are coordinated in DZ have been carried out.
One of the key challenges is to unravel the complete context of
the molecular mechanisms and interactions of plant hormones
underlying DZ-specification.

There are many ways for minimizing crop losses due to
crop shattering ranging from conventional parental selection
with minimum shattering to the screening of mutants and gene
editing methods. By advancing the next-generation sequencing
and the marker traits associations, many genes involved
in pod dehiscence were found, and a series of mutations
underlying shattering resistance in several crops and their
wild relatives have been identified (Fuller and Allaby, 2009;
Dong and Wang, 2015). Attempts have been made to improve
shattering resistance in Brassica, which include interfering in
the dehiscence process by manipulating the molecular and
hormonal control pathways (Fuller and Allaby, 2009; Altpeter
et al., 2016) and developing transgenic lines with pod-shattering
resistance (Liljegren et al., 2000, 2004). In future, studies
should focus, alongside gene-editing methods, on fine-tuning
of the degree of shatter-resistance with RNA interference
or the use of mutated forms of genes related to shattering
in various crops.

Key Genes Targeted for Dwarfing of
Cereal to Enhance the Productivity
The plant architecture is genetically controlled by a set of genes
which subsequent affect yield and productivity of crop plant
species. Often, mutation or knockdown of a single gene could
also lead to significant change in the overall plant growth and
development, subsequently plant architecture (Spielmeyer et al.,
2002). In 1960s, the agricultural transformation that increased
the production of rice and wheat was via the introduction
of cultivars with a genetic predisposition to a short stature
due to restricted elongation of stem (Silverstone and Sun,
2000). This phenotype enabled a significant partitioning of
photosynthate produced from photosynthesis to sink organs like
grains (Sun and Frelich, 2011).

Currently introduction of dwarfing genes is the most
important aspect deployed in modern cereal breeding. The stems
of tall wheat and rice crops are not strong enough to sustain
heavy grains of the high yielding cultivars, which result in
significant yield losses. In addition, the proportion of assimilates
partitioned in grain increases yields. Genes associated with the
semi-dwarf growth of the wheat and rice cultivars have been
studied. In wheat, Reduced height (Rht) gene has been identified
which is shown to interfere with GA signaling transduction
pathway (Peng et al., 1999). Subsequently, three research groups
investigated semi dwarf1 (SD1) gene from rice and found that
the same hormone impair the biosynthesis (Monna et al., 2002;
Sasaki et al., 2002; Spielmeyer et al., 2002). Thus, gibberellin
hormone appears to be central to plant stature control.

Wheat Rht Gene and Gibberellin Signaling
The Green Revolution’s wheat dwarfing genes originated in
Japan (Gale et al., 1985). The Norin 10 dwarfing genes are
now available worldwide in 70% of current commercial wheat
cultivars. Norin10 contains two dwarfing genes that are semi-
dominant homologous alleles on Chromosomes B and D. These
alleles are labeled as Rht-B1b (formerly Rht1) and Rht-D1b
(Rht2) to reflect their chromosome position (Boerner et al.,
1996). The Rht alleles cause a reduced response to the plant
hormone GA class (Gale et al., 1985). These plant hormones
are diterpenoid carboxylic acids, that are involved in several
processes of development in higher plants, including stem
elongation (Hooley, 1994). The Rht gene is an ortholog of
Arabidopsis GA-Insensitive (GAI) and maize dwarf 8 genes, for
which mutations result in GA-insensitive dwarfs (Peng et al.,
1999). Rht-1a/d8/GAI (wild type protein) is a subgroup of the
GRAS family of proteins that are thought to act as transcriptional
regulators (Pysh et al., 1999). Peng et al. (1999) reported base
substitutions in the Rht-B1b and Rht-D1b alleles that insert
stop codons within the DELLA region. They mentioned that
translational re-initiation at one of several methionines which
follow the stop codon could lead to the formation of truncated
Rht protein without the DELLA domain, which functions as a
constituent (GA insensitive) growth repressor. The D8 (Peng
et al., 1999) and GAI mutations (Peng et al., 1997) also lead to
partial or complete deletion from one or both of the conserved
domains. The Rht-1a/d8/GAI proteins thus function as negative
GA signaling regulators and suppress GA function, provided
N-terminal domains are present (Harberd et al., 1998; Dill
et al., 2001). To support this concept, ectopic expression of GAI
(Peng et al., 1999) in rice caused dwarfism and loss of function
mutations in Rht-like genes in some cases produces an over-
growth phenotype (Ikeda et al., 2001; Chandler et al., 2002).
Besides d8, Rht-1a orthologs were reported in rice (known as
OsGAI or SLR1) (Ogawa et al., 2000; Ikeda et al., 2001) and
barley (SLN1) (Chandler et al., 2002). While cereals have a single
case of Rht-1a/d8/GAI type proteins, Arabidopsis contains a
gene family encoding RGA proteins and three RGA-like proteins
(RGL1, -2, -3) in addition to GAI. The Arabidopsis homologues
seem to overlap in their function in various GA-regulated
developmental processes (Olszewski et al., 2002). It is unknown
how a single protein in cereals crops is functionally equivalent to
five proteins in Arabidopsis; such variation may indicate major
functional redundancy in Arabidopsis or fundamental differences
in GA signaling pathways between Arabidopsis and Gramineae
members. Recently, some progress was made in understanding
the function of Rht-like proteins and their GA repression. RGA
(Dill et al., 2001), SLR1 (Itoh et al., 2002), and SLN1 (Gubler et al.,
2002) are found in the nucleus and thus rapidly degraded with
GA presence, the DELLA domain needed for this process. Rht’s
upstream signal transduction pathway is still unknown, but GA-
induced degradation is believed to involve ubiquitin-mediated
proteolysis (Chandler et al., 2002).

Rice sd1 Gene and Gibberellin Biosynthesis
Unlike Rht, the sd1 mutation of rice is recessive and normal
height can be restored in mutants using GA application showing
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that they have been impaired in GA production (Ashikari et al.,
2002). Three research groups independently isolated the sd1 gene
and showed it encodes GA 20-oxidase (GA20ox), an enzyme
involved in biosynthesis of GA (Monna et al., 2002; Sasaki et al.,
2002; Spielmeyer et al., 2002). Two of these research groups have
used positional cloning to detect a GA20ox open reading frame
close to the sd1 locus on the long chromosome arm (Monna et al.,
2002; Spielmeyer et al., 2002). They also reported mutations in
corresponding genes from semi-dwarf varieties. The third group,
which had inferred the gene’s identity by the effect of GA content
mutations, used PCR to amplify DNA fragments, corresponding to
two GA20ox genes, one of which mapped to the sd1 loci (Sasaki
et al., 2002; Ashikari et al., 2002). Semi-dwarf rice cultivars
with Dee-geo-woo-gen sd1 allele contain a 383-bp deletion in
the GA20ox gene (known as OsGA20ox2), which incorporates
stop codon that is likely to result in a highly truncated, inactive
enzyme. Gibberellin 20-oxidases are 2-oxoglutarate-dependent
dioxygenases catalyzing carbon-20 depletion in the penultimate
stage in biosynthesis of GA (Hedden and Phillips, 2000). These
oxidases are encoded by small gene families, members of which
have partial functional redundancy due to overlapping (but
different) expression profiles or because of movement of the
intermediates synthesized by enzymes between tissues. Therefore,
loss-of-function GA20ox mutants are relatively less GA-deficient
and are semi-dwarfs, unlike significant GA-deficient plants,
which are extremely dwarfed and sometimes sterile. Two GA20ox
genes were defined in rice: OsGA20ox1 (Toyomasu et al., 1997)
and OsGA20ox2. Remarkably, selection for semi-dwarfism in
rice has consistently yielded mutations in OsGA20ox2 instead
of OsGA20ox1 or another GA-biosynthesis gene (for example,
GA 3-oxidase is also encoded by a multi-gene family). Mutations
in other genes might have a severe developmental impact
or have negative impact on yield, and thus have been not
selected in breeding programs. Genetic and functional analyses
of SLR1/RHT and SD1 genes in rice and wheat have enormously
improved the understanding of GA biosynthesis and signals,
resulting in a strong methodology for manipulating the plant
height of major crops. Both cases illustrate the central role
played by GAs in controlling developmental processes. Therefore,
GA signaling pathways (biosynthesis and signal transduction)
are key aspects for manipulation in pursuit of further crop
yield improvements. The yields of existing cereal crops seem
to be approaching their limit, and new interventions are
required if population is not to outstrip the food supply.
Targeted genetic engineering/modification using newly emerged
genomics, genome-editing technologies may be part of the next
Green Revolution.

Achieving Submergence Tolerance
The incidences of uncertain rain and flood have been increased
due to continued climate change. Today, more than 30 percent
of the rice-planting land is vulnerable to flooding resulting
in crop loss. In 1960s, the development of semi-dwarf variety
was one of greatest achievement which significantly addressed
the issue of global hunger threat caused due to human
population explosion. The suppression of GAs production in
the stem reportedly made high yielding semi-dwarf rice varieties

susceptible to one of the most important abiotic stress “water
logging.” These developed semi-dwarf rice varieties lacked
submergence tolerance. The lower nodes of these varieties
unable to produce enough gibberellins to trigger elongation
of the internode.

Genomics Based Discovery of Genomic Regions
Associated With Submergence Tolerance
Submergence stress causes several adverse impacts on a plant
such as low light intensity, hypoxia, nutrient effusion, physical
injury, susceptibility to pathogen and pests attacks (Angaji et al.,
2010). Several QTL mapping studies reported number of QTLs
controlling submergence tolerance (Xu and Mackill, 1996; Nandi
et al., 1997; Toojinda et al., 2003). A major QTL (Sub1) for
submergence tolerance has been identified on chromosome
9 with LOD 36 and 69% of phenotypic variance explained
(PVE) (Xu and Mackill, 1996). Sequencing of Sub1 genomic
region identified three genes which encodes a ERFs (Sub1A,
Sub1B, and Sub1C) in which Sub1A has been reported as a
key component of submergence tolerance (Xu et al., 2006).
Further cloning and characterization of Sub1 QTL helping in the
detection of responsible genes and also help to discover tightly
linked gene-based markers for molecular breeding program
(Siangliw et al., 2003; Toojinda et al., 2005; Neeraja et al., 2007).
Furthermore, in other studies major QTLs namely qAG9-2 on
L.G. 9 and qAG7-1 on L.G. 7 were reported (Angaji et al., 2010;
Septiningsih et al., 2013). Later on, qAG9-2 QTL has been fine
mapped and found a candidate gene OsTPP7 which encodes
a trehalose-6-phosphate phosphatase which is responsible to
regulate anaerobic generation (Kretzschmar et al., 2015). Both
Sub1 and qAG9-2 major QTLs are widely used in rice breeding
programs to improve submergence tolerance at germination and
vegetative stages. Utilizing genomics resources several breeding
efforts are also made in developing submergence tolerance
varieties to sustain rice production. Various landraces and
traditional genotypes namely, Kurkaruppan, FR13A, Thavalu,
Goda Heenati, etc., were reported to be a suitable source
of alleles which is associated with submergence tolerance
(Miro and Ismail, 2013).

Precise Characterization of Genes Governing
Submergence Tolerance
In recent years significant progressed have been made toward
understanding the physiological, biochemical and genetic basis
of submergence tolerance, to identify the causal gene(s)
that are crucial for submergence tolerance (Oladosu et al.,
2020). Recently, Kuroha et al. (2018) identified the gene
SD1 (SEMIDWARF) responsible for submergence-induced
elongation of internode by producing gibberellins mainly GA4.
Another study identified genes SNORKEL 1 (SK1) and SK2
which encodes for ERFs, appeared to trigger submergence
tolerance via ethylene signaling (Hattori et al., 2009). Both gene
products further facilitate the internode elongation through GAs.
Previous study identified a submergence tolerance gene SUB1A
(an Ethylene-response-factor-like gene) on chromosome 9 which
encodes ERFs (Xu et al., 2006; Fukao et al., 2006). During flash
floods, SUB1A inhibits plant elongation at the seedling stage.
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Flash floods usually last for a few weeks. Cultivars carrying
SUB1A tolerance gene show stunted growth and can survive
in submerged conditions for a few weeks. Both SNORKEL
1 and SNORKEL 2 (SK1/2) genes and SUB1A encode ERFs
which are associated with GAs, but they act in opposite ways
in controlling plant development in response to submergence.
Further more research is required to uncover the various
pathways associated with SK1; SK2 and SUB1A. Furthermore,
recently two genes have been identified ACCELERATOR OF
INTERNODE ELONGATION 1 (ACE1) and DECELERATOR OF
INTERNODE ELONGATION 1 (DEC1) which are responsible to
control stem elongation (Nagai et al., 2020). ACE1 gene encoding
an unknown function protein which is associated with internodes
elongation via GAs, whereas, DEC1 gene encoding a zinc –
finger TF, which suppresses internodes elongation. Both the genes
influence gibberellin-activated cell division in stem nodes. The
expression of ACE1 gene during submergence conditions in rice
triggers elongation of internodes within a cell-division zone of

the plant. This results in an increased number of elongated
internodes and increased plant height. Further gene ACE1C9285
is controlled by SUB1C, a gibberellin-activated TF which is
upregulated in response to submergence (Fukao and Bailey-
Serres, 2008). SUB1C expression level seemingly low in cultivars
that contain the SUB1A-1 regulator gene, a homolog to SUB1C. In
short rice cultivars expressing gene SUB1A-1, GAs responsiveness
altered, subsequently use carbon pool for leaves elongation,
and restrict overall plant development and enter to transient
quiescent stage during flooding, an adaptation to overcome
deep floods (Fukao et al., 2006; Xu et al., 2006). In semi-dwarf
cultivars, internodes elongation only takes place in the upper
internodes during growth stage. Nagai et al. (2020) reported a
gene ACE1-LIKE1, which triggers upper internodes growth in
deep-water. Presently, these omics study based information on
the genetic basis of submergence tolerance is the base of rapid
improvement of plant architecture to design a high yielding crop
tolerant submergence.

FIGURE 2 | Schematic diagram representing the role of OMICS based research in gene characterization and development of designer crops using de novo
domesticated crops approach.

FIGURE 3 | A schematic representation of a draft model for the selection of target genes for CRISPR/Cas9 mediated domestication of wild ancestral species of
monocot.
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TRANSLATION OF OMICs DRIVEN DATA
FOR RE-DOMESTICATION AND DE
NOVO DOMESTICATION: UTILIZATION
OF GENOME/GENE EDITING TOOL

Gene-editing technologies have become choice of a researcher
to domesticate neglected crops and wild relatives in a short
period (Fernie and Yan, 2019). Traditionally, plant domestication
and the development of productive cultivars required decades of
breeding, which is also the key reason why so many breeding
programs over the last 100 years focused on further improvement
of a relatively small number of crops. Recent identification of
several major domestication genes and scientific breakthroughs
in integrating various genomic changes in plants concurrently
with CRISPR/Cas9 editing has allowed re-domestication of
existing crop plants and de-novo domestication wild species to
be domesticated within a single generation (Figure 2) (Schindele
et al., 2020). De-novo domestication has contributed to agro-
biodiversity and diet quality, with possible future environmental
and nutritional benefits (Singh et al., 2019). In the history of
crop domestication amid higher yield selection and breeding,
international germplasm exchange; multiple local resistance and
resilience genes of wild species have been lost or have never
been completely incorporated into breeding lines (Fernie and
Yan, 2019). In other words, wild relatives of domesticated
plants have significantly higher variable gene pool than that
of domesticated ones (Hickey et al., 2019). As we start to
uncover more about the framework of crop genomes and the
loci of quality traits, there are chances of incorporating valuable
characters into existing crop species and ways to quickly re-
domesticate new crops. This step can be effectively achieved
using breakthrough CRISPR-Cas9 gene-editing technologies,
in particular, to introduce beneficial alleles without linkage

TABLE 5 | List of genes targeted in wild ancestral species of tomato and
strawberry to demonstrate de novo domestication.

Wild relative Target Gene Traits modification References

Solanum
pimpinellifolium

CLV3, WUS,
SP, SP5G, and
GGP1

Plant height and
response to
phtotoperiodism, flower
numbers, and fruit size
and shape, and
ascorbic acid content

Zsögön et al.,
2018

OVATE, MULT,
FAS, SP, and
CycB

Plant architecture and
habitat, flower
numbers, and fruit size
and shape, and
lycopene content

Li et al., 2018

Fragaria vesca FveTAR1 and
FveYUC10

Auxin biosynthetic and
signaling genes
affecting plant growth
and reproductive organ
development

Feng et al.,
2019

FveTAA1 and
FveARF 8

Auxin biosynthetic and
signaling genes
affecting plant growth
and reproductive organ
development

Zhou et al.,
2018

drag (Li et al., 2018), to produce novel quantitative variations
(Rodríguez-Leal et al., 2017), direct deletion of deleterious
alleles (Johnsson et al., 2019), and/or higher recombination
rates (Mieulet et al., 2018). Recently, gene editing has been
shown to enhance plant architecture, flower development, and
fruit size in Physalis pruinosa (Lemmon et al., 2018). Gene
editing is a promising method to generate diversity and to
compensate for the genetic hitchhiking effects in germplasm. For
reference, associated selection of traits such as fruit weight and
disease resistance altered the tomato metabolome, providing an
opportunity for precise breeding to alter nutritional and flavor
traits (Zhu et al., 2018). These hitchhiking effects and others,
such as those found in rice and maize, represent promising goals
for genetic modification to fettle linkage drag (Palaisa et al.,
2004). For instance, African rice landrace Kabre possess superior
resistance to pests and tolerance to drought; however, during
domestication the plant architecture compromised affecting their
overall yield potential. To address this Lacchini et al. (2020)
targeted multiples genes which control plant architecture (HTD1)
and control seed size and/or yield (GS3, GW2, and GN1A)
by generating knockouts through multiplex CRISPR/Cas9. In
knockouts, mutation in HTD1 gene caused reduced plant high
to diminish lodging and improved tillering, whereas mutations in
GS3, GW2, and GN1A resulted increased panicle and length along
with improved seed girth. Earlier, Hu et al. (2019) demonstrated
generation of semi-dwarf rice lines by targeting gene SD1 and
Photosensitivity5 (SE5) in elite landraces Kasalath. In this post
genomics, the technique CRISPR/Cas has received overwhelming
response and till dates several knockouts of rice elite varieties
are available with improved traits by targeting specific genes
which were characterized due to viability of several omics
approached era. Some of the examples for the targeted traits
and gene targets in rice are LAZY1 for tiller-spreading, Gn1a,
GS3, and DEP1 for improved grain number, size and dense
erect panicles, SBEIIb for High amylose content, OsERF922 for
enhanced blast resistance, OsSEC3A for resistance against blast
causing pathogen Magnaporthe oryzae, OsSWEET13 for bacterial
blight resistance, ALS and EPSPS for herbicide resistance, OsPDS,
OsMPK2, OsMPK5, OsBADH2, OsAOX1a, OsAOX1b, OsAOX1c,
and OsBEL for tolerance against various abiotic stress, OsHAK-
1 for low cesium accumulation, and OsPRX2 for potassium
deficiency tolerance (Shan et al., 2013; Xie and Yang, 2013; Shan
et al., 2014; Xu et al., 2014; Zhang H. et al., 2014; Zhou et al.,
2014; Woo et al., 2015; Meng et al., 2017; Nieves-Cordones
et al., 2017; Mao et al., 2018; Ma et al., 2018). Likewise, in
wheat EDR1, TaMLOA1, TaMLOB1, and TaMLOD1 targeted for
resistance to powdery mildew, and GW2 and TaGW2 targeted
for increased grain size, weight and protein content (Shan et al.,
2014; Wang et al., 2014; Gil-Humanes et al., 2017; Kim et al.,
2018; Wang et al., 2018). In orphan crops cassava and flax
herbicide resistance has been introduced by targeting a gene
EPSPS (Sauer et al., 2016; Hummel et al., 2018); whereas ALS
was targeted in soybean (Cai et al., 2015). Similarly, many traits
have been introduced or improved by targeting various genes in
some economically important crops plants such as maize, tomato,
potato, grapes, orange, cucumber, tea, etc. (Adhikari and Poudel,
2020; Bhatta and Malla, 2020).
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The wild ancestral species of crop plants such as Solanum
pimpinellifolium for tomato; Solanum demissum and
S. stoloniferum of potato; Fragaria vesca of strawberry; Teosinte
and Tripsacum of maize; Triticum dicoccoides, and T. turgidum
L. ssp. Durum of wheat; Oryza rufipogon and O. longistaminata
of rice; Manihot glaziovii and M. neosana and Glycine soja

of soybean have been used for introgression key agronomic
important traits into cultivars though breeding program (Zsögön
et al., 2017). Moreover, most of the domesticated related traits
and associated genes well characterized and has been linked
with the metabolic pathway(s), and/or hormone biosynthesis
and signaling (Table 4); therefore, integrated omics approach

TABLE 6 | A model representing state of art for selecting the genes which can be edited to domesticate crop wild ancestral species through CRISPR/Cas9 approach.

Crop Name Target Gene Function References

Zea Mays Tb1 TCP-gene family TF which is involved in suppression of side branching changes the source/sink
relationships; yields increase.

Doebley et al., 1997;
Studer et al., 2011

tga1 SBP-box TF have a key role in alteration of the encased kernel to naked kernel Wang et al., 2015

CCT CCT domain-containing protein gene involved in decrease of photoperiod sensitivity Yang et al., 2013; Huang
et al., 2018

Glycine max DT1 CETS is a family of regulatory genes which are involved in transforming indeterminate growth to
determinate, resulting in developing a compact crop.

Tian et al., 2010; Cai et al.,
2018

GA20ox Key enzyme involved in Gibberellin biosynthesis and identified as its association with seed weight Lu et al., 2016

SHAT1-5 Plant specific NAC gene family TF involved in the biosynthesis of secondary cell wall which facilitating
fiber cell cap thickening result in a decreasing the rate of pod shattering

Dong Y. et al., 2014

Solanum
lycopersicum

ARF19 Auxin response factor 19 TF reported being a negative regulator of fruit set De Jong et al., 2009

BRC1a BRANCHED1a gene encoding a TCP family TF which involved in the regulation of lateral shoot
outgrowth

Martín-Trillo et al., 2011

CHI Chalcone Isomerase is associated with flavonoid biosynthesis Willits et al., 2005

S Compound inflorescence (s) encodes a homeobox TF which controls the number of flower/fruits per
inflorescence architecture

Lippman et al., 2008

CKX Cytokinin oxidase enzyme associated gene is involved in the inactivation of bioactive cytokinin Ashikari et al., 2005

FAS CLAVATA3 encoded the Fasciated gene which is associated with controlling locules number and size in
fruit

Xu C. et al., 2015

GLK2 Golden2-like TF belongs to GARP family which play a key role in the regulation of chloroplast
development in fruits

Powell et al., 2012

J1 JOINTLESS belongs to MADS-box gene family controlling the development of the abscission zone in
pedicels

Mao et al., 2000

Cyc-B Lycopene β-cyclase involved in the catalyzes the conversion of lycopene into β-carotene Ronen et al., 2000

NOR Non-ripening gene associated with the initiation of the normal fruit ripening Seymour et al., 2013

O OVATE is a regulatory gene involved in the regulation of fruit shape Liu et al., 2002

PRO PROCERA gene involved in suppression of gibberellin signaling Jasinski et al., 2008

RIN RIPENING INHIBITOR gene belongs MADS-box family; key role in controlling biosynthesis of ripening
-related ethylene

Seymour et al., 2013

SP SELF-PRUNING gene is a developmental regulator associated with indeterminate and sympodial
growth habit in tomato

Pnueli et al., 1998

SFT SINGLE FLOWER TRUSS gene involved in regulation of flowering Lifschitz et al., 2006

CLV3 CLAVATA3 key meristematic gene, regulating locule numbers in fruit Rodríguez-Leal et al., 2017

PSY1 Phytoene synthase 1 gene involved in the biosynthesis of carotenoid resulting in yellow flesh fruit Hayut et al., 2017

ANT1 Anthocyanin mutant 1 gene encodes a Myb TF which involve in increasing anthocyanin content Čermák et al., 2015

GAD2, GAD3 Key genes encoding an enzyme glutamate decarboxylase for biosynthesis of γ-aminobutyric acid
(GABA) in fruit

Nonaka et al., 2017

ALMT9 Al-ACTIVATED MALATE TRANSPORTER9 gene involved in decreasing the malate content
accumulation in fruit

Ye et al., 2017

MBP21 MBP21 is a MADS-box protein controlling formation of abscission zone in pedicel Roldan et al., 2017

BOP1, BOP2,
BOP3

BLADE ON PETIOLE gene reported being associated with early flowering with simplified inflorescences Xu et al., 2016

SP5G SELF-PRUNING 5G gene is a flowering repressor linked involved in the development of
day-length-sensitive tomato plant

Soyk et al., 2017

Cucumis
sativus

WIP1 WIP1 is a C2H2 zinc finger TF gene involved in development of gynoecious plant Hu et al., 2017

Actinidia
chinensis

CEN CENTRORADIALIS like gene associated with the development of compact plant with early terminal
flowering and fruit development

Varkonyi-Gasic et al., 2019
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which also involved metabolomics study has provided insights
into the molecular basis of trait domestication. One can
target these domesticated genes in wild ancestral plants for
their speedy domestication. Now through CRISPR-Cas9 method
these wild relative can be directly used for re-domestication
or de-novo domestication (Figure 3 and Tables 5, 6). One
of the important case study of de novo domestication in
tomato has been done by Zsögön et al. (2018) by targeting
important domestication related genes through CRISPR-Cas9
in tomato wild ancestral species S. pimpinellifolium. Zsögön
et al. (2018) targeted SELFPRUNING (SP, control general plant
growth habit), OVATE (O, regulate fruit shape); FASCIATED
(FAS), FRUIT WEIGHT 2.2 and CLAVATA3 (CLV3) (control
fruit size and locule numbers), MULTIFLORA (MULT, regulate
fruit number), and LYCOPENE BETA CYCLASE (CycB). The
engineered S. pimpinellifolium lines and achieved remarkable
change in the plant overall phenotype with important traits
essential for the commercial purpose such as increased lycopene
content, enhanced fruit shape and determinant growth of plant;
moreover, this was achieved in just single generation. Another
study involved editing of multiples genes SP, SP5G (control
day-length insensitivity), CLV3, WUSCHEL (WUS) and GDP-L-
galactose phosphorylase 1 (GGP1, control biosynthesis of ascorbic
acid) in S. pimpinellifolium (Li et al., 2018). This study clearly
showed how selective editing of domesticated related genes
can completely alter the plant architecture and improves the
nutritional quality of fruits and makes convert wild relative
into domesticated crop with retained biotic and abiotic stress
tolerance properties (Li et al., 2018). Very recently, in the
wild strawberry (Fragaria vesca) few attempts has been made
to demonstrate the procedure of the re-domestication or de
novo domestication (Zhou et al., 2018; Feng et al., 2019). These
attempts involved editing of genes tryptophan aminotransferase
of Arabidopsis 1 (TAA1, converts tryptophan to indole-3-
pyruvic acid), Auxin response factor 8 (ARF8, repressor of auxin
signaling) and YUCCA10 (YUC10, family of flavin-containing
monooxygenases convert IPyA to IAA), key auxin biosynthetic
and signaling pathways genes. Rice has five allotetraploids
(BBCC, CCDD, HHJJ, HHKK, and KKLL) wild species which
are also valuable genetic resources for improving of elite rice
varieties. Among them the CCDD (species from South America
genome) possess much stronger biotic and abiotic resistance
and larger biomass compared to the cultivated diploid rice.
Recently Yu et al. (2021) demonstrated de novo domestication
of wild allotetraploid rice PPR1 (O. alta; CCDD type genome)
by improving six agronomically important traits viz nutrition
use efficiency, abiotic stress tolerance, grain yield and quality,
heading date, biotic stress resistance and sterility by genome
editing targeting multiple genes including OaSD1-CC, OaSD1-
DD, OaAn-1-CC, and OaAn-1-DD by CRISPR/Cas9 method.
This suggests that CRISPR/Cas is a promising approach tool

for the domestication of crops (Crews and Cattani, 2018), and
is highly important for characters of defined selective sweeps
in related species. These achievements were possible due to
precise prediction of causal genes and metabolic pathways
achieved by interpretation of data generated through genomics,
transcriptomics, metabolomics, etc.

CONCLUSION

Omics have helped plant biologists to dissect important
developmental clues and gene characterization. Presently,
multidimensional omics approach where the biological
sample can be analyzed for transcriptomics, proteomics and
metabolomics in parallel, etc; offers plant biologists a complete
understanding of plant metabolism by revisiting the metabolic
pathways or identification of newer pathways. In the past
20 years, plant biologists have gathered significant amount of data
relevant to genomes, transcriptome, proteome, and metabolome.
Recent attempts are on development of gene-expression and
proteome atlas. Altogether, this would strengthen the knowledge
of the metabolic pathways, which have played crucial role during
domestication of crop as well as trait improvement. Now, this
knowledge has been translated to develop designer crops with
desired traits by editing metabolic pathways of wild ancestral
species (rich resource of genetic variations) called as de novo-
crop domestication. Domestication of wild or semi domesticated
crop (tolerant to stress responses) would be feasible by multi step
process were few important traits need to be improved first using
genome editing; later the homologous lines can be selected for
next level of trait modification. Such approach would be able
to deliver a commercial line in 5 to 10 years. The CRISPR/Cas
technique need to be explored in full extent by targeting several
traits such as bio-fortification of nutrition’s; because the current
growing population also demand nutritional security. To achieve
this, analysis of resequencing data available for the several crops
is important; including GWAS which can identify high quality
SNPs and haplotypes associated with target trait. Therefore,
we expected in next 20 years’ omics technology driven de-novo
crop domestication will play very important role in the field of
plant biotechnology.
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Elucidation of complex molecular networks requires integrative analysis of molecular
features and changes at different levels of information flow and regulation. Accordingly,
high throughput functional genomics tools such as transcriptomics, proteomics,
metabolomics, and lipidomics have emerged to provide system-wide investigations.
Unfortunately, analysis of different types of biomolecules requires specific sample
extraction procedures in combination with specific analytical instrumentation. The most
efficient extraction protocols often only cover a restricted type of biomolecules due to
their different physicochemical properties. Therefore, several sets/aliquots of samples
are needed for extracting different molecules. Here we adapted a biphasic fractionation
method to extract proteins, metabolites, and lipids from the same sample (3-in-1)
for liquid chromatography-tandem mass spectrometry (LC-MS/MS) multi-omics. To
demonstrate utility of the improved method, we used bacteria-primed Arabidopsis
leaves to generate multi-omics datasets from the same sample. In total, we were able
to analyze 1849 proteins, 1967 metabolites, and 424 lipid species in single samples.
The molecules cover a wide range of biological and molecular processes, and allow
quantitative analyses of different molecules and pathways. Our results have shown
the clear advantages of the multi-omics method, including sample conservation, high
reproducibility, and tight correlation between different types of biomolecules.

Keywords: multi-omics, 3-in-1 method, proteomics, metabolomics, lipidomics, Arabidopsis, disease

INTRODUCTION

Systems biology, the comprehensive study of biological components and their interactions
within a cell or a tissue, is indispensable toward understanding complex cellular functions and
processes. Multi-omic measurements and integration of the resulting information can transform
our understanding of complex biological systems (Dai and Chen, 2012; He et al., 2012; Mostafa
et al., 2016; Meng et al., 2019). Multiple layers of information (DNA, RNA, protein, metabolite,
and lipid) can provide important insights into cellular molecular networks. In recent years, rapid
progress has been made in genomics and transcriptomics. Nevertheless, proteomics, metabolomics,
and lipidomics have emerged as cornerstones in the field of systems biology because the essential
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information at protein, metabolite, and lipid levels cannot be
predicted or deduced from genomics and transcriptomics (He
et al., 2012; Geng et al., 2016, 2017; Mostafa et al., 2016;
Meng et al., 2019).

To conduct multi-omics, aliquots of the same sample are
required for different extraction procedures optimized for
different biomolecules. In addition to increased effort inherent to
different parallel sample handling, the required sample amounts
for multiple extractions are often not available. Meanwhile,
the multi-components extracted from parallel sets of replicates
can decrease consistency and comparability when performing
multi-omics integration. Consequently, a versatile extraction
method providing robust and reliable recovery of the molecular
components from a single sample is desirable. Such a method
decreases sample handling time and thus increases throughput.
Importantly, it conserves critical samples and improves data
accuracy and comparability because different molecules are all
derived from the same sample. Common methods employed
for fractionated extractions are based on a two-phase lipid
extraction method developed in 1957 (Folch et al., 1957).
It uses chloroform/methanol/water partitioning of polar and
hydrophobic metabolites and was designed to increase the
purity of lipids. Here we modified and optimized this method
to obtain high quality proteins, metabolites, and lipids from
a single sample, as a 3-in-1 method (Figures 1, 2). This
method can be easily applied to many types of materials.
It should be noted that when applying to other sample
types, the amount of samples may vary based on the types
of samples and their water content, etc. Regardless of the
source material, proteins, lipids, and metabolites have the same
physicochemical properties, therefore, this method has broad
application potential.

To test the utility of our 3-in-1 extraction method, we used
leaves of Arabidopsis thaliana (WS ecotype) that had been primed
by a pathogenic Pseudomonas syringae pv. tomato DC3000
(Pst DC3000). Systemic Acquired Resistance (SAR), a salicylic
acid (SA)-dependent immune response, improves immunity of
systemic tissues after prior localized exposure to a pathogen.
Arabidopsis knockout mutants defective in SAR response differ
in disease resistance when compared to wild type plants. Here
we used Arabidopsis wild type and a knockout mutant of a
lipid transfer protein DIR1 (defective in induced resistance 1) to
examine SAR in whole leaves. We have successfully used the 3-in-
1 method and annotated 424 lipids, which cover most of the lipid
classes. In addition, we have identified 1967 metabolites using
a LC-MSn method, and obtained 1849 protein identifications.
These results demonstrate the superior 3-in-1 method can greatly
facilitate multi-omics studies in systems biology.

MATERIALS AND METHODS

Plant Growth and Bacterial Injection
Arabidopsis thaliana wild type (WS ecotype) and dir1 mutant (in
WS background) were grown in 8 h light/16 h dark with a light
intensity of 140 µmol/m2 s. One mature rosette leaf of the 5-
week-old plants was injected with either Pst DC3000 in 10 mM

MgCl2 (OD600 = 0.02) for treated plants or 10 mM MgCl2 for
mock plants using a needleless syringe. Fully expanded distal
rosette leaves that were not injected were collected at 48 h after
infiltration and directly frozen in liquid nitrogen and stored in
−80◦C for 3-in-1 extraction. Three biological replicates of treated
and three biological replicates of mock leaves were used.

Multi-Omics Sample Preparation
Three hundred milligrams fresh weight leaves were quickly
immersed in glass tubes with 3 ml pre-heated 75◦C methanol
(MeOH) and 0.01% butylated hydroxytoluene (BHT) and
incubated for 15 min. Internal standards were added to
each sample as follows: for proteins: 60 fmol bovine serum
albumin (BSA) tryptic peptides per 1 µg sample protein; for
metabolites: 10 µL 0.1 nmol/µL lidocaine and camphorsulfonic
acid; and for lipids: 10 µL 0.2 µg/µL deuterium labeled
15:0-18:1(d7) phosphatidylethanolamine (PE) and 15:0-18:1(d7)
diacylglycerol (DG).

For extraction of proteins, metabolites and lipids, 6 ml of
chloroform and 2 ml of water (3:1, vol/vol) were added to
each tube and 500 µl of MeOH was added to replenish the
methanol that evaporated from boiling (Folch et al., 1957).
Samples were vortexed at 4◦C for 1 h. The liquid was transferred
from the extracts to glass centrifuge tubes for further phase
separation. To improve collection of all 3 components, 2 ml of
chloroform/methanol (2:1 vol/vol) with 0.01% BHT was added
to the leaves in the glass tubes and agitated for another 30 min
at 4◦C. This liquid was combined with the previous into the
glass centrifuge tubes. This last extraction procedure was repeated
twice on all the samples until the leaves appeared white. After
extraction, leaves were dried at 105◦C overnight and weighed
for dry weights.

For phase separation, extracts were centrifuged at 10,000 rpm
for 10 min at 4◦C. First the upper (metabolites in MeOH)
phase was collected and transferred to plastic 2 ml centrifuge
tubes, then the bottom (lipids in chloroform) phase was removed
and transferred to glass tubes, leaving the middle (protein)
layer for protein collection. The lipid extract was evaporated
by the Nitrogen gas and dried sample tube filled with nitrogen
gas was placed at −80◦C. The lipid extract was dissolved in
1 ml isopropanol (IPA) for LC-MS analysis. Metabolites were
lyophilized to dryness, then the tubes were filled with argon and
placed at −80◦C. Metabolites were solubilized in 100 µl of 0.1%
formic acid (FA) for LC MS/MS analysis.

Protein Precipitation and Trypsin
Digestion
Proteins were precipitated by addition of 80% acetone in the
glass centrifuge tubes in −20◦C. After 16 h, the samples were
centrifuged at 10,000 rpm for 10 min at 4◦C. After removing
acetone, proteins were resuspended in 100 µl of 50 mM ABC,
reduced using 10 mM dithiothreitol (DTT) for 1 h at 22◦C, and
then alkylated with 55 mM iodoacetamide (IAM) for 1 h in
darkness. The samples were digested with trypsin (1:100 w/w) for
16 h. All the samples were acidified by addition of 0.1% FA to stop
the digestion and stored at−80◦C.
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FIGURE 1 | Diagram of 3-in-1 sample preparation method for profiling proteins, metabolites, and lipids from control and primed Arabidopsis leaves. The biphasic
fractionation separates three types of biomolecules simultaneously, which are analyzed on the same mass spectrometry platform. The data are also analyzed using
the same vendor’s software. A more detailed workflow of the extraction is shown in Figure 2.

FIGURE 2 | Detailed workflow of 3-in-1 sample extraction of proteins, metabolites, and lipids from control and primed Arabidopsis leaves.
A chloroform/methanol/water extraction is used to separate the three fractions and each layer is carefully isolated using supplies of glass materials to avoid plastic
contaminants in samples. The order of fractionated is important and labeled. Butylated hydroxytoluene (BHT) is added at the start of the extraction to avoid oxidation
of lipids during the procedure. MeOH, methanol; PE, phosphatidylethanolamine; DG, diacylglycerol; BSA, bovine serum albumin; CHCl3, chloroform; FA, formic acid;
LC-MS/MS, liquid chromatography tandem mass spectrometry; IPA, isopropanol; ABC, ammonium bicarbonate; DTT, dithiothreitol; IAM, iodoacetamide.
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Liquid Chromatography Mass
Spectrometry (LC-MS) and Omics Data
Analysis
Untargeted metabolomic, lipidomic, and proteomic methods
were run on an Orbitrap Fusion Tribrid mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany). A VanquishTM

UHPLC was used for lipids and metabolites, and an Easy-nLC
was used for peptides. An Accucore C18 (100 mm × 2.1 mm,
2 µm) column and an Acclaim C30 (2.1 mm × 250 mm,
3 µm) were used for metabolites and lipids, respectively. The
column chamber temperature was 55◦C, and the pump flow
rate was 0.45 ml/min. For metabolomics, solvent A (0.1% FA)
and solvent B (0.1% FA and 99.9% acetonitrile) were used. The
LC gradient is set to 0 min: 1% of solvent B, 5 min: 1% of
B, 6 min: 40% of B, 7.5 min: 98% of B, 8.5 min: 98% of B,
9 min: 0.1% of B, 10 min stop run. To enhance identification,
an AcquireX MSn data acquisition strategy was used which
employs replicate injections for exhaustive sample interrogation
and increases the number of compounds in the sample with
distinguishable fragmentation spectra for identification (David
et al., 2021). Pooled samples were created using equal volumes
of all the samples for quality control, and were run after each
sample set. Electrospray ionization spray voltage for positive ions
was 3500 and for negative ions was 2500. Sheath gas was set to
50, auxiliary gas was set at 1 and sweep gas was set to 1. The
ion transfer tube temperature was set at 325◦C and the vaporizer
temperature was set at 350◦C. Full MS1 used the Orbitrap mass
analyzer with a resolution of 120,000, scan range (m/z) of 55–550,
maximum injection time (MIT) of 50, automatic gain control
(AGC) target of 2e5, 1 microscan, and RF lens set to 50. For
lipidomics, solution A consisted of 0.1% FA, 10 mM ammonium
formate, and 60% acetonitrile. Solution B consisted of 0.1% FA,
10 mM ammonium formate, and 90:10 acetonitrile: isopropyl
alcohol. The LC gradient is set to 0 min: 32% of solvent B (i.e.,
68% of solvent A), 1.5 min: 45% of B, 5 min: 52% of B, 8 min:
58% of B, 11 min: 66% of B, 14 min: 70% of B, 18 min: 75% of
B, 21 min: 97% of B, 26 min: 32% of B, 32 min stop run. Full
MS1 used the Orbitrap ion trap mass analyzer with a resolution
of 70,000, 1 microscan, AGC target set to 1e6, and a scan range
from 200 to 2000 m/z for positive and negative polarity. The dd-
MS2 scan used 1 microscan, resolution of 35,000, AGC target 5e5,
MIT of 46 ms, and loop count of 3.

The column used for peptides was the Acclaim PepMapTM

100 pre-column (75 µm × 2 cm, nanoViper C18, 3 µm, 100 A)
combined with an Acclaim PepMapTM RSLC (75 µm × 25 cm,
nanoViper C18, 2 µm, 100 A) analytical column. The LC runs a
linear gradient of solvent B (0.1% FA, 99.9% Acetonitrile) from
1 to 30% for 90 min at 250 nL/min. The solvent A was 0.1%
FA. The MS was operated in data-dependent acquisition mode
with a cycle time of 3 s. Eluted peptides were detected in the
Orbitrap MS at a 120,000 resolution with a scan range of 350–
1800 m/z. Most abundant ions bearing 2–7 charges were selected
for MS/MS analysis. AGC for the full MS scan was set as 2e5 with
MIT as 50 ms, and AGC Target of 1e4 and MIT of 35 ms were
set for the MS/MS scan. The normalized collision energy was 35,
and ions were detected with an Ion Trap detector. A dynamic

exclusion time of 30 s was applied to prevent repeated sequencing
of the most abundant peptides.

Proteome DiscovererTM 2.4, Compound DiscoverTM 3.0,
and Lipid Search 4.1TM software (Thermo Fisher Scientific,
Bremen, Germany) were used for proteomics, metabolomics
and lipidomics data analyses, respectively (Figure 1). Software
scoring parameters used for metabolite, lipid, and protein
identifications are briefly described here with references provided
to previous publications with more details (Geng et al., 2016,
2017; Breitkopf et al., 2017). Briefly, for proteomic data
analysis, MS/MS spectra were searched against Arabidopsis
TAIR10 database with 10 ppm mass tolerance for MS1 and
0.02 Da tolerance for MS2, two missed cleavage sites, fixed
modification of cysteine carbamidomethylation (+57.021), and
dynamic modifications of methionine oxidation (+15.996).
Peptide confidence level was set at 1% false discovery rate with at
least two unique peptides. Relative protein abundance in treated
and mock samples was measured using label-free quantification
in the Proteome DiscovererTM 2.4. For metabolomics data,
metabolite identification included predicting compositions,
searching mzCloud spectra database, and assigning compound
annotations by searching ChemSpider, Pathway mapping to
KEGG and Metabolika pathways was used for functional analysis.
The metabolites were scored by applying mzLogic and the
best score was kept. Peak areas were normalized by the
positive and negative mode internal standards (lidocaine and
camphorsulfonic acid, respectively) (Geng et al., 2017). For
lipidomics data, raw files from three replicates of mock and
treated were uploaded to Lipid Search 4.1TM for annotation of
lipids found in all the samples. A mass list was generated for
uploading to Compound DiscoverTM 3.0 Software. This mass
list was used for metabolite identification along with predicted
compositions, mzCloud database matching, and compound
annotations. Lipid Search scoring algorithms considering lipid
fragmentation ions related to headgroup, fatty acids and
backbone, as well as precursor and product ion accuracy of
5 ppm were used. Peak areas were normalized by median-
based normalization.

Statistical analyses were done by normalizing peak areas by
internal standards spiked in the samples. The average areas
of three biological replicates of each group were compared as
a ratio and two criteria were used to determine significantly
altered components: (1) p-value from an unpaired student’s
t-test less than 0.05, and (2) increase or decrease of 2-fold
(dir1 primed/wild type primed) (Supplementary Table 1). All
protein MS raw data and search results have been deposited
to the ProteomeXchange Consortium via the PRIDE partner
repository with the data set PXD023094. All the metabolomics
and lipidomics MS raw data and search results have been
deposited to the MetaboLights repository with the data set
identifier MTBLS2303.

RESULTS AND DISCUSSION

The multi-omics sample preparation workflow that we have
developed has allowed us to increase the number of lipids,
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proteins, and metabolites identified from a single sample
(Figure 1). Previous extraction methods applied to Arabidopsis
leaves identified 1987 proteins (Nakayasu et al., 2016), 2638
proteins (Salem et al., 2016), 150 metabolites and 200 lipid
species (Salem et al., 2016, 2017; Table 1). Our method was
able to identify 1849 confident proteins with 2 or more unique
peptides at FDR of less than 1%. Our method greatly increases
the number of polar metabolites to 1967, and non-polar lipids
to 424 lipid species (Table 1). This represents a more than
10-fold increase in the identified metabolites and more than
twice the number of identified lipid species, when compared
to previous Arabidopsis papers (Salem et al., 2016, 2017). The
number of identified proteins in this work appears to be lower
than reported in a previous paper (Salem et al., 2016), but we
used stringent criteria for high confidence. Otherwise, we could
have identified 2778 proteins (Table 1). We also compared our
method to other three-part extraction methods developed for
mammalian cell lines (Coman et al., 2016; Nakayasu et al., 2016).
Again, our method stands out considering the large numbers
of identified polar and non-polar metabolites. While the overall
number of identified proteins in our samples is lower than
those reported in Coman et al. (2016) and Nakayasu et al.
(2016) (Table 1), we are fully aware that such a comparison
may not be sensible because of species and protein database
differences. For instance, the mouse proteome is larger with
55,152 entries in UniProt, while the TAIR10 database contains
35,386 entries (Zhang et al., 2019). Nevertheless, we can
reasonably expect that our 3-in-1 method will lead to valuable
results when applied to mammalian cells. Among all the 3-in-
1 methods in Table 1, our method is most similar to Nakayasu
et al. (2016), which used human epithelial Calu-3 cells. For
Arabidopsis, they only reported identification of 1987 proteins
using an-house software. Since it is not clear about their FDR
and unique peptide criteria, it may be reasonable to assume
that our protein data of 2778 proteins (with 1% FDR) and
1894 proteins (after applying additional two unique peptide
filter) are comparable, if not better. Importantly, we identified
nearly 20 times more metabolites and more than twice the
lipid species (Table 1 and Supplementary Table 2). Here are
some technical improvements in our method: (1) we added a
reductant at the first step to preserve lipids and extracted for
longer time; (2) we did three chloroform/methanol extraction
steps until the leaves looked white in color, while Nakayasu
et al. (2016) only extracted one time; (3) we lyophilized the
fractions of metabolites and lipids (under nitrogen gas) before
reconstitution and LC-MSn, while they collected the lipid and
metabolite layers directly into autosampler vials; (4) we used
a new AcquireX LC-MSn data acquisition strategy (David
et al., 2021), which enhanced the coverage of metabolome
and lipidome; (5) their metabolomics was done using GC-
MS, which is known to cover a small number of central
metabolites (Gowda and Djukovic, 2014; Geng et al., 2017);
and (6) this work may have also benefited from the use of
Compound Discoverer software with access to a large MzCloud
database of MS2 spectra.

Here we also compared our 3-in-1 extraction method to
previously published methods targeted to a single component,

including proteins (Zybailov et al., 2009; Niehl et al., 2013),
metabolites (Fiehn et al., 2000; Wu et al., 2018), and lipids
(Higashi et al., 2015; Kehelpannala et al., 2020). We found that
our method allows for similar numbers of identified proteins,
and increased numbers of metabolites and lipids when compared
to these single component extraction methods (Table 1). Please
note, that protein work mentioned in Table 1 include gel-based
sample prefractionation step to improve coverage, but in our
study we obtained similar numbers of proteins without this
fractionation step. We can attribute the improved extraction and
identification of metabolites, lipids, and proteins to three factors:
1. advanced instrumentation by using the Orbitrap tribrid mass
spectrometer; 2. deep sampling and fragmentation of analytes
using the AcquireX technology resulting in improved level 2
identification by MS2 and MS3; and 3. preservation of each layer
by using Nitrogen gas for evaporation of chloroform in lipid
samples and addition of reductant to avoid lipid and metabolite
oxidation, as well as avoiding disruption of middle layer to
preserve for protein precipitation in acetone and the use of only
glass materials to avoid plastic contaminations during extraction
(Table 1 and Figure 2). This procedure also requires careful
removal of each component layer so as not to disrupt and disperse
the middle layer that contains the proteins. This was achieved
by avoiding agitation of the glass tube after removing from the
centrifuge and by carefully sliding the glass pipette along the side
of the tube to draw off the metabolite and lipid layers sequentially,
leaving the protein layer intact (Figure 2).

Increased identification of proteins, metabolites and lipids
is essential for understanding the interconnected molecular
networks that mediate cellular responses. Figure 3A shows that
different molecules (proteins, metabolites, and lipids) from a
specific pathway can be examined together to gauge potential
regulations and activities of the pathway. This is important
because protein abundance data do not reflect the activity of the
protein, but when combined with the information for metabolites
and lipids, the activities of enzymes leading to synthesis of
the metabolites can be deduced. Figure 3B shows that the
identified proteins from Arabidopsis leaves cover a wide range of
molecular pathways (129 out of 541 KEGG pathways), in addition
to pathways covered by the identified metabolites and lipids,
highlighting the complementary nature of different “omics.” In
Figure 3C, principal component analysis shows unsupervised
clustering of wild type samples and mutant samples separately,
and also that mock versus treated samples grouping together
for proteins, metabolites and lipids. The results clearly indicate
high reproducibility of the 3-in-1 method and its application to
capturing biological differences related to Arabidopsis systemic
acquired resistance.

When comparing to previous methods (Table 1), our new
method clearly stands out in the high coverage of metabolome
and lipidome. For example, both low abundant (methionine,
tryptophan, and tyrosine) and high abundant amino acids
(arginine and glutamic acid) in plants (Kumar et al., 2017)
were identified. In addition, metabolites with a variety of
chemical properties were covered, including polar (e.g.,
glutamine and tyrosine), non-polar (e.g., methionine), aromatic
amino acids (e.g., tryptophan and tyrosine), cofactors (e.g.,
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TABLE 1 | Comparison of the three-in-one method in this study with previously published targeted and three-in-one methods.

Proteins Metabolites Lipids Simultaneous extraction of proteins, metabolites, and lipids

References Zybailov
et al., 2009

Niehl et al.,
2013

Fiehn et al.,
2000

Wu et al.,
2018

Higashi
et al., 2015

Kehelpannala
et al., 2020

Coman
et al., 2016a

Nakayasu
et al., 2016a

Salem et al.,
2016

Salem et al.,
2017

This work

Materials Arabidopsis
ecotype Col-0

Arabidopsis
ecotype Col-0

Arabidopsis
ecotypes
Col-2 and
C24

Arabidopsis
ecotype Col-0

Arabidopsis
ecotypes
Col-0 and
Nossen

Arabidopsis
ecotype Col-0

Mouse bone
marrow cells

Arabidopsis
Human
epithelial
Calu-3 cells

Arabidopsis
ecotype Col-0

Arabidopsis
ecotype Col-0

Arabidopsis
ecotype WS

Extraction Tris buffer
with 5% SDS

Trizol and
acetone
precipitation

Chloroform:
methanol:
H2O

Methyl-tert-
butyl-ether:
methanol:
H2O

Chloroform:
methanol:
H2O

Chloroform:
methanol:
H2O

Methyl-tert-
butyl- ether:
methanol:
H2O

Chloroform:
methanol:
H2O

Methyl-tert-
butyl- ether:
methanol:
H2O

Methyl-tert-
butyl- ether:
methanol:
H2O

Chloroform:
methanol:
H2O

Fractional on Gel
electrophoresis
into 12
fractions

Gel
electrophoresis
into 8
fractions

Lipophilic and
polar phases

Aqueous
phase

Lipophilic
phase

Lipophilic
phase

SIMPLEx
containing 3
phases

MPLEx
containing 3
phases

Polar and
non-polar
liquid and
liquid
fractional

Polar and
non-polar
liquid and
liquid
fractional on

Triphasic
fractionation

Chromato-
graphy

Ultimate LC
with 90 min
gradient

Picotip with
50 min LC
gradient

Gas
chromatography
8000

Waters
Acquity LC
with 44 min
gradient

Shimadzu LC
with 40 min
gradient

Agilent 1290
LC with
30 min
gradient

Ultimate 3000
LC with
45 min
gradient

Nano-/Cap-
LC with
90 min
gradient,
Agilent
GC-MS

Ultimate LC
with 110 min
gradient

Ultimate LC
with 110 min
gradient

Ultimate LC
with 90 min
gradient

Mass
spectrometer

LTQ Orbitrap
MS/MS

LTQ Qrbitrap
MS/MS

Voyager mass
spectrometer

Exactive
Qrbitrap MS

Ion trap-Time-
of-Flight (TOF)
MS

Quadrupole-
TOF
MS/MS

LTQ Orbitrap
Velos and
QTRAP 6500
MS/MS

LTQ-Orbitrap
Velos MS/MS

Q-Exactive
Orbitrap
MS/MS

Q-Exactive
Orbitrap
MS/MS

Orbitrap
Fusion Tribrid
MSn and
AquireX

Software Mascot 2.2 Mascot 2.3 MassLab
FindTarget
and Pirouette

REFINER MS
10.0

Profiling
Solution and
in-house Perl
script

MS-DIAL Progenesis
4.1

VIPER
(in-house)

Mascot 2.5 Mascot 2.5 Proteome
Discoverer
2.4

MultiQuant
3.0

Metabolite
Detector

Target Search Target Search Compound
Discover 3.0

Chipsoft 8.3.1 LIQUID
(in-house)

Progenesis
QI2.2

Progenesis QI
2.2

Lipid Search
4.1

Levelb 2 2 1 2 1 and 2 2 1 and 2 2 2 2 1 and 2

Identification 2800 proteins 1474 proteins 326
metabolites

123
metabolites

66 lipids 208 lipids 3327 proteins 1987/2670
proteinsc

2638 proteins Not available 2778/1849
proteinsd

75
metabolites

51
metabolites

150
metabolites

50
metabolites

1967
metabolites

360 lipids 236/171
lipidse

200 lipids 200 lipids 424 lipids

Our three-part extraction method is compared to other single component extraction methods and to other three-component extraction methods. Extraction technique, sample preservation, instrumentation method,
and data analysis software all play a role in the improved profiling of proteins, metabolites, and lipids. a. this paper used mammalian cells. All other samples are Arabidopsis leaves. b. Level 1, Authentic standards
(identification); Level 2, MS/MS data matching to library/database. c. 1987 proteins from Arabidopsis (of unknown ecotype), 2670 proteins identified from Human epithelial Calu-3 cells. d. 2778 proteins identified only
with 1% FDR, and 1894 proteins after applying a two unique peptide filter. e. while it is written in the paper text that there were 236 lipids, only a total of 171 lipids could be found in the Supplementary Tables.
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FIGURE 3 | Evaluation of KEGG pathway coverage, data quality, and performance improvement with the 3-in-1 extraction method. (A) Enhanced coverage of
specific molecular pathways by the identified proteins, metabolites, and lipids. In The red-colored boxes represent identified proteins and the red-colored circles are
lipids and metabolites. (B) Mapping of the quantified proteins, metabolites, and lipids onto the KEGG metabolic pathways. (C) Principal component analysis (PCA) of
relative levels of proteins, metabolites, and lipids obtained from three biological replicates under the four experimental conditions (WM, wild type mock; WP, wild type
primed; dM, dir1 mock; dP, dir1 primed).

FIGURE 4 | Significant changes of proteins, metabolites, and lipids in Arabidopsis leaves of wild type and dir1 mutant primed by Pst DC 3000 treatment. (A) Volcano
plots displaying differential changes of proteins, metabolites, and lipids in wild type and dir1 mutant. Pink dots indicate differential molecules. (B) Biological functions
of the differential metabolites/lipids and proteins in wild type versus dir1 primed leaves.

NAD+, ATP), and plant hormones (e.g., SA and jasmonic
acid). Moreover, lipids also spanned a range of lipid classes
and different concentrations in the cells. They include major
lipid classes, such as glycerolipids: monoradylglycerolipids
(MG), diradylglycerolipids (DG), and triradylglycerolipids
(TG); glycerophospholipids: glycerophosphoserines (PS),
glycerophosphoinositols (PI), glycerophosphoglycerols (PG),
glycerophosphoethanolamines (PE), glycerophosphocholines

(PC), lyso-glycerophosphoethanolamines (LPE); sphingolipids:
ceramides (Cer); and galactolipids: monogalactosyldiacylglycerol
(MGDG), digalactosyldiacylglycerol (DGDG), and
digalactosylmonoacylglycerol (DGMG). Interestingly, the
relative abundances of the lipid classes correlate well with those
detected in previous publications (Supplementary Table 2), in
spite the ecotype differences between this study and the other
studies (Table 1).
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FIGURE 5 | Enriched pathways and differential metabolites and lipids in Arabidopsis leaves of wild type and dir1 mutant primed by Pst DC 3000 treatment.
(A) MetaboAnalyst analysis of pathway enrichment for metabolites and lipids. (B) KEGG pathways of metabolites/lipids that are differentially abundant in wild type
versus dir1 primed leaves.

A successful multi-omics study should not only allow for
large-scale discovery of biomolecules at different abundances, but
also uncover meaningful biological processes and significance.
Here we employ the 3-in-1 method in a proof-of-concept study
to measure changes of proteins, metabolites and lipids from each
sample during SAR. A volcano plot of the protein, metabolite, and
lipid data from wild type SAR (primed/control) versus SAR in
the dirl mutant showed many differential molecular changes with
significant p-values of less than 0.05 (Figure 4A). The method
also showed decent reproducibility even with biological replicate
samples. Of the 113 differentially abundant proteins between
dir1 primed/WS primed, 112 had coefficient of variation (CV)
less than 20%. Of the 135 differential metabolites and 15 lipids,
they were 91 and all 15 less than 20%, respectively. Differential
metabolites and lipids were grouped and mapped to KEGG
pathways and differential proteins were separately mapped to
KEGG pathways (Figure 4B). Interestingly, the largest group of
differential proteins mapped to metabolic process and metabolic
pathways was the second most abundant biological process for
the differential metabolites (Figure 4B). Protein differences in
the dir1 primed versus wild type primed plants indicate that the
altered dir1 defense responses may account for its susceptibility
when compared to wild type plants. Proteins in response to
stimulus and defense response pathways were the second and
sixth most abundant groups, respectively (Figure 4B). When
examining metabolites and lipids that were different between the
dir1 and wild type primed leaves, we found the largest groups
related to biosynthesis of secondary metabolites, biosynthesis of

antibiotics, and biosynthesis of amino acids as the first, fourth,
and seventh most abundant groups, respectively. Secondary
metabolites and amino acids play well-known roles in plant
defense responses (Zeier, 2013; Rojas et al., 2014; Kadotani et al.,
2016; Erb and Kliebenstein, 2020). Additionally, biosynthesis
of antibiotics can be correlated to defense response against the
biological pathogen Pst during priming.

To further investigate the roles of the differential metabolites
and lipids, we performed a pathway enrichment analysis
(Figure 5A), revealing enrichment of multiple amino acid
metabolic pathways including: glutamine and glutamate,
phenylalanine, tyrosine, tryptophan, arginine, proline, valine,
leucine, isoleucine, and lysine metabolism (Figure 5A). They
were largely decreased in the susceptible dir1 mutant in the
category of amino acid biosynthesis (Figure 5B). Interestingly,
the protein level changes corroborate the metabolomics data
(Figure 5A), indicating translational regulation of amino
acid metabolism. The dir1 mutant also had lower abundance
of other defense related metabolites, e.g., antibiotics and
secondary metabolites (Figure 5B). These results can help
explain the susceptibility of the dir1 mutant and the critical
role of DIR1 in plant defense response. In contrast to the
dir1 mutant, the wild type plants increased the levels of these
defense-related metabolites.

Since amino acid metabolism was dramatically affected in
the dir1 mutant during SAR, here we focused on mapping
proteins and metabolites onto the KEGG pathways for amino
acid biosynthesis (Figure 6B). Six proteins and two metabolites

Frontiers in Genetics | www.frontiersin.org 8 April 2021 | Volume 12 | Article 635971155

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-635971 April 9, 2021 Time: 19:31 # 9

Kang et al. 3-in-1 Method for Multi-Omics

FIGURE 6 | Amino acid biosynthesis pathways with differential metabolites and proteins in leaves of wild type and dir1 mutant primed by Pst DC 3000 treatment.
(A) Box plots showing lower abundance of six proteins and two metabolites in the glutamate and threonine biosynthetic pathways. 1. aspartate kinase 1; 2.
homoserine kinase; 3. pyridoxal-5′-phosphate-dependent enzyme; 4. argininosuccinate synthase; 5. aconitase 1; 6. aspartate aminotransferase 1; 7. aconitic acid;
8. N5-ethyl-L-glutamine. (B) KEGG pathways of metabolites/proteins related to glutamate and threonine that are differentially abundant in wild type versus dir1
primed leaves. Green color indicates decreased abundance.
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were mapped to amino acid biosynthesis, and they were related
to glutamate and glutamine, the top enriched pathway for the
metabolite analysis (Figure 5A). All the six proteins and two
metabolites were decreased in the primed dir1 mutant when
compared to primed wild type plants (Figure 6A). As amino acid
biosynthesis is closely related to plant disease resistance (Zeier,
2013; Rojas et al., 2014; Erb and Kliebenstein, 2020), DIR1 may
play a role in regulating amino acid during SAR priming. Amino
acid metabolism is inhibited during the SAR response of the
dir1 mutant (Figure 5B). A previous metabolomic study revealed
that the levels of several amino acids were significantly increased
in Arabidopsis leaves inoculated with SAR-inducing P.syringae,
including aromatic amino acids, branched-chain amino acids,
Thr and Lys, whereas Asp was decreased (Zeier, 2013). Here we
found a decrease in threonine biosynthesis in the dir1 mutant
(Figure 6B). Additionally, Kadotani et al. (2016) found that
exogenous application of glutamate to rice leaves was sufficient
to induce systemic resistance against rice blast. These results
are consistent with our finding that compromised amino acid
metabolism may contribute to the disease susceptibility of the
dir1 mutant. The potential connection between DIR1 and amino
acid metabolism is a new discovery, which needs to be further
characterized in future studies.

CONCLUSION

Multi-omics has advanced our understanding of the complex
molecular mechanisms underlying genetic diseases, host-
pathogen interactions, and metabolic disorders important
to human health and crop production. The 3-in-1 sample
preparation method greatly facilitates application of proteomics,
metabolomics and lipidomics technologies to tackling
fundamental biological and systems biology questions. Here
we demonstrated the utility and robustness of the improved
method using Arabidopsis leaves from wild type and dir1 mutant
challenged with Pseudomonas pathogen that causes crop diseases.
In total, we were able to profile 1849 proteins, 1967 metabolites
and 424 lipids from single samples, and integrate them into
pathways and networks. The high coverage of molecules has
not been achieved before. In addition, integration of the data
has generated interesting questions and testable hypotheses.
For example, how DIR1 regulates amino acid metabolism is
intriguing. Apparently, the extraction of proteins, metabolites
and lipids simultaneously from the same sample (3-in-1) has the
following advantages: (1) inexpensive and easy to perform as this
method does not require any special reagents or kits; (2) reducing
technical variations related to sample preparation of different
molecules; (3) conservation of sample amount (e.g., in case of
single-cell types and clinical biopsies); (4) enhancing multi-omics
by high coverage, reproducibility and tight correlation between
different biomolecules; (5) broadly applicable to any other cells
or tissue types. Therefore, this newly improved method has great
value to multi-omics and systems biology toward understanding
cellular molecular networks (through hypothesis generation
and hypothesis testing) important for biological functions,
traits and phenotypes.
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Aluminum or Low pH – Which Is the
Bigger Enemy of Barley?
Transcriptome Analysis of Barley
Root Meristem Under Al and Low pH
Stress
Miriam Szurman-Zubrzycka1* , Karolina Chwiałkowska2, Magdalena Niemira3,
Mirosław Kwaśniewski2, Małgorzata Nawrot1, Monika Gajecka1, Paul B. Larsen4 and
Iwona Szarejko1*

1 Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia
in Katowice, Katowice, Poland, 2 Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok,
Poland, 3 Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland, 4 Department of Biochemistry,
University of California, Riverside, Riverside, CA, United States

Aluminum (Al) toxicity is considered to be the most harmful abiotic stress in acidic soils
that today comprise more than 50% of the world’s arable lands. Barley belongs to a
group of crops that are most sensitive to Al in low pH soils. We present the RNA-
seq analysis of root meristems of barley seedlings grown in hydroponics at optimal
pH (6.0), low pH (4.0), and low pH with Al (10 µM of bioavailable Al3+ ions). Two
independent experiments were conducted: with short-term (24 h) and long-term (7 days)
Al treatment. In the short-term experiment, more genes were differentially expressed
(DEGs) between root meristems grown at pH = 6.0 and pH = 4.0, than between
those grown at pH = 4.0 with and without Al treatment. The genes upregulated by
low pH were associated mainly with response to oxidative stress, cell wall organization,
and iron ion binding. Among genes upregulated by Al, overrepresented were those
related to response to stress condition and calcium ion binding. In the long-term
experiment, the number of DEGs between hydroponics at pH = 4.0 and 6.0 were
lower than in the short-term experiment, which suggests that plants partially adapted
to the low pH. Interestingly, 7 days Al treatment caused massive changes in the
transcriptome profile. Over 4,000 genes were upregulated and almost 2,000 genes
were downregulated by long-term Al stress. These DEGs were related to stress
response, cell wall development and metal ion transport. Based on our results we can
assume that both, Al3+ ions and low pH are harmful to barley plants. Additionally,
we phenotyped the root system of barley seedlings grown in the same hydroponic
conditions for 7 days at pH = 6.0, pH = 4.0, and pH = 4.0 with Al. The results
correspond to transcriptomic data and show that low pH itself is a stress factor that
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causes a significant reduction of root growth and the addition of aluminum further
increases this reduction. It should be noted that in acidic arable lands, plants are
exposed simultaneously to both of these stresses. The presented transcriptome analysis
may help to find potential targets for breeding barley plants that are more tolerant to
such conditions.

Keywords: barley, RNA-Seq, transcriptome, low pH, aluminum (Al), stress, root meristem

INTRODUCTION

One of the biggest problems of modern agronomy and a
constraint for world agriculture is the progressive acidification
of arable lands, caused by industrial pollution and overuse of
ammonia- and amide-containing fertilizers. It is estimated that
up to 50% of arable lands worldwide are acidic, with a pH below
5.5 (Von Uexküll and Mutert, 1995; Singh et al., 2017; Barros
et al., 2020). The majority of crops growing in acidic soils show
significant yield losses - up to 80%, depending on the species
(Sade et al., 2016). The primary factor responsible for reduced
yield in acidic soils is aluminum (Al), the third most abundant
element (after oxygen and silicon) and the most common metal
in the Earth’s crust. In alkaline and near-neutral soils, Al is
bound in various minerals or occurs in forms that are mostly
harmless to plants. However, in acidic soils, Al is released from
clay minerals in the form of [Al(H2O)6]3+, for simplicity often
referred to as Al3+ ions, that are bioavailable for plants and
highly phytotoxic (Bhalerao and Prabhu, 2013; Sade et al., 2016;
Rahman et al., 2018).

The first symptom of Al toxicity in acidic soils is reduction
of root growth, resulting from inhibition of both elongation
and division rates of root cells. As a consequence, the plant
suffers from reduced water and nutrient uptake, which leads
to plant growth retardation and, finally, yield reduction. It has
been shown that Al3+ ions are highly reactive and there are
many potential Al binding sites in plant cells. Al3+ ions interact
with the cell wall, cell membrane, and symplastic components;
therefore they interfere with a broad spectrum of physical and
cellular processes (Kochian et al., 2005, 2015). The first structure
in roots that Al3+ ions interact with is the apoplast. Aluminum
ions directly cross-link the negatively charged carboxyl groups
of pectins in the cell wall, which leads to its stiffening and
inhibition of cell elongation (Kopittke et al., 2015). A significant
part of absorbed Al (30–90%) is accumulated in the apoplast
(Silva, 2012; Gupta et al., 2013). Al3+ ions interact also with
the negatively charged surface of the plasmalemma and displace
other ions like Ca2+ from phospholipid head groups, which
destabilizes the cell membrane and alters its fluidity. It also leads
to depolarization of the plasmalemma, which affects cellular ion
homeostasis. Additionally, the replacement of Ca2+ by Al3+ in
the plasma membrane increases Ca2+ content in the apoplast
and therefore stimulates callose deposition. Accumulation of
callose inhibits intercellular transport through plasmodesmata
(Kochian et al., 2005).

A fraction of Al3+ that enters the cytosol may interact
with cytoskeletal elements and disturb its dynamics directly or

indirectly through modification of e.g., Ca2+ signaling cascade.
The disturbances in spatial orientation of the cytoskeleton may
affect cell expansion and lead to morphological changes and
distortion of roots (Sade et al., 2016). Moreover, there is extensive
evidence that Al3+ ions enter the nucleus, cause DNA damage
(Silva et al., 2000; Min et al., 2009; Jaskowiak et al., 2018), and
activate the DDR (DNA Damage Response) pathway, which
additionally leads to inhibition of cell divisions (Rounds and
Larsen, 2008; Nezames et al., 2012; Szurman-Zubrzycka et al.,
2019). Furthermore, exposure to Al induces oxidative stress. It
promotes the overproduction of Reactive Oxygen Species (ROS)
and alters the activity of enzymes responsible for maintaining
ROS homeostasis in cells, such as superoxide dismutase and
ascorbate peroxidase (Yamamoto et al., 2003; Guo et al., 2004;
Jones et al., 2006). The Al-induced overproduction of ROS leads
to the peroxidation of lipids and proteins and further DNA
damage (Achary and Panda, 2009).

In general, plants evolved two main strategies to cope with
Al ions: (1) Al exclusion mechanisms and (2) Al tolerance
mechanisms. The first one is based on the production of organic
acids (OAs) and their exudation outside the cell. The OAs, such
as citric and malic acids, chelate Al in the rhizosphere which
prevents its entrance to the root cells. The second strategy deals
with Al that entered the cell. The internal OAs and other organic
compounds form Al-complexes that are detoxified in vacuoles
or reallocated to the upper, less Al-sensitive parts of the plant
(reviewed in Kochian et al., 2015; Riaz et al., 2018).

Taken together Al induces a broad spectrum of changes
and responses in plant cells. Al stress is considered as the
main growth-limiting factor in acidic soils and the second,
after drought, most serious abiotic stress to crop production
worldwide (Kochian et al., 2015). Barley (Hordeum vulgare L.),
which is the 4th most important cereal crop, is known to
be one of the most sensitive to Al cereal species (Ishikawa
et al., 2000; Wang et al., 2006), but its response to Al has
not been studied at the whole transcriptome level. Besides, our
preliminary studies have shown that barley is very sensitive
not only to phytotoxic Al3+ ions in acidic conditions, but
also to the low pH of growth medium alone. The low pH
causes so called H+ or proton toxicity. In naturally occurring
acidic arable lands, plants are exposed simultaneously to
both of these stressors (low pH and Al), as Al becomes
soluble at pH below 5.5. However, growing plants in the
hydroponic solution makes it possible to examine at the gene
expression level the plant response to the stress triggered by
low pH without Al, and to reveal changes caused by Al
toxicity itself.
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Here we show, for the first time, the global transcriptome
profile of barley root tips grown in hydroponics at the optimal
pH (6.0), low pH (4.0), and low pH with Al (10 µM of
bioavailable Al3+ ions) in two independent, short-term and long-
term, experiments.

MATERIALS AND METHODS

Plant Material
The spring barley (Hordeum vulgare L.) cultivar ‘Sebastian’ bred
by the Danish company Sejet Plantbreeding was used as plant
material in the presented study. This cultivar is a parent variety
of barley TILLING population (HorTILLUS) that was developed
at the Department of Genetics, University of Silesia in Katowice
(Szurman-Zubrzycka et al., 2018) and is extensively used in
functional genomics studies.

Examination of Root Parameters of
Barley Seedlings Grown at Low pH and
Treated With Aluminum
Hydroponic Experiment
The low pH and aluminum treatments were performed in
a hydroponic environment as described previously (Szurman-
Zubrzycka et al., 2019). Briefly, seeds of barley cv. ‘Sebastian’
were surface-sterilized in 5% sodium hypochlorite and incubated
in the dark at 4◦C for stratification. Then the seeds were put
on Petri dishes filled with moist filter paper and placed in a
growth chamber at 25◦C in the dark. After 48 h, the germinated
seeds were transferred to 4.5 L hydroponic containers with
Magnavaca solution (Magnavaca et al., 1987) at pH = 6.0,
pH = 4.0, or pH = 4.0 with 10 µM of bioavailable Al3+ ions.
The concentration of 10 µM of bioavailable Al3+ ions was
calculated with GEOCHEM-EZ software (Shaff et al., 2010)
and it corresponds to 50 µM of nominal AlCl3 added to
the Magnavaca medium at pH = 4.0. The maximum of 12
seedlings were placed in one container that was considered
as one replicate and each experimental combination was
set up as three replicates. The seedlings were grown in
hydroponics for 7 days (7 d) under controlled conditions:
20◦C/18◦C (day/night), 16/8 h photoperiod, 250 µM m−2 s−1

light intensity.

Root System Scanning and Analysis
After 7 days, the seedlings were removed from containers and
their roots were preserved in 50% ethanol and scanned in water
in waterproof trays. For scanning, the EPSON PERFECTION
V700 PHOTO scanner with a dual-lens system was used
accompanied by WinRHIZO software (Regent Instruments).
The root parameters were calculated, based on the obtained
scans, with the use of WinRHIZO and SmartRoot1 software.
Statistical analyses were performed using ANOVA (P < 0.05)
followed by Tukey’s Honest Significant Difference test (Tukey
HSD test, P < 0.05).

1https://smartroot.github.io/SmartRoot-Installation/

Analysis of Root Meristem
Transcriptome of Barley Seedlings
Grown at Low pH and Treated With
Aluminum
Two independent experiments, short- and long-term, were
performed for transcriptome analysis.

Short-Term Experiment
The seeds of barley cv. ‘Sebastian’ were germinated as described
in section “Hydroponic Experiment.” Germinated seeds were
then transferred to 4.5 L hydroponic containers with Magnavaca
medium at pH = 6.0 (three containers) and pH = 4.0 without
aluminum (six containers). A maximum of 12 seedlings were
placed in one container and this was considered as one
replicate. After 48 h of seedlings growth, the root meristems
(of approximately 1–2 mm length) were collected from three
containers with solution at pH = 6.0 and three containers with
solution at pH = 4.0, as control samples without Al. Subsequently,
the aluminum (10 µM of bioavailable Al3+ ions) was added
to the remaining three containers with Magnavaca solution at
pH = 4.0. After 24 h of Al treatment the root meristems were
collected, as Al-treated samples (Figure 1A). The collected root
meristems were stored in RNAlater at 4◦C for several days for
further RNA isolation.

Long-Term Experiment
The seeds of barley cv. ‘Sebastian’ were germinated as described
in section “Hydroponic Experiment.” Similarly as in the short-
term experiment, germinated seeds were transferred to 4.5 L
hydroponic containers with Magnavaca solution adjusted to
pH = 6.0 (three containers) and pH = 4.0 without aluminum
(six containers). After 48 h, 10 µM of bioavailable Al3+ ions
were added to three containers at pH = 4.0. After further 7 days
of seedlings growth, the root meristematic tissue was collected
in RNAlater (Invitrogen), as pH = 6.0, pH = 4.0 and Al-treated
samples (Figure 1B).

RNA Isolation, Preparation of RNA-seq Libraries and
Sequencing
For RNAseq analysis, mRNA was isolated from root tips
with the use of the Dynabeads mRNA DIRECT Micro Kit
(Thermo Fisher Scientific). Root meristems from at least eight
plants from one hydroponic container were considered as
one repetition (with an average of five root meristems per
plant). The RNA-seq libraries were prepared using the TruSeq
Stranded mRNA kit (Illumina) according to manufacturer’s
instructions. The quality of the prepared RNA-seq libraries was
assessed using the TapeStation device (Agilent) and the High
Sensitivity DNA ScreenTape kit (Agilent). The concentration of
fragments in the libraries was measured with a Qubit fluorimeter
(Thermo Fisher Scientific).

For cluster generation, the barcoded libraries were pooled
with equimolar concentrations. The libraries from the short-
term experiment were sequenced in the paired end (PE) mode
2 × 76 bp, six barcoded samples per lane in the Illumina
HiSeq 4000 sequencer at the Genomics and Epigenomics
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FIGURE 1 | Experimental setup for RNA-Seq analysis. After 48 h of germination on Petri dishes barley seedlings were transferred to hydroponics with Magnavaca
medium adjusted to pH = 6.0 or pH = 4.0. After another 48 h AlCl3 was added to the medium (10 µM of bioavailable Al3+ ions). (A) Short-term Al treatment. Root
meristems were taken for RNA isolation just before Al addition (as control at pH = 6.0 and pH = 4.0) and after 24 h of Al treatment. (B) Long-term Al treatment. Root
meristems were taken for RNA isolation from seedlings 7 days after Al addition and from seedlings grown at pH = 6.0 and pH = 4.0 without Al at the same time
point. (C) The picture of barley root with an indication of its part (root meristem, ∼1 mm of root tip) that was taken for RNA isolation.

Laboratory, Clinical Research Centre of the Medical University of
Bialystok (Poland). The libraries from the long-term experiment
were sequenced in the paired end (PE) mode 2 × 150
by the Novogene company (Illumina platform). On average,
59.3 (±14.6) mln reads were obtained per each sample
(single biological replicate).

Bioinformatic Analysis of RNA-seq Data
BCL files were demultiplexed and converted to fastq files
using bcl2fastq (Illumina, San Diego, CA, United States)
with an adapters removal step. The quality of the obtained
sequencing data was assessed before the analysis and after
each of its stages, using the FastQC (The Babraham Institute,
Cambridge, United Kingdom) and MultiQC (Ewels et al.,
2016) tools. Due to different read lengths in both experiment
batches, reads were initially trimmed to the length of 75 bp
with BBduk (DOE Joint Genomes Institute, Walnut Creek,
CA, United States). Then, quality trimming and filtering was
preformed using Sickle tool2 under PHRED of 15, N bases

2https://github.com/najoshi/sickle

removal and minimal length of 20 bp for one mate in the
PE mode. The remaining ribosomal RNA reads were then
removed using the SortMeRNA software (Kopylova et al.,
2012). Filtered non-rRNA reads were mapped to the second
version of the reference genome sequence assembly of barley
cv. ‘Morex’ (Morex V2; Leibniz Institute of Plant Genetics
and Crop Plant Researck – IPK; Monat et al., 2019) with
the splice-aware aligner STAR (Dobin et al., 2013) using two
pass mode without non-canonical motifs. Mapping parameters
were adjusted to the Morex V2 genome annotation from
gff3 file provided by IPK, with regard to mates gaps and
intron lengths. Only uniquely mapping reads were allowed
with maximum 0.05 mismatch rate over read length. The
quality of mapping was assessed with QualiMap (Okonechnikov
et al., 2016) as well as SAMStat (Lassmann et al., 2011). We
applied the high confidence (HC) set of gene annotations in
the Morex V2 assembly and counted reads mapping to genes
annotated in the gff3 using GeneCounts from the quantMode
in STAR mapper. The analysis of differences in gene expression
levels between samples was performed with the DESeq2 tool
(Love et al., 2014). Raw read count matrices were used as
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an input and genes without any expression detected were
removed. Libraries size factors were estimated using median
ratio method and further used in all size normalization steps.
Then DESeq function was called on the whole dataset and
covered the following steps: sequencing depth normalization
between the samples, gene – wise dispersion estimation across
all samples, and fitting a negative binomial generalized linear
model (GLM) under Wald statistics to each gene. Using a
formula with condition factors we applied contrasts for each
desired comparison to the results with usage of Cook’s cut-off
and independent filtering. Statistical analyzes were performed
based on the results obtained from three biological replicates.
Differentially Expressed Genes (DEGs) were identified under
α = 0.05 after P-value correction for multiple comparisons using
the Benjamini and Hochberg False Discovery Rate procedure
(FDR) and log2FoldChange (log2FC) ≥ 1 or ≤–1. Exploratory
analysis of RNA-Seq data including clustering analysis and
Principal Component Analysis (PCA) were carried out with the
use of R environment tools. For data inspection and visualization,
counts were subjected to regularized logarithm transformation
(rlog) to get log2-scaled data that is approximately homoscedastic
and normalized with respect to library size. PCA was performed
with prcomp function and results were visualized as bi-plots
using ‘ggplot2’ library. Hierarchical clustering of samples was
performed based on distance expressed as an inverse of Pearsons’s
correlation coefficient and applying Ward D2 linkage algorithm.
Normalized and rlog transformed expression values were scaled
and centered to be relatively represented as z-scores. Heatmaps
were visualized with ‘heatmap.2’ function from ‘gplots’ R
library. For k-means clustering we have identified an optimal
number of samples clusters with Silhouette (Rousseeuw, 1987),
Elbow method (Halkidi et al., 2001), and Hubert statistics
(Dalton et al., 2009), and applied a cluster number shown by
minimum two of three used models. K-means clustering was
conducted using ‘k-means’ function from ‘clusters’ R package
with 1000 initial resampling and 20 iterations. Each gene
scores were calculated as correlations with the cluster cores.
Expression profiles were visualized with ‘ggplot2’ library. To
identify overrepresented biological processes, gene annotation
and Gene Ontology (GO) enrichment analysis were carried out
using ‘clusterProfiler’ R package and hypergeometric test under
α = 0.05 after P-value correction for multiple comparisons using
FDR. A set of all genes detected under investigated conditions
in all of the samples was used as a background for over-
representation analyses. Gene Ontology terms were recovered
from the gff3 file deposited in the IPK database with Morex
V2 reference genome assembly. Over-representation results were
visualized on dot-plots using internal plotting function from
‘clusterProfiler.’

RT-qPCR Analysis of Gene Expression
The RNAqueous Kit (Thermo Fisher Scientific) was used for
RNA isolation from root meristems for RT-qPCR analysis. Root
meristems were isolated in the same way and at the same time
points of experiments as for RNA-seq analysis. Isolated samples
were evaluated using ND-1000 spectrophotometer (Thermo
Fisher Scientific). Five hundred ng of total RNA was taken for

RQ1 DNase (Promega) treatment and reverse transcribed using
a RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific) with Oligo(dT) primers in a 20 µL reaction mix. The
RT-qPCR reaction was prepared in a 10 µL volume using a
LightCycler R© 480 SYBR Green I Master (Roche) in two technical
replicates. A volume of 2.5 µL of obtained cDNA diluted
beforehand fivefold was added to the reaction mix. The primers
used in the analysis were designed with Primer3 (Untergasser
et al., 2012) and are listed in Supplementary Material 1. The RT-
qPCR analysis was performed using a LightCycler 480 (Roche)
under the following reaction conditions: initial denaturation
5 min at 95◦C, followed by 10 s at 95◦C, 20 s at a temperature
specific for the primers, 10 s at 72◦C, repeated in 40 cycles.
Denaturation for the melt curve analysis was conducted for 5 s
at 95◦C, followed by 1 min at 65◦C and heating up to 98◦C
(0.1◦C/s for the fluorescence measurement). The qPCR efficiency
and the Ct values were determined using LinRegPCR (Ruijter
et al., 2009) and used for calculation of relative expression level.
Two genes, H2A (Histone H2A) and EF1 (Translation Elongation
Factor 1-a) used as internal controls were selected based on
the stability of their expression using NormFinder (Andersen
et al., 2006) and BestKeeper (Pfaffl et al., 2004). The relative
expression level was calculated using the 11Ct method (Livak
and Schmittgen, 2001) and calibrated to root meristems sampled
from pH = 6.0 or pH = 4.0. The t-Student test was applied to
determine the significant differences (at P < 0.05) between the
compared samples.

RESULTS

Changes in the Barley Root System in
Response to Low pH and Al Stress
To evaluate the influence of low pH and aluminum on barley root
growth, we have examined in detail the root system of seedlings
grown for 7 days in hydroponic conditions at pH = 6.0, pH = 4.0,
and pH = 4.0 with 10 µM of bioavailable Al3+ ions. It has been
clearly shown that low pH alone causes a significant reduction
of root growth, and the addition of aluminum further inhibits its
development (Figure 2).

Neither the low pH nor the aluminum caused any change in
the number of seminal roots (Figure 3A). However, the length
of the seminal roots was significantly affected by both stressors.
The longest root of plants grown at pH = 4.0 were half shorter
than those grown at pH = 6.0, and the longest root of plants
grown in a medium with 10 µM of bioavailable Al were half
shorter than those grown at pH = 4.0 (Figure 3B). Similarly,
the total length of all seminal roots was reduced almost by
50% by low pH and further reduced by Al (Figure 3C). The
development and growth of lateral roots of barley seedlings
were affected even more. The number of lateral roots produced
by the plant decreased from 385 to 152 due to the low pH
(60% reduction), and to 52 due to Al exposure (65% reduction
in relation to pH = 4.0) (Figure 3D). These roots were also
drastically shortened. The summary length of all lateral roots was
reduced by half by low pH and further reduced by 95% under
aluminum stress compared to low pH conditions (Figure 3E).
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FIGURE 2 | The comparison of root systems of barley cv. ‘Sebastian’ after 7 days growth in hydroponics in Magnavaca medium at pH = 6.0, pH = 4.0, and with
10 µM of bioavailable Al3+ ions at pH = 4.0.

As a consequence, the total length of the whole root system
was reduced to 53% by low pH itself and to 17% by Al
stress at low pH, compared to optimal conditions of pH = 6.0
(Figure 3F). Interestingly, the diameter of the roots was also
altered. Both factors, low pH and Al, caused a slight increase of
root diameter (Figure 3G).

RNAseq Data Processing Statistics
Two independent experiments, short- and long-term,
were performed for transcriptome analysis with RNAseq.
Nine samples were collected in the short-term experiment: three
samples from root meristems grown at pH = 6.0, three samples
from root meristems grown at pH = 4.0 and three samples from
root meristems treated with Al for 24 h at pH = 4.0. Similarly,
another nine samples were collected in the long-term experiment:
from root meristems of plants grown at pH = 6.0 (three samples),
pH = 4.0 (three samples) and plants treated for 7 days
with Al (three samples). In total, RNA-Seq libraries were
constructed from 18 samples and subjected to sequencing in the
paired-end mode (PE).

In the short-term experiment, soft trimming, filtering and
exclusion of reads originating from rRNAs (main source of
discarded reads) yielded a final mean per sample value of
19.2 (±3.8) mln paired end (PE) reads. On average 95.6%
(±0.3%) of them were uniquely mapped to the reference genome,
which indicates a high mapping rate (Table 1). In the long-
term experiment, an average of 13.8 (±3.3) million clean PE
reads was obtained, and a high rate of 88.4% (±4.3%) of them
uniquely mapped to the barley genome (Table 1). PCA of
obtained RNA-Seq data showed the significant differentiation

of samples grown at pH = 6.0, pH = 4.0, and treated with
Al in both experiments (Supplementary Material 2). Biological
replicates from the same time-point clustered together, and
PC1 explaining most of the variability (70.2% in the short-
term experiment and 88.1% in the long-term experiment)
corresponded to the applied treatment. The differences in
gene expression were analyzed with DESeq2 tool and DEGs
were identified under α = 0.05 after P-value FDR correction.
We further analyzed genes with log2FoldChange (log2FC) ≥ 1
or ≤–1 as DEGs. In the short-term experiment, 1899 genes
were differentially expressed in root meristems grown at low
pH (4.0) when compared to those grown at pH = 6.0 and
986 genes were differentially expressed after exposure to Al for
24 h. In the long-term experiment, 870 genes were differentially
expressed by low pH and 5873 by Al treatment for 7 days. The
statistical significance of the results and magnitude of changes
are shown on Volcano plots (Figure 4). To confirm obtained
RNA-Seq results, four differentially expressed genes (DEGs)
were checked using RT-qPCR method. The results confirmed
the direction of change of expression as detected by RNA-seq
(Supplementary Material 3).

Global Transcriptome Analysis of Barley
Root Meristems in the Short-Term
Experiment
Surprisingly, in the short-term experiment, more genes were
differentially expressed (log2FC ≥ 1 or ≤–1) in root meristems
of barley plants grown at pH = 4.0 in relation to pH = 6.0, than
in plants treated for 24 h with Al compared to plants grown at
pH = 4.0 without Al (Figure 5). In total, the expression of 1899
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FIGURE 3 | Main parameters of ‘Sebastian’ roots after 7 days growth in hydroponics in Magnavaca medium at pH = 6.0, pH = 4.0, and with 10 µM of bioavailable
Al3+ ions at pH = 4.0. (A) The number of seminal roots per plant. (B) The length of the longest seminal root. (C) Total length of seminal roots. (D) The number of
lateral roots per plant. (E) The length of all lateral roots. (F) The summary length of the whole root system (seminals + laterals). (G) The average diameter of roots.
Statistical analyses were performed using ANOVA (P < 0.05) followed by Tukey’s honestly significant difference test (Tukey HSD test, P < 0.05). Significant
differences are indicated by different letters.

genes was altered after 48 h of growth at low pH. Among them,
1361 were upregulated and 538 were downregulated. Treatment
with 10 µM Al at pH = 4.0 for 24 h led to a change of expression
of 986 genes. Majority of these genes (883) were upregulated,
whereas 103 were downregulated. These numbers suggest that
growing of barley seedlings in a short-term hydroponics at the
low pH (4.0) has a great impact on the transcriptome profile of
root meristems, even greater than short term (24 h) Al exposure
at pH = 4.0 when compared to low pH conditions without Al.
Correspondingly, the length of seminal roots in the short-term
experiment was more affected by low pH itself than by addition
of aluminum for 24 h (Supplementary Material 4).

Genes With Expression Altered by Low pH in the
Short-Term Experiment
After 48 h of seedling growth in hydroponics at pH = 4.0,
72% of DEGs were upregulated and 38% were downregulated
compared to seedlings grown at pH = 6.0 (Figures 5, 6A). The
GOs term enrichment allowed identification of overrepresented
groups of up- and downregulated genes (Figure 7A). Among
upregulated ones, a cluster of genes related to maintaining
REDOX homeostasis stood out the most. The peroxidase
HORVU.MOREX.r2.2HG0129730 had the highest fold
change in the gene expression level (log2FoldChange = 7.88,
Supplementary Material 5). Almost sixty other genes encoding
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TABLE 1 | The statistics of data filtering and mapping steps for 18 analyzed PE RNA-Seq samples.

Short-term experiment Long-term experiment

Sample Filtered reads Mapped reads Mapping rate [%] Sample Filtered reads Mapped reads Mapping rate [%]

pH6_1 22747533 21674211 95,28159 pH6_1 18337028 17344706 94,58843

pH6_2 25895857 24867094 96,02731 pH6_2 11004027 10292225 93,53144

pH6_3 16383269 15661893 95,59687 pH6_3 11440974 9777453 85,45997

pH4_1 18405817 17654616 95,91868 pH4_1 15675008 14481444 92,38556

pH4_2 13897267 13300449 95,7055 pH4_2 19387421 16840937 86,86528

pH4_3 20728621 19856210 95,79127 pH4_3 9900989 8133049 82,1438

Al_1 21361770 20383233 95,41921 Al_1 13081680 11328414 86,59755

Al_2 18438423 17588979 95,39308 Al_2 13855686 11808184 85,22266

Al_3 15398531 14667448 95,25225 Al_3 11499869 10276899 89,36536

Average 19250788 18406015 95,59842 Average 13798078 12253701 88,46223

FIGURE 4 | Volcano plots of differential expression analysis of barley root meristems grown at pH = 4.0 compared to pH = 6.0 and treated with 10 µM of
bioavailable Al3+ compared to pH = 4.0 in the short-term and long-term experiments. Each dot represents one gene. Dashed lines determine cut-off of | log2FC|
≥ 1 and FDR adjusted P-value ≤ 0.05. Blue dots correspond to gene expression down-regulation, whereas red dots – up-regulation.

proteins of peroxidase activity were highly upregulated by low
pH. The great number of genes with the function assigned in
cellular oxidant detoxification, hydrogen peroxide catabolic
process or response to oxidative stress also showed increased
expression. Among them are genes encoding, e.g., cytochrome
P450 proteins that are monooxygenases involved in the
formation of ROS (32 genes upregulated, with the highest
log2FC = 5.68); laccases that are multicopper oxidases (12
genes upregulated, with the highest log2FC = 7.17); glutathione
S-transferases (GSTs) that are detoxifying enzymes helping to
protect cells from oxidative damage (10 genes upregulated,
with the highest log2FC = 5.15); or aldehyde oxidases (3
genes upregulated, with the highest log2FC = 7.17). On the

other hand, some other genes encoding proteins maintaining
ROS levels were downregulated. The expression of 10 genes
for cytochrome P450 (out of 16 downregulated) was highly
decreased, with log2FoldChange > –3.0, three genes encoding
GSTs and one gene encoding laccase were also downregulated,
which further indicates that acidification of the environment
contributes to ROS balance disruption. These data clearly show
that lowering the pH from 6.0 to 4.0 induces oxidative stress in
barley root meristems.

Another cluster of significantly overrepresented groups
of genes upregulated at pH = 4.0 was related to cell
wall development. The GOs term enrichment indicated
that there are groups of genes involved, for instance, in
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FIGURE 5 | The number of differentially expressed genes (DEGs) in the transcriptome of barley root meristems in the short-term experiment. DEGs were determined
for plants grown at pH = 4.0 compared to pH = 6.0; and after 24 h treatment with 10 µM Al at pH = 4.0 compared to pH = 4.0 without Al3+ ions (DEGs were
identified under α = 0.05 with FDR adjusted P-value and log2FC ≥ 1 or ≤–1).

FIGURE 6 | Hierarchical clustering of samples using distance based on Pearson’s correlation coefficient with Ward D2 linkage algorithm for a set of genes
differentially expressed in barley root meristems in the short-term experiment. Gene counts were regularized log (rlog) transformed with library size-wise
normalization, scaled and centered to be represented as z-scores in the log2 scale. The heat map represents the relative expression levels of DEGs. (A) The
comparison between pH = 4.0 and pH = 6.0. (B) The comparison between Al-treatment at pH = 4.0 and pH = 4.0 without Al.
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FIGURE 7 | GO term enrichment of genes upregulated and downregulated in the short-term experiment by low pH (A) and Al (B). The numbers on the X axis
indicates the number of genes; p.adjust means FDR adjusted p-value.

cell wall biogenesis, cellular glucan metabolic process,
xyloglucan metabolic process, xyloglucan:xyloglucosyl
transferase activity, cellulose biosynthetic process, or cellulose
synthase (UDP-forming) activity. Within this group, the
highest change in the gene expression showed xyloglucan
endotransglucosylase/hydrolase (XTH) HORVU.MOREX.r2.
4HG0348650 (log2FoldChange = 7.83). Fifteen genes encoding
different further XTHs were identified as upregulated by low
pH. These enzymes are known to cut and rejoin hemicellulose
chains in the cell wall. More than 20 genes encoding expansins
that are engaged in modifying the elasticity of the cell wall,
and over a dozen genes encoding cellulose synthases showed
increased expression pattern at low pH. Such a huge amount of
DEGs related to cell wall organization evidently indicates that
maintaining optimal pH is crucial for the proper development of
this structure in barley roots.

Moreover, low pH influenced the signaling pathways in
barley root meristems by alteration of expression of genes
encoding protein kinases and transcription factors (TFs).
TFs with changed expression belong mainly to WRKY
(4 upregulated, 17 downregulated), MYB (7 upregulated,
6 downregulated), bHLH (7 upregulated), and NAC (5
upregulated, 2 downregulated) TFs families. Interestingly,
in response to low pH, a group of genes related to chromatin
organization was significantly downregulated, as for example
genes encoding basic histones (H2A, H2B, and H4) or enzymes
that posttranslationally modify histones, like histone-lysine
N-methyltransferases.

The full lists of genes upregulated and downregulated by low
pH (4.0) in the short-term experiment, with log2FoldChange≥ 1
or ≤–1, are provided as Supplementary Materials 5, 6.

Genes With Expression Altered by Al Treatment in the
Short-Term Experiment
After 24 h of growth in hydroponics with 10 µM of bioavailable
Al3+ ions at pH = 4.0, almost 90% of DEGs were upregulated
and only 10% were downregulated compared to pH = 4.0 without
Al (Figures 5, 6B). Interestingly, the number of genes with
expression affected by Al in the presented short-term experiment
was twice lower than the number of genes with expression altered
by low pH alone.

The GOs term enrichment identified the overrepresented
groups of up- and downregulated genes after 24 h Al treatment
(Figure 7B). Among them those related to the stress response
were overrepresented in both, up- and downregulated groups.
Out of DEGs encoding enzymes of peroxidase activity, 13
were upregulated and 7 were downregulated by 24 h of
Al treatment. Four genes for glutathione S-transferases, the
detoxifying enzymes, were highly upregulated. Thirteen and
seven genes for cytochrome P450 were up- and downregulated,
respectively. As was indicated earlier, low pH alone is already a
stress factor to barley roots and this data suggest that 24 h of Al
treatment additionally increases the stress.

The next overrepresented groups of upregulated genes were
related to calcium homeostasis. It is well known that Al
disturbs homeostasis of Ca2+ ions. Here, genes related to
Ca2+ ion binding and calmodulin binding were upregulated.
Calmodulin (calcium-modulated protein), activated by Ca2+,
modifies downstream proteins such as kinases and phosphatases
in the calcium signal transduction pathway.

The expression of many transcription factors was also altered
(mainly upregulated) by 24 h Al treatment. The most abundant
were WRKY (12 upregulated), NAC (10 upregulated), and
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MYB (7 upregulated) TFs. Therefore they are assumed to play
important roles in regulating the expression of downstream genes
involved in Al response.

The full lists of genes upregulated and downregulated by Al in
the short-term experiment, with log2FoldChange≥ 1 or≤–1, are
provided as Supplementary Materials 7, 8.

Global Transcriptome Analysis of Root
Meristems in the Long-Term Experiment
In the long-term experiment, the material for RNA isolation was
collected 7 days after Al addition to the hydroponic solution.
The seedlings were grown under conditions of optimal pH
(6.0), low pH (4.0) without Al, and low pH (4.0) with 10 µM
of bioavailable Al. Contrary to the results obtained for the
short-term experiment, in the long-term experiment more genes
were differentially expressed in root meristems of barley plants
exposed to Al3+ ions than in plants stressed with low pH alone
(Figure 8). In total, the expression of 870 genes was altered
by low pH. Among them, 720 were upregulated and 150 were
downregulated. Seven day treatment with 10 µM Al at pH = 4.0
led to a change of expression of a huge number of 5873 genes, of
which 4116 were upregulated, whereas 1757 were downregulated.
These numbers indicate that barley plants seem to adapt to
low pH, at least at the transcriptome level, while the prolonged
exposure to Al causes massive changes of transcriptome profile.

Genes With Expression Altered by Low pH in the
Long-Term Experiment
At the 7 days time point of hydroponics at pH = 4.0,
82% of DEGs were upregulated and 18% were downregulated
in relation to pH = 6.0 (Figures 8, 9A). The GOs term
enrichment allowed identification of overrepresented groups
of up- and downregulated genes in plants exposed to low
pH (Figure 10A). The results show that among upregulated
genes were those related to transporter activity, such as e.g.,
HORVU.MOREX.r2.3HG0242890 gene that encodes a copper
transporter whose expression was highly induced by low
pH (log2FC = 7.2). Few other genes related to copper ion
maintenance were also upregulated in these conditions (CuSO4

is one of the components of Magnavaca solution). Another
overrepresented group of upregulated genes was related to
transferase activity and inhibitory regulation of peptidase activity.

The expression of genes encoding various transcription factors
was also changed by low pH in the long-term experiment,
however, their number was not as high as in the short-term
experiment. They encoded TFs derived from the same TF
families with most abundant those belonging to NAC family –
eight upregulated TFs. The lower number of TFs with altered
expression translated to the lower, than in the short-term
experiment, number of total DEGs after exposure to pH = 4.0.

It is worth highlighting that in the short-term experiment
many genes related to oxidative stress response were highly
upregulated by low pH, whereas in the long-term experiment,
these groups of genes were not overrepresented. For example, in
total there were only 11 genes encoding enzymes of peroxidase
activity upregulated after long-term exposure to pH = 4.0, in
comparison to over 60 peroxidase genes upregulated by low pH
in the short-term experiment. This also applies to genes encoding
cytochrome P450, with over 30 of them upregulated after 48 h
of hydroponics at pH = 4.0, whereas after long exposure to low
pH this number dropped to 6. These findings suggest that at low
pH plants are exposed to a huge oxidative stress and they need
time to adapt to it.

The full lists of genes upregulated and downregulated by low
pH in the long-term experiment, with log2FoldChange≥ 1 or≤–
1, are provided as Supplementary Materials 9, 10.

Genes With Expression Altered by Al in the
Long-Term Experiment
The extremely high number of genes had altered expression after
7 days of growth in hydroponics with 10 µM of bioavailable Al3+
ions at pH = 4.0. The majority (70%) of DEGs were upregulated
and 30% were downregulated in relation to pH = 4.0 without Al
(Figures 8, 9B). In the long-term experiment, the expression of
significantly more genes was affected by Al than by low pH itself.

The GOs term enrichment allowed identification of
overrepresented groups of genes up- and downregulated
after long-term treatment with Al (Figure 10B). Based on

FIGURE 8 | The number of differentially expressed genes (DEGs) in the transcriptome of barley root meristems in the long-term experiment. DEGs were determined
for plants grown at pH = 4.0 compared to pH = 6.0; and after treatment with 10 µM Al at pH = 4.0 compared to pH = 4.0 without Al3+ ions (DEGs were identified
under α = 0.05 with FDR adjusted P-value and log2FC ≥ 1 or ≤–1).
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FIGURE 9 | Hierarchical clustering of samples using distance based on Pearson’s correlation coefficient with Ward D2 linkage algorithm for a set of genes
differentially expressed in barley root meristems in the long-term experiment. Gene counts were regularized log (rlog) transformed with library size-wise normalization,
scaled and centered to be represented as z-scores in the log2 scale. The heat map represents the relative expression levels of DEGs. (A) The comparison between
pH = 4.0 and pH = 6.0. (B) The comparison between Al-treatment at pH = 4.0 and pH = 4.0 without Al.

GO term enrichment, Al seemingly causes strong oxidative
stress to barley roots. Hundreds of genes involved in oxidation
processes were up- and downregulated. Among them were
genes with ontologies defined as e.g., monooxygenase activity,
dioxygenase activity, oxidoreductase activity, acting on paired
donors, with incorporation or reduction of molecular oxygen,
peroxidase activity, cellular oxidant detoxification, or response
to oxidative stress. Out of genes encoding peroxidases, 37
were upregulated, whereas 39 were downregulated. 72 genes
encoding different proteins belonging to cytochrome P450 were
upregulated and 16 were downregulated. The most upregulated
gene HORVU.MOREX.r2.1HG0002460 (log2FC = 9.8) encodes
a glutathione S-transferase and the most downregulated gene
HORVU.MOREX.r2.2HG0099410 (log2FC = –9.4) encodes a
peroxidase. Taken together, it shows that oxidative balance was
disturbed in barley root meristem cells after prolonged aluminum
treatment in hydroponics.

One of the overrepresented groups of genes that were
upregulated in the long-term experiment was related to metal ion
transport (GO:0030001). Within this GO term there are genes
that may be potentially involved in the transport of any metal

ion with an electric charge (therefore potentially also Al3+ ions)
within a cell or between the cells. Three metal transporters from
NRAMP (Natural resistance-associated macrophage protein)
family were identified. Other metal transporters identified as
differentially expressed after Al treatment were potassium,
zinc, copper, magnesium, or calcium transporters. The elevated
expression of genes involved in calmodulin binding further
confirmed the disturbance in calcium homeostasis. Additionally,
the two largest groups of upregulated transporters were heavy
metal transport/detoxification superfamily (>30 upregulated, the
highest log2FC = 5.09) and ABC transporter family proteins
(>30 upregulated, the highest log2FC = 7.41). They might be
potentially involved in Al ion transport. The downregulation of
12 genes encoding other proteins belonging to the heavy metal
transport/detoxification superfamily further indicates that metal
homeostasis was disturbed by exposure of roots to Al.

Upon prolonged Al treatment, genes encoding malate
and citrate synthases (HORVU.MOREX.r2.2HG0146360 and
HORVU.MOREX.r2.7HG0610760) were highly upregulated
(with log2FC = 4,2 and log2FC = 5.5, respectively), which
suggests that barley produces organic acids (OAs) in
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FIGURE 10 | GO term enrichment of genes upregulated and downregulated in the long-term experiment by low pH (A) and Al (B). The numbers on the X axis
indicates the number of genes; p.adjust means FDR adjusted p-value.

response to Al, probably to chelate Al ions in the process
of detoxification. However, the gene encoding aluminum
activated citrate transporter, which is a membrane protein
involved in the exudation of citrate outside the root cells, was
not upregulated, and aluminum activated malate transporter was
even downregulated (log2FC = –1.83).

Among genes downregulated by Al were those related to
chromosome organization, e.g., genes encoding basic histones
(H2A, H2B, H3, and H4) and enzymes that modify histones, e.g.,
histone deacetylase 2 or histone N-methyltransferases. The other
overrepresented group of downregulated genes was related to the
cell wall development, which is consistent with the assumption
that Al inhibits cell wall growth. What is more, many genes
that were downregulated upon Al treatment for 7 days were
involved in microtubule binding, movement, and activity. Al
binds to the cytoskeleton and disrupts spatial orientation of the
cytoskeleton, which disturbs cell expansion and is consistent with
our observation that genes involved in microtubule organization
are also Al-responsive. Taken together, the downregulation of the
mentioned genes clearly indicates that the growth of cells in root
meristem is disturbed and slowed down.

Genes encoding kinases were highly overrepresented within
upregulated genes, which indicates activation of signaling
pathways. The expression of many various transcription factors
was also strongly altered by 7 days Al treatment which further
resulted in the extremely high number of DEGs. Significantly
more TFs were upregulated than downregulated and among

them were those belonging to e.g., MYB (41 upregulated, 8
downregulated), WRKY (35 upregulated, 2 downregulated), NAC
(26 upregulated, 1 downregulated), and bZIP (12 upregulated, 3
downregulated) TF families.

The full lists of genes upregulated and downregulated by Al
treatment in the long-term experiment, with log2FoldChange≥ 1
or ≤–1, are provided as Supplementary Materials 11, 12.

Common Genes With Expression Altered
by Low pH and Al Treatment
The comparison of DEGs between transcriptomes of low pH-
and Al-treated barley root meristems showed that only a small
group of DEGs was shared and the expression of much more
genes was changed specifically by each treatment (Figure 11).
It indicates the activation of distinct molecular mechanisms in
response to these stresses. Moreover, the comparative analysis
of GO terms enrichment further indicated that low pH and Al
stress altered the expression of different groups of genes with
diverse molecular functions, both in the short- and long-term
experiments (Figures 12, 13).

However, in the short-term experiment, there were 153 DEGs
common for low pH and Al treatment (146 upregulated and
7 downregulated). Among them were some genes related to
oxidative stress response (e.g., encoding peroxidases or alpha-
dioxygenase 2) and cell wall development (e.g., encoding pectate
lyase, pectinesterase, xyloglucan endotransglucosylase/hydrolase
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FIGURE 11 | Venn diagrams showing common and specific DEGs upregulated and downregulated between all experimental combinations.

and expansin). Additionally, several transcription factors were
also upregulated by both analyzed stresses (low pH and Al),
which indicates that some common mechanisms of response
might be activated. The lists of common genes with expression
altered by low pH and Al in the short-term experiment is
provided together with their annotations as Supplementary
Material 13. Additionally, to illustrate the prevalent expression
patterns of DEGs in the short-term experiment, we performed
the analysis of gene expression profiles using k-means clustering.
Four clusters of genes with prevailing expression patterns have
been identified (Figure 14A). DEGs common for both analyzed
factors, with expression upregulated by low pH and further
upregulated by Al are grouped within the Cluster 3. The
GO term enrichment of these group of genes also showed
that they are mainly related to oxidative stress and cell wall
development (Supplementary Material 14). The GO term
enrichment of DEGs from remaining clusters is also provided in
Supplementary Material 14.

In the long-term experiment, there were 314 DEGs common
for low pH and Al treatment (300 upregulated and 14
downregulated). Similarly as in the short-term experiment,
among common genes with expression altered after long low
pH and Al treatments there were DEGs related to oxidative
stress (e.g., encoding peroxidases or cytochrome P450 family
proteins) and cell wall development (e.g., encoding xyloglucan
endotransglucosylases/hydrolases or aldehyde dehydrogenase).
The list of common genes with expression altered by low pH
and Al in the long-term experiment is provided together with
their annotations as Supplementary Material 15. This data
indicate the existence of common responses to low pH and Al,
nevertheless, the majority of DEGs showed expression changes
specifically in response to one of these factor, with the highest
number of genes with expression affected after long Al exposure.
This is also illustrated by k-means clustering which showed
four clusters of genes with prevalent expression patterns in the

long-term experiment (Figure 14B). The presented heatmap
shows that in most clusters (except for a small Cluster 2)
aluminum altered the gene expression to the greatest extent.
DEGs common for low pH and Al with expression upregulated
by both analyzed factors independently are grouped within
the Cluster 3. The overrepresented GO terms in Cluster 3 were
e.g., monooxygenase activity, iron ion binding, oxidoreductase
activity, transmembrane transporter activity, calcium ion binding
and metal ion transport. The GO term enrichment of DEGs from
all clusters is provided as Supplementary Material 16.

DISCUSSION

Barley (Hordeum vulgare L.) is the most Al-sensitive species
among small grain cereals, but still there are differences in Al
tolerance among barley cultivars, which are mostly correlated
with the ability of the genotype to secrete citrate (Zhao et al.,
2003; Furukawa et al., 2007). Cv. ‘Sebastian’ used in our study
is relatively tolerant to Al when compared to other barley
cultivars (Vega et al., 2019). Nonetheless, even the micromolar
concentration of bioavailable Al3+ ions (10 µM Al3+) applied in
hydroponic solution at pH = 4.0 for 7 days, extremely reduced
(by 83%) the total length of ‘Sebastian’ roots, compared to root
length of untreated plants grown at optimal pH = 6.0. However,
without a doubt, the reduction of root growth was not caused by
Al3+ ions only, but also by the low pH and proton/H+ toxicity,
as growing plants at pH = 4.0 without addition of Al reduced
the total root length of ‘Sebastian’ seedlings almost by half. It has
also been previously reported that barley is very sensitive to H+
toxicity (Zhao et al., 2003; Guo et al., 2004). Similarly, higher H+
activity, significantly decreased the root length of rice seedlings
grown at pH = 3.5 and pH = 4.5 compared to pH = 5.5 (Zhang
et al., 2015). However, even though it was reported that proton
rhizotoxicity can be more harmful than Al rhizotoxicity in natural
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FIGURE 12 | The comparison of GO terms over-representation analysis of differentially expressed genes in the short-term experiment using hypergeometric test
under α = 0.05 with FDR adjusted P-value.

acid soils (Kinraide, 2008), the effect of the low pH itself has been
understudied in the aspect of Al toxicity. It has to be stressed
that in natural conditions, in acidic arable lands, Al toxicity
and H+ toxicity coexist and together negatively affect barley
performance and yield. To discriminate Al effect from a low
pH effect in our RNA-Seq analysis, we compared transcriptomes
of Al treated root meristems to those grown without Al at
pH = 4.0. Additionally, we also compared the transcriptomes
of barley plants grown at pH = 4.0 to those grown at pH = 6.0
(both without Al).

Our results show that the low pH caused global changes
in barley transcriptome profile when seedlings were grown in
hydroponics for 48 h (short-term experiment), whereas after a
prolonged time of growth under low pH (further 7 days), the
number of DEGs significantly decreased, suggesting that partial
adaptation of plants to this stress occurred. Interestingly, the

opposite effect was seen in regards to aluminum toxicity. After
24 h of Al treatment, many genes were up- and downregulated
in root meristems, however, their number increased extremely
after 7 days of Al treatment, which suggests that remodeling
of the transcriptome following Al stress is a long-lasting
and dynamic process. These results are in agreement with
the microarray analysis of Arabidopsis thaliana transcriptome
profiles in response to Al stress, where more transcripts were
Al-responsive after 48 h than 6 h treatment (Kumari et al., 2008).

Low pH and Al as Oxidative Stressors
Different abiotic stresses, such as drought, cold, salt, and heat,
can disrupt the balance of ROS content and lead to their
accumulation in the cell, which results in oxidative stress
(reviewed in You and Chan, 2015). It has long been known
that aluminum also induces oxidative stress in plants. The
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FIGURE 13 | The comparison of GO terms over-representation analysis of differentially expressed genes in the long-term experiment using hypergeometric test
under α = 0.05 with FDR adjusted P-value.

first genes related to oxidative stress, which were identified
as being upregulated by Al in Arabidopsis thaliana, encoded
peroxidase, glutathione-S-transferase, and protein homologous
to the reticuline:oxygen oxidoreductase enzyme (Richards et al.,
1998). Al was found to influence reactive oxygen intermediates,
lipid peroxidation, protein oxidation, and activities of antioxidant
enzymes in many different plant species, including Allium cepa
(Achary et al., 2008), Triticum aestivum (Xu et al., 2012; Sun
et al., 2017), and Zea mays (Boscolo et al., 2003; Giannakoula
et al., 2010). In the presented study, we show that both analyzed
factors, low pH and Al, led to the alteration of oxidative stress
genes expression in barley roots.

In our ‘low pH only’ study, the number of DEGs related to
oxidative stress response was very high after 48 h of growth
at pH = 4.0, but in the long-term experiment, the number

of DEGs significantly decreased, suggesting that barley plants
adapt to oxidative stress caused by low pH (H+ toxicity)
over time. The study performed in rice (Oryza sativa) has
shown that growing plants for 2 weeks at pH lowered to 3.5
led to the serious lipid peroxidation and increases of H2O2
and MDA (malondialdehyde) content in rice roots. At the
transcriptomic level, it led to downregulation of copper/zinc
superoxide dismutases (Cu/Zn SOD1, Cu/Zn SOD2) and catalases
(CATA and CATB), and upregulation of ascorbate peroxidase 1
(APX1). Correspondingly, the activity of these enzymes was also
altered. It was assumed that higher activity of APX can contribute
to adaptation of rice to low pH (Zhang et al., 2015). In our study,
the expression of genes encoding SODs was not altered after 48 h
of growth at low pH, but the extension of hydroponic culture to
7 days caused a significant decrease in expression level of four
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FIGURE 14 | Clustering analysis using hierarchical clustering of samples and k-means clustering of genes. Clustering was performed using a selected set of genes
differentially expressed in barley root meristems grown at pH = 4.0 compared to pH = 6.0 and treated with 10 µM of bioavailable Al3+ compared to pH = 4.0. Gene
counts were regularized log (rlog) transformed with library size-wise normalization, scaled and centered to be represented as z-scores in the log2 scale. Hierarchical
clustering of samples was performed using distance based on Pearson’s correlation coefficient with Ward D2 linkage algorithm. Heat-map represent their
expressional patterns. Color bars on the left are corresponding to each consequent cluster identified: from 1 on the top to the 4 at the bottom. For each gene cluster
detected with k-means clustering, a plot of relative gene expression profile is shown on the right with black lines indicating each cluster centroids. Scores represent
correlations of each gene with the cluster core. (A) Short-term experiment; (B) long-term experiment.

of Cu/Zn SODs, similarly to rice. However, the genes encoding
ascorbate peroxidase or CATA were not found among DEGs
and the barley ortholog of CATB was even highly upregulated
(log2FC = 4.56), which may be related to the higher sensitivity
of barley to low pH compared to rice.

In the case of Al treatment, a high number of genes related
to oxidative stress were differentially expressed in barley roots,
especially in the long-term experiment, where hundreds of
these genes were highly up- and downregulated. Among them
there were genes encoding peroxidases (PODs), superoxide
dismutases (SODs), cytochrome P450 monooxygenases,

glutathione S-transferases (GSTs), thioredoxins (TRX), and
others. Studies performed on other species, e.g., Arabidopsis,
cucumber (Cucumis sativus), rice, wheat (Triticum aestivum)
and citrus (Citrus sinensis and Citrus grandis) also showed that
Al induces strong oxidative stress and upregulates the activity
of antioxidative mechanisms (Kumari et al., 2008; Pereira et al.,
2010; Ma et al., 2012; Guo et al., 2017; Liu et al., 2018; Awasthi
et al., 2019). In general, when different genotypes were compared
after Al treatment, the Al-tolerant lines were characterized by a
higher activity of the antioxidative system than the Al-sensitive
ones. However, RNA-seq analysis in maize showed that the total
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number of genes related to oxidative stress upregulated by Al
treatment was higher in the Al-sensitive than the Al-tolerant
genotype, suggesting that upregulation of these genes was merely
a consequence of Al toxicity, not the activation of Al tolerance
mechanisms (Maron et al., 2008). Such a huge number of DEGs
from this category in our experiment emphasizes the very high
level of Al-sensitivity of barley compared to other species, even
though ‘Sebastian’ cultivar belongs to the Al-tolerant group
among barley cultivars.

Peroxidases are known to be enzymatic antioxidants, hence
massive upregulation in their expression means that the plant is
under oxidative stress. In the presented study, 61 genes encoding
peroxidases were upregulated after 48 h growth at low pH,
but after further 7 days of low pH hydroponics, this number
dropped to 11 DEGs. The same period (7 days) of Al treatment
caused alteration of expression of many more genes encoding
different peroxidases, which were both up- (37 POD genes) and
downregulated (39 POD genes). It should be noted that PODs
have more diverse functions, e.g., they are involved in cross-
linking of the cell wall constituents (Bakalovic et al., 2006). The
oxidative cross-linking of the cell wall components managed
by some classes of PODs may increase cell wall stiffening and
decrease its extensibility which is associated with inhibition of
root growth by Al (Ma et al., 2012). In the presented experiments,
the 7-day treatment of barley seedlings with Al3+ ions caused a
significant reduction of root growth accompanied by the increase
of root diameter. Moreover, the activity of some PODs that leads
to H2O2 formation may be a potential mechanism of Al tolerance,
because production of H2O2 may be used to restructure the
cell wall and block Al entry by decreasing cell wall porosity
(Maron et al., 2008). What is more, Tamás et al. (2005) presented
that the production of H2O2 mediated by PODs in response
to Al led to cell death of barley root border cells and hence
protected root tips by chelating Al in the dead cells. The cell
wall-bound PODs were also found to be involved in lignin
biosynthesis, which is known to be one of the symptoms of Al
stress (Li et al., 2003). The contrasting pattern of increased and
decreased expression of different peroxidase genes in response
to Al treatment has been observed also in other transcriptomic
studies (Kumari et al., 2008; Maron et al., 2008; Li et al., 2017).
It shows the complex and diverse roles of peroxidases in Al
stress response.

Another example of enzymes involved in oxidative stress
response is thioredoxins (TRX) - thiol-oxidoreductases that
function in maintaining redox homeostasis (Meyer et al., 2012).
They are induced by a variety of oxidative stimuli and their
overexpression protects the cell from cytotoxicity caused by
oxidative stress (Nishinaka et al., 2001). Lately, the AtTRX1
(Thioredoxin H-type 1) gene was identified in GWAS studies
in Arabidopsis and confirmed by reverse-genetics and co-
expression gene network analysis as associated with Al-tolerance
(Nakano et al., 2020). However, to the best of our knowledge,
to date there was no report about TRX involvement in Al
tolerance or response in monocots. Interestingly, in our study
the expression of THR genes was altered mainly by Al (two
genes upregulated in the short-term and 11 up- and 3 down-
regulated in the long-term experiment), whereas low pH affected

the expression of only two of THR genes in both, the short-
and the long-term treatment. The Arabidopsis knock-out mutant
in the TRX1 gene was hypersensitive to Al, but not to proton
(low pH) toxicity (Nakano et al., 2020). These data together
suggest that thioredoxins are involved in the protection of cells
from Al-induced oxidative stress rather than from the proton-
induced one.

Cell Wall Related Genes Regulated by
Low pH and Al
The cell wall is suggested to be a primary target of Al toxicity and
the majority of Al absorbed by the root tissue is localized in the
apoplast. Aluminum binds to the negatively charged carboxylic
groups of pectins and changes the cell wall properties, which
may cause inhibition of the root cell elongation and growth
(Kochian, 1995; Zheng and Yang, 2005; Silva, 2012). Our RNA-
Seq data show that the expression of several genes encoding
enzymes that directly modify pectins (with GO:0042545 – cell
wall modification) was affected, mainly by the prolonged Al
treatment. However low pH itself also changed the expression
profile of some genes from this group, although to a lesser
extent, which suggests that Al stress has a larger impact on
modifying pectins in barley root meristematic cells than low
pH alone. It is in line with our previous study showing that
aluminum changes the pectin cell wall composition in barley
root cells (Jaskowiak et al., 2019). Barley plants exposed to a
long Al exposure showed the changes in content and localization
of the pectic epitopes involved in maintenance of cell wall
flexibility, stiffening of the wall and firmness of the cells. In the
presented study, among DEGs related to pectin modification,
those encoding pectinesterases and pectin lyases were the most
abundant, especially after long-term Al treatment. Pectinesterases
(also known as pectin methylesterases) belong to a large family
of isozymes that catalyze the de-esterification of pectins. In our
study, the expression of several genes encoding pectinesterases
was upregulated by both, low pH and Al. It is consistent with
our previous studies where we show, by analyzing LM19 and
LM20 antibodies, that unesterified homogalacturonans (HGs)
were more abundant in the Al-treated roots compared to the
not treated ones (Jaskowiak et al., 2019). Similar results were
obtained previously for maize, which additionally supports
the hypothesis that the difference in Al tolerance among maize
genotypes may depend on the level of methyl-esterification of
pectins (Eticha et al., 2005).

It has been reported that Al stress enhances the incorporation
of lignin into the cell wall in roots of many plant species,
including wheat and rice (Hossain et al., 2005; Sasaki et al.,
2006; Wang and Kao, 2007). The deposition of lignin provides
the rigidity and mechanical resistance of the plant cell wall by
creating a barrier that limits the radial movement of metals
and pathogens (Gavnholt and Larsen, 2002). Phenylalanine
ammonia-lyase (PAL) is an enzyme involved in the biosynthesis
of lignin. In our study, genes encoding PALs were upregulated
specifically after Al treatment (five and seven genes upregulated
in the short- and long-term experiment, respectively). As
indicated earlier, some DEGs encoding peroxidases with
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expression altered in the presented RNA-seq data may also be
related to lignin biosynthesis. Another group of enzymes that
may be involved in lignin deposition are laccases, because of their
localization in lignifying cell walls and their potential to oxidize
lignin precursors (Gavnholt and Larsen, 2002). In our study, the
genes encoding laccases were upregulated by both, low pH and
Al, with the highest response after 7 days Al treatment. They
were also found to be up-regulated by Al in maize (Maron et al.,
2008). These data indicate that lignin deposition plays a role in
plant response to Al toxicity as a potential cause of root growth
inhibition. It can possibly play a role in Al tolerance by blocking
the entrance of Al inside the root tissue.

Transcription Factors Modulated by Low
pH and Al
Various TFs were overrepresented among genes with expression
changed by low pH and Al. They belong mainly to WRKY, MYB,
and NAC families and they all may play complementary roles in
regulating the expression patterns of low pH- and Al-responsive
genes. The differences in TFs expression profiles between Al
and low pH treatments indicate that various responses may be
activated upon these two stresses.

It is well documented that one transcription factor is of
special importance in both, low pH and Al tolerance in
Arabidopsis – the C2H2 zinc-finger protein STOP1 (Sensitive
To Proton rhizotoxicity 1). STOP1 regulates multiple genes
protecting Arabidopsis from H+ and Al toxicities and stop1
mutants (T-DNA insertional, as well as missense) are H+-
and Al-hypersensitive. Their hypersensitivity is related to
downregulation of AtALMT1 (Aluminum-Activated Malate
Transporter1), AtALS3 (Aluminum-Sensitive 3) that encodes an
ABC transporter possibly involved in redistribution of Al, and
other genes involved in ion homeostasis and metabolic pathways
regulating pH (Sawaki et al., 2009). OsART1 (Aluminum
Resistance Transcription factor 1), the ortholog of AtSTOP1,
activates multiple genes involved in Al tolerance in rice, including
those implicated in external and internal Al detoxification,
e.g., STAR1 (Sensitive to Al rhizotoxicity 1) encoding ABC
transporter. However, unlike STOP1 in Arabidopsis, OsART1
is involved specifically in Al response only, not in response
to the stress caused by low pH (Yamaji et al., 2009).
More intriguingly, the VuSTOP1 (ortholog found in rice
bean, Vigna umbellata) is involved mainly in response to
H+ toxicity (Fan et al., 2015). Expression of AtSTOP1 and
OsART1 turned out to be constitutive and not affected by
proton or Al stress, hence these TFs are thought to be
regulated posttranslationally. It was recently confirmed that in
Arabidopsis AtSTOP1 function is regulated by SUMOylation
(Fang et al., 2020). On the contrary, the expression of VuSTOP1
is induced by both, H+ and Al3+ (reviewed in Fan et al.,
2016). What is more, in wheat three homoeologous TaSTOP1
genes display differential expression patterns: TaSTOP1-A
is induced by Al3+, TaSTOP1-B is constitutively expressed
and TaSTOP1-C is induced by H+ (Garcia-Oliveira et al.,
2013). We used TaSTOP1 sequence to search for potential
barley orthologs and we found one barley STOP1 ortholog:

HORVU.MOREX.r2.3HG0249360. It encodes a zinc finger
protein with DNA-binding transcription factor activity. The
expression pf HvSTOP1 was not affected in the presented
study neither by low pH nor by Al, however its GOs
indicated that it is involved in both, low pH and Al response
(GO:0010044 – response to aluminum ion, GO:0010447 –
response to acidic pH). Thus, it may be assumed that barley
HvSTOP1 gene is regulated posttranslationally, similarly to the
STOP1 in Arabidopsis.

Transporters Specific for Al Response
Other interesting groups among DEGs encode different
types of transporters that were differentially expressed
especially in long-term experiments. Three metal transporters,
specifically upregulated only by Al, encode NRAMP proteins
(Natural Resistance-Associated Macrophage Protein). One of
them, HORVU.MOREX.r2.7HG0610240 (log2FC = 1.35) is
homologous to ZmNrat1 (nramp Aluminum Transporter 1) that
is known to be a membrane transporter of aluminum in maize
(Guimaraes et al., 2014; Matonyei et al., 2020). Similar to the
barley gene, ZmNrat1 was also upregulated by Al treatment. It is
suggested that NRAT1 membrane proteins are involved in the Al
response mechanism by being responsible for the transport of Al
from outside to inside the cell, which reduces Al concentration
in the apoplast.

In our study genes encoding potassium, zinc, or copper
transporters were found to be differentially expressed by
both applied stresses. However, magnesium transporters were
activated only by Al. The examples are genes: HORVU.MOREX.
r2.3HG0249560 encoding magnesium transporter MRS2-
like protein, which is an ortholog of OsMGT1 (Magnesium
Transporter 1), upregulated after both short and long Al
treatment and HORVU.MOREX.r2.2HG0180770 encoding
another putative magnesium transporter whose expression
increased significantly only after long Al treatment. Similarly,
which was demonstrated in rice, OsMGT1 expression was rapidly
upregulated by Al, but not by low pH and was found to be
regulated by OsART1 (Chen et al., 2012). This transporter
is responsible for Mg uptake in the roots and increasing
internal Mg2+ concentration was demonstrated to be crucial for
conferring Al tolerance (reviewed in Rengel et al., 2015).

ABC (ATP-Binding Cassette) transporters are a large family
of ubiquitous transmembrane proteins responsible for the
active transport of various ligands across membranes (reviewed
in Linton, 2007). Some representatives of this group are
confirmed to be involved in detoxifying Al. A great number
of genes encoding ABC transporters were upregulated in
our study by Al. Also many were upregulated by low pH,
but only in the short-term treatment experiment. Two genes
encoding ABC transporters that were found among Al specific
DEGs were homologous to OsALS1 (Aluminum Sensitive1,
Os03g0755100), namely HORVU.MOREX.r2.5HG0424840
and HORVU.MOREX.r2.5HG0424850 (lof2FC = 1.4 and
3.15, respectively). OsALS1 encodes a tonoplast-localized ABC
transporter and is regulated by OsART1. Its expression in rice was
also specifically induced by Al, not by low pH, as it is responsible
for sequestration of Al into the vacuole (Huang et al., 2012).
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However, the expression of Arabidopsis ortholog, AtALS1, was
not Al inducible (Larsen et al., 2007). Because of the increase of
the expression of two barley ALS1 orthologs in response to Al
(similarly as in rice), it may be assumed that both of them are
potentially involved in internal Al detoxification in barley.

OsSTAR1/STAR2 complex is another example of an ABC
transporter that is responsible for Al detoxification in rice.
OsSTAR1 encodes an ATP-binding protein that forms a complex
with a transmembrane protein OsSTAR2. The STAR1/STAR2
complex is responsible for the transport of UDP (uridine
diphosphate)-glucose that can modify cell walls and therefore
mask Al-binding sites. Both OsSTAR1 and OsSTAR2 are
upregulated upon Al stress in rice (Huang et al., 2009).
In Arabidopsis knock-out of AtSTAR1 resulted in increased
sensitivity to Al, however its expression was constitutive in
roots and shoots and was not induced by Al (Huang et al.,
2010). However, the expression of AtALS3, that is homologous
to OsSTAR2, increased in roots following Al exposure (Larsen
et al., 2005). The homologs of OsSTAR1 and OsSTAR2 were
identified in the barley genome but only a homolog of OsSTAR1,
HORVU.MOREX.r2.4HG0339800, was upregulated in our RNA-
seq experiment after a prolonged Al treatment (log2FC = 1.35).
These data suggest that the pathway of Al tolerance based on
Al detoxification is not as efficient in barley as in rice, which is
consistent with rice being a more highly Al-tolerant cereal.

OA Related Genes
So far, the best-documented mechanisms that help higher plants
to cope with Al toxicity rely on organic acid (OA) exudation,
which can chelate and thus neutralize Al3+ ions. OAs can act
either in the rhizosphere when they are released outside the
root tissue (Al exclusion mechanism), or inside the cell where
they take part in Al detoxification (Al tolerance mechanism).
Different plant species may secrete different OAs from roots,
mainly citrate, malate, and/or oxalate anions (reviewed in Yang
et al., 2013, 2019). In general, species or varieties that are
tolerant to Al can secrete high levels of OAs when exposed
to Al stress (e.g., Li et al., 2000; Yang et al., 2000; You et al.,
2005; Dong et al., 2008). In barley, the most Al-sensitive among
small grain cereals, the differential Al tolerance observed among
different cultivars is correlated mainly with citrate secretion
(Zhao et al., 2003). Correspondingly, in our study, the prolonged
Al treatment caused a very high upregulation of a gene
encoding citrate synthase (HORVU.MOREX.r2.7HG0610760
with log2FC = 5.5), but also an increased expression of a gene
encoding malate synthase (HORVU.MOREX.r2.2HG0146360
with log2FC = 4.2). Interestingly, low pH alone also caused
upregulation of citrate synthase (with log2FC = 6.0), but only in
the short term experiment.

Organic acids produced by plants are exuded outside the root
to the rhizosphere through membrane transporters. The first OA
transporter, a malate transporter ALMT1 (Aluminum-activated
Malate Transporter 1) was discovered in wheat. The TaALMT1
gene is constitutively highly expressed in the Al-tolerant wheat
cultivars and its expression is not upregulated by Al (Sasaki
et al., 2004). In a tea plant that is highly tolerant to Al, four
genes encoding ALMT homologs were found and contrary to

wheat, all of them were upregulated by Al (Li et al., 2017). In
our study the HvALMT1 gene was not upregulated and was
even slightly downregulated by Al. It is in line with the fact
that in response to Al, barley plants release only citrate but
not malate to the rhizosphere (Zhao et al., 2003). The increase
in the expression level of malate synthase after Al treatment
may indicate that malate is involved in internal detoxification
of Al. Nevertheless, the overexpression of the TaALMT1 gene
increased the malate secretion and Al tolerance in transgenic
barley (Delhaize et al., 2004).

The transmembrane transporters releasing citrate anions
outside the cells were first identified in barley and sorghum
(Sorghum bicolor) and named, respectively: HvAACT1
(Aluminum Activated Citrate Transporter 1) (Furukawa
et al., 2007) and SbMATE1 (Magalhaes et al., 2007). Afterward
they were identified in many other plant species, including
wheat, maize, rye, rice, and rice bean (Ryan et al., 2009; Maron
et al., 2010; Yokosho et al., 2010, 2011; Yang et al., 2011).
These citrate transporters belong to the MATE (Multidrug
And Toxic Compound Extrusion) family that is one of the
largest plant transporter families. In the majority of plant
species, genes encoding these transporters are upregulated by
Al. Surprisingly, HvAACT1 was not found to be upregulated
by Al stress in barley (Furukawa et al., 2007). The barley
cultivars that are relatively tolerant to Al were characterized
by constitutive high expression of HvAACT1. In our study, we
also did not find HvAACT1 among DEGs in any experimental
combination, which indicates that its expression is not altered
by low pH or Al.

CONCLUSION

Here we show for the first time the global transcriptome analysis
of root meristematic cells of barley Hordeum vulgare L. grown at
low pH and treated with Al. We provide a full list of differentially
expressed genes that may be useful for studying mechanisms of
H+ and Al toxicity in this important crop species. The obtained
results provide new insights into the very complex mechanisms
underlying H+ and Al tolerance in barley, suggesting that there
are several common, but many more specific genetic pathways
launched in response to these stresses. The fact that many
various mechanisms are activated indicates that the pyramiding
of genes for H+- and Al-tolerance to obtain higher tolerance
in barley is possible. Based on our results we can definitely say
that both factors, low pH and Al, are the enemies of barley.
However, aluminum causes more changes at transcriptome level
when plants are exposed for this stress for a long time. It should
be noted that plants grown on acidic soils are simultaneously
exposed to low pH and Al throughout their life.

DATA AVAILABILITY STATEMENT

RNA-Sequencing data reported in this article has been
deposited in the Gene Expression Omnibus under the
accession no. GSE167271.

Frontiers in Genetics | www.frontiersin.org 20 May 2021 | Volume 12 | Article 675260178

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-675260 May 19, 2021 Time: 13:13 # 21

Szurman-Zubrzycka et al. Barley – Al/Low pH Stress

AUTHOR CONTRIBUTIONS

IS, MS-Z, MK, and PL conceived the study. IS, MS-Z, and
MK designed the experiments. MS-Z and MNa performed
the low pH and Al experiments. MNa analyzed the root
parameters. MS-Z, KC, and MG isolated RNA for RNA-
seq and qPCR analysis. MG performed the qPCR analysis.
MNi prepared the libraries for RNA-seq and performed
sequencing in the short-term experiment. KC and MK
performed the bioinformatic analysis. MS-Z, IS, and PL
interpreted the results. MS-Z wrote the manuscript. IS and
PL revised and edited the manuscript. All authors have
approved the manuscript.

FUNDING

This work was supported by the National Centre for Research
and Development, Poland (grant ERA-CAPS-II/2/2015) and by
the National Science Centre, Poland (grant Beethoven Life1
2018/31/F/NZ2/03952).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.675260/full#supplementary-material

REFERENCES
Achary, V., Jena, S., Panda, K., and Panda, B. (2008). Aluminium induced oxidative

stress and DNA damage in root cells of Allim cepa L. Ecotoxicol. Environ. Saf.
70, 300–310. doi: 10.1016/j.ecoenv.2007.10.022

Achary, V., and Panda, B. (2009). Aluminium-induced DNA damage and
adaptive response to genotoxic stress in plant cells are mediated through
reactive oxygen intermediates. Mutagenesis 25, 201–209. doi: 10.1093/mutage/
gep063

Andersen, C. L., Jensen, J. L., and Ørntoft, T. F. (2006). Characterizing vascular
parameters in hypoxic regions: a combined magnetic resonance and optical
imaging study of a human prostate cancer model. Cancer Res. 66, 9929–9936.
doi: 10.1158/0008-5472.CAN-06-0886

Awasthi, J., Saha, B., Panigrahi, J., Yanase, E., Koyama, H., and Panda, S. (2019).
Redox balance, metabolic fingerprint and physiological characterization in
contrasting North East Indian rice for Aluminum stress tolerance. Sci. Rep.
9:8681. doi: 10.1038/s41598-019-45158-3

Bakalovic, N., Passardi, F., Ioannidis, V., Cosio, C., Penel, C., Falquet, L., et al.
(2006). PeroxiBase: a class III plant peroxidase database. Phytochemistry 67,
534–539. doi: 10.1016/j.phytochem.2005.12.020

Barros, A., Chandnani, R., de Sousa, S., Maciel, L., Tokizawa, M., Guimaraes,
C., et al. (2020). Genetic factors conditioning tolerance to multiple stresses
for crops cultivated on acidic tropical soils. Front. Plant Sci. 11:565339. doi:
10.3389/fpls.2020.565339

Bhalerao, S., and Prabhu, D. (2013). Aluminium toxicity in plants – a review.
J. Appl. Chem. 2, 447–474.

Boscolo, P., Menossi, M., and Jorge, R. (2003). Aluminum-induced oxidative stress
in maize. Phytochemistry 62, 181–189. doi: 10.1016/S0031-9422(02)00491-0

Chen, Z. C., Yamaji, N., and Motoyam, R. (2012). Up-regulation of a magnesium
transporter gene OsMGT1 is required for conferring aluminum tolerance in
rice. Plant Physiol. 159, 16224–11633. doi: 10.1104/pp.112.199778

Dalton, L., Ballarin, V., and Brun, M. (2009). Clustering Algorithms: on learning,
validation, performance, and applications to genomics. Curr. Genomic 10,
430–445. doi: 10.2174/138920209789177601

Delhaize, E., Ryan, P., Hebb, D., Yamamoto, Y., Sasaki, T., and Matsumoto, H.
(2004). Engineering high-level aluminum tolerance in barley with the ALMT1
gene. PNAS 101, 15249–15254. doi: 10.1073/pnas.0406258101

Dobin, A., Davis, C., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2013).
STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. doi: 10.
1093/bioinformatics/bts635

Dong, X., Shen, R., Chen, R., Zhu, Z., and Ma, J. (2008). Secretion of malate and
citrate from roots is related to high Al-resistance in Lespedeza bicolor. Plant
Soil 306, 139–147. doi: 10.1007/s11104-008-9564-x

Eticha, D., Stass, A., and Horst, W. (2005). Cell-wall pectin and its degree of
methylation in the maize root-apes: significance for genotypic differences in
aluminum resistance. Plant Cell Environ. 28, 1410–1420. doi: 10.1111/j.1365-
3040.2005.01375.x

Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). MultiQC: summarize
analysis results for multiple tools and samples in a single report. Bioinformatics
32, 3047–3048. doi: 10.1093/bioinformatics/btw354

Fan, W., Lou, H., Gong, Y., Liu, M., Cao, M., Liu, Y., et al. (2015). Characetrization
of an inducible C2H2-type zinc finger transcription factor VuSTOP1 in rice
bean (Vigna umbellata) reveals differential regulation between low pH and
aluminum tolerance mechanisms. New Phytol. 208, 456–468. doi: 10.1111/nph.
13456

Fan, W., Lou, H., Yang, J., and Zheng, S. (2016). The roles of STOP1-like
transcription factors in aluminum and proton tolerance. Plant Signal. Behav.
11:e1131371. doi: 10.1080/15592324.2015.1131371

Fang, Q., Zhang, J., Zhang, Y., Fan, N., van den Burg, H., and Huang, C. (2020).
Regulation of aluminium resistance in Arabidopsis involves the SUMOylation
of the zinc finger transcription factor STOP1. Plant Cell 32, 3921–3938. doi:
10.1105/tpc.20.00687

Furukawa, J., Yamaji, N., Wang, H., Mitani, N., Murata, Y., Sato, K., et al. (2007).
An aluminum-activated citrate transporter in barley. Plant Cell Physiol. 48,
1081–1091. doi: 10.1093/pcp/pcm091

Garcia-Oliveira, A., Benito, C., Prieto, P., de Andrade Menezes, R., Rodrigues-
Pousada, C., Guedes-Pinto, H., et al. (2013). Molecular characterization of
TaSTOP1 homoeologues and their response to aluminium and proton (H(=))
toxicity in bread wheat (Triticum aestivum L.). BMC Plant Biol. 13:134. doi:
10.1186/1471-2229-13-134

Gavnholt, B., and Larsen, K. (2002). Molecular biology of plant laccases in relation
to lignin formation. Physiol. Plant. 116, 273–280. doi: 10.1034/j.1399-3054.
2002.1160301.x

Giannakoula, A., Moustakas, M., Syros, T., and Yupsanis, T. (2010). Aluminum
stress induces up-regulation of an efficient antioxidant system in the Al-tolerant
maize line but not in the Al-sensitive line. Environ. Exp. Bot. 67, 487–494.
doi: 10.1016/j.envexpbot.2009.07.010

Guimaraes, C., Simoes, C., Pastina, M., Maron, L., Magalhaes, J., Vasconcellos, R.,
et al. (2014). Genetic dissection of Al tolerance QTLs in the maize genome
by high density SNP scan. BMC Genomics 15:153. doi: 10.1186/1471-2164-
15-153

Guo, P., Qi, Y., Yang, L., Lai, N., Ye, X., Yang, Y., et al. (2017). Root adaptive
responses to aluminum-treatment revealed by RNA-Seq in two citrus species
with different aluminum-tolerance. Front. Plant. Sci. 8:330. doi: 10.3389/fpls.
2017.00330

Guo, T., Zhang, G., Zhou, M., Wu, F., and Chen, J. (2004). Effects of aluminum and
cadmium toxicity on growth and antioxidant enzyme activities of two barley
genotypes with different Al resistance. Plant Soil 258, 241–248. doi: 10.1023/B:
PLSO.0000016554.87519.d6

Gupta, N., Gaurav, S., and Kumar, A. (2013). Molecular basis of aluminium toxicity
in plants: a review. Am. J. Plant Sci. 4, 21–37. doi: 10.4236/ajps.2013.4.12A3004

Halkidi, M., Batistakis, Y., and Vazirgiannis, M. (2001). On clustering validation
techniques. J. Intellig. Inform. Syst. 17, 107–145. doi: 10.1023/A:1012801612483

Hossain, M., Hossain, A., Kihara, T., Koyama, H., and Hara, T. (2005). Aluminum-
induced lipid peroxidation and lignin deposition are associated with an increase
in H2O2 generation in wheat seedlings. Soil Sci. Plant Nutr. 51, 223–230. doi:
10.1111/j.1747-0765.2005.tb00026.x

Huang, C., Yamaji, N., Chen, Z., and Ma, F. (2012). A tonoplast-localized half-size
ABC transporter is required for internal detoxification of aluminum in rice.
Plant J. 69, 857–867. doi: 10.1111/j.1365-313X.2011.04837.x

Frontiers in Genetics | www.frontiersin.org 21 May 2021 | Volume 12 | Article 675260179

https://www.frontiersin.org/articles/10.3389/fgene.2021.675260/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.675260/full#supplementary-material
https://doi.org/10.1016/j.ecoenv.2007.10.022
https://doi.org/10.1093/mutage/gep063
https://doi.org/10.1093/mutage/gep063
https://doi.org/10.1158/0008-5472.CAN-06-0886
https://doi.org/10.1038/s41598-019-45158-3
https://doi.org/10.1016/j.phytochem.2005.12.020
https://doi.org/10.3389/fpls.2020.565339
https://doi.org/10.3389/fpls.2020.565339
https://doi.org/10.1016/S0031-9422(02)00491-0
https://doi.org/10.1104/pp.112.199778
https://doi.org/10.2174/138920209789177601
https://doi.org/10.1073/pnas.0406258101
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1007/s11104-008-9564-x
https://doi.org/10.1111/j.1365-3040.2005.01375.x
https://doi.org/10.1111/j.1365-3040.2005.01375.x
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1111/nph.13456
https://doi.org/10.1111/nph.13456
https://doi.org/10.1080/15592324.2015.1131371
https://doi.org/10.1105/tpc.20.00687
https://doi.org/10.1105/tpc.20.00687
https://doi.org/10.1093/pcp/pcm091
https://doi.org/10.1186/1471-2229-13-134
https://doi.org/10.1186/1471-2229-13-134
https://doi.org/10.1034/j.1399-3054.2002.1160301.x
https://doi.org/10.1034/j.1399-3054.2002.1160301.x
https://doi.org/10.1016/j.envexpbot.2009.07.010
https://doi.org/10.1186/1471-2164-15-153
https://doi.org/10.1186/1471-2164-15-153
https://doi.org/10.3389/fpls.2017.00330
https://doi.org/10.3389/fpls.2017.00330
https://doi.org/10.1023/B:PLSO.0000016554.87519.d6
https://doi.org/10.1023/B:PLSO.0000016554.87519.d6
https://doi.org/10.4236/ajps.2013.4.12A3004
https://doi.org/10.1023/A:1012801612483
https://doi.org/10.1111/j.1747-0765.2005.tb00026.x
https://doi.org/10.1111/j.1747-0765.2005.tb00026.x
https://doi.org/10.1111/j.1365-313X.2011.04837.x
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-675260 May 19, 2021 Time: 13:13 # 22

Szurman-Zubrzycka et al. Barley – Al/Low pH Stress

Huang, C., Yamaji, N., and Ma, J. (2010). Knockout of a bacterial-type ATP-binding
cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in
Arabidopsis. Plant Physiol. 153, 1669–1677. doi: 10.1104/pp.110.155028

Huang, C., Yamaji, N., Mitani, N., Yano, M., Nagamura, Y., and Ma, J. (2009). A
bacterial-type ABC transporter is involved in aluminium tolerance in rice. Plant
Cell 21, 655–667. doi: 10.1105/tpc.108.064543

Ishikawa, S., Wagatsuma, T., Sasaki, R., and Ofei-Manu, P. (2000). Comparison
of the amount of citric and malic acids in Al media of seven plant species
and two cultivars each in five plant species. Soil Sci. Plant Nutr. 46, 751–758.
doi: 10.1080/00380768.2000.10409141

Jaskowiak, J., Kwasniewska, J., Milewska-Hendel, A., Kurczynska, E., Szurman-
Zubrzycka, M., and Szarejko, I. (2019). Aluminum alters the histology and
pectin cel wall composition of barley roots. Int. J. Mol. Sci. 20:3039. doi: 10.
3390/ijms20123039

Jaskowiak, J., Tkaczyk, O., Slota, M., Kwasniewska, J., and Szarejko, I. (2018).
Analysis of aluminium toxicity in Hordeum vulgare roots with an emphasis on
DNA integrity and cell cycle. PLoS One 13:e0193156. doi: 10.1371/journal.pone.
0193156

Jones, D., Blancflor, E., Kochian, L., and Gilroy, S. (2006). Spatial coordination of
aluminium uptake, production of reactive oxygen species, callose production
and wall rigidification in maize roots. Plant Cell Environ. 29, 1309–1318. doi:
10.1111/j.1365-3040.2006.01509.x

Kinraide, T. (2008). Toxicity factors in acidic forest sils: attempts to evaluate
separately the toxic effectis of excessive Al3+ and H+ and insufficient Ca2+ and
Mg2+ upon root elongation. Eur. J. Soil Sci. 54, 323–333. doi: 10.1046/j.1365-
2389.2003.00538.x

Kochian, L. (1995). Cellular mechanisms of aluminum toxicity and resistance in
plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 237–260. doi: 10.1146/
annurev.pp.46.060195.001321

Kochian, L., Piñeros, M., and Hoekenga, O. (2005). The physiology, genetics and
molecular biology of plant aluminum resistance and toxicity. Planta and Soil
274, 175–195. doi: 10.1007/s11104-004-1158-7

Kochian, L., Piñeros, M., Liu, J., and Magalhaes, J. (2015). Plant adaptation to acid
soils: the molecular basis for crop aluminum resistance. Annu. Rev. Plant Biol.
66, 571–598. doi: 10.1146/annurev-arplant-043014-114822

Kopittke, P., Moore, K., Lombi, E., Gianoncelli, A., Ferguson, B., Blamey, F., et al.
(2015). Identification of the primary lesion of toxic aluminium in plant roots.
Plant Physiol. 167, 1402–1411. doi: 10.1104/pp.114.253229

Kopylova, E., Noé, L., and Touzet, H. (2012). SortMeRNA: fast and accurate
filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28,
3211–3217. doi: 10.1093/bioinformatics/bts611

Kumari, M., Taylor, G., and Deyholos, M. (2008). Transcriptomic responses to
aluminum stress in roots of Arabidopsis thaliana. Mol. Genet. Genomics 279,
339–357. doi: 10.1007/s00438-007-0316-z

Larsen, P., Cancel, J., Rounds, M., and Ochoa, V. (2007). Arabidopsis ALS1 encodes
a root tip and stele localized half type ABC transporter required for root growth
in aluminum toxic environment. Planta 225, 1447–1458. doi: 10.1007/s00425-
006-0452-4

Larsen, P., Geisler, M., Jones, C., Williams, K., and Cancel, J. (2005). ALS3 encodes
a phloem-localized ABC transporter-like protein that is required for aluminum
tolerance in Arabidopsis. Plant J. 41, 353–363. doi: 10.1111/j.1365-313X.2004.
02306.x

Lassmann, T., Hayashizaki, Y., and Daub, C. (2011). SAMStat: monitoring biases
in next generation sequencing data. Bioinformatics 27, 130–131. doi: 10.1093/
bioinformatics/btq614

Li, X., Ma, J., and Matsumoto, H. (2000). Pattern of aluminium-induced secretion
of organic acids differs between rye and wheat. Plant Physiol. 123, 1537–1544.
doi: 10.1104/pp.123.4.1537

Li, Y., Huang, J., Song, X., Zhang, Z., Jiang, Y., Zhu, Y., et al. (2017). An RNA-Seq
transcriptome analysis revealing novel insights into aluminum tolerance and
accumulation in tea plant. Planta 246, 91–103. doi: 10.1007/s00425-017-2688-6

Li, Y., Kajita, S., Kawai, S., Katayama, Y., and Morohoshi, N. (2003).
Downregulation of an anionic peroxidase in transgenic Aspen and its effect
on lignin characteristics. J. Plant Res. 116, 175–182. doi: 10.1007/s10265-003-
0087-5

Linton, K. (2007). Structure and function of ABC transporters. Physiology 22,
122–130. doi: 10.1152/physiol.00046.2006

Liu, W., Xu, F., Lv, T., Zhou, W., Chen, Y., Jin, C., et al. (2018). Spatial responses of
antioxidative system to aluminum stress in roots of wheat (Triticum aestivum

L.) plants. Sci. Total Environ. 15, 462–469. doi: 10.1016/j.scitotenv.2018.
01.021

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data
using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods
25, 402–408. doi: 10.1006/meth.2001.1262

Love, M., Huber, W., and Anders, S. (2014). Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. doi: 10.
1186/s13059-014-0550-8

Ma, B., Gao, L., Zhang, H., Cui, J., and Shen, Z. (2012). Aluminum-induced
oxidative stress and changes in antioxidant defenses in the roots of rice varieties
differing in Al tolerance. Plant Cell Rep. 31, 687–696. doi: 10.1007/s00299-011-
1187-7

Magalhaes, J., Liu, J., Guimarães, C., Lana, U., Alves, V., Wang, Y., et al. (2007). A
gene in the multidrug and toxic compound extrusion (MATE) family confers
aluminum tolerance in sorghum. Nat. Genet. 39, 1156–1161. doi: 10.1038/
ng2074

Magnavaca, R., Gardner, C., and Clark, R. (1987). “Evaluation of inbred maize lines
for aluminum tolerance in nutrient solution,” in Genetic Aspects of Plant Mineral
Nutrition, eds H. Gabelman and B. Longhman (Dordrecht: Martinus Nijhoff
Publishers), 255–265. doi: 10.1007/978-94-009-3581-5_23

Maron, L., Kirst, M., Mao, C., Milner, M., Menossi, M., and Kochian, L.
(2008). Transcriptional profiling of aluminum toxicity and tolerance responses
in maize roots. New Phytol. 179, 116–128. doi: 10.1111/j.1469-8137.2008.
02440.x

Maron, L., Piñeros, M., Guimarães, C., Magalhaes, J., Pleima, J., Mao, C., et al.
(2010). Two functionally distinct members of the MATE (multi-drug and toxic
compound extrusion) family of transporters potentially underlie two major
aluminum tolerance QTLs in maize. Plant J. 61, 728–740. doi: 10.1111/j.1365-
313X.2009.04103.x

Matonyei, T., Barros, B., Guimaraes, R., Ouma, E., Cheprot, R., Apolinário, L.,
et al. (2020). Aluminum tolerance mechanisms in Kenyan maize germplasm
are independent from the citrate transporter ZmMATE1. Sci. Rep. 10:7320.
doi: 10.1038/s41598-020-64107-z

Meyer, Y., Belin, C., Delorme-Hinous, V., Reichheld, J., and Riondet, C. (2012).
Thioredoxin and glutaredoxin systems in plants: molecular mechanisms,
crosstalks, and functional significance. Antioxid. Redox Signal. 17, 1124–1160.
doi: 10.1089/ars.2011.4327

Min, Y., Huilan, Y., Honhai, L., and Lihua, W. (2009). Aluminum induces
chromosomes aberrations, micronuclei and cell cycle dysfunction in root cells
of Vicia faba. Environ. Tox. 25, 124–129. doi: 10.1002/tox/20482

Monat, C., Padmarasu, S., Lux, T., Wicker, T., Gundlach, H., Himmelbach, A., et al.
(2019). TRITEX: chromosome-scale sequence assembly of Triticeae genomes
with open-source tools. Genome Biol. 20:284. doi: 10.1186/s13059-019-
1899-5

Nakano, Y., Kusunoki, K., Hoekenga, O., Tanaka, K., Iuchi, S., Sakata, Y., et al.
(2020). Genome-wide association study and genomic prediction eluciadte the
distinct genetic architecture of aluminum and proton tolerance in Arabidopsis
thaliana. Front. Plant Sci. 11:405. doi: 10.3389/fpls.2020.00405

Nezames, C., Sjorgen, C., Barajas, J., and Larsen, P. (2012). The Arabidopsis cell
cycle checkpoint regulators TANMEI/ALT2 and ATR mediate the active process
of aluminum-dependent root growth inhibition. The Plant Cell 24, 608–621.
doi: 10.1105/tpc.112.095596

Nishinaka, Y., Masutani, H., Nakamura, H., and Yodoi, J. (2001). Regulatory roles
of thioredoxin in oxidative stress-induced cellular responses. Redox Repoty. 6,
289–295. doi: 10.1179/135100001101536427

Okonechnikov, K., Conesa, A., and García-Alcalde, F. (2016). QualiMap 2:
advanced multi-sample quality control for high-throughput sequencing data.
Bioinformatics 32, 292–294. doi: 10.1093/bioinformatics/btv566

Pereira, L., Mazzanti, C., Gonçalves, J., Cargnelutti, D., Tabaldi, L., Becker, A.,
et al. (2010). Aluminum-induced oxidative stress in cucumber. Plant Physiol.
Biochem. 48, 683–689. doi: 10.1016/j.plaphy.2010.04.008

Pfaffl, M. W., Tichopad, A., Prgomet, C., and Neuvians, T. P. (2004). Determination
of stable housekeeping genes, differentially regulated target genes and sample
integrity: BestKeeper - Excel-based tool using pair-wise correlations. Biotechnol.
Lett. 26, 509–515. doi: 10.1023/B:BILE.0000019559.84305.47

Rahman, M., Lee, S.-H., Ji, H., Kabir, A., Jones, C., and Lee, K.-W. (2018).
Importance of mineral nutrition for mitigating aluminum toxicity in plants
on acidic soils: current status and opportunities. Int. J. Mol. Sci. 19:3073. doi:
10.3390/ijms19103073

Frontiers in Genetics | www.frontiersin.org 22 May 2021 | Volume 12 | Article 675260180

https://doi.org/10.1104/pp.110.155028
https://doi.org/10.1105/tpc.108.064543
https://doi.org/10.1080/00380768.2000.10409141
https://doi.org/10.3390/ijms20123039
https://doi.org/10.3390/ijms20123039
https://doi.org/10.1371/journal.pone.0193156
https://doi.org/10.1371/journal.pone.0193156
https://doi.org/10.1111/j.1365-3040.2006.01509.x
https://doi.org/10.1111/j.1365-3040.2006.01509.x
https://doi.org/10.1046/j.1365-2389.2003.00538.x
https://doi.org/10.1046/j.1365-2389.2003.00538.x
https://doi.org/10.1146/annurev.pp.46.060195.001321
https://doi.org/10.1146/annurev.pp.46.060195.001321
https://doi.org/10.1007/s11104-004-1158-7
https://doi.org/10.1146/annurev-arplant-043014-114822
https://doi.org/10.1104/pp.114.253229
https://doi.org/10.1093/bioinformatics/bts611
https://doi.org/10.1007/s00438-007-0316-z
https://doi.org/10.1007/s00425-006-0452-4
https://doi.org/10.1007/s00425-006-0452-4
https://doi.org/10.1111/j.1365-313X.2004.02306.x
https://doi.org/10.1111/j.1365-313X.2004.02306.x
https://doi.org/10.1093/bioinformatics/btq614
https://doi.org/10.1093/bioinformatics/btq614
https://doi.org/10.1104/pp.123.4.1537
https://doi.org/10.1007/s00425-017-2688-6
https://doi.org/10.1007/s10265-003-0087-5
https://doi.org/10.1007/s10265-003-0087-5
https://doi.org/10.1152/physiol.00046.2006
https://doi.org/10.1016/j.scitotenv.2018.01.021
https://doi.org/10.1016/j.scitotenv.2018.01.021
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1007/s00299-011-1187-7
https://doi.org/10.1007/s00299-011-1187-7
https://doi.org/10.1038/ng2074
https://doi.org/10.1038/ng2074
https://doi.org/10.1007/978-94-009-3581-5_23
https://doi.org/10.1111/j.1469-8137.2008.02440.x
https://doi.org/10.1111/j.1469-8137.2008.02440.x
https://doi.org/10.1111/j.1365-313X.2009.04103.x
https://doi.org/10.1111/j.1365-313X.2009.04103.x
https://doi.org/10.1038/s41598-020-64107-z
https://doi.org/10.1089/ars.2011.4327
https://doi.org/10.1002/tox/20482
https://doi.org/10.1186/s13059-019-1899-5
https://doi.org/10.1186/s13059-019-1899-5
https://doi.org/10.3389/fpls.2020.00405
https://doi.org/10.1105/tpc.112.095596
https://doi.org/10.1179/135100001101536427
https://doi.org/10.1093/bioinformatics/btv566
https://doi.org/10.1016/j.plaphy.2010.04.008
https://doi.org/10.1023/B:BILE.0000019559.84305.47
https://doi.org/10.3390/ijms19103073
https://doi.org/10.3390/ijms19103073
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-675260 May 19, 2021 Time: 13:13 # 23

Szurman-Zubrzycka et al. Barley – Al/Low pH Stress

Rengel, Z., Bose, J., Chen, Q., and Tripathi, B. (2015). Magnesium alleviates plant
toxicity of aluminium and heavy metals. Crop Pasture Sci. 66, 1298–1307. doi:
10.1071/CP15284

Riaz, M., Yan, L., Wu, X., Hussain, S., Aziz, O., and Jiang, C. (2018). Mechanisms
of organic acids and boron induced tolerance of aluminum toxicity: a review.
Ecotoxicol. Environ. Saf. 165, 25–35. doi: 10.1016/j.ecoenv.2018.08.087

Richards, K., Schott, E., Sharma, Y., Davis, K., and Gardner, R. (1998). Aluminum
induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol. 116,
409–418. doi: 10.1104/pp.116.1.409

Rounds, M., and Larsen, P. (2008). Aluminum-dependent root-growth inhibition
in Arabidopsis results from AtATR-regulated cell-cycle arrest. Curr. Biol. 18,
1495–1500. doi: 10.1016/j.cub.2008.08.050

Rousseeuw, P. (1987). Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65. doi: 10.1016/
0377-0427(87)90125-7

Ruijter, J. M., Ramakers, C., Hoogaars, W. M. H., Karlen, Y., Bakker, O., van
den Hoff, M. J. B., et al. (2009). Amplification efficiency: linking baseline and
bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37:e45. doi:
10.1093/nar/gkp045

Ryan, P., Raman, H., Gupta, S., Horst, W., and Delhaize, E. (2009). A second
mechanism for aluminum resistance in wheat relies on the constitutive
efflux of citrate from roots. Plant Physiol. 149, 340–351. doi: 10.1104/pp.108.
129155

Sade, H., Meriga, B., Surapu, V., Gadi, J., Sunita, M., Suravajhala, P., et al. (2016).
Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid
soils. Biometals 29, 187–210. doi: 10.1007/s10534-016-9910-z

Sasaki, M., Yamamoto, Y., and Matsumato, H. (2006). Lignin deposition induced
by aluminum in wheat (Triticum aestivum) roots. Physiol. Palnt. 96, 193–198.
doi: 10.1111/j.1399-3054.1996.tb00201.x

Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., and Ahn, S. (2004). A wheat
gene encoding an aluminum-activated malate transporter. Plant J. 37, 645–653.
doi: 10.1111/j.1365-313X.2003.01991.x

Sawaki, Y., Iuchi, S., Kobayashi, Y., Kobayashi, Y., Ikka, T., Sakurai, N., et al. (2009).
STOP1 regulates multiple genes that protect Arabidopsis from proton and
aluminum toxicities. Plant Physiol. 150, 281–294. doi: 10.1104/pp.108.134700

Shaff, J., Schultz, B., Craft, E., Clark, R., and Kochian, L. (2010). GEOCHEM-EZ: a
chemical speciation program with greater power and flexibility. Plant Soil 330,
207–214. doi: 10.1007/s11104-009-0193-9

Silva, I., Smyth, T., Moxley, D., Carter, T., Allen, N., and Rufty, T. (2000).
Aluminum accumulation at nuclei of cells in the root tip. Fluorescence
detection using lumogallion and confocal laser scanning microscopy. Plant
Physiol. 123, 543–552. doi: 10.1104/pp/123.2.543

Silva, S. (2012). Aluminium toxicity targets in plants. J. Bot. 2012:219462. doi:
10.1155/2012/219462

Singh, S., Tripathi, D., Singh, S., Sharma, S., Dubey, N., Chauhan, D., et al. (2017).
Toxicity of aluminium on various levels of plant cells and organism: a review.
Environ. Exp. Bot. 137, 177–193. doi: 10.1016/j.envexpbot.2017.01.005

Sun, C., Liu, L., Zhou, W., Lu, L., Jin, C., and Kin, X. (2017). Aluminum induces
distinct chamges in the metabolism od reactive oxygen and nitrogen species in
the roots of two wheat genotypes with different aluminum resistance. J. Agric.
Food Chem. 65, 9419–9427. doi: 10.1021/acs.jafc.7b03386

Szurman-Zubrzycka, M., Nawrot, M., Jelonek, J., Dziekanowski, M., Kwasniewska,
J., and Szarejko, I. (2019). ATR, a DNA damage signaling kinase, is involved in
aluminum response in barley. Fron. Plant Sci. 10:1299. doi: 10.3389/fpls.2019.
01299

Szurman-Zubrzycka, M., Zbieszczyk, J., Marzec, M., Jelonek, J., Chmielewska, B.,
Kurowska, M., et al. (2018). HorTILLUS – a rich and renewable source of
induced mutations for forward/reverse genetics and pre-breeding programs
in barley (Hordeum vulgare L.). Front. Plant Sci. 9:216. doi: 10.3389/fpls.2018.
00216

Tamás, L., Budíková, S., Huttová, J., Mistrík, I., Simonovicová, M., and Siroká, B.
(2005). Aluminum-induced cell death of barley-root border cells is correlated
with peroxidase- and oxalate oxidase-mediated hydrogen peroxide production.
Plant Cell Rep. 24, 189–194. doi: 10.1007/s00299-005-0939-7

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M.,
et al. (2012). Primer3-new capabilities and interfaces. Nucleic Acids Res. 40,
1–12. doi: 10.1093/nar/gks596

Vega, I., Nikolic, M., Pontigo, S., Godoy, K., de La Luz Mora, M., and Cartes,
P. (2019). Silicon improves the production of high antioxidant or structural

phenolic compounds in barley cultivars under aluminum stress. Agronomy
9:388. doi: 10.3390/agronomy9070388

Von Uexküll, H., and Mutert, E. (1995). Global extent, development and economic
impact of acidic soils. Plant Soil 171, 1–15. doi: 10.1007/bf00009558

Wang, J., and Kao, C. (2007). Protective effect of ascorbic acid and glutathione on
AlCl3-inhibited growth of rice roots. Biol. Plant. 51, 493–500. doi: 10.1007/
s10535-007-0104-y

Wang, J., Raman, H., Zhang, G., Mendham, N., and Zhou, M. (2006). Aluminum
tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics
and screening methods. J. Zhejiang Univ. Sci. B 7, 769–787. doi: 10.1631/jzus.
2006.B0769

Xu, F., Li, G., Jin, C., Liu, W., Zhang, S., Zhang, Y., et al. (2012). Aluminum-
induced changes in reactive oxygen species accumulation, lipid peroxidation
and antioxidant capacity in wheat root tips. Biol. Plant 51, 89–96. doi: 10.1007/
s10535-012-0021-6

Yamaji, N., Huang, C., and Nagao, S. (2009). A zinc finger transcription factor
ART1 regulated multiple genes implicated in aluminum tolerance in rice. Plant
Cell 21, 3339–3349. doi: 10.1105/tpc.109.070771

Yamamoto, Y., Kobayashi, Y., Davi, S., Rikiishi, S., and Matsumoto, H. (2003).
Oxidative stress triggered by aluminum in plant roots. Plant Soil 255, 239–243.
doi: 10.1023/A:1026127803156

Yang, J., Fan, W., and Zheng, S. (2019). Mechanisms and regulation of aluminum-
induced secretion of organic acid anions from plant roots. J. Zhejinag Univ. Sci.
B 20, 513–527. doi: 10.1631/jzus.B1900188

Yang, L., Qi, Y., Jiang, H., and Chen, L. (2013). Roles of organic acid anion secretion
in aluminium tolerance of higher plants. BioMed. Res. Int. 2013:173682. doi:
10.1155/2013/173682

Yang, X., Yang, J., Zhou, Y., Piñeros, M., Kochian, L., Li, G., et al. (2011). A de novo
synthesis citrate transporter, Vigna umbellata multidrug and toxic compound
extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata)
root apex. Plant Cell Environ. 34, 2138–2148. doi: 10.1111/j.1365-3040-2011.
02410.x

Yang, Z., Sivaguru, M., Horst, W., and Matsumoto, H. (2000). Aluminium tolerance
is achieved by exudation of citric acid from roots of soybean (Glycine max).
Physiol. Plant. 110, 72–77. doi: 10.1034/j.1399-3054.2000.110110.x

Yokosho, K., Yamaji, N., and Ma, J. (2010). Isolation and characterisation of two
MATE genes in rye. Funct. Plant Biol. 37, 296–303. doi: 10.1071/FP09265

Yokosho, K., Yamaji, N., and Ma, J. (2011). An Al-inducible MATE gene is involved
in extermanl detoxification of Al in rice. Plant J. 68, 1061–1069. doi: 10.1111/j.
1365-313x.2011.04757.x

You, J., and Chan, Z. (2015). ROS regulation during abiotic stress responses in crop
plants. Front. Plant Sci. 6:1092. doi: 10.3389/flps.2015.01092

You, J., He, Y., Yang, J., and Zheng, J. (2005). A comparison of aluminum resistance
among Polygonum species originating on strongly acidic and neutral soils.
Plant Soil 276, 143–151. doi: 10.1007/s11104-005-3786-y

Zhang, Y., Zhu, D., Zhang, Y., Chen, H., Xiang, J., and Lin, X. (2015). Low pH-
induced changes of antioxidant enzyme and ATPase activities in the roots of rice
(Oryza sativa L.) seedling. PLoS One 10:e0116971. doi: 10.1371/journal.pone.
0116971

Zhao, Z., Ma, J., Sato, K., and Takeda, K. (2003). Differential Al resistance and
citrate secretion in barley (Hordeum vulgare L.). Planta 217, 794–800. doi:
10.1007/s00425-003-1043-2

Zheng, S., and Yang, J. (2005). Target sited of aluminum phytotoxicity. Biol. Plant.
49, 321–331. doi: 10.1007/s10535-005-0001-1

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The handling editor declared a past co-authorship with the authors MS-Z and IS.

Copyright © 2021 Szurman-Zubrzycka, Chwiałkowska, Niemira, Kwaśniewski,
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Blast is caused by the host-specific lineages of the fungus Magnaporthe oryzae and is
the most important destructive disease in major crop plants, including rice and wheat.
The first wheat blast outbreak that occurred in Bangladesh in 2016 and the recent
epidemic in Zambia were caused by the M. oryzae Triticum (MoT ) pathotype, a fungal
lineage belonging to M. oryzae. Although a few reported wheat cultivars show modest
resistance to MoT, the patterns of genetic variation and diversity of this pathotype make
it crucial to identify additional lines of resistant wheat germplasm. Nearly 40 rice blast
resistant and susceptible genes have so far been cloned. Here, we used BLAST analysis
to locate two rice blast susceptible genes in the wheat reference genome, bsr-d1 and
bsr-k1, and identified six identical homologous genes located on subgenomes A, B,
and D. We uncovered a total of 171 single nucleotide polymorphisms (SNPs) in an
ethyl methanesulfonate (EMS)-induced population, with mutation densities ranging from
1/1107.1 to 1/230.7 kb through Targeting Induced Local Lesions IN Genomes (TILLING)
by sequencing. These included 81 SNPs located in exonic and promoter regions, and
13 coding alleles that are predicted to have severe effects on protein function, including
two pre-mature mutants that might affect wheat blast resistance. The loss-of-function
alleles identified in this study provide insights into new wheat blast resistant lines, which
represent a valuable breeding resource.

Keywords: wheat, rice blast, wheat blast, TILLING, mutant allele, deleterious effect

INTRODUCTION

Wheat blast is now a serious threat to food and nutritional security in three different continents,
namely South America, Asia, and Africa (Islam et al., 2020). The first ever reported wheat blast
epidemic occurred in Brazil in 1985 (Igarashi et al., 1986) and have taken place in the other
South American countries in following decades, and subsequently spread to the neighboring wheat
growing areas in Argentina, Bolivia, and Paraguay. In February 2016, a major outbreak affected 16%
of the wheat planting area in Bangladesh, leading to an almost complete crop failure across 15000
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hectares (Islam et al., 2016). Finally, during the 2017–2018
growing season, a widespread epidemic significantly affected
most cultivars in both experimental and farming fields in Zambia
(Tembo et al., 2020). It has been demonstrated that the pathogen
Magnaporthe oryzae pathotype Triticum (MoT) was responsible
for the outbreaks in both Bangladesh and Zambia, and that this
lineage is closely related to those responsible for the wheat blast
outbreak that occurred in South America (Islam et al., 2016;
Tembo et al., 2020). Ceresini et al. (2018) assumed that wheat
blast disease was introduced in Bangladesh through wheat grain
trading from Brazil. In fact, previous research has shown that
M. oryzae jumped from a native grass host to wheat during
the 1980s in Brazil, after which a mutation in one of the
isolates causing increased pathogenicity and the functional loss
of resistance genes led to widespread MoT in wheat cultivars
(Inoue et al., 2017).

Due to the relatively recent emergence of Triticum, there
are only a few known resistant (R) genes available against this
destructive pathogen in natural wheat varieties or germplasm
(Islam et al., 2020). Beyond the well-characterized 2NS/2AS
translocation genotypes that were acquired from Aegilops
ventricosa (Cruz et al., 2016b; Cruppe et al., 2019; Juliana et al.,
2020), the genes Rmg8 and RmgGR119, from the Albanian
accession GR119, seemingly confer high blast resistance at both
the heading stage and under high temperature conditions (Anh
et al., 2015; Wang et al., 2018). While these genes are crucial
to the current efforts to breed blast resistant wheat varieties,
it has been shown that Rmg8 can be suppressed by MoT’s
effector gene PWT4 (Inoue et al., 2020), and that resistance of
2NS translocation was eroded by new MoT virulence groups
(Cruz et al., 2016a), which means other resistant mechanisms
might become obsolete with the evolution of MoT in the near
future. Hence, it is urgent to develop durable blast resistant
wheat varieties and, especially, to identify novel non-2NS R genes
in order to effectively control the threat posed by MoT. One
possibility is through mutation induction, a mechanism that has
been shown to be effective in creating novel alleles (Campbell
et al., 2012; Lu et al., 2018) and germplasms (Xiong et al., 2017;
Guo et al., 2019), and that can also be used to generate new MoT
resistant varieties.

Over one hundred rice blast R and susceptible (S) genes
and QTLs have so far been discovered or cloned, including
Ptr, Pi-ta, Pi-b, and Pi-21 (Srivastava et al., 2017; Zhao et al.,
2018). In the case of the S gene Pi-21 (Os04g0401000), the
simultaneous deletions of 18- and 48-bp confer non-specific and
durable resistance to rice blast. However, the gene is tightly linked
with a locus associated with poor eating quality, which makes
its use less than ideal to improve disease resistance (Fukuoka
et al., 2009). Another example is BSR-K1, a protein that contains
five tetratricopeptide repeats (TPRs) and binds to the mRNA
of defense-related genes. The genotypes that encode for Bsr-k1
(Os10g0548200) are susceptible to rice blast, while those encoding
the bsr-k1 allele, a pre-mature termination mutation, show broad
resistance against both blast and bacterial blight (Zhou et al.,
2018). Finally, bsr-d1 (Os03g32230) is a loss of function allele
that confers broad spectrum rice blast resistance in natural rice
varieties. The gene encodes a putative C2H2-like transcription

factor in the nucleus and is regulated by a MYB family
transcription factor. Importantly, in this case, no unfavorable
genes are known to be closely linked (Li W. et al., 2017).

Loss-of-function mutations therefore represent one of the
ways to obtain fungal disease resistance in both natural
populations and breeding scenarios. One example is the well-
known Fhb1 (His), a gene which encodes a histidine-rich calcium-
binding protein and that originated in the lower reaches of the
Yangtze Valley of China. The gene contains a 752-bp deletion
within its 5′ end that confers resistance against Fusarium head
blight (Li et al., 2019) and has been utilized worldwide as one of
the best genetic resources in wheat breeding (Hao et al., 2020).
Another example is the mildew resistant locus o (mlo) where
resistance-conferring missense and knockout mutations against
powdery mildew were induced in the conserved region of the
gene by ethyl methanesulfonate (EMS) mutagen treatment and
gene editing approaches (Wang et al., 2014; Acevedo-Garcia et al.,
2017). Notwithstanding, Tamlo alleles were more susceptible to
MoT (Gruner et al., 2020).

It has been demonstrated that chemical and physical mutagens
are able to induce nucleotide changes, including substitutions,
insertion, or deletions (Ahloowalia and Maluszynski, 2001;
Du et al., 2017; Krasileva et al., 2017; Ichida et al., 2019), that
represent loss-of-function mutations resulting in favorable,
fungal-resistant phenotypes (Acevedo-Garcia et al., 2017;
Hussain et al., 2018). Targeting Induced Local Lesions IN
Genomes (TILLING) is a reverse genetic approach to identify
mutant allele (McCallum et al., 2000), and it has been used to
discover mutant alleles in wheat, rice, barley and many other
species. The target traits, such as wheat starch quality (Slade et al.,
2005, 2012; Hazard et al., 2012), rice phytic acid and starch (Kim
and Tai, 2014; Kim et al., 2018), have been improved through
the approach. There are several different methods have been
developed to TILL mutant alleles, such as gel electrophoresis
based on enzyme digestion (Till et al., 2006), high resolution
melting (Dong et al., 2009; Acanda et al., 2014), and the higher
throughput TILLING by sequencing (Tsai et al., 2011).

Here, we tried to establish a new strategy aimed at identifying
MoT resistance in wheat based on knowledge associated with
rice blast resistance. Specifically, we took advantage of the close
evolutionary relationship between MoT and M. oryzae (MoO),
BLASTed rice blast S orthologs in the wheat reference genome,
and analyzed their functional domains. We then used EMS
mutagen treatment and TILLING by sequencing in order to
identify mutant single nucleotide polymorphisms (SNPs) in the
M2 population that severely impact gene function and that might
have the potential to enhance blast resistance in wheat. Our
approach provides a new strategy to enhance the genetic diversity
of wheat blast resistant germplasm.

MATERIALS AND METHODS

Plant Materials
Wheat (Triticum aestivum L.) cultivar Jing411 and its
EMS-induced M2 mutated population (Guo et al., 2017)
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were used to identify mutant alleles in target genes. Five
biological replicates of wild type (WT) were used as reference.

A total of 2,300 M2 individuals were used for mutation
screening. M1 plants were strictly self-crossed by bagging, and
a single seed was harvested from each plant to develop the M2
population, leaves of each M2 individual plants were sampled
to extract DNA. All samples were normalized to the same
concentration (50 ng/µl) and placed in 96-well plates. A two
dimensional pooling scheme was used following protocol of Till
et al. (2006) with modification, the 12 samples in each column
were pooled into one sample, and the eight samples in each row
were pooled into another (Supplementary Figure 1), a total of
571 pooled samples were obtained. All pooling samples were then
used for TILLING by sequencing.

The M3 mutants which were predicted to have severe
impacts were used to validate variations, each mutant line
was planted 20–40 seeds according to their total seed amount.
The seeds were planted in the experimental field of Institute
of Crop Sciences, Chinese Academy of Agricultural Sciences.
Seedling leaf of each individual was sampled to extract DNA for
mutation confirmation.

Sequence Blast and Analysis
We used the DNA sequences of rice blast S genes Os10g0548200,
Os03g32230, and Os04g0401000, from the Rice Annotation
Project Database1, as templates to BLAST in the wheat reference
genome Version 2.02. The wheat orthologs found across the three
sub-genomes were then analyzed in NCBI’s database3 in order to
access their conserved functional domains, which were used as
the target sequences of mutation detection by TILLING. Specific
primers (Supplementary Table 1) were designed using the
software GenoPlexs Primer Designer (Molbreeding Company,
China), and used to amplify pooling samples.

TILLING by Sequencing
The PCR reaction and library construction was prepared using
the GenoPlexs Multiplex-PCR Library Prep Kit (Molbreeding
Company, China), each step was performed according to the
kit manual. The PCR reaction included 50 ng DNA, 1× T
PCR Master Mix with improved high-fidelity pfu thermostable
DNA polymerase and the primer mix. Amplification conditions
included denaturation at 95◦C for 5 min, followed by 32 cycles
of 95◦C for 30 s, 60◦C for 30 s, and 72◦C for 5 min on
an ABI 9700 thermal cycler. The PCR products were then
fragmented with an ultrasonic cleaner (Xinzhi Biotechnology,
Ningbo, China, Scientz08-III) and, the fragment size and
concentration were detected by agarose gel electrophoresis. After
normalization, the products were purified with AMPure XP
(Beckman Coulter, A63880).

The purified products were further used to add adaptor and
barcode. Firstly the ends were repaired with Repair Enzyme by
incubating 20 min on an ABI 9700 thermal cycler, and the A
base was added to 3′ ends at the same time; then the adapters

1https://rapdb.dna.affrc.go.jp
2https://wheat-urgi.versailles.inra.fr/
3https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

were added, which was incubated at 22◦C for 60 min on an
ABI 9700 thermal cycler. Then, a second purification round was
followed before adding barcode. Finally, the barcode was added
in conditions of denaturation at 98◦C for 2 min, followed by 12
cycles of 98◦C for 30 s, annealing for 30 s, and 72◦C for 40 s,
final extension at 72◦C for 4 min. The sequence of barcode was
AGTCGGAGGCCAAGCGGTCTTAGGAAGACAANNNNNN
NNNNCAACTCCTTGGCTCACA, and the bottom adapter was
TTGTCTTCCTAAGGAACGACATGGCTACGATCCGACT.

After a third purification round and fragment size detection,
the library was sequenced by MGISEQ2000 (MGI Tech
Co., Ltd., China).

Mutation Detection
We filtered the raw reads to fetch clean reads using the
software fastp V0.20.0 with parameters -n 10 -q 20 -u
40 (Chen et al., 2018). The Clean reads (BioProject ID
PRJCA004347, deposited at National Genomics Data Center)4

were mapped to amplicon sequences of Chinese Spring (IWGSC
RefSeq V1.0) using BWA-mem with default parameters5 (Li
and Durbin, 2009). Sorting were performed with Picard
(Version 2.1.1)6. GATK’s (version v3.5-0-g36282e4) module
UnifiedGenotyper was used to call SNPs with parameters: -dcov
1000000 -minIndelFrac 0.15 -glm BOTH -l INFO; and module
VariantFiltration was used to filter variants with parameters:
-filterExpression “MQ0 ≥ 4 & ((MQ0/(1.0 ∗ DP)) > 0.1),” -
filterName “HARD_TO_VALIDATE,” -filterExpression “DP < 5
| | QD < 2,” -filterName “LOW_READ_SUPPORT.” Variants
were discovered from the VCF file (Supplementary File 1) using
Perl scripts (Supplementary File 2). SNPs with <5× sequencing
depth were treated as missing data. The variations between WT
and Chinese Spring were filtered out.

The called SNPs were further corrected with frequency. All of
the heterozygous sites in WT were considered to be false positive,
and they were firstly filtered out before correction with ratio of
alter alleles depth to read depth≤0.20 or≥0.80, which was higher
than those of mutant call. Then SNPs were corrected in mutant
pooling samples with the following threshold, when the ratio of
alter alleles depth to read depth≤0.05, the SNPs were considered
to be homozygous and identity with reference sites, with the ratio
≥0.95 were considered to be homozygous mutation sites, and
with the remainder being considered as heterozygous mutation
sites. The mutant SNPs identified in both the row-pooling-sample
and the line-pooling-sample were considered to represent true
mutations, while those that were only detected in either the row-
pooling-sample or the line-pooling-sample were considered to
be false positives (Supplementary Figure 1 and Supplementary
File 3). Those of SNPs identified in the antisense strands were
substituted by complementary bases in the sense strands, and
listed in tables.

The mutation density of each gene was calculated by
dividing the total number of SNPs by the total sequenced

4https://bigd.big.ac.cn/gsub/
5http://bio-bwa.sourceforge.net/bwa.shtml
6http://broadinstitute.github.io/picard/
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length (sequenced length of the gene multiplied by number of
sampled individuals).

Prediction of Mutation Effects
The SNPs classified as true positives were then classified into
promoter, exon and intron regions according to their respective
location on the genes, and the effects on protein translation
of those lying in the coding region analyzed. The impacts of
missense mutations were predicted using the online software
PROVEAN (Protein Variation Effect Analyzer)7.

Structure Prediction of Mutant Proteins
The secondary protein structure was predicted using the website
http://www.prabi.fr/. The three-dimensional (3D) structures
of non-sense and missense mutations were predicted using
the SWISS-MODEL server and 3D models generated from
multiple threading alignments of amino acid sequences (Bordoli
et al., 2009; Biasini et al., 2014). The protein structures
were edited and visualized using the software Deepview/Swiss
PDB Viewer V.4.1.0.

Validation of Mutant Lines by Sanger
Sequencing
Specific primers for each SNP were designed manually according
to the specificity of 3′ end. The PCR reaction included 1× Taq
Plus Master Mix II (Vazyme Biotech Co., Ltd.), 10 µm primer mix
and 100 ng/µl genomic DNA. Amplification conditions included
denaturation at 95◦C for 3 min, followed by 35 cycles of 95◦C
for 15 s, annealing for 20 s, and 72◦C for 1 min. The PCR
products were then detected by 1% agarose gel electrophoresis,
those with single band were further sequenced to detect the
specificity of primers. Finally, individual samples of each mutant
were amplified by the specific primers with two biological repeats,
and sequenced by Sanger sequencing to validate SNP variation.

RESULTS

Identification of Homologous Rice Blast
S Genes in Wheat
Through BLAST in the wheat reference genome, orthologs
of rice blast S gene Bsr-k1 (Os10g0548200) were identified
in the first homologous group 1A (TraesCS1A02G207700),
1B (TraesCS1B02G221400), and 1D (TraesCS1D02G211000)
(Supplementary Figure 2A), while Bsr-d1 (Os03g32230)
orthologs were present on the seventh homologous group 7A
(TraesCS7A02G160700), 7B (TraesCS7B02G065700), and 7D
(TraesCS7D02G161800) (Supplementary Figure 2B). However,
no Pi-21 (Os04g0401000) orthologs were identified in the wheat
reference genome (Supplementary Table 2).

The three Bsr-k1 wheat orthologs consist of 20 exons and
19 introns (Supplementary Figure 2A), and include five sets of
conserved functional TPR domains that were observed in wheat
homologous genes (Figure 1). Their respective observed protein

7http://provean.jcvi.org/index.php

sequence identity was higher than 97%, and more than 80% when
compared to BSR-K1.

We have also observed that the sequence identity of BSR-
D1 with its wheat orthologs was only 62.3–64.1%. However, the
C2H2-type zinc finger domains of Bsr-d1 were highly conserved
in three wheat orthologs (Figure 2), whereby its function might
be maximally preserved in wheat.

Mutation Density and Substitution Types
of Target Fragments
The density of mutations in the six target fragments ranged
from 1/1107.1 to 1/230.7 kb (Table 1), with an average of
1/309.5 kb. The lowest mutation density was found in the gene
TraesCS7A01G160700, where only three mutants were detected.

More than 90% of base substitutions detected were transitions,
and the remainder were transversions. All transversions occurred
in intronic regions and corresponded to mutations from C, T, or
A into G, A, or C. The only exception was found in the 5′UTR
region and included a C > G transversion that resulted in a
start-codon gain in line E1354. No deletions or insertions were
detected in the population.

The Effects of SNPs in Bsr-k1 Wheat
Orthologs
The PCR amplicons were verified by agarose gel electrophoresis
(Supplementary Figure 3 and not shown) and, after
fragmentation, purification and adding adaptor, the products
were sequenced by next-generation sequencing, and the
sequences of WT were submitted to National Center for
Biotechnology Information (NCBI) database (Table 1). In total,
we identified 146 mutated SNPs in the three Bsr-k1 wheat
orthologs in total in the M2 population. The mutations were
distributed across the promoter, exonic and intronic regions
(Figure 3). The mutations overlapping the coding region (CDS)
were classified into silent, missense and non-sense mutation
types due to their respective effects on amino acid translation.
A total of 10 mutants were predicted to have severe effects
on gene function.

Moreover, a total of 55 SNPs in the gene
TraesCS1A02G207700 were identified, including 15 and 40
SNPs located in exons and introns, respectively (Table 2,
Figure 3, and Supplementary Table 3). Among the 11 SNPs
found in the CDS region, five resulted in missense mutations and
two (line E758 and E325) were predicted to severely impact gene
function, while the other six represented silent mutations. We
also found a start-codon-gain mutant in the 5′UTR region, which
resulted in a 132-base advance of the starting codon without any
downstream frameshift.

A total of 45 mutated SNPs distributed across promoter,
exonic, and intronic regions were identified in the gene
TraesCS1B02G221400 (Table 2, Supplementary Table 3, and
Figure 3). Among these, we found 10 missense mutations, 4 of
which were predicted to have a deleterious impact. Furthermore,
there were four mutations in the promoter region that may also
lead to variations in gene function.
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FIGURE 1 | Conserved domains and amino acid sequence of gene Bsr-k1 and its respective wheat orthologs. (A) conserved domains, (B) amino acid sequence.
CDS means coding sequence, TPR means tetratricopeptide repeat, the TPRs are highlighted by red rectangles.

Finally, we identified 20 SNPs in the exonic regions of the
gene TraesCS1D02G211000 (Table 2, Supplementary Table 3,
and Figure 3), of which two were non-sense and 10 missense
mutations. Importantly, the two stop-gained mutants (E60 and
E724) as well as C604T (E91) and C2740T (E315) might lead to
severe impacts on function.

The Effects of SNPs in Bsr-d1 Wheat
Orthologs
A total of 25 SNPs were found in the three wheat orthologs of
Bsr-d1 in the M2 population, including one start-codon loss, 10
missense mutations, and several others located in the UTR and
promoter regions (Table 3). PROVEAN analysis predicted that
the loss of the start-codon (G135A) is neutral due to the existence

of an alternative start codon within 12 base pairs without any
downstream frameshift. This analysis also predicted that the
C488T mutation in TraesCS7A02G160700 and the C304T and
G497A mutations in TraesCS7D02G161800 have a severe effect
on protein function.

Verification of SNPs With Severe Impacts
in M3
A total of 13 SNPs with severe impacts were discovered in the
six target genes, 12 of them and five of those located in UTR and
promoter region were further validated, except mutant line E044-
3 because of insufficient seeds. A total of 12 sets of specific primers
were used after electrophoresis and sequencing evaluation
(Supplementary Table 4 and Supplementary Figure 4). 100%
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FIGURE 2 | Conserved domains and amino acid sequence of gene Bsr-d1 and its respective wheat orthologs. (A) conserved domains, (B) amino acid sequence.
CDS means coding sequence, the amino acid sequence of two conserved zinc fingers are highlighted by red rectangles.

TABLE 1 | Mutation densities of Bsr-k1 and Bsr-d1 wheat orthologs in the M2 population after EMS treatment.

Gene NCBI accession
number

Gene size (kb) Sequenced fragment
size (kb)

Mutation
number

Mutation
density

TraesCS1A02G207700 MW388661 10.948 6.950 55 1/290.6 kb

TraesCS1B02G221400 MW388662 8.444 4.514 45 1/230.7 kb

TraesCS1D02G211000 MW388663 8.260 4.884 46 1/244.2 kb

TraesCS7A02G160700 MW388664 1.163 1.444 3 1/1107.1 kb

TraesCS7B02G065700 MW388665 0.904 1.469 10 1/337.9 kb

TraesCS7D02G161800 MW388666 0.905 1.427 12 1/273.5 kb

of the SNPs were confirmed by Sanger sequencing, and all of
the SNPs in M3 were consistent with those from pooled M2
population (Table 4).

Secondary and 3D Structure Variation of
Target Proteins
Using online software, the predicted three-dimensional protein
models of BSR-K1 wheat orthologs showed homology to the
Saccharomyces cerevisiae Ski2-3-8 complex with multiple alpha
helices (Figure 4, Supplementary Figure 5, and Supplementary
Table 5). The amino acid change Ala407Thr in line E325, located
in the fifth TPR region, which was a change from hydrophobic
residue to hydrophilic residue and, resulted in the formation of a
random coil instead of an alpha helix (Supplementary Figure 5A
and Supplementary Table 5). On the contrary, the mutation
Ser162Phe in line E786, hydrophilic residue to hydrophobic Phe
residue, resulted in a reduced random coil that enabled more
residues to form an alpha helix and less to participate in an
extended strand (Supplementary Figure 5B and Supplementary
Table 5). The truncation mutation found in line E724 led to the
loss of the fifth TPR region and remaining residues (Figure 4C

and Supplementary Table 5), which might significantly affect
protein function.

DISCUSSION

Our Mutated Population Resulted in the
Discovery of Multiple Mutations in One
Line and the Same SNP in Multiple Lines
Mutational types and their frequency are often correlated with
the mutagens and the species where they occur. Based on
high-throughput data from exome capture and whole-genome
sequencing, transitions generally represent over 90% of EMS
treatment induced mutations (Henry et al., 2014; Krasileva et al.,
2017), compared to just ∼40–50% using heavy ion beams and
fast neutrons (Li G.T. et al., 2017; Ichida et al., 2019). In our
study, the proportion of transition mutations observed were 91
and 98% in the genome and exon/promoter regions, respectively,
which is consistent with previously reported EMS-induction
results (Henry et al., 2014; Krasileva et al., 2017). While an
individual mutant line can carry thousands of mutated alleles
(Krasileva et al., 2017; Li G.T. et al., 2017; Hussain et al., 2018),
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FIGURE 3 | SNP distribution in the six target fragments of Bsr-k1 and Bsr-d1 wheat orthologs.

we found that 12 out of 175 lines carried more than one
mutated SNPs (specifically two mutations in each line). Most of
them in our experiment were either located in intronic regions,
represented silent mutations or had neutral effects. Only lines
E48 and A53 carried mutations in the promoter region of
TraesCS1B02G221400 that might affect gene function, no loss-
of-function double mutant line of the target genes was directly
created in the current M2 population. These results confirmed
that multiple mutations existed in one individual line.

In addition, a previous study focusing on mutated tetraploid
and hexaploid wheat populations, identified 1.4 out of 10 million
SNPs (i.e., around 14%) in more than one individual line
through exome capture (Krasileva et al., 2017). In this study,
we uncovered 8 SNPs (5%) in 2–5 lines, most of which are
located in intronic regions, probably due to the lesser constraint
affecting intron evolution. These results demonstrated that the
same SNP can be found in multi-individuals of the same mutated
population even if through EMS treatment. As mentioned above,
the EMS mutagen induces transition-type mutations such as
G > A and C > T, transversions are thought to represent non-
EMS mutations and instead result from genetic heterogeneity or
sequencing errors associated with lower coverage (King et al.,
2015; Krasileva et al., 2017), whereas it has been reported that
transversions in different species induced by chemical mutagens

including EMS were presented with lower percentage (Spencer-
Lopes et al., 2018). In our study, five out of eight mutations
were non-EMS type. Since we have excluded positions with less
than 5× depth, it is unlikely that these mutations result from
sequencing error. In addition, seeds used for EMS treatment
and WT were derived from the same branch, so the probability
of genetic heterogeneity is very low. Taken together, these
transversions probably derived from EMS treatment.

Using Rice Blast Susceptible Genes
Opens a New Window to Promote Wheat
Blast Resistance Breeding Through
Mutation Induction
The promoter region controls the transcription of genes through
the binding of specific transcription factors. Accordingly,
variations in the genomic sequence of both transcription
factors and promoter might alter gene function. WRKY76 is
a transcription factor that binds to W-box elements and its
overexpression results in decreased resistance to rice blast
(Yokotani et al., 2013). At the same time, a SNP in the promoter
region (-618) and consequent bsr-d1 knockout leads to an
increased binding affinity with the transcription factor MYBS1,
which, in turn, enhances blast resistance (Li W. et al., 2017). The
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TABLE 2 | SNPs identified in Bsr-k1 wheat orthologs and their predicted impact
on protein function.

Line Region Allelea Mutation
Type

Variation in
Amino Acidb

PROVEAN
Score

Prediction

TraesCS1A02G207700

A32 5′UTR C121T

E1354 5′UTR C159G start codon
gained

A408 5′UTR C196T

A410 5′UTR G254A

E333 CDS1 C301T Missense P4S 0.788 Neutral

E038-9 CDS1 C342T Silent L17=

E049-1 CDS1 G346A Missense A19T −0.433 Neutral

E054-10 CDS1 C399T Silent H36=

E439 CDS1 C483T Silent A65=

E758 CDS4 C5070T Missense A149V −3.825 Deleterious

E203 CDS6 G5413A Silent Q188=

E325 CDS10 G6403A Missense A407T −3.28 Deleterious

E1258 CDS11 C6629T Silent C448=

E049-1 CDS11 G6641A Silent V452=

E630 CDS12 G6807A Missense G472D 1.357 Neutral

TraesCS1B02G221400

A53 promoter G-429A

E48 promoter C-212T

E046-3 promoter C-192T

E041-12 promoter C-84T

E1180 CDS1 C11T Missense P4I 0.108 Neutral

E833 CDS1 G87A Silent G29=

E1015 CDS1 C162T Silent A54=

E038-16 CDS2 G353A Missense G76E −4.464 Deleterious

E607 CDS2 C438T Silent Y104=

E889 CDS3 G2567A Silent Q117=

E1272 CDS5 G2885A Missense S161R −1.465 Neutral

E786 CDS5 C2888T Missense S162F −3.81 Deleterious

E536 CDS6 G3113A Missense E192K −0.464 Neutral

E1294 CDS6 G3195A Missense G219E −3.792 Deleterious

E1171 CDS6 G3196A Silent G219=

E1418 CDS7 G3305A Missense E230K −1.289 Neutral

E410 CDS7 G3308A Missense A231T −2.888 Deleterious

E148 CDS8 G3506A Missense D267N −0.167 Neutral

E601 CDS8 G3522A Missense R272K 0.184 Neutral

E118 CDS8 C3625T Silent R306=

E496 CDS8 C3625T Silent R306=

TraesCS1D02G211000

E653 5′UTR C5T

E1344 5′UTR C39T

E028-15 (II) 5′UTR C83T

E044-9 5′UTR C109T

E136 5′UTR G203A

A316 CDS1 C242T Missense A3V −0.649 Neutral

E042-1 CDS1 C246T Silent P4=

E1151 CDS1 C333T Silent S33=

E316 CDS1 C342T Silent H36=

E1184 CDS1 C356T Missense A41V 0.926 Neutral

E972 CDS1 G380A Missense R49K 0.625 Neutral

E1180 CDS2 G547A Missense A74T −0.034 Neutral

(Continued)

TABLE 2 | Continued

Line Region Allelea Mutation
Type

Variation in
Amino Acidb

PROVEAN
Score

Prediction

E91 CDS2 C604T Missense P93S −3.459 Deleterious

E958 CDS2 G626A Missense R100Q −1.297 Neutral

E60 CDS3 C2686T Non-sense Q109stop −6.915 Deleterious

E203 CDS3 G2701A Missense D114N 1.075 Neutral

E315 CDS3 C2740T Missense P127S −5.116 Deleterious

E054-9 CDS6 G3275A Missense E192K −0.597 Neutral

E724 CDS7 G3525A Non-sense W249stop −16.106 Deleterious

E539 CDS8 C3849T Missense T327I −1.544 Neutral

a: Start from the initiation site of the gene.
b: “=” means Synonymous change.

TABLE 3 | SNPs identified in Bsr-d1 wheat orthologs and their predicted impact
on protein function.

Line Region Allelea Mutation
Type

Variation in
Amino Acidb

PROVEAN
score

Prediction

TraesCS7A02G160700

E038-14 5′UTR G217A

E035-7 CDS1 C412T Silent S16=

E038-6 CDS1 C488T Missense L42F −4 Deleterious

TraesCS7B02G065700

E049-4 5′UTR C38T

A305 CDS1 C220T Silent D32=

E051-2 CDS1 G314A Missense A64T −1.002 Neutral

A146 CDS1 G466A Silent G114=

E1300 CDS1 G470A Missense E116K −0.675 Neutral

A17 CDS1 G620A Missense V166M −0.445 Neutral

E035-13 CDS1 C633T Missense A170V −1.283 Neutral

E053-12 3′UTR C859T

E023-10 3′UTR C1202T

E024-11 3′UTR G1235A

TraesCS7D02G161800

A42 promoter G-370A

A196 promoter C-361T

A259 promoter C-258T

A417 promoter G-236A

E024-3 promoter G-143A

E054-8 CDS1 G135A start codon
lost

M1I −0.584 Neutral

E040-14 CDS1 C197T Missense P22L −1.62 Neutral

A277 CDS1 C246T Silent A38=

E044-3 CDS1 C304T Missense P58S −2.879 Deleterious

A34 CDS1 C421T Missense R97W −0.816 Neutral

E149 CDS1 G491A Missense S119D −1.235 Neutral

E044-2 CDS1 G497A Missense G122D −3.815 Deleterious

a: Start from the initiation site of the gene.
b: “=” means Synonymous change.

bsr-d1 wheat orthologs reported here maintained the C2H2-type
zinc finger functional domain, and we report mutations in the
promoter and coding regions of the gene that have the potential
to enhance MoT resistance.
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TABLE 4 | Validation of SNPs in M3 generation.

Gene Mutant Allele Total
Number of

tested
individuals

Mutants Non-
mutants

TraesCS1A02G207700 E758 C5070T 35 34 1

E325 G6403A 30 30 0

TraesCS1B02G221400 E038-16 G353A 18 15 3

E786 C2888T 27 26 1

E1294 G3195A 27 27 0

E410 G3308A 32 32 0

TraesCS1D02G211000 E91 C604T 30 26 4

E60 C2686T 16 16 0

E315 C2740T 34 33 1

E724 G3525A 17 14 3

TraesCS7A02G160700 E038-14 G217A 37 36 1

E038-6 C488T 30 30 0

TraesCS7D02G161800 A42 G-370A 24 23 1

A196 C-361T 24 8 16

A259 C-258T 24 17 7

E024-3 G-143A 33 32 1

E044-3 C304T 31 18 13

A majority of disease resistant genes encode for conservative
proteins containing a nucleotide binding site with leucine rich
repeats. In contrast, while TPR mediate an alternative immune

response mechanism in plants, the loss-of-function BSR-K1 TPR
protein is unable to bind to the mRNA of the OsPAL gene
family, resulting in blast resistance in rice (Zhou et al., 2018).
We found that the BSR-K1 TPR protein is highly conserved in
wheat with over 80% sequence identity. Moreover, we identified
five tandem repeats, multiple truncation and missense mutations
with deleterious effects in the three sub-genomes that lead to
the destruction of the TPR domain in a similar fashion to what
is observed in rice. The susceptible powdery mildew gene Mlo
found in barley is conserved across plant species (Kusch et al.,
2016), and its loss-of-function mutation in wheat and other
species leads to enhanced powdery mildew disease resistance
(Acevedo-Garcia et al., 2017). The mutants identified in this study
might also provide enhanced immunity and resistance to wheat
blast. Although the resistance level needs to be validated under
infected-field conditions, these alleles have not been previously
reported in the literature, and might represent a valuable
new resource for wheat blast (or even other fungi) disease
resistance breeding.

As an hexaploid species, a mutation on one of the
three sub-genomes may or may not lead to phenotypic
variation in wheat. Hence, it is necessary to pyramide
the three homologs before evaluating resistance, and it
would be particularly beneficial to pyramide the deleterious
mutations reported in the five genes mentioned above in
order to evaluate their interactions against MoT and other
fungal diseases.

FIGURE 4 | Three-dimensional (3D) models of BSR-K1 wheat orthologs and mutants. The models were constructed using template 4buj.2.B, a S. cerevisiae
Ski2-3-8 complex. (A) 3D structure of TraesCS1A02G207700 and its mutant E325; (B) 3D structure of TraesCS1B02G221400 and its mutant E786; (C) 3D
structure of TraesCS1D02G211000 and its mutant E724. The N-terminal is highlighted in green, the C-terminal in pink, and the residue immediately before and after
each mutation is shown in red, its secondary structure in blue.
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CONCLUSION

We obtained six wheat orthologs of two rice blast susceptible
genes through homologous gene comparison and identified loss-
of-function mutations in these genes in a M2 population. We
discovered that 13 mutant alleles have deleterious effects and
might enhance wheat blast resistance. Our research provides
a new strategy and novel gene resources to tackle disease
resistant wheat breeding.
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Maintenance of genomic integrity is critical for the perpetuation of all forms of life
including humans. Living organisms are constantly exposed to stress from internal
metabolic processes and external environmental sources causing damage to the DNA,
thereby promoting genomic instability. To counter the deleterious effects of genomic
instability, organisms have evolved general and specific DNA damage repair (DDR)
pathways that act either independently or mutually to repair the DNA damage. The
mechanisms by which various DNA repair pathways are activated have been fairly
investigated in model organisms including bacteria, fungi, and mammals; however,
very little is known regarding how plants sense and repair DNA damage. Plants being
sessile are innately exposed to a wide range of DNA-damaging agents both from biotic
and abiotic sources such as ultraviolet rays or metabolic by-products. To escape their
harmful effects, plants also harbor highly conserved DDR pathways that share several
components with the DDR machinery of other organisms. Maintenance of genomic
integrity is key for plant survival due to lack of reserve germline as the derivation of the
new plant occurs from the meristem. Untowardly, the accumulation of mutations in the
meristem will result in a wide range of genetic abnormalities in new plants affecting plant
growth development and crop yield. In this review, we will discuss various DNA repair
pathways in plants and describe how the deficiency of each repair pathway affects plant
growth and development.

Keywords: DNA damage, DNA repair pathways, mutations, genome integrity, DNA replication

INTRODUCTION

DNA replication is a fundamental process required for all organisms to divide and grow. It
encompasses the precise duplication of DNA into two identical copies for the preservation of
genetic information (Burgers and Kunkel, 2017). DNA is constantly subjected to numerous
diverse kinds of insults that alter its sequence and its chemical nature, affecting the conservation
of this information (Carusillo and Mussolino, 2020). The primary source of this alteration is
the occasional incorporation of errors during the duplication of DNA by enzymes called DNA
polymerases (Ganai and Johansson, 2016). These sporadically incorporated incorrect nucleotides
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in the newly synthesized DNA occasionally escape the
proofreading by the exonuclease site of the DNA polymerases,
thereby generating errors (Joyce, 1997). These errors during
the process of cell division can have severe consequences on
the fitness and viability of an offspring. Remarkably, the errors
introduced by DNA polymerase are limited because of the high
selectivity by the snugly fit active site of these enzymes and
the accompanying ability to excise the incorrect nucleotides
(Hogg et al., 2014). In addition to the replication-mediated
errors, DNA is constantly exposed to endogenous and exogenous
DNA-damaging agents affecting the biochemical and physical
properties of the DNA (Aguilera and García-Muse, 2013;
Table 1). The mutations arising from these errors can have
a catastrophic effect leading to the initiation of genetic and
age-related diseases such as cancer and aging. Interestingly, some
errors that escape these repair processes can at times act as a
source of genetic diversity and pave way for the selection of a
better and fitter organism (Karthika et al., 2020).

In mammals, the mechanism of DNA damage response and
repair has been well studied because of its role in the initiation
of cancers and its applications in cancer therapeutics (Tian et al.,
2015). In plants, the DNA damage response is understudied but
over the last decade has attracted enormous attention largely
because of its consequences on the growth and development of
plants (Manova and Gruszka, 2015). Plants exposed to excess
DNA damage displayed a significant reduction in productivity
and crop yield. It appears that the core components of the
DNA damage response pathway are similarly organized in plants.
Orthologous genes exist for master DNA damage response
genes such as ataxia telangiectasia mutated (ATM) (Kurzbauer
et al., 2021), ATM and Rad3 related (ATR), and meiotic
recombination 11 (MRE11)–radiation-sensitive 50 (RAD50)–
Nijmegen breakage syndrome 1 (MRE11-RAD50-NBS1) (MRN)
complex (Cools and De-Veylder, 2009). The deletion of ATM and

Abbreviation:DDR, DNA damage repair; ATM, ataxia telangiectasia mutated;
ATR, ataxia telangiectasia mutated and Rad3 related; MRE11, meiotic
recombination 11; RAD50, radiation sensitive 50; NBS1, Nijmegen breakage
syndrome 1; MRN, Mre11-Rad50-Nbs1; ROS, reactive oxygen species; BER,
base excision repair; NER, nucleotide excision repair; MMR, mismatch repair;
HRR, homologous recombination repair; NHEJ, non-homologous end-joining;
ICL, interstrand cross-links; DRR, direct reversal repair; ssDNA, single-
stranded DNA; dsDNA, double-stranded DNA; CPD, cyclobutane pyrimidine
dimers; MTHFpolyGlu, N5, N10 methenyl-tetrahydrofolylpolyglutamate;
FADH, flavin adenine dinucleotide; 6-4 PP, 6-4 Photoproducts; MGMT, O6-
methylguanine-DNA methyltransferase; 1 meA, 1-methyladenine; MMS, methyl
methanesulfonate; XRCC1, X-ray repair cross-complementing protein 1; Pol
δ/ε, DNA polymerase δ/ε; PCNA, proliferating cell nuclear antigen; FEN1, flap
endonuclease 1; EXO1, exonuclease 1; RPA, replication protein A; 8-oxoG,
7,8-dihydro-8-oxoguanine; AP, apurinic/apyrimidinic; Pol β, DNA polymerase B;
AtLIG1, Arabidopsis DNA ligase 1; PARP, poly(ADP-ribose) polymerase; GGR,
global genomic repair; TCR, transcription-coupled repair; XPC, xeroderma
pigmentosum group C; AtCEN2, Arabidopsis thaliana CENTRIN2; DSB, double-
strand break; SSB, single-strand break; DSBR, double-strand break repair;
dHJ, double Holliday junction; c-NHEJ, classical/canonical NHEJ; b-NHEJ,
backup-NHEJ pathway; Alt-NHEJ, alternative NHEJ; ncRNA, non-coding RNA;
aRNA, aberrant transcripts; qiRNA, quelling-induced RNA; diRNA, DSB-induced
small RNA; siRNA, small interfering RNA; DDB2, DNA damage-binding
protein 2; AGO1, argonaute 1; DCL4, Dicer-like-4; I-SceI, intron-encoded
endonuclease from Saccharomyces cerevisiae; ZFNs, zinc-finger nucleases;
TALENs, transcription activator–like effector nucleases; CRISPR-Cas9, clustered
regularly interspaced short palindromic repeats/CRISPR-associated protein 9;
tracrRNA, transactivating crRNA; sgRNA, single-guide RNA.

TABLE 1 | List of major DNA-damaging agents associated with different DNA
repair pathways and their sources.

Repair
pathway

DNA damages Source

Direct
reversal
repair

6-4PP
(dinucleoside monophosphate
6-4 photoproduct)

UV radiation

CPD
(cyclobutane pyrimidine
nucleoside phosphate dimer)

UV radiation

O6-alkylG
(O6-alkyl-2′-deoxyguanosine-
5′-monophosphate)

Alkylating agents

Pyrimidine dimer
(dipyrimidine nucleoside
phosphate dimer)

UV radiation

Thymidine dimer
(dithymidine nucleoside
phosphate dimer)

UV radiation

1,N6-ethenoA
(1,N6-etheno-2′-
deoxyadenosine-5′-
monophosphate)

Vinyl chloride metabolites
Chloroethylene oxide
Chloroacetaldehyde

3,N4-ethenoC
(3,N4-etheno-2′-deoxycytidine-
5′-monophosphate)

Vinyl chloride metabolites
Chloroethylene oxide
Chloroacetaldehyde

1,N2-ethenoG
(1,N2-etheno-2′-
deoxyguanosine-5′-
monophosphate)

Vinyl chloride metabolites
Chloroethylene oxide
Chloroacetaldehyde
β-Carotene oxidation products

1 mA
(1-methyl-2′-deoxyadenosine-
5′-monophosphate)

Alkylating agents

1 mG
(1-methyl-2′-deoxyguanosine-
5′-monophosphate)

Alkylating agents

3 mC
(3-methyl-2′-deoxycytidine-5′-
monophosphate)

Alkylating agents

3 mT
(3-methyl-2′-deoxythymidine-
5′-monophosphate)

Alkylating agents

Mismatch
repair

Base mismatch Polymerase mistake
Spontaneous deamination
Homologous recombination

Small deletion loop Polymerase mistake

Large deletion loop Polymerase mistake

Large insertion loop Polymerase mistake

Small insertion loop Polymerase mistake

Base
excision
repair

Base mismatch
(base mismatch)

Polymerase mistake
Spontaneous deamination
Homologous recombination

Single-strand break
(single-stranded DNA break)

UV radiation
Enzymatic cleavage
Ionizing radiation

Nick
(nick)

Enzymatic cleavage

AP site
(apurinic site)

Spontaneous
Unstable adducts
Base excision repair

dU
(2′-deoxyuridine-5′-
monophosphate)

Base excision repair
Spontaneous deamination

(Continued)
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TABLE 1 | Continued

Repair
pathway

DNA damages Source

Thymidine glycol
(5,6-dihydroxy-5,6-
dihydrothymidine-5′-
monophosphate)

UV radiation
Reactive oxygen species

3 mA
(3-methyl-2′-
deoxyadenosine-5′-
monophosphate)

Alkylating agents

3 mG
(3-methyl-2′-
deoxyguanosine-5′-
monophosphate)

Alkylating agents

7 mA
(7-methyl-2′-
deoxyadenosine-5′-
monophosphate)

Alkylating agents

8-oxoG
(8-oxo-2′-deoxyguanosine-
5′-monophosphate)

Reactive oxygen species

FapyA
(4,6-diamino-5-
formamidopyrimidine-2′-
deoxynucleoside-5′-
monophosphate)

Reactive oxygen species
Ionizing radiation

FapyG
(2,6-diamino-4-hydroxy-5-
formamidopyrimidine-2′-
deoxynucleoside-5′-
monophosphate)

Reactive oxygen species
Ionizing radiation

7 mG
(7-methyl-2′-
deoxyguanosine-5′-
monophosphate)

Alkylating agents

Nucleotide
excision repair

6-4PP
(dinucleoside
monophosphate 6-4
photoproduct)

UV radiation

CPD
(cyclobutane pyrimidine
nucleoside phosphate
dimer)

UV radiation

Bulky adduct Large polycyclic hydrocarbon

Homologous
recombination
repair

DNA gaps; DNA
double-stranded breaks
(Dsbs); DNA interstrand
crosslinks

Ionizing radiation, chemical
agents, ultraviolet light

Non-homolog
end-joining

Partially single-stranded
DNA; double-stranded
breaks

Enzymatic digestion

ATR in Arabidopsis thaliana presented no discernible phenotype
per se. However, these plants are sensitive to DNA damaging
agents such as aphidicolin, radiations, and alkylating agents.
Furthermore, similar to mammals the activation of ATR and
ATM is dependent on the MRN complex because the mutants
of rad50 and mre11 are unable to activate ATR and ATM.
Moreover, rad50 and mre11 mutants are sterile, indicating the
inability of these plants to repair DNA damages affecting their

ability to reproduce by either accumulation of mutations in
meristem or by an unknown essential function in meiosis
during gamete formation (Amiard et al., 2010). Furthermore,
ku80 mutants exhibited increased homologous recombination
when exposed to increased stress conditions (Yao et al., 2013).
Likewise, increased expression of DNA Pol lambda was observed
in plants treated with excess hydrogen peroxide and sodium
chloride (Roy et al., 2013). Taken together, these observations
indicate that DNA damage response pathways are critical for
the growth and development of plants by preventing the
accumulation of mutations.

Plants are constantly exposed to adverse environmental
settings such as heavy metals, drought, ultraviolet (UV) light,
heat, lack of nutrients, and changing temperatures. Because of
the sessile and autotrophic nature of the plant life cycle, they
are unable to evade and escape these stressful conditions. For
instance, the autotropic trait necessitates them to harness the
sunlight for the production of food at the expense of exposure
to UV light, resulting in the formation of toxic cyclobutane
dimers in DNA (Dany et al., 2001). The photosynthetic and
metabolic processes result in significant production of metabolic
byproducts including reactive oxygen species (ROS) (Tuteja et al.,
2009; Li et al., 2019). Production of ROS triggers single- and
double-stranded breaks (SSBs and DSBs) in the DNA either
directly through destruction of bases or modifications of bases.
In some crop plants, oxidative stress imbalances ROS production
and consequently promotes developmental defects and growth
reduction (Rybaczek et al., 2021). This results in a significant
decrease in plant productivity and crop quality. However, to
prevent the toxic effects of ROS, plants normally keep a balance
between the generation of free radicals and their eradication
through the antioxidant system formed by superoxide dismutase,
catalase, and ascorbate peroxidase (Li et al., 2019; Wang
et al., 2019). These enzymes are vital for limiting the cellular
accumulation of ROS. For instance, the mutants of apx1 and
cat1 exhibit increased DNA damage demonstrating that ROS
production has direct effects on the stability of plant DNA
(Vanderauwera et al., 2011; Hu et al., 2016). Taken together, these
observations underline the importance of DNA repair pathways
for the prevention and accumulation of mutations on exposure
to adverse environmental conditions. In exceptional cases, the
mutations accumulate at an enormous rate upon many cell
divisions and generations, separating one generation from the
next affecting the plant viability. For instance, 6-year-old Crepis
tectorum seeds showed reduced germination and a wide range of
developmental abnormalities in the seedlings and mature plants
(Navashin and Shkvarnikov, 1933). The phenotypic effects were
exacerbated when seeds were stored at elevated temperatures.
The mutant phenotypes from the plant phenocopies X-ray
treated cells indicating accumulation of DNA damages in these
seeds (Navashin and Shkvarnikov, 1933; Bray and West, 2005).
Besides, the exposure of cereals and Arabidopsis to severe DNA
damage results in DNA duplication without the ensuing cell
division producing polyploid cells. The production of polyploid
cells signifies permanent differentiation of cells (Galbraith et al.,
1991). However, the same phenomenon of re-replication and
severe DNA damage in meristems promotes cell death to avoid
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the transfer of these DNA damages to the next generation.
Therefore, it appears that maintenance of genetic integrity is key
to the survival of plants and for the transfer of accurate genetic
information to subsequent generations. Surprisingly, despite the
elevated exposure to DNA-damaging agents, it appears that the
frequency of the mutation rate in plants is very low. Thus, plants
must actively engage numerous genes in different DNA repair
pathways to protect DNA from endogenous and exogenous stress
(Table 2). In this review, we will summarize these complex
mechanisms by which plants repair their DNA from severe
exposure to biotic and abiotic stress.

DNA REPAIR PATHWAYS

The integrity of DNA is under constant assault from endogenous
and exogenous DNA-damaging factors including radiations,
chemical mutagens, or spontaneously arising mutations.
However, it appears that regardless of these assaults on DNA,
the rate of mutation is exceptionally low because of the efficacy
with which these alterations are fixed. To date, several pathways
are known for repairing DNA damages; however, a few general
assumptions can be made about these DNA repair mechanisms.
First, most DNA repair pathways require a template strand
for copying information into the damaged strand. The second
general feature of DNA repair is the redundancy in repairing
these damages, implying that a particular DNA error can be
repaired by more than one repair pathway. The redundancy
increases the likelihood of DNA repair and partly guaranteeing
that practically almost all errors are corrected. At least five major
DNA repair pathways viz. base excision repair (BER), nucleotide
excision repair (NER), mismatch repair (MMR), homologous
recombination repair (HRR), and non-homologous end-joining
(NHEJ) repair are active throughout different stages of the cell
cycle, allowing the cells to repair the DNA damage (Chatterjee
and Walker, 2017). Direct chemical reversal and interstrand
crosslink (ICL) repair pathways may also be exploited to clear
unique lesions. These repair mechanisms are important for
the genetic stability of cells. In this section, we will discuss
general DNA repair mechanisms by which plants repair diverse
kinds of DNA insults.

Direct Reversal Repair
Direct reversal repair (DRR) removes certain DNA and RNA
modifications, without excision, resynthesis, or ligation (Ahmad
et al., 2015). It is an error-free repair pathway that retains the
original genetic information because it does not involve the
breaking of the phosphodiester backbone. To date, three major
DRR mechanisms have been identified: (i) photoreactivation
repair, (ii) direct DNA repair by alkyltransferase, and (iii) direct
DNA repair by AlkB family dioxygenases (Yi and He, 2013).

Photoreactivation Repair
The exposure of organisms to sunlight in the blue or UV-A
spectrum results in the formation of cyclobutane pyrimidine
dimers (CPD) such as thymidine–thymidine dimers. However,
a process known as photoreactivation significantly decreases the

TABLE 2 | List of key genes that play vital roles in different DNA repair pathways.

Repair pathway Genes References

Direct reversal
repair

ALKBH2
alkB, alkylation repair
homolog 2 (Escherichia coli)

Duncan et al., 2002; Yang
et al., 2008; Lenz et al., 2020;
Toh et al., 2020

ALKBH3
alkB, alkylation repair
homolog 3 (E. coli)

Duncan et al., 2002; Yang
et al., 2008; Fedeles et al.,
2015; Lenz et al., 2020

MGMT
O-6-methylguanine-DNA
methyltransferase

Tano et al., 1990; Mitra and
Kaina, 1993; Ibrahim
Al-Obaide et al., 2021

PHR Husain and Sancar, 1987; Li
and Sancar, 1990; Sancar,
2016

ADA Jeggo, 1979; Shevell and
Walker, 1991; Mielecki and
Grzesiuk, 2014

Mismatch repair EXO1
Exonuclease 1

Wilson et al., 1998; Lee et al.,
2002; Sertic et al., 2020

MLH3
mutL homolog 3 (E. coli)

Lipkin et al., 2000; Hawken
et al., 2010; Hayward et al.,
2020

PMS1
PMS1 postmeiotic
segregation increased 1

Hong et al., 2010; Li et al.,
2020

POLD1
Polymerase (DNA directed),
delta 1, catalytic subunit
125 kDa

Dresler et al., 1988;
Tsurimoto et al., 2005;
Rytkonen et al., 2006;
Nichols-Vinueza et al., 2021

POLE
Polymerase (DNA directed),
epsilon

Rytkonen et al., 2006; Ewing
et al., 2007; León-Castillo
et al., 2020

Base excision
repair

APEX1
APEX nuclease
(multifunctional DNA repair
enzyme) 1

Demple et al., 1991; Beernink
et al., 2001; Coughlin, 2019;

APEX2
APEX nuclease
(apurinic/apyrimidinic
endonuclease) 2

Rual et al., 2005; Burkovics
et al., 2006; Briggs et al.,
2010; Mengwasser et al.,
2019

FEN1
Flap structure-specific
endonuclease 1

Murray et al., 1994; Zheng
et al., 2008; Lu et al., 2020

HUS1
HUS1 checkpoint homolog
(Schizosaccharomyces
pombe)

Volkmer and Karnitz, 1999;
Liu C. Y. et al., 2010; Zhou
et al., 2019

MBD4
Methyl-CpG binding
domain protein 4

Hendrich and Bird, 1998;
Screaton et al., 2003; Sannai
et al., 2019

MPG
N-methylpurine-DNA
glycosylase

Miao et al., 2000; Ewing
et al., 2007; Ryu et al., 2020

NEIL1
Nei endonuclease VIII–like 1
(E. coli)

Das et al., 2007; Sengupta
et al., 2018; Saini et al., 2020

OGG1
8-Oxoguanine DNA
glycosylase

Radicella et al., 1997; Lindahl
and Wood, 1999; Ewing
et al., 2007; Miglani et al.,
2021

PARP1
Poly(ADP-ribose)
polymerase 1

Dantzer et al., 1998; Kanno
et al., 2007; Wong et al.,
2009; Lavrik, 2020

(Continued)
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TABLE 2 | Continued

Repair pathway Genes References

PNKP
Polynucleotide kinase 3
and phosphatase

Jilani et al., 1999;
Karimi-Busheri et al., 1999;
Kalasova et al., 2020

RAD1
RAD1 homolog (S. pombe)

Parker et al., 1998; Zou and
Elledge, 2003; Huangteerakul
et al., 2021

Nucleotide
excision repair

DDB1
Damage-specific
DNA-binding protein 1

Keeney et al., 1993; Marini
et al., 2006; Kim et al., 2016

ERCC6
Excision repair
cross-complementing
rodent repair deficiency,
complementation group 6

Selby and Sancar, 1997;
Thorslund et al., 2005;
Fousteri et al., 2006;
Faridounnia et al., 2018;
Apelt et al., 2020

ERCC8
Excision repair
cross-complementing
rodent repair deficiency,
complementation group 8

Henning et al., 1995; Selby
and Sancar, 1997; Groisman
et al., 2003; Fousteri et al.,
2006; Lu et al., 2018; Moslehi
et al., 2020

MFD
Mutation frequency decline

Selby et al., 1991; Oller et al.,
1992; Martin et al., 2019;
Leyva-Sánchez et al., 2020

Homologous
recombination
repair

EME1
Essential meiotic
endonuclease 1 homolog 1
(S. pombe)

Briggs et al., 2010; Liu Y.
et al., 2010; Wang et al.,
2016

FANCA
Fanconi anemia,
complementation group A

Kupfer et al., 1997; Bailey
et al., 2010;
Román-Rodríguez et al.,
2019

MRE11
Meiotic recombination 11
homolog A
(Saccharomyces cerevisiae)

Paull and Gellert, 1998; Gatei
et al., 2000; Lee and Paull,
2005; Chansel-Da Cruz et al.,
2020

RAD50 Bhaskara et al., 2007; Ghosal
and Muniyappa, 2007;
Chansel-Da Cruz et al., 2020;
Völkening et al., 2020

Non-homologous
end-joining

DCLRE1C
DNA cross-link repair 1C
(PSO2 homolog,
S. cerevisiae)

Ma et al., 2002; Briggs et al.,
2010; Liu Y. et al., 2010;
Richter et al., 2019

NHEJ1
Non-homologous
end-joining factor 1

Ahnesorg et al., 2006; Buck
et al., 2006; Esmaeilzadeh
et al., 2019

XRCC6
X-ray repair complementing
defective repair in Chinese
hamster cells 6

Cooper et al., 2000; Kim
et al., 2008; Balinska et al.,
2019

YKU80 Ruan et al., 2005; Sabourin
et al., 2007; Carballar et al.,
2020

biological consequences of these UV radiations by repairing these
damages. A class of enzymes called photolyases specifically binds
to these CPDs and directly reverses this damage in an error-
free manner. Instead of removing the DNA-damaged region,
photoreactivation reverses DNA damage to its original form
in an error-free manner. In early life forms, it is believed
to be the first evolved DNA repair mechanism and is still

preserved in diverse species such as bacteria, yeast, plants, and
animals (Lucas-Lledó and Lynch, 2009). In Escherichia coli energy
derived from blue spectrum, light is absorbed by chromophores
[N5, N10 methenyl-tetrahydro folylpolyglutamate and flavin
adenine dinucleotide (MTHFpolyGlu and FADH−)] followed by
sequential electron transfer from FADH to pyrimidine dimer.
Finally, electronic rearrangement generates an unstable dimer
radical that hydrolyses to yield the monomeric pyrimidines
(Figure 1). Plants that are specialized in selectively reversing
6-4 photoproducts (6-4 PPs) or CPD, two distinct forms
of photolyase enzymes such as 6-4 photolyase and class II
photolyase, have been identified. These photolyases repair the
lesions by binding at their respective DNA-damaged site in a
light-independent manner and obtaining energy from the blue or
near UV-A spectrum (Brettel and Byrdin, 2010). The photolyase
genes are considered to be useful in modern agriculture to
enhance the UV resistance and production of improved cultivars.

Direct DNA Repair by Alkyltransferases
Alkylating agents react with the DNA and add alkyl groups
preferably at O- and N- positions of nitrogenous bases. To
combat the mutagenic effects of alkylating agents, organisms
employ direct repair in which alkylated bases are screened
followed by direct transfer of alkyl group from the nitrogenous
base to the cysteine of an enzyme called O6-methylguanine-
DNA methyltransferase (MGMT or AGT). MGMT binds in the
minor groove of DNA, scans the DNA, repairs the alkylated bases,
and therefore provides a quick repair for such DNA lesion. The
MGMT protein, whose bacterial analog is called Ogt, specifically
reverses guanine base methylation by removing methyl groups
from the guanine (Pegg, 1990; Esteller et al., 2000; Ahmad et al.,
2015). As each MGMT molecule can be used only once, the
procedure is costly; the reaction is stoichiometric rather than
catalytic (Ibrahim Al-Obaide et al., 2021). MGMTs are ubiquitous
in both bacteria and higher organisms except fission yeast and
plants (Pegg, 2011). The adaptive response in bacteria is a
generic response to methylating agents that confers a degree of
tolerance to alkylating agents by upregulating alkylation repair
enzymes after prolonged exposure. The methylation of the bases
cytosine and adenine by ALKBH2 and ALKBH3 is the DNA
damage that cells can repair (Yang et al., 2008; Fedeles et al.,
2015; Lenz et al., 2020; Figures 2, 3A). To date, no homologs
for MGMT have been reported in plants; however, plants have
evolved a mechanism for the removal of alkylated bases, and
recent research implicates BER as a substitute for MGMT activity
(Manova and Gruszka, 2015).

Direct DNA Repair by the AlkB Family Dioxygenases
AlkB family dioxygenases scan the genome and have the ability
to alkylation lesions by flipping the alkylated or damaged base
in both single-stranded DNA (ssDNA) and double-stranded
DNA (dsDNA). In the event of oxidative dealkylation, the
AlkB family dioxygenases require iron as cofactor and 2-
oxoglutarate as cosubstrate for activation of dioxygen molecule
for various oxidative reactions. The activated dioxygen molecule
then oxidizes and removes the alkyl group from N1 adenine
(1-methyladenine) or N3 cytosine (3-methylcytosine), to yield
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FIGURE 1 | Repair of pyrimidine dimers with photolyase. (1) A blue-light photon is absorbed by the first chromophore MTHFpolyGlu, which functions as a
photoantenna. (2) The electron from the excited MTFH* is then transferred to second chromophore FADH−. (3) The excited electron from *FADH− is then transferred
to pyrimidine dimer and converts it into pyrimidine monomers. (4–5) Electronic rearrangement restores the monomeric pyrimidines, and (6) the electron is transferred
back to the flavin radical to regenerate FADH−. Source: Figure adapted and modified from Bray and West (2005). [MTFH (N5, N10 methenyl-tetrahydro folate);
FADH− (flavin adenine dinucleotide)].

an unmodified base (Figures 2, 3B,C). The E. coli AlkB
protein (EcAlkB) repairs the 1-methyladenine (1-meA) and 3-
methylcytosine. ALKBH2 and ALKBH3 are the mammalian
homologs of E. coli AlkB with ALKBH2 as the main repair
enzyme for 1-meA (Yi and He, 2013). Plants have also evolved
an adaptive mechanism that is similar to other eukaryotes to
repair alkylated nitrogenous bases. Meza et al. (2012) have
reported several AlkB homologs such as AT2G22260, which
revealed sequence similarity to both ALKBH2 and ALKBH3 in

A. thaliana. The Arabidopsis ALKBH2 protein also displayed
in vitro repair activities on hydroxylated methyl and ethyl groups
covalently linked to DNA. Furthermore, seedlings raised from
alkbh2 knockout plants developed abnormally when grown in the
presence of methyl methanesulfonate (MMS).

Mismatch Repair
DNA replication–mediated errors that escape fraying by the
exonuclease activity of the DNA polymerase are corrected
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FIGURE 2 | Direct reversal of N alkylated DNA bases by alkyltransferase and dioxygenase.

via an MMR system. In the MMR system, specific enzymes
excise the newly incorporated incorrect nucleotide and replace
it with the correct nucleotide. The key biological function
of MMR system is to correct errors introduced during DNA
replication. Besides, MMR is actively involved in the repair
of mispaired intermediate bases, insertion–deletion, loops,
elimination of unnecessary heteroduplexes, psoralen-induced
ICLs, and oxidative DNA damage (Manova and Gruszka, 2015).
Overall, MMR enables the cell to preserve genome integrity by
increasing the DNA replication fidelity, decreases the frequency
of mutations, and regulates the dynamics of short repetitive
sequences, homologous recombination, and normal meiosis
(Spampinato et al., 2009). MMR is strongly conserved in
all living species as an important protection mechanism for
preserving genomic integrity, although certain differences within
the kingdoms appear to exist. In prokaryotes, MMR is majorly
carried about by the concerted action of three main enzymes
mutator (Mut)S, MutL, and MutH that direct the recognition
and removal of the mismatch. MutS recognizes a G-T mismatch
followed by a cut near the mismatch by MutH. The region

containing mismatch is removed by exonuclease I, and a new
DNA segment is synthesized by DNA polymerase III to fill
the gap (Figure 4). In eukaryotes, MMR machinery mainly
consists of MutSα/β comprising of (MutS homologs) MSH2,
MSH3, MSH5, and MSH6, and MutL homolog comprising of
MLH1, PMS1 (MLH2), MLH3, and PMS2 (MLH4). Plants have
an additional MSH gene called MSH7 (Culligan and Hays,
2000). The general mechanism by which MMR functions in
eukaryotes begins by the recognition of the mismatch by MutSα/β
followed by the incision of the nick by MutLα. This allows for
the recruitment of exonuclease 1 (EXO1), replication protein A
(RPA), and Pol δ for the replacement of specific DNA segments
through strand displacement synthesis. The role of MMR factors
during postreplicative and recombination MMR is well known
in plants. MSH2 deficiency in Arabidopsis prevents homologous
but enhances homologous recombination and microsatellite
instability in germline cells (Leonard et al., 2003; Li et al.,
2006), whereas MSH7 regulates meiotic recombination, and its
downregulation impairs meiotic recombination and fertility in
cereals (Lloyd et al., 2006; Lario et al., 2015).
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FIGURE 3 | (A) Alkyltransferase mediated direct reversal of 6 methyl guanine to guanine. (B) Dioxygenase-mediated direct reversal of 1 methyl adenine to adenine.
(C) Dioxygenase-mediated direct reversal of 3 methylcytosine to cytosine. Source: Figure adapted and modified from Yi and He (2013).

Excision Repair
Unlike photoreactivation, other DNA repair pathways do not
undo the DNA damage directly but instead substitute the
damaged DNA with an appropriate nucleotide. Excision repair
involves the removal of the damaged nucleotide by dual incision
of the DNA strand containing the lesion (Waterworth et al.,
2019). The incision is made on both sides of the lesion, followed

by repair using the intact strand as a template. A common four-
step pathway is used by these repair mechanisms that include
(1) the initial detection of the DNA damage, (2) excision of the
damaged nucleotide by the incision of a nick and subsequent
removal of the damaged nucleotide(s), (3) filling of the gap
by DNA polymerase using the exposed 3-OH as primer, and
(4) finally sealing of the nick by DNA ligase. The mechanisms
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FIGURE 4 | Mismatch repair. A G-T mismatch is recognized by MutS in association with MutL. MutH cleaves in the vicinity of mismatch. Exonuclease I initiates
removal of DNA segment containing the incorrect base DNA. Exonuclease I completes the removal of damaged DNA. DNA polymerase III then synthesizes the new
DNA and fills the gap.
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FIGURE 5 | Uracil bases in DNA, formed by the deamination of cytosine, are
excised and replaced by cytosine by the combined action of uracil DNA
glycosylase, AP endonuclease, DNA polymerase, and DNA ligase. AP,
apurinic/apyrimidinic.

that determine the distance of the nick from the damage and
the subsequent removal of the incorrect nucleotide permit the
classification of this type of repair into two types, BER and NER.

Base Excision Repair
The primary function of BER is to clear the genome of
minute non-helix-distorting base lesions (Wallace, 2014). Bulky
helix-distorting lesions are repaired by the associated NER
pathway. BER acts on a variety of lesions including apurinic

sites [apurinic/apyrimidinic (AP sites)], damaged and modified
bases (Manova and Gruszka, 2015; Waterworth et al., 2019).
Mechanistically in base-excision repair, the DNA glycosylase
enzymes recognize and remove the modified/damaged bases
from the DNA (Sakumi and Sekiguchi, 1990). This is followed
by the removal of the nucleotide and a replacement of the
polynucleotide strand. So far, in plants, several lesion-specific
DNA glycosylases have been described; for instance, uracil
glycosylase recognizes and removes uracil formed due to
spontaneous deamination of cytosine (Figure 5). In Arabidopsis,
whole-cell extract DNA containing uracil is repaired by the
BER pathway in combination with uracil-DNA glycosylases. In
particular, in vitro reconstitution of DNA repair reactions carried
out with isolated cell extracts from Arabidopsis or other plants
has been extremely helpful in identifying several structural and
functional aspects of BER. Hypoxanthine, 3-methyladenine, 7-
methylguanine, and other modified bases are recognized by other
glycosylases. The first cloned plant DNA repair gene, Arabidopsis
3-methyladenine-DNA glycosylase, has been shown to eliminate
MMS-induced DNA lesions (Santerre and Britt, 1994). Other
bifunctional glycosylases, such as 8-oxoG DNA glycosylase/AP
lyase, cut the DNA backbone on the 3′ side of the AP site
followed by repair of 7,8-dihydro-8-oxoguanine (8-oxoG), a
guanine oxidation product in Arabidopsis (Bray and West,
2005). More specifically, the lesion-specific DNA glycosylase
hydrolyses the N-glycosidic bond linking the modified/damaged
base to the 1′-carbon atom of deoxyribose sugar, without
altering the DNA sugar-phosphate backbone. This results in the
creation of an abasic site, which is then recognized by an AP
endonuclease or AP lyase, which cuts the DNA backbone by
cleaving the phosphodiester bond at the AP site (Figure 6).
Subsequently, depending on the nature of the lesion and the
enzyme involved, the repair response can either continue by
“short” or “long” patch mechanisms. In mammalian cells, BER’s
“short” mode exploits DNA polymerase β (Pol β), XRCC1
(X-ray repair cross-complementing protein 1), and LIG3α to
repair a single-nucleotide gap The BER “long patch” removes 10
nucleotides surrounding the lesion and relies on the involvement
of the DNA polymerase δ/ε-proliferating cell nuclear antigen-flap
endonuclease 1 (δ/ε-PCNA-FEN1) complex. In plants, short-
patch BER is an important DNA repair mechanism for uracil
elimination in mitochondrial DNA (Boesch et al., 2009). The
short-patch repair is less conserved because of the lack of plant
homologs of DNA Pol β or DNA ligase III. Notably, considering
the absence of Pol β and ligase III homologs in plants, all
BER modes can occur after the initial incision stages, and the
repair reactions are completed by the Arabidopsis DNA ligase
1 (AtLIG1) ligation (Cordoba-Cañero et al., 2009; Cordoba-
Cañero et al., 2011). However, DNA polymerase λ in rice showed
in vitro deoxyribose phosphate (dRP) lyase activity and sequence
similarity with human Pol λ and therefore may be a substitute
for Pol β (Uchiyama et al., 2004). Furthermore, XRCC1-like
protein isolated from Arabidopsis is devoid of domains that
mediate in the interaction of XRCC1 with Pol β, and LIG3α in
mammals, however, possesses a conserved BRCT domain that
mediates interaction with poly(ADP-ribose) polymerase (PARP)
(Taylor et al., 1998; Uchiyama et al., 2004). There are at least
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two PARP activities in plants that may play role in BER and
recombinational repair pathways (Amor et al., 1998; Babiychuk
et al., 2001). It is pertinent to mention that SSBs in DNA during
BER are inevitable intermediates and can act as substrates for
nucleotide excision and recombination repair (Memisoglu and
Samson, 2000). Several findings indicate that BER plays a critical
role in repairing seed storage-induced oxidative DNA lesions
in germinating embryos (Macovei et al., 2011; Cordoba-Cañero
et al., 2014). Further understanding of these processes will help
enhance the means of protecting seeds and discover new ways of
preserving their capacity to germinate.

Nucleotide Excision Repair
Nucleotide excision repair is used to repair bulky types of
DNA damage, such as steric changes in DNA duplex structure
or base dimers, in which an oligonucleotide of 30 bases is
excised followed by DNA polymerase mediated resynthesis in the
single-stranded region (Kusakabe et al., 2019; Ferri et al., 2020).
This pathway can also recognize polymerase-blocking lesions
using stalled RNA polymerase, which is then fed into the NER
pathway (Waterworth et al., 2019). The minute details underlying
mechanisms of NER have been explored by comprehensive
studies in both simple and complex organisms. Mostly NER
genes and associated repair proteins share a similar pattern of
organization in both crop and model plants. In general, NER
plays a critical role in corrections of structural alterations in
regular DNA double-helix, and hence, it is conserved in both
prokaryotic and eukaryotic organisms. For instance, UV-induced
photo products such as pyrimidine dimers and 6-4 PPs that
produce significant conformational changes in DNA are key
substrates of NER. The serious human disorders caused by inborn
genetic defects in NER proteins, such as xeroderma pigmentosum
and Cockayne syndrome, demonstrate the significance of this
repair process (Lehmann et al., 2018; Krokidis et al., 2020).
NER eliminates these adducts by making an incision on both
sides of the adduct followed by the removal of this incised
stretch of DNA through a helicase (Marteijn et al., 2014).
The gap is eventually filled by DNA Pol δ with the help of
RPA, PCNA, and FEN1 (Figure 7). However, in plants, the
homolog of human DNA Pol δ is not yet clear, and further
research is required to demonstrate the enzyme that fills the
gaps created by the removal of ssDNA on each side of the
lesion. NER varies in two ways from BER: first, the diversity
of DNA damage products recognized by the NER is strikingly
large, and second, the repair complex initiates repair by creating
nicks on the affected strand. These nicks occur at both 5′
and 3′ ends of the lesion at a particular distance, which is
then excised as an oligonucleotide by the action of a helicase.
Recent work suggests that DNA/RNA helicases can mitigate the
negative effects of multiple abiotic stress factors (Gill et al., 2015).
In eukaryotes, OsXPB2, a member of the strongly conserved
helicase superfamily 2, is involved in DNA metabolism, such
as transcription and repair (Umate et al., 2011). With differing
efficiencies, the excision repair complex cleaves almost every
DNA structure abnormally from very thin, non-distorting lesions
(such as O6-methylguanine or abasic sites) to very bulky adducts
(thymine-psoralen adducts or pyrimidine dimers). For every
potential lesion, it is not feasible for a cell to create a particular

repair enzyme; therefore, this pathway has evolved to deal with
diverse kinds of damages. The efficacy of NER varies, depending
on the nature of the DNA lesion and its genomic location.
There are two separate NER subpathways: (a) global genomic
repair (GGR) that repairs alterations in chromatin structure and
DNA-associated proteins, (b) transcription-coupled repair (TCR)
that eliminates transcription-locking lesions from the heavily
expressed genes (Hanawalt, 2002). The two NER modes share
the same repair proteins, however, differ primarily in sensing
DNA damages. In higher eukaryotes, TCR recognizes stalled
RNA Pol II complex on the transcribed strand after encountering
DNA damage, and hence only this DNA strand is fixed quickly,
whereas GGR recognizes damages on the coding strand that
persist for longer durations (Tornaletti, 2005). GGR is dependent
on xeroderma pigmentosum group C (XPC)/hHR23B complex
stabilized by hCEN2 that mediates recognition of DNA damages
(Thoma and Vasquez, 2003). Whereas TCR is independent of
XPC is initiated on encountering stalled RNA polymerase II
(Mu and Sancar, 1997). Arabidopsis deficient in AtCEN2 revealed
reduced repair of UV-C–caused DNA damage in vitro (Molinier
et al., 2004). As part of the Arabidopsis homolog of the human
XPC protein (AtRAD4) recognition complex, the A. thaliana
CENTRIN2 (AtCEN2) gene was implicated in the early stages
of GGR, thereby modulating both NER and HRR. A relation
between NER and HRR has also been shown to be an alternate
mechanism for CPD repair in plants (Molinier et al., 2004; Liang
et al., 2006). Hence, it can be concluded that several NER genes
are related to factors involved in homologous recombination
and photo repair in plants, and such a complex interplay of
different DNA repair pathways could improve the plasticity and
adaptability of the plant genome to a wide range of ecologies
(Manova and Gruszka, 2015). For plants, the selective activity of
excision repair mechanisms at the level of actively transcribed
genes tends to be very important, and it may be useful to
investigate the role of gene-specific repair in augmenting UV
tolerance in crop species.

The key discrepancies in the mismatch, base excision, and
nucleotide–excision repair mechanisms are in the identification
and mode of excision of damaged nucleotide. In BER and MMR,
a single nick is created in the sugar-phosphate backbone on one
side of the damage, whereas in NER, nicks are made on both sides
of the DNA damage. Furthermore, in BER, DNA polymerase
displaces the old nucleotides when it extends the exposed 3’
end of the nick; in MMR, the old nucleotides are degraded,
and in NER, nucleotides are displaced by helicase enzymes.
DNA polymerase and ligase are used by all three pathways
to fill in the gap created by the excision and for sealing the
nick, respectively.

Homologous Recombination Repair and
Non-Homologous End-Joining
The DNA repair mechanisms mentioned previously occasionally
fail to completely repair the lesions, resulting in SSBs or DSBs.
Additionally, these breaks can also be induced by the exposure
of cells to exogenous agents such as ionizing radiation. DSBs
are the most damaging of all the lesions, and a few unrepaired
DSBs can lead to chromosomal fragmentation and even cell death
(Dudáš and Chovanec, 2004; Sonoda and Hochegger, 2006).
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FIGURE 6 | Base excision repair. Recognition followed by removal of damaged DNA base by DNA glycosylase resulting in the formation of AP site. An AP
endonuclease nicks the phosphodiester backbone near the AP site. DNA polymerase I replaces the damaged portion with a new DNA. Finally, DNA ligase seals the
nick. AP, apurinic/apyrimidinic.

DSBs usually occur spontaneously within a cell, particularly
during DNA replication and when the cell is under oxidative
stress (Waterworth et al., 2019). These breaks in S-phase can
obstruct the progression of the moving replication fork, resulting

in a replication fork blockade (Hochegger et al., 2004). To
circumvent the toxic effects of DSBs, organisms have evolved
two pathways viz. homologous recombination and NHEJ for the
repair of DNA breaks.
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FIGURE 7 | Nucleotide excision repair. NER eliminates these adducts by making an incision on both sides of adduct by excinucleases followed by the removal of this
incised stretch of DNA. DNA polymerase I replaces the damaged portion with a new DNA. The gap is eventually filled by DNA ligase.
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Homologous recombination repair
A homologous recombination is a form of genetic recombination
in which nucleotide sequences are swapped between two DNA
molecules that are either related or identical. Cells normally
use it to repair toxic double-strand breaks that occur on both
strands of the DNA. During meiosis, the mechanism by which
eukaryotes including animals and many plants make sperm and
egg cells, homologous recombination creates new variations of
DNA sequences. These new DNA combinations create genetic
diversity in offspring, which allows populations to respond to
changing conditions over time. The HRR pathway is a “flawless”
DNA repair mechanism that repairs DSBs by using information
encoded by homologous sequence. HRR is enabled by DSBs that
occur inside replicated DNA (replication-independent DSBs)
or at broken replication forks (replication-dependent DSBs).
Production of the ends of the DNA double-strand break,
homologous DNA pairing, and strand exchange, repair DNA
synthesis, and resolution of the heteroduplex molecules are all
part of HRR. To initiate the repair of the DSBs by homologous
recombination, the DNA breaks must first be recognized, and
an appropriate signal must be sent to the repair machinery for
checkpoint activation. The repair initiates with the recruitment of
the MRN complex at the site of DSBs (Charbonnel et al., 2010).
MRN complex facilitates the recruitment of key regulators of DSB
repair, protein kinases belonging to the phosphatidyl-inositol 3-
kinase (PI3-kinase) family, ATM, and ATR (Figure 8). The MRN
complex starts processing the DNA ends by the exonucleolytic
degradation of the 3′ end followed by the activation of ATM/ATR
that, in turn, phosphorylate the Sae2/CtIP and hundreds of
other target protein involved in DSB repair and checkpoint
activation (Charbonnel et al., 2010). The recruitment of these
proteins is essentially required to generate the free 3′ ends
and stabilization of DSBs. These 3′ overhangs produced by the
excision of the 5′ end by MRN complex are coated with RPA
to prevent its exonuclease-mediated degradation (Schmidt et al.,
2019). This is followed by the binding o breast cancer 1/2
(BRCA1/2), which subsequently recruits RAD51 at the site of
DSBs. RAD51 displaces the bound RPA and facilitates strand
invasion into the homologous template (Mannuss et al., 2012).
Next, the 3′ overhang coated with RAD51 locates the homologous
sequence and invades the dsDNA by displacing the second strand
of the template generating the “D-Loop” (displacement loop)
(Dudáš and Chovanec, 2004; Mannuss et al., 2012; Ganai et al.,
2016). After the formation of “D-Loop,” breaks can be either
repaired by the synthesis-dependent strand-annealing (SDSA)
model or double-strand break repair (DSBR) in which double
Holliday junction (dHJ) intermediates are formed. The dHJ
intermediates are resolved by resolvases that cut the crossed or
non-crossed strands, resulting in the crossover or non-crossover
products (Dudáš and Chovanec, 2004). The SDSA method
uses the donor strand to fill the gap by using its sequence
information, thus realigning the invasive strand to the original
break site (Schmidt et al., 2019). In contrast to DSBR, the
repaired end products always consist of non-crossovers. HRR
uses the undamaged sister chromatid to restore the missing
genetic information due to DSBs (Dudáš and Chovanec, 2004).
As homologous sister chromatids are needed to repair the

damage, it is therefore believed that HRR is only active during
the S and G2 phases of the cell cycle (Davis and Chen, 2013).
Interestingly, Gallego et al. (2005) identified six RAD51 paralogs
in Arabidopsis, of which the expression of three is upregulated
upon treatment with γ-irradiation. Thus, indicating that RAD51
paralogs play a central role in repairing γ-rays induced DSB
through the HRR pathway.

Non-homologous end-joining
Non-homologous end-joining accounts for the most common
form of DSB repair mechanism in plants (Puchta, 2005;
Pannunzio et al., 2018). It involves the direct joining of two
broken DNA ends. In comparison to homologous recombination,
which involves a homologous sequence to guide repair, NHEJ
directly ligates two ends without the need for a homologous
sequence. NHEJ can be subdivided into two classes depending
on the pathway used to repair the damage. The first one is
KU-dependent classical/canonical NHEJ (c-NHEJ) repair, which
encompasses direct ligation of the broken ends generally yielding
error-free repair; however, occasionally small (usually less than
a few nucleotides) insertions or deletions occur. In c-NHEJ, the
KU heterodimer consisting of two subunits with 70- and 80-
kDa molecular weight; i.e., KU70 (XRCC6) and KU80 (XRCC5)
bind to the DSB to initiate the repair (Shen et al., 2017).
As NHEJ involves rejoining the broken ends, the binding of
KU not only prevents the damage of the free DNA ends but
also assists in aligning the ends closer to each other (Mannuss
et al., 2012). Subsequently, KU recruits other key proteins
such as ligase IV, protein kinases C to repair the free DNA
ends (Mannuss et al., 2012; Shen et al., 2017). In Arabidopsis,
it was observed that AtKU70 and AtKU80 mRNAs increased
threefold after induction of the DSBs (Mannuss et al., 2012).
Thus, indicating that KU plays a crucial role in repairing DSB
through the NHEJ pathway (Figure 9). Another NHEJ repair
pathway works without the requirement of KU, and this pathway
is referred to as backup-NHEJ pathway (b-NHEJ) or alternative
NHEJ (Alt-NHEJ) or microhomology-mediated NHEJ because
it acts in the absence of c-NHEJ. Very little is known about
the mechanism of the b-NHEJ pathway, which involves multiple
components such as polymerase (ADP-PARP1), but the function
of PARP1 in c-NHEJ is not clear as it appears to be involved
in a KU-dependent manner too (Shen et al., 2017). This
pathway uses microhomologous sequences during the alignment
of broken ends before ligating them together, thus resulting in
deletions flanking either side of the original break. There are
two conflicting reports regarding the repair of DSBs in plants.
A study conducted in A. thaliana revealed that the predominant
repair mechanism for DSBs is mediated by Alt-NHEJ exploiting
DNA polymerase θ (PolQ) (Van Kregten et al., 2016). However,
a second study reported that there are dissimilar mechanisms
for the repair of DSBs in somatic and germ cells (Faure, 2021;
Nishizawa-Yokoi et al., 2021). In the case of A. thaliana germ
cells, the repair is completely dependent on Pol Q by Alt-NHEJ.
However, the same authors in A. thaliana and rice somatic
cells suggest the lack of an absolute requirement of Pol Q for
the repair of DSBs revealing HRR is perhaps the predominant
mechanism. Overall, these studies point toward the existence of a
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FIGURE 8 | Homologous recombination repair. The HRR initiates with the recruitment of MRN, and CtIP complex at the repair site activates the kinases such as ATM
and ATR. The MRN complex degrades the 3’ end followed by coating with replication protein A and binding of BRCA1/2, which subsequently recruits RAD51 and
initiates DNA synthesis. RAD51 displaces the bound RPA and facilitates strand invasion into the homologous template that generates the D-Loop and Holliday
junction, which are eventually resolved by resolvase. MRN, Mre11-Rad50-Nbs1; CtIP, carboxy-terminal interacting protein; ATM, ataxia telangiectasia mutated; ATR,
ataxia telangiectasia mutated and Rad3 related; BRCA1/2, breast cancer1/2; RAD51, radiation sensitive 51.

different mechanism for the repair of DSBs in plants. However,
in mosses, the repair of DSBs predominantly occurs through
HRR (Mara et al., 2019). Pol q deletion mutants do not show
any developmental or genetic instability phenotype in mosses.
Furthermore, these mutants showed the same sensitivity as wild
type to DNA-damaging agents such as MMS, cisplatin UV rays
except for bleomycin for which it was less sensitive than the wild
type. These Pol Q mutants displayed enhanced HRR compared to
wild type, indicating Pol Q acts as an inhibitor of the HR repair
pathway. Taken together, these studies suggest that in mosses
repair of DSBs predominantly occurs through HRR than Alt-
NHEJ.

ROLE OF SMALL RNAs IN DNA DAMAGE
RESPONSE

So far, we have explored the roles of various proteins in DNA
damage response and maintenance of genome integrity. The
vital roles of RNA in regulating DNA repair have started to
emerge and reflect their importance in maintaining genome

integrity by signaling DNA repair cascade via a mechanism not
understood yet. However, recent evidence suggests a conserved
and crucial role of RNA molecules, RNA processing enzymes,
and other factors in DNA repair. It appears that most of the
genome gets transcribed, but many of these transcripts do not
code for proteins. These transcripts are called non-coding RNAs
(ncRNAs), and some of these ncRNAs remain associated with
chromatin in a sequence-specific manner to control many cellular
pathways such as gene expression (di Fagagna, 2014). Recent
studies about ncRNA reveal its additional role in refining the
DDR. The structural integrity of DNA depends on small ncRNAs
acting at the site of DNA damage. These small RNAs are recruited
to the site of DNA damage and help transduce the signal for
the recruitment of proteins at the site of DNA damage for
accurate DNA repair.

The chemically induced replication stress led to an interaction
between non-canonical small RNAs and DDR that led to
subsequent production of small RNAs from actively transcribed
ribosomal loci in Neurospora crassa, and this event was assisted by
an ortholog of argonaute protein and RdRPs. These small RNAs
were produced from the degradation of longer RNA species. The
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FIGURE 9 | Non-homologous end-joining recombinational repair. KU70 and KU80 bind at the repair site followed by the processing of DNA ends by DNA-PKcs and
Artemis. This is followed by the synthesis of new DNA in association with key proteins such as XLF, ligase 4, and XRCC4 at free DNA ends. KU70 and KU80,
heterodimer protein with 70- and 80-kDa molecular weight; DNA-PKcs, DNA-dependent protein kinase, catalytic subunit; XRCC4, X-ray repair cross-complementing
protein; XLF, XRCC4-like factor.

aberrant transcripts (“aRNA”) transcribed as a result of DNA
damage are unresponsive to RNA polymerase inhibitors and are
amplified by RdRPs and then processed into small RNA known
as quelling-induced RNA (qiRNA). These qiRNAs then facilitate
the degradation of aRNA, similar to the small interfering RNA
(siRNA) amplification cycle (Schalk et al., 2017).

Wei et al. (2012) reported the production of diRNAs
(DSB-induced small RNAs) in an Arabidopsis transgenic line.
DSB repair through SSA (single-strand annealing) mechanism
restores b-glucuronidase expression, which provides a visible
and quantitative readout of DSB repair events (Wielgoss et al.,
2013). The biogenesis of diRNAs requires the PI3-kinase ATR,
RNA Pol IV, and Dicer-like proteins. Also, any kind of changes
or directed mutagenesis in these proteins has resulted in a
significant reduction in DSB repair efficiency, which confirmed
the role of small RNA in DNA repair efficiency. As discussed
in the above sections, UV radiations induce the formation of
CPDs and 6-4 PP, which damage DNA structure and disturb
cell/genome integrity by distorting regular DNA double-helical
structure. However, plants have evolved a mechanism to escape
and mitigate UV-induced irreversible DNA damage at their
growing points. For instance, in UV-irradiated A. thaliana,

the DNA damage-binding protein 2 (DDB2) and argonaute 1
(AGO1) form a chromatin-bound complex together with 21-
nucleotide-long siRNAs, which perhaps assist in recognizing
damage sites in an RNA/DNA complementary strand-specific
manner. Synthesis of siRNA, which is associated with the PPs,
involves the unusual concerted action of RNA polymerase IV,
RNA-dependent RNA polymerase-2, and Dicer-like-4 (DCL4).
Moreover, the association/dissociation of the DDB2-AGO1
complex with chromatin is under the control of siRNA
abundance and DNA damage signaling, thus providing a view on
the interplay between small RNAs and DNA repair recognition
factors at damaged sites (Schalk et al., 2017).

SCOPE OF DNA REPAIR MECHANISMS
IN CROP IMPROVEMENT

Biotic and abiotic stresses frequently affect various developmental
stages of crop plants and reduce their economical yield.
Additionally, these stressful conditions also influence the
efficiency of DNA repair pathways resulting in increased
mutation frequency and genetic variability. Higher genetic
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variability in any species may evolve new phenotypes that can
significantly enhance the adaptability to a range of ecologies
(Wielgoss et al., 2013). DNA repair pathways have played an
important role in induced mutagenesis as mutagens induce
a wide range of DNA damages, which can have disastrous
consequences on the integrity of the genome. However, some
of these erroneous mutations can have beneficial consequences
as well and are chosen by natural selection. These mutations
have played an immense role in crop improvement programs
by increasing genetic variability and developing new mutant
varieties with improved traits within a short period, which
can be further explored by the plant breeders (Oladosu et al.,
2016). To date, it has made an immense contribution in the
improvement of yield, maturity durations, and biotic and abiotic
stress resistance and still utilized by plant breeders across the
globe for crop improvement (Oladosu et al., 2016). Moreover, the
improved mutant varieties play a vital role in crop biodiversity
and offer useful breeding material for further crop improvement
(Chaudhary et al., 2019; Raina et al., 2020).

Significant advancement in food production and quality has
been recorded over the last six decades with the help of available
genetic variation and diversity in crop plants. Although looking
at the rising human population and reduced cultivable lands,
further improvement in food production and nutritional quality
is required in the near future. Expanding the knowledge of
DNA repair processes in plants will possibly pave the way for
interesting biotechnological applications aimed at improving
stress tolerance in crops. Several researchers have reported the
role of various enzymes and genes in DNA repair and subsequent
productivity of plants.

Alterations in the expression pattern of genes have been
reported to promote several beneficial activities in Arabidopsis.
Kaiser et al. (2009) reported that the overexpression of photolyase
enzyme may increase total biomass production under elevated
UV-B radiation. Vanderauwera et al. (2007) demonstrated that
reduced PARP levels in transgenic Arabidopsis led to enhanced
tolerance to a wide range of abiotic stresses. Kimura and
Sakaguchi (2006) reported the UV tolerance in Arabidopsis and
rice by overexpression of the gene encoding the CPD photolyase
enzyme. Similarly, the activity of helicases is usually up-regulated
during stress conditions in plants. Vashisht and Tuteja (2006)
demonstrated the overexpression of helicase enzyme in high
salinity stress.

The disruption of MMR activities in plants through
RNAi, CRISPR/Cas9, zinc-finger nucleases (ZFN), transcription
activator–like effector nucleases (TALEN), or any other genetic
engineering tools may perhaps create huge genetic variation and
diversity as required for crop improvement. This phenomenon
may generate novel plant types with desirable traits. The
depletion of the nuclear-encoded DNA MMR protein MSH1
causes desirable and heritable changes in plant development.
Several researchers reported that disruption of MSH1 genes in
Arabidopsis, rice, potato, tomato, soybean, sorghum, and tobacco
may drastically change their phenotypes and produce a wide
range of novel plant types (Santamaria et al., 2014; Virdi et al.,
2015; Rakosy et al., 2019; Jiang et al., 2020). A different spectrum
of mutations gradually accumulates in MMR-deficient genotypes
and increases generation after generation (Chao et al., 2008).

However, stabilization of these mutations is quite complicated
and still a big challenge to plant biologists. Stabilization can be
achieved by bringing back active MMR proteins in the genetically
reprogrammed plants or by crossing the mutant with their
immediate parent. Moreover, the active MMR gene may stabilize
the indels or mutations that occurred in the previous generation
and produce genetically reorganized plants (Virdi et al., 2015;
Yang et al., 2015).

SITE-DIRECTED MUTAGENESIS

Genome editing has emerged as one of the finest innovations
in the field of plant biotechnology. The method encompasses
the induction of site-specific DSBs by nucleases in the genome
followed by exploitation of the repair of these breaks that lead
to a generation of desired mutations. Smih et al. (1995) are the
pioneers who induced DSBs in mammalian cells to study DNA
repair by expressing I-SceI (intron-encoded endonuclease from
Saccharomyces cerevisiae). Subsequently, various endonucleases
such as meganucleases, ZFNs, transcription activator–
like effector nucleases (TALENs), and clustered regularly
interspaced short palindromic repeats/CRISPR-associated
protein (CRISPR-Cas9) were used to induce site-specific DSBs in
the genome (Figure 10).

Zinc-finger nucleases contain a DNA-binding domain
through which they bind to DNA by recognizing three base pairs
at the target site (Kim et al., 1996; Kumawat et al., 2019). To
induce DSB, FokI, a type IIS restriction endonuclease isolated
from Flavobacterium okeanokoites, must act as a dimer; therefore,
each FokI monomer is attached to two DNA-binding ZFNs that
recognize different DNA sequences (Townsend et al., 2005;
Kumawat et al., 2019). When the monomers are closer to each
other, FokI is activated and creates a DSB. Bibikova et al. (2001)
used ZFNs to induce site-specific DSB in Xenopus oocytes that
stimulate the HR repair pathway. Interestingly they also showed
that targeted mutagenesis could be achieved by NHEJ as a result
of ZFN-induced DSB in Drosophila (Bibikova et al., 2002). Later,
Lloyd et al. (2005) utilized this technique to induce mutations
at specific sites in Arabidopsis. Targeted mutations conferring
herbicide resistance were achieved by altering the sequences of
the endogenous acetohydroxyacid synthase (SuRA and SuRB)
genes in the tobacco plant (Wright et al., 2009).

Transcription activator–like effector nucleases is another class
of nuclease used for site-directed mutagenesis that focuses on
a single nucleotide as opposed to three for ZFNs (Kim et al.,
1996; Boch et al., 2009). The structural feature of the TALEN
protein is unique in many ways, making it compatible with the
design editing tool because it includes the nuclear location signal,
N-terminal translocation signal, the acid activation domain,
and the central repeat domain that binds DNA (Li et al.,
2011a). Li et al. (2011b) designed hybrid TALEN to induce DSB
in tobacco leaves.

CRISPR/Cas is the most promising and efficient genome-
editing technique than the nucleases discussed above.
CRISPR/Cas was discovered in bacteria or archaea as a
type II prokaryotic adaptive immune system, which provides
bacteria immunity against invading phages (Jinek et al., 2012;
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FIGURE 10 | Genome editing. Site-directed genome editing involves the induction of site-specific double-stranded breaks in the genome followed by the recruitment
of endonucleases such as ZFNs, TALENs, CRISPR-Cas9. ZFN recognizes nine nucleotide sites on binding and creates a break when two FokI monomers are in
proximity to each other. TALENS also works in a similar manner. In the CRISPR system, a gRNA binds to the target site in the genomic region and forms a complex
with Cas 9 nuclease to create a break. These breaks can further be repaired by NHEJ, which inserts indels in the sequence, or by HRR pathways in which homolog
donor sequence could be used to modify the target sequence. ZFNs, Zinc-finger nucleases; TALENs, transcription activator–like effector nucleases CRISPR-Cas9,
clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9; gRNA, guide RNA; FokI, a type IIS restriction endonuclease isolated from
Flavobacterium okeanokoites; NHEJ, non-homologous end-joining.

Kumawat et al., 2019). The mechanism of immunizing bacteria
against viral attack starts with the incorporation of protospacer,
which are small fragments of a foreign sequence in the host
chromosome at the proximal end of the CRISPR array (Jinek
et al., 2012). The protospacer consists of identical repeats, the
transcription product of these repeats results in the generation
of precursor CRISPR RNA (pre-crRNA). Later, enzymatic
cleavage leads to the formation of crRNA, which has the ability
to complementarily base pair with the protospacer sequence
of the invasive viral target (Jinek et al., 2012; Kumawat et al.,
2019). After recognition of target and complementary base
pairing, Cas9 nuclease digests the target sequence and directs
the silencing of viral sequences. In bacteria, there are three
types of CRISPR/Cas systems known to date, viz. types I, II,
and III. Type II system is most commonly used in genome
editing. In the type II system, transactivating crRNA (tracrRNA),
which is complementary to the pre-crRNA, in the presence
of Cas9 tracrRNA helps in the maturation by processing
with the ds-RNA–specific ribonuclease RNase III (Jinek et al.,
2012; Kumawat et al., 2019). For efficient genome editing,
single-guide RNAs (sgRNAs) are synthesized by combining
the tracrRNA and crRNAs in which 5′ sequence of sgRNA
binds to the target sequence and 3′ sequence binds to the Cas9
nuclease (Kumawat et al., 2019). The targeted mutagenesis
by CRISPR/Cas9 is achieved by generating the sgRNAs
complementary to the desired site, which allows binding of
Cas9 to the desired site. The Cas9 enzyme subsequently cleaves
the DNA at the desired site, resulting in the DSB, which is

repaired by the HRR or NHEJ pathway leading to small indels.
To confirm the role of KU in the NHEJ pathway in plants,
Shen et al. (2017) utilized the CRISPR/Cas9 system to induce
DSB in two genes, i.e., Arabidopsis cruciferin 3 (CRU3) and
protoporphyrinogen oxidase and observed larger deletions in
mutants lacking KU.

FUTURE DIRECTIONS AND
CONCLUDING REMARKS

The plant DNA damage response is evolving as a key process
influencing plant growth and development in response to
adverse environmental cues. The DNA damage response directly
influences genome stability by preventing the accumulation
of mutations within the organism. The literature discussed in
this review reflects the dearth of data regarding the process
of genome stability in plants compared to bacteria, yeast, and
human. Given the climate change and the stress it imposes on
plant growth and productivity, future research in this area will
provide important insights into how plants maintain genome
stability under stressful conditions. Characterizing various novel
interactions between DNA repair proteins in response to stress
will open new avenues for crop improvement. Furthermore,
with the advent of CRISPR-Cas9 screens, it will be exciting
to identify novel genes involved in DNA repair in plants not
otherwise possible by classical genetics. Another promising line
of research is to understand the link between DNA repair and
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chromatin dynamics. DNA repair proteins and processes require
access to the DNA damage, which requires extensive chromatin
remodeling and epigenetic modifications at the site of the DNA
damage. It will be fascinating to uncover such modifications and
further determine if such chromatin states are stable and heritable
during stressful conditions. These heritable states will allow
plants to acclimatize to such adverse environmental conditions.
Future work would thus require understanding the mechanism
of the initiation of these epigenetic states and designing assay
systems that will allow us to study the heritable nature of these
epigenetic states.
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